xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision c496daeb863093a046e0bb8db7265bf45d91775a)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <linux/dma-fence-array.h>
29 #include <linux/kthread.h>
30 #include <linux/dma-resv.h>
31 #include <linux/shmem_fs.h>
32 #include <linux/slab.h>
33 #include <linux/stop_machine.h>
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36 #include <linux/dma-buf.h>
37 #include <linux/mman.h>
38 
39 #include <drm/drm_cache.h>
40 #include <drm/drm_vma_manager.h>
41 
42 #include "display/intel_display.h"
43 #include "display/intel_frontbuffer.h"
44 
45 #include "gem/i915_gem_clflush.h"
46 #include "gem/i915_gem_context.h"
47 #include "gem/i915_gem_ioctls.h"
48 #include "gem/i915_gem_mman.h"
49 #include "gem/i915_gem_pm.h"
50 #include "gem/i915_gem_region.h"
51 #include "gem/i915_gem_userptr.h"
52 #include "gt/intel_engine_user.h"
53 #include "gt/intel_gt.h"
54 #include "gt/intel_gt_pm.h"
55 #include "gt/intel_workarounds.h"
56 
57 #include "i915_drv.h"
58 #include "i915_file_private.h"
59 #include "i915_trace.h"
60 #include "i915_vgpu.h"
61 #include "intel_clock_gating.h"
62 
63 static int
64 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
65 {
66 	int err;
67 
68 	err = mutex_lock_interruptible(&ggtt->vm.mutex);
69 	if (err)
70 		return err;
71 
72 	memset(node, 0, sizeof(*node));
73 	err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
74 					  size, 0, I915_COLOR_UNEVICTABLE,
75 					  0, ggtt->mappable_end,
76 					  DRM_MM_INSERT_LOW);
77 
78 	mutex_unlock(&ggtt->vm.mutex);
79 
80 	return err;
81 }
82 
83 static void
84 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
85 {
86 	mutex_lock(&ggtt->vm.mutex);
87 	drm_mm_remove_node(node);
88 	mutex_unlock(&ggtt->vm.mutex);
89 }
90 
91 int
92 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
93 			    struct drm_file *file)
94 {
95 	struct drm_i915_private *i915 = to_i915(dev);
96 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
97 	struct drm_i915_gem_get_aperture *args = data;
98 	struct i915_vma *vma;
99 	u64 pinned;
100 
101 	if (mutex_lock_interruptible(&ggtt->vm.mutex))
102 		return -EINTR;
103 
104 	pinned = ggtt->vm.reserved;
105 	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
106 		if (i915_vma_is_pinned(vma))
107 			pinned += vma->node.size;
108 
109 	mutex_unlock(&ggtt->vm.mutex);
110 
111 	args->aper_size = ggtt->vm.total;
112 	args->aper_available_size = args->aper_size - pinned;
113 
114 	return 0;
115 }
116 
117 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
118 			   unsigned long flags)
119 {
120 	struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
121 	bool vm_trylock = !!(flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK);
122 	LIST_HEAD(still_in_list);
123 	intel_wakeref_t wakeref;
124 	struct i915_vma *vma;
125 	int ret;
126 
127 	assert_object_held(obj);
128 
129 	if (list_empty(&obj->vma.list))
130 		return 0;
131 
132 	/*
133 	 * As some machines use ACPI to handle runtime-resume callbacks, and
134 	 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
135 	 * as they are required by the shrinker. Ergo, we wake the device up
136 	 * first just in case.
137 	 */
138 	wakeref = intel_runtime_pm_get(rpm);
139 
140 try_again:
141 	ret = 0;
142 	spin_lock(&obj->vma.lock);
143 	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
144 						       struct i915_vma,
145 						       obj_link))) {
146 		list_move_tail(&vma->obj_link, &still_in_list);
147 		if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
148 			continue;
149 
150 		if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
151 			ret = -EBUSY;
152 			break;
153 		}
154 
155 		/*
156 		 * Requiring the vm destructor to take the object lock
157 		 * before destroying a vma would help us eliminate the
158 		 * i915_vm_tryget() here, AND thus also the barrier stuff
159 		 * at the end. That's an easy fix, but sleeping locks in
160 		 * a kthread should generally be avoided.
161 		 */
162 		ret = -EAGAIN;
163 		if (!i915_vm_tryget(vma->vm))
164 			break;
165 
166 		spin_unlock(&obj->vma.lock);
167 
168 		/*
169 		 * Since i915_vma_parked() takes the object lock
170 		 * before vma destruction, it won't race us here,
171 		 * and destroy the vma from under us.
172 		 */
173 
174 		ret = -EBUSY;
175 		if (flags & I915_GEM_OBJECT_UNBIND_ASYNC) {
176 			assert_object_held(vma->obj);
177 			ret = i915_vma_unbind_async(vma, vm_trylock);
178 		}
179 
180 		if (ret == -EBUSY && (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
181 				      !i915_vma_is_active(vma))) {
182 			if (vm_trylock) {
183 				if (mutex_trylock(&vma->vm->mutex)) {
184 					ret = __i915_vma_unbind(vma);
185 					mutex_unlock(&vma->vm->mutex);
186 				}
187 			} else {
188 				ret = i915_vma_unbind(vma);
189 			}
190 		}
191 
192 		i915_vm_put(vma->vm);
193 		spin_lock(&obj->vma.lock);
194 	}
195 	list_splice_init(&still_in_list, &obj->vma.list);
196 	spin_unlock(&obj->vma.lock);
197 
198 	if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
199 		rcu_barrier(); /* flush the i915_vm_release() */
200 		goto try_again;
201 	}
202 
203 	intel_runtime_pm_put(rpm, wakeref);
204 
205 	return ret;
206 }
207 
208 static int
209 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
210 	    bool needs_clflush)
211 {
212 	char *vaddr;
213 	int ret;
214 
215 	vaddr = kmap(page);
216 
217 	if (needs_clflush)
218 		drm_clflush_virt_range(vaddr + offset, len);
219 
220 	ret = __copy_to_user(user_data, vaddr + offset, len);
221 
222 	kunmap(page);
223 
224 	return ret ? -EFAULT : 0;
225 }
226 
227 static int
228 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
229 		     struct drm_i915_gem_pread *args)
230 {
231 	unsigned int needs_clflush;
232 	char __user *user_data;
233 	unsigned long offset;
234 	pgoff_t idx;
235 	u64 remain;
236 	int ret;
237 
238 	ret = i915_gem_object_lock_interruptible(obj, NULL);
239 	if (ret)
240 		return ret;
241 
242 	ret = i915_gem_object_pin_pages(obj);
243 	if (ret)
244 		goto err_unlock;
245 
246 	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
247 	if (ret)
248 		goto err_unpin;
249 
250 	i915_gem_object_finish_access(obj);
251 	i915_gem_object_unlock(obj);
252 
253 	remain = args->size;
254 	user_data = u64_to_user_ptr(args->data_ptr);
255 	offset = offset_in_page(args->offset);
256 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
257 		struct page *page = i915_gem_object_get_page(obj, idx);
258 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
259 
260 		ret = shmem_pread(page, offset, length, user_data,
261 				  needs_clflush);
262 		if (ret)
263 			break;
264 
265 		remain -= length;
266 		user_data += length;
267 		offset = 0;
268 	}
269 
270 	i915_gem_object_unpin_pages(obj);
271 	return ret;
272 
273 err_unpin:
274 	i915_gem_object_unpin_pages(obj);
275 err_unlock:
276 	i915_gem_object_unlock(obj);
277 	return ret;
278 }
279 
280 static inline bool
281 gtt_user_read(struct io_mapping *mapping,
282 	      loff_t base, int offset,
283 	      char __user *user_data, int length)
284 {
285 	void __iomem *vaddr;
286 	unsigned long unwritten;
287 
288 	/* We can use the cpu mem copy function because this is X86. */
289 	vaddr = io_mapping_map_atomic_wc(mapping, base);
290 	unwritten = __copy_to_user_inatomic(user_data,
291 					    (void __force *)vaddr + offset,
292 					    length);
293 	io_mapping_unmap_atomic(vaddr);
294 	if (unwritten) {
295 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
296 		unwritten = copy_to_user(user_data,
297 					 (void __force *)vaddr + offset,
298 					 length);
299 		io_mapping_unmap(vaddr);
300 	}
301 	return unwritten;
302 }
303 
304 static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj,
305 					     struct drm_mm_node *node,
306 					     bool write)
307 {
308 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
309 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
310 	struct i915_vma *vma;
311 	struct i915_gem_ww_ctx ww;
312 	int ret;
313 
314 	i915_gem_ww_ctx_init(&ww, true);
315 retry:
316 	vma = ERR_PTR(-ENODEV);
317 	ret = i915_gem_object_lock(obj, &ww);
318 	if (ret)
319 		goto err_ww;
320 
321 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
322 	if (ret)
323 		goto err_ww;
324 
325 	if (!i915_gem_object_is_tiled(obj))
326 		vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
327 						  PIN_MAPPABLE |
328 						  PIN_NONBLOCK /* NOWARN */ |
329 						  PIN_NOEVICT);
330 	if (vma == ERR_PTR(-EDEADLK)) {
331 		ret = -EDEADLK;
332 		goto err_ww;
333 	} else if (!IS_ERR(vma)) {
334 		node->start = i915_ggtt_offset(vma);
335 		node->flags = 0;
336 	} else {
337 		ret = insert_mappable_node(ggtt, node, PAGE_SIZE);
338 		if (ret)
339 			goto err_ww;
340 		GEM_BUG_ON(!drm_mm_node_allocated(node));
341 		vma = NULL;
342 	}
343 
344 	ret = i915_gem_object_pin_pages(obj);
345 	if (ret) {
346 		if (drm_mm_node_allocated(node)) {
347 			ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
348 			remove_mappable_node(ggtt, node);
349 		} else {
350 			i915_vma_unpin(vma);
351 		}
352 	}
353 
354 err_ww:
355 	if (ret == -EDEADLK) {
356 		ret = i915_gem_ww_ctx_backoff(&ww);
357 		if (!ret)
358 			goto retry;
359 	}
360 	i915_gem_ww_ctx_fini(&ww);
361 
362 	return ret ? ERR_PTR(ret) : vma;
363 }
364 
365 static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj,
366 				 struct drm_mm_node *node,
367 				 struct i915_vma *vma)
368 {
369 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
370 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
371 
372 	i915_gem_object_unpin_pages(obj);
373 	if (drm_mm_node_allocated(node)) {
374 		ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
375 		remove_mappable_node(ggtt, node);
376 	} else {
377 		i915_vma_unpin(vma);
378 	}
379 }
380 
381 static int
382 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
383 		   const struct drm_i915_gem_pread *args)
384 {
385 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
386 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
387 	unsigned long remain, offset;
388 	intel_wakeref_t wakeref;
389 	struct drm_mm_node node;
390 	void __user *user_data;
391 	struct i915_vma *vma;
392 	int ret = 0;
393 
394 	if (overflows_type(args->size, remain) ||
395 	    overflows_type(args->offset, offset))
396 		return -EINVAL;
397 
398 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
399 
400 	vma = i915_gem_gtt_prepare(obj, &node, false);
401 	if (IS_ERR(vma)) {
402 		ret = PTR_ERR(vma);
403 		goto out_rpm;
404 	}
405 
406 	user_data = u64_to_user_ptr(args->data_ptr);
407 	remain = args->size;
408 	offset = args->offset;
409 
410 	while (remain > 0) {
411 		/* Operation in this page
412 		 *
413 		 * page_base = page offset within aperture
414 		 * page_offset = offset within page
415 		 * page_length = bytes to copy for this page
416 		 */
417 		u32 page_base = node.start;
418 		unsigned page_offset = offset_in_page(offset);
419 		unsigned page_length = PAGE_SIZE - page_offset;
420 		page_length = remain < page_length ? remain : page_length;
421 		if (drm_mm_node_allocated(&node)) {
422 			ggtt->vm.insert_page(&ggtt->vm,
423 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
424 					     node.start, I915_CACHE_NONE, 0);
425 		} else {
426 			page_base += offset & PAGE_MASK;
427 		}
428 
429 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
430 				  user_data, page_length)) {
431 			ret = -EFAULT;
432 			break;
433 		}
434 
435 		remain -= page_length;
436 		user_data += page_length;
437 		offset += page_length;
438 	}
439 
440 	i915_gem_gtt_cleanup(obj, &node, vma);
441 out_rpm:
442 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
443 	return ret;
444 }
445 
446 /**
447  * i915_gem_pread_ioctl - Reads data from the object referenced by handle.
448  * @dev: drm device pointer
449  * @data: ioctl data blob
450  * @file: drm file pointer
451  *
452  * On error, the contents of *data are undefined.
453  */
454 int
455 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
456 		     struct drm_file *file)
457 {
458 	struct drm_i915_private *i915 = to_i915(dev);
459 	struct drm_i915_gem_pread *args = data;
460 	struct drm_i915_gem_object *obj;
461 	int ret;
462 
463 	/* PREAD is disallowed for all platforms after TGL-LP.  This also
464 	 * covers all platforms with local memory.
465 	 */
466 	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
467 		return -EOPNOTSUPP;
468 
469 	if (args->size == 0)
470 		return 0;
471 
472 	if (!access_ok(u64_to_user_ptr(args->data_ptr),
473 		       args->size))
474 		return -EFAULT;
475 
476 	obj = i915_gem_object_lookup(file, args->handle);
477 	if (!obj)
478 		return -ENOENT;
479 
480 	/* Bounds check source.  */
481 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
482 		ret = -EINVAL;
483 		goto out;
484 	}
485 
486 	trace_i915_gem_object_pread(obj, args->offset, args->size);
487 	ret = -ENODEV;
488 	if (obj->ops->pread)
489 		ret = obj->ops->pread(obj, args);
490 	if (ret != -ENODEV)
491 		goto out;
492 
493 	ret = i915_gem_object_wait(obj,
494 				   I915_WAIT_INTERRUPTIBLE,
495 				   MAX_SCHEDULE_TIMEOUT);
496 	if (ret)
497 		goto out;
498 
499 	ret = i915_gem_shmem_pread(obj, args);
500 	if (ret == -EFAULT || ret == -ENODEV)
501 		ret = i915_gem_gtt_pread(obj, args);
502 
503 out:
504 	i915_gem_object_put(obj);
505 	return ret;
506 }
507 
508 /* This is the fast write path which cannot handle
509  * page faults in the source data
510  */
511 
512 static inline bool
513 ggtt_write(struct io_mapping *mapping,
514 	   loff_t base, int offset,
515 	   char __user *user_data, int length)
516 {
517 	void __iomem *vaddr;
518 	unsigned long unwritten;
519 
520 	/* We can use the cpu mem copy function because this is X86. */
521 	vaddr = io_mapping_map_atomic_wc(mapping, base);
522 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
523 						      user_data, length);
524 	io_mapping_unmap_atomic(vaddr);
525 	if (unwritten) {
526 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
527 		unwritten = copy_from_user((void __force *)vaddr + offset,
528 					   user_data, length);
529 		io_mapping_unmap(vaddr);
530 	}
531 
532 	return unwritten;
533 }
534 
535 /**
536  * i915_gem_gtt_pwrite_fast - This is the fast pwrite path, where we copy the data directly from the
537  * user into the GTT, uncached.
538  * @obj: i915 GEM object
539  * @args: pwrite arguments structure
540  */
541 static int
542 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
543 			 const struct drm_i915_gem_pwrite *args)
544 {
545 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
546 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
547 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
548 	unsigned long remain, offset;
549 	intel_wakeref_t wakeref;
550 	struct drm_mm_node node;
551 	struct i915_vma *vma;
552 	void __user *user_data;
553 	int ret = 0;
554 
555 	if (overflows_type(args->size, remain) ||
556 	    overflows_type(args->offset, offset))
557 		return -EINVAL;
558 
559 	if (i915_gem_object_has_struct_page(obj)) {
560 		/*
561 		 * Avoid waking the device up if we can fallback, as
562 		 * waking/resuming is very slow (worst-case 10-100 ms
563 		 * depending on PCI sleeps and our own resume time).
564 		 * This easily dwarfs any performance advantage from
565 		 * using the cache bypass of indirect GGTT access.
566 		 */
567 		wakeref = intel_runtime_pm_get_if_in_use(rpm);
568 		if (!wakeref)
569 			return -EFAULT;
570 	} else {
571 		/* No backing pages, no fallback, we must force GGTT access */
572 		wakeref = intel_runtime_pm_get(rpm);
573 	}
574 
575 	vma = i915_gem_gtt_prepare(obj, &node, true);
576 	if (IS_ERR(vma)) {
577 		ret = PTR_ERR(vma);
578 		goto out_rpm;
579 	}
580 
581 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
582 
583 	user_data = u64_to_user_ptr(args->data_ptr);
584 	offset = args->offset;
585 	remain = args->size;
586 	while (remain) {
587 		/* Operation in this page
588 		 *
589 		 * page_base = page offset within aperture
590 		 * page_offset = offset within page
591 		 * page_length = bytes to copy for this page
592 		 */
593 		u32 page_base = node.start;
594 		unsigned int page_offset = offset_in_page(offset);
595 		unsigned int page_length = PAGE_SIZE - page_offset;
596 		page_length = remain < page_length ? remain : page_length;
597 		if (drm_mm_node_allocated(&node)) {
598 			/* flush the write before we modify the GGTT */
599 			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
600 			ggtt->vm.insert_page(&ggtt->vm,
601 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
602 					     node.start, I915_CACHE_NONE, 0);
603 			wmb(); /* flush modifications to the GGTT (insert_page) */
604 		} else {
605 			page_base += offset & PAGE_MASK;
606 		}
607 		/* If we get a fault while copying data, then (presumably) our
608 		 * source page isn't available.  Return the error and we'll
609 		 * retry in the slow path.
610 		 * If the object is non-shmem backed, we retry again with the
611 		 * path that handles page fault.
612 		 */
613 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
614 			       user_data, page_length)) {
615 			ret = -EFAULT;
616 			break;
617 		}
618 
619 		remain -= page_length;
620 		user_data += page_length;
621 		offset += page_length;
622 	}
623 
624 	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
625 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
626 
627 	i915_gem_gtt_cleanup(obj, &node, vma);
628 out_rpm:
629 	intel_runtime_pm_put(rpm, wakeref);
630 	return ret;
631 }
632 
633 /* Per-page copy function for the shmem pwrite fastpath.
634  * Flushes invalid cachelines before writing to the target if
635  * needs_clflush_before is set and flushes out any written cachelines after
636  * writing if needs_clflush is set.
637  */
638 static int
639 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
640 	     bool needs_clflush_before,
641 	     bool needs_clflush_after)
642 {
643 	char *vaddr;
644 	int ret;
645 
646 	vaddr = kmap(page);
647 
648 	if (needs_clflush_before)
649 		drm_clflush_virt_range(vaddr + offset, len);
650 
651 	ret = __copy_from_user(vaddr + offset, user_data, len);
652 	if (!ret && needs_clflush_after)
653 		drm_clflush_virt_range(vaddr + offset, len);
654 
655 	kunmap(page);
656 
657 	return ret ? -EFAULT : 0;
658 }
659 
660 static int
661 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
662 		      const struct drm_i915_gem_pwrite *args)
663 {
664 	unsigned int partial_cacheline_write;
665 	unsigned int needs_clflush;
666 	void __user *user_data;
667 	unsigned long offset;
668 	pgoff_t idx;
669 	u64 remain;
670 	int ret;
671 
672 	ret = i915_gem_object_lock_interruptible(obj, NULL);
673 	if (ret)
674 		return ret;
675 
676 	ret = i915_gem_object_pin_pages(obj);
677 	if (ret)
678 		goto err_unlock;
679 
680 	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
681 	if (ret)
682 		goto err_unpin;
683 
684 	i915_gem_object_finish_access(obj);
685 	i915_gem_object_unlock(obj);
686 
687 	/* If we don't overwrite a cacheline completely we need to be
688 	 * careful to have up-to-date data by first clflushing. Don't
689 	 * overcomplicate things and flush the entire patch.
690 	 */
691 	partial_cacheline_write = 0;
692 	if (needs_clflush & CLFLUSH_BEFORE)
693 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
694 
695 	user_data = u64_to_user_ptr(args->data_ptr);
696 	remain = args->size;
697 	offset = offset_in_page(args->offset);
698 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
699 		struct page *page = i915_gem_object_get_page(obj, idx);
700 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
701 
702 		ret = shmem_pwrite(page, offset, length, user_data,
703 				   (offset | length) & partial_cacheline_write,
704 				   needs_clflush & CLFLUSH_AFTER);
705 		if (ret)
706 			break;
707 
708 		remain -= length;
709 		user_data += length;
710 		offset = 0;
711 	}
712 
713 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
714 
715 	i915_gem_object_unpin_pages(obj);
716 	return ret;
717 
718 err_unpin:
719 	i915_gem_object_unpin_pages(obj);
720 err_unlock:
721 	i915_gem_object_unlock(obj);
722 	return ret;
723 }
724 
725 /**
726  * i915_gem_pwrite_ioctl - Writes data to the object referenced by handle.
727  * @dev: drm device
728  * @data: ioctl data blob
729  * @file: drm file
730  *
731  * On error, the contents of the buffer that were to be modified are undefined.
732  */
733 int
734 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
735 		      struct drm_file *file)
736 {
737 	struct drm_i915_private *i915 = to_i915(dev);
738 	struct drm_i915_gem_pwrite *args = data;
739 	struct drm_i915_gem_object *obj;
740 	int ret;
741 
742 	/* PWRITE is disallowed for all platforms after TGL-LP.  This also
743 	 * covers all platforms with local memory.
744 	 */
745 	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
746 		return -EOPNOTSUPP;
747 
748 	if (args->size == 0)
749 		return 0;
750 
751 	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
752 		return -EFAULT;
753 
754 	obj = i915_gem_object_lookup(file, args->handle);
755 	if (!obj)
756 		return -ENOENT;
757 
758 	/* Bounds check destination. */
759 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
760 		ret = -EINVAL;
761 		goto err;
762 	}
763 
764 	/* Writes not allowed into this read-only object */
765 	if (i915_gem_object_is_readonly(obj)) {
766 		ret = -EINVAL;
767 		goto err;
768 	}
769 
770 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
771 
772 	ret = -ENODEV;
773 	if (obj->ops->pwrite)
774 		ret = obj->ops->pwrite(obj, args);
775 	if (ret != -ENODEV)
776 		goto err;
777 
778 	ret = i915_gem_object_wait(obj,
779 				   I915_WAIT_INTERRUPTIBLE |
780 				   I915_WAIT_ALL,
781 				   MAX_SCHEDULE_TIMEOUT);
782 	if (ret)
783 		goto err;
784 
785 	ret = -EFAULT;
786 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
787 	 * it would end up going through the fenced access, and we'll get
788 	 * different detiling behavior between reading and writing.
789 	 * pread/pwrite currently are reading and writing from the CPU
790 	 * perspective, requiring manual detiling by the client.
791 	 */
792 	if (!i915_gem_object_has_struct_page(obj) ||
793 	    i915_gem_cpu_write_needs_clflush(obj))
794 		/* Note that the gtt paths might fail with non-page-backed user
795 		 * pointers (e.g. gtt mappings when moving data between
796 		 * textures). Fallback to the shmem path in that case.
797 		 */
798 		ret = i915_gem_gtt_pwrite_fast(obj, args);
799 
800 	if (ret == -EFAULT || ret == -ENOSPC) {
801 		if (i915_gem_object_has_struct_page(obj))
802 			ret = i915_gem_shmem_pwrite(obj, args);
803 	}
804 
805 err:
806 	i915_gem_object_put(obj);
807 	return ret;
808 }
809 
810 /**
811  * i915_gem_sw_finish_ioctl - Called when user space has done writes to this buffer
812  * @dev: drm device
813  * @data: ioctl data blob
814  * @file: drm file
815  */
816 int
817 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
818 			 struct drm_file *file)
819 {
820 	struct drm_i915_gem_sw_finish *args = data;
821 	struct drm_i915_gem_object *obj;
822 
823 	obj = i915_gem_object_lookup(file, args->handle);
824 	if (!obj)
825 		return -ENOENT;
826 
827 	/*
828 	 * Proxy objects are barred from CPU access, so there is no
829 	 * need to ban sw_finish as it is a nop.
830 	 */
831 
832 	/* Pinned buffers may be scanout, so flush the cache */
833 	i915_gem_object_flush_if_display(obj);
834 	i915_gem_object_put(obj);
835 
836 	return 0;
837 }
838 
839 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
840 {
841 	struct drm_i915_gem_object *obj, *on;
842 	int i;
843 
844 	/*
845 	 * Only called during RPM suspend. All users of the userfault_list
846 	 * must be holding an RPM wakeref to ensure that this can not
847 	 * run concurrently with themselves (and use the struct_mutex for
848 	 * protection between themselves).
849 	 */
850 
851 	list_for_each_entry_safe(obj, on,
852 				 &to_gt(i915)->ggtt->userfault_list, userfault_link)
853 		__i915_gem_object_release_mmap_gtt(obj);
854 
855 	list_for_each_entry_safe(obj, on,
856 				 &i915->runtime_pm.lmem_userfault_list, userfault_link)
857 		i915_gem_object_runtime_pm_release_mmap_offset(obj);
858 
859 	/*
860 	 * The fence will be lost when the device powers down. If any were
861 	 * in use by hardware (i.e. they are pinned), we should not be powering
862 	 * down! All other fences will be reacquired by the user upon waking.
863 	 */
864 	for (i = 0; i < to_gt(i915)->ggtt->num_fences; i++) {
865 		struct i915_fence_reg *reg = &to_gt(i915)->ggtt->fence_regs[i];
866 
867 		/*
868 		 * Ideally we want to assert that the fence register is not
869 		 * live at this point (i.e. that no piece of code will be
870 		 * trying to write through fence + GTT, as that both violates
871 		 * our tracking of activity and associated locking/barriers,
872 		 * but also is illegal given that the hw is powered down).
873 		 *
874 		 * Previously we used reg->pin_count as a "liveness" indicator.
875 		 * That is not sufficient, and we need a more fine-grained
876 		 * tool if we want to have a sanity check here.
877 		 */
878 
879 		if (!reg->vma)
880 			continue;
881 
882 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
883 		reg->dirty = true;
884 	}
885 }
886 
887 static void discard_ggtt_vma(struct i915_vma *vma)
888 {
889 	struct drm_i915_gem_object *obj = vma->obj;
890 
891 	spin_lock(&obj->vma.lock);
892 	if (!RB_EMPTY_NODE(&vma->obj_node)) {
893 		rb_erase(&vma->obj_node, &obj->vma.tree);
894 		RB_CLEAR_NODE(&vma->obj_node);
895 	}
896 	spin_unlock(&obj->vma.lock);
897 }
898 
899 struct i915_vma *
900 i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
901 			    struct i915_gem_ww_ctx *ww,
902 			    const struct i915_gtt_view *view,
903 			    u64 size, u64 alignment, u64 flags)
904 {
905 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
906 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
907 	struct i915_vma *vma;
908 	int ret;
909 
910 	GEM_WARN_ON(!ww);
911 
912 	if (flags & PIN_MAPPABLE &&
913 	    (!view || view->type == I915_GTT_VIEW_NORMAL)) {
914 		/*
915 		 * If the required space is larger than the available
916 		 * aperture, we will not able to find a slot for the
917 		 * object and unbinding the object now will be in
918 		 * vain. Worse, doing so may cause us to ping-pong
919 		 * the object in and out of the Global GTT and
920 		 * waste a lot of cycles under the mutex.
921 		 */
922 		if (obj->base.size > ggtt->mappable_end)
923 			return ERR_PTR(-E2BIG);
924 
925 		/*
926 		 * If NONBLOCK is set the caller is optimistically
927 		 * trying to cache the full object within the mappable
928 		 * aperture, and *must* have a fallback in place for
929 		 * situations where we cannot bind the object. We
930 		 * can be a little more lax here and use the fallback
931 		 * more often to avoid costly migrations of ourselves
932 		 * and other objects within the aperture.
933 		 *
934 		 * Half-the-aperture is used as a simple heuristic.
935 		 * More interesting would to do search for a free
936 		 * block prior to making the commitment to unbind.
937 		 * That caters for the self-harm case, and with a
938 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
939 		 * we could try to minimise harm to others.
940 		 */
941 		if (flags & PIN_NONBLOCK &&
942 		    obj->base.size > ggtt->mappable_end / 2)
943 			return ERR_PTR(-ENOSPC);
944 	}
945 
946 new_vma:
947 	vma = i915_vma_instance(obj, &ggtt->vm, view);
948 	if (IS_ERR(vma))
949 		return vma;
950 
951 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
952 		if (flags & PIN_NONBLOCK) {
953 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
954 				return ERR_PTR(-ENOSPC);
955 
956 			/*
957 			 * If this misplaced vma is too big (i.e, at-least
958 			 * half the size of aperture) or hasn't been pinned
959 			 * mappable before, we ignore the misplacement when
960 			 * PIN_NONBLOCK is set in order to avoid the ping-pong
961 			 * issue described above. In other words, we try to
962 			 * avoid the costly operation of unbinding this vma
963 			 * from the GGTT and rebinding it back because there
964 			 * may not be enough space for this vma in the aperture.
965 			 */
966 			if (flags & PIN_MAPPABLE &&
967 			    (vma->fence_size > ggtt->mappable_end / 2 ||
968 			    !i915_vma_is_map_and_fenceable(vma)))
969 				return ERR_PTR(-ENOSPC);
970 		}
971 
972 		if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
973 			discard_ggtt_vma(vma);
974 			goto new_vma;
975 		}
976 
977 		ret = i915_vma_unbind(vma);
978 		if (ret)
979 			return ERR_PTR(ret);
980 	}
981 
982 	ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
983 
984 	if (ret)
985 		return ERR_PTR(ret);
986 
987 	if (vma->fence && !i915_gem_object_is_tiled(obj)) {
988 		mutex_lock(&ggtt->vm.mutex);
989 		i915_vma_revoke_fence(vma);
990 		mutex_unlock(&ggtt->vm.mutex);
991 	}
992 
993 	ret = i915_vma_wait_for_bind(vma);
994 	if (ret) {
995 		i915_vma_unpin(vma);
996 		return ERR_PTR(ret);
997 	}
998 
999 	return vma;
1000 }
1001 
1002 struct i915_vma * __must_check
1003 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
1004 			 const struct i915_gtt_view *view,
1005 			 u64 size, u64 alignment, u64 flags)
1006 {
1007 	struct i915_gem_ww_ctx ww;
1008 	struct i915_vma *ret;
1009 	int err;
1010 
1011 	for_i915_gem_ww(&ww, err, true) {
1012 		err = i915_gem_object_lock(obj, &ww);
1013 		if (err)
1014 			continue;
1015 
1016 		ret = i915_gem_object_ggtt_pin_ww(obj, &ww, view, size,
1017 						  alignment, flags);
1018 		if (IS_ERR(ret))
1019 			err = PTR_ERR(ret);
1020 	}
1021 
1022 	return err ? ERR_PTR(err) : ret;
1023 }
1024 
1025 int
1026 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1027 		       struct drm_file *file_priv)
1028 {
1029 	struct drm_i915_private *i915 = to_i915(dev);
1030 	struct drm_i915_gem_madvise *args = data;
1031 	struct drm_i915_gem_object *obj;
1032 	int err;
1033 
1034 	switch (args->madv) {
1035 	case I915_MADV_DONTNEED:
1036 	case I915_MADV_WILLNEED:
1037 	    break;
1038 	default:
1039 	    return -EINVAL;
1040 	}
1041 
1042 	obj = i915_gem_object_lookup(file_priv, args->handle);
1043 	if (!obj)
1044 		return -ENOENT;
1045 
1046 	err = i915_gem_object_lock_interruptible(obj, NULL);
1047 	if (err)
1048 		goto out;
1049 
1050 	if (i915_gem_object_has_pages(obj) &&
1051 	    i915_gem_object_is_tiled(obj) &&
1052 	    i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) {
1053 		if (obj->mm.madv == I915_MADV_WILLNEED) {
1054 			GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
1055 			i915_gem_object_clear_tiling_quirk(obj);
1056 			i915_gem_object_make_shrinkable(obj);
1057 		}
1058 		if (args->madv == I915_MADV_WILLNEED) {
1059 			GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
1060 			i915_gem_object_make_unshrinkable(obj);
1061 			i915_gem_object_set_tiling_quirk(obj);
1062 		}
1063 	}
1064 
1065 	if (obj->mm.madv != __I915_MADV_PURGED) {
1066 		obj->mm.madv = args->madv;
1067 		if (obj->ops->adjust_lru)
1068 			obj->ops->adjust_lru(obj);
1069 	}
1070 
1071 	if (i915_gem_object_has_pages(obj) ||
1072 	    i915_gem_object_has_self_managed_shrink_list(obj)) {
1073 		unsigned long flags;
1074 
1075 		spin_lock_irqsave(&i915->mm.obj_lock, flags);
1076 		if (!list_empty(&obj->mm.link)) {
1077 			struct list_head *list;
1078 
1079 			if (obj->mm.madv != I915_MADV_WILLNEED)
1080 				list = &i915->mm.purge_list;
1081 			else
1082 				list = &i915->mm.shrink_list;
1083 			list_move_tail(&obj->mm.link, list);
1084 
1085 		}
1086 		spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1087 	}
1088 
1089 	/* if the object is no longer attached, discard its backing storage */
1090 	if (obj->mm.madv == I915_MADV_DONTNEED &&
1091 	    !i915_gem_object_has_pages(obj))
1092 		i915_gem_object_truncate(obj);
1093 
1094 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
1095 
1096 	i915_gem_object_unlock(obj);
1097 out:
1098 	i915_gem_object_put(obj);
1099 	return err;
1100 }
1101 
1102 /*
1103  * A single pass should suffice to release all the freed objects (along most
1104  * call paths), but be a little more paranoid in that freeing the objects does
1105  * take a little amount of time, during which the rcu callbacks could have added
1106  * new objects into the freed list, and armed the work again.
1107  */
1108 void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
1109 {
1110 	while (atomic_read(&i915->mm.free_count)) {
1111 		flush_work(&i915->mm.free_work);
1112 		drain_workqueue(i915->bdev.wq);
1113 		rcu_barrier();
1114 	}
1115 }
1116 
1117 /*
1118  * Similar to objects above (see i915_gem_drain_freed-objects), in general we
1119  * have workers that are armed by RCU and then rearm themselves in their
1120  * callbacks. To be paranoid, we need to drain the workqueue a second time after
1121  * waiting for the RCU grace period so that we catch work queued via RCU from
1122  * the first pass. As neither drain_workqueue() nor flush_workqueue() report a
1123  * result, we make an assumption that we only don't require more than 3 passes
1124  * to catch all _recursive_ RCU delayed work.
1125  */
1126 void i915_gem_drain_workqueue(struct drm_i915_private *i915)
1127 {
1128 	int i;
1129 
1130 	for (i = 0; i < 3; i++) {
1131 		flush_workqueue(i915->wq);
1132 		rcu_barrier();
1133 		i915_gem_drain_freed_objects(i915);
1134 	}
1135 
1136 	drain_workqueue(i915->wq);
1137 }
1138 
1139 int i915_gem_init(struct drm_i915_private *dev_priv)
1140 {
1141 	struct intel_gt *gt;
1142 	unsigned int i;
1143 	int ret;
1144 
1145 	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
1146 	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1147 		RUNTIME_INFO(dev_priv)->page_sizes = I915_GTT_PAGE_SIZE_4K;
1148 
1149 	ret = i915_gem_init_userptr(dev_priv);
1150 	if (ret)
1151 		return ret;
1152 
1153 	for_each_gt(gt, dev_priv, i) {
1154 		intel_uc_fetch_firmwares(&gt->uc);
1155 		intel_wopcm_init(&gt->wopcm);
1156 		if (GRAPHICS_VER(dev_priv) >= 8)
1157 			setup_private_pat(gt);
1158 	}
1159 
1160 	ret = i915_init_ggtt(dev_priv);
1161 	if (ret) {
1162 		GEM_BUG_ON(ret == -EIO);
1163 		goto err_unlock;
1164 	}
1165 
1166 	/*
1167 	 * Despite its name intel_clock_gating_init applies both display
1168 	 * clock gating workarounds; GT mmio workarounds and the occasional
1169 	 * GT power context workaround. Worse, sometimes it includes a context
1170 	 * register workaround which we need to apply before we record the
1171 	 * default HW state for all contexts.
1172 	 *
1173 	 * FIXME: break up the workarounds and apply them at the right time!
1174 	 */
1175 	intel_clock_gating_init(dev_priv);
1176 
1177 	for_each_gt(gt, dev_priv, i) {
1178 		ret = intel_gt_init(gt);
1179 		if (ret)
1180 			goto err_unlock;
1181 	}
1182 
1183 	return 0;
1184 
1185 	/*
1186 	 * Unwinding is complicated by that we want to handle -EIO to mean
1187 	 * disable GPU submission but keep KMS alive. We want to mark the
1188 	 * HW as irrevisibly wedged, but keep enough state around that the
1189 	 * driver doesn't explode during runtime.
1190 	 */
1191 err_unlock:
1192 	i915_gem_drain_workqueue(dev_priv);
1193 
1194 	if (ret != -EIO) {
1195 		for_each_gt(gt, dev_priv, i) {
1196 			intel_gt_driver_remove(gt);
1197 			intel_gt_driver_release(gt);
1198 			intel_uc_cleanup_firmwares(&gt->uc);
1199 		}
1200 	}
1201 
1202 	if (ret == -EIO) {
1203 		/*
1204 		 * Allow engines or uC initialisation to fail by marking the GPU
1205 		 * as wedged. But we only want to do this when the GPU is angry,
1206 		 * for all other failure, such as an allocation failure, bail.
1207 		 */
1208 		for_each_gt(gt, dev_priv, i) {
1209 			if (!intel_gt_is_wedged(gt)) {
1210 				i915_probe_error(dev_priv,
1211 						 "Failed to initialize GPU, declaring it wedged!\n");
1212 				intel_gt_set_wedged(gt);
1213 			}
1214 		}
1215 
1216 		/* Minimal basic recovery for KMS */
1217 		ret = i915_ggtt_enable_hw(dev_priv);
1218 		i915_ggtt_resume(to_gt(dev_priv)->ggtt);
1219 		intel_clock_gating_init(dev_priv);
1220 	}
1221 
1222 	i915_gem_drain_freed_objects(dev_priv);
1223 
1224 	return ret;
1225 }
1226 
1227 void i915_gem_driver_register(struct drm_i915_private *i915)
1228 {
1229 	i915_gem_driver_register__shrinker(i915);
1230 
1231 	intel_engines_driver_register(i915);
1232 }
1233 
1234 void i915_gem_driver_unregister(struct drm_i915_private *i915)
1235 {
1236 	i915_gem_driver_unregister__shrinker(i915);
1237 }
1238 
1239 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1240 {
1241 	struct intel_gt *gt;
1242 	unsigned int i;
1243 
1244 	i915_gem_suspend_late(dev_priv);
1245 	for_each_gt(gt, dev_priv, i)
1246 		intel_gt_driver_remove(gt);
1247 	dev_priv->uabi_engines = RB_ROOT;
1248 
1249 	/* Flush any outstanding unpin_work. */
1250 	i915_gem_drain_workqueue(dev_priv);
1251 }
1252 
1253 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1254 {
1255 	struct intel_gt *gt;
1256 	unsigned int i;
1257 
1258 	for_each_gt(gt, dev_priv, i) {
1259 		intel_gt_driver_release(gt);
1260 		intel_uc_cleanup_firmwares(&gt->uc);
1261 	}
1262 
1263 	/* Flush any outstanding work, including i915_gem_context.release_work. */
1264 	i915_gem_drain_workqueue(dev_priv);
1265 
1266 	drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1267 }
1268 
1269 static void i915_gem_init__mm(struct drm_i915_private *i915)
1270 {
1271 	spin_lock_init(&i915->mm.obj_lock);
1272 
1273 	init_llist_head(&i915->mm.free_list);
1274 
1275 	INIT_LIST_HEAD(&i915->mm.purge_list);
1276 	INIT_LIST_HEAD(&i915->mm.shrink_list);
1277 
1278 	i915_gem_init__objects(i915);
1279 }
1280 
1281 void i915_gem_init_early(struct drm_i915_private *dev_priv)
1282 {
1283 	i915_gem_init__mm(dev_priv);
1284 	i915_gem_init__contexts(dev_priv);
1285 
1286 	spin_lock_init(&dev_priv->display.fb_tracking.lock);
1287 }
1288 
1289 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1290 {
1291 	i915_gem_drain_workqueue(dev_priv);
1292 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1293 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1294 	drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1295 }
1296 
1297 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1298 {
1299 	struct drm_i915_file_private *file_priv;
1300 	struct i915_drm_client *client;
1301 	int ret = -ENOMEM;
1302 
1303 	drm_dbg(&i915->drm, "\n");
1304 
1305 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1306 	if (!file_priv)
1307 		goto err_alloc;
1308 
1309 	client = i915_drm_client_add(&i915->clients);
1310 	if (IS_ERR(client)) {
1311 		ret = PTR_ERR(client);
1312 		goto err_client;
1313 	}
1314 
1315 	file->driver_priv = file_priv;
1316 	file_priv->i915 = i915;
1317 	file_priv->file = file;
1318 	file_priv->client = client;
1319 
1320 	file_priv->bsd_engine = -1;
1321 	file_priv->hang_timestamp = jiffies;
1322 
1323 	ret = i915_gem_context_open(i915, file);
1324 	if (ret)
1325 		goto err_context;
1326 
1327 	return 0;
1328 
1329 err_context:
1330 	i915_drm_client_put(client);
1331 err_client:
1332 	kfree(file_priv);
1333 err_alloc:
1334 	return ret;
1335 }
1336 
1337 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1338 #include "selftests/mock_gem_device.c"
1339 #include "selftests/i915_gem.c"
1340 #endif
1341