1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drmP.h> 29 #include <drm/drm_vma_manager.h> 30 #include <drm/i915_drm.h> 31 #include "i915_drv.h" 32 #include "i915_gem_clflush.h" 33 #include "i915_vgpu.h" 34 #include "i915_trace.h" 35 #include "intel_drv.h" 36 #include "intel_frontbuffer.h" 37 #include "intel_mocs.h" 38 #include <linux/dma-fence-array.h> 39 #include <linux/kthread.h> 40 #include <linux/reservation.h> 41 #include <linux/shmem_fs.h> 42 #include <linux/slab.h> 43 #include <linux/stop_machine.h> 44 #include <linux/swap.h> 45 #include <linux/pci.h> 46 #include <linux/dma-buf.h> 47 48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915); 49 50 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj) 51 { 52 if (obj->cache_dirty) 53 return false; 54 55 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)) 56 return true; 57 58 return obj->pin_display; 59 } 60 61 static int 62 insert_mappable_node(struct i915_ggtt *ggtt, 63 struct drm_mm_node *node, u32 size) 64 { 65 memset(node, 0, sizeof(*node)); 66 return drm_mm_insert_node_in_range(&ggtt->base.mm, node, 67 size, 0, I915_COLOR_UNEVICTABLE, 68 0, ggtt->mappable_end, 69 DRM_MM_INSERT_LOW); 70 } 71 72 static void 73 remove_mappable_node(struct drm_mm_node *node) 74 { 75 drm_mm_remove_node(node); 76 } 77 78 /* some bookkeeping */ 79 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, 80 u64 size) 81 { 82 spin_lock(&dev_priv->mm.object_stat_lock); 83 dev_priv->mm.object_count++; 84 dev_priv->mm.object_memory += size; 85 spin_unlock(&dev_priv->mm.object_stat_lock); 86 } 87 88 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, 89 u64 size) 90 { 91 spin_lock(&dev_priv->mm.object_stat_lock); 92 dev_priv->mm.object_count--; 93 dev_priv->mm.object_memory -= size; 94 spin_unlock(&dev_priv->mm.object_stat_lock); 95 } 96 97 static int 98 i915_gem_wait_for_error(struct i915_gpu_error *error) 99 { 100 int ret; 101 102 might_sleep(); 103 104 /* 105 * Only wait 10 seconds for the gpu reset to complete to avoid hanging 106 * userspace. If it takes that long something really bad is going on and 107 * we should simply try to bail out and fail as gracefully as possible. 108 */ 109 ret = wait_event_interruptible_timeout(error->reset_queue, 110 !i915_reset_backoff(error), 111 I915_RESET_TIMEOUT); 112 if (ret == 0) { 113 DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); 114 return -EIO; 115 } else if (ret < 0) { 116 return ret; 117 } else { 118 return 0; 119 } 120 } 121 122 int i915_mutex_lock_interruptible(struct drm_device *dev) 123 { 124 struct drm_i915_private *dev_priv = to_i915(dev); 125 int ret; 126 127 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 128 if (ret) 129 return ret; 130 131 ret = mutex_lock_interruptible(&dev->struct_mutex); 132 if (ret) 133 return ret; 134 135 return 0; 136 } 137 138 int 139 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 140 struct drm_file *file) 141 { 142 struct drm_i915_private *dev_priv = to_i915(dev); 143 struct i915_ggtt *ggtt = &dev_priv->ggtt; 144 struct drm_i915_gem_get_aperture *args = data; 145 struct i915_vma *vma; 146 u64 pinned; 147 148 pinned = ggtt->base.reserved; 149 mutex_lock(&dev->struct_mutex); 150 list_for_each_entry(vma, &ggtt->base.active_list, vm_link) 151 if (i915_vma_is_pinned(vma)) 152 pinned += vma->node.size; 153 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link) 154 if (i915_vma_is_pinned(vma)) 155 pinned += vma->node.size; 156 mutex_unlock(&dev->struct_mutex); 157 158 args->aper_size = ggtt->base.total; 159 args->aper_available_size = args->aper_size - pinned; 160 161 return 0; 162 } 163 164 static struct sg_table * 165 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj) 166 { 167 struct address_space *mapping = obj->base.filp->f_mapping; 168 drm_dma_handle_t *phys; 169 struct sg_table *st; 170 struct scatterlist *sg; 171 char *vaddr; 172 int i; 173 174 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj))) 175 return ERR_PTR(-EINVAL); 176 177 /* Always aligning to the object size, allows a single allocation 178 * to handle all possible callers, and given typical object sizes, 179 * the alignment of the buddy allocation will naturally match. 180 */ 181 phys = drm_pci_alloc(obj->base.dev, 182 obj->base.size, 183 roundup_pow_of_two(obj->base.size)); 184 if (!phys) 185 return ERR_PTR(-ENOMEM); 186 187 vaddr = phys->vaddr; 188 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 189 struct page *page; 190 char *src; 191 192 page = shmem_read_mapping_page(mapping, i); 193 if (IS_ERR(page)) { 194 st = ERR_CAST(page); 195 goto err_phys; 196 } 197 198 src = kmap_atomic(page); 199 memcpy(vaddr, src, PAGE_SIZE); 200 drm_clflush_virt_range(vaddr, PAGE_SIZE); 201 kunmap_atomic(src); 202 203 put_page(page); 204 vaddr += PAGE_SIZE; 205 } 206 207 i915_gem_chipset_flush(to_i915(obj->base.dev)); 208 209 st = kmalloc(sizeof(*st), GFP_KERNEL); 210 if (!st) { 211 st = ERR_PTR(-ENOMEM); 212 goto err_phys; 213 } 214 215 if (sg_alloc_table(st, 1, GFP_KERNEL)) { 216 kfree(st); 217 st = ERR_PTR(-ENOMEM); 218 goto err_phys; 219 } 220 221 sg = st->sgl; 222 sg->offset = 0; 223 sg->length = obj->base.size; 224 225 sg_dma_address(sg) = phys->busaddr; 226 sg_dma_len(sg) = obj->base.size; 227 228 obj->phys_handle = phys; 229 return st; 230 231 err_phys: 232 drm_pci_free(obj->base.dev, phys); 233 return st; 234 } 235 236 static void __start_cpu_write(struct drm_i915_gem_object *obj) 237 { 238 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 239 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 240 if (cpu_write_needs_clflush(obj)) 241 obj->cache_dirty = true; 242 } 243 244 static void 245 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj, 246 struct sg_table *pages, 247 bool needs_clflush) 248 { 249 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED); 250 251 if (obj->mm.madv == I915_MADV_DONTNEED) 252 obj->mm.dirty = false; 253 254 if (needs_clflush && 255 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 && 256 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)) 257 drm_clflush_sg(pages); 258 259 __start_cpu_write(obj); 260 } 261 262 static void 263 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj, 264 struct sg_table *pages) 265 { 266 __i915_gem_object_release_shmem(obj, pages, false); 267 268 if (obj->mm.dirty) { 269 struct address_space *mapping = obj->base.filp->f_mapping; 270 char *vaddr = obj->phys_handle->vaddr; 271 int i; 272 273 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 274 struct page *page; 275 char *dst; 276 277 page = shmem_read_mapping_page(mapping, i); 278 if (IS_ERR(page)) 279 continue; 280 281 dst = kmap_atomic(page); 282 drm_clflush_virt_range(vaddr, PAGE_SIZE); 283 memcpy(dst, vaddr, PAGE_SIZE); 284 kunmap_atomic(dst); 285 286 set_page_dirty(page); 287 if (obj->mm.madv == I915_MADV_WILLNEED) 288 mark_page_accessed(page); 289 put_page(page); 290 vaddr += PAGE_SIZE; 291 } 292 obj->mm.dirty = false; 293 } 294 295 sg_free_table(pages); 296 kfree(pages); 297 298 drm_pci_free(obj->base.dev, obj->phys_handle); 299 } 300 301 static void 302 i915_gem_object_release_phys(struct drm_i915_gem_object *obj) 303 { 304 i915_gem_object_unpin_pages(obj); 305 } 306 307 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = { 308 .get_pages = i915_gem_object_get_pages_phys, 309 .put_pages = i915_gem_object_put_pages_phys, 310 .release = i915_gem_object_release_phys, 311 }; 312 313 static const struct drm_i915_gem_object_ops i915_gem_object_ops; 314 315 int i915_gem_object_unbind(struct drm_i915_gem_object *obj) 316 { 317 struct i915_vma *vma; 318 LIST_HEAD(still_in_list); 319 int ret; 320 321 lockdep_assert_held(&obj->base.dev->struct_mutex); 322 323 /* Closed vma are removed from the obj->vma_list - but they may 324 * still have an active binding on the object. To remove those we 325 * must wait for all rendering to complete to the object (as unbinding 326 * must anyway), and retire the requests. 327 */ 328 ret = i915_gem_object_wait(obj, 329 I915_WAIT_INTERRUPTIBLE | 330 I915_WAIT_LOCKED | 331 I915_WAIT_ALL, 332 MAX_SCHEDULE_TIMEOUT, 333 NULL); 334 if (ret) 335 return ret; 336 337 i915_gem_retire_requests(to_i915(obj->base.dev)); 338 339 while ((vma = list_first_entry_or_null(&obj->vma_list, 340 struct i915_vma, 341 obj_link))) { 342 list_move_tail(&vma->obj_link, &still_in_list); 343 ret = i915_vma_unbind(vma); 344 if (ret) 345 break; 346 } 347 list_splice(&still_in_list, &obj->vma_list); 348 349 return ret; 350 } 351 352 static long 353 i915_gem_object_wait_fence(struct dma_fence *fence, 354 unsigned int flags, 355 long timeout, 356 struct intel_rps_client *rps) 357 { 358 struct drm_i915_gem_request *rq; 359 360 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1); 361 362 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 363 return timeout; 364 365 if (!dma_fence_is_i915(fence)) 366 return dma_fence_wait_timeout(fence, 367 flags & I915_WAIT_INTERRUPTIBLE, 368 timeout); 369 370 rq = to_request(fence); 371 if (i915_gem_request_completed(rq)) 372 goto out; 373 374 /* This client is about to stall waiting for the GPU. In many cases 375 * this is undesirable and limits the throughput of the system, as 376 * many clients cannot continue processing user input/output whilst 377 * blocked. RPS autotuning may take tens of milliseconds to respond 378 * to the GPU load and thus incurs additional latency for the client. 379 * We can circumvent that by promoting the GPU frequency to maximum 380 * before we wait. This makes the GPU throttle up much more quickly 381 * (good for benchmarks and user experience, e.g. window animations), 382 * but at a cost of spending more power processing the workload 383 * (bad for battery). Not all clients even want their results 384 * immediately and for them we should just let the GPU select its own 385 * frequency to maximise efficiency. To prevent a single client from 386 * forcing the clocks too high for the whole system, we only allow 387 * each client to waitboost once in a busy period. 388 */ 389 if (rps) { 390 if (INTEL_GEN(rq->i915) >= 6) 391 gen6_rps_boost(rq, rps); 392 else 393 rps = NULL; 394 } 395 396 timeout = i915_wait_request(rq, flags, timeout); 397 398 out: 399 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq)) 400 i915_gem_request_retire_upto(rq); 401 402 return timeout; 403 } 404 405 static long 406 i915_gem_object_wait_reservation(struct reservation_object *resv, 407 unsigned int flags, 408 long timeout, 409 struct intel_rps_client *rps) 410 { 411 unsigned int seq = __read_seqcount_begin(&resv->seq); 412 struct dma_fence *excl; 413 bool prune_fences = false; 414 415 if (flags & I915_WAIT_ALL) { 416 struct dma_fence **shared; 417 unsigned int count, i; 418 int ret; 419 420 ret = reservation_object_get_fences_rcu(resv, 421 &excl, &count, &shared); 422 if (ret) 423 return ret; 424 425 for (i = 0; i < count; i++) { 426 timeout = i915_gem_object_wait_fence(shared[i], 427 flags, timeout, 428 rps); 429 if (timeout < 0) 430 break; 431 432 dma_fence_put(shared[i]); 433 } 434 435 for (; i < count; i++) 436 dma_fence_put(shared[i]); 437 kfree(shared); 438 439 prune_fences = count && timeout >= 0; 440 } else { 441 excl = reservation_object_get_excl_rcu(resv); 442 } 443 444 if (excl && timeout >= 0) { 445 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps); 446 prune_fences = timeout >= 0; 447 } 448 449 dma_fence_put(excl); 450 451 /* Oportunistically prune the fences iff we know they have *all* been 452 * signaled and that the reservation object has not been changed (i.e. 453 * no new fences have been added). 454 */ 455 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) { 456 if (reservation_object_trylock(resv)) { 457 if (!__read_seqcount_retry(&resv->seq, seq)) 458 reservation_object_add_excl_fence(resv, NULL); 459 reservation_object_unlock(resv); 460 } 461 } 462 463 return timeout; 464 } 465 466 static void __fence_set_priority(struct dma_fence *fence, int prio) 467 { 468 struct drm_i915_gem_request *rq; 469 struct intel_engine_cs *engine; 470 471 if (!dma_fence_is_i915(fence)) 472 return; 473 474 rq = to_request(fence); 475 engine = rq->engine; 476 if (!engine->schedule) 477 return; 478 479 engine->schedule(rq, prio); 480 } 481 482 static void fence_set_priority(struct dma_fence *fence, int prio) 483 { 484 /* Recurse once into a fence-array */ 485 if (dma_fence_is_array(fence)) { 486 struct dma_fence_array *array = to_dma_fence_array(fence); 487 int i; 488 489 for (i = 0; i < array->num_fences; i++) 490 __fence_set_priority(array->fences[i], prio); 491 } else { 492 __fence_set_priority(fence, prio); 493 } 494 } 495 496 int 497 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj, 498 unsigned int flags, 499 int prio) 500 { 501 struct dma_fence *excl; 502 503 if (flags & I915_WAIT_ALL) { 504 struct dma_fence **shared; 505 unsigned int count, i; 506 int ret; 507 508 ret = reservation_object_get_fences_rcu(obj->resv, 509 &excl, &count, &shared); 510 if (ret) 511 return ret; 512 513 for (i = 0; i < count; i++) { 514 fence_set_priority(shared[i], prio); 515 dma_fence_put(shared[i]); 516 } 517 518 kfree(shared); 519 } else { 520 excl = reservation_object_get_excl_rcu(obj->resv); 521 } 522 523 if (excl) { 524 fence_set_priority(excl, prio); 525 dma_fence_put(excl); 526 } 527 return 0; 528 } 529 530 /** 531 * Waits for rendering to the object to be completed 532 * @obj: i915 gem object 533 * @flags: how to wait (under a lock, for all rendering or just for writes etc) 534 * @timeout: how long to wait 535 * @rps: client (user process) to charge for any waitboosting 536 */ 537 int 538 i915_gem_object_wait(struct drm_i915_gem_object *obj, 539 unsigned int flags, 540 long timeout, 541 struct intel_rps_client *rps) 542 { 543 might_sleep(); 544 #if IS_ENABLED(CONFIG_LOCKDEP) 545 GEM_BUG_ON(debug_locks && 546 !!lockdep_is_held(&obj->base.dev->struct_mutex) != 547 !!(flags & I915_WAIT_LOCKED)); 548 #endif 549 GEM_BUG_ON(timeout < 0); 550 551 timeout = i915_gem_object_wait_reservation(obj->resv, 552 flags, timeout, 553 rps); 554 return timeout < 0 ? timeout : 0; 555 } 556 557 static struct intel_rps_client *to_rps_client(struct drm_file *file) 558 { 559 struct drm_i915_file_private *fpriv = file->driver_priv; 560 561 return &fpriv->rps; 562 } 563 564 static int 565 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj, 566 struct drm_i915_gem_pwrite *args, 567 struct drm_file *file) 568 { 569 void *vaddr = obj->phys_handle->vaddr + args->offset; 570 char __user *user_data = u64_to_user_ptr(args->data_ptr); 571 572 /* We manually control the domain here and pretend that it 573 * remains coherent i.e. in the GTT domain, like shmem_pwrite. 574 */ 575 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 576 if (copy_from_user(vaddr, user_data, args->size)) 577 return -EFAULT; 578 579 drm_clflush_virt_range(vaddr, args->size); 580 i915_gem_chipset_flush(to_i915(obj->base.dev)); 581 582 intel_fb_obj_flush(obj, ORIGIN_CPU); 583 return 0; 584 } 585 586 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv) 587 { 588 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL); 589 } 590 591 void i915_gem_object_free(struct drm_i915_gem_object *obj) 592 { 593 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 594 kmem_cache_free(dev_priv->objects, obj); 595 } 596 597 static int 598 i915_gem_create(struct drm_file *file, 599 struct drm_i915_private *dev_priv, 600 uint64_t size, 601 uint32_t *handle_p) 602 { 603 struct drm_i915_gem_object *obj; 604 int ret; 605 u32 handle; 606 607 size = roundup(size, PAGE_SIZE); 608 if (size == 0) 609 return -EINVAL; 610 611 /* Allocate the new object */ 612 obj = i915_gem_object_create(dev_priv, size); 613 if (IS_ERR(obj)) 614 return PTR_ERR(obj); 615 616 ret = drm_gem_handle_create(file, &obj->base, &handle); 617 /* drop reference from allocate - handle holds it now */ 618 i915_gem_object_put(obj); 619 if (ret) 620 return ret; 621 622 *handle_p = handle; 623 return 0; 624 } 625 626 int 627 i915_gem_dumb_create(struct drm_file *file, 628 struct drm_device *dev, 629 struct drm_mode_create_dumb *args) 630 { 631 /* have to work out size/pitch and return them */ 632 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64); 633 args->size = args->pitch * args->height; 634 return i915_gem_create(file, to_i915(dev), 635 args->size, &args->handle); 636 } 637 638 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj) 639 { 640 return !(obj->cache_level == I915_CACHE_NONE || 641 obj->cache_level == I915_CACHE_WT); 642 } 643 644 /** 645 * Creates a new mm object and returns a handle to it. 646 * @dev: drm device pointer 647 * @data: ioctl data blob 648 * @file: drm file pointer 649 */ 650 int 651 i915_gem_create_ioctl(struct drm_device *dev, void *data, 652 struct drm_file *file) 653 { 654 struct drm_i915_private *dev_priv = to_i915(dev); 655 struct drm_i915_gem_create *args = data; 656 657 i915_gem_flush_free_objects(dev_priv); 658 659 return i915_gem_create(file, dev_priv, 660 args->size, &args->handle); 661 } 662 663 static inline enum fb_op_origin 664 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain) 665 { 666 return (domain == I915_GEM_DOMAIN_GTT ? 667 obj->frontbuffer_ggtt_origin : ORIGIN_CPU); 668 } 669 670 static void 671 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains) 672 { 673 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 674 675 if (!(obj->base.write_domain & flush_domains)) 676 return; 677 678 /* No actual flushing is required for the GTT write domain. Writes 679 * to it "immediately" go to main memory as far as we know, so there's 680 * no chipset flush. It also doesn't land in render cache. 681 * 682 * However, we do have to enforce the order so that all writes through 683 * the GTT land before any writes to the device, such as updates to 684 * the GATT itself. 685 * 686 * We also have to wait a bit for the writes to land from the GTT. 687 * An uncached read (i.e. mmio) seems to be ideal for the round-trip 688 * timing. This issue has only been observed when switching quickly 689 * between GTT writes and CPU reads from inside the kernel on recent hw, 690 * and it appears to only affect discrete GTT blocks (i.e. on LLC 691 * system agents we cannot reproduce this behaviour). 692 */ 693 wmb(); 694 695 switch (obj->base.write_domain) { 696 case I915_GEM_DOMAIN_GTT: 697 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) { 698 intel_runtime_pm_get(dev_priv); 699 spin_lock_irq(&dev_priv->uncore.lock); 700 POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base)); 701 spin_unlock_irq(&dev_priv->uncore.lock); 702 intel_runtime_pm_put(dev_priv); 703 } 704 705 intel_fb_obj_flush(obj, 706 fb_write_origin(obj, I915_GEM_DOMAIN_GTT)); 707 break; 708 709 case I915_GEM_DOMAIN_CPU: 710 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC); 711 break; 712 713 case I915_GEM_DOMAIN_RENDER: 714 if (gpu_write_needs_clflush(obj)) 715 obj->cache_dirty = true; 716 break; 717 } 718 719 obj->base.write_domain = 0; 720 } 721 722 static inline int 723 __copy_to_user_swizzled(char __user *cpu_vaddr, 724 const char *gpu_vaddr, int gpu_offset, 725 int length) 726 { 727 int ret, cpu_offset = 0; 728 729 while (length > 0) { 730 int cacheline_end = ALIGN(gpu_offset + 1, 64); 731 int this_length = min(cacheline_end - gpu_offset, length); 732 int swizzled_gpu_offset = gpu_offset ^ 64; 733 734 ret = __copy_to_user(cpu_vaddr + cpu_offset, 735 gpu_vaddr + swizzled_gpu_offset, 736 this_length); 737 if (ret) 738 return ret + length; 739 740 cpu_offset += this_length; 741 gpu_offset += this_length; 742 length -= this_length; 743 } 744 745 return 0; 746 } 747 748 static inline int 749 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, 750 const char __user *cpu_vaddr, 751 int length) 752 { 753 int ret, cpu_offset = 0; 754 755 while (length > 0) { 756 int cacheline_end = ALIGN(gpu_offset + 1, 64); 757 int this_length = min(cacheline_end - gpu_offset, length); 758 int swizzled_gpu_offset = gpu_offset ^ 64; 759 760 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, 761 cpu_vaddr + cpu_offset, 762 this_length); 763 if (ret) 764 return ret + length; 765 766 cpu_offset += this_length; 767 gpu_offset += this_length; 768 length -= this_length; 769 } 770 771 return 0; 772 } 773 774 /* 775 * Pins the specified object's pages and synchronizes the object with 776 * GPU accesses. Sets needs_clflush to non-zero if the caller should 777 * flush the object from the CPU cache. 778 */ 779 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 780 unsigned int *needs_clflush) 781 { 782 int ret; 783 784 lockdep_assert_held(&obj->base.dev->struct_mutex); 785 786 *needs_clflush = 0; 787 if (!i915_gem_object_has_struct_page(obj)) 788 return -ENODEV; 789 790 ret = i915_gem_object_wait(obj, 791 I915_WAIT_INTERRUPTIBLE | 792 I915_WAIT_LOCKED, 793 MAX_SCHEDULE_TIMEOUT, 794 NULL); 795 if (ret) 796 return ret; 797 798 ret = i915_gem_object_pin_pages(obj); 799 if (ret) 800 return ret; 801 802 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ || 803 !static_cpu_has(X86_FEATURE_CLFLUSH)) { 804 ret = i915_gem_object_set_to_cpu_domain(obj, false); 805 if (ret) 806 goto err_unpin; 807 else 808 goto out; 809 } 810 811 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); 812 813 /* If we're not in the cpu read domain, set ourself into the gtt 814 * read domain and manually flush cachelines (if required). This 815 * optimizes for the case when the gpu will dirty the data 816 * anyway again before the next pread happens. 817 */ 818 if (!obj->cache_dirty && 819 !(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) 820 *needs_clflush = CLFLUSH_BEFORE; 821 822 out: 823 /* return with the pages pinned */ 824 return 0; 825 826 err_unpin: 827 i915_gem_object_unpin_pages(obj); 828 return ret; 829 } 830 831 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, 832 unsigned int *needs_clflush) 833 { 834 int ret; 835 836 lockdep_assert_held(&obj->base.dev->struct_mutex); 837 838 *needs_clflush = 0; 839 if (!i915_gem_object_has_struct_page(obj)) 840 return -ENODEV; 841 842 ret = i915_gem_object_wait(obj, 843 I915_WAIT_INTERRUPTIBLE | 844 I915_WAIT_LOCKED | 845 I915_WAIT_ALL, 846 MAX_SCHEDULE_TIMEOUT, 847 NULL); 848 if (ret) 849 return ret; 850 851 ret = i915_gem_object_pin_pages(obj); 852 if (ret) 853 return ret; 854 855 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE || 856 !static_cpu_has(X86_FEATURE_CLFLUSH)) { 857 ret = i915_gem_object_set_to_cpu_domain(obj, true); 858 if (ret) 859 goto err_unpin; 860 else 861 goto out; 862 } 863 864 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); 865 866 /* If we're not in the cpu write domain, set ourself into the 867 * gtt write domain and manually flush cachelines (as required). 868 * This optimizes for the case when the gpu will use the data 869 * right away and we therefore have to clflush anyway. 870 */ 871 if (!obj->cache_dirty) { 872 *needs_clflush |= CLFLUSH_AFTER; 873 874 /* 875 * Same trick applies to invalidate partially written 876 * cachelines read before writing. 877 */ 878 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) 879 *needs_clflush |= CLFLUSH_BEFORE; 880 } 881 882 out: 883 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 884 obj->mm.dirty = true; 885 /* return with the pages pinned */ 886 return 0; 887 888 err_unpin: 889 i915_gem_object_unpin_pages(obj); 890 return ret; 891 } 892 893 static void 894 shmem_clflush_swizzled_range(char *addr, unsigned long length, 895 bool swizzled) 896 { 897 if (unlikely(swizzled)) { 898 unsigned long start = (unsigned long) addr; 899 unsigned long end = (unsigned long) addr + length; 900 901 /* For swizzling simply ensure that we always flush both 902 * channels. Lame, but simple and it works. Swizzled 903 * pwrite/pread is far from a hotpath - current userspace 904 * doesn't use it at all. */ 905 start = round_down(start, 128); 906 end = round_up(end, 128); 907 908 drm_clflush_virt_range((void *)start, end - start); 909 } else { 910 drm_clflush_virt_range(addr, length); 911 } 912 913 } 914 915 /* Only difference to the fast-path function is that this can handle bit17 916 * and uses non-atomic copy and kmap functions. */ 917 static int 918 shmem_pread_slow(struct page *page, int offset, int length, 919 char __user *user_data, 920 bool page_do_bit17_swizzling, bool needs_clflush) 921 { 922 char *vaddr; 923 int ret; 924 925 vaddr = kmap(page); 926 if (needs_clflush) 927 shmem_clflush_swizzled_range(vaddr + offset, length, 928 page_do_bit17_swizzling); 929 930 if (page_do_bit17_swizzling) 931 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length); 932 else 933 ret = __copy_to_user(user_data, vaddr + offset, length); 934 kunmap(page); 935 936 return ret ? - EFAULT : 0; 937 } 938 939 static int 940 shmem_pread(struct page *page, int offset, int length, char __user *user_data, 941 bool page_do_bit17_swizzling, bool needs_clflush) 942 { 943 int ret; 944 945 ret = -ENODEV; 946 if (!page_do_bit17_swizzling) { 947 char *vaddr = kmap_atomic(page); 948 949 if (needs_clflush) 950 drm_clflush_virt_range(vaddr + offset, length); 951 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length); 952 kunmap_atomic(vaddr); 953 } 954 if (ret == 0) 955 return 0; 956 957 return shmem_pread_slow(page, offset, length, user_data, 958 page_do_bit17_swizzling, needs_clflush); 959 } 960 961 static int 962 i915_gem_shmem_pread(struct drm_i915_gem_object *obj, 963 struct drm_i915_gem_pread *args) 964 { 965 char __user *user_data; 966 u64 remain; 967 unsigned int obj_do_bit17_swizzling; 968 unsigned int needs_clflush; 969 unsigned int idx, offset; 970 int ret; 971 972 obj_do_bit17_swizzling = 0; 973 if (i915_gem_object_needs_bit17_swizzle(obj)) 974 obj_do_bit17_swizzling = BIT(17); 975 976 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex); 977 if (ret) 978 return ret; 979 980 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush); 981 mutex_unlock(&obj->base.dev->struct_mutex); 982 if (ret) 983 return ret; 984 985 remain = args->size; 986 user_data = u64_to_user_ptr(args->data_ptr); 987 offset = offset_in_page(args->offset); 988 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { 989 struct page *page = i915_gem_object_get_page(obj, idx); 990 int length; 991 992 length = remain; 993 if (offset + length > PAGE_SIZE) 994 length = PAGE_SIZE - offset; 995 996 ret = shmem_pread(page, offset, length, user_data, 997 page_to_phys(page) & obj_do_bit17_swizzling, 998 needs_clflush); 999 if (ret) 1000 break; 1001 1002 remain -= length; 1003 user_data += length; 1004 offset = 0; 1005 } 1006 1007 i915_gem_obj_finish_shmem_access(obj); 1008 return ret; 1009 } 1010 1011 static inline bool 1012 gtt_user_read(struct io_mapping *mapping, 1013 loff_t base, int offset, 1014 char __user *user_data, int length) 1015 { 1016 void *vaddr; 1017 unsigned long unwritten; 1018 1019 /* We can use the cpu mem copy function because this is X86. */ 1020 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base); 1021 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length); 1022 io_mapping_unmap_atomic(vaddr); 1023 if (unwritten) { 1024 vaddr = (void __force *) 1025 io_mapping_map_wc(mapping, base, PAGE_SIZE); 1026 unwritten = copy_to_user(user_data, vaddr + offset, length); 1027 io_mapping_unmap(vaddr); 1028 } 1029 return unwritten; 1030 } 1031 1032 static int 1033 i915_gem_gtt_pread(struct drm_i915_gem_object *obj, 1034 const struct drm_i915_gem_pread *args) 1035 { 1036 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1037 struct i915_ggtt *ggtt = &i915->ggtt; 1038 struct drm_mm_node node; 1039 struct i915_vma *vma; 1040 void __user *user_data; 1041 u64 remain, offset; 1042 int ret; 1043 1044 ret = mutex_lock_interruptible(&i915->drm.struct_mutex); 1045 if (ret) 1046 return ret; 1047 1048 intel_runtime_pm_get(i915); 1049 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 1050 PIN_MAPPABLE | PIN_NONBLOCK); 1051 if (!IS_ERR(vma)) { 1052 node.start = i915_ggtt_offset(vma); 1053 node.allocated = false; 1054 ret = i915_vma_put_fence(vma); 1055 if (ret) { 1056 i915_vma_unpin(vma); 1057 vma = ERR_PTR(ret); 1058 } 1059 } 1060 if (IS_ERR(vma)) { 1061 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); 1062 if (ret) 1063 goto out_unlock; 1064 GEM_BUG_ON(!node.allocated); 1065 } 1066 1067 ret = i915_gem_object_set_to_gtt_domain(obj, false); 1068 if (ret) 1069 goto out_unpin; 1070 1071 mutex_unlock(&i915->drm.struct_mutex); 1072 1073 user_data = u64_to_user_ptr(args->data_ptr); 1074 remain = args->size; 1075 offset = args->offset; 1076 1077 while (remain > 0) { 1078 /* Operation in this page 1079 * 1080 * page_base = page offset within aperture 1081 * page_offset = offset within page 1082 * page_length = bytes to copy for this page 1083 */ 1084 u32 page_base = node.start; 1085 unsigned page_offset = offset_in_page(offset); 1086 unsigned page_length = PAGE_SIZE - page_offset; 1087 page_length = remain < page_length ? remain : page_length; 1088 if (node.allocated) { 1089 wmb(); 1090 ggtt->base.insert_page(&ggtt->base, 1091 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), 1092 node.start, I915_CACHE_NONE, 0); 1093 wmb(); 1094 } else { 1095 page_base += offset & PAGE_MASK; 1096 } 1097 1098 if (gtt_user_read(&ggtt->mappable, page_base, page_offset, 1099 user_data, page_length)) { 1100 ret = -EFAULT; 1101 break; 1102 } 1103 1104 remain -= page_length; 1105 user_data += page_length; 1106 offset += page_length; 1107 } 1108 1109 mutex_lock(&i915->drm.struct_mutex); 1110 out_unpin: 1111 if (node.allocated) { 1112 wmb(); 1113 ggtt->base.clear_range(&ggtt->base, 1114 node.start, node.size); 1115 remove_mappable_node(&node); 1116 } else { 1117 i915_vma_unpin(vma); 1118 } 1119 out_unlock: 1120 intel_runtime_pm_put(i915); 1121 mutex_unlock(&i915->drm.struct_mutex); 1122 1123 return ret; 1124 } 1125 1126 /** 1127 * Reads data from the object referenced by handle. 1128 * @dev: drm device pointer 1129 * @data: ioctl data blob 1130 * @file: drm file pointer 1131 * 1132 * On error, the contents of *data are undefined. 1133 */ 1134 int 1135 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 1136 struct drm_file *file) 1137 { 1138 struct drm_i915_gem_pread *args = data; 1139 struct drm_i915_gem_object *obj; 1140 int ret; 1141 1142 if (args->size == 0) 1143 return 0; 1144 1145 if (!access_ok(VERIFY_WRITE, 1146 u64_to_user_ptr(args->data_ptr), 1147 args->size)) 1148 return -EFAULT; 1149 1150 obj = i915_gem_object_lookup(file, args->handle); 1151 if (!obj) 1152 return -ENOENT; 1153 1154 /* Bounds check source. */ 1155 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { 1156 ret = -EINVAL; 1157 goto out; 1158 } 1159 1160 trace_i915_gem_object_pread(obj, args->offset, args->size); 1161 1162 ret = i915_gem_object_wait(obj, 1163 I915_WAIT_INTERRUPTIBLE, 1164 MAX_SCHEDULE_TIMEOUT, 1165 to_rps_client(file)); 1166 if (ret) 1167 goto out; 1168 1169 ret = i915_gem_object_pin_pages(obj); 1170 if (ret) 1171 goto out; 1172 1173 ret = i915_gem_shmem_pread(obj, args); 1174 if (ret == -EFAULT || ret == -ENODEV) 1175 ret = i915_gem_gtt_pread(obj, args); 1176 1177 i915_gem_object_unpin_pages(obj); 1178 out: 1179 i915_gem_object_put(obj); 1180 return ret; 1181 } 1182 1183 /* This is the fast write path which cannot handle 1184 * page faults in the source data 1185 */ 1186 1187 static inline bool 1188 ggtt_write(struct io_mapping *mapping, 1189 loff_t base, int offset, 1190 char __user *user_data, int length) 1191 { 1192 void *vaddr; 1193 unsigned long unwritten; 1194 1195 /* We can use the cpu mem copy function because this is X86. */ 1196 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base); 1197 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset, 1198 user_data, length); 1199 io_mapping_unmap_atomic(vaddr); 1200 if (unwritten) { 1201 vaddr = (void __force *) 1202 io_mapping_map_wc(mapping, base, PAGE_SIZE); 1203 unwritten = copy_from_user(vaddr + offset, user_data, length); 1204 io_mapping_unmap(vaddr); 1205 } 1206 1207 return unwritten; 1208 } 1209 1210 /** 1211 * This is the fast pwrite path, where we copy the data directly from the 1212 * user into the GTT, uncached. 1213 * @obj: i915 GEM object 1214 * @args: pwrite arguments structure 1215 */ 1216 static int 1217 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj, 1218 const struct drm_i915_gem_pwrite *args) 1219 { 1220 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1221 struct i915_ggtt *ggtt = &i915->ggtt; 1222 struct drm_mm_node node; 1223 struct i915_vma *vma; 1224 u64 remain, offset; 1225 void __user *user_data; 1226 int ret; 1227 1228 ret = mutex_lock_interruptible(&i915->drm.struct_mutex); 1229 if (ret) 1230 return ret; 1231 1232 intel_runtime_pm_get(i915); 1233 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 1234 PIN_MAPPABLE | PIN_NONBLOCK); 1235 if (!IS_ERR(vma)) { 1236 node.start = i915_ggtt_offset(vma); 1237 node.allocated = false; 1238 ret = i915_vma_put_fence(vma); 1239 if (ret) { 1240 i915_vma_unpin(vma); 1241 vma = ERR_PTR(ret); 1242 } 1243 } 1244 if (IS_ERR(vma)) { 1245 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); 1246 if (ret) 1247 goto out_unlock; 1248 GEM_BUG_ON(!node.allocated); 1249 } 1250 1251 ret = i915_gem_object_set_to_gtt_domain(obj, true); 1252 if (ret) 1253 goto out_unpin; 1254 1255 mutex_unlock(&i915->drm.struct_mutex); 1256 1257 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 1258 1259 user_data = u64_to_user_ptr(args->data_ptr); 1260 offset = args->offset; 1261 remain = args->size; 1262 while (remain) { 1263 /* Operation in this page 1264 * 1265 * page_base = page offset within aperture 1266 * page_offset = offset within page 1267 * page_length = bytes to copy for this page 1268 */ 1269 u32 page_base = node.start; 1270 unsigned int page_offset = offset_in_page(offset); 1271 unsigned int page_length = PAGE_SIZE - page_offset; 1272 page_length = remain < page_length ? remain : page_length; 1273 if (node.allocated) { 1274 wmb(); /* flush the write before we modify the GGTT */ 1275 ggtt->base.insert_page(&ggtt->base, 1276 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), 1277 node.start, I915_CACHE_NONE, 0); 1278 wmb(); /* flush modifications to the GGTT (insert_page) */ 1279 } else { 1280 page_base += offset & PAGE_MASK; 1281 } 1282 /* If we get a fault while copying data, then (presumably) our 1283 * source page isn't available. Return the error and we'll 1284 * retry in the slow path. 1285 * If the object is non-shmem backed, we retry again with the 1286 * path that handles page fault. 1287 */ 1288 if (ggtt_write(&ggtt->mappable, page_base, page_offset, 1289 user_data, page_length)) { 1290 ret = -EFAULT; 1291 break; 1292 } 1293 1294 remain -= page_length; 1295 user_data += page_length; 1296 offset += page_length; 1297 } 1298 intel_fb_obj_flush(obj, ORIGIN_CPU); 1299 1300 mutex_lock(&i915->drm.struct_mutex); 1301 out_unpin: 1302 if (node.allocated) { 1303 wmb(); 1304 ggtt->base.clear_range(&ggtt->base, 1305 node.start, node.size); 1306 remove_mappable_node(&node); 1307 } else { 1308 i915_vma_unpin(vma); 1309 } 1310 out_unlock: 1311 intel_runtime_pm_put(i915); 1312 mutex_unlock(&i915->drm.struct_mutex); 1313 return ret; 1314 } 1315 1316 static int 1317 shmem_pwrite_slow(struct page *page, int offset, int length, 1318 char __user *user_data, 1319 bool page_do_bit17_swizzling, 1320 bool needs_clflush_before, 1321 bool needs_clflush_after) 1322 { 1323 char *vaddr; 1324 int ret; 1325 1326 vaddr = kmap(page); 1327 if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) 1328 shmem_clflush_swizzled_range(vaddr + offset, length, 1329 page_do_bit17_swizzling); 1330 if (page_do_bit17_swizzling) 1331 ret = __copy_from_user_swizzled(vaddr, offset, user_data, 1332 length); 1333 else 1334 ret = __copy_from_user(vaddr + offset, user_data, length); 1335 if (needs_clflush_after) 1336 shmem_clflush_swizzled_range(vaddr + offset, length, 1337 page_do_bit17_swizzling); 1338 kunmap(page); 1339 1340 return ret ? -EFAULT : 0; 1341 } 1342 1343 /* Per-page copy function for the shmem pwrite fastpath. 1344 * Flushes invalid cachelines before writing to the target if 1345 * needs_clflush_before is set and flushes out any written cachelines after 1346 * writing if needs_clflush is set. 1347 */ 1348 static int 1349 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data, 1350 bool page_do_bit17_swizzling, 1351 bool needs_clflush_before, 1352 bool needs_clflush_after) 1353 { 1354 int ret; 1355 1356 ret = -ENODEV; 1357 if (!page_do_bit17_swizzling) { 1358 char *vaddr = kmap_atomic(page); 1359 1360 if (needs_clflush_before) 1361 drm_clflush_virt_range(vaddr + offset, len); 1362 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len); 1363 if (needs_clflush_after) 1364 drm_clflush_virt_range(vaddr + offset, len); 1365 1366 kunmap_atomic(vaddr); 1367 } 1368 if (ret == 0) 1369 return ret; 1370 1371 return shmem_pwrite_slow(page, offset, len, user_data, 1372 page_do_bit17_swizzling, 1373 needs_clflush_before, 1374 needs_clflush_after); 1375 } 1376 1377 static int 1378 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj, 1379 const struct drm_i915_gem_pwrite *args) 1380 { 1381 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1382 void __user *user_data; 1383 u64 remain; 1384 unsigned int obj_do_bit17_swizzling; 1385 unsigned int partial_cacheline_write; 1386 unsigned int needs_clflush; 1387 unsigned int offset, idx; 1388 int ret; 1389 1390 ret = mutex_lock_interruptible(&i915->drm.struct_mutex); 1391 if (ret) 1392 return ret; 1393 1394 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush); 1395 mutex_unlock(&i915->drm.struct_mutex); 1396 if (ret) 1397 return ret; 1398 1399 obj_do_bit17_swizzling = 0; 1400 if (i915_gem_object_needs_bit17_swizzle(obj)) 1401 obj_do_bit17_swizzling = BIT(17); 1402 1403 /* If we don't overwrite a cacheline completely we need to be 1404 * careful to have up-to-date data by first clflushing. Don't 1405 * overcomplicate things and flush the entire patch. 1406 */ 1407 partial_cacheline_write = 0; 1408 if (needs_clflush & CLFLUSH_BEFORE) 1409 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1; 1410 1411 user_data = u64_to_user_ptr(args->data_ptr); 1412 remain = args->size; 1413 offset = offset_in_page(args->offset); 1414 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { 1415 struct page *page = i915_gem_object_get_page(obj, idx); 1416 int length; 1417 1418 length = remain; 1419 if (offset + length > PAGE_SIZE) 1420 length = PAGE_SIZE - offset; 1421 1422 ret = shmem_pwrite(page, offset, length, user_data, 1423 page_to_phys(page) & obj_do_bit17_swizzling, 1424 (offset | length) & partial_cacheline_write, 1425 needs_clflush & CLFLUSH_AFTER); 1426 if (ret) 1427 break; 1428 1429 remain -= length; 1430 user_data += length; 1431 offset = 0; 1432 } 1433 1434 intel_fb_obj_flush(obj, ORIGIN_CPU); 1435 i915_gem_obj_finish_shmem_access(obj); 1436 return ret; 1437 } 1438 1439 /** 1440 * Writes data to the object referenced by handle. 1441 * @dev: drm device 1442 * @data: ioctl data blob 1443 * @file: drm file 1444 * 1445 * On error, the contents of the buffer that were to be modified are undefined. 1446 */ 1447 int 1448 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 1449 struct drm_file *file) 1450 { 1451 struct drm_i915_gem_pwrite *args = data; 1452 struct drm_i915_gem_object *obj; 1453 int ret; 1454 1455 if (args->size == 0) 1456 return 0; 1457 1458 if (!access_ok(VERIFY_READ, 1459 u64_to_user_ptr(args->data_ptr), 1460 args->size)) 1461 return -EFAULT; 1462 1463 obj = i915_gem_object_lookup(file, args->handle); 1464 if (!obj) 1465 return -ENOENT; 1466 1467 /* Bounds check destination. */ 1468 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { 1469 ret = -EINVAL; 1470 goto err; 1471 } 1472 1473 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 1474 1475 ret = -ENODEV; 1476 if (obj->ops->pwrite) 1477 ret = obj->ops->pwrite(obj, args); 1478 if (ret != -ENODEV) 1479 goto err; 1480 1481 ret = i915_gem_object_wait(obj, 1482 I915_WAIT_INTERRUPTIBLE | 1483 I915_WAIT_ALL, 1484 MAX_SCHEDULE_TIMEOUT, 1485 to_rps_client(file)); 1486 if (ret) 1487 goto err; 1488 1489 ret = i915_gem_object_pin_pages(obj); 1490 if (ret) 1491 goto err; 1492 1493 ret = -EFAULT; 1494 /* We can only do the GTT pwrite on untiled buffers, as otherwise 1495 * it would end up going through the fenced access, and we'll get 1496 * different detiling behavior between reading and writing. 1497 * pread/pwrite currently are reading and writing from the CPU 1498 * perspective, requiring manual detiling by the client. 1499 */ 1500 if (!i915_gem_object_has_struct_page(obj) || 1501 cpu_write_needs_clflush(obj)) 1502 /* Note that the gtt paths might fail with non-page-backed user 1503 * pointers (e.g. gtt mappings when moving data between 1504 * textures). Fallback to the shmem path in that case. 1505 */ 1506 ret = i915_gem_gtt_pwrite_fast(obj, args); 1507 1508 if (ret == -EFAULT || ret == -ENOSPC) { 1509 if (obj->phys_handle) 1510 ret = i915_gem_phys_pwrite(obj, args, file); 1511 else 1512 ret = i915_gem_shmem_pwrite(obj, args); 1513 } 1514 1515 i915_gem_object_unpin_pages(obj); 1516 err: 1517 i915_gem_object_put(obj); 1518 return ret; 1519 } 1520 1521 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj) 1522 { 1523 struct drm_i915_private *i915; 1524 struct list_head *list; 1525 struct i915_vma *vma; 1526 1527 list_for_each_entry(vma, &obj->vma_list, obj_link) { 1528 if (!i915_vma_is_ggtt(vma)) 1529 break; 1530 1531 if (i915_vma_is_active(vma)) 1532 continue; 1533 1534 if (!drm_mm_node_allocated(&vma->node)) 1535 continue; 1536 1537 list_move_tail(&vma->vm_link, &vma->vm->inactive_list); 1538 } 1539 1540 i915 = to_i915(obj->base.dev); 1541 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list; 1542 list_move_tail(&obj->global_link, list); 1543 } 1544 1545 /** 1546 * Called when user space prepares to use an object with the CPU, either 1547 * through the mmap ioctl's mapping or a GTT mapping. 1548 * @dev: drm device 1549 * @data: ioctl data blob 1550 * @file: drm file 1551 */ 1552 int 1553 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 1554 struct drm_file *file) 1555 { 1556 struct drm_i915_gem_set_domain *args = data; 1557 struct drm_i915_gem_object *obj; 1558 uint32_t read_domains = args->read_domains; 1559 uint32_t write_domain = args->write_domain; 1560 int err; 1561 1562 /* Only handle setting domains to types used by the CPU. */ 1563 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS) 1564 return -EINVAL; 1565 1566 /* Having something in the write domain implies it's in the read 1567 * domain, and only that read domain. Enforce that in the request. 1568 */ 1569 if (write_domain != 0 && read_domains != write_domain) 1570 return -EINVAL; 1571 1572 obj = i915_gem_object_lookup(file, args->handle); 1573 if (!obj) 1574 return -ENOENT; 1575 1576 /* Try to flush the object off the GPU without holding the lock. 1577 * We will repeat the flush holding the lock in the normal manner 1578 * to catch cases where we are gazumped. 1579 */ 1580 err = i915_gem_object_wait(obj, 1581 I915_WAIT_INTERRUPTIBLE | 1582 (write_domain ? I915_WAIT_ALL : 0), 1583 MAX_SCHEDULE_TIMEOUT, 1584 to_rps_client(file)); 1585 if (err) 1586 goto out; 1587 1588 /* Flush and acquire obj->pages so that we are coherent through 1589 * direct access in memory with previous cached writes through 1590 * shmemfs and that our cache domain tracking remains valid. 1591 * For example, if the obj->filp was moved to swap without us 1592 * being notified and releasing the pages, we would mistakenly 1593 * continue to assume that the obj remained out of the CPU cached 1594 * domain. 1595 */ 1596 err = i915_gem_object_pin_pages(obj); 1597 if (err) 1598 goto out; 1599 1600 err = i915_mutex_lock_interruptible(dev); 1601 if (err) 1602 goto out_unpin; 1603 1604 if (read_domains & I915_GEM_DOMAIN_WC) 1605 err = i915_gem_object_set_to_wc_domain(obj, write_domain); 1606 else if (read_domains & I915_GEM_DOMAIN_GTT) 1607 err = i915_gem_object_set_to_gtt_domain(obj, write_domain); 1608 else 1609 err = i915_gem_object_set_to_cpu_domain(obj, write_domain); 1610 1611 /* And bump the LRU for this access */ 1612 i915_gem_object_bump_inactive_ggtt(obj); 1613 1614 mutex_unlock(&dev->struct_mutex); 1615 1616 if (write_domain != 0) 1617 intel_fb_obj_invalidate(obj, 1618 fb_write_origin(obj, write_domain)); 1619 1620 out_unpin: 1621 i915_gem_object_unpin_pages(obj); 1622 out: 1623 i915_gem_object_put(obj); 1624 return err; 1625 } 1626 1627 /** 1628 * Called when user space has done writes to this buffer 1629 * @dev: drm device 1630 * @data: ioctl data blob 1631 * @file: drm file 1632 */ 1633 int 1634 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1635 struct drm_file *file) 1636 { 1637 struct drm_i915_gem_sw_finish *args = data; 1638 struct drm_i915_gem_object *obj; 1639 1640 obj = i915_gem_object_lookup(file, args->handle); 1641 if (!obj) 1642 return -ENOENT; 1643 1644 /* Pinned buffers may be scanout, so flush the cache */ 1645 i915_gem_object_flush_if_display(obj); 1646 i915_gem_object_put(obj); 1647 1648 return 0; 1649 } 1650 1651 /** 1652 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address 1653 * it is mapped to. 1654 * @dev: drm device 1655 * @data: ioctl data blob 1656 * @file: drm file 1657 * 1658 * While the mapping holds a reference on the contents of the object, it doesn't 1659 * imply a ref on the object itself. 1660 * 1661 * IMPORTANT: 1662 * 1663 * DRM driver writers who look a this function as an example for how to do GEM 1664 * mmap support, please don't implement mmap support like here. The modern way 1665 * to implement DRM mmap support is with an mmap offset ioctl (like 1666 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly. 1667 * That way debug tooling like valgrind will understand what's going on, hiding 1668 * the mmap call in a driver private ioctl will break that. The i915 driver only 1669 * does cpu mmaps this way because we didn't know better. 1670 */ 1671 int 1672 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1673 struct drm_file *file) 1674 { 1675 struct drm_i915_gem_mmap *args = data; 1676 struct drm_i915_gem_object *obj; 1677 unsigned long addr; 1678 1679 if (args->flags & ~(I915_MMAP_WC)) 1680 return -EINVAL; 1681 1682 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT)) 1683 return -ENODEV; 1684 1685 obj = i915_gem_object_lookup(file, args->handle); 1686 if (!obj) 1687 return -ENOENT; 1688 1689 /* prime objects have no backing filp to GEM mmap 1690 * pages from. 1691 */ 1692 if (!obj->base.filp) { 1693 i915_gem_object_put(obj); 1694 return -EINVAL; 1695 } 1696 1697 addr = vm_mmap(obj->base.filp, 0, args->size, 1698 PROT_READ | PROT_WRITE, MAP_SHARED, 1699 args->offset); 1700 if (args->flags & I915_MMAP_WC) { 1701 struct mm_struct *mm = current->mm; 1702 struct vm_area_struct *vma; 1703 1704 if (down_write_killable(&mm->mmap_sem)) { 1705 i915_gem_object_put(obj); 1706 return -EINTR; 1707 } 1708 vma = find_vma(mm, addr); 1709 if (vma) 1710 vma->vm_page_prot = 1711 pgprot_writecombine(vm_get_page_prot(vma->vm_flags)); 1712 else 1713 addr = -ENOMEM; 1714 up_write(&mm->mmap_sem); 1715 1716 /* This may race, but that's ok, it only gets set */ 1717 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU); 1718 } 1719 i915_gem_object_put(obj); 1720 if (IS_ERR((void *)addr)) 1721 return addr; 1722 1723 args->addr_ptr = (uint64_t) addr; 1724 1725 return 0; 1726 } 1727 1728 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj) 1729 { 1730 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT; 1731 } 1732 1733 /** 1734 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps 1735 * 1736 * A history of the GTT mmap interface: 1737 * 1738 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to 1739 * aligned and suitable for fencing, and still fit into the available 1740 * mappable space left by the pinned display objects. A classic problem 1741 * we called the page-fault-of-doom where we would ping-pong between 1742 * two objects that could not fit inside the GTT and so the memcpy 1743 * would page one object in at the expense of the other between every 1744 * single byte. 1745 * 1746 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none 1747 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the 1748 * object is too large for the available space (or simply too large 1749 * for the mappable aperture!), a view is created instead and faulted 1750 * into userspace. (This view is aligned and sized appropriately for 1751 * fenced access.) 1752 * 1753 * 2 - Recognise WC as a separate cache domain so that we can flush the 1754 * delayed writes via GTT before performing direct access via WC. 1755 * 1756 * Restrictions: 1757 * 1758 * * snoopable objects cannot be accessed via the GTT. It can cause machine 1759 * hangs on some architectures, corruption on others. An attempt to service 1760 * a GTT page fault from a snoopable object will generate a SIGBUS. 1761 * 1762 * * the object must be able to fit into RAM (physical memory, though no 1763 * limited to the mappable aperture). 1764 * 1765 * 1766 * Caveats: 1767 * 1768 * * a new GTT page fault will synchronize rendering from the GPU and flush 1769 * all data to system memory. Subsequent access will not be synchronized. 1770 * 1771 * * all mappings are revoked on runtime device suspend. 1772 * 1773 * * there are only 8, 16 or 32 fence registers to share between all users 1774 * (older machines require fence register for display and blitter access 1775 * as well). Contention of the fence registers will cause the previous users 1776 * to be unmapped and any new access will generate new page faults. 1777 * 1778 * * running out of memory while servicing a fault may generate a SIGBUS, 1779 * rather than the expected SIGSEGV. 1780 */ 1781 int i915_gem_mmap_gtt_version(void) 1782 { 1783 return 2; 1784 } 1785 1786 static inline struct i915_ggtt_view 1787 compute_partial_view(struct drm_i915_gem_object *obj, 1788 pgoff_t page_offset, 1789 unsigned int chunk) 1790 { 1791 struct i915_ggtt_view view; 1792 1793 if (i915_gem_object_is_tiled(obj)) 1794 chunk = roundup(chunk, tile_row_pages(obj)); 1795 1796 view.type = I915_GGTT_VIEW_PARTIAL; 1797 view.partial.offset = rounddown(page_offset, chunk); 1798 view.partial.size = 1799 min_t(unsigned int, chunk, 1800 (obj->base.size >> PAGE_SHIFT) - view.partial.offset); 1801 1802 /* If the partial covers the entire object, just create a normal VMA. */ 1803 if (chunk >= obj->base.size >> PAGE_SHIFT) 1804 view.type = I915_GGTT_VIEW_NORMAL; 1805 1806 return view; 1807 } 1808 1809 /** 1810 * i915_gem_fault - fault a page into the GTT 1811 * @vmf: fault info 1812 * 1813 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1814 * from userspace. The fault handler takes care of binding the object to 1815 * the GTT (if needed), allocating and programming a fence register (again, 1816 * only if needed based on whether the old reg is still valid or the object 1817 * is tiled) and inserting a new PTE into the faulting process. 1818 * 1819 * Note that the faulting process may involve evicting existing objects 1820 * from the GTT and/or fence registers to make room. So performance may 1821 * suffer if the GTT working set is large or there are few fence registers 1822 * left. 1823 * 1824 * The current feature set supported by i915_gem_fault() and thus GTT mmaps 1825 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version). 1826 */ 1827 int i915_gem_fault(struct vm_fault *vmf) 1828 { 1829 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */ 1830 struct vm_area_struct *area = vmf->vma; 1831 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data); 1832 struct drm_device *dev = obj->base.dev; 1833 struct drm_i915_private *dev_priv = to_i915(dev); 1834 struct i915_ggtt *ggtt = &dev_priv->ggtt; 1835 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 1836 struct i915_vma *vma; 1837 pgoff_t page_offset; 1838 unsigned int flags; 1839 int ret; 1840 1841 /* We don't use vmf->pgoff since that has the fake offset */ 1842 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT; 1843 1844 trace_i915_gem_object_fault(obj, page_offset, true, write); 1845 1846 /* Try to flush the object off the GPU first without holding the lock. 1847 * Upon acquiring the lock, we will perform our sanity checks and then 1848 * repeat the flush holding the lock in the normal manner to catch cases 1849 * where we are gazumped. 1850 */ 1851 ret = i915_gem_object_wait(obj, 1852 I915_WAIT_INTERRUPTIBLE, 1853 MAX_SCHEDULE_TIMEOUT, 1854 NULL); 1855 if (ret) 1856 goto err; 1857 1858 ret = i915_gem_object_pin_pages(obj); 1859 if (ret) 1860 goto err; 1861 1862 intel_runtime_pm_get(dev_priv); 1863 1864 ret = i915_mutex_lock_interruptible(dev); 1865 if (ret) 1866 goto err_rpm; 1867 1868 /* Access to snoopable pages through the GTT is incoherent. */ 1869 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) { 1870 ret = -EFAULT; 1871 goto err_unlock; 1872 } 1873 1874 /* If the object is smaller than a couple of partial vma, it is 1875 * not worth only creating a single partial vma - we may as well 1876 * clear enough space for the full object. 1877 */ 1878 flags = PIN_MAPPABLE; 1879 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT) 1880 flags |= PIN_NONBLOCK | PIN_NONFAULT; 1881 1882 /* Now pin it into the GTT as needed */ 1883 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags); 1884 if (IS_ERR(vma)) { 1885 /* Use a partial view if it is bigger than available space */ 1886 struct i915_ggtt_view view = 1887 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES); 1888 1889 /* Userspace is now writing through an untracked VMA, abandon 1890 * all hope that the hardware is able to track future writes. 1891 */ 1892 obj->frontbuffer_ggtt_origin = ORIGIN_CPU; 1893 1894 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE); 1895 } 1896 if (IS_ERR(vma)) { 1897 ret = PTR_ERR(vma); 1898 goto err_unlock; 1899 } 1900 1901 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1902 if (ret) 1903 goto err_unpin; 1904 1905 ret = i915_vma_get_fence(vma); 1906 if (ret) 1907 goto err_unpin; 1908 1909 /* Mark as being mmapped into userspace for later revocation */ 1910 assert_rpm_wakelock_held(dev_priv); 1911 if (list_empty(&obj->userfault_link)) 1912 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list); 1913 1914 /* Finally, remap it using the new GTT offset */ 1915 ret = remap_io_mapping(area, 1916 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT), 1917 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT, 1918 min_t(u64, vma->size, area->vm_end - area->vm_start), 1919 &ggtt->mappable); 1920 1921 err_unpin: 1922 __i915_vma_unpin(vma); 1923 err_unlock: 1924 mutex_unlock(&dev->struct_mutex); 1925 err_rpm: 1926 intel_runtime_pm_put(dev_priv); 1927 i915_gem_object_unpin_pages(obj); 1928 err: 1929 switch (ret) { 1930 case -EIO: 1931 /* 1932 * We eat errors when the gpu is terminally wedged to avoid 1933 * userspace unduly crashing (gl has no provisions for mmaps to 1934 * fail). But any other -EIO isn't ours (e.g. swap in failure) 1935 * and so needs to be reported. 1936 */ 1937 if (!i915_terminally_wedged(&dev_priv->gpu_error)) { 1938 ret = VM_FAULT_SIGBUS; 1939 break; 1940 } 1941 case -EAGAIN: 1942 /* 1943 * EAGAIN means the gpu is hung and we'll wait for the error 1944 * handler to reset everything when re-faulting in 1945 * i915_mutex_lock_interruptible. 1946 */ 1947 case 0: 1948 case -ERESTARTSYS: 1949 case -EINTR: 1950 case -EBUSY: 1951 /* 1952 * EBUSY is ok: this just means that another thread 1953 * already did the job. 1954 */ 1955 ret = VM_FAULT_NOPAGE; 1956 break; 1957 case -ENOMEM: 1958 ret = VM_FAULT_OOM; 1959 break; 1960 case -ENOSPC: 1961 case -EFAULT: 1962 ret = VM_FAULT_SIGBUS; 1963 break; 1964 default: 1965 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); 1966 ret = VM_FAULT_SIGBUS; 1967 break; 1968 } 1969 return ret; 1970 } 1971 1972 /** 1973 * i915_gem_release_mmap - remove physical page mappings 1974 * @obj: obj in question 1975 * 1976 * Preserve the reservation of the mmapping with the DRM core code, but 1977 * relinquish ownership of the pages back to the system. 1978 * 1979 * It is vital that we remove the page mapping if we have mapped a tiled 1980 * object through the GTT and then lose the fence register due to 1981 * resource pressure. Similarly if the object has been moved out of the 1982 * aperture, than pages mapped into userspace must be revoked. Removing the 1983 * mapping will then trigger a page fault on the next user access, allowing 1984 * fixup by i915_gem_fault(). 1985 */ 1986 void 1987 i915_gem_release_mmap(struct drm_i915_gem_object *obj) 1988 { 1989 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1990 1991 /* Serialisation between user GTT access and our code depends upon 1992 * revoking the CPU's PTE whilst the mutex is held. The next user 1993 * pagefault then has to wait until we release the mutex. 1994 * 1995 * Note that RPM complicates somewhat by adding an additional 1996 * requirement that operations to the GGTT be made holding the RPM 1997 * wakeref. 1998 */ 1999 lockdep_assert_held(&i915->drm.struct_mutex); 2000 intel_runtime_pm_get(i915); 2001 2002 if (list_empty(&obj->userfault_link)) 2003 goto out; 2004 2005 list_del_init(&obj->userfault_link); 2006 drm_vma_node_unmap(&obj->base.vma_node, 2007 obj->base.dev->anon_inode->i_mapping); 2008 2009 /* Ensure that the CPU's PTE are revoked and there are not outstanding 2010 * memory transactions from userspace before we return. The TLB 2011 * flushing implied above by changing the PTE above *should* be 2012 * sufficient, an extra barrier here just provides us with a bit 2013 * of paranoid documentation about our requirement to serialise 2014 * memory writes before touching registers / GSM. 2015 */ 2016 wmb(); 2017 2018 out: 2019 intel_runtime_pm_put(i915); 2020 } 2021 2022 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv) 2023 { 2024 struct drm_i915_gem_object *obj, *on; 2025 int i; 2026 2027 /* 2028 * Only called during RPM suspend. All users of the userfault_list 2029 * must be holding an RPM wakeref to ensure that this can not 2030 * run concurrently with themselves (and use the struct_mutex for 2031 * protection between themselves). 2032 */ 2033 2034 list_for_each_entry_safe(obj, on, 2035 &dev_priv->mm.userfault_list, userfault_link) { 2036 list_del_init(&obj->userfault_link); 2037 drm_vma_node_unmap(&obj->base.vma_node, 2038 obj->base.dev->anon_inode->i_mapping); 2039 } 2040 2041 /* The fence will be lost when the device powers down. If any were 2042 * in use by hardware (i.e. they are pinned), we should not be powering 2043 * down! All other fences will be reacquired by the user upon waking. 2044 */ 2045 for (i = 0; i < dev_priv->num_fence_regs; i++) { 2046 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; 2047 2048 /* Ideally we want to assert that the fence register is not 2049 * live at this point (i.e. that no piece of code will be 2050 * trying to write through fence + GTT, as that both violates 2051 * our tracking of activity and associated locking/barriers, 2052 * but also is illegal given that the hw is powered down). 2053 * 2054 * Previously we used reg->pin_count as a "liveness" indicator. 2055 * That is not sufficient, and we need a more fine-grained 2056 * tool if we want to have a sanity check here. 2057 */ 2058 2059 if (!reg->vma) 2060 continue; 2061 2062 GEM_BUG_ON(!list_empty(®->vma->obj->userfault_link)); 2063 reg->dirty = true; 2064 } 2065 } 2066 2067 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) 2068 { 2069 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 2070 int err; 2071 2072 err = drm_gem_create_mmap_offset(&obj->base); 2073 if (likely(!err)) 2074 return 0; 2075 2076 /* Attempt to reap some mmap space from dead objects */ 2077 do { 2078 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE); 2079 if (err) 2080 break; 2081 2082 i915_gem_drain_freed_objects(dev_priv); 2083 err = drm_gem_create_mmap_offset(&obj->base); 2084 if (!err) 2085 break; 2086 2087 } while (flush_delayed_work(&dev_priv->gt.retire_work)); 2088 2089 return err; 2090 } 2091 2092 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) 2093 { 2094 drm_gem_free_mmap_offset(&obj->base); 2095 } 2096 2097 int 2098 i915_gem_mmap_gtt(struct drm_file *file, 2099 struct drm_device *dev, 2100 uint32_t handle, 2101 uint64_t *offset) 2102 { 2103 struct drm_i915_gem_object *obj; 2104 int ret; 2105 2106 obj = i915_gem_object_lookup(file, handle); 2107 if (!obj) 2108 return -ENOENT; 2109 2110 ret = i915_gem_object_create_mmap_offset(obj); 2111 if (ret == 0) 2112 *offset = drm_vma_node_offset_addr(&obj->base.vma_node); 2113 2114 i915_gem_object_put(obj); 2115 return ret; 2116 } 2117 2118 /** 2119 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 2120 * @dev: DRM device 2121 * @data: GTT mapping ioctl data 2122 * @file: GEM object info 2123 * 2124 * Simply returns the fake offset to userspace so it can mmap it. 2125 * The mmap call will end up in drm_gem_mmap(), which will set things 2126 * up so we can get faults in the handler above. 2127 * 2128 * The fault handler will take care of binding the object into the GTT 2129 * (since it may have been evicted to make room for something), allocating 2130 * a fence register, and mapping the appropriate aperture address into 2131 * userspace. 2132 */ 2133 int 2134 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 2135 struct drm_file *file) 2136 { 2137 struct drm_i915_gem_mmap_gtt *args = data; 2138 2139 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); 2140 } 2141 2142 /* Immediately discard the backing storage */ 2143 static void 2144 i915_gem_object_truncate(struct drm_i915_gem_object *obj) 2145 { 2146 i915_gem_object_free_mmap_offset(obj); 2147 2148 if (obj->base.filp == NULL) 2149 return; 2150 2151 /* Our goal here is to return as much of the memory as 2152 * is possible back to the system as we are called from OOM. 2153 * To do this we must instruct the shmfs to drop all of its 2154 * backing pages, *now*. 2155 */ 2156 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1); 2157 obj->mm.madv = __I915_MADV_PURGED; 2158 obj->mm.pages = ERR_PTR(-EFAULT); 2159 } 2160 2161 /* Try to discard unwanted pages */ 2162 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj) 2163 { 2164 struct address_space *mapping; 2165 2166 lockdep_assert_held(&obj->mm.lock); 2167 GEM_BUG_ON(obj->mm.pages); 2168 2169 switch (obj->mm.madv) { 2170 case I915_MADV_DONTNEED: 2171 i915_gem_object_truncate(obj); 2172 case __I915_MADV_PURGED: 2173 return; 2174 } 2175 2176 if (obj->base.filp == NULL) 2177 return; 2178 2179 mapping = obj->base.filp->f_mapping, 2180 invalidate_mapping_pages(mapping, 0, (loff_t)-1); 2181 } 2182 2183 static void 2184 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj, 2185 struct sg_table *pages) 2186 { 2187 struct sgt_iter sgt_iter; 2188 struct page *page; 2189 2190 __i915_gem_object_release_shmem(obj, pages, true); 2191 2192 i915_gem_gtt_finish_pages(obj, pages); 2193 2194 if (i915_gem_object_needs_bit17_swizzle(obj)) 2195 i915_gem_object_save_bit_17_swizzle(obj, pages); 2196 2197 for_each_sgt_page(page, sgt_iter, pages) { 2198 if (obj->mm.dirty) 2199 set_page_dirty(page); 2200 2201 if (obj->mm.madv == I915_MADV_WILLNEED) 2202 mark_page_accessed(page); 2203 2204 put_page(page); 2205 } 2206 obj->mm.dirty = false; 2207 2208 sg_free_table(pages); 2209 kfree(pages); 2210 } 2211 2212 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj) 2213 { 2214 struct radix_tree_iter iter; 2215 void __rcu **slot; 2216 2217 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0) 2218 radix_tree_delete(&obj->mm.get_page.radix, iter.index); 2219 } 2220 2221 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj, 2222 enum i915_mm_subclass subclass) 2223 { 2224 struct sg_table *pages; 2225 2226 if (i915_gem_object_has_pinned_pages(obj)) 2227 return; 2228 2229 GEM_BUG_ON(obj->bind_count); 2230 if (!READ_ONCE(obj->mm.pages)) 2231 return; 2232 2233 /* May be called by shrinker from within get_pages() (on another bo) */ 2234 mutex_lock_nested(&obj->mm.lock, subclass); 2235 if (unlikely(atomic_read(&obj->mm.pages_pin_count))) 2236 goto unlock; 2237 2238 /* ->put_pages might need to allocate memory for the bit17 swizzle 2239 * array, hence protect them from being reaped by removing them from gtt 2240 * lists early. */ 2241 pages = fetch_and_zero(&obj->mm.pages); 2242 GEM_BUG_ON(!pages); 2243 2244 if (obj->mm.mapping) { 2245 void *ptr; 2246 2247 ptr = page_mask_bits(obj->mm.mapping); 2248 if (is_vmalloc_addr(ptr)) 2249 vunmap(ptr); 2250 else 2251 kunmap(kmap_to_page(ptr)); 2252 2253 obj->mm.mapping = NULL; 2254 } 2255 2256 __i915_gem_object_reset_page_iter(obj); 2257 2258 if (!IS_ERR(pages)) 2259 obj->ops->put_pages(obj, pages); 2260 2261 unlock: 2262 mutex_unlock(&obj->mm.lock); 2263 } 2264 2265 static bool i915_sg_trim(struct sg_table *orig_st) 2266 { 2267 struct sg_table new_st; 2268 struct scatterlist *sg, *new_sg; 2269 unsigned int i; 2270 2271 if (orig_st->nents == orig_st->orig_nents) 2272 return false; 2273 2274 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN)) 2275 return false; 2276 2277 new_sg = new_st.sgl; 2278 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) { 2279 sg_set_page(new_sg, sg_page(sg), sg->length, 0); 2280 /* called before being DMA mapped, no need to copy sg->dma_* */ 2281 new_sg = sg_next(new_sg); 2282 } 2283 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */ 2284 2285 sg_free_table(orig_st); 2286 2287 *orig_st = new_st; 2288 return true; 2289 } 2290 2291 static struct sg_table * 2292 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) 2293 { 2294 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 2295 const unsigned long page_count = obj->base.size / PAGE_SIZE; 2296 unsigned long i; 2297 struct address_space *mapping; 2298 struct sg_table *st; 2299 struct scatterlist *sg; 2300 struct sgt_iter sgt_iter; 2301 struct page *page; 2302 unsigned long last_pfn = 0; /* suppress gcc warning */ 2303 unsigned int max_segment; 2304 gfp_t noreclaim; 2305 int ret; 2306 2307 /* Assert that the object is not currently in any GPU domain. As it 2308 * wasn't in the GTT, there shouldn't be any way it could have been in 2309 * a GPU cache 2310 */ 2311 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); 2312 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); 2313 2314 max_segment = swiotlb_max_segment(); 2315 if (!max_segment) 2316 max_segment = rounddown(UINT_MAX, PAGE_SIZE); 2317 2318 st = kmalloc(sizeof(*st), GFP_KERNEL); 2319 if (st == NULL) 2320 return ERR_PTR(-ENOMEM); 2321 2322 rebuild_st: 2323 if (sg_alloc_table(st, page_count, GFP_KERNEL)) { 2324 kfree(st); 2325 return ERR_PTR(-ENOMEM); 2326 } 2327 2328 /* Get the list of pages out of our struct file. They'll be pinned 2329 * at this point until we release them. 2330 * 2331 * Fail silently without starting the shrinker 2332 */ 2333 mapping = obj->base.filp->f_mapping; 2334 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM); 2335 noreclaim |= __GFP_NORETRY | __GFP_NOWARN; 2336 2337 sg = st->sgl; 2338 st->nents = 0; 2339 for (i = 0; i < page_count; i++) { 2340 const unsigned int shrink[] = { 2341 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE, 2342 0, 2343 }, *s = shrink; 2344 gfp_t gfp = noreclaim; 2345 2346 do { 2347 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 2348 if (likely(!IS_ERR(page))) 2349 break; 2350 2351 if (!*s) { 2352 ret = PTR_ERR(page); 2353 goto err_sg; 2354 } 2355 2356 i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++); 2357 cond_resched(); 2358 2359 /* We've tried hard to allocate the memory by reaping 2360 * our own buffer, now let the real VM do its job and 2361 * go down in flames if truly OOM. 2362 * 2363 * However, since graphics tend to be disposable, 2364 * defer the oom here by reporting the ENOMEM back 2365 * to userspace. 2366 */ 2367 if (!*s) { 2368 /* reclaim and warn, but no oom */ 2369 gfp = mapping_gfp_mask(mapping); 2370 2371 /* Our bo are always dirty and so we require 2372 * kswapd to reclaim our pages (direct reclaim 2373 * does not effectively begin pageout of our 2374 * buffers on its own). However, direct reclaim 2375 * only waits for kswapd when under allocation 2376 * congestion. So as a result __GFP_RECLAIM is 2377 * unreliable and fails to actually reclaim our 2378 * dirty pages -- unless you try over and over 2379 * again with !__GFP_NORETRY. However, we still 2380 * want to fail this allocation rather than 2381 * trigger the out-of-memory killer and for 2382 * this we want __GFP_RETRY_MAYFAIL. 2383 */ 2384 gfp |= __GFP_RETRY_MAYFAIL; 2385 } 2386 } while (1); 2387 2388 if (!i || 2389 sg->length >= max_segment || 2390 page_to_pfn(page) != last_pfn + 1) { 2391 if (i) 2392 sg = sg_next(sg); 2393 st->nents++; 2394 sg_set_page(sg, page, PAGE_SIZE, 0); 2395 } else { 2396 sg->length += PAGE_SIZE; 2397 } 2398 last_pfn = page_to_pfn(page); 2399 2400 /* Check that the i965g/gm workaround works. */ 2401 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL)); 2402 } 2403 if (sg) /* loop terminated early; short sg table */ 2404 sg_mark_end(sg); 2405 2406 /* Trim unused sg entries to avoid wasting memory. */ 2407 i915_sg_trim(st); 2408 2409 ret = i915_gem_gtt_prepare_pages(obj, st); 2410 if (ret) { 2411 /* DMA remapping failed? One possible cause is that 2412 * it could not reserve enough large entries, asking 2413 * for PAGE_SIZE chunks instead may be helpful. 2414 */ 2415 if (max_segment > PAGE_SIZE) { 2416 for_each_sgt_page(page, sgt_iter, st) 2417 put_page(page); 2418 sg_free_table(st); 2419 2420 max_segment = PAGE_SIZE; 2421 goto rebuild_st; 2422 } else { 2423 dev_warn(&dev_priv->drm.pdev->dev, 2424 "Failed to DMA remap %lu pages\n", 2425 page_count); 2426 goto err_pages; 2427 } 2428 } 2429 2430 if (i915_gem_object_needs_bit17_swizzle(obj)) 2431 i915_gem_object_do_bit_17_swizzle(obj, st); 2432 2433 return st; 2434 2435 err_sg: 2436 sg_mark_end(sg); 2437 err_pages: 2438 for_each_sgt_page(page, sgt_iter, st) 2439 put_page(page); 2440 sg_free_table(st); 2441 kfree(st); 2442 2443 /* shmemfs first checks if there is enough memory to allocate the page 2444 * and reports ENOSPC should there be insufficient, along with the usual 2445 * ENOMEM for a genuine allocation failure. 2446 * 2447 * We use ENOSPC in our driver to mean that we have run out of aperture 2448 * space and so want to translate the error from shmemfs back to our 2449 * usual understanding of ENOMEM. 2450 */ 2451 if (ret == -ENOSPC) 2452 ret = -ENOMEM; 2453 2454 return ERR_PTR(ret); 2455 } 2456 2457 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, 2458 struct sg_table *pages) 2459 { 2460 lockdep_assert_held(&obj->mm.lock); 2461 2462 obj->mm.get_page.sg_pos = pages->sgl; 2463 obj->mm.get_page.sg_idx = 0; 2464 2465 obj->mm.pages = pages; 2466 2467 if (i915_gem_object_is_tiled(obj) && 2468 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) { 2469 GEM_BUG_ON(obj->mm.quirked); 2470 __i915_gem_object_pin_pages(obj); 2471 obj->mm.quirked = true; 2472 } 2473 } 2474 2475 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 2476 { 2477 struct sg_table *pages; 2478 2479 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); 2480 2481 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) { 2482 DRM_DEBUG("Attempting to obtain a purgeable object\n"); 2483 return -EFAULT; 2484 } 2485 2486 pages = obj->ops->get_pages(obj); 2487 if (unlikely(IS_ERR(pages))) 2488 return PTR_ERR(pages); 2489 2490 __i915_gem_object_set_pages(obj, pages); 2491 return 0; 2492 } 2493 2494 /* Ensure that the associated pages are gathered from the backing storage 2495 * and pinned into our object. i915_gem_object_pin_pages() may be called 2496 * multiple times before they are released by a single call to 2497 * i915_gem_object_unpin_pages() - once the pages are no longer referenced 2498 * either as a result of memory pressure (reaping pages under the shrinker) 2499 * or as the object is itself released. 2500 */ 2501 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 2502 { 2503 int err; 2504 2505 err = mutex_lock_interruptible(&obj->mm.lock); 2506 if (err) 2507 return err; 2508 2509 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) { 2510 err = ____i915_gem_object_get_pages(obj); 2511 if (err) 2512 goto unlock; 2513 2514 smp_mb__before_atomic(); 2515 } 2516 atomic_inc(&obj->mm.pages_pin_count); 2517 2518 unlock: 2519 mutex_unlock(&obj->mm.lock); 2520 return err; 2521 } 2522 2523 /* The 'mapping' part of i915_gem_object_pin_map() below */ 2524 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj, 2525 enum i915_map_type type) 2526 { 2527 unsigned long n_pages = obj->base.size >> PAGE_SHIFT; 2528 struct sg_table *sgt = obj->mm.pages; 2529 struct sgt_iter sgt_iter; 2530 struct page *page; 2531 struct page *stack_pages[32]; 2532 struct page **pages = stack_pages; 2533 unsigned long i = 0; 2534 pgprot_t pgprot; 2535 void *addr; 2536 2537 /* A single page can always be kmapped */ 2538 if (n_pages == 1 && type == I915_MAP_WB) 2539 return kmap(sg_page(sgt->sgl)); 2540 2541 if (n_pages > ARRAY_SIZE(stack_pages)) { 2542 /* Too big for stack -- allocate temporary array instead */ 2543 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL); 2544 if (!pages) 2545 return NULL; 2546 } 2547 2548 for_each_sgt_page(page, sgt_iter, sgt) 2549 pages[i++] = page; 2550 2551 /* Check that we have the expected number of pages */ 2552 GEM_BUG_ON(i != n_pages); 2553 2554 switch (type) { 2555 default: 2556 MISSING_CASE(type); 2557 /* fallthrough to use PAGE_KERNEL anyway */ 2558 case I915_MAP_WB: 2559 pgprot = PAGE_KERNEL; 2560 break; 2561 case I915_MAP_WC: 2562 pgprot = pgprot_writecombine(PAGE_KERNEL_IO); 2563 break; 2564 } 2565 addr = vmap(pages, n_pages, 0, pgprot); 2566 2567 if (pages != stack_pages) 2568 kvfree(pages); 2569 2570 return addr; 2571 } 2572 2573 /* get, pin, and map the pages of the object into kernel space */ 2574 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj, 2575 enum i915_map_type type) 2576 { 2577 enum i915_map_type has_type; 2578 bool pinned; 2579 void *ptr; 2580 int ret; 2581 2582 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj)); 2583 2584 ret = mutex_lock_interruptible(&obj->mm.lock); 2585 if (ret) 2586 return ERR_PTR(ret); 2587 2588 pinned = !(type & I915_MAP_OVERRIDE); 2589 type &= ~I915_MAP_OVERRIDE; 2590 2591 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) { 2592 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) { 2593 ret = ____i915_gem_object_get_pages(obj); 2594 if (ret) 2595 goto err_unlock; 2596 2597 smp_mb__before_atomic(); 2598 } 2599 atomic_inc(&obj->mm.pages_pin_count); 2600 pinned = false; 2601 } 2602 GEM_BUG_ON(!obj->mm.pages); 2603 2604 ptr = page_unpack_bits(obj->mm.mapping, &has_type); 2605 if (ptr && has_type != type) { 2606 if (pinned) { 2607 ret = -EBUSY; 2608 goto err_unpin; 2609 } 2610 2611 if (is_vmalloc_addr(ptr)) 2612 vunmap(ptr); 2613 else 2614 kunmap(kmap_to_page(ptr)); 2615 2616 ptr = obj->mm.mapping = NULL; 2617 } 2618 2619 if (!ptr) { 2620 ptr = i915_gem_object_map(obj, type); 2621 if (!ptr) { 2622 ret = -ENOMEM; 2623 goto err_unpin; 2624 } 2625 2626 obj->mm.mapping = page_pack_bits(ptr, type); 2627 } 2628 2629 out_unlock: 2630 mutex_unlock(&obj->mm.lock); 2631 return ptr; 2632 2633 err_unpin: 2634 atomic_dec(&obj->mm.pages_pin_count); 2635 err_unlock: 2636 ptr = ERR_PTR(ret); 2637 goto out_unlock; 2638 } 2639 2640 static int 2641 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj, 2642 const struct drm_i915_gem_pwrite *arg) 2643 { 2644 struct address_space *mapping = obj->base.filp->f_mapping; 2645 char __user *user_data = u64_to_user_ptr(arg->data_ptr); 2646 u64 remain, offset; 2647 unsigned int pg; 2648 2649 /* Before we instantiate/pin the backing store for our use, we 2650 * can prepopulate the shmemfs filp efficiently using a write into 2651 * the pagecache. We avoid the penalty of instantiating all the 2652 * pages, important if the user is just writing to a few and never 2653 * uses the object on the GPU, and using a direct write into shmemfs 2654 * allows it to avoid the cost of retrieving a page (either swapin 2655 * or clearing-before-use) before it is overwritten. 2656 */ 2657 if (READ_ONCE(obj->mm.pages)) 2658 return -ENODEV; 2659 2660 if (obj->mm.madv != I915_MADV_WILLNEED) 2661 return -EFAULT; 2662 2663 /* Before the pages are instantiated the object is treated as being 2664 * in the CPU domain. The pages will be clflushed as required before 2665 * use, and we can freely write into the pages directly. If userspace 2666 * races pwrite with any other operation; corruption will ensue - 2667 * that is userspace's prerogative! 2668 */ 2669 2670 remain = arg->size; 2671 offset = arg->offset; 2672 pg = offset_in_page(offset); 2673 2674 do { 2675 unsigned int len, unwritten; 2676 struct page *page; 2677 void *data, *vaddr; 2678 int err; 2679 2680 len = PAGE_SIZE - pg; 2681 if (len > remain) 2682 len = remain; 2683 2684 err = pagecache_write_begin(obj->base.filp, mapping, 2685 offset, len, 0, 2686 &page, &data); 2687 if (err < 0) 2688 return err; 2689 2690 vaddr = kmap(page); 2691 unwritten = copy_from_user(vaddr + pg, user_data, len); 2692 kunmap(page); 2693 2694 err = pagecache_write_end(obj->base.filp, mapping, 2695 offset, len, len - unwritten, 2696 page, data); 2697 if (err < 0) 2698 return err; 2699 2700 if (unwritten) 2701 return -EFAULT; 2702 2703 remain -= len; 2704 user_data += len; 2705 offset += len; 2706 pg = 0; 2707 } while (remain); 2708 2709 return 0; 2710 } 2711 2712 static bool ban_context(const struct i915_gem_context *ctx, 2713 unsigned int score) 2714 { 2715 return (i915_gem_context_is_bannable(ctx) && 2716 score >= CONTEXT_SCORE_BAN_THRESHOLD); 2717 } 2718 2719 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx) 2720 { 2721 unsigned int score; 2722 bool banned; 2723 2724 atomic_inc(&ctx->guilty_count); 2725 2726 score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score); 2727 banned = ban_context(ctx, score); 2728 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n", 2729 ctx->name, score, yesno(banned)); 2730 if (!banned) 2731 return; 2732 2733 i915_gem_context_set_banned(ctx); 2734 if (!IS_ERR_OR_NULL(ctx->file_priv)) { 2735 atomic_inc(&ctx->file_priv->context_bans); 2736 DRM_DEBUG_DRIVER("client %s has had %d context banned\n", 2737 ctx->name, atomic_read(&ctx->file_priv->context_bans)); 2738 } 2739 } 2740 2741 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx) 2742 { 2743 atomic_inc(&ctx->active_count); 2744 } 2745 2746 struct drm_i915_gem_request * 2747 i915_gem_find_active_request(struct intel_engine_cs *engine) 2748 { 2749 struct drm_i915_gem_request *request, *active = NULL; 2750 unsigned long flags; 2751 2752 /* We are called by the error capture and reset at a random 2753 * point in time. In particular, note that neither is crucially 2754 * ordered with an interrupt. After a hang, the GPU is dead and we 2755 * assume that no more writes can happen (we waited long enough for 2756 * all writes that were in transaction to be flushed) - adding an 2757 * extra delay for a recent interrupt is pointless. Hence, we do 2758 * not need an engine->irq_seqno_barrier() before the seqno reads. 2759 */ 2760 spin_lock_irqsave(&engine->timeline->lock, flags); 2761 list_for_each_entry(request, &engine->timeline->requests, link) { 2762 if (__i915_gem_request_completed(request, 2763 request->global_seqno)) 2764 continue; 2765 2766 GEM_BUG_ON(request->engine != engine); 2767 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, 2768 &request->fence.flags)); 2769 2770 active = request; 2771 break; 2772 } 2773 spin_unlock_irqrestore(&engine->timeline->lock, flags); 2774 2775 return active; 2776 } 2777 2778 static bool engine_stalled(struct intel_engine_cs *engine) 2779 { 2780 if (!engine->hangcheck.stalled) 2781 return false; 2782 2783 /* Check for possible seqno movement after hang declaration */ 2784 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) { 2785 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name); 2786 return false; 2787 } 2788 2789 return true; 2790 } 2791 2792 /* 2793 * Ensure irq handler finishes, and not run again. 2794 * Also return the active request so that we only search for it once. 2795 */ 2796 struct drm_i915_gem_request * 2797 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine) 2798 { 2799 struct drm_i915_gem_request *request = NULL; 2800 2801 /* Prevent the signaler thread from updating the request 2802 * state (by calling dma_fence_signal) as we are processing 2803 * the reset. The write from the GPU of the seqno is 2804 * asynchronous and the signaler thread may see a different 2805 * value to us and declare the request complete, even though 2806 * the reset routine have picked that request as the active 2807 * (incomplete) request. This conflict is not handled 2808 * gracefully! 2809 */ 2810 kthread_park(engine->breadcrumbs.signaler); 2811 2812 /* Prevent request submission to the hardware until we have 2813 * completed the reset in i915_gem_reset_finish(). If a request 2814 * is completed by one engine, it may then queue a request 2815 * to a second via its engine->irq_tasklet *just* as we are 2816 * calling engine->init_hw() and also writing the ELSP. 2817 * Turning off the engine->irq_tasklet until the reset is over 2818 * prevents the race. 2819 */ 2820 tasklet_kill(&engine->irq_tasklet); 2821 tasklet_disable(&engine->irq_tasklet); 2822 2823 if (engine->irq_seqno_barrier) 2824 engine->irq_seqno_barrier(engine); 2825 2826 request = i915_gem_find_active_request(engine); 2827 if (request && request->fence.error == -EIO) 2828 request = ERR_PTR(-EIO); /* Previous reset failed! */ 2829 2830 return request; 2831 } 2832 2833 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv) 2834 { 2835 struct intel_engine_cs *engine; 2836 struct drm_i915_gem_request *request; 2837 enum intel_engine_id id; 2838 int err = 0; 2839 2840 for_each_engine(engine, dev_priv, id) { 2841 request = i915_gem_reset_prepare_engine(engine); 2842 if (IS_ERR(request)) { 2843 err = PTR_ERR(request); 2844 continue; 2845 } 2846 2847 engine->hangcheck.active_request = request; 2848 } 2849 2850 i915_gem_revoke_fences(dev_priv); 2851 2852 return err; 2853 } 2854 2855 static void skip_request(struct drm_i915_gem_request *request) 2856 { 2857 void *vaddr = request->ring->vaddr; 2858 u32 head; 2859 2860 /* As this request likely depends on state from the lost 2861 * context, clear out all the user operations leaving the 2862 * breadcrumb at the end (so we get the fence notifications). 2863 */ 2864 head = request->head; 2865 if (request->postfix < head) { 2866 memset(vaddr + head, 0, request->ring->size - head); 2867 head = 0; 2868 } 2869 memset(vaddr + head, 0, request->postfix - head); 2870 2871 dma_fence_set_error(&request->fence, -EIO); 2872 } 2873 2874 static void engine_skip_context(struct drm_i915_gem_request *request) 2875 { 2876 struct intel_engine_cs *engine = request->engine; 2877 struct i915_gem_context *hung_ctx = request->ctx; 2878 struct intel_timeline *timeline; 2879 unsigned long flags; 2880 2881 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine); 2882 2883 spin_lock_irqsave(&engine->timeline->lock, flags); 2884 spin_lock(&timeline->lock); 2885 2886 list_for_each_entry_continue(request, &engine->timeline->requests, link) 2887 if (request->ctx == hung_ctx) 2888 skip_request(request); 2889 2890 list_for_each_entry(request, &timeline->requests, link) 2891 skip_request(request); 2892 2893 spin_unlock(&timeline->lock); 2894 spin_unlock_irqrestore(&engine->timeline->lock, flags); 2895 } 2896 2897 /* Returns the request if it was guilty of the hang */ 2898 static struct drm_i915_gem_request * 2899 i915_gem_reset_request(struct intel_engine_cs *engine, 2900 struct drm_i915_gem_request *request) 2901 { 2902 /* The guilty request will get skipped on a hung engine. 2903 * 2904 * Users of client default contexts do not rely on logical 2905 * state preserved between batches so it is safe to execute 2906 * queued requests following the hang. Non default contexts 2907 * rely on preserved state, so skipping a batch loses the 2908 * evolution of the state and it needs to be considered corrupted. 2909 * Executing more queued batches on top of corrupted state is 2910 * risky. But we take the risk by trying to advance through 2911 * the queued requests in order to make the client behaviour 2912 * more predictable around resets, by not throwing away random 2913 * amount of batches it has prepared for execution. Sophisticated 2914 * clients can use gem_reset_stats_ioctl and dma fence status 2915 * (exported via sync_file info ioctl on explicit fences) to observe 2916 * when it loses the context state and should rebuild accordingly. 2917 * 2918 * The context ban, and ultimately the client ban, mechanism are safety 2919 * valves if client submission ends up resulting in nothing more than 2920 * subsequent hangs. 2921 */ 2922 2923 if (engine_stalled(engine)) { 2924 i915_gem_context_mark_guilty(request->ctx); 2925 skip_request(request); 2926 2927 /* If this context is now banned, skip all pending requests. */ 2928 if (i915_gem_context_is_banned(request->ctx)) 2929 engine_skip_context(request); 2930 } else { 2931 /* 2932 * Since this is not the hung engine, it may have advanced 2933 * since the hang declaration. Double check by refinding 2934 * the active request at the time of the reset. 2935 */ 2936 request = i915_gem_find_active_request(engine); 2937 if (request) { 2938 i915_gem_context_mark_innocent(request->ctx); 2939 dma_fence_set_error(&request->fence, -EAGAIN); 2940 2941 /* Rewind the engine to replay the incomplete rq */ 2942 spin_lock_irq(&engine->timeline->lock); 2943 request = list_prev_entry(request, link); 2944 if (&request->link == &engine->timeline->requests) 2945 request = NULL; 2946 spin_unlock_irq(&engine->timeline->lock); 2947 } 2948 } 2949 2950 return request; 2951 } 2952 2953 void i915_gem_reset_engine(struct intel_engine_cs *engine, 2954 struct drm_i915_gem_request *request) 2955 { 2956 engine->irq_posted = 0; 2957 2958 if (request) 2959 request = i915_gem_reset_request(engine, request); 2960 2961 if (request) { 2962 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n", 2963 engine->name, request->global_seqno); 2964 } 2965 2966 /* Setup the CS to resume from the breadcrumb of the hung request */ 2967 engine->reset_hw(engine, request); 2968 } 2969 2970 void i915_gem_reset(struct drm_i915_private *dev_priv) 2971 { 2972 struct intel_engine_cs *engine; 2973 enum intel_engine_id id; 2974 2975 lockdep_assert_held(&dev_priv->drm.struct_mutex); 2976 2977 i915_gem_retire_requests(dev_priv); 2978 2979 for_each_engine(engine, dev_priv, id) { 2980 struct i915_gem_context *ctx; 2981 2982 i915_gem_reset_engine(engine, engine->hangcheck.active_request); 2983 ctx = fetch_and_zero(&engine->last_retired_context); 2984 if (ctx) 2985 engine->context_unpin(engine, ctx); 2986 } 2987 2988 i915_gem_restore_fences(dev_priv); 2989 2990 if (dev_priv->gt.awake) { 2991 intel_sanitize_gt_powersave(dev_priv); 2992 intel_enable_gt_powersave(dev_priv); 2993 if (INTEL_GEN(dev_priv) >= 6) 2994 gen6_rps_busy(dev_priv); 2995 } 2996 } 2997 2998 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine) 2999 { 3000 tasklet_enable(&engine->irq_tasklet); 3001 kthread_unpark(engine->breadcrumbs.signaler); 3002 } 3003 3004 void i915_gem_reset_finish(struct drm_i915_private *dev_priv) 3005 { 3006 struct intel_engine_cs *engine; 3007 enum intel_engine_id id; 3008 3009 lockdep_assert_held(&dev_priv->drm.struct_mutex); 3010 3011 for_each_engine(engine, dev_priv, id) { 3012 engine->hangcheck.active_request = NULL; 3013 i915_gem_reset_finish_engine(engine); 3014 } 3015 } 3016 3017 static void nop_submit_request(struct drm_i915_gem_request *request) 3018 { 3019 unsigned long flags; 3020 3021 GEM_BUG_ON(!i915_terminally_wedged(&request->i915->gpu_error)); 3022 dma_fence_set_error(&request->fence, -EIO); 3023 3024 spin_lock_irqsave(&request->engine->timeline->lock, flags); 3025 __i915_gem_request_submit(request); 3026 intel_engine_init_global_seqno(request->engine, request->global_seqno); 3027 spin_unlock_irqrestore(&request->engine->timeline->lock, flags); 3028 } 3029 3030 static void engine_set_wedged(struct intel_engine_cs *engine) 3031 { 3032 struct drm_i915_gem_request *request; 3033 unsigned long flags; 3034 3035 /* We need to be sure that no thread is running the old callback as 3036 * we install the nop handler (otherwise we would submit a request 3037 * to hardware that will never complete). In order to prevent this 3038 * race, we wait until the machine is idle before making the swap 3039 * (using stop_machine()). 3040 */ 3041 engine->submit_request = nop_submit_request; 3042 3043 /* Mark all executing requests as skipped */ 3044 spin_lock_irqsave(&engine->timeline->lock, flags); 3045 list_for_each_entry(request, &engine->timeline->requests, link) 3046 if (!i915_gem_request_completed(request)) 3047 dma_fence_set_error(&request->fence, -EIO); 3048 spin_unlock_irqrestore(&engine->timeline->lock, flags); 3049 3050 /* 3051 * Clear the execlists queue up before freeing the requests, as those 3052 * are the ones that keep the context and ringbuffer backing objects 3053 * pinned in place. 3054 */ 3055 3056 if (i915.enable_execlists) { 3057 struct execlist_port *port = engine->execlist_port; 3058 unsigned long flags; 3059 unsigned int n; 3060 3061 spin_lock_irqsave(&engine->timeline->lock, flags); 3062 3063 for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++) 3064 i915_gem_request_put(port_request(&port[n])); 3065 memset(engine->execlist_port, 0, sizeof(engine->execlist_port)); 3066 engine->execlist_queue = RB_ROOT; 3067 engine->execlist_first = NULL; 3068 3069 spin_unlock_irqrestore(&engine->timeline->lock, flags); 3070 3071 /* The port is checked prior to scheduling a tasklet, but 3072 * just in case we have suspended the tasklet to do the 3073 * wedging make sure that when it wakes, it decides there 3074 * is no work to do by clearing the irq_posted bit. 3075 */ 3076 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted); 3077 } 3078 3079 /* Mark all pending requests as complete so that any concurrent 3080 * (lockless) lookup doesn't try and wait upon the request as we 3081 * reset it. 3082 */ 3083 intel_engine_init_global_seqno(engine, 3084 intel_engine_last_submit(engine)); 3085 } 3086 3087 static int __i915_gem_set_wedged_BKL(void *data) 3088 { 3089 struct drm_i915_private *i915 = data; 3090 struct intel_engine_cs *engine; 3091 enum intel_engine_id id; 3092 3093 for_each_engine(engine, i915, id) 3094 engine_set_wedged(engine); 3095 3096 set_bit(I915_WEDGED, &i915->gpu_error.flags); 3097 wake_up_all(&i915->gpu_error.reset_queue); 3098 3099 return 0; 3100 } 3101 3102 void i915_gem_set_wedged(struct drm_i915_private *dev_priv) 3103 { 3104 stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL); 3105 } 3106 3107 bool i915_gem_unset_wedged(struct drm_i915_private *i915) 3108 { 3109 struct i915_gem_timeline *tl; 3110 int i; 3111 3112 lockdep_assert_held(&i915->drm.struct_mutex); 3113 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags)) 3114 return true; 3115 3116 /* Before unwedging, make sure that all pending operations 3117 * are flushed and errored out - we may have requests waiting upon 3118 * third party fences. We marked all inflight requests as EIO, and 3119 * every execbuf since returned EIO, for consistency we want all 3120 * the currently pending requests to also be marked as EIO, which 3121 * is done inside our nop_submit_request - and so we must wait. 3122 * 3123 * No more can be submitted until we reset the wedged bit. 3124 */ 3125 list_for_each_entry(tl, &i915->gt.timelines, link) { 3126 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) { 3127 struct drm_i915_gem_request *rq; 3128 3129 rq = i915_gem_active_peek(&tl->engine[i].last_request, 3130 &i915->drm.struct_mutex); 3131 if (!rq) 3132 continue; 3133 3134 /* We can't use our normal waiter as we want to 3135 * avoid recursively trying to handle the current 3136 * reset. The basic dma_fence_default_wait() installs 3137 * a callback for dma_fence_signal(), which is 3138 * triggered by our nop handler (indirectly, the 3139 * callback enables the signaler thread which is 3140 * woken by the nop_submit_request() advancing the seqno 3141 * and when the seqno passes the fence, the signaler 3142 * then signals the fence waking us up). 3143 */ 3144 if (dma_fence_default_wait(&rq->fence, true, 3145 MAX_SCHEDULE_TIMEOUT) < 0) 3146 return false; 3147 } 3148 } 3149 3150 /* Undo nop_submit_request. We prevent all new i915 requests from 3151 * being queued (by disallowing execbuf whilst wedged) so having 3152 * waited for all active requests above, we know the system is idle 3153 * and do not have to worry about a thread being inside 3154 * engine->submit_request() as we swap over. So unlike installing 3155 * the nop_submit_request on reset, we can do this from normal 3156 * context and do not require stop_machine(). 3157 */ 3158 intel_engines_reset_default_submission(i915); 3159 i915_gem_contexts_lost(i915); 3160 3161 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */ 3162 clear_bit(I915_WEDGED, &i915->gpu_error.flags); 3163 3164 return true; 3165 } 3166 3167 static void 3168 i915_gem_retire_work_handler(struct work_struct *work) 3169 { 3170 struct drm_i915_private *dev_priv = 3171 container_of(work, typeof(*dev_priv), gt.retire_work.work); 3172 struct drm_device *dev = &dev_priv->drm; 3173 3174 /* Come back later if the device is busy... */ 3175 if (mutex_trylock(&dev->struct_mutex)) { 3176 i915_gem_retire_requests(dev_priv); 3177 mutex_unlock(&dev->struct_mutex); 3178 } 3179 3180 /* Keep the retire handler running until we are finally idle. 3181 * We do not need to do this test under locking as in the worst-case 3182 * we queue the retire worker once too often. 3183 */ 3184 if (READ_ONCE(dev_priv->gt.awake)) { 3185 i915_queue_hangcheck(dev_priv); 3186 queue_delayed_work(dev_priv->wq, 3187 &dev_priv->gt.retire_work, 3188 round_jiffies_up_relative(HZ)); 3189 } 3190 } 3191 3192 static void 3193 i915_gem_idle_work_handler(struct work_struct *work) 3194 { 3195 struct drm_i915_private *dev_priv = 3196 container_of(work, typeof(*dev_priv), gt.idle_work.work); 3197 struct drm_device *dev = &dev_priv->drm; 3198 bool rearm_hangcheck; 3199 3200 if (!READ_ONCE(dev_priv->gt.awake)) 3201 return; 3202 3203 /* 3204 * Wait for last execlists context complete, but bail out in case a 3205 * new request is submitted. 3206 */ 3207 wait_for(intel_engines_are_idle(dev_priv), 10); 3208 if (READ_ONCE(dev_priv->gt.active_requests)) 3209 return; 3210 3211 rearm_hangcheck = 3212 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); 3213 3214 if (!mutex_trylock(&dev->struct_mutex)) { 3215 /* Currently busy, come back later */ 3216 mod_delayed_work(dev_priv->wq, 3217 &dev_priv->gt.idle_work, 3218 msecs_to_jiffies(50)); 3219 goto out_rearm; 3220 } 3221 3222 /* 3223 * New request retired after this work handler started, extend active 3224 * period until next instance of the work. 3225 */ 3226 if (work_pending(work)) 3227 goto out_unlock; 3228 3229 if (dev_priv->gt.active_requests) 3230 goto out_unlock; 3231 3232 if (wait_for(intel_engines_are_idle(dev_priv), 10)) 3233 DRM_ERROR("Timeout waiting for engines to idle\n"); 3234 3235 intel_engines_mark_idle(dev_priv); 3236 i915_gem_timelines_mark_idle(dev_priv); 3237 3238 GEM_BUG_ON(!dev_priv->gt.awake); 3239 dev_priv->gt.awake = false; 3240 rearm_hangcheck = false; 3241 3242 if (INTEL_GEN(dev_priv) >= 6) 3243 gen6_rps_idle(dev_priv); 3244 intel_runtime_pm_put(dev_priv); 3245 out_unlock: 3246 mutex_unlock(&dev->struct_mutex); 3247 3248 out_rearm: 3249 if (rearm_hangcheck) { 3250 GEM_BUG_ON(!dev_priv->gt.awake); 3251 i915_queue_hangcheck(dev_priv); 3252 } 3253 } 3254 3255 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file) 3256 { 3257 struct drm_i915_private *i915 = to_i915(gem->dev); 3258 struct drm_i915_gem_object *obj = to_intel_bo(gem); 3259 struct drm_i915_file_private *fpriv = file->driver_priv; 3260 struct i915_lut_handle *lut, *ln; 3261 3262 mutex_lock(&i915->drm.struct_mutex); 3263 3264 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) { 3265 struct i915_gem_context *ctx = lut->ctx; 3266 struct i915_vma *vma; 3267 3268 if (ctx->file_priv != fpriv) 3269 continue; 3270 3271 vma = radix_tree_delete(&ctx->handles_vma, lut->handle); 3272 3273 GEM_BUG_ON(vma->obj != obj); 3274 3275 /* We allow the process to have multiple handles to the same 3276 * vma, in the same fd namespace, by virtue of flink/open. 3277 */ 3278 GEM_BUG_ON(!vma->open_count); 3279 if (!--vma->open_count && !i915_vma_is_ggtt(vma)) 3280 i915_vma_close(vma); 3281 3282 list_del(&lut->obj_link); 3283 list_del(&lut->ctx_link); 3284 3285 kmem_cache_free(i915->luts, lut); 3286 __i915_gem_object_release_unless_active(obj); 3287 } 3288 3289 mutex_unlock(&i915->drm.struct_mutex); 3290 } 3291 3292 static unsigned long to_wait_timeout(s64 timeout_ns) 3293 { 3294 if (timeout_ns < 0) 3295 return MAX_SCHEDULE_TIMEOUT; 3296 3297 if (timeout_ns == 0) 3298 return 0; 3299 3300 return nsecs_to_jiffies_timeout(timeout_ns); 3301 } 3302 3303 /** 3304 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT 3305 * @dev: drm device pointer 3306 * @data: ioctl data blob 3307 * @file: drm file pointer 3308 * 3309 * Returns 0 if successful, else an error is returned with the remaining time in 3310 * the timeout parameter. 3311 * -ETIME: object is still busy after timeout 3312 * -ERESTARTSYS: signal interrupted the wait 3313 * -ENONENT: object doesn't exist 3314 * Also possible, but rare: 3315 * -EAGAIN: incomplete, restart syscall 3316 * -ENOMEM: damn 3317 * -ENODEV: Internal IRQ fail 3318 * -E?: The add request failed 3319 * 3320 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any 3321 * non-zero timeout parameter the wait ioctl will wait for the given number of 3322 * nanoseconds on an object becoming unbusy. Since the wait itself does so 3323 * without holding struct_mutex the object may become re-busied before this 3324 * function completes. A similar but shorter * race condition exists in the busy 3325 * ioctl 3326 */ 3327 int 3328 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 3329 { 3330 struct drm_i915_gem_wait *args = data; 3331 struct drm_i915_gem_object *obj; 3332 ktime_t start; 3333 long ret; 3334 3335 if (args->flags != 0) 3336 return -EINVAL; 3337 3338 obj = i915_gem_object_lookup(file, args->bo_handle); 3339 if (!obj) 3340 return -ENOENT; 3341 3342 start = ktime_get(); 3343 3344 ret = i915_gem_object_wait(obj, 3345 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL, 3346 to_wait_timeout(args->timeout_ns), 3347 to_rps_client(file)); 3348 3349 if (args->timeout_ns > 0) { 3350 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start)); 3351 if (args->timeout_ns < 0) 3352 args->timeout_ns = 0; 3353 3354 /* 3355 * Apparently ktime isn't accurate enough and occasionally has a 3356 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch 3357 * things up to make the test happy. We allow up to 1 jiffy. 3358 * 3359 * This is a regression from the timespec->ktime conversion. 3360 */ 3361 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns)) 3362 args->timeout_ns = 0; 3363 3364 /* Asked to wait beyond the jiffie/scheduler precision? */ 3365 if (ret == -ETIME && args->timeout_ns) 3366 ret = -EAGAIN; 3367 } 3368 3369 i915_gem_object_put(obj); 3370 return ret; 3371 } 3372 3373 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags) 3374 { 3375 int ret, i; 3376 3377 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) { 3378 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags); 3379 if (ret) 3380 return ret; 3381 } 3382 3383 return 0; 3384 } 3385 3386 static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms) 3387 { 3388 return wait_for(intel_engine_is_idle(engine), timeout_ms); 3389 } 3390 3391 static int wait_for_engines(struct drm_i915_private *i915) 3392 { 3393 struct intel_engine_cs *engine; 3394 enum intel_engine_id id; 3395 3396 for_each_engine(engine, i915, id) { 3397 if (GEM_WARN_ON(wait_for_engine(engine, 50))) { 3398 i915_gem_set_wedged(i915); 3399 return -EIO; 3400 } 3401 3402 GEM_BUG_ON(intel_engine_get_seqno(engine) != 3403 intel_engine_last_submit(engine)); 3404 } 3405 3406 return 0; 3407 } 3408 3409 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags) 3410 { 3411 int ret; 3412 3413 /* If the device is asleep, we have no requests outstanding */ 3414 if (!READ_ONCE(i915->gt.awake)) 3415 return 0; 3416 3417 if (flags & I915_WAIT_LOCKED) { 3418 struct i915_gem_timeline *tl; 3419 3420 lockdep_assert_held(&i915->drm.struct_mutex); 3421 3422 list_for_each_entry(tl, &i915->gt.timelines, link) { 3423 ret = wait_for_timeline(tl, flags); 3424 if (ret) 3425 return ret; 3426 } 3427 3428 i915_gem_retire_requests(i915); 3429 GEM_BUG_ON(i915->gt.active_requests); 3430 3431 ret = wait_for_engines(i915); 3432 } else { 3433 ret = wait_for_timeline(&i915->gt.global_timeline, flags); 3434 } 3435 3436 return ret; 3437 } 3438 3439 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj) 3440 { 3441 /* 3442 * We manually flush the CPU domain so that we can override and 3443 * force the flush for the display, and perform it asyncrhonously. 3444 */ 3445 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); 3446 if (obj->cache_dirty) 3447 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE); 3448 obj->base.write_domain = 0; 3449 } 3450 3451 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj) 3452 { 3453 if (!READ_ONCE(obj->pin_display)) 3454 return; 3455 3456 mutex_lock(&obj->base.dev->struct_mutex); 3457 __i915_gem_object_flush_for_display(obj); 3458 mutex_unlock(&obj->base.dev->struct_mutex); 3459 } 3460 3461 /** 3462 * Moves a single object to the WC read, and possibly write domain. 3463 * @obj: object to act on 3464 * @write: ask for write access or read only 3465 * 3466 * This function returns when the move is complete, including waiting on 3467 * flushes to occur. 3468 */ 3469 int 3470 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write) 3471 { 3472 int ret; 3473 3474 lockdep_assert_held(&obj->base.dev->struct_mutex); 3475 3476 ret = i915_gem_object_wait(obj, 3477 I915_WAIT_INTERRUPTIBLE | 3478 I915_WAIT_LOCKED | 3479 (write ? I915_WAIT_ALL : 0), 3480 MAX_SCHEDULE_TIMEOUT, 3481 NULL); 3482 if (ret) 3483 return ret; 3484 3485 if (obj->base.write_domain == I915_GEM_DOMAIN_WC) 3486 return 0; 3487 3488 /* Flush and acquire obj->pages so that we are coherent through 3489 * direct access in memory with previous cached writes through 3490 * shmemfs and that our cache domain tracking remains valid. 3491 * For example, if the obj->filp was moved to swap without us 3492 * being notified and releasing the pages, we would mistakenly 3493 * continue to assume that the obj remained out of the CPU cached 3494 * domain. 3495 */ 3496 ret = i915_gem_object_pin_pages(obj); 3497 if (ret) 3498 return ret; 3499 3500 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC); 3501 3502 /* Serialise direct access to this object with the barriers for 3503 * coherent writes from the GPU, by effectively invalidating the 3504 * WC domain upon first access. 3505 */ 3506 if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0) 3507 mb(); 3508 3509 /* It should now be out of any other write domains, and we can update 3510 * the domain values for our changes. 3511 */ 3512 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0); 3513 obj->base.read_domains |= I915_GEM_DOMAIN_WC; 3514 if (write) { 3515 obj->base.read_domains = I915_GEM_DOMAIN_WC; 3516 obj->base.write_domain = I915_GEM_DOMAIN_WC; 3517 obj->mm.dirty = true; 3518 } 3519 3520 i915_gem_object_unpin_pages(obj); 3521 return 0; 3522 } 3523 3524 /** 3525 * Moves a single object to the GTT read, and possibly write domain. 3526 * @obj: object to act on 3527 * @write: ask for write access or read only 3528 * 3529 * This function returns when the move is complete, including waiting on 3530 * flushes to occur. 3531 */ 3532 int 3533 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) 3534 { 3535 int ret; 3536 3537 lockdep_assert_held(&obj->base.dev->struct_mutex); 3538 3539 ret = i915_gem_object_wait(obj, 3540 I915_WAIT_INTERRUPTIBLE | 3541 I915_WAIT_LOCKED | 3542 (write ? I915_WAIT_ALL : 0), 3543 MAX_SCHEDULE_TIMEOUT, 3544 NULL); 3545 if (ret) 3546 return ret; 3547 3548 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) 3549 return 0; 3550 3551 /* Flush and acquire obj->pages so that we are coherent through 3552 * direct access in memory with previous cached writes through 3553 * shmemfs and that our cache domain tracking remains valid. 3554 * For example, if the obj->filp was moved to swap without us 3555 * being notified and releasing the pages, we would mistakenly 3556 * continue to assume that the obj remained out of the CPU cached 3557 * domain. 3558 */ 3559 ret = i915_gem_object_pin_pages(obj); 3560 if (ret) 3561 return ret; 3562 3563 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT); 3564 3565 /* Serialise direct access to this object with the barriers for 3566 * coherent writes from the GPU, by effectively invalidating the 3567 * GTT domain upon first access. 3568 */ 3569 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 3570 mb(); 3571 3572 /* It should now be out of any other write domains, and we can update 3573 * the domain values for our changes. 3574 */ 3575 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 3576 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3577 if (write) { 3578 obj->base.read_domains = I915_GEM_DOMAIN_GTT; 3579 obj->base.write_domain = I915_GEM_DOMAIN_GTT; 3580 obj->mm.dirty = true; 3581 } 3582 3583 i915_gem_object_unpin_pages(obj); 3584 return 0; 3585 } 3586 3587 /** 3588 * Changes the cache-level of an object across all VMA. 3589 * @obj: object to act on 3590 * @cache_level: new cache level to set for the object 3591 * 3592 * After this function returns, the object will be in the new cache-level 3593 * across all GTT and the contents of the backing storage will be coherent, 3594 * with respect to the new cache-level. In order to keep the backing storage 3595 * coherent for all users, we only allow a single cache level to be set 3596 * globally on the object and prevent it from being changed whilst the 3597 * hardware is reading from the object. That is if the object is currently 3598 * on the scanout it will be set to uncached (or equivalent display 3599 * cache coherency) and all non-MOCS GPU access will also be uncached so 3600 * that all direct access to the scanout remains coherent. 3601 */ 3602 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3603 enum i915_cache_level cache_level) 3604 { 3605 struct i915_vma *vma; 3606 int ret; 3607 3608 lockdep_assert_held(&obj->base.dev->struct_mutex); 3609 3610 if (obj->cache_level == cache_level) 3611 return 0; 3612 3613 /* Inspect the list of currently bound VMA and unbind any that would 3614 * be invalid given the new cache-level. This is principally to 3615 * catch the issue of the CS prefetch crossing page boundaries and 3616 * reading an invalid PTE on older architectures. 3617 */ 3618 restart: 3619 list_for_each_entry(vma, &obj->vma_list, obj_link) { 3620 if (!drm_mm_node_allocated(&vma->node)) 3621 continue; 3622 3623 if (i915_vma_is_pinned(vma)) { 3624 DRM_DEBUG("can not change the cache level of pinned objects\n"); 3625 return -EBUSY; 3626 } 3627 3628 if (i915_gem_valid_gtt_space(vma, cache_level)) 3629 continue; 3630 3631 ret = i915_vma_unbind(vma); 3632 if (ret) 3633 return ret; 3634 3635 /* As unbinding may affect other elements in the 3636 * obj->vma_list (due to side-effects from retiring 3637 * an active vma), play safe and restart the iterator. 3638 */ 3639 goto restart; 3640 } 3641 3642 /* We can reuse the existing drm_mm nodes but need to change the 3643 * cache-level on the PTE. We could simply unbind them all and 3644 * rebind with the correct cache-level on next use. However since 3645 * we already have a valid slot, dma mapping, pages etc, we may as 3646 * rewrite the PTE in the belief that doing so tramples upon less 3647 * state and so involves less work. 3648 */ 3649 if (obj->bind_count) { 3650 /* Before we change the PTE, the GPU must not be accessing it. 3651 * If we wait upon the object, we know that all the bound 3652 * VMA are no longer active. 3653 */ 3654 ret = i915_gem_object_wait(obj, 3655 I915_WAIT_INTERRUPTIBLE | 3656 I915_WAIT_LOCKED | 3657 I915_WAIT_ALL, 3658 MAX_SCHEDULE_TIMEOUT, 3659 NULL); 3660 if (ret) 3661 return ret; 3662 3663 if (!HAS_LLC(to_i915(obj->base.dev)) && 3664 cache_level != I915_CACHE_NONE) { 3665 /* Access to snoopable pages through the GTT is 3666 * incoherent and on some machines causes a hard 3667 * lockup. Relinquish the CPU mmaping to force 3668 * userspace to refault in the pages and we can 3669 * then double check if the GTT mapping is still 3670 * valid for that pointer access. 3671 */ 3672 i915_gem_release_mmap(obj); 3673 3674 /* As we no longer need a fence for GTT access, 3675 * we can relinquish it now (and so prevent having 3676 * to steal a fence from someone else on the next 3677 * fence request). Note GPU activity would have 3678 * dropped the fence as all snoopable access is 3679 * supposed to be linear. 3680 */ 3681 list_for_each_entry(vma, &obj->vma_list, obj_link) { 3682 ret = i915_vma_put_fence(vma); 3683 if (ret) 3684 return ret; 3685 } 3686 } else { 3687 /* We either have incoherent backing store and 3688 * so no GTT access or the architecture is fully 3689 * coherent. In such cases, existing GTT mmaps 3690 * ignore the cache bit in the PTE and we can 3691 * rewrite it without confusing the GPU or having 3692 * to force userspace to fault back in its mmaps. 3693 */ 3694 } 3695 3696 list_for_each_entry(vma, &obj->vma_list, obj_link) { 3697 if (!drm_mm_node_allocated(&vma->node)) 3698 continue; 3699 3700 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE); 3701 if (ret) 3702 return ret; 3703 } 3704 } 3705 3706 list_for_each_entry(vma, &obj->vma_list, obj_link) 3707 vma->node.color = cache_level; 3708 i915_gem_object_set_cache_coherency(obj, cache_level); 3709 obj->cache_dirty = true; /* Always invalidate stale cachelines */ 3710 3711 return 0; 3712 } 3713 3714 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3715 struct drm_file *file) 3716 { 3717 struct drm_i915_gem_caching *args = data; 3718 struct drm_i915_gem_object *obj; 3719 int err = 0; 3720 3721 rcu_read_lock(); 3722 obj = i915_gem_object_lookup_rcu(file, args->handle); 3723 if (!obj) { 3724 err = -ENOENT; 3725 goto out; 3726 } 3727 3728 switch (obj->cache_level) { 3729 case I915_CACHE_LLC: 3730 case I915_CACHE_L3_LLC: 3731 args->caching = I915_CACHING_CACHED; 3732 break; 3733 3734 case I915_CACHE_WT: 3735 args->caching = I915_CACHING_DISPLAY; 3736 break; 3737 3738 default: 3739 args->caching = I915_CACHING_NONE; 3740 break; 3741 } 3742 out: 3743 rcu_read_unlock(); 3744 return err; 3745 } 3746 3747 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3748 struct drm_file *file) 3749 { 3750 struct drm_i915_private *i915 = to_i915(dev); 3751 struct drm_i915_gem_caching *args = data; 3752 struct drm_i915_gem_object *obj; 3753 enum i915_cache_level level; 3754 int ret = 0; 3755 3756 switch (args->caching) { 3757 case I915_CACHING_NONE: 3758 level = I915_CACHE_NONE; 3759 break; 3760 case I915_CACHING_CACHED: 3761 /* 3762 * Due to a HW issue on BXT A stepping, GPU stores via a 3763 * snooped mapping may leave stale data in a corresponding CPU 3764 * cacheline, whereas normally such cachelines would get 3765 * invalidated. 3766 */ 3767 if (!HAS_LLC(i915) && !HAS_SNOOP(i915)) 3768 return -ENODEV; 3769 3770 level = I915_CACHE_LLC; 3771 break; 3772 case I915_CACHING_DISPLAY: 3773 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE; 3774 break; 3775 default: 3776 return -EINVAL; 3777 } 3778 3779 obj = i915_gem_object_lookup(file, args->handle); 3780 if (!obj) 3781 return -ENOENT; 3782 3783 if (obj->cache_level == level) 3784 goto out; 3785 3786 ret = i915_gem_object_wait(obj, 3787 I915_WAIT_INTERRUPTIBLE, 3788 MAX_SCHEDULE_TIMEOUT, 3789 to_rps_client(file)); 3790 if (ret) 3791 goto out; 3792 3793 ret = i915_mutex_lock_interruptible(dev); 3794 if (ret) 3795 goto out; 3796 3797 ret = i915_gem_object_set_cache_level(obj, level); 3798 mutex_unlock(&dev->struct_mutex); 3799 3800 out: 3801 i915_gem_object_put(obj); 3802 return ret; 3803 } 3804 3805 /* 3806 * Prepare buffer for display plane (scanout, cursors, etc). 3807 * Can be called from an uninterruptible phase (modesetting) and allows 3808 * any flushes to be pipelined (for pageflips). 3809 */ 3810 struct i915_vma * 3811 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3812 u32 alignment, 3813 const struct i915_ggtt_view *view) 3814 { 3815 struct i915_vma *vma; 3816 int ret; 3817 3818 lockdep_assert_held(&obj->base.dev->struct_mutex); 3819 3820 /* Mark the pin_display early so that we account for the 3821 * display coherency whilst setting up the cache domains. 3822 */ 3823 obj->pin_display++; 3824 3825 /* The display engine is not coherent with the LLC cache on gen6. As 3826 * a result, we make sure that the pinning that is about to occur is 3827 * done with uncached PTEs. This is lowest common denominator for all 3828 * chipsets. 3829 * 3830 * However for gen6+, we could do better by using the GFDT bit instead 3831 * of uncaching, which would allow us to flush all the LLC-cached data 3832 * with that bit in the PTE to main memory with just one PIPE_CONTROL. 3833 */ 3834 ret = i915_gem_object_set_cache_level(obj, 3835 HAS_WT(to_i915(obj->base.dev)) ? 3836 I915_CACHE_WT : I915_CACHE_NONE); 3837 if (ret) { 3838 vma = ERR_PTR(ret); 3839 goto err_unpin_display; 3840 } 3841 3842 /* As the user may map the buffer once pinned in the display plane 3843 * (e.g. libkms for the bootup splash), we have to ensure that we 3844 * always use map_and_fenceable for all scanout buffers. However, 3845 * it may simply be too big to fit into mappable, in which case 3846 * put it anyway and hope that userspace can cope (but always first 3847 * try to preserve the existing ABI). 3848 */ 3849 vma = ERR_PTR(-ENOSPC); 3850 if (!view || view->type == I915_GGTT_VIEW_NORMAL) 3851 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 3852 PIN_MAPPABLE | PIN_NONBLOCK); 3853 if (IS_ERR(vma)) { 3854 struct drm_i915_private *i915 = to_i915(obj->base.dev); 3855 unsigned int flags; 3856 3857 /* Valleyview is definitely limited to scanning out the first 3858 * 512MiB. Lets presume this behaviour was inherited from the 3859 * g4x display engine and that all earlier gen are similarly 3860 * limited. Testing suggests that it is a little more 3861 * complicated than this. For example, Cherryview appears quite 3862 * happy to scanout from anywhere within its global aperture. 3863 */ 3864 flags = 0; 3865 if (HAS_GMCH_DISPLAY(i915)) 3866 flags = PIN_MAPPABLE; 3867 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags); 3868 } 3869 if (IS_ERR(vma)) 3870 goto err_unpin_display; 3871 3872 vma->display_alignment = max_t(u64, vma->display_alignment, alignment); 3873 3874 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */ 3875 __i915_gem_object_flush_for_display(obj); 3876 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB); 3877 3878 /* It should now be out of any other write domains, and we can update 3879 * the domain values for our changes. 3880 */ 3881 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3882 3883 return vma; 3884 3885 err_unpin_display: 3886 obj->pin_display--; 3887 return vma; 3888 } 3889 3890 void 3891 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma) 3892 { 3893 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex); 3894 3895 if (WARN_ON(vma->obj->pin_display == 0)) 3896 return; 3897 3898 if (--vma->obj->pin_display == 0) 3899 vma->display_alignment = I915_GTT_MIN_ALIGNMENT; 3900 3901 /* Bump the LRU to try and avoid premature eviction whilst flipping */ 3902 i915_gem_object_bump_inactive_ggtt(vma->obj); 3903 3904 i915_vma_unpin(vma); 3905 } 3906 3907 /** 3908 * Moves a single object to the CPU read, and possibly write domain. 3909 * @obj: object to act on 3910 * @write: requesting write or read-only access 3911 * 3912 * This function returns when the move is complete, including waiting on 3913 * flushes to occur. 3914 */ 3915 int 3916 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) 3917 { 3918 int ret; 3919 3920 lockdep_assert_held(&obj->base.dev->struct_mutex); 3921 3922 ret = i915_gem_object_wait(obj, 3923 I915_WAIT_INTERRUPTIBLE | 3924 I915_WAIT_LOCKED | 3925 (write ? I915_WAIT_ALL : 0), 3926 MAX_SCHEDULE_TIMEOUT, 3927 NULL); 3928 if (ret) 3929 return ret; 3930 3931 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); 3932 3933 /* Flush the CPU cache if it's still invalid. */ 3934 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { 3935 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC); 3936 obj->base.read_domains |= I915_GEM_DOMAIN_CPU; 3937 } 3938 3939 /* It should now be out of any other write domains, and we can update 3940 * the domain values for our changes. 3941 */ 3942 GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU); 3943 3944 /* If we're writing through the CPU, then the GPU read domains will 3945 * need to be invalidated at next use. 3946 */ 3947 if (write) 3948 __start_cpu_write(obj); 3949 3950 return 0; 3951 } 3952 3953 /* Throttle our rendering by waiting until the ring has completed our requests 3954 * emitted over 20 msec ago. 3955 * 3956 * Note that if we were to use the current jiffies each time around the loop, 3957 * we wouldn't escape the function with any frames outstanding if the time to 3958 * render a frame was over 20ms. 3959 * 3960 * This should get us reasonable parallelism between CPU and GPU but also 3961 * relatively low latency when blocking on a particular request to finish. 3962 */ 3963 static int 3964 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) 3965 { 3966 struct drm_i915_private *dev_priv = to_i915(dev); 3967 struct drm_i915_file_private *file_priv = file->driver_priv; 3968 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES; 3969 struct drm_i915_gem_request *request, *target = NULL; 3970 long ret; 3971 3972 /* ABI: return -EIO if already wedged */ 3973 if (i915_terminally_wedged(&dev_priv->gpu_error)) 3974 return -EIO; 3975 3976 spin_lock(&file_priv->mm.lock); 3977 list_for_each_entry(request, &file_priv->mm.request_list, client_link) { 3978 if (time_after_eq(request->emitted_jiffies, recent_enough)) 3979 break; 3980 3981 if (target) { 3982 list_del(&target->client_link); 3983 target->file_priv = NULL; 3984 } 3985 3986 target = request; 3987 } 3988 if (target) 3989 i915_gem_request_get(target); 3990 spin_unlock(&file_priv->mm.lock); 3991 3992 if (target == NULL) 3993 return 0; 3994 3995 ret = i915_wait_request(target, 3996 I915_WAIT_INTERRUPTIBLE, 3997 MAX_SCHEDULE_TIMEOUT); 3998 i915_gem_request_put(target); 3999 4000 return ret < 0 ? ret : 0; 4001 } 4002 4003 struct i915_vma * 4004 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 4005 const struct i915_ggtt_view *view, 4006 u64 size, 4007 u64 alignment, 4008 u64 flags) 4009 { 4010 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 4011 struct i915_address_space *vm = &dev_priv->ggtt.base; 4012 struct i915_vma *vma; 4013 int ret; 4014 4015 lockdep_assert_held(&obj->base.dev->struct_mutex); 4016 4017 vma = i915_vma_instance(obj, vm, view); 4018 if (unlikely(IS_ERR(vma))) 4019 return vma; 4020 4021 if (i915_vma_misplaced(vma, size, alignment, flags)) { 4022 if (flags & PIN_NONBLOCK && 4023 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))) 4024 return ERR_PTR(-ENOSPC); 4025 4026 if (flags & PIN_MAPPABLE) { 4027 /* If the required space is larger than the available 4028 * aperture, we will not able to find a slot for the 4029 * object and unbinding the object now will be in 4030 * vain. Worse, doing so may cause us to ping-pong 4031 * the object in and out of the Global GTT and 4032 * waste a lot of cycles under the mutex. 4033 */ 4034 if (vma->fence_size > dev_priv->ggtt.mappable_end) 4035 return ERR_PTR(-E2BIG); 4036 4037 /* If NONBLOCK is set the caller is optimistically 4038 * trying to cache the full object within the mappable 4039 * aperture, and *must* have a fallback in place for 4040 * situations where we cannot bind the object. We 4041 * can be a little more lax here and use the fallback 4042 * more often to avoid costly migrations of ourselves 4043 * and other objects within the aperture. 4044 * 4045 * Half-the-aperture is used as a simple heuristic. 4046 * More interesting would to do search for a free 4047 * block prior to making the commitment to unbind. 4048 * That caters for the self-harm case, and with a 4049 * little more heuristics (e.g. NOFAULT, NOEVICT) 4050 * we could try to minimise harm to others. 4051 */ 4052 if (flags & PIN_NONBLOCK && 4053 vma->fence_size > dev_priv->ggtt.mappable_end / 2) 4054 return ERR_PTR(-ENOSPC); 4055 } 4056 4057 WARN(i915_vma_is_pinned(vma), 4058 "bo is already pinned in ggtt with incorrect alignment:" 4059 " offset=%08x, req.alignment=%llx," 4060 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n", 4061 i915_ggtt_offset(vma), alignment, 4062 !!(flags & PIN_MAPPABLE), 4063 i915_vma_is_map_and_fenceable(vma)); 4064 ret = i915_vma_unbind(vma); 4065 if (ret) 4066 return ERR_PTR(ret); 4067 } 4068 4069 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL); 4070 if (ret) 4071 return ERR_PTR(ret); 4072 4073 return vma; 4074 } 4075 4076 static __always_inline unsigned int __busy_read_flag(unsigned int id) 4077 { 4078 /* Note that we could alias engines in the execbuf API, but 4079 * that would be very unwise as it prevents userspace from 4080 * fine control over engine selection. Ahem. 4081 * 4082 * This should be something like EXEC_MAX_ENGINE instead of 4083 * I915_NUM_ENGINES. 4084 */ 4085 BUILD_BUG_ON(I915_NUM_ENGINES > 16); 4086 return 0x10000 << id; 4087 } 4088 4089 static __always_inline unsigned int __busy_write_id(unsigned int id) 4090 { 4091 /* The uABI guarantees an active writer is also amongst the read 4092 * engines. This would be true if we accessed the activity tracking 4093 * under the lock, but as we perform the lookup of the object and 4094 * its activity locklessly we can not guarantee that the last_write 4095 * being active implies that we have set the same engine flag from 4096 * last_read - hence we always set both read and write busy for 4097 * last_write. 4098 */ 4099 return id | __busy_read_flag(id); 4100 } 4101 4102 static __always_inline unsigned int 4103 __busy_set_if_active(const struct dma_fence *fence, 4104 unsigned int (*flag)(unsigned int id)) 4105 { 4106 struct drm_i915_gem_request *rq; 4107 4108 /* We have to check the current hw status of the fence as the uABI 4109 * guarantees forward progress. We could rely on the idle worker 4110 * to eventually flush us, but to minimise latency just ask the 4111 * hardware. 4112 * 4113 * Note we only report on the status of native fences. 4114 */ 4115 if (!dma_fence_is_i915(fence)) 4116 return 0; 4117 4118 /* opencode to_request() in order to avoid const warnings */ 4119 rq = container_of(fence, struct drm_i915_gem_request, fence); 4120 if (i915_gem_request_completed(rq)) 4121 return 0; 4122 4123 return flag(rq->engine->uabi_id); 4124 } 4125 4126 static __always_inline unsigned int 4127 busy_check_reader(const struct dma_fence *fence) 4128 { 4129 return __busy_set_if_active(fence, __busy_read_flag); 4130 } 4131 4132 static __always_inline unsigned int 4133 busy_check_writer(const struct dma_fence *fence) 4134 { 4135 if (!fence) 4136 return 0; 4137 4138 return __busy_set_if_active(fence, __busy_write_id); 4139 } 4140 4141 int 4142 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 4143 struct drm_file *file) 4144 { 4145 struct drm_i915_gem_busy *args = data; 4146 struct drm_i915_gem_object *obj; 4147 struct reservation_object_list *list; 4148 unsigned int seq; 4149 int err; 4150 4151 err = -ENOENT; 4152 rcu_read_lock(); 4153 obj = i915_gem_object_lookup_rcu(file, args->handle); 4154 if (!obj) 4155 goto out; 4156 4157 /* A discrepancy here is that we do not report the status of 4158 * non-i915 fences, i.e. even though we may report the object as idle, 4159 * a call to set-domain may still stall waiting for foreign rendering. 4160 * This also means that wait-ioctl may report an object as busy, 4161 * where busy-ioctl considers it idle. 4162 * 4163 * We trade the ability to warn of foreign fences to report on which 4164 * i915 engines are active for the object. 4165 * 4166 * Alternatively, we can trade that extra information on read/write 4167 * activity with 4168 * args->busy = 4169 * !reservation_object_test_signaled_rcu(obj->resv, true); 4170 * to report the overall busyness. This is what the wait-ioctl does. 4171 * 4172 */ 4173 retry: 4174 seq = raw_read_seqcount(&obj->resv->seq); 4175 4176 /* Translate the exclusive fence to the READ *and* WRITE engine */ 4177 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl)); 4178 4179 /* Translate shared fences to READ set of engines */ 4180 list = rcu_dereference(obj->resv->fence); 4181 if (list) { 4182 unsigned int shared_count = list->shared_count, i; 4183 4184 for (i = 0; i < shared_count; ++i) { 4185 struct dma_fence *fence = 4186 rcu_dereference(list->shared[i]); 4187 4188 args->busy |= busy_check_reader(fence); 4189 } 4190 } 4191 4192 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq)) 4193 goto retry; 4194 4195 err = 0; 4196 out: 4197 rcu_read_unlock(); 4198 return err; 4199 } 4200 4201 int 4202 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 4203 struct drm_file *file_priv) 4204 { 4205 return i915_gem_ring_throttle(dev, file_priv); 4206 } 4207 4208 int 4209 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 4210 struct drm_file *file_priv) 4211 { 4212 struct drm_i915_private *dev_priv = to_i915(dev); 4213 struct drm_i915_gem_madvise *args = data; 4214 struct drm_i915_gem_object *obj; 4215 int err; 4216 4217 switch (args->madv) { 4218 case I915_MADV_DONTNEED: 4219 case I915_MADV_WILLNEED: 4220 break; 4221 default: 4222 return -EINVAL; 4223 } 4224 4225 obj = i915_gem_object_lookup(file_priv, args->handle); 4226 if (!obj) 4227 return -ENOENT; 4228 4229 err = mutex_lock_interruptible(&obj->mm.lock); 4230 if (err) 4231 goto out; 4232 4233 if (obj->mm.pages && 4234 i915_gem_object_is_tiled(obj) && 4235 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) { 4236 if (obj->mm.madv == I915_MADV_WILLNEED) { 4237 GEM_BUG_ON(!obj->mm.quirked); 4238 __i915_gem_object_unpin_pages(obj); 4239 obj->mm.quirked = false; 4240 } 4241 if (args->madv == I915_MADV_WILLNEED) { 4242 GEM_BUG_ON(obj->mm.quirked); 4243 __i915_gem_object_pin_pages(obj); 4244 obj->mm.quirked = true; 4245 } 4246 } 4247 4248 if (obj->mm.madv != __I915_MADV_PURGED) 4249 obj->mm.madv = args->madv; 4250 4251 /* if the object is no longer attached, discard its backing storage */ 4252 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages) 4253 i915_gem_object_truncate(obj); 4254 4255 args->retained = obj->mm.madv != __I915_MADV_PURGED; 4256 mutex_unlock(&obj->mm.lock); 4257 4258 out: 4259 i915_gem_object_put(obj); 4260 return err; 4261 } 4262 4263 static void 4264 frontbuffer_retire(struct i915_gem_active *active, 4265 struct drm_i915_gem_request *request) 4266 { 4267 struct drm_i915_gem_object *obj = 4268 container_of(active, typeof(*obj), frontbuffer_write); 4269 4270 intel_fb_obj_flush(obj, ORIGIN_CS); 4271 } 4272 4273 void i915_gem_object_init(struct drm_i915_gem_object *obj, 4274 const struct drm_i915_gem_object_ops *ops) 4275 { 4276 mutex_init(&obj->mm.lock); 4277 4278 INIT_LIST_HEAD(&obj->global_link); 4279 INIT_LIST_HEAD(&obj->userfault_link); 4280 INIT_LIST_HEAD(&obj->vma_list); 4281 INIT_LIST_HEAD(&obj->lut_list); 4282 INIT_LIST_HEAD(&obj->batch_pool_link); 4283 4284 obj->ops = ops; 4285 4286 reservation_object_init(&obj->__builtin_resv); 4287 obj->resv = &obj->__builtin_resv; 4288 4289 obj->frontbuffer_ggtt_origin = ORIGIN_GTT; 4290 init_request_active(&obj->frontbuffer_write, frontbuffer_retire); 4291 4292 obj->mm.madv = I915_MADV_WILLNEED; 4293 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN); 4294 mutex_init(&obj->mm.get_page.lock); 4295 4296 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size); 4297 } 4298 4299 static const struct drm_i915_gem_object_ops i915_gem_object_ops = { 4300 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE | 4301 I915_GEM_OBJECT_IS_SHRINKABLE, 4302 4303 .get_pages = i915_gem_object_get_pages_gtt, 4304 .put_pages = i915_gem_object_put_pages_gtt, 4305 4306 .pwrite = i915_gem_object_pwrite_gtt, 4307 }; 4308 4309 struct drm_i915_gem_object * 4310 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size) 4311 { 4312 struct drm_i915_gem_object *obj; 4313 struct address_space *mapping; 4314 unsigned int cache_level; 4315 gfp_t mask; 4316 int ret; 4317 4318 /* There is a prevalence of the assumption that we fit the object's 4319 * page count inside a 32bit _signed_ variable. Let's document this and 4320 * catch if we ever need to fix it. In the meantime, if you do spot 4321 * such a local variable, please consider fixing! 4322 */ 4323 if (size >> PAGE_SHIFT > INT_MAX) 4324 return ERR_PTR(-E2BIG); 4325 4326 if (overflows_type(size, obj->base.size)) 4327 return ERR_PTR(-E2BIG); 4328 4329 obj = i915_gem_object_alloc(dev_priv); 4330 if (obj == NULL) 4331 return ERR_PTR(-ENOMEM); 4332 4333 ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size); 4334 if (ret) 4335 goto fail; 4336 4337 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 4338 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) { 4339 /* 965gm cannot relocate objects above 4GiB. */ 4340 mask &= ~__GFP_HIGHMEM; 4341 mask |= __GFP_DMA32; 4342 } 4343 4344 mapping = obj->base.filp->f_mapping; 4345 mapping_set_gfp_mask(mapping, mask); 4346 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM)); 4347 4348 i915_gem_object_init(obj, &i915_gem_object_ops); 4349 4350 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 4351 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 4352 4353 if (HAS_LLC(dev_priv)) 4354 /* On some devices, we can have the GPU use the LLC (the CPU 4355 * cache) for about a 10% performance improvement 4356 * compared to uncached. Graphics requests other than 4357 * display scanout are coherent with the CPU in 4358 * accessing this cache. This means in this mode we 4359 * don't need to clflush on the CPU side, and on the 4360 * GPU side we only need to flush internal caches to 4361 * get data visible to the CPU. 4362 * 4363 * However, we maintain the display planes as UC, and so 4364 * need to rebind when first used as such. 4365 */ 4366 cache_level = I915_CACHE_LLC; 4367 else 4368 cache_level = I915_CACHE_NONE; 4369 4370 i915_gem_object_set_cache_coherency(obj, cache_level); 4371 4372 trace_i915_gem_object_create(obj); 4373 4374 return obj; 4375 4376 fail: 4377 i915_gem_object_free(obj); 4378 return ERR_PTR(ret); 4379 } 4380 4381 static bool discard_backing_storage(struct drm_i915_gem_object *obj) 4382 { 4383 /* If we are the last user of the backing storage (be it shmemfs 4384 * pages or stolen etc), we know that the pages are going to be 4385 * immediately released. In this case, we can then skip copying 4386 * back the contents from the GPU. 4387 */ 4388 4389 if (obj->mm.madv != I915_MADV_WILLNEED) 4390 return false; 4391 4392 if (obj->base.filp == NULL) 4393 return true; 4394 4395 /* At first glance, this looks racy, but then again so would be 4396 * userspace racing mmap against close. However, the first external 4397 * reference to the filp can only be obtained through the 4398 * i915_gem_mmap_ioctl() which safeguards us against the user 4399 * acquiring such a reference whilst we are in the middle of 4400 * freeing the object. 4401 */ 4402 return atomic_long_read(&obj->base.filp->f_count) == 1; 4403 } 4404 4405 static void __i915_gem_free_objects(struct drm_i915_private *i915, 4406 struct llist_node *freed) 4407 { 4408 struct drm_i915_gem_object *obj, *on; 4409 4410 mutex_lock(&i915->drm.struct_mutex); 4411 intel_runtime_pm_get(i915); 4412 llist_for_each_entry(obj, freed, freed) { 4413 struct i915_vma *vma, *vn; 4414 4415 trace_i915_gem_object_destroy(obj); 4416 4417 GEM_BUG_ON(i915_gem_object_is_active(obj)); 4418 list_for_each_entry_safe(vma, vn, 4419 &obj->vma_list, obj_link) { 4420 GEM_BUG_ON(i915_vma_is_active(vma)); 4421 vma->flags &= ~I915_VMA_PIN_MASK; 4422 i915_vma_close(vma); 4423 } 4424 GEM_BUG_ON(!list_empty(&obj->vma_list)); 4425 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree)); 4426 4427 list_del(&obj->global_link); 4428 } 4429 intel_runtime_pm_put(i915); 4430 mutex_unlock(&i915->drm.struct_mutex); 4431 4432 cond_resched(); 4433 4434 llist_for_each_entry_safe(obj, on, freed, freed) { 4435 GEM_BUG_ON(obj->bind_count); 4436 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits)); 4437 4438 if (obj->ops->release) 4439 obj->ops->release(obj); 4440 4441 if (WARN_ON(i915_gem_object_has_pinned_pages(obj))) 4442 atomic_set(&obj->mm.pages_pin_count, 0); 4443 __i915_gem_object_put_pages(obj, I915_MM_NORMAL); 4444 GEM_BUG_ON(obj->mm.pages); 4445 4446 if (obj->base.import_attach) 4447 drm_prime_gem_destroy(&obj->base, NULL); 4448 4449 reservation_object_fini(&obj->__builtin_resv); 4450 drm_gem_object_release(&obj->base); 4451 i915_gem_info_remove_obj(i915, obj->base.size); 4452 4453 kfree(obj->bit_17); 4454 i915_gem_object_free(obj); 4455 } 4456 } 4457 4458 static void i915_gem_flush_free_objects(struct drm_i915_private *i915) 4459 { 4460 struct llist_node *freed; 4461 4462 freed = llist_del_all(&i915->mm.free_list); 4463 if (unlikely(freed)) 4464 __i915_gem_free_objects(i915, freed); 4465 } 4466 4467 static void __i915_gem_free_work(struct work_struct *work) 4468 { 4469 struct drm_i915_private *i915 = 4470 container_of(work, struct drm_i915_private, mm.free_work); 4471 struct llist_node *freed; 4472 4473 /* All file-owned VMA should have been released by this point through 4474 * i915_gem_close_object(), or earlier by i915_gem_context_close(). 4475 * However, the object may also be bound into the global GTT (e.g. 4476 * older GPUs without per-process support, or for direct access through 4477 * the GTT either for the user or for scanout). Those VMA still need to 4478 * unbound now. 4479 */ 4480 4481 while ((freed = llist_del_all(&i915->mm.free_list))) { 4482 __i915_gem_free_objects(i915, freed); 4483 if (need_resched()) 4484 break; 4485 } 4486 } 4487 4488 static void __i915_gem_free_object_rcu(struct rcu_head *head) 4489 { 4490 struct drm_i915_gem_object *obj = 4491 container_of(head, typeof(*obj), rcu); 4492 struct drm_i915_private *i915 = to_i915(obj->base.dev); 4493 4494 /* We can't simply use call_rcu() from i915_gem_free_object() 4495 * as we need to block whilst unbinding, and the call_rcu 4496 * task may be called from softirq context. So we take a 4497 * detour through a worker. 4498 */ 4499 if (llist_add(&obj->freed, &i915->mm.free_list)) 4500 schedule_work(&i915->mm.free_work); 4501 } 4502 4503 void i915_gem_free_object(struct drm_gem_object *gem_obj) 4504 { 4505 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 4506 4507 if (obj->mm.quirked) 4508 __i915_gem_object_unpin_pages(obj); 4509 4510 if (discard_backing_storage(obj)) 4511 obj->mm.madv = I915_MADV_DONTNEED; 4512 4513 /* Before we free the object, make sure any pure RCU-only 4514 * read-side critical sections are complete, e.g. 4515 * i915_gem_busy_ioctl(). For the corresponding synchronized 4516 * lookup see i915_gem_object_lookup_rcu(). 4517 */ 4518 call_rcu(&obj->rcu, __i915_gem_free_object_rcu); 4519 } 4520 4521 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj) 4522 { 4523 lockdep_assert_held(&obj->base.dev->struct_mutex); 4524 4525 if (!i915_gem_object_has_active_reference(obj) && 4526 i915_gem_object_is_active(obj)) 4527 i915_gem_object_set_active_reference(obj); 4528 else 4529 i915_gem_object_put(obj); 4530 } 4531 4532 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv) 4533 { 4534 struct intel_engine_cs *engine; 4535 enum intel_engine_id id; 4536 4537 for_each_engine(engine, dev_priv, id) 4538 GEM_BUG_ON(engine->last_retired_context && 4539 !i915_gem_context_is_kernel(engine->last_retired_context)); 4540 } 4541 4542 void i915_gem_sanitize(struct drm_i915_private *i915) 4543 { 4544 /* 4545 * If we inherit context state from the BIOS or earlier occupants 4546 * of the GPU, the GPU may be in an inconsistent state when we 4547 * try to take over. The only way to remove the earlier state 4548 * is by resetting. However, resetting on earlier gen is tricky as 4549 * it may impact the display and we are uncertain about the stability 4550 * of the reset, so this could be applied to even earlier gen. 4551 */ 4552 if (INTEL_GEN(i915) >= 5) { 4553 int reset = intel_gpu_reset(i915, ALL_ENGINES); 4554 WARN_ON(reset && reset != -ENODEV); 4555 } 4556 } 4557 4558 int i915_gem_suspend(struct drm_i915_private *dev_priv) 4559 { 4560 struct drm_device *dev = &dev_priv->drm; 4561 int ret; 4562 4563 intel_runtime_pm_get(dev_priv); 4564 intel_suspend_gt_powersave(dev_priv); 4565 4566 mutex_lock(&dev->struct_mutex); 4567 4568 /* We have to flush all the executing contexts to main memory so 4569 * that they can saved in the hibernation image. To ensure the last 4570 * context image is coherent, we have to switch away from it. That 4571 * leaves the dev_priv->kernel_context still active when 4572 * we actually suspend, and its image in memory may not match the GPU 4573 * state. Fortunately, the kernel_context is disposable and we do 4574 * not rely on its state. 4575 */ 4576 ret = i915_gem_switch_to_kernel_context(dev_priv); 4577 if (ret) 4578 goto err_unlock; 4579 4580 ret = i915_gem_wait_for_idle(dev_priv, 4581 I915_WAIT_INTERRUPTIBLE | 4582 I915_WAIT_LOCKED); 4583 if (ret) 4584 goto err_unlock; 4585 4586 assert_kernel_context_is_current(dev_priv); 4587 i915_gem_contexts_lost(dev_priv); 4588 mutex_unlock(&dev->struct_mutex); 4589 4590 intel_guc_suspend(dev_priv); 4591 4592 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); 4593 cancel_delayed_work_sync(&dev_priv->gt.retire_work); 4594 4595 /* As the idle_work is rearming if it detects a race, play safe and 4596 * repeat the flush until it is definitely idle. 4597 */ 4598 while (flush_delayed_work(&dev_priv->gt.idle_work)) 4599 ; 4600 4601 /* Assert that we sucessfully flushed all the work and 4602 * reset the GPU back to its idle, low power state. 4603 */ 4604 WARN_ON(dev_priv->gt.awake); 4605 WARN_ON(!intel_engines_are_idle(dev_priv)); 4606 4607 /* 4608 * Neither the BIOS, ourselves or any other kernel 4609 * expects the system to be in execlists mode on startup, 4610 * so we need to reset the GPU back to legacy mode. And the only 4611 * known way to disable logical contexts is through a GPU reset. 4612 * 4613 * So in order to leave the system in a known default configuration, 4614 * always reset the GPU upon unload and suspend. Afterwards we then 4615 * clean up the GEM state tracking, flushing off the requests and 4616 * leaving the system in a known idle state. 4617 * 4618 * Note that is of the upmost importance that the GPU is idle and 4619 * all stray writes are flushed *before* we dismantle the backing 4620 * storage for the pinned objects. 4621 * 4622 * However, since we are uncertain that resetting the GPU on older 4623 * machines is a good idea, we don't - just in case it leaves the 4624 * machine in an unusable condition. 4625 */ 4626 i915_gem_sanitize(dev_priv); 4627 goto out_rpm_put; 4628 4629 err_unlock: 4630 mutex_unlock(&dev->struct_mutex); 4631 out_rpm_put: 4632 intel_runtime_pm_put(dev_priv); 4633 return ret; 4634 } 4635 4636 void i915_gem_resume(struct drm_i915_private *dev_priv) 4637 { 4638 struct drm_device *dev = &dev_priv->drm; 4639 4640 WARN_ON(dev_priv->gt.awake); 4641 4642 mutex_lock(&dev->struct_mutex); 4643 i915_gem_restore_gtt_mappings(dev_priv); 4644 4645 /* As we didn't flush the kernel context before suspend, we cannot 4646 * guarantee that the context image is complete. So let's just reset 4647 * it and start again. 4648 */ 4649 dev_priv->gt.resume(dev_priv); 4650 4651 mutex_unlock(&dev->struct_mutex); 4652 } 4653 4654 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv) 4655 { 4656 if (INTEL_GEN(dev_priv) < 5 || 4657 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 4658 return; 4659 4660 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | 4661 DISP_TILE_SURFACE_SWIZZLING); 4662 4663 if (IS_GEN5(dev_priv)) 4664 return; 4665 4666 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); 4667 if (IS_GEN6(dev_priv)) 4668 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 4669 else if (IS_GEN7(dev_priv)) 4670 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 4671 else if (IS_GEN8(dev_priv)) 4672 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW)); 4673 else 4674 BUG(); 4675 } 4676 4677 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base) 4678 { 4679 I915_WRITE(RING_CTL(base), 0); 4680 I915_WRITE(RING_HEAD(base), 0); 4681 I915_WRITE(RING_TAIL(base), 0); 4682 I915_WRITE(RING_START(base), 0); 4683 } 4684 4685 static void init_unused_rings(struct drm_i915_private *dev_priv) 4686 { 4687 if (IS_I830(dev_priv)) { 4688 init_unused_ring(dev_priv, PRB1_BASE); 4689 init_unused_ring(dev_priv, SRB0_BASE); 4690 init_unused_ring(dev_priv, SRB1_BASE); 4691 init_unused_ring(dev_priv, SRB2_BASE); 4692 init_unused_ring(dev_priv, SRB3_BASE); 4693 } else if (IS_GEN2(dev_priv)) { 4694 init_unused_ring(dev_priv, SRB0_BASE); 4695 init_unused_ring(dev_priv, SRB1_BASE); 4696 } else if (IS_GEN3(dev_priv)) { 4697 init_unused_ring(dev_priv, PRB1_BASE); 4698 init_unused_ring(dev_priv, PRB2_BASE); 4699 } 4700 } 4701 4702 static int __i915_gem_restart_engines(void *data) 4703 { 4704 struct drm_i915_private *i915 = data; 4705 struct intel_engine_cs *engine; 4706 enum intel_engine_id id; 4707 int err; 4708 4709 for_each_engine(engine, i915, id) { 4710 err = engine->init_hw(engine); 4711 if (err) 4712 return err; 4713 } 4714 4715 return 0; 4716 } 4717 4718 int i915_gem_init_hw(struct drm_i915_private *dev_priv) 4719 { 4720 int ret; 4721 4722 dev_priv->gt.last_init_time = ktime_get(); 4723 4724 /* Double layer security blanket, see i915_gem_init() */ 4725 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 4726 4727 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9) 4728 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf)); 4729 4730 if (IS_HASWELL(dev_priv)) 4731 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ? 4732 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 4733 4734 if (HAS_PCH_NOP(dev_priv)) { 4735 if (IS_IVYBRIDGE(dev_priv)) { 4736 u32 temp = I915_READ(GEN7_MSG_CTL); 4737 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK); 4738 I915_WRITE(GEN7_MSG_CTL, temp); 4739 } else if (INTEL_GEN(dev_priv) >= 7) { 4740 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT); 4741 temp &= ~RESET_PCH_HANDSHAKE_ENABLE; 4742 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp); 4743 } 4744 } 4745 4746 i915_gem_init_swizzling(dev_priv); 4747 4748 /* 4749 * At least 830 can leave some of the unused rings 4750 * "active" (ie. head != tail) after resume which 4751 * will prevent c3 entry. Makes sure all unused rings 4752 * are totally idle. 4753 */ 4754 init_unused_rings(dev_priv); 4755 4756 BUG_ON(!dev_priv->kernel_context); 4757 4758 ret = i915_ppgtt_init_hw(dev_priv); 4759 if (ret) { 4760 DRM_ERROR("PPGTT enable HW failed %d\n", ret); 4761 goto out; 4762 } 4763 4764 /* Need to do basic initialisation of all rings first: */ 4765 ret = __i915_gem_restart_engines(dev_priv); 4766 if (ret) 4767 goto out; 4768 4769 intel_mocs_init_l3cc_table(dev_priv); 4770 4771 /* We can't enable contexts until all firmware is loaded */ 4772 ret = intel_uc_init_hw(dev_priv); 4773 if (ret) 4774 goto out; 4775 4776 out: 4777 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 4778 return ret; 4779 } 4780 4781 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value) 4782 { 4783 if (INTEL_INFO(dev_priv)->gen < 6) 4784 return false; 4785 4786 /* TODO: make semaphores and Execlists play nicely together */ 4787 if (i915.enable_execlists) 4788 return false; 4789 4790 if (value >= 0) 4791 return value; 4792 4793 /* Enable semaphores on SNB when IO remapping is off */ 4794 if (IS_GEN6(dev_priv) && intel_vtd_active()) 4795 return false; 4796 4797 return true; 4798 } 4799 4800 int i915_gem_init(struct drm_i915_private *dev_priv) 4801 { 4802 int ret; 4803 4804 mutex_lock(&dev_priv->drm.struct_mutex); 4805 4806 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1); 4807 4808 if (!i915.enable_execlists) { 4809 dev_priv->gt.resume = intel_legacy_submission_resume; 4810 dev_priv->gt.cleanup_engine = intel_engine_cleanup; 4811 } else { 4812 dev_priv->gt.resume = intel_lr_context_resume; 4813 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup; 4814 } 4815 4816 /* This is just a security blanket to placate dragons. 4817 * On some systems, we very sporadically observe that the first TLBs 4818 * used by the CS may be stale, despite us poking the TLB reset. If 4819 * we hold the forcewake during initialisation these problems 4820 * just magically go away. 4821 */ 4822 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 4823 4824 ret = i915_gem_init_userptr(dev_priv); 4825 if (ret) 4826 goto out_unlock; 4827 4828 ret = i915_gem_init_ggtt(dev_priv); 4829 if (ret) 4830 goto out_unlock; 4831 4832 ret = i915_gem_contexts_init(dev_priv); 4833 if (ret) 4834 goto out_unlock; 4835 4836 ret = intel_engines_init(dev_priv); 4837 if (ret) 4838 goto out_unlock; 4839 4840 ret = i915_gem_init_hw(dev_priv); 4841 if (ret == -EIO) { 4842 /* Allow engine initialisation to fail by marking the GPU as 4843 * wedged. But we only want to do this where the GPU is angry, 4844 * for all other failure, such as an allocation failure, bail. 4845 */ 4846 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n"); 4847 i915_gem_set_wedged(dev_priv); 4848 ret = 0; 4849 } 4850 4851 out_unlock: 4852 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 4853 mutex_unlock(&dev_priv->drm.struct_mutex); 4854 4855 return ret; 4856 } 4857 4858 void i915_gem_init_mmio(struct drm_i915_private *i915) 4859 { 4860 i915_gem_sanitize(i915); 4861 } 4862 4863 void 4864 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv) 4865 { 4866 struct intel_engine_cs *engine; 4867 enum intel_engine_id id; 4868 4869 for_each_engine(engine, dev_priv, id) 4870 dev_priv->gt.cleanup_engine(engine); 4871 } 4872 4873 void 4874 i915_gem_load_init_fences(struct drm_i915_private *dev_priv) 4875 { 4876 int i; 4877 4878 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) && 4879 !IS_CHERRYVIEW(dev_priv)) 4880 dev_priv->num_fence_regs = 32; 4881 else if (INTEL_INFO(dev_priv)->gen >= 4 || 4882 IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 4883 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) 4884 dev_priv->num_fence_regs = 16; 4885 else 4886 dev_priv->num_fence_regs = 8; 4887 4888 if (intel_vgpu_active(dev_priv)) 4889 dev_priv->num_fence_regs = 4890 I915_READ(vgtif_reg(avail_rs.fence_num)); 4891 4892 /* Initialize fence registers to zero */ 4893 for (i = 0; i < dev_priv->num_fence_regs; i++) { 4894 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i]; 4895 4896 fence->i915 = dev_priv; 4897 fence->id = i; 4898 list_add_tail(&fence->link, &dev_priv->mm.fence_list); 4899 } 4900 i915_gem_restore_fences(dev_priv); 4901 4902 i915_gem_detect_bit_6_swizzle(dev_priv); 4903 } 4904 4905 int 4906 i915_gem_load_init(struct drm_i915_private *dev_priv) 4907 { 4908 int err = -ENOMEM; 4909 4910 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN); 4911 if (!dev_priv->objects) 4912 goto err_out; 4913 4914 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN); 4915 if (!dev_priv->vmas) 4916 goto err_objects; 4917 4918 dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0); 4919 if (!dev_priv->luts) 4920 goto err_vmas; 4921 4922 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request, 4923 SLAB_HWCACHE_ALIGN | 4924 SLAB_RECLAIM_ACCOUNT | 4925 SLAB_TYPESAFE_BY_RCU); 4926 if (!dev_priv->requests) 4927 goto err_luts; 4928 4929 dev_priv->dependencies = KMEM_CACHE(i915_dependency, 4930 SLAB_HWCACHE_ALIGN | 4931 SLAB_RECLAIM_ACCOUNT); 4932 if (!dev_priv->dependencies) 4933 goto err_requests; 4934 4935 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN); 4936 if (!dev_priv->priorities) 4937 goto err_dependencies; 4938 4939 mutex_lock(&dev_priv->drm.struct_mutex); 4940 INIT_LIST_HEAD(&dev_priv->gt.timelines); 4941 err = i915_gem_timeline_init__global(dev_priv); 4942 mutex_unlock(&dev_priv->drm.struct_mutex); 4943 if (err) 4944 goto err_priorities; 4945 4946 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work); 4947 init_llist_head(&dev_priv->mm.free_list); 4948 INIT_LIST_HEAD(&dev_priv->mm.unbound_list); 4949 INIT_LIST_HEAD(&dev_priv->mm.bound_list); 4950 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4951 INIT_LIST_HEAD(&dev_priv->mm.userfault_list); 4952 INIT_DELAYED_WORK(&dev_priv->gt.retire_work, 4953 i915_gem_retire_work_handler); 4954 INIT_DELAYED_WORK(&dev_priv->gt.idle_work, 4955 i915_gem_idle_work_handler); 4956 init_waitqueue_head(&dev_priv->gpu_error.wait_queue); 4957 init_waitqueue_head(&dev_priv->gpu_error.reset_queue); 4958 4959 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0); 4960 4961 spin_lock_init(&dev_priv->fb_tracking.lock); 4962 4963 return 0; 4964 4965 err_priorities: 4966 kmem_cache_destroy(dev_priv->priorities); 4967 err_dependencies: 4968 kmem_cache_destroy(dev_priv->dependencies); 4969 err_requests: 4970 kmem_cache_destroy(dev_priv->requests); 4971 err_luts: 4972 kmem_cache_destroy(dev_priv->luts); 4973 err_vmas: 4974 kmem_cache_destroy(dev_priv->vmas); 4975 err_objects: 4976 kmem_cache_destroy(dev_priv->objects); 4977 err_out: 4978 return err; 4979 } 4980 4981 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv) 4982 { 4983 i915_gem_drain_freed_objects(dev_priv); 4984 WARN_ON(!llist_empty(&dev_priv->mm.free_list)); 4985 WARN_ON(dev_priv->mm.object_count); 4986 4987 mutex_lock(&dev_priv->drm.struct_mutex); 4988 i915_gem_timeline_fini(&dev_priv->gt.global_timeline); 4989 WARN_ON(!list_empty(&dev_priv->gt.timelines)); 4990 mutex_unlock(&dev_priv->drm.struct_mutex); 4991 4992 kmem_cache_destroy(dev_priv->priorities); 4993 kmem_cache_destroy(dev_priv->dependencies); 4994 kmem_cache_destroy(dev_priv->requests); 4995 kmem_cache_destroy(dev_priv->luts); 4996 kmem_cache_destroy(dev_priv->vmas); 4997 kmem_cache_destroy(dev_priv->objects); 4998 4999 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */ 5000 rcu_barrier(); 5001 } 5002 5003 int i915_gem_freeze(struct drm_i915_private *dev_priv) 5004 { 5005 /* Discard all purgeable objects, let userspace recover those as 5006 * required after resuming. 5007 */ 5008 i915_gem_shrink_all(dev_priv); 5009 5010 return 0; 5011 } 5012 5013 int i915_gem_freeze_late(struct drm_i915_private *dev_priv) 5014 { 5015 struct drm_i915_gem_object *obj; 5016 struct list_head *phases[] = { 5017 &dev_priv->mm.unbound_list, 5018 &dev_priv->mm.bound_list, 5019 NULL 5020 }, **p; 5021 5022 /* Called just before we write the hibernation image. 5023 * 5024 * We need to update the domain tracking to reflect that the CPU 5025 * will be accessing all the pages to create and restore from the 5026 * hibernation, and so upon restoration those pages will be in the 5027 * CPU domain. 5028 * 5029 * To make sure the hibernation image contains the latest state, 5030 * we update that state just before writing out the image. 5031 * 5032 * To try and reduce the hibernation image, we manually shrink 5033 * the objects as well, see i915_gem_freeze() 5034 */ 5035 5036 i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND); 5037 i915_gem_drain_freed_objects(dev_priv); 5038 5039 mutex_lock(&dev_priv->drm.struct_mutex); 5040 for (p = phases; *p; p++) { 5041 list_for_each_entry(obj, *p, global_link) 5042 __start_cpu_write(obj); 5043 } 5044 mutex_unlock(&dev_priv->drm.struct_mutex); 5045 5046 return 0; 5047 } 5048 5049 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 5050 { 5051 struct drm_i915_file_private *file_priv = file->driver_priv; 5052 struct drm_i915_gem_request *request; 5053 5054 /* Clean up our request list when the client is going away, so that 5055 * later retire_requests won't dereference our soon-to-be-gone 5056 * file_priv. 5057 */ 5058 spin_lock(&file_priv->mm.lock); 5059 list_for_each_entry(request, &file_priv->mm.request_list, client_link) 5060 request->file_priv = NULL; 5061 spin_unlock(&file_priv->mm.lock); 5062 } 5063 5064 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file) 5065 { 5066 struct drm_i915_file_private *file_priv; 5067 int ret; 5068 5069 DRM_DEBUG("\n"); 5070 5071 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); 5072 if (!file_priv) 5073 return -ENOMEM; 5074 5075 file->driver_priv = file_priv; 5076 file_priv->dev_priv = i915; 5077 file_priv->file = file; 5078 5079 spin_lock_init(&file_priv->mm.lock); 5080 INIT_LIST_HEAD(&file_priv->mm.request_list); 5081 5082 file_priv->bsd_engine = -1; 5083 5084 ret = i915_gem_context_open(i915, file); 5085 if (ret) 5086 kfree(file_priv); 5087 5088 return ret; 5089 } 5090 5091 /** 5092 * i915_gem_track_fb - update frontbuffer tracking 5093 * @old: current GEM buffer for the frontbuffer slots 5094 * @new: new GEM buffer for the frontbuffer slots 5095 * @frontbuffer_bits: bitmask of frontbuffer slots 5096 * 5097 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them 5098 * from @old and setting them in @new. Both @old and @new can be NULL. 5099 */ 5100 void i915_gem_track_fb(struct drm_i915_gem_object *old, 5101 struct drm_i915_gem_object *new, 5102 unsigned frontbuffer_bits) 5103 { 5104 /* Control of individual bits within the mask are guarded by 5105 * the owning plane->mutex, i.e. we can never see concurrent 5106 * manipulation of individual bits. But since the bitfield as a whole 5107 * is updated using RMW, we need to use atomics in order to update 5108 * the bits. 5109 */ 5110 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 5111 sizeof(atomic_t) * BITS_PER_BYTE); 5112 5113 if (old) { 5114 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits)); 5115 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits); 5116 } 5117 5118 if (new) { 5119 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits); 5120 atomic_or(frontbuffer_bits, &new->frontbuffer_bits); 5121 } 5122 } 5123 5124 /* Allocate a new GEM object and fill it with the supplied data */ 5125 struct drm_i915_gem_object * 5126 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv, 5127 const void *data, size_t size) 5128 { 5129 struct drm_i915_gem_object *obj; 5130 struct file *file; 5131 size_t offset; 5132 int err; 5133 5134 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE)); 5135 if (IS_ERR(obj)) 5136 return obj; 5137 5138 GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU); 5139 5140 file = obj->base.filp; 5141 offset = 0; 5142 do { 5143 unsigned int len = min_t(typeof(size), size, PAGE_SIZE); 5144 struct page *page; 5145 void *pgdata, *vaddr; 5146 5147 err = pagecache_write_begin(file, file->f_mapping, 5148 offset, len, 0, 5149 &page, &pgdata); 5150 if (err < 0) 5151 goto fail; 5152 5153 vaddr = kmap(page); 5154 memcpy(vaddr, data, len); 5155 kunmap(page); 5156 5157 err = pagecache_write_end(file, file->f_mapping, 5158 offset, len, len, 5159 page, pgdata); 5160 if (err < 0) 5161 goto fail; 5162 5163 size -= len; 5164 data += len; 5165 offset += len; 5166 } while (size); 5167 5168 return obj; 5169 5170 fail: 5171 i915_gem_object_put(obj); 5172 return ERR_PTR(err); 5173 } 5174 5175 struct scatterlist * 5176 i915_gem_object_get_sg(struct drm_i915_gem_object *obj, 5177 unsigned int n, 5178 unsigned int *offset) 5179 { 5180 struct i915_gem_object_page_iter *iter = &obj->mm.get_page; 5181 struct scatterlist *sg; 5182 unsigned int idx, count; 5183 5184 might_sleep(); 5185 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT); 5186 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 5187 5188 /* As we iterate forward through the sg, we record each entry in a 5189 * radixtree for quick repeated (backwards) lookups. If we have seen 5190 * this index previously, we will have an entry for it. 5191 * 5192 * Initial lookup is O(N), but this is amortized to O(1) for 5193 * sequential page access (where each new request is consecutive 5194 * to the previous one). Repeated lookups are O(lg(obj->base.size)), 5195 * i.e. O(1) with a large constant! 5196 */ 5197 if (n < READ_ONCE(iter->sg_idx)) 5198 goto lookup; 5199 5200 mutex_lock(&iter->lock); 5201 5202 /* We prefer to reuse the last sg so that repeated lookup of this 5203 * (or the subsequent) sg are fast - comparing against the last 5204 * sg is faster than going through the radixtree. 5205 */ 5206 5207 sg = iter->sg_pos; 5208 idx = iter->sg_idx; 5209 count = __sg_page_count(sg); 5210 5211 while (idx + count <= n) { 5212 unsigned long exception, i; 5213 int ret; 5214 5215 /* If we cannot allocate and insert this entry, or the 5216 * individual pages from this range, cancel updating the 5217 * sg_idx so that on this lookup we are forced to linearly 5218 * scan onwards, but on future lookups we will try the 5219 * insertion again (in which case we need to be careful of 5220 * the error return reporting that we have already inserted 5221 * this index). 5222 */ 5223 ret = radix_tree_insert(&iter->radix, idx, sg); 5224 if (ret && ret != -EEXIST) 5225 goto scan; 5226 5227 exception = 5228 RADIX_TREE_EXCEPTIONAL_ENTRY | 5229 idx << RADIX_TREE_EXCEPTIONAL_SHIFT; 5230 for (i = 1; i < count; i++) { 5231 ret = radix_tree_insert(&iter->radix, idx + i, 5232 (void *)exception); 5233 if (ret && ret != -EEXIST) 5234 goto scan; 5235 } 5236 5237 idx += count; 5238 sg = ____sg_next(sg); 5239 count = __sg_page_count(sg); 5240 } 5241 5242 scan: 5243 iter->sg_pos = sg; 5244 iter->sg_idx = idx; 5245 5246 mutex_unlock(&iter->lock); 5247 5248 if (unlikely(n < idx)) /* insertion completed by another thread */ 5249 goto lookup; 5250 5251 /* In case we failed to insert the entry into the radixtree, we need 5252 * to look beyond the current sg. 5253 */ 5254 while (idx + count <= n) { 5255 idx += count; 5256 sg = ____sg_next(sg); 5257 count = __sg_page_count(sg); 5258 } 5259 5260 *offset = n - idx; 5261 return sg; 5262 5263 lookup: 5264 rcu_read_lock(); 5265 5266 sg = radix_tree_lookup(&iter->radix, n); 5267 GEM_BUG_ON(!sg); 5268 5269 /* If this index is in the middle of multi-page sg entry, 5270 * the radixtree will contain an exceptional entry that points 5271 * to the start of that range. We will return the pointer to 5272 * the base page and the offset of this page within the 5273 * sg entry's range. 5274 */ 5275 *offset = 0; 5276 if (unlikely(radix_tree_exception(sg))) { 5277 unsigned long base = 5278 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT; 5279 5280 sg = radix_tree_lookup(&iter->radix, base); 5281 GEM_BUG_ON(!sg); 5282 5283 *offset = n - base; 5284 } 5285 5286 rcu_read_unlock(); 5287 5288 return sg; 5289 } 5290 5291 struct page * 5292 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n) 5293 { 5294 struct scatterlist *sg; 5295 unsigned int offset; 5296 5297 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj)); 5298 5299 sg = i915_gem_object_get_sg(obj, n, &offset); 5300 return nth_page(sg_page(sg), offset); 5301 } 5302 5303 /* Like i915_gem_object_get_page(), but mark the returned page dirty */ 5304 struct page * 5305 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, 5306 unsigned int n) 5307 { 5308 struct page *page; 5309 5310 page = i915_gem_object_get_page(obj, n); 5311 if (!obj->mm.dirty) 5312 set_page_dirty(page); 5313 5314 return page; 5315 } 5316 5317 dma_addr_t 5318 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, 5319 unsigned long n) 5320 { 5321 struct scatterlist *sg; 5322 unsigned int offset; 5323 5324 sg = i915_gem_object_get_sg(obj, n, &offset); 5325 return sg_dma_address(sg) + (offset << PAGE_SHIFT); 5326 } 5327 5328 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align) 5329 { 5330 struct sg_table *pages; 5331 int err; 5332 5333 if (align > obj->base.size) 5334 return -EINVAL; 5335 5336 if (obj->ops == &i915_gem_phys_ops) 5337 return 0; 5338 5339 if (obj->ops != &i915_gem_object_ops) 5340 return -EINVAL; 5341 5342 err = i915_gem_object_unbind(obj); 5343 if (err) 5344 return err; 5345 5346 mutex_lock(&obj->mm.lock); 5347 5348 if (obj->mm.madv != I915_MADV_WILLNEED) { 5349 err = -EFAULT; 5350 goto err_unlock; 5351 } 5352 5353 if (obj->mm.quirked) { 5354 err = -EFAULT; 5355 goto err_unlock; 5356 } 5357 5358 if (obj->mm.mapping) { 5359 err = -EBUSY; 5360 goto err_unlock; 5361 } 5362 5363 pages = obj->mm.pages; 5364 obj->ops = &i915_gem_phys_ops; 5365 5366 err = ____i915_gem_object_get_pages(obj); 5367 if (err) 5368 goto err_xfer; 5369 5370 /* Perma-pin (until release) the physical set of pages */ 5371 __i915_gem_object_pin_pages(obj); 5372 5373 if (!IS_ERR_OR_NULL(pages)) 5374 i915_gem_object_ops.put_pages(obj, pages); 5375 mutex_unlock(&obj->mm.lock); 5376 return 0; 5377 5378 err_xfer: 5379 obj->ops = &i915_gem_object_ops; 5380 obj->mm.pages = pages; 5381 err_unlock: 5382 mutex_unlock(&obj->mm.lock); 5383 return err; 5384 } 5385 5386 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 5387 #include "selftests/scatterlist.c" 5388 #include "selftests/mock_gem_device.c" 5389 #include "selftests/huge_gem_object.c" 5390 #include "selftests/i915_gem_object.c" 5391 #include "selftests/i915_gem_coherency.c" 5392 #endif 5393