xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include <linux/swap.h>
33 #include <linux/pci.h>
34 
35 #define I915_GEM_GPU_DOMAINS	(~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
36 
37 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
38 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
40 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
41 					     int write);
42 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
43 						     uint64_t offset,
44 						     uint64_t size);
45 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
46 static int i915_gem_object_get_pages(struct drm_gem_object *obj);
47 static void i915_gem_object_put_pages(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50 					   unsigned alignment);
51 static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
52 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
53 static int i915_gem_evict_something(struct drm_device *dev);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55 				struct drm_i915_gem_pwrite *args,
56 				struct drm_file *file_priv);
57 
58 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
59 		     unsigned long end)
60 {
61 	drm_i915_private_t *dev_priv = dev->dev_private;
62 
63 	if (start >= end ||
64 	    (start & (PAGE_SIZE - 1)) != 0 ||
65 	    (end & (PAGE_SIZE - 1)) != 0) {
66 		return -EINVAL;
67 	}
68 
69 	drm_mm_init(&dev_priv->mm.gtt_space, start,
70 		    end - start);
71 
72 	dev->gtt_total = (uint32_t) (end - start);
73 
74 	return 0;
75 }
76 
77 int
78 i915_gem_init_ioctl(struct drm_device *dev, void *data,
79 		    struct drm_file *file_priv)
80 {
81 	struct drm_i915_gem_init *args = data;
82 	int ret;
83 
84 	mutex_lock(&dev->struct_mutex);
85 	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
86 	mutex_unlock(&dev->struct_mutex);
87 
88 	return ret;
89 }
90 
91 int
92 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
93 			    struct drm_file *file_priv)
94 {
95 	struct drm_i915_gem_get_aperture *args = data;
96 
97 	if (!(dev->driver->driver_features & DRIVER_GEM))
98 		return -ENODEV;
99 
100 	args->aper_size = dev->gtt_total;
101 	args->aper_available_size = (args->aper_size -
102 				     atomic_read(&dev->pin_memory));
103 
104 	return 0;
105 }
106 
107 
108 /**
109  * Creates a new mm object and returns a handle to it.
110  */
111 int
112 i915_gem_create_ioctl(struct drm_device *dev, void *data,
113 		      struct drm_file *file_priv)
114 {
115 	struct drm_i915_gem_create *args = data;
116 	struct drm_gem_object *obj;
117 	int handle, ret;
118 
119 	args->size = roundup(args->size, PAGE_SIZE);
120 
121 	/* Allocate the new object */
122 	obj = drm_gem_object_alloc(dev, args->size);
123 	if (obj == NULL)
124 		return -ENOMEM;
125 
126 	ret = drm_gem_handle_create(file_priv, obj, &handle);
127 	mutex_lock(&dev->struct_mutex);
128 	drm_gem_object_handle_unreference(obj);
129 	mutex_unlock(&dev->struct_mutex);
130 
131 	if (ret)
132 		return ret;
133 
134 	args->handle = handle;
135 
136 	return 0;
137 }
138 
139 static inline int
140 fast_shmem_read(struct page **pages,
141 		loff_t page_base, int page_offset,
142 		char __user *data,
143 		int length)
144 {
145 	char __iomem *vaddr;
146 	int ret;
147 
148 	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
149 	if (vaddr == NULL)
150 		return -ENOMEM;
151 	ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
152 	kunmap_atomic(vaddr, KM_USER0);
153 
154 	return ret;
155 }
156 
157 static inline int
158 slow_shmem_copy(struct page *dst_page,
159 		int dst_offset,
160 		struct page *src_page,
161 		int src_offset,
162 		int length)
163 {
164 	char *dst_vaddr, *src_vaddr;
165 
166 	dst_vaddr = kmap_atomic(dst_page, KM_USER0);
167 	if (dst_vaddr == NULL)
168 		return -ENOMEM;
169 
170 	src_vaddr = kmap_atomic(src_page, KM_USER1);
171 	if (src_vaddr == NULL) {
172 		kunmap_atomic(dst_vaddr, KM_USER0);
173 		return -ENOMEM;
174 	}
175 
176 	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
177 
178 	kunmap_atomic(src_vaddr, KM_USER1);
179 	kunmap_atomic(dst_vaddr, KM_USER0);
180 
181 	return 0;
182 }
183 
184 /**
185  * This is the fast shmem pread path, which attempts to copy_from_user directly
186  * from the backing pages of the object to the user's address space.  On a
187  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
188  */
189 static int
190 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
191 			  struct drm_i915_gem_pread *args,
192 			  struct drm_file *file_priv)
193 {
194 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
195 	ssize_t remain;
196 	loff_t offset, page_base;
197 	char __user *user_data;
198 	int page_offset, page_length;
199 	int ret;
200 
201 	user_data = (char __user *) (uintptr_t) args->data_ptr;
202 	remain = args->size;
203 
204 	mutex_lock(&dev->struct_mutex);
205 
206 	ret = i915_gem_object_get_pages(obj);
207 	if (ret != 0)
208 		goto fail_unlock;
209 
210 	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
211 							args->size);
212 	if (ret != 0)
213 		goto fail_put_pages;
214 
215 	obj_priv = obj->driver_private;
216 	offset = args->offset;
217 
218 	while (remain > 0) {
219 		/* Operation in this page
220 		 *
221 		 * page_base = page offset within aperture
222 		 * page_offset = offset within page
223 		 * page_length = bytes to copy for this page
224 		 */
225 		page_base = (offset & ~(PAGE_SIZE-1));
226 		page_offset = offset & (PAGE_SIZE-1);
227 		page_length = remain;
228 		if ((page_offset + remain) > PAGE_SIZE)
229 			page_length = PAGE_SIZE - page_offset;
230 
231 		ret = fast_shmem_read(obj_priv->pages,
232 				      page_base, page_offset,
233 				      user_data, page_length);
234 		if (ret)
235 			goto fail_put_pages;
236 
237 		remain -= page_length;
238 		user_data += page_length;
239 		offset += page_length;
240 	}
241 
242 fail_put_pages:
243 	i915_gem_object_put_pages(obj);
244 fail_unlock:
245 	mutex_unlock(&dev->struct_mutex);
246 
247 	return ret;
248 }
249 
250 /**
251  * This is the fallback shmem pread path, which allocates temporary storage
252  * in kernel space to copy_to_user into outside of the struct_mutex, so we
253  * can copy out of the object's backing pages while holding the struct mutex
254  * and not take page faults.
255  */
256 static int
257 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
258 			  struct drm_i915_gem_pread *args,
259 			  struct drm_file *file_priv)
260 {
261 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
262 	struct mm_struct *mm = current->mm;
263 	struct page **user_pages;
264 	ssize_t remain;
265 	loff_t offset, pinned_pages, i;
266 	loff_t first_data_page, last_data_page, num_pages;
267 	int shmem_page_index, shmem_page_offset;
268 	int data_page_index,  data_page_offset;
269 	int page_length;
270 	int ret;
271 	uint64_t data_ptr = args->data_ptr;
272 
273 	remain = args->size;
274 
275 	/* Pin the user pages containing the data.  We can't fault while
276 	 * holding the struct mutex, yet we want to hold it while
277 	 * dereferencing the user data.
278 	 */
279 	first_data_page = data_ptr / PAGE_SIZE;
280 	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
281 	num_pages = last_data_page - first_data_page + 1;
282 
283 	user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
284 	if (user_pages == NULL)
285 		return -ENOMEM;
286 
287 	down_read(&mm->mmap_sem);
288 	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
289 				      num_pages, 0, 0, user_pages, NULL);
290 	up_read(&mm->mmap_sem);
291 	if (pinned_pages < num_pages) {
292 		ret = -EFAULT;
293 		goto fail_put_user_pages;
294 	}
295 
296 	mutex_lock(&dev->struct_mutex);
297 
298 	ret = i915_gem_object_get_pages(obj);
299 	if (ret != 0)
300 		goto fail_unlock;
301 
302 	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
303 							args->size);
304 	if (ret != 0)
305 		goto fail_put_pages;
306 
307 	obj_priv = obj->driver_private;
308 	offset = args->offset;
309 
310 	while (remain > 0) {
311 		/* Operation in this page
312 		 *
313 		 * shmem_page_index = page number within shmem file
314 		 * shmem_page_offset = offset within page in shmem file
315 		 * data_page_index = page number in get_user_pages return
316 		 * data_page_offset = offset with data_page_index page.
317 		 * page_length = bytes to copy for this page
318 		 */
319 		shmem_page_index = offset / PAGE_SIZE;
320 		shmem_page_offset = offset & ~PAGE_MASK;
321 		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
322 		data_page_offset = data_ptr & ~PAGE_MASK;
323 
324 		page_length = remain;
325 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
326 			page_length = PAGE_SIZE - shmem_page_offset;
327 		if ((data_page_offset + page_length) > PAGE_SIZE)
328 			page_length = PAGE_SIZE - data_page_offset;
329 
330 		ret = slow_shmem_copy(user_pages[data_page_index],
331 				      data_page_offset,
332 				      obj_priv->pages[shmem_page_index],
333 				      shmem_page_offset,
334 				      page_length);
335 		if (ret)
336 			goto fail_put_pages;
337 
338 		remain -= page_length;
339 		data_ptr += page_length;
340 		offset += page_length;
341 	}
342 
343 fail_put_pages:
344 	i915_gem_object_put_pages(obj);
345 fail_unlock:
346 	mutex_unlock(&dev->struct_mutex);
347 fail_put_user_pages:
348 	for (i = 0; i < pinned_pages; i++) {
349 		SetPageDirty(user_pages[i]);
350 		page_cache_release(user_pages[i]);
351 	}
352 	kfree(user_pages);
353 
354 	return ret;
355 }
356 
357 /**
358  * Reads data from the object referenced by handle.
359  *
360  * On error, the contents of *data are undefined.
361  */
362 int
363 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
364 		     struct drm_file *file_priv)
365 {
366 	struct drm_i915_gem_pread *args = data;
367 	struct drm_gem_object *obj;
368 	struct drm_i915_gem_object *obj_priv;
369 	int ret;
370 
371 	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
372 	if (obj == NULL)
373 		return -EBADF;
374 	obj_priv = obj->driver_private;
375 
376 	/* Bounds check source.
377 	 *
378 	 * XXX: This could use review for overflow issues...
379 	 */
380 	if (args->offset > obj->size || args->size > obj->size ||
381 	    args->offset + args->size > obj->size) {
382 		drm_gem_object_unreference(obj);
383 		return -EINVAL;
384 	}
385 
386 	ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
387 	if (ret != 0)
388 		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
389 
390 	drm_gem_object_unreference(obj);
391 
392 	return ret;
393 }
394 
395 /* This is the fast write path which cannot handle
396  * page faults in the source data
397  */
398 
399 static inline int
400 fast_user_write(struct io_mapping *mapping,
401 		loff_t page_base, int page_offset,
402 		char __user *user_data,
403 		int length)
404 {
405 	char *vaddr_atomic;
406 	unsigned long unwritten;
407 
408 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
409 	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
410 						      user_data, length);
411 	io_mapping_unmap_atomic(vaddr_atomic);
412 	if (unwritten)
413 		return -EFAULT;
414 	return 0;
415 }
416 
417 /* Here's the write path which can sleep for
418  * page faults
419  */
420 
421 static inline int
422 slow_kernel_write(struct io_mapping *mapping,
423 		  loff_t gtt_base, int gtt_offset,
424 		  struct page *user_page, int user_offset,
425 		  int length)
426 {
427 	char *src_vaddr, *dst_vaddr;
428 	unsigned long unwritten;
429 
430 	dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
431 	src_vaddr = kmap_atomic(user_page, KM_USER1);
432 	unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
433 						      src_vaddr + user_offset,
434 						      length);
435 	kunmap_atomic(src_vaddr, KM_USER1);
436 	io_mapping_unmap_atomic(dst_vaddr);
437 	if (unwritten)
438 		return -EFAULT;
439 	return 0;
440 }
441 
442 static inline int
443 fast_shmem_write(struct page **pages,
444 		 loff_t page_base, int page_offset,
445 		 char __user *data,
446 		 int length)
447 {
448 	char __iomem *vaddr;
449 	unsigned long unwritten;
450 
451 	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
452 	if (vaddr == NULL)
453 		return -ENOMEM;
454 	unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
455 	kunmap_atomic(vaddr, KM_USER0);
456 
457 	if (unwritten)
458 		return -EFAULT;
459 	return 0;
460 }
461 
462 /**
463  * This is the fast pwrite path, where we copy the data directly from the
464  * user into the GTT, uncached.
465  */
466 static int
467 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
468 			 struct drm_i915_gem_pwrite *args,
469 			 struct drm_file *file_priv)
470 {
471 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
472 	drm_i915_private_t *dev_priv = dev->dev_private;
473 	ssize_t remain;
474 	loff_t offset, page_base;
475 	char __user *user_data;
476 	int page_offset, page_length;
477 	int ret;
478 
479 	user_data = (char __user *) (uintptr_t) args->data_ptr;
480 	remain = args->size;
481 	if (!access_ok(VERIFY_READ, user_data, remain))
482 		return -EFAULT;
483 
484 
485 	mutex_lock(&dev->struct_mutex);
486 	ret = i915_gem_object_pin(obj, 0);
487 	if (ret) {
488 		mutex_unlock(&dev->struct_mutex);
489 		return ret;
490 	}
491 	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
492 	if (ret)
493 		goto fail;
494 
495 	obj_priv = obj->driver_private;
496 	offset = obj_priv->gtt_offset + args->offset;
497 
498 	while (remain > 0) {
499 		/* Operation in this page
500 		 *
501 		 * page_base = page offset within aperture
502 		 * page_offset = offset within page
503 		 * page_length = bytes to copy for this page
504 		 */
505 		page_base = (offset & ~(PAGE_SIZE-1));
506 		page_offset = offset & (PAGE_SIZE-1);
507 		page_length = remain;
508 		if ((page_offset + remain) > PAGE_SIZE)
509 			page_length = PAGE_SIZE - page_offset;
510 
511 		ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
512 				       page_offset, user_data, page_length);
513 
514 		/* If we get a fault while copying data, then (presumably) our
515 		 * source page isn't available.  Return the error and we'll
516 		 * retry in the slow path.
517 		 */
518 		if (ret)
519 			goto fail;
520 
521 		remain -= page_length;
522 		user_data += page_length;
523 		offset += page_length;
524 	}
525 
526 fail:
527 	i915_gem_object_unpin(obj);
528 	mutex_unlock(&dev->struct_mutex);
529 
530 	return ret;
531 }
532 
533 /**
534  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
535  * the memory and maps it using kmap_atomic for copying.
536  *
537  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
538  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
539  */
540 static int
541 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
542 			 struct drm_i915_gem_pwrite *args,
543 			 struct drm_file *file_priv)
544 {
545 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
546 	drm_i915_private_t *dev_priv = dev->dev_private;
547 	ssize_t remain;
548 	loff_t gtt_page_base, offset;
549 	loff_t first_data_page, last_data_page, num_pages;
550 	loff_t pinned_pages, i;
551 	struct page **user_pages;
552 	struct mm_struct *mm = current->mm;
553 	int gtt_page_offset, data_page_offset, data_page_index, page_length;
554 	int ret;
555 	uint64_t data_ptr = args->data_ptr;
556 
557 	remain = args->size;
558 
559 	/* Pin the user pages containing the data.  We can't fault while
560 	 * holding the struct mutex, and all of the pwrite implementations
561 	 * want to hold it while dereferencing the user data.
562 	 */
563 	first_data_page = data_ptr / PAGE_SIZE;
564 	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
565 	num_pages = last_data_page - first_data_page + 1;
566 
567 	user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
568 	if (user_pages == NULL)
569 		return -ENOMEM;
570 
571 	down_read(&mm->mmap_sem);
572 	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
573 				      num_pages, 0, 0, user_pages, NULL);
574 	up_read(&mm->mmap_sem);
575 	if (pinned_pages < num_pages) {
576 		ret = -EFAULT;
577 		goto out_unpin_pages;
578 	}
579 
580 	mutex_lock(&dev->struct_mutex);
581 	ret = i915_gem_object_pin(obj, 0);
582 	if (ret)
583 		goto out_unlock;
584 
585 	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
586 	if (ret)
587 		goto out_unpin_object;
588 
589 	obj_priv = obj->driver_private;
590 	offset = obj_priv->gtt_offset + args->offset;
591 
592 	while (remain > 0) {
593 		/* Operation in this page
594 		 *
595 		 * gtt_page_base = page offset within aperture
596 		 * gtt_page_offset = offset within page in aperture
597 		 * data_page_index = page number in get_user_pages return
598 		 * data_page_offset = offset with data_page_index page.
599 		 * page_length = bytes to copy for this page
600 		 */
601 		gtt_page_base = offset & PAGE_MASK;
602 		gtt_page_offset = offset & ~PAGE_MASK;
603 		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
604 		data_page_offset = data_ptr & ~PAGE_MASK;
605 
606 		page_length = remain;
607 		if ((gtt_page_offset + page_length) > PAGE_SIZE)
608 			page_length = PAGE_SIZE - gtt_page_offset;
609 		if ((data_page_offset + page_length) > PAGE_SIZE)
610 			page_length = PAGE_SIZE - data_page_offset;
611 
612 		ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
613 					gtt_page_base, gtt_page_offset,
614 					user_pages[data_page_index],
615 					data_page_offset,
616 					page_length);
617 
618 		/* If we get a fault while copying data, then (presumably) our
619 		 * source page isn't available.  Return the error and we'll
620 		 * retry in the slow path.
621 		 */
622 		if (ret)
623 			goto out_unpin_object;
624 
625 		remain -= page_length;
626 		offset += page_length;
627 		data_ptr += page_length;
628 	}
629 
630 out_unpin_object:
631 	i915_gem_object_unpin(obj);
632 out_unlock:
633 	mutex_unlock(&dev->struct_mutex);
634 out_unpin_pages:
635 	for (i = 0; i < pinned_pages; i++)
636 		page_cache_release(user_pages[i]);
637 	kfree(user_pages);
638 
639 	return ret;
640 }
641 
642 /**
643  * This is the fast shmem pwrite path, which attempts to directly
644  * copy_from_user into the kmapped pages backing the object.
645  */
646 static int
647 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
648 			   struct drm_i915_gem_pwrite *args,
649 			   struct drm_file *file_priv)
650 {
651 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
652 	ssize_t remain;
653 	loff_t offset, page_base;
654 	char __user *user_data;
655 	int page_offset, page_length;
656 	int ret;
657 
658 	user_data = (char __user *) (uintptr_t) args->data_ptr;
659 	remain = args->size;
660 
661 	mutex_lock(&dev->struct_mutex);
662 
663 	ret = i915_gem_object_get_pages(obj);
664 	if (ret != 0)
665 		goto fail_unlock;
666 
667 	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
668 	if (ret != 0)
669 		goto fail_put_pages;
670 
671 	obj_priv = obj->driver_private;
672 	offset = args->offset;
673 	obj_priv->dirty = 1;
674 
675 	while (remain > 0) {
676 		/* Operation in this page
677 		 *
678 		 * page_base = page offset within aperture
679 		 * page_offset = offset within page
680 		 * page_length = bytes to copy for this page
681 		 */
682 		page_base = (offset & ~(PAGE_SIZE-1));
683 		page_offset = offset & (PAGE_SIZE-1);
684 		page_length = remain;
685 		if ((page_offset + remain) > PAGE_SIZE)
686 			page_length = PAGE_SIZE - page_offset;
687 
688 		ret = fast_shmem_write(obj_priv->pages,
689 				       page_base, page_offset,
690 				       user_data, page_length);
691 		if (ret)
692 			goto fail_put_pages;
693 
694 		remain -= page_length;
695 		user_data += page_length;
696 		offset += page_length;
697 	}
698 
699 fail_put_pages:
700 	i915_gem_object_put_pages(obj);
701 fail_unlock:
702 	mutex_unlock(&dev->struct_mutex);
703 
704 	return ret;
705 }
706 
707 /**
708  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
709  * the memory and maps it using kmap_atomic for copying.
710  *
711  * This avoids taking mmap_sem for faulting on the user's address while the
712  * struct_mutex is held.
713  */
714 static int
715 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
716 			   struct drm_i915_gem_pwrite *args,
717 			   struct drm_file *file_priv)
718 {
719 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
720 	struct mm_struct *mm = current->mm;
721 	struct page **user_pages;
722 	ssize_t remain;
723 	loff_t offset, pinned_pages, i;
724 	loff_t first_data_page, last_data_page, num_pages;
725 	int shmem_page_index, shmem_page_offset;
726 	int data_page_index,  data_page_offset;
727 	int page_length;
728 	int ret;
729 	uint64_t data_ptr = args->data_ptr;
730 
731 	remain = args->size;
732 
733 	/* Pin the user pages containing the data.  We can't fault while
734 	 * holding the struct mutex, and all of the pwrite implementations
735 	 * want to hold it while dereferencing the user data.
736 	 */
737 	first_data_page = data_ptr / PAGE_SIZE;
738 	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
739 	num_pages = last_data_page - first_data_page + 1;
740 
741 	user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
742 	if (user_pages == NULL)
743 		return -ENOMEM;
744 
745 	down_read(&mm->mmap_sem);
746 	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
747 				      num_pages, 0, 0, user_pages, NULL);
748 	up_read(&mm->mmap_sem);
749 	if (pinned_pages < num_pages) {
750 		ret = -EFAULT;
751 		goto fail_put_user_pages;
752 	}
753 
754 	mutex_lock(&dev->struct_mutex);
755 
756 	ret = i915_gem_object_get_pages(obj);
757 	if (ret != 0)
758 		goto fail_unlock;
759 
760 	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
761 	if (ret != 0)
762 		goto fail_put_pages;
763 
764 	obj_priv = obj->driver_private;
765 	offset = args->offset;
766 	obj_priv->dirty = 1;
767 
768 	while (remain > 0) {
769 		/* Operation in this page
770 		 *
771 		 * shmem_page_index = page number within shmem file
772 		 * shmem_page_offset = offset within page in shmem file
773 		 * data_page_index = page number in get_user_pages return
774 		 * data_page_offset = offset with data_page_index page.
775 		 * page_length = bytes to copy for this page
776 		 */
777 		shmem_page_index = offset / PAGE_SIZE;
778 		shmem_page_offset = offset & ~PAGE_MASK;
779 		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
780 		data_page_offset = data_ptr & ~PAGE_MASK;
781 
782 		page_length = remain;
783 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
784 			page_length = PAGE_SIZE - shmem_page_offset;
785 		if ((data_page_offset + page_length) > PAGE_SIZE)
786 			page_length = PAGE_SIZE - data_page_offset;
787 
788 		ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
789 				      shmem_page_offset,
790 				      user_pages[data_page_index],
791 				      data_page_offset,
792 				      page_length);
793 		if (ret)
794 			goto fail_put_pages;
795 
796 		remain -= page_length;
797 		data_ptr += page_length;
798 		offset += page_length;
799 	}
800 
801 fail_put_pages:
802 	i915_gem_object_put_pages(obj);
803 fail_unlock:
804 	mutex_unlock(&dev->struct_mutex);
805 fail_put_user_pages:
806 	for (i = 0; i < pinned_pages; i++)
807 		page_cache_release(user_pages[i]);
808 	kfree(user_pages);
809 
810 	return ret;
811 }
812 
813 /**
814  * Writes data to the object referenced by handle.
815  *
816  * On error, the contents of the buffer that were to be modified are undefined.
817  */
818 int
819 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
820 		      struct drm_file *file_priv)
821 {
822 	struct drm_i915_gem_pwrite *args = data;
823 	struct drm_gem_object *obj;
824 	struct drm_i915_gem_object *obj_priv;
825 	int ret = 0;
826 
827 	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
828 	if (obj == NULL)
829 		return -EBADF;
830 	obj_priv = obj->driver_private;
831 
832 	/* Bounds check destination.
833 	 *
834 	 * XXX: This could use review for overflow issues...
835 	 */
836 	if (args->offset > obj->size || args->size > obj->size ||
837 	    args->offset + args->size > obj->size) {
838 		drm_gem_object_unreference(obj);
839 		return -EINVAL;
840 	}
841 
842 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
843 	 * it would end up going through the fenced access, and we'll get
844 	 * different detiling behavior between reading and writing.
845 	 * pread/pwrite currently are reading and writing from the CPU
846 	 * perspective, requiring manual detiling by the client.
847 	 */
848 	if (obj_priv->phys_obj)
849 		ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
850 	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
851 		 dev->gtt_total != 0) {
852 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
853 		if (ret == -EFAULT) {
854 			ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
855 						       file_priv);
856 		}
857 	} else {
858 		ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
859 		if (ret == -EFAULT) {
860 			ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
861 							 file_priv);
862 		}
863 	}
864 
865 #if WATCH_PWRITE
866 	if (ret)
867 		DRM_INFO("pwrite failed %d\n", ret);
868 #endif
869 
870 	drm_gem_object_unreference(obj);
871 
872 	return ret;
873 }
874 
875 /**
876  * Called when user space prepares to use an object with the CPU, either
877  * through the mmap ioctl's mapping or a GTT mapping.
878  */
879 int
880 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
881 			  struct drm_file *file_priv)
882 {
883 	struct drm_i915_gem_set_domain *args = data;
884 	struct drm_gem_object *obj;
885 	uint32_t read_domains = args->read_domains;
886 	uint32_t write_domain = args->write_domain;
887 	int ret;
888 
889 	if (!(dev->driver->driver_features & DRIVER_GEM))
890 		return -ENODEV;
891 
892 	/* Only handle setting domains to types used by the CPU. */
893 	if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
894 		return -EINVAL;
895 
896 	if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
897 		return -EINVAL;
898 
899 	/* Having something in the write domain implies it's in the read
900 	 * domain, and only that read domain.  Enforce that in the request.
901 	 */
902 	if (write_domain != 0 && read_domains != write_domain)
903 		return -EINVAL;
904 
905 	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
906 	if (obj == NULL)
907 		return -EBADF;
908 
909 	mutex_lock(&dev->struct_mutex);
910 #if WATCH_BUF
911 	DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
912 		 obj, obj->size, read_domains, write_domain);
913 #endif
914 	if (read_domains & I915_GEM_DOMAIN_GTT) {
915 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
916 
917 		/* Silently promote "you're not bound, there was nothing to do"
918 		 * to success, since the client was just asking us to
919 		 * make sure everything was done.
920 		 */
921 		if (ret == -EINVAL)
922 			ret = 0;
923 	} else {
924 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
925 	}
926 
927 	drm_gem_object_unreference(obj);
928 	mutex_unlock(&dev->struct_mutex);
929 	return ret;
930 }
931 
932 /**
933  * Called when user space has done writes to this buffer
934  */
935 int
936 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
937 		      struct drm_file *file_priv)
938 {
939 	struct drm_i915_gem_sw_finish *args = data;
940 	struct drm_gem_object *obj;
941 	struct drm_i915_gem_object *obj_priv;
942 	int ret = 0;
943 
944 	if (!(dev->driver->driver_features & DRIVER_GEM))
945 		return -ENODEV;
946 
947 	mutex_lock(&dev->struct_mutex);
948 	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
949 	if (obj == NULL) {
950 		mutex_unlock(&dev->struct_mutex);
951 		return -EBADF;
952 	}
953 
954 #if WATCH_BUF
955 	DRM_INFO("%s: sw_finish %d (%p %d)\n",
956 		 __func__, args->handle, obj, obj->size);
957 #endif
958 	obj_priv = obj->driver_private;
959 
960 	/* Pinned buffers may be scanout, so flush the cache */
961 	if (obj_priv->pin_count)
962 		i915_gem_object_flush_cpu_write_domain(obj);
963 
964 	drm_gem_object_unreference(obj);
965 	mutex_unlock(&dev->struct_mutex);
966 	return ret;
967 }
968 
969 /**
970  * Maps the contents of an object, returning the address it is mapped
971  * into.
972  *
973  * While the mapping holds a reference on the contents of the object, it doesn't
974  * imply a ref on the object itself.
975  */
976 int
977 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
978 		   struct drm_file *file_priv)
979 {
980 	struct drm_i915_gem_mmap *args = data;
981 	struct drm_gem_object *obj;
982 	loff_t offset;
983 	unsigned long addr;
984 
985 	if (!(dev->driver->driver_features & DRIVER_GEM))
986 		return -ENODEV;
987 
988 	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
989 	if (obj == NULL)
990 		return -EBADF;
991 
992 	offset = args->offset;
993 
994 	down_write(&current->mm->mmap_sem);
995 	addr = do_mmap(obj->filp, 0, args->size,
996 		       PROT_READ | PROT_WRITE, MAP_SHARED,
997 		       args->offset);
998 	up_write(&current->mm->mmap_sem);
999 	mutex_lock(&dev->struct_mutex);
1000 	drm_gem_object_unreference(obj);
1001 	mutex_unlock(&dev->struct_mutex);
1002 	if (IS_ERR((void *)addr))
1003 		return addr;
1004 
1005 	args->addr_ptr = (uint64_t) addr;
1006 
1007 	return 0;
1008 }
1009 
1010 /**
1011  * i915_gem_fault - fault a page into the GTT
1012  * vma: VMA in question
1013  * vmf: fault info
1014  *
1015  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1016  * from userspace.  The fault handler takes care of binding the object to
1017  * the GTT (if needed), allocating and programming a fence register (again,
1018  * only if needed based on whether the old reg is still valid or the object
1019  * is tiled) and inserting a new PTE into the faulting process.
1020  *
1021  * Note that the faulting process may involve evicting existing objects
1022  * from the GTT and/or fence registers to make room.  So performance may
1023  * suffer if the GTT working set is large or there are few fence registers
1024  * left.
1025  */
1026 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1027 {
1028 	struct drm_gem_object *obj = vma->vm_private_data;
1029 	struct drm_device *dev = obj->dev;
1030 	struct drm_i915_private *dev_priv = dev->dev_private;
1031 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1032 	pgoff_t page_offset;
1033 	unsigned long pfn;
1034 	int ret = 0;
1035 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1036 
1037 	/* We don't use vmf->pgoff since that has the fake offset */
1038 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1039 		PAGE_SHIFT;
1040 
1041 	/* Now bind it into the GTT if needed */
1042 	mutex_lock(&dev->struct_mutex);
1043 	if (!obj_priv->gtt_space) {
1044 		ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1045 		if (ret) {
1046 			mutex_unlock(&dev->struct_mutex);
1047 			return VM_FAULT_SIGBUS;
1048 		}
1049 		list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
1050 	}
1051 
1052 	/* Need a new fence register? */
1053 	if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1054 	    obj_priv->tiling_mode != I915_TILING_NONE) {
1055 		ret = i915_gem_object_get_fence_reg(obj, write);
1056 		if (ret) {
1057 			mutex_unlock(&dev->struct_mutex);
1058 			return VM_FAULT_SIGBUS;
1059 		}
1060 	}
1061 
1062 	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1063 		page_offset;
1064 
1065 	/* Finally, remap it using the new GTT offset */
1066 	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1067 
1068 	mutex_unlock(&dev->struct_mutex);
1069 
1070 	switch (ret) {
1071 	case -ENOMEM:
1072 	case -EAGAIN:
1073 		return VM_FAULT_OOM;
1074 	case -EFAULT:
1075 		return VM_FAULT_SIGBUS;
1076 	default:
1077 		return VM_FAULT_NOPAGE;
1078 	}
1079 }
1080 
1081 /**
1082  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1083  * @obj: obj in question
1084  *
1085  * GEM memory mapping works by handing back to userspace a fake mmap offset
1086  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1087  * up the object based on the offset and sets up the various memory mapping
1088  * structures.
1089  *
1090  * This routine allocates and attaches a fake offset for @obj.
1091  */
1092 static int
1093 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1094 {
1095 	struct drm_device *dev = obj->dev;
1096 	struct drm_gem_mm *mm = dev->mm_private;
1097 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1098 	struct drm_map_list *list;
1099 	struct drm_local_map *map;
1100 	int ret = 0;
1101 
1102 	/* Set the object up for mmap'ing */
1103 	list = &obj->map_list;
1104 	list->map = drm_calloc(1, sizeof(struct drm_map_list),
1105 			       DRM_MEM_DRIVER);
1106 	if (!list->map)
1107 		return -ENOMEM;
1108 
1109 	map = list->map;
1110 	map->type = _DRM_GEM;
1111 	map->size = obj->size;
1112 	map->handle = obj;
1113 
1114 	/* Get a DRM GEM mmap offset allocated... */
1115 	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1116 						    obj->size / PAGE_SIZE, 0, 0);
1117 	if (!list->file_offset_node) {
1118 		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1119 		ret = -ENOMEM;
1120 		goto out_free_list;
1121 	}
1122 
1123 	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1124 						  obj->size / PAGE_SIZE, 0);
1125 	if (!list->file_offset_node) {
1126 		ret = -ENOMEM;
1127 		goto out_free_list;
1128 	}
1129 
1130 	list->hash.key = list->file_offset_node->start;
1131 	if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1132 		DRM_ERROR("failed to add to map hash\n");
1133 		goto out_free_mm;
1134 	}
1135 
1136 	/* By now we should be all set, any drm_mmap request on the offset
1137 	 * below will get to our mmap & fault handler */
1138 	obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1139 
1140 	return 0;
1141 
1142 out_free_mm:
1143 	drm_mm_put_block(list->file_offset_node);
1144 out_free_list:
1145 	drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
1146 
1147 	return ret;
1148 }
1149 
1150 static void
1151 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1152 {
1153 	struct drm_device *dev = obj->dev;
1154 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1155 	struct drm_gem_mm *mm = dev->mm_private;
1156 	struct drm_map_list *list;
1157 
1158 	list = &obj->map_list;
1159 	drm_ht_remove_item(&mm->offset_hash, &list->hash);
1160 
1161 	if (list->file_offset_node) {
1162 		drm_mm_put_block(list->file_offset_node);
1163 		list->file_offset_node = NULL;
1164 	}
1165 
1166 	if (list->map) {
1167 		drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
1168 		list->map = NULL;
1169 	}
1170 
1171 	obj_priv->mmap_offset = 0;
1172 }
1173 
1174 /**
1175  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1176  * @obj: object to check
1177  *
1178  * Return the required GTT alignment for an object, taking into account
1179  * potential fence register mapping if needed.
1180  */
1181 static uint32_t
1182 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1183 {
1184 	struct drm_device *dev = obj->dev;
1185 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1186 	int start, i;
1187 
1188 	/*
1189 	 * Minimum alignment is 4k (GTT page size), but might be greater
1190 	 * if a fence register is needed for the object.
1191 	 */
1192 	if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1193 		return 4096;
1194 
1195 	/*
1196 	 * Previous chips need to be aligned to the size of the smallest
1197 	 * fence register that can contain the object.
1198 	 */
1199 	if (IS_I9XX(dev))
1200 		start = 1024*1024;
1201 	else
1202 		start = 512*1024;
1203 
1204 	for (i = start; i < obj->size; i <<= 1)
1205 		;
1206 
1207 	return i;
1208 }
1209 
1210 /**
1211  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1212  * @dev: DRM device
1213  * @data: GTT mapping ioctl data
1214  * @file_priv: GEM object info
1215  *
1216  * Simply returns the fake offset to userspace so it can mmap it.
1217  * The mmap call will end up in drm_gem_mmap(), which will set things
1218  * up so we can get faults in the handler above.
1219  *
1220  * The fault handler will take care of binding the object into the GTT
1221  * (since it may have been evicted to make room for something), allocating
1222  * a fence register, and mapping the appropriate aperture address into
1223  * userspace.
1224  */
1225 int
1226 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1227 			struct drm_file *file_priv)
1228 {
1229 	struct drm_i915_gem_mmap_gtt *args = data;
1230 	struct drm_i915_private *dev_priv = dev->dev_private;
1231 	struct drm_gem_object *obj;
1232 	struct drm_i915_gem_object *obj_priv;
1233 	int ret;
1234 
1235 	if (!(dev->driver->driver_features & DRIVER_GEM))
1236 		return -ENODEV;
1237 
1238 	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1239 	if (obj == NULL)
1240 		return -EBADF;
1241 
1242 	mutex_lock(&dev->struct_mutex);
1243 
1244 	obj_priv = obj->driver_private;
1245 
1246 	if (!obj_priv->mmap_offset) {
1247 		ret = i915_gem_create_mmap_offset(obj);
1248 		if (ret) {
1249 			drm_gem_object_unreference(obj);
1250 			mutex_unlock(&dev->struct_mutex);
1251 			return ret;
1252 		}
1253 	}
1254 
1255 	args->offset = obj_priv->mmap_offset;
1256 
1257 	obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
1258 
1259 	/* Make sure the alignment is correct for fence regs etc */
1260 	if (obj_priv->agp_mem &&
1261 	    (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
1262 		drm_gem_object_unreference(obj);
1263 		mutex_unlock(&dev->struct_mutex);
1264 		return -EINVAL;
1265 	}
1266 
1267 	/*
1268 	 * Pull it into the GTT so that we have a page list (makes the
1269 	 * initial fault faster and any subsequent flushing possible).
1270 	 */
1271 	if (!obj_priv->agp_mem) {
1272 		ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1273 		if (ret) {
1274 			drm_gem_object_unreference(obj);
1275 			mutex_unlock(&dev->struct_mutex);
1276 			return ret;
1277 		}
1278 		list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
1279 	}
1280 
1281 	drm_gem_object_unreference(obj);
1282 	mutex_unlock(&dev->struct_mutex);
1283 
1284 	return 0;
1285 }
1286 
1287 static void
1288 i915_gem_object_put_pages(struct drm_gem_object *obj)
1289 {
1290 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1291 	int page_count = obj->size / PAGE_SIZE;
1292 	int i;
1293 
1294 	BUG_ON(obj_priv->pages_refcount == 0);
1295 
1296 	if (--obj_priv->pages_refcount != 0)
1297 		return;
1298 
1299 	for (i = 0; i < page_count; i++)
1300 		if (obj_priv->pages[i] != NULL) {
1301 			if (obj_priv->dirty)
1302 				set_page_dirty(obj_priv->pages[i]);
1303 			mark_page_accessed(obj_priv->pages[i]);
1304 			page_cache_release(obj_priv->pages[i]);
1305 		}
1306 	obj_priv->dirty = 0;
1307 
1308 	drm_free(obj_priv->pages,
1309 		 page_count * sizeof(struct page *),
1310 		 DRM_MEM_DRIVER);
1311 	obj_priv->pages = NULL;
1312 }
1313 
1314 static void
1315 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1316 {
1317 	struct drm_device *dev = obj->dev;
1318 	drm_i915_private_t *dev_priv = dev->dev_private;
1319 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1320 
1321 	/* Add a reference if we're newly entering the active list. */
1322 	if (!obj_priv->active) {
1323 		drm_gem_object_reference(obj);
1324 		obj_priv->active = 1;
1325 	}
1326 	/* Move from whatever list we were on to the tail of execution. */
1327 	list_move_tail(&obj_priv->list,
1328 		       &dev_priv->mm.active_list);
1329 	obj_priv->last_rendering_seqno = seqno;
1330 }
1331 
1332 static void
1333 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1334 {
1335 	struct drm_device *dev = obj->dev;
1336 	drm_i915_private_t *dev_priv = dev->dev_private;
1337 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1338 
1339 	BUG_ON(!obj_priv->active);
1340 	list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1341 	obj_priv->last_rendering_seqno = 0;
1342 }
1343 
1344 static void
1345 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1346 {
1347 	struct drm_device *dev = obj->dev;
1348 	drm_i915_private_t *dev_priv = dev->dev_private;
1349 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1350 
1351 	i915_verify_inactive(dev, __FILE__, __LINE__);
1352 	if (obj_priv->pin_count != 0)
1353 		list_del_init(&obj_priv->list);
1354 	else
1355 		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1356 
1357 	obj_priv->last_rendering_seqno = 0;
1358 	if (obj_priv->active) {
1359 		obj_priv->active = 0;
1360 		drm_gem_object_unreference(obj);
1361 	}
1362 	i915_verify_inactive(dev, __FILE__, __LINE__);
1363 }
1364 
1365 /**
1366  * Creates a new sequence number, emitting a write of it to the status page
1367  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1368  *
1369  * Must be called with struct_lock held.
1370  *
1371  * Returned sequence numbers are nonzero on success.
1372  */
1373 static uint32_t
1374 i915_add_request(struct drm_device *dev, uint32_t flush_domains)
1375 {
1376 	drm_i915_private_t *dev_priv = dev->dev_private;
1377 	struct drm_i915_gem_request *request;
1378 	uint32_t seqno;
1379 	int was_empty;
1380 	RING_LOCALS;
1381 
1382 	request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
1383 	if (request == NULL)
1384 		return 0;
1385 
1386 	/* Grab the seqno we're going to make this request be, and bump the
1387 	 * next (skipping 0 so it can be the reserved no-seqno value).
1388 	 */
1389 	seqno = dev_priv->mm.next_gem_seqno;
1390 	dev_priv->mm.next_gem_seqno++;
1391 	if (dev_priv->mm.next_gem_seqno == 0)
1392 		dev_priv->mm.next_gem_seqno++;
1393 
1394 	BEGIN_LP_RING(4);
1395 	OUT_RING(MI_STORE_DWORD_INDEX);
1396 	OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1397 	OUT_RING(seqno);
1398 
1399 	OUT_RING(MI_USER_INTERRUPT);
1400 	ADVANCE_LP_RING();
1401 
1402 	DRM_DEBUG("%d\n", seqno);
1403 
1404 	request->seqno = seqno;
1405 	request->emitted_jiffies = jiffies;
1406 	was_empty = list_empty(&dev_priv->mm.request_list);
1407 	list_add_tail(&request->list, &dev_priv->mm.request_list);
1408 
1409 	/* Associate any objects on the flushing list matching the write
1410 	 * domain we're flushing with our flush.
1411 	 */
1412 	if (flush_domains != 0) {
1413 		struct drm_i915_gem_object *obj_priv, *next;
1414 
1415 		list_for_each_entry_safe(obj_priv, next,
1416 					 &dev_priv->mm.flushing_list, list) {
1417 			struct drm_gem_object *obj = obj_priv->obj;
1418 
1419 			if ((obj->write_domain & flush_domains) ==
1420 			    obj->write_domain) {
1421 				obj->write_domain = 0;
1422 				i915_gem_object_move_to_active(obj, seqno);
1423 			}
1424 		}
1425 
1426 	}
1427 
1428 	if (was_empty && !dev_priv->mm.suspended)
1429 		schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1430 	return seqno;
1431 }
1432 
1433 /**
1434  * Command execution barrier
1435  *
1436  * Ensures that all commands in the ring are finished
1437  * before signalling the CPU
1438  */
1439 static uint32_t
1440 i915_retire_commands(struct drm_device *dev)
1441 {
1442 	drm_i915_private_t *dev_priv = dev->dev_private;
1443 	uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1444 	uint32_t flush_domains = 0;
1445 	RING_LOCALS;
1446 
1447 	/* The sampler always gets flushed on i965 (sigh) */
1448 	if (IS_I965G(dev))
1449 		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1450 	BEGIN_LP_RING(2);
1451 	OUT_RING(cmd);
1452 	OUT_RING(0); /* noop */
1453 	ADVANCE_LP_RING();
1454 	return flush_domains;
1455 }
1456 
1457 /**
1458  * Moves buffers associated only with the given active seqno from the active
1459  * to inactive list, potentially freeing them.
1460  */
1461 static void
1462 i915_gem_retire_request(struct drm_device *dev,
1463 			struct drm_i915_gem_request *request)
1464 {
1465 	drm_i915_private_t *dev_priv = dev->dev_private;
1466 
1467 	/* Move any buffers on the active list that are no longer referenced
1468 	 * by the ringbuffer to the flushing/inactive lists as appropriate.
1469 	 */
1470 	while (!list_empty(&dev_priv->mm.active_list)) {
1471 		struct drm_gem_object *obj;
1472 		struct drm_i915_gem_object *obj_priv;
1473 
1474 		obj_priv = list_first_entry(&dev_priv->mm.active_list,
1475 					    struct drm_i915_gem_object,
1476 					    list);
1477 		obj = obj_priv->obj;
1478 
1479 		/* If the seqno being retired doesn't match the oldest in the
1480 		 * list, then the oldest in the list must still be newer than
1481 		 * this seqno.
1482 		 */
1483 		if (obj_priv->last_rendering_seqno != request->seqno)
1484 			return;
1485 
1486 #if WATCH_LRU
1487 		DRM_INFO("%s: retire %d moves to inactive list %p\n",
1488 			 __func__, request->seqno, obj);
1489 #endif
1490 
1491 		if (obj->write_domain != 0)
1492 			i915_gem_object_move_to_flushing(obj);
1493 		else
1494 			i915_gem_object_move_to_inactive(obj);
1495 	}
1496 }
1497 
1498 /**
1499  * Returns true if seq1 is later than seq2.
1500  */
1501 static int
1502 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1503 {
1504 	return (int32_t)(seq1 - seq2) >= 0;
1505 }
1506 
1507 uint32_t
1508 i915_get_gem_seqno(struct drm_device *dev)
1509 {
1510 	drm_i915_private_t *dev_priv = dev->dev_private;
1511 
1512 	return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1513 }
1514 
1515 /**
1516  * This function clears the request list as sequence numbers are passed.
1517  */
1518 void
1519 i915_gem_retire_requests(struct drm_device *dev)
1520 {
1521 	drm_i915_private_t *dev_priv = dev->dev_private;
1522 	uint32_t seqno;
1523 
1524 	if (!dev_priv->hw_status_page)
1525 		return;
1526 
1527 	seqno = i915_get_gem_seqno(dev);
1528 
1529 	while (!list_empty(&dev_priv->mm.request_list)) {
1530 		struct drm_i915_gem_request *request;
1531 		uint32_t retiring_seqno;
1532 
1533 		request = list_first_entry(&dev_priv->mm.request_list,
1534 					   struct drm_i915_gem_request,
1535 					   list);
1536 		retiring_seqno = request->seqno;
1537 
1538 		if (i915_seqno_passed(seqno, retiring_seqno) ||
1539 		    dev_priv->mm.wedged) {
1540 			i915_gem_retire_request(dev, request);
1541 
1542 			list_del(&request->list);
1543 			drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
1544 		} else
1545 			break;
1546 	}
1547 }
1548 
1549 void
1550 i915_gem_retire_work_handler(struct work_struct *work)
1551 {
1552 	drm_i915_private_t *dev_priv;
1553 	struct drm_device *dev;
1554 
1555 	dev_priv = container_of(work, drm_i915_private_t,
1556 				mm.retire_work.work);
1557 	dev = dev_priv->dev;
1558 
1559 	mutex_lock(&dev->struct_mutex);
1560 	i915_gem_retire_requests(dev);
1561 	if (!dev_priv->mm.suspended &&
1562 	    !list_empty(&dev_priv->mm.request_list))
1563 		schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1564 	mutex_unlock(&dev->struct_mutex);
1565 }
1566 
1567 /**
1568  * Waits for a sequence number to be signaled, and cleans up the
1569  * request and object lists appropriately for that event.
1570  */
1571 static int
1572 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1573 {
1574 	drm_i915_private_t *dev_priv = dev->dev_private;
1575 	int ret = 0;
1576 
1577 	BUG_ON(seqno == 0);
1578 
1579 	if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1580 		dev_priv->mm.waiting_gem_seqno = seqno;
1581 		i915_user_irq_get(dev);
1582 		ret = wait_event_interruptible(dev_priv->irq_queue,
1583 					       i915_seqno_passed(i915_get_gem_seqno(dev),
1584 								 seqno) ||
1585 					       dev_priv->mm.wedged);
1586 		i915_user_irq_put(dev);
1587 		dev_priv->mm.waiting_gem_seqno = 0;
1588 	}
1589 	if (dev_priv->mm.wedged)
1590 		ret = -EIO;
1591 
1592 	if (ret && ret != -ERESTARTSYS)
1593 		DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1594 			  __func__, ret, seqno, i915_get_gem_seqno(dev));
1595 
1596 	/* Directly dispatch request retiring.  While we have the work queue
1597 	 * to handle this, the waiter on a request often wants an associated
1598 	 * buffer to have made it to the inactive list, and we would need
1599 	 * a separate wait queue to handle that.
1600 	 */
1601 	if (ret == 0)
1602 		i915_gem_retire_requests(dev);
1603 
1604 	return ret;
1605 }
1606 
1607 static void
1608 i915_gem_flush(struct drm_device *dev,
1609 	       uint32_t invalidate_domains,
1610 	       uint32_t flush_domains)
1611 {
1612 	drm_i915_private_t *dev_priv = dev->dev_private;
1613 	uint32_t cmd;
1614 	RING_LOCALS;
1615 
1616 #if WATCH_EXEC
1617 	DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1618 		  invalidate_domains, flush_domains);
1619 #endif
1620 
1621 	if (flush_domains & I915_GEM_DOMAIN_CPU)
1622 		drm_agp_chipset_flush(dev);
1623 
1624 	if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
1625 						     I915_GEM_DOMAIN_GTT)) {
1626 		/*
1627 		 * read/write caches:
1628 		 *
1629 		 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1630 		 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1631 		 * also flushed at 2d versus 3d pipeline switches.
1632 		 *
1633 		 * read-only caches:
1634 		 *
1635 		 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1636 		 * MI_READ_FLUSH is set, and is always flushed on 965.
1637 		 *
1638 		 * I915_GEM_DOMAIN_COMMAND may not exist?
1639 		 *
1640 		 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1641 		 * invalidated when MI_EXE_FLUSH is set.
1642 		 *
1643 		 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1644 		 * invalidated with every MI_FLUSH.
1645 		 *
1646 		 * TLBs:
1647 		 *
1648 		 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1649 		 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1650 		 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1651 		 * are flushed at any MI_FLUSH.
1652 		 */
1653 
1654 		cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1655 		if ((invalidate_domains|flush_domains) &
1656 		    I915_GEM_DOMAIN_RENDER)
1657 			cmd &= ~MI_NO_WRITE_FLUSH;
1658 		if (!IS_I965G(dev)) {
1659 			/*
1660 			 * On the 965, the sampler cache always gets flushed
1661 			 * and this bit is reserved.
1662 			 */
1663 			if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1664 				cmd |= MI_READ_FLUSH;
1665 		}
1666 		if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1667 			cmd |= MI_EXE_FLUSH;
1668 
1669 #if WATCH_EXEC
1670 		DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1671 #endif
1672 		BEGIN_LP_RING(2);
1673 		OUT_RING(cmd);
1674 		OUT_RING(0); /* noop */
1675 		ADVANCE_LP_RING();
1676 	}
1677 }
1678 
1679 /**
1680  * Ensures that all rendering to the object has completed and the object is
1681  * safe to unbind from the GTT or access from the CPU.
1682  */
1683 static int
1684 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1685 {
1686 	struct drm_device *dev = obj->dev;
1687 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1688 	int ret;
1689 
1690 	/* This function only exists to support waiting for existing rendering,
1691 	 * not for emitting required flushes.
1692 	 */
1693 	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1694 
1695 	/* If there is rendering queued on the buffer being evicted, wait for
1696 	 * it.
1697 	 */
1698 	if (obj_priv->active) {
1699 #if WATCH_BUF
1700 		DRM_INFO("%s: object %p wait for seqno %08x\n",
1701 			  __func__, obj, obj_priv->last_rendering_seqno);
1702 #endif
1703 		ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1704 		if (ret != 0)
1705 			return ret;
1706 	}
1707 
1708 	return 0;
1709 }
1710 
1711 /**
1712  * Unbinds an object from the GTT aperture.
1713  */
1714 int
1715 i915_gem_object_unbind(struct drm_gem_object *obj)
1716 {
1717 	struct drm_device *dev = obj->dev;
1718 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1719 	loff_t offset;
1720 	int ret = 0;
1721 
1722 #if WATCH_BUF
1723 	DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1724 	DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1725 #endif
1726 	if (obj_priv->gtt_space == NULL)
1727 		return 0;
1728 
1729 	if (obj_priv->pin_count != 0) {
1730 		DRM_ERROR("Attempting to unbind pinned buffer\n");
1731 		return -EINVAL;
1732 	}
1733 
1734 	/* Move the object to the CPU domain to ensure that
1735 	 * any possible CPU writes while it's not in the GTT
1736 	 * are flushed when we go to remap it. This will
1737 	 * also ensure that all pending GPU writes are finished
1738 	 * before we unbind.
1739 	 */
1740 	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1741 	if (ret) {
1742 		if (ret != -ERESTARTSYS)
1743 			DRM_ERROR("set_domain failed: %d\n", ret);
1744 		return ret;
1745 	}
1746 
1747 	if (obj_priv->agp_mem != NULL) {
1748 		drm_unbind_agp(obj_priv->agp_mem);
1749 		drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1750 		obj_priv->agp_mem = NULL;
1751 	}
1752 
1753 	BUG_ON(obj_priv->active);
1754 
1755 	/* blow away mappings if mapped through GTT */
1756 	offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
1757 	if (dev->dev_mapping)
1758 		unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
1759 
1760 	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1761 		i915_gem_clear_fence_reg(obj);
1762 
1763 	i915_gem_object_put_pages(obj);
1764 
1765 	if (obj_priv->gtt_space) {
1766 		atomic_dec(&dev->gtt_count);
1767 		atomic_sub(obj->size, &dev->gtt_memory);
1768 
1769 		drm_mm_put_block(obj_priv->gtt_space);
1770 		obj_priv->gtt_space = NULL;
1771 	}
1772 
1773 	/* Remove ourselves from the LRU list if present. */
1774 	if (!list_empty(&obj_priv->list))
1775 		list_del_init(&obj_priv->list);
1776 
1777 	return 0;
1778 }
1779 
1780 static int
1781 i915_gem_evict_something(struct drm_device *dev)
1782 {
1783 	drm_i915_private_t *dev_priv = dev->dev_private;
1784 	struct drm_gem_object *obj;
1785 	struct drm_i915_gem_object *obj_priv;
1786 	int ret = 0;
1787 
1788 	for (;;) {
1789 		/* If there's an inactive buffer available now, grab it
1790 		 * and be done.
1791 		 */
1792 		if (!list_empty(&dev_priv->mm.inactive_list)) {
1793 			obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1794 						    struct drm_i915_gem_object,
1795 						    list);
1796 			obj = obj_priv->obj;
1797 			BUG_ON(obj_priv->pin_count != 0);
1798 #if WATCH_LRU
1799 			DRM_INFO("%s: evicting %p\n", __func__, obj);
1800 #endif
1801 			BUG_ON(obj_priv->active);
1802 
1803 			/* Wait on the rendering and unbind the buffer. */
1804 			ret = i915_gem_object_unbind(obj);
1805 			break;
1806 		}
1807 
1808 		/* If we didn't get anything, but the ring is still processing
1809 		 * things, wait for one of those things to finish and hopefully
1810 		 * leave us a buffer to evict.
1811 		 */
1812 		if (!list_empty(&dev_priv->mm.request_list)) {
1813 			struct drm_i915_gem_request *request;
1814 
1815 			request = list_first_entry(&dev_priv->mm.request_list,
1816 						   struct drm_i915_gem_request,
1817 						   list);
1818 
1819 			ret = i915_wait_request(dev, request->seqno);
1820 			if (ret)
1821 				break;
1822 
1823 			/* if waiting caused an object to become inactive,
1824 			 * then loop around and wait for it. Otherwise, we
1825 			 * assume that waiting freed and unbound something,
1826 			 * so there should now be some space in the GTT
1827 			 */
1828 			if (!list_empty(&dev_priv->mm.inactive_list))
1829 				continue;
1830 			break;
1831 		}
1832 
1833 		/* If we didn't have anything on the request list but there
1834 		 * are buffers awaiting a flush, emit one and try again.
1835 		 * When we wait on it, those buffers waiting for that flush
1836 		 * will get moved to inactive.
1837 		 */
1838 		if (!list_empty(&dev_priv->mm.flushing_list)) {
1839 			obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1840 						    struct drm_i915_gem_object,
1841 						    list);
1842 			obj = obj_priv->obj;
1843 
1844 			i915_gem_flush(dev,
1845 				       obj->write_domain,
1846 				       obj->write_domain);
1847 			i915_add_request(dev, obj->write_domain);
1848 
1849 			obj = NULL;
1850 			continue;
1851 		}
1852 
1853 		DRM_ERROR("inactive empty %d request empty %d "
1854 			  "flushing empty %d\n",
1855 			  list_empty(&dev_priv->mm.inactive_list),
1856 			  list_empty(&dev_priv->mm.request_list),
1857 			  list_empty(&dev_priv->mm.flushing_list));
1858 		/* If we didn't do any of the above, there's nothing to be done
1859 		 * and we just can't fit it in.
1860 		 */
1861 		return -ENOMEM;
1862 	}
1863 	return ret;
1864 }
1865 
1866 static int
1867 i915_gem_evict_everything(struct drm_device *dev)
1868 {
1869 	int ret;
1870 
1871 	for (;;) {
1872 		ret = i915_gem_evict_something(dev);
1873 		if (ret != 0)
1874 			break;
1875 	}
1876 	if (ret == -ENOMEM)
1877 		return 0;
1878 	return ret;
1879 }
1880 
1881 static int
1882 i915_gem_object_get_pages(struct drm_gem_object *obj)
1883 {
1884 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1885 	int page_count, i;
1886 	struct address_space *mapping;
1887 	struct inode *inode;
1888 	struct page *page;
1889 	int ret;
1890 
1891 	if (obj_priv->pages_refcount++ != 0)
1892 		return 0;
1893 
1894 	/* Get the list of pages out of our struct file.  They'll be pinned
1895 	 * at this point until we release them.
1896 	 */
1897 	page_count = obj->size / PAGE_SIZE;
1898 	BUG_ON(obj_priv->pages != NULL);
1899 	obj_priv->pages = drm_calloc(page_count, sizeof(struct page *),
1900 				     DRM_MEM_DRIVER);
1901 	if (obj_priv->pages == NULL) {
1902 		DRM_ERROR("Faled to allocate page list\n");
1903 		obj_priv->pages_refcount--;
1904 		return -ENOMEM;
1905 	}
1906 
1907 	inode = obj->filp->f_path.dentry->d_inode;
1908 	mapping = inode->i_mapping;
1909 	for (i = 0; i < page_count; i++) {
1910 		page = read_mapping_page(mapping, i, NULL);
1911 		if (IS_ERR(page)) {
1912 			ret = PTR_ERR(page);
1913 			DRM_ERROR("read_mapping_page failed: %d\n", ret);
1914 			i915_gem_object_put_pages(obj);
1915 			return ret;
1916 		}
1917 		obj_priv->pages[i] = page;
1918 	}
1919 	return 0;
1920 }
1921 
1922 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
1923 {
1924 	struct drm_gem_object *obj = reg->obj;
1925 	struct drm_device *dev = obj->dev;
1926 	drm_i915_private_t *dev_priv = dev->dev_private;
1927 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1928 	int regnum = obj_priv->fence_reg;
1929 	uint64_t val;
1930 
1931 	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
1932 		    0xfffff000) << 32;
1933 	val |= obj_priv->gtt_offset & 0xfffff000;
1934 	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
1935 	if (obj_priv->tiling_mode == I915_TILING_Y)
1936 		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
1937 	val |= I965_FENCE_REG_VALID;
1938 
1939 	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
1940 }
1941 
1942 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
1943 {
1944 	struct drm_gem_object *obj = reg->obj;
1945 	struct drm_device *dev = obj->dev;
1946 	drm_i915_private_t *dev_priv = dev->dev_private;
1947 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1948 	int regnum = obj_priv->fence_reg;
1949 	int tile_width;
1950 	uint32_t fence_reg, val;
1951 	uint32_t pitch_val;
1952 
1953 	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1954 	    (obj_priv->gtt_offset & (obj->size - 1))) {
1955 		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
1956 		     __func__, obj_priv->gtt_offset, obj->size);
1957 		return;
1958 	}
1959 
1960 	if (obj_priv->tiling_mode == I915_TILING_Y &&
1961 	    HAS_128_BYTE_Y_TILING(dev))
1962 		tile_width = 128;
1963 	else
1964 		tile_width = 512;
1965 
1966 	/* Note: pitch better be a power of two tile widths */
1967 	pitch_val = obj_priv->stride / tile_width;
1968 	pitch_val = ffs(pitch_val) - 1;
1969 
1970 	val = obj_priv->gtt_offset;
1971 	if (obj_priv->tiling_mode == I915_TILING_Y)
1972 		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1973 	val |= I915_FENCE_SIZE_BITS(obj->size);
1974 	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1975 	val |= I830_FENCE_REG_VALID;
1976 
1977 	if (regnum < 8)
1978 		fence_reg = FENCE_REG_830_0 + (regnum * 4);
1979 	else
1980 		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
1981 	I915_WRITE(fence_reg, val);
1982 }
1983 
1984 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
1985 {
1986 	struct drm_gem_object *obj = reg->obj;
1987 	struct drm_device *dev = obj->dev;
1988 	drm_i915_private_t *dev_priv = dev->dev_private;
1989 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1990 	int regnum = obj_priv->fence_reg;
1991 	uint32_t val;
1992 	uint32_t pitch_val;
1993 
1994 	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1995 	    (obj_priv->gtt_offset & (obj->size - 1))) {
1996 		WARN(1, "%s: object 0x%08x not 1M or size aligned\n",
1997 		     __func__, obj_priv->gtt_offset);
1998 		return;
1999 	}
2000 
2001 	pitch_val = (obj_priv->stride / 128) - 1;
2002 
2003 	val = obj_priv->gtt_offset;
2004 	if (obj_priv->tiling_mode == I915_TILING_Y)
2005 		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2006 	val |= I830_FENCE_SIZE_BITS(obj->size);
2007 	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2008 	val |= I830_FENCE_REG_VALID;
2009 
2010 	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2011 
2012 }
2013 
2014 /**
2015  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2016  * @obj: object to map through a fence reg
2017  * @write: object is about to be written
2018  *
2019  * When mapping objects through the GTT, userspace wants to be able to write
2020  * to them without having to worry about swizzling if the object is tiled.
2021  *
2022  * This function walks the fence regs looking for a free one for @obj,
2023  * stealing one if it can't find any.
2024  *
2025  * It then sets up the reg based on the object's properties: address, pitch
2026  * and tiling format.
2027  */
2028 static int
2029 i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
2030 {
2031 	struct drm_device *dev = obj->dev;
2032 	struct drm_i915_private *dev_priv = dev->dev_private;
2033 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
2034 	struct drm_i915_fence_reg *reg = NULL;
2035 	struct drm_i915_gem_object *old_obj_priv = NULL;
2036 	int i, ret, avail;
2037 
2038 	switch (obj_priv->tiling_mode) {
2039 	case I915_TILING_NONE:
2040 		WARN(1, "allocating a fence for non-tiled object?\n");
2041 		break;
2042 	case I915_TILING_X:
2043 		if (!obj_priv->stride)
2044 			return -EINVAL;
2045 		WARN((obj_priv->stride & (512 - 1)),
2046 		     "object 0x%08x is X tiled but has non-512B pitch\n",
2047 		     obj_priv->gtt_offset);
2048 		break;
2049 	case I915_TILING_Y:
2050 		if (!obj_priv->stride)
2051 			return -EINVAL;
2052 		WARN((obj_priv->stride & (128 - 1)),
2053 		     "object 0x%08x is Y tiled but has non-128B pitch\n",
2054 		     obj_priv->gtt_offset);
2055 		break;
2056 	}
2057 
2058 	/* First try to find a free reg */
2059 try_again:
2060 	avail = 0;
2061 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2062 		reg = &dev_priv->fence_regs[i];
2063 		if (!reg->obj)
2064 			break;
2065 
2066 		old_obj_priv = reg->obj->driver_private;
2067 		if (!old_obj_priv->pin_count)
2068 		    avail++;
2069 	}
2070 
2071 	/* None available, try to steal one or wait for a user to finish */
2072 	if (i == dev_priv->num_fence_regs) {
2073 		uint32_t seqno = dev_priv->mm.next_gem_seqno;
2074 		loff_t offset;
2075 
2076 		if (avail == 0)
2077 			return -ENOMEM;
2078 
2079 		for (i = dev_priv->fence_reg_start;
2080 		     i < dev_priv->num_fence_regs; i++) {
2081 			uint32_t this_seqno;
2082 
2083 			reg = &dev_priv->fence_regs[i];
2084 			old_obj_priv = reg->obj->driver_private;
2085 
2086 			if (old_obj_priv->pin_count)
2087 				continue;
2088 
2089 			/* i915 uses fences for GPU access to tiled buffers */
2090 			if (IS_I965G(dev) || !old_obj_priv->active)
2091 				break;
2092 
2093 			/* find the seqno of the first available fence */
2094 			this_seqno = old_obj_priv->last_rendering_seqno;
2095 			if (this_seqno != 0 &&
2096 			    reg->obj->write_domain == 0 &&
2097 			    i915_seqno_passed(seqno, this_seqno))
2098 				seqno = this_seqno;
2099 		}
2100 
2101 		/*
2102 		 * Now things get ugly... we have to wait for one of the
2103 		 * objects to finish before trying again.
2104 		 */
2105 		if (i == dev_priv->num_fence_regs) {
2106 			if (seqno == dev_priv->mm.next_gem_seqno) {
2107 				i915_gem_flush(dev,
2108 					       I915_GEM_GPU_DOMAINS,
2109 					       I915_GEM_GPU_DOMAINS);
2110 				seqno = i915_add_request(dev,
2111 							 I915_GEM_GPU_DOMAINS);
2112 				if (seqno == 0)
2113 					return -ENOMEM;
2114 			}
2115 
2116 			ret = i915_wait_request(dev, seqno);
2117 			if (ret)
2118 				return ret;
2119 			goto try_again;
2120 		}
2121 
2122 		BUG_ON(old_obj_priv->active ||
2123 		       (reg->obj->write_domain & I915_GEM_GPU_DOMAINS));
2124 
2125 		/*
2126 		 * Zap this virtual mapping so we can set up a fence again
2127 		 * for this object next time we need it.
2128 		 */
2129 		offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
2130 		if (dev->dev_mapping)
2131 			unmap_mapping_range(dev->dev_mapping, offset,
2132 					    reg->obj->size, 1);
2133 		old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2134 	}
2135 
2136 	obj_priv->fence_reg = i;
2137 	reg->obj = obj;
2138 
2139 	if (IS_I965G(dev))
2140 		i965_write_fence_reg(reg);
2141 	else if (IS_I9XX(dev))
2142 		i915_write_fence_reg(reg);
2143 	else
2144 		i830_write_fence_reg(reg);
2145 
2146 	return 0;
2147 }
2148 
2149 /**
2150  * i915_gem_clear_fence_reg - clear out fence register info
2151  * @obj: object to clear
2152  *
2153  * Zeroes out the fence register itself and clears out the associated
2154  * data structures in dev_priv and obj_priv.
2155  */
2156 static void
2157 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2158 {
2159 	struct drm_device *dev = obj->dev;
2160 	drm_i915_private_t *dev_priv = dev->dev_private;
2161 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
2162 
2163 	if (IS_I965G(dev))
2164 		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2165 	else {
2166 		uint32_t fence_reg;
2167 
2168 		if (obj_priv->fence_reg < 8)
2169 			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2170 		else
2171 			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2172 						       8) * 4;
2173 
2174 		I915_WRITE(fence_reg, 0);
2175 	}
2176 
2177 	dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2178 	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2179 }
2180 
2181 /**
2182  * Finds free space in the GTT aperture and binds the object there.
2183  */
2184 static int
2185 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2186 {
2187 	struct drm_device *dev = obj->dev;
2188 	drm_i915_private_t *dev_priv = dev->dev_private;
2189 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
2190 	struct drm_mm_node *free_space;
2191 	int page_count, ret;
2192 
2193 	if (dev_priv->mm.suspended)
2194 		return -EBUSY;
2195 	if (alignment == 0)
2196 		alignment = i915_gem_get_gtt_alignment(obj);
2197 	if (alignment & (PAGE_SIZE - 1)) {
2198 		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2199 		return -EINVAL;
2200 	}
2201 
2202  search_free:
2203 	free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2204 					obj->size, alignment, 0);
2205 	if (free_space != NULL) {
2206 		obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2207 						       alignment);
2208 		if (obj_priv->gtt_space != NULL) {
2209 			obj_priv->gtt_space->private = obj;
2210 			obj_priv->gtt_offset = obj_priv->gtt_space->start;
2211 		}
2212 	}
2213 	if (obj_priv->gtt_space == NULL) {
2214 		/* If the gtt is empty and we're still having trouble
2215 		 * fitting our object in, we're out of memory.
2216 		 */
2217 #if WATCH_LRU
2218 		DRM_INFO("%s: GTT full, evicting something\n", __func__);
2219 #endif
2220 		if (list_empty(&dev_priv->mm.inactive_list) &&
2221 		    list_empty(&dev_priv->mm.flushing_list) &&
2222 		    list_empty(&dev_priv->mm.active_list)) {
2223 			DRM_ERROR("GTT full, but LRU list empty\n");
2224 			return -ENOMEM;
2225 		}
2226 
2227 		ret = i915_gem_evict_something(dev);
2228 		if (ret != 0) {
2229 			if (ret != -ERESTARTSYS)
2230 				DRM_ERROR("Failed to evict a buffer %d\n", ret);
2231 			return ret;
2232 		}
2233 		goto search_free;
2234 	}
2235 
2236 #if WATCH_BUF
2237 	DRM_INFO("Binding object of size %d at 0x%08x\n",
2238 		 obj->size, obj_priv->gtt_offset);
2239 #endif
2240 	ret = i915_gem_object_get_pages(obj);
2241 	if (ret) {
2242 		drm_mm_put_block(obj_priv->gtt_space);
2243 		obj_priv->gtt_space = NULL;
2244 		return ret;
2245 	}
2246 
2247 	page_count = obj->size / PAGE_SIZE;
2248 	/* Create an AGP memory structure pointing at our pages, and bind it
2249 	 * into the GTT.
2250 	 */
2251 	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2252 					       obj_priv->pages,
2253 					       page_count,
2254 					       obj_priv->gtt_offset,
2255 					       obj_priv->agp_type);
2256 	if (obj_priv->agp_mem == NULL) {
2257 		i915_gem_object_put_pages(obj);
2258 		drm_mm_put_block(obj_priv->gtt_space);
2259 		obj_priv->gtt_space = NULL;
2260 		return -ENOMEM;
2261 	}
2262 	atomic_inc(&dev->gtt_count);
2263 	atomic_add(obj->size, &dev->gtt_memory);
2264 
2265 	/* Assert that the object is not currently in any GPU domain. As it
2266 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2267 	 * a GPU cache
2268 	 */
2269 	BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2270 	BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2271 
2272 	return 0;
2273 }
2274 
2275 void
2276 i915_gem_clflush_object(struct drm_gem_object *obj)
2277 {
2278 	struct drm_i915_gem_object	*obj_priv = obj->driver_private;
2279 
2280 	/* If we don't have a page list set up, then we're not pinned
2281 	 * to GPU, and we can ignore the cache flush because it'll happen
2282 	 * again at bind time.
2283 	 */
2284 	if (obj_priv->pages == NULL)
2285 		return;
2286 
2287 	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2288 }
2289 
2290 /** Flushes any GPU write domain for the object if it's dirty. */
2291 static void
2292 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2293 {
2294 	struct drm_device *dev = obj->dev;
2295 	uint32_t seqno;
2296 
2297 	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2298 		return;
2299 
2300 	/* Queue the GPU write cache flushing we need. */
2301 	i915_gem_flush(dev, 0, obj->write_domain);
2302 	seqno = i915_add_request(dev, obj->write_domain);
2303 	obj->write_domain = 0;
2304 	i915_gem_object_move_to_active(obj, seqno);
2305 }
2306 
2307 /** Flushes the GTT write domain for the object if it's dirty. */
2308 static void
2309 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2310 {
2311 	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2312 		return;
2313 
2314 	/* No actual flushing is required for the GTT write domain.   Writes
2315 	 * to it immediately go to main memory as far as we know, so there's
2316 	 * no chipset flush.  It also doesn't land in render cache.
2317 	 */
2318 	obj->write_domain = 0;
2319 }
2320 
2321 /** Flushes the CPU write domain for the object if it's dirty. */
2322 static void
2323 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2324 {
2325 	struct drm_device *dev = obj->dev;
2326 
2327 	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2328 		return;
2329 
2330 	i915_gem_clflush_object(obj);
2331 	drm_agp_chipset_flush(dev);
2332 	obj->write_domain = 0;
2333 }
2334 
2335 /**
2336  * Moves a single object to the GTT read, and possibly write domain.
2337  *
2338  * This function returns when the move is complete, including waiting on
2339  * flushes to occur.
2340  */
2341 int
2342 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2343 {
2344 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
2345 	int ret;
2346 
2347 	/* Not valid to be called on unbound objects. */
2348 	if (obj_priv->gtt_space == NULL)
2349 		return -EINVAL;
2350 
2351 	i915_gem_object_flush_gpu_write_domain(obj);
2352 	/* Wait on any GPU rendering and flushing to occur. */
2353 	ret = i915_gem_object_wait_rendering(obj);
2354 	if (ret != 0)
2355 		return ret;
2356 
2357 	/* If we're writing through the GTT domain, then CPU and GPU caches
2358 	 * will need to be invalidated at next use.
2359 	 */
2360 	if (write)
2361 		obj->read_domains &= I915_GEM_DOMAIN_GTT;
2362 
2363 	i915_gem_object_flush_cpu_write_domain(obj);
2364 
2365 	/* It should now be out of any other write domains, and we can update
2366 	 * the domain values for our changes.
2367 	 */
2368 	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2369 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
2370 	if (write) {
2371 		obj->write_domain = I915_GEM_DOMAIN_GTT;
2372 		obj_priv->dirty = 1;
2373 	}
2374 
2375 	return 0;
2376 }
2377 
2378 /**
2379  * Moves a single object to the CPU read, and possibly write domain.
2380  *
2381  * This function returns when the move is complete, including waiting on
2382  * flushes to occur.
2383  */
2384 static int
2385 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2386 {
2387 	int ret;
2388 
2389 	i915_gem_object_flush_gpu_write_domain(obj);
2390 	/* Wait on any GPU rendering and flushing to occur. */
2391 	ret = i915_gem_object_wait_rendering(obj);
2392 	if (ret != 0)
2393 		return ret;
2394 
2395 	i915_gem_object_flush_gtt_write_domain(obj);
2396 
2397 	/* If we have a partially-valid cache of the object in the CPU,
2398 	 * finish invalidating it and free the per-page flags.
2399 	 */
2400 	i915_gem_object_set_to_full_cpu_read_domain(obj);
2401 
2402 	/* Flush the CPU cache if it's still invalid. */
2403 	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2404 		i915_gem_clflush_object(obj);
2405 
2406 		obj->read_domains |= I915_GEM_DOMAIN_CPU;
2407 	}
2408 
2409 	/* It should now be out of any other write domains, and we can update
2410 	 * the domain values for our changes.
2411 	 */
2412 	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2413 
2414 	/* If we're writing through the CPU, then the GPU read domains will
2415 	 * need to be invalidated at next use.
2416 	 */
2417 	if (write) {
2418 		obj->read_domains &= I915_GEM_DOMAIN_CPU;
2419 		obj->write_domain = I915_GEM_DOMAIN_CPU;
2420 	}
2421 
2422 	return 0;
2423 }
2424 
2425 /*
2426  * Set the next domain for the specified object. This
2427  * may not actually perform the necessary flushing/invaliding though,
2428  * as that may want to be batched with other set_domain operations
2429  *
2430  * This is (we hope) the only really tricky part of gem. The goal
2431  * is fairly simple -- track which caches hold bits of the object
2432  * and make sure they remain coherent. A few concrete examples may
2433  * help to explain how it works. For shorthand, we use the notation
2434  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2435  * a pair of read and write domain masks.
2436  *
2437  * Case 1: the batch buffer
2438  *
2439  *	1. Allocated
2440  *	2. Written by CPU
2441  *	3. Mapped to GTT
2442  *	4. Read by GPU
2443  *	5. Unmapped from GTT
2444  *	6. Freed
2445  *
2446  *	Let's take these a step at a time
2447  *
2448  *	1. Allocated
2449  *		Pages allocated from the kernel may still have
2450  *		cache contents, so we set them to (CPU, CPU) always.
2451  *	2. Written by CPU (using pwrite)
2452  *		The pwrite function calls set_domain (CPU, CPU) and
2453  *		this function does nothing (as nothing changes)
2454  *	3. Mapped by GTT
2455  *		This function asserts that the object is not
2456  *		currently in any GPU-based read or write domains
2457  *	4. Read by GPU
2458  *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
2459  *		As write_domain is zero, this function adds in the
2460  *		current read domains (CPU+COMMAND, 0).
2461  *		flush_domains is set to CPU.
2462  *		invalidate_domains is set to COMMAND
2463  *		clflush is run to get data out of the CPU caches
2464  *		then i915_dev_set_domain calls i915_gem_flush to
2465  *		emit an MI_FLUSH and drm_agp_chipset_flush
2466  *	5. Unmapped from GTT
2467  *		i915_gem_object_unbind calls set_domain (CPU, CPU)
2468  *		flush_domains and invalidate_domains end up both zero
2469  *		so no flushing/invalidating happens
2470  *	6. Freed
2471  *		yay, done
2472  *
2473  * Case 2: The shared render buffer
2474  *
2475  *	1. Allocated
2476  *	2. Mapped to GTT
2477  *	3. Read/written by GPU
2478  *	4. set_domain to (CPU,CPU)
2479  *	5. Read/written by CPU
2480  *	6. Read/written by GPU
2481  *
2482  *	1. Allocated
2483  *		Same as last example, (CPU, CPU)
2484  *	2. Mapped to GTT
2485  *		Nothing changes (assertions find that it is not in the GPU)
2486  *	3. Read/written by GPU
2487  *		execbuffer calls set_domain (RENDER, RENDER)
2488  *		flush_domains gets CPU
2489  *		invalidate_domains gets GPU
2490  *		clflush (obj)
2491  *		MI_FLUSH and drm_agp_chipset_flush
2492  *	4. set_domain (CPU, CPU)
2493  *		flush_domains gets GPU
2494  *		invalidate_domains gets CPU
2495  *		wait_rendering (obj) to make sure all drawing is complete.
2496  *		This will include an MI_FLUSH to get the data from GPU
2497  *		to memory
2498  *		clflush (obj) to invalidate the CPU cache
2499  *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2500  *	5. Read/written by CPU
2501  *		cache lines are loaded and dirtied
2502  *	6. Read written by GPU
2503  *		Same as last GPU access
2504  *
2505  * Case 3: The constant buffer
2506  *
2507  *	1. Allocated
2508  *	2. Written by CPU
2509  *	3. Read by GPU
2510  *	4. Updated (written) by CPU again
2511  *	5. Read by GPU
2512  *
2513  *	1. Allocated
2514  *		(CPU, CPU)
2515  *	2. Written by CPU
2516  *		(CPU, CPU)
2517  *	3. Read by GPU
2518  *		(CPU+RENDER, 0)
2519  *		flush_domains = CPU
2520  *		invalidate_domains = RENDER
2521  *		clflush (obj)
2522  *		MI_FLUSH
2523  *		drm_agp_chipset_flush
2524  *	4. Updated (written) by CPU again
2525  *		(CPU, CPU)
2526  *		flush_domains = 0 (no previous write domain)
2527  *		invalidate_domains = 0 (no new read domains)
2528  *	5. Read by GPU
2529  *		(CPU+RENDER, 0)
2530  *		flush_domains = CPU
2531  *		invalidate_domains = RENDER
2532  *		clflush (obj)
2533  *		MI_FLUSH
2534  *		drm_agp_chipset_flush
2535  */
2536 static void
2537 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2538 {
2539 	struct drm_device		*dev = obj->dev;
2540 	struct drm_i915_gem_object	*obj_priv = obj->driver_private;
2541 	uint32_t			invalidate_domains = 0;
2542 	uint32_t			flush_domains = 0;
2543 
2544 	BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2545 	BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2546 
2547 #if WATCH_BUF
2548 	DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2549 		 __func__, obj,
2550 		 obj->read_domains, obj->pending_read_domains,
2551 		 obj->write_domain, obj->pending_write_domain);
2552 #endif
2553 	/*
2554 	 * If the object isn't moving to a new write domain,
2555 	 * let the object stay in multiple read domains
2556 	 */
2557 	if (obj->pending_write_domain == 0)
2558 		obj->pending_read_domains |= obj->read_domains;
2559 	else
2560 		obj_priv->dirty = 1;
2561 
2562 	/*
2563 	 * Flush the current write domain if
2564 	 * the new read domains don't match. Invalidate
2565 	 * any read domains which differ from the old
2566 	 * write domain
2567 	 */
2568 	if (obj->write_domain &&
2569 	    obj->write_domain != obj->pending_read_domains) {
2570 		flush_domains |= obj->write_domain;
2571 		invalidate_domains |=
2572 			obj->pending_read_domains & ~obj->write_domain;
2573 	}
2574 	/*
2575 	 * Invalidate any read caches which may have
2576 	 * stale data. That is, any new read domains.
2577 	 */
2578 	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2579 	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2580 #if WATCH_BUF
2581 		DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2582 			 __func__, flush_domains, invalidate_domains);
2583 #endif
2584 		i915_gem_clflush_object(obj);
2585 	}
2586 
2587 	/* The actual obj->write_domain will be updated with
2588 	 * pending_write_domain after we emit the accumulated flush for all
2589 	 * of our domain changes in execbuffers (which clears objects'
2590 	 * write_domains).  So if we have a current write domain that we
2591 	 * aren't changing, set pending_write_domain to that.
2592 	 */
2593 	if (flush_domains == 0 && obj->pending_write_domain == 0)
2594 		obj->pending_write_domain = obj->write_domain;
2595 	obj->read_domains = obj->pending_read_domains;
2596 
2597 	dev->invalidate_domains |= invalidate_domains;
2598 	dev->flush_domains |= flush_domains;
2599 #if WATCH_BUF
2600 	DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2601 		 __func__,
2602 		 obj->read_domains, obj->write_domain,
2603 		 dev->invalidate_domains, dev->flush_domains);
2604 #endif
2605 }
2606 
2607 /**
2608  * Moves the object from a partially CPU read to a full one.
2609  *
2610  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2611  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2612  */
2613 static void
2614 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2615 {
2616 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
2617 
2618 	if (!obj_priv->page_cpu_valid)
2619 		return;
2620 
2621 	/* If we're partially in the CPU read domain, finish moving it in.
2622 	 */
2623 	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2624 		int i;
2625 
2626 		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2627 			if (obj_priv->page_cpu_valid[i])
2628 				continue;
2629 			drm_clflush_pages(obj_priv->pages + i, 1);
2630 		}
2631 	}
2632 
2633 	/* Free the page_cpu_valid mappings which are now stale, whether
2634 	 * or not we've got I915_GEM_DOMAIN_CPU.
2635 	 */
2636 	drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
2637 		 DRM_MEM_DRIVER);
2638 	obj_priv->page_cpu_valid = NULL;
2639 }
2640 
2641 /**
2642  * Set the CPU read domain on a range of the object.
2643  *
2644  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2645  * not entirely valid.  The page_cpu_valid member of the object flags which
2646  * pages have been flushed, and will be respected by
2647  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2648  * of the whole object.
2649  *
2650  * This function returns when the move is complete, including waiting on
2651  * flushes to occur.
2652  */
2653 static int
2654 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2655 					  uint64_t offset, uint64_t size)
2656 {
2657 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
2658 	int i, ret;
2659 
2660 	if (offset == 0 && size == obj->size)
2661 		return i915_gem_object_set_to_cpu_domain(obj, 0);
2662 
2663 	i915_gem_object_flush_gpu_write_domain(obj);
2664 	/* Wait on any GPU rendering and flushing to occur. */
2665 	ret = i915_gem_object_wait_rendering(obj);
2666 	if (ret != 0)
2667 		return ret;
2668 	i915_gem_object_flush_gtt_write_domain(obj);
2669 
2670 	/* If we're already fully in the CPU read domain, we're done. */
2671 	if (obj_priv->page_cpu_valid == NULL &&
2672 	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2673 		return 0;
2674 
2675 	/* Otherwise, create/clear the per-page CPU read domain flag if we're
2676 	 * newly adding I915_GEM_DOMAIN_CPU
2677 	 */
2678 	if (obj_priv->page_cpu_valid == NULL) {
2679 		obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
2680 						      DRM_MEM_DRIVER);
2681 		if (obj_priv->page_cpu_valid == NULL)
2682 			return -ENOMEM;
2683 	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2684 		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2685 
2686 	/* Flush the cache on any pages that are still invalid from the CPU's
2687 	 * perspective.
2688 	 */
2689 	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2690 	     i++) {
2691 		if (obj_priv->page_cpu_valid[i])
2692 			continue;
2693 
2694 		drm_clflush_pages(obj_priv->pages + i, 1);
2695 
2696 		obj_priv->page_cpu_valid[i] = 1;
2697 	}
2698 
2699 	/* It should now be out of any other write domains, and we can update
2700 	 * the domain values for our changes.
2701 	 */
2702 	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2703 
2704 	obj->read_domains |= I915_GEM_DOMAIN_CPU;
2705 
2706 	return 0;
2707 }
2708 
2709 /**
2710  * Pin an object to the GTT and evaluate the relocations landing in it.
2711  */
2712 static int
2713 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2714 				 struct drm_file *file_priv,
2715 				 struct drm_i915_gem_exec_object *entry,
2716 				 struct drm_i915_gem_relocation_entry *relocs)
2717 {
2718 	struct drm_device *dev = obj->dev;
2719 	drm_i915_private_t *dev_priv = dev->dev_private;
2720 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
2721 	int i, ret;
2722 	void __iomem *reloc_page;
2723 
2724 	/* Choose the GTT offset for our buffer and put it there. */
2725 	ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2726 	if (ret)
2727 		return ret;
2728 
2729 	entry->offset = obj_priv->gtt_offset;
2730 
2731 	/* Apply the relocations, using the GTT aperture to avoid cache
2732 	 * flushing requirements.
2733 	 */
2734 	for (i = 0; i < entry->relocation_count; i++) {
2735 		struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
2736 		struct drm_gem_object *target_obj;
2737 		struct drm_i915_gem_object *target_obj_priv;
2738 		uint32_t reloc_val, reloc_offset;
2739 		uint32_t __iomem *reloc_entry;
2740 
2741 		target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2742 						   reloc->target_handle);
2743 		if (target_obj == NULL) {
2744 			i915_gem_object_unpin(obj);
2745 			return -EBADF;
2746 		}
2747 		target_obj_priv = target_obj->driver_private;
2748 
2749 		/* The target buffer should have appeared before us in the
2750 		 * exec_object list, so it should have a GTT space bound by now.
2751 		 */
2752 		if (target_obj_priv->gtt_space == NULL) {
2753 			DRM_ERROR("No GTT space found for object %d\n",
2754 				  reloc->target_handle);
2755 			drm_gem_object_unreference(target_obj);
2756 			i915_gem_object_unpin(obj);
2757 			return -EINVAL;
2758 		}
2759 
2760 		if (reloc->offset > obj->size - 4) {
2761 			DRM_ERROR("Relocation beyond object bounds: "
2762 				  "obj %p target %d offset %d size %d.\n",
2763 				  obj, reloc->target_handle,
2764 				  (int) reloc->offset, (int) obj->size);
2765 			drm_gem_object_unreference(target_obj);
2766 			i915_gem_object_unpin(obj);
2767 			return -EINVAL;
2768 		}
2769 		if (reloc->offset & 3) {
2770 			DRM_ERROR("Relocation not 4-byte aligned: "
2771 				  "obj %p target %d offset %d.\n",
2772 				  obj, reloc->target_handle,
2773 				  (int) reloc->offset);
2774 			drm_gem_object_unreference(target_obj);
2775 			i915_gem_object_unpin(obj);
2776 			return -EINVAL;
2777 		}
2778 
2779 		if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
2780 		    reloc->read_domains & I915_GEM_DOMAIN_CPU) {
2781 			DRM_ERROR("reloc with read/write CPU domains: "
2782 				  "obj %p target %d offset %d "
2783 				  "read %08x write %08x",
2784 				  obj, reloc->target_handle,
2785 				  (int) reloc->offset,
2786 				  reloc->read_domains,
2787 				  reloc->write_domain);
2788 			drm_gem_object_unreference(target_obj);
2789 			i915_gem_object_unpin(obj);
2790 			return -EINVAL;
2791 		}
2792 
2793 		if (reloc->write_domain && target_obj->pending_write_domain &&
2794 		    reloc->write_domain != target_obj->pending_write_domain) {
2795 			DRM_ERROR("Write domain conflict: "
2796 				  "obj %p target %d offset %d "
2797 				  "new %08x old %08x\n",
2798 				  obj, reloc->target_handle,
2799 				  (int) reloc->offset,
2800 				  reloc->write_domain,
2801 				  target_obj->pending_write_domain);
2802 			drm_gem_object_unreference(target_obj);
2803 			i915_gem_object_unpin(obj);
2804 			return -EINVAL;
2805 		}
2806 
2807 #if WATCH_RELOC
2808 		DRM_INFO("%s: obj %p offset %08x target %d "
2809 			 "read %08x write %08x gtt %08x "
2810 			 "presumed %08x delta %08x\n",
2811 			 __func__,
2812 			 obj,
2813 			 (int) reloc->offset,
2814 			 (int) reloc->target_handle,
2815 			 (int) reloc->read_domains,
2816 			 (int) reloc->write_domain,
2817 			 (int) target_obj_priv->gtt_offset,
2818 			 (int) reloc->presumed_offset,
2819 			 reloc->delta);
2820 #endif
2821 
2822 		target_obj->pending_read_domains |= reloc->read_domains;
2823 		target_obj->pending_write_domain |= reloc->write_domain;
2824 
2825 		/* If the relocation already has the right value in it, no
2826 		 * more work needs to be done.
2827 		 */
2828 		if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
2829 			drm_gem_object_unreference(target_obj);
2830 			continue;
2831 		}
2832 
2833 		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
2834 		if (ret != 0) {
2835 			drm_gem_object_unreference(target_obj);
2836 			i915_gem_object_unpin(obj);
2837 			return -EINVAL;
2838 		}
2839 
2840 		/* Map the page containing the relocation we're going to
2841 		 * perform.
2842 		 */
2843 		reloc_offset = obj_priv->gtt_offset + reloc->offset;
2844 		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
2845 						      (reloc_offset &
2846 						       ~(PAGE_SIZE - 1)));
2847 		reloc_entry = (uint32_t __iomem *)(reloc_page +
2848 						   (reloc_offset & (PAGE_SIZE - 1)));
2849 		reloc_val = target_obj_priv->gtt_offset + reloc->delta;
2850 
2851 #if WATCH_BUF
2852 		DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
2853 			  obj, (unsigned int) reloc->offset,
2854 			  readl(reloc_entry), reloc_val);
2855 #endif
2856 		writel(reloc_val, reloc_entry);
2857 		io_mapping_unmap_atomic(reloc_page);
2858 
2859 		/* The updated presumed offset for this entry will be
2860 		 * copied back out to the user.
2861 		 */
2862 		reloc->presumed_offset = target_obj_priv->gtt_offset;
2863 
2864 		drm_gem_object_unreference(target_obj);
2865 	}
2866 
2867 #if WATCH_BUF
2868 	if (0)
2869 		i915_gem_dump_object(obj, 128, __func__, ~0);
2870 #endif
2871 	return 0;
2872 }
2873 
2874 /** Dispatch a batchbuffer to the ring
2875  */
2876 static int
2877 i915_dispatch_gem_execbuffer(struct drm_device *dev,
2878 			      struct drm_i915_gem_execbuffer *exec,
2879 			      struct drm_clip_rect *cliprects,
2880 			      uint64_t exec_offset)
2881 {
2882 	drm_i915_private_t *dev_priv = dev->dev_private;
2883 	int nbox = exec->num_cliprects;
2884 	int i = 0, count;
2885 	uint32_t	exec_start, exec_len;
2886 	RING_LOCALS;
2887 
2888 	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
2889 	exec_len = (uint32_t) exec->batch_len;
2890 
2891 	if ((exec_start | exec_len) & 0x7) {
2892 		DRM_ERROR("alignment\n");
2893 		return -EINVAL;
2894 	}
2895 
2896 	if (!exec_start)
2897 		return -EINVAL;
2898 
2899 	count = nbox ? nbox : 1;
2900 
2901 	for (i = 0; i < count; i++) {
2902 		if (i < nbox) {
2903 			int ret = i915_emit_box(dev, cliprects, i,
2904 						exec->DR1, exec->DR4);
2905 			if (ret)
2906 				return ret;
2907 		}
2908 
2909 		if (IS_I830(dev) || IS_845G(dev)) {
2910 			BEGIN_LP_RING(4);
2911 			OUT_RING(MI_BATCH_BUFFER);
2912 			OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2913 			OUT_RING(exec_start + exec_len - 4);
2914 			OUT_RING(0);
2915 			ADVANCE_LP_RING();
2916 		} else {
2917 			BEGIN_LP_RING(2);
2918 			if (IS_I965G(dev)) {
2919 				OUT_RING(MI_BATCH_BUFFER_START |
2920 					 (2 << 6) |
2921 					 MI_BATCH_NON_SECURE_I965);
2922 				OUT_RING(exec_start);
2923 			} else {
2924 				OUT_RING(MI_BATCH_BUFFER_START |
2925 					 (2 << 6));
2926 				OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2927 			}
2928 			ADVANCE_LP_RING();
2929 		}
2930 	}
2931 
2932 	/* XXX breadcrumb */
2933 	return 0;
2934 }
2935 
2936 /* Throttle our rendering by waiting until the ring has completed our requests
2937  * emitted over 20 msec ago.
2938  *
2939  * This should get us reasonable parallelism between CPU and GPU but also
2940  * relatively low latency when blocking on a particular request to finish.
2941  */
2942 static int
2943 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
2944 {
2945 	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2946 	int ret = 0;
2947 	uint32_t seqno;
2948 
2949 	mutex_lock(&dev->struct_mutex);
2950 	seqno = i915_file_priv->mm.last_gem_throttle_seqno;
2951 	i915_file_priv->mm.last_gem_throttle_seqno =
2952 		i915_file_priv->mm.last_gem_seqno;
2953 	if (seqno)
2954 		ret = i915_wait_request(dev, seqno);
2955 	mutex_unlock(&dev->struct_mutex);
2956 	return ret;
2957 }
2958 
2959 static int
2960 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
2961 			      uint32_t buffer_count,
2962 			      struct drm_i915_gem_relocation_entry **relocs)
2963 {
2964 	uint32_t reloc_count = 0, reloc_index = 0, i;
2965 	int ret;
2966 
2967 	*relocs = NULL;
2968 	for (i = 0; i < buffer_count; i++) {
2969 		if (reloc_count + exec_list[i].relocation_count < reloc_count)
2970 			return -EINVAL;
2971 		reloc_count += exec_list[i].relocation_count;
2972 	}
2973 
2974 	*relocs = drm_calloc(reloc_count, sizeof(**relocs), DRM_MEM_DRIVER);
2975 	if (*relocs == NULL)
2976 		return -ENOMEM;
2977 
2978 	for (i = 0; i < buffer_count; i++) {
2979 		struct drm_i915_gem_relocation_entry __user *user_relocs;
2980 
2981 		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
2982 
2983 		ret = copy_from_user(&(*relocs)[reloc_index],
2984 				     user_relocs,
2985 				     exec_list[i].relocation_count *
2986 				     sizeof(**relocs));
2987 		if (ret != 0) {
2988 			drm_free(*relocs, reloc_count * sizeof(**relocs),
2989 				 DRM_MEM_DRIVER);
2990 			*relocs = NULL;
2991 			return ret;
2992 		}
2993 
2994 		reloc_index += exec_list[i].relocation_count;
2995 	}
2996 
2997 	return ret;
2998 }
2999 
3000 static int
3001 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3002 			    uint32_t buffer_count,
3003 			    struct drm_i915_gem_relocation_entry *relocs)
3004 {
3005 	uint32_t reloc_count = 0, i;
3006 	int ret;
3007 
3008 	for (i = 0; i < buffer_count; i++) {
3009 		struct drm_i915_gem_relocation_entry __user *user_relocs;
3010 
3011 		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3012 
3013 		if (ret == 0) {
3014 			ret = copy_to_user(user_relocs,
3015 					   &relocs[reloc_count],
3016 					   exec_list[i].relocation_count *
3017 					   sizeof(*relocs));
3018 		}
3019 
3020 		reloc_count += exec_list[i].relocation_count;
3021 	}
3022 
3023 	drm_free(relocs, reloc_count * sizeof(*relocs), DRM_MEM_DRIVER);
3024 
3025 	return ret;
3026 }
3027 
3028 int
3029 i915_gem_execbuffer(struct drm_device *dev, void *data,
3030 		    struct drm_file *file_priv)
3031 {
3032 	drm_i915_private_t *dev_priv = dev->dev_private;
3033 	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3034 	struct drm_i915_gem_execbuffer *args = data;
3035 	struct drm_i915_gem_exec_object *exec_list = NULL;
3036 	struct drm_gem_object **object_list = NULL;
3037 	struct drm_gem_object *batch_obj;
3038 	struct drm_i915_gem_object *obj_priv;
3039 	struct drm_clip_rect *cliprects = NULL;
3040 	struct drm_i915_gem_relocation_entry *relocs;
3041 	int ret, ret2, i, pinned = 0;
3042 	uint64_t exec_offset;
3043 	uint32_t seqno, flush_domains, reloc_index;
3044 	int pin_tries;
3045 
3046 #if WATCH_EXEC
3047 	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3048 		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3049 #endif
3050 
3051 	if (args->buffer_count < 1) {
3052 		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3053 		return -EINVAL;
3054 	}
3055 	/* Copy in the exec list from userland */
3056 	exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
3057 			       DRM_MEM_DRIVER);
3058 	object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
3059 				 DRM_MEM_DRIVER);
3060 	if (exec_list == NULL || object_list == NULL) {
3061 		DRM_ERROR("Failed to allocate exec or object list "
3062 			  "for %d buffers\n",
3063 			  args->buffer_count);
3064 		ret = -ENOMEM;
3065 		goto pre_mutex_err;
3066 	}
3067 	ret = copy_from_user(exec_list,
3068 			     (struct drm_i915_relocation_entry __user *)
3069 			     (uintptr_t) args->buffers_ptr,
3070 			     sizeof(*exec_list) * args->buffer_count);
3071 	if (ret != 0) {
3072 		DRM_ERROR("copy %d exec entries failed %d\n",
3073 			  args->buffer_count, ret);
3074 		goto pre_mutex_err;
3075 	}
3076 
3077 	if (args->num_cliprects != 0) {
3078 		cliprects = drm_calloc(args->num_cliprects, sizeof(*cliprects),
3079 				       DRM_MEM_DRIVER);
3080 		if (cliprects == NULL)
3081 			goto pre_mutex_err;
3082 
3083 		ret = copy_from_user(cliprects,
3084 				     (struct drm_clip_rect __user *)
3085 				     (uintptr_t) args->cliprects_ptr,
3086 				     sizeof(*cliprects) * args->num_cliprects);
3087 		if (ret != 0) {
3088 			DRM_ERROR("copy %d cliprects failed: %d\n",
3089 				  args->num_cliprects, ret);
3090 			goto pre_mutex_err;
3091 		}
3092 	}
3093 
3094 	ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3095 					    &relocs);
3096 	if (ret != 0)
3097 		goto pre_mutex_err;
3098 
3099 	mutex_lock(&dev->struct_mutex);
3100 
3101 	i915_verify_inactive(dev, __FILE__, __LINE__);
3102 
3103 	if (dev_priv->mm.wedged) {
3104 		DRM_ERROR("Execbuf while wedged\n");
3105 		mutex_unlock(&dev->struct_mutex);
3106 		ret = -EIO;
3107 		goto pre_mutex_err;
3108 	}
3109 
3110 	if (dev_priv->mm.suspended) {
3111 		DRM_ERROR("Execbuf while VT-switched.\n");
3112 		mutex_unlock(&dev->struct_mutex);
3113 		ret = -EBUSY;
3114 		goto pre_mutex_err;
3115 	}
3116 
3117 	/* Look up object handles */
3118 	for (i = 0; i < args->buffer_count; i++) {
3119 		object_list[i] = drm_gem_object_lookup(dev, file_priv,
3120 						       exec_list[i].handle);
3121 		if (object_list[i] == NULL) {
3122 			DRM_ERROR("Invalid object handle %d at index %d\n",
3123 				   exec_list[i].handle, i);
3124 			ret = -EBADF;
3125 			goto err;
3126 		}
3127 
3128 		obj_priv = object_list[i]->driver_private;
3129 		if (obj_priv->in_execbuffer) {
3130 			DRM_ERROR("Object %p appears more than once in object list\n",
3131 				   object_list[i]);
3132 			ret = -EBADF;
3133 			goto err;
3134 		}
3135 		obj_priv->in_execbuffer = true;
3136 	}
3137 
3138 	/* Pin and relocate */
3139 	for (pin_tries = 0; ; pin_tries++) {
3140 		ret = 0;
3141 		reloc_index = 0;
3142 
3143 		for (i = 0; i < args->buffer_count; i++) {
3144 			object_list[i]->pending_read_domains = 0;
3145 			object_list[i]->pending_write_domain = 0;
3146 			ret = i915_gem_object_pin_and_relocate(object_list[i],
3147 							       file_priv,
3148 							       &exec_list[i],
3149 							       &relocs[reloc_index]);
3150 			if (ret)
3151 				break;
3152 			pinned = i + 1;
3153 			reloc_index += exec_list[i].relocation_count;
3154 		}
3155 		/* success */
3156 		if (ret == 0)
3157 			break;
3158 
3159 		/* error other than GTT full, or we've already tried again */
3160 		if (ret != -ENOMEM || pin_tries >= 1) {
3161 			if (ret != -ERESTARTSYS)
3162 				DRM_ERROR("Failed to pin buffers %d\n", ret);
3163 			goto err;
3164 		}
3165 
3166 		/* unpin all of our buffers */
3167 		for (i = 0; i < pinned; i++)
3168 			i915_gem_object_unpin(object_list[i]);
3169 		pinned = 0;
3170 
3171 		/* evict everyone we can from the aperture */
3172 		ret = i915_gem_evict_everything(dev);
3173 		if (ret)
3174 			goto err;
3175 	}
3176 
3177 	/* Set the pending read domains for the batch buffer to COMMAND */
3178 	batch_obj = object_list[args->buffer_count-1];
3179 	batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
3180 	batch_obj->pending_write_domain = 0;
3181 
3182 	i915_verify_inactive(dev, __FILE__, __LINE__);
3183 
3184 	/* Zero the global flush/invalidate flags. These
3185 	 * will be modified as new domains are computed
3186 	 * for each object
3187 	 */
3188 	dev->invalidate_domains = 0;
3189 	dev->flush_domains = 0;
3190 
3191 	for (i = 0; i < args->buffer_count; i++) {
3192 		struct drm_gem_object *obj = object_list[i];
3193 
3194 		/* Compute new gpu domains and update invalidate/flush */
3195 		i915_gem_object_set_to_gpu_domain(obj);
3196 	}
3197 
3198 	i915_verify_inactive(dev, __FILE__, __LINE__);
3199 
3200 	if (dev->invalidate_domains | dev->flush_domains) {
3201 #if WATCH_EXEC
3202 		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3203 			  __func__,
3204 			 dev->invalidate_domains,
3205 			 dev->flush_domains);
3206 #endif
3207 		i915_gem_flush(dev,
3208 			       dev->invalidate_domains,
3209 			       dev->flush_domains);
3210 		if (dev->flush_domains)
3211 			(void)i915_add_request(dev, dev->flush_domains);
3212 	}
3213 
3214 	for (i = 0; i < args->buffer_count; i++) {
3215 		struct drm_gem_object *obj = object_list[i];
3216 
3217 		obj->write_domain = obj->pending_write_domain;
3218 	}
3219 
3220 	i915_verify_inactive(dev, __FILE__, __LINE__);
3221 
3222 #if WATCH_COHERENCY
3223 	for (i = 0; i < args->buffer_count; i++) {
3224 		i915_gem_object_check_coherency(object_list[i],
3225 						exec_list[i].handle);
3226 	}
3227 #endif
3228 
3229 	exec_offset = exec_list[args->buffer_count - 1].offset;
3230 
3231 #if WATCH_EXEC
3232 	i915_gem_dump_object(object_list[args->buffer_count - 1],
3233 			      args->batch_len,
3234 			      __func__,
3235 			      ~0);
3236 #endif
3237 
3238 	/* Exec the batchbuffer */
3239 	ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3240 	if (ret) {
3241 		DRM_ERROR("dispatch failed %d\n", ret);
3242 		goto err;
3243 	}
3244 
3245 	/*
3246 	 * Ensure that the commands in the batch buffer are
3247 	 * finished before the interrupt fires
3248 	 */
3249 	flush_domains = i915_retire_commands(dev);
3250 
3251 	i915_verify_inactive(dev, __FILE__, __LINE__);
3252 
3253 	/*
3254 	 * Get a seqno representing the execution of the current buffer,
3255 	 * which we can wait on.  We would like to mitigate these interrupts,
3256 	 * likely by only creating seqnos occasionally (so that we have
3257 	 * *some* interrupts representing completion of buffers that we can
3258 	 * wait on when trying to clear up gtt space).
3259 	 */
3260 	seqno = i915_add_request(dev, flush_domains);
3261 	BUG_ON(seqno == 0);
3262 	i915_file_priv->mm.last_gem_seqno = seqno;
3263 	for (i = 0; i < args->buffer_count; i++) {
3264 		struct drm_gem_object *obj = object_list[i];
3265 
3266 		i915_gem_object_move_to_active(obj, seqno);
3267 #if WATCH_LRU
3268 		DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3269 #endif
3270 	}
3271 #if WATCH_LRU
3272 	i915_dump_lru(dev, __func__);
3273 #endif
3274 
3275 	i915_verify_inactive(dev, __FILE__, __LINE__);
3276 
3277 err:
3278 	for (i = 0; i < pinned; i++)
3279 		i915_gem_object_unpin(object_list[i]);
3280 
3281 	for (i = 0; i < args->buffer_count; i++) {
3282 		if (object_list[i]) {
3283 			obj_priv = object_list[i]->driver_private;
3284 			obj_priv->in_execbuffer = false;
3285 		}
3286 		drm_gem_object_unreference(object_list[i]);
3287 	}
3288 
3289 	mutex_unlock(&dev->struct_mutex);
3290 
3291 	if (!ret) {
3292 		/* Copy the new buffer offsets back to the user's exec list. */
3293 		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3294 				   (uintptr_t) args->buffers_ptr,
3295 				   exec_list,
3296 				   sizeof(*exec_list) * args->buffer_count);
3297 		if (ret)
3298 			DRM_ERROR("failed to copy %d exec entries "
3299 				  "back to user (%d)\n",
3300 				  args->buffer_count, ret);
3301 	}
3302 
3303 	/* Copy the updated relocations out regardless of current error
3304 	 * state.  Failure to update the relocs would mean that the next
3305 	 * time userland calls execbuf, it would do so with presumed offset
3306 	 * state that didn't match the actual object state.
3307 	 */
3308 	ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3309 					   relocs);
3310 	if (ret2 != 0) {
3311 		DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3312 
3313 		if (ret == 0)
3314 			ret = ret2;
3315 	}
3316 
3317 pre_mutex_err:
3318 	drm_free(object_list, sizeof(*object_list) * args->buffer_count,
3319 		 DRM_MEM_DRIVER);
3320 	drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
3321 		 DRM_MEM_DRIVER);
3322 	drm_free(cliprects, sizeof(*cliprects) * args->num_cliprects,
3323 		 DRM_MEM_DRIVER);
3324 
3325 	return ret;
3326 }
3327 
3328 int
3329 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3330 {
3331 	struct drm_device *dev = obj->dev;
3332 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
3333 	int ret;
3334 
3335 	i915_verify_inactive(dev, __FILE__, __LINE__);
3336 	if (obj_priv->gtt_space == NULL) {
3337 		ret = i915_gem_object_bind_to_gtt(obj, alignment);
3338 		if (ret != 0) {
3339 			if (ret != -EBUSY && ret != -ERESTARTSYS)
3340 				DRM_ERROR("Failure to bind: %d\n", ret);
3341 			return ret;
3342 		}
3343 	}
3344 	/*
3345 	 * Pre-965 chips need a fence register set up in order to
3346 	 * properly handle tiled surfaces.
3347 	 */
3348 	if (!IS_I965G(dev) &&
3349 	    obj_priv->fence_reg == I915_FENCE_REG_NONE &&
3350 	    obj_priv->tiling_mode != I915_TILING_NONE) {
3351 		ret = i915_gem_object_get_fence_reg(obj, true);
3352 		if (ret != 0) {
3353 			if (ret != -EBUSY && ret != -ERESTARTSYS)
3354 				DRM_ERROR("Failure to install fence: %d\n",
3355 					  ret);
3356 			return ret;
3357 		}
3358 	}
3359 	obj_priv->pin_count++;
3360 
3361 	/* If the object is not active and not pending a flush,
3362 	 * remove it from the inactive list
3363 	 */
3364 	if (obj_priv->pin_count == 1) {
3365 		atomic_inc(&dev->pin_count);
3366 		atomic_add(obj->size, &dev->pin_memory);
3367 		if (!obj_priv->active &&
3368 		    (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
3369 					   I915_GEM_DOMAIN_GTT)) == 0 &&
3370 		    !list_empty(&obj_priv->list))
3371 			list_del_init(&obj_priv->list);
3372 	}
3373 	i915_verify_inactive(dev, __FILE__, __LINE__);
3374 
3375 	return 0;
3376 }
3377 
3378 void
3379 i915_gem_object_unpin(struct drm_gem_object *obj)
3380 {
3381 	struct drm_device *dev = obj->dev;
3382 	drm_i915_private_t *dev_priv = dev->dev_private;
3383 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
3384 
3385 	i915_verify_inactive(dev, __FILE__, __LINE__);
3386 	obj_priv->pin_count--;
3387 	BUG_ON(obj_priv->pin_count < 0);
3388 	BUG_ON(obj_priv->gtt_space == NULL);
3389 
3390 	/* If the object is no longer pinned, and is
3391 	 * neither active nor being flushed, then stick it on
3392 	 * the inactive list
3393 	 */
3394 	if (obj_priv->pin_count == 0) {
3395 		if (!obj_priv->active &&
3396 		    (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
3397 					   I915_GEM_DOMAIN_GTT)) == 0)
3398 			list_move_tail(&obj_priv->list,
3399 				       &dev_priv->mm.inactive_list);
3400 		atomic_dec(&dev->pin_count);
3401 		atomic_sub(obj->size, &dev->pin_memory);
3402 	}
3403 	i915_verify_inactive(dev, __FILE__, __LINE__);
3404 }
3405 
3406 int
3407 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3408 		   struct drm_file *file_priv)
3409 {
3410 	struct drm_i915_gem_pin *args = data;
3411 	struct drm_gem_object *obj;
3412 	struct drm_i915_gem_object *obj_priv;
3413 	int ret;
3414 
3415 	mutex_lock(&dev->struct_mutex);
3416 
3417 	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3418 	if (obj == NULL) {
3419 		DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3420 			  args->handle);
3421 		mutex_unlock(&dev->struct_mutex);
3422 		return -EBADF;
3423 	}
3424 	obj_priv = obj->driver_private;
3425 
3426 	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3427 		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3428 			  args->handle);
3429 		drm_gem_object_unreference(obj);
3430 		mutex_unlock(&dev->struct_mutex);
3431 		return -EINVAL;
3432 	}
3433 
3434 	obj_priv->user_pin_count++;
3435 	obj_priv->pin_filp = file_priv;
3436 	if (obj_priv->user_pin_count == 1) {
3437 		ret = i915_gem_object_pin(obj, args->alignment);
3438 		if (ret != 0) {
3439 			drm_gem_object_unreference(obj);
3440 			mutex_unlock(&dev->struct_mutex);
3441 			return ret;
3442 		}
3443 	}
3444 
3445 	/* XXX - flush the CPU caches for pinned objects
3446 	 * as the X server doesn't manage domains yet
3447 	 */
3448 	i915_gem_object_flush_cpu_write_domain(obj);
3449 	args->offset = obj_priv->gtt_offset;
3450 	drm_gem_object_unreference(obj);
3451 	mutex_unlock(&dev->struct_mutex);
3452 
3453 	return 0;
3454 }
3455 
3456 int
3457 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3458 		     struct drm_file *file_priv)
3459 {
3460 	struct drm_i915_gem_pin *args = data;
3461 	struct drm_gem_object *obj;
3462 	struct drm_i915_gem_object *obj_priv;
3463 
3464 	mutex_lock(&dev->struct_mutex);
3465 
3466 	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3467 	if (obj == NULL) {
3468 		DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3469 			  args->handle);
3470 		mutex_unlock(&dev->struct_mutex);
3471 		return -EBADF;
3472 	}
3473 
3474 	obj_priv = obj->driver_private;
3475 	if (obj_priv->pin_filp != file_priv) {
3476 		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3477 			  args->handle);
3478 		drm_gem_object_unreference(obj);
3479 		mutex_unlock(&dev->struct_mutex);
3480 		return -EINVAL;
3481 	}
3482 	obj_priv->user_pin_count--;
3483 	if (obj_priv->user_pin_count == 0) {
3484 		obj_priv->pin_filp = NULL;
3485 		i915_gem_object_unpin(obj);
3486 	}
3487 
3488 	drm_gem_object_unreference(obj);
3489 	mutex_unlock(&dev->struct_mutex);
3490 	return 0;
3491 }
3492 
3493 int
3494 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3495 		    struct drm_file *file_priv)
3496 {
3497 	struct drm_i915_gem_busy *args = data;
3498 	struct drm_gem_object *obj;
3499 	struct drm_i915_gem_object *obj_priv;
3500 
3501 	mutex_lock(&dev->struct_mutex);
3502 	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3503 	if (obj == NULL) {
3504 		DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3505 			  args->handle);
3506 		mutex_unlock(&dev->struct_mutex);
3507 		return -EBADF;
3508 	}
3509 
3510 	/* Update the active list for the hardware's current position.
3511 	 * Otherwise this only updates on a delayed timer or when irqs are
3512 	 * actually unmasked, and our working set ends up being larger than
3513 	 * required.
3514 	 */
3515 	i915_gem_retire_requests(dev);
3516 
3517 	obj_priv = obj->driver_private;
3518 	/* Don't count being on the flushing list against the object being
3519 	 * done.  Otherwise, a buffer left on the flushing list but not getting
3520 	 * flushed (because nobody's flushing that domain) won't ever return
3521 	 * unbusy and get reused by libdrm's bo cache.  The other expected
3522 	 * consumer of this interface, OpenGL's occlusion queries, also specs
3523 	 * that the objects get unbusy "eventually" without any interference.
3524 	 */
3525 	args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
3526 
3527 	drm_gem_object_unreference(obj);
3528 	mutex_unlock(&dev->struct_mutex);
3529 	return 0;
3530 }
3531 
3532 int
3533 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3534 			struct drm_file *file_priv)
3535 {
3536     return i915_gem_ring_throttle(dev, file_priv);
3537 }
3538 
3539 int i915_gem_init_object(struct drm_gem_object *obj)
3540 {
3541 	struct drm_i915_gem_object *obj_priv;
3542 
3543 	obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
3544 	if (obj_priv == NULL)
3545 		return -ENOMEM;
3546 
3547 	/*
3548 	 * We've just allocated pages from the kernel,
3549 	 * so they've just been written by the CPU with
3550 	 * zeros. They'll need to be clflushed before we
3551 	 * use them with the GPU.
3552 	 */
3553 	obj->write_domain = I915_GEM_DOMAIN_CPU;
3554 	obj->read_domains = I915_GEM_DOMAIN_CPU;
3555 
3556 	obj_priv->agp_type = AGP_USER_MEMORY;
3557 
3558 	obj->driver_private = obj_priv;
3559 	obj_priv->obj = obj;
3560 	obj_priv->fence_reg = I915_FENCE_REG_NONE;
3561 	INIT_LIST_HEAD(&obj_priv->list);
3562 
3563 	return 0;
3564 }
3565 
3566 void i915_gem_free_object(struct drm_gem_object *obj)
3567 {
3568 	struct drm_device *dev = obj->dev;
3569 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
3570 
3571 	while (obj_priv->pin_count > 0)
3572 		i915_gem_object_unpin(obj);
3573 
3574 	if (obj_priv->phys_obj)
3575 		i915_gem_detach_phys_object(dev, obj);
3576 
3577 	i915_gem_object_unbind(obj);
3578 
3579 	i915_gem_free_mmap_offset(obj);
3580 
3581 	drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
3582 	drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
3583 }
3584 
3585 /** Unbinds all objects that are on the given buffer list. */
3586 static int
3587 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3588 {
3589 	struct drm_gem_object *obj;
3590 	struct drm_i915_gem_object *obj_priv;
3591 	int ret;
3592 
3593 	while (!list_empty(head)) {
3594 		obj_priv = list_first_entry(head,
3595 					    struct drm_i915_gem_object,
3596 					    list);
3597 		obj = obj_priv->obj;
3598 
3599 		if (obj_priv->pin_count != 0) {
3600 			DRM_ERROR("Pinned object in unbind list\n");
3601 			mutex_unlock(&dev->struct_mutex);
3602 			return -EINVAL;
3603 		}
3604 
3605 		ret = i915_gem_object_unbind(obj);
3606 		if (ret != 0) {
3607 			DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3608 				  ret);
3609 			mutex_unlock(&dev->struct_mutex);
3610 			return ret;
3611 		}
3612 	}
3613 
3614 
3615 	return 0;
3616 }
3617 
3618 int
3619 i915_gem_idle(struct drm_device *dev)
3620 {
3621 	drm_i915_private_t *dev_priv = dev->dev_private;
3622 	uint32_t seqno, cur_seqno, last_seqno;
3623 	int stuck, ret;
3624 
3625 	mutex_lock(&dev->struct_mutex);
3626 
3627 	if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3628 		mutex_unlock(&dev->struct_mutex);
3629 		return 0;
3630 	}
3631 
3632 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
3633 	 * We need to replace this with a semaphore, or something.
3634 	 */
3635 	dev_priv->mm.suspended = 1;
3636 
3637 	/* Cancel the retire work handler, wait for it to finish if running
3638 	 */
3639 	mutex_unlock(&dev->struct_mutex);
3640 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3641 	mutex_lock(&dev->struct_mutex);
3642 
3643 	i915_kernel_lost_context(dev);
3644 
3645 	/* Flush the GPU along with all non-CPU write domains
3646 	 */
3647 	i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
3648 		       ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
3649 	seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
3650 
3651 	if (seqno == 0) {
3652 		mutex_unlock(&dev->struct_mutex);
3653 		return -ENOMEM;
3654 	}
3655 
3656 	dev_priv->mm.waiting_gem_seqno = seqno;
3657 	last_seqno = 0;
3658 	stuck = 0;
3659 	for (;;) {
3660 		cur_seqno = i915_get_gem_seqno(dev);
3661 		if (i915_seqno_passed(cur_seqno, seqno))
3662 			break;
3663 		if (last_seqno == cur_seqno) {
3664 			if (stuck++ > 100) {
3665 				DRM_ERROR("hardware wedged\n");
3666 				dev_priv->mm.wedged = 1;
3667 				DRM_WAKEUP(&dev_priv->irq_queue);
3668 				break;
3669 			}
3670 		}
3671 		msleep(10);
3672 		last_seqno = cur_seqno;
3673 	}
3674 	dev_priv->mm.waiting_gem_seqno = 0;
3675 
3676 	i915_gem_retire_requests(dev);
3677 
3678 	if (!dev_priv->mm.wedged) {
3679 		/* Active and flushing should now be empty as we've
3680 		 * waited for a sequence higher than any pending execbuffer
3681 		 */
3682 		WARN_ON(!list_empty(&dev_priv->mm.active_list));
3683 		WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3684 		/* Request should now be empty as we've also waited
3685 		 * for the last request in the list
3686 		 */
3687 		WARN_ON(!list_empty(&dev_priv->mm.request_list));
3688 	}
3689 
3690 	/* Empty the active and flushing lists to inactive.  If there's
3691 	 * anything left at this point, it means that we're wedged and
3692 	 * nothing good's going to happen by leaving them there.  So strip
3693 	 * the GPU domains and just stuff them onto inactive.
3694 	 */
3695 	while (!list_empty(&dev_priv->mm.active_list)) {
3696 		struct drm_i915_gem_object *obj_priv;
3697 
3698 		obj_priv = list_first_entry(&dev_priv->mm.active_list,
3699 					    struct drm_i915_gem_object,
3700 					    list);
3701 		obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3702 		i915_gem_object_move_to_inactive(obj_priv->obj);
3703 	}
3704 
3705 	while (!list_empty(&dev_priv->mm.flushing_list)) {
3706 		struct drm_i915_gem_object *obj_priv;
3707 
3708 		obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3709 					    struct drm_i915_gem_object,
3710 					    list);
3711 		obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3712 		i915_gem_object_move_to_inactive(obj_priv->obj);
3713 	}
3714 
3715 
3716 	/* Move all inactive buffers out of the GTT. */
3717 	ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3718 	WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3719 	if (ret) {
3720 		mutex_unlock(&dev->struct_mutex);
3721 		return ret;
3722 	}
3723 
3724 	i915_gem_cleanup_ringbuffer(dev);
3725 	mutex_unlock(&dev->struct_mutex);
3726 
3727 	return 0;
3728 }
3729 
3730 static int
3731 i915_gem_init_hws(struct drm_device *dev)
3732 {
3733 	drm_i915_private_t *dev_priv = dev->dev_private;
3734 	struct drm_gem_object *obj;
3735 	struct drm_i915_gem_object *obj_priv;
3736 	int ret;
3737 
3738 	/* If we need a physical address for the status page, it's already
3739 	 * initialized at driver load time.
3740 	 */
3741 	if (!I915_NEED_GFX_HWS(dev))
3742 		return 0;
3743 
3744 	obj = drm_gem_object_alloc(dev, 4096);
3745 	if (obj == NULL) {
3746 		DRM_ERROR("Failed to allocate status page\n");
3747 		return -ENOMEM;
3748 	}
3749 	obj_priv = obj->driver_private;
3750 	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
3751 
3752 	ret = i915_gem_object_pin(obj, 4096);
3753 	if (ret != 0) {
3754 		drm_gem_object_unreference(obj);
3755 		return ret;
3756 	}
3757 
3758 	dev_priv->status_gfx_addr = obj_priv->gtt_offset;
3759 
3760 	dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
3761 	if (dev_priv->hw_status_page == NULL) {
3762 		DRM_ERROR("Failed to map status page.\n");
3763 		memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3764 		i915_gem_object_unpin(obj);
3765 		drm_gem_object_unreference(obj);
3766 		return -EINVAL;
3767 	}
3768 	dev_priv->hws_obj = obj;
3769 	memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
3770 	I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
3771 	I915_READ(HWS_PGA); /* posting read */
3772 	DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
3773 
3774 	return 0;
3775 }
3776 
3777 static void
3778 i915_gem_cleanup_hws(struct drm_device *dev)
3779 {
3780 	drm_i915_private_t *dev_priv = dev->dev_private;
3781 	struct drm_gem_object *obj;
3782 	struct drm_i915_gem_object *obj_priv;
3783 
3784 	if (dev_priv->hws_obj == NULL)
3785 		return;
3786 
3787 	obj = dev_priv->hws_obj;
3788 	obj_priv = obj->driver_private;
3789 
3790 	kunmap(obj_priv->pages[0]);
3791 	i915_gem_object_unpin(obj);
3792 	drm_gem_object_unreference(obj);
3793 	dev_priv->hws_obj = NULL;
3794 
3795 	memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3796 	dev_priv->hw_status_page = NULL;
3797 
3798 	/* Write high address into HWS_PGA when disabling. */
3799 	I915_WRITE(HWS_PGA, 0x1ffff000);
3800 }
3801 
3802 int
3803 i915_gem_init_ringbuffer(struct drm_device *dev)
3804 {
3805 	drm_i915_private_t *dev_priv = dev->dev_private;
3806 	struct drm_gem_object *obj;
3807 	struct drm_i915_gem_object *obj_priv;
3808 	drm_i915_ring_buffer_t *ring = &dev_priv->ring;
3809 	int ret;
3810 	u32 head;
3811 
3812 	ret = i915_gem_init_hws(dev);
3813 	if (ret != 0)
3814 		return ret;
3815 
3816 	obj = drm_gem_object_alloc(dev, 128 * 1024);
3817 	if (obj == NULL) {
3818 		DRM_ERROR("Failed to allocate ringbuffer\n");
3819 		i915_gem_cleanup_hws(dev);
3820 		return -ENOMEM;
3821 	}
3822 	obj_priv = obj->driver_private;
3823 
3824 	ret = i915_gem_object_pin(obj, 4096);
3825 	if (ret != 0) {
3826 		drm_gem_object_unreference(obj);
3827 		i915_gem_cleanup_hws(dev);
3828 		return ret;
3829 	}
3830 
3831 	/* Set up the kernel mapping for the ring. */
3832 	ring->Size = obj->size;
3833 	ring->tail_mask = obj->size - 1;
3834 
3835 	ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
3836 	ring->map.size = obj->size;
3837 	ring->map.type = 0;
3838 	ring->map.flags = 0;
3839 	ring->map.mtrr = 0;
3840 
3841 	drm_core_ioremap_wc(&ring->map, dev);
3842 	if (ring->map.handle == NULL) {
3843 		DRM_ERROR("Failed to map ringbuffer.\n");
3844 		memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3845 		i915_gem_object_unpin(obj);
3846 		drm_gem_object_unreference(obj);
3847 		i915_gem_cleanup_hws(dev);
3848 		return -EINVAL;
3849 	}
3850 	ring->ring_obj = obj;
3851 	ring->virtual_start = ring->map.handle;
3852 
3853 	/* Stop the ring if it's running. */
3854 	I915_WRITE(PRB0_CTL, 0);
3855 	I915_WRITE(PRB0_TAIL, 0);
3856 	I915_WRITE(PRB0_HEAD, 0);
3857 
3858 	/* Initialize the ring. */
3859 	I915_WRITE(PRB0_START, obj_priv->gtt_offset);
3860 	head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3861 
3862 	/* G45 ring initialization fails to reset head to zero */
3863 	if (head != 0) {
3864 		DRM_ERROR("Ring head not reset to zero "
3865 			  "ctl %08x head %08x tail %08x start %08x\n",
3866 			  I915_READ(PRB0_CTL),
3867 			  I915_READ(PRB0_HEAD),
3868 			  I915_READ(PRB0_TAIL),
3869 			  I915_READ(PRB0_START));
3870 		I915_WRITE(PRB0_HEAD, 0);
3871 
3872 		DRM_ERROR("Ring head forced to zero "
3873 			  "ctl %08x head %08x tail %08x start %08x\n",
3874 			  I915_READ(PRB0_CTL),
3875 			  I915_READ(PRB0_HEAD),
3876 			  I915_READ(PRB0_TAIL),
3877 			  I915_READ(PRB0_START));
3878 	}
3879 
3880 	I915_WRITE(PRB0_CTL,
3881 		   ((obj->size - 4096) & RING_NR_PAGES) |
3882 		   RING_NO_REPORT |
3883 		   RING_VALID);
3884 
3885 	head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3886 
3887 	/* If the head is still not zero, the ring is dead */
3888 	if (head != 0) {
3889 		DRM_ERROR("Ring initialization failed "
3890 			  "ctl %08x head %08x tail %08x start %08x\n",
3891 			  I915_READ(PRB0_CTL),
3892 			  I915_READ(PRB0_HEAD),
3893 			  I915_READ(PRB0_TAIL),
3894 			  I915_READ(PRB0_START));
3895 		return -EIO;
3896 	}
3897 
3898 	/* Update our cache of the ring state */
3899 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
3900 		i915_kernel_lost_context(dev);
3901 	else {
3902 		ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3903 		ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
3904 		ring->space = ring->head - (ring->tail + 8);
3905 		if (ring->space < 0)
3906 			ring->space += ring->Size;
3907 	}
3908 
3909 	return 0;
3910 }
3911 
3912 void
3913 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3914 {
3915 	drm_i915_private_t *dev_priv = dev->dev_private;
3916 
3917 	if (dev_priv->ring.ring_obj == NULL)
3918 		return;
3919 
3920 	drm_core_ioremapfree(&dev_priv->ring.map, dev);
3921 
3922 	i915_gem_object_unpin(dev_priv->ring.ring_obj);
3923 	drm_gem_object_unreference(dev_priv->ring.ring_obj);
3924 	dev_priv->ring.ring_obj = NULL;
3925 	memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3926 
3927 	i915_gem_cleanup_hws(dev);
3928 }
3929 
3930 int
3931 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3932 		       struct drm_file *file_priv)
3933 {
3934 	drm_i915_private_t *dev_priv = dev->dev_private;
3935 	int ret;
3936 
3937 	if (drm_core_check_feature(dev, DRIVER_MODESET))
3938 		return 0;
3939 
3940 	if (dev_priv->mm.wedged) {
3941 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3942 		dev_priv->mm.wedged = 0;
3943 	}
3944 
3945 	mutex_lock(&dev->struct_mutex);
3946 	dev_priv->mm.suspended = 0;
3947 
3948 	ret = i915_gem_init_ringbuffer(dev);
3949 	if (ret != 0)
3950 		return ret;
3951 
3952 	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3953 	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3954 	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3955 	BUG_ON(!list_empty(&dev_priv->mm.request_list));
3956 	mutex_unlock(&dev->struct_mutex);
3957 
3958 	drm_irq_install(dev);
3959 
3960 	return 0;
3961 }
3962 
3963 int
3964 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3965 		       struct drm_file *file_priv)
3966 {
3967 	int ret;
3968 
3969 	if (drm_core_check_feature(dev, DRIVER_MODESET))
3970 		return 0;
3971 
3972 	ret = i915_gem_idle(dev);
3973 	drm_irq_uninstall(dev);
3974 
3975 	return ret;
3976 }
3977 
3978 void
3979 i915_gem_lastclose(struct drm_device *dev)
3980 {
3981 	int ret;
3982 
3983 	if (drm_core_check_feature(dev, DRIVER_MODESET))
3984 		return;
3985 
3986 	ret = i915_gem_idle(dev);
3987 	if (ret)
3988 		DRM_ERROR("failed to idle hardware: %d\n", ret);
3989 }
3990 
3991 void
3992 i915_gem_load(struct drm_device *dev)
3993 {
3994 	drm_i915_private_t *dev_priv = dev->dev_private;
3995 
3996 	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3997 	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3998 	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3999 	INIT_LIST_HEAD(&dev_priv->mm.request_list);
4000 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4001 			  i915_gem_retire_work_handler);
4002 	dev_priv->mm.next_gem_seqno = 1;
4003 
4004 	/* Old X drivers will take 0-2 for front, back, depth buffers */
4005 	dev_priv->fence_reg_start = 3;
4006 
4007 	if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4008 		dev_priv->num_fence_regs = 16;
4009 	else
4010 		dev_priv->num_fence_regs = 8;
4011 
4012 	i915_gem_detect_bit_6_swizzle(dev);
4013 }
4014 
4015 /*
4016  * Create a physically contiguous memory object for this object
4017  * e.g. for cursor + overlay regs
4018  */
4019 int i915_gem_init_phys_object(struct drm_device *dev,
4020 			      int id, int size)
4021 {
4022 	drm_i915_private_t *dev_priv = dev->dev_private;
4023 	struct drm_i915_gem_phys_object *phys_obj;
4024 	int ret;
4025 
4026 	if (dev_priv->mm.phys_objs[id - 1] || !size)
4027 		return 0;
4028 
4029 	phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4030 	if (!phys_obj)
4031 		return -ENOMEM;
4032 
4033 	phys_obj->id = id;
4034 
4035 	phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4036 	if (!phys_obj->handle) {
4037 		ret = -ENOMEM;
4038 		goto kfree_obj;
4039 	}
4040 #ifdef CONFIG_X86
4041 	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4042 #endif
4043 
4044 	dev_priv->mm.phys_objs[id - 1] = phys_obj;
4045 
4046 	return 0;
4047 kfree_obj:
4048 	drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4049 	return ret;
4050 }
4051 
4052 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4053 {
4054 	drm_i915_private_t *dev_priv = dev->dev_private;
4055 	struct drm_i915_gem_phys_object *phys_obj;
4056 
4057 	if (!dev_priv->mm.phys_objs[id - 1])
4058 		return;
4059 
4060 	phys_obj = dev_priv->mm.phys_objs[id - 1];
4061 	if (phys_obj->cur_obj) {
4062 		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4063 	}
4064 
4065 #ifdef CONFIG_X86
4066 	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4067 #endif
4068 	drm_pci_free(dev, phys_obj->handle);
4069 	kfree(phys_obj);
4070 	dev_priv->mm.phys_objs[id - 1] = NULL;
4071 }
4072 
4073 void i915_gem_free_all_phys_object(struct drm_device *dev)
4074 {
4075 	int i;
4076 
4077 	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4078 		i915_gem_free_phys_object(dev, i);
4079 }
4080 
4081 void i915_gem_detach_phys_object(struct drm_device *dev,
4082 				 struct drm_gem_object *obj)
4083 {
4084 	struct drm_i915_gem_object *obj_priv;
4085 	int i;
4086 	int ret;
4087 	int page_count;
4088 
4089 	obj_priv = obj->driver_private;
4090 	if (!obj_priv->phys_obj)
4091 		return;
4092 
4093 	ret = i915_gem_object_get_pages(obj);
4094 	if (ret)
4095 		goto out;
4096 
4097 	page_count = obj->size / PAGE_SIZE;
4098 
4099 	for (i = 0; i < page_count; i++) {
4100 		char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4101 		char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4102 
4103 		memcpy(dst, src, PAGE_SIZE);
4104 		kunmap_atomic(dst, KM_USER0);
4105 	}
4106 	drm_clflush_pages(obj_priv->pages, page_count);
4107 	drm_agp_chipset_flush(dev);
4108 out:
4109 	obj_priv->phys_obj->cur_obj = NULL;
4110 	obj_priv->phys_obj = NULL;
4111 }
4112 
4113 int
4114 i915_gem_attach_phys_object(struct drm_device *dev,
4115 			    struct drm_gem_object *obj, int id)
4116 {
4117 	drm_i915_private_t *dev_priv = dev->dev_private;
4118 	struct drm_i915_gem_object *obj_priv;
4119 	int ret = 0;
4120 	int page_count;
4121 	int i;
4122 
4123 	if (id > I915_MAX_PHYS_OBJECT)
4124 		return -EINVAL;
4125 
4126 	obj_priv = obj->driver_private;
4127 
4128 	if (obj_priv->phys_obj) {
4129 		if (obj_priv->phys_obj->id == id)
4130 			return 0;
4131 		i915_gem_detach_phys_object(dev, obj);
4132 	}
4133 
4134 
4135 	/* create a new object */
4136 	if (!dev_priv->mm.phys_objs[id - 1]) {
4137 		ret = i915_gem_init_phys_object(dev, id,
4138 						obj->size);
4139 		if (ret) {
4140 			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4141 			goto out;
4142 		}
4143 	}
4144 
4145 	/* bind to the object */
4146 	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4147 	obj_priv->phys_obj->cur_obj = obj;
4148 
4149 	ret = i915_gem_object_get_pages(obj);
4150 	if (ret) {
4151 		DRM_ERROR("failed to get page list\n");
4152 		goto out;
4153 	}
4154 
4155 	page_count = obj->size / PAGE_SIZE;
4156 
4157 	for (i = 0; i < page_count; i++) {
4158 		char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4159 		char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4160 
4161 		memcpy(dst, src, PAGE_SIZE);
4162 		kunmap_atomic(src, KM_USER0);
4163 	}
4164 
4165 	return 0;
4166 out:
4167 	return ret;
4168 }
4169 
4170 static int
4171 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4172 		     struct drm_i915_gem_pwrite *args,
4173 		     struct drm_file *file_priv)
4174 {
4175 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
4176 	void *obj_addr;
4177 	int ret;
4178 	char __user *user_data;
4179 
4180 	user_data = (char __user *) (uintptr_t) args->data_ptr;
4181 	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4182 
4183 	DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4184 	ret = copy_from_user(obj_addr, user_data, args->size);
4185 	if (ret)
4186 		return -EFAULT;
4187 
4188 	drm_agp_chipset_flush(dev);
4189 	return 0;
4190 }
4191