1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drmP.h> 29 #include <drm/drm_vma_manager.h> 30 #include <drm/i915_drm.h> 31 #include "i915_drv.h" 32 #include "i915_trace.h" 33 #include "intel_drv.h" 34 #include <linux/shmem_fs.h> 35 #include <linux/slab.h> 36 #include <linux/swap.h> 37 #include <linux/pci.h> 38 #include <linux/dma-buf.h> 39 40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); 41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj, 42 bool force); 43 static __must_check int 44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 45 bool readonly); 46 static int i915_gem_phys_pwrite(struct drm_device *dev, 47 struct drm_i915_gem_object *obj, 48 struct drm_i915_gem_pwrite *args, 49 struct drm_file *file); 50 51 static void i915_gem_write_fence(struct drm_device *dev, int reg, 52 struct drm_i915_gem_object *obj); 53 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 54 struct drm_i915_fence_reg *fence, 55 bool enable); 56 57 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker, 58 struct shrink_control *sc); 59 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker, 60 struct shrink_control *sc); 61 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target); 62 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv); 63 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj); 64 static void i915_gem_retire_requests_ring(struct intel_ring_buffer *ring); 65 66 static bool cpu_cache_is_coherent(struct drm_device *dev, 67 enum i915_cache_level level) 68 { 69 return HAS_LLC(dev) || level != I915_CACHE_NONE; 70 } 71 72 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj) 73 { 74 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) 75 return true; 76 77 return obj->pin_display; 78 } 79 80 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj) 81 { 82 if (obj->tiling_mode) 83 i915_gem_release_mmap(obj); 84 85 /* As we do not have an associated fence register, we will force 86 * a tiling change if we ever need to acquire one. 87 */ 88 obj->fence_dirty = false; 89 obj->fence_reg = I915_FENCE_REG_NONE; 90 } 91 92 /* some bookkeeping */ 93 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, 94 size_t size) 95 { 96 spin_lock(&dev_priv->mm.object_stat_lock); 97 dev_priv->mm.object_count++; 98 dev_priv->mm.object_memory += size; 99 spin_unlock(&dev_priv->mm.object_stat_lock); 100 } 101 102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, 103 size_t size) 104 { 105 spin_lock(&dev_priv->mm.object_stat_lock); 106 dev_priv->mm.object_count--; 107 dev_priv->mm.object_memory -= size; 108 spin_unlock(&dev_priv->mm.object_stat_lock); 109 } 110 111 static int 112 i915_gem_wait_for_error(struct i915_gpu_error *error) 113 { 114 int ret; 115 116 #define EXIT_COND (!i915_reset_in_progress(error) || \ 117 i915_terminally_wedged(error)) 118 if (EXIT_COND) 119 return 0; 120 121 /* 122 * Only wait 10 seconds for the gpu reset to complete to avoid hanging 123 * userspace. If it takes that long something really bad is going on and 124 * we should simply try to bail out and fail as gracefully as possible. 125 */ 126 ret = wait_event_interruptible_timeout(error->reset_queue, 127 EXIT_COND, 128 10*HZ); 129 if (ret == 0) { 130 DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); 131 return -EIO; 132 } else if (ret < 0) { 133 return ret; 134 } 135 #undef EXIT_COND 136 137 return 0; 138 } 139 140 int i915_mutex_lock_interruptible(struct drm_device *dev) 141 { 142 struct drm_i915_private *dev_priv = dev->dev_private; 143 int ret; 144 145 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 146 if (ret) 147 return ret; 148 149 ret = mutex_lock_interruptible(&dev->struct_mutex); 150 if (ret) 151 return ret; 152 153 WARN_ON(i915_verify_lists(dev)); 154 return 0; 155 } 156 157 static inline bool 158 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj) 159 { 160 return i915_gem_obj_bound_any(obj) && !obj->active; 161 } 162 163 int 164 i915_gem_init_ioctl(struct drm_device *dev, void *data, 165 struct drm_file *file) 166 { 167 struct drm_i915_private *dev_priv = dev->dev_private; 168 struct drm_i915_gem_init *args = data; 169 170 if (drm_core_check_feature(dev, DRIVER_MODESET)) 171 return -ENODEV; 172 173 if (args->gtt_start >= args->gtt_end || 174 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1)) 175 return -EINVAL; 176 177 /* GEM with user mode setting was never supported on ilk and later. */ 178 if (INTEL_INFO(dev)->gen >= 5) 179 return -ENODEV; 180 181 mutex_lock(&dev->struct_mutex); 182 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end, 183 args->gtt_end); 184 dev_priv->gtt.mappable_end = args->gtt_end; 185 mutex_unlock(&dev->struct_mutex); 186 187 return 0; 188 } 189 190 int 191 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 192 struct drm_file *file) 193 { 194 struct drm_i915_private *dev_priv = dev->dev_private; 195 struct drm_i915_gem_get_aperture *args = data; 196 struct drm_i915_gem_object *obj; 197 size_t pinned; 198 199 pinned = 0; 200 mutex_lock(&dev->struct_mutex); 201 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) 202 if (i915_gem_obj_is_pinned(obj)) 203 pinned += i915_gem_obj_ggtt_size(obj); 204 mutex_unlock(&dev->struct_mutex); 205 206 args->aper_size = dev_priv->gtt.base.total; 207 args->aper_available_size = args->aper_size - pinned; 208 209 return 0; 210 } 211 212 void *i915_gem_object_alloc(struct drm_device *dev) 213 { 214 struct drm_i915_private *dev_priv = dev->dev_private; 215 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL); 216 } 217 218 void i915_gem_object_free(struct drm_i915_gem_object *obj) 219 { 220 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 221 kmem_cache_free(dev_priv->slab, obj); 222 } 223 224 static int 225 i915_gem_create(struct drm_file *file, 226 struct drm_device *dev, 227 uint64_t size, 228 uint32_t *handle_p) 229 { 230 struct drm_i915_gem_object *obj; 231 int ret; 232 u32 handle; 233 234 size = roundup(size, PAGE_SIZE); 235 if (size == 0) 236 return -EINVAL; 237 238 /* Allocate the new object */ 239 obj = i915_gem_alloc_object(dev, size); 240 if (obj == NULL) 241 return -ENOMEM; 242 243 ret = drm_gem_handle_create(file, &obj->base, &handle); 244 /* drop reference from allocate - handle holds it now */ 245 drm_gem_object_unreference_unlocked(&obj->base); 246 if (ret) 247 return ret; 248 249 *handle_p = handle; 250 return 0; 251 } 252 253 int 254 i915_gem_dumb_create(struct drm_file *file, 255 struct drm_device *dev, 256 struct drm_mode_create_dumb *args) 257 { 258 /* have to work out size/pitch and return them */ 259 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64); 260 args->size = args->pitch * args->height; 261 return i915_gem_create(file, dev, 262 args->size, &args->handle); 263 } 264 265 /** 266 * Creates a new mm object and returns a handle to it. 267 */ 268 int 269 i915_gem_create_ioctl(struct drm_device *dev, void *data, 270 struct drm_file *file) 271 { 272 struct drm_i915_gem_create *args = data; 273 274 return i915_gem_create(file, dev, 275 args->size, &args->handle); 276 } 277 278 static inline int 279 __copy_to_user_swizzled(char __user *cpu_vaddr, 280 const char *gpu_vaddr, int gpu_offset, 281 int length) 282 { 283 int ret, cpu_offset = 0; 284 285 while (length > 0) { 286 int cacheline_end = ALIGN(gpu_offset + 1, 64); 287 int this_length = min(cacheline_end - gpu_offset, length); 288 int swizzled_gpu_offset = gpu_offset ^ 64; 289 290 ret = __copy_to_user(cpu_vaddr + cpu_offset, 291 gpu_vaddr + swizzled_gpu_offset, 292 this_length); 293 if (ret) 294 return ret + length; 295 296 cpu_offset += this_length; 297 gpu_offset += this_length; 298 length -= this_length; 299 } 300 301 return 0; 302 } 303 304 static inline int 305 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, 306 const char __user *cpu_vaddr, 307 int length) 308 { 309 int ret, cpu_offset = 0; 310 311 while (length > 0) { 312 int cacheline_end = ALIGN(gpu_offset + 1, 64); 313 int this_length = min(cacheline_end - gpu_offset, length); 314 int swizzled_gpu_offset = gpu_offset ^ 64; 315 316 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, 317 cpu_vaddr + cpu_offset, 318 this_length); 319 if (ret) 320 return ret + length; 321 322 cpu_offset += this_length; 323 gpu_offset += this_length; 324 length -= this_length; 325 } 326 327 return 0; 328 } 329 330 /* 331 * Pins the specified object's pages and synchronizes the object with 332 * GPU accesses. Sets needs_clflush to non-zero if the caller should 333 * flush the object from the CPU cache. 334 */ 335 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 336 int *needs_clflush) 337 { 338 int ret; 339 340 *needs_clflush = 0; 341 342 if (!obj->base.filp) 343 return -EINVAL; 344 345 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) { 346 /* If we're not in the cpu read domain, set ourself into the gtt 347 * read domain and manually flush cachelines (if required). This 348 * optimizes for the case when the gpu will dirty the data 349 * anyway again before the next pread happens. */ 350 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev, 351 obj->cache_level); 352 ret = i915_gem_object_wait_rendering(obj, true); 353 if (ret) 354 return ret; 355 } 356 357 ret = i915_gem_object_get_pages(obj); 358 if (ret) 359 return ret; 360 361 i915_gem_object_pin_pages(obj); 362 363 return ret; 364 } 365 366 /* Per-page copy function for the shmem pread fastpath. 367 * Flushes invalid cachelines before reading the target if 368 * needs_clflush is set. */ 369 static int 370 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length, 371 char __user *user_data, 372 bool page_do_bit17_swizzling, bool needs_clflush) 373 { 374 char *vaddr; 375 int ret; 376 377 if (unlikely(page_do_bit17_swizzling)) 378 return -EINVAL; 379 380 vaddr = kmap_atomic(page); 381 if (needs_clflush) 382 drm_clflush_virt_range(vaddr + shmem_page_offset, 383 page_length); 384 ret = __copy_to_user_inatomic(user_data, 385 vaddr + shmem_page_offset, 386 page_length); 387 kunmap_atomic(vaddr); 388 389 return ret ? -EFAULT : 0; 390 } 391 392 static void 393 shmem_clflush_swizzled_range(char *addr, unsigned long length, 394 bool swizzled) 395 { 396 if (unlikely(swizzled)) { 397 unsigned long start = (unsigned long) addr; 398 unsigned long end = (unsigned long) addr + length; 399 400 /* For swizzling simply ensure that we always flush both 401 * channels. Lame, but simple and it works. Swizzled 402 * pwrite/pread is far from a hotpath - current userspace 403 * doesn't use it at all. */ 404 start = round_down(start, 128); 405 end = round_up(end, 128); 406 407 drm_clflush_virt_range((void *)start, end - start); 408 } else { 409 drm_clflush_virt_range(addr, length); 410 } 411 412 } 413 414 /* Only difference to the fast-path function is that this can handle bit17 415 * and uses non-atomic copy and kmap functions. */ 416 static int 417 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length, 418 char __user *user_data, 419 bool page_do_bit17_swizzling, bool needs_clflush) 420 { 421 char *vaddr; 422 int ret; 423 424 vaddr = kmap(page); 425 if (needs_clflush) 426 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 427 page_length, 428 page_do_bit17_swizzling); 429 430 if (page_do_bit17_swizzling) 431 ret = __copy_to_user_swizzled(user_data, 432 vaddr, shmem_page_offset, 433 page_length); 434 else 435 ret = __copy_to_user(user_data, 436 vaddr + shmem_page_offset, 437 page_length); 438 kunmap(page); 439 440 return ret ? - EFAULT : 0; 441 } 442 443 static int 444 i915_gem_shmem_pread(struct drm_device *dev, 445 struct drm_i915_gem_object *obj, 446 struct drm_i915_gem_pread *args, 447 struct drm_file *file) 448 { 449 char __user *user_data; 450 ssize_t remain; 451 loff_t offset; 452 int shmem_page_offset, page_length, ret = 0; 453 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 454 int prefaulted = 0; 455 int needs_clflush = 0; 456 struct sg_page_iter sg_iter; 457 458 user_data = to_user_ptr(args->data_ptr); 459 remain = args->size; 460 461 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 462 463 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush); 464 if (ret) 465 return ret; 466 467 offset = args->offset; 468 469 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 470 offset >> PAGE_SHIFT) { 471 struct page *page = sg_page_iter_page(&sg_iter); 472 473 if (remain <= 0) 474 break; 475 476 /* Operation in this page 477 * 478 * shmem_page_offset = offset within page in shmem file 479 * page_length = bytes to copy for this page 480 */ 481 shmem_page_offset = offset_in_page(offset); 482 page_length = remain; 483 if ((shmem_page_offset + page_length) > PAGE_SIZE) 484 page_length = PAGE_SIZE - shmem_page_offset; 485 486 page_do_bit17_swizzling = obj_do_bit17_swizzling && 487 (page_to_phys(page) & (1 << 17)) != 0; 488 489 ret = shmem_pread_fast(page, shmem_page_offset, page_length, 490 user_data, page_do_bit17_swizzling, 491 needs_clflush); 492 if (ret == 0) 493 goto next_page; 494 495 mutex_unlock(&dev->struct_mutex); 496 497 if (likely(!i915.prefault_disable) && !prefaulted) { 498 ret = fault_in_multipages_writeable(user_data, remain); 499 /* Userspace is tricking us, but we've already clobbered 500 * its pages with the prefault and promised to write the 501 * data up to the first fault. Hence ignore any errors 502 * and just continue. */ 503 (void)ret; 504 prefaulted = 1; 505 } 506 507 ret = shmem_pread_slow(page, shmem_page_offset, page_length, 508 user_data, page_do_bit17_swizzling, 509 needs_clflush); 510 511 mutex_lock(&dev->struct_mutex); 512 513 if (ret) 514 goto out; 515 516 next_page: 517 remain -= page_length; 518 user_data += page_length; 519 offset += page_length; 520 } 521 522 out: 523 i915_gem_object_unpin_pages(obj); 524 525 return ret; 526 } 527 528 /** 529 * Reads data from the object referenced by handle. 530 * 531 * On error, the contents of *data are undefined. 532 */ 533 int 534 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 535 struct drm_file *file) 536 { 537 struct drm_i915_gem_pread *args = data; 538 struct drm_i915_gem_object *obj; 539 int ret = 0; 540 541 if (args->size == 0) 542 return 0; 543 544 if (!access_ok(VERIFY_WRITE, 545 to_user_ptr(args->data_ptr), 546 args->size)) 547 return -EFAULT; 548 549 ret = i915_mutex_lock_interruptible(dev); 550 if (ret) 551 return ret; 552 553 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 554 if (&obj->base == NULL) { 555 ret = -ENOENT; 556 goto unlock; 557 } 558 559 /* Bounds check source. */ 560 if (args->offset > obj->base.size || 561 args->size > obj->base.size - args->offset) { 562 ret = -EINVAL; 563 goto out; 564 } 565 566 /* prime objects have no backing filp to GEM pread/pwrite 567 * pages from. 568 */ 569 if (!obj->base.filp) { 570 ret = -EINVAL; 571 goto out; 572 } 573 574 trace_i915_gem_object_pread(obj, args->offset, args->size); 575 576 ret = i915_gem_shmem_pread(dev, obj, args, file); 577 578 out: 579 drm_gem_object_unreference(&obj->base); 580 unlock: 581 mutex_unlock(&dev->struct_mutex); 582 return ret; 583 } 584 585 /* This is the fast write path which cannot handle 586 * page faults in the source data 587 */ 588 589 static inline int 590 fast_user_write(struct io_mapping *mapping, 591 loff_t page_base, int page_offset, 592 char __user *user_data, 593 int length) 594 { 595 void __iomem *vaddr_atomic; 596 void *vaddr; 597 unsigned long unwritten; 598 599 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base); 600 /* We can use the cpu mem copy function because this is X86. */ 601 vaddr = (void __force*)vaddr_atomic + page_offset; 602 unwritten = __copy_from_user_inatomic_nocache(vaddr, 603 user_data, length); 604 io_mapping_unmap_atomic(vaddr_atomic); 605 return unwritten; 606 } 607 608 /** 609 * This is the fast pwrite path, where we copy the data directly from the 610 * user into the GTT, uncached. 611 */ 612 static int 613 i915_gem_gtt_pwrite_fast(struct drm_device *dev, 614 struct drm_i915_gem_object *obj, 615 struct drm_i915_gem_pwrite *args, 616 struct drm_file *file) 617 { 618 struct drm_i915_private *dev_priv = dev->dev_private; 619 ssize_t remain; 620 loff_t offset, page_base; 621 char __user *user_data; 622 int page_offset, page_length, ret; 623 624 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK); 625 if (ret) 626 goto out; 627 628 ret = i915_gem_object_set_to_gtt_domain(obj, true); 629 if (ret) 630 goto out_unpin; 631 632 ret = i915_gem_object_put_fence(obj); 633 if (ret) 634 goto out_unpin; 635 636 user_data = to_user_ptr(args->data_ptr); 637 remain = args->size; 638 639 offset = i915_gem_obj_ggtt_offset(obj) + args->offset; 640 641 while (remain > 0) { 642 /* Operation in this page 643 * 644 * page_base = page offset within aperture 645 * page_offset = offset within page 646 * page_length = bytes to copy for this page 647 */ 648 page_base = offset & PAGE_MASK; 649 page_offset = offset_in_page(offset); 650 page_length = remain; 651 if ((page_offset + remain) > PAGE_SIZE) 652 page_length = PAGE_SIZE - page_offset; 653 654 /* If we get a fault while copying data, then (presumably) our 655 * source page isn't available. Return the error and we'll 656 * retry in the slow path. 657 */ 658 if (fast_user_write(dev_priv->gtt.mappable, page_base, 659 page_offset, user_data, page_length)) { 660 ret = -EFAULT; 661 goto out_unpin; 662 } 663 664 remain -= page_length; 665 user_data += page_length; 666 offset += page_length; 667 } 668 669 out_unpin: 670 i915_gem_object_ggtt_unpin(obj); 671 out: 672 return ret; 673 } 674 675 /* Per-page copy function for the shmem pwrite fastpath. 676 * Flushes invalid cachelines before writing to the target if 677 * needs_clflush_before is set and flushes out any written cachelines after 678 * writing if needs_clflush is set. */ 679 static int 680 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length, 681 char __user *user_data, 682 bool page_do_bit17_swizzling, 683 bool needs_clflush_before, 684 bool needs_clflush_after) 685 { 686 char *vaddr; 687 int ret; 688 689 if (unlikely(page_do_bit17_swizzling)) 690 return -EINVAL; 691 692 vaddr = kmap_atomic(page); 693 if (needs_clflush_before) 694 drm_clflush_virt_range(vaddr + shmem_page_offset, 695 page_length); 696 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset, 697 user_data, page_length); 698 if (needs_clflush_after) 699 drm_clflush_virt_range(vaddr + shmem_page_offset, 700 page_length); 701 kunmap_atomic(vaddr); 702 703 return ret ? -EFAULT : 0; 704 } 705 706 /* Only difference to the fast-path function is that this can handle bit17 707 * and uses non-atomic copy and kmap functions. */ 708 static int 709 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length, 710 char __user *user_data, 711 bool page_do_bit17_swizzling, 712 bool needs_clflush_before, 713 bool needs_clflush_after) 714 { 715 char *vaddr; 716 int ret; 717 718 vaddr = kmap(page); 719 if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) 720 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 721 page_length, 722 page_do_bit17_swizzling); 723 if (page_do_bit17_swizzling) 724 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset, 725 user_data, 726 page_length); 727 else 728 ret = __copy_from_user(vaddr + shmem_page_offset, 729 user_data, 730 page_length); 731 if (needs_clflush_after) 732 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 733 page_length, 734 page_do_bit17_swizzling); 735 kunmap(page); 736 737 return ret ? -EFAULT : 0; 738 } 739 740 static int 741 i915_gem_shmem_pwrite(struct drm_device *dev, 742 struct drm_i915_gem_object *obj, 743 struct drm_i915_gem_pwrite *args, 744 struct drm_file *file) 745 { 746 ssize_t remain; 747 loff_t offset; 748 char __user *user_data; 749 int shmem_page_offset, page_length, ret = 0; 750 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 751 int hit_slowpath = 0; 752 int needs_clflush_after = 0; 753 int needs_clflush_before = 0; 754 struct sg_page_iter sg_iter; 755 756 user_data = to_user_ptr(args->data_ptr); 757 remain = args->size; 758 759 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 760 761 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 762 /* If we're not in the cpu write domain, set ourself into the gtt 763 * write domain and manually flush cachelines (if required). This 764 * optimizes for the case when the gpu will use the data 765 * right away and we therefore have to clflush anyway. */ 766 needs_clflush_after = cpu_write_needs_clflush(obj); 767 ret = i915_gem_object_wait_rendering(obj, false); 768 if (ret) 769 return ret; 770 } 771 /* Same trick applies to invalidate partially written cachelines read 772 * before writing. */ 773 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) 774 needs_clflush_before = 775 !cpu_cache_is_coherent(dev, obj->cache_level); 776 777 ret = i915_gem_object_get_pages(obj); 778 if (ret) 779 return ret; 780 781 i915_gem_object_pin_pages(obj); 782 783 offset = args->offset; 784 obj->dirty = 1; 785 786 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 787 offset >> PAGE_SHIFT) { 788 struct page *page = sg_page_iter_page(&sg_iter); 789 int partial_cacheline_write; 790 791 if (remain <= 0) 792 break; 793 794 /* Operation in this page 795 * 796 * shmem_page_offset = offset within page in shmem file 797 * page_length = bytes to copy for this page 798 */ 799 shmem_page_offset = offset_in_page(offset); 800 801 page_length = remain; 802 if ((shmem_page_offset + page_length) > PAGE_SIZE) 803 page_length = PAGE_SIZE - shmem_page_offset; 804 805 /* If we don't overwrite a cacheline completely we need to be 806 * careful to have up-to-date data by first clflushing. Don't 807 * overcomplicate things and flush the entire patch. */ 808 partial_cacheline_write = needs_clflush_before && 809 ((shmem_page_offset | page_length) 810 & (boot_cpu_data.x86_clflush_size - 1)); 811 812 page_do_bit17_swizzling = obj_do_bit17_swizzling && 813 (page_to_phys(page) & (1 << 17)) != 0; 814 815 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length, 816 user_data, page_do_bit17_swizzling, 817 partial_cacheline_write, 818 needs_clflush_after); 819 if (ret == 0) 820 goto next_page; 821 822 hit_slowpath = 1; 823 mutex_unlock(&dev->struct_mutex); 824 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length, 825 user_data, page_do_bit17_swizzling, 826 partial_cacheline_write, 827 needs_clflush_after); 828 829 mutex_lock(&dev->struct_mutex); 830 831 if (ret) 832 goto out; 833 834 next_page: 835 remain -= page_length; 836 user_data += page_length; 837 offset += page_length; 838 } 839 840 out: 841 i915_gem_object_unpin_pages(obj); 842 843 if (hit_slowpath) { 844 /* 845 * Fixup: Flush cpu caches in case we didn't flush the dirty 846 * cachelines in-line while writing and the object moved 847 * out of the cpu write domain while we've dropped the lock. 848 */ 849 if (!needs_clflush_after && 850 obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 851 if (i915_gem_clflush_object(obj, obj->pin_display)) 852 i915_gem_chipset_flush(dev); 853 } 854 } 855 856 if (needs_clflush_after) 857 i915_gem_chipset_flush(dev); 858 859 return ret; 860 } 861 862 /** 863 * Writes data to the object referenced by handle. 864 * 865 * On error, the contents of the buffer that were to be modified are undefined. 866 */ 867 int 868 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 869 struct drm_file *file) 870 { 871 struct drm_i915_gem_pwrite *args = data; 872 struct drm_i915_gem_object *obj; 873 int ret; 874 875 if (args->size == 0) 876 return 0; 877 878 if (!access_ok(VERIFY_READ, 879 to_user_ptr(args->data_ptr), 880 args->size)) 881 return -EFAULT; 882 883 if (likely(!i915.prefault_disable)) { 884 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr), 885 args->size); 886 if (ret) 887 return -EFAULT; 888 } 889 890 ret = i915_mutex_lock_interruptible(dev); 891 if (ret) 892 return ret; 893 894 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 895 if (&obj->base == NULL) { 896 ret = -ENOENT; 897 goto unlock; 898 } 899 900 /* Bounds check destination. */ 901 if (args->offset > obj->base.size || 902 args->size > obj->base.size - args->offset) { 903 ret = -EINVAL; 904 goto out; 905 } 906 907 /* prime objects have no backing filp to GEM pread/pwrite 908 * pages from. 909 */ 910 if (!obj->base.filp) { 911 ret = -EINVAL; 912 goto out; 913 } 914 915 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 916 917 ret = -EFAULT; 918 /* We can only do the GTT pwrite on untiled buffers, as otherwise 919 * it would end up going through the fenced access, and we'll get 920 * different detiling behavior between reading and writing. 921 * pread/pwrite currently are reading and writing from the CPU 922 * perspective, requiring manual detiling by the client. 923 */ 924 if (obj->phys_obj) { 925 ret = i915_gem_phys_pwrite(dev, obj, args, file); 926 goto out; 927 } 928 929 if (obj->tiling_mode == I915_TILING_NONE && 930 obj->base.write_domain != I915_GEM_DOMAIN_CPU && 931 cpu_write_needs_clflush(obj)) { 932 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file); 933 /* Note that the gtt paths might fail with non-page-backed user 934 * pointers (e.g. gtt mappings when moving data between 935 * textures). Fallback to the shmem path in that case. */ 936 } 937 938 if (ret == -EFAULT || ret == -ENOSPC) 939 ret = i915_gem_shmem_pwrite(dev, obj, args, file); 940 941 out: 942 drm_gem_object_unreference(&obj->base); 943 unlock: 944 mutex_unlock(&dev->struct_mutex); 945 return ret; 946 } 947 948 int 949 i915_gem_check_wedge(struct i915_gpu_error *error, 950 bool interruptible) 951 { 952 if (i915_reset_in_progress(error)) { 953 /* Non-interruptible callers can't handle -EAGAIN, hence return 954 * -EIO unconditionally for these. */ 955 if (!interruptible) 956 return -EIO; 957 958 /* Recovery complete, but the reset failed ... */ 959 if (i915_terminally_wedged(error)) 960 return -EIO; 961 962 return -EAGAIN; 963 } 964 965 return 0; 966 } 967 968 /* 969 * Compare seqno against outstanding lazy request. Emit a request if they are 970 * equal. 971 */ 972 static int 973 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno) 974 { 975 int ret; 976 977 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex)); 978 979 ret = 0; 980 if (seqno == ring->outstanding_lazy_seqno) 981 ret = i915_add_request(ring, NULL); 982 983 return ret; 984 } 985 986 static void fake_irq(unsigned long data) 987 { 988 wake_up_process((struct task_struct *)data); 989 } 990 991 static bool missed_irq(struct drm_i915_private *dev_priv, 992 struct intel_ring_buffer *ring) 993 { 994 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings); 995 } 996 997 static bool can_wait_boost(struct drm_i915_file_private *file_priv) 998 { 999 if (file_priv == NULL) 1000 return true; 1001 1002 return !atomic_xchg(&file_priv->rps_wait_boost, true); 1003 } 1004 1005 /** 1006 * __wait_seqno - wait until execution of seqno has finished 1007 * @ring: the ring expected to report seqno 1008 * @seqno: duh! 1009 * @reset_counter: reset sequence associated with the given seqno 1010 * @interruptible: do an interruptible wait (normally yes) 1011 * @timeout: in - how long to wait (NULL forever); out - how much time remaining 1012 * 1013 * Note: It is of utmost importance that the passed in seqno and reset_counter 1014 * values have been read by the caller in an smp safe manner. Where read-side 1015 * locks are involved, it is sufficient to read the reset_counter before 1016 * unlocking the lock that protects the seqno. For lockless tricks, the 1017 * reset_counter _must_ be read before, and an appropriate smp_rmb must be 1018 * inserted. 1019 * 1020 * Returns 0 if the seqno was found within the alloted time. Else returns the 1021 * errno with remaining time filled in timeout argument. 1022 */ 1023 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno, 1024 unsigned reset_counter, 1025 bool interruptible, 1026 struct timespec *timeout, 1027 struct drm_i915_file_private *file_priv) 1028 { 1029 struct drm_device *dev = ring->dev; 1030 struct drm_i915_private *dev_priv = dev->dev_private; 1031 const bool irq_test_in_progress = 1032 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring); 1033 struct timespec before, now; 1034 DEFINE_WAIT(wait); 1035 unsigned long timeout_expire; 1036 int ret; 1037 1038 WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n"); 1039 1040 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno)) 1041 return 0; 1042 1043 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0; 1044 1045 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) { 1046 gen6_rps_boost(dev_priv); 1047 if (file_priv) 1048 mod_delayed_work(dev_priv->wq, 1049 &file_priv->mm.idle_work, 1050 msecs_to_jiffies(100)); 1051 } 1052 1053 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) 1054 return -ENODEV; 1055 1056 /* Record current time in case interrupted by signal, or wedged */ 1057 trace_i915_gem_request_wait_begin(ring, seqno); 1058 getrawmonotonic(&before); 1059 for (;;) { 1060 struct timer_list timer; 1061 1062 prepare_to_wait(&ring->irq_queue, &wait, 1063 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE); 1064 1065 /* We need to check whether any gpu reset happened in between 1066 * the caller grabbing the seqno and now ... */ 1067 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) { 1068 /* ... but upgrade the -EAGAIN to an -EIO if the gpu 1069 * is truely gone. */ 1070 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1071 if (ret == 0) 1072 ret = -EAGAIN; 1073 break; 1074 } 1075 1076 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) { 1077 ret = 0; 1078 break; 1079 } 1080 1081 if (interruptible && signal_pending(current)) { 1082 ret = -ERESTARTSYS; 1083 break; 1084 } 1085 1086 if (timeout && time_after_eq(jiffies, timeout_expire)) { 1087 ret = -ETIME; 1088 break; 1089 } 1090 1091 timer.function = NULL; 1092 if (timeout || missed_irq(dev_priv, ring)) { 1093 unsigned long expire; 1094 1095 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current); 1096 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire; 1097 mod_timer(&timer, expire); 1098 } 1099 1100 io_schedule(); 1101 1102 if (timer.function) { 1103 del_singleshot_timer_sync(&timer); 1104 destroy_timer_on_stack(&timer); 1105 } 1106 } 1107 getrawmonotonic(&now); 1108 trace_i915_gem_request_wait_end(ring, seqno); 1109 1110 if (!irq_test_in_progress) 1111 ring->irq_put(ring); 1112 1113 finish_wait(&ring->irq_queue, &wait); 1114 1115 if (timeout) { 1116 struct timespec sleep_time = timespec_sub(now, before); 1117 *timeout = timespec_sub(*timeout, sleep_time); 1118 if (!timespec_valid(timeout)) /* i.e. negative time remains */ 1119 set_normalized_timespec(timeout, 0, 0); 1120 } 1121 1122 return ret; 1123 } 1124 1125 /** 1126 * Waits for a sequence number to be signaled, and cleans up the 1127 * request and object lists appropriately for that event. 1128 */ 1129 int 1130 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno) 1131 { 1132 struct drm_device *dev = ring->dev; 1133 struct drm_i915_private *dev_priv = dev->dev_private; 1134 bool interruptible = dev_priv->mm.interruptible; 1135 int ret; 1136 1137 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1138 BUG_ON(seqno == 0); 1139 1140 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1141 if (ret) 1142 return ret; 1143 1144 ret = i915_gem_check_olr(ring, seqno); 1145 if (ret) 1146 return ret; 1147 1148 return __wait_seqno(ring, seqno, 1149 atomic_read(&dev_priv->gpu_error.reset_counter), 1150 interruptible, NULL, NULL); 1151 } 1152 1153 static int 1154 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj, 1155 struct intel_ring_buffer *ring) 1156 { 1157 i915_gem_retire_requests_ring(ring); 1158 1159 /* Manually manage the write flush as we may have not yet 1160 * retired the buffer. 1161 * 1162 * Note that the last_write_seqno is always the earlier of 1163 * the two (read/write) seqno, so if we haved successfully waited, 1164 * we know we have passed the last write. 1165 */ 1166 obj->last_write_seqno = 0; 1167 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS; 1168 1169 return 0; 1170 } 1171 1172 /** 1173 * Ensures that all rendering to the object has completed and the object is 1174 * safe to unbind from the GTT or access from the CPU. 1175 */ 1176 static __must_check int 1177 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 1178 bool readonly) 1179 { 1180 struct intel_ring_buffer *ring = obj->ring; 1181 u32 seqno; 1182 int ret; 1183 1184 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1185 if (seqno == 0) 1186 return 0; 1187 1188 ret = i915_wait_seqno(ring, seqno); 1189 if (ret) 1190 return ret; 1191 1192 return i915_gem_object_wait_rendering__tail(obj, ring); 1193 } 1194 1195 /* A nonblocking variant of the above wait. This is a highly dangerous routine 1196 * as the object state may change during this call. 1197 */ 1198 static __must_check int 1199 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj, 1200 struct drm_i915_file_private *file_priv, 1201 bool readonly) 1202 { 1203 struct drm_device *dev = obj->base.dev; 1204 struct drm_i915_private *dev_priv = dev->dev_private; 1205 struct intel_ring_buffer *ring = obj->ring; 1206 unsigned reset_counter; 1207 u32 seqno; 1208 int ret; 1209 1210 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1211 BUG_ON(!dev_priv->mm.interruptible); 1212 1213 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1214 if (seqno == 0) 1215 return 0; 1216 1217 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true); 1218 if (ret) 1219 return ret; 1220 1221 ret = i915_gem_check_olr(ring, seqno); 1222 if (ret) 1223 return ret; 1224 1225 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 1226 mutex_unlock(&dev->struct_mutex); 1227 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv); 1228 mutex_lock(&dev->struct_mutex); 1229 if (ret) 1230 return ret; 1231 1232 return i915_gem_object_wait_rendering__tail(obj, ring); 1233 } 1234 1235 /** 1236 * Called when user space prepares to use an object with the CPU, either 1237 * through the mmap ioctl's mapping or a GTT mapping. 1238 */ 1239 int 1240 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 1241 struct drm_file *file) 1242 { 1243 struct drm_i915_gem_set_domain *args = data; 1244 struct drm_i915_gem_object *obj; 1245 uint32_t read_domains = args->read_domains; 1246 uint32_t write_domain = args->write_domain; 1247 int ret; 1248 1249 /* Only handle setting domains to types used by the CPU. */ 1250 if (write_domain & I915_GEM_GPU_DOMAINS) 1251 return -EINVAL; 1252 1253 if (read_domains & I915_GEM_GPU_DOMAINS) 1254 return -EINVAL; 1255 1256 /* Having something in the write domain implies it's in the read 1257 * domain, and only that read domain. Enforce that in the request. 1258 */ 1259 if (write_domain != 0 && read_domains != write_domain) 1260 return -EINVAL; 1261 1262 ret = i915_mutex_lock_interruptible(dev); 1263 if (ret) 1264 return ret; 1265 1266 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1267 if (&obj->base == NULL) { 1268 ret = -ENOENT; 1269 goto unlock; 1270 } 1271 1272 /* Try to flush the object off the GPU without holding the lock. 1273 * We will repeat the flush holding the lock in the normal manner 1274 * to catch cases where we are gazumped. 1275 */ 1276 ret = i915_gem_object_wait_rendering__nonblocking(obj, 1277 file->driver_priv, 1278 !write_domain); 1279 if (ret) 1280 goto unref; 1281 1282 if (read_domains & I915_GEM_DOMAIN_GTT) { 1283 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); 1284 1285 /* Silently promote "you're not bound, there was nothing to do" 1286 * to success, since the client was just asking us to 1287 * make sure everything was done. 1288 */ 1289 if (ret == -EINVAL) 1290 ret = 0; 1291 } else { 1292 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); 1293 } 1294 1295 unref: 1296 drm_gem_object_unreference(&obj->base); 1297 unlock: 1298 mutex_unlock(&dev->struct_mutex); 1299 return ret; 1300 } 1301 1302 /** 1303 * Called when user space has done writes to this buffer 1304 */ 1305 int 1306 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1307 struct drm_file *file) 1308 { 1309 struct drm_i915_gem_sw_finish *args = data; 1310 struct drm_i915_gem_object *obj; 1311 int ret = 0; 1312 1313 ret = i915_mutex_lock_interruptible(dev); 1314 if (ret) 1315 return ret; 1316 1317 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1318 if (&obj->base == NULL) { 1319 ret = -ENOENT; 1320 goto unlock; 1321 } 1322 1323 /* Pinned buffers may be scanout, so flush the cache */ 1324 if (obj->pin_display) 1325 i915_gem_object_flush_cpu_write_domain(obj, true); 1326 1327 drm_gem_object_unreference(&obj->base); 1328 unlock: 1329 mutex_unlock(&dev->struct_mutex); 1330 return ret; 1331 } 1332 1333 /** 1334 * Maps the contents of an object, returning the address it is mapped 1335 * into. 1336 * 1337 * While the mapping holds a reference on the contents of the object, it doesn't 1338 * imply a ref on the object itself. 1339 */ 1340 int 1341 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1342 struct drm_file *file) 1343 { 1344 struct drm_i915_gem_mmap *args = data; 1345 struct drm_gem_object *obj; 1346 unsigned long addr; 1347 1348 obj = drm_gem_object_lookup(dev, file, args->handle); 1349 if (obj == NULL) 1350 return -ENOENT; 1351 1352 /* prime objects have no backing filp to GEM mmap 1353 * pages from. 1354 */ 1355 if (!obj->filp) { 1356 drm_gem_object_unreference_unlocked(obj); 1357 return -EINVAL; 1358 } 1359 1360 addr = vm_mmap(obj->filp, 0, args->size, 1361 PROT_READ | PROT_WRITE, MAP_SHARED, 1362 args->offset); 1363 drm_gem_object_unreference_unlocked(obj); 1364 if (IS_ERR((void *)addr)) 1365 return addr; 1366 1367 args->addr_ptr = (uint64_t) addr; 1368 1369 return 0; 1370 } 1371 1372 /** 1373 * i915_gem_fault - fault a page into the GTT 1374 * vma: VMA in question 1375 * vmf: fault info 1376 * 1377 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1378 * from userspace. The fault handler takes care of binding the object to 1379 * the GTT (if needed), allocating and programming a fence register (again, 1380 * only if needed based on whether the old reg is still valid or the object 1381 * is tiled) and inserting a new PTE into the faulting process. 1382 * 1383 * Note that the faulting process may involve evicting existing objects 1384 * from the GTT and/or fence registers to make room. So performance may 1385 * suffer if the GTT working set is large or there are few fence registers 1386 * left. 1387 */ 1388 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1389 { 1390 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data); 1391 struct drm_device *dev = obj->base.dev; 1392 struct drm_i915_private *dev_priv = dev->dev_private; 1393 pgoff_t page_offset; 1394 unsigned long pfn; 1395 int ret = 0; 1396 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 1397 1398 intel_runtime_pm_get(dev_priv); 1399 1400 /* We don't use vmf->pgoff since that has the fake offset */ 1401 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >> 1402 PAGE_SHIFT; 1403 1404 ret = i915_mutex_lock_interruptible(dev); 1405 if (ret) 1406 goto out; 1407 1408 trace_i915_gem_object_fault(obj, page_offset, true, write); 1409 1410 /* Try to flush the object off the GPU first without holding the lock. 1411 * Upon reacquiring the lock, we will perform our sanity checks and then 1412 * repeat the flush holding the lock in the normal manner to catch cases 1413 * where we are gazumped. 1414 */ 1415 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write); 1416 if (ret) 1417 goto unlock; 1418 1419 /* Access to snoopable pages through the GTT is incoherent. */ 1420 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) { 1421 ret = -EINVAL; 1422 goto unlock; 1423 } 1424 1425 /* Now bind it into the GTT if needed */ 1426 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE); 1427 if (ret) 1428 goto unlock; 1429 1430 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1431 if (ret) 1432 goto unpin; 1433 1434 ret = i915_gem_object_get_fence(obj); 1435 if (ret) 1436 goto unpin; 1437 1438 obj->fault_mappable = true; 1439 1440 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj); 1441 pfn >>= PAGE_SHIFT; 1442 pfn += page_offset; 1443 1444 /* Finally, remap it using the new GTT offset */ 1445 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn); 1446 unpin: 1447 i915_gem_object_ggtt_unpin(obj); 1448 unlock: 1449 mutex_unlock(&dev->struct_mutex); 1450 out: 1451 switch (ret) { 1452 case -EIO: 1453 /* If this -EIO is due to a gpu hang, give the reset code a 1454 * chance to clean up the mess. Otherwise return the proper 1455 * SIGBUS. */ 1456 if (i915_terminally_wedged(&dev_priv->gpu_error)) { 1457 ret = VM_FAULT_SIGBUS; 1458 break; 1459 } 1460 case -EAGAIN: 1461 /* 1462 * EAGAIN means the gpu is hung and we'll wait for the error 1463 * handler to reset everything when re-faulting in 1464 * i915_mutex_lock_interruptible. 1465 */ 1466 case 0: 1467 case -ERESTARTSYS: 1468 case -EINTR: 1469 case -EBUSY: 1470 /* 1471 * EBUSY is ok: this just means that another thread 1472 * already did the job. 1473 */ 1474 ret = VM_FAULT_NOPAGE; 1475 break; 1476 case -ENOMEM: 1477 ret = VM_FAULT_OOM; 1478 break; 1479 case -ENOSPC: 1480 case -EFAULT: 1481 ret = VM_FAULT_SIGBUS; 1482 break; 1483 default: 1484 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); 1485 ret = VM_FAULT_SIGBUS; 1486 break; 1487 } 1488 1489 intel_runtime_pm_put(dev_priv); 1490 return ret; 1491 } 1492 1493 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv) 1494 { 1495 struct i915_vma *vma; 1496 1497 /* 1498 * Only the global gtt is relevant for gtt memory mappings, so restrict 1499 * list traversal to objects bound into the global address space. Note 1500 * that the active list should be empty, but better safe than sorry. 1501 */ 1502 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list)); 1503 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list) 1504 i915_gem_release_mmap(vma->obj); 1505 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list) 1506 i915_gem_release_mmap(vma->obj); 1507 } 1508 1509 /** 1510 * i915_gem_release_mmap - remove physical page mappings 1511 * @obj: obj in question 1512 * 1513 * Preserve the reservation of the mmapping with the DRM core code, but 1514 * relinquish ownership of the pages back to the system. 1515 * 1516 * It is vital that we remove the page mapping if we have mapped a tiled 1517 * object through the GTT and then lose the fence register due to 1518 * resource pressure. Similarly if the object has been moved out of the 1519 * aperture, than pages mapped into userspace must be revoked. Removing the 1520 * mapping will then trigger a page fault on the next user access, allowing 1521 * fixup by i915_gem_fault(). 1522 */ 1523 void 1524 i915_gem_release_mmap(struct drm_i915_gem_object *obj) 1525 { 1526 if (!obj->fault_mappable) 1527 return; 1528 1529 drm_vma_node_unmap(&obj->base.vma_node, 1530 obj->base.dev->anon_inode->i_mapping); 1531 obj->fault_mappable = false; 1532 } 1533 1534 uint32_t 1535 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode) 1536 { 1537 uint32_t gtt_size; 1538 1539 if (INTEL_INFO(dev)->gen >= 4 || 1540 tiling_mode == I915_TILING_NONE) 1541 return size; 1542 1543 /* Previous chips need a power-of-two fence region when tiling */ 1544 if (INTEL_INFO(dev)->gen == 3) 1545 gtt_size = 1024*1024; 1546 else 1547 gtt_size = 512*1024; 1548 1549 while (gtt_size < size) 1550 gtt_size <<= 1; 1551 1552 return gtt_size; 1553 } 1554 1555 /** 1556 * i915_gem_get_gtt_alignment - return required GTT alignment for an object 1557 * @obj: object to check 1558 * 1559 * Return the required GTT alignment for an object, taking into account 1560 * potential fence register mapping. 1561 */ 1562 uint32_t 1563 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size, 1564 int tiling_mode, bool fenced) 1565 { 1566 /* 1567 * Minimum alignment is 4k (GTT page size), but might be greater 1568 * if a fence register is needed for the object. 1569 */ 1570 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) || 1571 tiling_mode == I915_TILING_NONE) 1572 return 4096; 1573 1574 /* 1575 * Previous chips need to be aligned to the size of the smallest 1576 * fence register that can contain the object. 1577 */ 1578 return i915_gem_get_gtt_size(dev, size, tiling_mode); 1579 } 1580 1581 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) 1582 { 1583 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1584 int ret; 1585 1586 if (drm_vma_node_has_offset(&obj->base.vma_node)) 1587 return 0; 1588 1589 dev_priv->mm.shrinker_no_lock_stealing = true; 1590 1591 ret = drm_gem_create_mmap_offset(&obj->base); 1592 if (ret != -ENOSPC) 1593 goto out; 1594 1595 /* Badly fragmented mmap space? The only way we can recover 1596 * space is by destroying unwanted objects. We can't randomly release 1597 * mmap_offsets as userspace expects them to be persistent for the 1598 * lifetime of the objects. The closest we can is to release the 1599 * offsets on purgeable objects by truncating it and marking it purged, 1600 * which prevents userspace from ever using that object again. 1601 */ 1602 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT); 1603 ret = drm_gem_create_mmap_offset(&obj->base); 1604 if (ret != -ENOSPC) 1605 goto out; 1606 1607 i915_gem_shrink_all(dev_priv); 1608 ret = drm_gem_create_mmap_offset(&obj->base); 1609 out: 1610 dev_priv->mm.shrinker_no_lock_stealing = false; 1611 1612 return ret; 1613 } 1614 1615 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) 1616 { 1617 drm_gem_free_mmap_offset(&obj->base); 1618 } 1619 1620 int 1621 i915_gem_mmap_gtt(struct drm_file *file, 1622 struct drm_device *dev, 1623 uint32_t handle, 1624 uint64_t *offset) 1625 { 1626 struct drm_i915_private *dev_priv = dev->dev_private; 1627 struct drm_i915_gem_object *obj; 1628 int ret; 1629 1630 ret = i915_mutex_lock_interruptible(dev); 1631 if (ret) 1632 return ret; 1633 1634 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle)); 1635 if (&obj->base == NULL) { 1636 ret = -ENOENT; 1637 goto unlock; 1638 } 1639 1640 if (obj->base.size > dev_priv->gtt.mappable_end) { 1641 ret = -E2BIG; 1642 goto out; 1643 } 1644 1645 if (obj->madv != I915_MADV_WILLNEED) { 1646 DRM_DEBUG("Attempting to mmap a purgeable buffer\n"); 1647 ret = -EFAULT; 1648 goto out; 1649 } 1650 1651 ret = i915_gem_object_create_mmap_offset(obj); 1652 if (ret) 1653 goto out; 1654 1655 *offset = drm_vma_node_offset_addr(&obj->base.vma_node); 1656 1657 out: 1658 drm_gem_object_unreference(&obj->base); 1659 unlock: 1660 mutex_unlock(&dev->struct_mutex); 1661 return ret; 1662 } 1663 1664 /** 1665 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 1666 * @dev: DRM device 1667 * @data: GTT mapping ioctl data 1668 * @file: GEM object info 1669 * 1670 * Simply returns the fake offset to userspace so it can mmap it. 1671 * The mmap call will end up in drm_gem_mmap(), which will set things 1672 * up so we can get faults in the handler above. 1673 * 1674 * The fault handler will take care of binding the object into the GTT 1675 * (since it may have been evicted to make room for something), allocating 1676 * a fence register, and mapping the appropriate aperture address into 1677 * userspace. 1678 */ 1679 int 1680 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 1681 struct drm_file *file) 1682 { 1683 struct drm_i915_gem_mmap_gtt *args = data; 1684 1685 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); 1686 } 1687 1688 /* Immediately discard the backing storage */ 1689 static void 1690 i915_gem_object_truncate(struct drm_i915_gem_object *obj) 1691 { 1692 struct inode *inode; 1693 1694 i915_gem_object_free_mmap_offset(obj); 1695 1696 if (obj->base.filp == NULL) 1697 return; 1698 1699 /* Our goal here is to return as much of the memory as 1700 * is possible back to the system as we are called from OOM. 1701 * To do this we must instruct the shmfs to drop all of its 1702 * backing pages, *now*. 1703 */ 1704 inode = file_inode(obj->base.filp); 1705 shmem_truncate_range(inode, 0, (loff_t)-1); 1706 1707 obj->madv = __I915_MADV_PURGED; 1708 } 1709 1710 static inline int 1711 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj) 1712 { 1713 return obj->madv == I915_MADV_DONTNEED; 1714 } 1715 1716 static void 1717 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj) 1718 { 1719 struct sg_page_iter sg_iter; 1720 int ret; 1721 1722 BUG_ON(obj->madv == __I915_MADV_PURGED); 1723 1724 ret = i915_gem_object_set_to_cpu_domain(obj, true); 1725 if (ret) { 1726 /* In the event of a disaster, abandon all caches and 1727 * hope for the best. 1728 */ 1729 WARN_ON(ret != -EIO); 1730 i915_gem_clflush_object(obj, true); 1731 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; 1732 } 1733 1734 if (i915_gem_object_needs_bit17_swizzle(obj)) 1735 i915_gem_object_save_bit_17_swizzle(obj); 1736 1737 if (obj->madv == I915_MADV_DONTNEED) 1738 obj->dirty = 0; 1739 1740 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) { 1741 struct page *page = sg_page_iter_page(&sg_iter); 1742 1743 if (obj->dirty) 1744 set_page_dirty(page); 1745 1746 if (obj->madv == I915_MADV_WILLNEED) 1747 mark_page_accessed(page); 1748 1749 page_cache_release(page); 1750 } 1751 obj->dirty = 0; 1752 1753 sg_free_table(obj->pages); 1754 kfree(obj->pages); 1755 } 1756 1757 int 1758 i915_gem_object_put_pages(struct drm_i915_gem_object *obj) 1759 { 1760 const struct drm_i915_gem_object_ops *ops = obj->ops; 1761 1762 if (obj->pages == NULL) 1763 return 0; 1764 1765 if (obj->pages_pin_count) 1766 return -EBUSY; 1767 1768 BUG_ON(i915_gem_obj_bound_any(obj)); 1769 1770 /* ->put_pages might need to allocate memory for the bit17 swizzle 1771 * array, hence protect them from being reaped by removing them from gtt 1772 * lists early. */ 1773 list_del(&obj->global_list); 1774 1775 ops->put_pages(obj); 1776 obj->pages = NULL; 1777 1778 if (i915_gem_object_is_purgeable(obj)) 1779 i915_gem_object_truncate(obj); 1780 1781 return 0; 1782 } 1783 1784 static unsigned long 1785 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target, 1786 bool purgeable_only) 1787 { 1788 struct list_head still_bound_list; 1789 struct drm_i915_gem_object *obj, *next; 1790 unsigned long count = 0; 1791 1792 list_for_each_entry_safe(obj, next, 1793 &dev_priv->mm.unbound_list, 1794 global_list) { 1795 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) && 1796 i915_gem_object_put_pages(obj) == 0) { 1797 count += obj->base.size >> PAGE_SHIFT; 1798 if (count >= target) 1799 return count; 1800 } 1801 } 1802 1803 /* 1804 * As we may completely rewrite the bound list whilst unbinding 1805 * (due to retiring requests) we have to strictly process only 1806 * one element of the list at the time, and recheck the list 1807 * on every iteration. 1808 */ 1809 INIT_LIST_HEAD(&still_bound_list); 1810 while (count < target && !list_empty(&dev_priv->mm.bound_list)) { 1811 struct i915_vma *vma, *v; 1812 1813 obj = list_first_entry(&dev_priv->mm.bound_list, 1814 typeof(*obj), global_list); 1815 list_move_tail(&obj->global_list, &still_bound_list); 1816 1817 if (!i915_gem_object_is_purgeable(obj) && purgeable_only) 1818 continue; 1819 1820 /* 1821 * Hold a reference whilst we unbind this object, as we may 1822 * end up waiting for and retiring requests. This might 1823 * release the final reference (held by the active list) 1824 * and result in the object being freed from under us. 1825 * in this object being freed. 1826 * 1827 * Note 1: Shrinking the bound list is special since only active 1828 * (and hence bound objects) can contain such limbo objects, so 1829 * we don't need special tricks for shrinking the unbound list. 1830 * The only other place where we have to be careful with active 1831 * objects suddenly disappearing due to retiring requests is the 1832 * eviction code. 1833 * 1834 * Note 2: Even though the bound list doesn't hold a reference 1835 * to the object we can safely grab one here: The final object 1836 * unreferencing and the bound_list are both protected by the 1837 * dev->struct_mutex and so we won't ever be able to observe an 1838 * object on the bound_list with a reference count equals 0. 1839 */ 1840 drm_gem_object_reference(&obj->base); 1841 1842 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link) 1843 if (i915_vma_unbind(vma)) 1844 break; 1845 1846 if (i915_gem_object_put_pages(obj) == 0) 1847 count += obj->base.size >> PAGE_SHIFT; 1848 1849 drm_gem_object_unreference(&obj->base); 1850 } 1851 list_splice(&still_bound_list, &dev_priv->mm.bound_list); 1852 1853 return count; 1854 } 1855 1856 static unsigned long 1857 i915_gem_purge(struct drm_i915_private *dev_priv, long target) 1858 { 1859 return __i915_gem_shrink(dev_priv, target, true); 1860 } 1861 1862 static unsigned long 1863 i915_gem_shrink_all(struct drm_i915_private *dev_priv) 1864 { 1865 struct drm_i915_gem_object *obj, *next; 1866 long freed = 0; 1867 1868 i915_gem_evict_everything(dev_priv->dev); 1869 1870 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, 1871 global_list) { 1872 if (i915_gem_object_put_pages(obj) == 0) 1873 freed += obj->base.size >> PAGE_SHIFT; 1874 } 1875 return freed; 1876 } 1877 1878 static int 1879 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) 1880 { 1881 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1882 int page_count, i; 1883 struct address_space *mapping; 1884 struct sg_table *st; 1885 struct scatterlist *sg; 1886 struct sg_page_iter sg_iter; 1887 struct page *page; 1888 unsigned long last_pfn = 0; /* suppress gcc warning */ 1889 gfp_t gfp; 1890 1891 /* Assert that the object is not currently in any GPU domain. As it 1892 * wasn't in the GTT, there shouldn't be any way it could have been in 1893 * a GPU cache 1894 */ 1895 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); 1896 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); 1897 1898 st = kmalloc(sizeof(*st), GFP_KERNEL); 1899 if (st == NULL) 1900 return -ENOMEM; 1901 1902 page_count = obj->base.size / PAGE_SIZE; 1903 if (sg_alloc_table(st, page_count, GFP_KERNEL)) { 1904 kfree(st); 1905 return -ENOMEM; 1906 } 1907 1908 /* Get the list of pages out of our struct file. They'll be pinned 1909 * at this point until we release them. 1910 * 1911 * Fail silently without starting the shrinker 1912 */ 1913 mapping = file_inode(obj->base.filp)->i_mapping; 1914 gfp = mapping_gfp_mask(mapping); 1915 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD; 1916 gfp &= ~(__GFP_IO | __GFP_WAIT); 1917 sg = st->sgl; 1918 st->nents = 0; 1919 for (i = 0; i < page_count; i++) { 1920 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1921 if (IS_ERR(page)) { 1922 i915_gem_purge(dev_priv, page_count); 1923 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1924 } 1925 if (IS_ERR(page)) { 1926 /* We've tried hard to allocate the memory by reaping 1927 * our own buffer, now let the real VM do its job and 1928 * go down in flames if truly OOM. 1929 */ 1930 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD); 1931 gfp |= __GFP_IO | __GFP_WAIT; 1932 1933 i915_gem_shrink_all(dev_priv); 1934 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1935 if (IS_ERR(page)) 1936 goto err_pages; 1937 1938 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD; 1939 gfp &= ~(__GFP_IO | __GFP_WAIT); 1940 } 1941 #ifdef CONFIG_SWIOTLB 1942 if (swiotlb_nr_tbl()) { 1943 st->nents++; 1944 sg_set_page(sg, page, PAGE_SIZE, 0); 1945 sg = sg_next(sg); 1946 continue; 1947 } 1948 #endif 1949 if (!i || page_to_pfn(page) != last_pfn + 1) { 1950 if (i) 1951 sg = sg_next(sg); 1952 st->nents++; 1953 sg_set_page(sg, page, PAGE_SIZE, 0); 1954 } else { 1955 sg->length += PAGE_SIZE; 1956 } 1957 last_pfn = page_to_pfn(page); 1958 1959 /* Check that the i965g/gm workaround works. */ 1960 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL)); 1961 } 1962 #ifdef CONFIG_SWIOTLB 1963 if (!swiotlb_nr_tbl()) 1964 #endif 1965 sg_mark_end(sg); 1966 obj->pages = st; 1967 1968 if (i915_gem_object_needs_bit17_swizzle(obj)) 1969 i915_gem_object_do_bit_17_swizzle(obj); 1970 1971 return 0; 1972 1973 err_pages: 1974 sg_mark_end(sg); 1975 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) 1976 page_cache_release(sg_page_iter_page(&sg_iter)); 1977 sg_free_table(st); 1978 kfree(st); 1979 return PTR_ERR(page); 1980 } 1981 1982 /* Ensure that the associated pages are gathered from the backing storage 1983 * and pinned into our object. i915_gem_object_get_pages() may be called 1984 * multiple times before they are released by a single call to 1985 * i915_gem_object_put_pages() - once the pages are no longer referenced 1986 * either as a result of memory pressure (reaping pages under the shrinker) 1987 * or as the object is itself released. 1988 */ 1989 int 1990 i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 1991 { 1992 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1993 const struct drm_i915_gem_object_ops *ops = obj->ops; 1994 int ret; 1995 1996 if (obj->pages) 1997 return 0; 1998 1999 if (obj->madv != I915_MADV_WILLNEED) { 2000 DRM_DEBUG("Attempting to obtain a purgeable object\n"); 2001 return -EFAULT; 2002 } 2003 2004 BUG_ON(obj->pages_pin_count); 2005 2006 ret = ops->get_pages(obj); 2007 if (ret) 2008 return ret; 2009 2010 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list); 2011 return 0; 2012 } 2013 2014 static void 2015 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj, 2016 struct intel_ring_buffer *ring) 2017 { 2018 struct drm_device *dev = obj->base.dev; 2019 struct drm_i915_private *dev_priv = dev->dev_private; 2020 u32 seqno = intel_ring_get_seqno(ring); 2021 2022 BUG_ON(ring == NULL); 2023 if (obj->ring != ring && obj->last_write_seqno) { 2024 /* Keep the seqno relative to the current ring */ 2025 obj->last_write_seqno = seqno; 2026 } 2027 obj->ring = ring; 2028 2029 /* Add a reference if we're newly entering the active list. */ 2030 if (!obj->active) { 2031 drm_gem_object_reference(&obj->base); 2032 obj->active = 1; 2033 } 2034 2035 list_move_tail(&obj->ring_list, &ring->active_list); 2036 2037 obj->last_read_seqno = seqno; 2038 2039 if (obj->fenced_gpu_access) { 2040 obj->last_fenced_seqno = seqno; 2041 2042 /* Bump MRU to take account of the delayed flush */ 2043 if (obj->fence_reg != I915_FENCE_REG_NONE) { 2044 struct drm_i915_fence_reg *reg; 2045 2046 reg = &dev_priv->fence_regs[obj->fence_reg]; 2047 list_move_tail(®->lru_list, 2048 &dev_priv->mm.fence_list); 2049 } 2050 } 2051 } 2052 2053 void i915_vma_move_to_active(struct i915_vma *vma, 2054 struct intel_ring_buffer *ring) 2055 { 2056 list_move_tail(&vma->mm_list, &vma->vm->active_list); 2057 return i915_gem_object_move_to_active(vma->obj, ring); 2058 } 2059 2060 static void 2061 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj) 2062 { 2063 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2064 struct i915_address_space *vm; 2065 struct i915_vma *vma; 2066 2067 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS); 2068 BUG_ON(!obj->active); 2069 2070 list_for_each_entry(vm, &dev_priv->vm_list, global_link) { 2071 vma = i915_gem_obj_to_vma(obj, vm); 2072 if (vma && !list_empty(&vma->mm_list)) 2073 list_move_tail(&vma->mm_list, &vm->inactive_list); 2074 } 2075 2076 list_del_init(&obj->ring_list); 2077 obj->ring = NULL; 2078 2079 obj->last_read_seqno = 0; 2080 obj->last_write_seqno = 0; 2081 obj->base.write_domain = 0; 2082 2083 obj->last_fenced_seqno = 0; 2084 obj->fenced_gpu_access = false; 2085 2086 obj->active = 0; 2087 drm_gem_object_unreference(&obj->base); 2088 2089 WARN_ON(i915_verify_lists(dev)); 2090 } 2091 2092 static int 2093 i915_gem_init_seqno(struct drm_device *dev, u32 seqno) 2094 { 2095 struct drm_i915_private *dev_priv = dev->dev_private; 2096 struct intel_ring_buffer *ring; 2097 int ret, i, j; 2098 2099 /* Carefully retire all requests without writing to the rings */ 2100 for_each_ring(ring, dev_priv, i) { 2101 ret = intel_ring_idle(ring); 2102 if (ret) 2103 return ret; 2104 } 2105 i915_gem_retire_requests(dev); 2106 2107 /* Finally reset hw state */ 2108 for_each_ring(ring, dev_priv, i) { 2109 intel_ring_init_seqno(ring, seqno); 2110 2111 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++) 2112 ring->sync_seqno[j] = 0; 2113 } 2114 2115 return 0; 2116 } 2117 2118 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno) 2119 { 2120 struct drm_i915_private *dev_priv = dev->dev_private; 2121 int ret; 2122 2123 if (seqno == 0) 2124 return -EINVAL; 2125 2126 /* HWS page needs to be set less than what we 2127 * will inject to ring 2128 */ 2129 ret = i915_gem_init_seqno(dev, seqno - 1); 2130 if (ret) 2131 return ret; 2132 2133 /* Carefully set the last_seqno value so that wrap 2134 * detection still works 2135 */ 2136 dev_priv->next_seqno = seqno; 2137 dev_priv->last_seqno = seqno - 1; 2138 if (dev_priv->last_seqno == 0) 2139 dev_priv->last_seqno--; 2140 2141 return 0; 2142 } 2143 2144 int 2145 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno) 2146 { 2147 struct drm_i915_private *dev_priv = dev->dev_private; 2148 2149 /* reserve 0 for non-seqno */ 2150 if (dev_priv->next_seqno == 0) { 2151 int ret = i915_gem_init_seqno(dev, 0); 2152 if (ret) 2153 return ret; 2154 2155 dev_priv->next_seqno = 1; 2156 } 2157 2158 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++; 2159 return 0; 2160 } 2161 2162 int __i915_add_request(struct intel_ring_buffer *ring, 2163 struct drm_file *file, 2164 struct drm_i915_gem_object *obj, 2165 u32 *out_seqno) 2166 { 2167 struct drm_i915_private *dev_priv = ring->dev->dev_private; 2168 struct drm_i915_gem_request *request; 2169 u32 request_ring_position, request_start; 2170 int ret; 2171 2172 request_start = intel_ring_get_tail(ring); 2173 /* 2174 * Emit any outstanding flushes - execbuf can fail to emit the flush 2175 * after having emitted the batchbuffer command. Hence we need to fix 2176 * things up similar to emitting the lazy request. The difference here 2177 * is that the flush _must_ happen before the next request, no matter 2178 * what. 2179 */ 2180 ret = intel_ring_flush_all_caches(ring); 2181 if (ret) 2182 return ret; 2183 2184 request = ring->preallocated_lazy_request; 2185 if (WARN_ON(request == NULL)) 2186 return -ENOMEM; 2187 2188 /* Record the position of the start of the request so that 2189 * should we detect the updated seqno part-way through the 2190 * GPU processing the request, we never over-estimate the 2191 * position of the head. 2192 */ 2193 request_ring_position = intel_ring_get_tail(ring); 2194 2195 ret = ring->add_request(ring); 2196 if (ret) 2197 return ret; 2198 2199 request->seqno = intel_ring_get_seqno(ring); 2200 request->ring = ring; 2201 request->head = request_start; 2202 request->tail = request_ring_position; 2203 2204 /* Whilst this request exists, batch_obj will be on the 2205 * active_list, and so will hold the active reference. Only when this 2206 * request is retired will the the batch_obj be moved onto the 2207 * inactive_list and lose its active reference. Hence we do not need 2208 * to explicitly hold another reference here. 2209 */ 2210 request->batch_obj = obj; 2211 2212 /* Hold a reference to the current context so that we can inspect 2213 * it later in case a hangcheck error event fires. 2214 */ 2215 request->ctx = ring->last_context; 2216 if (request->ctx) 2217 i915_gem_context_reference(request->ctx); 2218 2219 request->emitted_jiffies = jiffies; 2220 list_add_tail(&request->list, &ring->request_list); 2221 request->file_priv = NULL; 2222 2223 if (file) { 2224 struct drm_i915_file_private *file_priv = file->driver_priv; 2225 2226 spin_lock(&file_priv->mm.lock); 2227 request->file_priv = file_priv; 2228 list_add_tail(&request->client_list, 2229 &file_priv->mm.request_list); 2230 spin_unlock(&file_priv->mm.lock); 2231 } 2232 2233 trace_i915_gem_request_add(ring, request->seqno); 2234 ring->outstanding_lazy_seqno = 0; 2235 ring->preallocated_lazy_request = NULL; 2236 2237 if (!dev_priv->ums.mm_suspended) { 2238 i915_queue_hangcheck(ring->dev); 2239 2240 cancel_delayed_work_sync(&dev_priv->mm.idle_work); 2241 queue_delayed_work(dev_priv->wq, 2242 &dev_priv->mm.retire_work, 2243 round_jiffies_up_relative(HZ)); 2244 intel_mark_busy(dev_priv->dev); 2245 } 2246 2247 if (out_seqno) 2248 *out_seqno = request->seqno; 2249 return 0; 2250 } 2251 2252 static inline void 2253 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request) 2254 { 2255 struct drm_i915_file_private *file_priv = request->file_priv; 2256 2257 if (!file_priv) 2258 return; 2259 2260 spin_lock(&file_priv->mm.lock); 2261 list_del(&request->client_list); 2262 request->file_priv = NULL; 2263 spin_unlock(&file_priv->mm.lock); 2264 } 2265 2266 static bool i915_context_is_banned(struct drm_i915_private *dev_priv, 2267 const struct i915_hw_context *ctx) 2268 { 2269 unsigned long elapsed; 2270 2271 elapsed = get_seconds() - ctx->hang_stats.guilty_ts; 2272 2273 if (ctx->hang_stats.banned) 2274 return true; 2275 2276 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) { 2277 if (!i915_gem_context_is_default(ctx)) { 2278 DRM_DEBUG("context hanging too fast, banning!\n"); 2279 return true; 2280 } else if (dev_priv->gpu_error.stop_rings == 0) { 2281 DRM_ERROR("gpu hanging too fast, banning!\n"); 2282 return true; 2283 } 2284 } 2285 2286 return false; 2287 } 2288 2289 static void i915_set_reset_status(struct drm_i915_private *dev_priv, 2290 struct i915_hw_context *ctx, 2291 const bool guilty) 2292 { 2293 struct i915_ctx_hang_stats *hs; 2294 2295 if (WARN_ON(!ctx)) 2296 return; 2297 2298 hs = &ctx->hang_stats; 2299 2300 if (guilty) { 2301 hs->banned = i915_context_is_banned(dev_priv, ctx); 2302 hs->batch_active++; 2303 hs->guilty_ts = get_seconds(); 2304 } else { 2305 hs->batch_pending++; 2306 } 2307 } 2308 2309 static void i915_gem_free_request(struct drm_i915_gem_request *request) 2310 { 2311 list_del(&request->list); 2312 i915_gem_request_remove_from_client(request); 2313 2314 if (request->ctx) 2315 i915_gem_context_unreference(request->ctx); 2316 2317 kfree(request); 2318 } 2319 2320 struct drm_i915_gem_request * 2321 i915_gem_find_active_request(struct intel_ring_buffer *ring) 2322 { 2323 struct drm_i915_gem_request *request; 2324 u32 completed_seqno; 2325 2326 completed_seqno = ring->get_seqno(ring, false); 2327 2328 list_for_each_entry(request, &ring->request_list, list) { 2329 if (i915_seqno_passed(completed_seqno, request->seqno)) 2330 continue; 2331 2332 return request; 2333 } 2334 2335 return NULL; 2336 } 2337 2338 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv, 2339 struct intel_ring_buffer *ring) 2340 { 2341 struct drm_i915_gem_request *request; 2342 bool ring_hung; 2343 2344 request = i915_gem_find_active_request(ring); 2345 2346 if (request == NULL) 2347 return; 2348 2349 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG; 2350 2351 i915_set_reset_status(dev_priv, request->ctx, ring_hung); 2352 2353 list_for_each_entry_continue(request, &ring->request_list, list) 2354 i915_set_reset_status(dev_priv, request->ctx, false); 2355 } 2356 2357 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv, 2358 struct intel_ring_buffer *ring) 2359 { 2360 while (!list_empty(&ring->active_list)) { 2361 struct drm_i915_gem_object *obj; 2362 2363 obj = list_first_entry(&ring->active_list, 2364 struct drm_i915_gem_object, 2365 ring_list); 2366 2367 i915_gem_object_move_to_inactive(obj); 2368 } 2369 2370 /* 2371 * We must free the requests after all the corresponding objects have 2372 * been moved off active lists. Which is the same order as the normal 2373 * retire_requests function does. This is important if object hold 2374 * implicit references on things like e.g. ppgtt address spaces through 2375 * the request. 2376 */ 2377 while (!list_empty(&ring->request_list)) { 2378 struct drm_i915_gem_request *request; 2379 2380 request = list_first_entry(&ring->request_list, 2381 struct drm_i915_gem_request, 2382 list); 2383 2384 i915_gem_free_request(request); 2385 } 2386 } 2387 2388 void i915_gem_restore_fences(struct drm_device *dev) 2389 { 2390 struct drm_i915_private *dev_priv = dev->dev_private; 2391 int i; 2392 2393 for (i = 0; i < dev_priv->num_fence_regs; i++) { 2394 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; 2395 2396 /* 2397 * Commit delayed tiling changes if we have an object still 2398 * attached to the fence, otherwise just clear the fence. 2399 */ 2400 if (reg->obj) { 2401 i915_gem_object_update_fence(reg->obj, reg, 2402 reg->obj->tiling_mode); 2403 } else { 2404 i915_gem_write_fence(dev, i, NULL); 2405 } 2406 } 2407 } 2408 2409 void i915_gem_reset(struct drm_device *dev) 2410 { 2411 struct drm_i915_private *dev_priv = dev->dev_private; 2412 struct intel_ring_buffer *ring; 2413 int i; 2414 2415 /* 2416 * Before we free the objects from the requests, we need to inspect 2417 * them for finding the guilty party. As the requests only borrow 2418 * their reference to the objects, the inspection must be done first. 2419 */ 2420 for_each_ring(ring, dev_priv, i) 2421 i915_gem_reset_ring_status(dev_priv, ring); 2422 2423 for_each_ring(ring, dev_priv, i) 2424 i915_gem_reset_ring_cleanup(dev_priv, ring); 2425 2426 i915_gem_cleanup_ringbuffer(dev); 2427 2428 i915_gem_context_reset(dev); 2429 2430 i915_gem_restore_fences(dev); 2431 } 2432 2433 /** 2434 * This function clears the request list as sequence numbers are passed. 2435 */ 2436 static void 2437 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring) 2438 { 2439 uint32_t seqno; 2440 2441 if (list_empty(&ring->request_list)) 2442 return; 2443 2444 WARN_ON(i915_verify_lists(ring->dev)); 2445 2446 seqno = ring->get_seqno(ring, true); 2447 2448 /* Move any buffers on the active list that are no longer referenced 2449 * by the ringbuffer to the flushing/inactive lists as appropriate, 2450 * before we free the context associated with the requests. 2451 */ 2452 while (!list_empty(&ring->active_list)) { 2453 struct drm_i915_gem_object *obj; 2454 2455 obj = list_first_entry(&ring->active_list, 2456 struct drm_i915_gem_object, 2457 ring_list); 2458 2459 if (!i915_seqno_passed(seqno, obj->last_read_seqno)) 2460 break; 2461 2462 i915_gem_object_move_to_inactive(obj); 2463 } 2464 2465 2466 while (!list_empty(&ring->request_list)) { 2467 struct drm_i915_gem_request *request; 2468 2469 request = list_first_entry(&ring->request_list, 2470 struct drm_i915_gem_request, 2471 list); 2472 2473 if (!i915_seqno_passed(seqno, request->seqno)) 2474 break; 2475 2476 trace_i915_gem_request_retire(ring, request->seqno); 2477 /* We know the GPU must have read the request to have 2478 * sent us the seqno + interrupt, so use the position 2479 * of tail of the request to update the last known position 2480 * of the GPU head. 2481 */ 2482 ring->last_retired_head = request->tail; 2483 2484 i915_gem_free_request(request); 2485 } 2486 2487 if (unlikely(ring->trace_irq_seqno && 2488 i915_seqno_passed(seqno, ring->trace_irq_seqno))) { 2489 ring->irq_put(ring); 2490 ring->trace_irq_seqno = 0; 2491 } 2492 2493 WARN_ON(i915_verify_lists(ring->dev)); 2494 } 2495 2496 bool 2497 i915_gem_retire_requests(struct drm_device *dev) 2498 { 2499 struct drm_i915_private *dev_priv = dev->dev_private; 2500 struct intel_ring_buffer *ring; 2501 bool idle = true; 2502 int i; 2503 2504 for_each_ring(ring, dev_priv, i) { 2505 i915_gem_retire_requests_ring(ring); 2506 idle &= list_empty(&ring->request_list); 2507 } 2508 2509 if (idle) 2510 mod_delayed_work(dev_priv->wq, 2511 &dev_priv->mm.idle_work, 2512 msecs_to_jiffies(100)); 2513 2514 return idle; 2515 } 2516 2517 static void 2518 i915_gem_retire_work_handler(struct work_struct *work) 2519 { 2520 struct drm_i915_private *dev_priv = 2521 container_of(work, typeof(*dev_priv), mm.retire_work.work); 2522 struct drm_device *dev = dev_priv->dev; 2523 bool idle; 2524 2525 /* Come back later if the device is busy... */ 2526 idle = false; 2527 if (mutex_trylock(&dev->struct_mutex)) { 2528 idle = i915_gem_retire_requests(dev); 2529 mutex_unlock(&dev->struct_mutex); 2530 } 2531 if (!idle) 2532 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 2533 round_jiffies_up_relative(HZ)); 2534 } 2535 2536 static void 2537 i915_gem_idle_work_handler(struct work_struct *work) 2538 { 2539 struct drm_i915_private *dev_priv = 2540 container_of(work, typeof(*dev_priv), mm.idle_work.work); 2541 2542 intel_mark_idle(dev_priv->dev); 2543 } 2544 2545 /** 2546 * Ensures that an object will eventually get non-busy by flushing any required 2547 * write domains, emitting any outstanding lazy request and retiring and 2548 * completed requests. 2549 */ 2550 static int 2551 i915_gem_object_flush_active(struct drm_i915_gem_object *obj) 2552 { 2553 int ret; 2554 2555 if (obj->active) { 2556 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno); 2557 if (ret) 2558 return ret; 2559 2560 i915_gem_retire_requests_ring(obj->ring); 2561 } 2562 2563 return 0; 2564 } 2565 2566 /** 2567 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT 2568 * @DRM_IOCTL_ARGS: standard ioctl arguments 2569 * 2570 * Returns 0 if successful, else an error is returned with the remaining time in 2571 * the timeout parameter. 2572 * -ETIME: object is still busy after timeout 2573 * -ERESTARTSYS: signal interrupted the wait 2574 * -ENONENT: object doesn't exist 2575 * Also possible, but rare: 2576 * -EAGAIN: GPU wedged 2577 * -ENOMEM: damn 2578 * -ENODEV: Internal IRQ fail 2579 * -E?: The add request failed 2580 * 2581 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any 2582 * non-zero timeout parameter the wait ioctl will wait for the given number of 2583 * nanoseconds on an object becoming unbusy. Since the wait itself does so 2584 * without holding struct_mutex the object may become re-busied before this 2585 * function completes. A similar but shorter * race condition exists in the busy 2586 * ioctl 2587 */ 2588 int 2589 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 2590 { 2591 struct drm_i915_private *dev_priv = dev->dev_private; 2592 struct drm_i915_gem_wait *args = data; 2593 struct drm_i915_gem_object *obj; 2594 struct intel_ring_buffer *ring = NULL; 2595 struct timespec timeout_stack, *timeout = NULL; 2596 unsigned reset_counter; 2597 u32 seqno = 0; 2598 int ret = 0; 2599 2600 if (args->timeout_ns >= 0) { 2601 timeout_stack = ns_to_timespec(args->timeout_ns); 2602 timeout = &timeout_stack; 2603 } 2604 2605 ret = i915_mutex_lock_interruptible(dev); 2606 if (ret) 2607 return ret; 2608 2609 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle)); 2610 if (&obj->base == NULL) { 2611 mutex_unlock(&dev->struct_mutex); 2612 return -ENOENT; 2613 } 2614 2615 /* Need to make sure the object gets inactive eventually. */ 2616 ret = i915_gem_object_flush_active(obj); 2617 if (ret) 2618 goto out; 2619 2620 if (obj->active) { 2621 seqno = obj->last_read_seqno; 2622 ring = obj->ring; 2623 } 2624 2625 if (seqno == 0) 2626 goto out; 2627 2628 /* Do this after OLR check to make sure we make forward progress polling 2629 * on this IOCTL with a 0 timeout (like busy ioctl) 2630 */ 2631 if (!args->timeout_ns) { 2632 ret = -ETIME; 2633 goto out; 2634 } 2635 2636 drm_gem_object_unreference(&obj->base); 2637 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 2638 mutex_unlock(&dev->struct_mutex); 2639 2640 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv); 2641 if (timeout) 2642 args->timeout_ns = timespec_to_ns(timeout); 2643 return ret; 2644 2645 out: 2646 drm_gem_object_unreference(&obj->base); 2647 mutex_unlock(&dev->struct_mutex); 2648 return ret; 2649 } 2650 2651 /** 2652 * i915_gem_object_sync - sync an object to a ring. 2653 * 2654 * @obj: object which may be in use on another ring. 2655 * @to: ring we wish to use the object on. May be NULL. 2656 * 2657 * This code is meant to abstract object synchronization with the GPU. 2658 * Calling with NULL implies synchronizing the object with the CPU 2659 * rather than a particular GPU ring. 2660 * 2661 * Returns 0 if successful, else propagates up the lower layer error. 2662 */ 2663 int 2664 i915_gem_object_sync(struct drm_i915_gem_object *obj, 2665 struct intel_ring_buffer *to) 2666 { 2667 struct intel_ring_buffer *from = obj->ring; 2668 u32 seqno; 2669 int ret, idx; 2670 2671 if (from == NULL || to == from) 2672 return 0; 2673 2674 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev)) 2675 return i915_gem_object_wait_rendering(obj, false); 2676 2677 idx = intel_ring_sync_index(from, to); 2678 2679 seqno = obj->last_read_seqno; 2680 if (seqno <= from->sync_seqno[idx]) 2681 return 0; 2682 2683 ret = i915_gem_check_olr(obj->ring, seqno); 2684 if (ret) 2685 return ret; 2686 2687 trace_i915_gem_ring_sync_to(from, to, seqno); 2688 ret = to->sync_to(to, from, seqno); 2689 if (!ret) 2690 /* We use last_read_seqno because sync_to() 2691 * might have just caused seqno wrap under 2692 * the radar. 2693 */ 2694 from->sync_seqno[idx] = obj->last_read_seqno; 2695 2696 return ret; 2697 } 2698 2699 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj) 2700 { 2701 u32 old_write_domain, old_read_domains; 2702 2703 /* Force a pagefault for domain tracking on next user access */ 2704 i915_gem_release_mmap(obj); 2705 2706 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 2707 return; 2708 2709 /* Wait for any direct GTT access to complete */ 2710 mb(); 2711 2712 old_read_domains = obj->base.read_domains; 2713 old_write_domain = obj->base.write_domain; 2714 2715 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT; 2716 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT; 2717 2718 trace_i915_gem_object_change_domain(obj, 2719 old_read_domains, 2720 old_write_domain); 2721 } 2722 2723 int i915_vma_unbind(struct i915_vma *vma) 2724 { 2725 struct drm_i915_gem_object *obj = vma->obj; 2726 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2727 int ret; 2728 2729 if (list_empty(&vma->vma_link)) 2730 return 0; 2731 2732 if (!drm_mm_node_allocated(&vma->node)) { 2733 i915_gem_vma_destroy(vma); 2734 return 0; 2735 } 2736 2737 if (vma->pin_count) 2738 return -EBUSY; 2739 2740 BUG_ON(obj->pages == NULL); 2741 2742 ret = i915_gem_object_finish_gpu(obj); 2743 if (ret) 2744 return ret; 2745 /* Continue on if we fail due to EIO, the GPU is hung so we 2746 * should be safe and we need to cleanup or else we might 2747 * cause memory corruption through use-after-free. 2748 */ 2749 2750 i915_gem_object_finish_gtt(obj); 2751 2752 /* release the fence reg _after_ flushing */ 2753 ret = i915_gem_object_put_fence(obj); 2754 if (ret) 2755 return ret; 2756 2757 trace_i915_vma_unbind(vma); 2758 2759 vma->unbind_vma(vma); 2760 2761 i915_gem_gtt_finish_object(obj); 2762 2763 list_del_init(&vma->mm_list); 2764 /* Avoid an unnecessary call to unbind on rebind. */ 2765 if (i915_is_ggtt(vma->vm)) 2766 obj->map_and_fenceable = true; 2767 2768 drm_mm_remove_node(&vma->node); 2769 i915_gem_vma_destroy(vma); 2770 2771 /* Since the unbound list is global, only move to that list if 2772 * no more VMAs exist. */ 2773 if (list_empty(&obj->vma_list)) 2774 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list); 2775 2776 /* And finally now the object is completely decoupled from this vma, 2777 * we can drop its hold on the backing storage and allow it to be 2778 * reaped by the shrinker. 2779 */ 2780 i915_gem_object_unpin_pages(obj); 2781 2782 return 0; 2783 } 2784 2785 int i915_gpu_idle(struct drm_device *dev) 2786 { 2787 struct drm_i915_private *dev_priv = dev->dev_private; 2788 struct intel_ring_buffer *ring; 2789 int ret, i; 2790 2791 /* Flush everything onto the inactive list. */ 2792 for_each_ring(ring, dev_priv, i) { 2793 ret = i915_switch_context(ring, NULL, ring->default_context); 2794 if (ret) 2795 return ret; 2796 2797 ret = intel_ring_idle(ring); 2798 if (ret) 2799 return ret; 2800 } 2801 2802 return 0; 2803 } 2804 2805 static void i965_write_fence_reg(struct drm_device *dev, int reg, 2806 struct drm_i915_gem_object *obj) 2807 { 2808 struct drm_i915_private *dev_priv = dev->dev_private; 2809 int fence_reg; 2810 int fence_pitch_shift; 2811 2812 if (INTEL_INFO(dev)->gen >= 6) { 2813 fence_reg = FENCE_REG_SANDYBRIDGE_0; 2814 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT; 2815 } else { 2816 fence_reg = FENCE_REG_965_0; 2817 fence_pitch_shift = I965_FENCE_PITCH_SHIFT; 2818 } 2819 2820 fence_reg += reg * 8; 2821 2822 /* To w/a incoherency with non-atomic 64-bit register updates, 2823 * we split the 64-bit update into two 32-bit writes. In order 2824 * for a partial fence not to be evaluated between writes, we 2825 * precede the update with write to turn off the fence register, 2826 * and only enable the fence as the last step. 2827 * 2828 * For extra levels of paranoia, we make sure each step lands 2829 * before applying the next step. 2830 */ 2831 I915_WRITE(fence_reg, 0); 2832 POSTING_READ(fence_reg); 2833 2834 if (obj) { 2835 u32 size = i915_gem_obj_ggtt_size(obj); 2836 uint64_t val; 2837 2838 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) & 2839 0xfffff000) << 32; 2840 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000; 2841 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift; 2842 if (obj->tiling_mode == I915_TILING_Y) 2843 val |= 1 << I965_FENCE_TILING_Y_SHIFT; 2844 val |= I965_FENCE_REG_VALID; 2845 2846 I915_WRITE(fence_reg + 4, val >> 32); 2847 POSTING_READ(fence_reg + 4); 2848 2849 I915_WRITE(fence_reg + 0, val); 2850 POSTING_READ(fence_reg); 2851 } else { 2852 I915_WRITE(fence_reg + 4, 0); 2853 POSTING_READ(fence_reg + 4); 2854 } 2855 } 2856 2857 static void i915_write_fence_reg(struct drm_device *dev, int reg, 2858 struct drm_i915_gem_object *obj) 2859 { 2860 struct drm_i915_private *dev_priv = dev->dev_private; 2861 u32 val; 2862 2863 if (obj) { 2864 u32 size = i915_gem_obj_ggtt_size(obj); 2865 int pitch_val; 2866 int tile_width; 2867 2868 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) || 2869 (size & -size) != size || 2870 (i915_gem_obj_ggtt_offset(obj) & (size - 1)), 2871 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n", 2872 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size); 2873 2874 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)) 2875 tile_width = 128; 2876 else 2877 tile_width = 512; 2878 2879 /* Note: pitch better be a power of two tile widths */ 2880 pitch_val = obj->stride / tile_width; 2881 pitch_val = ffs(pitch_val) - 1; 2882 2883 val = i915_gem_obj_ggtt_offset(obj); 2884 if (obj->tiling_mode == I915_TILING_Y) 2885 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 2886 val |= I915_FENCE_SIZE_BITS(size); 2887 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 2888 val |= I830_FENCE_REG_VALID; 2889 } else 2890 val = 0; 2891 2892 if (reg < 8) 2893 reg = FENCE_REG_830_0 + reg * 4; 2894 else 2895 reg = FENCE_REG_945_8 + (reg - 8) * 4; 2896 2897 I915_WRITE(reg, val); 2898 POSTING_READ(reg); 2899 } 2900 2901 static void i830_write_fence_reg(struct drm_device *dev, int reg, 2902 struct drm_i915_gem_object *obj) 2903 { 2904 struct drm_i915_private *dev_priv = dev->dev_private; 2905 uint32_t val; 2906 2907 if (obj) { 2908 u32 size = i915_gem_obj_ggtt_size(obj); 2909 uint32_t pitch_val; 2910 2911 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) || 2912 (size & -size) != size || 2913 (i915_gem_obj_ggtt_offset(obj) & (size - 1)), 2914 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n", 2915 i915_gem_obj_ggtt_offset(obj), size); 2916 2917 pitch_val = obj->stride / 128; 2918 pitch_val = ffs(pitch_val) - 1; 2919 2920 val = i915_gem_obj_ggtt_offset(obj); 2921 if (obj->tiling_mode == I915_TILING_Y) 2922 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 2923 val |= I830_FENCE_SIZE_BITS(size); 2924 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 2925 val |= I830_FENCE_REG_VALID; 2926 } else 2927 val = 0; 2928 2929 I915_WRITE(FENCE_REG_830_0 + reg * 4, val); 2930 POSTING_READ(FENCE_REG_830_0 + reg * 4); 2931 } 2932 2933 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj) 2934 { 2935 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT; 2936 } 2937 2938 static void i915_gem_write_fence(struct drm_device *dev, int reg, 2939 struct drm_i915_gem_object *obj) 2940 { 2941 struct drm_i915_private *dev_priv = dev->dev_private; 2942 2943 /* Ensure that all CPU reads are completed before installing a fence 2944 * and all writes before removing the fence. 2945 */ 2946 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj)) 2947 mb(); 2948 2949 WARN(obj && (!obj->stride || !obj->tiling_mode), 2950 "bogus fence setup with stride: 0x%x, tiling mode: %i\n", 2951 obj->stride, obj->tiling_mode); 2952 2953 switch (INTEL_INFO(dev)->gen) { 2954 case 8: 2955 case 7: 2956 case 6: 2957 case 5: 2958 case 4: i965_write_fence_reg(dev, reg, obj); break; 2959 case 3: i915_write_fence_reg(dev, reg, obj); break; 2960 case 2: i830_write_fence_reg(dev, reg, obj); break; 2961 default: BUG(); 2962 } 2963 2964 /* And similarly be paranoid that no direct access to this region 2965 * is reordered to before the fence is installed. 2966 */ 2967 if (i915_gem_object_needs_mb(obj)) 2968 mb(); 2969 } 2970 2971 static inline int fence_number(struct drm_i915_private *dev_priv, 2972 struct drm_i915_fence_reg *fence) 2973 { 2974 return fence - dev_priv->fence_regs; 2975 } 2976 2977 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 2978 struct drm_i915_fence_reg *fence, 2979 bool enable) 2980 { 2981 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2982 int reg = fence_number(dev_priv, fence); 2983 2984 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL); 2985 2986 if (enable) { 2987 obj->fence_reg = reg; 2988 fence->obj = obj; 2989 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list); 2990 } else { 2991 obj->fence_reg = I915_FENCE_REG_NONE; 2992 fence->obj = NULL; 2993 list_del_init(&fence->lru_list); 2994 } 2995 obj->fence_dirty = false; 2996 } 2997 2998 static int 2999 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj) 3000 { 3001 if (obj->last_fenced_seqno) { 3002 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno); 3003 if (ret) 3004 return ret; 3005 3006 obj->last_fenced_seqno = 0; 3007 } 3008 3009 obj->fenced_gpu_access = false; 3010 return 0; 3011 } 3012 3013 int 3014 i915_gem_object_put_fence(struct drm_i915_gem_object *obj) 3015 { 3016 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3017 struct drm_i915_fence_reg *fence; 3018 int ret; 3019 3020 ret = i915_gem_object_wait_fence(obj); 3021 if (ret) 3022 return ret; 3023 3024 if (obj->fence_reg == I915_FENCE_REG_NONE) 3025 return 0; 3026 3027 fence = &dev_priv->fence_regs[obj->fence_reg]; 3028 3029 i915_gem_object_fence_lost(obj); 3030 i915_gem_object_update_fence(obj, fence, false); 3031 3032 return 0; 3033 } 3034 3035 static struct drm_i915_fence_reg * 3036 i915_find_fence_reg(struct drm_device *dev) 3037 { 3038 struct drm_i915_private *dev_priv = dev->dev_private; 3039 struct drm_i915_fence_reg *reg, *avail; 3040 int i; 3041 3042 /* First try to find a free reg */ 3043 avail = NULL; 3044 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) { 3045 reg = &dev_priv->fence_regs[i]; 3046 if (!reg->obj) 3047 return reg; 3048 3049 if (!reg->pin_count) 3050 avail = reg; 3051 } 3052 3053 if (avail == NULL) 3054 goto deadlock; 3055 3056 /* None available, try to steal one or wait for a user to finish */ 3057 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) { 3058 if (reg->pin_count) 3059 continue; 3060 3061 return reg; 3062 } 3063 3064 deadlock: 3065 /* Wait for completion of pending flips which consume fences */ 3066 if (intel_has_pending_fb_unpin(dev)) 3067 return ERR_PTR(-EAGAIN); 3068 3069 return ERR_PTR(-EDEADLK); 3070 } 3071 3072 /** 3073 * i915_gem_object_get_fence - set up fencing for an object 3074 * @obj: object to map through a fence reg 3075 * 3076 * When mapping objects through the GTT, userspace wants to be able to write 3077 * to them without having to worry about swizzling if the object is tiled. 3078 * This function walks the fence regs looking for a free one for @obj, 3079 * stealing one if it can't find any. 3080 * 3081 * It then sets up the reg based on the object's properties: address, pitch 3082 * and tiling format. 3083 * 3084 * For an untiled surface, this removes any existing fence. 3085 */ 3086 int 3087 i915_gem_object_get_fence(struct drm_i915_gem_object *obj) 3088 { 3089 struct drm_device *dev = obj->base.dev; 3090 struct drm_i915_private *dev_priv = dev->dev_private; 3091 bool enable = obj->tiling_mode != I915_TILING_NONE; 3092 struct drm_i915_fence_reg *reg; 3093 int ret; 3094 3095 /* Have we updated the tiling parameters upon the object and so 3096 * will need to serialise the write to the associated fence register? 3097 */ 3098 if (obj->fence_dirty) { 3099 ret = i915_gem_object_wait_fence(obj); 3100 if (ret) 3101 return ret; 3102 } 3103 3104 /* Just update our place in the LRU if our fence is getting reused. */ 3105 if (obj->fence_reg != I915_FENCE_REG_NONE) { 3106 reg = &dev_priv->fence_regs[obj->fence_reg]; 3107 if (!obj->fence_dirty) { 3108 list_move_tail(®->lru_list, 3109 &dev_priv->mm.fence_list); 3110 return 0; 3111 } 3112 } else if (enable) { 3113 reg = i915_find_fence_reg(dev); 3114 if (IS_ERR(reg)) 3115 return PTR_ERR(reg); 3116 3117 if (reg->obj) { 3118 struct drm_i915_gem_object *old = reg->obj; 3119 3120 ret = i915_gem_object_wait_fence(old); 3121 if (ret) 3122 return ret; 3123 3124 i915_gem_object_fence_lost(old); 3125 } 3126 } else 3127 return 0; 3128 3129 i915_gem_object_update_fence(obj, reg, enable); 3130 3131 return 0; 3132 } 3133 3134 static bool i915_gem_valid_gtt_space(struct drm_device *dev, 3135 struct drm_mm_node *gtt_space, 3136 unsigned long cache_level) 3137 { 3138 struct drm_mm_node *other; 3139 3140 /* On non-LLC machines we have to be careful when putting differing 3141 * types of snoopable memory together to avoid the prefetcher 3142 * crossing memory domains and dying. 3143 */ 3144 if (HAS_LLC(dev)) 3145 return true; 3146 3147 if (!drm_mm_node_allocated(gtt_space)) 3148 return true; 3149 3150 if (list_empty(>t_space->node_list)) 3151 return true; 3152 3153 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list); 3154 if (other->allocated && !other->hole_follows && other->color != cache_level) 3155 return false; 3156 3157 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list); 3158 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level) 3159 return false; 3160 3161 return true; 3162 } 3163 3164 static void i915_gem_verify_gtt(struct drm_device *dev) 3165 { 3166 #if WATCH_GTT 3167 struct drm_i915_private *dev_priv = dev->dev_private; 3168 struct drm_i915_gem_object *obj; 3169 int err = 0; 3170 3171 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) { 3172 if (obj->gtt_space == NULL) { 3173 printk(KERN_ERR "object found on GTT list with no space reserved\n"); 3174 err++; 3175 continue; 3176 } 3177 3178 if (obj->cache_level != obj->gtt_space->color) { 3179 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n", 3180 i915_gem_obj_ggtt_offset(obj), 3181 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj), 3182 obj->cache_level, 3183 obj->gtt_space->color); 3184 err++; 3185 continue; 3186 } 3187 3188 if (!i915_gem_valid_gtt_space(dev, 3189 obj->gtt_space, 3190 obj->cache_level)) { 3191 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n", 3192 i915_gem_obj_ggtt_offset(obj), 3193 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj), 3194 obj->cache_level); 3195 err++; 3196 continue; 3197 } 3198 } 3199 3200 WARN_ON(err); 3201 #endif 3202 } 3203 3204 /** 3205 * Finds free space in the GTT aperture and binds the object there. 3206 */ 3207 static struct i915_vma * 3208 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj, 3209 struct i915_address_space *vm, 3210 unsigned alignment, 3211 unsigned flags) 3212 { 3213 struct drm_device *dev = obj->base.dev; 3214 struct drm_i915_private *dev_priv = dev->dev_private; 3215 u32 size, fence_size, fence_alignment, unfenced_alignment; 3216 size_t gtt_max = 3217 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total; 3218 struct i915_vma *vma; 3219 int ret; 3220 3221 fence_size = i915_gem_get_gtt_size(dev, 3222 obj->base.size, 3223 obj->tiling_mode); 3224 fence_alignment = i915_gem_get_gtt_alignment(dev, 3225 obj->base.size, 3226 obj->tiling_mode, true); 3227 unfenced_alignment = 3228 i915_gem_get_gtt_alignment(dev, 3229 obj->base.size, 3230 obj->tiling_mode, false); 3231 3232 if (alignment == 0) 3233 alignment = flags & PIN_MAPPABLE ? fence_alignment : 3234 unfenced_alignment; 3235 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) { 3236 DRM_DEBUG("Invalid object alignment requested %u\n", alignment); 3237 return ERR_PTR(-EINVAL); 3238 } 3239 3240 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size; 3241 3242 /* If the object is bigger than the entire aperture, reject it early 3243 * before evicting everything in a vain attempt to find space. 3244 */ 3245 if (obj->base.size > gtt_max) { 3246 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n", 3247 obj->base.size, 3248 flags & PIN_MAPPABLE ? "mappable" : "total", 3249 gtt_max); 3250 return ERR_PTR(-E2BIG); 3251 } 3252 3253 ret = i915_gem_object_get_pages(obj); 3254 if (ret) 3255 return ERR_PTR(ret); 3256 3257 i915_gem_object_pin_pages(obj); 3258 3259 vma = i915_gem_obj_lookup_or_create_vma(obj, vm); 3260 if (IS_ERR(vma)) 3261 goto err_unpin; 3262 3263 search_free: 3264 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node, 3265 size, alignment, 3266 obj->cache_level, 0, gtt_max, 3267 DRM_MM_SEARCH_DEFAULT, 3268 DRM_MM_CREATE_DEFAULT); 3269 if (ret) { 3270 ret = i915_gem_evict_something(dev, vm, size, alignment, 3271 obj->cache_level, flags); 3272 if (ret == 0) 3273 goto search_free; 3274 3275 goto err_free_vma; 3276 } 3277 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node, 3278 obj->cache_level))) { 3279 ret = -EINVAL; 3280 goto err_remove_node; 3281 } 3282 3283 ret = i915_gem_gtt_prepare_object(obj); 3284 if (ret) 3285 goto err_remove_node; 3286 3287 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list); 3288 list_add_tail(&vma->mm_list, &vm->inactive_list); 3289 3290 if (i915_is_ggtt(vm)) { 3291 bool mappable, fenceable; 3292 3293 fenceable = (vma->node.size == fence_size && 3294 (vma->node.start & (fence_alignment - 1)) == 0); 3295 3296 mappable = (vma->node.start + obj->base.size <= 3297 dev_priv->gtt.mappable_end); 3298 3299 obj->map_and_fenceable = mappable && fenceable; 3300 } 3301 3302 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable); 3303 3304 trace_i915_vma_bind(vma, flags); 3305 vma->bind_vma(vma, obj->cache_level, 3306 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0); 3307 3308 i915_gem_verify_gtt(dev); 3309 return vma; 3310 3311 err_remove_node: 3312 drm_mm_remove_node(&vma->node); 3313 err_free_vma: 3314 i915_gem_vma_destroy(vma); 3315 vma = ERR_PTR(ret); 3316 err_unpin: 3317 i915_gem_object_unpin_pages(obj); 3318 return vma; 3319 } 3320 3321 bool 3322 i915_gem_clflush_object(struct drm_i915_gem_object *obj, 3323 bool force) 3324 { 3325 /* If we don't have a page list set up, then we're not pinned 3326 * to GPU, and we can ignore the cache flush because it'll happen 3327 * again at bind time. 3328 */ 3329 if (obj->pages == NULL) 3330 return false; 3331 3332 /* 3333 * Stolen memory is always coherent with the GPU as it is explicitly 3334 * marked as wc by the system, or the system is cache-coherent. 3335 */ 3336 if (obj->stolen) 3337 return false; 3338 3339 /* If the GPU is snooping the contents of the CPU cache, 3340 * we do not need to manually clear the CPU cache lines. However, 3341 * the caches are only snooped when the render cache is 3342 * flushed/invalidated. As we always have to emit invalidations 3343 * and flushes when moving into and out of the RENDER domain, correct 3344 * snooping behaviour occurs naturally as the result of our domain 3345 * tracking. 3346 */ 3347 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) 3348 return false; 3349 3350 trace_i915_gem_object_clflush(obj); 3351 drm_clflush_sg(obj->pages); 3352 3353 return true; 3354 } 3355 3356 /** Flushes the GTT write domain for the object if it's dirty. */ 3357 static void 3358 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj) 3359 { 3360 uint32_t old_write_domain; 3361 3362 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT) 3363 return; 3364 3365 /* No actual flushing is required for the GTT write domain. Writes 3366 * to it immediately go to main memory as far as we know, so there's 3367 * no chipset flush. It also doesn't land in render cache. 3368 * 3369 * However, we do have to enforce the order so that all writes through 3370 * the GTT land before any writes to the device, such as updates to 3371 * the GATT itself. 3372 */ 3373 wmb(); 3374 3375 old_write_domain = obj->base.write_domain; 3376 obj->base.write_domain = 0; 3377 3378 trace_i915_gem_object_change_domain(obj, 3379 obj->base.read_domains, 3380 old_write_domain); 3381 } 3382 3383 /** Flushes the CPU write domain for the object if it's dirty. */ 3384 static void 3385 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj, 3386 bool force) 3387 { 3388 uint32_t old_write_domain; 3389 3390 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) 3391 return; 3392 3393 if (i915_gem_clflush_object(obj, force)) 3394 i915_gem_chipset_flush(obj->base.dev); 3395 3396 old_write_domain = obj->base.write_domain; 3397 obj->base.write_domain = 0; 3398 3399 trace_i915_gem_object_change_domain(obj, 3400 obj->base.read_domains, 3401 old_write_domain); 3402 } 3403 3404 /** 3405 * Moves a single object to the GTT read, and possibly write domain. 3406 * 3407 * This function returns when the move is complete, including waiting on 3408 * flushes to occur. 3409 */ 3410 int 3411 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) 3412 { 3413 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3414 uint32_t old_write_domain, old_read_domains; 3415 int ret; 3416 3417 /* Not valid to be called on unbound objects. */ 3418 if (!i915_gem_obj_bound_any(obj)) 3419 return -EINVAL; 3420 3421 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) 3422 return 0; 3423 3424 ret = i915_gem_object_wait_rendering(obj, !write); 3425 if (ret) 3426 return ret; 3427 3428 i915_gem_object_flush_cpu_write_domain(obj, false); 3429 3430 /* Serialise direct access to this object with the barriers for 3431 * coherent writes from the GPU, by effectively invalidating the 3432 * GTT domain upon first access. 3433 */ 3434 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 3435 mb(); 3436 3437 old_write_domain = obj->base.write_domain; 3438 old_read_domains = obj->base.read_domains; 3439 3440 /* It should now be out of any other write domains, and we can update 3441 * the domain values for our changes. 3442 */ 3443 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 3444 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3445 if (write) { 3446 obj->base.read_domains = I915_GEM_DOMAIN_GTT; 3447 obj->base.write_domain = I915_GEM_DOMAIN_GTT; 3448 obj->dirty = 1; 3449 } 3450 3451 trace_i915_gem_object_change_domain(obj, 3452 old_read_domains, 3453 old_write_domain); 3454 3455 /* And bump the LRU for this access */ 3456 if (i915_gem_object_is_inactive(obj)) { 3457 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj); 3458 if (vma) 3459 list_move_tail(&vma->mm_list, 3460 &dev_priv->gtt.base.inactive_list); 3461 3462 } 3463 3464 return 0; 3465 } 3466 3467 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3468 enum i915_cache_level cache_level) 3469 { 3470 struct drm_device *dev = obj->base.dev; 3471 struct i915_vma *vma, *next; 3472 int ret; 3473 3474 if (obj->cache_level == cache_level) 3475 return 0; 3476 3477 if (i915_gem_obj_is_pinned(obj)) { 3478 DRM_DEBUG("can not change the cache level of pinned objects\n"); 3479 return -EBUSY; 3480 } 3481 3482 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) { 3483 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) { 3484 ret = i915_vma_unbind(vma); 3485 if (ret) 3486 return ret; 3487 } 3488 } 3489 3490 if (i915_gem_obj_bound_any(obj)) { 3491 ret = i915_gem_object_finish_gpu(obj); 3492 if (ret) 3493 return ret; 3494 3495 i915_gem_object_finish_gtt(obj); 3496 3497 /* Before SandyBridge, you could not use tiling or fence 3498 * registers with snooped memory, so relinquish any fences 3499 * currently pointing to our region in the aperture. 3500 */ 3501 if (INTEL_INFO(dev)->gen < 6) { 3502 ret = i915_gem_object_put_fence(obj); 3503 if (ret) 3504 return ret; 3505 } 3506 3507 list_for_each_entry(vma, &obj->vma_list, vma_link) 3508 if (drm_mm_node_allocated(&vma->node)) 3509 vma->bind_vma(vma, cache_level, 3510 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0); 3511 } 3512 3513 list_for_each_entry(vma, &obj->vma_list, vma_link) 3514 vma->node.color = cache_level; 3515 obj->cache_level = cache_level; 3516 3517 if (cpu_write_needs_clflush(obj)) { 3518 u32 old_read_domains, old_write_domain; 3519 3520 /* If we're coming from LLC cached, then we haven't 3521 * actually been tracking whether the data is in the 3522 * CPU cache or not, since we only allow one bit set 3523 * in obj->write_domain and have been skipping the clflushes. 3524 * Just set it to the CPU cache for now. 3525 */ 3526 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU); 3527 3528 old_read_domains = obj->base.read_domains; 3529 old_write_domain = obj->base.write_domain; 3530 3531 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3532 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3533 3534 trace_i915_gem_object_change_domain(obj, 3535 old_read_domains, 3536 old_write_domain); 3537 } 3538 3539 i915_gem_verify_gtt(dev); 3540 return 0; 3541 } 3542 3543 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3544 struct drm_file *file) 3545 { 3546 struct drm_i915_gem_caching *args = data; 3547 struct drm_i915_gem_object *obj; 3548 int ret; 3549 3550 ret = i915_mutex_lock_interruptible(dev); 3551 if (ret) 3552 return ret; 3553 3554 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3555 if (&obj->base == NULL) { 3556 ret = -ENOENT; 3557 goto unlock; 3558 } 3559 3560 switch (obj->cache_level) { 3561 case I915_CACHE_LLC: 3562 case I915_CACHE_L3_LLC: 3563 args->caching = I915_CACHING_CACHED; 3564 break; 3565 3566 case I915_CACHE_WT: 3567 args->caching = I915_CACHING_DISPLAY; 3568 break; 3569 3570 default: 3571 args->caching = I915_CACHING_NONE; 3572 break; 3573 } 3574 3575 drm_gem_object_unreference(&obj->base); 3576 unlock: 3577 mutex_unlock(&dev->struct_mutex); 3578 return ret; 3579 } 3580 3581 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3582 struct drm_file *file) 3583 { 3584 struct drm_i915_gem_caching *args = data; 3585 struct drm_i915_gem_object *obj; 3586 enum i915_cache_level level; 3587 int ret; 3588 3589 switch (args->caching) { 3590 case I915_CACHING_NONE: 3591 level = I915_CACHE_NONE; 3592 break; 3593 case I915_CACHING_CACHED: 3594 level = I915_CACHE_LLC; 3595 break; 3596 case I915_CACHING_DISPLAY: 3597 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE; 3598 break; 3599 default: 3600 return -EINVAL; 3601 } 3602 3603 ret = i915_mutex_lock_interruptible(dev); 3604 if (ret) 3605 return ret; 3606 3607 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3608 if (&obj->base == NULL) { 3609 ret = -ENOENT; 3610 goto unlock; 3611 } 3612 3613 ret = i915_gem_object_set_cache_level(obj, level); 3614 3615 drm_gem_object_unreference(&obj->base); 3616 unlock: 3617 mutex_unlock(&dev->struct_mutex); 3618 return ret; 3619 } 3620 3621 static bool is_pin_display(struct drm_i915_gem_object *obj) 3622 { 3623 /* There are 3 sources that pin objects: 3624 * 1. The display engine (scanouts, sprites, cursors); 3625 * 2. Reservations for execbuffer; 3626 * 3. The user. 3627 * 3628 * We can ignore reservations as we hold the struct_mutex and 3629 * are only called outside of the reservation path. The user 3630 * can only increment pin_count once, and so if after 3631 * subtracting the potential reference by the user, any pin_count 3632 * remains, it must be due to another use by the display engine. 3633 */ 3634 return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count; 3635 } 3636 3637 /* 3638 * Prepare buffer for display plane (scanout, cursors, etc). 3639 * Can be called from an uninterruptible phase (modesetting) and allows 3640 * any flushes to be pipelined (for pageflips). 3641 */ 3642 int 3643 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3644 u32 alignment, 3645 struct intel_ring_buffer *pipelined) 3646 { 3647 u32 old_read_domains, old_write_domain; 3648 int ret; 3649 3650 if (pipelined != obj->ring) { 3651 ret = i915_gem_object_sync(obj, pipelined); 3652 if (ret) 3653 return ret; 3654 } 3655 3656 /* Mark the pin_display early so that we account for the 3657 * display coherency whilst setting up the cache domains. 3658 */ 3659 obj->pin_display = true; 3660 3661 /* The display engine is not coherent with the LLC cache on gen6. As 3662 * a result, we make sure that the pinning that is about to occur is 3663 * done with uncached PTEs. This is lowest common denominator for all 3664 * chipsets. 3665 * 3666 * However for gen6+, we could do better by using the GFDT bit instead 3667 * of uncaching, which would allow us to flush all the LLC-cached data 3668 * with that bit in the PTE to main memory with just one PIPE_CONTROL. 3669 */ 3670 ret = i915_gem_object_set_cache_level(obj, 3671 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE); 3672 if (ret) 3673 goto err_unpin_display; 3674 3675 /* As the user may map the buffer once pinned in the display plane 3676 * (e.g. libkms for the bootup splash), we have to ensure that we 3677 * always use map_and_fenceable for all scanout buffers. 3678 */ 3679 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE); 3680 if (ret) 3681 goto err_unpin_display; 3682 3683 i915_gem_object_flush_cpu_write_domain(obj, true); 3684 3685 old_write_domain = obj->base.write_domain; 3686 old_read_domains = obj->base.read_domains; 3687 3688 /* It should now be out of any other write domains, and we can update 3689 * the domain values for our changes. 3690 */ 3691 obj->base.write_domain = 0; 3692 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3693 3694 trace_i915_gem_object_change_domain(obj, 3695 old_read_domains, 3696 old_write_domain); 3697 3698 return 0; 3699 3700 err_unpin_display: 3701 obj->pin_display = is_pin_display(obj); 3702 return ret; 3703 } 3704 3705 void 3706 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj) 3707 { 3708 i915_gem_object_ggtt_unpin(obj); 3709 obj->pin_display = is_pin_display(obj); 3710 } 3711 3712 int 3713 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj) 3714 { 3715 int ret; 3716 3717 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0) 3718 return 0; 3719 3720 ret = i915_gem_object_wait_rendering(obj, false); 3721 if (ret) 3722 return ret; 3723 3724 /* Ensure that we invalidate the GPU's caches and TLBs. */ 3725 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; 3726 return 0; 3727 } 3728 3729 /** 3730 * Moves a single object to the CPU read, and possibly write domain. 3731 * 3732 * This function returns when the move is complete, including waiting on 3733 * flushes to occur. 3734 */ 3735 int 3736 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) 3737 { 3738 uint32_t old_write_domain, old_read_domains; 3739 int ret; 3740 3741 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) 3742 return 0; 3743 3744 ret = i915_gem_object_wait_rendering(obj, !write); 3745 if (ret) 3746 return ret; 3747 3748 i915_gem_object_flush_gtt_write_domain(obj); 3749 3750 old_write_domain = obj->base.write_domain; 3751 old_read_domains = obj->base.read_domains; 3752 3753 /* Flush the CPU cache if it's still invalid. */ 3754 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { 3755 i915_gem_clflush_object(obj, false); 3756 3757 obj->base.read_domains |= I915_GEM_DOMAIN_CPU; 3758 } 3759 3760 /* It should now be out of any other write domains, and we can update 3761 * the domain values for our changes. 3762 */ 3763 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); 3764 3765 /* If we're writing through the CPU, then the GPU read domains will 3766 * need to be invalidated at next use. 3767 */ 3768 if (write) { 3769 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3770 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3771 } 3772 3773 trace_i915_gem_object_change_domain(obj, 3774 old_read_domains, 3775 old_write_domain); 3776 3777 return 0; 3778 } 3779 3780 /* Throttle our rendering by waiting until the ring has completed our requests 3781 * emitted over 20 msec ago. 3782 * 3783 * Note that if we were to use the current jiffies each time around the loop, 3784 * we wouldn't escape the function with any frames outstanding if the time to 3785 * render a frame was over 20ms. 3786 * 3787 * This should get us reasonable parallelism between CPU and GPU but also 3788 * relatively low latency when blocking on a particular request to finish. 3789 */ 3790 static int 3791 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) 3792 { 3793 struct drm_i915_private *dev_priv = dev->dev_private; 3794 struct drm_i915_file_private *file_priv = file->driver_priv; 3795 unsigned long recent_enough = jiffies - msecs_to_jiffies(20); 3796 struct drm_i915_gem_request *request; 3797 struct intel_ring_buffer *ring = NULL; 3798 unsigned reset_counter; 3799 u32 seqno = 0; 3800 int ret; 3801 3802 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 3803 if (ret) 3804 return ret; 3805 3806 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false); 3807 if (ret) 3808 return ret; 3809 3810 spin_lock(&file_priv->mm.lock); 3811 list_for_each_entry(request, &file_priv->mm.request_list, client_list) { 3812 if (time_after_eq(request->emitted_jiffies, recent_enough)) 3813 break; 3814 3815 ring = request->ring; 3816 seqno = request->seqno; 3817 } 3818 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 3819 spin_unlock(&file_priv->mm.lock); 3820 3821 if (seqno == 0) 3822 return 0; 3823 3824 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL); 3825 if (ret == 0) 3826 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0); 3827 3828 return ret; 3829 } 3830 3831 int 3832 i915_gem_object_pin(struct drm_i915_gem_object *obj, 3833 struct i915_address_space *vm, 3834 uint32_t alignment, 3835 unsigned flags) 3836 { 3837 struct i915_vma *vma; 3838 int ret; 3839 3840 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm))) 3841 return -EINVAL; 3842 3843 vma = i915_gem_obj_to_vma(obj, vm); 3844 if (vma) { 3845 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT)) 3846 return -EBUSY; 3847 3848 if ((alignment && 3849 vma->node.start & (alignment - 1)) || 3850 (flags & PIN_MAPPABLE && !obj->map_and_fenceable)) { 3851 WARN(vma->pin_count, 3852 "bo is already pinned with incorrect alignment:" 3853 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d," 3854 " obj->map_and_fenceable=%d\n", 3855 i915_gem_obj_offset(obj, vm), alignment, 3856 flags & PIN_MAPPABLE, 3857 obj->map_and_fenceable); 3858 ret = i915_vma_unbind(vma); 3859 if (ret) 3860 return ret; 3861 3862 vma = NULL; 3863 } 3864 } 3865 3866 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) { 3867 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags); 3868 if (IS_ERR(vma)) 3869 return PTR_ERR(vma); 3870 } 3871 3872 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping) 3873 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND); 3874 3875 vma->pin_count++; 3876 if (flags & PIN_MAPPABLE) 3877 obj->pin_mappable |= true; 3878 3879 return 0; 3880 } 3881 3882 void 3883 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj) 3884 { 3885 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj); 3886 3887 BUG_ON(!vma); 3888 BUG_ON(vma->pin_count == 0); 3889 BUG_ON(!i915_gem_obj_ggtt_bound(obj)); 3890 3891 if (--vma->pin_count == 0) 3892 obj->pin_mappable = false; 3893 } 3894 3895 int 3896 i915_gem_pin_ioctl(struct drm_device *dev, void *data, 3897 struct drm_file *file) 3898 { 3899 struct drm_i915_gem_pin *args = data; 3900 struct drm_i915_gem_object *obj; 3901 int ret; 3902 3903 if (INTEL_INFO(dev)->gen >= 6) 3904 return -ENODEV; 3905 3906 ret = i915_mutex_lock_interruptible(dev); 3907 if (ret) 3908 return ret; 3909 3910 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3911 if (&obj->base == NULL) { 3912 ret = -ENOENT; 3913 goto unlock; 3914 } 3915 3916 if (obj->madv != I915_MADV_WILLNEED) { 3917 DRM_DEBUG("Attempting to pin a purgeable buffer\n"); 3918 ret = -EFAULT; 3919 goto out; 3920 } 3921 3922 if (obj->pin_filp != NULL && obj->pin_filp != file) { 3923 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n", 3924 args->handle); 3925 ret = -EINVAL; 3926 goto out; 3927 } 3928 3929 if (obj->user_pin_count == ULONG_MAX) { 3930 ret = -EBUSY; 3931 goto out; 3932 } 3933 3934 if (obj->user_pin_count == 0) { 3935 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE); 3936 if (ret) 3937 goto out; 3938 } 3939 3940 obj->user_pin_count++; 3941 obj->pin_filp = file; 3942 3943 args->offset = i915_gem_obj_ggtt_offset(obj); 3944 out: 3945 drm_gem_object_unreference(&obj->base); 3946 unlock: 3947 mutex_unlock(&dev->struct_mutex); 3948 return ret; 3949 } 3950 3951 int 3952 i915_gem_unpin_ioctl(struct drm_device *dev, void *data, 3953 struct drm_file *file) 3954 { 3955 struct drm_i915_gem_pin *args = data; 3956 struct drm_i915_gem_object *obj; 3957 int ret; 3958 3959 ret = i915_mutex_lock_interruptible(dev); 3960 if (ret) 3961 return ret; 3962 3963 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3964 if (&obj->base == NULL) { 3965 ret = -ENOENT; 3966 goto unlock; 3967 } 3968 3969 if (obj->pin_filp != file) { 3970 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n", 3971 args->handle); 3972 ret = -EINVAL; 3973 goto out; 3974 } 3975 obj->user_pin_count--; 3976 if (obj->user_pin_count == 0) { 3977 obj->pin_filp = NULL; 3978 i915_gem_object_ggtt_unpin(obj); 3979 } 3980 3981 out: 3982 drm_gem_object_unreference(&obj->base); 3983 unlock: 3984 mutex_unlock(&dev->struct_mutex); 3985 return ret; 3986 } 3987 3988 int 3989 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 3990 struct drm_file *file) 3991 { 3992 struct drm_i915_gem_busy *args = data; 3993 struct drm_i915_gem_object *obj; 3994 int ret; 3995 3996 ret = i915_mutex_lock_interruptible(dev); 3997 if (ret) 3998 return ret; 3999 4000 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 4001 if (&obj->base == NULL) { 4002 ret = -ENOENT; 4003 goto unlock; 4004 } 4005 4006 /* Count all active objects as busy, even if they are currently not used 4007 * by the gpu. Users of this interface expect objects to eventually 4008 * become non-busy without any further actions, therefore emit any 4009 * necessary flushes here. 4010 */ 4011 ret = i915_gem_object_flush_active(obj); 4012 4013 args->busy = obj->active; 4014 if (obj->ring) { 4015 BUILD_BUG_ON(I915_NUM_RINGS > 16); 4016 args->busy |= intel_ring_flag(obj->ring) << 16; 4017 } 4018 4019 drm_gem_object_unreference(&obj->base); 4020 unlock: 4021 mutex_unlock(&dev->struct_mutex); 4022 return ret; 4023 } 4024 4025 int 4026 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 4027 struct drm_file *file_priv) 4028 { 4029 return i915_gem_ring_throttle(dev, file_priv); 4030 } 4031 4032 int 4033 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 4034 struct drm_file *file_priv) 4035 { 4036 struct drm_i915_gem_madvise *args = data; 4037 struct drm_i915_gem_object *obj; 4038 int ret; 4039 4040 switch (args->madv) { 4041 case I915_MADV_DONTNEED: 4042 case I915_MADV_WILLNEED: 4043 break; 4044 default: 4045 return -EINVAL; 4046 } 4047 4048 ret = i915_mutex_lock_interruptible(dev); 4049 if (ret) 4050 return ret; 4051 4052 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle)); 4053 if (&obj->base == NULL) { 4054 ret = -ENOENT; 4055 goto unlock; 4056 } 4057 4058 if (i915_gem_obj_is_pinned(obj)) { 4059 ret = -EINVAL; 4060 goto out; 4061 } 4062 4063 if (obj->madv != __I915_MADV_PURGED) 4064 obj->madv = args->madv; 4065 4066 /* if the object is no longer attached, discard its backing storage */ 4067 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL) 4068 i915_gem_object_truncate(obj); 4069 4070 args->retained = obj->madv != __I915_MADV_PURGED; 4071 4072 out: 4073 drm_gem_object_unreference(&obj->base); 4074 unlock: 4075 mutex_unlock(&dev->struct_mutex); 4076 return ret; 4077 } 4078 4079 void i915_gem_object_init(struct drm_i915_gem_object *obj, 4080 const struct drm_i915_gem_object_ops *ops) 4081 { 4082 INIT_LIST_HEAD(&obj->global_list); 4083 INIT_LIST_HEAD(&obj->ring_list); 4084 INIT_LIST_HEAD(&obj->obj_exec_link); 4085 INIT_LIST_HEAD(&obj->vma_list); 4086 4087 obj->ops = ops; 4088 4089 obj->fence_reg = I915_FENCE_REG_NONE; 4090 obj->madv = I915_MADV_WILLNEED; 4091 /* Avoid an unnecessary call to unbind on the first bind. */ 4092 obj->map_and_fenceable = true; 4093 4094 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size); 4095 } 4096 4097 static const struct drm_i915_gem_object_ops i915_gem_object_ops = { 4098 .get_pages = i915_gem_object_get_pages_gtt, 4099 .put_pages = i915_gem_object_put_pages_gtt, 4100 }; 4101 4102 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev, 4103 size_t size) 4104 { 4105 struct drm_i915_gem_object *obj; 4106 struct address_space *mapping; 4107 gfp_t mask; 4108 4109 obj = i915_gem_object_alloc(dev); 4110 if (obj == NULL) 4111 return NULL; 4112 4113 if (drm_gem_object_init(dev, &obj->base, size) != 0) { 4114 i915_gem_object_free(obj); 4115 return NULL; 4116 } 4117 4118 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 4119 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) { 4120 /* 965gm cannot relocate objects above 4GiB. */ 4121 mask &= ~__GFP_HIGHMEM; 4122 mask |= __GFP_DMA32; 4123 } 4124 4125 mapping = file_inode(obj->base.filp)->i_mapping; 4126 mapping_set_gfp_mask(mapping, mask); 4127 4128 i915_gem_object_init(obj, &i915_gem_object_ops); 4129 4130 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 4131 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 4132 4133 if (HAS_LLC(dev)) { 4134 /* On some devices, we can have the GPU use the LLC (the CPU 4135 * cache) for about a 10% performance improvement 4136 * compared to uncached. Graphics requests other than 4137 * display scanout are coherent with the CPU in 4138 * accessing this cache. This means in this mode we 4139 * don't need to clflush on the CPU side, and on the 4140 * GPU side we only need to flush internal caches to 4141 * get data visible to the CPU. 4142 * 4143 * However, we maintain the display planes as UC, and so 4144 * need to rebind when first used as such. 4145 */ 4146 obj->cache_level = I915_CACHE_LLC; 4147 } else 4148 obj->cache_level = I915_CACHE_NONE; 4149 4150 trace_i915_gem_object_create(obj); 4151 4152 return obj; 4153 } 4154 4155 void i915_gem_free_object(struct drm_gem_object *gem_obj) 4156 { 4157 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 4158 struct drm_device *dev = obj->base.dev; 4159 struct drm_i915_private *dev_priv = dev->dev_private; 4160 struct i915_vma *vma, *next; 4161 4162 intel_runtime_pm_get(dev_priv); 4163 4164 trace_i915_gem_object_destroy(obj); 4165 4166 if (obj->phys_obj) 4167 i915_gem_detach_phys_object(dev, obj); 4168 4169 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) { 4170 int ret; 4171 4172 vma->pin_count = 0; 4173 ret = i915_vma_unbind(vma); 4174 if (WARN_ON(ret == -ERESTARTSYS)) { 4175 bool was_interruptible; 4176 4177 was_interruptible = dev_priv->mm.interruptible; 4178 dev_priv->mm.interruptible = false; 4179 4180 WARN_ON(i915_vma_unbind(vma)); 4181 4182 dev_priv->mm.interruptible = was_interruptible; 4183 } 4184 } 4185 4186 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up 4187 * before progressing. */ 4188 if (obj->stolen) 4189 i915_gem_object_unpin_pages(obj); 4190 4191 if (WARN_ON(obj->pages_pin_count)) 4192 obj->pages_pin_count = 0; 4193 i915_gem_object_put_pages(obj); 4194 i915_gem_object_free_mmap_offset(obj); 4195 i915_gem_object_release_stolen(obj); 4196 4197 BUG_ON(obj->pages); 4198 4199 if (obj->base.import_attach) 4200 drm_prime_gem_destroy(&obj->base, NULL); 4201 4202 drm_gem_object_release(&obj->base); 4203 i915_gem_info_remove_obj(dev_priv, obj->base.size); 4204 4205 kfree(obj->bit_17); 4206 i915_gem_object_free(obj); 4207 4208 intel_runtime_pm_put(dev_priv); 4209 } 4210 4211 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj, 4212 struct i915_address_space *vm) 4213 { 4214 struct i915_vma *vma; 4215 list_for_each_entry(vma, &obj->vma_list, vma_link) 4216 if (vma->vm == vm) 4217 return vma; 4218 4219 return NULL; 4220 } 4221 4222 void i915_gem_vma_destroy(struct i915_vma *vma) 4223 { 4224 WARN_ON(vma->node.allocated); 4225 4226 /* Keep the vma as a placeholder in the execbuffer reservation lists */ 4227 if (!list_empty(&vma->exec_list)) 4228 return; 4229 4230 list_del(&vma->vma_link); 4231 4232 kfree(vma); 4233 } 4234 4235 int 4236 i915_gem_suspend(struct drm_device *dev) 4237 { 4238 struct drm_i915_private *dev_priv = dev->dev_private; 4239 int ret = 0; 4240 4241 mutex_lock(&dev->struct_mutex); 4242 if (dev_priv->ums.mm_suspended) 4243 goto err; 4244 4245 ret = i915_gpu_idle(dev); 4246 if (ret) 4247 goto err; 4248 4249 i915_gem_retire_requests(dev); 4250 4251 /* Under UMS, be paranoid and evict. */ 4252 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4253 i915_gem_evict_everything(dev); 4254 4255 i915_kernel_lost_context(dev); 4256 i915_gem_cleanup_ringbuffer(dev); 4257 4258 /* Hack! Don't let anybody do execbuf while we don't control the chip. 4259 * We need to replace this with a semaphore, or something. 4260 * And not confound ums.mm_suspended! 4261 */ 4262 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev, 4263 DRIVER_MODESET); 4264 mutex_unlock(&dev->struct_mutex); 4265 4266 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer); 4267 cancel_delayed_work_sync(&dev_priv->mm.retire_work); 4268 cancel_delayed_work_sync(&dev_priv->mm.idle_work); 4269 4270 return 0; 4271 4272 err: 4273 mutex_unlock(&dev->struct_mutex); 4274 return ret; 4275 } 4276 4277 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice) 4278 { 4279 struct drm_device *dev = ring->dev; 4280 struct drm_i915_private *dev_priv = dev->dev_private; 4281 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200); 4282 u32 *remap_info = dev_priv->l3_parity.remap_info[slice]; 4283 int i, ret; 4284 4285 if (!HAS_L3_DPF(dev) || !remap_info) 4286 return 0; 4287 4288 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3); 4289 if (ret) 4290 return ret; 4291 4292 /* 4293 * Note: We do not worry about the concurrent register cacheline hang 4294 * here because no other code should access these registers other than 4295 * at initialization time. 4296 */ 4297 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) { 4298 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); 4299 intel_ring_emit(ring, reg_base + i); 4300 intel_ring_emit(ring, remap_info[i/4]); 4301 } 4302 4303 intel_ring_advance(ring); 4304 4305 return ret; 4306 } 4307 4308 void i915_gem_init_swizzling(struct drm_device *dev) 4309 { 4310 struct drm_i915_private *dev_priv = dev->dev_private; 4311 4312 if (INTEL_INFO(dev)->gen < 5 || 4313 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 4314 return; 4315 4316 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | 4317 DISP_TILE_SURFACE_SWIZZLING); 4318 4319 if (IS_GEN5(dev)) 4320 return; 4321 4322 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); 4323 if (IS_GEN6(dev)) 4324 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 4325 else if (IS_GEN7(dev)) 4326 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 4327 else if (IS_GEN8(dev)) 4328 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW)); 4329 else 4330 BUG(); 4331 } 4332 4333 static bool 4334 intel_enable_blt(struct drm_device *dev) 4335 { 4336 if (!HAS_BLT(dev)) 4337 return false; 4338 4339 /* The blitter was dysfunctional on early prototypes */ 4340 if (IS_GEN6(dev) && dev->pdev->revision < 8) { 4341 DRM_INFO("BLT not supported on this pre-production hardware;" 4342 " graphics performance will be degraded.\n"); 4343 return false; 4344 } 4345 4346 return true; 4347 } 4348 4349 static int i915_gem_init_rings(struct drm_device *dev) 4350 { 4351 struct drm_i915_private *dev_priv = dev->dev_private; 4352 int ret; 4353 4354 ret = intel_init_render_ring_buffer(dev); 4355 if (ret) 4356 return ret; 4357 4358 if (HAS_BSD(dev)) { 4359 ret = intel_init_bsd_ring_buffer(dev); 4360 if (ret) 4361 goto cleanup_render_ring; 4362 } 4363 4364 if (intel_enable_blt(dev)) { 4365 ret = intel_init_blt_ring_buffer(dev); 4366 if (ret) 4367 goto cleanup_bsd_ring; 4368 } 4369 4370 if (HAS_VEBOX(dev)) { 4371 ret = intel_init_vebox_ring_buffer(dev); 4372 if (ret) 4373 goto cleanup_blt_ring; 4374 } 4375 4376 4377 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000)); 4378 if (ret) 4379 goto cleanup_vebox_ring; 4380 4381 return 0; 4382 4383 cleanup_vebox_ring: 4384 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]); 4385 cleanup_blt_ring: 4386 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]); 4387 cleanup_bsd_ring: 4388 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]); 4389 cleanup_render_ring: 4390 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]); 4391 4392 return ret; 4393 } 4394 4395 int 4396 i915_gem_init_hw(struct drm_device *dev) 4397 { 4398 struct drm_i915_private *dev_priv = dev->dev_private; 4399 int ret, i; 4400 4401 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt()) 4402 return -EIO; 4403 4404 if (dev_priv->ellc_size) 4405 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf)); 4406 4407 if (IS_HASWELL(dev)) 4408 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ? 4409 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 4410 4411 if (HAS_PCH_NOP(dev)) { 4412 if (IS_IVYBRIDGE(dev)) { 4413 u32 temp = I915_READ(GEN7_MSG_CTL); 4414 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK); 4415 I915_WRITE(GEN7_MSG_CTL, temp); 4416 } else if (INTEL_INFO(dev)->gen >= 7) { 4417 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT); 4418 temp &= ~RESET_PCH_HANDSHAKE_ENABLE; 4419 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp); 4420 } 4421 } 4422 4423 i915_gem_init_swizzling(dev); 4424 4425 ret = i915_gem_init_rings(dev); 4426 if (ret) 4427 return ret; 4428 4429 for (i = 0; i < NUM_L3_SLICES(dev); i++) 4430 i915_gem_l3_remap(&dev_priv->ring[RCS], i); 4431 4432 /* 4433 * XXX: Contexts should only be initialized once. Doing a switch to the 4434 * default context switch however is something we'd like to do after 4435 * reset or thaw (the latter may not actually be necessary for HW, but 4436 * goes with our code better). Context switching requires rings (for 4437 * the do_switch), but before enabling PPGTT. So don't move this. 4438 */ 4439 ret = i915_gem_context_enable(dev_priv); 4440 if (ret) { 4441 DRM_ERROR("Context enable failed %d\n", ret); 4442 goto err_out; 4443 } 4444 4445 return 0; 4446 4447 err_out: 4448 i915_gem_cleanup_ringbuffer(dev); 4449 return ret; 4450 } 4451 4452 int i915_gem_init(struct drm_device *dev) 4453 { 4454 struct drm_i915_private *dev_priv = dev->dev_private; 4455 int ret; 4456 4457 mutex_lock(&dev->struct_mutex); 4458 4459 if (IS_VALLEYVIEW(dev)) { 4460 /* VLVA0 (potential hack), BIOS isn't actually waking us */ 4461 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1); 4462 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10)) 4463 DRM_DEBUG_DRIVER("allow wake ack timed out\n"); 4464 } 4465 4466 i915_gem_init_global_gtt(dev); 4467 4468 ret = i915_gem_context_init(dev); 4469 if (ret) { 4470 mutex_unlock(&dev->struct_mutex); 4471 return ret; 4472 } 4473 4474 ret = i915_gem_init_hw(dev); 4475 mutex_unlock(&dev->struct_mutex); 4476 if (ret) { 4477 WARN_ON(dev_priv->mm.aliasing_ppgtt); 4478 i915_gem_context_fini(dev); 4479 drm_mm_takedown(&dev_priv->gtt.base.mm); 4480 return ret; 4481 } 4482 4483 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */ 4484 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4485 dev_priv->dri1.allow_batchbuffer = 1; 4486 return 0; 4487 } 4488 4489 void 4490 i915_gem_cleanup_ringbuffer(struct drm_device *dev) 4491 { 4492 struct drm_i915_private *dev_priv = dev->dev_private; 4493 struct intel_ring_buffer *ring; 4494 int i; 4495 4496 for_each_ring(ring, dev_priv, i) 4497 intel_cleanup_ring_buffer(ring); 4498 } 4499 4500 int 4501 i915_gem_entervt_ioctl(struct drm_device *dev, void *data, 4502 struct drm_file *file_priv) 4503 { 4504 struct drm_i915_private *dev_priv = dev->dev_private; 4505 int ret; 4506 4507 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4508 return 0; 4509 4510 if (i915_reset_in_progress(&dev_priv->gpu_error)) { 4511 DRM_ERROR("Reenabling wedged hardware, good luck\n"); 4512 atomic_set(&dev_priv->gpu_error.reset_counter, 0); 4513 } 4514 4515 mutex_lock(&dev->struct_mutex); 4516 dev_priv->ums.mm_suspended = 0; 4517 4518 ret = i915_gem_init_hw(dev); 4519 if (ret != 0) { 4520 mutex_unlock(&dev->struct_mutex); 4521 return ret; 4522 } 4523 4524 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list)); 4525 mutex_unlock(&dev->struct_mutex); 4526 4527 ret = drm_irq_install(dev); 4528 if (ret) 4529 goto cleanup_ringbuffer; 4530 4531 return 0; 4532 4533 cleanup_ringbuffer: 4534 mutex_lock(&dev->struct_mutex); 4535 i915_gem_cleanup_ringbuffer(dev); 4536 dev_priv->ums.mm_suspended = 1; 4537 mutex_unlock(&dev->struct_mutex); 4538 4539 return ret; 4540 } 4541 4542 int 4543 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data, 4544 struct drm_file *file_priv) 4545 { 4546 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4547 return 0; 4548 4549 drm_irq_uninstall(dev); 4550 4551 return i915_gem_suspend(dev); 4552 } 4553 4554 void 4555 i915_gem_lastclose(struct drm_device *dev) 4556 { 4557 int ret; 4558 4559 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4560 return; 4561 4562 ret = i915_gem_suspend(dev); 4563 if (ret) 4564 DRM_ERROR("failed to idle hardware: %d\n", ret); 4565 } 4566 4567 static void 4568 init_ring_lists(struct intel_ring_buffer *ring) 4569 { 4570 INIT_LIST_HEAD(&ring->active_list); 4571 INIT_LIST_HEAD(&ring->request_list); 4572 } 4573 4574 void i915_init_vm(struct drm_i915_private *dev_priv, 4575 struct i915_address_space *vm) 4576 { 4577 if (!i915_is_ggtt(vm)) 4578 drm_mm_init(&vm->mm, vm->start, vm->total); 4579 vm->dev = dev_priv->dev; 4580 INIT_LIST_HEAD(&vm->active_list); 4581 INIT_LIST_HEAD(&vm->inactive_list); 4582 INIT_LIST_HEAD(&vm->global_link); 4583 list_add_tail(&vm->global_link, &dev_priv->vm_list); 4584 } 4585 4586 void 4587 i915_gem_load(struct drm_device *dev) 4588 { 4589 struct drm_i915_private *dev_priv = dev->dev_private; 4590 int i; 4591 4592 dev_priv->slab = 4593 kmem_cache_create("i915_gem_object", 4594 sizeof(struct drm_i915_gem_object), 0, 4595 SLAB_HWCACHE_ALIGN, 4596 NULL); 4597 4598 INIT_LIST_HEAD(&dev_priv->vm_list); 4599 i915_init_vm(dev_priv, &dev_priv->gtt.base); 4600 4601 INIT_LIST_HEAD(&dev_priv->context_list); 4602 INIT_LIST_HEAD(&dev_priv->mm.unbound_list); 4603 INIT_LIST_HEAD(&dev_priv->mm.bound_list); 4604 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4605 for (i = 0; i < I915_NUM_RINGS; i++) 4606 init_ring_lists(&dev_priv->ring[i]); 4607 for (i = 0; i < I915_MAX_NUM_FENCES; i++) 4608 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list); 4609 INIT_DELAYED_WORK(&dev_priv->mm.retire_work, 4610 i915_gem_retire_work_handler); 4611 INIT_DELAYED_WORK(&dev_priv->mm.idle_work, 4612 i915_gem_idle_work_handler); 4613 init_waitqueue_head(&dev_priv->gpu_error.reset_queue); 4614 4615 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ 4616 if (IS_GEN3(dev)) { 4617 I915_WRITE(MI_ARB_STATE, 4618 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE)); 4619 } 4620 4621 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL; 4622 4623 /* Old X drivers will take 0-2 for front, back, depth buffers */ 4624 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4625 dev_priv->fence_reg_start = 3; 4626 4627 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev)) 4628 dev_priv->num_fence_regs = 32; 4629 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) 4630 dev_priv->num_fence_regs = 16; 4631 else 4632 dev_priv->num_fence_regs = 8; 4633 4634 /* Initialize fence registers to zero */ 4635 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4636 i915_gem_restore_fences(dev); 4637 4638 i915_gem_detect_bit_6_swizzle(dev); 4639 init_waitqueue_head(&dev_priv->pending_flip_queue); 4640 4641 dev_priv->mm.interruptible = true; 4642 4643 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan; 4644 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count; 4645 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS; 4646 register_shrinker(&dev_priv->mm.inactive_shrinker); 4647 } 4648 4649 /* 4650 * Create a physically contiguous memory object for this object 4651 * e.g. for cursor + overlay regs 4652 */ 4653 static int i915_gem_init_phys_object(struct drm_device *dev, 4654 int id, int size, int align) 4655 { 4656 struct drm_i915_private *dev_priv = dev->dev_private; 4657 struct drm_i915_gem_phys_object *phys_obj; 4658 int ret; 4659 4660 if (dev_priv->mm.phys_objs[id - 1] || !size) 4661 return 0; 4662 4663 phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL); 4664 if (!phys_obj) 4665 return -ENOMEM; 4666 4667 phys_obj->id = id; 4668 4669 phys_obj->handle = drm_pci_alloc(dev, size, align); 4670 if (!phys_obj->handle) { 4671 ret = -ENOMEM; 4672 goto kfree_obj; 4673 } 4674 #ifdef CONFIG_X86 4675 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); 4676 #endif 4677 4678 dev_priv->mm.phys_objs[id - 1] = phys_obj; 4679 4680 return 0; 4681 kfree_obj: 4682 kfree(phys_obj); 4683 return ret; 4684 } 4685 4686 static void i915_gem_free_phys_object(struct drm_device *dev, int id) 4687 { 4688 struct drm_i915_private *dev_priv = dev->dev_private; 4689 struct drm_i915_gem_phys_object *phys_obj; 4690 4691 if (!dev_priv->mm.phys_objs[id - 1]) 4692 return; 4693 4694 phys_obj = dev_priv->mm.phys_objs[id - 1]; 4695 if (phys_obj->cur_obj) { 4696 i915_gem_detach_phys_object(dev, phys_obj->cur_obj); 4697 } 4698 4699 #ifdef CONFIG_X86 4700 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); 4701 #endif 4702 drm_pci_free(dev, phys_obj->handle); 4703 kfree(phys_obj); 4704 dev_priv->mm.phys_objs[id - 1] = NULL; 4705 } 4706 4707 void i915_gem_free_all_phys_object(struct drm_device *dev) 4708 { 4709 int i; 4710 4711 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++) 4712 i915_gem_free_phys_object(dev, i); 4713 } 4714 4715 void i915_gem_detach_phys_object(struct drm_device *dev, 4716 struct drm_i915_gem_object *obj) 4717 { 4718 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping; 4719 char *vaddr; 4720 int i; 4721 int page_count; 4722 4723 if (!obj->phys_obj) 4724 return; 4725 vaddr = obj->phys_obj->handle->vaddr; 4726 4727 page_count = obj->base.size / PAGE_SIZE; 4728 for (i = 0; i < page_count; i++) { 4729 struct page *page = shmem_read_mapping_page(mapping, i); 4730 if (!IS_ERR(page)) { 4731 char *dst = kmap_atomic(page); 4732 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE); 4733 kunmap_atomic(dst); 4734 4735 drm_clflush_pages(&page, 1); 4736 4737 set_page_dirty(page); 4738 mark_page_accessed(page); 4739 page_cache_release(page); 4740 } 4741 } 4742 i915_gem_chipset_flush(dev); 4743 4744 obj->phys_obj->cur_obj = NULL; 4745 obj->phys_obj = NULL; 4746 } 4747 4748 int 4749 i915_gem_attach_phys_object(struct drm_device *dev, 4750 struct drm_i915_gem_object *obj, 4751 int id, 4752 int align) 4753 { 4754 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping; 4755 struct drm_i915_private *dev_priv = dev->dev_private; 4756 int ret = 0; 4757 int page_count; 4758 int i; 4759 4760 if (id > I915_MAX_PHYS_OBJECT) 4761 return -EINVAL; 4762 4763 if (obj->phys_obj) { 4764 if (obj->phys_obj->id == id) 4765 return 0; 4766 i915_gem_detach_phys_object(dev, obj); 4767 } 4768 4769 /* create a new object */ 4770 if (!dev_priv->mm.phys_objs[id - 1]) { 4771 ret = i915_gem_init_phys_object(dev, id, 4772 obj->base.size, align); 4773 if (ret) { 4774 DRM_ERROR("failed to init phys object %d size: %zu\n", 4775 id, obj->base.size); 4776 return ret; 4777 } 4778 } 4779 4780 /* bind to the object */ 4781 obj->phys_obj = dev_priv->mm.phys_objs[id - 1]; 4782 obj->phys_obj->cur_obj = obj; 4783 4784 page_count = obj->base.size / PAGE_SIZE; 4785 4786 for (i = 0; i < page_count; i++) { 4787 struct page *page; 4788 char *dst, *src; 4789 4790 page = shmem_read_mapping_page(mapping, i); 4791 if (IS_ERR(page)) 4792 return PTR_ERR(page); 4793 4794 src = kmap_atomic(page); 4795 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE); 4796 memcpy(dst, src, PAGE_SIZE); 4797 kunmap_atomic(src); 4798 4799 mark_page_accessed(page); 4800 page_cache_release(page); 4801 } 4802 4803 return 0; 4804 } 4805 4806 static int 4807 i915_gem_phys_pwrite(struct drm_device *dev, 4808 struct drm_i915_gem_object *obj, 4809 struct drm_i915_gem_pwrite *args, 4810 struct drm_file *file_priv) 4811 { 4812 void *vaddr = obj->phys_obj->handle->vaddr + args->offset; 4813 char __user *user_data = to_user_ptr(args->data_ptr); 4814 4815 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) { 4816 unsigned long unwritten; 4817 4818 /* The physical object once assigned is fixed for the lifetime 4819 * of the obj, so we can safely drop the lock and continue 4820 * to access vaddr. 4821 */ 4822 mutex_unlock(&dev->struct_mutex); 4823 unwritten = copy_from_user(vaddr, user_data, args->size); 4824 mutex_lock(&dev->struct_mutex); 4825 if (unwritten) 4826 return -EFAULT; 4827 } 4828 4829 i915_gem_chipset_flush(dev); 4830 return 0; 4831 } 4832 4833 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 4834 { 4835 struct drm_i915_file_private *file_priv = file->driver_priv; 4836 4837 cancel_delayed_work_sync(&file_priv->mm.idle_work); 4838 4839 /* Clean up our request list when the client is going away, so that 4840 * later retire_requests won't dereference our soon-to-be-gone 4841 * file_priv. 4842 */ 4843 spin_lock(&file_priv->mm.lock); 4844 while (!list_empty(&file_priv->mm.request_list)) { 4845 struct drm_i915_gem_request *request; 4846 4847 request = list_first_entry(&file_priv->mm.request_list, 4848 struct drm_i915_gem_request, 4849 client_list); 4850 list_del(&request->client_list); 4851 request->file_priv = NULL; 4852 } 4853 spin_unlock(&file_priv->mm.lock); 4854 } 4855 4856 static void 4857 i915_gem_file_idle_work_handler(struct work_struct *work) 4858 { 4859 struct drm_i915_file_private *file_priv = 4860 container_of(work, typeof(*file_priv), mm.idle_work.work); 4861 4862 atomic_set(&file_priv->rps_wait_boost, false); 4863 } 4864 4865 int i915_gem_open(struct drm_device *dev, struct drm_file *file) 4866 { 4867 struct drm_i915_file_private *file_priv; 4868 int ret; 4869 4870 DRM_DEBUG_DRIVER("\n"); 4871 4872 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); 4873 if (!file_priv) 4874 return -ENOMEM; 4875 4876 file->driver_priv = file_priv; 4877 file_priv->dev_priv = dev->dev_private; 4878 file_priv->file = file; 4879 4880 spin_lock_init(&file_priv->mm.lock); 4881 INIT_LIST_HEAD(&file_priv->mm.request_list); 4882 INIT_DELAYED_WORK(&file_priv->mm.idle_work, 4883 i915_gem_file_idle_work_handler); 4884 4885 ret = i915_gem_context_open(dev, file); 4886 if (ret) 4887 kfree(file_priv); 4888 4889 return ret; 4890 } 4891 4892 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task) 4893 { 4894 if (!mutex_is_locked(mutex)) 4895 return false; 4896 4897 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES) 4898 return mutex->owner == task; 4899 #else 4900 /* Since UP may be pre-empted, we cannot assume that we own the lock */ 4901 return false; 4902 #endif 4903 } 4904 4905 static unsigned long 4906 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc) 4907 { 4908 struct drm_i915_private *dev_priv = 4909 container_of(shrinker, 4910 struct drm_i915_private, 4911 mm.inactive_shrinker); 4912 struct drm_device *dev = dev_priv->dev; 4913 struct drm_i915_gem_object *obj; 4914 bool unlock = true; 4915 unsigned long count; 4916 4917 if (!mutex_trylock(&dev->struct_mutex)) { 4918 if (!mutex_is_locked_by(&dev->struct_mutex, current)) 4919 return 0; 4920 4921 if (dev_priv->mm.shrinker_no_lock_stealing) 4922 return 0; 4923 4924 unlock = false; 4925 } 4926 4927 count = 0; 4928 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) 4929 if (obj->pages_pin_count == 0) 4930 count += obj->base.size >> PAGE_SHIFT; 4931 4932 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { 4933 if (obj->active) 4934 continue; 4935 4936 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0) 4937 count += obj->base.size >> PAGE_SHIFT; 4938 } 4939 4940 if (unlock) 4941 mutex_unlock(&dev->struct_mutex); 4942 4943 return count; 4944 } 4945 4946 /* All the new VM stuff */ 4947 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o, 4948 struct i915_address_space *vm) 4949 { 4950 struct drm_i915_private *dev_priv = o->base.dev->dev_private; 4951 struct i915_vma *vma; 4952 4953 if (!dev_priv->mm.aliasing_ppgtt || 4954 vm == &dev_priv->mm.aliasing_ppgtt->base) 4955 vm = &dev_priv->gtt.base; 4956 4957 BUG_ON(list_empty(&o->vma_list)); 4958 list_for_each_entry(vma, &o->vma_list, vma_link) { 4959 if (vma->vm == vm) 4960 return vma->node.start; 4961 4962 } 4963 return -1; 4964 } 4965 4966 bool i915_gem_obj_bound(struct drm_i915_gem_object *o, 4967 struct i915_address_space *vm) 4968 { 4969 struct i915_vma *vma; 4970 4971 list_for_each_entry(vma, &o->vma_list, vma_link) 4972 if (vma->vm == vm && drm_mm_node_allocated(&vma->node)) 4973 return true; 4974 4975 return false; 4976 } 4977 4978 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o) 4979 { 4980 struct i915_vma *vma; 4981 4982 list_for_each_entry(vma, &o->vma_list, vma_link) 4983 if (drm_mm_node_allocated(&vma->node)) 4984 return true; 4985 4986 return false; 4987 } 4988 4989 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o, 4990 struct i915_address_space *vm) 4991 { 4992 struct drm_i915_private *dev_priv = o->base.dev->dev_private; 4993 struct i915_vma *vma; 4994 4995 if (!dev_priv->mm.aliasing_ppgtt || 4996 vm == &dev_priv->mm.aliasing_ppgtt->base) 4997 vm = &dev_priv->gtt.base; 4998 4999 BUG_ON(list_empty(&o->vma_list)); 5000 5001 list_for_each_entry(vma, &o->vma_list, vma_link) 5002 if (vma->vm == vm) 5003 return vma->node.size; 5004 5005 return 0; 5006 } 5007 5008 static unsigned long 5009 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc) 5010 { 5011 struct drm_i915_private *dev_priv = 5012 container_of(shrinker, 5013 struct drm_i915_private, 5014 mm.inactive_shrinker); 5015 struct drm_device *dev = dev_priv->dev; 5016 unsigned long freed; 5017 bool unlock = true; 5018 5019 if (!mutex_trylock(&dev->struct_mutex)) { 5020 if (!mutex_is_locked_by(&dev->struct_mutex, current)) 5021 return SHRINK_STOP; 5022 5023 if (dev_priv->mm.shrinker_no_lock_stealing) 5024 return SHRINK_STOP; 5025 5026 unlock = false; 5027 } 5028 5029 freed = i915_gem_purge(dev_priv, sc->nr_to_scan); 5030 if (freed < sc->nr_to_scan) 5031 freed += __i915_gem_shrink(dev_priv, 5032 sc->nr_to_scan - freed, 5033 false); 5034 if (freed < sc->nr_to_scan) 5035 freed += i915_gem_shrink_all(dev_priv); 5036 5037 if (unlock) 5038 mutex_unlock(&dev->struct_mutex); 5039 5040 return freed; 5041 } 5042 5043 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj) 5044 { 5045 struct i915_vma *vma; 5046 5047 if (WARN_ON(list_empty(&obj->vma_list))) 5048 return NULL; 5049 5050 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link); 5051 if (vma->vm != obj_to_ggtt(obj)) 5052 return NULL; 5053 5054 return vma; 5055 } 5056