xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision bef7a78d)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drm_vma_manager.h>
29 #include <linux/dma-fence-array.h>
30 #include <linux/kthread.h>
31 #include <linux/dma-resv.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/slab.h>
34 #include <linux/stop_machine.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38 #include <linux/mman.h>
39 
40 #include "display/intel_display.h"
41 #include "display/intel_frontbuffer.h"
42 
43 #include "gem/i915_gem_clflush.h"
44 #include "gem/i915_gem_context.h"
45 #include "gem/i915_gem_ioctls.h"
46 #include "gem/i915_gem_mman.h"
47 #include "gem/i915_gem_region.h"
48 #include "gt/intel_engine_user.h"
49 #include "gt/intel_gt.h"
50 #include "gt/intel_gt_pm.h"
51 #include "gt/intel_workarounds.h"
52 
53 #include "i915_drv.h"
54 #include "i915_trace.h"
55 #include "i915_vgpu.h"
56 
57 #include "intel_pm.h"
58 
59 static int
60 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
61 {
62 	int err;
63 
64 	err = mutex_lock_interruptible(&ggtt->vm.mutex);
65 	if (err)
66 		return err;
67 
68 	memset(node, 0, sizeof(*node));
69 	err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
70 					  size, 0, I915_COLOR_UNEVICTABLE,
71 					  0, ggtt->mappable_end,
72 					  DRM_MM_INSERT_LOW);
73 
74 	mutex_unlock(&ggtt->vm.mutex);
75 
76 	return err;
77 }
78 
79 static void
80 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
81 {
82 	mutex_lock(&ggtt->vm.mutex);
83 	drm_mm_remove_node(node);
84 	mutex_unlock(&ggtt->vm.mutex);
85 }
86 
87 int
88 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
89 			    struct drm_file *file)
90 {
91 	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
92 	struct drm_i915_gem_get_aperture *args = data;
93 	struct i915_vma *vma;
94 	u64 pinned;
95 
96 	if (mutex_lock_interruptible(&ggtt->vm.mutex))
97 		return -EINTR;
98 
99 	pinned = ggtt->vm.reserved;
100 	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
101 		if (i915_vma_is_pinned(vma))
102 			pinned += vma->node.size;
103 
104 	mutex_unlock(&ggtt->vm.mutex);
105 
106 	args->aper_size = ggtt->vm.total;
107 	args->aper_available_size = args->aper_size - pinned;
108 
109 	return 0;
110 }
111 
112 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
113 			   unsigned long flags)
114 {
115 	struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
116 	LIST_HEAD(still_in_list);
117 	intel_wakeref_t wakeref;
118 	struct i915_vma *vma;
119 	int ret;
120 
121 	if (list_empty(&obj->vma.list))
122 		return 0;
123 
124 	/*
125 	 * As some machines use ACPI to handle runtime-resume callbacks, and
126 	 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
127 	 * as they are required by the shrinker. Ergo, we wake the device up
128 	 * first just in case.
129 	 */
130 	wakeref = intel_runtime_pm_get(rpm);
131 
132 try_again:
133 	ret = 0;
134 	spin_lock(&obj->vma.lock);
135 	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
136 						       struct i915_vma,
137 						       obj_link))) {
138 		struct i915_address_space *vm = vma->vm;
139 
140 		list_move_tail(&vma->obj_link, &still_in_list);
141 		if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
142 			continue;
143 
144 		if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
145 			ret = -EBUSY;
146 			break;
147 		}
148 
149 		ret = -EAGAIN;
150 		if (!i915_vm_tryopen(vm))
151 			break;
152 
153 		/* Prevent vma being freed by i915_vma_parked as we unbind */
154 		vma = __i915_vma_get(vma);
155 		spin_unlock(&obj->vma.lock);
156 
157 		if (vma) {
158 			ret = -EBUSY;
159 			if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
160 			    !i915_vma_is_active(vma))
161 				ret = i915_vma_unbind(vma);
162 
163 			__i915_vma_put(vma);
164 		}
165 
166 		i915_vm_close(vm);
167 		spin_lock(&obj->vma.lock);
168 	}
169 	list_splice_init(&still_in_list, &obj->vma.list);
170 	spin_unlock(&obj->vma.lock);
171 
172 	if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
173 		rcu_barrier(); /* flush the i915_vm_release() */
174 		goto try_again;
175 	}
176 
177 	intel_runtime_pm_put(rpm, wakeref);
178 
179 	return ret;
180 }
181 
182 static int
183 i915_gem_create(struct drm_file *file,
184 		struct intel_memory_region *mr,
185 		u64 *size_p,
186 		u32 *handle_p)
187 {
188 	struct drm_i915_gem_object *obj;
189 	u32 handle;
190 	u64 size;
191 	int ret;
192 
193 	GEM_BUG_ON(!is_power_of_2(mr->min_page_size));
194 	size = round_up(*size_p, mr->min_page_size);
195 	if (size == 0)
196 		return -EINVAL;
197 
198 	/* For most of the ABI (e.g. mmap) we think in system pages */
199 	GEM_BUG_ON(!IS_ALIGNED(size, PAGE_SIZE));
200 
201 	/* Allocate the new object */
202 	obj = i915_gem_object_create_region(mr, size, 0);
203 	if (IS_ERR(obj))
204 		return PTR_ERR(obj);
205 
206 	ret = drm_gem_handle_create(file, &obj->base, &handle);
207 	/* drop reference from allocate - handle holds it now */
208 	i915_gem_object_put(obj);
209 	if (ret)
210 		return ret;
211 
212 	*handle_p = handle;
213 	*size_p = size;
214 	return 0;
215 }
216 
217 int
218 i915_gem_dumb_create(struct drm_file *file,
219 		     struct drm_device *dev,
220 		     struct drm_mode_create_dumb *args)
221 {
222 	enum intel_memory_type mem_type;
223 	int cpp = DIV_ROUND_UP(args->bpp, 8);
224 	u32 format;
225 
226 	switch (cpp) {
227 	case 1:
228 		format = DRM_FORMAT_C8;
229 		break;
230 	case 2:
231 		format = DRM_FORMAT_RGB565;
232 		break;
233 	case 4:
234 		format = DRM_FORMAT_XRGB8888;
235 		break;
236 	default:
237 		return -EINVAL;
238 	}
239 
240 	/* have to work out size/pitch and return them */
241 	args->pitch = ALIGN(args->width * cpp, 64);
242 
243 	/* align stride to page size so that we can remap */
244 	if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
245 						    DRM_FORMAT_MOD_LINEAR))
246 		args->pitch = ALIGN(args->pitch, 4096);
247 
248 	if (args->pitch < args->width)
249 		return -EINVAL;
250 
251 	args->size = mul_u32_u32(args->pitch, args->height);
252 
253 	mem_type = INTEL_MEMORY_SYSTEM;
254 	if (HAS_LMEM(to_i915(dev)))
255 		mem_type = INTEL_MEMORY_LOCAL;
256 
257 	return i915_gem_create(file,
258 			       intel_memory_region_by_type(to_i915(dev),
259 							   mem_type),
260 			       &args->size, &args->handle);
261 }
262 
263 /**
264  * Creates a new mm object and returns a handle to it.
265  * @dev: drm device pointer
266  * @data: ioctl data blob
267  * @file: drm file pointer
268  */
269 int
270 i915_gem_create_ioctl(struct drm_device *dev, void *data,
271 		      struct drm_file *file)
272 {
273 	struct drm_i915_private *i915 = to_i915(dev);
274 	struct drm_i915_gem_create *args = data;
275 
276 	i915_gem_flush_free_objects(i915);
277 
278 	return i915_gem_create(file,
279 			       intel_memory_region_by_type(i915,
280 							   INTEL_MEMORY_SYSTEM),
281 			       &args->size, &args->handle);
282 }
283 
284 static int
285 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
286 	    bool needs_clflush)
287 {
288 	char *vaddr;
289 	int ret;
290 
291 	vaddr = kmap(page);
292 
293 	if (needs_clflush)
294 		drm_clflush_virt_range(vaddr + offset, len);
295 
296 	ret = __copy_to_user(user_data, vaddr + offset, len);
297 
298 	kunmap(page);
299 
300 	return ret ? -EFAULT : 0;
301 }
302 
303 static int
304 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
305 		     struct drm_i915_gem_pread *args)
306 {
307 	unsigned int needs_clflush;
308 	unsigned int idx, offset;
309 	struct dma_fence *fence;
310 	char __user *user_data;
311 	u64 remain;
312 	int ret;
313 
314 	ret = i915_gem_object_lock_interruptible(obj, NULL);
315 	if (ret)
316 		return ret;
317 
318 	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
319 	if (ret) {
320 		i915_gem_object_unlock(obj);
321 		return ret;
322 	}
323 
324 	fence = i915_gem_object_lock_fence(obj);
325 	i915_gem_object_finish_access(obj);
326 	i915_gem_object_unlock(obj);
327 
328 	if (!fence)
329 		return -ENOMEM;
330 
331 	remain = args->size;
332 	user_data = u64_to_user_ptr(args->data_ptr);
333 	offset = offset_in_page(args->offset);
334 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
335 		struct page *page = i915_gem_object_get_page(obj, idx);
336 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
337 
338 		ret = shmem_pread(page, offset, length, user_data,
339 				  needs_clflush);
340 		if (ret)
341 			break;
342 
343 		remain -= length;
344 		user_data += length;
345 		offset = 0;
346 	}
347 
348 	i915_gem_object_unlock_fence(obj, fence);
349 	return ret;
350 }
351 
352 static inline bool
353 gtt_user_read(struct io_mapping *mapping,
354 	      loff_t base, int offset,
355 	      char __user *user_data, int length)
356 {
357 	void __iomem *vaddr;
358 	unsigned long unwritten;
359 
360 	/* We can use the cpu mem copy function because this is X86. */
361 	vaddr = io_mapping_map_atomic_wc(mapping, base);
362 	unwritten = __copy_to_user_inatomic(user_data,
363 					    (void __force *)vaddr + offset,
364 					    length);
365 	io_mapping_unmap_atomic(vaddr);
366 	if (unwritten) {
367 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
368 		unwritten = copy_to_user(user_data,
369 					 (void __force *)vaddr + offset,
370 					 length);
371 		io_mapping_unmap(vaddr);
372 	}
373 	return unwritten;
374 }
375 
376 static int
377 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
378 		   const struct drm_i915_gem_pread *args)
379 {
380 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
381 	struct i915_ggtt *ggtt = &i915->ggtt;
382 	intel_wakeref_t wakeref;
383 	struct drm_mm_node node;
384 	struct dma_fence *fence;
385 	void __user *user_data;
386 	struct i915_vma *vma;
387 	u64 remain, offset;
388 	int ret;
389 
390 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
391 	vma = ERR_PTR(-ENODEV);
392 	if (!i915_gem_object_is_tiled(obj))
393 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
394 					       PIN_MAPPABLE |
395 					       PIN_NONBLOCK /* NOWARN */ |
396 					       PIN_NOEVICT);
397 	if (!IS_ERR(vma)) {
398 		node.start = i915_ggtt_offset(vma);
399 		node.flags = 0;
400 	} else {
401 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
402 		if (ret)
403 			goto out_rpm;
404 		GEM_BUG_ON(!drm_mm_node_allocated(&node));
405 	}
406 
407 	ret = i915_gem_object_lock_interruptible(obj, NULL);
408 	if (ret)
409 		goto out_unpin;
410 
411 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
412 	if (ret) {
413 		i915_gem_object_unlock(obj);
414 		goto out_unpin;
415 	}
416 
417 	fence = i915_gem_object_lock_fence(obj);
418 	i915_gem_object_unlock(obj);
419 	if (!fence) {
420 		ret = -ENOMEM;
421 		goto out_unpin;
422 	}
423 
424 	user_data = u64_to_user_ptr(args->data_ptr);
425 	remain = args->size;
426 	offset = args->offset;
427 
428 	while (remain > 0) {
429 		/* Operation in this page
430 		 *
431 		 * page_base = page offset within aperture
432 		 * page_offset = offset within page
433 		 * page_length = bytes to copy for this page
434 		 */
435 		u32 page_base = node.start;
436 		unsigned page_offset = offset_in_page(offset);
437 		unsigned page_length = PAGE_SIZE - page_offset;
438 		page_length = remain < page_length ? remain : page_length;
439 		if (drm_mm_node_allocated(&node)) {
440 			ggtt->vm.insert_page(&ggtt->vm,
441 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
442 					     node.start, I915_CACHE_NONE, 0);
443 		} else {
444 			page_base += offset & PAGE_MASK;
445 		}
446 
447 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
448 				  user_data, page_length)) {
449 			ret = -EFAULT;
450 			break;
451 		}
452 
453 		remain -= page_length;
454 		user_data += page_length;
455 		offset += page_length;
456 	}
457 
458 	i915_gem_object_unlock_fence(obj, fence);
459 out_unpin:
460 	if (drm_mm_node_allocated(&node)) {
461 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
462 		remove_mappable_node(ggtt, &node);
463 	} else {
464 		i915_vma_unpin(vma);
465 	}
466 out_rpm:
467 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
468 	return ret;
469 }
470 
471 /**
472  * Reads data from the object referenced by handle.
473  * @dev: drm device pointer
474  * @data: ioctl data blob
475  * @file: drm file pointer
476  *
477  * On error, the contents of *data are undefined.
478  */
479 int
480 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
481 		     struct drm_file *file)
482 {
483 	struct drm_i915_gem_pread *args = data;
484 	struct drm_i915_gem_object *obj;
485 	int ret;
486 
487 	if (args->size == 0)
488 		return 0;
489 
490 	if (!access_ok(u64_to_user_ptr(args->data_ptr),
491 		       args->size))
492 		return -EFAULT;
493 
494 	obj = i915_gem_object_lookup(file, args->handle);
495 	if (!obj)
496 		return -ENOENT;
497 
498 	/* Bounds check source.  */
499 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
500 		ret = -EINVAL;
501 		goto out;
502 	}
503 
504 	trace_i915_gem_object_pread(obj, args->offset, args->size);
505 
506 	ret = -ENODEV;
507 	if (obj->ops->pread)
508 		ret = obj->ops->pread(obj, args);
509 	if (ret != -ENODEV)
510 		goto out;
511 
512 	ret = i915_gem_object_wait(obj,
513 				   I915_WAIT_INTERRUPTIBLE,
514 				   MAX_SCHEDULE_TIMEOUT);
515 	if (ret)
516 		goto out;
517 
518 	ret = i915_gem_object_pin_pages(obj);
519 	if (ret)
520 		goto out;
521 
522 	ret = i915_gem_shmem_pread(obj, args);
523 	if (ret == -EFAULT || ret == -ENODEV)
524 		ret = i915_gem_gtt_pread(obj, args);
525 
526 	i915_gem_object_unpin_pages(obj);
527 out:
528 	i915_gem_object_put(obj);
529 	return ret;
530 }
531 
532 /* This is the fast write path which cannot handle
533  * page faults in the source data
534  */
535 
536 static inline bool
537 ggtt_write(struct io_mapping *mapping,
538 	   loff_t base, int offset,
539 	   char __user *user_data, int length)
540 {
541 	void __iomem *vaddr;
542 	unsigned long unwritten;
543 
544 	/* We can use the cpu mem copy function because this is X86. */
545 	vaddr = io_mapping_map_atomic_wc(mapping, base);
546 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
547 						      user_data, length);
548 	io_mapping_unmap_atomic(vaddr);
549 	if (unwritten) {
550 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
551 		unwritten = copy_from_user((void __force *)vaddr + offset,
552 					   user_data, length);
553 		io_mapping_unmap(vaddr);
554 	}
555 
556 	return unwritten;
557 }
558 
559 /**
560  * This is the fast pwrite path, where we copy the data directly from the
561  * user into the GTT, uncached.
562  * @obj: i915 GEM object
563  * @args: pwrite arguments structure
564  */
565 static int
566 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
567 			 const struct drm_i915_gem_pwrite *args)
568 {
569 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
570 	struct i915_ggtt *ggtt = &i915->ggtt;
571 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
572 	intel_wakeref_t wakeref;
573 	struct drm_mm_node node;
574 	struct dma_fence *fence;
575 	struct i915_vma *vma;
576 	u64 remain, offset;
577 	void __user *user_data;
578 	int ret;
579 
580 	if (i915_gem_object_has_struct_page(obj)) {
581 		/*
582 		 * Avoid waking the device up if we can fallback, as
583 		 * waking/resuming is very slow (worst-case 10-100 ms
584 		 * depending on PCI sleeps and our own resume time).
585 		 * This easily dwarfs any performance advantage from
586 		 * using the cache bypass of indirect GGTT access.
587 		 */
588 		wakeref = intel_runtime_pm_get_if_in_use(rpm);
589 		if (!wakeref)
590 			return -EFAULT;
591 	} else {
592 		/* No backing pages, no fallback, we must force GGTT access */
593 		wakeref = intel_runtime_pm_get(rpm);
594 	}
595 
596 	vma = ERR_PTR(-ENODEV);
597 	if (!i915_gem_object_is_tiled(obj))
598 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
599 					       PIN_MAPPABLE |
600 					       PIN_NONBLOCK /* NOWARN */ |
601 					       PIN_NOEVICT);
602 	if (!IS_ERR(vma)) {
603 		node.start = i915_ggtt_offset(vma);
604 		node.flags = 0;
605 	} else {
606 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
607 		if (ret)
608 			goto out_rpm;
609 		GEM_BUG_ON(!drm_mm_node_allocated(&node));
610 	}
611 
612 	ret = i915_gem_object_lock_interruptible(obj, NULL);
613 	if (ret)
614 		goto out_unpin;
615 
616 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
617 	if (ret) {
618 		i915_gem_object_unlock(obj);
619 		goto out_unpin;
620 	}
621 
622 	fence = i915_gem_object_lock_fence(obj);
623 	i915_gem_object_unlock(obj);
624 	if (!fence) {
625 		ret = -ENOMEM;
626 		goto out_unpin;
627 	}
628 
629 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
630 
631 	user_data = u64_to_user_ptr(args->data_ptr);
632 	offset = args->offset;
633 	remain = args->size;
634 	while (remain) {
635 		/* Operation in this page
636 		 *
637 		 * page_base = page offset within aperture
638 		 * page_offset = offset within page
639 		 * page_length = bytes to copy for this page
640 		 */
641 		u32 page_base = node.start;
642 		unsigned int page_offset = offset_in_page(offset);
643 		unsigned int page_length = PAGE_SIZE - page_offset;
644 		page_length = remain < page_length ? remain : page_length;
645 		if (drm_mm_node_allocated(&node)) {
646 			/* flush the write before we modify the GGTT */
647 			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
648 			ggtt->vm.insert_page(&ggtt->vm,
649 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
650 					     node.start, I915_CACHE_NONE, 0);
651 			wmb(); /* flush modifications to the GGTT (insert_page) */
652 		} else {
653 			page_base += offset & PAGE_MASK;
654 		}
655 		/* If we get a fault while copying data, then (presumably) our
656 		 * source page isn't available.  Return the error and we'll
657 		 * retry in the slow path.
658 		 * If the object is non-shmem backed, we retry again with the
659 		 * path that handles page fault.
660 		 */
661 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
662 			       user_data, page_length)) {
663 			ret = -EFAULT;
664 			break;
665 		}
666 
667 		remain -= page_length;
668 		user_data += page_length;
669 		offset += page_length;
670 	}
671 
672 	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
673 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
674 
675 	i915_gem_object_unlock_fence(obj, fence);
676 out_unpin:
677 	if (drm_mm_node_allocated(&node)) {
678 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
679 		remove_mappable_node(ggtt, &node);
680 	} else {
681 		i915_vma_unpin(vma);
682 	}
683 out_rpm:
684 	intel_runtime_pm_put(rpm, wakeref);
685 	return ret;
686 }
687 
688 /* Per-page copy function for the shmem pwrite fastpath.
689  * Flushes invalid cachelines before writing to the target if
690  * needs_clflush_before is set and flushes out any written cachelines after
691  * writing if needs_clflush is set.
692  */
693 static int
694 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
695 	     bool needs_clflush_before,
696 	     bool needs_clflush_after)
697 {
698 	char *vaddr;
699 	int ret;
700 
701 	vaddr = kmap(page);
702 
703 	if (needs_clflush_before)
704 		drm_clflush_virt_range(vaddr + offset, len);
705 
706 	ret = __copy_from_user(vaddr + offset, user_data, len);
707 	if (!ret && needs_clflush_after)
708 		drm_clflush_virt_range(vaddr + offset, len);
709 
710 	kunmap(page);
711 
712 	return ret ? -EFAULT : 0;
713 }
714 
715 static int
716 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
717 		      const struct drm_i915_gem_pwrite *args)
718 {
719 	unsigned int partial_cacheline_write;
720 	unsigned int needs_clflush;
721 	unsigned int offset, idx;
722 	struct dma_fence *fence;
723 	void __user *user_data;
724 	u64 remain;
725 	int ret;
726 
727 	ret = i915_gem_object_lock_interruptible(obj, NULL);
728 	if (ret)
729 		return ret;
730 
731 	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
732 	if (ret) {
733 		i915_gem_object_unlock(obj);
734 		return ret;
735 	}
736 
737 	fence = i915_gem_object_lock_fence(obj);
738 	i915_gem_object_finish_access(obj);
739 	i915_gem_object_unlock(obj);
740 
741 	if (!fence)
742 		return -ENOMEM;
743 
744 	/* If we don't overwrite a cacheline completely we need to be
745 	 * careful to have up-to-date data by first clflushing. Don't
746 	 * overcomplicate things and flush the entire patch.
747 	 */
748 	partial_cacheline_write = 0;
749 	if (needs_clflush & CLFLUSH_BEFORE)
750 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
751 
752 	user_data = u64_to_user_ptr(args->data_ptr);
753 	remain = args->size;
754 	offset = offset_in_page(args->offset);
755 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
756 		struct page *page = i915_gem_object_get_page(obj, idx);
757 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
758 
759 		ret = shmem_pwrite(page, offset, length, user_data,
760 				   (offset | length) & partial_cacheline_write,
761 				   needs_clflush & CLFLUSH_AFTER);
762 		if (ret)
763 			break;
764 
765 		remain -= length;
766 		user_data += length;
767 		offset = 0;
768 	}
769 
770 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
771 	i915_gem_object_unlock_fence(obj, fence);
772 
773 	return ret;
774 }
775 
776 /**
777  * Writes data to the object referenced by handle.
778  * @dev: drm device
779  * @data: ioctl data blob
780  * @file: drm file
781  *
782  * On error, the contents of the buffer that were to be modified are undefined.
783  */
784 int
785 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
786 		      struct drm_file *file)
787 {
788 	struct drm_i915_gem_pwrite *args = data;
789 	struct drm_i915_gem_object *obj;
790 	int ret;
791 
792 	if (args->size == 0)
793 		return 0;
794 
795 	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
796 		return -EFAULT;
797 
798 	obj = i915_gem_object_lookup(file, args->handle);
799 	if (!obj)
800 		return -ENOENT;
801 
802 	/* Bounds check destination. */
803 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
804 		ret = -EINVAL;
805 		goto err;
806 	}
807 
808 	/* Writes not allowed into this read-only object */
809 	if (i915_gem_object_is_readonly(obj)) {
810 		ret = -EINVAL;
811 		goto err;
812 	}
813 
814 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
815 
816 	ret = -ENODEV;
817 	if (obj->ops->pwrite)
818 		ret = obj->ops->pwrite(obj, args);
819 	if (ret != -ENODEV)
820 		goto err;
821 
822 	ret = i915_gem_object_wait(obj,
823 				   I915_WAIT_INTERRUPTIBLE |
824 				   I915_WAIT_ALL,
825 				   MAX_SCHEDULE_TIMEOUT);
826 	if (ret)
827 		goto err;
828 
829 	ret = i915_gem_object_pin_pages(obj);
830 	if (ret)
831 		goto err;
832 
833 	ret = -EFAULT;
834 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
835 	 * it would end up going through the fenced access, and we'll get
836 	 * different detiling behavior between reading and writing.
837 	 * pread/pwrite currently are reading and writing from the CPU
838 	 * perspective, requiring manual detiling by the client.
839 	 */
840 	if (!i915_gem_object_has_struct_page(obj) ||
841 	    cpu_write_needs_clflush(obj))
842 		/* Note that the gtt paths might fail with non-page-backed user
843 		 * pointers (e.g. gtt mappings when moving data between
844 		 * textures). Fallback to the shmem path in that case.
845 		 */
846 		ret = i915_gem_gtt_pwrite_fast(obj, args);
847 
848 	if (ret == -EFAULT || ret == -ENOSPC) {
849 		if (i915_gem_object_has_struct_page(obj))
850 			ret = i915_gem_shmem_pwrite(obj, args);
851 	}
852 
853 	i915_gem_object_unpin_pages(obj);
854 err:
855 	i915_gem_object_put(obj);
856 	return ret;
857 }
858 
859 /**
860  * Called when user space has done writes to this buffer
861  * @dev: drm device
862  * @data: ioctl data blob
863  * @file: drm file
864  */
865 int
866 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
867 			 struct drm_file *file)
868 {
869 	struct drm_i915_gem_sw_finish *args = data;
870 	struct drm_i915_gem_object *obj;
871 
872 	obj = i915_gem_object_lookup(file, args->handle);
873 	if (!obj)
874 		return -ENOENT;
875 
876 	/*
877 	 * Proxy objects are barred from CPU access, so there is no
878 	 * need to ban sw_finish as it is a nop.
879 	 */
880 
881 	/* Pinned buffers may be scanout, so flush the cache */
882 	i915_gem_object_flush_if_display(obj);
883 	i915_gem_object_put(obj);
884 
885 	return 0;
886 }
887 
888 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
889 {
890 	struct drm_i915_gem_object *obj, *on;
891 	int i;
892 
893 	/*
894 	 * Only called during RPM suspend. All users of the userfault_list
895 	 * must be holding an RPM wakeref to ensure that this can not
896 	 * run concurrently with themselves (and use the struct_mutex for
897 	 * protection between themselves).
898 	 */
899 
900 	list_for_each_entry_safe(obj, on,
901 				 &i915->ggtt.userfault_list, userfault_link)
902 		__i915_gem_object_release_mmap_gtt(obj);
903 
904 	/*
905 	 * The fence will be lost when the device powers down. If any were
906 	 * in use by hardware (i.e. they are pinned), we should not be powering
907 	 * down! All other fences will be reacquired by the user upon waking.
908 	 */
909 	for (i = 0; i < i915->ggtt.num_fences; i++) {
910 		struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
911 
912 		/*
913 		 * Ideally we want to assert that the fence register is not
914 		 * live at this point (i.e. that no piece of code will be
915 		 * trying to write through fence + GTT, as that both violates
916 		 * our tracking of activity and associated locking/barriers,
917 		 * but also is illegal given that the hw is powered down).
918 		 *
919 		 * Previously we used reg->pin_count as a "liveness" indicator.
920 		 * That is not sufficient, and we need a more fine-grained
921 		 * tool if we want to have a sanity check here.
922 		 */
923 
924 		if (!reg->vma)
925 			continue;
926 
927 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
928 		reg->dirty = true;
929 	}
930 }
931 
932 static void discard_ggtt_vma(struct i915_vma *vma)
933 {
934 	struct drm_i915_gem_object *obj = vma->obj;
935 
936 	spin_lock(&obj->vma.lock);
937 	if (!RB_EMPTY_NODE(&vma->obj_node)) {
938 		rb_erase(&vma->obj_node, &obj->vma.tree);
939 		RB_CLEAR_NODE(&vma->obj_node);
940 	}
941 	spin_unlock(&obj->vma.lock);
942 }
943 
944 struct i915_vma *
945 i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
946 			    struct i915_gem_ww_ctx *ww,
947 			    const struct i915_ggtt_view *view,
948 			    u64 size, u64 alignment, u64 flags)
949 {
950 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
951 	struct i915_ggtt *ggtt = &i915->ggtt;
952 	struct i915_vma *vma;
953 	int ret;
954 
955 	if (flags & PIN_MAPPABLE &&
956 	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
957 		/*
958 		 * If the required space is larger than the available
959 		 * aperture, we will not able to find a slot for the
960 		 * object and unbinding the object now will be in
961 		 * vain. Worse, doing so may cause us to ping-pong
962 		 * the object in and out of the Global GTT and
963 		 * waste a lot of cycles under the mutex.
964 		 */
965 		if (obj->base.size > ggtt->mappable_end)
966 			return ERR_PTR(-E2BIG);
967 
968 		/*
969 		 * If NONBLOCK is set the caller is optimistically
970 		 * trying to cache the full object within the mappable
971 		 * aperture, and *must* have a fallback in place for
972 		 * situations where we cannot bind the object. We
973 		 * can be a little more lax here and use the fallback
974 		 * more often to avoid costly migrations of ourselves
975 		 * and other objects within the aperture.
976 		 *
977 		 * Half-the-aperture is used as a simple heuristic.
978 		 * More interesting would to do search for a free
979 		 * block prior to making the commitment to unbind.
980 		 * That caters for the self-harm case, and with a
981 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
982 		 * we could try to minimise harm to others.
983 		 */
984 		if (flags & PIN_NONBLOCK &&
985 		    obj->base.size > ggtt->mappable_end / 2)
986 			return ERR_PTR(-ENOSPC);
987 	}
988 
989 new_vma:
990 	vma = i915_vma_instance(obj, &ggtt->vm, view);
991 	if (IS_ERR(vma))
992 		return vma;
993 
994 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
995 		if (flags & PIN_NONBLOCK) {
996 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
997 				return ERR_PTR(-ENOSPC);
998 
999 			if (flags & PIN_MAPPABLE &&
1000 			    vma->fence_size > ggtt->mappable_end / 2)
1001 				return ERR_PTR(-ENOSPC);
1002 		}
1003 
1004 		if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
1005 			discard_ggtt_vma(vma);
1006 			goto new_vma;
1007 		}
1008 
1009 		ret = i915_vma_unbind(vma);
1010 		if (ret)
1011 			return ERR_PTR(ret);
1012 	}
1013 
1014 	ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
1015 	if (ret)
1016 		return ERR_PTR(ret);
1017 
1018 	if (vma->fence && !i915_gem_object_is_tiled(obj)) {
1019 		mutex_lock(&ggtt->vm.mutex);
1020 		i915_vma_revoke_fence(vma);
1021 		mutex_unlock(&ggtt->vm.mutex);
1022 	}
1023 
1024 	ret = i915_vma_wait_for_bind(vma);
1025 	if (ret) {
1026 		i915_vma_unpin(vma);
1027 		return ERR_PTR(ret);
1028 	}
1029 
1030 	return vma;
1031 }
1032 
1033 int
1034 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1035 		       struct drm_file *file_priv)
1036 {
1037 	struct drm_i915_private *i915 = to_i915(dev);
1038 	struct drm_i915_gem_madvise *args = data;
1039 	struct drm_i915_gem_object *obj;
1040 	int err;
1041 
1042 	switch (args->madv) {
1043 	case I915_MADV_DONTNEED:
1044 	case I915_MADV_WILLNEED:
1045 	    break;
1046 	default:
1047 	    return -EINVAL;
1048 	}
1049 
1050 	obj = i915_gem_object_lookup(file_priv, args->handle);
1051 	if (!obj)
1052 		return -ENOENT;
1053 
1054 	err = mutex_lock_interruptible(&obj->mm.lock);
1055 	if (err)
1056 		goto out;
1057 
1058 	if (i915_gem_object_has_pages(obj) &&
1059 	    i915_gem_object_is_tiled(obj) &&
1060 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
1061 		if (obj->mm.madv == I915_MADV_WILLNEED) {
1062 			GEM_BUG_ON(!obj->mm.quirked);
1063 			__i915_gem_object_unpin_pages(obj);
1064 			obj->mm.quirked = false;
1065 		}
1066 		if (args->madv == I915_MADV_WILLNEED) {
1067 			GEM_BUG_ON(obj->mm.quirked);
1068 			__i915_gem_object_pin_pages(obj);
1069 			obj->mm.quirked = true;
1070 		}
1071 	}
1072 
1073 	if (obj->mm.madv != __I915_MADV_PURGED)
1074 		obj->mm.madv = args->madv;
1075 
1076 	if (i915_gem_object_has_pages(obj)) {
1077 		struct list_head *list;
1078 
1079 		if (i915_gem_object_is_shrinkable(obj)) {
1080 			unsigned long flags;
1081 
1082 			spin_lock_irqsave(&i915->mm.obj_lock, flags);
1083 
1084 			if (obj->mm.madv != I915_MADV_WILLNEED)
1085 				list = &i915->mm.purge_list;
1086 			else
1087 				list = &i915->mm.shrink_list;
1088 			list_move_tail(&obj->mm.link, list);
1089 
1090 			spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1091 		}
1092 	}
1093 
1094 	/* if the object is no longer attached, discard its backing storage */
1095 	if (obj->mm.madv == I915_MADV_DONTNEED &&
1096 	    !i915_gem_object_has_pages(obj))
1097 		i915_gem_object_truncate(obj);
1098 
1099 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
1100 	mutex_unlock(&obj->mm.lock);
1101 
1102 out:
1103 	i915_gem_object_put(obj);
1104 	return err;
1105 }
1106 
1107 int i915_gem_init(struct drm_i915_private *dev_priv)
1108 {
1109 	int ret;
1110 
1111 	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
1112 	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1113 		mkwrite_device_info(dev_priv)->page_sizes =
1114 			I915_GTT_PAGE_SIZE_4K;
1115 
1116 	ret = i915_gem_init_userptr(dev_priv);
1117 	if (ret)
1118 		return ret;
1119 
1120 	intel_uc_fetch_firmwares(&dev_priv->gt.uc);
1121 	intel_wopcm_init(&dev_priv->wopcm);
1122 
1123 	ret = i915_init_ggtt(dev_priv);
1124 	if (ret) {
1125 		GEM_BUG_ON(ret == -EIO);
1126 		goto err_unlock;
1127 	}
1128 
1129 	/*
1130 	 * Despite its name intel_init_clock_gating applies both display
1131 	 * clock gating workarounds; GT mmio workarounds and the occasional
1132 	 * GT power context workaround. Worse, sometimes it includes a context
1133 	 * register workaround which we need to apply before we record the
1134 	 * default HW state for all contexts.
1135 	 *
1136 	 * FIXME: break up the workarounds and apply them at the right time!
1137 	 */
1138 	intel_init_clock_gating(dev_priv);
1139 
1140 	ret = intel_gt_init(&dev_priv->gt);
1141 	if (ret)
1142 		goto err_unlock;
1143 
1144 	return 0;
1145 
1146 	/*
1147 	 * Unwinding is complicated by that we want to handle -EIO to mean
1148 	 * disable GPU submission but keep KMS alive. We want to mark the
1149 	 * HW as irrevisibly wedged, but keep enough state around that the
1150 	 * driver doesn't explode during runtime.
1151 	 */
1152 err_unlock:
1153 	i915_gem_drain_workqueue(dev_priv);
1154 
1155 	if (ret != -EIO) {
1156 		intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1157 		i915_gem_cleanup_userptr(dev_priv);
1158 	}
1159 
1160 	if (ret == -EIO) {
1161 		/*
1162 		 * Allow engines or uC initialisation to fail by marking the GPU
1163 		 * as wedged. But we only want to do this when the GPU is angry,
1164 		 * for all other failure, such as an allocation failure, bail.
1165 		 */
1166 		if (!intel_gt_is_wedged(&dev_priv->gt)) {
1167 			i915_probe_error(dev_priv,
1168 					 "Failed to initialize GPU, declaring it wedged!\n");
1169 			intel_gt_set_wedged(&dev_priv->gt);
1170 		}
1171 
1172 		/* Minimal basic recovery for KMS */
1173 		ret = i915_ggtt_enable_hw(dev_priv);
1174 		i915_ggtt_resume(&dev_priv->ggtt);
1175 		intel_init_clock_gating(dev_priv);
1176 	}
1177 
1178 	i915_gem_drain_freed_objects(dev_priv);
1179 	return ret;
1180 }
1181 
1182 void i915_gem_driver_register(struct drm_i915_private *i915)
1183 {
1184 	i915_gem_driver_register__shrinker(i915);
1185 
1186 	intel_engines_driver_register(i915);
1187 }
1188 
1189 void i915_gem_driver_unregister(struct drm_i915_private *i915)
1190 {
1191 	i915_gem_driver_unregister__shrinker(i915);
1192 }
1193 
1194 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1195 {
1196 	intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1197 
1198 	i915_gem_suspend_late(dev_priv);
1199 	intel_gt_driver_remove(&dev_priv->gt);
1200 	dev_priv->uabi_engines = RB_ROOT;
1201 
1202 	/* Flush any outstanding unpin_work. */
1203 	i915_gem_drain_workqueue(dev_priv);
1204 
1205 	i915_gem_drain_freed_objects(dev_priv);
1206 }
1207 
1208 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1209 {
1210 	i915_gem_driver_release__contexts(dev_priv);
1211 
1212 	intel_gt_driver_release(&dev_priv->gt);
1213 
1214 	intel_wa_list_free(&dev_priv->gt_wa_list);
1215 
1216 	intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1217 	i915_gem_cleanup_userptr(dev_priv);
1218 
1219 	i915_gem_drain_freed_objects(dev_priv);
1220 
1221 	drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1222 }
1223 
1224 static void i915_gem_init__mm(struct drm_i915_private *i915)
1225 {
1226 	spin_lock_init(&i915->mm.obj_lock);
1227 
1228 	init_llist_head(&i915->mm.free_list);
1229 
1230 	INIT_LIST_HEAD(&i915->mm.purge_list);
1231 	INIT_LIST_HEAD(&i915->mm.shrink_list);
1232 
1233 	i915_gem_init__objects(i915);
1234 }
1235 
1236 void i915_gem_init_early(struct drm_i915_private *dev_priv)
1237 {
1238 	i915_gem_init__mm(dev_priv);
1239 	i915_gem_init__contexts(dev_priv);
1240 
1241 	spin_lock_init(&dev_priv->fb_tracking.lock);
1242 }
1243 
1244 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1245 {
1246 	i915_gem_drain_freed_objects(dev_priv);
1247 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1248 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1249 	drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1250 }
1251 
1252 int i915_gem_freeze(struct drm_i915_private *dev_priv)
1253 {
1254 	/* Discard all purgeable objects, let userspace recover those as
1255 	 * required after resuming.
1256 	 */
1257 	i915_gem_shrink_all(dev_priv);
1258 
1259 	return 0;
1260 }
1261 
1262 int i915_gem_freeze_late(struct drm_i915_private *i915)
1263 {
1264 	struct drm_i915_gem_object *obj;
1265 	intel_wakeref_t wakeref;
1266 
1267 	/*
1268 	 * Called just before we write the hibernation image.
1269 	 *
1270 	 * We need to update the domain tracking to reflect that the CPU
1271 	 * will be accessing all the pages to create and restore from the
1272 	 * hibernation, and so upon restoration those pages will be in the
1273 	 * CPU domain.
1274 	 *
1275 	 * To make sure the hibernation image contains the latest state,
1276 	 * we update that state just before writing out the image.
1277 	 *
1278 	 * To try and reduce the hibernation image, we manually shrink
1279 	 * the objects as well, see i915_gem_freeze()
1280 	 */
1281 
1282 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1283 
1284 	i915_gem_shrink(i915, -1UL, NULL, ~0);
1285 	i915_gem_drain_freed_objects(i915);
1286 
1287 	list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
1288 		i915_gem_object_lock(obj, NULL);
1289 		drm_WARN_ON(&i915->drm,
1290 			    i915_gem_object_set_to_cpu_domain(obj, true));
1291 		i915_gem_object_unlock(obj);
1292 	}
1293 
1294 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1295 
1296 	return 0;
1297 }
1298 
1299 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1300 {
1301 	struct drm_i915_file_private *file_priv;
1302 	int ret;
1303 
1304 	DRM_DEBUG("\n");
1305 
1306 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1307 	if (!file_priv)
1308 		return -ENOMEM;
1309 
1310 	file->driver_priv = file_priv;
1311 	file_priv->dev_priv = i915;
1312 	file_priv->file = file;
1313 
1314 	file_priv->bsd_engine = -1;
1315 	file_priv->hang_timestamp = jiffies;
1316 
1317 	ret = i915_gem_context_open(i915, file);
1318 	if (ret)
1319 		kfree(file_priv);
1320 
1321 	return ret;
1322 }
1323 
1324 void i915_gem_ww_ctx_init(struct i915_gem_ww_ctx *ww, bool intr)
1325 {
1326 	ww_acquire_init(&ww->ctx, &reservation_ww_class);
1327 	INIT_LIST_HEAD(&ww->obj_list);
1328 	ww->intr = intr;
1329 	ww->contended = NULL;
1330 }
1331 
1332 static void i915_gem_ww_ctx_unlock_all(struct i915_gem_ww_ctx *ww)
1333 {
1334 	struct drm_i915_gem_object *obj;
1335 
1336 	while ((obj = list_first_entry_or_null(&ww->obj_list, struct drm_i915_gem_object, obj_link))) {
1337 		list_del(&obj->obj_link);
1338 		i915_gem_object_unlock(obj);
1339 	}
1340 }
1341 
1342 void i915_gem_ww_unlock_single(struct drm_i915_gem_object *obj)
1343 {
1344 	list_del(&obj->obj_link);
1345 	i915_gem_object_unlock(obj);
1346 }
1347 
1348 void i915_gem_ww_ctx_fini(struct i915_gem_ww_ctx *ww)
1349 {
1350 	i915_gem_ww_ctx_unlock_all(ww);
1351 	WARN_ON(ww->contended);
1352 	ww_acquire_fini(&ww->ctx);
1353 }
1354 
1355 int __must_check i915_gem_ww_ctx_backoff(struct i915_gem_ww_ctx *ww)
1356 {
1357 	int ret = 0;
1358 
1359 	if (WARN_ON(!ww->contended))
1360 		return -EINVAL;
1361 
1362 	i915_gem_ww_ctx_unlock_all(ww);
1363 	if (ww->intr)
1364 		ret = dma_resv_lock_slow_interruptible(ww->contended->base.resv, &ww->ctx);
1365 	else
1366 		dma_resv_lock_slow(ww->contended->base.resv, &ww->ctx);
1367 
1368 	if (!ret)
1369 		list_add_tail(&ww->contended->obj_link, &ww->obj_list);
1370 
1371 	ww->contended = NULL;
1372 
1373 	return ret;
1374 }
1375 
1376 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1377 #include "selftests/mock_gem_device.c"
1378 #include "selftests/i915_gem.c"
1379 #endif
1380