xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision cfdfc14e)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "intel_workarounds.h"
39 #include "i915_gemfs.h"
40 #include <linux/dma-fence-array.h>
41 #include <linux/kthread.h>
42 #include <linux/reservation.h>
43 #include <linux/shmem_fs.h>
44 #include <linux/slab.h>
45 #include <linux/stop_machine.h>
46 #include <linux/swap.h>
47 #include <linux/pci.h>
48 #include <linux/dma-buf.h>
49 
50 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51 
52 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53 {
54 	if (obj->cache_dirty)
55 		return false;
56 
57 	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58 		return true;
59 
60 	return obj->pin_global; /* currently in use by HW, keep flushed */
61 }
62 
63 static int
64 insert_mappable_node(struct i915_ggtt *ggtt,
65                      struct drm_mm_node *node, u32 size)
66 {
67 	memset(node, 0, sizeof(*node));
68 	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
69 					   size, 0, I915_COLOR_UNEVICTABLE,
70 					   0, ggtt->mappable_end,
71 					   DRM_MM_INSERT_LOW);
72 }
73 
74 static void
75 remove_mappable_node(struct drm_mm_node *node)
76 {
77 	drm_mm_remove_node(node);
78 }
79 
80 /* some bookkeeping */
81 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82 				  u64 size)
83 {
84 	spin_lock(&dev_priv->mm.object_stat_lock);
85 	dev_priv->mm.object_count++;
86 	dev_priv->mm.object_memory += size;
87 	spin_unlock(&dev_priv->mm.object_stat_lock);
88 }
89 
90 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91 				     u64 size)
92 {
93 	spin_lock(&dev_priv->mm.object_stat_lock);
94 	dev_priv->mm.object_count--;
95 	dev_priv->mm.object_memory -= size;
96 	spin_unlock(&dev_priv->mm.object_stat_lock);
97 }
98 
99 static int
100 i915_gem_wait_for_error(struct i915_gpu_error *error)
101 {
102 	int ret;
103 
104 	might_sleep();
105 
106 	/*
107 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108 	 * userspace. If it takes that long something really bad is going on and
109 	 * we should simply try to bail out and fail as gracefully as possible.
110 	 */
111 	ret = wait_event_interruptible_timeout(error->reset_queue,
112 					       !i915_reset_backoff(error),
113 					       I915_RESET_TIMEOUT);
114 	if (ret == 0) {
115 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116 		return -EIO;
117 	} else if (ret < 0) {
118 		return ret;
119 	} else {
120 		return 0;
121 	}
122 }
123 
124 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 {
126 	struct drm_i915_private *dev_priv = to_i915(dev);
127 	int ret;
128 
129 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 	if (ret)
131 		return ret;
132 
133 	ret = mutex_lock_interruptible(&dev->struct_mutex);
134 	if (ret)
135 		return ret;
136 
137 	return 0;
138 }
139 
140 static u32 __i915_gem_park(struct drm_i915_private *i915)
141 {
142 	lockdep_assert_held(&i915->drm.struct_mutex);
143 	GEM_BUG_ON(i915->gt.active_requests);
144 	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
145 
146 	if (!i915->gt.awake)
147 		return I915_EPOCH_INVALID;
148 
149 	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);
150 
151 	/*
152 	 * Be paranoid and flush a concurrent interrupt to make sure
153 	 * we don't reactivate any irq tasklets after parking.
154 	 *
155 	 * FIXME: Note that even though we have waited for execlists to be idle,
156 	 * there may still be an in-flight interrupt even though the CSB
157 	 * is now empty. synchronize_irq() makes sure that a residual interrupt
158 	 * is completed before we continue, but it doesn't prevent the HW from
159 	 * raising a spurious interrupt later. To complete the shield we should
160 	 * coordinate disabling the CS irq with flushing the interrupts.
161 	 */
162 	synchronize_irq(i915->drm.irq);
163 
164 	intel_engines_park(i915);
165 	i915_timelines_park(i915);
166 
167 	i915_pmu_gt_parked(i915);
168 	i915_vma_parked(i915);
169 
170 	i915->gt.awake = false;
171 
172 	if (INTEL_GEN(i915) >= 6)
173 		gen6_rps_idle(i915);
174 
175 	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);
176 
177 	intel_runtime_pm_put(i915);
178 
179 	return i915->gt.epoch;
180 }
181 
182 void i915_gem_park(struct drm_i915_private *i915)
183 {
184 	lockdep_assert_held(&i915->drm.struct_mutex);
185 	GEM_BUG_ON(i915->gt.active_requests);
186 
187 	if (!i915->gt.awake)
188 		return;
189 
190 	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
191 	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
192 }
193 
194 void i915_gem_unpark(struct drm_i915_private *i915)
195 {
196 	lockdep_assert_held(&i915->drm.struct_mutex);
197 	GEM_BUG_ON(!i915->gt.active_requests);
198 
199 	if (i915->gt.awake)
200 		return;
201 
202 	intel_runtime_pm_get_noresume(i915);
203 
204 	/*
205 	 * It seems that the DMC likes to transition between the DC states a lot
206 	 * when there are no connected displays (no active power domains) during
207 	 * command submission.
208 	 *
209 	 * This activity has negative impact on the performance of the chip with
210 	 * huge latencies observed in the interrupt handler and elsewhere.
211 	 *
212 	 * Work around it by grabbing a GT IRQ power domain whilst there is any
213 	 * GT activity, preventing any DC state transitions.
214 	 */
215 	intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
216 
217 	i915->gt.awake = true;
218 	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
219 		i915->gt.epoch = 1;
220 
221 	intel_enable_gt_powersave(i915);
222 	i915_update_gfx_val(i915);
223 	if (INTEL_GEN(i915) >= 6)
224 		gen6_rps_busy(i915);
225 	i915_pmu_gt_unparked(i915);
226 
227 	intel_engines_unpark(i915);
228 
229 	i915_queue_hangcheck(i915);
230 
231 	queue_delayed_work(i915->wq,
232 			   &i915->gt.retire_work,
233 			   round_jiffies_up_relative(HZ));
234 }
235 
236 int
237 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
238 			    struct drm_file *file)
239 {
240 	struct drm_i915_private *dev_priv = to_i915(dev);
241 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
242 	struct drm_i915_gem_get_aperture *args = data;
243 	struct i915_vma *vma;
244 	u64 pinned;
245 
246 	pinned = ggtt->base.reserved;
247 	mutex_lock(&dev->struct_mutex);
248 	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
249 		if (i915_vma_is_pinned(vma))
250 			pinned += vma->node.size;
251 	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
252 		if (i915_vma_is_pinned(vma))
253 			pinned += vma->node.size;
254 	mutex_unlock(&dev->struct_mutex);
255 
256 	args->aper_size = ggtt->base.total;
257 	args->aper_available_size = args->aper_size - pinned;
258 
259 	return 0;
260 }
261 
262 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
263 {
264 	struct address_space *mapping = obj->base.filp->f_mapping;
265 	drm_dma_handle_t *phys;
266 	struct sg_table *st;
267 	struct scatterlist *sg;
268 	char *vaddr;
269 	int i;
270 	int err;
271 
272 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
273 		return -EINVAL;
274 
275 	/* Always aligning to the object size, allows a single allocation
276 	 * to handle all possible callers, and given typical object sizes,
277 	 * the alignment of the buddy allocation will naturally match.
278 	 */
279 	phys = drm_pci_alloc(obj->base.dev,
280 			     roundup_pow_of_two(obj->base.size),
281 			     roundup_pow_of_two(obj->base.size));
282 	if (!phys)
283 		return -ENOMEM;
284 
285 	vaddr = phys->vaddr;
286 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
287 		struct page *page;
288 		char *src;
289 
290 		page = shmem_read_mapping_page(mapping, i);
291 		if (IS_ERR(page)) {
292 			err = PTR_ERR(page);
293 			goto err_phys;
294 		}
295 
296 		src = kmap_atomic(page);
297 		memcpy(vaddr, src, PAGE_SIZE);
298 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
299 		kunmap_atomic(src);
300 
301 		put_page(page);
302 		vaddr += PAGE_SIZE;
303 	}
304 
305 	i915_gem_chipset_flush(to_i915(obj->base.dev));
306 
307 	st = kmalloc(sizeof(*st), GFP_KERNEL);
308 	if (!st) {
309 		err = -ENOMEM;
310 		goto err_phys;
311 	}
312 
313 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
314 		kfree(st);
315 		err = -ENOMEM;
316 		goto err_phys;
317 	}
318 
319 	sg = st->sgl;
320 	sg->offset = 0;
321 	sg->length = obj->base.size;
322 
323 	sg_dma_address(sg) = phys->busaddr;
324 	sg_dma_len(sg) = obj->base.size;
325 
326 	obj->phys_handle = phys;
327 
328 	__i915_gem_object_set_pages(obj, st, sg->length);
329 
330 	return 0;
331 
332 err_phys:
333 	drm_pci_free(obj->base.dev, phys);
334 
335 	return err;
336 }
337 
338 static void __start_cpu_write(struct drm_i915_gem_object *obj)
339 {
340 	obj->read_domains = I915_GEM_DOMAIN_CPU;
341 	obj->write_domain = I915_GEM_DOMAIN_CPU;
342 	if (cpu_write_needs_clflush(obj))
343 		obj->cache_dirty = true;
344 }
345 
346 static void
347 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
348 				struct sg_table *pages,
349 				bool needs_clflush)
350 {
351 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
352 
353 	if (obj->mm.madv == I915_MADV_DONTNEED)
354 		obj->mm.dirty = false;
355 
356 	if (needs_clflush &&
357 	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
358 	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
359 		drm_clflush_sg(pages);
360 
361 	__start_cpu_write(obj);
362 }
363 
364 static void
365 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
366 			       struct sg_table *pages)
367 {
368 	__i915_gem_object_release_shmem(obj, pages, false);
369 
370 	if (obj->mm.dirty) {
371 		struct address_space *mapping = obj->base.filp->f_mapping;
372 		char *vaddr = obj->phys_handle->vaddr;
373 		int i;
374 
375 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
376 			struct page *page;
377 			char *dst;
378 
379 			page = shmem_read_mapping_page(mapping, i);
380 			if (IS_ERR(page))
381 				continue;
382 
383 			dst = kmap_atomic(page);
384 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
385 			memcpy(dst, vaddr, PAGE_SIZE);
386 			kunmap_atomic(dst);
387 
388 			set_page_dirty(page);
389 			if (obj->mm.madv == I915_MADV_WILLNEED)
390 				mark_page_accessed(page);
391 			put_page(page);
392 			vaddr += PAGE_SIZE;
393 		}
394 		obj->mm.dirty = false;
395 	}
396 
397 	sg_free_table(pages);
398 	kfree(pages);
399 
400 	drm_pci_free(obj->base.dev, obj->phys_handle);
401 }
402 
403 static void
404 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
405 {
406 	i915_gem_object_unpin_pages(obj);
407 }
408 
409 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
410 	.get_pages = i915_gem_object_get_pages_phys,
411 	.put_pages = i915_gem_object_put_pages_phys,
412 	.release = i915_gem_object_release_phys,
413 };
414 
415 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
416 
417 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
418 {
419 	struct i915_vma *vma;
420 	LIST_HEAD(still_in_list);
421 	int ret;
422 
423 	lockdep_assert_held(&obj->base.dev->struct_mutex);
424 
425 	/* Closed vma are removed from the obj->vma_list - but they may
426 	 * still have an active binding on the object. To remove those we
427 	 * must wait for all rendering to complete to the object (as unbinding
428 	 * must anyway), and retire the requests.
429 	 */
430 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
431 	if (ret)
432 		return ret;
433 
434 	while ((vma = list_first_entry_or_null(&obj->vma_list,
435 					       struct i915_vma,
436 					       obj_link))) {
437 		list_move_tail(&vma->obj_link, &still_in_list);
438 		ret = i915_vma_unbind(vma);
439 		if (ret)
440 			break;
441 	}
442 	list_splice(&still_in_list, &obj->vma_list);
443 
444 	return ret;
445 }
446 
447 static long
448 i915_gem_object_wait_fence(struct dma_fence *fence,
449 			   unsigned int flags,
450 			   long timeout,
451 			   struct intel_rps_client *rps_client)
452 {
453 	struct i915_request *rq;
454 
455 	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
456 
457 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
458 		return timeout;
459 
460 	if (!dma_fence_is_i915(fence))
461 		return dma_fence_wait_timeout(fence,
462 					      flags & I915_WAIT_INTERRUPTIBLE,
463 					      timeout);
464 
465 	rq = to_request(fence);
466 	if (i915_request_completed(rq))
467 		goto out;
468 
469 	/*
470 	 * This client is about to stall waiting for the GPU. In many cases
471 	 * this is undesirable and limits the throughput of the system, as
472 	 * many clients cannot continue processing user input/output whilst
473 	 * blocked. RPS autotuning may take tens of milliseconds to respond
474 	 * to the GPU load and thus incurs additional latency for the client.
475 	 * We can circumvent that by promoting the GPU frequency to maximum
476 	 * before we wait. This makes the GPU throttle up much more quickly
477 	 * (good for benchmarks and user experience, e.g. window animations),
478 	 * but at a cost of spending more power processing the workload
479 	 * (bad for battery). Not all clients even want their results
480 	 * immediately and for them we should just let the GPU select its own
481 	 * frequency to maximise efficiency. To prevent a single client from
482 	 * forcing the clocks too high for the whole system, we only allow
483 	 * each client to waitboost once in a busy period.
484 	 */
485 	if (rps_client && !i915_request_started(rq)) {
486 		if (INTEL_GEN(rq->i915) >= 6)
487 			gen6_rps_boost(rq, rps_client);
488 	}
489 
490 	timeout = i915_request_wait(rq, flags, timeout);
491 
492 out:
493 	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
494 		i915_request_retire_upto(rq);
495 
496 	return timeout;
497 }
498 
499 static long
500 i915_gem_object_wait_reservation(struct reservation_object *resv,
501 				 unsigned int flags,
502 				 long timeout,
503 				 struct intel_rps_client *rps_client)
504 {
505 	unsigned int seq = __read_seqcount_begin(&resv->seq);
506 	struct dma_fence *excl;
507 	bool prune_fences = false;
508 
509 	if (flags & I915_WAIT_ALL) {
510 		struct dma_fence **shared;
511 		unsigned int count, i;
512 		int ret;
513 
514 		ret = reservation_object_get_fences_rcu(resv,
515 							&excl, &count, &shared);
516 		if (ret)
517 			return ret;
518 
519 		for (i = 0; i < count; i++) {
520 			timeout = i915_gem_object_wait_fence(shared[i],
521 							     flags, timeout,
522 							     rps_client);
523 			if (timeout < 0)
524 				break;
525 
526 			dma_fence_put(shared[i]);
527 		}
528 
529 		for (; i < count; i++)
530 			dma_fence_put(shared[i]);
531 		kfree(shared);
532 
533 		/*
534 		 * If both shared fences and an exclusive fence exist,
535 		 * then by construction the shared fences must be later
536 		 * than the exclusive fence. If we successfully wait for
537 		 * all the shared fences, we know that the exclusive fence
538 		 * must all be signaled. If all the shared fences are
539 		 * signaled, we can prune the array and recover the
540 		 * floating references on the fences/requests.
541 		 */
542 		prune_fences = count && timeout >= 0;
543 	} else {
544 		excl = reservation_object_get_excl_rcu(resv);
545 	}
546 
547 	if (excl && timeout >= 0)
548 		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
549 						     rps_client);
550 
551 	dma_fence_put(excl);
552 
553 	/*
554 	 * Opportunistically prune the fences iff we know they have *all* been
555 	 * signaled and that the reservation object has not been changed (i.e.
556 	 * no new fences have been added).
557 	 */
558 	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
559 		if (reservation_object_trylock(resv)) {
560 			if (!__read_seqcount_retry(&resv->seq, seq))
561 				reservation_object_add_excl_fence(resv, NULL);
562 			reservation_object_unlock(resv);
563 		}
564 	}
565 
566 	return timeout;
567 }
568 
569 static void __fence_set_priority(struct dma_fence *fence,
570 				 const struct i915_sched_attr *attr)
571 {
572 	struct i915_request *rq;
573 	struct intel_engine_cs *engine;
574 
575 	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
576 		return;
577 
578 	rq = to_request(fence);
579 	engine = rq->engine;
580 
581 	local_bh_disable();
582 	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
583 	if (engine->schedule)
584 		engine->schedule(rq, attr);
585 	rcu_read_unlock();
586 	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
587 }
588 
589 static void fence_set_priority(struct dma_fence *fence,
590 			       const struct i915_sched_attr *attr)
591 {
592 	/* Recurse once into a fence-array */
593 	if (dma_fence_is_array(fence)) {
594 		struct dma_fence_array *array = to_dma_fence_array(fence);
595 		int i;
596 
597 		for (i = 0; i < array->num_fences; i++)
598 			__fence_set_priority(array->fences[i], attr);
599 	} else {
600 		__fence_set_priority(fence, attr);
601 	}
602 }
603 
604 int
605 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
606 			      unsigned int flags,
607 			      const struct i915_sched_attr *attr)
608 {
609 	struct dma_fence *excl;
610 
611 	if (flags & I915_WAIT_ALL) {
612 		struct dma_fence **shared;
613 		unsigned int count, i;
614 		int ret;
615 
616 		ret = reservation_object_get_fences_rcu(obj->resv,
617 							&excl, &count, &shared);
618 		if (ret)
619 			return ret;
620 
621 		for (i = 0; i < count; i++) {
622 			fence_set_priority(shared[i], attr);
623 			dma_fence_put(shared[i]);
624 		}
625 
626 		kfree(shared);
627 	} else {
628 		excl = reservation_object_get_excl_rcu(obj->resv);
629 	}
630 
631 	if (excl) {
632 		fence_set_priority(excl, attr);
633 		dma_fence_put(excl);
634 	}
635 	return 0;
636 }
637 
638 /**
639  * Waits for rendering to the object to be completed
640  * @obj: i915 gem object
641  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
642  * @timeout: how long to wait
643  * @rps_client: client (user process) to charge for any waitboosting
644  */
645 int
646 i915_gem_object_wait(struct drm_i915_gem_object *obj,
647 		     unsigned int flags,
648 		     long timeout,
649 		     struct intel_rps_client *rps_client)
650 {
651 	might_sleep();
652 #if IS_ENABLED(CONFIG_LOCKDEP)
653 	GEM_BUG_ON(debug_locks &&
654 		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
655 		   !!(flags & I915_WAIT_LOCKED));
656 #endif
657 	GEM_BUG_ON(timeout < 0);
658 
659 	timeout = i915_gem_object_wait_reservation(obj->resv,
660 						   flags, timeout,
661 						   rps_client);
662 	return timeout < 0 ? timeout : 0;
663 }
664 
665 static struct intel_rps_client *to_rps_client(struct drm_file *file)
666 {
667 	struct drm_i915_file_private *fpriv = file->driver_priv;
668 
669 	return &fpriv->rps_client;
670 }
671 
672 static int
673 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
674 		     struct drm_i915_gem_pwrite *args,
675 		     struct drm_file *file)
676 {
677 	void *vaddr = obj->phys_handle->vaddr + args->offset;
678 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
679 
680 	/* We manually control the domain here and pretend that it
681 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
682 	 */
683 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
684 	if (copy_from_user(vaddr, user_data, args->size))
685 		return -EFAULT;
686 
687 	drm_clflush_virt_range(vaddr, args->size);
688 	i915_gem_chipset_flush(to_i915(obj->base.dev));
689 
690 	intel_fb_obj_flush(obj, ORIGIN_CPU);
691 	return 0;
692 }
693 
694 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
695 {
696 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
697 }
698 
699 void i915_gem_object_free(struct drm_i915_gem_object *obj)
700 {
701 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
702 	kmem_cache_free(dev_priv->objects, obj);
703 }
704 
705 static int
706 i915_gem_create(struct drm_file *file,
707 		struct drm_i915_private *dev_priv,
708 		uint64_t size,
709 		uint32_t *handle_p)
710 {
711 	struct drm_i915_gem_object *obj;
712 	int ret;
713 	u32 handle;
714 
715 	size = roundup(size, PAGE_SIZE);
716 	if (size == 0)
717 		return -EINVAL;
718 
719 	/* Allocate the new object */
720 	obj = i915_gem_object_create(dev_priv, size);
721 	if (IS_ERR(obj))
722 		return PTR_ERR(obj);
723 
724 	ret = drm_gem_handle_create(file, &obj->base, &handle);
725 	/* drop reference from allocate - handle holds it now */
726 	i915_gem_object_put(obj);
727 	if (ret)
728 		return ret;
729 
730 	*handle_p = handle;
731 	return 0;
732 }
733 
734 int
735 i915_gem_dumb_create(struct drm_file *file,
736 		     struct drm_device *dev,
737 		     struct drm_mode_create_dumb *args)
738 {
739 	/* have to work out size/pitch and return them */
740 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
741 	args->size = args->pitch * args->height;
742 	return i915_gem_create(file, to_i915(dev),
743 			       args->size, &args->handle);
744 }
745 
746 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
747 {
748 	return !(obj->cache_level == I915_CACHE_NONE ||
749 		 obj->cache_level == I915_CACHE_WT);
750 }
751 
752 /**
753  * Creates a new mm object and returns a handle to it.
754  * @dev: drm device pointer
755  * @data: ioctl data blob
756  * @file: drm file pointer
757  */
758 int
759 i915_gem_create_ioctl(struct drm_device *dev, void *data,
760 		      struct drm_file *file)
761 {
762 	struct drm_i915_private *dev_priv = to_i915(dev);
763 	struct drm_i915_gem_create *args = data;
764 
765 	i915_gem_flush_free_objects(dev_priv);
766 
767 	return i915_gem_create(file, dev_priv,
768 			       args->size, &args->handle);
769 }
770 
771 static inline enum fb_op_origin
772 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
773 {
774 	return (domain == I915_GEM_DOMAIN_GTT ?
775 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
776 }
777 
778 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
779 {
780 	/*
781 	 * No actual flushing is required for the GTT write domain for reads
782 	 * from the GTT domain. Writes to it "immediately" go to main memory
783 	 * as far as we know, so there's no chipset flush. It also doesn't
784 	 * land in the GPU render cache.
785 	 *
786 	 * However, we do have to enforce the order so that all writes through
787 	 * the GTT land before any writes to the device, such as updates to
788 	 * the GATT itself.
789 	 *
790 	 * We also have to wait a bit for the writes to land from the GTT.
791 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
792 	 * timing. This issue has only been observed when switching quickly
793 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
794 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
795 	 * system agents we cannot reproduce this behaviour, until Cannonlake
796 	 * that was!).
797 	 */
798 
799 	wmb();
800 
801 	intel_runtime_pm_get(dev_priv);
802 	spin_lock_irq(&dev_priv->uncore.lock);
803 
804 	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
805 
806 	spin_unlock_irq(&dev_priv->uncore.lock);
807 	intel_runtime_pm_put(dev_priv);
808 }
809 
810 static void
811 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
812 {
813 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
814 	struct i915_vma *vma;
815 
816 	if (!(obj->write_domain & flush_domains))
817 		return;
818 
819 	switch (obj->write_domain) {
820 	case I915_GEM_DOMAIN_GTT:
821 		i915_gem_flush_ggtt_writes(dev_priv);
822 
823 		intel_fb_obj_flush(obj,
824 				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
825 
826 		for_each_ggtt_vma(vma, obj) {
827 			if (vma->iomap)
828 				continue;
829 
830 			i915_vma_unset_ggtt_write(vma);
831 		}
832 		break;
833 
834 	case I915_GEM_DOMAIN_CPU:
835 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
836 		break;
837 
838 	case I915_GEM_DOMAIN_RENDER:
839 		if (gpu_write_needs_clflush(obj))
840 			obj->cache_dirty = true;
841 		break;
842 	}
843 
844 	obj->write_domain = 0;
845 }
846 
847 static inline int
848 __copy_to_user_swizzled(char __user *cpu_vaddr,
849 			const char *gpu_vaddr, int gpu_offset,
850 			int length)
851 {
852 	int ret, cpu_offset = 0;
853 
854 	while (length > 0) {
855 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
856 		int this_length = min(cacheline_end - gpu_offset, length);
857 		int swizzled_gpu_offset = gpu_offset ^ 64;
858 
859 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
860 				     gpu_vaddr + swizzled_gpu_offset,
861 				     this_length);
862 		if (ret)
863 			return ret + length;
864 
865 		cpu_offset += this_length;
866 		gpu_offset += this_length;
867 		length -= this_length;
868 	}
869 
870 	return 0;
871 }
872 
873 static inline int
874 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
875 			  const char __user *cpu_vaddr,
876 			  int length)
877 {
878 	int ret, cpu_offset = 0;
879 
880 	while (length > 0) {
881 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
882 		int this_length = min(cacheline_end - gpu_offset, length);
883 		int swizzled_gpu_offset = gpu_offset ^ 64;
884 
885 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
886 				       cpu_vaddr + cpu_offset,
887 				       this_length);
888 		if (ret)
889 			return ret + length;
890 
891 		cpu_offset += this_length;
892 		gpu_offset += this_length;
893 		length -= this_length;
894 	}
895 
896 	return 0;
897 }
898 
899 /*
900  * Pins the specified object's pages and synchronizes the object with
901  * GPU accesses. Sets needs_clflush to non-zero if the caller should
902  * flush the object from the CPU cache.
903  */
904 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
905 				    unsigned int *needs_clflush)
906 {
907 	int ret;
908 
909 	lockdep_assert_held(&obj->base.dev->struct_mutex);
910 
911 	*needs_clflush = 0;
912 	if (!i915_gem_object_has_struct_page(obj))
913 		return -ENODEV;
914 
915 	ret = i915_gem_object_wait(obj,
916 				   I915_WAIT_INTERRUPTIBLE |
917 				   I915_WAIT_LOCKED,
918 				   MAX_SCHEDULE_TIMEOUT,
919 				   NULL);
920 	if (ret)
921 		return ret;
922 
923 	ret = i915_gem_object_pin_pages(obj);
924 	if (ret)
925 		return ret;
926 
927 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
928 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
929 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
930 		if (ret)
931 			goto err_unpin;
932 		else
933 			goto out;
934 	}
935 
936 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
937 
938 	/* If we're not in the cpu read domain, set ourself into the gtt
939 	 * read domain and manually flush cachelines (if required). This
940 	 * optimizes for the case when the gpu will dirty the data
941 	 * anyway again before the next pread happens.
942 	 */
943 	if (!obj->cache_dirty &&
944 	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
945 		*needs_clflush = CLFLUSH_BEFORE;
946 
947 out:
948 	/* return with the pages pinned */
949 	return 0;
950 
951 err_unpin:
952 	i915_gem_object_unpin_pages(obj);
953 	return ret;
954 }
955 
956 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
957 				     unsigned int *needs_clflush)
958 {
959 	int ret;
960 
961 	lockdep_assert_held(&obj->base.dev->struct_mutex);
962 
963 	*needs_clflush = 0;
964 	if (!i915_gem_object_has_struct_page(obj))
965 		return -ENODEV;
966 
967 	ret = i915_gem_object_wait(obj,
968 				   I915_WAIT_INTERRUPTIBLE |
969 				   I915_WAIT_LOCKED |
970 				   I915_WAIT_ALL,
971 				   MAX_SCHEDULE_TIMEOUT,
972 				   NULL);
973 	if (ret)
974 		return ret;
975 
976 	ret = i915_gem_object_pin_pages(obj);
977 	if (ret)
978 		return ret;
979 
980 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
981 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
982 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
983 		if (ret)
984 			goto err_unpin;
985 		else
986 			goto out;
987 	}
988 
989 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
990 
991 	/* If we're not in the cpu write domain, set ourself into the
992 	 * gtt write domain and manually flush cachelines (as required).
993 	 * This optimizes for the case when the gpu will use the data
994 	 * right away and we therefore have to clflush anyway.
995 	 */
996 	if (!obj->cache_dirty) {
997 		*needs_clflush |= CLFLUSH_AFTER;
998 
999 		/*
1000 		 * Same trick applies to invalidate partially written
1001 		 * cachelines read before writing.
1002 		 */
1003 		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1004 			*needs_clflush |= CLFLUSH_BEFORE;
1005 	}
1006 
1007 out:
1008 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1009 	obj->mm.dirty = true;
1010 	/* return with the pages pinned */
1011 	return 0;
1012 
1013 err_unpin:
1014 	i915_gem_object_unpin_pages(obj);
1015 	return ret;
1016 }
1017 
1018 static void
1019 shmem_clflush_swizzled_range(char *addr, unsigned long length,
1020 			     bool swizzled)
1021 {
1022 	if (unlikely(swizzled)) {
1023 		unsigned long start = (unsigned long) addr;
1024 		unsigned long end = (unsigned long) addr + length;
1025 
1026 		/* For swizzling simply ensure that we always flush both
1027 		 * channels. Lame, but simple and it works. Swizzled
1028 		 * pwrite/pread is far from a hotpath - current userspace
1029 		 * doesn't use it at all. */
1030 		start = round_down(start, 128);
1031 		end = round_up(end, 128);
1032 
1033 		drm_clflush_virt_range((void *)start, end - start);
1034 	} else {
1035 		drm_clflush_virt_range(addr, length);
1036 	}
1037 
1038 }
1039 
1040 /* Only difference to the fast-path function is that this can handle bit17
1041  * and uses non-atomic copy and kmap functions. */
1042 static int
1043 shmem_pread_slow(struct page *page, int offset, int length,
1044 		 char __user *user_data,
1045 		 bool page_do_bit17_swizzling, bool needs_clflush)
1046 {
1047 	char *vaddr;
1048 	int ret;
1049 
1050 	vaddr = kmap(page);
1051 	if (needs_clflush)
1052 		shmem_clflush_swizzled_range(vaddr + offset, length,
1053 					     page_do_bit17_swizzling);
1054 
1055 	if (page_do_bit17_swizzling)
1056 		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1057 	else
1058 		ret = __copy_to_user(user_data, vaddr + offset, length);
1059 	kunmap(page);
1060 
1061 	return ret ? - EFAULT : 0;
1062 }
1063 
1064 static int
1065 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
1066 	    bool page_do_bit17_swizzling, bool needs_clflush)
1067 {
1068 	int ret;
1069 
1070 	ret = -ENODEV;
1071 	if (!page_do_bit17_swizzling) {
1072 		char *vaddr = kmap_atomic(page);
1073 
1074 		if (needs_clflush)
1075 			drm_clflush_virt_range(vaddr + offset, length);
1076 		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1077 		kunmap_atomic(vaddr);
1078 	}
1079 	if (ret == 0)
1080 		return 0;
1081 
1082 	return shmem_pread_slow(page, offset, length, user_data,
1083 				page_do_bit17_swizzling, needs_clflush);
1084 }
1085 
1086 static int
1087 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
1088 		     struct drm_i915_gem_pread *args)
1089 {
1090 	char __user *user_data;
1091 	u64 remain;
1092 	unsigned int obj_do_bit17_swizzling;
1093 	unsigned int needs_clflush;
1094 	unsigned int idx, offset;
1095 	int ret;
1096 
1097 	obj_do_bit17_swizzling = 0;
1098 	if (i915_gem_object_needs_bit17_swizzle(obj))
1099 		obj_do_bit17_swizzling = BIT(17);
1100 
1101 	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1102 	if (ret)
1103 		return ret;
1104 
1105 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1106 	mutex_unlock(&obj->base.dev->struct_mutex);
1107 	if (ret)
1108 		return ret;
1109 
1110 	remain = args->size;
1111 	user_data = u64_to_user_ptr(args->data_ptr);
1112 	offset = offset_in_page(args->offset);
1113 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1114 		struct page *page = i915_gem_object_get_page(obj, idx);
1115 		int length;
1116 
1117 		length = remain;
1118 		if (offset + length > PAGE_SIZE)
1119 			length = PAGE_SIZE - offset;
1120 
1121 		ret = shmem_pread(page, offset, length, user_data,
1122 				  page_to_phys(page) & obj_do_bit17_swizzling,
1123 				  needs_clflush);
1124 		if (ret)
1125 			break;
1126 
1127 		remain -= length;
1128 		user_data += length;
1129 		offset = 0;
1130 	}
1131 
1132 	i915_gem_obj_finish_shmem_access(obj);
1133 	return ret;
1134 }
1135 
1136 static inline bool
1137 gtt_user_read(struct io_mapping *mapping,
1138 	      loff_t base, int offset,
1139 	      char __user *user_data, int length)
1140 {
1141 	void __iomem *vaddr;
1142 	unsigned long unwritten;
1143 
1144 	/* We can use the cpu mem copy function because this is X86. */
1145 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1146 	unwritten = __copy_to_user_inatomic(user_data,
1147 					    (void __force *)vaddr + offset,
1148 					    length);
1149 	io_mapping_unmap_atomic(vaddr);
1150 	if (unwritten) {
1151 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1152 		unwritten = copy_to_user(user_data,
1153 					 (void __force *)vaddr + offset,
1154 					 length);
1155 		io_mapping_unmap(vaddr);
1156 	}
1157 	return unwritten;
1158 }
1159 
1160 static int
1161 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1162 		   const struct drm_i915_gem_pread *args)
1163 {
1164 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1165 	struct i915_ggtt *ggtt = &i915->ggtt;
1166 	struct drm_mm_node node;
1167 	struct i915_vma *vma;
1168 	void __user *user_data;
1169 	u64 remain, offset;
1170 	int ret;
1171 
1172 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1173 	if (ret)
1174 		return ret;
1175 
1176 	intel_runtime_pm_get(i915);
1177 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1178 				       PIN_MAPPABLE |
1179 				       PIN_NONFAULT |
1180 				       PIN_NONBLOCK);
1181 	if (!IS_ERR(vma)) {
1182 		node.start = i915_ggtt_offset(vma);
1183 		node.allocated = false;
1184 		ret = i915_vma_put_fence(vma);
1185 		if (ret) {
1186 			i915_vma_unpin(vma);
1187 			vma = ERR_PTR(ret);
1188 		}
1189 	}
1190 	if (IS_ERR(vma)) {
1191 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1192 		if (ret)
1193 			goto out_unlock;
1194 		GEM_BUG_ON(!node.allocated);
1195 	}
1196 
1197 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1198 	if (ret)
1199 		goto out_unpin;
1200 
1201 	mutex_unlock(&i915->drm.struct_mutex);
1202 
1203 	user_data = u64_to_user_ptr(args->data_ptr);
1204 	remain = args->size;
1205 	offset = args->offset;
1206 
1207 	while (remain > 0) {
1208 		/* Operation in this page
1209 		 *
1210 		 * page_base = page offset within aperture
1211 		 * page_offset = offset within page
1212 		 * page_length = bytes to copy for this page
1213 		 */
1214 		u32 page_base = node.start;
1215 		unsigned page_offset = offset_in_page(offset);
1216 		unsigned page_length = PAGE_SIZE - page_offset;
1217 		page_length = remain < page_length ? remain : page_length;
1218 		if (node.allocated) {
1219 			wmb();
1220 			ggtt->base.insert_page(&ggtt->base,
1221 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1222 					       node.start, I915_CACHE_NONE, 0);
1223 			wmb();
1224 		} else {
1225 			page_base += offset & PAGE_MASK;
1226 		}
1227 
1228 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1229 				  user_data, page_length)) {
1230 			ret = -EFAULT;
1231 			break;
1232 		}
1233 
1234 		remain -= page_length;
1235 		user_data += page_length;
1236 		offset += page_length;
1237 	}
1238 
1239 	mutex_lock(&i915->drm.struct_mutex);
1240 out_unpin:
1241 	if (node.allocated) {
1242 		wmb();
1243 		ggtt->base.clear_range(&ggtt->base,
1244 				       node.start, node.size);
1245 		remove_mappable_node(&node);
1246 	} else {
1247 		i915_vma_unpin(vma);
1248 	}
1249 out_unlock:
1250 	intel_runtime_pm_put(i915);
1251 	mutex_unlock(&i915->drm.struct_mutex);
1252 
1253 	return ret;
1254 }
1255 
1256 /**
1257  * Reads data from the object referenced by handle.
1258  * @dev: drm device pointer
1259  * @data: ioctl data blob
1260  * @file: drm file pointer
1261  *
1262  * On error, the contents of *data are undefined.
1263  */
1264 int
1265 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1266 		     struct drm_file *file)
1267 {
1268 	struct drm_i915_gem_pread *args = data;
1269 	struct drm_i915_gem_object *obj;
1270 	int ret;
1271 
1272 	if (args->size == 0)
1273 		return 0;
1274 
1275 	if (!access_ok(VERIFY_WRITE,
1276 		       u64_to_user_ptr(args->data_ptr),
1277 		       args->size))
1278 		return -EFAULT;
1279 
1280 	obj = i915_gem_object_lookup(file, args->handle);
1281 	if (!obj)
1282 		return -ENOENT;
1283 
1284 	/* Bounds check source.  */
1285 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1286 		ret = -EINVAL;
1287 		goto out;
1288 	}
1289 
1290 	trace_i915_gem_object_pread(obj, args->offset, args->size);
1291 
1292 	ret = i915_gem_object_wait(obj,
1293 				   I915_WAIT_INTERRUPTIBLE,
1294 				   MAX_SCHEDULE_TIMEOUT,
1295 				   to_rps_client(file));
1296 	if (ret)
1297 		goto out;
1298 
1299 	ret = i915_gem_object_pin_pages(obj);
1300 	if (ret)
1301 		goto out;
1302 
1303 	ret = i915_gem_shmem_pread(obj, args);
1304 	if (ret == -EFAULT || ret == -ENODEV)
1305 		ret = i915_gem_gtt_pread(obj, args);
1306 
1307 	i915_gem_object_unpin_pages(obj);
1308 out:
1309 	i915_gem_object_put(obj);
1310 	return ret;
1311 }
1312 
1313 /* This is the fast write path which cannot handle
1314  * page faults in the source data
1315  */
1316 
1317 static inline bool
1318 ggtt_write(struct io_mapping *mapping,
1319 	   loff_t base, int offset,
1320 	   char __user *user_data, int length)
1321 {
1322 	void __iomem *vaddr;
1323 	unsigned long unwritten;
1324 
1325 	/* We can use the cpu mem copy function because this is X86. */
1326 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1327 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1328 						      user_data, length);
1329 	io_mapping_unmap_atomic(vaddr);
1330 	if (unwritten) {
1331 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1332 		unwritten = copy_from_user((void __force *)vaddr + offset,
1333 					   user_data, length);
1334 		io_mapping_unmap(vaddr);
1335 	}
1336 
1337 	return unwritten;
1338 }
1339 
1340 /**
1341  * This is the fast pwrite path, where we copy the data directly from the
1342  * user into the GTT, uncached.
1343  * @obj: i915 GEM object
1344  * @args: pwrite arguments structure
1345  */
1346 static int
1347 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1348 			 const struct drm_i915_gem_pwrite *args)
1349 {
1350 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1351 	struct i915_ggtt *ggtt = &i915->ggtt;
1352 	struct drm_mm_node node;
1353 	struct i915_vma *vma;
1354 	u64 remain, offset;
1355 	void __user *user_data;
1356 	int ret;
1357 
1358 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1359 	if (ret)
1360 		return ret;
1361 
1362 	if (i915_gem_object_has_struct_page(obj)) {
1363 		/*
1364 		 * Avoid waking the device up if we can fallback, as
1365 		 * waking/resuming is very slow (worst-case 10-100 ms
1366 		 * depending on PCI sleeps and our own resume time).
1367 		 * This easily dwarfs any performance advantage from
1368 		 * using the cache bypass of indirect GGTT access.
1369 		 */
1370 		if (!intel_runtime_pm_get_if_in_use(i915)) {
1371 			ret = -EFAULT;
1372 			goto out_unlock;
1373 		}
1374 	} else {
1375 		/* No backing pages, no fallback, we must force GGTT access */
1376 		intel_runtime_pm_get(i915);
1377 	}
1378 
1379 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1380 				       PIN_MAPPABLE |
1381 				       PIN_NONFAULT |
1382 				       PIN_NONBLOCK);
1383 	if (!IS_ERR(vma)) {
1384 		node.start = i915_ggtt_offset(vma);
1385 		node.allocated = false;
1386 		ret = i915_vma_put_fence(vma);
1387 		if (ret) {
1388 			i915_vma_unpin(vma);
1389 			vma = ERR_PTR(ret);
1390 		}
1391 	}
1392 	if (IS_ERR(vma)) {
1393 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1394 		if (ret)
1395 			goto out_rpm;
1396 		GEM_BUG_ON(!node.allocated);
1397 	}
1398 
1399 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1400 	if (ret)
1401 		goto out_unpin;
1402 
1403 	mutex_unlock(&i915->drm.struct_mutex);
1404 
1405 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1406 
1407 	user_data = u64_to_user_ptr(args->data_ptr);
1408 	offset = args->offset;
1409 	remain = args->size;
1410 	while (remain) {
1411 		/* Operation in this page
1412 		 *
1413 		 * page_base = page offset within aperture
1414 		 * page_offset = offset within page
1415 		 * page_length = bytes to copy for this page
1416 		 */
1417 		u32 page_base = node.start;
1418 		unsigned int page_offset = offset_in_page(offset);
1419 		unsigned int page_length = PAGE_SIZE - page_offset;
1420 		page_length = remain < page_length ? remain : page_length;
1421 		if (node.allocated) {
1422 			wmb(); /* flush the write before we modify the GGTT */
1423 			ggtt->base.insert_page(&ggtt->base,
1424 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1425 					       node.start, I915_CACHE_NONE, 0);
1426 			wmb(); /* flush modifications to the GGTT (insert_page) */
1427 		} else {
1428 			page_base += offset & PAGE_MASK;
1429 		}
1430 		/* If we get a fault while copying data, then (presumably) our
1431 		 * source page isn't available.  Return the error and we'll
1432 		 * retry in the slow path.
1433 		 * If the object is non-shmem backed, we retry again with the
1434 		 * path that handles page fault.
1435 		 */
1436 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1437 			       user_data, page_length)) {
1438 			ret = -EFAULT;
1439 			break;
1440 		}
1441 
1442 		remain -= page_length;
1443 		user_data += page_length;
1444 		offset += page_length;
1445 	}
1446 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1447 
1448 	mutex_lock(&i915->drm.struct_mutex);
1449 out_unpin:
1450 	if (node.allocated) {
1451 		wmb();
1452 		ggtt->base.clear_range(&ggtt->base,
1453 				       node.start, node.size);
1454 		remove_mappable_node(&node);
1455 	} else {
1456 		i915_vma_unpin(vma);
1457 	}
1458 out_rpm:
1459 	intel_runtime_pm_put(i915);
1460 out_unlock:
1461 	mutex_unlock(&i915->drm.struct_mutex);
1462 	return ret;
1463 }
1464 
1465 static int
1466 shmem_pwrite_slow(struct page *page, int offset, int length,
1467 		  char __user *user_data,
1468 		  bool page_do_bit17_swizzling,
1469 		  bool needs_clflush_before,
1470 		  bool needs_clflush_after)
1471 {
1472 	char *vaddr;
1473 	int ret;
1474 
1475 	vaddr = kmap(page);
1476 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1477 		shmem_clflush_swizzled_range(vaddr + offset, length,
1478 					     page_do_bit17_swizzling);
1479 	if (page_do_bit17_swizzling)
1480 		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1481 						length);
1482 	else
1483 		ret = __copy_from_user(vaddr + offset, user_data, length);
1484 	if (needs_clflush_after)
1485 		shmem_clflush_swizzled_range(vaddr + offset, length,
1486 					     page_do_bit17_swizzling);
1487 	kunmap(page);
1488 
1489 	return ret ? -EFAULT : 0;
1490 }
1491 
1492 /* Per-page copy function for the shmem pwrite fastpath.
1493  * Flushes invalid cachelines before writing to the target if
1494  * needs_clflush_before is set and flushes out any written cachelines after
1495  * writing if needs_clflush is set.
1496  */
1497 static int
1498 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1499 	     bool page_do_bit17_swizzling,
1500 	     bool needs_clflush_before,
1501 	     bool needs_clflush_after)
1502 {
1503 	int ret;
1504 
1505 	ret = -ENODEV;
1506 	if (!page_do_bit17_swizzling) {
1507 		char *vaddr = kmap_atomic(page);
1508 
1509 		if (needs_clflush_before)
1510 			drm_clflush_virt_range(vaddr + offset, len);
1511 		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1512 		if (needs_clflush_after)
1513 			drm_clflush_virt_range(vaddr + offset, len);
1514 
1515 		kunmap_atomic(vaddr);
1516 	}
1517 	if (ret == 0)
1518 		return ret;
1519 
1520 	return shmem_pwrite_slow(page, offset, len, user_data,
1521 				 page_do_bit17_swizzling,
1522 				 needs_clflush_before,
1523 				 needs_clflush_after);
1524 }
1525 
1526 static int
1527 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1528 		      const struct drm_i915_gem_pwrite *args)
1529 {
1530 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1531 	void __user *user_data;
1532 	u64 remain;
1533 	unsigned int obj_do_bit17_swizzling;
1534 	unsigned int partial_cacheline_write;
1535 	unsigned int needs_clflush;
1536 	unsigned int offset, idx;
1537 	int ret;
1538 
1539 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1540 	if (ret)
1541 		return ret;
1542 
1543 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1544 	mutex_unlock(&i915->drm.struct_mutex);
1545 	if (ret)
1546 		return ret;
1547 
1548 	obj_do_bit17_swizzling = 0;
1549 	if (i915_gem_object_needs_bit17_swizzle(obj))
1550 		obj_do_bit17_swizzling = BIT(17);
1551 
1552 	/* If we don't overwrite a cacheline completely we need to be
1553 	 * careful to have up-to-date data by first clflushing. Don't
1554 	 * overcomplicate things and flush the entire patch.
1555 	 */
1556 	partial_cacheline_write = 0;
1557 	if (needs_clflush & CLFLUSH_BEFORE)
1558 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1559 
1560 	user_data = u64_to_user_ptr(args->data_ptr);
1561 	remain = args->size;
1562 	offset = offset_in_page(args->offset);
1563 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1564 		struct page *page = i915_gem_object_get_page(obj, idx);
1565 		int length;
1566 
1567 		length = remain;
1568 		if (offset + length > PAGE_SIZE)
1569 			length = PAGE_SIZE - offset;
1570 
1571 		ret = shmem_pwrite(page, offset, length, user_data,
1572 				   page_to_phys(page) & obj_do_bit17_swizzling,
1573 				   (offset | length) & partial_cacheline_write,
1574 				   needs_clflush & CLFLUSH_AFTER);
1575 		if (ret)
1576 			break;
1577 
1578 		remain -= length;
1579 		user_data += length;
1580 		offset = 0;
1581 	}
1582 
1583 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1584 	i915_gem_obj_finish_shmem_access(obj);
1585 	return ret;
1586 }
1587 
1588 /**
1589  * Writes data to the object referenced by handle.
1590  * @dev: drm device
1591  * @data: ioctl data blob
1592  * @file: drm file
1593  *
1594  * On error, the contents of the buffer that were to be modified are undefined.
1595  */
1596 int
1597 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1598 		      struct drm_file *file)
1599 {
1600 	struct drm_i915_gem_pwrite *args = data;
1601 	struct drm_i915_gem_object *obj;
1602 	int ret;
1603 
1604 	if (args->size == 0)
1605 		return 0;
1606 
1607 	if (!access_ok(VERIFY_READ,
1608 		       u64_to_user_ptr(args->data_ptr),
1609 		       args->size))
1610 		return -EFAULT;
1611 
1612 	obj = i915_gem_object_lookup(file, args->handle);
1613 	if (!obj)
1614 		return -ENOENT;
1615 
1616 	/* Bounds check destination. */
1617 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1618 		ret = -EINVAL;
1619 		goto err;
1620 	}
1621 
1622 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1623 
1624 	ret = -ENODEV;
1625 	if (obj->ops->pwrite)
1626 		ret = obj->ops->pwrite(obj, args);
1627 	if (ret != -ENODEV)
1628 		goto err;
1629 
1630 	ret = i915_gem_object_wait(obj,
1631 				   I915_WAIT_INTERRUPTIBLE |
1632 				   I915_WAIT_ALL,
1633 				   MAX_SCHEDULE_TIMEOUT,
1634 				   to_rps_client(file));
1635 	if (ret)
1636 		goto err;
1637 
1638 	ret = i915_gem_object_pin_pages(obj);
1639 	if (ret)
1640 		goto err;
1641 
1642 	ret = -EFAULT;
1643 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1644 	 * it would end up going through the fenced access, and we'll get
1645 	 * different detiling behavior between reading and writing.
1646 	 * pread/pwrite currently are reading and writing from the CPU
1647 	 * perspective, requiring manual detiling by the client.
1648 	 */
1649 	if (!i915_gem_object_has_struct_page(obj) ||
1650 	    cpu_write_needs_clflush(obj))
1651 		/* Note that the gtt paths might fail with non-page-backed user
1652 		 * pointers (e.g. gtt mappings when moving data between
1653 		 * textures). Fallback to the shmem path in that case.
1654 		 */
1655 		ret = i915_gem_gtt_pwrite_fast(obj, args);
1656 
1657 	if (ret == -EFAULT || ret == -ENOSPC) {
1658 		if (obj->phys_handle)
1659 			ret = i915_gem_phys_pwrite(obj, args, file);
1660 		else
1661 			ret = i915_gem_shmem_pwrite(obj, args);
1662 	}
1663 
1664 	i915_gem_object_unpin_pages(obj);
1665 err:
1666 	i915_gem_object_put(obj);
1667 	return ret;
1668 }
1669 
1670 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1671 {
1672 	struct drm_i915_private *i915;
1673 	struct list_head *list;
1674 	struct i915_vma *vma;
1675 
1676 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1677 
1678 	for_each_ggtt_vma(vma, obj) {
1679 		if (i915_vma_is_active(vma))
1680 			continue;
1681 
1682 		if (!drm_mm_node_allocated(&vma->node))
1683 			continue;
1684 
1685 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1686 	}
1687 
1688 	i915 = to_i915(obj->base.dev);
1689 	spin_lock(&i915->mm.obj_lock);
1690 	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1691 	list_move_tail(&obj->mm.link, list);
1692 	spin_unlock(&i915->mm.obj_lock);
1693 }
1694 
1695 /**
1696  * Called when user space prepares to use an object with the CPU, either
1697  * through the mmap ioctl's mapping or a GTT mapping.
1698  * @dev: drm device
1699  * @data: ioctl data blob
1700  * @file: drm file
1701  */
1702 int
1703 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1704 			  struct drm_file *file)
1705 {
1706 	struct drm_i915_gem_set_domain *args = data;
1707 	struct drm_i915_gem_object *obj;
1708 	uint32_t read_domains = args->read_domains;
1709 	uint32_t write_domain = args->write_domain;
1710 	int err;
1711 
1712 	/* Only handle setting domains to types used by the CPU. */
1713 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1714 		return -EINVAL;
1715 
1716 	/* Having something in the write domain implies it's in the read
1717 	 * domain, and only that read domain.  Enforce that in the request.
1718 	 */
1719 	if (write_domain != 0 && read_domains != write_domain)
1720 		return -EINVAL;
1721 
1722 	obj = i915_gem_object_lookup(file, args->handle);
1723 	if (!obj)
1724 		return -ENOENT;
1725 
1726 	/* Try to flush the object off the GPU without holding the lock.
1727 	 * We will repeat the flush holding the lock in the normal manner
1728 	 * to catch cases where we are gazumped.
1729 	 */
1730 	err = i915_gem_object_wait(obj,
1731 				   I915_WAIT_INTERRUPTIBLE |
1732 				   (write_domain ? I915_WAIT_ALL : 0),
1733 				   MAX_SCHEDULE_TIMEOUT,
1734 				   to_rps_client(file));
1735 	if (err)
1736 		goto out;
1737 
1738 	/*
1739 	 * Proxy objects do not control access to the backing storage, ergo
1740 	 * they cannot be used as a means to manipulate the cache domain
1741 	 * tracking for that backing storage. The proxy object is always
1742 	 * considered to be outside of any cache domain.
1743 	 */
1744 	if (i915_gem_object_is_proxy(obj)) {
1745 		err = -ENXIO;
1746 		goto out;
1747 	}
1748 
1749 	/*
1750 	 * Flush and acquire obj->pages so that we are coherent through
1751 	 * direct access in memory with previous cached writes through
1752 	 * shmemfs and that our cache domain tracking remains valid.
1753 	 * For example, if the obj->filp was moved to swap without us
1754 	 * being notified and releasing the pages, we would mistakenly
1755 	 * continue to assume that the obj remained out of the CPU cached
1756 	 * domain.
1757 	 */
1758 	err = i915_gem_object_pin_pages(obj);
1759 	if (err)
1760 		goto out;
1761 
1762 	err = i915_mutex_lock_interruptible(dev);
1763 	if (err)
1764 		goto out_unpin;
1765 
1766 	if (read_domains & I915_GEM_DOMAIN_WC)
1767 		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1768 	else if (read_domains & I915_GEM_DOMAIN_GTT)
1769 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1770 	else
1771 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1772 
1773 	/* And bump the LRU for this access */
1774 	i915_gem_object_bump_inactive_ggtt(obj);
1775 
1776 	mutex_unlock(&dev->struct_mutex);
1777 
1778 	if (write_domain != 0)
1779 		intel_fb_obj_invalidate(obj,
1780 					fb_write_origin(obj, write_domain));
1781 
1782 out_unpin:
1783 	i915_gem_object_unpin_pages(obj);
1784 out:
1785 	i915_gem_object_put(obj);
1786 	return err;
1787 }
1788 
1789 /**
1790  * Called when user space has done writes to this buffer
1791  * @dev: drm device
1792  * @data: ioctl data blob
1793  * @file: drm file
1794  */
1795 int
1796 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1797 			 struct drm_file *file)
1798 {
1799 	struct drm_i915_gem_sw_finish *args = data;
1800 	struct drm_i915_gem_object *obj;
1801 
1802 	obj = i915_gem_object_lookup(file, args->handle);
1803 	if (!obj)
1804 		return -ENOENT;
1805 
1806 	/*
1807 	 * Proxy objects are barred from CPU access, so there is no
1808 	 * need to ban sw_finish as it is a nop.
1809 	 */
1810 
1811 	/* Pinned buffers may be scanout, so flush the cache */
1812 	i915_gem_object_flush_if_display(obj);
1813 	i915_gem_object_put(obj);
1814 
1815 	return 0;
1816 }
1817 
1818 /**
1819  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1820  *			 it is mapped to.
1821  * @dev: drm device
1822  * @data: ioctl data blob
1823  * @file: drm file
1824  *
1825  * While the mapping holds a reference on the contents of the object, it doesn't
1826  * imply a ref on the object itself.
1827  *
1828  * IMPORTANT:
1829  *
1830  * DRM driver writers who look a this function as an example for how to do GEM
1831  * mmap support, please don't implement mmap support like here. The modern way
1832  * to implement DRM mmap support is with an mmap offset ioctl (like
1833  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1834  * That way debug tooling like valgrind will understand what's going on, hiding
1835  * the mmap call in a driver private ioctl will break that. The i915 driver only
1836  * does cpu mmaps this way because we didn't know better.
1837  */
1838 int
1839 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1840 		    struct drm_file *file)
1841 {
1842 	struct drm_i915_gem_mmap *args = data;
1843 	struct drm_i915_gem_object *obj;
1844 	unsigned long addr;
1845 
1846 	if (args->flags & ~(I915_MMAP_WC))
1847 		return -EINVAL;
1848 
1849 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1850 		return -ENODEV;
1851 
1852 	obj = i915_gem_object_lookup(file, args->handle);
1853 	if (!obj)
1854 		return -ENOENT;
1855 
1856 	/* prime objects have no backing filp to GEM mmap
1857 	 * pages from.
1858 	 */
1859 	if (!obj->base.filp) {
1860 		i915_gem_object_put(obj);
1861 		return -ENXIO;
1862 	}
1863 
1864 	addr = vm_mmap(obj->base.filp, 0, args->size,
1865 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1866 		       args->offset);
1867 	if (args->flags & I915_MMAP_WC) {
1868 		struct mm_struct *mm = current->mm;
1869 		struct vm_area_struct *vma;
1870 
1871 		if (down_write_killable(&mm->mmap_sem)) {
1872 			i915_gem_object_put(obj);
1873 			return -EINTR;
1874 		}
1875 		vma = find_vma(mm, addr);
1876 		if (vma)
1877 			vma->vm_page_prot =
1878 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1879 		else
1880 			addr = -ENOMEM;
1881 		up_write(&mm->mmap_sem);
1882 
1883 		/* This may race, but that's ok, it only gets set */
1884 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1885 	}
1886 	i915_gem_object_put(obj);
1887 	if (IS_ERR((void *)addr))
1888 		return addr;
1889 
1890 	args->addr_ptr = (uint64_t) addr;
1891 
1892 	return 0;
1893 }
1894 
1895 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1896 {
1897 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1898 }
1899 
1900 /**
1901  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1902  *
1903  * A history of the GTT mmap interface:
1904  *
1905  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1906  *     aligned and suitable for fencing, and still fit into the available
1907  *     mappable space left by the pinned display objects. A classic problem
1908  *     we called the page-fault-of-doom where we would ping-pong between
1909  *     two objects that could not fit inside the GTT and so the memcpy
1910  *     would page one object in at the expense of the other between every
1911  *     single byte.
1912  *
1913  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1914  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1915  *     object is too large for the available space (or simply too large
1916  *     for the mappable aperture!), a view is created instead and faulted
1917  *     into userspace. (This view is aligned and sized appropriately for
1918  *     fenced access.)
1919  *
1920  * 2 - Recognise WC as a separate cache domain so that we can flush the
1921  *     delayed writes via GTT before performing direct access via WC.
1922  *
1923  * Restrictions:
1924  *
1925  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1926  *    hangs on some architectures, corruption on others. An attempt to service
1927  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1928  *
1929  *  * the object must be able to fit into RAM (physical memory, though no
1930  *    limited to the mappable aperture).
1931  *
1932  *
1933  * Caveats:
1934  *
1935  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1936  *    all data to system memory. Subsequent access will not be synchronized.
1937  *
1938  *  * all mappings are revoked on runtime device suspend.
1939  *
1940  *  * there are only 8, 16 or 32 fence registers to share between all users
1941  *    (older machines require fence register for display and blitter access
1942  *    as well). Contention of the fence registers will cause the previous users
1943  *    to be unmapped and any new access will generate new page faults.
1944  *
1945  *  * running out of memory while servicing a fault may generate a SIGBUS,
1946  *    rather than the expected SIGSEGV.
1947  */
1948 int i915_gem_mmap_gtt_version(void)
1949 {
1950 	return 2;
1951 }
1952 
1953 static inline struct i915_ggtt_view
1954 compute_partial_view(struct drm_i915_gem_object *obj,
1955 		     pgoff_t page_offset,
1956 		     unsigned int chunk)
1957 {
1958 	struct i915_ggtt_view view;
1959 
1960 	if (i915_gem_object_is_tiled(obj))
1961 		chunk = roundup(chunk, tile_row_pages(obj));
1962 
1963 	view.type = I915_GGTT_VIEW_PARTIAL;
1964 	view.partial.offset = rounddown(page_offset, chunk);
1965 	view.partial.size =
1966 		min_t(unsigned int, chunk,
1967 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1968 
1969 	/* If the partial covers the entire object, just create a normal VMA. */
1970 	if (chunk >= obj->base.size >> PAGE_SHIFT)
1971 		view.type = I915_GGTT_VIEW_NORMAL;
1972 
1973 	return view;
1974 }
1975 
1976 /**
1977  * i915_gem_fault - fault a page into the GTT
1978  * @vmf: fault info
1979  *
1980  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1981  * from userspace.  The fault handler takes care of binding the object to
1982  * the GTT (if needed), allocating and programming a fence register (again,
1983  * only if needed based on whether the old reg is still valid or the object
1984  * is tiled) and inserting a new PTE into the faulting process.
1985  *
1986  * Note that the faulting process may involve evicting existing objects
1987  * from the GTT and/or fence registers to make room.  So performance may
1988  * suffer if the GTT working set is large or there are few fence registers
1989  * left.
1990  *
1991  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1992  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1993  */
1994 int i915_gem_fault(struct vm_fault *vmf)
1995 {
1996 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1997 	struct vm_area_struct *area = vmf->vma;
1998 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1999 	struct drm_device *dev = obj->base.dev;
2000 	struct drm_i915_private *dev_priv = to_i915(dev);
2001 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2002 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
2003 	struct i915_vma *vma;
2004 	pgoff_t page_offset;
2005 	unsigned int flags;
2006 	int ret;
2007 
2008 	/* We don't use vmf->pgoff since that has the fake offset */
2009 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2010 
2011 	trace_i915_gem_object_fault(obj, page_offset, true, write);
2012 
2013 	/* Try to flush the object off the GPU first without holding the lock.
2014 	 * Upon acquiring the lock, we will perform our sanity checks and then
2015 	 * repeat the flush holding the lock in the normal manner to catch cases
2016 	 * where we are gazumped.
2017 	 */
2018 	ret = i915_gem_object_wait(obj,
2019 				   I915_WAIT_INTERRUPTIBLE,
2020 				   MAX_SCHEDULE_TIMEOUT,
2021 				   NULL);
2022 	if (ret)
2023 		goto err;
2024 
2025 	ret = i915_gem_object_pin_pages(obj);
2026 	if (ret)
2027 		goto err;
2028 
2029 	intel_runtime_pm_get(dev_priv);
2030 
2031 	ret = i915_mutex_lock_interruptible(dev);
2032 	if (ret)
2033 		goto err_rpm;
2034 
2035 	/* Access to snoopable pages through the GTT is incoherent. */
2036 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2037 		ret = -EFAULT;
2038 		goto err_unlock;
2039 	}
2040 
2041 	/* If the object is smaller than a couple of partial vma, it is
2042 	 * not worth only creating a single partial vma - we may as well
2043 	 * clear enough space for the full object.
2044 	 */
2045 	flags = PIN_MAPPABLE;
2046 	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
2047 		flags |= PIN_NONBLOCK | PIN_NONFAULT;
2048 
2049 	/* Now pin it into the GTT as needed */
2050 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
2051 	if (IS_ERR(vma)) {
2052 		/* Use a partial view if it is bigger than available space */
2053 		struct i915_ggtt_view view =
2054 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2055 
2056 		/* Userspace is now writing through an untracked VMA, abandon
2057 		 * all hope that the hardware is able to track future writes.
2058 		 */
2059 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
2060 
2061 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
2062 	}
2063 	if (IS_ERR(vma)) {
2064 		ret = PTR_ERR(vma);
2065 		goto err_unlock;
2066 	}
2067 
2068 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
2069 	if (ret)
2070 		goto err_unpin;
2071 
2072 	ret = i915_vma_pin_fence(vma);
2073 	if (ret)
2074 		goto err_unpin;
2075 
2076 	/* Finally, remap it using the new GTT offset */
2077 	ret = remap_io_mapping(area,
2078 			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2079 			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2080 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
2081 			       &ggtt->iomap);
2082 	if (ret)
2083 		goto err_fence;
2084 
2085 	/* Mark as being mmapped into userspace for later revocation */
2086 	assert_rpm_wakelock_held(dev_priv);
2087 	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
2088 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
2089 	GEM_BUG_ON(!obj->userfault_count);
2090 
2091 	i915_vma_set_ggtt_write(vma);
2092 
2093 err_fence:
2094 	i915_vma_unpin_fence(vma);
2095 err_unpin:
2096 	__i915_vma_unpin(vma);
2097 err_unlock:
2098 	mutex_unlock(&dev->struct_mutex);
2099 err_rpm:
2100 	intel_runtime_pm_put(dev_priv);
2101 	i915_gem_object_unpin_pages(obj);
2102 err:
2103 	switch (ret) {
2104 	case -EIO:
2105 		/*
2106 		 * We eat errors when the gpu is terminally wedged to avoid
2107 		 * userspace unduly crashing (gl has no provisions for mmaps to
2108 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2109 		 * and so needs to be reported.
2110 		 */
2111 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2112 			ret = VM_FAULT_SIGBUS;
2113 			break;
2114 		}
2115 	case -EAGAIN:
2116 		/*
2117 		 * EAGAIN means the gpu is hung and we'll wait for the error
2118 		 * handler to reset everything when re-faulting in
2119 		 * i915_mutex_lock_interruptible.
2120 		 */
2121 	case 0:
2122 	case -ERESTARTSYS:
2123 	case -EINTR:
2124 	case -EBUSY:
2125 		/*
2126 		 * EBUSY is ok: this just means that another thread
2127 		 * already did the job.
2128 		 */
2129 		ret = VM_FAULT_NOPAGE;
2130 		break;
2131 	case -ENOMEM:
2132 		ret = VM_FAULT_OOM;
2133 		break;
2134 	case -ENOSPC:
2135 	case -EFAULT:
2136 		ret = VM_FAULT_SIGBUS;
2137 		break;
2138 	default:
2139 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2140 		ret = VM_FAULT_SIGBUS;
2141 		break;
2142 	}
2143 	return ret;
2144 }
2145 
2146 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2147 {
2148 	struct i915_vma *vma;
2149 
2150 	GEM_BUG_ON(!obj->userfault_count);
2151 
2152 	obj->userfault_count = 0;
2153 	list_del(&obj->userfault_link);
2154 	drm_vma_node_unmap(&obj->base.vma_node,
2155 			   obj->base.dev->anon_inode->i_mapping);
2156 
2157 	for_each_ggtt_vma(vma, obj)
2158 		i915_vma_unset_userfault(vma);
2159 }
2160 
2161 /**
2162  * i915_gem_release_mmap - remove physical page mappings
2163  * @obj: obj in question
2164  *
2165  * Preserve the reservation of the mmapping with the DRM core code, but
2166  * relinquish ownership of the pages back to the system.
2167  *
2168  * It is vital that we remove the page mapping if we have mapped a tiled
2169  * object through the GTT and then lose the fence register due to
2170  * resource pressure. Similarly if the object has been moved out of the
2171  * aperture, than pages mapped into userspace must be revoked. Removing the
2172  * mapping will then trigger a page fault on the next user access, allowing
2173  * fixup by i915_gem_fault().
2174  */
2175 void
2176 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2177 {
2178 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2179 
2180 	/* Serialisation between user GTT access and our code depends upon
2181 	 * revoking the CPU's PTE whilst the mutex is held. The next user
2182 	 * pagefault then has to wait until we release the mutex.
2183 	 *
2184 	 * Note that RPM complicates somewhat by adding an additional
2185 	 * requirement that operations to the GGTT be made holding the RPM
2186 	 * wakeref.
2187 	 */
2188 	lockdep_assert_held(&i915->drm.struct_mutex);
2189 	intel_runtime_pm_get(i915);
2190 
2191 	if (!obj->userfault_count)
2192 		goto out;
2193 
2194 	__i915_gem_object_release_mmap(obj);
2195 
2196 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
2197 	 * memory transactions from userspace before we return. The TLB
2198 	 * flushing implied above by changing the PTE above *should* be
2199 	 * sufficient, an extra barrier here just provides us with a bit
2200 	 * of paranoid documentation about our requirement to serialise
2201 	 * memory writes before touching registers / GSM.
2202 	 */
2203 	wmb();
2204 
2205 out:
2206 	intel_runtime_pm_put(i915);
2207 }
2208 
2209 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2210 {
2211 	struct drm_i915_gem_object *obj, *on;
2212 	int i;
2213 
2214 	/*
2215 	 * Only called during RPM suspend. All users of the userfault_list
2216 	 * must be holding an RPM wakeref to ensure that this can not
2217 	 * run concurrently with themselves (and use the struct_mutex for
2218 	 * protection between themselves).
2219 	 */
2220 
2221 	list_for_each_entry_safe(obj, on,
2222 				 &dev_priv->mm.userfault_list, userfault_link)
2223 		__i915_gem_object_release_mmap(obj);
2224 
2225 	/* The fence will be lost when the device powers down. If any were
2226 	 * in use by hardware (i.e. they are pinned), we should not be powering
2227 	 * down! All other fences will be reacquired by the user upon waking.
2228 	 */
2229 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2230 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2231 
2232 		/* Ideally we want to assert that the fence register is not
2233 		 * live at this point (i.e. that no piece of code will be
2234 		 * trying to write through fence + GTT, as that both violates
2235 		 * our tracking of activity and associated locking/barriers,
2236 		 * but also is illegal given that the hw is powered down).
2237 		 *
2238 		 * Previously we used reg->pin_count as a "liveness" indicator.
2239 		 * That is not sufficient, and we need a more fine-grained
2240 		 * tool if we want to have a sanity check here.
2241 		 */
2242 
2243 		if (!reg->vma)
2244 			continue;
2245 
2246 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2247 		reg->dirty = true;
2248 	}
2249 }
2250 
2251 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2252 {
2253 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2254 	int err;
2255 
2256 	err = drm_gem_create_mmap_offset(&obj->base);
2257 	if (likely(!err))
2258 		return 0;
2259 
2260 	/* Attempt to reap some mmap space from dead objects */
2261 	do {
2262 		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2263 		if (err)
2264 			break;
2265 
2266 		i915_gem_drain_freed_objects(dev_priv);
2267 		err = drm_gem_create_mmap_offset(&obj->base);
2268 		if (!err)
2269 			break;
2270 
2271 	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2272 
2273 	return err;
2274 }
2275 
2276 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2277 {
2278 	drm_gem_free_mmap_offset(&obj->base);
2279 }
2280 
2281 int
2282 i915_gem_mmap_gtt(struct drm_file *file,
2283 		  struct drm_device *dev,
2284 		  uint32_t handle,
2285 		  uint64_t *offset)
2286 {
2287 	struct drm_i915_gem_object *obj;
2288 	int ret;
2289 
2290 	obj = i915_gem_object_lookup(file, handle);
2291 	if (!obj)
2292 		return -ENOENT;
2293 
2294 	ret = i915_gem_object_create_mmap_offset(obj);
2295 	if (ret == 0)
2296 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2297 
2298 	i915_gem_object_put(obj);
2299 	return ret;
2300 }
2301 
2302 /**
2303  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2304  * @dev: DRM device
2305  * @data: GTT mapping ioctl data
2306  * @file: GEM object info
2307  *
2308  * Simply returns the fake offset to userspace so it can mmap it.
2309  * The mmap call will end up in drm_gem_mmap(), which will set things
2310  * up so we can get faults in the handler above.
2311  *
2312  * The fault handler will take care of binding the object into the GTT
2313  * (since it may have been evicted to make room for something), allocating
2314  * a fence register, and mapping the appropriate aperture address into
2315  * userspace.
2316  */
2317 int
2318 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2319 			struct drm_file *file)
2320 {
2321 	struct drm_i915_gem_mmap_gtt *args = data;
2322 
2323 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2324 }
2325 
2326 /* Immediately discard the backing storage */
2327 static void
2328 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2329 {
2330 	i915_gem_object_free_mmap_offset(obj);
2331 
2332 	if (obj->base.filp == NULL)
2333 		return;
2334 
2335 	/* Our goal here is to return as much of the memory as
2336 	 * is possible back to the system as we are called from OOM.
2337 	 * To do this we must instruct the shmfs to drop all of its
2338 	 * backing pages, *now*.
2339 	 */
2340 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2341 	obj->mm.madv = __I915_MADV_PURGED;
2342 	obj->mm.pages = ERR_PTR(-EFAULT);
2343 }
2344 
2345 /* Try to discard unwanted pages */
2346 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2347 {
2348 	struct address_space *mapping;
2349 
2350 	lockdep_assert_held(&obj->mm.lock);
2351 	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2352 
2353 	switch (obj->mm.madv) {
2354 	case I915_MADV_DONTNEED:
2355 		i915_gem_object_truncate(obj);
2356 	case __I915_MADV_PURGED:
2357 		return;
2358 	}
2359 
2360 	if (obj->base.filp == NULL)
2361 		return;
2362 
2363 	mapping = obj->base.filp->f_mapping,
2364 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2365 }
2366 
2367 static void
2368 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2369 			      struct sg_table *pages)
2370 {
2371 	struct sgt_iter sgt_iter;
2372 	struct page *page;
2373 
2374 	__i915_gem_object_release_shmem(obj, pages, true);
2375 
2376 	i915_gem_gtt_finish_pages(obj, pages);
2377 
2378 	if (i915_gem_object_needs_bit17_swizzle(obj))
2379 		i915_gem_object_save_bit_17_swizzle(obj, pages);
2380 
2381 	for_each_sgt_page(page, sgt_iter, pages) {
2382 		if (obj->mm.dirty)
2383 			set_page_dirty(page);
2384 
2385 		if (obj->mm.madv == I915_MADV_WILLNEED)
2386 			mark_page_accessed(page);
2387 
2388 		put_page(page);
2389 	}
2390 	obj->mm.dirty = false;
2391 
2392 	sg_free_table(pages);
2393 	kfree(pages);
2394 }
2395 
2396 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2397 {
2398 	struct radix_tree_iter iter;
2399 	void __rcu **slot;
2400 
2401 	rcu_read_lock();
2402 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2403 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2404 	rcu_read_unlock();
2405 }
2406 
2407 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2408 				 enum i915_mm_subclass subclass)
2409 {
2410 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2411 	struct sg_table *pages;
2412 
2413 	if (i915_gem_object_has_pinned_pages(obj))
2414 		return;
2415 
2416 	GEM_BUG_ON(obj->bind_count);
2417 	if (!i915_gem_object_has_pages(obj))
2418 		return;
2419 
2420 	/* May be called by shrinker from within get_pages() (on another bo) */
2421 	mutex_lock_nested(&obj->mm.lock, subclass);
2422 	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2423 		goto unlock;
2424 
2425 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2426 	 * array, hence protect them from being reaped by removing them from gtt
2427 	 * lists early. */
2428 	pages = fetch_and_zero(&obj->mm.pages);
2429 	GEM_BUG_ON(!pages);
2430 
2431 	spin_lock(&i915->mm.obj_lock);
2432 	list_del(&obj->mm.link);
2433 	spin_unlock(&i915->mm.obj_lock);
2434 
2435 	if (obj->mm.mapping) {
2436 		void *ptr;
2437 
2438 		ptr = page_mask_bits(obj->mm.mapping);
2439 		if (is_vmalloc_addr(ptr))
2440 			vunmap(ptr);
2441 		else
2442 			kunmap(kmap_to_page(ptr));
2443 
2444 		obj->mm.mapping = NULL;
2445 	}
2446 
2447 	__i915_gem_object_reset_page_iter(obj);
2448 
2449 	if (!IS_ERR(pages))
2450 		obj->ops->put_pages(obj, pages);
2451 
2452 	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2453 
2454 unlock:
2455 	mutex_unlock(&obj->mm.lock);
2456 }
2457 
2458 static bool i915_sg_trim(struct sg_table *orig_st)
2459 {
2460 	struct sg_table new_st;
2461 	struct scatterlist *sg, *new_sg;
2462 	unsigned int i;
2463 
2464 	if (orig_st->nents == orig_st->orig_nents)
2465 		return false;
2466 
2467 	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2468 		return false;
2469 
2470 	new_sg = new_st.sgl;
2471 	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2472 		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2473 		/* called before being DMA mapped, no need to copy sg->dma_* */
2474 		new_sg = sg_next(new_sg);
2475 	}
2476 	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2477 
2478 	sg_free_table(orig_st);
2479 
2480 	*orig_st = new_st;
2481 	return true;
2482 }
2483 
2484 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2485 {
2486 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2487 	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2488 	unsigned long i;
2489 	struct address_space *mapping;
2490 	struct sg_table *st;
2491 	struct scatterlist *sg;
2492 	struct sgt_iter sgt_iter;
2493 	struct page *page;
2494 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2495 	unsigned int max_segment = i915_sg_segment_size();
2496 	unsigned int sg_page_sizes;
2497 	gfp_t noreclaim;
2498 	int ret;
2499 
2500 	/* Assert that the object is not currently in any GPU domain. As it
2501 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2502 	 * a GPU cache
2503 	 */
2504 	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2505 	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2506 
2507 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2508 	if (st == NULL)
2509 		return -ENOMEM;
2510 
2511 rebuild_st:
2512 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2513 		kfree(st);
2514 		return -ENOMEM;
2515 	}
2516 
2517 	/* Get the list of pages out of our struct file.  They'll be pinned
2518 	 * at this point until we release them.
2519 	 *
2520 	 * Fail silently without starting the shrinker
2521 	 */
2522 	mapping = obj->base.filp->f_mapping;
2523 	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2524 	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2525 
2526 	sg = st->sgl;
2527 	st->nents = 0;
2528 	sg_page_sizes = 0;
2529 	for (i = 0; i < page_count; i++) {
2530 		const unsigned int shrink[] = {
2531 			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2532 			0,
2533 		}, *s = shrink;
2534 		gfp_t gfp = noreclaim;
2535 
2536 		do {
2537 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2538 			if (likely(!IS_ERR(page)))
2539 				break;
2540 
2541 			if (!*s) {
2542 				ret = PTR_ERR(page);
2543 				goto err_sg;
2544 			}
2545 
2546 			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2547 			cond_resched();
2548 
2549 			/* We've tried hard to allocate the memory by reaping
2550 			 * our own buffer, now let the real VM do its job and
2551 			 * go down in flames if truly OOM.
2552 			 *
2553 			 * However, since graphics tend to be disposable,
2554 			 * defer the oom here by reporting the ENOMEM back
2555 			 * to userspace.
2556 			 */
2557 			if (!*s) {
2558 				/* reclaim and warn, but no oom */
2559 				gfp = mapping_gfp_mask(mapping);
2560 
2561 				/* Our bo are always dirty and so we require
2562 				 * kswapd to reclaim our pages (direct reclaim
2563 				 * does not effectively begin pageout of our
2564 				 * buffers on its own). However, direct reclaim
2565 				 * only waits for kswapd when under allocation
2566 				 * congestion. So as a result __GFP_RECLAIM is
2567 				 * unreliable and fails to actually reclaim our
2568 				 * dirty pages -- unless you try over and over
2569 				 * again with !__GFP_NORETRY. However, we still
2570 				 * want to fail this allocation rather than
2571 				 * trigger the out-of-memory killer and for
2572 				 * this we want __GFP_RETRY_MAYFAIL.
2573 				 */
2574 				gfp |= __GFP_RETRY_MAYFAIL;
2575 			}
2576 		} while (1);
2577 
2578 		if (!i ||
2579 		    sg->length >= max_segment ||
2580 		    page_to_pfn(page) != last_pfn + 1) {
2581 			if (i) {
2582 				sg_page_sizes |= sg->length;
2583 				sg = sg_next(sg);
2584 			}
2585 			st->nents++;
2586 			sg_set_page(sg, page, PAGE_SIZE, 0);
2587 		} else {
2588 			sg->length += PAGE_SIZE;
2589 		}
2590 		last_pfn = page_to_pfn(page);
2591 
2592 		/* Check that the i965g/gm workaround works. */
2593 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2594 	}
2595 	if (sg) { /* loop terminated early; short sg table */
2596 		sg_page_sizes |= sg->length;
2597 		sg_mark_end(sg);
2598 	}
2599 
2600 	/* Trim unused sg entries to avoid wasting memory. */
2601 	i915_sg_trim(st);
2602 
2603 	ret = i915_gem_gtt_prepare_pages(obj, st);
2604 	if (ret) {
2605 		/* DMA remapping failed? One possible cause is that
2606 		 * it could not reserve enough large entries, asking
2607 		 * for PAGE_SIZE chunks instead may be helpful.
2608 		 */
2609 		if (max_segment > PAGE_SIZE) {
2610 			for_each_sgt_page(page, sgt_iter, st)
2611 				put_page(page);
2612 			sg_free_table(st);
2613 
2614 			max_segment = PAGE_SIZE;
2615 			goto rebuild_st;
2616 		} else {
2617 			dev_warn(&dev_priv->drm.pdev->dev,
2618 				 "Failed to DMA remap %lu pages\n",
2619 				 page_count);
2620 			goto err_pages;
2621 		}
2622 	}
2623 
2624 	if (i915_gem_object_needs_bit17_swizzle(obj))
2625 		i915_gem_object_do_bit_17_swizzle(obj, st);
2626 
2627 	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2628 
2629 	return 0;
2630 
2631 err_sg:
2632 	sg_mark_end(sg);
2633 err_pages:
2634 	for_each_sgt_page(page, sgt_iter, st)
2635 		put_page(page);
2636 	sg_free_table(st);
2637 	kfree(st);
2638 
2639 	/* shmemfs first checks if there is enough memory to allocate the page
2640 	 * and reports ENOSPC should there be insufficient, along with the usual
2641 	 * ENOMEM for a genuine allocation failure.
2642 	 *
2643 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2644 	 * space and so want to translate the error from shmemfs back to our
2645 	 * usual understanding of ENOMEM.
2646 	 */
2647 	if (ret == -ENOSPC)
2648 		ret = -ENOMEM;
2649 
2650 	return ret;
2651 }
2652 
2653 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2654 				 struct sg_table *pages,
2655 				 unsigned int sg_page_sizes)
2656 {
2657 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2658 	unsigned long supported = INTEL_INFO(i915)->page_sizes;
2659 	int i;
2660 
2661 	lockdep_assert_held(&obj->mm.lock);
2662 
2663 	obj->mm.get_page.sg_pos = pages->sgl;
2664 	obj->mm.get_page.sg_idx = 0;
2665 
2666 	obj->mm.pages = pages;
2667 
2668 	if (i915_gem_object_is_tiled(obj) &&
2669 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2670 		GEM_BUG_ON(obj->mm.quirked);
2671 		__i915_gem_object_pin_pages(obj);
2672 		obj->mm.quirked = true;
2673 	}
2674 
2675 	GEM_BUG_ON(!sg_page_sizes);
2676 	obj->mm.page_sizes.phys = sg_page_sizes;
2677 
2678 	/*
2679 	 * Calculate the supported page-sizes which fit into the given
2680 	 * sg_page_sizes. This will give us the page-sizes which we may be able
2681 	 * to use opportunistically when later inserting into the GTT. For
2682 	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2683 	 * 64K or 4K pages, although in practice this will depend on a number of
2684 	 * other factors.
2685 	 */
2686 	obj->mm.page_sizes.sg = 0;
2687 	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2688 		if (obj->mm.page_sizes.phys & ~0u << i)
2689 			obj->mm.page_sizes.sg |= BIT(i);
2690 	}
2691 	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2692 
2693 	spin_lock(&i915->mm.obj_lock);
2694 	list_add(&obj->mm.link, &i915->mm.unbound_list);
2695 	spin_unlock(&i915->mm.obj_lock);
2696 }
2697 
2698 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2699 {
2700 	int err;
2701 
2702 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2703 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2704 		return -EFAULT;
2705 	}
2706 
2707 	err = obj->ops->get_pages(obj);
2708 	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2709 
2710 	return err;
2711 }
2712 
2713 /* Ensure that the associated pages are gathered from the backing storage
2714  * and pinned into our object. i915_gem_object_pin_pages() may be called
2715  * multiple times before they are released by a single call to
2716  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2717  * either as a result of memory pressure (reaping pages under the shrinker)
2718  * or as the object is itself released.
2719  */
2720 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2721 {
2722 	int err;
2723 
2724 	err = mutex_lock_interruptible(&obj->mm.lock);
2725 	if (err)
2726 		return err;
2727 
2728 	if (unlikely(!i915_gem_object_has_pages(obj))) {
2729 		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2730 
2731 		err = ____i915_gem_object_get_pages(obj);
2732 		if (err)
2733 			goto unlock;
2734 
2735 		smp_mb__before_atomic();
2736 	}
2737 	atomic_inc(&obj->mm.pages_pin_count);
2738 
2739 unlock:
2740 	mutex_unlock(&obj->mm.lock);
2741 	return err;
2742 }
2743 
2744 /* The 'mapping' part of i915_gem_object_pin_map() below */
2745 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2746 				 enum i915_map_type type)
2747 {
2748 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2749 	struct sg_table *sgt = obj->mm.pages;
2750 	struct sgt_iter sgt_iter;
2751 	struct page *page;
2752 	struct page *stack_pages[32];
2753 	struct page **pages = stack_pages;
2754 	unsigned long i = 0;
2755 	pgprot_t pgprot;
2756 	void *addr;
2757 
2758 	/* A single page can always be kmapped */
2759 	if (n_pages == 1 && type == I915_MAP_WB)
2760 		return kmap(sg_page(sgt->sgl));
2761 
2762 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2763 		/* Too big for stack -- allocate temporary array instead */
2764 		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2765 		if (!pages)
2766 			return NULL;
2767 	}
2768 
2769 	for_each_sgt_page(page, sgt_iter, sgt)
2770 		pages[i++] = page;
2771 
2772 	/* Check that we have the expected number of pages */
2773 	GEM_BUG_ON(i != n_pages);
2774 
2775 	switch (type) {
2776 	default:
2777 		MISSING_CASE(type);
2778 		/* fallthrough to use PAGE_KERNEL anyway */
2779 	case I915_MAP_WB:
2780 		pgprot = PAGE_KERNEL;
2781 		break;
2782 	case I915_MAP_WC:
2783 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2784 		break;
2785 	}
2786 	addr = vmap(pages, n_pages, 0, pgprot);
2787 
2788 	if (pages != stack_pages)
2789 		kvfree(pages);
2790 
2791 	return addr;
2792 }
2793 
2794 /* get, pin, and map the pages of the object into kernel space */
2795 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2796 			      enum i915_map_type type)
2797 {
2798 	enum i915_map_type has_type;
2799 	bool pinned;
2800 	void *ptr;
2801 	int ret;
2802 
2803 	if (unlikely(!i915_gem_object_has_struct_page(obj)))
2804 		return ERR_PTR(-ENXIO);
2805 
2806 	ret = mutex_lock_interruptible(&obj->mm.lock);
2807 	if (ret)
2808 		return ERR_PTR(ret);
2809 
2810 	pinned = !(type & I915_MAP_OVERRIDE);
2811 	type &= ~I915_MAP_OVERRIDE;
2812 
2813 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2814 		if (unlikely(!i915_gem_object_has_pages(obj))) {
2815 			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2816 
2817 			ret = ____i915_gem_object_get_pages(obj);
2818 			if (ret)
2819 				goto err_unlock;
2820 
2821 			smp_mb__before_atomic();
2822 		}
2823 		atomic_inc(&obj->mm.pages_pin_count);
2824 		pinned = false;
2825 	}
2826 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2827 
2828 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2829 	if (ptr && has_type != type) {
2830 		if (pinned) {
2831 			ret = -EBUSY;
2832 			goto err_unpin;
2833 		}
2834 
2835 		if (is_vmalloc_addr(ptr))
2836 			vunmap(ptr);
2837 		else
2838 			kunmap(kmap_to_page(ptr));
2839 
2840 		ptr = obj->mm.mapping = NULL;
2841 	}
2842 
2843 	if (!ptr) {
2844 		ptr = i915_gem_object_map(obj, type);
2845 		if (!ptr) {
2846 			ret = -ENOMEM;
2847 			goto err_unpin;
2848 		}
2849 
2850 		obj->mm.mapping = page_pack_bits(ptr, type);
2851 	}
2852 
2853 out_unlock:
2854 	mutex_unlock(&obj->mm.lock);
2855 	return ptr;
2856 
2857 err_unpin:
2858 	atomic_dec(&obj->mm.pages_pin_count);
2859 err_unlock:
2860 	ptr = ERR_PTR(ret);
2861 	goto out_unlock;
2862 }
2863 
2864 static int
2865 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2866 			   const struct drm_i915_gem_pwrite *arg)
2867 {
2868 	struct address_space *mapping = obj->base.filp->f_mapping;
2869 	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2870 	u64 remain, offset;
2871 	unsigned int pg;
2872 
2873 	/* Before we instantiate/pin the backing store for our use, we
2874 	 * can prepopulate the shmemfs filp efficiently using a write into
2875 	 * the pagecache. We avoid the penalty of instantiating all the
2876 	 * pages, important if the user is just writing to a few and never
2877 	 * uses the object on the GPU, and using a direct write into shmemfs
2878 	 * allows it to avoid the cost of retrieving a page (either swapin
2879 	 * or clearing-before-use) before it is overwritten.
2880 	 */
2881 	if (i915_gem_object_has_pages(obj))
2882 		return -ENODEV;
2883 
2884 	if (obj->mm.madv != I915_MADV_WILLNEED)
2885 		return -EFAULT;
2886 
2887 	/* Before the pages are instantiated the object is treated as being
2888 	 * in the CPU domain. The pages will be clflushed as required before
2889 	 * use, and we can freely write into the pages directly. If userspace
2890 	 * races pwrite with any other operation; corruption will ensue -
2891 	 * that is userspace's prerogative!
2892 	 */
2893 
2894 	remain = arg->size;
2895 	offset = arg->offset;
2896 	pg = offset_in_page(offset);
2897 
2898 	do {
2899 		unsigned int len, unwritten;
2900 		struct page *page;
2901 		void *data, *vaddr;
2902 		int err;
2903 
2904 		len = PAGE_SIZE - pg;
2905 		if (len > remain)
2906 			len = remain;
2907 
2908 		err = pagecache_write_begin(obj->base.filp, mapping,
2909 					    offset, len, 0,
2910 					    &page, &data);
2911 		if (err < 0)
2912 			return err;
2913 
2914 		vaddr = kmap(page);
2915 		unwritten = copy_from_user(vaddr + pg, user_data, len);
2916 		kunmap(page);
2917 
2918 		err = pagecache_write_end(obj->base.filp, mapping,
2919 					  offset, len, len - unwritten,
2920 					  page, data);
2921 		if (err < 0)
2922 			return err;
2923 
2924 		if (unwritten)
2925 			return -EFAULT;
2926 
2927 		remain -= len;
2928 		user_data += len;
2929 		offset += len;
2930 		pg = 0;
2931 	} while (remain);
2932 
2933 	return 0;
2934 }
2935 
2936 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2937 {
2938 	bool banned;
2939 
2940 	atomic_inc(&ctx->guilty_count);
2941 
2942 	banned = false;
2943 	if (i915_gem_context_is_bannable(ctx)) {
2944 		unsigned int score;
2945 
2946 		score = atomic_add_return(CONTEXT_SCORE_GUILTY,
2947 					  &ctx->ban_score);
2948 		banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
2949 
2950 		DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2951 				 ctx->name, score, yesno(banned));
2952 	}
2953 	if (!banned)
2954 		return;
2955 
2956 	i915_gem_context_set_banned(ctx);
2957 	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2958 		atomic_inc(&ctx->file_priv->context_bans);
2959 		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2960 				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
2961 	}
2962 }
2963 
2964 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2965 {
2966 	atomic_inc(&ctx->active_count);
2967 }
2968 
2969 struct i915_request *
2970 i915_gem_find_active_request(struct intel_engine_cs *engine)
2971 {
2972 	struct i915_request *request, *active = NULL;
2973 	unsigned long flags;
2974 
2975 	/*
2976 	 * We are called by the error capture, reset and to dump engine
2977 	 * state at random points in time. In particular, note that neither is
2978 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
2979 	 * and we assume that no more writes can happen (we waited long enough
2980 	 * for all writes that were in transaction to be flushed) - adding an
2981 	 * extra delay for a recent interrupt is pointless. Hence, we do
2982 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2983 	 * At all other times, we must assume the GPU is still running, but
2984 	 * we only care about the snapshot of this moment.
2985 	 */
2986 	spin_lock_irqsave(&engine->timeline.lock, flags);
2987 	list_for_each_entry(request, &engine->timeline.requests, link) {
2988 		if (__i915_request_completed(request, request->global_seqno))
2989 			continue;
2990 
2991 		active = request;
2992 		break;
2993 	}
2994 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
2995 
2996 	return active;
2997 }
2998 
2999 /*
3000  * Ensure irq handler finishes, and not run again.
3001  * Also return the active request so that we only search for it once.
3002  */
3003 struct i915_request *
3004 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
3005 {
3006 	struct i915_request *request = NULL;
3007 
3008 	/*
3009 	 * During the reset sequence, we must prevent the engine from
3010 	 * entering RC6. As the context state is undefined until we restart
3011 	 * the engine, if it does enter RC6 during the reset, the state
3012 	 * written to the powercontext is undefined and so we may lose
3013 	 * GPU state upon resume, i.e. fail to restart after a reset.
3014 	 */
3015 	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
3016 
3017 	/*
3018 	 * Prevent the signaler thread from updating the request
3019 	 * state (by calling dma_fence_signal) as we are processing
3020 	 * the reset. The write from the GPU of the seqno is
3021 	 * asynchronous and the signaler thread may see a different
3022 	 * value to us and declare the request complete, even though
3023 	 * the reset routine have picked that request as the active
3024 	 * (incomplete) request. This conflict is not handled
3025 	 * gracefully!
3026 	 */
3027 	kthread_park(engine->breadcrumbs.signaler);
3028 
3029 	/*
3030 	 * Prevent request submission to the hardware until we have
3031 	 * completed the reset in i915_gem_reset_finish(). If a request
3032 	 * is completed by one engine, it may then queue a request
3033 	 * to a second via its execlists->tasklet *just* as we are
3034 	 * calling engine->init_hw() and also writing the ELSP.
3035 	 * Turning off the execlists->tasklet until the reset is over
3036 	 * prevents the race.
3037 	 *
3038 	 * Note that this needs to be a single atomic operation on the
3039 	 * tasklet (flush existing tasks, prevent new tasks) to prevent
3040 	 * a race between reset and set-wedged. It is not, so we do the best
3041 	 * we can atm and make sure we don't lock the machine up in the more
3042 	 * common case of recursively being called from set-wedged from inside
3043 	 * i915_reset.
3044 	 */
3045 	if (!atomic_read(&engine->execlists.tasklet.count))
3046 		tasklet_kill(&engine->execlists.tasklet);
3047 	tasklet_disable(&engine->execlists.tasklet);
3048 
3049 	/*
3050 	 * We're using worker to queue preemption requests from the tasklet in
3051 	 * GuC submission mode.
3052 	 * Even though tasklet was disabled, we may still have a worker queued.
3053 	 * Let's make sure that all workers scheduled before disabling the
3054 	 * tasklet are completed before continuing with the reset.
3055 	 */
3056 	if (engine->i915->guc.preempt_wq)
3057 		flush_workqueue(engine->i915->guc.preempt_wq);
3058 
3059 	if (engine->irq_seqno_barrier)
3060 		engine->irq_seqno_barrier(engine);
3061 
3062 	request = i915_gem_find_active_request(engine);
3063 	if (request && request->fence.error == -EIO)
3064 		request = ERR_PTR(-EIO); /* Previous reset failed! */
3065 
3066 	return request;
3067 }
3068 
3069 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3070 {
3071 	struct intel_engine_cs *engine;
3072 	struct i915_request *request;
3073 	enum intel_engine_id id;
3074 	int err = 0;
3075 
3076 	for_each_engine(engine, dev_priv, id) {
3077 		request = i915_gem_reset_prepare_engine(engine);
3078 		if (IS_ERR(request)) {
3079 			err = PTR_ERR(request);
3080 			continue;
3081 		}
3082 
3083 		engine->hangcheck.active_request = request;
3084 	}
3085 
3086 	i915_gem_revoke_fences(dev_priv);
3087 	intel_uc_sanitize(dev_priv);
3088 
3089 	return err;
3090 }
3091 
3092 static void skip_request(struct i915_request *request)
3093 {
3094 	void *vaddr = request->ring->vaddr;
3095 	u32 head;
3096 
3097 	/* As this request likely depends on state from the lost
3098 	 * context, clear out all the user operations leaving the
3099 	 * breadcrumb at the end (so we get the fence notifications).
3100 	 */
3101 	head = request->head;
3102 	if (request->postfix < head) {
3103 		memset(vaddr + head, 0, request->ring->size - head);
3104 		head = 0;
3105 	}
3106 	memset(vaddr + head, 0, request->postfix - head);
3107 
3108 	dma_fence_set_error(&request->fence, -EIO);
3109 }
3110 
3111 static void engine_skip_context(struct i915_request *request)
3112 {
3113 	struct intel_engine_cs *engine = request->engine;
3114 	struct i915_gem_context *hung_ctx = request->ctx;
3115 	struct i915_timeline *timeline = request->timeline;
3116 	unsigned long flags;
3117 
3118 	GEM_BUG_ON(timeline == &engine->timeline);
3119 
3120 	spin_lock_irqsave(&engine->timeline.lock, flags);
3121 	spin_lock_nested(&timeline->lock, SINGLE_DEPTH_NESTING);
3122 
3123 	list_for_each_entry_continue(request, &engine->timeline.requests, link)
3124 		if (request->ctx == hung_ctx)
3125 			skip_request(request);
3126 
3127 	list_for_each_entry(request, &timeline->requests, link)
3128 		skip_request(request);
3129 
3130 	spin_unlock(&timeline->lock);
3131 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3132 }
3133 
3134 /* Returns the request if it was guilty of the hang */
3135 static struct i915_request *
3136 i915_gem_reset_request(struct intel_engine_cs *engine,
3137 		       struct i915_request *request,
3138 		       bool stalled)
3139 {
3140 	/* The guilty request will get skipped on a hung engine.
3141 	 *
3142 	 * Users of client default contexts do not rely on logical
3143 	 * state preserved between batches so it is safe to execute
3144 	 * queued requests following the hang. Non default contexts
3145 	 * rely on preserved state, so skipping a batch loses the
3146 	 * evolution of the state and it needs to be considered corrupted.
3147 	 * Executing more queued batches on top of corrupted state is
3148 	 * risky. But we take the risk by trying to advance through
3149 	 * the queued requests in order to make the client behaviour
3150 	 * more predictable around resets, by not throwing away random
3151 	 * amount of batches it has prepared for execution. Sophisticated
3152 	 * clients can use gem_reset_stats_ioctl and dma fence status
3153 	 * (exported via sync_file info ioctl on explicit fences) to observe
3154 	 * when it loses the context state and should rebuild accordingly.
3155 	 *
3156 	 * The context ban, and ultimately the client ban, mechanism are safety
3157 	 * valves if client submission ends up resulting in nothing more than
3158 	 * subsequent hangs.
3159 	 */
3160 
3161 	if (i915_request_completed(request)) {
3162 		GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
3163 			  engine->name, request->global_seqno,
3164 			  request->fence.context, request->fence.seqno,
3165 			  intel_engine_get_seqno(engine));
3166 		stalled = false;
3167 	}
3168 
3169 	if (stalled) {
3170 		i915_gem_context_mark_guilty(request->ctx);
3171 		skip_request(request);
3172 
3173 		/* If this context is now banned, skip all pending requests. */
3174 		if (i915_gem_context_is_banned(request->ctx))
3175 			engine_skip_context(request);
3176 	} else {
3177 		/*
3178 		 * Since this is not the hung engine, it may have advanced
3179 		 * since the hang declaration. Double check by refinding
3180 		 * the active request at the time of the reset.
3181 		 */
3182 		request = i915_gem_find_active_request(engine);
3183 		if (request) {
3184 			i915_gem_context_mark_innocent(request->ctx);
3185 			dma_fence_set_error(&request->fence, -EAGAIN);
3186 
3187 			/* Rewind the engine to replay the incomplete rq */
3188 			spin_lock_irq(&engine->timeline.lock);
3189 			request = list_prev_entry(request, link);
3190 			if (&request->link == &engine->timeline.requests)
3191 				request = NULL;
3192 			spin_unlock_irq(&engine->timeline.lock);
3193 		}
3194 	}
3195 
3196 	return request;
3197 }
3198 
3199 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3200 			   struct i915_request *request,
3201 			   bool stalled)
3202 {
3203 	/*
3204 	 * Make sure this write is visible before we re-enable the interrupt
3205 	 * handlers on another CPU, as tasklet_enable() resolves to just
3206 	 * a compiler barrier which is insufficient for our purpose here.
3207 	 */
3208 	smp_store_mb(engine->irq_posted, 0);
3209 
3210 	if (request)
3211 		request = i915_gem_reset_request(engine, request, stalled);
3212 
3213 	if (request) {
3214 		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
3215 				 engine->name, request->global_seqno);
3216 	}
3217 
3218 	/* Setup the CS to resume from the breadcrumb of the hung request */
3219 	engine->reset_hw(engine, request);
3220 }
3221 
3222 void i915_gem_reset(struct drm_i915_private *dev_priv,
3223 		    unsigned int stalled_mask)
3224 {
3225 	struct intel_engine_cs *engine;
3226 	enum intel_engine_id id;
3227 
3228 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3229 
3230 	i915_retire_requests(dev_priv);
3231 
3232 	for_each_engine(engine, dev_priv, id) {
3233 		struct i915_gem_context *ctx;
3234 
3235 		i915_gem_reset_engine(engine,
3236 				      engine->hangcheck.active_request,
3237 				      stalled_mask & ENGINE_MASK(id));
3238 		ctx = fetch_and_zero(&engine->last_retired_context);
3239 		if (ctx)
3240 			intel_context_unpin(ctx, engine);
3241 
3242 		/*
3243 		 * Ostensibily, we always want a context loaded for powersaving,
3244 		 * so if the engine is idle after the reset, send a request
3245 		 * to load our scratch kernel_context.
3246 		 *
3247 		 * More mysteriously, if we leave the engine idle after a reset,
3248 		 * the next userspace batch may hang, with what appears to be
3249 		 * an incoherent read by the CS (presumably stale TLB). An
3250 		 * empty request appears sufficient to paper over the glitch.
3251 		 */
3252 		if (intel_engine_is_idle(engine)) {
3253 			struct i915_request *rq;
3254 
3255 			rq = i915_request_alloc(engine,
3256 						dev_priv->kernel_context);
3257 			if (!IS_ERR(rq))
3258 				__i915_request_add(rq, false);
3259 		}
3260 	}
3261 
3262 	i915_gem_restore_fences(dev_priv);
3263 }
3264 
3265 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3266 {
3267 	tasklet_enable(&engine->execlists.tasklet);
3268 	kthread_unpark(engine->breadcrumbs.signaler);
3269 
3270 	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3271 }
3272 
3273 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3274 {
3275 	struct intel_engine_cs *engine;
3276 	enum intel_engine_id id;
3277 
3278 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3279 
3280 	for_each_engine(engine, dev_priv, id) {
3281 		engine->hangcheck.active_request = NULL;
3282 		i915_gem_reset_finish_engine(engine);
3283 	}
3284 }
3285 
3286 static void nop_submit_request(struct i915_request *request)
3287 {
3288 	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3289 		  request->engine->name,
3290 		  request->fence.context, request->fence.seqno);
3291 	dma_fence_set_error(&request->fence, -EIO);
3292 
3293 	i915_request_submit(request);
3294 }
3295 
3296 static void nop_complete_submit_request(struct i915_request *request)
3297 {
3298 	unsigned long flags;
3299 
3300 	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3301 		  request->engine->name,
3302 		  request->fence.context, request->fence.seqno);
3303 	dma_fence_set_error(&request->fence, -EIO);
3304 
3305 	spin_lock_irqsave(&request->engine->timeline.lock, flags);
3306 	__i915_request_submit(request);
3307 	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3308 	spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3309 }
3310 
3311 void i915_gem_set_wedged(struct drm_i915_private *i915)
3312 {
3313 	struct intel_engine_cs *engine;
3314 	enum intel_engine_id id;
3315 
3316 	GEM_TRACE("start\n");
3317 
3318 	if (GEM_SHOW_DEBUG()) {
3319 		struct drm_printer p = drm_debug_printer(__func__);
3320 
3321 		for_each_engine(engine, i915, id)
3322 			intel_engine_dump(engine, &p, "%s\n", engine->name);
3323 	}
3324 
3325 	set_bit(I915_WEDGED, &i915->gpu_error.flags);
3326 	smp_mb__after_atomic();
3327 
3328 	/*
3329 	 * First, stop submission to hw, but do not yet complete requests by
3330 	 * rolling the global seqno forward (since this would complete requests
3331 	 * for which we haven't set the fence error to EIO yet).
3332 	 */
3333 	for_each_engine(engine, i915, id) {
3334 		i915_gem_reset_prepare_engine(engine);
3335 
3336 		engine->submit_request = nop_submit_request;
3337 		engine->schedule = NULL;
3338 	}
3339 	i915->caps.scheduler = 0;
3340 
3341 	/* Even if the GPU reset fails, it should still stop the engines */
3342 	intel_gpu_reset(i915, ALL_ENGINES);
3343 
3344 	/*
3345 	 * Make sure no one is running the old callback before we proceed with
3346 	 * cancelling requests and resetting the completion tracking. Otherwise
3347 	 * we might submit a request to the hardware which never completes.
3348 	 */
3349 	synchronize_rcu();
3350 
3351 	for_each_engine(engine, i915, id) {
3352 		/* Mark all executing requests as skipped */
3353 		engine->cancel_requests(engine);
3354 
3355 		/*
3356 		 * Only once we've force-cancelled all in-flight requests can we
3357 		 * start to complete all requests.
3358 		 */
3359 		engine->submit_request = nop_complete_submit_request;
3360 	}
3361 
3362 	/*
3363 	 * Make sure no request can slip through without getting completed by
3364 	 * either this call here to intel_engine_init_global_seqno, or the one
3365 	 * in nop_complete_submit_request.
3366 	 */
3367 	synchronize_rcu();
3368 
3369 	for_each_engine(engine, i915, id) {
3370 		unsigned long flags;
3371 
3372 		/*
3373 		 * Mark all pending requests as complete so that any concurrent
3374 		 * (lockless) lookup doesn't try and wait upon the request as we
3375 		 * reset it.
3376 		 */
3377 		spin_lock_irqsave(&engine->timeline.lock, flags);
3378 		intel_engine_init_global_seqno(engine,
3379 					       intel_engine_last_submit(engine));
3380 		spin_unlock_irqrestore(&engine->timeline.lock, flags);
3381 
3382 		i915_gem_reset_finish_engine(engine);
3383 	}
3384 
3385 	GEM_TRACE("end\n");
3386 
3387 	wake_up_all(&i915->gpu_error.reset_queue);
3388 }
3389 
3390 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3391 {
3392 	struct i915_timeline *tl;
3393 
3394 	lockdep_assert_held(&i915->drm.struct_mutex);
3395 	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3396 		return true;
3397 
3398 	GEM_TRACE("start\n");
3399 
3400 	/*
3401 	 * Before unwedging, make sure that all pending operations
3402 	 * are flushed and errored out - we may have requests waiting upon
3403 	 * third party fences. We marked all inflight requests as EIO, and
3404 	 * every execbuf since returned EIO, for consistency we want all
3405 	 * the currently pending requests to also be marked as EIO, which
3406 	 * is done inside our nop_submit_request - and so we must wait.
3407 	 *
3408 	 * No more can be submitted until we reset the wedged bit.
3409 	 */
3410 	list_for_each_entry(tl, &i915->gt.timelines, link) {
3411 		struct i915_request *rq;
3412 
3413 		rq = i915_gem_active_peek(&tl->last_request,
3414 					  &i915->drm.struct_mutex);
3415 		if (!rq)
3416 			continue;
3417 
3418 		/*
3419 		 * We can't use our normal waiter as we want to
3420 		 * avoid recursively trying to handle the current
3421 		 * reset. The basic dma_fence_default_wait() installs
3422 		 * a callback for dma_fence_signal(), which is
3423 		 * triggered by our nop handler (indirectly, the
3424 		 * callback enables the signaler thread which is
3425 		 * woken by the nop_submit_request() advancing the seqno
3426 		 * and when the seqno passes the fence, the signaler
3427 		 * then signals the fence waking us up).
3428 		 */
3429 		if (dma_fence_default_wait(&rq->fence, true,
3430 					   MAX_SCHEDULE_TIMEOUT) < 0)
3431 			return false;
3432 	}
3433 	i915_retire_requests(i915);
3434 	GEM_BUG_ON(i915->gt.active_requests);
3435 
3436 	/*
3437 	 * Undo nop_submit_request. We prevent all new i915 requests from
3438 	 * being queued (by disallowing execbuf whilst wedged) so having
3439 	 * waited for all active requests above, we know the system is idle
3440 	 * and do not have to worry about a thread being inside
3441 	 * engine->submit_request() as we swap over. So unlike installing
3442 	 * the nop_submit_request on reset, we can do this from normal
3443 	 * context and do not require stop_machine().
3444 	 */
3445 	intel_engines_reset_default_submission(i915);
3446 	i915_gem_contexts_lost(i915);
3447 
3448 	GEM_TRACE("end\n");
3449 
3450 	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3451 	clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3452 
3453 	return true;
3454 }
3455 
3456 static void
3457 i915_gem_retire_work_handler(struct work_struct *work)
3458 {
3459 	struct drm_i915_private *dev_priv =
3460 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3461 	struct drm_device *dev = &dev_priv->drm;
3462 
3463 	/* Come back later if the device is busy... */
3464 	if (mutex_trylock(&dev->struct_mutex)) {
3465 		i915_retire_requests(dev_priv);
3466 		mutex_unlock(&dev->struct_mutex);
3467 	}
3468 
3469 	/*
3470 	 * Keep the retire handler running until we are finally idle.
3471 	 * We do not need to do this test under locking as in the worst-case
3472 	 * we queue the retire worker once too often.
3473 	 */
3474 	if (READ_ONCE(dev_priv->gt.awake))
3475 		queue_delayed_work(dev_priv->wq,
3476 				   &dev_priv->gt.retire_work,
3477 				   round_jiffies_up_relative(HZ));
3478 }
3479 
3480 static void shrink_caches(struct drm_i915_private *i915)
3481 {
3482 	/*
3483 	 * kmem_cache_shrink() discards empty slabs and reorders partially
3484 	 * filled slabs to prioritise allocating from the mostly full slabs,
3485 	 * with the aim of reducing fragmentation.
3486 	 */
3487 	kmem_cache_shrink(i915->priorities);
3488 	kmem_cache_shrink(i915->dependencies);
3489 	kmem_cache_shrink(i915->requests);
3490 	kmem_cache_shrink(i915->luts);
3491 	kmem_cache_shrink(i915->vmas);
3492 	kmem_cache_shrink(i915->objects);
3493 }
3494 
3495 struct sleep_rcu_work {
3496 	union {
3497 		struct rcu_head rcu;
3498 		struct work_struct work;
3499 	};
3500 	struct drm_i915_private *i915;
3501 	unsigned int epoch;
3502 };
3503 
3504 static inline bool
3505 same_epoch(struct drm_i915_private *i915, unsigned int epoch)
3506 {
3507 	/*
3508 	 * There is a small chance that the epoch wrapped since we started
3509 	 * sleeping. If we assume that epoch is at least a u32, then it will
3510 	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
3511 	 */
3512 	return epoch == READ_ONCE(i915->gt.epoch);
3513 }
3514 
3515 static void __sleep_work(struct work_struct *work)
3516 {
3517 	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
3518 	struct drm_i915_private *i915 = s->i915;
3519 	unsigned int epoch = s->epoch;
3520 
3521 	kfree(s);
3522 	if (same_epoch(i915, epoch))
3523 		shrink_caches(i915);
3524 }
3525 
3526 static void __sleep_rcu(struct rcu_head *rcu)
3527 {
3528 	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
3529 	struct drm_i915_private *i915 = s->i915;
3530 
3531 	if (same_epoch(i915, s->epoch)) {
3532 		INIT_WORK(&s->work, __sleep_work);
3533 		queue_work(i915->wq, &s->work);
3534 	} else {
3535 		kfree(s);
3536 	}
3537 }
3538 
3539 static inline bool
3540 new_requests_since_last_retire(const struct drm_i915_private *i915)
3541 {
3542 	return (READ_ONCE(i915->gt.active_requests) ||
3543 		work_pending(&i915->gt.idle_work.work));
3544 }
3545 
3546 static void
3547 i915_gem_idle_work_handler(struct work_struct *work)
3548 {
3549 	struct drm_i915_private *dev_priv =
3550 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3551 	unsigned int epoch = I915_EPOCH_INVALID;
3552 	bool rearm_hangcheck;
3553 
3554 	if (!READ_ONCE(dev_priv->gt.awake))
3555 		return;
3556 
3557 	/*
3558 	 * Wait for last execlists context complete, but bail out in case a
3559 	 * new request is submitted. As we don't trust the hardware, we
3560 	 * continue on if the wait times out. This is necessary to allow
3561 	 * the machine to suspend even if the hardware dies, and we will
3562 	 * try to recover in resume (after depriving the hardware of power,
3563 	 * it may be in a better mmod).
3564 	 */
3565 	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
3566 		   intel_engines_are_idle(dev_priv),
3567 		   I915_IDLE_ENGINES_TIMEOUT * 1000,
3568 		   10, 500);
3569 
3570 	rearm_hangcheck =
3571 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3572 
3573 	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3574 		/* Currently busy, come back later */
3575 		mod_delayed_work(dev_priv->wq,
3576 				 &dev_priv->gt.idle_work,
3577 				 msecs_to_jiffies(50));
3578 		goto out_rearm;
3579 	}
3580 
3581 	/*
3582 	 * New request retired after this work handler started, extend active
3583 	 * period until next instance of the work.
3584 	 */
3585 	if (new_requests_since_last_retire(dev_priv))
3586 		goto out_unlock;
3587 
3588 	epoch = __i915_gem_park(dev_priv);
3589 
3590 	rearm_hangcheck = false;
3591 out_unlock:
3592 	mutex_unlock(&dev_priv->drm.struct_mutex);
3593 
3594 out_rearm:
3595 	if (rearm_hangcheck) {
3596 		GEM_BUG_ON(!dev_priv->gt.awake);
3597 		i915_queue_hangcheck(dev_priv);
3598 	}
3599 
3600 	/*
3601 	 * When we are idle, it is an opportune time to reap our caches.
3602 	 * However, we have many objects that utilise RCU and the ordered
3603 	 * i915->wq that this work is executing on. To try and flush any
3604 	 * pending frees now we are idle, we first wait for an RCU grace
3605 	 * period, and then queue a task (that will run last on the wq) to
3606 	 * shrink and re-optimize the caches.
3607 	 */
3608 	if (same_epoch(dev_priv, epoch)) {
3609 		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
3610 		if (s) {
3611 			s->i915 = dev_priv;
3612 			s->epoch = epoch;
3613 			call_rcu(&s->rcu, __sleep_rcu);
3614 		}
3615 	}
3616 }
3617 
3618 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3619 {
3620 	struct drm_i915_private *i915 = to_i915(gem->dev);
3621 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
3622 	struct drm_i915_file_private *fpriv = file->driver_priv;
3623 	struct i915_lut_handle *lut, *ln;
3624 
3625 	mutex_lock(&i915->drm.struct_mutex);
3626 
3627 	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3628 		struct i915_gem_context *ctx = lut->ctx;
3629 		struct i915_vma *vma;
3630 
3631 		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3632 		if (ctx->file_priv != fpriv)
3633 			continue;
3634 
3635 		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3636 		GEM_BUG_ON(vma->obj != obj);
3637 
3638 		/* We allow the process to have multiple handles to the same
3639 		 * vma, in the same fd namespace, by virtue of flink/open.
3640 		 */
3641 		GEM_BUG_ON(!vma->open_count);
3642 		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3643 			i915_vma_close(vma);
3644 
3645 		list_del(&lut->obj_link);
3646 		list_del(&lut->ctx_link);
3647 
3648 		kmem_cache_free(i915->luts, lut);
3649 		__i915_gem_object_release_unless_active(obj);
3650 	}
3651 
3652 	mutex_unlock(&i915->drm.struct_mutex);
3653 }
3654 
3655 static unsigned long to_wait_timeout(s64 timeout_ns)
3656 {
3657 	if (timeout_ns < 0)
3658 		return MAX_SCHEDULE_TIMEOUT;
3659 
3660 	if (timeout_ns == 0)
3661 		return 0;
3662 
3663 	return nsecs_to_jiffies_timeout(timeout_ns);
3664 }
3665 
3666 /**
3667  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3668  * @dev: drm device pointer
3669  * @data: ioctl data blob
3670  * @file: drm file pointer
3671  *
3672  * Returns 0 if successful, else an error is returned with the remaining time in
3673  * the timeout parameter.
3674  *  -ETIME: object is still busy after timeout
3675  *  -ERESTARTSYS: signal interrupted the wait
3676  *  -ENONENT: object doesn't exist
3677  * Also possible, but rare:
3678  *  -EAGAIN: incomplete, restart syscall
3679  *  -ENOMEM: damn
3680  *  -ENODEV: Internal IRQ fail
3681  *  -E?: The add request failed
3682  *
3683  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3684  * non-zero timeout parameter the wait ioctl will wait for the given number of
3685  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3686  * without holding struct_mutex the object may become re-busied before this
3687  * function completes. A similar but shorter * race condition exists in the busy
3688  * ioctl
3689  */
3690 int
3691 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3692 {
3693 	struct drm_i915_gem_wait *args = data;
3694 	struct drm_i915_gem_object *obj;
3695 	ktime_t start;
3696 	long ret;
3697 
3698 	if (args->flags != 0)
3699 		return -EINVAL;
3700 
3701 	obj = i915_gem_object_lookup(file, args->bo_handle);
3702 	if (!obj)
3703 		return -ENOENT;
3704 
3705 	start = ktime_get();
3706 
3707 	ret = i915_gem_object_wait(obj,
3708 				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3709 				   to_wait_timeout(args->timeout_ns),
3710 				   to_rps_client(file));
3711 
3712 	if (args->timeout_ns > 0) {
3713 		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3714 		if (args->timeout_ns < 0)
3715 			args->timeout_ns = 0;
3716 
3717 		/*
3718 		 * Apparently ktime isn't accurate enough and occasionally has a
3719 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3720 		 * things up to make the test happy. We allow up to 1 jiffy.
3721 		 *
3722 		 * This is a regression from the timespec->ktime conversion.
3723 		 */
3724 		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3725 			args->timeout_ns = 0;
3726 
3727 		/* Asked to wait beyond the jiffie/scheduler precision? */
3728 		if (ret == -ETIME && args->timeout_ns)
3729 			ret = -EAGAIN;
3730 	}
3731 
3732 	i915_gem_object_put(obj);
3733 	return ret;
3734 }
3735 
3736 static int wait_for_timeline(struct i915_timeline *tl, unsigned int flags)
3737 {
3738 	return i915_gem_active_wait(&tl->last_request, flags);
3739 }
3740 
3741 static int wait_for_engines(struct drm_i915_private *i915)
3742 {
3743 	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3744 		dev_err(i915->drm.dev,
3745 			"Failed to idle engines, declaring wedged!\n");
3746 		GEM_TRACE_DUMP();
3747 		i915_gem_set_wedged(i915);
3748 		return -EIO;
3749 	}
3750 
3751 	return 0;
3752 }
3753 
3754 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3755 {
3756 	/* If the device is asleep, we have no requests outstanding */
3757 	if (!READ_ONCE(i915->gt.awake))
3758 		return 0;
3759 
3760 	if (flags & I915_WAIT_LOCKED) {
3761 		struct i915_timeline *tl;
3762 		int err;
3763 
3764 		lockdep_assert_held(&i915->drm.struct_mutex);
3765 
3766 		list_for_each_entry(tl, &i915->gt.timelines, link) {
3767 			err = wait_for_timeline(tl, flags);
3768 			if (err)
3769 				return err;
3770 		}
3771 		i915_retire_requests(i915);
3772 
3773 		return wait_for_engines(i915);
3774 	} else {
3775 		struct intel_engine_cs *engine;
3776 		enum intel_engine_id id;
3777 		int err;
3778 
3779 		for_each_engine(engine, i915, id) {
3780 			err = wait_for_timeline(&engine->timeline, flags);
3781 			if (err)
3782 				return err;
3783 		}
3784 
3785 		return 0;
3786 	}
3787 }
3788 
3789 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3790 {
3791 	/*
3792 	 * We manually flush the CPU domain so that we can override and
3793 	 * force the flush for the display, and perform it asyncrhonously.
3794 	 */
3795 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3796 	if (obj->cache_dirty)
3797 		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3798 	obj->write_domain = 0;
3799 }
3800 
3801 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3802 {
3803 	if (!READ_ONCE(obj->pin_global))
3804 		return;
3805 
3806 	mutex_lock(&obj->base.dev->struct_mutex);
3807 	__i915_gem_object_flush_for_display(obj);
3808 	mutex_unlock(&obj->base.dev->struct_mutex);
3809 }
3810 
3811 /**
3812  * Moves a single object to the WC read, and possibly write domain.
3813  * @obj: object to act on
3814  * @write: ask for write access or read only
3815  *
3816  * This function returns when the move is complete, including waiting on
3817  * flushes to occur.
3818  */
3819 int
3820 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3821 {
3822 	int ret;
3823 
3824 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3825 
3826 	ret = i915_gem_object_wait(obj,
3827 				   I915_WAIT_INTERRUPTIBLE |
3828 				   I915_WAIT_LOCKED |
3829 				   (write ? I915_WAIT_ALL : 0),
3830 				   MAX_SCHEDULE_TIMEOUT,
3831 				   NULL);
3832 	if (ret)
3833 		return ret;
3834 
3835 	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3836 		return 0;
3837 
3838 	/* Flush and acquire obj->pages so that we are coherent through
3839 	 * direct access in memory with previous cached writes through
3840 	 * shmemfs and that our cache domain tracking remains valid.
3841 	 * For example, if the obj->filp was moved to swap without us
3842 	 * being notified and releasing the pages, we would mistakenly
3843 	 * continue to assume that the obj remained out of the CPU cached
3844 	 * domain.
3845 	 */
3846 	ret = i915_gem_object_pin_pages(obj);
3847 	if (ret)
3848 		return ret;
3849 
3850 	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3851 
3852 	/* Serialise direct access to this object with the barriers for
3853 	 * coherent writes from the GPU, by effectively invalidating the
3854 	 * WC domain upon first access.
3855 	 */
3856 	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3857 		mb();
3858 
3859 	/* It should now be out of any other write domains, and we can update
3860 	 * the domain values for our changes.
3861 	 */
3862 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3863 	obj->read_domains |= I915_GEM_DOMAIN_WC;
3864 	if (write) {
3865 		obj->read_domains = I915_GEM_DOMAIN_WC;
3866 		obj->write_domain = I915_GEM_DOMAIN_WC;
3867 		obj->mm.dirty = true;
3868 	}
3869 
3870 	i915_gem_object_unpin_pages(obj);
3871 	return 0;
3872 }
3873 
3874 /**
3875  * Moves a single object to the GTT read, and possibly write domain.
3876  * @obj: object to act on
3877  * @write: ask for write access or read only
3878  *
3879  * This function returns when the move is complete, including waiting on
3880  * flushes to occur.
3881  */
3882 int
3883 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3884 {
3885 	int ret;
3886 
3887 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3888 
3889 	ret = i915_gem_object_wait(obj,
3890 				   I915_WAIT_INTERRUPTIBLE |
3891 				   I915_WAIT_LOCKED |
3892 				   (write ? I915_WAIT_ALL : 0),
3893 				   MAX_SCHEDULE_TIMEOUT,
3894 				   NULL);
3895 	if (ret)
3896 		return ret;
3897 
3898 	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3899 		return 0;
3900 
3901 	/* Flush and acquire obj->pages so that we are coherent through
3902 	 * direct access in memory with previous cached writes through
3903 	 * shmemfs and that our cache domain tracking remains valid.
3904 	 * For example, if the obj->filp was moved to swap without us
3905 	 * being notified and releasing the pages, we would mistakenly
3906 	 * continue to assume that the obj remained out of the CPU cached
3907 	 * domain.
3908 	 */
3909 	ret = i915_gem_object_pin_pages(obj);
3910 	if (ret)
3911 		return ret;
3912 
3913 	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3914 
3915 	/* Serialise direct access to this object with the barriers for
3916 	 * coherent writes from the GPU, by effectively invalidating the
3917 	 * GTT domain upon first access.
3918 	 */
3919 	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3920 		mb();
3921 
3922 	/* It should now be out of any other write domains, and we can update
3923 	 * the domain values for our changes.
3924 	 */
3925 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3926 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3927 	if (write) {
3928 		obj->read_domains = I915_GEM_DOMAIN_GTT;
3929 		obj->write_domain = I915_GEM_DOMAIN_GTT;
3930 		obj->mm.dirty = true;
3931 	}
3932 
3933 	i915_gem_object_unpin_pages(obj);
3934 	return 0;
3935 }
3936 
3937 /**
3938  * Changes the cache-level of an object across all VMA.
3939  * @obj: object to act on
3940  * @cache_level: new cache level to set for the object
3941  *
3942  * After this function returns, the object will be in the new cache-level
3943  * across all GTT and the contents of the backing storage will be coherent,
3944  * with respect to the new cache-level. In order to keep the backing storage
3945  * coherent for all users, we only allow a single cache level to be set
3946  * globally on the object and prevent it from being changed whilst the
3947  * hardware is reading from the object. That is if the object is currently
3948  * on the scanout it will be set to uncached (or equivalent display
3949  * cache coherency) and all non-MOCS GPU access will also be uncached so
3950  * that all direct access to the scanout remains coherent.
3951  */
3952 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3953 				    enum i915_cache_level cache_level)
3954 {
3955 	struct i915_vma *vma;
3956 	int ret;
3957 
3958 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3959 
3960 	if (obj->cache_level == cache_level)
3961 		return 0;
3962 
3963 	/* Inspect the list of currently bound VMA and unbind any that would
3964 	 * be invalid given the new cache-level. This is principally to
3965 	 * catch the issue of the CS prefetch crossing page boundaries and
3966 	 * reading an invalid PTE on older architectures.
3967 	 */
3968 restart:
3969 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3970 		if (!drm_mm_node_allocated(&vma->node))
3971 			continue;
3972 
3973 		if (i915_vma_is_pinned(vma)) {
3974 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3975 			return -EBUSY;
3976 		}
3977 
3978 		if (!i915_vma_is_closed(vma) &&
3979 		    i915_gem_valid_gtt_space(vma, cache_level))
3980 			continue;
3981 
3982 		ret = i915_vma_unbind(vma);
3983 		if (ret)
3984 			return ret;
3985 
3986 		/* As unbinding may affect other elements in the
3987 		 * obj->vma_list (due to side-effects from retiring
3988 		 * an active vma), play safe and restart the iterator.
3989 		 */
3990 		goto restart;
3991 	}
3992 
3993 	/* We can reuse the existing drm_mm nodes but need to change the
3994 	 * cache-level on the PTE. We could simply unbind them all and
3995 	 * rebind with the correct cache-level on next use. However since
3996 	 * we already have a valid slot, dma mapping, pages etc, we may as
3997 	 * rewrite the PTE in the belief that doing so tramples upon less
3998 	 * state and so involves less work.
3999 	 */
4000 	if (obj->bind_count) {
4001 		/* Before we change the PTE, the GPU must not be accessing it.
4002 		 * If we wait upon the object, we know that all the bound
4003 		 * VMA are no longer active.
4004 		 */
4005 		ret = i915_gem_object_wait(obj,
4006 					   I915_WAIT_INTERRUPTIBLE |
4007 					   I915_WAIT_LOCKED |
4008 					   I915_WAIT_ALL,
4009 					   MAX_SCHEDULE_TIMEOUT,
4010 					   NULL);
4011 		if (ret)
4012 			return ret;
4013 
4014 		if (!HAS_LLC(to_i915(obj->base.dev)) &&
4015 		    cache_level != I915_CACHE_NONE) {
4016 			/* Access to snoopable pages through the GTT is
4017 			 * incoherent and on some machines causes a hard
4018 			 * lockup. Relinquish the CPU mmaping to force
4019 			 * userspace to refault in the pages and we can
4020 			 * then double check if the GTT mapping is still
4021 			 * valid for that pointer access.
4022 			 */
4023 			i915_gem_release_mmap(obj);
4024 
4025 			/* As we no longer need a fence for GTT access,
4026 			 * we can relinquish it now (and so prevent having
4027 			 * to steal a fence from someone else on the next
4028 			 * fence request). Note GPU activity would have
4029 			 * dropped the fence as all snoopable access is
4030 			 * supposed to be linear.
4031 			 */
4032 			for_each_ggtt_vma(vma, obj) {
4033 				ret = i915_vma_put_fence(vma);
4034 				if (ret)
4035 					return ret;
4036 			}
4037 		} else {
4038 			/* We either have incoherent backing store and
4039 			 * so no GTT access or the architecture is fully
4040 			 * coherent. In such cases, existing GTT mmaps
4041 			 * ignore the cache bit in the PTE and we can
4042 			 * rewrite it without confusing the GPU or having
4043 			 * to force userspace to fault back in its mmaps.
4044 			 */
4045 		}
4046 
4047 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4048 			if (!drm_mm_node_allocated(&vma->node))
4049 				continue;
4050 
4051 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4052 			if (ret)
4053 				return ret;
4054 		}
4055 	}
4056 
4057 	list_for_each_entry(vma, &obj->vma_list, obj_link)
4058 		vma->node.color = cache_level;
4059 	i915_gem_object_set_cache_coherency(obj, cache_level);
4060 	obj->cache_dirty = true; /* Always invalidate stale cachelines */
4061 
4062 	return 0;
4063 }
4064 
4065 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4066 			       struct drm_file *file)
4067 {
4068 	struct drm_i915_gem_caching *args = data;
4069 	struct drm_i915_gem_object *obj;
4070 	int err = 0;
4071 
4072 	rcu_read_lock();
4073 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4074 	if (!obj) {
4075 		err = -ENOENT;
4076 		goto out;
4077 	}
4078 
4079 	switch (obj->cache_level) {
4080 	case I915_CACHE_LLC:
4081 	case I915_CACHE_L3_LLC:
4082 		args->caching = I915_CACHING_CACHED;
4083 		break;
4084 
4085 	case I915_CACHE_WT:
4086 		args->caching = I915_CACHING_DISPLAY;
4087 		break;
4088 
4089 	default:
4090 		args->caching = I915_CACHING_NONE;
4091 		break;
4092 	}
4093 out:
4094 	rcu_read_unlock();
4095 	return err;
4096 }
4097 
4098 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4099 			       struct drm_file *file)
4100 {
4101 	struct drm_i915_private *i915 = to_i915(dev);
4102 	struct drm_i915_gem_caching *args = data;
4103 	struct drm_i915_gem_object *obj;
4104 	enum i915_cache_level level;
4105 	int ret = 0;
4106 
4107 	switch (args->caching) {
4108 	case I915_CACHING_NONE:
4109 		level = I915_CACHE_NONE;
4110 		break;
4111 	case I915_CACHING_CACHED:
4112 		/*
4113 		 * Due to a HW issue on BXT A stepping, GPU stores via a
4114 		 * snooped mapping may leave stale data in a corresponding CPU
4115 		 * cacheline, whereas normally such cachelines would get
4116 		 * invalidated.
4117 		 */
4118 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4119 			return -ENODEV;
4120 
4121 		level = I915_CACHE_LLC;
4122 		break;
4123 	case I915_CACHING_DISPLAY:
4124 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4125 		break;
4126 	default:
4127 		return -EINVAL;
4128 	}
4129 
4130 	obj = i915_gem_object_lookup(file, args->handle);
4131 	if (!obj)
4132 		return -ENOENT;
4133 
4134 	/*
4135 	 * The caching mode of proxy object is handled by its generator, and
4136 	 * not allowed to be changed by userspace.
4137 	 */
4138 	if (i915_gem_object_is_proxy(obj)) {
4139 		ret = -ENXIO;
4140 		goto out;
4141 	}
4142 
4143 	if (obj->cache_level == level)
4144 		goto out;
4145 
4146 	ret = i915_gem_object_wait(obj,
4147 				   I915_WAIT_INTERRUPTIBLE,
4148 				   MAX_SCHEDULE_TIMEOUT,
4149 				   to_rps_client(file));
4150 	if (ret)
4151 		goto out;
4152 
4153 	ret = i915_mutex_lock_interruptible(dev);
4154 	if (ret)
4155 		goto out;
4156 
4157 	ret = i915_gem_object_set_cache_level(obj, level);
4158 	mutex_unlock(&dev->struct_mutex);
4159 
4160 out:
4161 	i915_gem_object_put(obj);
4162 	return ret;
4163 }
4164 
4165 /*
4166  * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
4167  * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
4168  * (for pageflips). We only flush the caches while preparing the buffer for
4169  * display, the callers are responsible for frontbuffer flush.
4170  */
4171 struct i915_vma *
4172 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4173 				     u32 alignment,
4174 				     const struct i915_ggtt_view *view,
4175 				     unsigned int flags)
4176 {
4177 	struct i915_vma *vma;
4178 	int ret;
4179 
4180 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4181 
4182 	/* Mark the global pin early so that we account for the
4183 	 * display coherency whilst setting up the cache domains.
4184 	 */
4185 	obj->pin_global++;
4186 
4187 	/* The display engine is not coherent with the LLC cache on gen6.  As
4188 	 * a result, we make sure that the pinning that is about to occur is
4189 	 * done with uncached PTEs. This is lowest common denominator for all
4190 	 * chipsets.
4191 	 *
4192 	 * However for gen6+, we could do better by using the GFDT bit instead
4193 	 * of uncaching, which would allow us to flush all the LLC-cached data
4194 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4195 	 */
4196 	ret = i915_gem_object_set_cache_level(obj,
4197 					      HAS_WT(to_i915(obj->base.dev)) ?
4198 					      I915_CACHE_WT : I915_CACHE_NONE);
4199 	if (ret) {
4200 		vma = ERR_PTR(ret);
4201 		goto err_unpin_global;
4202 	}
4203 
4204 	/* As the user may map the buffer once pinned in the display plane
4205 	 * (e.g. libkms for the bootup splash), we have to ensure that we
4206 	 * always use map_and_fenceable for all scanout buffers. However,
4207 	 * it may simply be too big to fit into mappable, in which case
4208 	 * put it anyway and hope that userspace can cope (but always first
4209 	 * try to preserve the existing ABI).
4210 	 */
4211 	vma = ERR_PTR(-ENOSPC);
4212 	if ((flags & PIN_MAPPABLE) == 0 &&
4213 	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4214 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4215 					       flags |
4216 					       PIN_MAPPABLE |
4217 					       PIN_NONBLOCK);
4218 	if (IS_ERR(vma))
4219 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4220 	if (IS_ERR(vma))
4221 		goto err_unpin_global;
4222 
4223 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4224 
4225 	__i915_gem_object_flush_for_display(obj);
4226 
4227 	/* It should now be out of any other write domains, and we can update
4228 	 * the domain values for our changes.
4229 	 */
4230 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4231 
4232 	return vma;
4233 
4234 err_unpin_global:
4235 	obj->pin_global--;
4236 	return vma;
4237 }
4238 
4239 void
4240 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4241 {
4242 	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4243 
4244 	if (WARN_ON(vma->obj->pin_global == 0))
4245 		return;
4246 
4247 	if (--vma->obj->pin_global == 0)
4248 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4249 
4250 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4251 	i915_gem_object_bump_inactive_ggtt(vma->obj);
4252 
4253 	i915_vma_unpin(vma);
4254 }
4255 
4256 /**
4257  * Moves a single object to the CPU read, and possibly write domain.
4258  * @obj: object to act on
4259  * @write: requesting write or read-only access
4260  *
4261  * This function returns when the move is complete, including waiting on
4262  * flushes to occur.
4263  */
4264 int
4265 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4266 {
4267 	int ret;
4268 
4269 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4270 
4271 	ret = i915_gem_object_wait(obj,
4272 				   I915_WAIT_INTERRUPTIBLE |
4273 				   I915_WAIT_LOCKED |
4274 				   (write ? I915_WAIT_ALL : 0),
4275 				   MAX_SCHEDULE_TIMEOUT,
4276 				   NULL);
4277 	if (ret)
4278 		return ret;
4279 
4280 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4281 
4282 	/* Flush the CPU cache if it's still invalid. */
4283 	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4284 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4285 		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4286 	}
4287 
4288 	/* It should now be out of any other write domains, and we can update
4289 	 * the domain values for our changes.
4290 	 */
4291 	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4292 
4293 	/* If we're writing through the CPU, then the GPU read domains will
4294 	 * need to be invalidated at next use.
4295 	 */
4296 	if (write)
4297 		__start_cpu_write(obj);
4298 
4299 	return 0;
4300 }
4301 
4302 /* Throttle our rendering by waiting until the ring has completed our requests
4303  * emitted over 20 msec ago.
4304  *
4305  * Note that if we were to use the current jiffies each time around the loop,
4306  * we wouldn't escape the function with any frames outstanding if the time to
4307  * render a frame was over 20ms.
4308  *
4309  * This should get us reasonable parallelism between CPU and GPU but also
4310  * relatively low latency when blocking on a particular request to finish.
4311  */
4312 static int
4313 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4314 {
4315 	struct drm_i915_private *dev_priv = to_i915(dev);
4316 	struct drm_i915_file_private *file_priv = file->driver_priv;
4317 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4318 	struct i915_request *request, *target = NULL;
4319 	long ret;
4320 
4321 	/* ABI: return -EIO if already wedged */
4322 	if (i915_terminally_wedged(&dev_priv->gpu_error))
4323 		return -EIO;
4324 
4325 	spin_lock(&file_priv->mm.lock);
4326 	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4327 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4328 			break;
4329 
4330 		if (target) {
4331 			list_del(&target->client_link);
4332 			target->file_priv = NULL;
4333 		}
4334 
4335 		target = request;
4336 	}
4337 	if (target)
4338 		i915_request_get(target);
4339 	spin_unlock(&file_priv->mm.lock);
4340 
4341 	if (target == NULL)
4342 		return 0;
4343 
4344 	ret = i915_request_wait(target,
4345 				I915_WAIT_INTERRUPTIBLE,
4346 				MAX_SCHEDULE_TIMEOUT);
4347 	i915_request_put(target);
4348 
4349 	return ret < 0 ? ret : 0;
4350 }
4351 
4352 struct i915_vma *
4353 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4354 			 const struct i915_ggtt_view *view,
4355 			 u64 size,
4356 			 u64 alignment,
4357 			 u64 flags)
4358 {
4359 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4360 	struct i915_address_space *vm = &dev_priv->ggtt.base;
4361 	struct i915_vma *vma;
4362 	int ret;
4363 
4364 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4365 
4366 	if (flags & PIN_MAPPABLE &&
4367 	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4368 		/* If the required space is larger than the available
4369 		 * aperture, we will not able to find a slot for the
4370 		 * object and unbinding the object now will be in
4371 		 * vain. Worse, doing so may cause us to ping-pong
4372 		 * the object in and out of the Global GTT and
4373 		 * waste a lot of cycles under the mutex.
4374 		 */
4375 		if (obj->base.size > dev_priv->ggtt.mappable_end)
4376 			return ERR_PTR(-E2BIG);
4377 
4378 		/* If NONBLOCK is set the caller is optimistically
4379 		 * trying to cache the full object within the mappable
4380 		 * aperture, and *must* have a fallback in place for
4381 		 * situations where we cannot bind the object. We
4382 		 * can be a little more lax here and use the fallback
4383 		 * more often to avoid costly migrations of ourselves
4384 		 * and other objects within the aperture.
4385 		 *
4386 		 * Half-the-aperture is used as a simple heuristic.
4387 		 * More interesting would to do search for a free
4388 		 * block prior to making the commitment to unbind.
4389 		 * That caters for the self-harm case, and with a
4390 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
4391 		 * we could try to minimise harm to others.
4392 		 */
4393 		if (flags & PIN_NONBLOCK &&
4394 		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
4395 			return ERR_PTR(-ENOSPC);
4396 	}
4397 
4398 	vma = i915_vma_instance(obj, vm, view);
4399 	if (unlikely(IS_ERR(vma)))
4400 		return vma;
4401 
4402 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4403 		if (flags & PIN_NONBLOCK) {
4404 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4405 				return ERR_PTR(-ENOSPC);
4406 
4407 			if (flags & PIN_MAPPABLE &&
4408 			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4409 				return ERR_PTR(-ENOSPC);
4410 		}
4411 
4412 		WARN(i915_vma_is_pinned(vma),
4413 		     "bo is already pinned in ggtt with incorrect alignment:"
4414 		     " offset=%08x, req.alignment=%llx,"
4415 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4416 		     i915_ggtt_offset(vma), alignment,
4417 		     !!(flags & PIN_MAPPABLE),
4418 		     i915_vma_is_map_and_fenceable(vma));
4419 		ret = i915_vma_unbind(vma);
4420 		if (ret)
4421 			return ERR_PTR(ret);
4422 	}
4423 
4424 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4425 	if (ret)
4426 		return ERR_PTR(ret);
4427 
4428 	return vma;
4429 }
4430 
4431 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4432 {
4433 	/* Note that we could alias engines in the execbuf API, but
4434 	 * that would be very unwise as it prevents userspace from
4435 	 * fine control over engine selection. Ahem.
4436 	 *
4437 	 * This should be something like EXEC_MAX_ENGINE instead of
4438 	 * I915_NUM_ENGINES.
4439 	 */
4440 	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4441 	return 0x10000 << id;
4442 }
4443 
4444 static __always_inline unsigned int __busy_write_id(unsigned int id)
4445 {
4446 	/* The uABI guarantees an active writer is also amongst the read
4447 	 * engines. This would be true if we accessed the activity tracking
4448 	 * under the lock, but as we perform the lookup of the object and
4449 	 * its activity locklessly we can not guarantee that the last_write
4450 	 * being active implies that we have set the same engine flag from
4451 	 * last_read - hence we always set both read and write busy for
4452 	 * last_write.
4453 	 */
4454 	return id | __busy_read_flag(id);
4455 }
4456 
4457 static __always_inline unsigned int
4458 __busy_set_if_active(const struct dma_fence *fence,
4459 		     unsigned int (*flag)(unsigned int id))
4460 {
4461 	struct i915_request *rq;
4462 
4463 	/* We have to check the current hw status of the fence as the uABI
4464 	 * guarantees forward progress. We could rely on the idle worker
4465 	 * to eventually flush us, but to minimise latency just ask the
4466 	 * hardware.
4467 	 *
4468 	 * Note we only report on the status of native fences.
4469 	 */
4470 	if (!dma_fence_is_i915(fence))
4471 		return 0;
4472 
4473 	/* opencode to_request() in order to avoid const warnings */
4474 	rq = container_of(fence, struct i915_request, fence);
4475 	if (i915_request_completed(rq))
4476 		return 0;
4477 
4478 	return flag(rq->engine->uabi_id);
4479 }
4480 
4481 static __always_inline unsigned int
4482 busy_check_reader(const struct dma_fence *fence)
4483 {
4484 	return __busy_set_if_active(fence, __busy_read_flag);
4485 }
4486 
4487 static __always_inline unsigned int
4488 busy_check_writer(const struct dma_fence *fence)
4489 {
4490 	if (!fence)
4491 		return 0;
4492 
4493 	return __busy_set_if_active(fence, __busy_write_id);
4494 }
4495 
4496 int
4497 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4498 		    struct drm_file *file)
4499 {
4500 	struct drm_i915_gem_busy *args = data;
4501 	struct drm_i915_gem_object *obj;
4502 	struct reservation_object_list *list;
4503 	unsigned int seq;
4504 	int err;
4505 
4506 	err = -ENOENT;
4507 	rcu_read_lock();
4508 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4509 	if (!obj)
4510 		goto out;
4511 
4512 	/* A discrepancy here is that we do not report the status of
4513 	 * non-i915 fences, i.e. even though we may report the object as idle,
4514 	 * a call to set-domain may still stall waiting for foreign rendering.
4515 	 * This also means that wait-ioctl may report an object as busy,
4516 	 * where busy-ioctl considers it idle.
4517 	 *
4518 	 * We trade the ability to warn of foreign fences to report on which
4519 	 * i915 engines are active for the object.
4520 	 *
4521 	 * Alternatively, we can trade that extra information on read/write
4522 	 * activity with
4523 	 *	args->busy =
4524 	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
4525 	 * to report the overall busyness. This is what the wait-ioctl does.
4526 	 *
4527 	 */
4528 retry:
4529 	seq = raw_read_seqcount(&obj->resv->seq);
4530 
4531 	/* Translate the exclusive fence to the READ *and* WRITE engine */
4532 	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4533 
4534 	/* Translate shared fences to READ set of engines */
4535 	list = rcu_dereference(obj->resv->fence);
4536 	if (list) {
4537 		unsigned int shared_count = list->shared_count, i;
4538 
4539 		for (i = 0; i < shared_count; ++i) {
4540 			struct dma_fence *fence =
4541 				rcu_dereference(list->shared[i]);
4542 
4543 			args->busy |= busy_check_reader(fence);
4544 		}
4545 	}
4546 
4547 	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4548 		goto retry;
4549 
4550 	err = 0;
4551 out:
4552 	rcu_read_unlock();
4553 	return err;
4554 }
4555 
4556 int
4557 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4558 			struct drm_file *file_priv)
4559 {
4560 	return i915_gem_ring_throttle(dev, file_priv);
4561 }
4562 
4563 int
4564 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4565 		       struct drm_file *file_priv)
4566 {
4567 	struct drm_i915_private *dev_priv = to_i915(dev);
4568 	struct drm_i915_gem_madvise *args = data;
4569 	struct drm_i915_gem_object *obj;
4570 	int err;
4571 
4572 	switch (args->madv) {
4573 	case I915_MADV_DONTNEED:
4574 	case I915_MADV_WILLNEED:
4575 	    break;
4576 	default:
4577 	    return -EINVAL;
4578 	}
4579 
4580 	obj = i915_gem_object_lookup(file_priv, args->handle);
4581 	if (!obj)
4582 		return -ENOENT;
4583 
4584 	err = mutex_lock_interruptible(&obj->mm.lock);
4585 	if (err)
4586 		goto out;
4587 
4588 	if (i915_gem_object_has_pages(obj) &&
4589 	    i915_gem_object_is_tiled(obj) &&
4590 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4591 		if (obj->mm.madv == I915_MADV_WILLNEED) {
4592 			GEM_BUG_ON(!obj->mm.quirked);
4593 			__i915_gem_object_unpin_pages(obj);
4594 			obj->mm.quirked = false;
4595 		}
4596 		if (args->madv == I915_MADV_WILLNEED) {
4597 			GEM_BUG_ON(obj->mm.quirked);
4598 			__i915_gem_object_pin_pages(obj);
4599 			obj->mm.quirked = true;
4600 		}
4601 	}
4602 
4603 	if (obj->mm.madv != __I915_MADV_PURGED)
4604 		obj->mm.madv = args->madv;
4605 
4606 	/* if the object is no longer attached, discard its backing storage */
4607 	if (obj->mm.madv == I915_MADV_DONTNEED &&
4608 	    !i915_gem_object_has_pages(obj))
4609 		i915_gem_object_truncate(obj);
4610 
4611 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4612 	mutex_unlock(&obj->mm.lock);
4613 
4614 out:
4615 	i915_gem_object_put(obj);
4616 	return err;
4617 }
4618 
4619 static void
4620 frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4621 {
4622 	struct drm_i915_gem_object *obj =
4623 		container_of(active, typeof(*obj), frontbuffer_write);
4624 
4625 	intel_fb_obj_flush(obj, ORIGIN_CS);
4626 }
4627 
4628 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4629 			  const struct drm_i915_gem_object_ops *ops)
4630 {
4631 	mutex_init(&obj->mm.lock);
4632 
4633 	INIT_LIST_HEAD(&obj->vma_list);
4634 	INIT_LIST_HEAD(&obj->lut_list);
4635 	INIT_LIST_HEAD(&obj->batch_pool_link);
4636 
4637 	obj->ops = ops;
4638 
4639 	reservation_object_init(&obj->__builtin_resv);
4640 	obj->resv = &obj->__builtin_resv;
4641 
4642 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4643 	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4644 
4645 	obj->mm.madv = I915_MADV_WILLNEED;
4646 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4647 	mutex_init(&obj->mm.get_page.lock);
4648 
4649 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4650 }
4651 
4652 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4653 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4654 		 I915_GEM_OBJECT_IS_SHRINKABLE,
4655 
4656 	.get_pages = i915_gem_object_get_pages_gtt,
4657 	.put_pages = i915_gem_object_put_pages_gtt,
4658 
4659 	.pwrite = i915_gem_object_pwrite_gtt,
4660 };
4661 
4662 static int i915_gem_object_create_shmem(struct drm_device *dev,
4663 					struct drm_gem_object *obj,
4664 					size_t size)
4665 {
4666 	struct drm_i915_private *i915 = to_i915(dev);
4667 	unsigned long flags = VM_NORESERVE;
4668 	struct file *filp;
4669 
4670 	drm_gem_private_object_init(dev, obj, size);
4671 
4672 	if (i915->mm.gemfs)
4673 		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4674 						 flags);
4675 	else
4676 		filp = shmem_file_setup("i915", size, flags);
4677 
4678 	if (IS_ERR(filp))
4679 		return PTR_ERR(filp);
4680 
4681 	obj->filp = filp;
4682 
4683 	return 0;
4684 }
4685 
4686 struct drm_i915_gem_object *
4687 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4688 {
4689 	struct drm_i915_gem_object *obj;
4690 	struct address_space *mapping;
4691 	unsigned int cache_level;
4692 	gfp_t mask;
4693 	int ret;
4694 
4695 	/* There is a prevalence of the assumption that we fit the object's
4696 	 * page count inside a 32bit _signed_ variable. Let's document this and
4697 	 * catch if we ever need to fix it. In the meantime, if you do spot
4698 	 * such a local variable, please consider fixing!
4699 	 */
4700 	if (size >> PAGE_SHIFT > INT_MAX)
4701 		return ERR_PTR(-E2BIG);
4702 
4703 	if (overflows_type(size, obj->base.size))
4704 		return ERR_PTR(-E2BIG);
4705 
4706 	obj = i915_gem_object_alloc(dev_priv);
4707 	if (obj == NULL)
4708 		return ERR_PTR(-ENOMEM);
4709 
4710 	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4711 	if (ret)
4712 		goto fail;
4713 
4714 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4715 	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4716 		/* 965gm cannot relocate objects above 4GiB. */
4717 		mask &= ~__GFP_HIGHMEM;
4718 		mask |= __GFP_DMA32;
4719 	}
4720 
4721 	mapping = obj->base.filp->f_mapping;
4722 	mapping_set_gfp_mask(mapping, mask);
4723 	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4724 
4725 	i915_gem_object_init(obj, &i915_gem_object_ops);
4726 
4727 	obj->write_domain = I915_GEM_DOMAIN_CPU;
4728 	obj->read_domains = I915_GEM_DOMAIN_CPU;
4729 
4730 	if (HAS_LLC(dev_priv))
4731 		/* On some devices, we can have the GPU use the LLC (the CPU
4732 		 * cache) for about a 10% performance improvement
4733 		 * compared to uncached.  Graphics requests other than
4734 		 * display scanout are coherent with the CPU in
4735 		 * accessing this cache.  This means in this mode we
4736 		 * don't need to clflush on the CPU side, and on the
4737 		 * GPU side we only need to flush internal caches to
4738 		 * get data visible to the CPU.
4739 		 *
4740 		 * However, we maintain the display planes as UC, and so
4741 		 * need to rebind when first used as such.
4742 		 */
4743 		cache_level = I915_CACHE_LLC;
4744 	else
4745 		cache_level = I915_CACHE_NONE;
4746 
4747 	i915_gem_object_set_cache_coherency(obj, cache_level);
4748 
4749 	trace_i915_gem_object_create(obj);
4750 
4751 	return obj;
4752 
4753 fail:
4754 	i915_gem_object_free(obj);
4755 	return ERR_PTR(ret);
4756 }
4757 
4758 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4759 {
4760 	/* If we are the last user of the backing storage (be it shmemfs
4761 	 * pages or stolen etc), we know that the pages are going to be
4762 	 * immediately released. In this case, we can then skip copying
4763 	 * back the contents from the GPU.
4764 	 */
4765 
4766 	if (obj->mm.madv != I915_MADV_WILLNEED)
4767 		return false;
4768 
4769 	if (obj->base.filp == NULL)
4770 		return true;
4771 
4772 	/* At first glance, this looks racy, but then again so would be
4773 	 * userspace racing mmap against close. However, the first external
4774 	 * reference to the filp can only be obtained through the
4775 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4776 	 * acquiring such a reference whilst we are in the middle of
4777 	 * freeing the object.
4778 	 */
4779 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4780 }
4781 
4782 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4783 				    struct llist_node *freed)
4784 {
4785 	struct drm_i915_gem_object *obj, *on;
4786 
4787 	intel_runtime_pm_get(i915);
4788 	llist_for_each_entry_safe(obj, on, freed, freed) {
4789 		struct i915_vma *vma, *vn;
4790 
4791 		trace_i915_gem_object_destroy(obj);
4792 
4793 		mutex_lock(&i915->drm.struct_mutex);
4794 
4795 		GEM_BUG_ON(i915_gem_object_is_active(obj));
4796 		list_for_each_entry_safe(vma, vn,
4797 					 &obj->vma_list, obj_link) {
4798 			GEM_BUG_ON(i915_vma_is_active(vma));
4799 			vma->flags &= ~I915_VMA_PIN_MASK;
4800 			i915_vma_destroy(vma);
4801 		}
4802 		GEM_BUG_ON(!list_empty(&obj->vma_list));
4803 		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4804 
4805 		/* This serializes freeing with the shrinker. Since the free
4806 		 * is delayed, first by RCU then by the workqueue, we want the
4807 		 * shrinker to be able to free pages of unreferenced objects,
4808 		 * or else we may oom whilst there are plenty of deferred
4809 		 * freed objects.
4810 		 */
4811 		if (i915_gem_object_has_pages(obj)) {
4812 			spin_lock(&i915->mm.obj_lock);
4813 			list_del_init(&obj->mm.link);
4814 			spin_unlock(&i915->mm.obj_lock);
4815 		}
4816 
4817 		mutex_unlock(&i915->drm.struct_mutex);
4818 
4819 		GEM_BUG_ON(obj->bind_count);
4820 		GEM_BUG_ON(obj->userfault_count);
4821 		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4822 		GEM_BUG_ON(!list_empty(&obj->lut_list));
4823 
4824 		if (obj->ops->release)
4825 			obj->ops->release(obj);
4826 
4827 		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4828 			atomic_set(&obj->mm.pages_pin_count, 0);
4829 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4830 		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4831 
4832 		if (obj->base.import_attach)
4833 			drm_prime_gem_destroy(&obj->base, NULL);
4834 
4835 		reservation_object_fini(&obj->__builtin_resv);
4836 		drm_gem_object_release(&obj->base);
4837 		i915_gem_info_remove_obj(i915, obj->base.size);
4838 
4839 		kfree(obj->bit_17);
4840 		i915_gem_object_free(obj);
4841 
4842 		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
4843 		atomic_dec(&i915->mm.free_count);
4844 
4845 		if (on)
4846 			cond_resched();
4847 	}
4848 	intel_runtime_pm_put(i915);
4849 }
4850 
4851 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4852 {
4853 	struct llist_node *freed;
4854 
4855 	/* Free the oldest, most stale object to keep the free_list short */
4856 	freed = NULL;
4857 	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4858 		/* Only one consumer of llist_del_first() allowed */
4859 		spin_lock(&i915->mm.free_lock);
4860 		freed = llist_del_first(&i915->mm.free_list);
4861 		spin_unlock(&i915->mm.free_lock);
4862 	}
4863 	if (unlikely(freed)) {
4864 		freed->next = NULL;
4865 		__i915_gem_free_objects(i915, freed);
4866 	}
4867 }
4868 
4869 static void __i915_gem_free_work(struct work_struct *work)
4870 {
4871 	struct drm_i915_private *i915 =
4872 		container_of(work, struct drm_i915_private, mm.free_work);
4873 	struct llist_node *freed;
4874 
4875 	/*
4876 	 * All file-owned VMA should have been released by this point through
4877 	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4878 	 * However, the object may also be bound into the global GTT (e.g.
4879 	 * older GPUs without per-process support, or for direct access through
4880 	 * the GTT either for the user or for scanout). Those VMA still need to
4881 	 * unbound now.
4882 	 */
4883 
4884 	spin_lock(&i915->mm.free_lock);
4885 	while ((freed = llist_del_all(&i915->mm.free_list))) {
4886 		spin_unlock(&i915->mm.free_lock);
4887 
4888 		__i915_gem_free_objects(i915, freed);
4889 		if (need_resched())
4890 			return;
4891 
4892 		spin_lock(&i915->mm.free_lock);
4893 	}
4894 	spin_unlock(&i915->mm.free_lock);
4895 }
4896 
4897 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4898 {
4899 	struct drm_i915_gem_object *obj =
4900 		container_of(head, typeof(*obj), rcu);
4901 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4902 
4903 	/*
4904 	 * Since we require blocking on struct_mutex to unbind the freed
4905 	 * object from the GPU before releasing resources back to the
4906 	 * system, we can not do that directly from the RCU callback (which may
4907 	 * be a softirq context), but must instead then defer that work onto a
4908 	 * kthread. We use the RCU callback rather than move the freed object
4909 	 * directly onto the work queue so that we can mix between using the
4910 	 * worker and performing frees directly from subsequent allocations for
4911 	 * crude but effective memory throttling.
4912 	 */
4913 	if (llist_add(&obj->freed, &i915->mm.free_list))
4914 		queue_work(i915->wq, &i915->mm.free_work);
4915 }
4916 
4917 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4918 {
4919 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4920 
4921 	if (obj->mm.quirked)
4922 		__i915_gem_object_unpin_pages(obj);
4923 
4924 	if (discard_backing_storage(obj))
4925 		obj->mm.madv = I915_MADV_DONTNEED;
4926 
4927 	/*
4928 	 * Before we free the object, make sure any pure RCU-only
4929 	 * read-side critical sections are complete, e.g.
4930 	 * i915_gem_busy_ioctl(). For the corresponding synchronized
4931 	 * lookup see i915_gem_object_lookup_rcu().
4932 	 */
4933 	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4934 	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4935 }
4936 
4937 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4938 {
4939 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4940 
4941 	if (!i915_gem_object_has_active_reference(obj) &&
4942 	    i915_gem_object_is_active(obj))
4943 		i915_gem_object_set_active_reference(obj);
4944 	else
4945 		i915_gem_object_put(obj);
4946 }
4947 
4948 static void assert_kernel_context_is_current(struct drm_i915_private *i915)
4949 {
4950 	struct i915_gem_context *kernel_context = i915->kernel_context;
4951 	struct intel_engine_cs *engine;
4952 	enum intel_engine_id id;
4953 
4954 	for_each_engine(engine, i915, id) {
4955 		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
4956 		GEM_BUG_ON(engine->last_retired_context != kernel_context);
4957 	}
4958 }
4959 
4960 void i915_gem_sanitize(struct drm_i915_private *i915)
4961 {
4962 	if (i915_terminally_wedged(&i915->gpu_error)) {
4963 		mutex_lock(&i915->drm.struct_mutex);
4964 		i915_gem_unset_wedged(i915);
4965 		mutex_unlock(&i915->drm.struct_mutex);
4966 	}
4967 
4968 	/*
4969 	 * If we inherit context state from the BIOS or earlier occupants
4970 	 * of the GPU, the GPU may be in an inconsistent state when we
4971 	 * try to take over. The only way to remove the earlier state
4972 	 * is by resetting. However, resetting on earlier gen is tricky as
4973 	 * it may impact the display and we are uncertain about the stability
4974 	 * of the reset, so this could be applied to even earlier gen.
4975 	 */
4976 	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
4977 		WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
4978 }
4979 
4980 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4981 {
4982 	struct drm_device *dev = &dev_priv->drm;
4983 	int ret;
4984 
4985 	intel_runtime_pm_get(dev_priv);
4986 	intel_suspend_gt_powersave(dev_priv);
4987 
4988 	mutex_lock(&dev->struct_mutex);
4989 
4990 	/* We have to flush all the executing contexts to main memory so
4991 	 * that they can saved in the hibernation image. To ensure the last
4992 	 * context image is coherent, we have to switch away from it. That
4993 	 * leaves the dev_priv->kernel_context still active when
4994 	 * we actually suspend, and its image in memory may not match the GPU
4995 	 * state. Fortunately, the kernel_context is disposable and we do
4996 	 * not rely on its state.
4997 	 */
4998 	if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
4999 		ret = i915_gem_switch_to_kernel_context(dev_priv);
5000 		if (ret)
5001 			goto err_unlock;
5002 
5003 		ret = i915_gem_wait_for_idle(dev_priv,
5004 					     I915_WAIT_INTERRUPTIBLE |
5005 					     I915_WAIT_LOCKED);
5006 		if (ret && ret != -EIO)
5007 			goto err_unlock;
5008 
5009 		assert_kernel_context_is_current(dev_priv);
5010 	}
5011 	i915_gem_contexts_lost(dev_priv);
5012 	mutex_unlock(&dev->struct_mutex);
5013 
5014 	intel_uc_suspend(dev_priv);
5015 
5016 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
5017 	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
5018 
5019 	/* As the idle_work is rearming if it detects a race, play safe and
5020 	 * repeat the flush until it is definitely idle.
5021 	 */
5022 	drain_delayed_work(&dev_priv->gt.idle_work);
5023 
5024 	/* Assert that we sucessfully flushed all the work and
5025 	 * reset the GPU back to its idle, low power state.
5026 	 */
5027 	WARN_ON(dev_priv->gt.awake);
5028 	if (WARN_ON(!intel_engines_are_idle(dev_priv)))
5029 		i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
5030 
5031 	/*
5032 	 * Neither the BIOS, ourselves or any other kernel
5033 	 * expects the system to be in execlists mode on startup,
5034 	 * so we need to reset the GPU back to legacy mode. And the only
5035 	 * known way to disable logical contexts is through a GPU reset.
5036 	 *
5037 	 * So in order to leave the system in a known default configuration,
5038 	 * always reset the GPU upon unload and suspend. Afterwards we then
5039 	 * clean up the GEM state tracking, flushing off the requests and
5040 	 * leaving the system in a known idle state.
5041 	 *
5042 	 * Note that is of the upmost importance that the GPU is idle and
5043 	 * all stray writes are flushed *before* we dismantle the backing
5044 	 * storage for the pinned objects.
5045 	 *
5046 	 * However, since we are uncertain that resetting the GPU on older
5047 	 * machines is a good idea, we don't - just in case it leaves the
5048 	 * machine in an unusable condition.
5049 	 */
5050 	intel_uc_sanitize(dev_priv);
5051 	i915_gem_sanitize(dev_priv);
5052 
5053 	intel_runtime_pm_put(dev_priv);
5054 	return 0;
5055 
5056 err_unlock:
5057 	mutex_unlock(&dev->struct_mutex);
5058 	intel_runtime_pm_put(dev_priv);
5059 	return ret;
5060 }
5061 
5062 void i915_gem_resume(struct drm_i915_private *i915)
5063 {
5064 	WARN_ON(i915->gt.awake);
5065 
5066 	mutex_lock(&i915->drm.struct_mutex);
5067 	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5068 
5069 	i915_gem_restore_gtt_mappings(i915);
5070 	i915_gem_restore_fences(i915);
5071 
5072 	/*
5073 	 * As we didn't flush the kernel context before suspend, we cannot
5074 	 * guarantee that the context image is complete. So let's just reset
5075 	 * it and start again.
5076 	 */
5077 	i915->gt.resume(i915);
5078 
5079 	if (i915_gem_init_hw(i915))
5080 		goto err_wedged;
5081 
5082 	intel_uc_resume(i915);
5083 
5084 	/* Always reload a context for powersaving. */
5085 	if (i915_gem_switch_to_kernel_context(i915))
5086 		goto err_wedged;
5087 
5088 out_unlock:
5089 	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5090 	mutex_unlock(&i915->drm.struct_mutex);
5091 	return;
5092 
5093 err_wedged:
5094 	if (!i915_terminally_wedged(&i915->gpu_error)) {
5095 		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
5096 		i915_gem_set_wedged(i915);
5097 	}
5098 	goto out_unlock;
5099 }
5100 
5101 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5102 {
5103 	if (INTEL_GEN(dev_priv) < 5 ||
5104 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5105 		return;
5106 
5107 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5108 				 DISP_TILE_SURFACE_SWIZZLING);
5109 
5110 	if (IS_GEN5(dev_priv))
5111 		return;
5112 
5113 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5114 	if (IS_GEN6(dev_priv))
5115 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5116 	else if (IS_GEN7(dev_priv))
5117 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5118 	else if (IS_GEN8(dev_priv))
5119 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5120 	else
5121 		BUG();
5122 }
5123 
5124 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5125 {
5126 	I915_WRITE(RING_CTL(base), 0);
5127 	I915_WRITE(RING_HEAD(base), 0);
5128 	I915_WRITE(RING_TAIL(base), 0);
5129 	I915_WRITE(RING_START(base), 0);
5130 }
5131 
5132 static void init_unused_rings(struct drm_i915_private *dev_priv)
5133 {
5134 	if (IS_I830(dev_priv)) {
5135 		init_unused_ring(dev_priv, PRB1_BASE);
5136 		init_unused_ring(dev_priv, SRB0_BASE);
5137 		init_unused_ring(dev_priv, SRB1_BASE);
5138 		init_unused_ring(dev_priv, SRB2_BASE);
5139 		init_unused_ring(dev_priv, SRB3_BASE);
5140 	} else if (IS_GEN2(dev_priv)) {
5141 		init_unused_ring(dev_priv, SRB0_BASE);
5142 		init_unused_ring(dev_priv, SRB1_BASE);
5143 	} else if (IS_GEN3(dev_priv)) {
5144 		init_unused_ring(dev_priv, PRB1_BASE);
5145 		init_unused_ring(dev_priv, PRB2_BASE);
5146 	}
5147 }
5148 
5149 static int __i915_gem_restart_engines(void *data)
5150 {
5151 	struct drm_i915_private *i915 = data;
5152 	struct intel_engine_cs *engine;
5153 	enum intel_engine_id id;
5154 	int err;
5155 
5156 	for_each_engine(engine, i915, id) {
5157 		err = engine->init_hw(engine);
5158 		if (err) {
5159 			DRM_ERROR("Failed to restart %s (%d)\n",
5160 				  engine->name, err);
5161 			return err;
5162 		}
5163 	}
5164 
5165 	return 0;
5166 }
5167 
5168 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
5169 {
5170 	int ret;
5171 
5172 	dev_priv->gt.last_init_time = ktime_get();
5173 
5174 	/* Double layer security blanket, see i915_gem_init() */
5175 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5176 
5177 	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5178 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5179 
5180 	if (IS_HASWELL(dev_priv))
5181 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5182 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5183 
5184 	if (HAS_PCH_NOP(dev_priv)) {
5185 		if (IS_IVYBRIDGE(dev_priv)) {
5186 			u32 temp = I915_READ(GEN7_MSG_CTL);
5187 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5188 			I915_WRITE(GEN7_MSG_CTL, temp);
5189 		} else if (INTEL_GEN(dev_priv) >= 7) {
5190 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5191 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5192 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5193 		}
5194 	}
5195 
5196 	intel_gt_workarounds_apply(dev_priv);
5197 
5198 	i915_gem_init_swizzling(dev_priv);
5199 
5200 	/*
5201 	 * At least 830 can leave some of the unused rings
5202 	 * "active" (ie. head != tail) after resume which
5203 	 * will prevent c3 entry. Makes sure all unused rings
5204 	 * are totally idle.
5205 	 */
5206 	init_unused_rings(dev_priv);
5207 
5208 	BUG_ON(!dev_priv->kernel_context);
5209 	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5210 		ret = -EIO;
5211 		goto out;
5212 	}
5213 
5214 	ret = i915_ppgtt_init_hw(dev_priv);
5215 	if (ret) {
5216 		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5217 		goto out;
5218 	}
5219 
5220 	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
5221 	if (ret) {
5222 		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
5223 		goto out;
5224 	}
5225 
5226 	/* We can't enable contexts until all firmware is loaded */
5227 	ret = intel_uc_init_hw(dev_priv);
5228 	if (ret) {
5229 		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5230 		goto out;
5231 	}
5232 
5233 	intel_mocs_init_l3cc_table(dev_priv);
5234 
5235 	/* Only when the HW is re-initialised, can we replay the requests */
5236 	ret = __i915_gem_restart_engines(dev_priv);
5237 out:
5238 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5239 	return ret;
5240 }
5241 
5242 static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5243 {
5244 	struct i915_gem_context *ctx;
5245 	struct intel_engine_cs *engine;
5246 	enum intel_engine_id id;
5247 	int err;
5248 
5249 	/*
5250 	 * As we reset the gpu during very early sanitisation, the current
5251 	 * register state on the GPU should reflect its defaults values.
5252 	 * We load a context onto the hw (with restore-inhibit), then switch
5253 	 * over to a second context to save that default register state. We
5254 	 * can then prime every new context with that state so they all start
5255 	 * from the same default HW values.
5256 	 */
5257 
5258 	ctx = i915_gem_context_create_kernel(i915, 0);
5259 	if (IS_ERR(ctx))
5260 		return PTR_ERR(ctx);
5261 
5262 	for_each_engine(engine, i915, id) {
5263 		struct i915_request *rq;
5264 
5265 		rq = i915_request_alloc(engine, ctx);
5266 		if (IS_ERR(rq)) {
5267 			err = PTR_ERR(rq);
5268 			goto out_ctx;
5269 		}
5270 
5271 		err = 0;
5272 		if (engine->init_context)
5273 			err = engine->init_context(rq);
5274 
5275 		__i915_request_add(rq, true);
5276 		if (err)
5277 			goto err_active;
5278 	}
5279 
5280 	err = i915_gem_switch_to_kernel_context(i915);
5281 	if (err)
5282 		goto err_active;
5283 
5284 	err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED);
5285 	if (err)
5286 		goto err_active;
5287 
5288 	assert_kernel_context_is_current(i915);
5289 
5290 	for_each_engine(engine, i915, id) {
5291 		struct i915_vma *state;
5292 
5293 		state = to_intel_context(ctx, engine)->state;
5294 		if (!state)
5295 			continue;
5296 
5297 		/*
5298 		 * As we will hold a reference to the logical state, it will
5299 		 * not be torn down with the context, and importantly the
5300 		 * object will hold onto its vma (making it possible for a
5301 		 * stray GTT write to corrupt our defaults). Unmap the vma
5302 		 * from the GTT to prevent such accidents and reclaim the
5303 		 * space.
5304 		 */
5305 		err = i915_vma_unbind(state);
5306 		if (err)
5307 			goto err_active;
5308 
5309 		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5310 		if (err)
5311 			goto err_active;
5312 
5313 		engine->default_state = i915_gem_object_get(state->obj);
5314 	}
5315 
5316 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5317 		unsigned int found = intel_engines_has_context_isolation(i915);
5318 
5319 		/*
5320 		 * Make sure that classes with multiple engine instances all
5321 		 * share the same basic configuration.
5322 		 */
5323 		for_each_engine(engine, i915, id) {
5324 			unsigned int bit = BIT(engine->uabi_class);
5325 			unsigned int expected = engine->default_state ? bit : 0;
5326 
5327 			if ((found & bit) != expected) {
5328 				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5329 					  engine->uabi_class, engine->name);
5330 			}
5331 		}
5332 	}
5333 
5334 out_ctx:
5335 	i915_gem_context_set_closed(ctx);
5336 	i915_gem_context_put(ctx);
5337 	return err;
5338 
5339 err_active:
5340 	/*
5341 	 * If we have to abandon now, we expect the engines to be idle
5342 	 * and ready to be torn-down. First try to flush any remaining
5343 	 * request, ensure we are pointing at the kernel context and
5344 	 * then remove it.
5345 	 */
5346 	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5347 		goto out_ctx;
5348 
5349 	if (WARN_ON(i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED)))
5350 		goto out_ctx;
5351 
5352 	i915_gem_contexts_lost(i915);
5353 	goto out_ctx;
5354 }
5355 
5356 int i915_gem_init(struct drm_i915_private *dev_priv)
5357 {
5358 	int ret;
5359 
5360 	/*
5361 	 * We need to fallback to 4K pages since gvt gtt handling doesn't
5362 	 * support huge page entries - we will need to check either hypervisor
5363 	 * mm can support huge guest page or just do emulation in gvt.
5364 	 */
5365 	if (intel_vgpu_active(dev_priv))
5366 		mkwrite_device_info(dev_priv)->page_sizes =
5367 			I915_GTT_PAGE_SIZE_4K;
5368 
5369 	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5370 
5371 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5372 		dev_priv->gt.resume = intel_lr_context_resume;
5373 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5374 	} else {
5375 		dev_priv->gt.resume = intel_legacy_submission_resume;
5376 		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5377 	}
5378 
5379 	ret = i915_gem_init_userptr(dev_priv);
5380 	if (ret)
5381 		return ret;
5382 
5383 	ret = intel_wopcm_init(&dev_priv->wopcm);
5384 	if (ret)
5385 		return ret;
5386 
5387 	ret = intel_uc_init_misc(dev_priv);
5388 	if (ret)
5389 		return ret;
5390 
5391 	/* This is just a security blanket to placate dragons.
5392 	 * On some systems, we very sporadically observe that the first TLBs
5393 	 * used by the CS may be stale, despite us poking the TLB reset. If
5394 	 * we hold the forcewake during initialisation these problems
5395 	 * just magically go away.
5396 	 */
5397 	mutex_lock(&dev_priv->drm.struct_mutex);
5398 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5399 
5400 	ret = i915_gem_init_ggtt(dev_priv);
5401 	if (ret) {
5402 		GEM_BUG_ON(ret == -EIO);
5403 		goto err_unlock;
5404 	}
5405 
5406 	ret = i915_gem_contexts_init(dev_priv);
5407 	if (ret) {
5408 		GEM_BUG_ON(ret == -EIO);
5409 		goto err_ggtt;
5410 	}
5411 
5412 	ret = intel_engines_init(dev_priv);
5413 	if (ret) {
5414 		GEM_BUG_ON(ret == -EIO);
5415 		goto err_context;
5416 	}
5417 
5418 	intel_init_gt_powersave(dev_priv);
5419 
5420 	ret = intel_uc_init(dev_priv);
5421 	if (ret)
5422 		goto err_pm;
5423 
5424 	ret = i915_gem_init_hw(dev_priv);
5425 	if (ret)
5426 		goto err_uc_init;
5427 
5428 	/*
5429 	 * Despite its name intel_init_clock_gating applies both display
5430 	 * clock gating workarounds; GT mmio workarounds and the occasional
5431 	 * GT power context workaround. Worse, sometimes it includes a context
5432 	 * register workaround which we need to apply before we record the
5433 	 * default HW state for all contexts.
5434 	 *
5435 	 * FIXME: break up the workarounds and apply them at the right time!
5436 	 */
5437 	intel_init_clock_gating(dev_priv);
5438 
5439 	ret = __intel_engines_record_defaults(dev_priv);
5440 	if (ret)
5441 		goto err_init_hw;
5442 
5443 	if (i915_inject_load_failure()) {
5444 		ret = -ENODEV;
5445 		goto err_init_hw;
5446 	}
5447 
5448 	if (i915_inject_load_failure()) {
5449 		ret = -EIO;
5450 		goto err_init_hw;
5451 	}
5452 
5453 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5454 	mutex_unlock(&dev_priv->drm.struct_mutex);
5455 
5456 	return 0;
5457 
5458 	/*
5459 	 * Unwinding is complicated by that we want to handle -EIO to mean
5460 	 * disable GPU submission but keep KMS alive. We want to mark the
5461 	 * HW as irrevisibly wedged, but keep enough state around that the
5462 	 * driver doesn't explode during runtime.
5463 	 */
5464 err_init_hw:
5465 	i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED);
5466 	i915_gem_contexts_lost(dev_priv);
5467 	intel_uc_fini_hw(dev_priv);
5468 err_uc_init:
5469 	intel_uc_fini(dev_priv);
5470 err_pm:
5471 	if (ret != -EIO) {
5472 		intel_cleanup_gt_powersave(dev_priv);
5473 		i915_gem_cleanup_engines(dev_priv);
5474 	}
5475 err_context:
5476 	if (ret != -EIO)
5477 		i915_gem_contexts_fini(dev_priv);
5478 err_ggtt:
5479 err_unlock:
5480 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5481 	mutex_unlock(&dev_priv->drm.struct_mutex);
5482 
5483 	intel_uc_fini_misc(dev_priv);
5484 
5485 	if (ret != -EIO)
5486 		i915_gem_cleanup_userptr(dev_priv);
5487 
5488 	if (ret == -EIO) {
5489 		/*
5490 		 * Allow engine initialisation to fail by marking the GPU as
5491 		 * wedged. But we only want to do this where the GPU is angry,
5492 		 * for all other failure, such as an allocation failure, bail.
5493 		 */
5494 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5495 			DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5496 			i915_gem_set_wedged(dev_priv);
5497 		}
5498 		ret = 0;
5499 	}
5500 
5501 	i915_gem_drain_freed_objects(dev_priv);
5502 	return ret;
5503 }
5504 
5505 void i915_gem_init_mmio(struct drm_i915_private *i915)
5506 {
5507 	i915_gem_sanitize(i915);
5508 }
5509 
5510 void
5511 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5512 {
5513 	struct intel_engine_cs *engine;
5514 	enum intel_engine_id id;
5515 
5516 	for_each_engine(engine, dev_priv, id)
5517 		dev_priv->gt.cleanup_engine(engine);
5518 }
5519 
5520 void
5521 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5522 {
5523 	int i;
5524 
5525 	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5526 	    !IS_CHERRYVIEW(dev_priv))
5527 		dev_priv->num_fence_regs = 32;
5528 	else if (INTEL_GEN(dev_priv) >= 4 ||
5529 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5530 		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5531 		dev_priv->num_fence_regs = 16;
5532 	else
5533 		dev_priv->num_fence_regs = 8;
5534 
5535 	if (intel_vgpu_active(dev_priv))
5536 		dev_priv->num_fence_regs =
5537 				I915_READ(vgtif_reg(avail_rs.fence_num));
5538 
5539 	/* Initialize fence registers to zero */
5540 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
5541 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5542 
5543 		fence->i915 = dev_priv;
5544 		fence->id = i;
5545 		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5546 	}
5547 	i915_gem_restore_fences(dev_priv);
5548 
5549 	i915_gem_detect_bit_6_swizzle(dev_priv);
5550 }
5551 
5552 static void i915_gem_init__mm(struct drm_i915_private *i915)
5553 {
5554 	spin_lock_init(&i915->mm.object_stat_lock);
5555 	spin_lock_init(&i915->mm.obj_lock);
5556 	spin_lock_init(&i915->mm.free_lock);
5557 
5558 	init_llist_head(&i915->mm.free_list);
5559 
5560 	INIT_LIST_HEAD(&i915->mm.unbound_list);
5561 	INIT_LIST_HEAD(&i915->mm.bound_list);
5562 	INIT_LIST_HEAD(&i915->mm.fence_list);
5563 	INIT_LIST_HEAD(&i915->mm.userfault_list);
5564 
5565 	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5566 }
5567 
5568 int i915_gem_init_early(struct drm_i915_private *dev_priv)
5569 {
5570 	int err = -ENOMEM;
5571 
5572 	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5573 	if (!dev_priv->objects)
5574 		goto err_out;
5575 
5576 	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5577 	if (!dev_priv->vmas)
5578 		goto err_objects;
5579 
5580 	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5581 	if (!dev_priv->luts)
5582 		goto err_vmas;
5583 
5584 	dev_priv->requests = KMEM_CACHE(i915_request,
5585 					SLAB_HWCACHE_ALIGN |
5586 					SLAB_RECLAIM_ACCOUNT |
5587 					SLAB_TYPESAFE_BY_RCU);
5588 	if (!dev_priv->requests)
5589 		goto err_luts;
5590 
5591 	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5592 					    SLAB_HWCACHE_ALIGN |
5593 					    SLAB_RECLAIM_ACCOUNT);
5594 	if (!dev_priv->dependencies)
5595 		goto err_requests;
5596 
5597 	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5598 	if (!dev_priv->priorities)
5599 		goto err_dependencies;
5600 
5601 	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5602 	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5603 	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5604 
5605 	i915_gem_init__mm(dev_priv);
5606 
5607 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5608 			  i915_gem_retire_work_handler);
5609 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5610 			  i915_gem_idle_work_handler);
5611 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5612 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5613 
5614 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5615 
5616 	spin_lock_init(&dev_priv->fb_tracking.lock);
5617 
5618 	err = i915_gemfs_init(dev_priv);
5619 	if (err)
5620 		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5621 
5622 	return 0;
5623 
5624 err_dependencies:
5625 	kmem_cache_destroy(dev_priv->dependencies);
5626 err_requests:
5627 	kmem_cache_destroy(dev_priv->requests);
5628 err_luts:
5629 	kmem_cache_destroy(dev_priv->luts);
5630 err_vmas:
5631 	kmem_cache_destroy(dev_priv->vmas);
5632 err_objects:
5633 	kmem_cache_destroy(dev_priv->objects);
5634 err_out:
5635 	return err;
5636 }
5637 
5638 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5639 {
5640 	i915_gem_drain_freed_objects(dev_priv);
5641 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
5642 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5643 	WARN_ON(dev_priv->mm.object_count);
5644 	WARN_ON(!list_empty(&dev_priv->gt.timelines));
5645 
5646 	kmem_cache_destroy(dev_priv->priorities);
5647 	kmem_cache_destroy(dev_priv->dependencies);
5648 	kmem_cache_destroy(dev_priv->requests);
5649 	kmem_cache_destroy(dev_priv->luts);
5650 	kmem_cache_destroy(dev_priv->vmas);
5651 	kmem_cache_destroy(dev_priv->objects);
5652 
5653 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5654 	rcu_barrier();
5655 
5656 	i915_gemfs_fini(dev_priv);
5657 }
5658 
5659 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5660 {
5661 	/* Discard all purgeable objects, let userspace recover those as
5662 	 * required after resuming.
5663 	 */
5664 	i915_gem_shrink_all(dev_priv);
5665 
5666 	return 0;
5667 }
5668 
5669 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5670 {
5671 	struct drm_i915_gem_object *obj;
5672 	struct list_head *phases[] = {
5673 		&dev_priv->mm.unbound_list,
5674 		&dev_priv->mm.bound_list,
5675 		NULL
5676 	}, **p;
5677 
5678 	/* Called just before we write the hibernation image.
5679 	 *
5680 	 * We need to update the domain tracking to reflect that the CPU
5681 	 * will be accessing all the pages to create and restore from the
5682 	 * hibernation, and so upon restoration those pages will be in the
5683 	 * CPU domain.
5684 	 *
5685 	 * To make sure the hibernation image contains the latest state,
5686 	 * we update that state just before writing out the image.
5687 	 *
5688 	 * To try and reduce the hibernation image, we manually shrink
5689 	 * the objects as well, see i915_gem_freeze()
5690 	 */
5691 
5692 	i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5693 	i915_gem_drain_freed_objects(dev_priv);
5694 
5695 	spin_lock(&dev_priv->mm.obj_lock);
5696 	for (p = phases; *p; p++) {
5697 		list_for_each_entry(obj, *p, mm.link)
5698 			__start_cpu_write(obj);
5699 	}
5700 	spin_unlock(&dev_priv->mm.obj_lock);
5701 
5702 	return 0;
5703 }
5704 
5705 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5706 {
5707 	struct drm_i915_file_private *file_priv = file->driver_priv;
5708 	struct i915_request *request;
5709 
5710 	/* Clean up our request list when the client is going away, so that
5711 	 * later retire_requests won't dereference our soon-to-be-gone
5712 	 * file_priv.
5713 	 */
5714 	spin_lock(&file_priv->mm.lock);
5715 	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5716 		request->file_priv = NULL;
5717 	spin_unlock(&file_priv->mm.lock);
5718 }
5719 
5720 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5721 {
5722 	struct drm_i915_file_private *file_priv;
5723 	int ret;
5724 
5725 	DRM_DEBUG("\n");
5726 
5727 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5728 	if (!file_priv)
5729 		return -ENOMEM;
5730 
5731 	file->driver_priv = file_priv;
5732 	file_priv->dev_priv = i915;
5733 	file_priv->file = file;
5734 
5735 	spin_lock_init(&file_priv->mm.lock);
5736 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5737 
5738 	file_priv->bsd_engine = -1;
5739 
5740 	ret = i915_gem_context_open(i915, file);
5741 	if (ret)
5742 		kfree(file_priv);
5743 
5744 	return ret;
5745 }
5746 
5747 /**
5748  * i915_gem_track_fb - update frontbuffer tracking
5749  * @old: current GEM buffer for the frontbuffer slots
5750  * @new: new GEM buffer for the frontbuffer slots
5751  * @frontbuffer_bits: bitmask of frontbuffer slots
5752  *
5753  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5754  * from @old and setting them in @new. Both @old and @new can be NULL.
5755  */
5756 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5757 		       struct drm_i915_gem_object *new,
5758 		       unsigned frontbuffer_bits)
5759 {
5760 	/* Control of individual bits within the mask are guarded by
5761 	 * the owning plane->mutex, i.e. we can never see concurrent
5762 	 * manipulation of individual bits. But since the bitfield as a whole
5763 	 * is updated using RMW, we need to use atomics in order to update
5764 	 * the bits.
5765 	 */
5766 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5767 		     sizeof(atomic_t) * BITS_PER_BYTE);
5768 
5769 	if (old) {
5770 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5771 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5772 	}
5773 
5774 	if (new) {
5775 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5776 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5777 	}
5778 }
5779 
5780 /* Allocate a new GEM object and fill it with the supplied data */
5781 struct drm_i915_gem_object *
5782 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5783 			         const void *data, size_t size)
5784 {
5785 	struct drm_i915_gem_object *obj;
5786 	struct file *file;
5787 	size_t offset;
5788 	int err;
5789 
5790 	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5791 	if (IS_ERR(obj))
5792 		return obj;
5793 
5794 	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5795 
5796 	file = obj->base.filp;
5797 	offset = 0;
5798 	do {
5799 		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5800 		struct page *page;
5801 		void *pgdata, *vaddr;
5802 
5803 		err = pagecache_write_begin(file, file->f_mapping,
5804 					    offset, len, 0,
5805 					    &page, &pgdata);
5806 		if (err < 0)
5807 			goto fail;
5808 
5809 		vaddr = kmap(page);
5810 		memcpy(vaddr, data, len);
5811 		kunmap(page);
5812 
5813 		err = pagecache_write_end(file, file->f_mapping,
5814 					  offset, len, len,
5815 					  page, pgdata);
5816 		if (err < 0)
5817 			goto fail;
5818 
5819 		size -= len;
5820 		data += len;
5821 		offset += len;
5822 	} while (size);
5823 
5824 	return obj;
5825 
5826 fail:
5827 	i915_gem_object_put(obj);
5828 	return ERR_PTR(err);
5829 }
5830 
5831 struct scatterlist *
5832 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5833 		       unsigned int n,
5834 		       unsigned int *offset)
5835 {
5836 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5837 	struct scatterlist *sg;
5838 	unsigned int idx, count;
5839 
5840 	might_sleep();
5841 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5842 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5843 
5844 	/* As we iterate forward through the sg, we record each entry in a
5845 	 * radixtree for quick repeated (backwards) lookups. If we have seen
5846 	 * this index previously, we will have an entry for it.
5847 	 *
5848 	 * Initial lookup is O(N), but this is amortized to O(1) for
5849 	 * sequential page access (where each new request is consecutive
5850 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5851 	 * i.e. O(1) with a large constant!
5852 	 */
5853 	if (n < READ_ONCE(iter->sg_idx))
5854 		goto lookup;
5855 
5856 	mutex_lock(&iter->lock);
5857 
5858 	/* We prefer to reuse the last sg so that repeated lookup of this
5859 	 * (or the subsequent) sg are fast - comparing against the last
5860 	 * sg is faster than going through the radixtree.
5861 	 */
5862 
5863 	sg = iter->sg_pos;
5864 	idx = iter->sg_idx;
5865 	count = __sg_page_count(sg);
5866 
5867 	while (idx + count <= n) {
5868 		unsigned long exception, i;
5869 		int ret;
5870 
5871 		/* If we cannot allocate and insert this entry, or the
5872 		 * individual pages from this range, cancel updating the
5873 		 * sg_idx so that on this lookup we are forced to linearly
5874 		 * scan onwards, but on future lookups we will try the
5875 		 * insertion again (in which case we need to be careful of
5876 		 * the error return reporting that we have already inserted
5877 		 * this index).
5878 		 */
5879 		ret = radix_tree_insert(&iter->radix, idx, sg);
5880 		if (ret && ret != -EEXIST)
5881 			goto scan;
5882 
5883 		exception =
5884 			RADIX_TREE_EXCEPTIONAL_ENTRY |
5885 			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5886 		for (i = 1; i < count; i++) {
5887 			ret = radix_tree_insert(&iter->radix, idx + i,
5888 						(void *)exception);
5889 			if (ret && ret != -EEXIST)
5890 				goto scan;
5891 		}
5892 
5893 		idx += count;
5894 		sg = ____sg_next(sg);
5895 		count = __sg_page_count(sg);
5896 	}
5897 
5898 scan:
5899 	iter->sg_pos = sg;
5900 	iter->sg_idx = idx;
5901 
5902 	mutex_unlock(&iter->lock);
5903 
5904 	if (unlikely(n < idx)) /* insertion completed by another thread */
5905 		goto lookup;
5906 
5907 	/* In case we failed to insert the entry into the radixtree, we need
5908 	 * to look beyond the current sg.
5909 	 */
5910 	while (idx + count <= n) {
5911 		idx += count;
5912 		sg = ____sg_next(sg);
5913 		count = __sg_page_count(sg);
5914 	}
5915 
5916 	*offset = n - idx;
5917 	return sg;
5918 
5919 lookup:
5920 	rcu_read_lock();
5921 
5922 	sg = radix_tree_lookup(&iter->radix, n);
5923 	GEM_BUG_ON(!sg);
5924 
5925 	/* If this index is in the middle of multi-page sg entry,
5926 	 * the radixtree will contain an exceptional entry that points
5927 	 * to the start of that range. We will return the pointer to
5928 	 * the base page and the offset of this page within the
5929 	 * sg entry's range.
5930 	 */
5931 	*offset = 0;
5932 	if (unlikely(radix_tree_exception(sg))) {
5933 		unsigned long base =
5934 			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5935 
5936 		sg = radix_tree_lookup(&iter->radix, base);
5937 		GEM_BUG_ON(!sg);
5938 
5939 		*offset = n - base;
5940 	}
5941 
5942 	rcu_read_unlock();
5943 
5944 	return sg;
5945 }
5946 
5947 struct page *
5948 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5949 {
5950 	struct scatterlist *sg;
5951 	unsigned int offset;
5952 
5953 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5954 
5955 	sg = i915_gem_object_get_sg(obj, n, &offset);
5956 	return nth_page(sg_page(sg), offset);
5957 }
5958 
5959 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5960 struct page *
5961 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5962 			       unsigned int n)
5963 {
5964 	struct page *page;
5965 
5966 	page = i915_gem_object_get_page(obj, n);
5967 	if (!obj->mm.dirty)
5968 		set_page_dirty(page);
5969 
5970 	return page;
5971 }
5972 
5973 dma_addr_t
5974 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5975 				unsigned long n)
5976 {
5977 	struct scatterlist *sg;
5978 	unsigned int offset;
5979 
5980 	sg = i915_gem_object_get_sg(obj, n, &offset);
5981 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5982 }
5983 
5984 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5985 {
5986 	struct sg_table *pages;
5987 	int err;
5988 
5989 	if (align > obj->base.size)
5990 		return -EINVAL;
5991 
5992 	if (obj->ops == &i915_gem_phys_ops)
5993 		return 0;
5994 
5995 	if (obj->ops != &i915_gem_object_ops)
5996 		return -EINVAL;
5997 
5998 	err = i915_gem_object_unbind(obj);
5999 	if (err)
6000 		return err;
6001 
6002 	mutex_lock(&obj->mm.lock);
6003 
6004 	if (obj->mm.madv != I915_MADV_WILLNEED) {
6005 		err = -EFAULT;
6006 		goto err_unlock;
6007 	}
6008 
6009 	if (obj->mm.quirked) {
6010 		err = -EFAULT;
6011 		goto err_unlock;
6012 	}
6013 
6014 	if (obj->mm.mapping) {
6015 		err = -EBUSY;
6016 		goto err_unlock;
6017 	}
6018 
6019 	pages = fetch_and_zero(&obj->mm.pages);
6020 	if (pages) {
6021 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
6022 
6023 		__i915_gem_object_reset_page_iter(obj);
6024 
6025 		spin_lock(&i915->mm.obj_lock);
6026 		list_del(&obj->mm.link);
6027 		spin_unlock(&i915->mm.obj_lock);
6028 	}
6029 
6030 	obj->ops = &i915_gem_phys_ops;
6031 
6032 	err = ____i915_gem_object_get_pages(obj);
6033 	if (err)
6034 		goto err_xfer;
6035 
6036 	/* Perma-pin (until release) the physical set of pages */
6037 	__i915_gem_object_pin_pages(obj);
6038 
6039 	if (!IS_ERR_OR_NULL(pages))
6040 		i915_gem_object_ops.put_pages(obj, pages);
6041 	mutex_unlock(&obj->mm.lock);
6042 	return 0;
6043 
6044 err_xfer:
6045 	obj->ops = &i915_gem_object_ops;
6046 	obj->mm.pages = pages;
6047 err_unlock:
6048 	mutex_unlock(&obj->mm.lock);
6049 	return err;
6050 }
6051 
6052 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6053 #include "selftests/scatterlist.c"
6054 #include "selftests/mock_gem_device.c"
6055 #include "selftests/huge_gem_object.c"
6056 #include "selftests/huge_pages.c"
6057 #include "selftests/i915_gem_object.c"
6058 #include "selftests/i915_gem_coherency.c"
6059 #endif
6060