xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision c127f98ba9aba1818a6ca3a1da5a24653a10d966)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "i915_gemfs.h"
39 #include <linux/dma-fence-array.h>
40 #include <linux/kthread.h>
41 #include <linux/reservation.h>
42 #include <linux/shmem_fs.h>
43 #include <linux/slab.h>
44 #include <linux/stop_machine.h>
45 #include <linux/swap.h>
46 #include <linux/pci.h>
47 #include <linux/dma-buf.h>
48 
49 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
50 
51 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
52 {
53 	if (obj->cache_dirty)
54 		return false;
55 
56 	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
57 		return true;
58 
59 	return obj->pin_global; /* currently in use by HW, keep flushed */
60 }
61 
62 static int
63 insert_mappable_node(struct i915_ggtt *ggtt,
64                      struct drm_mm_node *node, u32 size)
65 {
66 	memset(node, 0, sizeof(*node));
67 	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
68 					   size, 0, I915_COLOR_UNEVICTABLE,
69 					   0, ggtt->mappable_end,
70 					   DRM_MM_INSERT_LOW);
71 }
72 
73 static void
74 remove_mappable_node(struct drm_mm_node *node)
75 {
76 	drm_mm_remove_node(node);
77 }
78 
79 /* some bookkeeping */
80 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
81 				  u64 size)
82 {
83 	spin_lock(&dev_priv->mm.object_stat_lock);
84 	dev_priv->mm.object_count++;
85 	dev_priv->mm.object_memory += size;
86 	spin_unlock(&dev_priv->mm.object_stat_lock);
87 }
88 
89 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
90 				     u64 size)
91 {
92 	spin_lock(&dev_priv->mm.object_stat_lock);
93 	dev_priv->mm.object_count--;
94 	dev_priv->mm.object_memory -= size;
95 	spin_unlock(&dev_priv->mm.object_stat_lock);
96 }
97 
98 static int
99 i915_gem_wait_for_error(struct i915_gpu_error *error)
100 {
101 	int ret;
102 
103 	might_sleep();
104 
105 	/*
106 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
107 	 * userspace. If it takes that long something really bad is going on and
108 	 * we should simply try to bail out and fail as gracefully as possible.
109 	 */
110 	ret = wait_event_interruptible_timeout(error->reset_queue,
111 					       !i915_reset_backoff(error),
112 					       I915_RESET_TIMEOUT);
113 	if (ret == 0) {
114 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
115 		return -EIO;
116 	} else if (ret < 0) {
117 		return ret;
118 	} else {
119 		return 0;
120 	}
121 }
122 
123 int i915_mutex_lock_interruptible(struct drm_device *dev)
124 {
125 	struct drm_i915_private *dev_priv = to_i915(dev);
126 	int ret;
127 
128 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
129 	if (ret)
130 		return ret;
131 
132 	ret = mutex_lock_interruptible(&dev->struct_mutex);
133 	if (ret)
134 		return ret;
135 
136 	return 0;
137 }
138 
139 int
140 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
141 			    struct drm_file *file)
142 {
143 	struct drm_i915_private *dev_priv = to_i915(dev);
144 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
145 	struct drm_i915_gem_get_aperture *args = data;
146 	struct i915_vma *vma;
147 	u64 pinned;
148 
149 	pinned = ggtt->base.reserved;
150 	mutex_lock(&dev->struct_mutex);
151 	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
152 		if (i915_vma_is_pinned(vma))
153 			pinned += vma->node.size;
154 	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
155 		if (i915_vma_is_pinned(vma))
156 			pinned += vma->node.size;
157 	mutex_unlock(&dev->struct_mutex);
158 
159 	args->aper_size = ggtt->base.total;
160 	args->aper_available_size = args->aper_size - pinned;
161 
162 	return 0;
163 }
164 
165 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166 {
167 	struct address_space *mapping = obj->base.filp->f_mapping;
168 	drm_dma_handle_t *phys;
169 	struct sg_table *st;
170 	struct scatterlist *sg;
171 	char *vaddr;
172 	int i;
173 	int err;
174 
175 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
176 		return -EINVAL;
177 
178 	/* Always aligning to the object size, allows a single allocation
179 	 * to handle all possible callers, and given typical object sizes,
180 	 * the alignment of the buddy allocation will naturally match.
181 	 */
182 	phys = drm_pci_alloc(obj->base.dev,
183 			     roundup_pow_of_two(obj->base.size),
184 			     roundup_pow_of_two(obj->base.size));
185 	if (!phys)
186 		return -ENOMEM;
187 
188 	vaddr = phys->vaddr;
189 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
190 		struct page *page;
191 		char *src;
192 
193 		page = shmem_read_mapping_page(mapping, i);
194 		if (IS_ERR(page)) {
195 			err = PTR_ERR(page);
196 			goto err_phys;
197 		}
198 
199 		src = kmap_atomic(page);
200 		memcpy(vaddr, src, PAGE_SIZE);
201 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
202 		kunmap_atomic(src);
203 
204 		put_page(page);
205 		vaddr += PAGE_SIZE;
206 	}
207 
208 	i915_gem_chipset_flush(to_i915(obj->base.dev));
209 
210 	st = kmalloc(sizeof(*st), GFP_KERNEL);
211 	if (!st) {
212 		err = -ENOMEM;
213 		goto err_phys;
214 	}
215 
216 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
217 		kfree(st);
218 		err = -ENOMEM;
219 		goto err_phys;
220 	}
221 
222 	sg = st->sgl;
223 	sg->offset = 0;
224 	sg->length = obj->base.size;
225 
226 	sg_dma_address(sg) = phys->busaddr;
227 	sg_dma_len(sg) = obj->base.size;
228 
229 	obj->phys_handle = phys;
230 
231 	__i915_gem_object_set_pages(obj, st, sg->length);
232 
233 	return 0;
234 
235 err_phys:
236 	drm_pci_free(obj->base.dev, phys);
237 
238 	return err;
239 }
240 
241 static void __start_cpu_write(struct drm_i915_gem_object *obj)
242 {
243 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
244 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
245 	if (cpu_write_needs_clflush(obj))
246 		obj->cache_dirty = true;
247 }
248 
249 static void
250 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
251 				struct sg_table *pages,
252 				bool needs_clflush)
253 {
254 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
255 
256 	if (obj->mm.madv == I915_MADV_DONTNEED)
257 		obj->mm.dirty = false;
258 
259 	if (needs_clflush &&
260 	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
261 	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
262 		drm_clflush_sg(pages);
263 
264 	__start_cpu_write(obj);
265 }
266 
267 static void
268 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
269 			       struct sg_table *pages)
270 {
271 	__i915_gem_object_release_shmem(obj, pages, false);
272 
273 	if (obj->mm.dirty) {
274 		struct address_space *mapping = obj->base.filp->f_mapping;
275 		char *vaddr = obj->phys_handle->vaddr;
276 		int i;
277 
278 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
279 			struct page *page;
280 			char *dst;
281 
282 			page = shmem_read_mapping_page(mapping, i);
283 			if (IS_ERR(page))
284 				continue;
285 
286 			dst = kmap_atomic(page);
287 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
288 			memcpy(dst, vaddr, PAGE_SIZE);
289 			kunmap_atomic(dst);
290 
291 			set_page_dirty(page);
292 			if (obj->mm.madv == I915_MADV_WILLNEED)
293 				mark_page_accessed(page);
294 			put_page(page);
295 			vaddr += PAGE_SIZE;
296 		}
297 		obj->mm.dirty = false;
298 	}
299 
300 	sg_free_table(pages);
301 	kfree(pages);
302 
303 	drm_pci_free(obj->base.dev, obj->phys_handle);
304 }
305 
306 static void
307 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
308 {
309 	i915_gem_object_unpin_pages(obj);
310 }
311 
312 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
313 	.get_pages = i915_gem_object_get_pages_phys,
314 	.put_pages = i915_gem_object_put_pages_phys,
315 	.release = i915_gem_object_release_phys,
316 };
317 
318 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
319 
320 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
321 {
322 	struct i915_vma *vma;
323 	LIST_HEAD(still_in_list);
324 	int ret;
325 
326 	lockdep_assert_held(&obj->base.dev->struct_mutex);
327 
328 	/* Closed vma are removed from the obj->vma_list - but they may
329 	 * still have an active binding on the object. To remove those we
330 	 * must wait for all rendering to complete to the object (as unbinding
331 	 * must anyway), and retire the requests.
332 	 */
333 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
334 	if (ret)
335 		return ret;
336 
337 	while ((vma = list_first_entry_or_null(&obj->vma_list,
338 					       struct i915_vma,
339 					       obj_link))) {
340 		list_move_tail(&vma->obj_link, &still_in_list);
341 		ret = i915_vma_unbind(vma);
342 		if (ret)
343 			break;
344 	}
345 	list_splice(&still_in_list, &obj->vma_list);
346 
347 	return ret;
348 }
349 
350 static long
351 i915_gem_object_wait_fence(struct dma_fence *fence,
352 			   unsigned int flags,
353 			   long timeout,
354 			   struct intel_rps_client *rps_client)
355 {
356 	struct drm_i915_gem_request *rq;
357 
358 	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
359 
360 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
361 		return timeout;
362 
363 	if (!dma_fence_is_i915(fence))
364 		return dma_fence_wait_timeout(fence,
365 					      flags & I915_WAIT_INTERRUPTIBLE,
366 					      timeout);
367 
368 	rq = to_request(fence);
369 	if (i915_gem_request_completed(rq))
370 		goto out;
371 
372 	/* This client is about to stall waiting for the GPU. In many cases
373 	 * this is undesirable and limits the throughput of the system, as
374 	 * many clients cannot continue processing user input/output whilst
375 	 * blocked. RPS autotuning may take tens of milliseconds to respond
376 	 * to the GPU load and thus incurs additional latency for the client.
377 	 * We can circumvent that by promoting the GPU frequency to maximum
378 	 * before we wait. This makes the GPU throttle up much more quickly
379 	 * (good for benchmarks and user experience, e.g. window animations),
380 	 * but at a cost of spending more power processing the workload
381 	 * (bad for battery). Not all clients even want their results
382 	 * immediately and for them we should just let the GPU select its own
383 	 * frequency to maximise efficiency. To prevent a single client from
384 	 * forcing the clocks too high for the whole system, we only allow
385 	 * each client to waitboost once in a busy period.
386 	 */
387 	if (rps_client) {
388 		if (INTEL_GEN(rq->i915) >= 6)
389 			gen6_rps_boost(rq, rps_client);
390 		else
391 			rps_client = NULL;
392 	}
393 
394 	timeout = i915_wait_request(rq, flags, timeout);
395 
396 out:
397 	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
398 		i915_gem_request_retire_upto(rq);
399 
400 	return timeout;
401 }
402 
403 static long
404 i915_gem_object_wait_reservation(struct reservation_object *resv,
405 				 unsigned int flags,
406 				 long timeout,
407 				 struct intel_rps_client *rps_client)
408 {
409 	unsigned int seq = __read_seqcount_begin(&resv->seq);
410 	struct dma_fence *excl;
411 	bool prune_fences = false;
412 
413 	if (flags & I915_WAIT_ALL) {
414 		struct dma_fence **shared;
415 		unsigned int count, i;
416 		int ret;
417 
418 		ret = reservation_object_get_fences_rcu(resv,
419 							&excl, &count, &shared);
420 		if (ret)
421 			return ret;
422 
423 		for (i = 0; i < count; i++) {
424 			timeout = i915_gem_object_wait_fence(shared[i],
425 							     flags, timeout,
426 							     rps_client);
427 			if (timeout < 0)
428 				break;
429 
430 			dma_fence_put(shared[i]);
431 		}
432 
433 		for (; i < count; i++)
434 			dma_fence_put(shared[i]);
435 		kfree(shared);
436 
437 		prune_fences = count && timeout >= 0;
438 	} else {
439 		excl = reservation_object_get_excl_rcu(resv);
440 	}
441 
442 	if (excl && timeout >= 0) {
443 		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
444 						     rps_client);
445 		prune_fences = timeout >= 0;
446 	}
447 
448 	dma_fence_put(excl);
449 
450 	/* Oportunistically prune the fences iff we know they have *all* been
451 	 * signaled and that the reservation object has not been changed (i.e.
452 	 * no new fences have been added).
453 	 */
454 	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
455 		if (reservation_object_trylock(resv)) {
456 			if (!__read_seqcount_retry(&resv->seq, seq))
457 				reservation_object_add_excl_fence(resv, NULL);
458 			reservation_object_unlock(resv);
459 		}
460 	}
461 
462 	return timeout;
463 }
464 
465 static void __fence_set_priority(struct dma_fence *fence, int prio)
466 {
467 	struct drm_i915_gem_request *rq;
468 	struct intel_engine_cs *engine;
469 
470 	if (!dma_fence_is_i915(fence))
471 		return;
472 
473 	rq = to_request(fence);
474 	engine = rq->engine;
475 	if (!engine->schedule)
476 		return;
477 
478 	engine->schedule(rq, prio);
479 }
480 
481 static void fence_set_priority(struct dma_fence *fence, int prio)
482 {
483 	/* Recurse once into a fence-array */
484 	if (dma_fence_is_array(fence)) {
485 		struct dma_fence_array *array = to_dma_fence_array(fence);
486 		int i;
487 
488 		for (i = 0; i < array->num_fences; i++)
489 			__fence_set_priority(array->fences[i], prio);
490 	} else {
491 		__fence_set_priority(fence, prio);
492 	}
493 }
494 
495 int
496 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
497 			      unsigned int flags,
498 			      int prio)
499 {
500 	struct dma_fence *excl;
501 
502 	if (flags & I915_WAIT_ALL) {
503 		struct dma_fence **shared;
504 		unsigned int count, i;
505 		int ret;
506 
507 		ret = reservation_object_get_fences_rcu(obj->resv,
508 							&excl, &count, &shared);
509 		if (ret)
510 			return ret;
511 
512 		for (i = 0; i < count; i++) {
513 			fence_set_priority(shared[i], prio);
514 			dma_fence_put(shared[i]);
515 		}
516 
517 		kfree(shared);
518 	} else {
519 		excl = reservation_object_get_excl_rcu(obj->resv);
520 	}
521 
522 	if (excl) {
523 		fence_set_priority(excl, prio);
524 		dma_fence_put(excl);
525 	}
526 	return 0;
527 }
528 
529 /**
530  * Waits for rendering to the object to be completed
531  * @obj: i915 gem object
532  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
533  * @timeout: how long to wait
534  * @rps: client (user process) to charge for any waitboosting
535  */
536 int
537 i915_gem_object_wait(struct drm_i915_gem_object *obj,
538 		     unsigned int flags,
539 		     long timeout,
540 		     struct intel_rps_client *rps_client)
541 {
542 	might_sleep();
543 #if IS_ENABLED(CONFIG_LOCKDEP)
544 	GEM_BUG_ON(debug_locks &&
545 		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
546 		   !!(flags & I915_WAIT_LOCKED));
547 #endif
548 	GEM_BUG_ON(timeout < 0);
549 
550 	timeout = i915_gem_object_wait_reservation(obj->resv,
551 						   flags, timeout,
552 						   rps_client);
553 	return timeout < 0 ? timeout : 0;
554 }
555 
556 static struct intel_rps_client *to_rps_client(struct drm_file *file)
557 {
558 	struct drm_i915_file_private *fpriv = file->driver_priv;
559 
560 	return &fpriv->rps_client;
561 }
562 
563 static int
564 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
565 		     struct drm_i915_gem_pwrite *args,
566 		     struct drm_file *file)
567 {
568 	void *vaddr = obj->phys_handle->vaddr + args->offset;
569 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
570 
571 	/* We manually control the domain here and pretend that it
572 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
573 	 */
574 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
575 	if (copy_from_user(vaddr, user_data, args->size))
576 		return -EFAULT;
577 
578 	drm_clflush_virt_range(vaddr, args->size);
579 	i915_gem_chipset_flush(to_i915(obj->base.dev));
580 
581 	intel_fb_obj_flush(obj, ORIGIN_CPU);
582 	return 0;
583 }
584 
585 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
586 {
587 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
588 }
589 
590 void i915_gem_object_free(struct drm_i915_gem_object *obj)
591 {
592 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
593 	kmem_cache_free(dev_priv->objects, obj);
594 }
595 
596 static int
597 i915_gem_create(struct drm_file *file,
598 		struct drm_i915_private *dev_priv,
599 		uint64_t size,
600 		uint32_t *handle_p)
601 {
602 	struct drm_i915_gem_object *obj;
603 	int ret;
604 	u32 handle;
605 
606 	size = roundup(size, PAGE_SIZE);
607 	if (size == 0)
608 		return -EINVAL;
609 
610 	/* Allocate the new object */
611 	obj = i915_gem_object_create(dev_priv, size);
612 	if (IS_ERR(obj))
613 		return PTR_ERR(obj);
614 
615 	ret = drm_gem_handle_create(file, &obj->base, &handle);
616 	/* drop reference from allocate - handle holds it now */
617 	i915_gem_object_put(obj);
618 	if (ret)
619 		return ret;
620 
621 	*handle_p = handle;
622 	return 0;
623 }
624 
625 int
626 i915_gem_dumb_create(struct drm_file *file,
627 		     struct drm_device *dev,
628 		     struct drm_mode_create_dumb *args)
629 {
630 	/* have to work out size/pitch and return them */
631 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
632 	args->size = args->pitch * args->height;
633 	return i915_gem_create(file, to_i915(dev),
634 			       args->size, &args->handle);
635 }
636 
637 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
638 {
639 	return !(obj->cache_level == I915_CACHE_NONE ||
640 		 obj->cache_level == I915_CACHE_WT);
641 }
642 
643 /**
644  * Creates a new mm object and returns a handle to it.
645  * @dev: drm device pointer
646  * @data: ioctl data blob
647  * @file: drm file pointer
648  */
649 int
650 i915_gem_create_ioctl(struct drm_device *dev, void *data,
651 		      struct drm_file *file)
652 {
653 	struct drm_i915_private *dev_priv = to_i915(dev);
654 	struct drm_i915_gem_create *args = data;
655 
656 	i915_gem_flush_free_objects(dev_priv);
657 
658 	return i915_gem_create(file, dev_priv,
659 			       args->size, &args->handle);
660 }
661 
662 static inline enum fb_op_origin
663 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
664 {
665 	return (domain == I915_GEM_DOMAIN_GTT ?
666 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
667 }
668 
669 static void
670 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
671 {
672 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
673 
674 	if (!(obj->base.write_domain & flush_domains))
675 		return;
676 
677 	/* No actual flushing is required for the GTT write domain.  Writes
678 	 * to it "immediately" go to main memory as far as we know, so there's
679 	 * no chipset flush.  It also doesn't land in render cache.
680 	 *
681 	 * However, we do have to enforce the order so that all writes through
682 	 * the GTT land before any writes to the device, such as updates to
683 	 * the GATT itself.
684 	 *
685 	 * We also have to wait a bit for the writes to land from the GTT.
686 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
687 	 * timing. This issue has only been observed when switching quickly
688 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
689 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
690 	 * system agents we cannot reproduce this behaviour).
691 	 */
692 	wmb();
693 
694 	switch (obj->base.write_domain) {
695 	case I915_GEM_DOMAIN_GTT:
696 		if (!HAS_LLC(dev_priv)) {
697 			intel_runtime_pm_get(dev_priv);
698 			spin_lock_irq(&dev_priv->uncore.lock);
699 			POSTING_READ_FW(RING_HEAD(dev_priv->engine[RCS]->mmio_base));
700 			spin_unlock_irq(&dev_priv->uncore.lock);
701 			intel_runtime_pm_put(dev_priv);
702 		}
703 
704 		intel_fb_obj_flush(obj,
705 				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
706 		break;
707 
708 	case I915_GEM_DOMAIN_CPU:
709 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
710 		break;
711 
712 	case I915_GEM_DOMAIN_RENDER:
713 		if (gpu_write_needs_clflush(obj))
714 			obj->cache_dirty = true;
715 		break;
716 	}
717 
718 	obj->base.write_domain = 0;
719 }
720 
721 static inline int
722 __copy_to_user_swizzled(char __user *cpu_vaddr,
723 			const char *gpu_vaddr, int gpu_offset,
724 			int length)
725 {
726 	int ret, cpu_offset = 0;
727 
728 	while (length > 0) {
729 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
730 		int this_length = min(cacheline_end - gpu_offset, length);
731 		int swizzled_gpu_offset = gpu_offset ^ 64;
732 
733 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
734 				     gpu_vaddr + swizzled_gpu_offset,
735 				     this_length);
736 		if (ret)
737 			return ret + length;
738 
739 		cpu_offset += this_length;
740 		gpu_offset += this_length;
741 		length -= this_length;
742 	}
743 
744 	return 0;
745 }
746 
747 static inline int
748 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
749 			  const char __user *cpu_vaddr,
750 			  int length)
751 {
752 	int ret, cpu_offset = 0;
753 
754 	while (length > 0) {
755 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
756 		int this_length = min(cacheline_end - gpu_offset, length);
757 		int swizzled_gpu_offset = gpu_offset ^ 64;
758 
759 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
760 				       cpu_vaddr + cpu_offset,
761 				       this_length);
762 		if (ret)
763 			return ret + length;
764 
765 		cpu_offset += this_length;
766 		gpu_offset += this_length;
767 		length -= this_length;
768 	}
769 
770 	return 0;
771 }
772 
773 /*
774  * Pins the specified object's pages and synchronizes the object with
775  * GPU accesses. Sets needs_clflush to non-zero if the caller should
776  * flush the object from the CPU cache.
777  */
778 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
779 				    unsigned int *needs_clflush)
780 {
781 	int ret;
782 
783 	lockdep_assert_held(&obj->base.dev->struct_mutex);
784 
785 	*needs_clflush = 0;
786 	if (!i915_gem_object_has_struct_page(obj))
787 		return -ENODEV;
788 
789 	ret = i915_gem_object_wait(obj,
790 				   I915_WAIT_INTERRUPTIBLE |
791 				   I915_WAIT_LOCKED,
792 				   MAX_SCHEDULE_TIMEOUT,
793 				   NULL);
794 	if (ret)
795 		return ret;
796 
797 	ret = i915_gem_object_pin_pages(obj);
798 	if (ret)
799 		return ret;
800 
801 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
802 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
803 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
804 		if (ret)
805 			goto err_unpin;
806 		else
807 			goto out;
808 	}
809 
810 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
811 
812 	/* If we're not in the cpu read domain, set ourself into the gtt
813 	 * read domain and manually flush cachelines (if required). This
814 	 * optimizes for the case when the gpu will dirty the data
815 	 * anyway again before the next pread happens.
816 	 */
817 	if (!obj->cache_dirty &&
818 	    !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
819 		*needs_clflush = CLFLUSH_BEFORE;
820 
821 out:
822 	/* return with the pages pinned */
823 	return 0;
824 
825 err_unpin:
826 	i915_gem_object_unpin_pages(obj);
827 	return ret;
828 }
829 
830 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
831 				     unsigned int *needs_clflush)
832 {
833 	int ret;
834 
835 	lockdep_assert_held(&obj->base.dev->struct_mutex);
836 
837 	*needs_clflush = 0;
838 	if (!i915_gem_object_has_struct_page(obj))
839 		return -ENODEV;
840 
841 	ret = i915_gem_object_wait(obj,
842 				   I915_WAIT_INTERRUPTIBLE |
843 				   I915_WAIT_LOCKED |
844 				   I915_WAIT_ALL,
845 				   MAX_SCHEDULE_TIMEOUT,
846 				   NULL);
847 	if (ret)
848 		return ret;
849 
850 	ret = i915_gem_object_pin_pages(obj);
851 	if (ret)
852 		return ret;
853 
854 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
855 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
856 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
857 		if (ret)
858 			goto err_unpin;
859 		else
860 			goto out;
861 	}
862 
863 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
864 
865 	/* If we're not in the cpu write domain, set ourself into the
866 	 * gtt write domain and manually flush cachelines (as required).
867 	 * This optimizes for the case when the gpu will use the data
868 	 * right away and we therefore have to clflush anyway.
869 	 */
870 	if (!obj->cache_dirty) {
871 		*needs_clflush |= CLFLUSH_AFTER;
872 
873 		/*
874 		 * Same trick applies to invalidate partially written
875 		 * cachelines read before writing.
876 		 */
877 		if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
878 			*needs_clflush |= CLFLUSH_BEFORE;
879 	}
880 
881 out:
882 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
883 	obj->mm.dirty = true;
884 	/* return with the pages pinned */
885 	return 0;
886 
887 err_unpin:
888 	i915_gem_object_unpin_pages(obj);
889 	return ret;
890 }
891 
892 static void
893 shmem_clflush_swizzled_range(char *addr, unsigned long length,
894 			     bool swizzled)
895 {
896 	if (unlikely(swizzled)) {
897 		unsigned long start = (unsigned long) addr;
898 		unsigned long end = (unsigned long) addr + length;
899 
900 		/* For swizzling simply ensure that we always flush both
901 		 * channels. Lame, but simple and it works. Swizzled
902 		 * pwrite/pread is far from a hotpath - current userspace
903 		 * doesn't use it at all. */
904 		start = round_down(start, 128);
905 		end = round_up(end, 128);
906 
907 		drm_clflush_virt_range((void *)start, end - start);
908 	} else {
909 		drm_clflush_virt_range(addr, length);
910 	}
911 
912 }
913 
914 /* Only difference to the fast-path function is that this can handle bit17
915  * and uses non-atomic copy and kmap functions. */
916 static int
917 shmem_pread_slow(struct page *page, int offset, int length,
918 		 char __user *user_data,
919 		 bool page_do_bit17_swizzling, bool needs_clflush)
920 {
921 	char *vaddr;
922 	int ret;
923 
924 	vaddr = kmap(page);
925 	if (needs_clflush)
926 		shmem_clflush_swizzled_range(vaddr + offset, length,
927 					     page_do_bit17_swizzling);
928 
929 	if (page_do_bit17_swizzling)
930 		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
931 	else
932 		ret = __copy_to_user(user_data, vaddr + offset, length);
933 	kunmap(page);
934 
935 	return ret ? - EFAULT : 0;
936 }
937 
938 static int
939 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
940 	    bool page_do_bit17_swizzling, bool needs_clflush)
941 {
942 	int ret;
943 
944 	ret = -ENODEV;
945 	if (!page_do_bit17_swizzling) {
946 		char *vaddr = kmap_atomic(page);
947 
948 		if (needs_clflush)
949 			drm_clflush_virt_range(vaddr + offset, length);
950 		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
951 		kunmap_atomic(vaddr);
952 	}
953 	if (ret == 0)
954 		return 0;
955 
956 	return shmem_pread_slow(page, offset, length, user_data,
957 				page_do_bit17_swizzling, needs_clflush);
958 }
959 
960 static int
961 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
962 		     struct drm_i915_gem_pread *args)
963 {
964 	char __user *user_data;
965 	u64 remain;
966 	unsigned int obj_do_bit17_swizzling;
967 	unsigned int needs_clflush;
968 	unsigned int idx, offset;
969 	int ret;
970 
971 	obj_do_bit17_swizzling = 0;
972 	if (i915_gem_object_needs_bit17_swizzle(obj))
973 		obj_do_bit17_swizzling = BIT(17);
974 
975 	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
976 	if (ret)
977 		return ret;
978 
979 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
980 	mutex_unlock(&obj->base.dev->struct_mutex);
981 	if (ret)
982 		return ret;
983 
984 	remain = args->size;
985 	user_data = u64_to_user_ptr(args->data_ptr);
986 	offset = offset_in_page(args->offset);
987 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
988 		struct page *page = i915_gem_object_get_page(obj, idx);
989 		int length;
990 
991 		length = remain;
992 		if (offset + length > PAGE_SIZE)
993 			length = PAGE_SIZE - offset;
994 
995 		ret = shmem_pread(page, offset, length, user_data,
996 				  page_to_phys(page) & obj_do_bit17_swizzling,
997 				  needs_clflush);
998 		if (ret)
999 			break;
1000 
1001 		remain -= length;
1002 		user_data += length;
1003 		offset = 0;
1004 	}
1005 
1006 	i915_gem_obj_finish_shmem_access(obj);
1007 	return ret;
1008 }
1009 
1010 static inline bool
1011 gtt_user_read(struct io_mapping *mapping,
1012 	      loff_t base, int offset,
1013 	      char __user *user_data, int length)
1014 {
1015 	void __iomem *vaddr;
1016 	unsigned long unwritten;
1017 
1018 	/* We can use the cpu mem copy function because this is X86. */
1019 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1020 	unwritten = __copy_to_user_inatomic(user_data,
1021 					    (void __force *)vaddr + offset,
1022 					    length);
1023 	io_mapping_unmap_atomic(vaddr);
1024 	if (unwritten) {
1025 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1026 		unwritten = copy_to_user(user_data,
1027 					 (void __force *)vaddr + offset,
1028 					 length);
1029 		io_mapping_unmap(vaddr);
1030 	}
1031 	return unwritten;
1032 }
1033 
1034 static int
1035 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1036 		   const struct drm_i915_gem_pread *args)
1037 {
1038 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1039 	struct i915_ggtt *ggtt = &i915->ggtt;
1040 	struct drm_mm_node node;
1041 	struct i915_vma *vma;
1042 	void __user *user_data;
1043 	u64 remain, offset;
1044 	int ret;
1045 
1046 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1047 	if (ret)
1048 		return ret;
1049 
1050 	intel_runtime_pm_get(i915);
1051 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1052 				       PIN_MAPPABLE |
1053 				       PIN_NONFAULT |
1054 				       PIN_NONBLOCK);
1055 	if (!IS_ERR(vma)) {
1056 		node.start = i915_ggtt_offset(vma);
1057 		node.allocated = false;
1058 		ret = i915_vma_put_fence(vma);
1059 		if (ret) {
1060 			i915_vma_unpin(vma);
1061 			vma = ERR_PTR(ret);
1062 		}
1063 	}
1064 	if (IS_ERR(vma)) {
1065 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1066 		if (ret)
1067 			goto out_unlock;
1068 		GEM_BUG_ON(!node.allocated);
1069 	}
1070 
1071 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1072 	if (ret)
1073 		goto out_unpin;
1074 
1075 	mutex_unlock(&i915->drm.struct_mutex);
1076 
1077 	user_data = u64_to_user_ptr(args->data_ptr);
1078 	remain = args->size;
1079 	offset = args->offset;
1080 
1081 	while (remain > 0) {
1082 		/* Operation in this page
1083 		 *
1084 		 * page_base = page offset within aperture
1085 		 * page_offset = offset within page
1086 		 * page_length = bytes to copy for this page
1087 		 */
1088 		u32 page_base = node.start;
1089 		unsigned page_offset = offset_in_page(offset);
1090 		unsigned page_length = PAGE_SIZE - page_offset;
1091 		page_length = remain < page_length ? remain : page_length;
1092 		if (node.allocated) {
1093 			wmb();
1094 			ggtt->base.insert_page(&ggtt->base,
1095 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1096 					       node.start, I915_CACHE_NONE, 0);
1097 			wmb();
1098 		} else {
1099 			page_base += offset & PAGE_MASK;
1100 		}
1101 
1102 		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1103 				  user_data, page_length)) {
1104 			ret = -EFAULT;
1105 			break;
1106 		}
1107 
1108 		remain -= page_length;
1109 		user_data += page_length;
1110 		offset += page_length;
1111 	}
1112 
1113 	mutex_lock(&i915->drm.struct_mutex);
1114 out_unpin:
1115 	if (node.allocated) {
1116 		wmb();
1117 		ggtt->base.clear_range(&ggtt->base,
1118 				       node.start, node.size);
1119 		remove_mappable_node(&node);
1120 	} else {
1121 		i915_vma_unpin(vma);
1122 	}
1123 out_unlock:
1124 	intel_runtime_pm_put(i915);
1125 	mutex_unlock(&i915->drm.struct_mutex);
1126 
1127 	return ret;
1128 }
1129 
1130 /**
1131  * Reads data from the object referenced by handle.
1132  * @dev: drm device pointer
1133  * @data: ioctl data blob
1134  * @file: drm file pointer
1135  *
1136  * On error, the contents of *data are undefined.
1137  */
1138 int
1139 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1140 		     struct drm_file *file)
1141 {
1142 	struct drm_i915_gem_pread *args = data;
1143 	struct drm_i915_gem_object *obj;
1144 	int ret;
1145 
1146 	if (args->size == 0)
1147 		return 0;
1148 
1149 	if (!access_ok(VERIFY_WRITE,
1150 		       u64_to_user_ptr(args->data_ptr),
1151 		       args->size))
1152 		return -EFAULT;
1153 
1154 	obj = i915_gem_object_lookup(file, args->handle);
1155 	if (!obj)
1156 		return -ENOENT;
1157 
1158 	/* Bounds check source.  */
1159 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1160 		ret = -EINVAL;
1161 		goto out;
1162 	}
1163 
1164 	trace_i915_gem_object_pread(obj, args->offset, args->size);
1165 
1166 	ret = i915_gem_object_wait(obj,
1167 				   I915_WAIT_INTERRUPTIBLE,
1168 				   MAX_SCHEDULE_TIMEOUT,
1169 				   to_rps_client(file));
1170 	if (ret)
1171 		goto out;
1172 
1173 	ret = i915_gem_object_pin_pages(obj);
1174 	if (ret)
1175 		goto out;
1176 
1177 	ret = i915_gem_shmem_pread(obj, args);
1178 	if (ret == -EFAULT || ret == -ENODEV)
1179 		ret = i915_gem_gtt_pread(obj, args);
1180 
1181 	i915_gem_object_unpin_pages(obj);
1182 out:
1183 	i915_gem_object_put(obj);
1184 	return ret;
1185 }
1186 
1187 /* This is the fast write path which cannot handle
1188  * page faults in the source data
1189  */
1190 
1191 static inline bool
1192 ggtt_write(struct io_mapping *mapping,
1193 	   loff_t base, int offset,
1194 	   char __user *user_data, int length)
1195 {
1196 	void __iomem *vaddr;
1197 	unsigned long unwritten;
1198 
1199 	/* We can use the cpu mem copy function because this is X86. */
1200 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1201 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1202 						      user_data, length);
1203 	io_mapping_unmap_atomic(vaddr);
1204 	if (unwritten) {
1205 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1206 		unwritten = copy_from_user((void __force *)vaddr + offset,
1207 					   user_data, length);
1208 		io_mapping_unmap(vaddr);
1209 	}
1210 
1211 	return unwritten;
1212 }
1213 
1214 /**
1215  * This is the fast pwrite path, where we copy the data directly from the
1216  * user into the GTT, uncached.
1217  * @obj: i915 GEM object
1218  * @args: pwrite arguments structure
1219  */
1220 static int
1221 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1222 			 const struct drm_i915_gem_pwrite *args)
1223 {
1224 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1225 	struct i915_ggtt *ggtt = &i915->ggtt;
1226 	struct drm_mm_node node;
1227 	struct i915_vma *vma;
1228 	u64 remain, offset;
1229 	void __user *user_data;
1230 	int ret;
1231 
1232 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1233 	if (ret)
1234 		return ret;
1235 
1236 	if (i915_gem_object_has_struct_page(obj)) {
1237 		/*
1238 		 * Avoid waking the device up if we can fallback, as
1239 		 * waking/resuming is very slow (worst-case 10-100 ms
1240 		 * depending on PCI sleeps and our own resume time).
1241 		 * This easily dwarfs any performance advantage from
1242 		 * using the cache bypass of indirect GGTT access.
1243 		 */
1244 		if (!intel_runtime_pm_get_if_in_use(i915)) {
1245 			ret = -EFAULT;
1246 			goto out_unlock;
1247 		}
1248 	} else {
1249 		/* No backing pages, no fallback, we must force GGTT access */
1250 		intel_runtime_pm_get(i915);
1251 	}
1252 
1253 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1254 				       PIN_MAPPABLE |
1255 				       PIN_NONFAULT |
1256 				       PIN_NONBLOCK);
1257 	if (!IS_ERR(vma)) {
1258 		node.start = i915_ggtt_offset(vma);
1259 		node.allocated = false;
1260 		ret = i915_vma_put_fence(vma);
1261 		if (ret) {
1262 			i915_vma_unpin(vma);
1263 			vma = ERR_PTR(ret);
1264 		}
1265 	}
1266 	if (IS_ERR(vma)) {
1267 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1268 		if (ret)
1269 			goto out_rpm;
1270 		GEM_BUG_ON(!node.allocated);
1271 	}
1272 
1273 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1274 	if (ret)
1275 		goto out_unpin;
1276 
1277 	mutex_unlock(&i915->drm.struct_mutex);
1278 
1279 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1280 
1281 	user_data = u64_to_user_ptr(args->data_ptr);
1282 	offset = args->offset;
1283 	remain = args->size;
1284 	while (remain) {
1285 		/* Operation in this page
1286 		 *
1287 		 * page_base = page offset within aperture
1288 		 * page_offset = offset within page
1289 		 * page_length = bytes to copy for this page
1290 		 */
1291 		u32 page_base = node.start;
1292 		unsigned int page_offset = offset_in_page(offset);
1293 		unsigned int page_length = PAGE_SIZE - page_offset;
1294 		page_length = remain < page_length ? remain : page_length;
1295 		if (node.allocated) {
1296 			wmb(); /* flush the write before we modify the GGTT */
1297 			ggtt->base.insert_page(&ggtt->base,
1298 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1299 					       node.start, I915_CACHE_NONE, 0);
1300 			wmb(); /* flush modifications to the GGTT (insert_page) */
1301 		} else {
1302 			page_base += offset & PAGE_MASK;
1303 		}
1304 		/* If we get a fault while copying data, then (presumably) our
1305 		 * source page isn't available.  Return the error and we'll
1306 		 * retry in the slow path.
1307 		 * If the object is non-shmem backed, we retry again with the
1308 		 * path that handles page fault.
1309 		 */
1310 		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1311 			       user_data, page_length)) {
1312 			ret = -EFAULT;
1313 			break;
1314 		}
1315 
1316 		remain -= page_length;
1317 		user_data += page_length;
1318 		offset += page_length;
1319 	}
1320 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1321 
1322 	mutex_lock(&i915->drm.struct_mutex);
1323 out_unpin:
1324 	if (node.allocated) {
1325 		wmb();
1326 		ggtt->base.clear_range(&ggtt->base,
1327 				       node.start, node.size);
1328 		remove_mappable_node(&node);
1329 	} else {
1330 		i915_vma_unpin(vma);
1331 	}
1332 out_rpm:
1333 	intel_runtime_pm_put(i915);
1334 out_unlock:
1335 	mutex_unlock(&i915->drm.struct_mutex);
1336 	return ret;
1337 }
1338 
1339 static int
1340 shmem_pwrite_slow(struct page *page, int offset, int length,
1341 		  char __user *user_data,
1342 		  bool page_do_bit17_swizzling,
1343 		  bool needs_clflush_before,
1344 		  bool needs_clflush_after)
1345 {
1346 	char *vaddr;
1347 	int ret;
1348 
1349 	vaddr = kmap(page);
1350 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1351 		shmem_clflush_swizzled_range(vaddr + offset, length,
1352 					     page_do_bit17_swizzling);
1353 	if (page_do_bit17_swizzling)
1354 		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1355 						length);
1356 	else
1357 		ret = __copy_from_user(vaddr + offset, user_data, length);
1358 	if (needs_clflush_after)
1359 		shmem_clflush_swizzled_range(vaddr + offset, length,
1360 					     page_do_bit17_swizzling);
1361 	kunmap(page);
1362 
1363 	return ret ? -EFAULT : 0;
1364 }
1365 
1366 /* Per-page copy function for the shmem pwrite fastpath.
1367  * Flushes invalid cachelines before writing to the target if
1368  * needs_clflush_before is set and flushes out any written cachelines after
1369  * writing if needs_clflush is set.
1370  */
1371 static int
1372 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1373 	     bool page_do_bit17_swizzling,
1374 	     bool needs_clflush_before,
1375 	     bool needs_clflush_after)
1376 {
1377 	int ret;
1378 
1379 	ret = -ENODEV;
1380 	if (!page_do_bit17_swizzling) {
1381 		char *vaddr = kmap_atomic(page);
1382 
1383 		if (needs_clflush_before)
1384 			drm_clflush_virt_range(vaddr + offset, len);
1385 		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1386 		if (needs_clflush_after)
1387 			drm_clflush_virt_range(vaddr + offset, len);
1388 
1389 		kunmap_atomic(vaddr);
1390 	}
1391 	if (ret == 0)
1392 		return ret;
1393 
1394 	return shmem_pwrite_slow(page, offset, len, user_data,
1395 				 page_do_bit17_swizzling,
1396 				 needs_clflush_before,
1397 				 needs_clflush_after);
1398 }
1399 
1400 static int
1401 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1402 		      const struct drm_i915_gem_pwrite *args)
1403 {
1404 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1405 	void __user *user_data;
1406 	u64 remain;
1407 	unsigned int obj_do_bit17_swizzling;
1408 	unsigned int partial_cacheline_write;
1409 	unsigned int needs_clflush;
1410 	unsigned int offset, idx;
1411 	int ret;
1412 
1413 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1414 	if (ret)
1415 		return ret;
1416 
1417 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1418 	mutex_unlock(&i915->drm.struct_mutex);
1419 	if (ret)
1420 		return ret;
1421 
1422 	obj_do_bit17_swizzling = 0;
1423 	if (i915_gem_object_needs_bit17_swizzle(obj))
1424 		obj_do_bit17_swizzling = BIT(17);
1425 
1426 	/* If we don't overwrite a cacheline completely we need to be
1427 	 * careful to have up-to-date data by first clflushing. Don't
1428 	 * overcomplicate things and flush the entire patch.
1429 	 */
1430 	partial_cacheline_write = 0;
1431 	if (needs_clflush & CLFLUSH_BEFORE)
1432 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1433 
1434 	user_data = u64_to_user_ptr(args->data_ptr);
1435 	remain = args->size;
1436 	offset = offset_in_page(args->offset);
1437 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1438 		struct page *page = i915_gem_object_get_page(obj, idx);
1439 		int length;
1440 
1441 		length = remain;
1442 		if (offset + length > PAGE_SIZE)
1443 			length = PAGE_SIZE - offset;
1444 
1445 		ret = shmem_pwrite(page, offset, length, user_data,
1446 				   page_to_phys(page) & obj_do_bit17_swizzling,
1447 				   (offset | length) & partial_cacheline_write,
1448 				   needs_clflush & CLFLUSH_AFTER);
1449 		if (ret)
1450 			break;
1451 
1452 		remain -= length;
1453 		user_data += length;
1454 		offset = 0;
1455 	}
1456 
1457 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1458 	i915_gem_obj_finish_shmem_access(obj);
1459 	return ret;
1460 }
1461 
1462 /**
1463  * Writes data to the object referenced by handle.
1464  * @dev: drm device
1465  * @data: ioctl data blob
1466  * @file: drm file
1467  *
1468  * On error, the contents of the buffer that were to be modified are undefined.
1469  */
1470 int
1471 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1472 		      struct drm_file *file)
1473 {
1474 	struct drm_i915_gem_pwrite *args = data;
1475 	struct drm_i915_gem_object *obj;
1476 	int ret;
1477 
1478 	if (args->size == 0)
1479 		return 0;
1480 
1481 	if (!access_ok(VERIFY_READ,
1482 		       u64_to_user_ptr(args->data_ptr),
1483 		       args->size))
1484 		return -EFAULT;
1485 
1486 	obj = i915_gem_object_lookup(file, args->handle);
1487 	if (!obj)
1488 		return -ENOENT;
1489 
1490 	/* Bounds check destination. */
1491 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1492 		ret = -EINVAL;
1493 		goto err;
1494 	}
1495 
1496 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1497 
1498 	ret = -ENODEV;
1499 	if (obj->ops->pwrite)
1500 		ret = obj->ops->pwrite(obj, args);
1501 	if (ret != -ENODEV)
1502 		goto err;
1503 
1504 	ret = i915_gem_object_wait(obj,
1505 				   I915_WAIT_INTERRUPTIBLE |
1506 				   I915_WAIT_ALL,
1507 				   MAX_SCHEDULE_TIMEOUT,
1508 				   to_rps_client(file));
1509 	if (ret)
1510 		goto err;
1511 
1512 	ret = i915_gem_object_pin_pages(obj);
1513 	if (ret)
1514 		goto err;
1515 
1516 	ret = -EFAULT;
1517 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1518 	 * it would end up going through the fenced access, and we'll get
1519 	 * different detiling behavior between reading and writing.
1520 	 * pread/pwrite currently are reading and writing from the CPU
1521 	 * perspective, requiring manual detiling by the client.
1522 	 */
1523 	if (!i915_gem_object_has_struct_page(obj) ||
1524 	    cpu_write_needs_clflush(obj))
1525 		/* Note that the gtt paths might fail with non-page-backed user
1526 		 * pointers (e.g. gtt mappings when moving data between
1527 		 * textures). Fallback to the shmem path in that case.
1528 		 */
1529 		ret = i915_gem_gtt_pwrite_fast(obj, args);
1530 
1531 	if (ret == -EFAULT || ret == -ENOSPC) {
1532 		if (obj->phys_handle)
1533 			ret = i915_gem_phys_pwrite(obj, args, file);
1534 		else
1535 			ret = i915_gem_shmem_pwrite(obj, args);
1536 	}
1537 
1538 	i915_gem_object_unpin_pages(obj);
1539 err:
1540 	i915_gem_object_put(obj);
1541 	return ret;
1542 }
1543 
1544 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1545 {
1546 	struct drm_i915_private *i915;
1547 	struct list_head *list;
1548 	struct i915_vma *vma;
1549 
1550 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1551 
1552 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
1553 		if (!i915_vma_is_ggtt(vma))
1554 			break;
1555 
1556 		if (i915_vma_is_active(vma))
1557 			continue;
1558 
1559 		if (!drm_mm_node_allocated(&vma->node))
1560 			continue;
1561 
1562 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1563 	}
1564 
1565 	i915 = to_i915(obj->base.dev);
1566 	spin_lock(&i915->mm.obj_lock);
1567 	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1568 	list_move_tail(&obj->mm.link, list);
1569 	spin_unlock(&i915->mm.obj_lock);
1570 }
1571 
1572 /**
1573  * Called when user space prepares to use an object with the CPU, either
1574  * through the mmap ioctl's mapping or a GTT mapping.
1575  * @dev: drm device
1576  * @data: ioctl data blob
1577  * @file: drm file
1578  */
1579 int
1580 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1581 			  struct drm_file *file)
1582 {
1583 	struct drm_i915_gem_set_domain *args = data;
1584 	struct drm_i915_gem_object *obj;
1585 	uint32_t read_domains = args->read_domains;
1586 	uint32_t write_domain = args->write_domain;
1587 	int err;
1588 
1589 	/* Only handle setting domains to types used by the CPU. */
1590 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1591 		return -EINVAL;
1592 
1593 	/* Having something in the write domain implies it's in the read
1594 	 * domain, and only that read domain.  Enforce that in the request.
1595 	 */
1596 	if (write_domain != 0 && read_domains != write_domain)
1597 		return -EINVAL;
1598 
1599 	obj = i915_gem_object_lookup(file, args->handle);
1600 	if (!obj)
1601 		return -ENOENT;
1602 
1603 	/* Try to flush the object off the GPU without holding the lock.
1604 	 * We will repeat the flush holding the lock in the normal manner
1605 	 * to catch cases where we are gazumped.
1606 	 */
1607 	err = i915_gem_object_wait(obj,
1608 				   I915_WAIT_INTERRUPTIBLE |
1609 				   (write_domain ? I915_WAIT_ALL : 0),
1610 				   MAX_SCHEDULE_TIMEOUT,
1611 				   to_rps_client(file));
1612 	if (err)
1613 		goto out;
1614 
1615 	/* Flush and acquire obj->pages so that we are coherent through
1616 	 * direct access in memory with previous cached writes through
1617 	 * shmemfs and that our cache domain tracking remains valid.
1618 	 * For example, if the obj->filp was moved to swap without us
1619 	 * being notified and releasing the pages, we would mistakenly
1620 	 * continue to assume that the obj remained out of the CPU cached
1621 	 * domain.
1622 	 */
1623 	err = i915_gem_object_pin_pages(obj);
1624 	if (err)
1625 		goto out;
1626 
1627 	err = i915_mutex_lock_interruptible(dev);
1628 	if (err)
1629 		goto out_unpin;
1630 
1631 	if (read_domains & I915_GEM_DOMAIN_WC)
1632 		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1633 	else if (read_domains & I915_GEM_DOMAIN_GTT)
1634 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1635 	else
1636 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1637 
1638 	/* And bump the LRU for this access */
1639 	i915_gem_object_bump_inactive_ggtt(obj);
1640 
1641 	mutex_unlock(&dev->struct_mutex);
1642 
1643 	if (write_domain != 0)
1644 		intel_fb_obj_invalidate(obj,
1645 					fb_write_origin(obj, write_domain));
1646 
1647 out_unpin:
1648 	i915_gem_object_unpin_pages(obj);
1649 out:
1650 	i915_gem_object_put(obj);
1651 	return err;
1652 }
1653 
1654 /**
1655  * Called when user space has done writes to this buffer
1656  * @dev: drm device
1657  * @data: ioctl data blob
1658  * @file: drm file
1659  */
1660 int
1661 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1662 			 struct drm_file *file)
1663 {
1664 	struct drm_i915_gem_sw_finish *args = data;
1665 	struct drm_i915_gem_object *obj;
1666 
1667 	obj = i915_gem_object_lookup(file, args->handle);
1668 	if (!obj)
1669 		return -ENOENT;
1670 
1671 	/* Pinned buffers may be scanout, so flush the cache */
1672 	i915_gem_object_flush_if_display(obj);
1673 	i915_gem_object_put(obj);
1674 
1675 	return 0;
1676 }
1677 
1678 /**
1679  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1680  *			 it is mapped to.
1681  * @dev: drm device
1682  * @data: ioctl data blob
1683  * @file: drm file
1684  *
1685  * While the mapping holds a reference on the contents of the object, it doesn't
1686  * imply a ref on the object itself.
1687  *
1688  * IMPORTANT:
1689  *
1690  * DRM driver writers who look a this function as an example for how to do GEM
1691  * mmap support, please don't implement mmap support like here. The modern way
1692  * to implement DRM mmap support is with an mmap offset ioctl (like
1693  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1694  * That way debug tooling like valgrind will understand what's going on, hiding
1695  * the mmap call in a driver private ioctl will break that. The i915 driver only
1696  * does cpu mmaps this way because we didn't know better.
1697  */
1698 int
1699 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1700 		    struct drm_file *file)
1701 {
1702 	struct drm_i915_gem_mmap *args = data;
1703 	struct drm_i915_gem_object *obj;
1704 	unsigned long addr;
1705 
1706 	if (args->flags & ~(I915_MMAP_WC))
1707 		return -EINVAL;
1708 
1709 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1710 		return -ENODEV;
1711 
1712 	obj = i915_gem_object_lookup(file, args->handle);
1713 	if (!obj)
1714 		return -ENOENT;
1715 
1716 	/* prime objects have no backing filp to GEM mmap
1717 	 * pages from.
1718 	 */
1719 	if (!obj->base.filp) {
1720 		i915_gem_object_put(obj);
1721 		return -EINVAL;
1722 	}
1723 
1724 	addr = vm_mmap(obj->base.filp, 0, args->size,
1725 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1726 		       args->offset);
1727 	if (args->flags & I915_MMAP_WC) {
1728 		struct mm_struct *mm = current->mm;
1729 		struct vm_area_struct *vma;
1730 
1731 		if (down_write_killable(&mm->mmap_sem)) {
1732 			i915_gem_object_put(obj);
1733 			return -EINTR;
1734 		}
1735 		vma = find_vma(mm, addr);
1736 		if (vma)
1737 			vma->vm_page_prot =
1738 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1739 		else
1740 			addr = -ENOMEM;
1741 		up_write(&mm->mmap_sem);
1742 
1743 		/* This may race, but that's ok, it only gets set */
1744 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1745 	}
1746 	i915_gem_object_put(obj);
1747 	if (IS_ERR((void *)addr))
1748 		return addr;
1749 
1750 	args->addr_ptr = (uint64_t) addr;
1751 
1752 	return 0;
1753 }
1754 
1755 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1756 {
1757 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1758 }
1759 
1760 /**
1761  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1762  *
1763  * A history of the GTT mmap interface:
1764  *
1765  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1766  *     aligned and suitable for fencing, and still fit into the available
1767  *     mappable space left by the pinned display objects. A classic problem
1768  *     we called the page-fault-of-doom where we would ping-pong between
1769  *     two objects that could not fit inside the GTT and so the memcpy
1770  *     would page one object in at the expense of the other between every
1771  *     single byte.
1772  *
1773  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1774  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1775  *     object is too large for the available space (or simply too large
1776  *     for the mappable aperture!), a view is created instead and faulted
1777  *     into userspace. (This view is aligned and sized appropriately for
1778  *     fenced access.)
1779  *
1780  * 2 - Recognise WC as a separate cache domain so that we can flush the
1781  *     delayed writes via GTT before performing direct access via WC.
1782  *
1783  * Restrictions:
1784  *
1785  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1786  *    hangs on some architectures, corruption on others. An attempt to service
1787  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1788  *
1789  *  * the object must be able to fit into RAM (physical memory, though no
1790  *    limited to the mappable aperture).
1791  *
1792  *
1793  * Caveats:
1794  *
1795  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1796  *    all data to system memory. Subsequent access will not be synchronized.
1797  *
1798  *  * all mappings are revoked on runtime device suspend.
1799  *
1800  *  * there are only 8, 16 or 32 fence registers to share between all users
1801  *    (older machines require fence register for display and blitter access
1802  *    as well). Contention of the fence registers will cause the previous users
1803  *    to be unmapped and any new access will generate new page faults.
1804  *
1805  *  * running out of memory while servicing a fault may generate a SIGBUS,
1806  *    rather than the expected SIGSEGV.
1807  */
1808 int i915_gem_mmap_gtt_version(void)
1809 {
1810 	return 2;
1811 }
1812 
1813 static inline struct i915_ggtt_view
1814 compute_partial_view(struct drm_i915_gem_object *obj,
1815 		     pgoff_t page_offset,
1816 		     unsigned int chunk)
1817 {
1818 	struct i915_ggtt_view view;
1819 
1820 	if (i915_gem_object_is_tiled(obj))
1821 		chunk = roundup(chunk, tile_row_pages(obj));
1822 
1823 	view.type = I915_GGTT_VIEW_PARTIAL;
1824 	view.partial.offset = rounddown(page_offset, chunk);
1825 	view.partial.size =
1826 		min_t(unsigned int, chunk,
1827 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1828 
1829 	/* If the partial covers the entire object, just create a normal VMA. */
1830 	if (chunk >= obj->base.size >> PAGE_SHIFT)
1831 		view.type = I915_GGTT_VIEW_NORMAL;
1832 
1833 	return view;
1834 }
1835 
1836 /**
1837  * i915_gem_fault - fault a page into the GTT
1838  * @vmf: fault info
1839  *
1840  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1841  * from userspace.  The fault handler takes care of binding the object to
1842  * the GTT (if needed), allocating and programming a fence register (again,
1843  * only if needed based on whether the old reg is still valid or the object
1844  * is tiled) and inserting a new PTE into the faulting process.
1845  *
1846  * Note that the faulting process may involve evicting existing objects
1847  * from the GTT and/or fence registers to make room.  So performance may
1848  * suffer if the GTT working set is large or there are few fence registers
1849  * left.
1850  *
1851  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1852  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1853  */
1854 int i915_gem_fault(struct vm_fault *vmf)
1855 {
1856 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1857 	struct vm_area_struct *area = vmf->vma;
1858 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1859 	struct drm_device *dev = obj->base.dev;
1860 	struct drm_i915_private *dev_priv = to_i915(dev);
1861 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1862 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1863 	struct i915_vma *vma;
1864 	pgoff_t page_offset;
1865 	unsigned int flags;
1866 	int ret;
1867 
1868 	/* We don't use vmf->pgoff since that has the fake offset */
1869 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1870 
1871 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1872 
1873 	/* Try to flush the object off the GPU first without holding the lock.
1874 	 * Upon acquiring the lock, we will perform our sanity checks and then
1875 	 * repeat the flush holding the lock in the normal manner to catch cases
1876 	 * where we are gazumped.
1877 	 */
1878 	ret = i915_gem_object_wait(obj,
1879 				   I915_WAIT_INTERRUPTIBLE,
1880 				   MAX_SCHEDULE_TIMEOUT,
1881 				   NULL);
1882 	if (ret)
1883 		goto err;
1884 
1885 	ret = i915_gem_object_pin_pages(obj);
1886 	if (ret)
1887 		goto err;
1888 
1889 	intel_runtime_pm_get(dev_priv);
1890 
1891 	ret = i915_mutex_lock_interruptible(dev);
1892 	if (ret)
1893 		goto err_rpm;
1894 
1895 	/* Access to snoopable pages through the GTT is incoherent. */
1896 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1897 		ret = -EFAULT;
1898 		goto err_unlock;
1899 	}
1900 
1901 	/* If the object is smaller than a couple of partial vma, it is
1902 	 * not worth only creating a single partial vma - we may as well
1903 	 * clear enough space for the full object.
1904 	 */
1905 	flags = PIN_MAPPABLE;
1906 	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1907 		flags |= PIN_NONBLOCK | PIN_NONFAULT;
1908 
1909 	/* Now pin it into the GTT as needed */
1910 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1911 	if (IS_ERR(vma)) {
1912 		/* Use a partial view if it is bigger than available space */
1913 		struct i915_ggtt_view view =
1914 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1915 
1916 		/* Userspace is now writing through an untracked VMA, abandon
1917 		 * all hope that the hardware is able to track future writes.
1918 		 */
1919 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1920 
1921 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1922 	}
1923 	if (IS_ERR(vma)) {
1924 		ret = PTR_ERR(vma);
1925 		goto err_unlock;
1926 	}
1927 
1928 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1929 	if (ret)
1930 		goto err_unpin;
1931 
1932 	ret = i915_vma_pin_fence(vma);
1933 	if (ret)
1934 		goto err_unpin;
1935 
1936 	/* Finally, remap it using the new GTT offset */
1937 	ret = remap_io_mapping(area,
1938 			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1939 			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1940 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1941 			       &ggtt->mappable);
1942 	if (ret)
1943 		goto err_fence;
1944 
1945 	/* Mark as being mmapped into userspace for later revocation */
1946 	assert_rpm_wakelock_held(dev_priv);
1947 	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
1948 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1949 	GEM_BUG_ON(!obj->userfault_count);
1950 
1951 err_fence:
1952 	i915_vma_unpin_fence(vma);
1953 err_unpin:
1954 	__i915_vma_unpin(vma);
1955 err_unlock:
1956 	mutex_unlock(&dev->struct_mutex);
1957 err_rpm:
1958 	intel_runtime_pm_put(dev_priv);
1959 	i915_gem_object_unpin_pages(obj);
1960 err:
1961 	switch (ret) {
1962 	case -EIO:
1963 		/*
1964 		 * We eat errors when the gpu is terminally wedged to avoid
1965 		 * userspace unduly crashing (gl has no provisions for mmaps to
1966 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1967 		 * and so needs to be reported.
1968 		 */
1969 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1970 			ret = VM_FAULT_SIGBUS;
1971 			break;
1972 		}
1973 	case -EAGAIN:
1974 		/*
1975 		 * EAGAIN means the gpu is hung and we'll wait for the error
1976 		 * handler to reset everything when re-faulting in
1977 		 * i915_mutex_lock_interruptible.
1978 		 */
1979 	case 0:
1980 	case -ERESTARTSYS:
1981 	case -EINTR:
1982 	case -EBUSY:
1983 		/*
1984 		 * EBUSY is ok: this just means that another thread
1985 		 * already did the job.
1986 		 */
1987 		ret = VM_FAULT_NOPAGE;
1988 		break;
1989 	case -ENOMEM:
1990 		ret = VM_FAULT_OOM;
1991 		break;
1992 	case -ENOSPC:
1993 	case -EFAULT:
1994 		ret = VM_FAULT_SIGBUS;
1995 		break;
1996 	default:
1997 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1998 		ret = VM_FAULT_SIGBUS;
1999 		break;
2000 	}
2001 	return ret;
2002 }
2003 
2004 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2005 {
2006 	struct i915_vma *vma;
2007 
2008 	GEM_BUG_ON(!obj->userfault_count);
2009 
2010 	obj->userfault_count = 0;
2011 	list_del(&obj->userfault_link);
2012 	drm_vma_node_unmap(&obj->base.vma_node,
2013 			   obj->base.dev->anon_inode->i_mapping);
2014 
2015 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
2016 		if (!i915_vma_is_ggtt(vma))
2017 			break;
2018 
2019 		i915_vma_unset_userfault(vma);
2020 	}
2021 }
2022 
2023 /**
2024  * i915_gem_release_mmap - remove physical page mappings
2025  * @obj: obj in question
2026  *
2027  * Preserve the reservation of the mmapping with the DRM core code, but
2028  * relinquish ownership of the pages back to the system.
2029  *
2030  * It is vital that we remove the page mapping if we have mapped a tiled
2031  * object through the GTT and then lose the fence register due to
2032  * resource pressure. Similarly if the object has been moved out of the
2033  * aperture, than pages mapped into userspace must be revoked. Removing the
2034  * mapping will then trigger a page fault on the next user access, allowing
2035  * fixup by i915_gem_fault().
2036  */
2037 void
2038 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2039 {
2040 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2041 
2042 	/* Serialisation between user GTT access and our code depends upon
2043 	 * revoking the CPU's PTE whilst the mutex is held. The next user
2044 	 * pagefault then has to wait until we release the mutex.
2045 	 *
2046 	 * Note that RPM complicates somewhat by adding an additional
2047 	 * requirement that operations to the GGTT be made holding the RPM
2048 	 * wakeref.
2049 	 */
2050 	lockdep_assert_held(&i915->drm.struct_mutex);
2051 	intel_runtime_pm_get(i915);
2052 
2053 	if (!obj->userfault_count)
2054 		goto out;
2055 
2056 	__i915_gem_object_release_mmap(obj);
2057 
2058 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
2059 	 * memory transactions from userspace before we return. The TLB
2060 	 * flushing implied above by changing the PTE above *should* be
2061 	 * sufficient, an extra barrier here just provides us with a bit
2062 	 * of paranoid documentation about our requirement to serialise
2063 	 * memory writes before touching registers / GSM.
2064 	 */
2065 	wmb();
2066 
2067 out:
2068 	intel_runtime_pm_put(i915);
2069 }
2070 
2071 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2072 {
2073 	struct drm_i915_gem_object *obj, *on;
2074 	int i;
2075 
2076 	/*
2077 	 * Only called during RPM suspend. All users of the userfault_list
2078 	 * must be holding an RPM wakeref to ensure that this can not
2079 	 * run concurrently with themselves (and use the struct_mutex for
2080 	 * protection between themselves).
2081 	 */
2082 
2083 	list_for_each_entry_safe(obj, on,
2084 				 &dev_priv->mm.userfault_list, userfault_link)
2085 		__i915_gem_object_release_mmap(obj);
2086 
2087 	/* The fence will be lost when the device powers down. If any were
2088 	 * in use by hardware (i.e. they are pinned), we should not be powering
2089 	 * down! All other fences will be reacquired by the user upon waking.
2090 	 */
2091 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2092 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2093 
2094 		/* Ideally we want to assert that the fence register is not
2095 		 * live at this point (i.e. that no piece of code will be
2096 		 * trying to write through fence + GTT, as that both violates
2097 		 * our tracking of activity and associated locking/barriers,
2098 		 * but also is illegal given that the hw is powered down).
2099 		 *
2100 		 * Previously we used reg->pin_count as a "liveness" indicator.
2101 		 * That is not sufficient, and we need a more fine-grained
2102 		 * tool if we want to have a sanity check here.
2103 		 */
2104 
2105 		if (!reg->vma)
2106 			continue;
2107 
2108 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2109 		reg->dirty = true;
2110 	}
2111 }
2112 
2113 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2114 {
2115 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2116 	int err;
2117 
2118 	err = drm_gem_create_mmap_offset(&obj->base);
2119 	if (likely(!err))
2120 		return 0;
2121 
2122 	/* Attempt to reap some mmap space from dead objects */
2123 	do {
2124 		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2125 		if (err)
2126 			break;
2127 
2128 		i915_gem_drain_freed_objects(dev_priv);
2129 		err = drm_gem_create_mmap_offset(&obj->base);
2130 		if (!err)
2131 			break;
2132 
2133 	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2134 
2135 	return err;
2136 }
2137 
2138 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2139 {
2140 	drm_gem_free_mmap_offset(&obj->base);
2141 }
2142 
2143 int
2144 i915_gem_mmap_gtt(struct drm_file *file,
2145 		  struct drm_device *dev,
2146 		  uint32_t handle,
2147 		  uint64_t *offset)
2148 {
2149 	struct drm_i915_gem_object *obj;
2150 	int ret;
2151 
2152 	obj = i915_gem_object_lookup(file, handle);
2153 	if (!obj)
2154 		return -ENOENT;
2155 
2156 	ret = i915_gem_object_create_mmap_offset(obj);
2157 	if (ret == 0)
2158 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2159 
2160 	i915_gem_object_put(obj);
2161 	return ret;
2162 }
2163 
2164 /**
2165  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2166  * @dev: DRM device
2167  * @data: GTT mapping ioctl data
2168  * @file: GEM object info
2169  *
2170  * Simply returns the fake offset to userspace so it can mmap it.
2171  * The mmap call will end up in drm_gem_mmap(), which will set things
2172  * up so we can get faults in the handler above.
2173  *
2174  * The fault handler will take care of binding the object into the GTT
2175  * (since it may have been evicted to make room for something), allocating
2176  * a fence register, and mapping the appropriate aperture address into
2177  * userspace.
2178  */
2179 int
2180 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2181 			struct drm_file *file)
2182 {
2183 	struct drm_i915_gem_mmap_gtt *args = data;
2184 
2185 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2186 }
2187 
2188 /* Immediately discard the backing storage */
2189 static void
2190 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2191 {
2192 	i915_gem_object_free_mmap_offset(obj);
2193 
2194 	if (obj->base.filp == NULL)
2195 		return;
2196 
2197 	/* Our goal here is to return as much of the memory as
2198 	 * is possible back to the system as we are called from OOM.
2199 	 * To do this we must instruct the shmfs to drop all of its
2200 	 * backing pages, *now*.
2201 	 */
2202 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2203 	obj->mm.madv = __I915_MADV_PURGED;
2204 	obj->mm.pages = ERR_PTR(-EFAULT);
2205 }
2206 
2207 /* Try to discard unwanted pages */
2208 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2209 {
2210 	struct address_space *mapping;
2211 
2212 	lockdep_assert_held(&obj->mm.lock);
2213 	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2214 
2215 	switch (obj->mm.madv) {
2216 	case I915_MADV_DONTNEED:
2217 		i915_gem_object_truncate(obj);
2218 	case __I915_MADV_PURGED:
2219 		return;
2220 	}
2221 
2222 	if (obj->base.filp == NULL)
2223 		return;
2224 
2225 	mapping = obj->base.filp->f_mapping,
2226 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2227 }
2228 
2229 static void
2230 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2231 			      struct sg_table *pages)
2232 {
2233 	struct sgt_iter sgt_iter;
2234 	struct page *page;
2235 
2236 	__i915_gem_object_release_shmem(obj, pages, true);
2237 
2238 	i915_gem_gtt_finish_pages(obj, pages);
2239 
2240 	if (i915_gem_object_needs_bit17_swizzle(obj))
2241 		i915_gem_object_save_bit_17_swizzle(obj, pages);
2242 
2243 	for_each_sgt_page(page, sgt_iter, pages) {
2244 		if (obj->mm.dirty)
2245 			set_page_dirty(page);
2246 
2247 		if (obj->mm.madv == I915_MADV_WILLNEED)
2248 			mark_page_accessed(page);
2249 
2250 		put_page(page);
2251 	}
2252 	obj->mm.dirty = false;
2253 
2254 	sg_free_table(pages);
2255 	kfree(pages);
2256 }
2257 
2258 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2259 {
2260 	struct radix_tree_iter iter;
2261 	void __rcu **slot;
2262 
2263 	rcu_read_lock();
2264 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2265 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2266 	rcu_read_unlock();
2267 }
2268 
2269 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2270 				 enum i915_mm_subclass subclass)
2271 {
2272 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2273 	struct sg_table *pages;
2274 
2275 	if (i915_gem_object_has_pinned_pages(obj))
2276 		return;
2277 
2278 	GEM_BUG_ON(obj->bind_count);
2279 	if (!i915_gem_object_has_pages(obj))
2280 		return;
2281 
2282 	/* May be called by shrinker from within get_pages() (on another bo) */
2283 	mutex_lock_nested(&obj->mm.lock, subclass);
2284 	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2285 		goto unlock;
2286 
2287 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2288 	 * array, hence protect them from being reaped by removing them from gtt
2289 	 * lists early. */
2290 	pages = fetch_and_zero(&obj->mm.pages);
2291 	GEM_BUG_ON(!pages);
2292 
2293 	spin_lock(&i915->mm.obj_lock);
2294 	list_del(&obj->mm.link);
2295 	spin_unlock(&i915->mm.obj_lock);
2296 
2297 	if (obj->mm.mapping) {
2298 		void *ptr;
2299 
2300 		ptr = page_mask_bits(obj->mm.mapping);
2301 		if (is_vmalloc_addr(ptr))
2302 			vunmap(ptr);
2303 		else
2304 			kunmap(kmap_to_page(ptr));
2305 
2306 		obj->mm.mapping = NULL;
2307 	}
2308 
2309 	__i915_gem_object_reset_page_iter(obj);
2310 
2311 	if (!IS_ERR(pages))
2312 		obj->ops->put_pages(obj, pages);
2313 
2314 	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2315 
2316 unlock:
2317 	mutex_unlock(&obj->mm.lock);
2318 }
2319 
2320 static bool i915_sg_trim(struct sg_table *orig_st)
2321 {
2322 	struct sg_table new_st;
2323 	struct scatterlist *sg, *new_sg;
2324 	unsigned int i;
2325 
2326 	if (orig_st->nents == orig_st->orig_nents)
2327 		return false;
2328 
2329 	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2330 		return false;
2331 
2332 	new_sg = new_st.sgl;
2333 	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2334 		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2335 		/* called before being DMA mapped, no need to copy sg->dma_* */
2336 		new_sg = sg_next(new_sg);
2337 	}
2338 	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2339 
2340 	sg_free_table(orig_st);
2341 
2342 	*orig_st = new_st;
2343 	return true;
2344 }
2345 
2346 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2347 {
2348 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2349 	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2350 	unsigned long i;
2351 	struct address_space *mapping;
2352 	struct sg_table *st;
2353 	struct scatterlist *sg;
2354 	struct sgt_iter sgt_iter;
2355 	struct page *page;
2356 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2357 	unsigned int max_segment = i915_sg_segment_size();
2358 	unsigned int sg_page_sizes;
2359 	gfp_t noreclaim;
2360 	int ret;
2361 
2362 	/* Assert that the object is not currently in any GPU domain. As it
2363 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2364 	 * a GPU cache
2365 	 */
2366 	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2367 	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2368 
2369 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2370 	if (st == NULL)
2371 		return -ENOMEM;
2372 
2373 rebuild_st:
2374 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2375 		kfree(st);
2376 		return -ENOMEM;
2377 	}
2378 
2379 	/* Get the list of pages out of our struct file.  They'll be pinned
2380 	 * at this point until we release them.
2381 	 *
2382 	 * Fail silently without starting the shrinker
2383 	 */
2384 	mapping = obj->base.filp->f_mapping;
2385 	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2386 	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2387 
2388 	sg = st->sgl;
2389 	st->nents = 0;
2390 	sg_page_sizes = 0;
2391 	for (i = 0; i < page_count; i++) {
2392 		const unsigned int shrink[] = {
2393 			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2394 			0,
2395 		}, *s = shrink;
2396 		gfp_t gfp = noreclaim;
2397 
2398 		do {
2399 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2400 			if (likely(!IS_ERR(page)))
2401 				break;
2402 
2403 			if (!*s) {
2404 				ret = PTR_ERR(page);
2405 				goto err_sg;
2406 			}
2407 
2408 			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2409 			cond_resched();
2410 
2411 			/* We've tried hard to allocate the memory by reaping
2412 			 * our own buffer, now let the real VM do its job and
2413 			 * go down in flames if truly OOM.
2414 			 *
2415 			 * However, since graphics tend to be disposable,
2416 			 * defer the oom here by reporting the ENOMEM back
2417 			 * to userspace.
2418 			 */
2419 			if (!*s) {
2420 				/* reclaim and warn, but no oom */
2421 				gfp = mapping_gfp_mask(mapping);
2422 
2423 				/* Our bo are always dirty and so we require
2424 				 * kswapd to reclaim our pages (direct reclaim
2425 				 * does not effectively begin pageout of our
2426 				 * buffers on its own). However, direct reclaim
2427 				 * only waits for kswapd when under allocation
2428 				 * congestion. So as a result __GFP_RECLAIM is
2429 				 * unreliable and fails to actually reclaim our
2430 				 * dirty pages -- unless you try over and over
2431 				 * again with !__GFP_NORETRY. However, we still
2432 				 * want to fail this allocation rather than
2433 				 * trigger the out-of-memory killer and for
2434 				 * this we want __GFP_RETRY_MAYFAIL.
2435 				 */
2436 				gfp |= __GFP_RETRY_MAYFAIL;
2437 			}
2438 		} while (1);
2439 
2440 		if (!i ||
2441 		    sg->length >= max_segment ||
2442 		    page_to_pfn(page) != last_pfn + 1) {
2443 			if (i) {
2444 				sg_page_sizes |= sg->length;
2445 				sg = sg_next(sg);
2446 			}
2447 			st->nents++;
2448 			sg_set_page(sg, page, PAGE_SIZE, 0);
2449 		} else {
2450 			sg->length += PAGE_SIZE;
2451 		}
2452 		last_pfn = page_to_pfn(page);
2453 
2454 		/* Check that the i965g/gm workaround works. */
2455 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2456 	}
2457 	if (sg) { /* loop terminated early; short sg table */
2458 		sg_page_sizes |= sg->length;
2459 		sg_mark_end(sg);
2460 	}
2461 
2462 	/* Trim unused sg entries to avoid wasting memory. */
2463 	i915_sg_trim(st);
2464 
2465 	ret = i915_gem_gtt_prepare_pages(obj, st);
2466 	if (ret) {
2467 		/* DMA remapping failed? One possible cause is that
2468 		 * it could not reserve enough large entries, asking
2469 		 * for PAGE_SIZE chunks instead may be helpful.
2470 		 */
2471 		if (max_segment > PAGE_SIZE) {
2472 			for_each_sgt_page(page, sgt_iter, st)
2473 				put_page(page);
2474 			sg_free_table(st);
2475 
2476 			max_segment = PAGE_SIZE;
2477 			goto rebuild_st;
2478 		} else {
2479 			dev_warn(&dev_priv->drm.pdev->dev,
2480 				 "Failed to DMA remap %lu pages\n",
2481 				 page_count);
2482 			goto err_pages;
2483 		}
2484 	}
2485 
2486 	if (i915_gem_object_needs_bit17_swizzle(obj))
2487 		i915_gem_object_do_bit_17_swizzle(obj, st);
2488 
2489 	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2490 
2491 	return 0;
2492 
2493 err_sg:
2494 	sg_mark_end(sg);
2495 err_pages:
2496 	for_each_sgt_page(page, sgt_iter, st)
2497 		put_page(page);
2498 	sg_free_table(st);
2499 	kfree(st);
2500 
2501 	/* shmemfs first checks if there is enough memory to allocate the page
2502 	 * and reports ENOSPC should there be insufficient, along with the usual
2503 	 * ENOMEM for a genuine allocation failure.
2504 	 *
2505 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2506 	 * space and so want to translate the error from shmemfs back to our
2507 	 * usual understanding of ENOMEM.
2508 	 */
2509 	if (ret == -ENOSPC)
2510 		ret = -ENOMEM;
2511 
2512 	return ret;
2513 }
2514 
2515 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2516 				 struct sg_table *pages,
2517 				 unsigned int sg_page_sizes)
2518 {
2519 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2520 	unsigned long supported = INTEL_INFO(i915)->page_sizes;
2521 	int i;
2522 
2523 	lockdep_assert_held(&obj->mm.lock);
2524 
2525 	obj->mm.get_page.sg_pos = pages->sgl;
2526 	obj->mm.get_page.sg_idx = 0;
2527 
2528 	obj->mm.pages = pages;
2529 
2530 	if (i915_gem_object_is_tiled(obj) &&
2531 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2532 		GEM_BUG_ON(obj->mm.quirked);
2533 		__i915_gem_object_pin_pages(obj);
2534 		obj->mm.quirked = true;
2535 	}
2536 
2537 	GEM_BUG_ON(!sg_page_sizes);
2538 	obj->mm.page_sizes.phys = sg_page_sizes;
2539 
2540 	/*
2541 	 * Calculate the supported page-sizes which fit into the given
2542 	 * sg_page_sizes. This will give us the page-sizes which we may be able
2543 	 * to use opportunistically when later inserting into the GTT. For
2544 	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2545 	 * 64K or 4K pages, although in practice this will depend on a number of
2546 	 * other factors.
2547 	 */
2548 	obj->mm.page_sizes.sg = 0;
2549 	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2550 		if (obj->mm.page_sizes.phys & ~0u << i)
2551 			obj->mm.page_sizes.sg |= BIT(i);
2552 	}
2553 	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2554 
2555 	spin_lock(&i915->mm.obj_lock);
2556 	list_add(&obj->mm.link, &i915->mm.unbound_list);
2557 	spin_unlock(&i915->mm.obj_lock);
2558 }
2559 
2560 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2561 {
2562 	int err;
2563 
2564 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2565 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2566 		return -EFAULT;
2567 	}
2568 
2569 	err = obj->ops->get_pages(obj);
2570 	GEM_BUG_ON(!err && IS_ERR_OR_NULL(obj->mm.pages));
2571 
2572 	return err;
2573 }
2574 
2575 /* Ensure that the associated pages are gathered from the backing storage
2576  * and pinned into our object. i915_gem_object_pin_pages() may be called
2577  * multiple times before they are released by a single call to
2578  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2579  * either as a result of memory pressure (reaping pages under the shrinker)
2580  * or as the object is itself released.
2581  */
2582 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2583 {
2584 	int err;
2585 
2586 	err = mutex_lock_interruptible(&obj->mm.lock);
2587 	if (err)
2588 		return err;
2589 
2590 	if (unlikely(!i915_gem_object_has_pages(obj))) {
2591 		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2592 
2593 		err = ____i915_gem_object_get_pages(obj);
2594 		if (err)
2595 			goto unlock;
2596 
2597 		smp_mb__before_atomic();
2598 	}
2599 	atomic_inc(&obj->mm.pages_pin_count);
2600 
2601 unlock:
2602 	mutex_unlock(&obj->mm.lock);
2603 	return err;
2604 }
2605 
2606 /* The 'mapping' part of i915_gem_object_pin_map() below */
2607 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2608 				 enum i915_map_type type)
2609 {
2610 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2611 	struct sg_table *sgt = obj->mm.pages;
2612 	struct sgt_iter sgt_iter;
2613 	struct page *page;
2614 	struct page *stack_pages[32];
2615 	struct page **pages = stack_pages;
2616 	unsigned long i = 0;
2617 	pgprot_t pgprot;
2618 	void *addr;
2619 
2620 	/* A single page can always be kmapped */
2621 	if (n_pages == 1 && type == I915_MAP_WB)
2622 		return kmap(sg_page(sgt->sgl));
2623 
2624 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2625 		/* Too big for stack -- allocate temporary array instead */
2626 		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2627 		if (!pages)
2628 			return NULL;
2629 	}
2630 
2631 	for_each_sgt_page(page, sgt_iter, sgt)
2632 		pages[i++] = page;
2633 
2634 	/* Check that we have the expected number of pages */
2635 	GEM_BUG_ON(i != n_pages);
2636 
2637 	switch (type) {
2638 	default:
2639 		MISSING_CASE(type);
2640 		/* fallthrough to use PAGE_KERNEL anyway */
2641 	case I915_MAP_WB:
2642 		pgprot = PAGE_KERNEL;
2643 		break;
2644 	case I915_MAP_WC:
2645 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2646 		break;
2647 	}
2648 	addr = vmap(pages, n_pages, 0, pgprot);
2649 
2650 	if (pages != stack_pages)
2651 		kvfree(pages);
2652 
2653 	return addr;
2654 }
2655 
2656 /* get, pin, and map the pages of the object into kernel space */
2657 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2658 			      enum i915_map_type type)
2659 {
2660 	enum i915_map_type has_type;
2661 	bool pinned;
2662 	void *ptr;
2663 	int ret;
2664 
2665 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2666 
2667 	ret = mutex_lock_interruptible(&obj->mm.lock);
2668 	if (ret)
2669 		return ERR_PTR(ret);
2670 
2671 	pinned = !(type & I915_MAP_OVERRIDE);
2672 	type &= ~I915_MAP_OVERRIDE;
2673 
2674 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2675 		if (unlikely(!i915_gem_object_has_pages(obj))) {
2676 			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2677 
2678 			ret = ____i915_gem_object_get_pages(obj);
2679 			if (ret)
2680 				goto err_unlock;
2681 
2682 			smp_mb__before_atomic();
2683 		}
2684 		atomic_inc(&obj->mm.pages_pin_count);
2685 		pinned = false;
2686 	}
2687 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2688 
2689 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2690 	if (ptr && has_type != type) {
2691 		if (pinned) {
2692 			ret = -EBUSY;
2693 			goto err_unpin;
2694 		}
2695 
2696 		if (is_vmalloc_addr(ptr))
2697 			vunmap(ptr);
2698 		else
2699 			kunmap(kmap_to_page(ptr));
2700 
2701 		ptr = obj->mm.mapping = NULL;
2702 	}
2703 
2704 	if (!ptr) {
2705 		ptr = i915_gem_object_map(obj, type);
2706 		if (!ptr) {
2707 			ret = -ENOMEM;
2708 			goto err_unpin;
2709 		}
2710 
2711 		obj->mm.mapping = page_pack_bits(ptr, type);
2712 	}
2713 
2714 out_unlock:
2715 	mutex_unlock(&obj->mm.lock);
2716 	return ptr;
2717 
2718 err_unpin:
2719 	atomic_dec(&obj->mm.pages_pin_count);
2720 err_unlock:
2721 	ptr = ERR_PTR(ret);
2722 	goto out_unlock;
2723 }
2724 
2725 static int
2726 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2727 			   const struct drm_i915_gem_pwrite *arg)
2728 {
2729 	struct address_space *mapping = obj->base.filp->f_mapping;
2730 	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2731 	u64 remain, offset;
2732 	unsigned int pg;
2733 
2734 	/* Before we instantiate/pin the backing store for our use, we
2735 	 * can prepopulate the shmemfs filp efficiently using a write into
2736 	 * the pagecache. We avoid the penalty of instantiating all the
2737 	 * pages, important if the user is just writing to a few and never
2738 	 * uses the object on the GPU, and using a direct write into shmemfs
2739 	 * allows it to avoid the cost of retrieving a page (either swapin
2740 	 * or clearing-before-use) before it is overwritten.
2741 	 */
2742 	if (i915_gem_object_has_pages(obj))
2743 		return -ENODEV;
2744 
2745 	if (obj->mm.madv != I915_MADV_WILLNEED)
2746 		return -EFAULT;
2747 
2748 	/* Before the pages are instantiated the object is treated as being
2749 	 * in the CPU domain. The pages will be clflushed as required before
2750 	 * use, and we can freely write into the pages directly. If userspace
2751 	 * races pwrite with any other operation; corruption will ensue -
2752 	 * that is userspace's prerogative!
2753 	 */
2754 
2755 	remain = arg->size;
2756 	offset = arg->offset;
2757 	pg = offset_in_page(offset);
2758 
2759 	do {
2760 		unsigned int len, unwritten;
2761 		struct page *page;
2762 		void *data, *vaddr;
2763 		int err;
2764 
2765 		len = PAGE_SIZE - pg;
2766 		if (len > remain)
2767 			len = remain;
2768 
2769 		err = pagecache_write_begin(obj->base.filp, mapping,
2770 					    offset, len, 0,
2771 					    &page, &data);
2772 		if (err < 0)
2773 			return err;
2774 
2775 		vaddr = kmap(page);
2776 		unwritten = copy_from_user(vaddr + pg, user_data, len);
2777 		kunmap(page);
2778 
2779 		err = pagecache_write_end(obj->base.filp, mapping,
2780 					  offset, len, len - unwritten,
2781 					  page, data);
2782 		if (err < 0)
2783 			return err;
2784 
2785 		if (unwritten)
2786 			return -EFAULT;
2787 
2788 		remain -= len;
2789 		user_data += len;
2790 		offset += len;
2791 		pg = 0;
2792 	} while (remain);
2793 
2794 	return 0;
2795 }
2796 
2797 static bool ban_context(const struct i915_gem_context *ctx,
2798 			unsigned int score)
2799 {
2800 	return (i915_gem_context_is_bannable(ctx) &&
2801 		score >= CONTEXT_SCORE_BAN_THRESHOLD);
2802 }
2803 
2804 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2805 {
2806 	unsigned int score;
2807 	bool banned;
2808 
2809 	atomic_inc(&ctx->guilty_count);
2810 
2811 	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
2812 	banned = ban_context(ctx, score);
2813 	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2814 			 ctx->name, score, yesno(banned));
2815 	if (!banned)
2816 		return;
2817 
2818 	i915_gem_context_set_banned(ctx);
2819 	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2820 		atomic_inc(&ctx->file_priv->context_bans);
2821 		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2822 				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
2823 	}
2824 }
2825 
2826 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2827 {
2828 	atomic_inc(&ctx->active_count);
2829 }
2830 
2831 struct drm_i915_gem_request *
2832 i915_gem_find_active_request(struct intel_engine_cs *engine)
2833 {
2834 	struct drm_i915_gem_request *request, *active = NULL;
2835 	unsigned long flags;
2836 
2837 	/* We are called by the error capture and reset at a random
2838 	 * point in time. In particular, note that neither is crucially
2839 	 * ordered with an interrupt. After a hang, the GPU is dead and we
2840 	 * assume that no more writes can happen (we waited long enough for
2841 	 * all writes that were in transaction to be flushed) - adding an
2842 	 * extra delay for a recent interrupt is pointless. Hence, we do
2843 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2844 	 */
2845 	spin_lock_irqsave(&engine->timeline->lock, flags);
2846 	list_for_each_entry(request, &engine->timeline->requests, link) {
2847 		if (__i915_gem_request_completed(request,
2848 						 request->global_seqno))
2849 			continue;
2850 
2851 		GEM_BUG_ON(request->engine != engine);
2852 		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2853 				    &request->fence.flags));
2854 
2855 		active = request;
2856 		break;
2857 	}
2858 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2859 
2860 	return active;
2861 }
2862 
2863 static bool engine_stalled(struct intel_engine_cs *engine)
2864 {
2865 	if (!engine->hangcheck.stalled)
2866 		return false;
2867 
2868 	/* Check for possible seqno movement after hang declaration */
2869 	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2870 		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2871 		return false;
2872 	}
2873 
2874 	return true;
2875 }
2876 
2877 /*
2878  * Ensure irq handler finishes, and not run again.
2879  * Also return the active request so that we only search for it once.
2880  */
2881 struct drm_i915_gem_request *
2882 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2883 {
2884 	struct drm_i915_gem_request *request = NULL;
2885 
2886 	/*
2887 	 * During the reset sequence, we must prevent the engine from
2888 	 * entering RC6. As the context state is undefined until we restart
2889 	 * the engine, if it does enter RC6 during the reset, the state
2890 	 * written to the powercontext is undefined and so we may lose
2891 	 * GPU state upon resume, i.e. fail to restart after a reset.
2892 	 */
2893 	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
2894 
2895 	/*
2896 	 * Prevent the signaler thread from updating the request
2897 	 * state (by calling dma_fence_signal) as we are processing
2898 	 * the reset. The write from the GPU of the seqno is
2899 	 * asynchronous and the signaler thread may see a different
2900 	 * value to us and declare the request complete, even though
2901 	 * the reset routine have picked that request as the active
2902 	 * (incomplete) request. This conflict is not handled
2903 	 * gracefully!
2904 	 */
2905 	kthread_park(engine->breadcrumbs.signaler);
2906 
2907 	/*
2908 	 * Prevent request submission to the hardware until we have
2909 	 * completed the reset in i915_gem_reset_finish(). If a request
2910 	 * is completed by one engine, it may then queue a request
2911 	 * to a second via its engine->irq_tasklet *just* as we are
2912 	 * calling engine->init_hw() and also writing the ELSP.
2913 	 * Turning off the engine->irq_tasklet until the reset is over
2914 	 * prevents the race.
2915 	 */
2916 	tasklet_kill(&engine->execlists.irq_tasklet);
2917 	tasklet_disable(&engine->execlists.irq_tasklet);
2918 
2919 	if (engine->irq_seqno_barrier)
2920 		engine->irq_seqno_barrier(engine);
2921 
2922 	request = i915_gem_find_active_request(engine);
2923 	if (request && request->fence.error == -EIO)
2924 		request = ERR_PTR(-EIO); /* Previous reset failed! */
2925 
2926 	return request;
2927 }
2928 
2929 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2930 {
2931 	struct intel_engine_cs *engine;
2932 	struct drm_i915_gem_request *request;
2933 	enum intel_engine_id id;
2934 	int err = 0;
2935 
2936 	for_each_engine(engine, dev_priv, id) {
2937 		request = i915_gem_reset_prepare_engine(engine);
2938 		if (IS_ERR(request)) {
2939 			err = PTR_ERR(request);
2940 			continue;
2941 		}
2942 
2943 		engine->hangcheck.active_request = request;
2944 	}
2945 
2946 	i915_gem_revoke_fences(dev_priv);
2947 
2948 	return err;
2949 }
2950 
2951 static void skip_request(struct drm_i915_gem_request *request)
2952 {
2953 	void *vaddr = request->ring->vaddr;
2954 	u32 head;
2955 
2956 	/* As this request likely depends on state from the lost
2957 	 * context, clear out all the user operations leaving the
2958 	 * breadcrumb at the end (so we get the fence notifications).
2959 	 */
2960 	head = request->head;
2961 	if (request->postfix < head) {
2962 		memset(vaddr + head, 0, request->ring->size - head);
2963 		head = 0;
2964 	}
2965 	memset(vaddr + head, 0, request->postfix - head);
2966 
2967 	dma_fence_set_error(&request->fence, -EIO);
2968 }
2969 
2970 static void engine_skip_context(struct drm_i915_gem_request *request)
2971 {
2972 	struct intel_engine_cs *engine = request->engine;
2973 	struct i915_gem_context *hung_ctx = request->ctx;
2974 	struct intel_timeline *timeline;
2975 	unsigned long flags;
2976 
2977 	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2978 
2979 	spin_lock_irqsave(&engine->timeline->lock, flags);
2980 	spin_lock(&timeline->lock);
2981 
2982 	list_for_each_entry_continue(request, &engine->timeline->requests, link)
2983 		if (request->ctx == hung_ctx)
2984 			skip_request(request);
2985 
2986 	list_for_each_entry(request, &timeline->requests, link)
2987 		skip_request(request);
2988 
2989 	spin_unlock(&timeline->lock);
2990 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2991 }
2992 
2993 /* Returns the request if it was guilty of the hang */
2994 static struct drm_i915_gem_request *
2995 i915_gem_reset_request(struct intel_engine_cs *engine,
2996 		       struct drm_i915_gem_request *request)
2997 {
2998 	/* The guilty request will get skipped on a hung engine.
2999 	 *
3000 	 * Users of client default contexts do not rely on logical
3001 	 * state preserved between batches so it is safe to execute
3002 	 * queued requests following the hang. Non default contexts
3003 	 * rely on preserved state, so skipping a batch loses the
3004 	 * evolution of the state and it needs to be considered corrupted.
3005 	 * Executing more queued batches on top of corrupted state is
3006 	 * risky. But we take the risk by trying to advance through
3007 	 * the queued requests in order to make the client behaviour
3008 	 * more predictable around resets, by not throwing away random
3009 	 * amount of batches it has prepared for execution. Sophisticated
3010 	 * clients can use gem_reset_stats_ioctl and dma fence status
3011 	 * (exported via sync_file info ioctl on explicit fences) to observe
3012 	 * when it loses the context state and should rebuild accordingly.
3013 	 *
3014 	 * The context ban, and ultimately the client ban, mechanism are safety
3015 	 * valves if client submission ends up resulting in nothing more than
3016 	 * subsequent hangs.
3017 	 */
3018 
3019 	if (engine_stalled(engine)) {
3020 		i915_gem_context_mark_guilty(request->ctx);
3021 		skip_request(request);
3022 
3023 		/* If this context is now banned, skip all pending requests. */
3024 		if (i915_gem_context_is_banned(request->ctx))
3025 			engine_skip_context(request);
3026 	} else {
3027 		/*
3028 		 * Since this is not the hung engine, it may have advanced
3029 		 * since the hang declaration. Double check by refinding
3030 		 * the active request at the time of the reset.
3031 		 */
3032 		request = i915_gem_find_active_request(engine);
3033 		if (request) {
3034 			i915_gem_context_mark_innocent(request->ctx);
3035 			dma_fence_set_error(&request->fence, -EAGAIN);
3036 
3037 			/* Rewind the engine to replay the incomplete rq */
3038 			spin_lock_irq(&engine->timeline->lock);
3039 			request = list_prev_entry(request, link);
3040 			if (&request->link == &engine->timeline->requests)
3041 				request = NULL;
3042 			spin_unlock_irq(&engine->timeline->lock);
3043 		}
3044 	}
3045 
3046 	return request;
3047 }
3048 
3049 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3050 			   struct drm_i915_gem_request *request)
3051 {
3052 	engine->irq_posted = 0;
3053 
3054 	if (request)
3055 		request = i915_gem_reset_request(engine, request);
3056 
3057 	if (request) {
3058 		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
3059 				 engine->name, request->global_seqno);
3060 	}
3061 
3062 	/* Setup the CS to resume from the breadcrumb of the hung request */
3063 	engine->reset_hw(engine, request);
3064 }
3065 
3066 void i915_gem_reset(struct drm_i915_private *dev_priv)
3067 {
3068 	struct intel_engine_cs *engine;
3069 	enum intel_engine_id id;
3070 
3071 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3072 
3073 	i915_gem_retire_requests(dev_priv);
3074 
3075 	for_each_engine(engine, dev_priv, id) {
3076 		struct i915_gem_context *ctx;
3077 
3078 		i915_gem_reset_engine(engine, engine->hangcheck.active_request);
3079 		ctx = fetch_and_zero(&engine->last_retired_context);
3080 		if (ctx)
3081 			engine->context_unpin(engine, ctx);
3082 	}
3083 
3084 	i915_gem_restore_fences(dev_priv);
3085 
3086 	if (dev_priv->gt.awake) {
3087 		intel_sanitize_gt_powersave(dev_priv);
3088 		intel_enable_gt_powersave(dev_priv);
3089 		if (INTEL_GEN(dev_priv) >= 6)
3090 			gen6_rps_busy(dev_priv);
3091 	}
3092 }
3093 
3094 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3095 {
3096 	tasklet_enable(&engine->execlists.irq_tasklet);
3097 	kthread_unpark(engine->breadcrumbs.signaler);
3098 
3099 	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3100 }
3101 
3102 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3103 {
3104 	struct intel_engine_cs *engine;
3105 	enum intel_engine_id id;
3106 
3107 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3108 
3109 	for_each_engine(engine, dev_priv, id) {
3110 		engine->hangcheck.active_request = NULL;
3111 		i915_gem_reset_finish_engine(engine);
3112 	}
3113 }
3114 
3115 static void nop_submit_request(struct drm_i915_gem_request *request)
3116 {
3117 	dma_fence_set_error(&request->fence, -EIO);
3118 
3119 	i915_gem_request_submit(request);
3120 }
3121 
3122 static void nop_complete_submit_request(struct drm_i915_gem_request *request)
3123 {
3124 	unsigned long flags;
3125 
3126 	dma_fence_set_error(&request->fence, -EIO);
3127 
3128 	spin_lock_irqsave(&request->engine->timeline->lock, flags);
3129 	__i915_gem_request_submit(request);
3130 	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3131 	spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3132 }
3133 
3134 void i915_gem_set_wedged(struct drm_i915_private *i915)
3135 {
3136 	struct intel_engine_cs *engine;
3137 	enum intel_engine_id id;
3138 
3139 	/*
3140 	 * First, stop submission to hw, but do not yet complete requests by
3141 	 * rolling the global seqno forward (since this would complete requests
3142 	 * for which we haven't set the fence error to EIO yet).
3143 	 */
3144 	for_each_engine(engine, i915, id)
3145 		engine->submit_request = nop_submit_request;
3146 
3147 	/*
3148 	 * Make sure no one is running the old callback before we proceed with
3149 	 * cancelling requests and resetting the completion tracking. Otherwise
3150 	 * we might submit a request to the hardware which never completes.
3151 	 */
3152 	synchronize_rcu();
3153 
3154 	for_each_engine(engine, i915, id) {
3155 		/* Mark all executing requests as skipped */
3156 		engine->cancel_requests(engine);
3157 
3158 		/*
3159 		 * Only once we've force-cancelled all in-flight requests can we
3160 		 * start to complete all requests.
3161 		 */
3162 		engine->submit_request = nop_complete_submit_request;
3163 	}
3164 
3165 	/*
3166 	 * Make sure no request can slip through without getting completed by
3167 	 * either this call here to intel_engine_init_global_seqno, or the one
3168 	 * in nop_complete_submit_request.
3169 	 */
3170 	synchronize_rcu();
3171 
3172 	for_each_engine(engine, i915, id) {
3173 		unsigned long flags;
3174 
3175 		/* Mark all pending requests as complete so that any concurrent
3176 		 * (lockless) lookup doesn't try and wait upon the request as we
3177 		 * reset it.
3178 		 */
3179 		spin_lock_irqsave(&engine->timeline->lock, flags);
3180 		intel_engine_init_global_seqno(engine,
3181 					       intel_engine_last_submit(engine));
3182 		spin_unlock_irqrestore(&engine->timeline->lock, flags);
3183 	}
3184 
3185 	set_bit(I915_WEDGED, &i915->gpu_error.flags);
3186 	wake_up_all(&i915->gpu_error.reset_queue);
3187 }
3188 
3189 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3190 {
3191 	struct i915_gem_timeline *tl;
3192 	int i;
3193 
3194 	lockdep_assert_held(&i915->drm.struct_mutex);
3195 	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3196 		return true;
3197 
3198 	/* Before unwedging, make sure that all pending operations
3199 	 * are flushed and errored out - we may have requests waiting upon
3200 	 * third party fences. We marked all inflight requests as EIO, and
3201 	 * every execbuf since returned EIO, for consistency we want all
3202 	 * the currently pending requests to also be marked as EIO, which
3203 	 * is done inside our nop_submit_request - and so we must wait.
3204 	 *
3205 	 * No more can be submitted until we reset the wedged bit.
3206 	 */
3207 	list_for_each_entry(tl, &i915->gt.timelines, link) {
3208 		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3209 			struct drm_i915_gem_request *rq;
3210 
3211 			rq = i915_gem_active_peek(&tl->engine[i].last_request,
3212 						  &i915->drm.struct_mutex);
3213 			if (!rq)
3214 				continue;
3215 
3216 			/* We can't use our normal waiter as we want to
3217 			 * avoid recursively trying to handle the current
3218 			 * reset. The basic dma_fence_default_wait() installs
3219 			 * a callback for dma_fence_signal(), which is
3220 			 * triggered by our nop handler (indirectly, the
3221 			 * callback enables the signaler thread which is
3222 			 * woken by the nop_submit_request() advancing the seqno
3223 			 * and when the seqno passes the fence, the signaler
3224 			 * then signals the fence waking us up).
3225 			 */
3226 			if (dma_fence_default_wait(&rq->fence, true,
3227 						   MAX_SCHEDULE_TIMEOUT) < 0)
3228 				return false;
3229 		}
3230 	}
3231 
3232 	/* Undo nop_submit_request. We prevent all new i915 requests from
3233 	 * being queued (by disallowing execbuf whilst wedged) so having
3234 	 * waited for all active requests above, we know the system is idle
3235 	 * and do not have to worry about a thread being inside
3236 	 * engine->submit_request() as we swap over. So unlike installing
3237 	 * the nop_submit_request on reset, we can do this from normal
3238 	 * context and do not require stop_machine().
3239 	 */
3240 	intel_engines_reset_default_submission(i915);
3241 	i915_gem_contexts_lost(i915);
3242 
3243 	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3244 	clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3245 
3246 	return true;
3247 }
3248 
3249 static void
3250 i915_gem_retire_work_handler(struct work_struct *work)
3251 {
3252 	struct drm_i915_private *dev_priv =
3253 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3254 	struct drm_device *dev = &dev_priv->drm;
3255 
3256 	/* Come back later if the device is busy... */
3257 	if (mutex_trylock(&dev->struct_mutex)) {
3258 		i915_gem_retire_requests(dev_priv);
3259 		mutex_unlock(&dev->struct_mutex);
3260 	}
3261 
3262 	/* Keep the retire handler running until we are finally idle.
3263 	 * We do not need to do this test under locking as in the worst-case
3264 	 * we queue the retire worker once too often.
3265 	 */
3266 	if (READ_ONCE(dev_priv->gt.awake)) {
3267 		i915_queue_hangcheck(dev_priv);
3268 		queue_delayed_work(dev_priv->wq,
3269 				   &dev_priv->gt.retire_work,
3270 				   round_jiffies_up_relative(HZ));
3271 	}
3272 }
3273 
3274 static void
3275 i915_gem_idle_work_handler(struct work_struct *work)
3276 {
3277 	struct drm_i915_private *dev_priv =
3278 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3279 	struct drm_device *dev = &dev_priv->drm;
3280 	bool rearm_hangcheck;
3281 
3282 	if (!READ_ONCE(dev_priv->gt.awake))
3283 		return;
3284 
3285 	/*
3286 	 * Wait for last execlists context complete, but bail out in case a
3287 	 * new request is submitted.
3288 	 */
3289 	wait_for(intel_engines_are_idle(dev_priv), 10);
3290 	if (READ_ONCE(dev_priv->gt.active_requests))
3291 		return;
3292 
3293 	rearm_hangcheck =
3294 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3295 
3296 	if (!mutex_trylock(&dev->struct_mutex)) {
3297 		/* Currently busy, come back later */
3298 		mod_delayed_work(dev_priv->wq,
3299 				 &dev_priv->gt.idle_work,
3300 				 msecs_to_jiffies(50));
3301 		goto out_rearm;
3302 	}
3303 
3304 	/*
3305 	 * New request retired after this work handler started, extend active
3306 	 * period until next instance of the work.
3307 	 */
3308 	if (work_pending(work))
3309 		goto out_unlock;
3310 
3311 	if (dev_priv->gt.active_requests)
3312 		goto out_unlock;
3313 
3314 	if (wait_for(intel_engines_are_idle(dev_priv), 10))
3315 		DRM_ERROR("Timeout waiting for engines to idle\n");
3316 
3317 	intel_engines_mark_idle(dev_priv);
3318 	i915_gem_timelines_mark_idle(dev_priv);
3319 
3320 	GEM_BUG_ON(!dev_priv->gt.awake);
3321 	dev_priv->gt.awake = false;
3322 	rearm_hangcheck = false;
3323 
3324 	if (INTEL_GEN(dev_priv) >= 6)
3325 		gen6_rps_idle(dev_priv);
3326 	intel_runtime_pm_put(dev_priv);
3327 out_unlock:
3328 	mutex_unlock(&dev->struct_mutex);
3329 
3330 out_rearm:
3331 	if (rearm_hangcheck) {
3332 		GEM_BUG_ON(!dev_priv->gt.awake);
3333 		i915_queue_hangcheck(dev_priv);
3334 	}
3335 }
3336 
3337 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3338 {
3339 	struct drm_i915_private *i915 = to_i915(gem->dev);
3340 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
3341 	struct drm_i915_file_private *fpriv = file->driver_priv;
3342 	struct i915_lut_handle *lut, *ln;
3343 
3344 	mutex_lock(&i915->drm.struct_mutex);
3345 
3346 	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3347 		struct i915_gem_context *ctx = lut->ctx;
3348 		struct i915_vma *vma;
3349 
3350 		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3351 		if (ctx->file_priv != fpriv)
3352 			continue;
3353 
3354 		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3355 		GEM_BUG_ON(vma->obj != obj);
3356 
3357 		/* We allow the process to have multiple handles to the same
3358 		 * vma, in the same fd namespace, by virtue of flink/open.
3359 		 */
3360 		GEM_BUG_ON(!vma->open_count);
3361 		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3362 			i915_vma_close(vma);
3363 
3364 		list_del(&lut->obj_link);
3365 		list_del(&lut->ctx_link);
3366 
3367 		kmem_cache_free(i915->luts, lut);
3368 		__i915_gem_object_release_unless_active(obj);
3369 	}
3370 
3371 	mutex_unlock(&i915->drm.struct_mutex);
3372 }
3373 
3374 static unsigned long to_wait_timeout(s64 timeout_ns)
3375 {
3376 	if (timeout_ns < 0)
3377 		return MAX_SCHEDULE_TIMEOUT;
3378 
3379 	if (timeout_ns == 0)
3380 		return 0;
3381 
3382 	return nsecs_to_jiffies_timeout(timeout_ns);
3383 }
3384 
3385 /**
3386  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3387  * @dev: drm device pointer
3388  * @data: ioctl data blob
3389  * @file: drm file pointer
3390  *
3391  * Returns 0 if successful, else an error is returned with the remaining time in
3392  * the timeout parameter.
3393  *  -ETIME: object is still busy after timeout
3394  *  -ERESTARTSYS: signal interrupted the wait
3395  *  -ENONENT: object doesn't exist
3396  * Also possible, but rare:
3397  *  -EAGAIN: incomplete, restart syscall
3398  *  -ENOMEM: damn
3399  *  -ENODEV: Internal IRQ fail
3400  *  -E?: The add request failed
3401  *
3402  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3403  * non-zero timeout parameter the wait ioctl will wait for the given number of
3404  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3405  * without holding struct_mutex the object may become re-busied before this
3406  * function completes. A similar but shorter * race condition exists in the busy
3407  * ioctl
3408  */
3409 int
3410 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3411 {
3412 	struct drm_i915_gem_wait *args = data;
3413 	struct drm_i915_gem_object *obj;
3414 	ktime_t start;
3415 	long ret;
3416 
3417 	if (args->flags != 0)
3418 		return -EINVAL;
3419 
3420 	obj = i915_gem_object_lookup(file, args->bo_handle);
3421 	if (!obj)
3422 		return -ENOENT;
3423 
3424 	start = ktime_get();
3425 
3426 	ret = i915_gem_object_wait(obj,
3427 				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3428 				   to_wait_timeout(args->timeout_ns),
3429 				   to_rps_client(file));
3430 
3431 	if (args->timeout_ns > 0) {
3432 		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3433 		if (args->timeout_ns < 0)
3434 			args->timeout_ns = 0;
3435 
3436 		/*
3437 		 * Apparently ktime isn't accurate enough and occasionally has a
3438 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3439 		 * things up to make the test happy. We allow up to 1 jiffy.
3440 		 *
3441 		 * This is a regression from the timespec->ktime conversion.
3442 		 */
3443 		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3444 			args->timeout_ns = 0;
3445 
3446 		/* Asked to wait beyond the jiffie/scheduler precision? */
3447 		if (ret == -ETIME && args->timeout_ns)
3448 			ret = -EAGAIN;
3449 	}
3450 
3451 	i915_gem_object_put(obj);
3452 	return ret;
3453 }
3454 
3455 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3456 {
3457 	int ret, i;
3458 
3459 	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3460 		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3461 		if (ret)
3462 			return ret;
3463 	}
3464 
3465 	return 0;
3466 }
3467 
3468 static int wait_for_engines(struct drm_i915_private *i915)
3469 {
3470 	if (wait_for(intel_engines_are_idle(i915), 50)) {
3471 		DRM_ERROR("Failed to idle engines, declaring wedged!\n");
3472 		i915_gem_set_wedged(i915);
3473 		return -EIO;
3474 	}
3475 
3476 	return 0;
3477 }
3478 
3479 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3480 {
3481 	int ret;
3482 
3483 	/* If the device is asleep, we have no requests outstanding */
3484 	if (!READ_ONCE(i915->gt.awake))
3485 		return 0;
3486 
3487 	if (flags & I915_WAIT_LOCKED) {
3488 		struct i915_gem_timeline *tl;
3489 
3490 		lockdep_assert_held(&i915->drm.struct_mutex);
3491 
3492 		list_for_each_entry(tl, &i915->gt.timelines, link) {
3493 			ret = wait_for_timeline(tl, flags);
3494 			if (ret)
3495 				return ret;
3496 		}
3497 
3498 		i915_gem_retire_requests(i915);
3499 		GEM_BUG_ON(i915->gt.active_requests);
3500 
3501 		ret = wait_for_engines(i915);
3502 	} else {
3503 		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3504 	}
3505 
3506 	return ret;
3507 }
3508 
3509 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3510 {
3511 	/*
3512 	 * We manually flush the CPU domain so that we can override and
3513 	 * force the flush for the display, and perform it asyncrhonously.
3514 	 */
3515 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3516 	if (obj->cache_dirty)
3517 		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3518 	obj->base.write_domain = 0;
3519 }
3520 
3521 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3522 {
3523 	if (!READ_ONCE(obj->pin_global))
3524 		return;
3525 
3526 	mutex_lock(&obj->base.dev->struct_mutex);
3527 	__i915_gem_object_flush_for_display(obj);
3528 	mutex_unlock(&obj->base.dev->struct_mutex);
3529 }
3530 
3531 /**
3532  * Moves a single object to the WC read, and possibly write domain.
3533  * @obj: object to act on
3534  * @write: ask for write access or read only
3535  *
3536  * This function returns when the move is complete, including waiting on
3537  * flushes to occur.
3538  */
3539 int
3540 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3541 {
3542 	int ret;
3543 
3544 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3545 
3546 	ret = i915_gem_object_wait(obj,
3547 				   I915_WAIT_INTERRUPTIBLE |
3548 				   I915_WAIT_LOCKED |
3549 				   (write ? I915_WAIT_ALL : 0),
3550 				   MAX_SCHEDULE_TIMEOUT,
3551 				   NULL);
3552 	if (ret)
3553 		return ret;
3554 
3555 	if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3556 		return 0;
3557 
3558 	/* Flush and acquire obj->pages so that we are coherent through
3559 	 * direct access in memory with previous cached writes through
3560 	 * shmemfs and that our cache domain tracking remains valid.
3561 	 * For example, if the obj->filp was moved to swap without us
3562 	 * being notified and releasing the pages, we would mistakenly
3563 	 * continue to assume that the obj remained out of the CPU cached
3564 	 * domain.
3565 	 */
3566 	ret = i915_gem_object_pin_pages(obj);
3567 	if (ret)
3568 		return ret;
3569 
3570 	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3571 
3572 	/* Serialise direct access to this object with the barriers for
3573 	 * coherent writes from the GPU, by effectively invalidating the
3574 	 * WC domain upon first access.
3575 	 */
3576 	if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3577 		mb();
3578 
3579 	/* It should now be out of any other write domains, and we can update
3580 	 * the domain values for our changes.
3581 	 */
3582 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3583 	obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3584 	if (write) {
3585 		obj->base.read_domains = I915_GEM_DOMAIN_WC;
3586 		obj->base.write_domain = I915_GEM_DOMAIN_WC;
3587 		obj->mm.dirty = true;
3588 	}
3589 
3590 	i915_gem_object_unpin_pages(obj);
3591 	return 0;
3592 }
3593 
3594 /**
3595  * Moves a single object to the GTT read, and possibly write domain.
3596  * @obj: object to act on
3597  * @write: ask for write access or read only
3598  *
3599  * This function returns when the move is complete, including waiting on
3600  * flushes to occur.
3601  */
3602 int
3603 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3604 {
3605 	int ret;
3606 
3607 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3608 
3609 	ret = i915_gem_object_wait(obj,
3610 				   I915_WAIT_INTERRUPTIBLE |
3611 				   I915_WAIT_LOCKED |
3612 				   (write ? I915_WAIT_ALL : 0),
3613 				   MAX_SCHEDULE_TIMEOUT,
3614 				   NULL);
3615 	if (ret)
3616 		return ret;
3617 
3618 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3619 		return 0;
3620 
3621 	/* Flush and acquire obj->pages so that we are coherent through
3622 	 * direct access in memory with previous cached writes through
3623 	 * shmemfs and that our cache domain tracking remains valid.
3624 	 * For example, if the obj->filp was moved to swap without us
3625 	 * being notified and releasing the pages, we would mistakenly
3626 	 * continue to assume that the obj remained out of the CPU cached
3627 	 * domain.
3628 	 */
3629 	ret = i915_gem_object_pin_pages(obj);
3630 	if (ret)
3631 		return ret;
3632 
3633 	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3634 
3635 	/* Serialise direct access to this object with the barriers for
3636 	 * coherent writes from the GPU, by effectively invalidating the
3637 	 * GTT domain upon first access.
3638 	 */
3639 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3640 		mb();
3641 
3642 	/* It should now be out of any other write domains, and we can update
3643 	 * the domain values for our changes.
3644 	 */
3645 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3646 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3647 	if (write) {
3648 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3649 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3650 		obj->mm.dirty = true;
3651 	}
3652 
3653 	i915_gem_object_unpin_pages(obj);
3654 	return 0;
3655 }
3656 
3657 /**
3658  * Changes the cache-level of an object across all VMA.
3659  * @obj: object to act on
3660  * @cache_level: new cache level to set for the object
3661  *
3662  * After this function returns, the object will be in the new cache-level
3663  * across all GTT and the contents of the backing storage will be coherent,
3664  * with respect to the new cache-level. In order to keep the backing storage
3665  * coherent for all users, we only allow a single cache level to be set
3666  * globally on the object and prevent it from being changed whilst the
3667  * hardware is reading from the object. That is if the object is currently
3668  * on the scanout it will be set to uncached (or equivalent display
3669  * cache coherency) and all non-MOCS GPU access will also be uncached so
3670  * that all direct access to the scanout remains coherent.
3671  */
3672 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3673 				    enum i915_cache_level cache_level)
3674 {
3675 	struct i915_vma *vma;
3676 	int ret;
3677 
3678 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3679 
3680 	if (obj->cache_level == cache_level)
3681 		return 0;
3682 
3683 	/* Inspect the list of currently bound VMA and unbind any that would
3684 	 * be invalid given the new cache-level. This is principally to
3685 	 * catch the issue of the CS prefetch crossing page boundaries and
3686 	 * reading an invalid PTE on older architectures.
3687 	 */
3688 restart:
3689 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3690 		if (!drm_mm_node_allocated(&vma->node))
3691 			continue;
3692 
3693 		if (i915_vma_is_pinned(vma)) {
3694 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3695 			return -EBUSY;
3696 		}
3697 
3698 		if (i915_gem_valid_gtt_space(vma, cache_level))
3699 			continue;
3700 
3701 		ret = i915_vma_unbind(vma);
3702 		if (ret)
3703 			return ret;
3704 
3705 		/* As unbinding may affect other elements in the
3706 		 * obj->vma_list (due to side-effects from retiring
3707 		 * an active vma), play safe and restart the iterator.
3708 		 */
3709 		goto restart;
3710 	}
3711 
3712 	/* We can reuse the existing drm_mm nodes but need to change the
3713 	 * cache-level on the PTE. We could simply unbind them all and
3714 	 * rebind with the correct cache-level on next use. However since
3715 	 * we already have a valid slot, dma mapping, pages etc, we may as
3716 	 * rewrite the PTE in the belief that doing so tramples upon less
3717 	 * state and so involves less work.
3718 	 */
3719 	if (obj->bind_count) {
3720 		/* Before we change the PTE, the GPU must not be accessing it.
3721 		 * If we wait upon the object, we know that all the bound
3722 		 * VMA are no longer active.
3723 		 */
3724 		ret = i915_gem_object_wait(obj,
3725 					   I915_WAIT_INTERRUPTIBLE |
3726 					   I915_WAIT_LOCKED |
3727 					   I915_WAIT_ALL,
3728 					   MAX_SCHEDULE_TIMEOUT,
3729 					   NULL);
3730 		if (ret)
3731 			return ret;
3732 
3733 		if (!HAS_LLC(to_i915(obj->base.dev)) &&
3734 		    cache_level != I915_CACHE_NONE) {
3735 			/* Access to snoopable pages through the GTT is
3736 			 * incoherent and on some machines causes a hard
3737 			 * lockup. Relinquish the CPU mmaping to force
3738 			 * userspace to refault in the pages and we can
3739 			 * then double check if the GTT mapping is still
3740 			 * valid for that pointer access.
3741 			 */
3742 			i915_gem_release_mmap(obj);
3743 
3744 			/* As we no longer need a fence for GTT access,
3745 			 * we can relinquish it now (and so prevent having
3746 			 * to steal a fence from someone else on the next
3747 			 * fence request). Note GPU activity would have
3748 			 * dropped the fence as all snoopable access is
3749 			 * supposed to be linear.
3750 			 */
3751 			list_for_each_entry(vma, &obj->vma_list, obj_link) {
3752 				ret = i915_vma_put_fence(vma);
3753 				if (ret)
3754 					return ret;
3755 			}
3756 		} else {
3757 			/* We either have incoherent backing store and
3758 			 * so no GTT access or the architecture is fully
3759 			 * coherent. In such cases, existing GTT mmaps
3760 			 * ignore the cache bit in the PTE and we can
3761 			 * rewrite it without confusing the GPU or having
3762 			 * to force userspace to fault back in its mmaps.
3763 			 */
3764 		}
3765 
3766 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3767 			if (!drm_mm_node_allocated(&vma->node))
3768 				continue;
3769 
3770 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3771 			if (ret)
3772 				return ret;
3773 		}
3774 	}
3775 
3776 	list_for_each_entry(vma, &obj->vma_list, obj_link)
3777 		vma->node.color = cache_level;
3778 	i915_gem_object_set_cache_coherency(obj, cache_level);
3779 	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3780 
3781 	return 0;
3782 }
3783 
3784 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3785 			       struct drm_file *file)
3786 {
3787 	struct drm_i915_gem_caching *args = data;
3788 	struct drm_i915_gem_object *obj;
3789 	int err = 0;
3790 
3791 	rcu_read_lock();
3792 	obj = i915_gem_object_lookup_rcu(file, args->handle);
3793 	if (!obj) {
3794 		err = -ENOENT;
3795 		goto out;
3796 	}
3797 
3798 	switch (obj->cache_level) {
3799 	case I915_CACHE_LLC:
3800 	case I915_CACHE_L3_LLC:
3801 		args->caching = I915_CACHING_CACHED;
3802 		break;
3803 
3804 	case I915_CACHE_WT:
3805 		args->caching = I915_CACHING_DISPLAY;
3806 		break;
3807 
3808 	default:
3809 		args->caching = I915_CACHING_NONE;
3810 		break;
3811 	}
3812 out:
3813 	rcu_read_unlock();
3814 	return err;
3815 }
3816 
3817 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3818 			       struct drm_file *file)
3819 {
3820 	struct drm_i915_private *i915 = to_i915(dev);
3821 	struct drm_i915_gem_caching *args = data;
3822 	struct drm_i915_gem_object *obj;
3823 	enum i915_cache_level level;
3824 	int ret = 0;
3825 
3826 	switch (args->caching) {
3827 	case I915_CACHING_NONE:
3828 		level = I915_CACHE_NONE;
3829 		break;
3830 	case I915_CACHING_CACHED:
3831 		/*
3832 		 * Due to a HW issue on BXT A stepping, GPU stores via a
3833 		 * snooped mapping may leave stale data in a corresponding CPU
3834 		 * cacheline, whereas normally such cachelines would get
3835 		 * invalidated.
3836 		 */
3837 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3838 			return -ENODEV;
3839 
3840 		level = I915_CACHE_LLC;
3841 		break;
3842 	case I915_CACHING_DISPLAY:
3843 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3844 		break;
3845 	default:
3846 		return -EINVAL;
3847 	}
3848 
3849 	obj = i915_gem_object_lookup(file, args->handle);
3850 	if (!obj)
3851 		return -ENOENT;
3852 
3853 	if (obj->cache_level == level)
3854 		goto out;
3855 
3856 	ret = i915_gem_object_wait(obj,
3857 				   I915_WAIT_INTERRUPTIBLE,
3858 				   MAX_SCHEDULE_TIMEOUT,
3859 				   to_rps_client(file));
3860 	if (ret)
3861 		goto out;
3862 
3863 	ret = i915_mutex_lock_interruptible(dev);
3864 	if (ret)
3865 		goto out;
3866 
3867 	ret = i915_gem_object_set_cache_level(obj, level);
3868 	mutex_unlock(&dev->struct_mutex);
3869 
3870 out:
3871 	i915_gem_object_put(obj);
3872 	return ret;
3873 }
3874 
3875 /*
3876  * Prepare buffer for display plane (scanout, cursors, etc).
3877  * Can be called from an uninterruptible phase (modesetting) and allows
3878  * any flushes to be pipelined (for pageflips).
3879  */
3880 struct i915_vma *
3881 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3882 				     u32 alignment,
3883 				     const struct i915_ggtt_view *view)
3884 {
3885 	struct i915_vma *vma;
3886 	int ret;
3887 
3888 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3889 
3890 	/* Mark the global pin early so that we account for the
3891 	 * display coherency whilst setting up the cache domains.
3892 	 */
3893 	obj->pin_global++;
3894 
3895 	/* The display engine is not coherent with the LLC cache on gen6.  As
3896 	 * a result, we make sure that the pinning that is about to occur is
3897 	 * done with uncached PTEs. This is lowest common denominator for all
3898 	 * chipsets.
3899 	 *
3900 	 * However for gen6+, we could do better by using the GFDT bit instead
3901 	 * of uncaching, which would allow us to flush all the LLC-cached data
3902 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3903 	 */
3904 	ret = i915_gem_object_set_cache_level(obj,
3905 					      HAS_WT(to_i915(obj->base.dev)) ?
3906 					      I915_CACHE_WT : I915_CACHE_NONE);
3907 	if (ret) {
3908 		vma = ERR_PTR(ret);
3909 		goto err_unpin_global;
3910 	}
3911 
3912 	/* As the user may map the buffer once pinned in the display plane
3913 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3914 	 * always use map_and_fenceable for all scanout buffers. However,
3915 	 * it may simply be too big to fit into mappable, in which case
3916 	 * put it anyway and hope that userspace can cope (but always first
3917 	 * try to preserve the existing ABI).
3918 	 */
3919 	vma = ERR_PTR(-ENOSPC);
3920 	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3921 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3922 					       PIN_MAPPABLE | PIN_NONBLOCK);
3923 	if (IS_ERR(vma)) {
3924 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3925 		unsigned int flags;
3926 
3927 		/* Valleyview is definitely limited to scanning out the first
3928 		 * 512MiB. Lets presume this behaviour was inherited from the
3929 		 * g4x display engine and that all earlier gen are similarly
3930 		 * limited. Testing suggests that it is a little more
3931 		 * complicated than this. For example, Cherryview appears quite
3932 		 * happy to scanout from anywhere within its global aperture.
3933 		 */
3934 		flags = 0;
3935 		if (HAS_GMCH_DISPLAY(i915))
3936 			flags = PIN_MAPPABLE;
3937 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3938 	}
3939 	if (IS_ERR(vma))
3940 		goto err_unpin_global;
3941 
3942 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3943 
3944 	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3945 	__i915_gem_object_flush_for_display(obj);
3946 	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3947 
3948 	/* It should now be out of any other write domains, and we can update
3949 	 * the domain values for our changes.
3950 	 */
3951 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3952 
3953 	return vma;
3954 
3955 err_unpin_global:
3956 	obj->pin_global--;
3957 	return vma;
3958 }
3959 
3960 void
3961 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3962 {
3963 	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3964 
3965 	if (WARN_ON(vma->obj->pin_global == 0))
3966 		return;
3967 
3968 	if (--vma->obj->pin_global == 0)
3969 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3970 
3971 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3972 	i915_gem_object_bump_inactive_ggtt(vma->obj);
3973 
3974 	i915_vma_unpin(vma);
3975 }
3976 
3977 /**
3978  * Moves a single object to the CPU read, and possibly write domain.
3979  * @obj: object to act on
3980  * @write: requesting write or read-only access
3981  *
3982  * This function returns when the move is complete, including waiting on
3983  * flushes to occur.
3984  */
3985 int
3986 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3987 {
3988 	int ret;
3989 
3990 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3991 
3992 	ret = i915_gem_object_wait(obj,
3993 				   I915_WAIT_INTERRUPTIBLE |
3994 				   I915_WAIT_LOCKED |
3995 				   (write ? I915_WAIT_ALL : 0),
3996 				   MAX_SCHEDULE_TIMEOUT,
3997 				   NULL);
3998 	if (ret)
3999 		return ret;
4000 
4001 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4002 
4003 	/* Flush the CPU cache if it's still invalid. */
4004 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4005 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4006 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4007 	}
4008 
4009 	/* It should now be out of any other write domains, and we can update
4010 	 * the domain values for our changes.
4011 	 */
4012 	GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
4013 
4014 	/* If we're writing through the CPU, then the GPU read domains will
4015 	 * need to be invalidated at next use.
4016 	 */
4017 	if (write)
4018 		__start_cpu_write(obj);
4019 
4020 	return 0;
4021 }
4022 
4023 /* Throttle our rendering by waiting until the ring has completed our requests
4024  * emitted over 20 msec ago.
4025  *
4026  * Note that if we were to use the current jiffies each time around the loop,
4027  * we wouldn't escape the function with any frames outstanding if the time to
4028  * render a frame was over 20ms.
4029  *
4030  * This should get us reasonable parallelism between CPU and GPU but also
4031  * relatively low latency when blocking on a particular request to finish.
4032  */
4033 static int
4034 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4035 {
4036 	struct drm_i915_private *dev_priv = to_i915(dev);
4037 	struct drm_i915_file_private *file_priv = file->driver_priv;
4038 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4039 	struct drm_i915_gem_request *request, *target = NULL;
4040 	long ret;
4041 
4042 	/* ABI: return -EIO if already wedged */
4043 	if (i915_terminally_wedged(&dev_priv->gpu_error))
4044 		return -EIO;
4045 
4046 	spin_lock(&file_priv->mm.lock);
4047 	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4048 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4049 			break;
4050 
4051 		if (target) {
4052 			list_del(&target->client_link);
4053 			target->file_priv = NULL;
4054 		}
4055 
4056 		target = request;
4057 	}
4058 	if (target)
4059 		i915_gem_request_get(target);
4060 	spin_unlock(&file_priv->mm.lock);
4061 
4062 	if (target == NULL)
4063 		return 0;
4064 
4065 	ret = i915_wait_request(target,
4066 				I915_WAIT_INTERRUPTIBLE,
4067 				MAX_SCHEDULE_TIMEOUT);
4068 	i915_gem_request_put(target);
4069 
4070 	return ret < 0 ? ret : 0;
4071 }
4072 
4073 struct i915_vma *
4074 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4075 			 const struct i915_ggtt_view *view,
4076 			 u64 size,
4077 			 u64 alignment,
4078 			 u64 flags)
4079 {
4080 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4081 	struct i915_address_space *vm = &dev_priv->ggtt.base;
4082 	struct i915_vma *vma;
4083 	int ret;
4084 
4085 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4086 
4087 	if (!view && flags & PIN_MAPPABLE) {
4088 		/* If the required space is larger than the available
4089 		 * aperture, we will not able to find a slot for the
4090 		 * object and unbinding the object now will be in
4091 		 * vain. Worse, doing so may cause us to ping-pong
4092 		 * the object in and out of the Global GTT and
4093 		 * waste a lot of cycles under the mutex.
4094 		 */
4095 		if (obj->base.size > dev_priv->ggtt.mappable_end)
4096 			return ERR_PTR(-E2BIG);
4097 
4098 		/* If NONBLOCK is set the caller is optimistically
4099 		 * trying to cache the full object within the mappable
4100 		 * aperture, and *must* have a fallback in place for
4101 		 * situations where we cannot bind the object. We
4102 		 * can be a little more lax here and use the fallback
4103 		 * more often to avoid costly migrations of ourselves
4104 		 * and other objects within the aperture.
4105 		 *
4106 		 * Half-the-aperture is used as a simple heuristic.
4107 		 * More interesting would to do search for a free
4108 		 * block prior to making the commitment to unbind.
4109 		 * That caters for the self-harm case, and with a
4110 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
4111 		 * we could try to minimise harm to others.
4112 		 */
4113 		if (flags & PIN_NONBLOCK &&
4114 		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
4115 			return ERR_PTR(-ENOSPC);
4116 	}
4117 
4118 	vma = i915_vma_instance(obj, vm, view);
4119 	if (unlikely(IS_ERR(vma)))
4120 		return vma;
4121 
4122 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4123 		if (flags & PIN_NONBLOCK) {
4124 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4125 				return ERR_PTR(-ENOSPC);
4126 
4127 			if (flags & PIN_MAPPABLE &&
4128 			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4129 				return ERR_PTR(-ENOSPC);
4130 		}
4131 
4132 		WARN(i915_vma_is_pinned(vma),
4133 		     "bo is already pinned in ggtt with incorrect alignment:"
4134 		     " offset=%08x, req.alignment=%llx,"
4135 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4136 		     i915_ggtt_offset(vma), alignment,
4137 		     !!(flags & PIN_MAPPABLE),
4138 		     i915_vma_is_map_and_fenceable(vma));
4139 		ret = i915_vma_unbind(vma);
4140 		if (ret)
4141 			return ERR_PTR(ret);
4142 	}
4143 
4144 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4145 	if (ret)
4146 		return ERR_PTR(ret);
4147 
4148 	return vma;
4149 }
4150 
4151 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4152 {
4153 	/* Note that we could alias engines in the execbuf API, but
4154 	 * that would be very unwise as it prevents userspace from
4155 	 * fine control over engine selection. Ahem.
4156 	 *
4157 	 * This should be something like EXEC_MAX_ENGINE instead of
4158 	 * I915_NUM_ENGINES.
4159 	 */
4160 	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4161 	return 0x10000 << id;
4162 }
4163 
4164 static __always_inline unsigned int __busy_write_id(unsigned int id)
4165 {
4166 	/* The uABI guarantees an active writer is also amongst the read
4167 	 * engines. This would be true if we accessed the activity tracking
4168 	 * under the lock, but as we perform the lookup of the object and
4169 	 * its activity locklessly we can not guarantee that the last_write
4170 	 * being active implies that we have set the same engine flag from
4171 	 * last_read - hence we always set both read and write busy for
4172 	 * last_write.
4173 	 */
4174 	return id | __busy_read_flag(id);
4175 }
4176 
4177 static __always_inline unsigned int
4178 __busy_set_if_active(const struct dma_fence *fence,
4179 		     unsigned int (*flag)(unsigned int id))
4180 {
4181 	struct drm_i915_gem_request *rq;
4182 
4183 	/* We have to check the current hw status of the fence as the uABI
4184 	 * guarantees forward progress. We could rely on the idle worker
4185 	 * to eventually flush us, but to minimise latency just ask the
4186 	 * hardware.
4187 	 *
4188 	 * Note we only report on the status of native fences.
4189 	 */
4190 	if (!dma_fence_is_i915(fence))
4191 		return 0;
4192 
4193 	/* opencode to_request() in order to avoid const warnings */
4194 	rq = container_of(fence, struct drm_i915_gem_request, fence);
4195 	if (i915_gem_request_completed(rq))
4196 		return 0;
4197 
4198 	return flag(rq->engine->uabi_id);
4199 }
4200 
4201 static __always_inline unsigned int
4202 busy_check_reader(const struct dma_fence *fence)
4203 {
4204 	return __busy_set_if_active(fence, __busy_read_flag);
4205 }
4206 
4207 static __always_inline unsigned int
4208 busy_check_writer(const struct dma_fence *fence)
4209 {
4210 	if (!fence)
4211 		return 0;
4212 
4213 	return __busy_set_if_active(fence, __busy_write_id);
4214 }
4215 
4216 int
4217 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4218 		    struct drm_file *file)
4219 {
4220 	struct drm_i915_gem_busy *args = data;
4221 	struct drm_i915_gem_object *obj;
4222 	struct reservation_object_list *list;
4223 	unsigned int seq;
4224 	int err;
4225 
4226 	err = -ENOENT;
4227 	rcu_read_lock();
4228 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4229 	if (!obj)
4230 		goto out;
4231 
4232 	/* A discrepancy here is that we do not report the status of
4233 	 * non-i915 fences, i.e. even though we may report the object as idle,
4234 	 * a call to set-domain may still stall waiting for foreign rendering.
4235 	 * This also means that wait-ioctl may report an object as busy,
4236 	 * where busy-ioctl considers it idle.
4237 	 *
4238 	 * We trade the ability to warn of foreign fences to report on which
4239 	 * i915 engines are active for the object.
4240 	 *
4241 	 * Alternatively, we can trade that extra information on read/write
4242 	 * activity with
4243 	 *	args->busy =
4244 	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
4245 	 * to report the overall busyness. This is what the wait-ioctl does.
4246 	 *
4247 	 */
4248 retry:
4249 	seq = raw_read_seqcount(&obj->resv->seq);
4250 
4251 	/* Translate the exclusive fence to the READ *and* WRITE engine */
4252 	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4253 
4254 	/* Translate shared fences to READ set of engines */
4255 	list = rcu_dereference(obj->resv->fence);
4256 	if (list) {
4257 		unsigned int shared_count = list->shared_count, i;
4258 
4259 		for (i = 0; i < shared_count; ++i) {
4260 			struct dma_fence *fence =
4261 				rcu_dereference(list->shared[i]);
4262 
4263 			args->busy |= busy_check_reader(fence);
4264 		}
4265 	}
4266 
4267 	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4268 		goto retry;
4269 
4270 	err = 0;
4271 out:
4272 	rcu_read_unlock();
4273 	return err;
4274 }
4275 
4276 int
4277 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4278 			struct drm_file *file_priv)
4279 {
4280 	return i915_gem_ring_throttle(dev, file_priv);
4281 }
4282 
4283 int
4284 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4285 		       struct drm_file *file_priv)
4286 {
4287 	struct drm_i915_private *dev_priv = to_i915(dev);
4288 	struct drm_i915_gem_madvise *args = data;
4289 	struct drm_i915_gem_object *obj;
4290 	int err;
4291 
4292 	switch (args->madv) {
4293 	case I915_MADV_DONTNEED:
4294 	case I915_MADV_WILLNEED:
4295 	    break;
4296 	default:
4297 	    return -EINVAL;
4298 	}
4299 
4300 	obj = i915_gem_object_lookup(file_priv, args->handle);
4301 	if (!obj)
4302 		return -ENOENT;
4303 
4304 	err = mutex_lock_interruptible(&obj->mm.lock);
4305 	if (err)
4306 		goto out;
4307 
4308 	if (i915_gem_object_has_pages(obj) &&
4309 	    i915_gem_object_is_tiled(obj) &&
4310 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4311 		if (obj->mm.madv == I915_MADV_WILLNEED) {
4312 			GEM_BUG_ON(!obj->mm.quirked);
4313 			__i915_gem_object_unpin_pages(obj);
4314 			obj->mm.quirked = false;
4315 		}
4316 		if (args->madv == I915_MADV_WILLNEED) {
4317 			GEM_BUG_ON(obj->mm.quirked);
4318 			__i915_gem_object_pin_pages(obj);
4319 			obj->mm.quirked = true;
4320 		}
4321 	}
4322 
4323 	if (obj->mm.madv != __I915_MADV_PURGED)
4324 		obj->mm.madv = args->madv;
4325 
4326 	/* if the object is no longer attached, discard its backing storage */
4327 	if (obj->mm.madv == I915_MADV_DONTNEED &&
4328 	    !i915_gem_object_has_pages(obj))
4329 		i915_gem_object_truncate(obj);
4330 
4331 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4332 	mutex_unlock(&obj->mm.lock);
4333 
4334 out:
4335 	i915_gem_object_put(obj);
4336 	return err;
4337 }
4338 
4339 static void
4340 frontbuffer_retire(struct i915_gem_active *active,
4341 		   struct drm_i915_gem_request *request)
4342 {
4343 	struct drm_i915_gem_object *obj =
4344 		container_of(active, typeof(*obj), frontbuffer_write);
4345 
4346 	intel_fb_obj_flush(obj, ORIGIN_CS);
4347 }
4348 
4349 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4350 			  const struct drm_i915_gem_object_ops *ops)
4351 {
4352 	mutex_init(&obj->mm.lock);
4353 
4354 	INIT_LIST_HEAD(&obj->vma_list);
4355 	INIT_LIST_HEAD(&obj->lut_list);
4356 	INIT_LIST_HEAD(&obj->batch_pool_link);
4357 
4358 	obj->ops = ops;
4359 
4360 	reservation_object_init(&obj->__builtin_resv);
4361 	obj->resv = &obj->__builtin_resv;
4362 
4363 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4364 	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4365 
4366 	obj->mm.madv = I915_MADV_WILLNEED;
4367 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4368 	mutex_init(&obj->mm.get_page.lock);
4369 
4370 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4371 }
4372 
4373 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4374 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4375 		 I915_GEM_OBJECT_IS_SHRINKABLE,
4376 
4377 	.get_pages = i915_gem_object_get_pages_gtt,
4378 	.put_pages = i915_gem_object_put_pages_gtt,
4379 
4380 	.pwrite = i915_gem_object_pwrite_gtt,
4381 };
4382 
4383 static int i915_gem_object_create_shmem(struct drm_device *dev,
4384 					struct drm_gem_object *obj,
4385 					size_t size)
4386 {
4387 	struct drm_i915_private *i915 = to_i915(dev);
4388 	unsigned long flags = VM_NORESERVE;
4389 	struct file *filp;
4390 
4391 	drm_gem_private_object_init(dev, obj, size);
4392 
4393 	if (i915->mm.gemfs)
4394 		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4395 						 flags);
4396 	else
4397 		filp = shmem_file_setup("i915", size, flags);
4398 
4399 	if (IS_ERR(filp))
4400 		return PTR_ERR(filp);
4401 
4402 	obj->filp = filp;
4403 
4404 	return 0;
4405 }
4406 
4407 struct drm_i915_gem_object *
4408 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4409 {
4410 	struct drm_i915_gem_object *obj;
4411 	struct address_space *mapping;
4412 	unsigned int cache_level;
4413 	gfp_t mask;
4414 	int ret;
4415 
4416 	/* There is a prevalence of the assumption that we fit the object's
4417 	 * page count inside a 32bit _signed_ variable. Let's document this and
4418 	 * catch if we ever need to fix it. In the meantime, if you do spot
4419 	 * such a local variable, please consider fixing!
4420 	 */
4421 	if (size >> PAGE_SHIFT > INT_MAX)
4422 		return ERR_PTR(-E2BIG);
4423 
4424 	if (overflows_type(size, obj->base.size))
4425 		return ERR_PTR(-E2BIG);
4426 
4427 	obj = i915_gem_object_alloc(dev_priv);
4428 	if (obj == NULL)
4429 		return ERR_PTR(-ENOMEM);
4430 
4431 	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4432 	if (ret)
4433 		goto fail;
4434 
4435 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4436 	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4437 		/* 965gm cannot relocate objects above 4GiB. */
4438 		mask &= ~__GFP_HIGHMEM;
4439 		mask |= __GFP_DMA32;
4440 	}
4441 
4442 	mapping = obj->base.filp->f_mapping;
4443 	mapping_set_gfp_mask(mapping, mask);
4444 	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4445 
4446 	i915_gem_object_init(obj, &i915_gem_object_ops);
4447 
4448 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4449 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4450 
4451 	if (HAS_LLC(dev_priv))
4452 		/* On some devices, we can have the GPU use the LLC (the CPU
4453 		 * cache) for about a 10% performance improvement
4454 		 * compared to uncached.  Graphics requests other than
4455 		 * display scanout are coherent with the CPU in
4456 		 * accessing this cache.  This means in this mode we
4457 		 * don't need to clflush on the CPU side, and on the
4458 		 * GPU side we only need to flush internal caches to
4459 		 * get data visible to the CPU.
4460 		 *
4461 		 * However, we maintain the display planes as UC, and so
4462 		 * need to rebind when first used as such.
4463 		 */
4464 		cache_level = I915_CACHE_LLC;
4465 	else
4466 		cache_level = I915_CACHE_NONE;
4467 
4468 	i915_gem_object_set_cache_coherency(obj, cache_level);
4469 
4470 	trace_i915_gem_object_create(obj);
4471 
4472 	return obj;
4473 
4474 fail:
4475 	i915_gem_object_free(obj);
4476 	return ERR_PTR(ret);
4477 }
4478 
4479 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4480 {
4481 	/* If we are the last user of the backing storage (be it shmemfs
4482 	 * pages or stolen etc), we know that the pages are going to be
4483 	 * immediately released. In this case, we can then skip copying
4484 	 * back the contents from the GPU.
4485 	 */
4486 
4487 	if (obj->mm.madv != I915_MADV_WILLNEED)
4488 		return false;
4489 
4490 	if (obj->base.filp == NULL)
4491 		return true;
4492 
4493 	/* At first glance, this looks racy, but then again so would be
4494 	 * userspace racing mmap against close. However, the first external
4495 	 * reference to the filp can only be obtained through the
4496 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4497 	 * acquiring such a reference whilst we are in the middle of
4498 	 * freeing the object.
4499 	 */
4500 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4501 }
4502 
4503 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4504 				    struct llist_node *freed)
4505 {
4506 	struct drm_i915_gem_object *obj, *on;
4507 
4508 	intel_runtime_pm_get(i915);
4509 	llist_for_each_entry_safe(obj, on, freed, freed) {
4510 		struct i915_vma *vma, *vn;
4511 
4512 		trace_i915_gem_object_destroy(obj);
4513 
4514 		mutex_lock(&i915->drm.struct_mutex);
4515 
4516 		GEM_BUG_ON(i915_gem_object_is_active(obj));
4517 		list_for_each_entry_safe(vma, vn,
4518 					 &obj->vma_list, obj_link) {
4519 			GEM_BUG_ON(i915_vma_is_active(vma));
4520 			vma->flags &= ~I915_VMA_PIN_MASK;
4521 			i915_vma_close(vma);
4522 		}
4523 		GEM_BUG_ON(!list_empty(&obj->vma_list));
4524 		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4525 
4526 		/* This serializes freeing with the shrinker. Since the free
4527 		 * is delayed, first by RCU then by the workqueue, we want the
4528 		 * shrinker to be able to free pages of unreferenced objects,
4529 		 * or else we may oom whilst there are plenty of deferred
4530 		 * freed objects.
4531 		 */
4532 		if (i915_gem_object_has_pages(obj)) {
4533 			spin_lock(&i915->mm.obj_lock);
4534 			list_del_init(&obj->mm.link);
4535 			spin_unlock(&i915->mm.obj_lock);
4536 		}
4537 
4538 		mutex_unlock(&i915->drm.struct_mutex);
4539 
4540 		GEM_BUG_ON(obj->bind_count);
4541 		GEM_BUG_ON(obj->userfault_count);
4542 		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4543 		GEM_BUG_ON(!list_empty(&obj->lut_list));
4544 
4545 		if (obj->ops->release)
4546 			obj->ops->release(obj);
4547 
4548 		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4549 			atomic_set(&obj->mm.pages_pin_count, 0);
4550 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4551 		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4552 
4553 		if (obj->base.import_attach)
4554 			drm_prime_gem_destroy(&obj->base, NULL);
4555 
4556 		reservation_object_fini(&obj->__builtin_resv);
4557 		drm_gem_object_release(&obj->base);
4558 		i915_gem_info_remove_obj(i915, obj->base.size);
4559 
4560 		kfree(obj->bit_17);
4561 		i915_gem_object_free(obj);
4562 
4563 		if (on)
4564 			cond_resched();
4565 	}
4566 	intel_runtime_pm_put(i915);
4567 }
4568 
4569 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4570 {
4571 	struct llist_node *freed;
4572 
4573 	/* Free the oldest, most stale object to keep the free_list short */
4574 	freed = NULL;
4575 	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4576 		/* Only one consumer of llist_del_first() allowed */
4577 		spin_lock(&i915->mm.free_lock);
4578 		freed = llist_del_first(&i915->mm.free_list);
4579 		spin_unlock(&i915->mm.free_lock);
4580 	}
4581 	if (unlikely(freed)) {
4582 		freed->next = NULL;
4583 		__i915_gem_free_objects(i915, freed);
4584 	}
4585 }
4586 
4587 static void __i915_gem_free_work(struct work_struct *work)
4588 {
4589 	struct drm_i915_private *i915 =
4590 		container_of(work, struct drm_i915_private, mm.free_work);
4591 	struct llist_node *freed;
4592 
4593 	/* All file-owned VMA should have been released by this point through
4594 	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4595 	 * However, the object may also be bound into the global GTT (e.g.
4596 	 * older GPUs without per-process support, or for direct access through
4597 	 * the GTT either for the user or for scanout). Those VMA still need to
4598 	 * unbound now.
4599 	 */
4600 
4601 	spin_lock(&i915->mm.free_lock);
4602 	while ((freed = llist_del_all(&i915->mm.free_list))) {
4603 		spin_unlock(&i915->mm.free_lock);
4604 
4605 		__i915_gem_free_objects(i915, freed);
4606 		if (need_resched())
4607 			return;
4608 
4609 		spin_lock(&i915->mm.free_lock);
4610 	}
4611 	spin_unlock(&i915->mm.free_lock);
4612 }
4613 
4614 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4615 {
4616 	struct drm_i915_gem_object *obj =
4617 		container_of(head, typeof(*obj), rcu);
4618 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4619 
4620 	/* We can't simply use call_rcu() from i915_gem_free_object()
4621 	 * as we need to block whilst unbinding, and the call_rcu
4622 	 * task may be called from softirq context. So we take a
4623 	 * detour through a worker.
4624 	 */
4625 	if (llist_add(&obj->freed, &i915->mm.free_list))
4626 		schedule_work(&i915->mm.free_work);
4627 }
4628 
4629 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4630 {
4631 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4632 
4633 	if (obj->mm.quirked)
4634 		__i915_gem_object_unpin_pages(obj);
4635 
4636 	if (discard_backing_storage(obj))
4637 		obj->mm.madv = I915_MADV_DONTNEED;
4638 
4639 	/* Before we free the object, make sure any pure RCU-only
4640 	 * read-side critical sections are complete, e.g.
4641 	 * i915_gem_busy_ioctl(). For the corresponding synchronized
4642 	 * lookup see i915_gem_object_lookup_rcu().
4643 	 */
4644 	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4645 }
4646 
4647 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4648 {
4649 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4650 
4651 	if (!i915_gem_object_has_active_reference(obj) &&
4652 	    i915_gem_object_is_active(obj))
4653 		i915_gem_object_set_active_reference(obj);
4654 	else
4655 		i915_gem_object_put(obj);
4656 }
4657 
4658 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4659 {
4660 	struct intel_engine_cs *engine;
4661 	enum intel_engine_id id;
4662 
4663 	for_each_engine(engine, dev_priv, id)
4664 		GEM_BUG_ON(engine->last_retired_context &&
4665 			   !i915_gem_context_is_kernel(engine->last_retired_context));
4666 }
4667 
4668 void i915_gem_sanitize(struct drm_i915_private *i915)
4669 {
4670 	if (i915_terminally_wedged(&i915->gpu_error)) {
4671 		mutex_lock(&i915->drm.struct_mutex);
4672 		i915_gem_unset_wedged(i915);
4673 		mutex_unlock(&i915->drm.struct_mutex);
4674 	}
4675 
4676 	/*
4677 	 * If we inherit context state from the BIOS or earlier occupants
4678 	 * of the GPU, the GPU may be in an inconsistent state when we
4679 	 * try to take over. The only way to remove the earlier state
4680 	 * is by resetting. However, resetting on earlier gen is tricky as
4681 	 * it may impact the display and we are uncertain about the stability
4682 	 * of the reset, so this could be applied to even earlier gen.
4683 	 */
4684 	if (INTEL_GEN(i915) >= 5) {
4685 		int reset = intel_gpu_reset(i915, ALL_ENGINES);
4686 		WARN_ON(reset && reset != -ENODEV);
4687 	}
4688 }
4689 
4690 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4691 {
4692 	struct drm_device *dev = &dev_priv->drm;
4693 	int ret;
4694 
4695 	intel_runtime_pm_get(dev_priv);
4696 	intel_suspend_gt_powersave(dev_priv);
4697 
4698 	mutex_lock(&dev->struct_mutex);
4699 
4700 	/* We have to flush all the executing contexts to main memory so
4701 	 * that they can saved in the hibernation image. To ensure the last
4702 	 * context image is coherent, we have to switch away from it. That
4703 	 * leaves the dev_priv->kernel_context still active when
4704 	 * we actually suspend, and its image in memory may not match the GPU
4705 	 * state. Fortunately, the kernel_context is disposable and we do
4706 	 * not rely on its state.
4707 	 */
4708 	if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
4709 		ret = i915_gem_switch_to_kernel_context(dev_priv);
4710 		if (ret)
4711 			goto err_unlock;
4712 
4713 		ret = i915_gem_wait_for_idle(dev_priv,
4714 					     I915_WAIT_INTERRUPTIBLE |
4715 					     I915_WAIT_LOCKED);
4716 		if (ret && ret != -EIO)
4717 			goto err_unlock;
4718 
4719 		assert_kernel_context_is_current(dev_priv);
4720 	}
4721 	i915_gem_contexts_lost(dev_priv);
4722 	mutex_unlock(&dev->struct_mutex);
4723 
4724 	intel_guc_suspend(dev_priv);
4725 
4726 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4727 	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4728 
4729 	/* As the idle_work is rearming if it detects a race, play safe and
4730 	 * repeat the flush until it is definitely idle.
4731 	 */
4732 	drain_delayed_work(&dev_priv->gt.idle_work);
4733 
4734 	/* Assert that we sucessfully flushed all the work and
4735 	 * reset the GPU back to its idle, low power state.
4736 	 */
4737 	WARN_ON(dev_priv->gt.awake);
4738 	if (WARN_ON(!intel_engines_are_idle(dev_priv)))
4739 		i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
4740 
4741 	/*
4742 	 * Neither the BIOS, ourselves or any other kernel
4743 	 * expects the system to be in execlists mode on startup,
4744 	 * so we need to reset the GPU back to legacy mode. And the only
4745 	 * known way to disable logical contexts is through a GPU reset.
4746 	 *
4747 	 * So in order to leave the system in a known default configuration,
4748 	 * always reset the GPU upon unload and suspend. Afterwards we then
4749 	 * clean up the GEM state tracking, flushing off the requests and
4750 	 * leaving the system in a known idle state.
4751 	 *
4752 	 * Note that is of the upmost importance that the GPU is idle and
4753 	 * all stray writes are flushed *before* we dismantle the backing
4754 	 * storage for the pinned objects.
4755 	 *
4756 	 * However, since we are uncertain that resetting the GPU on older
4757 	 * machines is a good idea, we don't - just in case it leaves the
4758 	 * machine in an unusable condition.
4759 	 */
4760 	i915_gem_sanitize(dev_priv);
4761 
4762 	intel_runtime_pm_put(dev_priv);
4763 	return 0;
4764 
4765 err_unlock:
4766 	mutex_unlock(&dev->struct_mutex);
4767 	intel_runtime_pm_put(dev_priv);
4768 	return ret;
4769 }
4770 
4771 void i915_gem_resume(struct drm_i915_private *dev_priv)
4772 {
4773 	struct drm_device *dev = &dev_priv->drm;
4774 
4775 	WARN_ON(dev_priv->gt.awake);
4776 
4777 	mutex_lock(&dev->struct_mutex);
4778 	i915_gem_restore_gtt_mappings(dev_priv);
4779 	i915_gem_restore_fences(dev_priv);
4780 
4781 	/* As we didn't flush the kernel context before suspend, we cannot
4782 	 * guarantee that the context image is complete. So let's just reset
4783 	 * it and start again.
4784 	 */
4785 	dev_priv->gt.resume(dev_priv);
4786 
4787 	mutex_unlock(&dev->struct_mutex);
4788 }
4789 
4790 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4791 {
4792 	if (INTEL_GEN(dev_priv) < 5 ||
4793 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4794 		return;
4795 
4796 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4797 				 DISP_TILE_SURFACE_SWIZZLING);
4798 
4799 	if (IS_GEN5(dev_priv))
4800 		return;
4801 
4802 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4803 	if (IS_GEN6(dev_priv))
4804 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4805 	else if (IS_GEN7(dev_priv))
4806 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4807 	else if (IS_GEN8(dev_priv))
4808 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4809 	else
4810 		BUG();
4811 }
4812 
4813 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4814 {
4815 	I915_WRITE(RING_CTL(base), 0);
4816 	I915_WRITE(RING_HEAD(base), 0);
4817 	I915_WRITE(RING_TAIL(base), 0);
4818 	I915_WRITE(RING_START(base), 0);
4819 }
4820 
4821 static void init_unused_rings(struct drm_i915_private *dev_priv)
4822 {
4823 	if (IS_I830(dev_priv)) {
4824 		init_unused_ring(dev_priv, PRB1_BASE);
4825 		init_unused_ring(dev_priv, SRB0_BASE);
4826 		init_unused_ring(dev_priv, SRB1_BASE);
4827 		init_unused_ring(dev_priv, SRB2_BASE);
4828 		init_unused_ring(dev_priv, SRB3_BASE);
4829 	} else if (IS_GEN2(dev_priv)) {
4830 		init_unused_ring(dev_priv, SRB0_BASE);
4831 		init_unused_ring(dev_priv, SRB1_BASE);
4832 	} else if (IS_GEN3(dev_priv)) {
4833 		init_unused_ring(dev_priv, PRB1_BASE);
4834 		init_unused_ring(dev_priv, PRB2_BASE);
4835 	}
4836 }
4837 
4838 static int __i915_gem_restart_engines(void *data)
4839 {
4840 	struct drm_i915_private *i915 = data;
4841 	struct intel_engine_cs *engine;
4842 	enum intel_engine_id id;
4843 	int err;
4844 
4845 	for_each_engine(engine, i915, id) {
4846 		err = engine->init_hw(engine);
4847 		if (err)
4848 			return err;
4849 	}
4850 
4851 	return 0;
4852 }
4853 
4854 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4855 {
4856 	int ret;
4857 
4858 	dev_priv->gt.last_init_time = ktime_get();
4859 
4860 	/* Double layer security blanket, see i915_gem_init() */
4861 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4862 
4863 	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4864 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4865 
4866 	if (IS_HASWELL(dev_priv))
4867 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4868 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4869 
4870 	if (HAS_PCH_NOP(dev_priv)) {
4871 		if (IS_IVYBRIDGE(dev_priv)) {
4872 			u32 temp = I915_READ(GEN7_MSG_CTL);
4873 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4874 			I915_WRITE(GEN7_MSG_CTL, temp);
4875 		} else if (INTEL_GEN(dev_priv) >= 7) {
4876 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4877 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4878 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4879 		}
4880 	}
4881 
4882 	i915_gem_init_swizzling(dev_priv);
4883 
4884 	/*
4885 	 * At least 830 can leave some of the unused rings
4886 	 * "active" (ie. head != tail) after resume which
4887 	 * will prevent c3 entry. Makes sure all unused rings
4888 	 * are totally idle.
4889 	 */
4890 	init_unused_rings(dev_priv);
4891 
4892 	BUG_ON(!dev_priv->kernel_context);
4893 	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
4894 		ret = -EIO;
4895 		goto out;
4896 	}
4897 
4898 	ret = i915_ppgtt_init_hw(dev_priv);
4899 	if (ret) {
4900 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4901 		goto out;
4902 	}
4903 
4904 	/* Need to do basic initialisation of all rings first: */
4905 	ret = __i915_gem_restart_engines(dev_priv);
4906 	if (ret)
4907 		goto out;
4908 
4909 	intel_mocs_init_l3cc_table(dev_priv);
4910 
4911 	/* We can't enable contexts until all firmware is loaded */
4912 	ret = intel_uc_init_hw(dev_priv);
4913 	if (ret)
4914 		goto out;
4915 
4916 out:
4917 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4918 	return ret;
4919 }
4920 
4921 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4922 {
4923 	if (INTEL_INFO(dev_priv)->gen < 6)
4924 		return false;
4925 
4926 	/* TODO: make semaphores and Execlists play nicely together */
4927 	if (i915_modparams.enable_execlists)
4928 		return false;
4929 
4930 	if (value >= 0)
4931 		return value;
4932 
4933 	/* Enable semaphores on SNB when IO remapping is off */
4934 	if (IS_GEN6(dev_priv) && intel_vtd_active())
4935 		return false;
4936 
4937 	return true;
4938 }
4939 
4940 int i915_gem_init(struct drm_i915_private *dev_priv)
4941 {
4942 	int ret;
4943 
4944 	/*
4945 	 * We need to fallback to 4K pages since gvt gtt handling doesn't
4946 	 * support huge page entries - we will need to check either hypervisor
4947 	 * mm can support huge guest page or just do emulation in gvt.
4948 	 */
4949 	if (intel_vgpu_active(dev_priv))
4950 		mkwrite_device_info(dev_priv)->page_sizes =
4951 			I915_GTT_PAGE_SIZE_4K;
4952 
4953 	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4954 
4955 	if (!i915_modparams.enable_execlists) {
4956 		dev_priv->gt.resume = intel_legacy_submission_resume;
4957 		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4958 	} else {
4959 		dev_priv->gt.resume = intel_lr_context_resume;
4960 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4961 	}
4962 
4963 	ret = i915_gem_init_userptr(dev_priv);
4964 	if (ret)
4965 		return ret;
4966 
4967 	/* This is just a security blanket to placate dragons.
4968 	 * On some systems, we very sporadically observe that the first TLBs
4969 	 * used by the CS may be stale, despite us poking the TLB reset. If
4970 	 * we hold the forcewake during initialisation these problems
4971 	 * just magically go away.
4972 	 */
4973 	mutex_lock(&dev_priv->drm.struct_mutex);
4974 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4975 
4976 	ret = i915_gem_init_ggtt(dev_priv);
4977 	if (ret)
4978 		goto out_unlock;
4979 
4980 	ret = i915_gem_contexts_init(dev_priv);
4981 	if (ret)
4982 		goto out_unlock;
4983 
4984 	ret = intel_engines_init(dev_priv);
4985 	if (ret)
4986 		goto out_unlock;
4987 
4988 	ret = i915_gem_init_hw(dev_priv);
4989 	if (ret == -EIO) {
4990 		/* Allow engine initialisation to fail by marking the GPU as
4991 		 * wedged. But we only want to do this where the GPU is angry,
4992 		 * for all other failure, such as an allocation failure, bail.
4993 		 */
4994 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
4995 			DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4996 			i915_gem_set_wedged(dev_priv);
4997 		}
4998 		ret = 0;
4999 	}
5000 
5001 out_unlock:
5002 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5003 	mutex_unlock(&dev_priv->drm.struct_mutex);
5004 
5005 	return ret;
5006 }
5007 
5008 void i915_gem_init_mmio(struct drm_i915_private *i915)
5009 {
5010 	i915_gem_sanitize(i915);
5011 }
5012 
5013 void
5014 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5015 {
5016 	struct intel_engine_cs *engine;
5017 	enum intel_engine_id id;
5018 
5019 	for_each_engine(engine, dev_priv, id)
5020 		dev_priv->gt.cleanup_engine(engine);
5021 }
5022 
5023 void
5024 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5025 {
5026 	int i;
5027 
5028 	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5029 	    !IS_CHERRYVIEW(dev_priv))
5030 		dev_priv->num_fence_regs = 32;
5031 	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
5032 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5033 		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5034 		dev_priv->num_fence_regs = 16;
5035 	else
5036 		dev_priv->num_fence_regs = 8;
5037 
5038 	if (intel_vgpu_active(dev_priv))
5039 		dev_priv->num_fence_regs =
5040 				I915_READ(vgtif_reg(avail_rs.fence_num));
5041 
5042 	/* Initialize fence registers to zero */
5043 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
5044 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5045 
5046 		fence->i915 = dev_priv;
5047 		fence->id = i;
5048 		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5049 	}
5050 	i915_gem_restore_fences(dev_priv);
5051 
5052 	i915_gem_detect_bit_6_swizzle(dev_priv);
5053 }
5054 
5055 int
5056 i915_gem_load_init(struct drm_i915_private *dev_priv)
5057 {
5058 	int err = -ENOMEM;
5059 
5060 	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5061 	if (!dev_priv->objects)
5062 		goto err_out;
5063 
5064 	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5065 	if (!dev_priv->vmas)
5066 		goto err_objects;
5067 
5068 	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5069 	if (!dev_priv->luts)
5070 		goto err_vmas;
5071 
5072 	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
5073 					SLAB_HWCACHE_ALIGN |
5074 					SLAB_RECLAIM_ACCOUNT |
5075 					SLAB_TYPESAFE_BY_RCU);
5076 	if (!dev_priv->requests)
5077 		goto err_luts;
5078 
5079 	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5080 					    SLAB_HWCACHE_ALIGN |
5081 					    SLAB_RECLAIM_ACCOUNT);
5082 	if (!dev_priv->dependencies)
5083 		goto err_requests;
5084 
5085 	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5086 	if (!dev_priv->priorities)
5087 		goto err_dependencies;
5088 
5089 	mutex_lock(&dev_priv->drm.struct_mutex);
5090 	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5091 	err = i915_gem_timeline_init__global(dev_priv);
5092 	mutex_unlock(&dev_priv->drm.struct_mutex);
5093 	if (err)
5094 		goto err_priorities;
5095 
5096 	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
5097 
5098 	spin_lock_init(&dev_priv->mm.obj_lock);
5099 	spin_lock_init(&dev_priv->mm.free_lock);
5100 	init_llist_head(&dev_priv->mm.free_list);
5101 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5102 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5103 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5104 	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
5105 
5106 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5107 			  i915_gem_retire_work_handler);
5108 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5109 			  i915_gem_idle_work_handler);
5110 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5111 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5112 
5113 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5114 
5115 	spin_lock_init(&dev_priv->fb_tracking.lock);
5116 
5117 	err = i915_gemfs_init(dev_priv);
5118 	if (err)
5119 		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5120 
5121 	return 0;
5122 
5123 err_priorities:
5124 	kmem_cache_destroy(dev_priv->priorities);
5125 err_dependencies:
5126 	kmem_cache_destroy(dev_priv->dependencies);
5127 err_requests:
5128 	kmem_cache_destroy(dev_priv->requests);
5129 err_luts:
5130 	kmem_cache_destroy(dev_priv->luts);
5131 err_vmas:
5132 	kmem_cache_destroy(dev_priv->vmas);
5133 err_objects:
5134 	kmem_cache_destroy(dev_priv->objects);
5135 err_out:
5136 	return err;
5137 }
5138 
5139 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
5140 {
5141 	i915_gem_drain_freed_objects(dev_priv);
5142 	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
5143 	WARN_ON(dev_priv->mm.object_count);
5144 
5145 	mutex_lock(&dev_priv->drm.struct_mutex);
5146 	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
5147 	WARN_ON(!list_empty(&dev_priv->gt.timelines));
5148 	mutex_unlock(&dev_priv->drm.struct_mutex);
5149 
5150 	kmem_cache_destroy(dev_priv->priorities);
5151 	kmem_cache_destroy(dev_priv->dependencies);
5152 	kmem_cache_destroy(dev_priv->requests);
5153 	kmem_cache_destroy(dev_priv->luts);
5154 	kmem_cache_destroy(dev_priv->vmas);
5155 	kmem_cache_destroy(dev_priv->objects);
5156 
5157 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5158 	rcu_barrier();
5159 
5160 	i915_gemfs_fini(dev_priv);
5161 }
5162 
5163 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5164 {
5165 	/* Discard all purgeable objects, let userspace recover those as
5166 	 * required after resuming.
5167 	 */
5168 	i915_gem_shrink_all(dev_priv);
5169 
5170 	return 0;
5171 }
5172 
5173 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5174 {
5175 	struct drm_i915_gem_object *obj;
5176 	struct list_head *phases[] = {
5177 		&dev_priv->mm.unbound_list,
5178 		&dev_priv->mm.bound_list,
5179 		NULL
5180 	}, **p;
5181 
5182 	/* Called just before we write the hibernation image.
5183 	 *
5184 	 * We need to update the domain tracking to reflect that the CPU
5185 	 * will be accessing all the pages to create and restore from the
5186 	 * hibernation, and so upon restoration those pages will be in the
5187 	 * CPU domain.
5188 	 *
5189 	 * To make sure the hibernation image contains the latest state,
5190 	 * we update that state just before writing out the image.
5191 	 *
5192 	 * To try and reduce the hibernation image, we manually shrink
5193 	 * the objects as well, see i915_gem_freeze()
5194 	 */
5195 
5196 	i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5197 	i915_gem_drain_freed_objects(dev_priv);
5198 
5199 	spin_lock(&dev_priv->mm.obj_lock);
5200 	for (p = phases; *p; p++) {
5201 		list_for_each_entry(obj, *p, mm.link)
5202 			__start_cpu_write(obj);
5203 	}
5204 	spin_unlock(&dev_priv->mm.obj_lock);
5205 
5206 	return 0;
5207 }
5208 
5209 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5210 {
5211 	struct drm_i915_file_private *file_priv = file->driver_priv;
5212 	struct drm_i915_gem_request *request;
5213 
5214 	/* Clean up our request list when the client is going away, so that
5215 	 * later retire_requests won't dereference our soon-to-be-gone
5216 	 * file_priv.
5217 	 */
5218 	spin_lock(&file_priv->mm.lock);
5219 	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5220 		request->file_priv = NULL;
5221 	spin_unlock(&file_priv->mm.lock);
5222 }
5223 
5224 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5225 {
5226 	struct drm_i915_file_private *file_priv;
5227 	int ret;
5228 
5229 	DRM_DEBUG("\n");
5230 
5231 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5232 	if (!file_priv)
5233 		return -ENOMEM;
5234 
5235 	file->driver_priv = file_priv;
5236 	file_priv->dev_priv = i915;
5237 	file_priv->file = file;
5238 
5239 	spin_lock_init(&file_priv->mm.lock);
5240 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5241 
5242 	file_priv->bsd_engine = -1;
5243 
5244 	ret = i915_gem_context_open(i915, file);
5245 	if (ret)
5246 		kfree(file_priv);
5247 
5248 	return ret;
5249 }
5250 
5251 /**
5252  * i915_gem_track_fb - update frontbuffer tracking
5253  * @old: current GEM buffer for the frontbuffer slots
5254  * @new: new GEM buffer for the frontbuffer slots
5255  * @frontbuffer_bits: bitmask of frontbuffer slots
5256  *
5257  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5258  * from @old and setting them in @new. Both @old and @new can be NULL.
5259  */
5260 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5261 		       struct drm_i915_gem_object *new,
5262 		       unsigned frontbuffer_bits)
5263 {
5264 	/* Control of individual bits within the mask are guarded by
5265 	 * the owning plane->mutex, i.e. we can never see concurrent
5266 	 * manipulation of individual bits. But since the bitfield as a whole
5267 	 * is updated using RMW, we need to use atomics in order to update
5268 	 * the bits.
5269 	 */
5270 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5271 		     sizeof(atomic_t) * BITS_PER_BYTE);
5272 
5273 	if (old) {
5274 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5275 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5276 	}
5277 
5278 	if (new) {
5279 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5280 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5281 	}
5282 }
5283 
5284 /* Allocate a new GEM object and fill it with the supplied data */
5285 struct drm_i915_gem_object *
5286 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5287 			         const void *data, size_t size)
5288 {
5289 	struct drm_i915_gem_object *obj;
5290 	struct file *file;
5291 	size_t offset;
5292 	int err;
5293 
5294 	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5295 	if (IS_ERR(obj))
5296 		return obj;
5297 
5298 	GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5299 
5300 	file = obj->base.filp;
5301 	offset = 0;
5302 	do {
5303 		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5304 		struct page *page;
5305 		void *pgdata, *vaddr;
5306 
5307 		err = pagecache_write_begin(file, file->f_mapping,
5308 					    offset, len, 0,
5309 					    &page, &pgdata);
5310 		if (err < 0)
5311 			goto fail;
5312 
5313 		vaddr = kmap(page);
5314 		memcpy(vaddr, data, len);
5315 		kunmap(page);
5316 
5317 		err = pagecache_write_end(file, file->f_mapping,
5318 					  offset, len, len,
5319 					  page, pgdata);
5320 		if (err < 0)
5321 			goto fail;
5322 
5323 		size -= len;
5324 		data += len;
5325 		offset += len;
5326 	} while (size);
5327 
5328 	return obj;
5329 
5330 fail:
5331 	i915_gem_object_put(obj);
5332 	return ERR_PTR(err);
5333 }
5334 
5335 struct scatterlist *
5336 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5337 		       unsigned int n,
5338 		       unsigned int *offset)
5339 {
5340 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5341 	struct scatterlist *sg;
5342 	unsigned int idx, count;
5343 
5344 	might_sleep();
5345 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5346 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5347 
5348 	/* As we iterate forward through the sg, we record each entry in a
5349 	 * radixtree for quick repeated (backwards) lookups. If we have seen
5350 	 * this index previously, we will have an entry for it.
5351 	 *
5352 	 * Initial lookup is O(N), but this is amortized to O(1) for
5353 	 * sequential page access (where each new request is consecutive
5354 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5355 	 * i.e. O(1) with a large constant!
5356 	 */
5357 	if (n < READ_ONCE(iter->sg_idx))
5358 		goto lookup;
5359 
5360 	mutex_lock(&iter->lock);
5361 
5362 	/* We prefer to reuse the last sg so that repeated lookup of this
5363 	 * (or the subsequent) sg are fast - comparing against the last
5364 	 * sg is faster than going through the radixtree.
5365 	 */
5366 
5367 	sg = iter->sg_pos;
5368 	idx = iter->sg_idx;
5369 	count = __sg_page_count(sg);
5370 
5371 	while (idx + count <= n) {
5372 		unsigned long exception, i;
5373 		int ret;
5374 
5375 		/* If we cannot allocate and insert this entry, or the
5376 		 * individual pages from this range, cancel updating the
5377 		 * sg_idx so that on this lookup we are forced to linearly
5378 		 * scan onwards, but on future lookups we will try the
5379 		 * insertion again (in which case we need to be careful of
5380 		 * the error return reporting that we have already inserted
5381 		 * this index).
5382 		 */
5383 		ret = radix_tree_insert(&iter->radix, idx, sg);
5384 		if (ret && ret != -EEXIST)
5385 			goto scan;
5386 
5387 		exception =
5388 			RADIX_TREE_EXCEPTIONAL_ENTRY |
5389 			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5390 		for (i = 1; i < count; i++) {
5391 			ret = radix_tree_insert(&iter->radix, idx + i,
5392 						(void *)exception);
5393 			if (ret && ret != -EEXIST)
5394 				goto scan;
5395 		}
5396 
5397 		idx += count;
5398 		sg = ____sg_next(sg);
5399 		count = __sg_page_count(sg);
5400 	}
5401 
5402 scan:
5403 	iter->sg_pos = sg;
5404 	iter->sg_idx = idx;
5405 
5406 	mutex_unlock(&iter->lock);
5407 
5408 	if (unlikely(n < idx)) /* insertion completed by another thread */
5409 		goto lookup;
5410 
5411 	/* In case we failed to insert the entry into the radixtree, we need
5412 	 * to look beyond the current sg.
5413 	 */
5414 	while (idx + count <= n) {
5415 		idx += count;
5416 		sg = ____sg_next(sg);
5417 		count = __sg_page_count(sg);
5418 	}
5419 
5420 	*offset = n - idx;
5421 	return sg;
5422 
5423 lookup:
5424 	rcu_read_lock();
5425 
5426 	sg = radix_tree_lookup(&iter->radix, n);
5427 	GEM_BUG_ON(!sg);
5428 
5429 	/* If this index is in the middle of multi-page sg entry,
5430 	 * the radixtree will contain an exceptional entry that points
5431 	 * to the start of that range. We will return the pointer to
5432 	 * the base page and the offset of this page within the
5433 	 * sg entry's range.
5434 	 */
5435 	*offset = 0;
5436 	if (unlikely(radix_tree_exception(sg))) {
5437 		unsigned long base =
5438 			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5439 
5440 		sg = radix_tree_lookup(&iter->radix, base);
5441 		GEM_BUG_ON(!sg);
5442 
5443 		*offset = n - base;
5444 	}
5445 
5446 	rcu_read_unlock();
5447 
5448 	return sg;
5449 }
5450 
5451 struct page *
5452 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5453 {
5454 	struct scatterlist *sg;
5455 	unsigned int offset;
5456 
5457 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5458 
5459 	sg = i915_gem_object_get_sg(obj, n, &offset);
5460 	return nth_page(sg_page(sg), offset);
5461 }
5462 
5463 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5464 struct page *
5465 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5466 			       unsigned int n)
5467 {
5468 	struct page *page;
5469 
5470 	page = i915_gem_object_get_page(obj, n);
5471 	if (!obj->mm.dirty)
5472 		set_page_dirty(page);
5473 
5474 	return page;
5475 }
5476 
5477 dma_addr_t
5478 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5479 				unsigned long n)
5480 {
5481 	struct scatterlist *sg;
5482 	unsigned int offset;
5483 
5484 	sg = i915_gem_object_get_sg(obj, n, &offset);
5485 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5486 }
5487 
5488 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5489 {
5490 	struct sg_table *pages;
5491 	int err;
5492 
5493 	if (align > obj->base.size)
5494 		return -EINVAL;
5495 
5496 	if (obj->ops == &i915_gem_phys_ops)
5497 		return 0;
5498 
5499 	if (obj->ops != &i915_gem_object_ops)
5500 		return -EINVAL;
5501 
5502 	err = i915_gem_object_unbind(obj);
5503 	if (err)
5504 		return err;
5505 
5506 	mutex_lock(&obj->mm.lock);
5507 
5508 	if (obj->mm.madv != I915_MADV_WILLNEED) {
5509 		err = -EFAULT;
5510 		goto err_unlock;
5511 	}
5512 
5513 	if (obj->mm.quirked) {
5514 		err = -EFAULT;
5515 		goto err_unlock;
5516 	}
5517 
5518 	if (obj->mm.mapping) {
5519 		err = -EBUSY;
5520 		goto err_unlock;
5521 	}
5522 
5523 	pages = fetch_and_zero(&obj->mm.pages);
5524 	if (pages) {
5525 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
5526 
5527 		__i915_gem_object_reset_page_iter(obj);
5528 
5529 		spin_lock(&i915->mm.obj_lock);
5530 		list_del(&obj->mm.link);
5531 		spin_unlock(&i915->mm.obj_lock);
5532 	}
5533 
5534 	obj->ops = &i915_gem_phys_ops;
5535 
5536 	err = ____i915_gem_object_get_pages(obj);
5537 	if (err)
5538 		goto err_xfer;
5539 
5540 	/* Perma-pin (until release) the physical set of pages */
5541 	__i915_gem_object_pin_pages(obj);
5542 
5543 	if (!IS_ERR_OR_NULL(pages))
5544 		i915_gem_object_ops.put_pages(obj, pages);
5545 	mutex_unlock(&obj->mm.lock);
5546 	return 0;
5547 
5548 err_xfer:
5549 	obj->ops = &i915_gem_object_ops;
5550 	obj->mm.pages = pages;
5551 err_unlock:
5552 	mutex_unlock(&obj->mm.lock);
5553 	return err;
5554 }
5555 
5556 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5557 #include "selftests/scatterlist.c"
5558 #include "selftests/mock_gem_device.c"
5559 #include "selftests/huge_gem_object.c"
5560 #include "selftests/huge_pages.c"
5561 #include "selftests/i915_gem_object.c"
5562 #include "selftests/i915_gem_coherency.c"
5563 #endif
5564