xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision d0b73b48)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38 
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 						    unsigned alignment,
43 						    bool map_and_fenceable,
44 						    bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 				struct drm_i915_gem_object *obj,
47 				struct drm_i915_gem_pwrite *args,
48 				struct drm_file *file);
49 
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 				 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 					 struct drm_i915_fence_reg *fence,
54 					 bool enable);
55 
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 				    struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61 
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 	if (obj->tiling_mode)
65 		i915_gem_release_mmap(obj);
66 
67 	/* As we do not have an associated fence register, we will force
68 	 * a tiling change if we ever need to acquire one.
69 	 */
70 	obj->fence_dirty = false;
71 	obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73 
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 				  size_t size)
77 {
78 	dev_priv->mm.object_count++;
79 	dev_priv->mm.object_memory += size;
80 }
81 
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 				     size_t size)
84 {
85 	dev_priv->mm.object_count--;
86 	dev_priv->mm.object_memory -= size;
87 }
88 
89 static int
90 i915_gem_wait_for_error(struct drm_device *dev)
91 {
92 	struct drm_i915_private *dev_priv = dev->dev_private;
93 	struct completion *x = &dev_priv->error_completion;
94 	unsigned long flags;
95 	int ret;
96 
97 	if (!atomic_read(&dev_priv->mm.wedged))
98 		return 0;
99 
100 	/*
101 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102 	 * userspace. If it takes that long something really bad is going on and
103 	 * we should simply try to bail out and fail as gracefully as possible.
104 	 */
105 	ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106 	if (ret == 0) {
107 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108 		return -EIO;
109 	} else if (ret < 0) {
110 		return ret;
111 	}
112 
113 	if (atomic_read(&dev_priv->mm.wedged)) {
114 		/* GPU is hung, bump the completion count to account for
115 		 * the token we just consumed so that we never hit zero and
116 		 * end up waiting upon a subsequent completion event that
117 		 * will never happen.
118 		 */
119 		spin_lock_irqsave(&x->wait.lock, flags);
120 		x->done++;
121 		spin_unlock_irqrestore(&x->wait.lock, flags);
122 	}
123 	return 0;
124 }
125 
126 int i915_mutex_lock_interruptible(struct drm_device *dev)
127 {
128 	int ret;
129 
130 	ret = i915_gem_wait_for_error(dev);
131 	if (ret)
132 		return ret;
133 
134 	ret = mutex_lock_interruptible(&dev->struct_mutex);
135 	if (ret)
136 		return ret;
137 
138 	WARN_ON(i915_verify_lists(dev));
139 	return 0;
140 }
141 
142 static inline bool
143 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
144 {
145 	return obj->gtt_space && !obj->active;
146 }
147 
148 int
149 i915_gem_init_ioctl(struct drm_device *dev, void *data,
150 		    struct drm_file *file)
151 {
152 	struct drm_i915_gem_init *args = data;
153 
154 	if (drm_core_check_feature(dev, DRIVER_MODESET))
155 		return -ENODEV;
156 
157 	if (args->gtt_start >= args->gtt_end ||
158 	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159 		return -EINVAL;
160 
161 	/* GEM with user mode setting was never supported on ilk and later. */
162 	if (INTEL_INFO(dev)->gen >= 5)
163 		return -ENODEV;
164 
165 	mutex_lock(&dev->struct_mutex);
166 	i915_gem_init_global_gtt(dev, args->gtt_start,
167 				 args->gtt_end, args->gtt_end);
168 	mutex_unlock(&dev->struct_mutex);
169 
170 	return 0;
171 }
172 
173 int
174 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
175 			    struct drm_file *file)
176 {
177 	struct drm_i915_private *dev_priv = dev->dev_private;
178 	struct drm_i915_gem_get_aperture *args = data;
179 	struct drm_i915_gem_object *obj;
180 	size_t pinned;
181 
182 	pinned = 0;
183 	mutex_lock(&dev->struct_mutex);
184 	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
185 		if (obj->pin_count)
186 			pinned += obj->gtt_space->size;
187 	mutex_unlock(&dev->struct_mutex);
188 
189 	args->aper_size = dev_priv->mm.gtt_total;
190 	args->aper_available_size = args->aper_size - pinned;
191 
192 	return 0;
193 }
194 
195 static int
196 i915_gem_create(struct drm_file *file,
197 		struct drm_device *dev,
198 		uint64_t size,
199 		uint32_t *handle_p)
200 {
201 	struct drm_i915_gem_object *obj;
202 	int ret;
203 	u32 handle;
204 
205 	size = roundup(size, PAGE_SIZE);
206 	if (size == 0)
207 		return -EINVAL;
208 
209 	/* Allocate the new object */
210 	obj = i915_gem_alloc_object(dev, size);
211 	if (obj == NULL)
212 		return -ENOMEM;
213 
214 	ret = drm_gem_handle_create(file, &obj->base, &handle);
215 	if (ret) {
216 		drm_gem_object_release(&obj->base);
217 		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
218 		kfree(obj);
219 		return ret;
220 	}
221 
222 	/* drop reference from allocate - handle holds it now */
223 	drm_gem_object_unreference(&obj->base);
224 	trace_i915_gem_object_create(obj);
225 
226 	*handle_p = handle;
227 	return 0;
228 }
229 
230 int
231 i915_gem_dumb_create(struct drm_file *file,
232 		     struct drm_device *dev,
233 		     struct drm_mode_create_dumb *args)
234 {
235 	/* have to work out size/pitch and return them */
236 	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
237 	args->size = args->pitch * args->height;
238 	return i915_gem_create(file, dev,
239 			       args->size, &args->handle);
240 }
241 
242 int i915_gem_dumb_destroy(struct drm_file *file,
243 			  struct drm_device *dev,
244 			  uint32_t handle)
245 {
246 	return drm_gem_handle_delete(file, handle);
247 }
248 
249 /**
250  * Creates a new mm object and returns a handle to it.
251  */
252 int
253 i915_gem_create_ioctl(struct drm_device *dev, void *data,
254 		      struct drm_file *file)
255 {
256 	struct drm_i915_gem_create *args = data;
257 
258 	return i915_gem_create(file, dev,
259 			       args->size, &args->handle);
260 }
261 
262 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
263 {
264 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
265 
266 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
267 		obj->tiling_mode != I915_TILING_NONE;
268 }
269 
270 static inline int
271 __copy_to_user_swizzled(char __user *cpu_vaddr,
272 			const char *gpu_vaddr, int gpu_offset,
273 			int length)
274 {
275 	int ret, cpu_offset = 0;
276 
277 	while (length > 0) {
278 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
279 		int this_length = min(cacheline_end - gpu_offset, length);
280 		int swizzled_gpu_offset = gpu_offset ^ 64;
281 
282 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
283 				     gpu_vaddr + swizzled_gpu_offset,
284 				     this_length);
285 		if (ret)
286 			return ret + length;
287 
288 		cpu_offset += this_length;
289 		gpu_offset += this_length;
290 		length -= this_length;
291 	}
292 
293 	return 0;
294 }
295 
296 static inline int
297 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
298 			  const char __user *cpu_vaddr,
299 			  int length)
300 {
301 	int ret, cpu_offset = 0;
302 
303 	while (length > 0) {
304 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
305 		int this_length = min(cacheline_end - gpu_offset, length);
306 		int swizzled_gpu_offset = gpu_offset ^ 64;
307 
308 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
309 				       cpu_vaddr + cpu_offset,
310 				       this_length);
311 		if (ret)
312 			return ret + length;
313 
314 		cpu_offset += this_length;
315 		gpu_offset += this_length;
316 		length -= this_length;
317 	}
318 
319 	return 0;
320 }
321 
322 /* Per-page copy function for the shmem pread fastpath.
323  * Flushes invalid cachelines before reading the target if
324  * needs_clflush is set. */
325 static int
326 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
327 		 char __user *user_data,
328 		 bool page_do_bit17_swizzling, bool needs_clflush)
329 {
330 	char *vaddr;
331 	int ret;
332 
333 	if (unlikely(page_do_bit17_swizzling))
334 		return -EINVAL;
335 
336 	vaddr = kmap_atomic(page);
337 	if (needs_clflush)
338 		drm_clflush_virt_range(vaddr + shmem_page_offset,
339 				       page_length);
340 	ret = __copy_to_user_inatomic(user_data,
341 				      vaddr + shmem_page_offset,
342 				      page_length);
343 	kunmap_atomic(vaddr);
344 
345 	return ret ? -EFAULT : 0;
346 }
347 
348 static void
349 shmem_clflush_swizzled_range(char *addr, unsigned long length,
350 			     bool swizzled)
351 {
352 	if (unlikely(swizzled)) {
353 		unsigned long start = (unsigned long) addr;
354 		unsigned long end = (unsigned long) addr + length;
355 
356 		/* For swizzling simply ensure that we always flush both
357 		 * channels. Lame, but simple and it works. Swizzled
358 		 * pwrite/pread is far from a hotpath - current userspace
359 		 * doesn't use it at all. */
360 		start = round_down(start, 128);
361 		end = round_up(end, 128);
362 
363 		drm_clflush_virt_range((void *)start, end - start);
364 	} else {
365 		drm_clflush_virt_range(addr, length);
366 	}
367 
368 }
369 
370 /* Only difference to the fast-path function is that this can handle bit17
371  * and uses non-atomic copy and kmap functions. */
372 static int
373 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
374 		 char __user *user_data,
375 		 bool page_do_bit17_swizzling, bool needs_clflush)
376 {
377 	char *vaddr;
378 	int ret;
379 
380 	vaddr = kmap(page);
381 	if (needs_clflush)
382 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
383 					     page_length,
384 					     page_do_bit17_swizzling);
385 
386 	if (page_do_bit17_swizzling)
387 		ret = __copy_to_user_swizzled(user_data,
388 					      vaddr, shmem_page_offset,
389 					      page_length);
390 	else
391 		ret = __copy_to_user(user_data,
392 				     vaddr + shmem_page_offset,
393 				     page_length);
394 	kunmap(page);
395 
396 	return ret ? - EFAULT : 0;
397 }
398 
399 static int
400 i915_gem_shmem_pread(struct drm_device *dev,
401 		     struct drm_i915_gem_object *obj,
402 		     struct drm_i915_gem_pread *args,
403 		     struct drm_file *file)
404 {
405 	char __user *user_data;
406 	ssize_t remain;
407 	loff_t offset;
408 	int shmem_page_offset, page_length, ret = 0;
409 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
410 	int hit_slowpath = 0;
411 	int prefaulted = 0;
412 	int needs_clflush = 0;
413 	struct scatterlist *sg;
414 	int i;
415 
416 	user_data = (char __user *) (uintptr_t) args->data_ptr;
417 	remain = args->size;
418 
419 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
420 
421 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
422 		/* If we're not in the cpu read domain, set ourself into the gtt
423 		 * read domain and manually flush cachelines (if required). This
424 		 * optimizes for the case when the gpu will dirty the data
425 		 * anyway again before the next pread happens. */
426 		if (obj->cache_level == I915_CACHE_NONE)
427 			needs_clflush = 1;
428 		if (obj->gtt_space) {
429 			ret = i915_gem_object_set_to_gtt_domain(obj, false);
430 			if (ret)
431 				return ret;
432 		}
433 	}
434 
435 	ret = i915_gem_object_get_pages(obj);
436 	if (ret)
437 		return ret;
438 
439 	i915_gem_object_pin_pages(obj);
440 
441 	offset = args->offset;
442 
443 	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
444 		struct page *page;
445 
446 		if (i < offset >> PAGE_SHIFT)
447 			continue;
448 
449 		if (remain <= 0)
450 			break;
451 
452 		/* Operation in this page
453 		 *
454 		 * shmem_page_offset = offset within page in shmem file
455 		 * page_length = bytes to copy for this page
456 		 */
457 		shmem_page_offset = offset_in_page(offset);
458 		page_length = remain;
459 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
460 			page_length = PAGE_SIZE - shmem_page_offset;
461 
462 		page = sg_page(sg);
463 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
464 			(page_to_phys(page) & (1 << 17)) != 0;
465 
466 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
467 				       user_data, page_do_bit17_swizzling,
468 				       needs_clflush);
469 		if (ret == 0)
470 			goto next_page;
471 
472 		hit_slowpath = 1;
473 		mutex_unlock(&dev->struct_mutex);
474 
475 		if (!prefaulted) {
476 			ret = fault_in_multipages_writeable(user_data, remain);
477 			/* Userspace is tricking us, but we've already clobbered
478 			 * its pages with the prefault and promised to write the
479 			 * data up to the first fault. Hence ignore any errors
480 			 * and just continue. */
481 			(void)ret;
482 			prefaulted = 1;
483 		}
484 
485 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
486 				       user_data, page_do_bit17_swizzling,
487 				       needs_clflush);
488 
489 		mutex_lock(&dev->struct_mutex);
490 
491 next_page:
492 		mark_page_accessed(page);
493 
494 		if (ret)
495 			goto out;
496 
497 		remain -= page_length;
498 		user_data += page_length;
499 		offset += page_length;
500 	}
501 
502 out:
503 	i915_gem_object_unpin_pages(obj);
504 
505 	if (hit_slowpath) {
506 		/* Fixup: Kill any reinstated backing storage pages */
507 		if (obj->madv == __I915_MADV_PURGED)
508 			i915_gem_object_truncate(obj);
509 	}
510 
511 	return ret;
512 }
513 
514 /**
515  * Reads data from the object referenced by handle.
516  *
517  * On error, the contents of *data are undefined.
518  */
519 int
520 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
521 		     struct drm_file *file)
522 {
523 	struct drm_i915_gem_pread *args = data;
524 	struct drm_i915_gem_object *obj;
525 	int ret = 0;
526 
527 	if (args->size == 0)
528 		return 0;
529 
530 	if (!access_ok(VERIFY_WRITE,
531 		       (char __user *)(uintptr_t)args->data_ptr,
532 		       args->size))
533 		return -EFAULT;
534 
535 	ret = i915_mutex_lock_interruptible(dev);
536 	if (ret)
537 		return ret;
538 
539 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
540 	if (&obj->base == NULL) {
541 		ret = -ENOENT;
542 		goto unlock;
543 	}
544 
545 	/* Bounds check source.  */
546 	if (args->offset > obj->base.size ||
547 	    args->size > obj->base.size - args->offset) {
548 		ret = -EINVAL;
549 		goto out;
550 	}
551 
552 	/* prime objects have no backing filp to GEM pread/pwrite
553 	 * pages from.
554 	 */
555 	if (!obj->base.filp) {
556 		ret = -EINVAL;
557 		goto out;
558 	}
559 
560 	trace_i915_gem_object_pread(obj, args->offset, args->size);
561 
562 	ret = i915_gem_shmem_pread(dev, obj, args, file);
563 
564 out:
565 	drm_gem_object_unreference(&obj->base);
566 unlock:
567 	mutex_unlock(&dev->struct_mutex);
568 	return ret;
569 }
570 
571 /* This is the fast write path which cannot handle
572  * page faults in the source data
573  */
574 
575 static inline int
576 fast_user_write(struct io_mapping *mapping,
577 		loff_t page_base, int page_offset,
578 		char __user *user_data,
579 		int length)
580 {
581 	void __iomem *vaddr_atomic;
582 	void *vaddr;
583 	unsigned long unwritten;
584 
585 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
586 	/* We can use the cpu mem copy function because this is X86. */
587 	vaddr = (void __force*)vaddr_atomic + page_offset;
588 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
589 						      user_data, length);
590 	io_mapping_unmap_atomic(vaddr_atomic);
591 	return unwritten;
592 }
593 
594 /**
595  * This is the fast pwrite path, where we copy the data directly from the
596  * user into the GTT, uncached.
597  */
598 static int
599 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
600 			 struct drm_i915_gem_object *obj,
601 			 struct drm_i915_gem_pwrite *args,
602 			 struct drm_file *file)
603 {
604 	drm_i915_private_t *dev_priv = dev->dev_private;
605 	ssize_t remain;
606 	loff_t offset, page_base;
607 	char __user *user_data;
608 	int page_offset, page_length, ret;
609 
610 	ret = i915_gem_object_pin(obj, 0, true, true);
611 	if (ret)
612 		goto out;
613 
614 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
615 	if (ret)
616 		goto out_unpin;
617 
618 	ret = i915_gem_object_put_fence(obj);
619 	if (ret)
620 		goto out_unpin;
621 
622 	user_data = (char __user *) (uintptr_t) args->data_ptr;
623 	remain = args->size;
624 
625 	offset = obj->gtt_offset + args->offset;
626 
627 	while (remain > 0) {
628 		/* Operation in this page
629 		 *
630 		 * page_base = page offset within aperture
631 		 * page_offset = offset within page
632 		 * page_length = bytes to copy for this page
633 		 */
634 		page_base = offset & PAGE_MASK;
635 		page_offset = offset_in_page(offset);
636 		page_length = remain;
637 		if ((page_offset + remain) > PAGE_SIZE)
638 			page_length = PAGE_SIZE - page_offset;
639 
640 		/* If we get a fault while copying data, then (presumably) our
641 		 * source page isn't available.  Return the error and we'll
642 		 * retry in the slow path.
643 		 */
644 		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
645 				    page_offset, user_data, page_length)) {
646 			ret = -EFAULT;
647 			goto out_unpin;
648 		}
649 
650 		remain -= page_length;
651 		user_data += page_length;
652 		offset += page_length;
653 	}
654 
655 out_unpin:
656 	i915_gem_object_unpin(obj);
657 out:
658 	return ret;
659 }
660 
661 /* Per-page copy function for the shmem pwrite fastpath.
662  * Flushes invalid cachelines before writing to the target if
663  * needs_clflush_before is set and flushes out any written cachelines after
664  * writing if needs_clflush is set. */
665 static int
666 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
667 		  char __user *user_data,
668 		  bool page_do_bit17_swizzling,
669 		  bool needs_clflush_before,
670 		  bool needs_clflush_after)
671 {
672 	char *vaddr;
673 	int ret;
674 
675 	if (unlikely(page_do_bit17_swizzling))
676 		return -EINVAL;
677 
678 	vaddr = kmap_atomic(page);
679 	if (needs_clflush_before)
680 		drm_clflush_virt_range(vaddr + shmem_page_offset,
681 				       page_length);
682 	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
683 						user_data,
684 						page_length);
685 	if (needs_clflush_after)
686 		drm_clflush_virt_range(vaddr + shmem_page_offset,
687 				       page_length);
688 	kunmap_atomic(vaddr);
689 
690 	return ret ? -EFAULT : 0;
691 }
692 
693 /* Only difference to the fast-path function is that this can handle bit17
694  * and uses non-atomic copy and kmap functions. */
695 static int
696 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
697 		  char __user *user_data,
698 		  bool page_do_bit17_swizzling,
699 		  bool needs_clflush_before,
700 		  bool needs_clflush_after)
701 {
702 	char *vaddr;
703 	int ret;
704 
705 	vaddr = kmap(page);
706 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
707 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
708 					     page_length,
709 					     page_do_bit17_swizzling);
710 	if (page_do_bit17_swizzling)
711 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
712 						user_data,
713 						page_length);
714 	else
715 		ret = __copy_from_user(vaddr + shmem_page_offset,
716 				       user_data,
717 				       page_length);
718 	if (needs_clflush_after)
719 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
720 					     page_length,
721 					     page_do_bit17_swizzling);
722 	kunmap(page);
723 
724 	return ret ? -EFAULT : 0;
725 }
726 
727 static int
728 i915_gem_shmem_pwrite(struct drm_device *dev,
729 		      struct drm_i915_gem_object *obj,
730 		      struct drm_i915_gem_pwrite *args,
731 		      struct drm_file *file)
732 {
733 	ssize_t remain;
734 	loff_t offset;
735 	char __user *user_data;
736 	int shmem_page_offset, page_length, ret = 0;
737 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
738 	int hit_slowpath = 0;
739 	int needs_clflush_after = 0;
740 	int needs_clflush_before = 0;
741 	int i;
742 	struct scatterlist *sg;
743 
744 	user_data = (char __user *) (uintptr_t) args->data_ptr;
745 	remain = args->size;
746 
747 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
748 
749 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
750 		/* If we're not in the cpu write domain, set ourself into the gtt
751 		 * write domain and manually flush cachelines (if required). This
752 		 * optimizes for the case when the gpu will use the data
753 		 * right away and we therefore have to clflush anyway. */
754 		if (obj->cache_level == I915_CACHE_NONE)
755 			needs_clflush_after = 1;
756 		if (obj->gtt_space) {
757 			ret = i915_gem_object_set_to_gtt_domain(obj, true);
758 			if (ret)
759 				return ret;
760 		}
761 	}
762 	/* Same trick applies for invalidate partially written cachelines before
763 	 * writing.  */
764 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
765 	    && obj->cache_level == I915_CACHE_NONE)
766 		needs_clflush_before = 1;
767 
768 	ret = i915_gem_object_get_pages(obj);
769 	if (ret)
770 		return ret;
771 
772 	i915_gem_object_pin_pages(obj);
773 
774 	offset = args->offset;
775 	obj->dirty = 1;
776 
777 	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
778 		struct page *page;
779 		int partial_cacheline_write;
780 
781 		if (i < offset >> PAGE_SHIFT)
782 			continue;
783 
784 		if (remain <= 0)
785 			break;
786 
787 		/* Operation in this page
788 		 *
789 		 * shmem_page_offset = offset within page in shmem file
790 		 * page_length = bytes to copy for this page
791 		 */
792 		shmem_page_offset = offset_in_page(offset);
793 
794 		page_length = remain;
795 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
796 			page_length = PAGE_SIZE - shmem_page_offset;
797 
798 		/* If we don't overwrite a cacheline completely we need to be
799 		 * careful to have up-to-date data by first clflushing. Don't
800 		 * overcomplicate things and flush the entire patch. */
801 		partial_cacheline_write = needs_clflush_before &&
802 			((shmem_page_offset | page_length)
803 				& (boot_cpu_data.x86_clflush_size - 1));
804 
805 		page = sg_page(sg);
806 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
807 			(page_to_phys(page) & (1 << 17)) != 0;
808 
809 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
810 					user_data, page_do_bit17_swizzling,
811 					partial_cacheline_write,
812 					needs_clflush_after);
813 		if (ret == 0)
814 			goto next_page;
815 
816 		hit_slowpath = 1;
817 		mutex_unlock(&dev->struct_mutex);
818 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
819 					user_data, page_do_bit17_swizzling,
820 					partial_cacheline_write,
821 					needs_clflush_after);
822 
823 		mutex_lock(&dev->struct_mutex);
824 
825 next_page:
826 		set_page_dirty(page);
827 		mark_page_accessed(page);
828 
829 		if (ret)
830 			goto out;
831 
832 		remain -= page_length;
833 		user_data += page_length;
834 		offset += page_length;
835 	}
836 
837 out:
838 	i915_gem_object_unpin_pages(obj);
839 
840 	if (hit_slowpath) {
841 		/* Fixup: Kill any reinstated backing storage pages */
842 		if (obj->madv == __I915_MADV_PURGED)
843 			i915_gem_object_truncate(obj);
844 		/* and flush dirty cachelines in case the object isn't in the cpu write
845 		 * domain anymore. */
846 		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
847 			i915_gem_clflush_object(obj);
848 			i915_gem_chipset_flush(dev);
849 		}
850 	}
851 
852 	if (needs_clflush_after)
853 		i915_gem_chipset_flush(dev);
854 
855 	return ret;
856 }
857 
858 /**
859  * Writes data to the object referenced by handle.
860  *
861  * On error, the contents of the buffer that were to be modified are undefined.
862  */
863 int
864 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
865 		      struct drm_file *file)
866 {
867 	struct drm_i915_gem_pwrite *args = data;
868 	struct drm_i915_gem_object *obj;
869 	int ret;
870 
871 	if (args->size == 0)
872 		return 0;
873 
874 	if (!access_ok(VERIFY_READ,
875 		       (char __user *)(uintptr_t)args->data_ptr,
876 		       args->size))
877 		return -EFAULT;
878 
879 	ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
880 					   args->size);
881 	if (ret)
882 		return -EFAULT;
883 
884 	ret = i915_mutex_lock_interruptible(dev);
885 	if (ret)
886 		return ret;
887 
888 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
889 	if (&obj->base == NULL) {
890 		ret = -ENOENT;
891 		goto unlock;
892 	}
893 
894 	/* Bounds check destination. */
895 	if (args->offset > obj->base.size ||
896 	    args->size > obj->base.size - args->offset) {
897 		ret = -EINVAL;
898 		goto out;
899 	}
900 
901 	/* prime objects have no backing filp to GEM pread/pwrite
902 	 * pages from.
903 	 */
904 	if (!obj->base.filp) {
905 		ret = -EINVAL;
906 		goto out;
907 	}
908 
909 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
910 
911 	ret = -EFAULT;
912 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
913 	 * it would end up going through the fenced access, and we'll get
914 	 * different detiling behavior between reading and writing.
915 	 * pread/pwrite currently are reading and writing from the CPU
916 	 * perspective, requiring manual detiling by the client.
917 	 */
918 	if (obj->phys_obj) {
919 		ret = i915_gem_phys_pwrite(dev, obj, args, file);
920 		goto out;
921 	}
922 
923 	if (obj->cache_level == I915_CACHE_NONE &&
924 	    obj->tiling_mode == I915_TILING_NONE &&
925 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
926 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
927 		/* Note that the gtt paths might fail with non-page-backed user
928 		 * pointers (e.g. gtt mappings when moving data between
929 		 * textures). Fallback to the shmem path in that case. */
930 	}
931 
932 	if (ret == -EFAULT || ret == -ENOSPC)
933 		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
934 
935 out:
936 	drm_gem_object_unreference(&obj->base);
937 unlock:
938 	mutex_unlock(&dev->struct_mutex);
939 	return ret;
940 }
941 
942 int
943 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
944 		     bool interruptible)
945 {
946 	if (atomic_read(&dev_priv->mm.wedged)) {
947 		struct completion *x = &dev_priv->error_completion;
948 		bool recovery_complete;
949 		unsigned long flags;
950 
951 		/* Give the error handler a chance to run. */
952 		spin_lock_irqsave(&x->wait.lock, flags);
953 		recovery_complete = x->done > 0;
954 		spin_unlock_irqrestore(&x->wait.lock, flags);
955 
956 		/* Non-interruptible callers can't handle -EAGAIN, hence return
957 		 * -EIO unconditionally for these. */
958 		if (!interruptible)
959 			return -EIO;
960 
961 		/* Recovery complete, but still wedged means reset failure. */
962 		if (recovery_complete)
963 			return -EIO;
964 
965 		return -EAGAIN;
966 	}
967 
968 	return 0;
969 }
970 
971 /*
972  * Compare seqno against outstanding lazy request. Emit a request if they are
973  * equal.
974  */
975 static int
976 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
977 {
978 	int ret;
979 
980 	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
981 
982 	ret = 0;
983 	if (seqno == ring->outstanding_lazy_request)
984 		ret = i915_add_request(ring, NULL, NULL);
985 
986 	return ret;
987 }
988 
989 /**
990  * __wait_seqno - wait until execution of seqno has finished
991  * @ring: the ring expected to report seqno
992  * @seqno: duh!
993  * @interruptible: do an interruptible wait (normally yes)
994  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
995  *
996  * Returns 0 if the seqno was found within the alloted time. Else returns the
997  * errno with remaining time filled in timeout argument.
998  */
999 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1000 			bool interruptible, struct timespec *timeout)
1001 {
1002 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1003 	struct timespec before, now, wait_time={1,0};
1004 	unsigned long timeout_jiffies;
1005 	long end;
1006 	bool wait_forever = true;
1007 	int ret;
1008 
1009 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1010 		return 0;
1011 
1012 	trace_i915_gem_request_wait_begin(ring, seqno);
1013 
1014 	if (timeout != NULL) {
1015 		wait_time = *timeout;
1016 		wait_forever = false;
1017 	}
1018 
1019 	timeout_jiffies = timespec_to_jiffies(&wait_time);
1020 
1021 	if (WARN_ON(!ring->irq_get(ring)))
1022 		return -ENODEV;
1023 
1024 	/* Record current time in case interrupted by signal, or wedged * */
1025 	getrawmonotonic(&before);
1026 
1027 #define EXIT_COND \
1028 	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1029 	atomic_read(&dev_priv->mm.wedged))
1030 	do {
1031 		if (interruptible)
1032 			end = wait_event_interruptible_timeout(ring->irq_queue,
1033 							       EXIT_COND,
1034 							       timeout_jiffies);
1035 		else
1036 			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1037 						 timeout_jiffies);
1038 
1039 		ret = i915_gem_check_wedge(dev_priv, interruptible);
1040 		if (ret)
1041 			end = ret;
1042 	} while (end == 0 && wait_forever);
1043 
1044 	getrawmonotonic(&now);
1045 
1046 	ring->irq_put(ring);
1047 	trace_i915_gem_request_wait_end(ring, seqno);
1048 #undef EXIT_COND
1049 
1050 	if (timeout) {
1051 		struct timespec sleep_time = timespec_sub(now, before);
1052 		*timeout = timespec_sub(*timeout, sleep_time);
1053 	}
1054 
1055 	switch (end) {
1056 	case -EIO:
1057 	case -EAGAIN: /* Wedged */
1058 	case -ERESTARTSYS: /* Signal */
1059 		return (int)end;
1060 	case 0: /* Timeout */
1061 		if (timeout)
1062 			set_normalized_timespec(timeout, 0, 0);
1063 		return -ETIME;
1064 	default: /* Completed */
1065 		WARN_ON(end < 0); /* We're not aware of other errors */
1066 		return 0;
1067 	}
1068 }
1069 
1070 /**
1071  * Waits for a sequence number to be signaled, and cleans up the
1072  * request and object lists appropriately for that event.
1073  */
1074 int
1075 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1076 {
1077 	struct drm_device *dev = ring->dev;
1078 	struct drm_i915_private *dev_priv = dev->dev_private;
1079 	bool interruptible = dev_priv->mm.interruptible;
1080 	int ret;
1081 
1082 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1083 	BUG_ON(seqno == 0);
1084 
1085 	ret = i915_gem_check_wedge(dev_priv, interruptible);
1086 	if (ret)
1087 		return ret;
1088 
1089 	ret = i915_gem_check_olr(ring, seqno);
1090 	if (ret)
1091 		return ret;
1092 
1093 	return __wait_seqno(ring, seqno, interruptible, NULL);
1094 }
1095 
1096 /**
1097  * Ensures that all rendering to the object has completed and the object is
1098  * safe to unbind from the GTT or access from the CPU.
1099  */
1100 static __must_check int
1101 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1102 			       bool readonly)
1103 {
1104 	struct intel_ring_buffer *ring = obj->ring;
1105 	u32 seqno;
1106 	int ret;
1107 
1108 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1109 	if (seqno == 0)
1110 		return 0;
1111 
1112 	ret = i915_wait_seqno(ring, seqno);
1113 	if (ret)
1114 		return ret;
1115 
1116 	i915_gem_retire_requests_ring(ring);
1117 
1118 	/* Manually manage the write flush as we may have not yet
1119 	 * retired the buffer.
1120 	 */
1121 	if (obj->last_write_seqno &&
1122 	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
1123 		obj->last_write_seqno = 0;
1124 		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1125 	}
1126 
1127 	return 0;
1128 }
1129 
1130 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1131  * as the object state may change during this call.
1132  */
1133 static __must_check int
1134 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1135 					    bool readonly)
1136 {
1137 	struct drm_device *dev = obj->base.dev;
1138 	struct drm_i915_private *dev_priv = dev->dev_private;
1139 	struct intel_ring_buffer *ring = obj->ring;
1140 	u32 seqno;
1141 	int ret;
1142 
1143 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1144 	BUG_ON(!dev_priv->mm.interruptible);
1145 
1146 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1147 	if (seqno == 0)
1148 		return 0;
1149 
1150 	ret = i915_gem_check_wedge(dev_priv, true);
1151 	if (ret)
1152 		return ret;
1153 
1154 	ret = i915_gem_check_olr(ring, seqno);
1155 	if (ret)
1156 		return ret;
1157 
1158 	mutex_unlock(&dev->struct_mutex);
1159 	ret = __wait_seqno(ring, seqno, true, NULL);
1160 	mutex_lock(&dev->struct_mutex);
1161 
1162 	i915_gem_retire_requests_ring(ring);
1163 
1164 	/* Manually manage the write flush as we may have not yet
1165 	 * retired the buffer.
1166 	 */
1167 	if (obj->last_write_seqno &&
1168 	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
1169 		obj->last_write_seqno = 0;
1170 		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1171 	}
1172 
1173 	return ret;
1174 }
1175 
1176 /**
1177  * Called when user space prepares to use an object with the CPU, either
1178  * through the mmap ioctl's mapping or a GTT mapping.
1179  */
1180 int
1181 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1182 			  struct drm_file *file)
1183 {
1184 	struct drm_i915_gem_set_domain *args = data;
1185 	struct drm_i915_gem_object *obj;
1186 	uint32_t read_domains = args->read_domains;
1187 	uint32_t write_domain = args->write_domain;
1188 	int ret;
1189 
1190 	/* Only handle setting domains to types used by the CPU. */
1191 	if (write_domain & I915_GEM_GPU_DOMAINS)
1192 		return -EINVAL;
1193 
1194 	if (read_domains & I915_GEM_GPU_DOMAINS)
1195 		return -EINVAL;
1196 
1197 	/* Having something in the write domain implies it's in the read
1198 	 * domain, and only that read domain.  Enforce that in the request.
1199 	 */
1200 	if (write_domain != 0 && read_domains != write_domain)
1201 		return -EINVAL;
1202 
1203 	ret = i915_mutex_lock_interruptible(dev);
1204 	if (ret)
1205 		return ret;
1206 
1207 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1208 	if (&obj->base == NULL) {
1209 		ret = -ENOENT;
1210 		goto unlock;
1211 	}
1212 
1213 	/* Try to flush the object off the GPU without holding the lock.
1214 	 * We will repeat the flush holding the lock in the normal manner
1215 	 * to catch cases where we are gazumped.
1216 	 */
1217 	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1218 	if (ret)
1219 		goto unref;
1220 
1221 	if (read_domains & I915_GEM_DOMAIN_GTT) {
1222 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1223 
1224 		/* Silently promote "you're not bound, there was nothing to do"
1225 		 * to success, since the client was just asking us to
1226 		 * make sure everything was done.
1227 		 */
1228 		if (ret == -EINVAL)
1229 			ret = 0;
1230 	} else {
1231 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1232 	}
1233 
1234 unref:
1235 	drm_gem_object_unreference(&obj->base);
1236 unlock:
1237 	mutex_unlock(&dev->struct_mutex);
1238 	return ret;
1239 }
1240 
1241 /**
1242  * Called when user space has done writes to this buffer
1243  */
1244 int
1245 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1246 			 struct drm_file *file)
1247 {
1248 	struct drm_i915_gem_sw_finish *args = data;
1249 	struct drm_i915_gem_object *obj;
1250 	int ret = 0;
1251 
1252 	ret = i915_mutex_lock_interruptible(dev);
1253 	if (ret)
1254 		return ret;
1255 
1256 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1257 	if (&obj->base == NULL) {
1258 		ret = -ENOENT;
1259 		goto unlock;
1260 	}
1261 
1262 	/* Pinned buffers may be scanout, so flush the cache */
1263 	if (obj->pin_count)
1264 		i915_gem_object_flush_cpu_write_domain(obj);
1265 
1266 	drm_gem_object_unreference(&obj->base);
1267 unlock:
1268 	mutex_unlock(&dev->struct_mutex);
1269 	return ret;
1270 }
1271 
1272 /**
1273  * Maps the contents of an object, returning the address it is mapped
1274  * into.
1275  *
1276  * While the mapping holds a reference on the contents of the object, it doesn't
1277  * imply a ref on the object itself.
1278  */
1279 int
1280 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1281 		    struct drm_file *file)
1282 {
1283 	struct drm_i915_gem_mmap *args = data;
1284 	struct drm_gem_object *obj;
1285 	unsigned long addr;
1286 
1287 	obj = drm_gem_object_lookup(dev, file, args->handle);
1288 	if (obj == NULL)
1289 		return -ENOENT;
1290 
1291 	/* prime objects have no backing filp to GEM mmap
1292 	 * pages from.
1293 	 */
1294 	if (!obj->filp) {
1295 		drm_gem_object_unreference_unlocked(obj);
1296 		return -EINVAL;
1297 	}
1298 
1299 	addr = vm_mmap(obj->filp, 0, args->size,
1300 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1301 		       args->offset);
1302 	drm_gem_object_unreference_unlocked(obj);
1303 	if (IS_ERR((void *)addr))
1304 		return addr;
1305 
1306 	args->addr_ptr = (uint64_t) addr;
1307 
1308 	return 0;
1309 }
1310 
1311 /**
1312  * i915_gem_fault - fault a page into the GTT
1313  * vma: VMA in question
1314  * vmf: fault info
1315  *
1316  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1317  * from userspace.  The fault handler takes care of binding the object to
1318  * the GTT (if needed), allocating and programming a fence register (again,
1319  * only if needed based on whether the old reg is still valid or the object
1320  * is tiled) and inserting a new PTE into the faulting process.
1321  *
1322  * Note that the faulting process may involve evicting existing objects
1323  * from the GTT and/or fence registers to make room.  So performance may
1324  * suffer if the GTT working set is large or there are few fence registers
1325  * left.
1326  */
1327 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1328 {
1329 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1330 	struct drm_device *dev = obj->base.dev;
1331 	drm_i915_private_t *dev_priv = dev->dev_private;
1332 	pgoff_t page_offset;
1333 	unsigned long pfn;
1334 	int ret = 0;
1335 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1336 
1337 	/* We don't use vmf->pgoff since that has the fake offset */
1338 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1339 		PAGE_SHIFT;
1340 
1341 	ret = i915_mutex_lock_interruptible(dev);
1342 	if (ret)
1343 		goto out;
1344 
1345 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1346 
1347 	/* Now bind it into the GTT if needed */
1348 	ret = i915_gem_object_pin(obj, 0, true, false);
1349 	if (ret)
1350 		goto unlock;
1351 
1352 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1353 	if (ret)
1354 		goto unpin;
1355 
1356 	ret = i915_gem_object_get_fence(obj);
1357 	if (ret)
1358 		goto unpin;
1359 
1360 	obj->fault_mappable = true;
1361 
1362 	pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1363 		page_offset;
1364 
1365 	/* Finally, remap it using the new GTT offset */
1366 	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1367 unpin:
1368 	i915_gem_object_unpin(obj);
1369 unlock:
1370 	mutex_unlock(&dev->struct_mutex);
1371 out:
1372 	switch (ret) {
1373 	case -EIO:
1374 		/* If this -EIO is due to a gpu hang, give the reset code a
1375 		 * chance to clean up the mess. Otherwise return the proper
1376 		 * SIGBUS. */
1377 		if (!atomic_read(&dev_priv->mm.wedged))
1378 			return VM_FAULT_SIGBUS;
1379 	case -EAGAIN:
1380 		/* Give the error handler a chance to run and move the
1381 		 * objects off the GPU active list. Next time we service the
1382 		 * fault, we should be able to transition the page into the
1383 		 * GTT without touching the GPU (and so avoid further
1384 		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1385 		 * with coherency, just lost writes.
1386 		 */
1387 		set_need_resched();
1388 	case 0:
1389 	case -ERESTARTSYS:
1390 	case -EINTR:
1391 	case -EBUSY:
1392 		/*
1393 		 * EBUSY is ok: this just means that another thread
1394 		 * already did the job.
1395 		 */
1396 		return VM_FAULT_NOPAGE;
1397 	case -ENOMEM:
1398 		return VM_FAULT_OOM;
1399 	case -ENOSPC:
1400 		return VM_FAULT_SIGBUS;
1401 	default:
1402 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1403 		return VM_FAULT_SIGBUS;
1404 	}
1405 }
1406 
1407 /**
1408  * i915_gem_release_mmap - remove physical page mappings
1409  * @obj: obj in question
1410  *
1411  * Preserve the reservation of the mmapping with the DRM core code, but
1412  * relinquish ownership of the pages back to the system.
1413  *
1414  * It is vital that we remove the page mapping if we have mapped a tiled
1415  * object through the GTT and then lose the fence register due to
1416  * resource pressure. Similarly if the object has been moved out of the
1417  * aperture, than pages mapped into userspace must be revoked. Removing the
1418  * mapping will then trigger a page fault on the next user access, allowing
1419  * fixup by i915_gem_fault().
1420  */
1421 void
1422 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1423 {
1424 	if (!obj->fault_mappable)
1425 		return;
1426 
1427 	if (obj->base.dev->dev_mapping)
1428 		unmap_mapping_range(obj->base.dev->dev_mapping,
1429 				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1430 				    obj->base.size, 1);
1431 
1432 	obj->fault_mappable = false;
1433 }
1434 
1435 static uint32_t
1436 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1437 {
1438 	uint32_t gtt_size;
1439 
1440 	if (INTEL_INFO(dev)->gen >= 4 ||
1441 	    tiling_mode == I915_TILING_NONE)
1442 		return size;
1443 
1444 	/* Previous chips need a power-of-two fence region when tiling */
1445 	if (INTEL_INFO(dev)->gen == 3)
1446 		gtt_size = 1024*1024;
1447 	else
1448 		gtt_size = 512*1024;
1449 
1450 	while (gtt_size < size)
1451 		gtt_size <<= 1;
1452 
1453 	return gtt_size;
1454 }
1455 
1456 /**
1457  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1458  * @obj: object to check
1459  *
1460  * Return the required GTT alignment for an object, taking into account
1461  * potential fence register mapping.
1462  */
1463 static uint32_t
1464 i915_gem_get_gtt_alignment(struct drm_device *dev,
1465 			   uint32_t size,
1466 			   int tiling_mode)
1467 {
1468 	/*
1469 	 * Minimum alignment is 4k (GTT page size), but might be greater
1470 	 * if a fence register is needed for the object.
1471 	 */
1472 	if (INTEL_INFO(dev)->gen >= 4 ||
1473 	    tiling_mode == I915_TILING_NONE)
1474 		return 4096;
1475 
1476 	/*
1477 	 * Previous chips need to be aligned to the size of the smallest
1478 	 * fence register that can contain the object.
1479 	 */
1480 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1481 }
1482 
1483 /**
1484  * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1485  *					 unfenced object
1486  * @dev: the device
1487  * @size: size of the object
1488  * @tiling_mode: tiling mode of the object
1489  *
1490  * Return the required GTT alignment for an object, only taking into account
1491  * unfenced tiled surface requirements.
1492  */
1493 uint32_t
1494 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1495 				    uint32_t size,
1496 				    int tiling_mode)
1497 {
1498 	/*
1499 	 * Minimum alignment is 4k (GTT page size) for sane hw.
1500 	 */
1501 	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1502 	    tiling_mode == I915_TILING_NONE)
1503 		return 4096;
1504 
1505 	/* Previous hardware however needs to be aligned to a power-of-two
1506 	 * tile height. The simplest method for determining this is to reuse
1507 	 * the power-of-tile object size.
1508 	 */
1509 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1510 }
1511 
1512 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1513 {
1514 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1515 	int ret;
1516 
1517 	if (obj->base.map_list.map)
1518 		return 0;
1519 
1520 	dev_priv->mm.shrinker_no_lock_stealing = true;
1521 
1522 	ret = drm_gem_create_mmap_offset(&obj->base);
1523 	if (ret != -ENOSPC)
1524 		goto out;
1525 
1526 	/* Badly fragmented mmap space? The only way we can recover
1527 	 * space is by destroying unwanted objects. We can't randomly release
1528 	 * mmap_offsets as userspace expects them to be persistent for the
1529 	 * lifetime of the objects. The closest we can is to release the
1530 	 * offsets on purgeable objects by truncating it and marking it purged,
1531 	 * which prevents userspace from ever using that object again.
1532 	 */
1533 	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1534 	ret = drm_gem_create_mmap_offset(&obj->base);
1535 	if (ret != -ENOSPC)
1536 		goto out;
1537 
1538 	i915_gem_shrink_all(dev_priv);
1539 	ret = drm_gem_create_mmap_offset(&obj->base);
1540 out:
1541 	dev_priv->mm.shrinker_no_lock_stealing = false;
1542 
1543 	return ret;
1544 }
1545 
1546 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1547 {
1548 	if (!obj->base.map_list.map)
1549 		return;
1550 
1551 	drm_gem_free_mmap_offset(&obj->base);
1552 }
1553 
1554 int
1555 i915_gem_mmap_gtt(struct drm_file *file,
1556 		  struct drm_device *dev,
1557 		  uint32_t handle,
1558 		  uint64_t *offset)
1559 {
1560 	struct drm_i915_private *dev_priv = dev->dev_private;
1561 	struct drm_i915_gem_object *obj;
1562 	int ret;
1563 
1564 	ret = i915_mutex_lock_interruptible(dev);
1565 	if (ret)
1566 		return ret;
1567 
1568 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1569 	if (&obj->base == NULL) {
1570 		ret = -ENOENT;
1571 		goto unlock;
1572 	}
1573 
1574 	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1575 		ret = -E2BIG;
1576 		goto out;
1577 	}
1578 
1579 	if (obj->madv != I915_MADV_WILLNEED) {
1580 		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1581 		ret = -EINVAL;
1582 		goto out;
1583 	}
1584 
1585 	ret = i915_gem_object_create_mmap_offset(obj);
1586 	if (ret)
1587 		goto out;
1588 
1589 	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1590 
1591 out:
1592 	drm_gem_object_unreference(&obj->base);
1593 unlock:
1594 	mutex_unlock(&dev->struct_mutex);
1595 	return ret;
1596 }
1597 
1598 /**
1599  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1600  * @dev: DRM device
1601  * @data: GTT mapping ioctl data
1602  * @file: GEM object info
1603  *
1604  * Simply returns the fake offset to userspace so it can mmap it.
1605  * The mmap call will end up in drm_gem_mmap(), which will set things
1606  * up so we can get faults in the handler above.
1607  *
1608  * The fault handler will take care of binding the object into the GTT
1609  * (since it may have been evicted to make room for something), allocating
1610  * a fence register, and mapping the appropriate aperture address into
1611  * userspace.
1612  */
1613 int
1614 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1615 			struct drm_file *file)
1616 {
1617 	struct drm_i915_gem_mmap_gtt *args = data;
1618 
1619 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1620 }
1621 
1622 /* Immediately discard the backing storage */
1623 static void
1624 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1625 {
1626 	struct inode *inode;
1627 
1628 	i915_gem_object_free_mmap_offset(obj);
1629 
1630 	if (obj->base.filp == NULL)
1631 		return;
1632 
1633 	/* Our goal here is to return as much of the memory as
1634 	 * is possible back to the system as we are called from OOM.
1635 	 * To do this we must instruct the shmfs to drop all of its
1636 	 * backing pages, *now*.
1637 	 */
1638 	inode = obj->base.filp->f_path.dentry->d_inode;
1639 	shmem_truncate_range(inode, 0, (loff_t)-1);
1640 
1641 	obj->madv = __I915_MADV_PURGED;
1642 }
1643 
1644 static inline int
1645 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1646 {
1647 	return obj->madv == I915_MADV_DONTNEED;
1648 }
1649 
1650 static void
1651 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1652 {
1653 	int page_count = obj->base.size / PAGE_SIZE;
1654 	struct scatterlist *sg;
1655 	int ret, i;
1656 
1657 	BUG_ON(obj->madv == __I915_MADV_PURGED);
1658 
1659 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1660 	if (ret) {
1661 		/* In the event of a disaster, abandon all caches and
1662 		 * hope for the best.
1663 		 */
1664 		WARN_ON(ret != -EIO);
1665 		i915_gem_clflush_object(obj);
1666 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1667 	}
1668 
1669 	if (i915_gem_object_needs_bit17_swizzle(obj))
1670 		i915_gem_object_save_bit_17_swizzle(obj);
1671 
1672 	if (obj->madv == I915_MADV_DONTNEED)
1673 		obj->dirty = 0;
1674 
1675 	for_each_sg(obj->pages->sgl, sg, page_count, i) {
1676 		struct page *page = sg_page(sg);
1677 
1678 		if (obj->dirty)
1679 			set_page_dirty(page);
1680 
1681 		if (obj->madv == I915_MADV_WILLNEED)
1682 			mark_page_accessed(page);
1683 
1684 		page_cache_release(page);
1685 	}
1686 	obj->dirty = 0;
1687 
1688 	sg_free_table(obj->pages);
1689 	kfree(obj->pages);
1690 }
1691 
1692 static int
1693 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1694 {
1695 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1696 
1697 	if (obj->pages == NULL)
1698 		return 0;
1699 
1700 	BUG_ON(obj->gtt_space);
1701 
1702 	if (obj->pages_pin_count)
1703 		return -EBUSY;
1704 
1705 	/* ->put_pages might need to allocate memory for the bit17 swizzle
1706 	 * array, hence protect them from being reaped by removing them from gtt
1707 	 * lists early. */
1708 	list_del(&obj->gtt_list);
1709 
1710 	ops->put_pages(obj);
1711 	obj->pages = NULL;
1712 
1713 	if (i915_gem_object_is_purgeable(obj))
1714 		i915_gem_object_truncate(obj);
1715 
1716 	return 0;
1717 }
1718 
1719 static long
1720 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1721 		  bool purgeable_only)
1722 {
1723 	struct drm_i915_gem_object *obj, *next;
1724 	long count = 0;
1725 
1726 	list_for_each_entry_safe(obj, next,
1727 				 &dev_priv->mm.unbound_list,
1728 				 gtt_list) {
1729 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1730 		    i915_gem_object_put_pages(obj) == 0) {
1731 			count += obj->base.size >> PAGE_SHIFT;
1732 			if (count >= target)
1733 				return count;
1734 		}
1735 	}
1736 
1737 	list_for_each_entry_safe(obj, next,
1738 				 &dev_priv->mm.inactive_list,
1739 				 mm_list) {
1740 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1741 		    i915_gem_object_unbind(obj) == 0 &&
1742 		    i915_gem_object_put_pages(obj) == 0) {
1743 			count += obj->base.size >> PAGE_SHIFT;
1744 			if (count >= target)
1745 				return count;
1746 		}
1747 	}
1748 
1749 	return count;
1750 }
1751 
1752 static long
1753 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1754 {
1755 	return __i915_gem_shrink(dev_priv, target, true);
1756 }
1757 
1758 static void
1759 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1760 {
1761 	struct drm_i915_gem_object *obj, *next;
1762 
1763 	i915_gem_evict_everything(dev_priv->dev);
1764 
1765 	list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1766 		i915_gem_object_put_pages(obj);
1767 }
1768 
1769 static int
1770 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1771 {
1772 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1773 	int page_count, i;
1774 	struct address_space *mapping;
1775 	struct sg_table *st;
1776 	struct scatterlist *sg;
1777 	struct page *page;
1778 	gfp_t gfp;
1779 
1780 	/* Assert that the object is not currently in any GPU domain. As it
1781 	 * wasn't in the GTT, there shouldn't be any way it could have been in
1782 	 * a GPU cache
1783 	 */
1784 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1785 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1786 
1787 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1788 	if (st == NULL)
1789 		return -ENOMEM;
1790 
1791 	page_count = obj->base.size / PAGE_SIZE;
1792 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1793 		sg_free_table(st);
1794 		kfree(st);
1795 		return -ENOMEM;
1796 	}
1797 
1798 	/* Get the list of pages out of our struct file.  They'll be pinned
1799 	 * at this point until we release them.
1800 	 *
1801 	 * Fail silently without starting the shrinker
1802 	 */
1803 	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1804 	gfp = mapping_gfp_mask(mapping);
1805 	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1806 	gfp &= ~(__GFP_IO | __GFP_WAIT);
1807 	for_each_sg(st->sgl, sg, page_count, i) {
1808 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1809 		if (IS_ERR(page)) {
1810 			i915_gem_purge(dev_priv, page_count);
1811 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1812 		}
1813 		if (IS_ERR(page)) {
1814 			/* We've tried hard to allocate the memory by reaping
1815 			 * our own buffer, now let the real VM do its job and
1816 			 * go down in flames if truly OOM.
1817 			 */
1818 			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1819 			gfp |= __GFP_IO | __GFP_WAIT;
1820 
1821 			i915_gem_shrink_all(dev_priv);
1822 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1823 			if (IS_ERR(page))
1824 				goto err_pages;
1825 
1826 			gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1827 			gfp &= ~(__GFP_IO | __GFP_WAIT);
1828 		}
1829 
1830 		sg_set_page(sg, page, PAGE_SIZE, 0);
1831 	}
1832 
1833 	obj->pages = st;
1834 
1835 	if (i915_gem_object_needs_bit17_swizzle(obj))
1836 		i915_gem_object_do_bit_17_swizzle(obj);
1837 
1838 	return 0;
1839 
1840 err_pages:
1841 	for_each_sg(st->sgl, sg, i, page_count)
1842 		page_cache_release(sg_page(sg));
1843 	sg_free_table(st);
1844 	kfree(st);
1845 	return PTR_ERR(page);
1846 }
1847 
1848 /* Ensure that the associated pages are gathered from the backing storage
1849  * and pinned into our object. i915_gem_object_get_pages() may be called
1850  * multiple times before they are released by a single call to
1851  * i915_gem_object_put_pages() - once the pages are no longer referenced
1852  * either as a result of memory pressure (reaping pages under the shrinker)
1853  * or as the object is itself released.
1854  */
1855 int
1856 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1857 {
1858 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1859 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1860 	int ret;
1861 
1862 	if (obj->pages)
1863 		return 0;
1864 
1865 	BUG_ON(obj->pages_pin_count);
1866 
1867 	ret = ops->get_pages(obj);
1868 	if (ret)
1869 		return ret;
1870 
1871 	list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1872 	return 0;
1873 }
1874 
1875 void
1876 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1877 			       struct intel_ring_buffer *ring)
1878 {
1879 	struct drm_device *dev = obj->base.dev;
1880 	struct drm_i915_private *dev_priv = dev->dev_private;
1881 	u32 seqno = intel_ring_get_seqno(ring);
1882 
1883 	BUG_ON(ring == NULL);
1884 	obj->ring = ring;
1885 
1886 	/* Add a reference if we're newly entering the active list. */
1887 	if (!obj->active) {
1888 		drm_gem_object_reference(&obj->base);
1889 		obj->active = 1;
1890 	}
1891 
1892 	/* Move from whatever list we were on to the tail of execution. */
1893 	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1894 	list_move_tail(&obj->ring_list, &ring->active_list);
1895 
1896 	obj->last_read_seqno = seqno;
1897 
1898 	if (obj->fenced_gpu_access) {
1899 		obj->last_fenced_seqno = seqno;
1900 
1901 		/* Bump MRU to take account of the delayed flush */
1902 		if (obj->fence_reg != I915_FENCE_REG_NONE) {
1903 			struct drm_i915_fence_reg *reg;
1904 
1905 			reg = &dev_priv->fence_regs[obj->fence_reg];
1906 			list_move_tail(&reg->lru_list,
1907 				       &dev_priv->mm.fence_list);
1908 		}
1909 	}
1910 }
1911 
1912 static void
1913 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1914 {
1915 	struct drm_device *dev = obj->base.dev;
1916 	struct drm_i915_private *dev_priv = dev->dev_private;
1917 
1918 	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1919 	BUG_ON(!obj->active);
1920 
1921 	if (obj->pin_count) /* are we a framebuffer? */
1922 		intel_mark_fb_idle(obj);
1923 
1924 	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1925 
1926 	list_del_init(&obj->ring_list);
1927 	obj->ring = NULL;
1928 
1929 	obj->last_read_seqno = 0;
1930 	obj->last_write_seqno = 0;
1931 	obj->base.write_domain = 0;
1932 
1933 	obj->last_fenced_seqno = 0;
1934 	obj->fenced_gpu_access = false;
1935 
1936 	obj->active = 0;
1937 	drm_gem_object_unreference(&obj->base);
1938 
1939 	WARN_ON(i915_verify_lists(dev));
1940 }
1941 
1942 static int
1943 i915_gem_handle_seqno_wrap(struct drm_device *dev)
1944 {
1945 	struct drm_i915_private *dev_priv = dev->dev_private;
1946 	struct intel_ring_buffer *ring;
1947 	int ret, i, j;
1948 
1949 	/* The hardware uses various monotonic 32-bit counters, if we
1950 	 * detect that they will wraparound we need to idle the GPU
1951 	 * and reset those counters.
1952 	 */
1953 	ret = 0;
1954 	for_each_ring(ring, dev_priv, i) {
1955 		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1956 			ret |= ring->sync_seqno[j] != 0;
1957 	}
1958 	if (ret == 0)
1959 		return ret;
1960 
1961 	ret = i915_gpu_idle(dev);
1962 	if (ret)
1963 		return ret;
1964 
1965 	i915_gem_retire_requests(dev);
1966 	for_each_ring(ring, dev_priv, i) {
1967 		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1968 			ring->sync_seqno[j] = 0;
1969 	}
1970 
1971 	return 0;
1972 }
1973 
1974 int
1975 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1976 {
1977 	struct drm_i915_private *dev_priv = dev->dev_private;
1978 
1979 	/* reserve 0 for non-seqno */
1980 	if (dev_priv->next_seqno == 0) {
1981 		int ret = i915_gem_handle_seqno_wrap(dev);
1982 		if (ret)
1983 			return ret;
1984 
1985 		dev_priv->next_seqno = 1;
1986 	}
1987 
1988 	*seqno = dev_priv->next_seqno++;
1989 	return 0;
1990 }
1991 
1992 int
1993 i915_add_request(struct intel_ring_buffer *ring,
1994 		 struct drm_file *file,
1995 		 u32 *out_seqno)
1996 {
1997 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1998 	struct drm_i915_gem_request *request;
1999 	u32 request_ring_position;
2000 	int was_empty;
2001 	int ret;
2002 
2003 	/*
2004 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2005 	 * after having emitted the batchbuffer command. Hence we need to fix
2006 	 * things up similar to emitting the lazy request. The difference here
2007 	 * is that the flush _must_ happen before the next request, no matter
2008 	 * what.
2009 	 */
2010 	ret = intel_ring_flush_all_caches(ring);
2011 	if (ret)
2012 		return ret;
2013 
2014 	request = kmalloc(sizeof(*request), GFP_KERNEL);
2015 	if (request == NULL)
2016 		return -ENOMEM;
2017 
2018 
2019 	/* Record the position of the start of the request so that
2020 	 * should we detect the updated seqno part-way through the
2021 	 * GPU processing the request, we never over-estimate the
2022 	 * position of the head.
2023 	 */
2024 	request_ring_position = intel_ring_get_tail(ring);
2025 
2026 	ret = ring->add_request(ring);
2027 	if (ret) {
2028 		kfree(request);
2029 		return ret;
2030 	}
2031 
2032 	request->seqno = intel_ring_get_seqno(ring);
2033 	request->ring = ring;
2034 	request->tail = request_ring_position;
2035 	request->emitted_jiffies = jiffies;
2036 	was_empty = list_empty(&ring->request_list);
2037 	list_add_tail(&request->list, &ring->request_list);
2038 	request->file_priv = NULL;
2039 
2040 	if (file) {
2041 		struct drm_i915_file_private *file_priv = file->driver_priv;
2042 
2043 		spin_lock(&file_priv->mm.lock);
2044 		request->file_priv = file_priv;
2045 		list_add_tail(&request->client_list,
2046 			      &file_priv->mm.request_list);
2047 		spin_unlock(&file_priv->mm.lock);
2048 	}
2049 
2050 	trace_i915_gem_request_add(ring, request->seqno);
2051 	ring->outstanding_lazy_request = 0;
2052 
2053 	if (!dev_priv->mm.suspended) {
2054 		if (i915_enable_hangcheck) {
2055 			mod_timer(&dev_priv->hangcheck_timer,
2056 				  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2057 		}
2058 		if (was_empty) {
2059 			queue_delayed_work(dev_priv->wq,
2060 					   &dev_priv->mm.retire_work,
2061 					   round_jiffies_up_relative(HZ));
2062 			intel_mark_busy(dev_priv->dev);
2063 		}
2064 	}
2065 
2066 	if (out_seqno)
2067 		*out_seqno = request->seqno;
2068 	return 0;
2069 }
2070 
2071 static inline void
2072 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2073 {
2074 	struct drm_i915_file_private *file_priv = request->file_priv;
2075 
2076 	if (!file_priv)
2077 		return;
2078 
2079 	spin_lock(&file_priv->mm.lock);
2080 	if (request->file_priv) {
2081 		list_del(&request->client_list);
2082 		request->file_priv = NULL;
2083 	}
2084 	spin_unlock(&file_priv->mm.lock);
2085 }
2086 
2087 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2088 				      struct intel_ring_buffer *ring)
2089 {
2090 	while (!list_empty(&ring->request_list)) {
2091 		struct drm_i915_gem_request *request;
2092 
2093 		request = list_first_entry(&ring->request_list,
2094 					   struct drm_i915_gem_request,
2095 					   list);
2096 
2097 		list_del(&request->list);
2098 		i915_gem_request_remove_from_client(request);
2099 		kfree(request);
2100 	}
2101 
2102 	while (!list_empty(&ring->active_list)) {
2103 		struct drm_i915_gem_object *obj;
2104 
2105 		obj = list_first_entry(&ring->active_list,
2106 				       struct drm_i915_gem_object,
2107 				       ring_list);
2108 
2109 		i915_gem_object_move_to_inactive(obj);
2110 	}
2111 }
2112 
2113 static void i915_gem_reset_fences(struct drm_device *dev)
2114 {
2115 	struct drm_i915_private *dev_priv = dev->dev_private;
2116 	int i;
2117 
2118 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2119 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2120 
2121 		i915_gem_write_fence(dev, i, NULL);
2122 
2123 		if (reg->obj)
2124 			i915_gem_object_fence_lost(reg->obj);
2125 
2126 		reg->pin_count = 0;
2127 		reg->obj = NULL;
2128 		INIT_LIST_HEAD(&reg->lru_list);
2129 	}
2130 
2131 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2132 }
2133 
2134 void i915_gem_reset(struct drm_device *dev)
2135 {
2136 	struct drm_i915_private *dev_priv = dev->dev_private;
2137 	struct drm_i915_gem_object *obj;
2138 	struct intel_ring_buffer *ring;
2139 	int i;
2140 
2141 	for_each_ring(ring, dev_priv, i)
2142 		i915_gem_reset_ring_lists(dev_priv, ring);
2143 
2144 	/* Move everything out of the GPU domains to ensure we do any
2145 	 * necessary invalidation upon reuse.
2146 	 */
2147 	list_for_each_entry(obj,
2148 			    &dev_priv->mm.inactive_list,
2149 			    mm_list)
2150 	{
2151 		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2152 	}
2153 
2154 	/* The fence registers are invalidated so clear them out */
2155 	i915_gem_reset_fences(dev);
2156 }
2157 
2158 /**
2159  * This function clears the request list as sequence numbers are passed.
2160  */
2161 void
2162 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2163 {
2164 	uint32_t seqno;
2165 
2166 	if (list_empty(&ring->request_list))
2167 		return;
2168 
2169 	WARN_ON(i915_verify_lists(ring->dev));
2170 
2171 	seqno = ring->get_seqno(ring, true);
2172 
2173 	while (!list_empty(&ring->request_list)) {
2174 		struct drm_i915_gem_request *request;
2175 
2176 		request = list_first_entry(&ring->request_list,
2177 					   struct drm_i915_gem_request,
2178 					   list);
2179 
2180 		if (!i915_seqno_passed(seqno, request->seqno))
2181 			break;
2182 
2183 		trace_i915_gem_request_retire(ring, request->seqno);
2184 		/* We know the GPU must have read the request to have
2185 		 * sent us the seqno + interrupt, so use the position
2186 		 * of tail of the request to update the last known position
2187 		 * of the GPU head.
2188 		 */
2189 		ring->last_retired_head = request->tail;
2190 
2191 		list_del(&request->list);
2192 		i915_gem_request_remove_from_client(request);
2193 		kfree(request);
2194 	}
2195 
2196 	/* Move any buffers on the active list that are no longer referenced
2197 	 * by the ringbuffer to the flushing/inactive lists as appropriate.
2198 	 */
2199 	while (!list_empty(&ring->active_list)) {
2200 		struct drm_i915_gem_object *obj;
2201 
2202 		obj = list_first_entry(&ring->active_list,
2203 				      struct drm_i915_gem_object,
2204 				      ring_list);
2205 
2206 		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2207 			break;
2208 
2209 		i915_gem_object_move_to_inactive(obj);
2210 	}
2211 
2212 	if (unlikely(ring->trace_irq_seqno &&
2213 		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2214 		ring->irq_put(ring);
2215 		ring->trace_irq_seqno = 0;
2216 	}
2217 
2218 	WARN_ON(i915_verify_lists(ring->dev));
2219 }
2220 
2221 void
2222 i915_gem_retire_requests(struct drm_device *dev)
2223 {
2224 	drm_i915_private_t *dev_priv = dev->dev_private;
2225 	struct intel_ring_buffer *ring;
2226 	int i;
2227 
2228 	for_each_ring(ring, dev_priv, i)
2229 		i915_gem_retire_requests_ring(ring);
2230 }
2231 
2232 static void
2233 i915_gem_retire_work_handler(struct work_struct *work)
2234 {
2235 	drm_i915_private_t *dev_priv;
2236 	struct drm_device *dev;
2237 	struct intel_ring_buffer *ring;
2238 	bool idle;
2239 	int i;
2240 
2241 	dev_priv = container_of(work, drm_i915_private_t,
2242 				mm.retire_work.work);
2243 	dev = dev_priv->dev;
2244 
2245 	/* Come back later if the device is busy... */
2246 	if (!mutex_trylock(&dev->struct_mutex)) {
2247 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2248 				   round_jiffies_up_relative(HZ));
2249 		return;
2250 	}
2251 
2252 	i915_gem_retire_requests(dev);
2253 
2254 	/* Send a periodic flush down the ring so we don't hold onto GEM
2255 	 * objects indefinitely.
2256 	 */
2257 	idle = true;
2258 	for_each_ring(ring, dev_priv, i) {
2259 		if (ring->gpu_caches_dirty)
2260 			i915_add_request(ring, NULL, NULL);
2261 
2262 		idle &= list_empty(&ring->request_list);
2263 	}
2264 
2265 	if (!dev_priv->mm.suspended && !idle)
2266 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2267 				   round_jiffies_up_relative(HZ));
2268 	if (idle)
2269 		intel_mark_idle(dev);
2270 
2271 	mutex_unlock(&dev->struct_mutex);
2272 }
2273 
2274 /**
2275  * Ensures that an object will eventually get non-busy by flushing any required
2276  * write domains, emitting any outstanding lazy request and retiring and
2277  * completed requests.
2278  */
2279 static int
2280 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2281 {
2282 	int ret;
2283 
2284 	if (obj->active) {
2285 		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2286 		if (ret)
2287 			return ret;
2288 
2289 		i915_gem_retire_requests_ring(obj->ring);
2290 	}
2291 
2292 	return 0;
2293 }
2294 
2295 /**
2296  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2297  * @DRM_IOCTL_ARGS: standard ioctl arguments
2298  *
2299  * Returns 0 if successful, else an error is returned with the remaining time in
2300  * the timeout parameter.
2301  *  -ETIME: object is still busy after timeout
2302  *  -ERESTARTSYS: signal interrupted the wait
2303  *  -ENONENT: object doesn't exist
2304  * Also possible, but rare:
2305  *  -EAGAIN: GPU wedged
2306  *  -ENOMEM: damn
2307  *  -ENODEV: Internal IRQ fail
2308  *  -E?: The add request failed
2309  *
2310  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2311  * non-zero timeout parameter the wait ioctl will wait for the given number of
2312  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2313  * without holding struct_mutex the object may become re-busied before this
2314  * function completes. A similar but shorter * race condition exists in the busy
2315  * ioctl
2316  */
2317 int
2318 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2319 {
2320 	struct drm_i915_gem_wait *args = data;
2321 	struct drm_i915_gem_object *obj;
2322 	struct intel_ring_buffer *ring = NULL;
2323 	struct timespec timeout_stack, *timeout = NULL;
2324 	u32 seqno = 0;
2325 	int ret = 0;
2326 
2327 	if (args->timeout_ns >= 0) {
2328 		timeout_stack = ns_to_timespec(args->timeout_ns);
2329 		timeout = &timeout_stack;
2330 	}
2331 
2332 	ret = i915_mutex_lock_interruptible(dev);
2333 	if (ret)
2334 		return ret;
2335 
2336 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2337 	if (&obj->base == NULL) {
2338 		mutex_unlock(&dev->struct_mutex);
2339 		return -ENOENT;
2340 	}
2341 
2342 	/* Need to make sure the object gets inactive eventually. */
2343 	ret = i915_gem_object_flush_active(obj);
2344 	if (ret)
2345 		goto out;
2346 
2347 	if (obj->active) {
2348 		seqno = obj->last_read_seqno;
2349 		ring = obj->ring;
2350 	}
2351 
2352 	if (seqno == 0)
2353 		 goto out;
2354 
2355 	/* Do this after OLR check to make sure we make forward progress polling
2356 	 * on this IOCTL with a 0 timeout (like busy ioctl)
2357 	 */
2358 	if (!args->timeout_ns) {
2359 		ret = -ETIME;
2360 		goto out;
2361 	}
2362 
2363 	drm_gem_object_unreference(&obj->base);
2364 	mutex_unlock(&dev->struct_mutex);
2365 
2366 	ret = __wait_seqno(ring, seqno, true, timeout);
2367 	if (timeout) {
2368 		WARN_ON(!timespec_valid(timeout));
2369 		args->timeout_ns = timespec_to_ns(timeout);
2370 	}
2371 	return ret;
2372 
2373 out:
2374 	drm_gem_object_unreference(&obj->base);
2375 	mutex_unlock(&dev->struct_mutex);
2376 	return ret;
2377 }
2378 
2379 /**
2380  * i915_gem_object_sync - sync an object to a ring.
2381  *
2382  * @obj: object which may be in use on another ring.
2383  * @to: ring we wish to use the object on. May be NULL.
2384  *
2385  * This code is meant to abstract object synchronization with the GPU.
2386  * Calling with NULL implies synchronizing the object with the CPU
2387  * rather than a particular GPU ring.
2388  *
2389  * Returns 0 if successful, else propagates up the lower layer error.
2390  */
2391 int
2392 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2393 		     struct intel_ring_buffer *to)
2394 {
2395 	struct intel_ring_buffer *from = obj->ring;
2396 	u32 seqno;
2397 	int ret, idx;
2398 
2399 	if (from == NULL || to == from)
2400 		return 0;
2401 
2402 	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2403 		return i915_gem_object_wait_rendering(obj, false);
2404 
2405 	idx = intel_ring_sync_index(from, to);
2406 
2407 	seqno = obj->last_read_seqno;
2408 	if (seqno <= from->sync_seqno[idx])
2409 		return 0;
2410 
2411 	ret = i915_gem_check_olr(obj->ring, seqno);
2412 	if (ret)
2413 		return ret;
2414 
2415 	ret = to->sync_to(to, from, seqno);
2416 	if (!ret)
2417 		/* We use last_read_seqno because sync_to()
2418 		 * might have just caused seqno wrap under
2419 		 * the radar.
2420 		 */
2421 		from->sync_seqno[idx] = obj->last_read_seqno;
2422 
2423 	return ret;
2424 }
2425 
2426 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2427 {
2428 	u32 old_write_domain, old_read_domains;
2429 
2430 	/* Act a barrier for all accesses through the GTT */
2431 	mb();
2432 
2433 	/* Force a pagefault for domain tracking on next user access */
2434 	i915_gem_release_mmap(obj);
2435 
2436 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2437 		return;
2438 
2439 	old_read_domains = obj->base.read_domains;
2440 	old_write_domain = obj->base.write_domain;
2441 
2442 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2443 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2444 
2445 	trace_i915_gem_object_change_domain(obj,
2446 					    old_read_domains,
2447 					    old_write_domain);
2448 }
2449 
2450 /**
2451  * Unbinds an object from the GTT aperture.
2452  */
2453 int
2454 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2455 {
2456 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2457 	int ret = 0;
2458 
2459 	if (obj->gtt_space == NULL)
2460 		return 0;
2461 
2462 	if (obj->pin_count)
2463 		return -EBUSY;
2464 
2465 	BUG_ON(obj->pages == NULL);
2466 
2467 	ret = i915_gem_object_finish_gpu(obj);
2468 	if (ret)
2469 		return ret;
2470 	/* Continue on if we fail due to EIO, the GPU is hung so we
2471 	 * should be safe and we need to cleanup or else we might
2472 	 * cause memory corruption through use-after-free.
2473 	 */
2474 
2475 	i915_gem_object_finish_gtt(obj);
2476 
2477 	/* release the fence reg _after_ flushing */
2478 	ret = i915_gem_object_put_fence(obj);
2479 	if (ret)
2480 		return ret;
2481 
2482 	trace_i915_gem_object_unbind(obj);
2483 
2484 	if (obj->has_global_gtt_mapping)
2485 		i915_gem_gtt_unbind_object(obj);
2486 	if (obj->has_aliasing_ppgtt_mapping) {
2487 		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2488 		obj->has_aliasing_ppgtt_mapping = 0;
2489 	}
2490 	i915_gem_gtt_finish_object(obj);
2491 
2492 	list_del(&obj->mm_list);
2493 	list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2494 	/* Avoid an unnecessary call to unbind on rebind. */
2495 	obj->map_and_fenceable = true;
2496 
2497 	drm_mm_put_block(obj->gtt_space);
2498 	obj->gtt_space = NULL;
2499 	obj->gtt_offset = 0;
2500 
2501 	return 0;
2502 }
2503 
2504 int i915_gpu_idle(struct drm_device *dev)
2505 {
2506 	drm_i915_private_t *dev_priv = dev->dev_private;
2507 	struct intel_ring_buffer *ring;
2508 	int ret, i;
2509 
2510 	/* Flush everything onto the inactive list. */
2511 	for_each_ring(ring, dev_priv, i) {
2512 		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2513 		if (ret)
2514 			return ret;
2515 
2516 		ret = intel_ring_idle(ring);
2517 		if (ret)
2518 			return ret;
2519 	}
2520 
2521 	return 0;
2522 }
2523 
2524 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2525 					struct drm_i915_gem_object *obj)
2526 {
2527 	drm_i915_private_t *dev_priv = dev->dev_private;
2528 	uint64_t val;
2529 
2530 	if (obj) {
2531 		u32 size = obj->gtt_space->size;
2532 
2533 		val = (uint64_t)((obj->gtt_offset + size - 4096) &
2534 				 0xfffff000) << 32;
2535 		val |= obj->gtt_offset & 0xfffff000;
2536 		val |= (uint64_t)((obj->stride / 128) - 1) <<
2537 			SANDYBRIDGE_FENCE_PITCH_SHIFT;
2538 
2539 		if (obj->tiling_mode == I915_TILING_Y)
2540 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2541 		val |= I965_FENCE_REG_VALID;
2542 	} else
2543 		val = 0;
2544 
2545 	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2546 	POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2547 }
2548 
2549 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2550 				 struct drm_i915_gem_object *obj)
2551 {
2552 	drm_i915_private_t *dev_priv = dev->dev_private;
2553 	uint64_t val;
2554 
2555 	if (obj) {
2556 		u32 size = obj->gtt_space->size;
2557 
2558 		val = (uint64_t)((obj->gtt_offset + size - 4096) &
2559 				 0xfffff000) << 32;
2560 		val |= obj->gtt_offset & 0xfffff000;
2561 		val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2562 		if (obj->tiling_mode == I915_TILING_Y)
2563 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2564 		val |= I965_FENCE_REG_VALID;
2565 	} else
2566 		val = 0;
2567 
2568 	I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2569 	POSTING_READ(FENCE_REG_965_0 + reg * 8);
2570 }
2571 
2572 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2573 				 struct drm_i915_gem_object *obj)
2574 {
2575 	drm_i915_private_t *dev_priv = dev->dev_private;
2576 	u32 val;
2577 
2578 	if (obj) {
2579 		u32 size = obj->gtt_space->size;
2580 		int pitch_val;
2581 		int tile_width;
2582 
2583 		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2584 		     (size & -size) != size ||
2585 		     (obj->gtt_offset & (size - 1)),
2586 		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2587 		     obj->gtt_offset, obj->map_and_fenceable, size);
2588 
2589 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2590 			tile_width = 128;
2591 		else
2592 			tile_width = 512;
2593 
2594 		/* Note: pitch better be a power of two tile widths */
2595 		pitch_val = obj->stride / tile_width;
2596 		pitch_val = ffs(pitch_val) - 1;
2597 
2598 		val = obj->gtt_offset;
2599 		if (obj->tiling_mode == I915_TILING_Y)
2600 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2601 		val |= I915_FENCE_SIZE_BITS(size);
2602 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2603 		val |= I830_FENCE_REG_VALID;
2604 	} else
2605 		val = 0;
2606 
2607 	if (reg < 8)
2608 		reg = FENCE_REG_830_0 + reg * 4;
2609 	else
2610 		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2611 
2612 	I915_WRITE(reg, val);
2613 	POSTING_READ(reg);
2614 }
2615 
2616 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2617 				struct drm_i915_gem_object *obj)
2618 {
2619 	drm_i915_private_t *dev_priv = dev->dev_private;
2620 	uint32_t val;
2621 
2622 	if (obj) {
2623 		u32 size = obj->gtt_space->size;
2624 		uint32_t pitch_val;
2625 
2626 		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2627 		     (size & -size) != size ||
2628 		     (obj->gtt_offset & (size - 1)),
2629 		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2630 		     obj->gtt_offset, size);
2631 
2632 		pitch_val = obj->stride / 128;
2633 		pitch_val = ffs(pitch_val) - 1;
2634 
2635 		val = obj->gtt_offset;
2636 		if (obj->tiling_mode == I915_TILING_Y)
2637 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2638 		val |= I830_FENCE_SIZE_BITS(size);
2639 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2640 		val |= I830_FENCE_REG_VALID;
2641 	} else
2642 		val = 0;
2643 
2644 	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2645 	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2646 }
2647 
2648 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2649 				 struct drm_i915_gem_object *obj)
2650 {
2651 	switch (INTEL_INFO(dev)->gen) {
2652 	case 7:
2653 	case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2654 	case 5:
2655 	case 4: i965_write_fence_reg(dev, reg, obj); break;
2656 	case 3: i915_write_fence_reg(dev, reg, obj); break;
2657 	case 2: i830_write_fence_reg(dev, reg, obj); break;
2658 	default: break;
2659 	}
2660 }
2661 
2662 static inline int fence_number(struct drm_i915_private *dev_priv,
2663 			       struct drm_i915_fence_reg *fence)
2664 {
2665 	return fence - dev_priv->fence_regs;
2666 }
2667 
2668 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2669 					 struct drm_i915_fence_reg *fence,
2670 					 bool enable)
2671 {
2672 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2673 	int reg = fence_number(dev_priv, fence);
2674 
2675 	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2676 
2677 	if (enable) {
2678 		obj->fence_reg = reg;
2679 		fence->obj = obj;
2680 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2681 	} else {
2682 		obj->fence_reg = I915_FENCE_REG_NONE;
2683 		fence->obj = NULL;
2684 		list_del_init(&fence->lru_list);
2685 	}
2686 }
2687 
2688 static int
2689 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2690 {
2691 	if (obj->last_fenced_seqno) {
2692 		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2693 		if (ret)
2694 			return ret;
2695 
2696 		obj->last_fenced_seqno = 0;
2697 	}
2698 
2699 	/* Ensure that all CPU reads are completed before installing a fence
2700 	 * and all writes before removing the fence.
2701 	 */
2702 	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2703 		mb();
2704 
2705 	obj->fenced_gpu_access = false;
2706 	return 0;
2707 }
2708 
2709 int
2710 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2711 {
2712 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2713 	int ret;
2714 
2715 	ret = i915_gem_object_flush_fence(obj);
2716 	if (ret)
2717 		return ret;
2718 
2719 	if (obj->fence_reg == I915_FENCE_REG_NONE)
2720 		return 0;
2721 
2722 	i915_gem_object_update_fence(obj,
2723 				     &dev_priv->fence_regs[obj->fence_reg],
2724 				     false);
2725 	i915_gem_object_fence_lost(obj);
2726 
2727 	return 0;
2728 }
2729 
2730 static struct drm_i915_fence_reg *
2731 i915_find_fence_reg(struct drm_device *dev)
2732 {
2733 	struct drm_i915_private *dev_priv = dev->dev_private;
2734 	struct drm_i915_fence_reg *reg, *avail;
2735 	int i;
2736 
2737 	/* First try to find a free reg */
2738 	avail = NULL;
2739 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2740 		reg = &dev_priv->fence_regs[i];
2741 		if (!reg->obj)
2742 			return reg;
2743 
2744 		if (!reg->pin_count)
2745 			avail = reg;
2746 	}
2747 
2748 	if (avail == NULL)
2749 		return NULL;
2750 
2751 	/* None available, try to steal one or wait for a user to finish */
2752 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2753 		if (reg->pin_count)
2754 			continue;
2755 
2756 		return reg;
2757 	}
2758 
2759 	return NULL;
2760 }
2761 
2762 /**
2763  * i915_gem_object_get_fence - set up fencing for an object
2764  * @obj: object to map through a fence reg
2765  *
2766  * When mapping objects through the GTT, userspace wants to be able to write
2767  * to them without having to worry about swizzling if the object is tiled.
2768  * This function walks the fence regs looking for a free one for @obj,
2769  * stealing one if it can't find any.
2770  *
2771  * It then sets up the reg based on the object's properties: address, pitch
2772  * and tiling format.
2773  *
2774  * For an untiled surface, this removes any existing fence.
2775  */
2776 int
2777 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2778 {
2779 	struct drm_device *dev = obj->base.dev;
2780 	struct drm_i915_private *dev_priv = dev->dev_private;
2781 	bool enable = obj->tiling_mode != I915_TILING_NONE;
2782 	struct drm_i915_fence_reg *reg;
2783 	int ret;
2784 
2785 	/* Have we updated the tiling parameters upon the object and so
2786 	 * will need to serialise the write to the associated fence register?
2787 	 */
2788 	if (obj->fence_dirty) {
2789 		ret = i915_gem_object_flush_fence(obj);
2790 		if (ret)
2791 			return ret;
2792 	}
2793 
2794 	/* Just update our place in the LRU if our fence is getting reused. */
2795 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2796 		reg = &dev_priv->fence_regs[obj->fence_reg];
2797 		if (!obj->fence_dirty) {
2798 			list_move_tail(&reg->lru_list,
2799 				       &dev_priv->mm.fence_list);
2800 			return 0;
2801 		}
2802 	} else if (enable) {
2803 		reg = i915_find_fence_reg(dev);
2804 		if (reg == NULL)
2805 			return -EDEADLK;
2806 
2807 		if (reg->obj) {
2808 			struct drm_i915_gem_object *old = reg->obj;
2809 
2810 			ret = i915_gem_object_flush_fence(old);
2811 			if (ret)
2812 				return ret;
2813 
2814 			i915_gem_object_fence_lost(old);
2815 		}
2816 	} else
2817 		return 0;
2818 
2819 	i915_gem_object_update_fence(obj, reg, enable);
2820 	obj->fence_dirty = false;
2821 
2822 	return 0;
2823 }
2824 
2825 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2826 				     struct drm_mm_node *gtt_space,
2827 				     unsigned long cache_level)
2828 {
2829 	struct drm_mm_node *other;
2830 
2831 	/* On non-LLC machines we have to be careful when putting differing
2832 	 * types of snoopable memory together to avoid the prefetcher
2833 	 * crossing memory domains and dieing.
2834 	 */
2835 	if (HAS_LLC(dev))
2836 		return true;
2837 
2838 	if (gtt_space == NULL)
2839 		return true;
2840 
2841 	if (list_empty(&gtt_space->node_list))
2842 		return true;
2843 
2844 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2845 	if (other->allocated && !other->hole_follows && other->color != cache_level)
2846 		return false;
2847 
2848 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2849 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2850 		return false;
2851 
2852 	return true;
2853 }
2854 
2855 static void i915_gem_verify_gtt(struct drm_device *dev)
2856 {
2857 #if WATCH_GTT
2858 	struct drm_i915_private *dev_priv = dev->dev_private;
2859 	struct drm_i915_gem_object *obj;
2860 	int err = 0;
2861 
2862 	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2863 		if (obj->gtt_space == NULL) {
2864 			printk(KERN_ERR "object found on GTT list with no space reserved\n");
2865 			err++;
2866 			continue;
2867 		}
2868 
2869 		if (obj->cache_level != obj->gtt_space->color) {
2870 			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2871 			       obj->gtt_space->start,
2872 			       obj->gtt_space->start + obj->gtt_space->size,
2873 			       obj->cache_level,
2874 			       obj->gtt_space->color);
2875 			err++;
2876 			continue;
2877 		}
2878 
2879 		if (!i915_gem_valid_gtt_space(dev,
2880 					      obj->gtt_space,
2881 					      obj->cache_level)) {
2882 			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2883 			       obj->gtt_space->start,
2884 			       obj->gtt_space->start + obj->gtt_space->size,
2885 			       obj->cache_level);
2886 			err++;
2887 			continue;
2888 		}
2889 	}
2890 
2891 	WARN_ON(err);
2892 #endif
2893 }
2894 
2895 /**
2896  * Finds free space in the GTT aperture and binds the object there.
2897  */
2898 static int
2899 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2900 			    unsigned alignment,
2901 			    bool map_and_fenceable,
2902 			    bool nonblocking)
2903 {
2904 	struct drm_device *dev = obj->base.dev;
2905 	drm_i915_private_t *dev_priv = dev->dev_private;
2906 	struct drm_mm_node *node;
2907 	u32 size, fence_size, fence_alignment, unfenced_alignment;
2908 	bool mappable, fenceable;
2909 	int ret;
2910 
2911 	if (obj->madv != I915_MADV_WILLNEED) {
2912 		DRM_ERROR("Attempting to bind a purgeable object\n");
2913 		return -EINVAL;
2914 	}
2915 
2916 	fence_size = i915_gem_get_gtt_size(dev,
2917 					   obj->base.size,
2918 					   obj->tiling_mode);
2919 	fence_alignment = i915_gem_get_gtt_alignment(dev,
2920 						     obj->base.size,
2921 						     obj->tiling_mode);
2922 	unfenced_alignment =
2923 		i915_gem_get_unfenced_gtt_alignment(dev,
2924 						    obj->base.size,
2925 						    obj->tiling_mode);
2926 
2927 	if (alignment == 0)
2928 		alignment = map_and_fenceable ? fence_alignment :
2929 						unfenced_alignment;
2930 	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2931 		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2932 		return -EINVAL;
2933 	}
2934 
2935 	size = map_and_fenceable ? fence_size : obj->base.size;
2936 
2937 	/* If the object is bigger than the entire aperture, reject it early
2938 	 * before evicting everything in a vain attempt to find space.
2939 	 */
2940 	if (obj->base.size >
2941 	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2942 		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2943 		return -E2BIG;
2944 	}
2945 
2946 	ret = i915_gem_object_get_pages(obj);
2947 	if (ret)
2948 		return ret;
2949 
2950 	i915_gem_object_pin_pages(obj);
2951 
2952 	node = kzalloc(sizeof(*node), GFP_KERNEL);
2953 	if (node == NULL) {
2954 		i915_gem_object_unpin_pages(obj);
2955 		return -ENOMEM;
2956 	}
2957 
2958  search_free:
2959 	if (map_and_fenceable)
2960 		ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
2961 							  size, alignment, obj->cache_level,
2962 							  0, dev_priv->mm.gtt_mappable_end);
2963 	else
2964 		ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2965 						 size, alignment, obj->cache_level);
2966 	if (ret) {
2967 		ret = i915_gem_evict_something(dev, size, alignment,
2968 					       obj->cache_level,
2969 					       map_and_fenceable,
2970 					       nonblocking);
2971 		if (ret == 0)
2972 			goto search_free;
2973 
2974 		i915_gem_object_unpin_pages(obj);
2975 		kfree(node);
2976 		return ret;
2977 	}
2978 	if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
2979 		i915_gem_object_unpin_pages(obj);
2980 		drm_mm_put_block(node);
2981 		return -EINVAL;
2982 	}
2983 
2984 	ret = i915_gem_gtt_prepare_object(obj);
2985 	if (ret) {
2986 		i915_gem_object_unpin_pages(obj);
2987 		drm_mm_put_block(node);
2988 		return ret;
2989 	}
2990 
2991 	list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2992 	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2993 
2994 	obj->gtt_space = node;
2995 	obj->gtt_offset = node->start;
2996 
2997 	fenceable =
2998 		node->size == fence_size &&
2999 		(node->start & (fence_alignment - 1)) == 0;
3000 
3001 	mappable =
3002 		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
3003 
3004 	obj->map_and_fenceable = mappable && fenceable;
3005 
3006 	i915_gem_object_unpin_pages(obj);
3007 	trace_i915_gem_object_bind(obj, map_and_fenceable);
3008 	i915_gem_verify_gtt(dev);
3009 	return 0;
3010 }
3011 
3012 void
3013 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3014 {
3015 	/* If we don't have a page list set up, then we're not pinned
3016 	 * to GPU, and we can ignore the cache flush because it'll happen
3017 	 * again at bind time.
3018 	 */
3019 	if (obj->pages == NULL)
3020 		return;
3021 
3022 	/* If the GPU is snooping the contents of the CPU cache,
3023 	 * we do not need to manually clear the CPU cache lines.  However,
3024 	 * the caches are only snooped when the render cache is
3025 	 * flushed/invalidated.  As we always have to emit invalidations
3026 	 * and flushes when moving into and out of the RENDER domain, correct
3027 	 * snooping behaviour occurs naturally as the result of our domain
3028 	 * tracking.
3029 	 */
3030 	if (obj->cache_level != I915_CACHE_NONE)
3031 		return;
3032 
3033 	trace_i915_gem_object_clflush(obj);
3034 
3035 	drm_clflush_sg(obj->pages);
3036 }
3037 
3038 /** Flushes the GTT write domain for the object if it's dirty. */
3039 static void
3040 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3041 {
3042 	uint32_t old_write_domain;
3043 
3044 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3045 		return;
3046 
3047 	/* No actual flushing is required for the GTT write domain.  Writes
3048 	 * to it immediately go to main memory as far as we know, so there's
3049 	 * no chipset flush.  It also doesn't land in render cache.
3050 	 *
3051 	 * However, we do have to enforce the order so that all writes through
3052 	 * the GTT land before any writes to the device, such as updates to
3053 	 * the GATT itself.
3054 	 */
3055 	wmb();
3056 
3057 	old_write_domain = obj->base.write_domain;
3058 	obj->base.write_domain = 0;
3059 
3060 	trace_i915_gem_object_change_domain(obj,
3061 					    obj->base.read_domains,
3062 					    old_write_domain);
3063 }
3064 
3065 /** Flushes the CPU write domain for the object if it's dirty. */
3066 static void
3067 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3068 {
3069 	uint32_t old_write_domain;
3070 
3071 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3072 		return;
3073 
3074 	i915_gem_clflush_object(obj);
3075 	i915_gem_chipset_flush(obj->base.dev);
3076 	old_write_domain = obj->base.write_domain;
3077 	obj->base.write_domain = 0;
3078 
3079 	trace_i915_gem_object_change_domain(obj,
3080 					    obj->base.read_domains,
3081 					    old_write_domain);
3082 }
3083 
3084 /**
3085  * Moves a single object to the GTT read, and possibly write domain.
3086  *
3087  * This function returns when the move is complete, including waiting on
3088  * flushes to occur.
3089  */
3090 int
3091 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3092 {
3093 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3094 	uint32_t old_write_domain, old_read_domains;
3095 	int ret;
3096 
3097 	/* Not valid to be called on unbound objects. */
3098 	if (obj->gtt_space == NULL)
3099 		return -EINVAL;
3100 
3101 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3102 		return 0;
3103 
3104 	ret = i915_gem_object_wait_rendering(obj, !write);
3105 	if (ret)
3106 		return ret;
3107 
3108 	i915_gem_object_flush_cpu_write_domain(obj);
3109 
3110 	old_write_domain = obj->base.write_domain;
3111 	old_read_domains = obj->base.read_domains;
3112 
3113 	/* It should now be out of any other write domains, and we can update
3114 	 * the domain values for our changes.
3115 	 */
3116 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3117 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3118 	if (write) {
3119 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3120 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3121 		obj->dirty = 1;
3122 	}
3123 
3124 	trace_i915_gem_object_change_domain(obj,
3125 					    old_read_domains,
3126 					    old_write_domain);
3127 
3128 	/* And bump the LRU for this access */
3129 	if (i915_gem_object_is_inactive(obj))
3130 		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3131 
3132 	return 0;
3133 }
3134 
3135 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3136 				    enum i915_cache_level cache_level)
3137 {
3138 	struct drm_device *dev = obj->base.dev;
3139 	drm_i915_private_t *dev_priv = dev->dev_private;
3140 	int ret;
3141 
3142 	if (obj->cache_level == cache_level)
3143 		return 0;
3144 
3145 	if (obj->pin_count) {
3146 		DRM_DEBUG("can not change the cache level of pinned objects\n");
3147 		return -EBUSY;
3148 	}
3149 
3150 	if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3151 		ret = i915_gem_object_unbind(obj);
3152 		if (ret)
3153 			return ret;
3154 	}
3155 
3156 	if (obj->gtt_space) {
3157 		ret = i915_gem_object_finish_gpu(obj);
3158 		if (ret)
3159 			return ret;
3160 
3161 		i915_gem_object_finish_gtt(obj);
3162 
3163 		/* Before SandyBridge, you could not use tiling or fence
3164 		 * registers with snooped memory, so relinquish any fences
3165 		 * currently pointing to our region in the aperture.
3166 		 */
3167 		if (INTEL_INFO(dev)->gen < 6) {
3168 			ret = i915_gem_object_put_fence(obj);
3169 			if (ret)
3170 				return ret;
3171 		}
3172 
3173 		if (obj->has_global_gtt_mapping)
3174 			i915_gem_gtt_bind_object(obj, cache_level);
3175 		if (obj->has_aliasing_ppgtt_mapping)
3176 			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3177 					       obj, cache_level);
3178 
3179 		obj->gtt_space->color = cache_level;
3180 	}
3181 
3182 	if (cache_level == I915_CACHE_NONE) {
3183 		u32 old_read_domains, old_write_domain;
3184 
3185 		/* If we're coming from LLC cached, then we haven't
3186 		 * actually been tracking whether the data is in the
3187 		 * CPU cache or not, since we only allow one bit set
3188 		 * in obj->write_domain and have been skipping the clflushes.
3189 		 * Just set it to the CPU cache for now.
3190 		 */
3191 		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3192 		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3193 
3194 		old_read_domains = obj->base.read_domains;
3195 		old_write_domain = obj->base.write_domain;
3196 
3197 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3198 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3199 
3200 		trace_i915_gem_object_change_domain(obj,
3201 						    old_read_domains,
3202 						    old_write_domain);
3203 	}
3204 
3205 	obj->cache_level = cache_level;
3206 	i915_gem_verify_gtt(dev);
3207 	return 0;
3208 }
3209 
3210 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3211 			       struct drm_file *file)
3212 {
3213 	struct drm_i915_gem_caching *args = data;
3214 	struct drm_i915_gem_object *obj;
3215 	int ret;
3216 
3217 	ret = i915_mutex_lock_interruptible(dev);
3218 	if (ret)
3219 		return ret;
3220 
3221 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3222 	if (&obj->base == NULL) {
3223 		ret = -ENOENT;
3224 		goto unlock;
3225 	}
3226 
3227 	args->caching = obj->cache_level != I915_CACHE_NONE;
3228 
3229 	drm_gem_object_unreference(&obj->base);
3230 unlock:
3231 	mutex_unlock(&dev->struct_mutex);
3232 	return ret;
3233 }
3234 
3235 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3236 			       struct drm_file *file)
3237 {
3238 	struct drm_i915_gem_caching *args = data;
3239 	struct drm_i915_gem_object *obj;
3240 	enum i915_cache_level level;
3241 	int ret;
3242 
3243 	switch (args->caching) {
3244 	case I915_CACHING_NONE:
3245 		level = I915_CACHE_NONE;
3246 		break;
3247 	case I915_CACHING_CACHED:
3248 		level = I915_CACHE_LLC;
3249 		break;
3250 	default:
3251 		return -EINVAL;
3252 	}
3253 
3254 	ret = i915_mutex_lock_interruptible(dev);
3255 	if (ret)
3256 		return ret;
3257 
3258 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3259 	if (&obj->base == NULL) {
3260 		ret = -ENOENT;
3261 		goto unlock;
3262 	}
3263 
3264 	ret = i915_gem_object_set_cache_level(obj, level);
3265 
3266 	drm_gem_object_unreference(&obj->base);
3267 unlock:
3268 	mutex_unlock(&dev->struct_mutex);
3269 	return ret;
3270 }
3271 
3272 /*
3273  * Prepare buffer for display plane (scanout, cursors, etc).
3274  * Can be called from an uninterruptible phase (modesetting) and allows
3275  * any flushes to be pipelined (for pageflips).
3276  */
3277 int
3278 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3279 				     u32 alignment,
3280 				     struct intel_ring_buffer *pipelined)
3281 {
3282 	u32 old_read_domains, old_write_domain;
3283 	int ret;
3284 
3285 	if (pipelined != obj->ring) {
3286 		ret = i915_gem_object_sync(obj, pipelined);
3287 		if (ret)
3288 			return ret;
3289 	}
3290 
3291 	/* The display engine is not coherent with the LLC cache on gen6.  As
3292 	 * a result, we make sure that the pinning that is about to occur is
3293 	 * done with uncached PTEs. This is lowest common denominator for all
3294 	 * chipsets.
3295 	 *
3296 	 * However for gen6+, we could do better by using the GFDT bit instead
3297 	 * of uncaching, which would allow us to flush all the LLC-cached data
3298 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3299 	 */
3300 	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3301 	if (ret)
3302 		return ret;
3303 
3304 	/* As the user may map the buffer once pinned in the display plane
3305 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3306 	 * always use map_and_fenceable for all scanout buffers.
3307 	 */
3308 	ret = i915_gem_object_pin(obj, alignment, true, false);
3309 	if (ret)
3310 		return ret;
3311 
3312 	i915_gem_object_flush_cpu_write_domain(obj);
3313 
3314 	old_write_domain = obj->base.write_domain;
3315 	old_read_domains = obj->base.read_domains;
3316 
3317 	/* It should now be out of any other write domains, and we can update
3318 	 * the domain values for our changes.
3319 	 */
3320 	obj->base.write_domain = 0;
3321 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3322 
3323 	trace_i915_gem_object_change_domain(obj,
3324 					    old_read_domains,
3325 					    old_write_domain);
3326 
3327 	return 0;
3328 }
3329 
3330 int
3331 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3332 {
3333 	int ret;
3334 
3335 	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3336 		return 0;
3337 
3338 	ret = i915_gem_object_wait_rendering(obj, false);
3339 	if (ret)
3340 		return ret;
3341 
3342 	/* Ensure that we invalidate the GPU's caches and TLBs. */
3343 	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3344 	return 0;
3345 }
3346 
3347 /**
3348  * Moves a single object to the CPU read, and possibly write domain.
3349  *
3350  * This function returns when the move is complete, including waiting on
3351  * flushes to occur.
3352  */
3353 int
3354 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3355 {
3356 	uint32_t old_write_domain, old_read_domains;
3357 	int ret;
3358 
3359 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3360 		return 0;
3361 
3362 	ret = i915_gem_object_wait_rendering(obj, !write);
3363 	if (ret)
3364 		return ret;
3365 
3366 	i915_gem_object_flush_gtt_write_domain(obj);
3367 
3368 	old_write_domain = obj->base.write_domain;
3369 	old_read_domains = obj->base.read_domains;
3370 
3371 	/* Flush the CPU cache if it's still invalid. */
3372 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3373 		i915_gem_clflush_object(obj);
3374 
3375 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3376 	}
3377 
3378 	/* It should now be out of any other write domains, and we can update
3379 	 * the domain values for our changes.
3380 	 */
3381 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3382 
3383 	/* If we're writing through the CPU, then the GPU read domains will
3384 	 * need to be invalidated at next use.
3385 	 */
3386 	if (write) {
3387 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3388 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3389 	}
3390 
3391 	trace_i915_gem_object_change_domain(obj,
3392 					    old_read_domains,
3393 					    old_write_domain);
3394 
3395 	return 0;
3396 }
3397 
3398 /* Throttle our rendering by waiting until the ring has completed our requests
3399  * emitted over 20 msec ago.
3400  *
3401  * Note that if we were to use the current jiffies each time around the loop,
3402  * we wouldn't escape the function with any frames outstanding if the time to
3403  * render a frame was over 20ms.
3404  *
3405  * This should get us reasonable parallelism between CPU and GPU but also
3406  * relatively low latency when blocking on a particular request to finish.
3407  */
3408 static int
3409 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3410 {
3411 	struct drm_i915_private *dev_priv = dev->dev_private;
3412 	struct drm_i915_file_private *file_priv = file->driver_priv;
3413 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3414 	struct drm_i915_gem_request *request;
3415 	struct intel_ring_buffer *ring = NULL;
3416 	u32 seqno = 0;
3417 	int ret;
3418 
3419 	if (atomic_read(&dev_priv->mm.wedged))
3420 		return -EIO;
3421 
3422 	spin_lock(&file_priv->mm.lock);
3423 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3424 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3425 			break;
3426 
3427 		ring = request->ring;
3428 		seqno = request->seqno;
3429 	}
3430 	spin_unlock(&file_priv->mm.lock);
3431 
3432 	if (seqno == 0)
3433 		return 0;
3434 
3435 	ret = __wait_seqno(ring, seqno, true, NULL);
3436 	if (ret == 0)
3437 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3438 
3439 	return ret;
3440 }
3441 
3442 int
3443 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3444 		    uint32_t alignment,
3445 		    bool map_and_fenceable,
3446 		    bool nonblocking)
3447 {
3448 	int ret;
3449 
3450 	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3451 		return -EBUSY;
3452 
3453 	if (obj->gtt_space != NULL) {
3454 		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3455 		    (map_and_fenceable && !obj->map_and_fenceable)) {
3456 			WARN(obj->pin_count,
3457 			     "bo is already pinned with incorrect alignment:"
3458 			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3459 			     " obj->map_and_fenceable=%d\n",
3460 			     obj->gtt_offset, alignment,
3461 			     map_and_fenceable,
3462 			     obj->map_and_fenceable);
3463 			ret = i915_gem_object_unbind(obj);
3464 			if (ret)
3465 				return ret;
3466 		}
3467 	}
3468 
3469 	if (obj->gtt_space == NULL) {
3470 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3471 
3472 		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3473 						  map_and_fenceable,
3474 						  nonblocking);
3475 		if (ret)
3476 			return ret;
3477 
3478 		if (!dev_priv->mm.aliasing_ppgtt)
3479 			i915_gem_gtt_bind_object(obj, obj->cache_level);
3480 	}
3481 
3482 	if (!obj->has_global_gtt_mapping && map_and_fenceable)
3483 		i915_gem_gtt_bind_object(obj, obj->cache_level);
3484 
3485 	obj->pin_count++;
3486 	obj->pin_mappable |= map_and_fenceable;
3487 
3488 	return 0;
3489 }
3490 
3491 void
3492 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3493 {
3494 	BUG_ON(obj->pin_count == 0);
3495 	BUG_ON(obj->gtt_space == NULL);
3496 
3497 	if (--obj->pin_count == 0)
3498 		obj->pin_mappable = false;
3499 }
3500 
3501 int
3502 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3503 		   struct drm_file *file)
3504 {
3505 	struct drm_i915_gem_pin *args = data;
3506 	struct drm_i915_gem_object *obj;
3507 	int ret;
3508 
3509 	ret = i915_mutex_lock_interruptible(dev);
3510 	if (ret)
3511 		return ret;
3512 
3513 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3514 	if (&obj->base == NULL) {
3515 		ret = -ENOENT;
3516 		goto unlock;
3517 	}
3518 
3519 	if (obj->madv != I915_MADV_WILLNEED) {
3520 		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3521 		ret = -EINVAL;
3522 		goto out;
3523 	}
3524 
3525 	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3526 		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3527 			  args->handle);
3528 		ret = -EINVAL;
3529 		goto out;
3530 	}
3531 
3532 	if (obj->user_pin_count == 0) {
3533 		ret = i915_gem_object_pin(obj, args->alignment, true, false);
3534 		if (ret)
3535 			goto out;
3536 	}
3537 
3538 	obj->user_pin_count++;
3539 	obj->pin_filp = file;
3540 
3541 	/* XXX - flush the CPU caches for pinned objects
3542 	 * as the X server doesn't manage domains yet
3543 	 */
3544 	i915_gem_object_flush_cpu_write_domain(obj);
3545 	args->offset = obj->gtt_offset;
3546 out:
3547 	drm_gem_object_unreference(&obj->base);
3548 unlock:
3549 	mutex_unlock(&dev->struct_mutex);
3550 	return ret;
3551 }
3552 
3553 int
3554 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3555 		     struct drm_file *file)
3556 {
3557 	struct drm_i915_gem_pin *args = data;
3558 	struct drm_i915_gem_object *obj;
3559 	int ret;
3560 
3561 	ret = i915_mutex_lock_interruptible(dev);
3562 	if (ret)
3563 		return ret;
3564 
3565 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3566 	if (&obj->base == NULL) {
3567 		ret = -ENOENT;
3568 		goto unlock;
3569 	}
3570 
3571 	if (obj->pin_filp != file) {
3572 		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3573 			  args->handle);
3574 		ret = -EINVAL;
3575 		goto out;
3576 	}
3577 	obj->user_pin_count--;
3578 	if (obj->user_pin_count == 0) {
3579 		obj->pin_filp = NULL;
3580 		i915_gem_object_unpin(obj);
3581 	}
3582 
3583 out:
3584 	drm_gem_object_unreference(&obj->base);
3585 unlock:
3586 	mutex_unlock(&dev->struct_mutex);
3587 	return ret;
3588 }
3589 
3590 int
3591 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3592 		    struct drm_file *file)
3593 {
3594 	struct drm_i915_gem_busy *args = data;
3595 	struct drm_i915_gem_object *obj;
3596 	int ret;
3597 
3598 	ret = i915_mutex_lock_interruptible(dev);
3599 	if (ret)
3600 		return ret;
3601 
3602 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3603 	if (&obj->base == NULL) {
3604 		ret = -ENOENT;
3605 		goto unlock;
3606 	}
3607 
3608 	/* Count all active objects as busy, even if they are currently not used
3609 	 * by the gpu. Users of this interface expect objects to eventually
3610 	 * become non-busy without any further actions, therefore emit any
3611 	 * necessary flushes here.
3612 	 */
3613 	ret = i915_gem_object_flush_active(obj);
3614 
3615 	args->busy = obj->active;
3616 	if (obj->ring) {
3617 		BUILD_BUG_ON(I915_NUM_RINGS > 16);
3618 		args->busy |= intel_ring_flag(obj->ring) << 16;
3619 	}
3620 
3621 	drm_gem_object_unreference(&obj->base);
3622 unlock:
3623 	mutex_unlock(&dev->struct_mutex);
3624 	return ret;
3625 }
3626 
3627 int
3628 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3629 			struct drm_file *file_priv)
3630 {
3631 	return i915_gem_ring_throttle(dev, file_priv);
3632 }
3633 
3634 int
3635 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3636 		       struct drm_file *file_priv)
3637 {
3638 	struct drm_i915_gem_madvise *args = data;
3639 	struct drm_i915_gem_object *obj;
3640 	int ret;
3641 
3642 	switch (args->madv) {
3643 	case I915_MADV_DONTNEED:
3644 	case I915_MADV_WILLNEED:
3645 	    break;
3646 	default:
3647 	    return -EINVAL;
3648 	}
3649 
3650 	ret = i915_mutex_lock_interruptible(dev);
3651 	if (ret)
3652 		return ret;
3653 
3654 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3655 	if (&obj->base == NULL) {
3656 		ret = -ENOENT;
3657 		goto unlock;
3658 	}
3659 
3660 	if (obj->pin_count) {
3661 		ret = -EINVAL;
3662 		goto out;
3663 	}
3664 
3665 	if (obj->madv != __I915_MADV_PURGED)
3666 		obj->madv = args->madv;
3667 
3668 	/* if the object is no longer attached, discard its backing storage */
3669 	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3670 		i915_gem_object_truncate(obj);
3671 
3672 	args->retained = obj->madv != __I915_MADV_PURGED;
3673 
3674 out:
3675 	drm_gem_object_unreference(&obj->base);
3676 unlock:
3677 	mutex_unlock(&dev->struct_mutex);
3678 	return ret;
3679 }
3680 
3681 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3682 			  const struct drm_i915_gem_object_ops *ops)
3683 {
3684 	INIT_LIST_HEAD(&obj->mm_list);
3685 	INIT_LIST_HEAD(&obj->gtt_list);
3686 	INIT_LIST_HEAD(&obj->ring_list);
3687 	INIT_LIST_HEAD(&obj->exec_list);
3688 
3689 	obj->ops = ops;
3690 
3691 	obj->fence_reg = I915_FENCE_REG_NONE;
3692 	obj->madv = I915_MADV_WILLNEED;
3693 	/* Avoid an unnecessary call to unbind on the first bind. */
3694 	obj->map_and_fenceable = true;
3695 
3696 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3697 }
3698 
3699 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3700 	.get_pages = i915_gem_object_get_pages_gtt,
3701 	.put_pages = i915_gem_object_put_pages_gtt,
3702 };
3703 
3704 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3705 						  size_t size)
3706 {
3707 	struct drm_i915_gem_object *obj;
3708 	struct address_space *mapping;
3709 	u32 mask;
3710 
3711 	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3712 	if (obj == NULL)
3713 		return NULL;
3714 
3715 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3716 		kfree(obj);
3717 		return NULL;
3718 	}
3719 
3720 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3721 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3722 		/* 965gm cannot relocate objects above 4GiB. */
3723 		mask &= ~__GFP_HIGHMEM;
3724 		mask |= __GFP_DMA32;
3725 	}
3726 
3727 	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3728 	mapping_set_gfp_mask(mapping, mask);
3729 
3730 	i915_gem_object_init(obj, &i915_gem_object_ops);
3731 
3732 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3733 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3734 
3735 	if (HAS_LLC(dev)) {
3736 		/* On some devices, we can have the GPU use the LLC (the CPU
3737 		 * cache) for about a 10% performance improvement
3738 		 * compared to uncached.  Graphics requests other than
3739 		 * display scanout are coherent with the CPU in
3740 		 * accessing this cache.  This means in this mode we
3741 		 * don't need to clflush on the CPU side, and on the
3742 		 * GPU side we only need to flush internal caches to
3743 		 * get data visible to the CPU.
3744 		 *
3745 		 * However, we maintain the display planes as UC, and so
3746 		 * need to rebind when first used as such.
3747 		 */
3748 		obj->cache_level = I915_CACHE_LLC;
3749 	} else
3750 		obj->cache_level = I915_CACHE_NONE;
3751 
3752 	return obj;
3753 }
3754 
3755 int i915_gem_init_object(struct drm_gem_object *obj)
3756 {
3757 	BUG();
3758 
3759 	return 0;
3760 }
3761 
3762 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3763 {
3764 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3765 	struct drm_device *dev = obj->base.dev;
3766 	drm_i915_private_t *dev_priv = dev->dev_private;
3767 
3768 	trace_i915_gem_object_destroy(obj);
3769 
3770 	if (obj->phys_obj)
3771 		i915_gem_detach_phys_object(dev, obj);
3772 
3773 	obj->pin_count = 0;
3774 	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3775 		bool was_interruptible;
3776 
3777 		was_interruptible = dev_priv->mm.interruptible;
3778 		dev_priv->mm.interruptible = false;
3779 
3780 		WARN_ON(i915_gem_object_unbind(obj));
3781 
3782 		dev_priv->mm.interruptible = was_interruptible;
3783 	}
3784 
3785 	obj->pages_pin_count = 0;
3786 	i915_gem_object_put_pages(obj);
3787 	i915_gem_object_free_mmap_offset(obj);
3788 
3789 	BUG_ON(obj->pages);
3790 
3791 	if (obj->base.import_attach)
3792 		drm_prime_gem_destroy(&obj->base, NULL);
3793 
3794 	drm_gem_object_release(&obj->base);
3795 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3796 
3797 	kfree(obj->bit_17);
3798 	kfree(obj);
3799 }
3800 
3801 int
3802 i915_gem_idle(struct drm_device *dev)
3803 {
3804 	drm_i915_private_t *dev_priv = dev->dev_private;
3805 	int ret;
3806 
3807 	mutex_lock(&dev->struct_mutex);
3808 
3809 	if (dev_priv->mm.suspended) {
3810 		mutex_unlock(&dev->struct_mutex);
3811 		return 0;
3812 	}
3813 
3814 	ret = i915_gpu_idle(dev);
3815 	if (ret) {
3816 		mutex_unlock(&dev->struct_mutex);
3817 		return ret;
3818 	}
3819 	i915_gem_retire_requests(dev);
3820 
3821 	/* Under UMS, be paranoid and evict. */
3822 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
3823 		i915_gem_evict_everything(dev);
3824 
3825 	i915_gem_reset_fences(dev);
3826 
3827 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
3828 	 * We need to replace this with a semaphore, or something.
3829 	 * And not confound mm.suspended!
3830 	 */
3831 	dev_priv->mm.suspended = 1;
3832 	del_timer_sync(&dev_priv->hangcheck_timer);
3833 
3834 	i915_kernel_lost_context(dev);
3835 	i915_gem_cleanup_ringbuffer(dev);
3836 
3837 	mutex_unlock(&dev->struct_mutex);
3838 
3839 	/* Cancel the retire work handler, which should be idle now. */
3840 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3841 
3842 	return 0;
3843 }
3844 
3845 void i915_gem_l3_remap(struct drm_device *dev)
3846 {
3847 	drm_i915_private_t *dev_priv = dev->dev_private;
3848 	u32 misccpctl;
3849 	int i;
3850 
3851 	if (!IS_IVYBRIDGE(dev))
3852 		return;
3853 
3854 	if (!dev_priv->l3_parity.remap_info)
3855 		return;
3856 
3857 	misccpctl = I915_READ(GEN7_MISCCPCTL);
3858 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3859 	POSTING_READ(GEN7_MISCCPCTL);
3860 
3861 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3862 		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3863 		if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3864 			DRM_DEBUG("0x%x was already programmed to %x\n",
3865 				  GEN7_L3LOG_BASE + i, remap);
3866 		if (remap && !dev_priv->l3_parity.remap_info[i/4])
3867 			DRM_DEBUG_DRIVER("Clearing remapped register\n");
3868 		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3869 	}
3870 
3871 	/* Make sure all the writes land before disabling dop clock gating */
3872 	POSTING_READ(GEN7_L3LOG_BASE);
3873 
3874 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3875 }
3876 
3877 void i915_gem_init_swizzling(struct drm_device *dev)
3878 {
3879 	drm_i915_private_t *dev_priv = dev->dev_private;
3880 
3881 	if (INTEL_INFO(dev)->gen < 5 ||
3882 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3883 		return;
3884 
3885 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3886 				 DISP_TILE_SURFACE_SWIZZLING);
3887 
3888 	if (IS_GEN5(dev))
3889 		return;
3890 
3891 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3892 	if (IS_GEN6(dev))
3893 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3894 	else
3895 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3896 }
3897 
3898 static bool
3899 intel_enable_blt(struct drm_device *dev)
3900 {
3901 	if (!HAS_BLT(dev))
3902 		return false;
3903 
3904 	/* The blitter was dysfunctional on early prototypes */
3905 	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3906 		DRM_INFO("BLT not supported on this pre-production hardware;"
3907 			 " graphics performance will be degraded.\n");
3908 		return false;
3909 	}
3910 
3911 	return true;
3912 }
3913 
3914 int
3915 i915_gem_init_hw(struct drm_device *dev)
3916 {
3917 	drm_i915_private_t *dev_priv = dev->dev_private;
3918 	int ret;
3919 
3920 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3921 		return -EIO;
3922 
3923 	if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3924 		I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3925 
3926 	i915_gem_l3_remap(dev);
3927 
3928 	i915_gem_init_swizzling(dev);
3929 
3930 	ret = intel_init_render_ring_buffer(dev);
3931 	if (ret)
3932 		return ret;
3933 
3934 	if (HAS_BSD(dev)) {
3935 		ret = intel_init_bsd_ring_buffer(dev);
3936 		if (ret)
3937 			goto cleanup_render_ring;
3938 	}
3939 
3940 	if (intel_enable_blt(dev)) {
3941 		ret = intel_init_blt_ring_buffer(dev);
3942 		if (ret)
3943 			goto cleanup_bsd_ring;
3944 	}
3945 
3946 	dev_priv->next_seqno = 1;
3947 
3948 	/*
3949 	 * XXX: There was some w/a described somewhere suggesting loading
3950 	 * contexts before PPGTT.
3951 	 */
3952 	i915_gem_context_init(dev);
3953 	i915_gem_init_ppgtt(dev);
3954 
3955 	return 0;
3956 
3957 cleanup_bsd_ring:
3958 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3959 cleanup_render_ring:
3960 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3961 	return ret;
3962 }
3963 
3964 static bool
3965 intel_enable_ppgtt(struct drm_device *dev)
3966 {
3967 	if (i915_enable_ppgtt >= 0)
3968 		return i915_enable_ppgtt;
3969 
3970 #ifdef CONFIG_INTEL_IOMMU
3971 	/* Disable ppgtt on SNB if VT-d is on. */
3972 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3973 		return false;
3974 #endif
3975 
3976 	return true;
3977 }
3978 
3979 int i915_gem_init(struct drm_device *dev)
3980 {
3981 	struct drm_i915_private *dev_priv = dev->dev_private;
3982 	unsigned long gtt_size, mappable_size;
3983 	int ret;
3984 
3985 	gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3986 	mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3987 
3988 	mutex_lock(&dev->struct_mutex);
3989 	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3990 		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
3991 		 * aperture accordingly when using aliasing ppgtt. */
3992 		gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3993 
3994 		i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3995 
3996 		ret = i915_gem_init_aliasing_ppgtt(dev);
3997 		if (ret) {
3998 			mutex_unlock(&dev->struct_mutex);
3999 			return ret;
4000 		}
4001 	} else {
4002 		/* Let GEM Manage all of the aperture.
4003 		 *
4004 		 * However, leave one page at the end still bound to the scratch
4005 		 * page.  There are a number of places where the hardware
4006 		 * apparently prefetches past the end of the object, and we've
4007 		 * seen multiple hangs with the GPU head pointer stuck in a
4008 		 * batchbuffer bound at the last page of the aperture.  One page
4009 		 * should be enough to keep any prefetching inside of the
4010 		 * aperture.
4011 		 */
4012 		i915_gem_init_global_gtt(dev, 0, mappable_size,
4013 					 gtt_size);
4014 	}
4015 
4016 	ret = i915_gem_init_hw(dev);
4017 	mutex_unlock(&dev->struct_mutex);
4018 	if (ret) {
4019 		i915_gem_cleanup_aliasing_ppgtt(dev);
4020 		return ret;
4021 	}
4022 
4023 	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4024 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4025 		dev_priv->dri1.allow_batchbuffer = 1;
4026 	return 0;
4027 }
4028 
4029 void
4030 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4031 {
4032 	drm_i915_private_t *dev_priv = dev->dev_private;
4033 	struct intel_ring_buffer *ring;
4034 	int i;
4035 
4036 	for_each_ring(ring, dev_priv, i)
4037 		intel_cleanup_ring_buffer(ring);
4038 }
4039 
4040 int
4041 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4042 		       struct drm_file *file_priv)
4043 {
4044 	drm_i915_private_t *dev_priv = dev->dev_private;
4045 	int ret;
4046 
4047 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4048 		return 0;
4049 
4050 	if (atomic_read(&dev_priv->mm.wedged)) {
4051 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4052 		atomic_set(&dev_priv->mm.wedged, 0);
4053 	}
4054 
4055 	mutex_lock(&dev->struct_mutex);
4056 	dev_priv->mm.suspended = 0;
4057 
4058 	ret = i915_gem_init_hw(dev);
4059 	if (ret != 0) {
4060 		mutex_unlock(&dev->struct_mutex);
4061 		return ret;
4062 	}
4063 
4064 	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4065 	mutex_unlock(&dev->struct_mutex);
4066 
4067 	ret = drm_irq_install(dev);
4068 	if (ret)
4069 		goto cleanup_ringbuffer;
4070 
4071 	return 0;
4072 
4073 cleanup_ringbuffer:
4074 	mutex_lock(&dev->struct_mutex);
4075 	i915_gem_cleanup_ringbuffer(dev);
4076 	dev_priv->mm.suspended = 1;
4077 	mutex_unlock(&dev->struct_mutex);
4078 
4079 	return ret;
4080 }
4081 
4082 int
4083 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4084 		       struct drm_file *file_priv)
4085 {
4086 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4087 		return 0;
4088 
4089 	drm_irq_uninstall(dev);
4090 	return i915_gem_idle(dev);
4091 }
4092 
4093 void
4094 i915_gem_lastclose(struct drm_device *dev)
4095 {
4096 	int ret;
4097 
4098 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4099 		return;
4100 
4101 	ret = i915_gem_idle(dev);
4102 	if (ret)
4103 		DRM_ERROR("failed to idle hardware: %d\n", ret);
4104 }
4105 
4106 static void
4107 init_ring_lists(struct intel_ring_buffer *ring)
4108 {
4109 	INIT_LIST_HEAD(&ring->active_list);
4110 	INIT_LIST_HEAD(&ring->request_list);
4111 }
4112 
4113 void
4114 i915_gem_load(struct drm_device *dev)
4115 {
4116 	int i;
4117 	drm_i915_private_t *dev_priv = dev->dev_private;
4118 
4119 	INIT_LIST_HEAD(&dev_priv->mm.active_list);
4120 	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4121 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4122 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4123 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4124 	for (i = 0; i < I915_NUM_RINGS; i++)
4125 		init_ring_lists(&dev_priv->ring[i]);
4126 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4127 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4128 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4129 			  i915_gem_retire_work_handler);
4130 	init_completion(&dev_priv->error_completion);
4131 
4132 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4133 	if (IS_GEN3(dev)) {
4134 		I915_WRITE(MI_ARB_STATE,
4135 			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4136 	}
4137 
4138 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4139 
4140 	/* Old X drivers will take 0-2 for front, back, depth buffers */
4141 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4142 		dev_priv->fence_reg_start = 3;
4143 
4144 	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4145 		dev_priv->num_fence_regs = 16;
4146 	else
4147 		dev_priv->num_fence_regs = 8;
4148 
4149 	/* Initialize fence registers to zero */
4150 	i915_gem_reset_fences(dev);
4151 
4152 	i915_gem_detect_bit_6_swizzle(dev);
4153 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4154 
4155 	dev_priv->mm.interruptible = true;
4156 
4157 	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4158 	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4159 	register_shrinker(&dev_priv->mm.inactive_shrinker);
4160 }
4161 
4162 /*
4163  * Create a physically contiguous memory object for this object
4164  * e.g. for cursor + overlay regs
4165  */
4166 static int i915_gem_init_phys_object(struct drm_device *dev,
4167 				     int id, int size, int align)
4168 {
4169 	drm_i915_private_t *dev_priv = dev->dev_private;
4170 	struct drm_i915_gem_phys_object *phys_obj;
4171 	int ret;
4172 
4173 	if (dev_priv->mm.phys_objs[id - 1] || !size)
4174 		return 0;
4175 
4176 	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4177 	if (!phys_obj)
4178 		return -ENOMEM;
4179 
4180 	phys_obj->id = id;
4181 
4182 	phys_obj->handle = drm_pci_alloc(dev, size, align);
4183 	if (!phys_obj->handle) {
4184 		ret = -ENOMEM;
4185 		goto kfree_obj;
4186 	}
4187 #ifdef CONFIG_X86
4188 	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4189 #endif
4190 
4191 	dev_priv->mm.phys_objs[id - 1] = phys_obj;
4192 
4193 	return 0;
4194 kfree_obj:
4195 	kfree(phys_obj);
4196 	return ret;
4197 }
4198 
4199 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4200 {
4201 	drm_i915_private_t *dev_priv = dev->dev_private;
4202 	struct drm_i915_gem_phys_object *phys_obj;
4203 
4204 	if (!dev_priv->mm.phys_objs[id - 1])
4205 		return;
4206 
4207 	phys_obj = dev_priv->mm.phys_objs[id - 1];
4208 	if (phys_obj->cur_obj) {
4209 		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4210 	}
4211 
4212 #ifdef CONFIG_X86
4213 	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4214 #endif
4215 	drm_pci_free(dev, phys_obj->handle);
4216 	kfree(phys_obj);
4217 	dev_priv->mm.phys_objs[id - 1] = NULL;
4218 }
4219 
4220 void i915_gem_free_all_phys_object(struct drm_device *dev)
4221 {
4222 	int i;
4223 
4224 	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4225 		i915_gem_free_phys_object(dev, i);
4226 }
4227 
4228 void i915_gem_detach_phys_object(struct drm_device *dev,
4229 				 struct drm_i915_gem_object *obj)
4230 {
4231 	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4232 	char *vaddr;
4233 	int i;
4234 	int page_count;
4235 
4236 	if (!obj->phys_obj)
4237 		return;
4238 	vaddr = obj->phys_obj->handle->vaddr;
4239 
4240 	page_count = obj->base.size / PAGE_SIZE;
4241 	for (i = 0; i < page_count; i++) {
4242 		struct page *page = shmem_read_mapping_page(mapping, i);
4243 		if (!IS_ERR(page)) {
4244 			char *dst = kmap_atomic(page);
4245 			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4246 			kunmap_atomic(dst);
4247 
4248 			drm_clflush_pages(&page, 1);
4249 
4250 			set_page_dirty(page);
4251 			mark_page_accessed(page);
4252 			page_cache_release(page);
4253 		}
4254 	}
4255 	i915_gem_chipset_flush(dev);
4256 
4257 	obj->phys_obj->cur_obj = NULL;
4258 	obj->phys_obj = NULL;
4259 }
4260 
4261 int
4262 i915_gem_attach_phys_object(struct drm_device *dev,
4263 			    struct drm_i915_gem_object *obj,
4264 			    int id,
4265 			    int align)
4266 {
4267 	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4268 	drm_i915_private_t *dev_priv = dev->dev_private;
4269 	int ret = 0;
4270 	int page_count;
4271 	int i;
4272 
4273 	if (id > I915_MAX_PHYS_OBJECT)
4274 		return -EINVAL;
4275 
4276 	if (obj->phys_obj) {
4277 		if (obj->phys_obj->id == id)
4278 			return 0;
4279 		i915_gem_detach_phys_object(dev, obj);
4280 	}
4281 
4282 	/* create a new object */
4283 	if (!dev_priv->mm.phys_objs[id - 1]) {
4284 		ret = i915_gem_init_phys_object(dev, id,
4285 						obj->base.size, align);
4286 		if (ret) {
4287 			DRM_ERROR("failed to init phys object %d size: %zu\n",
4288 				  id, obj->base.size);
4289 			return ret;
4290 		}
4291 	}
4292 
4293 	/* bind to the object */
4294 	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4295 	obj->phys_obj->cur_obj = obj;
4296 
4297 	page_count = obj->base.size / PAGE_SIZE;
4298 
4299 	for (i = 0; i < page_count; i++) {
4300 		struct page *page;
4301 		char *dst, *src;
4302 
4303 		page = shmem_read_mapping_page(mapping, i);
4304 		if (IS_ERR(page))
4305 			return PTR_ERR(page);
4306 
4307 		src = kmap_atomic(page);
4308 		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4309 		memcpy(dst, src, PAGE_SIZE);
4310 		kunmap_atomic(src);
4311 
4312 		mark_page_accessed(page);
4313 		page_cache_release(page);
4314 	}
4315 
4316 	return 0;
4317 }
4318 
4319 static int
4320 i915_gem_phys_pwrite(struct drm_device *dev,
4321 		     struct drm_i915_gem_object *obj,
4322 		     struct drm_i915_gem_pwrite *args,
4323 		     struct drm_file *file_priv)
4324 {
4325 	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4326 	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4327 
4328 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4329 		unsigned long unwritten;
4330 
4331 		/* The physical object once assigned is fixed for the lifetime
4332 		 * of the obj, so we can safely drop the lock and continue
4333 		 * to access vaddr.
4334 		 */
4335 		mutex_unlock(&dev->struct_mutex);
4336 		unwritten = copy_from_user(vaddr, user_data, args->size);
4337 		mutex_lock(&dev->struct_mutex);
4338 		if (unwritten)
4339 			return -EFAULT;
4340 	}
4341 
4342 	i915_gem_chipset_flush(dev);
4343 	return 0;
4344 }
4345 
4346 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4347 {
4348 	struct drm_i915_file_private *file_priv = file->driver_priv;
4349 
4350 	/* Clean up our request list when the client is going away, so that
4351 	 * later retire_requests won't dereference our soon-to-be-gone
4352 	 * file_priv.
4353 	 */
4354 	spin_lock(&file_priv->mm.lock);
4355 	while (!list_empty(&file_priv->mm.request_list)) {
4356 		struct drm_i915_gem_request *request;
4357 
4358 		request = list_first_entry(&file_priv->mm.request_list,
4359 					   struct drm_i915_gem_request,
4360 					   client_list);
4361 		list_del(&request->client_list);
4362 		request->file_priv = NULL;
4363 	}
4364 	spin_unlock(&file_priv->mm.lock);
4365 }
4366 
4367 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4368 {
4369 	if (!mutex_is_locked(mutex))
4370 		return false;
4371 
4372 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4373 	return mutex->owner == task;
4374 #else
4375 	/* Since UP may be pre-empted, we cannot assume that we own the lock */
4376 	return false;
4377 #endif
4378 }
4379 
4380 static int
4381 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4382 {
4383 	struct drm_i915_private *dev_priv =
4384 		container_of(shrinker,
4385 			     struct drm_i915_private,
4386 			     mm.inactive_shrinker);
4387 	struct drm_device *dev = dev_priv->dev;
4388 	struct drm_i915_gem_object *obj;
4389 	int nr_to_scan = sc->nr_to_scan;
4390 	bool unlock = true;
4391 	int cnt;
4392 
4393 	if (!mutex_trylock(&dev->struct_mutex)) {
4394 		if (!mutex_is_locked_by(&dev->struct_mutex, current))
4395 			return 0;
4396 
4397 		if (dev_priv->mm.shrinker_no_lock_stealing)
4398 			return 0;
4399 
4400 		unlock = false;
4401 	}
4402 
4403 	if (nr_to_scan) {
4404 		nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4405 		if (nr_to_scan > 0)
4406 			nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4407 							false);
4408 		if (nr_to_scan > 0)
4409 			i915_gem_shrink_all(dev_priv);
4410 	}
4411 
4412 	cnt = 0;
4413 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4414 		if (obj->pages_pin_count == 0)
4415 			cnt += obj->base.size >> PAGE_SHIFT;
4416 	list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list)
4417 		if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4418 			cnt += obj->base.size >> PAGE_SHIFT;
4419 
4420 	if (unlock)
4421 		mutex_unlock(&dev->struct_mutex);
4422 	return cnt;
4423 }
4424