xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision b58c6630)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drm_vma_manager.h>
29 #include <linux/dma-fence-array.h>
30 #include <linux/kthread.h>
31 #include <linux/dma-resv.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/slab.h>
34 #include <linux/stop_machine.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38 #include <linux/mman.h>
39 
40 #include "display/intel_display.h"
41 #include "display/intel_frontbuffer.h"
42 
43 #include "gem/i915_gem_clflush.h"
44 #include "gem/i915_gem_context.h"
45 #include "gem/i915_gem_ioctls.h"
46 #include "gem/i915_gem_mman.h"
47 #include "gem/i915_gem_region.h"
48 #include "gt/intel_engine_user.h"
49 #include "gt/intel_gt.h"
50 #include "gt/intel_gt_pm.h"
51 #include "gt/intel_workarounds.h"
52 
53 #include "i915_drv.h"
54 #include "i915_trace.h"
55 #include "i915_vgpu.h"
56 
57 #include "intel_pm.h"
58 
59 static int
60 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
61 {
62 	int err;
63 
64 	err = mutex_lock_interruptible(&ggtt->vm.mutex);
65 	if (err)
66 		return err;
67 
68 	memset(node, 0, sizeof(*node));
69 	err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
70 					  size, 0, I915_COLOR_UNEVICTABLE,
71 					  0, ggtt->mappable_end,
72 					  DRM_MM_INSERT_LOW);
73 
74 	mutex_unlock(&ggtt->vm.mutex);
75 
76 	return err;
77 }
78 
79 static void
80 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
81 {
82 	mutex_lock(&ggtt->vm.mutex);
83 	drm_mm_remove_node(node);
84 	mutex_unlock(&ggtt->vm.mutex);
85 }
86 
87 int
88 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
89 			    struct drm_file *file)
90 {
91 	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
92 	struct drm_i915_gem_get_aperture *args = data;
93 	struct i915_vma *vma;
94 	u64 pinned;
95 
96 	if (mutex_lock_interruptible(&ggtt->vm.mutex))
97 		return -EINTR;
98 
99 	pinned = ggtt->vm.reserved;
100 	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
101 		if (i915_vma_is_pinned(vma))
102 			pinned += vma->node.size;
103 
104 	mutex_unlock(&ggtt->vm.mutex);
105 
106 	args->aper_size = ggtt->vm.total;
107 	args->aper_available_size = args->aper_size - pinned;
108 
109 	return 0;
110 }
111 
112 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
113 			   unsigned long flags)
114 {
115 	struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
116 	LIST_HEAD(still_in_list);
117 	intel_wakeref_t wakeref;
118 	struct i915_vma *vma;
119 	int ret;
120 
121 	if (!atomic_read(&obj->bind_count))
122 		return 0;
123 
124 	/*
125 	 * As some machines use ACPI to handle runtime-resume callbacks, and
126 	 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
127 	 * as they are required by the shrinker. Ergo, we wake the device up
128 	 * first just in case.
129 	 */
130 	wakeref = intel_runtime_pm_get(rpm);
131 
132 try_again:
133 	ret = 0;
134 	spin_lock(&obj->vma.lock);
135 	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
136 						       struct i915_vma,
137 						       obj_link))) {
138 		struct i915_address_space *vm = vma->vm;
139 
140 		list_move_tail(&vma->obj_link, &still_in_list);
141 		if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
142 			continue;
143 
144 		ret = -EAGAIN;
145 		if (!i915_vm_tryopen(vm))
146 			break;
147 
148 		/* Prevent vma being freed by i915_vma_parked as we unbind */
149 		vma = __i915_vma_get(vma);
150 		spin_unlock(&obj->vma.lock);
151 
152 		if (vma) {
153 			ret = -EBUSY;
154 			if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
155 			    !i915_vma_is_active(vma))
156 				ret = i915_vma_unbind(vma);
157 
158 			__i915_vma_put(vma);
159 		}
160 
161 		i915_vm_close(vm);
162 		spin_lock(&obj->vma.lock);
163 	}
164 	list_splice_init(&still_in_list, &obj->vma.list);
165 	spin_unlock(&obj->vma.lock);
166 
167 	if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
168 		rcu_barrier(); /* flush the i915_vm_release() */
169 		goto try_again;
170 	}
171 
172 	intel_runtime_pm_put(rpm, wakeref);
173 
174 	return ret;
175 }
176 
177 static int
178 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
179 		     struct drm_i915_gem_pwrite *args,
180 		     struct drm_file *file)
181 {
182 	void *vaddr = sg_page(obj->mm.pages->sgl) + args->offset;
183 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
184 
185 	/*
186 	 * We manually control the domain here and pretend that it
187 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
188 	 */
189 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
190 
191 	if (copy_from_user(vaddr, user_data, args->size))
192 		return -EFAULT;
193 
194 	drm_clflush_virt_range(vaddr, args->size);
195 	intel_gt_chipset_flush(&to_i915(obj->base.dev)->gt);
196 
197 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
198 	return 0;
199 }
200 
201 static int
202 i915_gem_create(struct drm_file *file,
203 		struct intel_memory_region *mr,
204 		u64 *size_p,
205 		u32 *handle_p)
206 {
207 	struct drm_i915_gem_object *obj;
208 	u32 handle;
209 	u64 size;
210 	int ret;
211 
212 	GEM_BUG_ON(!is_power_of_2(mr->min_page_size));
213 	size = round_up(*size_p, mr->min_page_size);
214 	if (size == 0)
215 		return -EINVAL;
216 
217 	/* For most of the ABI (e.g. mmap) we think in system pages */
218 	GEM_BUG_ON(!IS_ALIGNED(size, PAGE_SIZE));
219 
220 	/* Allocate the new object */
221 	obj = i915_gem_object_create_region(mr, size, 0);
222 	if (IS_ERR(obj))
223 		return PTR_ERR(obj);
224 
225 	ret = drm_gem_handle_create(file, &obj->base, &handle);
226 	/* drop reference from allocate - handle holds it now */
227 	i915_gem_object_put(obj);
228 	if (ret)
229 		return ret;
230 
231 	*handle_p = handle;
232 	*size_p = size;
233 	return 0;
234 }
235 
236 int
237 i915_gem_dumb_create(struct drm_file *file,
238 		     struct drm_device *dev,
239 		     struct drm_mode_create_dumb *args)
240 {
241 	enum intel_memory_type mem_type;
242 	int cpp = DIV_ROUND_UP(args->bpp, 8);
243 	u32 format;
244 
245 	switch (cpp) {
246 	case 1:
247 		format = DRM_FORMAT_C8;
248 		break;
249 	case 2:
250 		format = DRM_FORMAT_RGB565;
251 		break;
252 	case 4:
253 		format = DRM_FORMAT_XRGB8888;
254 		break;
255 	default:
256 		return -EINVAL;
257 	}
258 
259 	/* have to work out size/pitch and return them */
260 	args->pitch = ALIGN(args->width * cpp, 64);
261 
262 	/* align stride to page size so that we can remap */
263 	if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
264 						    DRM_FORMAT_MOD_LINEAR))
265 		args->pitch = ALIGN(args->pitch, 4096);
266 
267 	if (args->pitch < args->width)
268 		return -EINVAL;
269 
270 	args->size = mul_u32_u32(args->pitch, args->height);
271 
272 	mem_type = INTEL_MEMORY_SYSTEM;
273 	if (HAS_LMEM(to_i915(dev)))
274 		mem_type = INTEL_MEMORY_LOCAL;
275 
276 	return i915_gem_create(file,
277 			       intel_memory_region_by_type(to_i915(dev),
278 							   mem_type),
279 			       &args->size, &args->handle);
280 }
281 
282 /**
283  * Creates a new mm object and returns a handle to it.
284  * @dev: drm device pointer
285  * @data: ioctl data blob
286  * @file: drm file pointer
287  */
288 int
289 i915_gem_create_ioctl(struct drm_device *dev, void *data,
290 		      struct drm_file *file)
291 {
292 	struct drm_i915_private *i915 = to_i915(dev);
293 	struct drm_i915_gem_create *args = data;
294 
295 	i915_gem_flush_free_objects(i915);
296 
297 	return i915_gem_create(file,
298 			       intel_memory_region_by_type(i915,
299 							   INTEL_MEMORY_SYSTEM),
300 			       &args->size, &args->handle);
301 }
302 
303 static int
304 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
305 	    bool needs_clflush)
306 {
307 	char *vaddr;
308 	int ret;
309 
310 	vaddr = kmap(page);
311 
312 	if (needs_clflush)
313 		drm_clflush_virt_range(vaddr + offset, len);
314 
315 	ret = __copy_to_user(user_data, vaddr + offset, len);
316 
317 	kunmap(page);
318 
319 	return ret ? -EFAULT : 0;
320 }
321 
322 static int
323 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
324 		     struct drm_i915_gem_pread *args)
325 {
326 	unsigned int needs_clflush;
327 	unsigned int idx, offset;
328 	struct dma_fence *fence;
329 	char __user *user_data;
330 	u64 remain;
331 	int ret;
332 
333 	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
334 	if (ret)
335 		return ret;
336 
337 	fence = i915_gem_object_lock_fence(obj);
338 	i915_gem_object_finish_access(obj);
339 	if (!fence)
340 		return -ENOMEM;
341 
342 	remain = args->size;
343 	user_data = u64_to_user_ptr(args->data_ptr);
344 	offset = offset_in_page(args->offset);
345 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
346 		struct page *page = i915_gem_object_get_page(obj, idx);
347 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
348 
349 		ret = shmem_pread(page, offset, length, user_data,
350 				  needs_clflush);
351 		if (ret)
352 			break;
353 
354 		remain -= length;
355 		user_data += length;
356 		offset = 0;
357 	}
358 
359 	i915_gem_object_unlock_fence(obj, fence);
360 	return ret;
361 }
362 
363 static inline bool
364 gtt_user_read(struct io_mapping *mapping,
365 	      loff_t base, int offset,
366 	      char __user *user_data, int length)
367 {
368 	void __iomem *vaddr;
369 	unsigned long unwritten;
370 
371 	/* We can use the cpu mem copy function because this is X86. */
372 	vaddr = io_mapping_map_atomic_wc(mapping, base);
373 	unwritten = __copy_to_user_inatomic(user_data,
374 					    (void __force *)vaddr + offset,
375 					    length);
376 	io_mapping_unmap_atomic(vaddr);
377 	if (unwritten) {
378 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
379 		unwritten = copy_to_user(user_data,
380 					 (void __force *)vaddr + offset,
381 					 length);
382 		io_mapping_unmap(vaddr);
383 	}
384 	return unwritten;
385 }
386 
387 static int
388 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
389 		   const struct drm_i915_gem_pread *args)
390 {
391 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
392 	struct i915_ggtt *ggtt = &i915->ggtt;
393 	intel_wakeref_t wakeref;
394 	struct drm_mm_node node;
395 	struct dma_fence *fence;
396 	void __user *user_data;
397 	struct i915_vma *vma;
398 	u64 remain, offset;
399 	int ret;
400 
401 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
402 	vma = ERR_PTR(-ENODEV);
403 	if (!i915_gem_object_is_tiled(obj))
404 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
405 					       PIN_MAPPABLE |
406 					       PIN_NONBLOCK /* NOWARN */ |
407 					       PIN_NOEVICT);
408 	if (!IS_ERR(vma)) {
409 		node.start = i915_ggtt_offset(vma);
410 		node.flags = 0;
411 	} else {
412 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
413 		if (ret)
414 			goto out_rpm;
415 		GEM_BUG_ON(!drm_mm_node_allocated(&node));
416 	}
417 
418 	ret = i915_gem_object_lock_interruptible(obj);
419 	if (ret)
420 		goto out_unpin;
421 
422 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
423 	if (ret) {
424 		i915_gem_object_unlock(obj);
425 		goto out_unpin;
426 	}
427 
428 	fence = i915_gem_object_lock_fence(obj);
429 	i915_gem_object_unlock(obj);
430 	if (!fence) {
431 		ret = -ENOMEM;
432 		goto out_unpin;
433 	}
434 
435 	user_data = u64_to_user_ptr(args->data_ptr);
436 	remain = args->size;
437 	offset = args->offset;
438 
439 	while (remain > 0) {
440 		/* Operation in this page
441 		 *
442 		 * page_base = page offset within aperture
443 		 * page_offset = offset within page
444 		 * page_length = bytes to copy for this page
445 		 */
446 		u32 page_base = node.start;
447 		unsigned page_offset = offset_in_page(offset);
448 		unsigned page_length = PAGE_SIZE - page_offset;
449 		page_length = remain < page_length ? remain : page_length;
450 		if (drm_mm_node_allocated(&node)) {
451 			ggtt->vm.insert_page(&ggtt->vm,
452 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
453 					     node.start, I915_CACHE_NONE, 0);
454 		} else {
455 			page_base += offset & PAGE_MASK;
456 		}
457 
458 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
459 				  user_data, page_length)) {
460 			ret = -EFAULT;
461 			break;
462 		}
463 
464 		remain -= page_length;
465 		user_data += page_length;
466 		offset += page_length;
467 	}
468 
469 	i915_gem_object_unlock_fence(obj, fence);
470 out_unpin:
471 	if (drm_mm_node_allocated(&node)) {
472 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
473 		remove_mappable_node(ggtt, &node);
474 	} else {
475 		i915_vma_unpin(vma);
476 	}
477 out_rpm:
478 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
479 	return ret;
480 }
481 
482 /**
483  * Reads data from the object referenced by handle.
484  * @dev: drm device pointer
485  * @data: ioctl data blob
486  * @file: drm file pointer
487  *
488  * On error, the contents of *data are undefined.
489  */
490 int
491 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
492 		     struct drm_file *file)
493 {
494 	struct drm_i915_gem_pread *args = data;
495 	struct drm_i915_gem_object *obj;
496 	int ret;
497 
498 	if (args->size == 0)
499 		return 0;
500 
501 	if (!access_ok(u64_to_user_ptr(args->data_ptr),
502 		       args->size))
503 		return -EFAULT;
504 
505 	obj = i915_gem_object_lookup(file, args->handle);
506 	if (!obj)
507 		return -ENOENT;
508 
509 	/* Bounds check source.  */
510 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
511 		ret = -EINVAL;
512 		goto out;
513 	}
514 
515 	trace_i915_gem_object_pread(obj, args->offset, args->size);
516 
517 	ret = i915_gem_object_wait(obj,
518 				   I915_WAIT_INTERRUPTIBLE,
519 				   MAX_SCHEDULE_TIMEOUT);
520 	if (ret)
521 		goto out;
522 
523 	ret = i915_gem_object_pin_pages(obj);
524 	if (ret)
525 		goto out;
526 
527 	ret = i915_gem_shmem_pread(obj, args);
528 	if (ret == -EFAULT || ret == -ENODEV)
529 		ret = i915_gem_gtt_pread(obj, args);
530 
531 	i915_gem_object_unpin_pages(obj);
532 out:
533 	i915_gem_object_put(obj);
534 	return ret;
535 }
536 
537 /* This is the fast write path which cannot handle
538  * page faults in the source data
539  */
540 
541 static inline bool
542 ggtt_write(struct io_mapping *mapping,
543 	   loff_t base, int offset,
544 	   char __user *user_data, int length)
545 {
546 	void __iomem *vaddr;
547 	unsigned long unwritten;
548 
549 	/* We can use the cpu mem copy function because this is X86. */
550 	vaddr = io_mapping_map_atomic_wc(mapping, base);
551 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
552 						      user_data, length);
553 	io_mapping_unmap_atomic(vaddr);
554 	if (unwritten) {
555 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
556 		unwritten = copy_from_user((void __force *)vaddr + offset,
557 					   user_data, length);
558 		io_mapping_unmap(vaddr);
559 	}
560 
561 	return unwritten;
562 }
563 
564 /**
565  * This is the fast pwrite path, where we copy the data directly from the
566  * user into the GTT, uncached.
567  * @obj: i915 GEM object
568  * @args: pwrite arguments structure
569  */
570 static int
571 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
572 			 const struct drm_i915_gem_pwrite *args)
573 {
574 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
575 	struct i915_ggtt *ggtt = &i915->ggtt;
576 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
577 	intel_wakeref_t wakeref;
578 	struct drm_mm_node node;
579 	struct dma_fence *fence;
580 	struct i915_vma *vma;
581 	u64 remain, offset;
582 	void __user *user_data;
583 	int ret;
584 
585 	if (i915_gem_object_has_struct_page(obj)) {
586 		/*
587 		 * Avoid waking the device up if we can fallback, as
588 		 * waking/resuming is very slow (worst-case 10-100 ms
589 		 * depending on PCI sleeps and our own resume time).
590 		 * This easily dwarfs any performance advantage from
591 		 * using the cache bypass of indirect GGTT access.
592 		 */
593 		wakeref = intel_runtime_pm_get_if_in_use(rpm);
594 		if (!wakeref)
595 			return -EFAULT;
596 	} else {
597 		/* No backing pages, no fallback, we must force GGTT access */
598 		wakeref = intel_runtime_pm_get(rpm);
599 	}
600 
601 	vma = ERR_PTR(-ENODEV);
602 	if (!i915_gem_object_is_tiled(obj))
603 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
604 					       PIN_MAPPABLE |
605 					       PIN_NONBLOCK /* NOWARN */ |
606 					       PIN_NOEVICT);
607 	if (!IS_ERR(vma)) {
608 		node.start = i915_ggtt_offset(vma);
609 		node.flags = 0;
610 	} else {
611 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
612 		if (ret)
613 			goto out_rpm;
614 		GEM_BUG_ON(!drm_mm_node_allocated(&node));
615 	}
616 
617 	ret = i915_gem_object_lock_interruptible(obj);
618 	if (ret)
619 		goto out_unpin;
620 
621 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
622 	if (ret) {
623 		i915_gem_object_unlock(obj);
624 		goto out_unpin;
625 	}
626 
627 	fence = i915_gem_object_lock_fence(obj);
628 	i915_gem_object_unlock(obj);
629 	if (!fence) {
630 		ret = -ENOMEM;
631 		goto out_unpin;
632 	}
633 
634 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
635 
636 	user_data = u64_to_user_ptr(args->data_ptr);
637 	offset = args->offset;
638 	remain = args->size;
639 	while (remain) {
640 		/* Operation in this page
641 		 *
642 		 * page_base = page offset within aperture
643 		 * page_offset = offset within page
644 		 * page_length = bytes to copy for this page
645 		 */
646 		u32 page_base = node.start;
647 		unsigned int page_offset = offset_in_page(offset);
648 		unsigned int page_length = PAGE_SIZE - page_offset;
649 		page_length = remain < page_length ? remain : page_length;
650 		if (drm_mm_node_allocated(&node)) {
651 			/* flush the write before we modify the GGTT */
652 			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
653 			ggtt->vm.insert_page(&ggtt->vm,
654 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
655 					     node.start, I915_CACHE_NONE, 0);
656 			wmb(); /* flush modifications to the GGTT (insert_page) */
657 		} else {
658 			page_base += offset & PAGE_MASK;
659 		}
660 		/* If we get a fault while copying data, then (presumably) our
661 		 * source page isn't available.  Return the error and we'll
662 		 * retry in the slow path.
663 		 * If the object is non-shmem backed, we retry again with the
664 		 * path that handles page fault.
665 		 */
666 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
667 			       user_data, page_length)) {
668 			ret = -EFAULT;
669 			break;
670 		}
671 
672 		remain -= page_length;
673 		user_data += page_length;
674 		offset += page_length;
675 	}
676 
677 	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
678 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
679 
680 	i915_gem_object_unlock_fence(obj, fence);
681 out_unpin:
682 	if (drm_mm_node_allocated(&node)) {
683 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
684 		remove_mappable_node(ggtt, &node);
685 	} else {
686 		i915_vma_unpin(vma);
687 	}
688 out_rpm:
689 	intel_runtime_pm_put(rpm, wakeref);
690 	return ret;
691 }
692 
693 /* Per-page copy function for the shmem pwrite fastpath.
694  * Flushes invalid cachelines before writing to the target if
695  * needs_clflush_before is set and flushes out any written cachelines after
696  * writing if needs_clflush is set.
697  */
698 static int
699 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
700 	     bool needs_clflush_before,
701 	     bool needs_clflush_after)
702 {
703 	char *vaddr;
704 	int ret;
705 
706 	vaddr = kmap(page);
707 
708 	if (needs_clflush_before)
709 		drm_clflush_virt_range(vaddr + offset, len);
710 
711 	ret = __copy_from_user(vaddr + offset, user_data, len);
712 	if (!ret && needs_clflush_after)
713 		drm_clflush_virt_range(vaddr + offset, len);
714 
715 	kunmap(page);
716 
717 	return ret ? -EFAULT : 0;
718 }
719 
720 static int
721 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
722 		      const struct drm_i915_gem_pwrite *args)
723 {
724 	unsigned int partial_cacheline_write;
725 	unsigned int needs_clflush;
726 	unsigned int offset, idx;
727 	struct dma_fence *fence;
728 	void __user *user_data;
729 	u64 remain;
730 	int ret;
731 
732 	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
733 	if (ret)
734 		return ret;
735 
736 	fence = i915_gem_object_lock_fence(obj);
737 	i915_gem_object_finish_access(obj);
738 	if (!fence)
739 		return -ENOMEM;
740 
741 	/* If we don't overwrite a cacheline completely we need to be
742 	 * careful to have up-to-date data by first clflushing. Don't
743 	 * overcomplicate things and flush the entire patch.
744 	 */
745 	partial_cacheline_write = 0;
746 	if (needs_clflush & CLFLUSH_BEFORE)
747 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
748 
749 	user_data = u64_to_user_ptr(args->data_ptr);
750 	remain = args->size;
751 	offset = offset_in_page(args->offset);
752 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
753 		struct page *page = i915_gem_object_get_page(obj, idx);
754 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
755 
756 		ret = shmem_pwrite(page, offset, length, user_data,
757 				   (offset | length) & partial_cacheline_write,
758 				   needs_clflush & CLFLUSH_AFTER);
759 		if (ret)
760 			break;
761 
762 		remain -= length;
763 		user_data += length;
764 		offset = 0;
765 	}
766 
767 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
768 	i915_gem_object_unlock_fence(obj, fence);
769 
770 	return ret;
771 }
772 
773 /**
774  * Writes data to the object referenced by handle.
775  * @dev: drm device
776  * @data: ioctl data blob
777  * @file: drm file
778  *
779  * On error, the contents of the buffer that were to be modified are undefined.
780  */
781 int
782 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
783 		      struct drm_file *file)
784 {
785 	struct drm_i915_gem_pwrite *args = data;
786 	struct drm_i915_gem_object *obj;
787 	int ret;
788 
789 	if (args->size == 0)
790 		return 0;
791 
792 	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
793 		return -EFAULT;
794 
795 	obj = i915_gem_object_lookup(file, args->handle);
796 	if (!obj)
797 		return -ENOENT;
798 
799 	/* Bounds check destination. */
800 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
801 		ret = -EINVAL;
802 		goto err;
803 	}
804 
805 	/* Writes not allowed into this read-only object */
806 	if (i915_gem_object_is_readonly(obj)) {
807 		ret = -EINVAL;
808 		goto err;
809 	}
810 
811 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
812 
813 	ret = -ENODEV;
814 	if (obj->ops->pwrite)
815 		ret = obj->ops->pwrite(obj, args);
816 	if (ret != -ENODEV)
817 		goto err;
818 
819 	ret = i915_gem_object_wait(obj,
820 				   I915_WAIT_INTERRUPTIBLE |
821 				   I915_WAIT_ALL,
822 				   MAX_SCHEDULE_TIMEOUT);
823 	if (ret)
824 		goto err;
825 
826 	ret = i915_gem_object_pin_pages(obj);
827 	if (ret)
828 		goto err;
829 
830 	ret = -EFAULT;
831 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
832 	 * it would end up going through the fenced access, and we'll get
833 	 * different detiling behavior between reading and writing.
834 	 * pread/pwrite currently are reading and writing from the CPU
835 	 * perspective, requiring manual detiling by the client.
836 	 */
837 	if (!i915_gem_object_has_struct_page(obj) ||
838 	    cpu_write_needs_clflush(obj))
839 		/* Note that the gtt paths might fail with non-page-backed user
840 		 * pointers (e.g. gtt mappings when moving data between
841 		 * textures). Fallback to the shmem path in that case.
842 		 */
843 		ret = i915_gem_gtt_pwrite_fast(obj, args);
844 
845 	if (ret == -EFAULT || ret == -ENOSPC) {
846 		if (i915_gem_object_has_struct_page(obj))
847 			ret = i915_gem_shmem_pwrite(obj, args);
848 		else
849 			ret = i915_gem_phys_pwrite(obj, args, file);
850 	}
851 
852 	i915_gem_object_unpin_pages(obj);
853 err:
854 	i915_gem_object_put(obj);
855 	return ret;
856 }
857 
858 /**
859  * Called when user space has done writes to this buffer
860  * @dev: drm device
861  * @data: ioctl data blob
862  * @file: drm file
863  */
864 int
865 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
866 			 struct drm_file *file)
867 {
868 	struct drm_i915_gem_sw_finish *args = data;
869 	struct drm_i915_gem_object *obj;
870 
871 	obj = i915_gem_object_lookup(file, args->handle);
872 	if (!obj)
873 		return -ENOENT;
874 
875 	/*
876 	 * Proxy objects are barred from CPU access, so there is no
877 	 * need to ban sw_finish as it is a nop.
878 	 */
879 
880 	/* Pinned buffers may be scanout, so flush the cache */
881 	i915_gem_object_flush_if_display(obj);
882 	i915_gem_object_put(obj);
883 
884 	return 0;
885 }
886 
887 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
888 {
889 	struct drm_i915_gem_object *obj, *on;
890 	int i;
891 
892 	/*
893 	 * Only called during RPM suspend. All users of the userfault_list
894 	 * must be holding an RPM wakeref to ensure that this can not
895 	 * run concurrently with themselves (and use the struct_mutex for
896 	 * protection between themselves).
897 	 */
898 
899 	list_for_each_entry_safe(obj, on,
900 				 &i915->ggtt.userfault_list, userfault_link)
901 		__i915_gem_object_release_mmap_gtt(obj);
902 
903 	/*
904 	 * The fence will be lost when the device powers down. If any were
905 	 * in use by hardware (i.e. they are pinned), we should not be powering
906 	 * down! All other fences will be reacquired by the user upon waking.
907 	 */
908 	for (i = 0; i < i915->ggtt.num_fences; i++) {
909 		struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
910 
911 		/*
912 		 * Ideally we want to assert that the fence register is not
913 		 * live at this point (i.e. that no piece of code will be
914 		 * trying to write through fence + GTT, as that both violates
915 		 * our tracking of activity and associated locking/barriers,
916 		 * but also is illegal given that the hw is powered down).
917 		 *
918 		 * Previously we used reg->pin_count as a "liveness" indicator.
919 		 * That is not sufficient, and we need a more fine-grained
920 		 * tool if we want to have a sanity check here.
921 		 */
922 
923 		if (!reg->vma)
924 			continue;
925 
926 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
927 		reg->dirty = true;
928 	}
929 }
930 
931 struct i915_vma *
932 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
933 			 const struct i915_ggtt_view *view,
934 			 u64 size,
935 			 u64 alignment,
936 			 u64 flags)
937 {
938 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
939 	struct i915_ggtt *ggtt = &i915->ggtt;
940 	struct i915_vma *vma;
941 	int ret;
942 
943 	if (flags & PIN_MAPPABLE &&
944 	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
945 		/*
946 		 * If the required space is larger than the available
947 		 * aperture, we will not able to find a slot for the
948 		 * object and unbinding the object now will be in
949 		 * vain. Worse, doing so may cause us to ping-pong
950 		 * the object in and out of the Global GTT and
951 		 * waste a lot of cycles under the mutex.
952 		 */
953 		if (obj->base.size > ggtt->mappable_end)
954 			return ERR_PTR(-E2BIG);
955 
956 		/*
957 		 * If NONBLOCK is set the caller is optimistically
958 		 * trying to cache the full object within the mappable
959 		 * aperture, and *must* have a fallback in place for
960 		 * situations where we cannot bind the object. We
961 		 * can be a little more lax here and use the fallback
962 		 * more often to avoid costly migrations of ourselves
963 		 * and other objects within the aperture.
964 		 *
965 		 * Half-the-aperture is used as a simple heuristic.
966 		 * More interesting would to do search for a free
967 		 * block prior to making the commitment to unbind.
968 		 * That caters for the self-harm case, and with a
969 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
970 		 * we could try to minimise harm to others.
971 		 */
972 		if (flags & PIN_NONBLOCK &&
973 		    obj->base.size > ggtt->mappable_end / 2)
974 			return ERR_PTR(-ENOSPC);
975 	}
976 
977 	vma = i915_vma_instance(obj, &ggtt->vm, view);
978 	if (IS_ERR(vma))
979 		return vma;
980 
981 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
982 		if (flags & PIN_NONBLOCK) {
983 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
984 				return ERR_PTR(-ENOSPC);
985 
986 			if (flags & PIN_MAPPABLE &&
987 			    vma->fence_size > ggtt->mappable_end / 2)
988 				return ERR_PTR(-ENOSPC);
989 		}
990 
991 		ret = i915_vma_unbind(vma);
992 		if (ret)
993 			return ERR_PTR(ret);
994 	}
995 
996 	if (vma->fence && !i915_gem_object_is_tiled(obj)) {
997 		mutex_lock(&ggtt->vm.mutex);
998 		ret = i915_vma_revoke_fence(vma);
999 		mutex_unlock(&ggtt->vm.mutex);
1000 		if (ret)
1001 			return ERR_PTR(ret);
1002 	}
1003 
1004 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
1005 	if (ret)
1006 		return ERR_PTR(ret);
1007 
1008 	ret = i915_vma_wait_for_bind(vma);
1009 	if (ret) {
1010 		i915_vma_unpin(vma);
1011 		return ERR_PTR(ret);
1012 	}
1013 
1014 	return vma;
1015 }
1016 
1017 int
1018 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1019 		       struct drm_file *file_priv)
1020 {
1021 	struct drm_i915_private *i915 = to_i915(dev);
1022 	struct drm_i915_gem_madvise *args = data;
1023 	struct drm_i915_gem_object *obj;
1024 	int err;
1025 
1026 	switch (args->madv) {
1027 	case I915_MADV_DONTNEED:
1028 	case I915_MADV_WILLNEED:
1029 	    break;
1030 	default:
1031 	    return -EINVAL;
1032 	}
1033 
1034 	obj = i915_gem_object_lookup(file_priv, args->handle);
1035 	if (!obj)
1036 		return -ENOENT;
1037 
1038 	err = mutex_lock_interruptible(&obj->mm.lock);
1039 	if (err)
1040 		goto out;
1041 
1042 	if (i915_gem_object_has_pages(obj) &&
1043 	    i915_gem_object_is_tiled(obj) &&
1044 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
1045 		if (obj->mm.madv == I915_MADV_WILLNEED) {
1046 			GEM_BUG_ON(!obj->mm.quirked);
1047 			__i915_gem_object_unpin_pages(obj);
1048 			obj->mm.quirked = false;
1049 		}
1050 		if (args->madv == I915_MADV_WILLNEED) {
1051 			GEM_BUG_ON(obj->mm.quirked);
1052 			__i915_gem_object_pin_pages(obj);
1053 			obj->mm.quirked = true;
1054 		}
1055 	}
1056 
1057 	if (obj->mm.madv != __I915_MADV_PURGED)
1058 		obj->mm.madv = args->madv;
1059 
1060 	if (i915_gem_object_has_pages(obj)) {
1061 		struct list_head *list;
1062 
1063 		if (i915_gem_object_is_shrinkable(obj)) {
1064 			unsigned long flags;
1065 
1066 			spin_lock_irqsave(&i915->mm.obj_lock, flags);
1067 
1068 			if (obj->mm.madv != I915_MADV_WILLNEED)
1069 				list = &i915->mm.purge_list;
1070 			else
1071 				list = &i915->mm.shrink_list;
1072 			list_move_tail(&obj->mm.link, list);
1073 
1074 			spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1075 		}
1076 	}
1077 
1078 	/* if the object is no longer attached, discard its backing storage */
1079 	if (obj->mm.madv == I915_MADV_DONTNEED &&
1080 	    !i915_gem_object_has_pages(obj))
1081 		i915_gem_object_truncate(obj);
1082 
1083 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
1084 	mutex_unlock(&obj->mm.lock);
1085 
1086 out:
1087 	i915_gem_object_put(obj);
1088 	return err;
1089 }
1090 
1091 int i915_gem_init(struct drm_i915_private *dev_priv)
1092 {
1093 	int ret;
1094 
1095 	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
1096 	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1097 		mkwrite_device_info(dev_priv)->page_sizes =
1098 			I915_GTT_PAGE_SIZE_4K;
1099 
1100 	ret = i915_gem_init_userptr(dev_priv);
1101 	if (ret)
1102 		return ret;
1103 
1104 	intel_uc_fetch_firmwares(&dev_priv->gt.uc);
1105 	intel_wopcm_init(&dev_priv->wopcm);
1106 
1107 	ret = i915_init_ggtt(dev_priv);
1108 	if (ret) {
1109 		GEM_BUG_ON(ret == -EIO);
1110 		goto err_unlock;
1111 	}
1112 
1113 	/*
1114 	 * Despite its name intel_init_clock_gating applies both display
1115 	 * clock gating workarounds; GT mmio workarounds and the occasional
1116 	 * GT power context workaround. Worse, sometimes it includes a context
1117 	 * register workaround which we need to apply before we record the
1118 	 * default HW state for all contexts.
1119 	 *
1120 	 * FIXME: break up the workarounds and apply them at the right time!
1121 	 */
1122 	intel_init_clock_gating(dev_priv);
1123 
1124 	ret = intel_gt_init(&dev_priv->gt);
1125 	if (ret)
1126 		goto err_unlock;
1127 
1128 	return 0;
1129 
1130 	/*
1131 	 * Unwinding is complicated by that we want to handle -EIO to mean
1132 	 * disable GPU submission but keep KMS alive. We want to mark the
1133 	 * HW as irrevisibly wedged, but keep enough state around that the
1134 	 * driver doesn't explode during runtime.
1135 	 */
1136 err_unlock:
1137 	i915_gem_drain_workqueue(dev_priv);
1138 
1139 	if (ret != -EIO) {
1140 		intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1141 		i915_gem_cleanup_userptr(dev_priv);
1142 	}
1143 
1144 	if (ret == -EIO) {
1145 		/*
1146 		 * Allow engines or uC initialisation to fail by marking the GPU
1147 		 * as wedged. But we only want to do this when the GPU is angry,
1148 		 * for all other failure, such as an allocation failure, bail.
1149 		 */
1150 		if (!intel_gt_is_wedged(&dev_priv->gt)) {
1151 			i915_probe_error(dev_priv,
1152 					 "Failed to initialize GPU, declaring it wedged!\n");
1153 			intel_gt_set_wedged(&dev_priv->gt);
1154 		}
1155 
1156 		/* Minimal basic recovery for KMS */
1157 		ret = i915_ggtt_enable_hw(dev_priv);
1158 		i915_ggtt_resume(&dev_priv->ggtt);
1159 		i915_gem_restore_fences(&dev_priv->ggtt);
1160 		intel_init_clock_gating(dev_priv);
1161 	}
1162 
1163 	i915_gem_drain_freed_objects(dev_priv);
1164 	return ret;
1165 }
1166 
1167 void i915_gem_driver_register(struct drm_i915_private *i915)
1168 {
1169 	i915_gem_driver_register__shrinker(i915);
1170 
1171 	intel_engines_driver_register(i915);
1172 }
1173 
1174 void i915_gem_driver_unregister(struct drm_i915_private *i915)
1175 {
1176 	i915_gem_driver_unregister__shrinker(i915);
1177 }
1178 
1179 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1180 {
1181 	intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1182 
1183 	i915_gem_suspend_late(dev_priv);
1184 	intel_gt_driver_remove(&dev_priv->gt);
1185 	dev_priv->uabi_engines = RB_ROOT;
1186 
1187 	/* Flush any outstanding unpin_work. */
1188 	i915_gem_drain_workqueue(dev_priv);
1189 
1190 	i915_gem_drain_freed_objects(dev_priv);
1191 }
1192 
1193 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1194 {
1195 	i915_gem_driver_release__contexts(dev_priv);
1196 
1197 	intel_gt_driver_release(&dev_priv->gt);
1198 
1199 	intel_wa_list_free(&dev_priv->gt_wa_list);
1200 
1201 	intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1202 	i915_gem_cleanup_userptr(dev_priv);
1203 
1204 	i915_gem_drain_freed_objects(dev_priv);
1205 
1206 	drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1207 }
1208 
1209 static void i915_gem_init__mm(struct drm_i915_private *i915)
1210 {
1211 	spin_lock_init(&i915->mm.obj_lock);
1212 
1213 	init_llist_head(&i915->mm.free_list);
1214 
1215 	INIT_LIST_HEAD(&i915->mm.purge_list);
1216 	INIT_LIST_HEAD(&i915->mm.shrink_list);
1217 
1218 	i915_gem_init__objects(i915);
1219 }
1220 
1221 void i915_gem_init_early(struct drm_i915_private *dev_priv)
1222 {
1223 	i915_gem_init__mm(dev_priv);
1224 	i915_gem_init__contexts(dev_priv);
1225 
1226 	spin_lock_init(&dev_priv->fb_tracking.lock);
1227 }
1228 
1229 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1230 {
1231 	i915_gem_drain_freed_objects(dev_priv);
1232 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1233 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1234 	drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1235 }
1236 
1237 int i915_gem_freeze(struct drm_i915_private *dev_priv)
1238 {
1239 	/* Discard all purgeable objects, let userspace recover those as
1240 	 * required after resuming.
1241 	 */
1242 	i915_gem_shrink_all(dev_priv);
1243 
1244 	return 0;
1245 }
1246 
1247 int i915_gem_freeze_late(struct drm_i915_private *i915)
1248 {
1249 	struct drm_i915_gem_object *obj;
1250 	intel_wakeref_t wakeref;
1251 
1252 	/*
1253 	 * Called just before we write the hibernation image.
1254 	 *
1255 	 * We need to update the domain tracking to reflect that the CPU
1256 	 * will be accessing all the pages to create and restore from the
1257 	 * hibernation, and so upon restoration those pages will be in the
1258 	 * CPU domain.
1259 	 *
1260 	 * To make sure the hibernation image contains the latest state,
1261 	 * we update that state just before writing out the image.
1262 	 *
1263 	 * To try and reduce the hibernation image, we manually shrink
1264 	 * the objects as well, see i915_gem_freeze()
1265 	 */
1266 
1267 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1268 
1269 	i915_gem_shrink(i915, -1UL, NULL, ~0);
1270 	i915_gem_drain_freed_objects(i915);
1271 
1272 	list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
1273 		i915_gem_object_lock(obj);
1274 		drm_WARN_ON(&i915->drm,
1275 			    i915_gem_object_set_to_cpu_domain(obj, true));
1276 		i915_gem_object_unlock(obj);
1277 	}
1278 
1279 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1280 
1281 	return 0;
1282 }
1283 
1284 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
1285 {
1286 	struct drm_i915_file_private *file_priv = file->driver_priv;
1287 	struct i915_request *request;
1288 
1289 	/* Clean up our request list when the client is going away, so that
1290 	 * later retire_requests won't dereference our soon-to-be-gone
1291 	 * file_priv.
1292 	 */
1293 	spin_lock(&file_priv->mm.lock);
1294 	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
1295 		request->file_priv = NULL;
1296 	spin_unlock(&file_priv->mm.lock);
1297 }
1298 
1299 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1300 {
1301 	struct drm_i915_file_private *file_priv;
1302 	int ret;
1303 
1304 	DRM_DEBUG("\n");
1305 
1306 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1307 	if (!file_priv)
1308 		return -ENOMEM;
1309 
1310 	file->driver_priv = file_priv;
1311 	file_priv->dev_priv = i915;
1312 	file_priv->file = file;
1313 
1314 	spin_lock_init(&file_priv->mm.lock);
1315 	INIT_LIST_HEAD(&file_priv->mm.request_list);
1316 
1317 	file_priv->bsd_engine = -1;
1318 	file_priv->hang_timestamp = jiffies;
1319 
1320 	ret = i915_gem_context_open(i915, file);
1321 	if (ret)
1322 		kfree(file_priv);
1323 
1324 	return ret;
1325 }
1326 
1327 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1328 #include "selftests/mock_gem_device.c"
1329 #include "selftests/i915_gem.c"
1330 #endif
1331