1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drmP.h> 29 #include <drm/drm_vma_manager.h> 30 #include <drm/i915_drm.h> 31 #include "i915_drv.h" 32 #include "i915_gem_clflush.h" 33 #include "i915_vgpu.h" 34 #include "i915_trace.h" 35 #include "intel_drv.h" 36 #include "intel_frontbuffer.h" 37 #include "intel_mocs.h" 38 #include "i915_gemfs.h" 39 #include <linux/dma-fence-array.h> 40 #include <linux/kthread.h> 41 #include <linux/reservation.h> 42 #include <linux/shmem_fs.h> 43 #include <linux/slab.h> 44 #include <linux/stop_machine.h> 45 #include <linux/swap.h> 46 #include <linux/pci.h> 47 #include <linux/dma-buf.h> 48 49 static void i915_gem_flush_free_objects(struct drm_i915_private *i915); 50 51 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj) 52 { 53 if (obj->cache_dirty) 54 return false; 55 56 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)) 57 return true; 58 59 return obj->pin_global; /* currently in use by HW, keep flushed */ 60 } 61 62 static int 63 insert_mappable_node(struct i915_ggtt *ggtt, 64 struct drm_mm_node *node, u32 size) 65 { 66 memset(node, 0, sizeof(*node)); 67 return drm_mm_insert_node_in_range(&ggtt->base.mm, node, 68 size, 0, I915_COLOR_UNEVICTABLE, 69 0, ggtt->mappable_end, 70 DRM_MM_INSERT_LOW); 71 } 72 73 static void 74 remove_mappable_node(struct drm_mm_node *node) 75 { 76 drm_mm_remove_node(node); 77 } 78 79 /* some bookkeeping */ 80 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, 81 u64 size) 82 { 83 spin_lock(&dev_priv->mm.object_stat_lock); 84 dev_priv->mm.object_count++; 85 dev_priv->mm.object_memory += size; 86 spin_unlock(&dev_priv->mm.object_stat_lock); 87 } 88 89 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, 90 u64 size) 91 { 92 spin_lock(&dev_priv->mm.object_stat_lock); 93 dev_priv->mm.object_count--; 94 dev_priv->mm.object_memory -= size; 95 spin_unlock(&dev_priv->mm.object_stat_lock); 96 } 97 98 static int 99 i915_gem_wait_for_error(struct i915_gpu_error *error) 100 { 101 int ret; 102 103 might_sleep(); 104 105 /* 106 * Only wait 10 seconds for the gpu reset to complete to avoid hanging 107 * userspace. If it takes that long something really bad is going on and 108 * we should simply try to bail out and fail as gracefully as possible. 109 */ 110 ret = wait_event_interruptible_timeout(error->reset_queue, 111 !i915_reset_backoff(error), 112 I915_RESET_TIMEOUT); 113 if (ret == 0) { 114 DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); 115 return -EIO; 116 } else if (ret < 0) { 117 return ret; 118 } else { 119 return 0; 120 } 121 } 122 123 int i915_mutex_lock_interruptible(struct drm_device *dev) 124 { 125 struct drm_i915_private *dev_priv = to_i915(dev); 126 int ret; 127 128 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 129 if (ret) 130 return ret; 131 132 ret = mutex_lock_interruptible(&dev->struct_mutex); 133 if (ret) 134 return ret; 135 136 return 0; 137 } 138 139 int 140 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 141 struct drm_file *file) 142 { 143 struct drm_i915_private *dev_priv = to_i915(dev); 144 struct i915_ggtt *ggtt = &dev_priv->ggtt; 145 struct drm_i915_gem_get_aperture *args = data; 146 struct i915_vma *vma; 147 u64 pinned; 148 149 pinned = ggtt->base.reserved; 150 mutex_lock(&dev->struct_mutex); 151 list_for_each_entry(vma, &ggtt->base.active_list, vm_link) 152 if (i915_vma_is_pinned(vma)) 153 pinned += vma->node.size; 154 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link) 155 if (i915_vma_is_pinned(vma)) 156 pinned += vma->node.size; 157 mutex_unlock(&dev->struct_mutex); 158 159 args->aper_size = ggtt->base.total; 160 args->aper_available_size = args->aper_size - pinned; 161 162 return 0; 163 } 164 165 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj) 166 { 167 struct address_space *mapping = obj->base.filp->f_mapping; 168 drm_dma_handle_t *phys; 169 struct sg_table *st; 170 struct scatterlist *sg; 171 char *vaddr; 172 int i; 173 int err; 174 175 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj))) 176 return -EINVAL; 177 178 /* Always aligning to the object size, allows a single allocation 179 * to handle all possible callers, and given typical object sizes, 180 * the alignment of the buddy allocation will naturally match. 181 */ 182 phys = drm_pci_alloc(obj->base.dev, 183 roundup_pow_of_two(obj->base.size), 184 roundup_pow_of_two(obj->base.size)); 185 if (!phys) 186 return -ENOMEM; 187 188 vaddr = phys->vaddr; 189 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 190 struct page *page; 191 char *src; 192 193 page = shmem_read_mapping_page(mapping, i); 194 if (IS_ERR(page)) { 195 err = PTR_ERR(page); 196 goto err_phys; 197 } 198 199 src = kmap_atomic(page); 200 memcpy(vaddr, src, PAGE_SIZE); 201 drm_clflush_virt_range(vaddr, PAGE_SIZE); 202 kunmap_atomic(src); 203 204 put_page(page); 205 vaddr += PAGE_SIZE; 206 } 207 208 i915_gem_chipset_flush(to_i915(obj->base.dev)); 209 210 st = kmalloc(sizeof(*st), GFP_KERNEL); 211 if (!st) { 212 err = -ENOMEM; 213 goto err_phys; 214 } 215 216 if (sg_alloc_table(st, 1, GFP_KERNEL)) { 217 kfree(st); 218 err = -ENOMEM; 219 goto err_phys; 220 } 221 222 sg = st->sgl; 223 sg->offset = 0; 224 sg->length = obj->base.size; 225 226 sg_dma_address(sg) = phys->busaddr; 227 sg_dma_len(sg) = obj->base.size; 228 229 obj->phys_handle = phys; 230 231 __i915_gem_object_set_pages(obj, st, sg->length); 232 233 return 0; 234 235 err_phys: 236 drm_pci_free(obj->base.dev, phys); 237 238 return err; 239 } 240 241 static void __start_cpu_write(struct drm_i915_gem_object *obj) 242 { 243 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 244 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 245 if (cpu_write_needs_clflush(obj)) 246 obj->cache_dirty = true; 247 } 248 249 static void 250 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj, 251 struct sg_table *pages, 252 bool needs_clflush) 253 { 254 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED); 255 256 if (obj->mm.madv == I915_MADV_DONTNEED) 257 obj->mm.dirty = false; 258 259 if (needs_clflush && 260 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 && 261 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)) 262 drm_clflush_sg(pages); 263 264 __start_cpu_write(obj); 265 } 266 267 static void 268 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj, 269 struct sg_table *pages) 270 { 271 __i915_gem_object_release_shmem(obj, pages, false); 272 273 if (obj->mm.dirty) { 274 struct address_space *mapping = obj->base.filp->f_mapping; 275 char *vaddr = obj->phys_handle->vaddr; 276 int i; 277 278 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 279 struct page *page; 280 char *dst; 281 282 page = shmem_read_mapping_page(mapping, i); 283 if (IS_ERR(page)) 284 continue; 285 286 dst = kmap_atomic(page); 287 drm_clflush_virt_range(vaddr, PAGE_SIZE); 288 memcpy(dst, vaddr, PAGE_SIZE); 289 kunmap_atomic(dst); 290 291 set_page_dirty(page); 292 if (obj->mm.madv == I915_MADV_WILLNEED) 293 mark_page_accessed(page); 294 put_page(page); 295 vaddr += PAGE_SIZE; 296 } 297 obj->mm.dirty = false; 298 } 299 300 sg_free_table(pages); 301 kfree(pages); 302 303 drm_pci_free(obj->base.dev, obj->phys_handle); 304 } 305 306 static void 307 i915_gem_object_release_phys(struct drm_i915_gem_object *obj) 308 { 309 i915_gem_object_unpin_pages(obj); 310 } 311 312 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = { 313 .get_pages = i915_gem_object_get_pages_phys, 314 .put_pages = i915_gem_object_put_pages_phys, 315 .release = i915_gem_object_release_phys, 316 }; 317 318 static const struct drm_i915_gem_object_ops i915_gem_object_ops; 319 320 int i915_gem_object_unbind(struct drm_i915_gem_object *obj) 321 { 322 struct i915_vma *vma; 323 LIST_HEAD(still_in_list); 324 int ret; 325 326 lockdep_assert_held(&obj->base.dev->struct_mutex); 327 328 /* Closed vma are removed from the obj->vma_list - but they may 329 * still have an active binding on the object. To remove those we 330 * must wait for all rendering to complete to the object (as unbinding 331 * must anyway), and retire the requests. 332 */ 333 ret = i915_gem_object_set_to_cpu_domain(obj, false); 334 if (ret) 335 return ret; 336 337 while ((vma = list_first_entry_or_null(&obj->vma_list, 338 struct i915_vma, 339 obj_link))) { 340 list_move_tail(&vma->obj_link, &still_in_list); 341 ret = i915_vma_unbind(vma); 342 if (ret) 343 break; 344 } 345 list_splice(&still_in_list, &obj->vma_list); 346 347 return ret; 348 } 349 350 static long 351 i915_gem_object_wait_fence(struct dma_fence *fence, 352 unsigned int flags, 353 long timeout, 354 struct intel_rps_client *rps_client) 355 { 356 struct drm_i915_gem_request *rq; 357 358 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1); 359 360 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 361 return timeout; 362 363 if (!dma_fence_is_i915(fence)) 364 return dma_fence_wait_timeout(fence, 365 flags & I915_WAIT_INTERRUPTIBLE, 366 timeout); 367 368 rq = to_request(fence); 369 if (i915_gem_request_completed(rq)) 370 goto out; 371 372 /* This client is about to stall waiting for the GPU. In many cases 373 * this is undesirable and limits the throughput of the system, as 374 * many clients cannot continue processing user input/output whilst 375 * blocked. RPS autotuning may take tens of milliseconds to respond 376 * to the GPU load and thus incurs additional latency for the client. 377 * We can circumvent that by promoting the GPU frequency to maximum 378 * before we wait. This makes the GPU throttle up much more quickly 379 * (good for benchmarks and user experience, e.g. window animations), 380 * but at a cost of spending more power processing the workload 381 * (bad for battery). Not all clients even want their results 382 * immediately and for them we should just let the GPU select its own 383 * frequency to maximise efficiency. To prevent a single client from 384 * forcing the clocks too high for the whole system, we only allow 385 * each client to waitboost once in a busy period. 386 */ 387 if (rps_client) { 388 if (INTEL_GEN(rq->i915) >= 6) 389 gen6_rps_boost(rq, rps_client); 390 else 391 rps_client = NULL; 392 } 393 394 timeout = i915_wait_request(rq, flags, timeout); 395 396 out: 397 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq)) 398 i915_gem_request_retire_upto(rq); 399 400 return timeout; 401 } 402 403 static long 404 i915_gem_object_wait_reservation(struct reservation_object *resv, 405 unsigned int flags, 406 long timeout, 407 struct intel_rps_client *rps_client) 408 { 409 unsigned int seq = __read_seqcount_begin(&resv->seq); 410 struct dma_fence *excl; 411 bool prune_fences = false; 412 413 if (flags & I915_WAIT_ALL) { 414 struct dma_fence **shared; 415 unsigned int count, i; 416 int ret; 417 418 ret = reservation_object_get_fences_rcu(resv, 419 &excl, &count, &shared); 420 if (ret) 421 return ret; 422 423 for (i = 0; i < count; i++) { 424 timeout = i915_gem_object_wait_fence(shared[i], 425 flags, timeout, 426 rps_client); 427 if (timeout < 0) 428 break; 429 430 dma_fence_put(shared[i]); 431 } 432 433 for (; i < count; i++) 434 dma_fence_put(shared[i]); 435 kfree(shared); 436 437 prune_fences = count && timeout >= 0; 438 } else { 439 excl = reservation_object_get_excl_rcu(resv); 440 } 441 442 if (excl && timeout >= 0) { 443 timeout = i915_gem_object_wait_fence(excl, flags, timeout, 444 rps_client); 445 prune_fences = timeout >= 0; 446 } 447 448 dma_fence_put(excl); 449 450 /* Oportunistically prune the fences iff we know they have *all* been 451 * signaled and that the reservation object has not been changed (i.e. 452 * no new fences have been added). 453 */ 454 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) { 455 if (reservation_object_trylock(resv)) { 456 if (!__read_seqcount_retry(&resv->seq, seq)) 457 reservation_object_add_excl_fence(resv, NULL); 458 reservation_object_unlock(resv); 459 } 460 } 461 462 return timeout; 463 } 464 465 static void __fence_set_priority(struct dma_fence *fence, int prio) 466 { 467 struct drm_i915_gem_request *rq; 468 struct intel_engine_cs *engine; 469 470 if (!dma_fence_is_i915(fence)) 471 return; 472 473 rq = to_request(fence); 474 engine = rq->engine; 475 if (!engine->schedule) 476 return; 477 478 engine->schedule(rq, prio); 479 } 480 481 static void fence_set_priority(struct dma_fence *fence, int prio) 482 { 483 /* Recurse once into a fence-array */ 484 if (dma_fence_is_array(fence)) { 485 struct dma_fence_array *array = to_dma_fence_array(fence); 486 int i; 487 488 for (i = 0; i < array->num_fences; i++) 489 __fence_set_priority(array->fences[i], prio); 490 } else { 491 __fence_set_priority(fence, prio); 492 } 493 } 494 495 int 496 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj, 497 unsigned int flags, 498 int prio) 499 { 500 struct dma_fence *excl; 501 502 if (flags & I915_WAIT_ALL) { 503 struct dma_fence **shared; 504 unsigned int count, i; 505 int ret; 506 507 ret = reservation_object_get_fences_rcu(obj->resv, 508 &excl, &count, &shared); 509 if (ret) 510 return ret; 511 512 for (i = 0; i < count; i++) { 513 fence_set_priority(shared[i], prio); 514 dma_fence_put(shared[i]); 515 } 516 517 kfree(shared); 518 } else { 519 excl = reservation_object_get_excl_rcu(obj->resv); 520 } 521 522 if (excl) { 523 fence_set_priority(excl, prio); 524 dma_fence_put(excl); 525 } 526 return 0; 527 } 528 529 /** 530 * Waits for rendering to the object to be completed 531 * @obj: i915 gem object 532 * @flags: how to wait (under a lock, for all rendering or just for writes etc) 533 * @timeout: how long to wait 534 * @rps: client (user process) to charge for any waitboosting 535 */ 536 int 537 i915_gem_object_wait(struct drm_i915_gem_object *obj, 538 unsigned int flags, 539 long timeout, 540 struct intel_rps_client *rps_client) 541 { 542 might_sleep(); 543 #if IS_ENABLED(CONFIG_LOCKDEP) 544 GEM_BUG_ON(debug_locks && 545 !!lockdep_is_held(&obj->base.dev->struct_mutex) != 546 !!(flags & I915_WAIT_LOCKED)); 547 #endif 548 GEM_BUG_ON(timeout < 0); 549 550 timeout = i915_gem_object_wait_reservation(obj->resv, 551 flags, timeout, 552 rps_client); 553 return timeout < 0 ? timeout : 0; 554 } 555 556 static struct intel_rps_client *to_rps_client(struct drm_file *file) 557 { 558 struct drm_i915_file_private *fpriv = file->driver_priv; 559 560 return &fpriv->rps_client; 561 } 562 563 static int 564 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj, 565 struct drm_i915_gem_pwrite *args, 566 struct drm_file *file) 567 { 568 void *vaddr = obj->phys_handle->vaddr + args->offset; 569 char __user *user_data = u64_to_user_ptr(args->data_ptr); 570 571 /* We manually control the domain here and pretend that it 572 * remains coherent i.e. in the GTT domain, like shmem_pwrite. 573 */ 574 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 575 if (copy_from_user(vaddr, user_data, args->size)) 576 return -EFAULT; 577 578 drm_clflush_virt_range(vaddr, args->size); 579 i915_gem_chipset_flush(to_i915(obj->base.dev)); 580 581 intel_fb_obj_flush(obj, ORIGIN_CPU); 582 return 0; 583 } 584 585 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv) 586 { 587 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL); 588 } 589 590 void i915_gem_object_free(struct drm_i915_gem_object *obj) 591 { 592 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 593 kmem_cache_free(dev_priv->objects, obj); 594 } 595 596 static int 597 i915_gem_create(struct drm_file *file, 598 struct drm_i915_private *dev_priv, 599 uint64_t size, 600 uint32_t *handle_p) 601 { 602 struct drm_i915_gem_object *obj; 603 int ret; 604 u32 handle; 605 606 size = roundup(size, PAGE_SIZE); 607 if (size == 0) 608 return -EINVAL; 609 610 /* Allocate the new object */ 611 obj = i915_gem_object_create(dev_priv, size); 612 if (IS_ERR(obj)) 613 return PTR_ERR(obj); 614 615 ret = drm_gem_handle_create(file, &obj->base, &handle); 616 /* drop reference from allocate - handle holds it now */ 617 i915_gem_object_put(obj); 618 if (ret) 619 return ret; 620 621 *handle_p = handle; 622 return 0; 623 } 624 625 int 626 i915_gem_dumb_create(struct drm_file *file, 627 struct drm_device *dev, 628 struct drm_mode_create_dumb *args) 629 { 630 /* have to work out size/pitch and return them */ 631 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64); 632 args->size = args->pitch * args->height; 633 return i915_gem_create(file, to_i915(dev), 634 args->size, &args->handle); 635 } 636 637 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj) 638 { 639 return !(obj->cache_level == I915_CACHE_NONE || 640 obj->cache_level == I915_CACHE_WT); 641 } 642 643 /** 644 * Creates a new mm object and returns a handle to it. 645 * @dev: drm device pointer 646 * @data: ioctl data blob 647 * @file: drm file pointer 648 */ 649 int 650 i915_gem_create_ioctl(struct drm_device *dev, void *data, 651 struct drm_file *file) 652 { 653 struct drm_i915_private *dev_priv = to_i915(dev); 654 struct drm_i915_gem_create *args = data; 655 656 i915_gem_flush_free_objects(dev_priv); 657 658 return i915_gem_create(file, dev_priv, 659 args->size, &args->handle); 660 } 661 662 static inline enum fb_op_origin 663 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain) 664 { 665 return (domain == I915_GEM_DOMAIN_GTT ? 666 obj->frontbuffer_ggtt_origin : ORIGIN_CPU); 667 } 668 669 static void 670 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains) 671 { 672 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 673 674 if (!(obj->base.write_domain & flush_domains)) 675 return; 676 677 /* No actual flushing is required for the GTT write domain. Writes 678 * to it "immediately" go to main memory as far as we know, so there's 679 * no chipset flush. It also doesn't land in render cache. 680 * 681 * However, we do have to enforce the order so that all writes through 682 * the GTT land before any writes to the device, such as updates to 683 * the GATT itself. 684 * 685 * We also have to wait a bit for the writes to land from the GTT. 686 * An uncached read (i.e. mmio) seems to be ideal for the round-trip 687 * timing. This issue has only been observed when switching quickly 688 * between GTT writes and CPU reads from inside the kernel on recent hw, 689 * and it appears to only affect discrete GTT blocks (i.e. on LLC 690 * system agents we cannot reproduce this behaviour). 691 */ 692 wmb(); 693 694 switch (obj->base.write_domain) { 695 case I915_GEM_DOMAIN_GTT: 696 if (!HAS_LLC(dev_priv)) { 697 intel_runtime_pm_get(dev_priv); 698 spin_lock_irq(&dev_priv->uncore.lock); 699 POSTING_READ_FW(RING_HEAD(dev_priv->engine[RCS]->mmio_base)); 700 spin_unlock_irq(&dev_priv->uncore.lock); 701 intel_runtime_pm_put(dev_priv); 702 } 703 704 intel_fb_obj_flush(obj, 705 fb_write_origin(obj, I915_GEM_DOMAIN_GTT)); 706 break; 707 708 case I915_GEM_DOMAIN_CPU: 709 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC); 710 break; 711 712 case I915_GEM_DOMAIN_RENDER: 713 if (gpu_write_needs_clflush(obj)) 714 obj->cache_dirty = true; 715 break; 716 } 717 718 obj->base.write_domain = 0; 719 } 720 721 static inline int 722 __copy_to_user_swizzled(char __user *cpu_vaddr, 723 const char *gpu_vaddr, int gpu_offset, 724 int length) 725 { 726 int ret, cpu_offset = 0; 727 728 while (length > 0) { 729 int cacheline_end = ALIGN(gpu_offset + 1, 64); 730 int this_length = min(cacheline_end - gpu_offset, length); 731 int swizzled_gpu_offset = gpu_offset ^ 64; 732 733 ret = __copy_to_user(cpu_vaddr + cpu_offset, 734 gpu_vaddr + swizzled_gpu_offset, 735 this_length); 736 if (ret) 737 return ret + length; 738 739 cpu_offset += this_length; 740 gpu_offset += this_length; 741 length -= this_length; 742 } 743 744 return 0; 745 } 746 747 static inline int 748 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, 749 const char __user *cpu_vaddr, 750 int length) 751 { 752 int ret, cpu_offset = 0; 753 754 while (length > 0) { 755 int cacheline_end = ALIGN(gpu_offset + 1, 64); 756 int this_length = min(cacheline_end - gpu_offset, length); 757 int swizzled_gpu_offset = gpu_offset ^ 64; 758 759 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, 760 cpu_vaddr + cpu_offset, 761 this_length); 762 if (ret) 763 return ret + length; 764 765 cpu_offset += this_length; 766 gpu_offset += this_length; 767 length -= this_length; 768 } 769 770 return 0; 771 } 772 773 /* 774 * Pins the specified object's pages and synchronizes the object with 775 * GPU accesses. Sets needs_clflush to non-zero if the caller should 776 * flush the object from the CPU cache. 777 */ 778 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 779 unsigned int *needs_clflush) 780 { 781 int ret; 782 783 lockdep_assert_held(&obj->base.dev->struct_mutex); 784 785 *needs_clflush = 0; 786 if (!i915_gem_object_has_struct_page(obj)) 787 return -ENODEV; 788 789 ret = i915_gem_object_wait(obj, 790 I915_WAIT_INTERRUPTIBLE | 791 I915_WAIT_LOCKED, 792 MAX_SCHEDULE_TIMEOUT, 793 NULL); 794 if (ret) 795 return ret; 796 797 ret = i915_gem_object_pin_pages(obj); 798 if (ret) 799 return ret; 800 801 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ || 802 !static_cpu_has(X86_FEATURE_CLFLUSH)) { 803 ret = i915_gem_object_set_to_cpu_domain(obj, false); 804 if (ret) 805 goto err_unpin; 806 else 807 goto out; 808 } 809 810 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); 811 812 /* If we're not in the cpu read domain, set ourself into the gtt 813 * read domain and manually flush cachelines (if required). This 814 * optimizes for the case when the gpu will dirty the data 815 * anyway again before the next pread happens. 816 */ 817 if (!obj->cache_dirty && 818 !(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) 819 *needs_clflush = CLFLUSH_BEFORE; 820 821 out: 822 /* return with the pages pinned */ 823 return 0; 824 825 err_unpin: 826 i915_gem_object_unpin_pages(obj); 827 return ret; 828 } 829 830 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, 831 unsigned int *needs_clflush) 832 { 833 int ret; 834 835 lockdep_assert_held(&obj->base.dev->struct_mutex); 836 837 *needs_clflush = 0; 838 if (!i915_gem_object_has_struct_page(obj)) 839 return -ENODEV; 840 841 ret = i915_gem_object_wait(obj, 842 I915_WAIT_INTERRUPTIBLE | 843 I915_WAIT_LOCKED | 844 I915_WAIT_ALL, 845 MAX_SCHEDULE_TIMEOUT, 846 NULL); 847 if (ret) 848 return ret; 849 850 ret = i915_gem_object_pin_pages(obj); 851 if (ret) 852 return ret; 853 854 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE || 855 !static_cpu_has(X86_FEATURE_CLFLUSH)) { 856 ret = i915_gem_object_set_to_cpu_domain(obj, true); 857 if (ret) 858 goto err_unpin; 859 else 860 goto out; 861 } 862 863 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); 864 865 /* If we're not in the cpu write domain, set ourself into the 866 * gtt write domain and manually flush cachelines (as required). 867 * This optimizes for the case when the gpu will use the data 868 * right away and we therefore have to clflush anyway. 869 */ 870 if (!obj->cache_dirty) { 871 *needs_clflush |= CLFLUSH_AFTER; 872 873 /* 874 * Same trick applies to invalidate partially written 875 * cachelines read before writing. 876 */ 877 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) 878 *needs_clflush |= CLFLUSH_BEFORE; 879 } 880 881 out: 882 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 883 obj->mm.dirty = true; 884 /* return with the pages pinned */ 885 return 0; 886 887 err_unpin: 888 i915_gem_object_unpin_pages(obj); 889 return ret; 890 } 891 892 static void 893 shmem_clflush_swizzled_range(char *addr, unsigned long length, 894 bool swizzled) 895 { 896 if (unlikely(swizzled)) { 897 unsigned long start = (unsigned long) addr; 898 unsigned long end = (unsigned long) addr + length; 899 900 /* For swizzling simply ensure that we always flush both 901 * channels. Lame, but simple and it works. Swizzled 902 * pwrite/pread is far from a hotpath - current userspace 903 * doesn't use it at all. */ 904 start = round_down(start, 128); 905 end = round_up(end, 128); 906 907 drm_clflush_virt_range((void *)start, end - start); 908 } else { 909 drm_clflush_virt_range(addr, length); 910 } 911 912 } 913 914 /* Only difference to the fast-path function is that this can handle bit17 915 * and uses non-atomic copy and kmap functions. */ 916 static int 917 shmem_pread_slow(struct page *page, int offset, int length, 918 char __user *user_data, 919 bool page_do_bit17_swizzling, bool needs_clflush) 920 { 921 char *vaddr; 922 int ret; 923 924 vaddr = kmap(page); 925 if (needs_clflush) 926 shmem_clflush_swizzled_range(vaddr + offset, length, 927 page_do_bit17_swizzling); 928 929 if (page_do_bit17_swizzling) 930 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length); 931 else 932 ret = __copy_to_user(user_data, vaddr + offset, length); 933 kunmap(page); 934 935 return ret ? - EFAULT : 0; 936 } 937 938 static int 939 shmem_pread(struct page *page, int offset, int length, char __user *user_data, 940 bool page_do_bit17_swizzling, bool needs_clflush) 941 { 942 int ret; 943 944 ret = -ENODEV; 945 if (!page_do_bit17_swizzling) { 946 char *vaddr = kmap_atomic(page); 947 948 if (needs_clflush) 949 drm_clflush_virt_range(vaddr + offset, length); 950 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length); 951 kunmap_atomic(vaddr); 952 } 953 if (ret == 0) 954 return 0; 955 956 return shmem_pread_slow(page, offset, length, user_data, 957 page_do_bit17_swizzling, needs_clflush); 958 } 959 960 static int 961 i915_gem_shmem_pread(struct drm_i915_gem_object *obj, 962 struct drm_i915_gem_pread *args) 963 { 964 char __user *user_data; 965 u64 remain; 966 unsigned int obj_do_bit17_swizzling; 967 unsigned int needs_clflush; 968 unsigned int idx, offset; 969 int ret; 970 971 obj_do_bit17_swizzling = 0; 972 if (i915_gem_object_needs_bit17_swizzle(obj)) 973 obj_do_bit17_swizzling = BIT(17); 974 975 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex); 976 if (ret) 977 return ret; 978 979 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush); 980 mutex_unlock(&obj->base.dev->struct_mutex); 981 if (ret) 982 return ret; 983 984 remain = args->size; 985 user_data = u64_to_user_ptr(args->data_ptr); 986 offset = offset_in_page(args->offset); 987 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { 988 struct page *page = i915_gem_object_get_page(obj, idx); 989 int length; 990 991 length = remain; 992 if (offset + length > PAGE_SIZE) 993 length = PAGE_SIZE - offset; 994 995 ret = shmem_pread(page, offset, length, user_data, 996 page_to_phys(page) & obj_do_bit17_swizzling, 997 needs_clflush); 998 if (ret) 999 break; 1000 1001 remain -= length; 1002 user_data += length; 1003 offset = 0; 1004 } 1005 1006 i915_gem_obj_finish_shmem_access(obj); 1007 return ret; 1008 } 1009 1010 static inline bool 1011 gtt_user_read(struct io_mapping *mapping, 1012 loff_t base, int offset, 1013 char __user *user_data, int length) 1014 { 1015 void __iomem *vaddr; 1016 unsigned long unwritten; 1017 1018 /* We can use the cpu mem copy function because this is X86. */ 1019 vaddr = io_mapping_map_atomic_wc(mapping, base); 1020 unwritten = __copy_to_user_inatomic(user_data, 1021 (void __force *)vaddr + offset, 1022 length); 1023 io_mapping_unmap_atomic(vaddr); 1024 if (unwritten) { 1025 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); 1026 unwritten = copy_to_user(user_data, 1027 (void __force *)vaddr + offset, 1028 length); 1029 io_mapping_unmap(vaddr); 1030 } 1031 return unwritten; 1032 } 1033 1034 static int 1035 i915_gem_gtt_pread(struct drm_i915_gem_object *obj, 1036 const struct drm_i915_gem_pread *args) 1037 { 1038 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1039 struct i915_ggtt *ggtt = &i915->ggtt; 1040 struct drm_mm_node node; 1041 struct i915_vma *vma; 1042 void __user *user_data; 1043 u64 remain, offset; 1044 int ret; 1045 1046 ret = mutex_lock_interruptible(&i915->drm.struct_mutex); 1047 if (ret) 1048 return ret; 1049 1050 intel_runtime_pm_get(i915); 1051 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 1052 PIN_MAPPABLE | 1053 PIN_NONFAULT | 1054 PIN_NONBLOCK); 1055 if (!IS_ERR(vma)) { 1056 node.start = i915_ggtt_offset(vma); 1057 node.allocated = false; 1058 ret = i915_vma_put_fence(vma); 1059 if (ret) { 1060 i915_vma_unpin(vma); 1061 vma = ERR_PTR(ret); 1062 } 1063 } 1064 if (IS_ERR(vma)) { 1065 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); 1066 if (ret) 1067 goto out_unlock; 1068 GEM_BUG_ON(!node.allocated); 1069 } 1070 1071 ret = i915_gem_object_set_to_gtt_domain(obj, false); 1072 if (ret) 1073 goto out_unpin; 1074 1075 mutex_unlock(&i915->drm.struct_mutex); 1076 1077 user_data = u64_to_user_ptr(args->data_ptr); 1078 remain = args->size; 1079 offset = args->offset; 1080 1081 while (remain > 0) { 1082 /* Operation in this page 1083 * 1084 * page_base = page offset within aperture 1085 * page_offset = offset within page 1086 * page_length = bytes to copy for this page 1087 */ 1088 u32 page_base = node.start; 1089 unsigned page_offset = offset_in_page(offset); 1090 unsigned page_length = PAGE_SIZE - page_offset; 1091 page_length = remain < page_length ? remain : page_length; 1092 if (node.allocated) { 1093 wmb(); 1094 ggtt->base.insert_page(&ggtt->base, 1095 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), 1096 node.start, I915_CACHE_NONE, 0); 1097 wmb(); 1098 } else { 1099 page_base += offset & PAGE_MASK; 1100 } 1101 1102 if (gtt_user_read(&ggtt->mappable, page_base, page_offset, 1103 user_data, page_length)) { 1104 ret = -EFAULT; 1105 break; 1106 } 1107 1108 remain -= page_length; 1109 user_data += page_length; 1110 offset += page_length; 1111 } 1112 1113 mutex_lock(&i915->drm.struct_mutex); 1114 out_unpin: 1115 if (node.allocated) { 1116 wmb(); 1117 ggtt->base.clear_range(&ggtt->base, 1118 node.start, node.size); 1119 remove_mappable_node(&node); 1120 } else { 1121 i915_vma_unpin(vma); 1122 } 1123 out_unlock: 1124 intel_runtime_pm_put(i915); 1125 mutex_unlock(&i915->drm.struct_mutex); 1126 1127 return ret; 1128 } 1129 1130 /** 1131 * Reads data from the object referenced by handle. 1132 * @dev: drm device pointer 1133 * @data: ioctl data blob 1134 * @file: drm file pointer 1135 * 1136 * On error, the contents of *data are undefined. 1137 */ 1138 int 1139 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 1140 struct drm_file *file) 1141 { 1142 struct drm_i915_gem_pread *args = data; 1143 struct drm_i915_gem_object *obj; 1144 int ret; 1145 1146 if (args->size == 0) 1147 return 0; 1148 1149 if (!access_ok(VERIFY_WRITE, 1150 u64_to_user_ptr(args->data_ptr), 1151 args->size)) 1152 return -EFAULT; 1153 1154 obj = i915_gem_object_lookup(file, args->handle); 1155 if (!obj) 1156 return -ENOENT; 1157 1158 /* Bounds check source. */ 1159 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { 1160 ret = -EINVAL; 1161 goto out; 1162 } 1163 1164 trace_i915_gem_object_pread(obj, args->offset, args->size); 1165 1166 ret = i915_gem_object_wait(obj, 1167 I915_WAIT_INTERRUPTIBLE, 1168 MAX_SCHEDULE_TIMEOUT, 1169 to_rps_client(file)); 1170 if (ret) 1171 goto out; 1172 1173 ret = i915_gem_object_pin_pages(obj); 1174 if (ret) 1175 goto out; 1176 1177 ret = i915_gem_shmem_pread(obj, args); 1178 if (ret == -EFAULT || ret == -ENODEV) 1179 ret = i915_gem_gtt_pread(obj, args); 1180 1181 i915_gem_object_unpin_pages(obj); 1182 out: 1183 i915_gem_object_put(obj); 1184 return ret; 1185 } 1186 1187 /* This is the fast write path which cannot handle 1188 * page faults in the source data 1189 */ 1190 1191 static inline bool 1192 ggtt_write(struct io_mapping *mapping, 1193 loff_t base, int offset, 1194 char __user *user_data, int length) 1195 { 1196 void __iomem *vaddr; 1197 unsigned long unwritten; 1198 1199 /* We can use the cpu mem copy function because this is X86. */ 1200 vaddr = io_mapping_map_atomic_wc(mapping, base); 1201 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset, 1202 user_data, length); 1203 io_mapping_unmap_atomic(vaddr); 1204 if (unwritten) { 1205 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); 1206 unwritten = copy_from_user((void __force *)vaddr + offset, 1207 user_data, length); 1208 io_mapping_unmap(vaddr); 1209 } 1210 1211 return unwritten; 1212 } 1213 1214 /** 1215 * This is the fast pwrite path, where we copy the data directly from the 1216 * user into the GTT, uncached. 1217 * @obj: i915 GEM object 1218 * @args: pwrite arguments structure 1219 */ 1220 static int 1221 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj, 1222 const struct drm_i915_gem_pwrite *args) 1223 { 1224 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1225 struct i915_ggtt *ggtt = &i915->ggtt; 1226 struct drm_mm_node node; 1227 struct i915_vma *vma; 1228 u64 remain, offset; 1229 void __user *user_data; 1230 int ret; 1231 1232 ret = mutex_lock_interruptible(&i915->drm.struct_mutex); 1233 if (ret) 1234 return ret; 1235 1236 if (i915_gem_object_has_struct_page(obj)) { 1237 /* 1238 * Avoid waking the device up if we can fallback, as 1239 * waking/resuming is very slow (worst-case 10-100 ms 1240 * depending on PCI sleeps and our own resume time). 1241 * This easily dwarfs any performance advantage from 1242 * using the cache bypass of indirect GGTT access. 1243 */ 1244 if (!intel_runtime_pm_get_if_in_use(i915)) { 1245 ret = -EFAULT; 1246 goto out_unlock; 1247 } 1248 } else { 1249 /* No backing pages, no fallback, we must force GGTT access */ 1250 intel_runtime_pm_get(i915); 1251 } 1252 1253 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 1254 PIN_MAPPABLE | 1255 PIN_NONFAULT | 1256 PIN_NONBLOCK); 1257 if (!IS_ERR(vma)) { 1258 node.start = i915_ggtt_offset(vma); 1259 node.allocated = false; 1260 ret = i915_vma_put_fence(vma); 1261 if (ret) { 1262 i915_vma_unpin(vma); 1263 vma = ERR_PTR(ret); 1264 } 1265 } 1266 if (IS_ERR(vma)) { 1267 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); 1268 if (ret) 1269 goto out_rpm; 1270 GEM_BUG_ON(!node.allocated); 1271 } 1272 1273 ret = i915_gem_object_set_to_gtt_domain(obj, true); 1274 if (ret) 1275 goto out_unpin; 1276 1277 mutex_unlock(&i915->drm.struct_mutex); 1278 1279 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 1280 1281 user_data = u64_to_user_ptr(args->data_ptr); 1282 offset = args->offset; 1283 remain = args->size; 1284 while (remain) { 1285 /* Operation in this page 1286 * 1287 * page_base = page offset within aperture 1288 * page_offset = offset within page 1289 * page_length = bytes to copy for this page 1290 */ 1291 u32 page_base = node.start; 1292 unsigned int page_offset = offset_in_page(offset); 1293 unsigned int page_length = PAGE_SIZE - page_offset; 1294 page_length = remain < page_length ? remain : page_length; 1295 if (node.allocated) { 1296 wmb(); /* flush the write before we modify the GGTT */ 1297 ggtt->base.insert_page(&ggtt->base, 1298 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), 1299 node.start, I915_CACHE_NONE, 0); 1300 wmb(); /* flush modifications to the GGTT (insert_page) */ 1301 } else { 1302 page_base += offset & PAGE_MASK; 1303 } 1304 /* If we get a fault while copying data, then (presumably) our 1305 * source page isn't available. Return the error and we'll 1306 * retry in the slow path. 1307 * If the object is non-shmem backed, we retry again with the 1308 * path that handles page fault. 1309 */ 1310 if (ggtt_write(&ggtt->mappable, page_base, page_offset, 1311 user_data, page_length)) { 1312 ret = -EFAULT; 1313 break; 1314 } 1315 1316 remain -= page_length; 1317 user_data += page_length; 1318 offset += page_length; 1319 } 1320 intel_fb_obj_flush(obj, ORIGIN_CPU); 1321 1322 mutex_lock(&i915->drm.struct_mutex); 1323 out_unpin: 1324 if (node.allocated) { 1325 wmb(); 1326 ggtt->base.clear_range(&ggtt->base, 1327 node.start, node.size); 1328 remove_mappable_node(&node); 1329 } else { 1330 i915_vma_unpin(vma); 1331 } 1332 out_rpm: 1333 intel_runtime_pm_put(i915); 1334 out_unlock: 1335 mutex_unlock(&i915->drm.struct_mutex); 1336 return ret; 1337 } 1338 1339 static int 1340 shmem_pwrite_slow(struct page *page, int offset, int length, 1341 char __user *user_data, 1342 bool page_do_bit17_swizzling, 1343 bool needs_clflush_before, 1344 bool needs_clflush_after) 1345 { 1346 char *vaddr; 1347 int ret; 1348 1349 vaddr = kmap(page); 1350 if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) 1351 shmem_clflush_swizzled_range(vaddr + offset, length, 1352 page_do_bit17_swizzling); 1353 if (page_do_bit17_swizzling) 1354 ret = __copy_from_user_swizzled(vaddr, offset, user_data, 1355 length); 1356 else 1357 ret = __copy_from_user(vaddr + offset, user_data, length); 1358 if (needs_clflush_after) 1359 shmem_clflush_swizzled_range(vaddr + offset, length, 1360 page_do_bit17_swizzling); 1361 kunmap(page); 1362 1363 return ret ? -EFAULT : 0; 1364 } 1365 1366 /* Per-page copy function for the shmem pwrite fastpath. 1367 * Flushes invalid cachelines before writing to the target if 1368 * needs_clflush_before is set and flushes out any written cachelines after 1369 * writing if needs_clflush is set. 1370 */ 1371 static int 1372 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data, 1373 bool page_do_bit17_swizzling, 1374 bool needs_clflush_before, 1375 bool needs_clflush_after) 1376 { 1377 int ret; 1378 1379 ret = -ENODEV; 1380 if (!page_do_bit17_swizzling) { 1381 char *vaddr = kmap_atomic(page); 1382 1383 if (needs_clflush_before) 1384 drm_clflush_virt_range(vaddr + offset, len); 1385 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len); 1386 if (needs_clflush_after) 1387 drm_clflush_virt_range(vaddr + offset, len); 1388 1389 kunmap_atomic(vaddr); 1390 } 1391 if (ret == 0) 1392 return ret; 1393 1394 return shmem_pwrite_slow(page, offset, len, user_data, 1395 page_do_bit17_swizzling, 1396 needs_clflush_before, 1397 needs_clflush_after); 1398 } 1399 1400 static int 1401 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj, 1402 const struct drm_i915_gem_pwrite *args) 1403 { 1404 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1405 void __user *user_data; 1406 u64 remain; 1407 unsigned int obj_do_bit17_swizzling; 1408 unsigned int partial_cacheline_write; 1409 unsigned int needs_clflush; 1410 unsigned int offset, idx; 1411 int ret; 1412 1413 ret = mutex_lock_interruptible(&i915->drm.struct_mutex); 1414 if (ret) 1415 return ret; 1416 1417 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush); 1418 mutex_unlock(&i915->drm.struct_mutex); 1419 if (ret) 1420 return ret; 1421 1422 obj_do_bit17_swizzling = 0; 1423 if (i915_gem_object_needs_bit17_swizzle(obj)) 1424 obj_do_bit17_swizzling = BIT(17); 1425 1426 /* If we don't overwrite a cacheline completely we need to be 1427 * careful to have up-to-date data by first clflushing. Don't 1428 * overcomplicate things and flush the entire patch. 1429 */ 1430 partial_cacheline_write = 0; 1431 if (needs_clflush & CLFLUSH_BEFORE) 1432 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1; 1433 1434 user_data = u64_to_user_ptr(args->data_ptr); 1435 remain = args->size; 1436 offset = offset_in_page(args->offset); 1437 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { 1438 struct page *page = i915_gem_object_get_page(obj, idx); 1439 int length; 1440 1441 length = remain; 1442 if (offset + length > PAGE_SIZE) 1443 length = PAGE_SIZE - offset; 1444 1445 ret = shmem_pwrite(page, offset, length, user_data, 1446 page_to_phys(page) & obj_do_bit17_swizzling, 1447 (offset | length) & partial_cacheline_write, 1448 needs_clflush & CLFLUSH_AFTER); 1449 if (ret) 1450 break; 1451 1452 remain -= length; 1453 user_data += length; 1454 offset = 0; 1455 } 1456 1457 intel_fb_obj_flush(obj, ORIGIN_CPU); 1458 i915_gem_obj_finish_shmem_access(obj); 1459 return ret; 1460 } 1461 1462 /** 1463 * Writes data to the object referenced by handle. 1464 * @dev: drm device 1465 * @data: ioctl data blob 1466 * @file: drm file 1467 * 1468 * On error, the contents of the buffer that were to be modified are undefined. 1469 */ 1470 int 1471 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 1472 struct drm_file *file) 1473 { 1474 struct drm_i915_gem_pwrite *args = data; 1475 struct drm_i915_gem_object *obj; 1476 int ret; 1477 1478 if (args->size == 0) 1479 return 0; 1480 1481 if (!access_ok(VERIFY_READ, 1482 u64_to_user_ptr(args->data_ptr), 1483 args->size)) 1484 return -EFAULT; 1485 1486 obj = i915_gem_object_lookup(file, args->handle); 1487 if (!obj) 1488 return -ENOENT; 1489 1490 /* Bounds check destination. */ 1491 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { 1492 ret = -EINVAL; 1493 goto err; 1494 } 1495 1496 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 1497 1498 ret = -ENODEV; 1499 if (obj->ops->pwrite) 1500 ret = obj->ops->pwrite(obj, args); 1501 if (ret != -ENODEV) 1502 goto err; 1503 1504 ret = i915_gem_object_wait(obj, 1505 I915_WAIT_INTERRUPTIBLE | 1506 I915_WAIT_ALL, 1507 MAX_SCHEDULE_TIMEOUT, 1508 to_rps_client(file)); 1509 if (ret) 1510 goto err; 1511 1512 ret = i915_gem_object_pin_pages(obj); 1513 if (ret) 1514 goto err; 1515 1516 ret = -EFAULT; 1517 /* We can only do the GTT pwrite on untiled buffers, as otherwise 1518 * it would end up going through the fenced access, and we'll get 1519 * different detiling behavior between reading and writing. 1520 * pread/pwrite currently are reading and writing from the CPU 1521 * perspective, requiring manual detiling by the client. 1522 */ 1523 if (!i915_gem_object_has_struct_page(obj) || 1524 cpu_write_needs_clflush(obj)) 1525 /* Note that the gtt paths might fail with non-page-backed user 1526 * pointers (e.g. gtt mappings when moving data between 1527 * textures). Fallback to the shmem path in that case. 1528 */ 1529 ret = i915_gem_gtt_pwrite_fast(obj, args); 1530 1531 if (ret == -EFAULT || ret == -ENOSPC) { 1532 if (obj->phys_handle) 1533 ret = i915_gem_phys_pwrite(obj, args, file); 1534 else 1535 ret = i915_gem_shmem_pwrite(obj, args); 1536 } 1537 1538 i915_gem_object_unpin_pages(obj); 1539 err: 1540 i915_gem_object_put(obj); 1541 return ret; 1542 } 1543 1544 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj) 1545 { 1546 struct drm_i915_private *i915; 1547 struct list_head *list; 1548 struct i915_vma *vma; 1549 1550 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 1551 1552 list_for_each_entry(vma, &obj->vma_list, obj_link) { 1553 if (!i915_vma_is_ggtt(vma)) 1554 break; 1555 1556 if (i915_vma_is_active(vma)) 1557 continue; 1558 1559 if (!drm_mm_node_allocated(&vma->node)) 1560 continue; 1561 1562 list_move_tail(&vma->vm_link, &vma->vm->inactive_list); 1563 } 1564 1565 i915 = to_i915(obj->base.dev); 1566 spin_lock(&i915->mm.obj_lock); 1567 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list; 1568 list_move_tail(&obj->mm.link, list); 1569 spin_unlock(&i915->mm.obj_lock); 1570 } 1571 1572 /** 1573 * Called when user space prepares to use an object with the CPU, either 1574 * through the mmap ioctl's mapping or a GTT mapping. 1575 * @dev: drm device 1576 * @data: ioctl data blob 1577 * @file: drm file 1578 */ 1579 int 1580 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 1581 struct drm_file *file) 1582 { 1583 struct drm_i915_gem_set_domain *args = data; 1584 struct drm_i915_gem_object *obj; 1585 uint32_t read_domains = args->read_domains; 1586 uint32_t write_domain = args->write_domain; 1587 int err; 1588 1589 /* Only handle setting domains to types used by the CPU. */ 1590 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS) 1591 return -EINVAL; 1592 1593 /* Having something in the write domain implies it's in the read 1594 * domain, and only that read domain. Enforce that in the request. 1595 */ 1596 if (write_domain != 0 && read_domains != write_domain) 1597 return -EINVAL; 1598 1599 obj = i915_gem_object_lookup(file, args->handle); 1600 if (!obj) 1601 return -ENOENT; 1602 1603 /* Try to flush the object off the GPU without holding the lock. 1604 * We will repeat the flush holding the lock in the normal manner 1605 * to catch cases where we are gazumped. 1606 */ 1607 err = i915_gem_object_wait(obj, 1608 I915_WAIT_INTERRUPTIBLE | 1609 (write_domain ? I915_WAIT_ALL : 0), 1610 MAX_SCHEDULE_TIMEOUT, 1611 to_rps_client(file)); 1612 if (err) 1613 goto out; 1614 1615 /* Flush and acquire obj->pages so that we are coherent through 1616 * direct access in memory with previous cached writes through 1617 * shmemfs and that our cache domain tracking remains valid. 1618 * For example, if the obj->filp was moved to swap without us 1619 * being notified and releasing the pages, we would mistakenly 1620 * continue to assume that the obj remained out of the CPU cached 1621 * domain. 1622 */ 1623 err = i915_gem_object_pin_pages(obj); 1624 if (err) 1625 goto out; 1626 1627 err = i915_mutex_lock_interruptible(dev); 1628 if (err) 1629 goto out_unpin; 1630 1631 if (read_domains & I915_GEM_DOMAIN_WC) 1632 err = i915_gem_object_set_to_wc_domain(obj, write_domain); 1633 else if (read_domains & I915_GEM_DOMAIN_GTT) 1634 err = i915_gem_object_set_to_gtt_domain(obj, write_domain); 1635 else 1636 err = i915_gem_object_set_to_cpu_domain(obj, write_domain); 1637 1638 /* And bump the LRU for this access */ 1639 i915_gem_object_bump_inactive_ggtt(obj); 1640 1641 mutex_unlock(&dev->struct_mutex); 1642 1643 if (write_domain != 0) 1644 intel_fb_obj_invalidate(obj, 1645 fb_write_origin(obj, write_domain)); 1646 1647 out_unpin: 1648 i915_gem_object_unpin_pages(obj); 1649 out: 1650 i915_gem_object_put(obj); 1651 return err; 1652 } 1653 1654 /** 1655 * Called when user space has done writes to this buffer 1656 * @dev: drm device 1657 * @data: ioctl data blob 1658 * @file: drm file 1659 */ 1660 int 1661 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1662 struct drm_file *file) 1663 { 1664 struct drm_i915_gem_sw_finish *args = data; 1665 struct drm_i915_gem_object *obj; 1666 1667 obj = i915_gem_object_lookup(file, args->handle); 1668 if (!obj) 1669 return -ENOENT; 1670 1671 /* Pinned buffers may be scanout, so flush the cache */ 1672 i915_gem_object_flush_if_display(obj); 1673 i915_gem_object_put(obj); 1674 1675 return 0; 1676 } 1677 1678 /** 1679 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address 1680 * it is mapped to. 1681 * @dev: drm device 1682 * @data: ioctl data blob 1683 * @file: drm file 1684 * 1685 * While the mapping holds a reference on the contents of the object, it doesn't 1686 * imply a ref on the object itself. 1687 * 1688 * IMPORTANT: 1689 * 1690 * DRM driver writers who look a this function as an example for how to do GEM 1691 * mmap support, please don't implement mmap support like here. The modern way 1692 * to implement DRM mmap support is with an mmap offset ioctl (like 1693 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly. 1694 * That way debug tooling like valgrind will understand what's going on, hiding 1695 * the mmap call in a driver private ioctl will break that. The i915 driver only 1696 * does cpu mmaps this way because we didn't know better. 1697 */ 1698 int 1699 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1700 struct drm_file *file) 1701 { 1702 struct drm_i915_gem_mmap *args = data; 1703 struct drm_i915_gem_object *obj; 1704 unsigned long addr; 1705 1706 if (args->flags & ~(I915_MMAP_WC)) 1707 return -EINVAL; 1708 1709 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT)) 1710 return -ENODEV; 1711 1712 obj = i915_gem_object_lookup(file, args->handle); 1713 if (!obj) 1714 return -ENOENT; 1715 1716 /* prime objects have no backing filp to GEM mmap 1717 * pages from. 1718 */ 1719 if (!obj->base.filp) { 1720 i915_gem_object_put(obj); 1721 return -EINVAL; 1722 } 1723 1724 addr = vm_mmap(obj->base.filp, 0, args->size, 1725 PROT_READ | PROT_WRITE, MAP_SHARED, 1726 args->offset); 1727 if (args->flags & I915_MMAP_WC) { 1728 struct mm_struct *mm = current->mm; 1729 struct vm_area_struct *vma; 1730 1731 if (down_write_killable(&mm->mmap_sem)) { 1732 i915_gem_object_put(obj); 1733 return -EINTR; 1734 } 1735 vma = find_vma(mm, addr); 1736 if (vma) 1737 vma->vm_page_prot = 1738 pgprot_writecombine(vm_get_page_prot(vma->vm_flags)); 1739 else 1740 addr = -ENOMEM; 1741 up_write(&mm->mmap_sem); 1742 1743 /* This may race, but that's ok, it only gets set */ 1744 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU); 1745 } 1746 i915_gem_object_put(obj); 1747 if (IS_ERR((void *)addr)) 1748 return addr; 1749 1750 args->addr_ptr = (uint64_t) addr; 1751 1752 return 0; 1753 } 1754 1755 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj) 1756 { 1757 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT; 1758 } 1759 1760 /** 1761 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps 1762 * 1763 * A history of the GTT mmap interface: 1764 * 1765 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to 1766 * aligned and suitable for fencing, and still fit into the available 1767 * mappable space left by the pinned display objects. A classic problem 1768 * we called the page-fault-of-doom where we would ping-pong between 1769 * two objects that could not fit inside the GTT and so the memcpy 1770 * would page one object in at the expense of the other between every 1771 * single byte. 1772 * 1773 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none 1774 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the 1775 * object is too large for the available space (or simply too large 1776 * for the mappable aperture!), a view is created instead and faulted 1777 * into userspace. (This view is aligned and sized appropriately for 1778 * fenced access.) 1779 * 1780 * 2 - Recognise WC as a separate cache domain so that we can flush the 1781 * delayed writes via GTT before performing direct access via WC. 1782 * 1783 * Restrictions: 1784 * 1785 * * snoopable objects cannot be accessed via the GTT. It can cause machine 1786 * hangs on some architectures, corruption on others. An attempt to service 1787 * a GTT page fault from a snoopable object will generate a SIGBUS. 1788 * 1789 * * the object must be able to fit into RAM (physical memory, though no 1790 * limited to the mappable aperture). 1791 * 1792 * 1793 * Caveats: 1794 * 1795 * * a new GTT page fault will synchronize rendering from the GPU and flush 1796 * all data to system memory. Subsequent access will not be synchronized. 1797 * 1798 * * all mappings are revoked on runtime device suspend. 1799 * 1800 * * there are only 8, 16 or 32 fence registers to share between all users 1801 * (older machines require fence register for display and blitter access 1802 * as well). Contention of the fence registers will cause the previous users 1803 * to be unmapped and any new access will generate new page faults. 1804 * 1805 * * running out of memory while servicing a fault may generate a SIGBUS, 1806 * rather than the expected SIGSEGV. 1807 */ 1808 int i915_gem_mmap_gtt_version(void) 1809 { 1810 return 2; 1811 } 1812 1813 static inline struct i915_ggtt_view 1814 compute_partial_view(struct drm_i915_gem_object *obj, 1815 pgoff_t page_offset, 1816 unsigned int chunk) 1817 { 1818 struct i915_ggtt_view view; 1819 1820 if (i915_gem_object_is_tiled(obj)) 1821 chunk = roundup(chunk, tile_row_pages(obj)); 1822 1823 view.type = I915_GGTT_VIEW_PARTIAL; 1824 view.partial.offset = rounddown(page_offset, chunk); 1825 view.partial.size = 1826 min_t(unsigned int, chunk, 1827 (obj->base.size >> PAGE_SHIFT) - view.partial.offset); 1828 1829 /* If the partial covers the entire object, just create a normal VMA. */ 1830 if (chunk >= obj->base.size >> PAGE_SHIFT) 1831 view.type = I915_GGTT_VIEW_NORMAL; 1832 1833 return view; 1834 } 1835 1836 /** 1837 * i915_gem_fault - fault a page into the GTT 1838 * @vmf: fault info 1839 * 1840 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1841 * from userspace. The fault handler takes care of binding the object to 1842 * the GTT (if needed), allocating and programming a fence register (again, 1843 * only if needed based on whether the old reg is still valid or the object 1844 * is tiled) and inserting a new PTE into the faulting process. 1845 * 1846 * Note that the faulting process may involve evicting existing objects 1847 * from the GTT and/or fence registers to make room. So performance may 1848 * suffer if the GTT working set is large or there are few fence registers 1849 * left. 1850 * 1851 * The current feature set supported by i915_gem_fault() and thus GTT mmaps 1852 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version). 1853 */ 1854 int i915_gem_fault(struct vm_fault *vmf) 1855 { 1856 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */ 1857 struct vm_area_struct *area = vmf->vma; 1858 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data); 1859 struct drm_device *dev = obj->base.dev; 1860 struct drm_i915_private *dev_priv = to_i915(dev); 1861 struct i915_ggtt *ggtt = &dev_priv->ggtt; 1862 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 1863 struct i915_vma *vma; 1864 pgoff_t page_offset; 1865 unsigned int flags; 1866 int ret; 1867 1868 /* We don't use vmf->pgoff since that has the fake offset */ 1869 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT; 1870 1871 trace_i915_gem_object_fault(obj, page_offset, true, write); 1872 1873 /* Try to flush the object off the GPU first without holding the lock. 1874 * Upon acquiring the lock, we will perform our sanity checks and then 1875 * repeat the flush holding the lock in the normal manner to catch cases 1876 * where we are gazumped. 1877 */ 1878 ret = i915_gem_object_wait(obj, 1879 I915_WAIT_INTERRUPTIBLE, 1880 MAX_SCHEDULE_TIMEOUT, 1881 NULL); 1882 if (ret) 1883 goto err; 1884 1885 ret = i915_gem_object_pin_pages(obj); 1886 if (ret) 1887 goto err; 1888 1889 intel_runtime_pm_get(dev_priv); 1890 1891 ret = i915_mutex_lock_interruptible(dev); 1892 if (ret) 1893 goto err_rpm; 1894 1895 /* Access to snoopable pages through the GTT is incoherent. */ 1896 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) { 1897 ret = -EFAULT; 1898 goto err_unlock; 1899 } 1900 1901 /* If the object is smaller than a couple of partial vma, it is 1902 * not worth only creating a single partial vma - we may as well 1903 * clear enough space for the full object. 1904 */ 1905 flags = PIN_MAPPABLE; 1906 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT) 1907 flags |= PIN_NONBLOCK | PIN_NONFAULT; 1908 1909 /* Now pin it into the GTT as needed */ 1910 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags); 1911 if (IS_ERR(vma)) { 1912 /* Use a partial view if it is bigger than available space */ 1913 struct i915_ggtt_view view = 1914 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES); 1915 1916 /* Userspace is now writing through an untracked VMA, abandon 1917 * all hope that the hardware is able to track future writes. 1918 */ 1919 obj->frontbuffer_ggtt_origin = ORIGIN_CPU; 1920 1921 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE); 1922 } 1923 if (IS_ERR(vma)) { 1924 ret = PTR_ERR(vma); 1925 goto err_unlock; 1926 } 1927 1928 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1929 if (ret) 1930 goto err_unpin; 1931 1932 ret = i915_vma_pin_fence(vma); 1933 if (ret) 1934 goto err_unpin; 1935 1936 /* Finally, remap it using the new GTT offset */ 1937 ret = remap_io_mapping(area, 1938 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT), 1939 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT, 1940 min_t(u64, vma->size, area->vm_end - area->vm_start), 1941 &ggtt->mappable); 1942 if (ret) 1943 goto err_fence; 1944 1945 /* Mark as being mmapped into userspace for later revocation */ 1946 assert_rpm_wakelock_held(dev_priv); 1947 if (!i915_vma_set_userfault(vma) && !obj->userfault_count++) 1948 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list); 1949 GEM_BUG_ON(!obj->userfault_count); 1950 1951 err_fence: 1952 i915_vma_unpin_fence(vma); 1953 err_unpin: 1954 __i915_vma_unpin(vma); 1955 err_unlock: 1956 mutex_unlock(&dev->struct_mutex); 1957 err_rpm: 1958 intel_runtime_pm_put(dev_priv); 1959 i915_gem_object_unpin_pages(obj); 1960 err: 1961 switch (ret) { 1962 case -EIO: 1963 /* 1964 * We eat errors when the gpu is terminally wedged to avoid 1965 * userspace unduly crashing (gl has no provisions for mmaps to 1966 * fail). But any other -EIO isn't ours (e.g. swap in failure) 1967 * and so needs to be reported. 1968 */ 1969 if (!i915_terminally_wedged(&dev_priv->gpu_error)) { 1970 ret = VM_FAULT_SIGBUS; 1971 break; 1972 } 1973 case -EAGAIN: 1974 /* 1975 * EAGAIN means the gpu is hung and we'll wait for the error 1976 * handler to reset everything when re-faulting in 1977 * i915_mutex_lock_interruptible. 1978 */ 1979 case 0: 1980 case -ERESTARTSYS: 1981 case -EINTR: 1982 case -EBUSY: 1983 /* 1984 * EBUSY is ok: this just means that another thread 1985 * already did the job. 1986 */ 1987 ret = VM_FAULT_NOPAGE; 1988 break; 1989 case -ENOMEM: 1990 ret = VM_FAULT_OOM; 1991 break; 1992 case -ENOSPC: 1993 case -EFAULT: 1994 ret = VM_FAULT_SIGBUS; 1995 break; 1996 default: 1997 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); 1998 ret = VM_FAULT_SIGBUS; 1999 break; 2000 } 2001 return ret; 2002 } 2003 2004 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj) 2005 { 2006 struct i915_vma *vma; 2007 2008 GEM_BUG_ON(!obj->userfault_count); 2009 2010 obj->userfault_count = 0; 2011 list_del(&obj->userfault_link); 2012 drm_vma_node_unmap(&obj->base.vma_node, 2013 obj->base.dev->anon_inode->i_mapping); 2014 2015 list_for_each_entry(vma, &obj->vma_list, obj_link) { 2016 if (!i915_vma_is_ggtt(vma)) 2017 break; 2018 2019 i915_vma_unset_userfault(vma); 2020 } 2021 } 2022 2023 /** 2024 * i915_gem_release_mmap - remove physical page mappings 2025 * @obj: obj in question 2026 * 2027 * Preserve the reservation of the mmapping with the DRM core code, but 2028 * relinquish ownership of the pages back to the system. 2029 * 2030 * It is vital that we remove the page mapping if we have mapped a tiled 2031 * object through the GTT and then lose the fence register due to 2032 * resource pressure. Similarly if the object has been moved out of the 2033 * aperture, than pages mapped into userspace must be revoked. Removing the 2034 * mapping will then trigger a page fault on the next user access, allowing 2035 * fixup by i915_gem_fault(). 2036 */ 2037 void 2038 i915_gem_release_mmap(struct drm_i915_gem_object *obj) 2039 { 2040 struct drm_i915_private *i915 = to_i915(obj->base.dev); 2041 2042 /* Serialisation between user GTT access and our code depends upon 2043 * revoking the CPU's PTE whilst the mutex is held. The next user 2044 * pagefault then has to wait until we release the mutex. 2045 * 2046 * Note that RPM complicates somewhat by adding an additional 2047 * requirement that operations to the GGTT be made holding the RPM 2048 * wakeref. 2049 */ 2050 lockdep_assert_held(&i915->drm.struct_mutex); 2051 intel_runtime_pm_get(i915); 2052 2053 if (!obj->userfault_count) 2054 goto out; 2055 2056 __i915_gem_object_release_mmap(obj); 2057 2058 /* Ensure that the CPU's PTE are revoked and there are not outstanding 2059 * memory transactions from userspace before we return. The TLB 2060 * flushing implied above by changing the PTE above *should* be 2061 * sufficient, an extra barrier here just provides us with a bit 2062 * of paranoid documentation about our requirement to serialise 2063 * memory writes before touching registers / GSM. 2064 */ 2065 wmb(); 2066 2067 out: 2068 intel_runtime_pm_put(i915); 2069 } 2070 2071 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv) 2072 { 2073 struct drm_i915_gem_object *obj, *on; 2074 int i; 2075 2076 /* 2077 * Only called during RPM suspend. All users of the userfault_list 2078 * must be holding an RPM wakeref to ensure that this can not 2079 * run concurrently with themselves (and use the struct_mutex for 2080 * protection between themselves). 2081 */ 2082 2083 list_for_each_entry_safe(obj, on, 2084 &dev_priv->mm.userfault_list, userfault_link) 2085 __i915_gem_object_release_mmap(obj); 2086 2087 /* The fence will be lost when the device powers down. If any were 2088 * in use by hardware (i.e. they are pinned), we should not be powering 2089 * down! All other fences will be reacquired by the user upon waking. 2090 */ 2091 for (i = 0; i < dev_priv->num_fence_regs; i++) { 2092 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; 2093 2094 /* Ideally we want to assert that the fence register is not 2095 * live at this point (i.e. that no piece of code will be 2096 * trying to write through fence + GTT, as that both violates 2097 * our tracking of activity and associated locking/barriers, 2098 * but also is illegal given that the hw is powered down). 2099 * 2100 * Previously we used reg->pin_count as a "liveness" indicator. 2101 * That is not sufficient, and we need a more fine-grained 2102 * tool if we want to have a sanity check here. 2103 */ 2104 2105 if (!reg->vma) 2106 continue; 2107 2108 GEM_BUG_ON(i915_vma_has_userfault(reg->vma)); 2109 reg->dirty = true; 2110 } 2111 } 2112 2113 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) 2114 { 2115 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 2116 int err; 2117 2118 err = drm_gem_create_mmap_offset(&obj->base); 2119 if (likely(!err)) 2120 return 0; 2121 2122 /* Attempt to reap some mmap space from dead objects */ 2123 do { 2124 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE); 2125 if (err) 2126 break; 2127 2128 i915_gem_drain_freed_objects(dev_priv); 2129 err = drm_gem_create_mmap_offset(&obj->base); 2130 if (!err) 2131 break; 2132 2133 } while (flush_delayed_work(&dev_priv->gt.retire_work)); 2134 2135 return err; 2136 } 2137 2138 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) 2139 { 2140 drm_gem_free_mmap_offset(&obj->base); 2141 } 2142 2143 int 2144 i915_gem_mmap_gtt(struct drm_file *file, 2145 struct drm_device *dev, 2146 uint32_t handle, 2147 uint64_t *offset) 2148 { 2149 struct drm_i915_gem_object *obj; 2150 int ret; 2151 2152 obj = i915_gem_object_lookup(file, handle); 2153 if (!obj) 2154 return -ENOENT; 2155 2156 ret = i915_gem_object_create_mmap_offset(obj); 2157 if (ret == 0) 2158 *offset = drm_vma_node_offset_addr(&obj->base.vma_node); 2159 2160 i915_gem_object_put(obj); 2161 return ret; 2162 } 2163 2164 /** 2165 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 2166 * @dev: DRM device 2167 * @data: GTT mapping ioctl data 2168 * @file: GEM object info 2169 * 2170 * Simply returns the fake offset to userspace so it can mmap it. 2171 * The mmap call will end up in drm_gem_mmap(), which will set things 2172 * up so we can get faults in the handler above. 2173 * 2174 * The fault handler will take care of binding the object into the GTT 2175 * (since it may have been evicted to make room for something), allocating 2176 * a fence register, and mapping the appropriate aperture address into 2177 * userspace. 2178 */ 2179 int 2180 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 2181 struct drm_file *file) 2182 { 2183 struct drm_i915_gem_mmap_gtt *args = data; 2184 2185 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); 2186 } 2187 2188 /* Immediately discard the backing storage */ 2189 static void 2190 i915_gem_object_truncate(struct drm_i915_gem_object *obj) 2191 { 2192 i915_gem_object_free_mmap_offset(obj); 2193 2194 if (obj->base.filp == NULL) 2195 return; 2196 2197 /* Our goal here is to return as much of the memory as 2198 * is possible back to the system as we are called from OOM. 2199 * To do this we must instruct the shmfs to drop all of its 2200 * backing pages, *now*. 2201 */ 2202 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1); 2203 obj->mm.madv = __I915_MADV_PURGED; 2204 obj->mm.pages = ERR_PTR(-EFAULT); 2205 } 2206 2207 /* Try to discard unwanted pages */ 2208 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj) 2209 { 2210 struct address_space *mapping; 2211 2212 lockdep_assert_held(&obj->mm.lock); 2213 GEM_BUG_ON(i915_gem_object_has_pages(obj)); 2214 2215 switch (obj->mm.madv) { 2216 case I915_MADV_DONTNEED: 2217 i915_gem_object_truncate(obj); 2218 case __I915_MADV_PURGED: 2219 return; 2220 } 2221 2222 if (obj->base.filp == NULL) 2223 return; 2224 2225 mapping = obj->base.filp->f_mapping, 2226 invalidate_mapping_pages(mapping, 0, (loff_t)-1); 2227 } 2228 2229 static void 2230 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj, 2231 struct sg_table *pages) 2232 { 2233 struct sgt_iter sgt_iter; 2234 struct page *page; 2235 2236 __i915_gem_object_release_shmem(obj, pages, true); 2237 2238 i915_gem_gtt_finish_pages(obj, pages); 2239 2240 if (i915_gem_object_needs_bit17_swizzle(obj)) 2241 i915_gem_object_save_bit_17_swizzle(obj, pages); 2242 2243 for_each_sgt_page(page, sgt_iter, pages) { 2244 if (obj->mm.dirty) 2245 set_page_dirty(page); 2246 2247 if (obj->mm.madv == I915_MADV_WILLNEED) 2248 mark_page_accessed(page); 2249 2250 put_page(page); 2251 } 2252 obj->mm.dirty = false; 2253 2254 sg_free_table(pages); 2255 kfree(pages); 2256 } 2257 2258 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj) 2259 { 2260 struct radix_tree_iter iter; 2261 void __rcu **slot; 2262 2263 rcu_read_lock(); 2264 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0) 2265 radix_tree_delete(&obj->mm.get_page.radix, iter.index); 2266 rcu_read_unlock(); 2267 } 2268 2269 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj, 2270 enum i915_mm_subclass subclass) 2271 { 2272 struct drm_i915_private *i915 = to_i915(obj->base.dev); 2273 struct sg_table *pages; 2274 2275 if (i915_gem_object_has_pinned_pages(obj)) 2276 return; 2277 2278 GEM_BUG_ON(obj->bind_count); 2279 if (!i915_gem_object_has_pages(obj)) 2280 return; 2281 2282 /* May be called by shrinker from within get_pages() (on another bo) */ 2283 mutex_lock_nested(&obj->mm.lock, subclass); 2284 if (unlikely(atomic_read(&obj->mm.pages_pin_count))) 2285 goto unlock; 2286 2287 /* ->put_pages might need to allocate memory for the bit17 swizzle 2288 * array, hence protect them from being reaped by removing them from gtt 2289 * lists early. */ 2290 pages = fetch_and_zero(&obj->mm.pages); 2291 GEM_BUG_ON(!pages); 2292 2293 spin_lock(&i915->mm.obj_lock); 2294 list_del(&obj->mm.link); 2295 spin_unlock(&i915->mm.obj_lock); 2296 2297 if (obj->mm.mapping) { 2298 void *ptr; 2299 2300 ptr = page_mask_bits(obj->mm.mapping); 2301 if (is_vmalloc_addr(ptr)) 2302 vunmap(ptr); 2303 else 2304 kunmap(kmap_to_page(ptr)); 2305 2306 obj->mm.mapping = NULL; 2307 } 2308 2309 __i915_gem_object_reset_page_iter(obj); 2310 2311 if (!IS_ERR(pages)) 2312 obj->ops->put_pages(obj, pages); 2313 2314 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0; 2315 2316 unlock: 2317 mutex_unlock(&obj->mm.lock); 2318 } 2319 2320 static bool i915_sg_trim(struct sg_table *orig_st) 2321 { 2322 struct sg_table new_st; 2323 struct scatterlist *sg, *new_sg; 2324 unsigned int i; 2325 2326 if (orig_st->nents == orig_st->orig_nents) 2327 return false; 2328 2329 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN)) 2330 return false; 2331 2332 new_sg = new_st.sgl; 2333 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) { 2334 sg_set_page(new_sg, sg_page(sg), sg->length, 0); 2335 /* called before being DMA mapped, no need to copy sg->dma_* */ 2336 new_sg = sg_next(new_sg); 2337 } 2338 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */ 2339 2340 sg_free_table(orig_st); 2341 2342 *orig_st = new_st; 2343 return true; 2344 } 2345 2346 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) 2347 { 2348 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 2349 const unsigned long page_count = obj->base.size / PAGE_SIZE; 2350 unsigned long i; 2351 struct address_space *mapping; 2352 struct sg_table *st; 2353 struct scatterlist *sg; 2354 struct sgt_iter sgt_iter; 2355 struct page *page; 2356 unsigned long last_pfn = 0; /* suppress gcc warning */ 2357 unsigned int max_segment = i915_sg_segment_size(); 2358 unsigned int sg_page_sizes; 2359 gfp_t noreclaim; 2360 int ret; 2361 2362 /* Assert that the object is not currently in any GPU domain. As it 2363 * wasn't in the GTT, there shouldn't be any way it could have been in 2364 * a GPU cache 2365 */ 2366 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); 2367 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); 2368 2369 st = kmalloc(sizeof(*st), GFP_KERNEL); 2370 if (st == NULL) 2371 return -ENOMEM; 2372 2373 rebuild_st: 2374 if (sg_alloc_table(st, page_count, GFP_KERNEL)) { 2375 kfree(st); 2376 return -ENOMEM; 2377 } 2378 2379 /* Get the list of pages out of our struct file. They'll be pinned 2380 * at this point until we release them. 2381 * 2382 * Fail silently without starting the shrinker 2383 */ 2384 mapping = obj->base.filp->f_mapping; 2385 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM); 2386 noreclaim |= __GFP_NORETRY | __GFP_NOWARN; 2387 2388 sg = st->sgl; 2389 st->nents = 0; 2390 sg_page_sizes = 0; 2391 for (i = 0; i < page_count; i++) { 2392 const unsigned int shrink[] = { 2393 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE, 2394 0, 2395 }, *s = shrink; 2396 gfp_t gfp = noreclaim; 2397 2398 do { 2399 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 2400 if (likely(!IS_ERR(page))) 2401 break; 2402 2403 if (!*s) { 2404 ret = PTR_ERR(page); 2405 goto err_sg; 2406 } 2407 2408 i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++); 2409 cond_resched(); 2410 2411 /* We've tried hard to allocate the memory by reaping 2412 * our own buffer, now let the real VM do its job and 2413 * go down in flames if truly OOM. 2414 * 2415 * However, since graphics tend to be disposable, 2416 * defer the oom here by reporting the ENOMEM back 2417 * to userspace. 2418 */ 2419 if (!*s) { 2420 /* reclaim and warn, but no oom */ 2421 gfp = mapping_gfp_mask(mapping); 2422 2423 /* Our bo are always dirty and so we require 2424 * kswapd to reclaim our pages (direct reclaim 2425 * does not effectively begin pageout of our 2426 * buffers on its own). However, direct reclaim 2427 * only waits for kswapd when under allocation 2428 * congestion. So as a result __GFP_RECLAIM is 2429 * unreliable and fails to actually reclaim our 2430 * dirty pages -- unless you try over and over 2431 * again with !__GFP_NORETRY. However, we still 2432 * want to fail this allocation rather than 2433 * trigger the out-of-memory killer and for 2434 * this we want __GFP_RETRY_MAYFAIL. 2435 */ 2436 gfp |= __GFP_RETRY_MAYFAIL; 2437 } 2438 } while (1); 2439 2440 if (!i || 2441 sg->length >= max_segment || 2442 page_to_pfn(page) != last_pfn + 1) { 2443 if (i) { 2444 sg_page_sizes |= sg->length; 2445 sg = sg_next(sg); 2446 } 2447 st->nents++; 2448 sg_set_page(sg, page, PAGE_SIZE, 0); 2449 } else { 2450 sg->length += PAGE_SIZE; 2451 } 2452 last_pfn = page_to_pfn(page); 2453 2454 /* Check that the i965g/gm workaround works. */ 2455 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL)); 2456 } 2457 if (sg) { /* loop terminated early; short sg table */ 2458 sg_page_sizes |= sg->length; 2459 sg_mark_end(sg); 2460 } 2461 2462 /* Trim unused sg entries to avoid wasting memory. */ 2463 i915_sg_trim(st); 2464 2465 ret = i915_gem_gtt_prepare_pages(obj, st); 2466 if (ret) { 2467 /* DMA remapping failed? One possible cause is that 2468 * it could not reserve enough large entries, asking 2469 * for PAGE_SIZE chunks instead may be helpful. 2470 */ 2471 if (max_segment > PAGE_SIZE) { 2472 for_each_sgt_page(page, sgt_iter, st) 2473 put_page(page); 2474 sg_free_table(st); 2475 2476 max_segment = PAGE_SIZE; 2477 goto rebuild_st; 2478 } else { 2479 dev_warn(&dev_priv->drm.pdev->dev, 2480 "Failed to DMA remap %lu pages\n", 2481 page_count); 2482 goto err_pages; 2483 } 2484 } 2485 2486 if (i915_gem_object_needs_bit17_swizzle(obj)) 2487 i915_gem_object_do_bit_17_swizzle(obj, st); 2488 2489 __i915_gem_object_set_pages(obj, st, sg_page_sizes); 2490 2491 return 0; 2492 2493 err_sg: 2494 sg_mark_end(sg); 2495 err_pages: 2496 for_each_sgt_page(page, sgt_iter, st) 2497 put_page(page); 2498 sg_free_table(st); 2499 kfree(st); 2500 2501 /* shmemfs first checks if there is enough memory to allocate the page 2502 * and reports ENOSPC should there be insufficient, along with the usual 2503 * ENOMEM for a genuine allocation failure. 2504 * 2505 * We use ENOSPC in our driver to mean that we have run out of aperture 2506 * space and so want to translate the error from shmemfs back to our 2507 * usual understanding of ENOMEM. 2508 */ 2509 if (ret == -ENOSPC) 2510 ret = -ENOMEM; 2511 2512 return ret; 2513 } 2514 2515 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, 2516 struct sg_table *pages, 2517 unsigned int sg_page_sizes) 2518 { 2519 struct drm_i915_private *i915 = to_i915(obj->base.dev); 2520 unsigned long supported = INTEL_INFO(i915)->page_sizes; 2521 int i; 2522 2523 lockdep_assert_held(&obj->mm.lock); 2524 2525 obj->mm.get_page.sg_pos = pages->sgl; 2526 obj->mm.get_page.sg_idx = 0; 2527 2528 obj->mm.pages = pages; 2529 2530 if (i915_gem_object_is_tiled(obj) && 2531 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) { 2532 GEM_BUG_ON(obj->mm.quirked); 2533 __i915_gem_object_pin_pages(obj); 2534 obj->mm.quirked = true; 2535 } 2536 2537 GEM_BUG_ON(!sg_page_sizes); 2538 obj->mm.page_sizes.phys = sg_page_sizes; 2539 2540 /* 2541 * Calculate the supported page-sizes which fit into the given 2542 * sg_page_sizes. This will give us the page-sizes which we may be able 2543 * to use opportunistically when later inserting into the GTT. For 2544 * example if phys=2G, then in theory we should be able to use 1G, 2M, 2545 * 64K or 4K pages, although in practice this will depend on a number of 2546 * other factors. 2547 */ 2548 obj->mm.page_sizes.sg = 0; 2549 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) { 2550 if (obj->mm.page_sizes.phys & ~0u << i) 2551 obj->mm.page_sizes.sg |= BIT(i); 2552 } 2553 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg)); 2554 2555 spin_lock(&i915->mm.obj_lock); 2556 list_add(&obj->mm.link, &i915->mm.unbound_list); 2557 spin_unlock(&i915->mm.obj_lock); 2558 } 2559 2560 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 2561 { 2562 int err; 2563 2564 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) { 2565 DRM_DEBUG("Attempting to obtain a purgeable object\n"); 2566 return -EFAULT; 2567 } 2568 2569 err = obj->ops->get_pages(obj); 2570 GEM_BUG_ON(!err && IS_ERR_OR_NULL(obj->mm.pages)); 2571 2572 return err; 2573 } 2574 2575 /* Ensure that the associated pages are gathered from the backing storage 2576 * and pinned into our object. i915_gem_object_pin_pages() may be called 2577 * multiple times before they are released by a single call to 2578 * i915_gem_object_unpin_pages() - once the pages are no longer referenced 2579 * either as a result of memory pressure (reaping pages under the shrinker) 2580 * or as the object is itself released. 2581 */ 2582 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 2583 { 2584 int err; 2585 2586 err = mutex_lock_interruptible(&obj->mm.lock); 2587 if (err) 2588 return err; 2589 2590 if (unlikely(!i915_gem_object_has_pages(obj))) { 2591 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); 2592 2593 err = ____i915_gem_object_get_pages(obj); 2594 if (err) 2595 goto unlock; 2596 2597 smp_mb__before_atomic(); 2598 } 2599 atomic_inc(&obj->mm.pages_pin_count); 2600 2601 unlock: 2602 mutex_unlock(&obj->mm.lock); 2603 return err; 2604 } 2605 2606 /* The 'mapping' part of i915_gem_object_pin_map() below */ 2607 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj, 2608 enum i915_map_type type) 2609 { 2610 unsigned long n_pages = obj->base.size >> PAGE_SHIFT; 2611 struct sg_table *sgt = obj->mm.pages; 2612 struct sgt_iter sgt_iter; 2613 struct page *page; 2614 struct page *stack_pages[32]; 2615 struct page **pages = stack_pages; 2616 unsigned long i = 0; 2617 pgprot_t pgprot; 2618 void *addr; 2619 2620 /* A single page can always be kmapped */ 2621 if (n_pages == 1 && type == I915_MAP_WB) 2622 return kmap(sg_page(sgt->sgl)); 2623 2624 if (n_pages > ARRAY_SIZE(stack_pages)) { 2625 /* Too big for stack -- allocate temporary array instead */ 2626 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL); 2627 if (!pages) 2628 return NULL; 2629 } 2630 2631 for_each_sgt_page(page, sgt_iter, sgt) 2632 pages[i++] = page; 2633 2634 /* Check that we have the expected number of pages */ 2635 GEM_BUG_ON(i != n_pages); 2636 2637 switch (type) { 2638 default: 2639 MISSING_CASE(type); 2640 /* fallthrough to use PAGE_KERNEL anyway */ 2641 case I915_MAP_WB: 2642 pgprot = PAGE_KERNEL; 2643 break; 2644 case I915_MAP_WC: 2645 pgprot = pgprot_writecombine(PAGE_KERNEL_IO); 2646 break; 2647 } 2648 addr = vmap(pages, n_pages, 0, pgprot); 2649 2650 if (pages != stack_pages) 2651 kvfree(pages); 2652 2653 return addr; 2654 } 2655 2656 /* get, pin, and map the pages of the object into kernel space */ 2657 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj, 2658 enum i915_map_type type) 2659 { 2660 enum i915_map_type has_type; 2661 bool pinned; 2662 void *ptr; 2663 int ret; 2664 2665 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj)); 2666 2667 ret = mutex_lock_interruptible(&obj->mm.lock); 2668 if (ret) 2669 return ERR_PTR(ret); 2670 2671 pinned = !(type & I915_MAP_OVERRIDE); 2672 type &= ~I915_MAP_OVERRIDE; 2673 2674 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) { 2675 if (unlikely(!i915_gem_object_has_pages(obj))) { 2676 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); 2677 2678 ret = ____i915_gem_object_get_pages(obj); 2679 if (ret) 2680 goto err_unlock; 2681 2682 smp_mb__before_atomic(); 2683 } 2684 atomic_inc(&obj->mm.pages_pin_count); 2685 pinned = false; 2686 } 2687 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 2688 2689 ptr = page_unpack_bits(obj->mm.mapping, &has_type); 2690 if (ptr && has_type != type) { 2691 if (pinned) { 2692 ret = -EBUSY; 2693 goto err_unpin; 2694 } 2695 2696 if (is_vmalloc_addr(ptr)) 2697 vunmap(ptr); 2698 else 2699 kunmap(kmap_to_page(ptr)); 2700 2701 ptr = obj->mm.mapping = NULL; 2702 } 2703 2704 if (!ptr) { 2705 ptr = i915_gem_object_map(obj, type); 2706 if (!ptr) { 2707 ret = -ENOMEM; 2708 goto err_unpin; 2709 } 2710 2711 obj->mm.mapping = page_pack_bits(ptr, type); 2712 } 2713 2714 out_unlock: 2715 mutex_unlock(&obj->mm.lock); 2716 return ptr; 2717 2718 err_unpin: 2719 atomic_dec(&obj->mm.pages_pin_count); 2720 err_unlock: 2721 ptr = ERR_PTR(ret); 2722 goto out_unlock; 2723 } 2724 2725 static int 2726 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj, 2727 const struct drm_i915_gem_pwrite *arg) 2728 { 2729 struct address_space *mapping = obj->base.filp->f_mapping; 2730 char __user *user_data = u64_to_user_ptr(arg->data_ptr); 2731 u64 remain, offset; 2732 unsigned int pg; 2733 2734 /* Before we instantiate/pin the backing store for our use, we 2735 * can prepopulate the shmemfs filp efficiently using a write into 2736 * the pagecache. We avoid the penalty of instantiating all the 2737 * pages, important if the user is just writing to a few and never 2738 * uses the object on the GPU, and using a direct write into shmemfs 2739 * allows it to avoid the cost of retrieving a page (either swapin 2740 * or clearing-before-use) before it is overwritten. 2741 */ 2742 if (i915_gem_object_has_pages(obj)) 2743 return -ENODEV; 2744 2745 if (obj->mm.madv != I915_MADV_WILLNEED) 2746 return -EFAULT; 2747 2748 /* Before the pages are instantiated the object is treated as being 2749 * in the CPU domain. The pages will be clflushed as required before 2750 * use, and we can freely write into the pages directly. If userspace 2751 * races pwrite with any other operation; corruption will ensue - 2752 * that is userspace's prerogative! 2753 */ 2754 2755 remain = arg->size; 2756 offset = arg->offset; 2757 pg = offset_in_page(offset); 2758 2759 do { 2760 unsigned int len, unwritten; 2761 struct page *page; 2762 void *data, *vaddr; 2763 int err; 2764 2765 len = PAGE_SIZE - pg; 2766 if (len > remain) 2767 len = remain; 2768 2769 err = pagecache_write_begin(obj->base.filp, mapping, 2770 offset, len, 0, 2771 &page, &data); 2772 if (err < 0) 2773 return err; 2774 2775 vaddr = kmap(page); 2776 unwritten = copy_from_user(vaddr + pg, user_data, len); 2777 kunmap(page); 2778 2779 err = pagecache_write_end(obj->base.filp, mapping, 2780 offset, len, len - unwritten, 2781 page, data); 2782 if (err < 0) 2783 return err; 2784 2785 if (unwritten) 2786 return -EFAULT; 2787 2788 remain -= len; 2789 user_data += len; 2790 offset += len; 2791 pg = 0; 2792 } while (remain); 2793 2794 return 0; 2795 } 2796 2797 static bool ban_context(const struct i915_gem_context *ctx, 2798 unsigned int score) 2799 { 2800 return (i915_gem_context_is_bannable(ctx) && 2801 score >= CONTEXT_SCORE_BAN_THRESHOLD); 2802 } 2803 2804 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx) 2805 { 2806 unsigned int score; 2807 bool banned; 2808 2809 atomic_inc(&ctx->guilty_count); 2810 2811 score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score); 2812 banned = ban_context(ctx, score); 2813 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n", 2814 ctx->name, score, yesno(banned)); 2815 if (!banned) 2816 return; 2817 2818 i915_gem_context_set_banned(ctx); 2819 if (!IS_ERR_OR_NULL(ctx->file_priv)) { 2820 atomic_inc(&ctx->file_priv->context_bans); 2821 DRM_DEBUG_DRIVER("client %s has had %d context banned\n", 2822 ctx->name, atomic_read(&ctx->file_priv->context_bans)); 2823 } 2824 } 2825 2826 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx) 2827 { 2828 atomic_inc(&ctx->active_count); 2829 } 2830 2831 struct drm_i915_gem_request * 2832 i915_gem_find_active_request(struct intel_engine_cs *engine) 2833 { 2834 struct drm_i915_gem_request *request, *active = NULL; 2835 unsigned long flags; 2836 2837 /* We are called by the error capture and reset at a random 2838 * point in time. In particular, note that neither is crucially 2839 * ordered with an interrupt. After a hang, the GPU is dead and we 2840 * assume that no more writes can happen (we waited long enough for 2841 * all writes that were in transaction to be flushed) - adding an 2842 * extra delay for a recent interrupt is pointless. Hence, we do 2843 * not need an engine->irq_seqno_barrier() before the seqno reads. 2844 */ 2845 spin_lock_irqsave(&engine->timeline->lock, flags); 2846 list_for_each_entry(request, &engine->timeline->requests, link) { 2847 if (__i915_gem_request_completed(request, 2848 request->global_seqno)) 2849 continue; 2850 2851 GEM_BUG_ON(request->engine != engine); 2852 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, 2853 &request->fence.flags)); 2854 2855 active = request; 2856 break; 2857 } 2858 spin_unlock_irqrestore(&engine->timeline->lock, flags); 2859 2860 return active; 2861 } 2862 2863 static bool engine_stalled(struct intel_engine_cs *engine) 2864 { 2865 if (!engine->hangcheck.stalled) 2866 return false; 2867 2868 /* Check for possible seqno movement after hang declaration */ 2869 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) { 2870 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name); 2871 return false; 2872 } 2873 2874 return true; 2875 } 2876 2877 /* 2878 * Ensure irq handler finishes, and not run again. 2879 * Also return the active request so that we only search for it once. 2880 */ 2881 struct drm_i915_gem_request * 2882 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine) 2883 { 2884 struct drm_i915_gem_request *request = NULL; 2885 2886 /* 2887 * During the reset sequence, we must prevent the engine from 2888 * entering RC6. As the context state is undefined until we restart 2889 * the engine, if it does enter RC6 during the reset, the state 2890 * written to the powercontext is undefined and so we may lose 2891 * GPU state upon resume, i.e. fail to restart after a reset. 2892 */ 2893 intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL); 2894 2895 /* 2896 * Prevent the signaler thread from updating the request 2897 * state (by calling dma_fence_signal) as we are processing 2898 * the reset. The write from the GPU of the seqno is 2899 * asynchronous and the signaler thread may see a different 2900 * value to us and declare the request complete, even though 2901 * the reset routine have picked that request as the active 2902 * (incomplete) request. This conflict is not handled 2903 * gracefully! 2904 */ 2905 kthread_park(engine->breadcrumbs.signaler); 2906 2907 /* 2908 * Prevent request submission to the hardware until we have 2909 * completed the reset in i915_gem_reset_finish(). If a request 2910 * is completed by one engine, it may then queue a request 2911 * to a second via its engine->irq_tasklet *just* as we are 2912 * calling engine->init_hw() and also writing the ELSP. 2913 * Turning off the engine->irq_tasklet until the reset is over 2914 * prevents the race. 2915 */ 2916 tasklet_kill(&engine->execlists.irq_tasklet); 2917 tasklet_disable(&engine->execlists.irq_tasklet); 2918 2919 if (engine->irq_seqno_barrier) 2920 engine->irq_seqno_barrier(engine); 2921 2922 request = i915_gem_find_active_request(engine); 2923 if (request && request->fence.error == -EIO) 2924 request = ERR_PTR(-EIO); /* Previous reset failed! */ 2925 2926 return request; 2927 } 2928 2929 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv) 2930 { 2931 struct intel_engine_cs *engine; 2932 struct drm_i915_gem_request *request; 2933 enum intel_engine_id id; 2934 int err = 0; 2935 2936 for_each_engine(engine, dev_priv, id) { 2937 request = i915_gem_reset_prepare_engine(engine); 2938 if (IS_ERR(request)) { 2939 err = PTR_ERR(request); 2940 continue; 2941 } 2942 2943 engine->hangcheck.active_request = request; 2944 } 2945 2946 i915_gem_revoke_fences(dev_priv); 2947 2948 return err; 2949 } 2950 2951 static void skip_request(struct drm_i915_gem_request *request) 2952 { 2953 void *vaddr = request->ring->vaddr; 2954 u32 head; 2955 2956 /* As this request likely depends on state from the lost 2957 * context, clear out all the user operations leaving the 2958 * breadcrumb at the end (so we get the fence notifications). 2959 */ 2960 head = request->head; 2961 if (request->postfix < head) { 2962 memset(vaddr + head, 0, request->ring->size - head); 2963 head = 0; 2964 } 2965 memset(vaddr + head, 0, request->postfix - head); 2966 2967 dma_fence_set_error(&request->fence, -EIO); 2968 } 2969 2970 static void engine_skip_context(struct drm_i915_gem_request *request) 2971 { 2972 struct intel_engine_cs *engine = request->engine; 2973 struct i915_gem_context *hung_ctx = request->ctx; 2974 struct intel_timeline *timeline; 2975 unsigned long flags; 2976 2977 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine); 2978 2979 spin_lock_irqsave(&engine->timeline->lock, flags); 2980 spin_lock(&timeline->lock); 2981 2982 list_for_each_entry_continue(request, &engine->timeline->requests, link) 2983 if (request->ctx == hung_ctx) 2984 skip_request(request); 2985 2986 list_for_each_entry(request, &timeline->requests, link) 2987 skip_request(request); 2988 2989 spin_unlock(&timeline->lock); 2990 spin_unlock_irqrestore(&engine->timeline->lock, flags); 2991 } 2992 2993 /* Returns the request if it was guilty of the hang */ 2994 static struct drm_i915_gem_request * 2995 i915_gem_reset_request(struct intel_engine_cs *engine, 2996 struct drm_i915_gem_request *request) 2997 { 2998 /* The guilty request will get skipped on a hung engine. 2999 * 3000 * Users of client default contexts do not rely on logical 3001 * state preserved between batches so it is safe to execute 3002 * queued requests following the hang. Non default contexts 3003 * rely on preserved state, so skipping a batch loses the 3004 * evolution of the state and it needs to be considered corrupted. 3005 * Executing more queued batches on top of corrupted state is 3006 * risky. But we take the risk by trying to advance through 3007 * the queued requests in order to make the client behaviour 3008 * more predictable around resets, by not throwing away random 3009 * amount of batches it has prepared for execution. Sophisticated 3010 * clients can use gem_reset_stats_ioctl and dma fence status 3011 * (exported via sync_file info ioctl on explicit fences) to observe 3012 * when it loses the context state and should rebuild accordingly. 3013 * 3014 * The context ban, and ultimately the client ban, mechanism are safety 3015 * valves if client submission ends up resulting in nothing more than 3016 * subsequent hangs. 3017 */ 3018 3019 if (engine_stalled(engine)) { 3020 i915_gem_context_mark_guilty(request->ctx); 3021 skip_request(request); 3022 3023 /* If this context is now banned, skip all pending requests. */ 3024 if (i915_gem_context_is_banned(request->ctx)) 3025 engine_skip_context(request); 3026 } else { 3027 /* 3028 * Since this is not the hung engine, it may have advanced 3029 * since the hang declaration. Double check by refinding 3030 * the active request at the time of the reset. 3031 */ 3032 request = i915_gem_find_active_request(engine); 3033 if (request) { 3034 i915_gem_context_mark_innocent(request->ctx); 3035 dma_fence_set_error(&request->fence, -EAGAIN); 3036 3037 /* Rewind the engine to replay the incomplete rq */ 3038 spin_lock_irq(&engine->timeline->lock); 3039 request = list_prev_entry(request, link); 3040 if (&request->link == &engine->timeline->requests) 3041 request = NULL; 3042 spin_unlock_irq(&engine->timeline->lock); 3043 } 3044 } 3045 3046 return request; 3047 } 3048 3049 void i915_gem_reset_engine(struct intel_engine_cs *engine, 3050 struct drm_i915_gem_request *request) 3051 { 3052 engine->irq_posted = 0; 3053 3054 if (request) 3055 request = i915_gem_reset_request(engine, request); 3056 3057 if (request) { 3058 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n", 3059 engine->name, request->global_seqno); 3060 } 3061 3062 /* Setup the CS to resume from the breadcrumb of the hung request */ 3063 engine->reset_hw(engine, request); 3064 } 3065 3066 void i915_gem_reset(struct drm_i915_private *dev_priv) 3067 { 3068 struct intel_engine_cs *engine; 3069 enum intel_engine_id id; 3070 3071 lockdep_assert_held(&dev_priv->drm.struct_mutex); 3072 3073 i915_gem_retire_requests(dev_priv); 3074 3075 for_each_engine(engine, dev_priv, id) { 3076 struct i915_gem_context *ctx; 3077 3078 i915_gem_reset_engine(engine, engine->hangcheck.active_request); 3079 ctx = fetch_and_zero(&engine->last_retired_context); 3080 if (ctx) 3081 engine->context_unpin(engine, ctx); 3082 } 3083 3084 i915_gem_restore_fences(dev_priv); 3085 3086 if (dev_priv->gt.awake) { 3087 intel_sanitize_gt_powersave(dev_priv); 3088 intel_enable_gt_powersave(dev_priv); 3089 if (INTEL_GEN(dev_priv) >= 6) 3090 gen6_rps_busy(dev_priv); 3091 } 3092 } 3093 3094 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine) 3095 { 3096 tasklet_enable(&engine->execlists.irq_tasklet); 3097 kthread_unpark(engine->breadcrumbs.signaler); 3098 3099 intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL); 3100 } 3101 3102 void i915_gem_reset_finish(struct drm_i915_private *dev_priv) 3103 { 3104 struct intel_engine_cs *engine; 3105 enum intel_engine_id id; 3106 3107 lockdep_assert_held(&dev_priv->drm.struct_mutex); 3108 3109 for_each_engine(engine, dev_priv, id) { 3110 engine->hangcheck.active_request = NULL; 3111 i915_gem_reset_finish_engine(engine); 3112 } 3113 } 3114 3115 static void nop_submit_request(struct drm_i915_gem_request *request) 3116 { 3117 dma_fence_set_error(&request->fence, -EIO); 3118 3119 i915_gem_request_submit(request); 3120 } 3121 3122 static void nop_complete_submit_request(struct drm_i915_gem_request *request) 3123 { 3124 unsigned long flags; 3125 3126 dma_fence_set_error(&request->fence, -EIO); 3127 3128 spin_lock_irqsave(&request->engine->timeline->lock, flags); 3129 __i915_gem_request_submit(request); 3130 intel_engine_init_global_seqno(request->engine, request->global_seqno); 3131 spin_unlock_irqrestore(&request->engine->timeline->lock, flags); 3132 } 3133 3134 void i915_gem_set_wedged(struct drm_i915_private *i915) 3135 { 3136 struct intel_engine_cs *engine; 3137 enum intel_engine_id id; 3138 3139 /* 3140 * First, stop submission to hw, but do not yet complete requests by 3141 * rolling the global seqno forward (since this would complete requests 3142 * for which we haven't set the fence error to EIO yet). 3143 */ 3144 for_each_engine(engine, i915, id) 3145 engine->submit_request = nop_submit_request; 3146 3147 /* 3148 * Make sure no one is running the old callback before we proceed with 3149 * cancelling requests and resetting the completion tracking. Otherwise 3150 * we might submit a request to the hardware which never completes. 3151 */ 3152 synchronize_rcu(); 3153 3154 for_each_engine(engine, i915, id) { 3155 /* Mark all executing requests as skipped */ 3156 engine->cancel_requests(engine); 3157 3158 /* 3159 * Only once we've force-cancelled all in-flight requests can we 3160 * start to complete all requests. 3161 */ 3162 engine->submit_request = nop_complete_submit_request; 3163 } 3164 3165 /* 3166 * Make sure no request can slip through without getting completed by 3167 * either this call here to intel_engine_init_global_seqno, or the one 3168 * in nop_complete_submit_request. 3169 */ 3170 synchronize_rcu(); 3171 3172 for_each_engine(engine, i915, id) { 3173 unsigned long flags; 3174 3175 /* Mark all pending requests as complete so that any concurrent 3176 * (lockless) lookup doesn't try and wait upon the request as we 3177 * reset it. 3178 */ 3179 spin_lock_irqsave(&engine->timeline->lock, flags); 3180 intel_engine_init_global_seqno(engine, 3181 intel_engine_last_submit(engine)); 3182 spin_unlock_irqrestore(&engine->timeline->lock, flags); 3183 } 3184 3185 set_bit(I915_WEDGED, &i915->gpu_error.flags); 3186 wake_up_all(&i915->gpu_error.reset_queue); 3187 } 3188 3189 bool i915_gem_unset_wedged(struct drm_i915_private *i915) 3190 { 3191 struct i915_gem_timeline *tl; 3192 int i; 3193 3194 lockdep_assert_held(&i915->drm.struct_mutex); 3195 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags)) 3196 return true; 3197 3198 /* Before unwedging, make sure that all pending operations 3199 * are flushed and errored out - we may have requests waiting upon 3200 * third party fences. We marked all inflight requests as EIO, and 3201 * every execbuf since returned EIO, for consistency we want all 3202 * the currently pending requests to also be marked as EIO, which 3203 * is done inside our nop_submit_request - and so we must wait. 3204 * 3205 * No more can be submitted until we reset the wedged bit. 3206 */ 3207 list_for_each_entry(tl, &i915->gt.timelines, link) { 3208 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) { 3209 struct drm_i915_gem_request *rq; 3210 3211 rq = i915_gem_active_peek(&tl->engine[i].last_request, 3212 &i915->drm.struct_mutex); 3213 if (!rq) 3214 continue; 3215 3216 /* We can't use our normal waiter as we want to 3217 * avoid recursively trying to handle the current 3218 * reset. The basic dma_fence_default_wait() installs 3219 * a callback for dma_fence_signal(), which is 3220 * triggered by our nop handler (indirectly, the 3221 * callback enables the signaler thread which is 3222 * woken by the nop_submit_request() advancing the seqno 3223 * and when the seqno passes the fence, the signaler 3224 * then signals the fence waking us up). 3225 */ 3226 if (dma_fence_default_wait(&rq->fence, true, 3227 MAX_SCHEDULE_TIMEOUT) < 0) 3228 return false; 3229 } 3230 } 3231 3232 /* Undo nop_submit_request. We prevent all new i915 requests from 3233 * being queued (by disallowing execbuf whilst wedged) so having 3234 * waited for all active requests above, we know the system is idle 3235 * and do not have to worry about a thread being inside 3236 * engine->submit_request() as we swap over. So unlike installing 3237 * the nop_submit_request on reset, we can do this from normal 3238 * context and do not require stop_machine(). 3239 */ 3240 intel_engines_reset_default_submission(i915); 3241 i915_gem_contexts_lost(i915); 3242 3243 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */ 3244 clear_bit(I915_WEDGED, &i915->gpu_error.flags); 3245 3246 return true; 3247 } 3248 3249 static void 3250 i915_gem_retire_work_handler(struct work_struct *work) 3251 { 3252 struct drm_i915_private *dev_priv = 3253 container_of(work, typeof(*dev_priv), gt.retire_work.work); 3254 struct drm_device *dev = &dev_priv->drm; 3255 3256 /* Come back later if the device is busy... */ 3257 if (mutex_trylock(&dev->struct_mutex)) { 3258 i915_gem_retire_requests(dev_priv); 3259 mutex_unlock(&dev->struct_mutex); 3260 } 3261 3262 /* Keep the retire handler running until we are finally idle. 3263 * We do not need to do this test under locking as in the worst-case 3264 * we queue the retire worker once too often. 3265 */ 3266 if (READ_ONCE(dev_priv->gt.awake)) { 3267 i915_queue_hangcheck(dev_priv); 3268 queue_delayed_work(dev_priv->wq, 3269 &dev_priv->gt.retire_work, 3270 round_jiffies_up_relative(HZ)); 3271 } 3272 } 3273 3274 static void 3275 i915_gem_idle_work_handler(struct work_struct *work) 3276 { 3277 struct drm_i915_private *dev_priv = 3278 container_of(work, typeof(*dev_priv), gt.idle_work.work); 3279 struct drm_device *dev = &dev_priv->drm; 3280 bool rearm_hangcheck; 3281 3282 if (!READ_ONCE(dev_priv->gt.awake)) 3283 return; 3284 3285 /* 3286 * Wait for last execlists context complete, but bail out in case a 3287 * new request is submitted. 3288 */ 3289 wait_for(intel_engines_are_idle(dev_priv), 10); 3290 if (READ_ONCE(dev_priv->gt.active_requests)) 3291 return; 3292 3293 rearm_hangcheck = 3294 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); 3295 3296 if (!mutex_trylock(&dev->struct_mutex)) { 3297 /* Currently busy, come back later */ 3298 mod_delayed_work(dev_priv->wq, 3299 &dev_priv->gt.idle_work, 3300 msecs_to_jiffies(50)); 3301 goto out_rearm; 3302 } 3303 3304 /* 3305 * New request retired after this work handler started, extend active 3306 * period until next instance of the work. 3307 */ 3308 if (work_pending(work)) 3309 goto out_unlock; 3310 3311 if (dev_priv->gt.active_requests) 3312 goto out_unlock; 3313 3314 if (wait_for(intel_engines_are_idle(dev_priv), 10)) 3315 DRM_ERROR("Timeout waiting for engines to idle\n"); 3316 3317 intel_engines_mark_idle(dev_priv); 3318 i915_gem_timelines_mark_idle(dev_priv); 3319 3320 GEM_BUG_ON(!dev_priv->gt.awake); 3321 dev_priv->gt.awake = false; 3322 rearm_hangcheck = false; 3323 3324 if (INTEL_GEN(dev_priv) >= 6) 3325 gen6_rps_idle(dev_priv); 3326 intel_runtime_pm_put(dev_priv); 3327 out_unlock: 3328 mutex_unlock(&dev->struct_mutex); 3329 3330 out_rearm: 3331 if (rearm_hangcheck) { 3332 GEM_BUG_ON(!dev_priv->gt.awake); 3333 i915_queue_hangcheck(dev_priv); 3334 } 3335 } 3336 3337 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file) 3338 { 3339 struct drm_i915_private *i915 = to_i915(gem->dev); 3340 struct drm_i915_gem_object *obj = to_intel_bo(gem); 3341 struct drm_i915_file_private *fpriv = file->driver_priv; 3342 struct i915_lut_handle *lut, *ln; 3343 3344 mutex_lock(&i915->drm.struct_mutex); 3345 3346 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) { 3347 struct i915_gem_context *ctx = lut->ctx; 3348 struct i915_vma *vma; 3349 3350 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF)); 3351 if (ctx->file_priv != fpriv) 3352 continue; 3353 3354 vma = radix_tree_delete(&ctx->handles_vma, lut->handle); 3355 GEM_BUG_ON(vma->obj != obj); 3356 3357 /* We allow the process to have multiple handles to the same 3358 * vma, in the same fd namespace, by virtue of flink/open. 3359 */ 3360 GEM_BUG_ON(!vma->open_count); 3361 if (!--vma->open_count && !i915_vma_is_ggtt(vma)) 3362 i915_vma_close(vma); 3363 3364 list_del(&lut->obj_link); 3365 list_del(&lut->ctx_link); 3366 3367 kmem_cache_free(i915->luts, lut); 3368 __i915_gem_object_release_unless_active(obj); 3369 } 3370 3371 mutex_unlock(&i915->drm.struct_mutex); 3372 } 3373 3374 static unsigned long to_wait_timeout(s64 timeout_ns) 3375 { 3376 if (timeout_ns < 0) 3377 return MAX_SCHEDULE_TIMEOUT; 3378 3379 if (timeout_ns == 0) 3380 return 0; 3381 3382 return nsecs_to_jiffies_timeout(timeout_ns); 3383 } 3384 3385 /** 3386 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT 3387 * @dev: drm device pointer 3388 * @data: ioctl data blob 3389 * @file: drm file pointer 3390 * 3391 * Returns 0 if successful, else an error is returned with the remaining time in 3392 * the timeout parameter. 3393 * -ETIME: object is still busy after timeout 3394 * -ERESTARTSYS: signal interrupted the wait 3395 * -ENONENT: object doesn't exist 3396 * Also possible, but rare: 3397 * -EAGAIN: incomplete, restart syscall 3398 * -ENOMEM: damn 3399 * -ENODEV: Internal IRQ fail 3400 * -E?: The add request failed 3401 * 3402 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any 3403 * non-zero timeout parameter the wait ioctl will wait for the given number of 3404 * nanoseconds on an object becoming unbusy. Since the wait itself does so 3405 * without holding struct_mutex the object may become re-busied before this 3406 * function completes. A similar but shorter * race condition exists in the busy 3407 * ioctl 3408 */ 3409 int 3410 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 3411 { 3412 struct drm_i915_gem_wait *args = data; 3413 struct drm_i915_gem_object *obj; 3414 ktime_t start; 3415 long ret; 3416 3417 if (args->flags != 0) 3418 return -EINVAL; 3419 3420 obj = i915_gem_object_lookup(file, args->bo_handle); 3421 if (!obj) 3422 return -ENOENT; 3423 3424 start = ktime_get(); 3425 3426 ret = i915_gem_object_wait(obj, 3427 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL, 3428 to_wait_timeout(args->timeout_ns), 3429 to_rps_client(file)); 3430 3431 if (args->timeout_ns > 0) { 3432 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start)); 3433 if (args->timeout_ns < 0) 3434 args->timeout_ns = 0; 3435 3436 /* 3437 * Apparently ktime isn't accurate enough and occasionally has a 3438 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch 3439 * things up to make the test happy. We allow up to 1 jiffy. 3440 * 3441 * This is a regression from the timespec->ktime conversion. 3442 */ 3443 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns)) 3444 args->timeout_ns = 0; 3445 3446 /* Asked to wait beyond the jiffie/scheduler precision? */ 3447 if (ret == -ETIME && args->timeout_ns) 3448 ret = -EAGAIN; 3449 } 3450 3451 i915_gem_object_put(obj); 3452 return ret; 3453 } 3454 3455 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags) 3456 { 3457 int ret, i; 3458 3459 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) { 3460 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags); 3461 if (ret) 3462 return ret; 3463 } 3464 3465 return 0; 3466 } 3467 3468 static int wait_for_engines(struct drm_i915_private *i915) 3469 { 3470 if (wait_for(intel_engines_are_idle(i915), 50)) { 3471 DRM_ERROR("Failed to idle engines, declaring wedged!\n"); 3472 i915_gem_set_wedged(i915); 3473 return -EIO; 3474 } 3475 3476 return 0; 3477 } 3478 3479 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags) 3480 { 3481 int ret; 3482 3483 /* If the device is asleep, we have no requests outstanding */ 3484 if (!READ_ONCE(i915->gt.awake)) 3485 return 0; 3486 3487 if (flags & I915_WAIT_LOCKED) { 3488 struct i915_gem_timeline *tl; 3489 3490 lockdep_assert_held(&i915->drm.struct_mutex); 3491 3492 list_for_each_entry(tl, &i915->gt.timelines, link) { 3493 ret = wait_for_timeline(tl, flags); 3494 if (ret) 3495 return ret; 3496 } 3497 3498 i915_gem_retire_requests(i915); 3499 GEM_BUG_ON(i915->gt.active_requests); 3500 3501 ret = wait_for_engines(i915); 3502 } else { 3503 ret = wait_for_timeline(&i915->gt.global_timeline, flags); 3504 } 3505 3506 return ret; 3507 } 3508 3509 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj) 3510 { 3511 /* 3512 * We manually flush the CPU domain so that we can override and 3513 * force the flush for the display, and perform it asyncrhonously. 3514 */ 3515 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); 3516 if (obj->cache_dirty) 3517 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE); 3518 obj->base.write_domain = 0; 3519 } 3520 3521 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj) 3522 { 3523 if (!READ_ONCE(obj->pin_global)) 3524 return; 3525 3526 mutex_lock(&obj->base.dev->struct_mutex); 3527 __i915_gem_object_flush_for_display(obj); 3528 mutex_unlock(&obj->base.dev->struct_mutex); 3529 } 3530 3531 /** 3532 * Moves a single object to the WC read, and possibly write domain. 3533 * @obj: object to act on 3534 * @write: ask for write access or read only 3535 * 3536 * This function returns when the move is complete, including waiting on 3537 * flushes to occur. 3538 */ 3539 int 3540 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write) 3541 { 3542 int ret; 3543 3544 lockdep_assert_held(&obj->base.dev->struct_mutex); 3545 3546 ret = i915_gem_object_wait(obj, 3547 I915_WAIT_INTERRUPTIBLE | 3548 I915_WAIT_LOCKED | 3549 (write ? I915_WAIT_ALL : 0), 3550 MAX_SCHEDULE_TIMEOUT, 3551 NULL); 3552 if (ret) 3553 return ret; 3554 3555 if (obj->base.write_domain == I915_GEM_DOMAIN_WC) 3556 return 0; 3557 3558 /* Flush and acquire obj->pages so that we are coherent through 3559 * direct access in memory with previous cached writes through 3560 * shmemfs and that our cache domain tracking remains valid. 3561 * For example, if the obj->filp was moved to swap without us 3562 * being notified and releasing the pages, we would mistakenly 3563 * continue to assume that the obj remained out of the CPU cached 3564 * domain. 3565 */ 3566 ret = i915_gem_object_pin_pages(obj); 3567 if (ret) 3568 return ret; 3569 3570 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC); 3571 3572 /* Serialise direct access to this object with the barriers for 3573 * coherent writes from the GPU, by effectively invalidating the 3574 * WC domain upon first access. 3575 */ 3576 if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0) 3577 mb(); 3578 3579 /* It should now be out of any other write domains, and we can update 3580 * the domain values for our changes. 3581 */ 3582 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0); 3583 obj->base.read_domains |= I915_GEM_DOMAIN_WC; 3584 if (write) { 3585 obj->base.read_domains = I915_GEM_DOMAIN_WC; 3586 obj->base.write_domain = I915_GEM_DOMAIN_WC; 3587 obj->mm.dirty = true; 3588 } 3589 3590 i915_gem_object_unpin_pages(obj); 3591 return 0; 3592 } 3593 3594 /** 3595 * Moves a single object to the GTT read, and possibly write domain. 3596 * @obj: object to act on 3597 * @write: ask for write access or read only 3598 * 3599 * This function returns when the move is complete, including waiting on 3600 * flushes to occur. 3601 */ 3602 int 3603 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) 3604 { 3605 int ret; 3606 3607 lockdep_assert_held(&obj->base.dev->struct_mutex); 3608 3609 ret = i915_gem_object_wait(obj, 3610 I915_WAIT_INTERRUPTIBLE | 3611 I915_WAIT_LOCKED | 3612 (write ? I915_WAIT_ALL : 0), 3613 MAX_SCHEDULE_TIMEOUT, 3614 NULL); 3615 if (ret) 3616 return ret; 3617 3618 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) 3619 return 0; 3620 3621 /* Flush and acquire obj->pages so that we are coherent through 3622 * direct access in memory with previous cached writes through 3623 * shmemfs and that our cache domain tracking remains valid. 3624 * For example, if the obj->filp was moved to swap without us 3625 * being notified and releasing the pages, we would mistakenly 3626 * continue to assume that the obj remained out of the CPU cached 3627 * domain. 3628 */ 3629 ret = i915_gem_object_pin_pages(obj); 3630 if (ret) 3631 return ret; 3632 3633 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT); 3634 3635 /* Serialise direct access to this object with the barriers for 3636 * coherent writes from the GPU, by effectively invalidating the 3637 * GTT domain upon first access. 3638 */ 3639 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 3640 mb(); 3641 3642 /* It should now be out of any other write domains, and we can update 3643 * the domain values for our changes. 3644 */ 3645 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 3646 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3647 if (write) { 3648 obj->base.read_domains = I915_GEM_DOMAIN_GTT; 3649 obj->base.write_domain = I915_GEM_DOMAIN_GTT; 3650 obj->mm.dirty = true; 3651 } 3652 3653 i915_gem_object_unpin_pages(obj); 3654 return 0; 3655 } 3656 3657 /** 3658 * Changes the cache-level of an object across all VMA. 3659 * @obj: object to act on 3660 * @cache_level: new cache level to set for the object 3661 * 3662 * After this function returns, the object will be in the new cache-level 3663 * across all GTT and the contents of the backing storage will be coherent, 3664 * with respect to the new cache-level. In order to keep the backing storage 3665 * coherent for all users, we only allow a single cache level to be set 3666 * globally on the object and prevent it from being changed whilst the 3667 * hardware is reading from the object. That is if the object is currently 3668 * on the scanout it will be set to uncached (or equivalent display 3669 * cache coherency) and all non-MOCS GPU access will also be uncached so 3670 * that all direct access to the scanout remains coherent. 3671 */ 3672 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3673 enum i915_cache_level cache_level) 3674 { 3675 struct i915_vma *vma; 3676 int ret; 3677 3678 lockdep_assert_held(&obj->base.dev->struct_mutex); 3679 3680 if (obj->cache_level == cache_level) 3681 return 0; 3682 3683 /* Inspect the list of currently bound VMA and unbind any that would 3684 * be invalid given the new cache-level. This is principally to 3685 * catch the issue of the CS prefetch crossing page boundaries and 3686 * reading an invalid PTE on older architectures. 3687 */ 3688 restart: 3689 list_for_each_entry(vma, &obj->vma_list, obj_link) { 3690 if (!drm_mm_node_allocated(&vma->node)) 3691 continue; 3692 3693 if (i915_vma_is_pinned(vma)) { 3694 DRM_DEBUG("can not change the cache level of pinned objects\n"); 3695 return -EBUSY; 3696 } 3697 3698 if (i915_gem_valid_gtt_space(vma, cache_level)) 3699 continue; 3700 3701 ret = i915_vma_unbind(vma); 3702 if (ret) 3703 return ret; 3704 3705 /* As unbinding may affect other elements in the 3706 * obj->vma_list (due to side-effects from retiring 3707 * an active vma), play safe and restart the iterator. 3708 */ 3709 goto restart; 3710 } 3711 3712 /* We can reuse the existing drm_mm nodes but need to change the 3713 * cache-level on the PTE. We could simply unbind them all and 3714 * rebind with the correct cache-level on next use. However since 3715 * we already have a valid slot, dma mapping, pages etc, we may as 3716 * rewrite the PTE in the belief that doing so tramples upon less 3717 * state and so involves less work. 3718 */ 3719 if (obj->bind_count) { 3720 /* Before we change the PTE, the GPU must not be accessing it. 3721 * If we wait upon the object, we know that all the bound 3722 * VMA are no longer active. 3723 */ 3724 ret = i915_gem_object_wait(obj, 3725 I915_WAIT_INTERRUPTIBLE | 3726 I915_WAIT_LOCKED | 3727 I915_WAIT_ALL, 3728 MAX_SCHEDULE_TIMEOUT, 3729 NULL); 3730 if (ret) 3731 return ret; 3732 3733 if (!HAS_LLC(to_i915(obj->base.dev)) && 3734 cache_level != I915_CACHE_NONE) { 3735 /* Access to snoopable pages through the GTT is 3736 * incoherent and on some machines causes a hard 3737 * lockup. Relinquish the CPU mmaping to force 3738 * userspace to refault in the pages and we can 3739 * then double check if the GTT mapping is still 3740 * valid for that pointer access. 3741 */ 3742 i915_gem_release_mmap(obj); 3743 3744 /* As we no longer need a fence for GTT access, 3745 * we can relinquish it now (and so prevent having 3746 * to steal a fence from someone else on the next 3747 * fence request). Note GPU activity would have 3748 * dropped the fence as all snoopable access is 3749 * supposed to be linear. 3750 */ 3751 list_for_each_entry(vma, &obj->vma_list, obj_link) { 3752 ret = i915_vma_put_fence(vma); 3753 if (ret) 3754 return ret; 3755 } 3756 } else { 3757 /* We either have incoherent backing store and 3758 * so no GTT access or the architecture is fully 3759 * coherent. In such cases, existing GTT mmaps 3760 * ignore the cache bit in the PTE and we can 3761 * rewrite it without confusing the GPU or having 3762 * to force userspace to fault back in its mmaps. 3763 */ 3764 } 3765 3766 list_for_each_entry(vma, &obj->vma_list, obj_link) { 3767 if (!drm_mm_node_allocated(&vma->node)) 3768 continue; 3769 3770 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE); 3771 if (ret) 3772 return ret; 3773 } 3774 } 3775 3776 list_for_each_entry(vma, &obj->vma_list, obj_link) 3777 vma->node.color = cache_level; 3778 i915_gem_object_set_cache_coherency(obj, cache_level); 3779 obj->cache_dirty = true; /* Always invalidate stale cachelines */ 3780 3781 return 0; 3782 } 3783 3784 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3785 struct drm_file *file) 3786 { 3787 struct drm_i915_gem_caching *args = data; 3788 struct drm_i915_gem_object *obj; 3789 int err = 0; 3790 3791 rcu_read_lock(); 3792 obj = i915_gem_object_lookup_rcu(file, args->handle); 3793 if (!obj) { 3794 err = -ENOENT; 3795 goto out; 3796 } 3797 3798 switch (obj->cache_level) { 3799 case I915_CACHE_LLC: 3800 case I915_CACHE_L3_LLC: 3801 args->caching = I915_CACHING_CACHED; 3802 break; 3803 3804 case I915_CACHE_WT: 3805 args->caching = I915_CACHING_DISPLAY; 3806 break; 3807 3808 default: 3809 args->caching = I915_CACHING_NONE; 3810 break; 3811 } 3812 out: 3813 rcu_read_unlock(); 3814 return err; 3815 } 3816 3817 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3818 struct drm_file *file) 3819 { 3820 struct drm_i915_private *i915 = to_i915(dev); 3821 struct drm_i915_gem_caching *args = data; 3822 struct drm_i915_gem_object *obj; 3823 enum i915_cache_level level; 3824 int ret = 0; 3825 3826 switch (args->caching) { 3827 case I915_CACHING_NONE: 3828 level = I915_CACHE_NONE; 3829 break; 3830 case I915_CACHING_CACHED: 3831 /* 3832 * Due to a HW issue on BXT A stepping, GPU stores via a 3833 * snooped mapping may leave stale data in a corresponding CPU 3834 * cacheline, whereas normally such cachelines would get 3835 * invalidated. 3836 */ 3837 if (!HAS_LLC(i915) && !HAS_SNOOP(i915)) 3838 return -ENODEV; 3839 3840 level = I915_CACHE_LLC; 3841 break; 3842 case I915_CACHING_DISPLAY: 3843 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE; 3844 break; 3845 default: 3846 return -EINVAL; 3847 } 3848 3849 obj = i915_gem_object_lookup(file, args->handle); 3850 if (!obj) 3851 return -ENOENT; 3852 3853 if (obj->cache_level == level) 3854 goto out; 3855 3856 ret = i915_gem_object_wait(obj, 3857 I915_WAIT_INTERRUPTIBLE, 3858 MAX_SCHEDULE_TIMEOUT, 3859 to_rps_client(file)); 3860 if (ret) 3861 goto out; 3862 3863 ret = i915_mutex_lock_interruptible(dev); 3864 if (ret) 3865 goto out; 3866 3867 ret = i915_gem_object_set_cache_level(obj, level); 3868 mutex_unlock(&dev->struct_mutex); 3869 3870 out: 3871 i915_gem_object_put(obj); 3872 return ret; 3873 } 3874 3875 /* 3876 * Prepare buffer for display plane (scanout, cursors, etc). 3877 * Can be called from an uninterruptible phase (modesetting) and allows 3878 * any flushes to be pipelined (for pageflips). 3879 */ 3880 struct i915_vma * 3881 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3882 u32 alignment, 3883 const struct i915_ggtt_view *view) 3884 { 3885 struct i915_vma *vma; 3886 int ret; 3887 3888 lockdep_assert_held(&obj->base.dev->struct_mutex); 3889 3890 /* Mark the global pin early so that we account for the 3891 * display coherency whilst setting up the cache domains. 3892 */ 3893 obj->pin_global++; 3894 3895 /* The display engine is not coherent with the LLC cache on gen6. As 3896 * a result, we make sure that the pinning that is about to occur is 3897 * done with uncached PTEs. This is lowest common denominator for all 3898 * chipsets. 3899 * 3900 * However for gen6+, we could do better by using the GFDT bit instead 3901 * of uncaching, which would allow us to flush all the LLC-cached data 3902 * with that bit in the PTE to main memory with just one PIPE_CONTROL. 3903 */ 3904 ret = i915_gem_object_set_cache_level(obj, 3905 HAS_WT(to_i915(obj->base.dev)) ? 3906 I915_CACHE_WT : I915_CACHE_NONE); 3907 if (ret) { 3908 vma = ERR_PTR(ret); 3909 goto err_unpin_global; 3910 } 3911 3912 /* As the user may map the buffer once pinned in the display plane 3913 * (e.g. libkms for the bootup splash), we have to ensure that we 3914 * always use map_and_fenceable for all scanout buffers. However, 3915 * it may simply be too big to fit into mappable, in which case 3916 * put it anyway and hope that userspace can cope (but always first 3917 * try to preserve the existing ABI). 3918 */ 3919 vma = ERR_PTR(-ENOSPC); 3920 if (!view || view->type == I915_GGTT_VIEW_NORMAL) 3921 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 3922 PIN_MAPPABLE | PIN_NONBLOCK); 3923 if (IS_ERR(vma)) { 3924 struct drm_i915_private *i915 = to_i915(obj->base.dev); 3925 unsigned int flags; 3926 3927 /* Valleyview is definitely limited to scanning out the first 3928 * 512MiB. Lets presume this behaviour was inherited from the 3929 * g4x display engine and that all earlier gen are similarly 3930 * limited. Testing suggests that it is a little more 3931 * complicated than this. For example, Cherryview appears quite 3932 * happy to scanout from anywhere within its global aperture. 3933 */ 3934 flags = 0; 3935 if (HAS_GMCH_DISPLAY(i915)) 3936 flags = PIN_MAPPABLE; 3937 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags); 3938 } 3939 if (IS_ERR(vma)) 3940 goto err_unpin_global; 3941 3942 vma->display_alignment = max_t(u64, vma->display_alignment, alignment); 3943 3944 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */ 3945 __i915_gem_object_flush_for_display(obj); 3946 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB); 3947 3948 /* It should now be out of any other write domains, and we can update 3949 * the domain values for our changes. 3950 */ 3951 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3952 3953 return vma; 3954 3955 err_unpin_global: 3956 obj->pin_global--; 3957 return vma; 3958 } 3959 3960 void 3961 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma) 3962 { 3963 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex); 3964 3965 if (WARN_ON(vma->obj->pin_global == 0)) 3966 return; 3967 3968 if (--vma->obj->pin_global == 0) 3969 vma->display_alignment = I915_GTT_MIN_ALIGNMENT; 3970 3971 /* Bump the LRU to try and avoid premature eviction whilst flipping */ 3972 i915_gem_object_bump_inactive_ggtt(vma->obj); 3973 3974 i915_vma_unpin(vma); 3975 } 3976 3977 /** 3978 * Moves a single object to the CPU read, and possibly write domain. 3979 * @obj: object to act on 3980 * @write: requesting write or read-only access 3981 * 3982 * This function returns when the move is complete, including waiting on 3983 * flushes to occur. 3984 */ 3985 int 3986 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) 3987 { 3988 int ret; 3989 3990 lockdep_assert_held(&obj->base.dev->struct_mutex); 3991 3992 ret = i915_gem_object_wait(obj, 3993 I915_WAIT_INTERRUPTIBLE | 3994 I915_WAIT_LOCKED | 3995 (write ? I915_WAIT_ALL : 0), 3996 MAX_SCHEDULE_TIMEOUT, 3997 NULL); 3998 if (ret) 3999 return ret; 4000 4001 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); 4002 4003 /* Flush the CPU cache if it's still invalid. */ 4004 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { 4005 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC); 4006 obj->base.read_domains |= I915_GEM_DOMAIN_CPU; 4007 } 4008 4009 /* It should now be out of any other write domains, and we can update 4010 * the domain values for our changes. 4011 */ 4012 GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU); 4013 4014 /* If we're writing through the CPU, then the GPU read domains will 4015 * need to be invalidated at next use. 4016 */ 4017 if (write) 4018 __start_cpu_write(obj); 4019 4020 return 0; 4021 } 4022 4023 /* Throttle our rendering by waiting until the ring has completed our requests 4024 * emitted over 20 msec ago. 4025 * 4026 * Note that if we were to use the current jiffies each time around the loop, 4027 * we wouldn't escape the function with any frames outstanding if the time to 4028 * render a frame was over 20ms. 4029 * 4030 * This should get us reasonable parallelism between CPU and GPU but also 4031 * relatively low latency when blocking on a particular request to finish. 4032 */ 4033 static int 4034 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) 4035 { 4036 struct drm_i915_private *dev_priv = to_i915(dev); 4037 struct drm_i915_file_private *file_priv = file->driver_priv; 4038 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES; 4039 struct drm_i915_gem_request *request, *target = NULL; 4040 long ret; 4041 4042 /* ABI: return -EIO if already wedged */ 4043 if (i915_terminally_wedged(&dev_priv->gpu_error)) 4044 return -EIO; 4045 4046 spin_lock(&file_priv->mm.lock); 4047 list_for_each_entry(request, &file_priv->mm.request_list, client_link) { 4048 if (time_after_eq(request->emitted_jiffies, recent_enough)) 4049 break; 4050 4051 if (target) { 4052 list_del(&target->client_link); 4053 target->file_priv = NULL; 4054 } 4055 4056 target = request; 4057 } 4058 if (target) 4059 i915_gem_request_get(target); 4060 spin_unlock(&file_priv->mm.lock); 4061 4062 if (target == NULL) 4063 return 0; 4064 4065 ret = i915_wait_request(target, 4066 I915_WAIT_INTERRUPTIBLE, 4067 MAX_SCHEDULE_TIMEOUT); 4068 i915_gem_request_put(target); 4069 4070 return ret < 0 ? ret : 0; 4071 } 4072 4073 struct i915_vma * 4074 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 4075 const struct i915_ggtt_view *view, 4076 u64 size, 4077 u64 alignment, 4078 u64 flags) 4079 { 4080 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 4081 struct i915_address_space *vm = &dev_priv->ggtt.base; 4082 struct i915_vma *vma; 4083 int ret; 4084 4085 lockdep_assert_held(&obj->base.dev->struct_mutex); 4086 4087 if (!view && flags & PIN_MAPPABLE) { 4088 /* If the required space is larger than the available 4089 * aperture, we will not able to find a slot for the 4090 * object and unbinding the object now will be in 4091 * vain. Worse, doing so may cause us to ping-pong 4092 * the object in and out of the Global GTT and 4093 * waste a lot of cycles under the mutex. 4094 */ 4095 if (obj->base.size > dev_priv->ggtt.mappable_end) 4096 return ERR_PTR(-E2BIG); 4097 4098 /* If NONBLOCK is set the caller is optimistically 4099 * trying to cache the full object within the mappable 4100 * aperture, and *must* have a fallback in place for 4101 * situations where we cannot bind the object. We 4102 * can be a little more lax here and use the fallback 4103 * more often to avoid costly migrations of ourselves 4104 * and other objects within the aperture. 4105 * 4106 * Half-the-aperture is used as a simple heuristic. 4107 * More interesting would to do search for a free 4108 * block prior to making the commitment to unbind. 4109 * That caters for the self-harm case, and with a 4110 * little more heuristics (e.g. NOFAULT, NOEVICT) 4111 * we could try to minimise harm to others. 4112 */ 4113 if (flags & PIN_NONBLOCK && 4114 obj->base.size > dev_priv->ggtt.mappable_end / 2) 4115 return ERR_PTR(-ENOSPC); 4116 } 4117 4118 vma = i915_vma_instance(obj, vm, view); 4119 if (unlikely(IS_ERR(vma))) 4120 return vma; 4121 4122 if (i915_vma_misplaced(vma, size, alignment, flags)) { 4123 if (flags & PIN_NONBLOCK) { 4124 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) 4125 return ERR_PTR(-ENOSPC); 4126 4127 if (flags & PIN_MAPPABLE && 4128 vma->fence_size > dev_priv->ggtt.mappable_end / 2) 4129 return ERR_PTR(-ENOSPC); 4130 } 4131 4132 WARN(i915_vma_is_pinned(vma), 4133 "bo is already pinned in ggtt with incorrect alignment:" 4134 " offset=%08x, req.alignment=%llx," 4135 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n", 4136 i915_ggtt_offset(vma), alignment, 4137 !!(flags & PIN_MAPPABLE), 4138 i915_vma_is_map_and_fenceable(vma)); 4139 ret = i915_vma_unbind(vma); 4140 if (ret) 4141 return ERR_PTR(ret); 4142 } 4143 4144 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL); 4145 if (ret) 4146 return ERR_PTR(ret); 4147 4148 return vma; 4149 } 4150 4151 static __always_inline unsigned int __busy_read_flag(unsigned int id) 4152 { 4153 /* Note that we could alias engines in the execbuf API, but 4154 * that would be very unwise as it prevents userspace from 4155 * fine control over engine selection. Ahem. 4156 * 4157 * This should be something like EXEC_MAX_ENGINE instead of 4158 * I915_NUM_ENGINES. 4159 */ 4160 BUILD_BUG_ON(I915_NUM_ENGINES > 16); 4161 return 0x10000 << id; 4162 } 4163 4164 static __always_inline unsigned int __busy_write_id(unsigned int id) 4165 { 4166 /* The uABI guarantees an active writer is also amongst the read 4167 * engines. This would be true if we accessed the activity tracking 4168 * under the lock, but as we perform the lookup of the object and 4169 * its activity locklessly we can not guarantee that the last_write 4170 * being active implies that we have set the same engine flag from 4171 * last_read - hence we always set both read and write busy for 4172 * last_write. 4173 */ 4174 return id | __busy_read_flag(id); 4175 } 4176 4177 static __always_inline unsigned int 4178 __busy_set_if_active(const struct dma_fence *fence, 4179 unsigned int (*flag)(unsigned int id)) 4180 { 4181 struct drm_i915_gem_request *rq; 4182 4183 /* We have to check the current hw status of the fence as the uABI 4184 * guarantees forward progress. We could rely on the idle worker 4185 * to eventually flush us, but to minimise latency just ask the 4186 * hardware. 4187 * 4188 * Note we only report on the status of native fences. 4189 */ 4190 if (!dma_fence_is_i915(fence)) 4191 return 0; 4192 4193 /* opencode to_request() in order to avoid const warnings */ 4194 rq = container_of(fence, struct drm_i915_gem_request, fence); 4195 if (i915_gem_request_completed(rq)) 4196 return 0; 4197 4198 return flag(rq->engine->uabi_id); 4199 } 4200 4201 static __always_inline unsigned int 4202 busy_check_reader(const struct dma_fence *fence) 4203 { 4204 return __busy_set_if_active(fence, __busy_read_flag); 4205 } 4206 4207 static __always_inline unsigned int 4208 busy_check_writer(const struct dma_fence *fence) 4209 { 4210 if (!fence) 4211 return 0; 4212 4213 return __busy_set_if_active(fence, __busy_write_id); 4214 } 4215 4216 int 4217 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 4218 struct drm_file *file) 4219 { 4220 struct drm_i915_gem_busy *args = data; 4221 struct drm_i915_gem_object *obj; 4222 struct reservation_object_list *list; 4223 unsigned int seq; 4224 int err; 4225 4226 err = -ENOENT; 4227 rcu_read_lock(); 4228 obj = i915_gem_object_lookup_rcu(file, args->handle); 4229 if (!obj) 4230 goto out; 4231 4232 /* A discrepancy here is that we do not report the status of 4233 * non-i915 fences, i.e. even though we may report the object as idle, 4234 * a call to set-domain may still stall waiting for foreign rendering. 4235 * This also means that wait-ioctl may report an object as busy, 4236 * where busy-ioctl considers it idle. 4237 * 4238 * We trade the ability to warn of foreign fences to report on which 4239 * i915 engines are active for the object. 4240 * 4241 * Alternatively, we can trade that extra information on read/write 4242 * activity with 4243 * args->busy = 4244 * !reservation_object_test_signaled_rcu(obj->resv, true); 4245 * to report the overall busyness. This is what the wait-ioctl does. 4246 * 4247 */ 4248 retry: 4249 seq = raw_read_seqcount(&obj->resv->seq); 4250 4251 /* Translate the exclusive fence to the READ *and* WRITE engine */ 4252 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl)); 4253 4254 /* Translate shared fences to READ set of engines */ 4255 list = rcu_dereference(obj->resv->fence); 4256 if (list) { 4257 unsigned int shared_count = list->shared_count, i; 4258 4259 for (i = 0; i < shared_count; ++i) { 4260 struct dma_fence *fence = 4261 rcu_dereference(list->shared[i]); 4262 4263 args->busy |= busy_check_reader(fence); 4264 } 4265 } 4266 4267 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq)) 4268 goto retry; 4269 4270 err = 0; 4271 out: 4272 rcu_read_unlock(); 4273 return err; 4274 } 4275 4276 int 4277 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 4278 struct drm_file *file_priv) 4279 { 4280 return i915_gem_ring_throttle(dev, file_priv); 4281 } 4282 4283 int 4284 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 4285 struct drm_file *file_priv) 4286 { 4287 struct drm_i915_private *dev_priv = to_i915(dev); 4288 struct drm_i915_gem_madvise *args = data; 4289 struct drm_i915_gem_object *obj; 4290 int err; 4291 4292 switch (args->madv) { 4293 case I915_MADV_DONTNEED: 4294 case I915_MADV_WILLNEED: 4295 break; 4296 default: 4297 return -EINVAL; 4298 } 4299 4300 obj = i915_gem_object_lookup(file_priv, args->handle); 4301 if (!obj) 4302 return -ENOENT; 4303 4304 err = mutex_lock_interruptible(&obj->mm.lock); 4305 if (err) 4306 goto out; 4307 4308 if (i915_gem_object_has_pages(obj) && 4309 i915_gem_object_is_tiled(obj) && 4310 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) { 4311 if (obj->mm.madv == I915_MADV_WILLNEED) { 4312 GEM_BUG_ON(!obj->mm.quirked); 4313 __i915_gem_object_unpin_pages(obj); 4314 obj->mm.quirked = false; 4315 } 4316 if (args->madv == I915_MADV_WILLNEED) { 4317 GEM_BUG_ON(obj->mm.quirked); 4318 __i915_gem_object_pin_pages(obj); 4319 obj->mm.quirked = true; 4320 } 4321 } 4322 4323 if (obj->mm.madv != __I915_MADV_PURGED) 4324 obj->mm.madv = args->madv; 4325 4326 /* if the object is no longer attached, discard its backing storage */ 4327 if (obj->mm.madv == I915_MADV_DONTNEED && 4328 !i915_gem_object_has_pages(obj)) 4329 i915_gem_object_truncate(obj); 4330 4331 args->retained = obj->mm.madv != __I915_MADV_PURGED; 4332 mutex_unlock(&obj->mm.lock); 4333 4334 out: 4335 i915_gem_object_put(obj); 4336 return err; 4337 } 4338 4339 static void 4340 frontbuffer_retire(struct i915_gem_active *active, 4341 struct drm_i915_gem_request *request) 4342 { 4343 struct drm_i915_gem_object *obj = 4344 container_of(active, typeof(*obj), frontbuffer_write); 4345 4346 intel_fb_obj_flush(obj, ORIGIN_CS); 4347 } 4348 4349 void i915_gem_object_init(struct drm_i915_gem_object *obj, 4350 const struct drm_i915_gem_object_ops *ops) 4351 { 4352 mutex_init(&obj->mm.lock); 4353 4354 INIT_LIST_HEAD(&obj->vma_list); 4355 INIT_LIST_HEAD(&obj->lut_list); 4356 INIT_LIST_HEAD(&obj->batch_pool_link); 4357 4358 obj->ops = ops; 4359 4360 reservation_object_init(&obj->__builtin_resv); 4361 obj->resv = &obj->__builtin_resv; 4362 4363 obj->frontbuffer_ggtt_origin = ORIGIN_GTT; 4364 init_request_active(&obj->frontbuffer_write, frontbuffer_retire); 4365 4366 obj->mm.madv = I915_MADV_WILLNEED; 4367 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN); 4368 mutex_init(&obj->mm.get_page.lock); 4369 4370 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size); 4371 } 4372 4373 static const struct drm_i915_gem_object_ops i915_gem_object_ops = { 4374 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE | 4375 I915_GEM_OBJECT_IS_SHRINKABLE, 4376 4377 .get_pages = i915_gem_object_get_pages_gtt, 4378 .put_pages = i915_gem_object_put_pages_gtt, 4379 4380 .pwrite = i915_gem_object_pwrite_gtt, 4381 }; 4382 4383 static int i915_gem_object_create_shmem(struct drm_device *dev, 4384 struct drm_gem_object *obj, 4385 size_t size) 4386 { 4387 struct drm_i915_private *i915 = to_i915(dev); 4388 unsigned long flags = VM_NORESERVE; 4389 struct file *filp; 4390 4391 drm_gem_private_object_init(dev, obj, size); 4392 4393 if (i915->mm.gemfs) 4394 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size, 4395 flags); 4396 else 4397 filp = shmem_file_setup("i915", size, flags); 4398 4399 if (IS_ERR(filp)) 4400 return PTR_ERR(filp); 4401 4402 obj->filp = filp; 4403 4404 return 0; 4405 } 4406 4407 struct drm_i915_gem_object * 4408 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size) 4409 { 4410 struct drm_i915_gem_object *obj; 4411 struct address_space *mapping; 4412 unsigned int cache_level; 4413 gfp_t mask; 4414 int ret; 4415 4416 /* There is a prevalence of the assumption that we fit the object's 4417 * page count inside a 32bit _signed_ variable. Let's document this and 4418 * catch if we ever need to fix it. In the meantime, if you do spot 4419 * such a local variable, please consider fixing! 4420 */ 4421 if (size >> PAGE_SHIFT > INT_MAX) 4422 return ERR_PTR(-E2BIG); 4423 4424 if (overflows_type(size, obj->base.size)) 4425 return ERR_PTR(-E2BIG); 4426 4427 obj = i915_gem_object_alloc(dev_priv); 4428 if (obj == NULL) 4429 return ERR_PTR(-ENOMEM); 4430 4431 ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size); 4432 if (ret) 4433 goto fail; 4434 4435 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 4436 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) { 4437 /* 965gm cannot relocate objects above 4GiB. */ 4438 mask &= ~__GFP_HIGHMEM; 4439 mask |= __GFP_DMA32; 4440 } 4441 4442 mapping = obj->base.filp->f_mapping; 4443 mapping_set_gfp_mask(mapping, mask); 4444 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM)); 4445 4446 i915_gem_object_init(obj, &i915_gem_object_ops); 4447 4448 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 4449 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 4450 4451 if (HAS_LLC(dev_priv)) 4452 /* On some devices, we can have the GPU use the LLC (the CPU 4453 * cache) for about a 10% performance improvement 4454 * compared to uncached. Graphics requests other than 4455 * display scanout are coherent with the CPU in 4456 * accessing this cache. This means in this mode we 4457 * don't need to clflush on the CPU side, and on the 4458 * GPU side we only need to flush internal caches to 4459 * get data visible to the CPU. 4460 * 4461 * However, we maintain the display planes as UC, and so 4462 * need to rebind when first used as such. 4463 */ 4464 cache_level = I915_CACHE_LLC; 4465 else 4466 cache_level = I915_CACHE_NONE; 4467 4468 i915_gem_object_set_cache_coherency(obj, cache_level); 4469 4470 trace_i915_gem_object_create(obj); 4471 4472 return obj; 4473 4474 fail: 4475 i915_gem_object_free(obj); 4476 return ERR_PTR(ret); 4477 } 4478 4479 static bool discard_backing_storage(struct drm_i915_gem_object *obj) 4480 { 4481 /* If we are the last user of the backing storage (be it shmemfs 4482 * pages or stolen etc), we know that the pages are going to be 4483 * immediately released. In this case, we can then skip copying 4484 * back the contents from the GPU. 4485 */ 4486 4487 if (obj->mm.madv != I915_MADV_WILLNEED) 4488 return false; 4489 4490 if (obj->base.filp == NULL) 4491 return true; 4492 4493 /* At first glance, this looks racy, but then again so would be 4494 * userspace racing mmap against close. However, the first external 4495 * reference to the filp can only be obtained through the 4496 * i915_gem_mmap_ioctl() which safeguards us against the user 4497 * acquiring such a reference whilst we are in the middle of 4498 * freeing the object. 4499 */ 4500 return atomic_long_read(&obj->base.filp->f_count) == 1; 4501 } 4502 4503 static void __i915_gem_free_objects(struct drm_i915_private *i915, 4504 struct llist_node *freed) 4505 { 4506 struct drm_i915_gem_object *obj, *on; 4507 4508 intel_runtime_pm_get(i915); 4509 llist_for_each_entry_safe(obj, on, freed, freed) { 4510 struct i915_vma *vma, *vn; 4511 4512 trace_i915_gem_object_destroy(obj); 4513 4514 mutex_lock(&i915->drm.struct_mutex); 4515 4516 GEM_BUG_ON(i915_gem_object_is_active(obj)); 4517 list_for_each_entry_safe(vma, vn, 4518 &obj->vma_list, obj_link) { 4519 GEM_BUG_ON(i915_vma_is_active(vma)); 4520 vma->flags &= ~I915_VMA_PIN_MASK; 4521 i915_vma_close(vma); 4522 } 4523 GEM_BUG_ON(!list_empty(&obj->vma_list)); 4524 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree)); 4525 4526 /* This serializes freeing with the shrinker. Since the free 4527 * is delayed, first by RCU then by the workqueue, we want the 4528 * shrinker to be able to free pages of unreferenced objects, 4529 * or else we may oom whilst there are plenty of deferred 4530 * freed objects. 4531 */ 4532 if (i915_gem_object_has_pages(obj)) { 4533 spin_lock(&i915->mm.obj_lock); 4534 list_del_init(&obj->mm.link); 4535 spin_unlock(&i915->mm.obj_lock); 4536 } 4537 4538 mutex_unlock(&i915->drm.struct_mutex); 4539 4540 GEM_BUG_ON(obj->bind_count); 4541 GEM_BUG_ON(obj->userfault_count); 4542 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits)); 4543 GEM_BUG_ON(!list_empty(&obj->lut_list)); 4544 4545 if (obj->ops->release) 4546 obj->ops->release(obj); 4547 4548 if (WARN_ON(i915_gem_object_has_pinned_pages(obj))) 4549 atomic_set(&obj->mm.pages_pin_count, 0); 4550 __i915_gem_object_put_pages(obj, I915_MM_NORMAL); 4551 GEM_BUG_ON(i915_gem_object_has_pages(obj)); 4552 4553 if (obj->base.import_attach) 4554 drm_prime_gem_destroy(&obj->base, NULL); 4555 4556 reservation_object_fini(&obj->__builtin_resv); 4557 drm_gem_object_release(&obj->base); 4558 i915_gem_info_remove_obj(i915, obj->base.size); 4559 4560 kfree(obj->bit_17); 4561 i915_gem_object_free(obj); 4562 4563 if (on) 4564 cond_resched(); 4565 } 4566 intel_runtime_pm_put(i915); 4567 } 4568 4569 static void i915_gem_flush_free_objects(struct drm_i915_private *i915) 4570 { 4571 struct llist_node *freed; 4572 4573 /* Free the oldest, most stale object to keep the free_list short */ 4574 freed = NULL; 4575 if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */ 4576 /* Only one consumer of llist_del_first() allowed */ 4577 spin_lock(&i915->mm.free_lock); 4578 freed = llist_del_first(&i915->mm.free_list); 4579 spin_unlock(&i915->mm.free_lock); 4580 } 4581 if (unlikely(freed)) { 4582 freed->next = NULL; 4583 __i915_gem_free_objects(i915, freed); 4584 } 4585 } 4586 4587 static void __i915_gem_free_work(struct work_struct *work) 4588 { 4589 struct drm_i915_private *i915 = 4590 container_of(work, struct drm_i915_private, mm.free_work); 4591 struct llist_node *freed; 4592 4593 /* All file-owned VMA should have been released by this point through 4594 * i915_gem_close_object(), or earlier by i915_gem_context_close(). 4595 * However, the object may also be bound into the global GTT (e.g. 4596 * older GPUs without per-process support, or for direct access through 4597 * the GTT either for the user or for scanout). Those VMA still need to 4598 * unbound now. 4599 */ 4600 4601 spin_lock(&i915->mm.free_lock); 4602 while ((freed = llist_del_all(&i915->mm.free_list))) { 4603 spin_unlock(&i915->mm.free_lock); 4604 4605 __i915_gem_free_objects(i915, freed); 4606 if (need_resched()) 4607 return; 4608 4609 spin_lock(&i915->mm.free_lock); 4610 } 4611 spin_unlock(&i915->mm.free_lock); 4612 } 4613 4614 static void __i915_gem_free_object_rcu(struct rcu_head *head) 4615 { 4616 struct drm_i915_gem_object *obj = 4617 container_of(head, typeof(*obj), rcu); 4618 struct drm_i915_private *i915 = to_i915(obj->base.dev); 4619 4620 /* We can't simply use call_rcu() from i915_gem_free_object() 4621 * as we need to block whilst unbinding, and the call_rcu 4622 * task may be called from softirq context. So we take a 4623 * detour through a worker. 4624 */ 4625 if (llist_add(&obj->freed, &i915->mm.free_list)) 4626 schedule_work(&i915->mm.free_work); 4627 } 4628 4629 void i915_gem_free_object(struct drm_gem_object *gem_obj) 4630 { 4631 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 4632 4633 if (obj->mm.quirked) 4634 __i915_gem_object_unpin_pages(obj); 4635 4636 if (discard_backing_storage(obj)) 4637 obj->mm.madv = I915_MADV_DONTNEED; 4638 4639 /* Before we free the object, make sure any pure RCU-only 4640 * read-side critical sections are complete, e.g. 4641 * i915_gem_busy_ioctl(). For the corresponding synchronized 4642 * lookup see i915_gem_object_lookup_rcu(). 4643 */ 4644 call_rcu(&obj->rcu, __i915_gem_free_object_rcu); 4645 } 4646 4647 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj) 4648 { 4649 lockdep_assert_held(&obj->base.dev->struct_mutex); 4650 4651 if (!i915_gem_object_has_active_reference(obj) && 4652 i915_gem_object_is_active(obj)) 4653 i915_gem_object_set_active_reference(obj); 4654 else 4655 i915_gem_object_put(obj); 4656 } 4657 4658 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv) 4659 { 4660 struct intel_engine_cs *engine; 4661 enum intel_engine_id id; 4662 4663 for_each_engine(engine, dev_priv, id) 4664 GEM_BUG_ON(engine->last_retired_context && 4665 !i915_gem_context_is_kernel(engine->last_retired_context)); 4666 } 4667 4668 void i915_gem_sanitize(struct drm_i915_private *i915) 4669 { 4670 if (i915_terminally_wedged(&i915->gpu_error)) { 4671 mutex_lock(&i915->drm.struct_mutex); 4672 i915_gem_unset_wedged(i915); 4673 mutex_unlock(&i915->drm.struct_mutex); 4674 } 4675 4676 /* 4677 * If we inherit context state from the BIOS or earlier occupants 4678 * of the GPU, the GPU may be in an inconsistent state when we 4679 * try to take over. The only way to remove the earlier state 4680 * is by resetting. However, resetting on earlier gen is tricky as 4681 * it may impact the display and we are uncertain about the stability 4682 * of the reset, so this could be applied to even earlier gen. 4683 */ 4684 if (INTEL_GEN(i915) >= 5) { 4685 int reset = intel_gpu_reset(i915, ALL_ENGINES); 4686 WARN_ON(reset && reset != -ENODEV); 4687 } 4688 } 4689 4690 int i915_gem_suspend(struct drm_i915_private *dev_priv) 4691 { 4692 struct drm_device *dev = &dev_priv->drm; 4693 int ret; 4694 4695 intel_runtime_pm_get(dev_priv); 4696 intel_suspend_gt_powersave(dev_priv); 4697 4698 mutex_lock(&dev->struct_mutex); 4699 4700 /* We have to flush all the executing contexts to main memory so 4701 * that they can saved in the hibernation image. To ensure the last 4702 * context image is coherent, we have to switch away from it. That 4703 * leaves the dev_priv->kernel_context still active when 4704 * we actually suspend, and its image in memory may not match the GPU 4705 * state. Fortunately, the kernel_context is disposable and we do 4706 * not rely on its state. 4707 */ 4708 if (!i915_terminally_wedged(&dev_priv->gpu_error)) { 4709 ret = i915_gem_switch_to_kernel_context(dev_priv); 4710 if (ret) 4711 goto err_unlock; 4712 4713 ret = i915_gem_wait_for_idle(dev_priv, 4714 I915_WAIT_INTERRUPTIBLE | 4715 I915_WAIT_LOCKED); 4716 if (ret && ret != -EIO) 4717 goto err_unlock; 4718 4719 assert_kernel_context_is_current(dev_priv); 4720 } 4721 i915_gem_contexts_lost(dev_priv); 4722 mutex_unlock(&dev->struct_mutex); 4723 4724 intel_guc_suspend(dev_priv); 4725 4726 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); 4727 cancel_delayed_work_sync(&dev_priv->gt.retire_work); 4728 4729 /* As the idle_work is rearming if it detects a race, play safe and 4730 * repeat the flush until it is definitely idle. 4731 */ 4732 drain_delayed_work(&dev_priv->gt.idle_work); 4733 4734 /* Assert that we sucessfully flushed all the work and 4735 * reset the GPU back to its idle, low power state. 4736 */ 4737 WARN_ON(dev_priv->gt.awake); 4738 if (WARN_ON(!intel_engines_are_idle(dev_priv))) 4739 i915_gem_set_wedged(dev_priv); /* no hope, discard everything */ 4740 4741 /* 4742 * Neither the BIOS, ourselves or any other kernel 4743 * expects the system to be in execlists mode on startup, 4744 * so we need to reset the GPU back to legacy mode. And the only 4745 * known way to disable logical contexts is through a GPU reset. 4746 * 4747 * So in order to leave the system in a known default configuration, 4748 * always reset the GPU upon unload and suspend. Afterwards we then 4749 * clean up the GEM state tracking, flushing off the requests and 4750 * leaving the system in a known idle state. 4751 * 4752 * Note that is of the upmost importance that the GPU is idle and 4753 * all stray writes are flushed *before* we dismantle the backing 4754 * storage for the pinned objects. 4755 * 4756 * However, since we are uncertain that resetting the GPU on older 4757 * machines is a good idea, we don't - just in case it leaves the 4758 * machine in an unusable condition. 4759 */ 4760 i915_gem_sanitize(dev_priv); 4761 4762 intel_runtime_pm_put(dev_priv); 4763 return 0; 4764 4765 err_unlock: 4766 mutex_unlock(&dev->struct_mutex); 4767 intel_runtime_pm_put(dev_priv); 4768 return ret; 4769 } 4770 4771 void i915_gem_resume(struct drm_i915_private *dev_priv) 4772 { 4773 struct drm_device *dev = &dev_priv->drm; 4774 4775 WARN_ON(dev_priv->gt.awake); 4776 4777 mutex_lock(&dev->struct_mutex); 4778 i915_gem_restore_gtt_mappings(dev_priv); 4779 i915_gem_restore_fences(dev_priv); 4780 4781 /* As we didn't flush the kernel context before suspend, we cannot 4782 * guarantee that the context image is complete. So let's just reset 4783 * it and start again. 4784 */ 4785 dev_priv->gt.resume(dev_priv); 4786 4787 mutex_unlock(&dev->struct_mutex); 4788 } 4789 4790 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv) 4791 { 4792 if (INTEL_GEN(dev_priv) < 5 || 4793 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 4794 return; 4795 4796 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | 4797 DISP_TILE_SURFACE_SWIZZLING); 4798 4799 if (IS_GEN5(dev_priv)) 4800 return; 4801 4802 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); 4803 if (IS_GEN6(dev_priv)) 4804 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 4805 else if (IS_GEN7(dev_priv)) 4806 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 4807 else if (IS_GEN8(dev_priv)) 4808 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW)); 4809 else 4810 BUG(); 4811 } 4812 4813 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base) 4814 { 4815 I915_WRITE(RING_CTL(base), 0); 4816 I915_WRITE(RING_HEAD(base), 0); 4817 I915_WRITE(RING_TAIL(base), 0); 4818 I915_WRITE(RING_START(base), 0); 4819 } 4820 4821 static void init_unused_rings(struct drm_i915_private *dev_priv) 4822 { 4823 if (IS_I830(dev_priv)) { 4824 init_unused_ring(dev_priv, PRB1_BASE); 4825 init_unused_ring(dev_priv, SRB0_BASE); 4826 init_unused_ring(dev_priv, SRB1_BASE); 4827 init_unused_ring(dev_priv, SRB2_BASE); 4828 init_unused_ring(dev_priv, SRB3_BASE); 4829 } else if (IS_GEN2(dev_priv)) { 4830 init_unused_ring(dev_priv, SRB0_BASE); 4831 init_unused_ring(dev_priv, SRB1_BASE); 4832 } else if (IS_GEN3(dev_priv)) { 4833 init_unused_ring(dev_priv, PRB1_BASE); 4834 init_unused_ring(dev_priv, PRB2_BASE); 4835 } 4836 } 4837 4838 static int __i915_gem_restart_engines(void *data) 4839 { 4840 struct drm_i915_private *i915 = data; 4841 struct intel_engine_cs *engine; 4842 enum intel_engine_id id; 4843 int err; 4844 4845 for_each_engine(engine, i915, id) { 4846 err = engine->init_hw(engine); 4847 if (err) 4848 return err; 4849 } 4850 4851 return 0; 4852 } 4853 4854 int i915_gem_init_hw(struct drm_i915_private *dev_priv) 4855 { 4856 int ret; 4857 4858 dev_priv->gt.last_init_time = ktime_get(); 4859 4860 /* Double layer security blanket, see i915_gem_init() */ 4861 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 4862 4863 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9) 4864 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf)); 4865 4866 if (IS_HASWELL(dev_priv)) 4867 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ? 4868 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 4869 4870 if (HAS_PCH_NOP(dev_priv)) { 4871 if (IS_IVYBRIDGE(dev_priv)) { 4872 u32 temp = I915_READ(GEN7_MSG_CTL); 4873 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK); 4874 I915_WRITE(GEN7_MSG_CTL, temp); 4875 } else if (INTEL_GEN(dev_priv) >= 7) { 4876 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT); 4877 temp &= ~RESET_PCH_HANDSHAKE_ENABLE; 4878 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp); 4879 } 4880 } 4881 4882 i915_gem_init_swizzling(dev_priv); 4883 4884 /* 4885 * At least 830 can leave some of the unused rings 4886 * "active" (ie. head != tail) after resume which 4887 * will prevent c3 entry. Makes sure all unused rings 4888 * are totally idle. 4889 */ 4890 init_unused_rings(dev_priv); 4891 4892 BUG_ON(!dev_priv->kernel_context); 4893 if (i915_terminally_wedged(&dev_priv->gpu_error)) { 4894 ret = -EIO; 4895 goto out; 4896 } 4897 4898 ret = i915_ppgtt_init_hw(dev_priv); 4899 if (ret) { 4900 DRM_ERROR("PPGTT enable HW failed %d\n", ret); 4901 goto out; 4902 } 4903 4904 /* Need to do basic initialisation of all rings first: */ 4905 ret = __i915_gem_restart_engines(dev_priv); 4906 if (ret) 4907 goto out; 4908 4909 intel_mocs_init_l3cc_table(dev_priv); 4910 4911 /* We can't enable contexts until all firmware is loaded */ 4912 ret = intel_uc_init_hw(dev_priv); 4913 if (ret) 4914 goto out; 4915 4916 out: 4917 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 4918 return ret; 4919 } 4920 4921 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value) 4922 { 4923 if (INTEL_INFO(dev_priv)->gen < 6) 4924 return false; 4925 4926 /* TODO: make semaphores and Execlists play nicely together */ 4927 if (i915_modparams.enable_execlists) 4928 return false; 4929 4930 if (value >= 0) 4931 return value; 4932 4933 /* Enable semaphores on SNB when IO remapping is off */ 4934 if (IS_GEN6(dev_priv) && intel_vtd_active()) 4935 return false; 4936 4937 return true; 4938 } 4939 4940 int i915_gem_init(struct drm_i915_private *dev_priv) 4941 { 4942 int ret; 4943 4944 /* 4945 * We need to fallback to 4K pages since gvt gtt handling doesn't 4946 * support huge page entries - we will need to check either hypervisor 4947 * mm can support huge guest page or just do emulation in gvt. 4948 */ 4949 if (intel_vgpu_active(dev_priv)) 4950 mkwrite_device_info(dev_priv)->page_sizes = 4951 I915_GTT_PAGE_SIZE_4K; 4952 4953 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1); 4954 4955 if (!i915_modparams.enable_execlists) { 4956 dev_priv->gt.resume = intel_legacy_submission_resume; 4957 dev_priv->gt.cleanup_engine = intel_engine_cleanup; 4958 } else { 4959 dev_priv->gt.resume = intel_lr_context_resume; 4960 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup; 4961 } 4962 4963 ret = i915_gem_init_userptr(dev_priv); 4964 if (ret) 4965 return ret; 4966 4967 /* This is just a security blanket to placate dragons. 4968 * On some systems, we very sporadically observe that the first TLBs 4969 * used by the CS may be stale, despite us poking the TLB reset. If 4970 * we hold the forcewake during initialisation these problems 4971 * just magically go away. 4972 */ 4973 mutex_lock(&dev_priv->drm.struct_mutex); 4974 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 4975 4976 ret = i915_gem_init_ggtt(dev_priv); 4977 if (ret) 4978 goto out_unlock; 4979 4980 ret = i915_gem_contexts_init(dev_priv); 4981 if (ret) 4982 goto out_unlock; 4983 4984 ret = intel_engines_init(dev_priv); 4985 if (ret) 4986 goto out_unlock; 4987 4988 ret = i915_gem_init_hw(dev_priv); 4989 if (ret == -EIO) { 4990 /* Allow engine initialisation to fail by marking the GPU as 4991 * wedged. But we only want to do this where the GPU is angry, 4992 * for all other failure, such as an allocation failure, bail. 4993 */ 4994 if (!i915_terminally_wedged(&dev_priv->gpu_error)) { 4995 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n"); 4996 i915_gem_set_wedged(dev_priv); 4997 } 4998 ret = 0; 4999 } 5000 5001 out_unlock: 5002 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 5003 mutex_unlock(&dev_priv->drm.struct_mutex); 5004 5005 return ret; 5006 } 5007 5008 void i915_gem_init_mmio(struct drm_i915_private *i915) 5009 { 5010 i915_gem_sanitize(i915); 5011 } 5012 5013 void 5014 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv) 5015 { 5016 struct intel_engine_cs *engine; 5017 enum intel_engine_id id; 5018 5019 for_each_engine(engine, dev_priv, id) 5020 dev_priv->gt.cleanup_engine(engine); 5021 } 5022 5023 void 5024 i915_gem_load_init_fences(struct drm_i915_private *dev_priv) 5025 { 5026 int i; 5027 5028 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) && 5029 !IS_CHERRYVIEW(dev_priv)) 5030 dev_priv->num_fence_regs = 32; 5031 else if (INTEL_INFO(dev_priv)->gen >= 4 || 5032 IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 5033 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) 5034 dev_priv->num_fence_regs = 16; 5035 else 5036 dev_priv->num_fence_regs = 8; 5037 5038 if (intel_vgpu_active(dev_priv)) 5039 dev_priv->num_fence_regs = 5040 I915_READ(vgtif_reg(avail_rs.fence_num)); 5041 5042 /* Initialize fence registers to zero */ 5043 for (i = 0; i < dev_priv->num_fence_regs; i++) { 5044 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i]; 5045 5046 fence->i915 = dev_priv; 5047 fence->id = i; 5048 list_add_tail(&fence->link, &dev_priv->mm.fence_list); 5049 } 5050 i915_gem_restore_fences(dev_priv); 5051 5052 i915_gem_detect_bit_6_swizzle(dev_priv); 5053 } 5054 5055 int 5056 i915_gem_load_init(struct drm_i915_private *dev_priv) 5057 { 5058 int err = -ENOMEM; 5059 5060 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN); 5061 if (!dev_priv->objects) 5062 goto err_out; 5063 5064 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN); 5065 if (!dev_priv->vmas) 5066 goto err_objects; 5067 5068 dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0); 5069 if (!dev_priv->luts) 5070 goto err_vmas; 5071 5072 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request, 5073 SLAB_HWCACHE_ALIGN | 5074 SLAB_RECLAIM_ACCOUNT | 5075 SLAB_TYPESAFE_BY_RCU); 5076 if (!dev_priv->requests) 5077 goto err_luts; 5078 5079 dev_priv->dependencies = KMEM_CACHE(i915_dependency, 5080 SLAB_HWCACHE_ALIGN | 5081 SLAB_RECLAIM_ACCOUNT); 5082 if (!dev_priv->dependencies) 5083 goto err_requests; 5084 5085 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN); 5086 if (!dev_priv->priorities) 5087 goto err_dependencies; 5088 5089 mutex_lock(&dev_priv->drm.struct_mutex); 5090 INIT_LIST_HEAD(&dev_priv->gt.timelines); 5091 err = i915_gem_timeline_init__global(dev_priv); 5092 mutex_unlock(&dev_priv->drm.struct_mutex); 5093 if (err) 5094 goto err_priorities; 5095 5096 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work); 5097 5098 spin_lock_init(&dev_priv->mm.obj_lock); 5099 spin_lock_init(&dev_priv->mm.free_lock); 5100 init_llist_head(&dev_priv->mm.free_list); 5101 INIT_LIST_HEAD(&dev_priv->mm.unbound_list); 5102 INIT_LIST_HEAD(&dev_priv->mm.bound_list); 5103 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 5104 INIT_LIST_HEAD(&dev_priv->mm.userfault_list); 5105 5106 INIT_DELAYED_WORK(&dev_priv->gt.retire_work, 5107 i915_gem_retire_work_handler); 5108 INIT_DELAYED_WORK(&dev_priv->gt.idle_work, 5109 i915_gem_idle_work_handler); 5110 init_waitqueue_head(&dev_priv->gpu_error.wait_queue); 5111 init_waitqueue_head(&dev_priv->gpu_error.reset_queue); 5112 5113 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0); 5114 5115 spin_lock_init(&dev_priv->fb_tracking.lock); 5116 5117 err = i915_gemfs_init(dev_priv); 5118 if (err) 5119 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err); 5120 5121 return 0; 5122 5123 err_priorities: 5124 kmem_cache_destroy(dev_priv->priorities); 5125 err_dependencies: 5126 kmem_cache_destroy(dev_priv->dependencies); 5127 err_requests: 5128 kmem_cache_destroy(dev_priv->requests); 5129 err_luts: 5130 kmem_cache_destroy(dev_priv->luts); 5131 err_vmas: 5132 kmem_cache_destroy(dev_priv->vmas); 5133 err_objects: 5134 kmem_cache_destroy(dev_priv->objects); 5135 err_out: 5136 return err; 5137 } 5138 5139 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv) 5140 { 5141 i915_gem_drain_freed_objects(dev_priv); 5142 WARN_ON(!llist_empty(&dev_priv->mm.free_list)); 5143 WARN_ON(dev_priv->mm.object_count); 5144 5145 mutex_lock(&dev_priv->drm.struct_mutex); 5146 i915_gem_timeline_fini(&dev_priv->gt.global_timeline); 5147 WARN_ON(!list_empty(&dev_priv->gt.timelines)); 5148 mutex_unlock(&dev_priv->drm.struct_mutex); 5149 5150 kmem_cache_destroy(dev_priv->priorities); 5151 kmem_cache_destroy(dev_priv->dependencies); 5152 kmem_cache_destroy(dev_priv->requests); 5153 kmem_cache_destroy(dev_priv->luts); 5154 kmem_cache_destroy(dev_priv->vmas); 5155 kmem_cache_destroy(dev_priv->objects); 5156 5157 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */ 5158 rcu_barrier(); 5159 5160 i915_gemfs_fini(dev_priv); 5161 } 5162 5163 int i915_gem_freeze(struct drm_i915_private *dev_priv) 5164 { 5165 /* Discard all purgeable objects, let userspace recover those as 5166 * required after resuming. 5167 */ 5168 i915_gem_shrink_all(dev_priv); 5169 5170 return 0; 5171 } 5172 5173 int i915_gem_freeze_late(struct drm_i915_private *dev_priv) 5174 { 5175 struct drm_i915_gem_object *obj; 5176 struct list_head *phases[] = { 5177 &dev_priv->mm.unbound_list, 5178 &dev_priv->mm.bound_list, 5179 NULL 5180 }, **p; 5181 5182 /* Called just before we write the hibernation image. 5183 * 5184 * We need to update the domain tracking to reflect that the CPU 5185 * will be accessing all the pages to create and restore from the 5186 * hibernation, and so upon restoration those pages will be in the 5187 * CPU domain. 5188 * 5189 * To make sure the hibernation image contains the latest state, 5190 * we update that state just before writing out the image. 5191 * 5192 * To try and reduce the hibernation image, we manually shrink 5193 * the objects as well, see i915_gem_freeze() 5194 */ 5195 5196 i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND); 5197 i915_gem_drain_freed_objects(dev_priv); 5198 5199 spin_lock(&dev_priv->mm.obj_lock); 5200 for (p = phases; *p; p++) { 5201 list_for_each_entry(obj, *p, mm.link) 5202 __start_cpu_write(obj); 5203 } 5204 spin_unlock(&dev_priv->mm.obj_lock); 5205 5206 return 0; 5207 } 5208 5209 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 5210 { 5211 struct drm_i915_file_private *file_priv = file->driver_priv; 5212 struct drm_i915_gem_request *request; 5213 5214 /* Clean up our request list when the client is going away, so that 5215 * later retire_requests won't dereference our soon-to-be-gone 5216 * file_priv. 5217 */ 5218 spin_lock(&file_priv->mm.lock); 5219 list_for_each_entry(request, &file_priv->mm.request_list, client_link) 5220 request->file_priv = NULL; 5221 spin_unlock(&file_priv->mm.lock); 5222 } 5223 5224 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file) 5225 { 5226 struct drm_i915_file_private *file_priv; 5227 int ret; 5228 5229 DRM_DEBUG("\n"); 5230 5231 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); 5232 if (!file_priv) 5233 return -ENOMEM; 5234 5235 file->driver_priv = file_priv; 5236 file_priv->dev_priv = i915; 5237 file_priv->file = file; 5238 5239 spin_lock_init(&file_priv->mm.lock); 5240 INIT_LIST_HEAD(&file_priv->mm.request_list); 5241 5242 file_priv->bsd_engine = -1; 5243 5244 ret = i915_gem_context_open(i915, file); 5245 if (ret) 5246 kfree(file_priv); 5247 5248 return ret; 5249 } 5250 5251 /** 5252 * i915_gem_track_fb - update frontbuffer tracking 5253 * @old: current GEM buffer for the frontbuffer slots 5254 * @new: new GEM buffer for the frontbuffer slots 5255 * @frontbuffer_bits: bitmask of frontbuffer slots 5256 * 5257 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them 5258 * from @old and setting them in @new. Both @old and @new can be NULL. 5259 */ 5260 void i915_gem_track_fb(struct drm_i915_gem_object *old, 5261 struct drm_i915_gem_object *new, 5262 unsigned frontbuffer_bits) 5263 { 5264 /* Control of individual bits within the mask are guarded by 5265 * the owning plane->mutex, i.e. we can never see concurrent 5266 * manipulation of individual bits. But since the bitfield as a whole 5267 * is updated using RMW, we need to use atomics in order to update 5268 * the bits. 5269 */ 5270 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 5271 sizeof(atomic_t) * BITS_PER_BYTE); 5272 5273 if (old) { 5274 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits)); 5275 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits); 5276 } 5277 5278 if (new) { 5279 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits); 5280 atomic_or(frontbuffer_bits, &new->frontbuffer_bits); 5281 } 5282 } 5283 5284 /* Allocate a new GEM object and fill it with the supplied data */ 5285 struct drm_i915_gem_object * 5286 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv, 5287 const void *data, size_t size) 5288 { 5289 struct drm_i915_gem_object *obj; 5290 struct file *file; 5291 size_t offset; 5292 int err; 5293 5294 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE)); 5295 if (IS_ERR(obj)) 5296 return obj; 5297 5298 GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU); 5299 5300 file = obj->base.filp; 5301 offset = 0; 5302 do { 5303 unsigned int len = min_t(typeof(size), size, PAGE_SIZE); 5304 struct page *page; 5305 void *pgdata, *vaddr; 5306 5307 err = pagecache_write_begin(file, file->f_mapping, 5308 offset, len, 0, 5309 &page, &pgdata); 5310 if (err < 0) 5311 goto fail; 5312 5313 vaddr = kmap(page); 5314 memcpy(vaddr, data, len); 5315 kunmap(page); 5316 5317 err = pagecache_write_end(file, file->f_mapping, 5318 offset, len, len, 5319 page, pgdata); 5320 if (err < 0) 5321 goto fail; 5322 5323 size -= len; 5324 data += len; 5325 offset += len; 5326 } while (size); 5327 5328 return obj; 5329 5330 fail: 5331 i915_gem_object_put(obj); 5332 return ERR_PTR(err); 5333 } 5334 5335 struct scatterlist * 5336 i915_gem_object_get_sg(struct drm_i915_gem_object *obj, 5337 unsigned int n, 5338 unsigned int *offset) 5339 { 5340 struct i915_gem_object_page_iter *iter = &obj->mm.get_page; 5341 struct scatterlist *sg; 5342 unsigned int idx, count; 5343 5344 might_sleep(); 5345 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT); 5346 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 5347 5348 /* As we iterate forward through the sg, we record each entry in a 5349 * radixtree for quick repeated (backwards) lookups. If we have seen 5350 * this index previously, we will have an entry for it. 5351 * 5352 * Initial lookup is O(N), but this is amortized to O(1) for 5353 * sequential page access (where each new request is consecutive 5354 * to the previous one). Repeated lookups are O(lg(obj->base.size)), 5355 * i.e. O(1) with a large constant! 5356 */ 5357 if (n < READ_ONCE(iter->sg_idx)) 5358 goto lookup; 5359 5360 mutex_lock(&iter->lock); 5361 5362 /* We prefer to reuse the last sg so that repeated lookup of this 5363 * (or the subsequent) sg are fast - comparing against the last 5364 * sg is faster than going through the radixtree. 5365 */ 5366 5367 sg = iter->sg_pos; 5368 idx = iter->sg_idx; 5369 count = __sg_page_count(sg); 5370 5371 while (idx + count <= n) { 5372 unsigned long exception, i; 5373 int ret; 5374 5375 /* If we cannot allocate and insert this entry, or the 5376 * individual pages from this range, cancel updating the 5377 * sg_idx so that on this lookup we are forced to linearly 5378 * scan onwards, but on future lookups we will try the 5379 * insertion again (in which case we need to be careful of 5380 * the error return reporting that we have already inserted 5381 * this index). 5382 */ 5383 ret = radix_tree_insert(&iter->radix, idx, sg); 5384 if (ret && ret != -EEXIST) 5385 goto scan; 5386 5387 exception = 5388 RADIX_TREE_EXCEPTIONAL_ENTRY | 5389 idx << RADIX_TREE_EXCEPTIONAL_SHIFT; 5390 for (i = 1; i < count; i++) { 5391 ret = radix_tree_insert(&iter->radix, idx + i, 5392 (void *)exception); 5393 if (ret && ret != -EEXIST) 5394 goto scan; 5395 } 5396 5397 idx += count; 5398 sg = ____sg_next(sg); 5399 count = __sg_page_count(sg); 5400 } 5401 5402 scan: 5403 iter->sg_pos = sg; 5404 iter->sg_idx = idx; 5405 5406 mutex_unlock(&iter->lock); 5407 5408 if (unlikely(n < idx)) /* insertion completed by another thread */ 5409 goto lookup; 5410 5411 /* In case we failed to insert the entry into the radixtree, we need 5412 * to look beyond the current sg. 5413 */ 5414 while (idx + count <= n) { 5415 idx += count; 5416 sg = ____sg_next(sg); 5417 count = __sg_page_count(sg); 5418 } 5419 5420 *offset = n - idx; 5421 return sg; 5422 5423 lookup: 5424 rcu_read_lock(); 5425 5426 sg = radix_tree_lookup(&iter->radix, n); 5427 GEM_BUG_ON(!sg); 5428 5429 /* If this index is in the middle of multi-page sg entry, 5430 * the radixtree will contain an exceptional entry that points 5431 * to the start of that range. We will return the pointer to 5432 * the base page and the offset of this page within the 5433 * sg entry's range. 5434 */ 5435 *offset = 0; 5436 if (unlikely(radix_tree_exception(sg))) { 5437 unsigned long base = 5438 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT; 5439 5440 sg = radix_tree_lookup(&iter->radix, base); 5441 GEM_BUG_ON(!sg); 5442 5443 *offset = n - base; 5444 } 5445 5446 rcu_read_unlock(); 5447 5448 return sg; 5449 } 5450 5451 struct page * 5452 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n) 5453 { 5454 struct scatterlist *sg; 5455 unsigned int offset; 5456 5457 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj)); 5458 5459 sg = i915_gem_object_get_sg(obj, n, &offset); 5460 return nth_page(sg_page(sg), offset); 5461 } 5462 5463 /* Like i915_gem_object_get_page(), but mark the returned page dirty */ 5464 struct page * 5465 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, 5466 unsigned int n) 5467 { 5468 struct page *page; 5469 5470 page = i915_gem_object_get_page(obj, n); 5471 if (!obj->mm.dirty) 5472 set_page_dirty(page); 5473 5474 return page; 5475 } 5476 5477 dma_addr_t 5478 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, 5479 unsigned long n) 5480 { 5481 struct scatterlist *sg; 5482 unsigned int offset; 5483 5484 sg = i915_gem_object_get_sg(obj, n, &offset); 5485 return sg_dma_address(sg) + (offset << PAGE_SHIFT); 5486 } 5487 5488 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align) 5489 { 5490 struct sg_table *pages; 5491 int err; 5492 5493 if (align > obj->base.size) 5494 return -EINVAL; 5495 5496 if (obj->ops == &i915_gem_phys_ops) 5497 return 0; 5498 5499 if (obj->ops != &i915_gem_object_ops) 5500 return -EINVAL; 5501 5502 err = i915_gem_object_unbind(obj); 5503 if (err) 5504 return err; 5505 5506 mutex_lock(&obj->mm.lock); 5507 5508 if (obj->mm.madv != I915_MADV_WILLNEED) { 5509 err = -EFAULT; 5510 goto err_unlock; 5511 } 5512 5513 if (obj->mm.quirked) { 5514 err = -EFAULT; 5515 goto err_unlock; 5516 } 5517 5518 if (obj->mm.mapping) { 5519 err = -EBUSY; 5520 goto err_unlock; 5521 } 5522 5523 pages = fetch_and_zero(&obj->mm.pages); 5524 if (pages) { 5525 struct drm_i915_private *i915 = to_i915(obj->base.dev); 5526 5527 __i915_gem_object_reset_page_iter(obj); 5528 5529 spin_lock(&i915->mm.obj_lock); 5530 list_del(&obj->mm.link); 5531 spin_unlock(&i915->mm.obj_lock); 5532 } 5533 5534 obj->ops = &i915_gem_phys_ops; 5535 5536 err = ____i915_gem_object_get_pages(obj); 5537 if (err) 5538 goto err_xfer; 5539 5540 /* Perma-pin (until release) the physical set of pages */ 5541 __i915_gem_object_pin_pages(obj); 5542 5543 if (!IS_ERR_OR_NULL(pages)) 5544 i915_gem_object_ops.put_pages(obj, pages); 5545 mutex_unlock(&obj->mm.lock); 5546 return 0; 5547 5548 err_xfer: 5549 obj->ops = &i915_gem_object_ops; 5550 obj->mm.pages = pages; 5551 err_unlock: 5552 mutex_unlock(&obj->mm.lock); 5553 return err; 5554 } 5555 5556 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 5557 #include "selftests/scatterlist.c" 5558 #include "selftests/mock_gem_device.c" 5559 #include "selftests/huge_gem_object.c" 5560 #include "selftests/huge_pages.c" 5561 #include "selftests/i915_gem_object.c" 5562 #include "selftests/i915_gem_coherency.c" 5563 #endif 5564