xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision b296a6d5)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drm_vma_manager.h>
29 #include <linux/dma-fence-array.h>
30 #include <linux/kthread.h>
31 #include <linux/dma-resv.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/slab.h>
34 #include <linux/stop_machine.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38 #include <linux/mman.h>
39 
40 #include "display/intel_display.h"
41 #include "display/intel_frontbuffer.h"
42 
43 #include "gem/i915_gem_clflush.h"
44 #include "gem/i915_gem_context.h"
45 #include "gem/i915_gem_ioctls.h"
46 #include "gem/i915_gem_mman.h"
47 #include "gem/i915_gem_region.h"
48 #include "gt/intel_engine_user.h"
49 #include "gt/intel_gt.h"
50 #include "gt/intel_gt_pm.h"
51 #include "gt/intel_workarounds.h"
52 
53 #include "i915_drv.h"
54 #include "i915_trace.h"
55 #include "i915_vgpu.h"
56 
57 #include "intel_pm.h"
58 
59 static int
60 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
61 {
62 	int err;
63 
64 	err = mutex_lock_interruptible(&ggtt->vm.mutex);
65 	if (err)
66 		return err;
67 
68 	memset(node, 0, sizeof(*node));
69 	err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
70 					  size, 0, I915_COLOR_UNEVICTABLE,
71 					  0, ggtt->mappable_end,
72 					  DRM_MM_INSERT_LOW);
73 
74 	mutex_unlock(&ggtt->vm.mutex);
75 
76 	return err;
77 }
78 
79 static void
80 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
81 {
82 	mutex_lock(&ggtt->vm.mutex);
83 	drm_mm_remove_node(node);
84 	mutex_unlock(&ggtt->vm.mutex);
85 }
86 
87 int
88 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
89 			    struct drm_file *file)
90 {
91 	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
92 	struct drm_i915_gem_get_aperture *args = data;
93 	struct i915_vma *vma;
94 	u64 pinned;
95 
96 	if (mutex_lock_interruptible(&ggtt->vm.mutex))
97 		return -EINTR;
98 
99 	pinned = ggtt->vm.reserved;
100 	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
101 		if (i915_vma_is_pinned(vma))
102 			pinned += vma->node.size;
103 
104 	mutex_unlock(&ggtt->vm.mutex);
105 
106 	args->aper_size = ggtt->vm.total;
107 	args->aper_available_size = args->aper_size - pinned;
108 
109 	return 0;
110 }
111 
112 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
113 			   unsigned long flags)
114 {
115 	struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
116 	LIST_HEAD(still_in_list);
117 	intel_wakeref_t wakeref;
118 	struct i915_vma *vma;
119 	int ret;
120 
121 	if (list_empty(&obj->vma.list))
122 		return 0;
123 
124 	/*
125 	 * As some machines use ACPI to handle runtime-resume callbacks, and
126 	 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
127 	 * as they are required by the shrinker. Ergo, we wake the device up
128 	 * first just in case.
129 	 */
130 	wakeref = intel_runtime_pm_get(rpm);
131 
132 try_again:
133 	ret = 0;
134 	spin_lock(&obj->vma.lock);
135 	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
136 						       struct i915_vma,
137 						       obj_link))) {
138 		struct i915_address_space *vm = vma->vm;
139 
140 		list_move_tail(&vma->obj_link, &still_in_list);
141 		if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
142 			continue;
143 
144 		if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
145 			ret = -EBUSY;
146 			break;
147 		}
148 
149 		ret = -EAGAIN;
150 		if (!i915_vm_tryopen(vm))
151 			break;
152 
153 		/* Prevent vma being freed by i915_vma_parked as we unbind */
154 		vma = __i915_vma_get(vma);
155 		spin_unlock(&obj->vma.lock);
156 
157 		if (vma) {
158 			ret = -EBUSY;
159 			if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
160 			    !i915_vma_is_active(vma))
161 				ret = i915_vma_unbind(vma);
162 
163 			__i915_vma_put(vma);
164 		}
165 
166 		i915_vm_close(vm);
167 		spin_lock(&obj->vma.lock);
168 	}
169 	list_splice_init(&still_in_list, &obj->vma.list);
170 	spin_unlock(&obj->vma.lock);
171 
172 	if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
173 		rcu_barrier(); /* flush the i915_vm_release() */
174 		goto try_again;
175 	}
176 
177 	intel_runtime_pm_put(rpm, wakeref);
178 
179 	return ret;
180 }
181 
182 static int
183 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
184 		     struct drm_i915_gem_pwrite *args,
185 		     struct drm_file *file)
186 {
187 	void *vaddr = sg_page(obj->mm.pages->sgl) + args->offset;
188 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
189 
190 	/*
191 	 * We manually control the domain here and pretend that it
192 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
193 	 */
194 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
195 
196 	if (copy_from_user(vaddr, user_data, args->size))
197 		return -EFAULT;
198 
199 	drm_clflush_virt_range(vaddr, args->size);
200 	intel_gt_chipset_flush(&to_i915(obj->base.dev)->gt);
201 
202 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
203 	return 0;
204 }
205 
206 static int
207 i915_gem_create(struct drm_file *file,
208 		struct intel_memory_region *mr,
209 		u64 *size_p,
210 		u32 *handle_p)
211 {
212 	struct drm_i915_gem_object *obj;
213 	u32 handle;
214 	u64 size;
215 	int ret;
216 
217 	GEM_BUG_ON(!is_power_of_2(mr->min_page_size));
218 	size = round_up(*size_p, mr->min_page_size);
219 	if (size == 0)
220 		return -EINVAL;
221 
222 	/* For most of the ABI (e.g. mmap) we think in system pages */
223 	GEM_BUG_ON(!IS_ALIGNED(size, PAGE_SIZE));
224 
225 	/* Allocate the new object */
226 	obj = i915_gem_object_create_region(mr, size, 0);
227 	if (IS_ERR(obj))
228 		return PTR_ERR(obj);
229 
230 	ret = drm_gem_handle_create(file, &obj->base, &handle);
231 	/* drop reference from allocate - handle holds it now */
232 	i915_gem_object_put(obj);
233 	if (ret)
234 		return ret;
235 
236 	*handle_p = handle;
237 	*size_p = size;
238 	return 0;
239 }
240 
241 int
242 i915_gem_dumb_create(struct drm_file *file,
243 		     struct drm_device *dev,
244 		     struct drm_mode_create_dumb *args)
245 {
246 	enum intel_memory_type mem_type;
247 	int cpp = DIV_ROUND_UP(args->bpp, 8);
248 	u32 format;
249 
250 	switch (cpp) {
251 	case 1:
252 		format = DRM_FORMAT_C8;
253 		break;
254 	case 2:
255 		format = DRM_FORMAT_RGB565;
256 		break;
257 	case 4:
258 		format = DRM_FORMAT_XRGB8888;
259 		break;
260 	default:
261 		return -EINVAL;
262 	}
263 
264 	/* have to work out size/pitch and return them */
265 	args->pitch = ALIGN(args->width * cpp, 64);
266 
267 	/* align stride to page size so that we can remap */
268 	if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
269 						    DRM_FORMAT_MOD_LINEAR))
270 		args->pitch = ALIGN(args->pitch, 4096);
271 
272 	if (args->pitch < args->width)
273 		return -EINVAL;
274 
275 	args->size = mul_u32_u32(args->pitch, args->height);
276 
277 	mem_type = INTEL_MEMORY_SYSTEM;
278 	if (HAS_LMEM(to_i915(dev)))
279 		mem_type = INTEL_MEMORY_LOCAL;
280 
281 	return i915_gem_create(file,
282 			       intel_memory_region_by_type(to_i915(dev),
283 							   mem_type),
284 			       &args->size, &args->handle);
285 }
286 
287 /**
288  * Creates a new mm object and returns a handle to it.
289  * @dev: drm device pointer
290  * @data: ioctl data blob
291  * @file: drm file pointer
292  */
293 int
294 i915_gem_create_ioctl(struct drm_device *dev, void *data,
295 		      struct drm_file *file)
296 {
297 	struct drm_i915_private *i915 = to_i915(dev);
298 	struct drm_i915_gem_create *args = data;
299 
300 	i915_gem_flush_free_objects(i915);
301 
302 	return i915_gem_create(file,
303 			       intel_memory_region_by_type(i915,
304 							   INTEL_MEMORY_SYSTEM),
305 			       &args->size, &args->handle);
306 }
307 
308 static int
309 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
310 	    bool needs_clflush)
311 {
312 	char *vaddr;
313 	int ret;
314 
315 	vaddr = kmap(page);
316 
317 	if (needs_clflush)
318 		drm_clflush_virt_range(vaddr + offset, len);
319 
320 	ret = __copy_to_user(user_data, vaddr + offset, len);
321 
322 	kunmap(page);
323 
324 	return ret ? -EFAULT : 0;
325 }
326 
327 static int
328 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
329 		     struct drm_i915_gem_pread *args)
330 {
331 	unsigned int needs_clflush;
332 	unsigned int idx, offset;
333 	struct dma_fence *fence;
334 	char __user *user_data;
335 	u64 remain;
336 	int ret;
337 
338 	ret = i915_gem_object_lock_interruptible(obj, NULL);
339 	if (ret)
340 		return ret;
341 
342 	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
343 	if (ret) {
344 		i915_gem_object_unlock(obj);
345 		return ret;
346 	}
347 
348 	fence = i915_gem_object_lock_fence(obj);
349 	i915_gem_object_finish_access(obj);
350 	i915_gem_object_unlock(obj);
351 
352 	if (!fence)
353 		return -ENOMEM;
354 
355 	remain = args->size;
356 	user_data = u64_to_user_ptr(args->data_ptr);
357 	offset = offset_in_page(args->offset);
358 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
359 		struct page *page = i915_gem_object_get_page(obj, idx);
360 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
361 
362 		ret = shmem_pread(page, offset, length, user_data,
363 				  needs_clflush);
364 		if (ret)
365 			break;
366 
367 		remain -= length;
368 		user_data += length;
369 		offset = 0;
370 	}
371 
372 	i915_gem_object_unlock_fence(obj, fence);
373 	return ret;
374 }
375 
376 static inline bool
377 gtt_user_read(struct io_mapping *mapping,
378 	      loff_t base, int offset,
379 	      char __user *user_data, int length)
380 {
381 	void __iomem *vaddr;
382 	unsigned long unwritten;
383 
384 	/* We can use the cpu mem copy function because this is X86. */
385 	vaddr = io_mapping_map_atomic_wc(mapping, base);
386 	unwritten = __copy_to_user_inatomic(user_data,
387 					    (void __force *)vaddr + offset,
388 					    length);
389 	io_mapping_unmap_atomic(vaddr);
390 	if (unwritten) {
391 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
392 		unwritten = copy_to_user(user_data,
393 					 (void __force *)vaddr + offset,
394 					 length);
395 		io_mapping_unmap(vaddr);
396 	}
397 	return unwritten;
398 }
399 
400 static int
401 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
402 		   const struct drm_i915_gem_pread *args)
403 {
404 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
405 	struct i915_ggtt *ggtt = &i915->ggtt;
406 	intel_wakeref_t wakeref;
407 	struct drm_mm_node node;
408 	struct dma_fence *fence;
409 	void __user *user_data;
410 	struct i915_vma *vma;
411 	u64 remain, offset;
412 	int ret;
413 
414 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
415 	vma = ERR_PTR(-ENODEV);
416 	if (!i915_gem_object_is_tiled(obj))
417 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
418 					       PIN_MAPPABLE |
419 					       PIN_NONBLOCK /* NOWARN */ |
420 					       PIN_NOEVICT);
421 	if (!IS_ERR(vma)) {
422 		node.start = i915_ggtt_offset(vma);
423 		node.flags = 0;
424 	} else {
425 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
426 		if (ret)
427 			goto out_rpm;
428 		GEM_BUG_ON(!drm_mm_node_allocated(&node));
429 	}
430 
431 	ret = i915_gem_object_lock_interruptible(obj, NULL);
432 	if (ret)
433 		goto out_unpin;
434 
435 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
436 	if (ret) {
437 		i915_gem_object_unlock(obj);
438 		goto out_unpin;
439 	}
440 
441 	fence = i915_gem_object_lock_fence(obj);
442 	i915_gem_object_unlock(obj);
443 	if (!fence) {
444 		ret = -ENOMEM;
445 		goto out_unpin;
446 	}
447 
448 	user_data = u64_to_user_ptr(args->data_ptr);
449 	remain = args->size;
450 	offset = args->offset;
451 
452 	while (remain > 0) {
453 		/* Operation in this page
454 		 *
455 		 * page_base = page offset within aperture
456 		 * page_offset = offset within page
457 		 * page_length = bytes to copy for this page
458 		 */
459 		u32 page_base = node.start;
460 		unsigned page_offset = offset_in_page(offset);
461 		unsigned page_length = PAGE_SIZE - page_offset;
462 		page_length = remain < page_length ? remain : page_length;
463 		if (drm_mm_node_allocated(&node)) {
464 			ggtt->vm.insert_page(&ggtt->vm,
465 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
466 					     node.start, I915_CACHE_NONE, 0);
467 		} else {
468 			page_base += offset & PAGE_MASK;
469 		}
470 
471 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
472 				  user_data, page_length)) {
473 			ret = -EFAULT;
474 			break;
475 		}
476 
477 		remain -= page_length;
478 		user_data += page_length;
479 		offset += page_length;
480 	}
481 
482 	i915_gem_object_unlock_fence(obj, fence);
483 out_unpin:
484 	if (drm_mm_node_allocated(&node)) {
485 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
486 		remove_mappable_node(ggtt, &node);
487 	} else {
488 		i915_vma_unpin(vma);
489 	}
490 out_rpm:
491 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
492 	return ret;
493 }
494 
495 /**
496  * Reads data from the object referenced by handle.
497  * @dev: drm device pointer
498  * @data: ioctl data blob
499  * @file: drm file pointer
500  *
501  * On error, the contents of *data are undefined.
502  */
503 int
504 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
505 		     struct drm_file *file)
506 {
507 	struct drm_i915_gem_pread *args = data;
508 	struct drm_i915_gem_object *obj;
509 	int ret;
510 
511 	if (args->size == 0)
512 		return 0;
513 
514 	if (!access_ok(u64_to_user_ptr(args->data_ptr),
515 		       args->size))
516 		return -EFAULT;
517 
518 	obj = i915_gem_object_lookup(file, args->handle);
519 	if (!obj)
520 		return -ENOENT;
521 
522 	/* Bounds check source.  */
523 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
524 		ret = -EINVAL;
525 		goto out;
526 	}
527 
528 	trace_i915_gem_object_pread(obj, args->offset, args->size);
529 
530 	ret = i915_gem_object_wait(obj,
531 				   I915_WAIT_INTERRUPTIBLE,
532 				   MAX_SCHEDULE_TIMEOUT);
533 	if (ret)
534 		goto out;
535 
536 	ret = i915_gem_object_pin_pages(obj);
537 	if (ret)
538 		goto out;
539 
540 	ret = i915_gem_shmem_pread(obj, args);
541 	if (ret == -EFAULT || ret == -ENODEV)
542 		ret = i915_gem_gtt_pread(obj, args);
543 
544 	i915_gem_object_unpin_pages(obj);
545 out:
546 	i915_gem_object_put(obj);
547 	return ret;
548 }
549 
550 /* This is the fast write path which cannot handle
551  * page faults in the source data
552  */
553 
554 static inline bool
555 ggtt_write(struct io_mapping *mapping,
556 	   loff_t base, int offset,
557 	   char __user *user_data, int length)
558 {
559 	void __iomem *vaddr;
560 	unsigned long unwritten;
561 
562 	/* We can use the cpu mem copy function because this is X86. */
563 	vaddr = io_mapping_map_atomic_wc(mapping, base);
564 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
565 						      user_data, length);
566 	io_mapping_unmap_atomic(vaddr);
567 	if (unwritten) {
568 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
569 		unwritten = copy_from_user((void __force *)vaddr + offset,
570 					   user_data, length);
571 		io_mapping_unmap(vaddr);
572 	}
573 
574 	return unwritten;
575 }
576 
577 /**
578  * This is the fast pwrite path, where we copy the data directly from the
579  * user into the GTT, uncached.
580  * @obj: i915 GEM object
581  * @args: pwrite arguments structure
582  */
583 static int
584 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
585 			 const struct drm_i915_gem_pwrite *args)
586 {
587 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
588 	struct i915_ggtt *ggtt = &i915->ggtt;
589 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
590 	intel_wakeref_t wakeref;
591 	struct drm_mm_node node;
592 	struct dma_fence *fence;
593 	struct i915_vma *vma;
594 	u64 remain, offset;
595 	void __user *user_data;
596 	int ret;
597 
598 	if (i915_gem_object_has_struct_page(obj)) {
599 		/*
600 		 * Avoid waking the device up if we can fallback, as
601 		 * waking/resuming is very slow (worst-case 10-100 ms
602 		 * depending on PCI sleeps and our own resume time).
603 		 * This easily dwarfs any performance advantage from
604 		 * using the cache bypass of indirect GGTT access.
605 		 */
606 		wakeref = intel_runtime_pm_get_if_in_use(rpm);
607 		if (!wakeref)
608 			return -EFAULT;
609 	} else {
610 		/* No backing pages, no fallback, we must force GGTT access */
611 		wakeref = intel_runtime_pm_get(rpm);
612 	}
613 
614 	vma = ERR_PTR(-ENODEV);
615 	if (!i915_gem_object_is_tiled(obj))
616 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
617 					       PIN_MAPPABLE |
618 					       PIN_NONBLOCK /* NOWARN */ |
619 					       PIN_NOEVICT);
620 	if (!IS_ERR(vma)) {
621 		node.start = i915_ggtt_offset(vma);
622 		node.flags = 0;
623 	} else {
624 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
625 		if (ret)
626 			goto out_rpm;
627 		GEM_BUG_ON(!drm_mm_node_allocated(&node));
628 	}
629 
630 	ret = i915_gem_object_lock_interruptible(obj, NULL);
631 	if (ret)
632 		goto out_unpin;
633 
634 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
635 	if (ret) {
636 		i915_gem_object_unlock(obj);
637 		goto out_unpin;
638 	}
639 
640 	fence = i915_gem_object_lock_fence(obj);
641 	i915_gem_object_unlock(obj);
642 	if (!fence) {
643 		ret = -ENOMEM;
644 		goto out_unpin;
645 	}
646 
647 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
648 
649 	user_data = u64_to_user_ptr(args->data_ptr);
650 	offset = args->offset;
651 	remain = args->size;
652 	while (remain) {
653 		/* Operation in this page
654 		 *
655 		 * page_base = page offset within aperture
656 		 * page_offset = offset within page
657 		 * page_length = bytes to copy for this page
658 		 */
659 		u32 page_base = node.start;
660 		unsigned int page_offset = offset_in_page(offset);
661 		unsigned int page_length = PAGE_SIZE - page_offset;
662 		page_length = remain < page_length ? remain : page_length;
663 		if (drm_mm_node_allocated(&node)) {
664 			/* flush the write before we modify the GGTT */
665 			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
666 			ggtt->vm.insert_page(&ggtt->vm,
667 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
668 					     node.start, I915_CACHE_NONE, 0);
669 			wmb(); /* flush modifications to the GGTT (insert_page) */
670 		} else {
671 			page_base += offset & PAGE_MASK;
672 		}
673 		/* If we get a fault while copying data, then (presumably) our
674 		 * source page isn't available.  Return the error and we'll
675 		 * retry in the slow path.
676 		 * If the object is non-shmem backed, we retry again with the
677 		 * path that handles page fault.
678 		 */
679 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
680 			       user_data, page_length)) {
681 			ret = -EFAULT;
682 			break;
683 		}
684 
685 		remain -= page_length;
686 		user_data += page_length;
687 		offset += page_length;
688 	}
689 
690 	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
691 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
692 
693 	i915_gem_object_unlock_fence(obj, fence);
694 out_unpin:
695 	if (drm_mm_node_allocated(&node)) {
696 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
697 		remove_mappable_node(ggtt, &node);
698 	} else {
699 		i915_vma_unpin(vma);
700 	}
701 out_rpm:
702 	intel_runtime_pm_put(rpm, wakeref);
703 	return ret;
704 }
705 
706 /* Per-page copy function for the shmem pwrite fastpath.
707  * Flushes invalid cachelines before writing to the target if
708  * needs_clflush_before is set and flushes out any written cachelines after
709  * writing if needs_clflush is set.
710  */
711 static int
712 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
713 	     bool needs_clflush_before,
714 	     bool needs_clflush_after)
715 {
716 	char *vaddr;
717 	int ret;
718 
719 	vaddr = kmap(page);
720 
721 	if (needs_clflush_before)
722 		drm_clflush_virt_range(vaddr + offset, len);
723 
724 	ret = __copy_from_user(vaddr + offset, user_data, len);
725 	if (!ret && needs_clflush_after)
726 		drm_clflush_virt_range(vaddr + offset, len);
727 
728 	kunmap(page);
729 
730 	return ret ? -EFAULT : 0;
731 }
732 
733 static int
734 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
735 		      const struct drm_i915_gem_pwrite *args)
736 {
737 	unsigned int partial_cacheline_write;
738 	unsigned int needs_clflush;
739 	unsigned int offset, idx;
740 	struct dma_fence *fence;
741 	void __user *user_data;
742 	u64 remain;
743 	int ret;
744 
745 	ret = i915_gem_object_lock_interruptible(obj, NULL);
746 	if (ret)
747 		return ret;
748 
749 	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
750 	if (ret) {
751 		i915_gem_object_unlock(obj);
752 		return ret;
753 	}
754 
755 	fence = i915_gem_object_lock_fence(obj);
756 	i915_gem_object_finish_access(obj);
757 	i915_gem_object_unlock(obj);
758 
759 	if (!fence)
760 		return -ENOMEM;
761 
762 	/* If we don't overwrite a cacheline completely we need to be
763 	 * careful to have up-to-date data by first clflushing. Don't
764 	 * overcomplicate things and flush the entire patch.
765 	 */
766 	partial_cacheline_write = 0;
767 	if (needs_clflush & CLFLUSH_BEFORE)
768 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
769 
770 	user_data = u64_to_user_ptr(args->data_ptr);
771 	remain = args->size;
772 	offset = offset_in_page(args->offset);
773 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
774 		struct page *page = i915_gem_object_get_page(obj, idx);
775 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
776 
777 		ret = shmem_pwrite(page, offset, length, user_data,
778 				   (offset | length) & partial_cacheline_write,
779 				   needs_clflush & CLFLUSH_AFTER);
780 		if (ret)
781 			break;
782 
783 		remain -= length;
784 		user_data += length;
785 		offset = 0;
786 	}
787 
788 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
789 	i915_gem_object_unlock_fence(obj, fence);
790 
791 	return ret;
792 }
793 
794 /**
795  * Writes data to the object referenced by handle.
796  * @dev: drm device
797  * @data: ioctl data blob
798  * @file: drm file
799  *
800  * On error, the contents of the buffer that were to be modified are undefined.
801  */
802 int
803 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
804 		      struct drm_file *file)
805 {
806 	struct drm_i915_gem_pwrite *args = data;
807 	struct drm_i915_gem_object *obj;
808 	int ret;
809 
810 	if (args->size == 0)
811 		return 0;
812 
813 	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
814 		return -EFAULT;
815 
816 	obj = i915_gem_object_lookup(file, args->handle);
817 	if (!obj)
818 		return -ENOENT;
819 
820 	/* Bounds check destination. */
821 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
822 		ret = -EINVAL;
823 		goto err;
824 	}
825 
826 	/* Writes not allowed into this read-only object */
827 	if (i915_gem_object_is_readonly(obj)) {
828 		ret = -EINVAL;
829 		goto err;
830 	}
831 
832 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
833 
834 	ret = -ENODEV;
835 	if (obj->ops->pwrite)
836 		ret = obj->ops->pwrite(obj, args);
837 	if (ret != -ENODEV)
838 		goto err;
839 
840 	ret = i915_gem_object_wait(obj,
841 				   I915_WAIT_INTERRUPTIBLE |
842 				   I915_WAIT_ALL,
843 				   MAX_SCHEDULE_TIMEOUT);
844 	if (ret)
845 		goto err;
846 
847 	ret = i915_gem_object_pin_pages(obj);
848 	if (ret)
849 		goto err;
850 
851 	ret = -EFAULT;
852 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
853 	 * it would end up going through the fenced access, and we'll get
854 	 * different detiling behavior between reading and writing.
855 	 * pread/pwrite currently are reading and writing from the CPU
856 	 * perspective, requiring manual detiling by the client.
857 	 */
858 	if (!i915_gem_object_has_struct_page(obj) ||
859 	    cpu_write_needs_clflush(obj))
860 		/* Note that the gtt paths might fail with non-page-backed user
861 		 * pointers (e.g. gtt mappings when moving data between
862 		 * textures). Fallback to the shmem path in that case.
863 		 */
864 		ret = i915_gem_gtt_pwrite_fast(obj, args);
865 
866 	if (ret == -EFAULT || ret == -ENOSPC) {
867 		if (i915_gem_object_has_struct_page(obj))
868 			ret = i915_gem_shmem_pwrite(obj, args);
869 		else
870 			ret = i915_gem_phys_pwrite(obj, args, file);
871 	}
872 
873 	i915_gem_object_unpin_pages(obj);
874 err:
875 	i915_gem_object_put(obj);
876 	return ret;
877 }
878 
879 /**
880  * Called when user space has done writes to this buffer
881  * @dev: drm device
882  * @data: ioctl data blob
883  * @file: drm file
884  */
885 int
886 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
887 			 struct drm_file *file)
888 {
889 	struct drm_i915_gem_sw_finish *args = data;
890 	struct drm_i915_gem_object *obj;
891 
892 	obj = i915_gem_object_lookup(file, args->handle);
893 	if (!obj)
894 		return -ENOENT;
895 
896 	/*
897 	 * Proxy objects are barred from CPU access, so there is no
898 	 * need to ban sw_finish as it is a nop.
899 	 */
900 
901 	/* Pinned buffers may be scanout, so flush the cache */
902 	i915_gem_object_flush_if_display(obj);
903 	i915_gem_object_put(obj);
904 
905 	return 0;
906 }
907 
908 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
909 {
910 	struct drm_i915_gem_object *obj, *on;
911 	int i;
912 
913 	/*
914 	 * Only called during RPM suspend. All users of the userfault_list
915 	 * must be holding an RPM wakeref to ensure that this can not
916 	 * run concurrently with themselves (and use the struct_mutex for
917 	 * protection between themselves).
918 	 */
919 
920 	list_for_each_entry_safe(obj, on,
921 				 &i915->ggtt.userfault_list, userfault_link)
922 		__i915_gem_object_release_mmap_gtt(obj);
923 
924 	/*
925 	 * The fence will be lost when the device powers down. If any were
926 	 * in use by hardware (i.e. they are pinned), we should not be powering
927 	 * down! All other fences will be reacquired by the user upon waking.
928 	 */
929 	for (i = 0; i < i915->ggtt.num_fences; i++) {
930 		struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
931 
932 		/*
933 		 * Ideally we want to assert that the fence register is not
934 		 * live at this point (i.e. that no piece of code will be
935 		 * trying to write through fence + GTT, as that both violates
936 		 * our tracking of activity and associated locking/barriers,
937 		 * but also is illegal given that the hw is powered down).
938 		 *
939 		 * Previously we used reg->pin_count as a "liveness" indicator.
940 		 * That is not sufficient, and we need a more fine-grained
941 		 * tool if we want to have a sanity check here.
942 		 */
943 
944 		if (!reg->vma)
945 			continue;
946 
947 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
948 		reg->dirty = true;
949 	}
950 }
951 
952 static void discard_ggtt_vma(struct i915_vma *vma)
953 {
954 	struct drm_i915_gem_object *obj = vma->obj;
955 
956 	spin_lock(&obj->vma.lock);
957 	if (!RB_EMPTY_NODE(&vma->obj_node)) {
958 		rb_erase(&vma->obj_node, &obj->vma.tree);
959 		RB_CLEAR_NODE(&vma->obj_node);
960 	}
961 	spin_unlock(&obj->vma.lock);
962 }
963 
964 struct i915_vma *
965 i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
966 			    struct i915_gem_ww_ctx *ww,
967 			    const struct i915_ggtt_view *view,
968 			    u64 size, u64 alignment, u64 flags)
969 {
970 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
971 	struct i915_ggtt *ggtt = &i915->ggtt;
972 	struct i915_vma *vma;
973 	int ret;
974 
975 	if (flags & PIN_MAPPABLE &&
976 	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
977 		/*
978 		 * If the required space is larger than the available
979 		 * aperture, we will not able to find a slot for the
980 		 * object and unbinding the object now will be in
981 		 * vain. Worse, doing so may cause us to ping-pong
982 		 * the object in and out of the Global GTT and
983 		 * waste a lot of cycles under the mutex.
984 		 */
985 		if (obj->base.size > ggtt->mappable_end)
986 			return ERR_PTR(-E2BIG);
987 
988 		/*
989 		 * If NONBLOCK is set the caller is optimistically
990 		 * trying to cache the full object within the mappable
991 		 * aperture, and *must* have a fallback in place for
992 		 * situations where we cannot bind the object. We
993 		 * can be a little more lax here and use the fallback
994 		 * more often to avoid costly migrations of ourselves
995 		 * and other objects within the aperture.
996 		 *
997 		 * Half-the-aperture is used as a simple heuristic.
998 		 * More interesting would to do search for a free
999 		 * block prior to making the commitment to unbind.
1000 		 * That caters for the self-harm case, and with a
1001 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
1002 		 * we could try to minimise harm to others.
1003 		 */
1004 		if (flags & PIN_NONBLOCK &&
1005 		    obj->base.size > ggtt->mappable_end / 2)
1006 			return ERR_PTR(-ENOSPC);
1007 	}
1008 
1009 new_vma:
1010 	vma = i915_vma_instance(obj, &ggtt->vm, view);
1011 	if (IS_ERR(vma))
1012 		return vma;
1013 
1014 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
1015 		if (flags & PIN_NONBLOCK) {
1016 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
1017 				return ERR_PTR(-ENOSPC);
1018 
1019 			if (flags & PIN_MAPPABLE &&
1020 			    vma->fence_size > ggtt->mappable_end / 2)
1021 				return ERR_PTR(-ENOSPC);
1022 		}
1023 
1024 		if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
1025 			discard_ggtt_vma(vma);
1026 			goto new_vma;
1027 		}
1028 
1029 		ret = i915_vma_unbind(vma);
1030 		if (ret)
1031 			return ERR_PTR(ret);
1032 	}
1033 
1034 	ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
1035 	if (ret)
1036 		return ERR_PTR(ret);
1037 
1038 	if (vma->fence && !i915_gem_object_is_tiled(obj)) {
1039 		mutex_lock(&ggtt->vm.mutex);
1040 		i915_vma_revoke_fence(vma);
1041 		mutex_unlock(&ggtt->vm.mutex);
1042 	}
1043 
1044 	ret = i915_vma_wait_for_bind(vma);
1045 	if (ret) {
1046 		i915_vma_unpin(vma);
1047 		return ERR_PTR(ret);
1048 	}
1049 
1050 	return vma;
1051 }
1052 
1053 int
1054 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1055 		       struct drm_file *file_priv)
1056 {
1057 	struct drm_i915_private *i915 = to_i915(dev);
1058 	struct drm_i915_gem_madvise *args = data;
1059 	struct drm_i915_gem_object *obj;
1060 	int err;
1061 
1062 	switch (args->madv) {
1063 	case I915_MADV_DONTNEED:
1064 	case I915_MADV_WILLNEED:
1065 	    break;
1066 	default:
1067 	    return -EINVAL;
1068 	}
1069 
1070 	obj = i915_gem_object_lookup(file_priv, args->handle);
1071 	if (!obj)
1072 		return -ENOENT;
1073 
1074 	err = mutex_lock_interruptible(&obj->mm.lock);
1075 	if (err)
1076 		goto out;
1077 
1078 	if (i915_gem_object_has_pages(obj) &&
1079 	    i915_gem_object_is_tiled(obj) &&
1080 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
1081 		if (obj->mm.madv == I915_MADV_WILLNEED) {
1082 			GEM_BUG_ON(!obj->mm.quirked);
1083 			__i915_gem_object_unpin_pages(obj);
1084 			obj->mm.quirked = false;
1085 		}
1086 		if (args->madv == I915_MADV_WILLNEED) {
1087 			GEM_BUG_ON(obj->mm.quirked);
1088 			__i915_gem_object_pin_pages(obj);
1089 			obj->mm.quirked = true;
1090 		}
1091 	}
1092 
1093 	if (obj->mm.madv != __I915_MADV_PURGED)
1094 		obj->mm.madv = args->madv;
1095 
1096 	if (i915_gem_object_has_pages(obj)) {
1097 		struct list_head *list;
1098 
1099 		if (i915_gem_object_is_shrinkable(obj)) {
1100 			unsigned long flags;
1101 
1102 			spin_lock_irqsave(&i915->mm.obj_lock, flags);
1103 
1104 			if (obj->mm.madv != I915_MADV_WILLNEED)
1105 				list = &i915->mm.purge_list;
1106 			else
1107 				list = &i915->mm.shrink_list;
1108 			list_move_tail(&obj->mm.link, list);
1109 
1110 			spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1111 		}
1112 	}
1113 
1114 	/* if the object is no longer attached, discard its backing storage */
1115 	if (obj->mm.madv == I915_MADV_DONTNEED &&
1116 	    !i915_gem_object_has_pages(obj))
1117 		i915_gem_object_truncate(obj);
1118 
1119 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
1120 	mutex_unlock(&obj->mm.lock);
1121 
1122 out:
1123 	i915_gem_object_put(obj);
1124 	return err;
1125 }
1126 
1127 int i915_gem_init(struct drm_i915_private *dev_priv)
1128 {
1129 	int ret;
1130 
1131 	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
1132 	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1133 		mkwrite_device_info(dev_priv)->page_sizes =
1134 			I915_GTT_PAGE_SIZE_4K;
1135 
1136 	ret = i915_gem_init_userptr(dev_priv);
1137 	if (ret)
1138 		return ret;
1139 
1140 	intel_uc_fetch_firmwares(&dev_priv->gt.uc);
1141 	intel_wopcm_init(&dev_priv->wopcm);
1142 
1143 	ret = i915_init_ggtt(dev_priv);
1144 	if (ret) {
1145 		GEM_BUG_ON(ret == -EIO);
1146 		goto err_unlock;
1147 	}
1148 
1149 	/*
1150 	 * Despite its name intel_init_clock_gating applies both display
1151 	 * clock gating workarounds; GT mmio workarounds and the occasional
1152 	 * GT power context workaround. Worse, sometimes it includes a context
1153 	 * register workaround which we need to apply before we record the
1154 	 * default HW state for all contexts.
1155 	 *
1156 	 * FIXME: break up the workarounds and apply them at the right time!
1157 	 */
1158 	intel_init_clock_gating(dev_priv);
1159 
1160 	ret = intel_gt_init(&dev_priv->gt);
1161 	if (ret)
1162 		goto err_unlock;
1163 
1164 	return 0;
1165 
1166 	/*
1167 	 * Unwinding is complicated by that we want to handle -EIO to mean
1168 	 * disable GPU submission but keep KMS alive. We want to mark the
1169 	 * HW as irrevisibly wedged, but keep enough state around that the
1170 	 * driver doesn't explode during runtime.
1171 	 */
1172 err_unlock:
1173 	i915_gem_drain_workqueue(dev_priv);
1174 
1175 	if (ret != -EIO) {
1176 		intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1177 		i915_gem_cleanup_userptr(dev_priv);
1178 	}
1179 
1180 	if (ret == -EIO) {
1181 		/*
1182 		 * Allow engines or uC initialisation to fail by marking the GPU
1183 		 * as wedged. But we only want to do this when the GPU is angry,
1184 		 * for all other failure, such as an allocation failure, bail.
1185 		 */
1186 		if (!intel_gt_is_wedged(&dev_priv->gt)) {
1187 			i915_probe_error(dev_priv,
1188 					 "Failed to initialize GPU, declaring it wedged!\n");
1189 			intel_gt_set_wedged(&dev_priv->gt);
1190 		}
1191 
1192 		/* Minimal basic recovery for KMS */
1193 		ret = i915_ggtt_enable_hw(dev_priv);
1194 		i915_ggtt_resume(&dev_priv->ggtt);
1195 		intel_init_clock_gating(dev_priv);
1196 	}
1197 
1198 	i915_gem_drain_freed_objects(dev_priv);
1199 	return ret;
1200 }
1201 
1202 void i915_gem_driver_register(struct drm_i915_private *i915)
1203 {
1204 	i915_gem_driver_register__shrinker(i915);
1205 
1206 	intel_engines_driver_register(i915);
1207 }
1208 
1209 void i915_gem_driver_unregister(struct drm_i915_private *i915)
1210 {
1211 	i915_gem_driver_unregister__shrinker(i915);
1212 }
1213 
1214 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1215 {
1216 	intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1217 
1218 	i915_gem_suspend_late(dev_priv);
1219 	intel_gt_driver_remove(&dev_priv->gt);
1220 	dev_priv->uabi_engines = RB_ROOT;
1221 
1222 	/* Flush any outstanding unpin_work. */
1223 	i915_gem_drain_workqueue(dev_priv);
1224 
1225 	i915_gem_drain_freed_objects(dev_priv);
1226 }
1227 
1228 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1229 {
1230 	i915_gem_driver_release__contexts(dev_priv);
1231 
1232 	intel_gt_driver_release(&dev_priv->gt);
1233 
1234 	intel_wa_list_free(&dev_priv->gt_wa_list);
1235 
1236 	intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1237 	i915_gem_cleanup_userptr(dev_priv);
1238 
1239 	i915_gem_drain_freed_objects(dev_priv);
1240 
1241 	drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1242 }
1243 
1244 static void i915_gem_init__mm(struct drm_i915_private *i915)
1245 {
1246 	spin_lock_init(&i915->mm.obj_lock);
1247 
1248 	init_llist_head(&i915->mm.free_list);
1249 
1250 	INIT_LIST_HEAD(&i915->mm.purge_list);
1251 	INIT_LIST_HEAD(&i915->mm.shrink_list);
1252 
1253 	i915_gem_init__objects(i915);
1254 }
1255 
1256 void i915_gem_init_early(struct drm_i915_private *dev_priv)
1257 {
1258 	i915_gem_init__mm(dev_priv);
1259 	i915_gem_init__contexts(dev_priv);
1260 
1261 	spin_lock_init(&dev_priv->fb_tracking.lock);
1262 }
1263 
1264 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1265 {
1266 	i915_gem_drain_freed_objects(dev_priv);
1267 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1268 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1269 	drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1270 }
1271 
1272 int i915_gem_freeze(struct drm_i915_private *dev_priv)
1273 {
1274 	/* Discard all purgeable objects, let userspace recover those as
1275 	 * required after resuming.
1276 	 */
1277 	i915_gem_shrink_all(dev_priv);
1278 
1279 	return 0;
1280 }
1281 
1282 int i915_gem_freeze_late(struct drm_i915_private *i915)
1283 {
1284 	struct drm_i915_gem_object *obj;
1285 	intel_wakeref_t wakeref;
1286 
1287 	/*
1288 	 * Called just before we write the hibernation image.
1289 	 *
1290 	 * We need to update the domain tracking to reflect that the CPU
1291 	 * will be accessing all the pages to create and restore from the
1292 	 * hibernation, and so upon restoration those pages will be in the
1293 	 * CPU domain.
1294 	 *
1295 	 * To make sure the hibernation image contains the latest state,
1296 	 * we update that state just before writing out the image.
1297 	 *
1298 	 * To try and reduce the hibernation image, we manually shrink
1299 	 * the objects as well, see i915_gem_freeze()
1300 	 */
1301 
1302 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1303 
1304 	i915_gem_shrink(i915, -1UL, NULL, ~0);
1305 	i915_gem_drain_freed_objects(i915);
1306 
1307 	list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
1308 		i915_gem_object_lock(obj, NULL);
1309 		drm_WARN_ON(&i915->drm,
1310 			    i915_gem_object_set_to_cpu_domain(obj, true));
1311 		i915_gem_object_unlock(obj);
1312 	}
1313 
1314 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1315 
1316 	return 0;
1317 }
1318 
1319 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1320 {
1321 	struct drm_i915_file_private *file_priv;
1322 	int ret;
1323 
1324 	DRM_DEBUG("\n");
1325 
1326 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1327 	if (!file_priv)
1328 		return -ENOMEM;
1329 
1330 	file->driver_priv = file_priv;
1331 	file_priv->dev_priv = i915;
1332 	file_priv->file = file;
1333 
1334 	file_priv->bsd_engine = -1;
1335 	file_priv->hang_timestamp = jiffies;
1336 
1337 	ret = i915_gem_context_open(i915, file);
1338 	if (ret)
1339 		kfree(file_priv);
1340 
1341 	return ret;
1342 }
1343 
1344 void i915_gem_ww_ctx_init(struct i915_gem_ww_ctx *ww, bool intr)
1345 {
1346 	ww_acquire_init(&ww->ctx, &reservation_ww_class);
1347 	INIT_LIST_HEAD(&ww->obj_list);
1348 	ww->intr = intr;
1349 	ww->contended = NULL;
1350 }
1351 
1352 static void i915_gem_ww_ctx_unlock_all(struct i915_gem_ww_ctx *ww)
1353 {
1354 	struct drm_i915_gem_object *obj;
1355 
1356 	while ((obj = list_first_entry_or_null(&ww->obj_list, struct drm_i915_gem_object, obj_link))) {
1357 		list_del(&obj->obj_link);
1358 		i915_gem_object_unlock(obj);
1359 	}
1360 }
1361 
1362 void i915_gem_ww_unlock_single(struct drm_i915_gem_object *obj)
1363 {
1364 	list_del(&obj->obj_link);
1365 	i915_gem_object_unlock(obj);
1366 }
1367 
1368 void i915_gem_ww_ctx_fini(struct i915_gem_ww_ctx *ww)
1369 {
1370 	i915_gem_ww_ctx_unlock_all(ww);
1371 	WARN_ON(ww->contended);
1372 	ww_acquire_fini(&ww->ctx);
1373 }
1374 
1375 int __must_check i915_gem_ww_ctx_backoff(struct i915_gem_ww_ctx *ww)
1376 {
1377 	int ret = 0;
1378 
1379 	if (WARN_ON(!ww->contended))
1380 		return -EINVAL;
1381 
1382 	i915_gem_ww_ctx_unlock_all(ww);
1383 	if (ww->intr)
1384 		ret = dma_resv_lock_slow_interruptible(ww->contended->base.resv, &ww->ctx);
1385 	else
1386 		dma_resv_lock_slow(ww->contended->base.resv, &ww->ctx);
1387 
1388 	if (!ret)
1389 		list_add_tail(&ww->contended->obj_link, &ww->obj_list);
1390 
1391 	ww->contended = NULL;
1392 
1393 	return ret;
1394 }
1395 
1396 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1397 #include "selftests/mock_gem_device.c"
1398 #include "selftests/i915_gem.c"
1399 #endif
1400