1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include "drmP.h" 29 #include "drm.h" 30 #include "i915_drm.h" 31 #include "i915_drv.h" 32 #include "i915_trace.h" 33 #include "intel_drv.h" 34 #include <linux/swap.h> 35 #include <linux/pci.h> 36 37 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT)) 38 39 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj); 40 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj); 41 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj); 42 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, 43 int write); 44 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj, 45 uint64_t offset, 46 uint64_t size); 47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj); 48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj); 49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, 50 unsigned alignment); 51 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj); 52 static int i915_gem_evict_something(struct drm_device *dev, int min_size); 53 static int i915_gem_evict_from_inactive_list(struct drm_device *dev); 54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj, 55 struct drm_i915_gem_pwrite *args, 56 struct drm_file *file_priv); 57 58 static LIST_HEAD(shrink_list); 59 static DEFINE_SPINLOCK(shrink_list_lock); 60 61 int i915_gem_do_init(struct drm_device *dev, unsigned long start, 62 unsigned long end) 63 { 64 drm_i915_private_t *dev_priv = dev->dev_private; 65 66 if (start >= end || 67 (start & (PAGE_SIZE - 1)) != 0 || 68 (end & (PAGE_SIZE - 1)) != 0) { 69 return -EINVAL; 70 } 71 72 drm_mm_init(&dev_priv->mm.gtt_space, start, 73 end - start); 74 75 dev->gtt_total = (uint32_t) (end - start); 76 77 return 0; 78 } 79 80 int 81 i915_gem_init_ioctl(struct drm_device *dev, void *data, 82 struct drm_file *file_priv) 83 { 84 struct drm_i915_gem_init *args = data; 85 int ret; 86 87 mutex_lock(&dev->struct_mutex); 88 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end); 89 mutex_unlock(&dev->struct_mutex); 90 91 return ret; 92 } 93 94 int 95 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 96 struct drm_file *file_priv) 97 { 98 struct drm_i915_gem_get_aperture *args = data; 99 100 if (!(dev->driver->driver_features & DRIVER_GEM)) 101 return -ENODEV; 102 103 args->aper_size = dev->gtt_total; 104 args->aper_available_size = (args->aper_size - 105 atomic_read(&dev->pin_memory)); 106 107 return 0; 108 } 109 110 111 /** 112 * Creates a new mm object and returns a handle to it. 113 */ 114 int 115 i915_gem_create_ioctl(struct drm_device *dev, void *data, 116 struct drm_file *file_priv) 117 { 118 struct drm_i915_gem_create *args = data; 119 struct drm_gem_object *obj; 120 int ret; 121 u32 handle; 122 123 args->size = roundup(args->size, PAGE_SIZE); 124 125 /* Allocate the new object */ 126 obj = drm_gem_object_alloc(dev, args->size); 127 if (obj == NULL) 128 return -ENOMEM; 129 130 ret = drm_gem_handle_create(file_priv, obj, &handle); 131 mutex_lock(&dev->struct_mutex); 132 drm_gem_object_handle_unreference(obj); 133 mutex_unlock(&dev->struct_mutex); 134 135 if (ret) 136 return ret; 137 138 args->handle = handle; 139 140 return 0; 141 } 142 143 static inline int 144 fast_shmem_read(struct page **pages, 145 loff_t page_base, int page_offset, 146 char __user *data, 147 int length) 148 { 149 char __iomem *vaddr; 150 int unwritten; 151 152 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0); 153 if (vaddr == NULL) 154 return -ENOMEM; 155 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length); 156 kunmap_atomic(vaddr, KM_USER0); 157 158 if (unwritten) 159 return -EFAULT; 160 161 return 0; 162 } 163 164 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj) 165 { 166 drm_i915_private_t *dev_priv = obj->dev->dev_private; 167 struct drm_i915_gem_object *obj_priv = obj->driver_private; 168 169 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && 170 obj_priv->tiling_mode != I915_TILING_NONE; 171 } 172 173 static inline int 174 slow_shmem_copy(struct page *dst_page, 175 int dst_offset, 176 struct page *src_page, 177 int src_offset, 178 int length) 179 { 180 char *dst_vaddr, *src_vaddr; 181 182 dst_vaddr = kmap_atomic(dst_page, KM_USER0); 183 if (dst_vaddr == NULL) 184 return -ENOMEM; 185 186 src_vaddr = kmap_atomic(src_page, KM_USER1); 187 if (src_vaddr == NULL) { 188 kunmap_atomic(dst_vaddr, KM_USER0); 189 return -ENOMEM; 190 } 191 192 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length); 193 194 kunmap_atomic(src_vaddr, KM_USER1); 195 kunmap_atomic(dst_vaddr, KM_USER0); 196 197 return 0; 198 } 199 200 static inline int 201 slow_shmem_bit17_copy(struct page *gpu_page, 202 int gpu_offset, 203 struct page *cpu_page, 204 int cpu_offset, 205 int length, 206 int is_read) 207 { 208 char *gpu_vaddr, *cpu_vaddr; 209 210 /* Use the unswizzled path if this page isn't affected. */ 211 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) { 212 if (is_read) 213 return slow_shmem_copy(cpu_page, cpu_offset, 214 gpu_page, gpu_offset, length); 215 else 216 return slow_shmem_copy(gpu_page, gpu_offset, 217 cpu_page, cpu_offset, length); 218 } 219 220 gpu_vaddr = kmap_atomic(gpu_page, KM_USER0); 221 if (gpu_vaddr == NULL) 222 return -ENOMEM; 223 224 cpu_vaddr = kmap_atomic(cpu_page, KM_USER1); 225 if (cpu_vaddr == NULL) { 226 kunmap_atomic(gpu_vaddr, KM_USER0); 227 return -ENOMEM; 228 } 229 230 /* Copy the data, XORing A6 with A17 (1). The user already knows he's 231 * XORing with the other bits (A9 for Y, A9 and A10 for X) 232 */ 233 while (length > 0) { 234 int cacheline_end = ALIGN(gpu_offset + 1, 64); 235 int this_length = min(cacheline_end - gpu_offset, length); 236 int swizzled_gpu_offset = gpu_offset ^ 64; 237 238 if (is_read) { 239 memcpy(cpu_vaddr + cpu_offset, 240 gpu_vaddr + swizzled_gpu_offset, 241 this_length); 242 } else { 243 memcpy(gpu_vaddr + swizzled_gpu_offset, 244 cpu_vaddr + cpu_offset, 245 this_length); 246 } 247 cpu_offset += this_length; 248 gpu_offset += this_length; 249 length -= this_length; 250 } 251 252 kunmap_atomic(cpu_vaddr, KM_USER1); 253 kunmap_atomic(gpu_vaddr, KM_USER0); 254 255 return 0; 256 } 257 258 /** 259 * This is the fast shmem pread path, which attempts to copy_from_user directly 260 * from the backing pages of the object to the user's address space. On a 261 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow(). 262 */ 263 static int 264 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj, 265 struct drm_i915_gem_pread *args, 266 struct drm_file *file_priv) 267 { 268 struct drm_i915_gem_object *obj_priv = obj->driver_private; 269 ssize_t remain; 270 loff_t offset, page_base; 271 char __user *user_data; 272 int page_offset, page_length; 273 int ret; 274 275 user_data = (char __user *) (uintptr_t) args->data_ptr; 276 remain = args->size; 277 278 mutex_lock(&dev->struct_mutex); 279 280 ret = i915_gem_object_get_pages(obj); 281 if (ret != 0) 282 goto fail_unlock; 283 284 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset, 285 args->size); 286 if (ret != 0) 287 goto fail_put_pages; 288 289 obj_priv = obj->driver_private; 290 offset = args->offset; 291 292 while (remain > 0) { 293 /* Operation in this page 294 * 295 * page_base = page offset within aperture 296 * page_offset = offset within page 297 * page_length = bytes to copy for this page 298 */ 299 page_base = (offset & ~(PAGE_SIZE-1)); 300 page_offset = offset & (PAGE_SIZE-1); 301 page_length = remain; 302 if ((page_offset + remain) > PAGE_SIZE) 303 page_length = PAGE_SIZE - page_offset; 304 305 ret = fast_shmem_read(obj_priv->pages, 306 page_base, page_offset, 307 user_data, page_length); 308 if (ret) 309 goto fail_put_pages; 310 311 remain -= page_length; 312 user_data += page_length; 313 offset += page_length; 314 } 315 316 fail_put_pages: 317 i915_gem_object_put_pages(obj); 318 fail_unlock: 319 mutex_unlock(&dev->struct_mutex); 320 321 return ret; 322 } 323 324 static inline gfp_t 325 i915_gem_object_get_page_gfp_mask (struct drm_gem_object *obj) 326 { 327 return mapping_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping); 328 } 329 330 static inline void 331 i915_gem_object_set_page_gfp_mask (struct drm_gem_object *obj, gfp_t gfp) 332 { 333 mapping_set_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping, gfp); 334 } 335 336 static int 337 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj) 338 { 339 int ret; 340 341 ret = i915_gem_object_get_pages(obj); 342 343 /* If we've insufficient memory to map in the pages, attempt 344 * to make some space by throwing out some old buffers. 345 */ 346 if (ret == -ENOMEM) { 347 struct drm_device *dev = obj->dev; 348 gfp_t gfp; 349 350 ret = i915_gem_evict_something(dev, obj->size); 351 if (ret) 352 return ret; 353 354 gfp = i915_gem_object_get_page_gfp_mask(obj); 355 i915_gem_object_set_page_gfp_mask(obj, gfp & ~__GFP_NORETRY); 356 ret = i915_gem_object_get_pages(obj); 357 i915_gem_object_set_page_gfp_mask (obj, gfp); 358 } 359 360 return ret; 361 } 362 363 /** 364 * This is the fallback shmem pread path, which allocates temporary storage 365 * in kernel space to copy_to_user into outside of the struct_mutex, so we 366 * can copy out of the object's backing pages while holding the struct mutex 367 * and not take page faults. 368 */ 369 static int 370 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj, 371 struct drm_i915_gem_pread *args, 372 struct drm_file *file_priv) 373 { 374 struct drm_i915_gem_object *obj_priv = obj->driver_private; 375 struct mm_struct *mm = current->mm; 376 struct page **user_pages; 377 ssize_t remain; 378 loff_t offset, pinned_pages, i; 379 loff_t first_data_page, last_data_page, num_pages; 380 int shmem_page_index, shmem_page_offset; 381 int data_page_index, data_page_offset; 382 int page_length; 383 int ret; 384 uint64_t data_ptr = args->data_ptr; 385 int do_bit17_swizzling; 386 387 remain = args->size; 388 389 /* Pin the user pages containing the data. We can't fault while 390 * holding the struct mutex, yet we want to hold it while 391 * dereferencing the user data. 392 */ 393 first_data_page = data_ptr / PAGE_SIZE; 394 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE; 395 num_pages = last_data_page - first_data_page + 1; 396 397 user_pages = drm_calloc_large(num_pages, sizeof(struct page *)); 398 if (user_pages == NULL) 399 return -ENOMEM; 400 401 down_read(&mm->mmap_sem); 402 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr, 403 num_pages, 1, 0, user_pages, NULL); 404 up_read(&mm->mmap_sem); 405 if (pinned_pages < num_pages) { 406 ret = -EFAULT; 407 goto fail_put_user_pages; 408 } 409 410 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 411 412 mutex_lock(&dev->struct_mutex); 413 414 ret = i915_gem_object_get_pages_or_evict(obj); 415 if (ret) 416 goto fail_unlock; 417 418 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset, 419 args->size); 420 if (ret != 0) 421 goto fail_put_pages; 422 423 obj_priv = obj->driver_private; 424 offset = args->offset; 425 426 while (remain > 0) { 427 /* Operation in this page 428 * 429 * shmem_page_index = page number within shmem file 430 * shmem_page_offset = offset within page in shmem file 431 * data_page_index = page number in get_user_pages return 432 * data_page_offset = offset with data_page_index page. 433 * page_length = bytes to copy for this page 434 */ 435 shmem_page_index = offset / PAGE_SIZE; 436 shmem_page_offset = offset & ~PAGE_MASK; 437 data_page_index = data_ptr / PAGE_SIZE - first_data_page; 438 data_page_offset = data_ptr & ~PAGE_MASK; 439 440 page_length = remain; 441 if ((shmem_page_offset + page_length) > PAGE_SIZE) 442 page_length = PAGE_SIZE - shmem_page_offset; 443 if ((data_page_offset + page_length) > PAGE_SIZE) 444 page_length = PAGE_SIZE - data_page_offset; 445 446 if (do_bit17_swizzling) { 447 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index], 448 shmem_page_offset, 449 user_pages[data_page_index], 450 data_page_offset, 451 page_length, 452 1); 453 } else { 454 ret = slow_shmem_copy(user_pages[data_page_index], 455 data_page_offset, 456 obj_priv->pages[shmem_page_index], 457 shmem_page_offset, 458 page_length); 459 } 460 if (ret) 461 goto fail_put_pages; 462 463 remain -= page_length; 464 data_ptr += page_length; 465 offset += page_length; 466 } 467 468 fail_put_pages: 469 i915_gem_object_put_pages(obj); 470 fail_unlock: 471 mutex_unlock(&dev->struct_mutex); 472 fail_put_user_pages: 473 for (i = 0; i < pinned_pages; i++) { 474 SetPageDirty(user_pages[i]); 475 page_cache_release(user_pages[i]); 476 } 477 drm_free_large(user_pages); 478 479 return ret; 480 } 481 482 /** 483 * Reads data from the object referenced by handle. 484 * 485 * On error, the contents of *data are undefined. 486 */ 487 int 488 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 489 struct drm_file *file_priv) 490 { 491 struct drm_i915_gem_pread *args = data; 492 struct drm_gem_object *obj; 493 struct drm_i915_gem_object *obj_priv; 494 int ret; 495 496 obj = drm_gem_object_lookup(dev, file_priv, args->handle); 497 if (obj == NULL) 498 return -EBADF; 499 obj_priv = obj->driver_private; 500 501 /* Bounds check source. 502 * 503 * XXX: This could use review for overflow issues... 504 */ 505 if (args->offset > obj->size || args->size > obj->size || 506 args->offset + args->size > obj->size) { 507 drm_gem_object_unreference(obj); 508 return -EINVAL; 509 } 510 511 if (i915_gem_object_needs_bit17_swizzle(obj)) { 512 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv); 513 } else { 514 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv); 515 if (ret != 0) 516 ret = i915_gem_shmem_pread_slow(dev, obj, args, 517 file_priv); 518 } 519 520 drm_gem_object_unreference(obj); 521 522 return ret; 523 } 524 525 /* This is the fast write path which cannot handle 526 * page faults in the source data 527 */ 528 529 static inline int 530 fast_user_write(struct io_mapping *mapping, 531 loff_t page_base, int page_offset, 532 char __user *user_data, 533 int length) 534 { 535 char *vaddr_atomic; 536 unsigned long unwritten; 537 538 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base); 539 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset, 540 user_data, length); 541 io_mapping_unmap_atomic(vaddr_atomic); 542 if (unwritten) 543 return -EFAULT; 544 return 0; 545 } 546 547 /* Here's the write path which can sleep for 548 * page faults 549 */ 550 551 static inline int 552 slow_kernel_write(struct io_mapping *mapping, 553 loff_t gtt_base, int gtt_offset, 554 struct page *user_page, int user_offset, 555 int length) 556 { 557 char *src_vaddr, *dst_vaddr; 558 unsigned long unwritten; 559 560 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base); 561 src_vaddr = kmap_atomic(user_page, KM_USER1); 562 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset, 563 src_vaddr + user_offset, 564 length); 565 kunmap_atomic(src_vaddr, KM_USER1); 566 io_mapping_unmap_atomic(dst_vaddr); 567 if (unwritten) 568 return -EFAULT; 569 return 0; 570 } 571 572 static inline int 573 fast_shmem_write(struct page **pages, 574 loff_t page_base, int page_offset, 575 char __user *data, 576 int length) 577 { 578 char __iomem *vaddr; 579 unsigned long unwritten; 580 581 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0); 582 if (vaddr == NULL) 583 return -ENOMEM; 584 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length); 585 kunmap_atomic(vaddr, KM_USER0); 586 587 if (unwritten) 588 return -EFAULT; 589 return 0; 590 } 591 592 /** 593 * This is the fast pwrite path, where we copy the data directly from the 594 * user into the GTT, uncached. 595 */ 596 static int 597 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj, 598 struct drm_i915_gem_pwrite *args, 599 struct drm_file *file_priv) 600 { 601 struct drm_i915_gem_object *obj_priv = obj->driver_private; 602 drm_i915_private_t *dev_priv = dev->dev_private; 603 ssize_t remain; 604 loff_t offset, page_base; 605 char __user *user_data; 606 int page_offset, page_length; 607 int ret; 608 609 user_data = (char __user *) (uintptr_t) args->data_ptr; 610 remain = args->size; 611 if (!access_ok(VERIFY_READ, user_data, remain)) 612 return -EFAULT; 613 614 615 mutex_lock(&dev->struct_mutex); 616 ret = i915_gem_object_pin(obj, 0); 617 if (ret) { 618 mutex_unlock(&dev->struct_mutex); 619 return ret; 620 } 621 ret = i915_gem_object_set_to_gtt_domain(obj, 1); 622 if (ret) 623 goto fail; 624 625 obj_priv = obj->driver_private; 626 offset = obj_priv->gtt_offset + args->offset; 627 628 while (remain > 0) { 629 /* Operation in this page 630 * 631 * page_base = page offset within aperture 632 * page_offset = offset within page 633 * page_length = bytes to copy for this page 634 */ 635 page_base = (offset & ~(PAGE_SIZE-1)); 636 page_offset = offset & (PAGE_SIZE-1); 637 page_length = remain; 638 if ((page_offset + remain) > PAGE_SIZE) 639 page_length = PAGE_SIZE - page_offset; 640 641 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base, 642 page_offset, user_data, page_length); 643 644 /* If we get a fault while copying data, then (presumably) our 645 * source page isn't available. Return the error and we'll 646 * retry in the slow path. 647 */ 648 if (ret) 649 goto fail; 650 651 remain -= page_length; 652 user_data += page_length; 653 offset += page_length; 654 } 655 656 fail: 657 i915_gem_object_unpin(obj); 658 mutex_unlock(&dev->struct_mutex); 659 660 return ret; 661 } 662 663 /** 664 * This is the fallback GTT pwrite path, which uses get_user_pages to pin 665 * the memory and maps it using kmap_atomic for copying. 666 * 667 * This code resulted in x11perf -rgb10text consuming about 10% more CPU 668 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit). 669 */ 670 static int 671 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj, 672 struct drm_i915_gem_pwrite *args, 673 struct drm_file *file_priv) 674 { 675 struct drm_i915_gem_object *obj_priv = obj->driver_private; 676 drm_i915_private_t *dev_priv = dev->dev_private; 677 ssize_t remain; 678 loff_t gtt_page_base, offset; 679 loff_t first_data_page, last_data_page, num_pages; 680 loff_t pinned_pages, i; 681 struct page **user_pages; 682 struct mm_struct *mm = current->mm; 683 int gtt_page_offset, data_page_offset, data_page_index, page_length; 684 int ret; 685 uint64_t data_ptr = args->data_ptr; 686 687 remain = args->size; 688 689 /* Pin the user pages containing the data. We can't fault while 690 * holding the struct mutex, and all of the pwrite implementations 691 * want to hold it while dereferencing the user data. 692 */ 693 first_data_page = data_ptr / PAGE_SIZE; 694 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE; 695 num_pages = last_data_page - first_data_page + 1; 696 697 user_pages = drm_calloc_large(num_pages, sizeof(struct page *)); 698 if (user_pages == NULL) 699 return -ENOMEM; 700 701 down_read(&mm->mmap_sem); 702 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr, 703 num_pages, 0, 0, user_pages, NULL); 704 up_read(&mm->mmap_sem); 705 if (pinned_pages < num_pages) { 706 ret = -EFAULT; 707 goto out_unpin_pages; 708 } 709 710 mutex_lock(&dev->struct_mutex); 711 ret = i915_gem_object_pin(obj, 0); 712 if (ret) 713 goto out_unlock; 714 715 ret = i915_gem_object_set_to_gtt_domain(obj, 1); 716 if (ret) 717 goto out_unpin_object; 718 719 obj_priv = obj->driver_private; 720 offset = obj_priv->gtt_offset + args->offset; 721 722 while (remain > 0) { 723 /* Operation in this page 724 * 725 * gtt_page_base = page offset within aperture 726 * gtt_page_offset = offset within page in aperture 727 * data_page_index = page number in get_user_pages return 728 * data_page_offset = offset with data_page_index page. 729 * page_length = bytes to copy for this page 730 */ 731 gtt_page_base = offset & PAGE_MASK; 732 gtt_page_offset = offset & ~PAGE_MASK; 733 data_page_index = data_ptr / PAGE_SIZE - first_data_page; 734 data_page_offset = data_ptr & ~PAGE_MASK; 735 736 page_length = remain; 737 if ((gtt_page_offset + page_length) > PAGE_SIZE) 738 page_length = PAGE_SIZE - gtt_page_offset; 739 if ((data_page_offset + page_length) > PAGE_SIZE) 740 page_length = PAGE_SIZE - data_page_offset; 741 742 ret = slow_kernel_write(dev_priv->mm.gtt_mapping, 743 gtt_page_base, gtt_page_offset, 744 user_pages[data_page_index], 745 data_page_offset, 746 page_length); 747 748 /* If we get a fault while copying data, then (presumably) our 749 * source page isn't available. Return the error and we'll 750 * retry in the slow path. 751 */ 752 if (ret) 753 goto out_unpin_object; 754 755 remain -= page_length; 756 offset += page_length; 757 data_ptr += page_length; 758 } 759 760 out_unpin_object: 761 i915_gem_object_unpin(obj); 762 out_unlock: 763 mutex_unlock(&dev->struct_mutex); 764 out_unpin_pages: 765 for (i = 0; i < pinned_pages; i++) 766 page_cache_release(user_pages[i]); 767 drm_free_large(user_pages); 768 769 return ret; 770 } 771 772 /** 773 * This is the fast shmem pwrite path, which attempts to directly 774 * copy_from_user into the kmapped pages backing the object. 775 */ 776 static int 777 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj, 778 struct drm_i915_gem_pwrite *args, 779 struct drm_file *file_priv) 780 { 781 struct drm_i915_gem_object *obj_priv = obj->driver_private; 782 ssize_t remain; 783 loff_t offset, page_base; 784 char __user *user_data; 785 int page_offset, page_length; 786 int ret; 787 788 user_data = (char __user *) (uintptr_t) args->data_ptr; 789 remain = args->size; 790 791 mutex_lock(&dev->struct_mutex); 792 793 ret = i915_gem_object_get_pages(obj); 794 if (ret != 0) 795 goto fail_unlock; 796 797 ret = i915_gem_object_set_to_cpu_domain(obj, 1); 798 if (ret != 0) 799 goto fail_put_pages; 800 801 obj_priv = obj->driver_private; 802 offset = args->offset; 803 obj_priv->dirty = 1; 804 805 while (remain > 0) { 806 /* Operation in this page 807 * 808 * page_base = page offset within aperture 809 * page_offset = offset within page 810 * page_length = bytes to copy for this page 811 */ 812 page_base = (offset & ~(PAGE_SIZE-1)); 813 page_offset = offset & (PAGE_SIZE-1); 814 page_length = remain; 815 if ((page_offset + remain) > PAGE_SIZE) 816 page_length = PAGE_SIZE - page_offset; 817 818 ret = fast_shmem_write(obj_priv->pages, 819 page_base, page_offset, 820 user_data, page_length); 821 if (ret) 822 goto fail_put_pages; 823 824 remain -= page_length; 825 user_data += page_length; 826 offset += page_length; 827 } 828 829 fail_put_pages: 830 i915_gem_object_put_pages(obj); 831 fail_unlock: 832 mutex_unlock(&dev->struct_mutex); 833 834 return ret; 835 } 836 837 /** 838 * This is the fallback shmem pwrite path, which uses get_user_pages to pin 839 * the memory and maps it using kmap_atomic for copying. 840 * 841 * This avoids taking mmap_sem for faulting on the user's address while the 842 * struct_mutex is held. 843 */ 844 static int 845 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj, 846 struct drm_i915_gem_pwrite *args, 847 struct drm_file *file_priv) 848 { 849 struct drm_i915_gem_object *obj_priv = obj->driver_private; 850 struct mm_struct *mm = current->mm; 851 struct page **user_pages; 852 ssize_t remain; 853 loff_t offset, pinned_pages, i; 854 loff_t first_data_page, last_data_page, num_pages; 855 int shmem_page_index, shmem_page_offset; 856 int data_page_index, data_page_offset; 857 int page_length; 858 int ret; 859 uint64_t data_ptr = args->data_ptr; 860 int do_bit17_swizzling; 861 862 remain = args->size; 863 864 /* Pin the user pages containing the data. We can't fault while 865 * holding the struct mutex, and all of the pwrite implementations 866 * want to hold it while dereferencing the user data. 867 */ 868 first_data_page = data_ptr / PAGE_SIZE; 869 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE; 870 num_pages = last_data_page - first_data_page + 1; 871 872 user_pages = drm_calloc_large(num_pages, sizeof(struct page *)); 873 if (user_pages == NULL) 874 return -ENOMEM; 875 876 down_read(&mm->mmap_sem); 877 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr, 878 num_pages, 0, 0, user_pages, NULL); 879 up_read(&mm->mmap_sem); 880 if (pinned_pages < num_pages) { 881 ret = -EFAULT; 882 goto fail_put_user_pages; 883 } 884 885 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 886 887 mutex_lock(&dev->struct_mutex); 888 889 ret = i915_gem_object_get_pages_or_evict(obj); 890 if (ret) 891 goto fail_unlock; 892 893 ret = i915_gem_object_set_to_cpu_domain(obj, 1); 894 if (ret != 0) 895 goto fail_put_pages; 896 897 obj_priv = obj->driver_private; 898 offset = args->offset; 899 obj_priv->dirty = 1; 900 901 while (remain > 0) { 902 /* Operation in this page 903 * 904 * shmem_page_index = page number within shmem file 905 * shmem_page_offset = offset within page in shmem file 906 * data_page_index = page number in get_user_pages return 907 * data_page_offset = offset with data_page_index page. 908 * page_length = bytes to copy for this page 909 */ 910 shmem_page_index = offset / PAGE_SIZE; 911 shmem_page_offset = offset & ~PAGE_MASK; 912 data_page_index = data_ptr / PAGE_SIZE - first_data_page; 913 data_page_offset = data_ptr & ~PAGE_MASK; 914 915 page_length = remain; 916 if ((shmem_page_offset + page_length) > PAGE_SIZE) 917 page_length = PAGE_SIZE - shmem_page_offset; 918 if ((data_page_offset + page_length) > PAGE_SIZE) 919 page_length = PAGE_SIZE - data_page_offset; 920 921 if (do_bit17_swizzling) { 922 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index], 923 shmem_page_offset, 924 user_pages[data_page_index], 925 data_page_offset, 926 page_length, 927 0); 928 } else { 929 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index], 930 shmem_page_offset, 931 user_pages[data_page_index], 932 data_page_offset, 933 page_length); 934 } 935 if (ret) 936 goto fail_put_pages; 937 938 remain -= page_length; 939 data_ptr += page_length; 940 offset += page_length; 941 } 942 943 fail_put_pages: 944 i915_gem_object_put_pages(obj); 945 fail_unlock: 946 mutex_unlock(&dev->struct_mutex); 947 fail_put_user_pages: 948 for (i = 0; i < pinned_pages; i++) 949 page_cache_release(user_pages[i]); 950 drm_free_large(user_pages); 951 952 return ret; 953 } 954 955 /** 956 * Writes data to the object referenced by handle. 957 * 958 * On error, the contents of the buffer that were to be modified are undefined. 959 */ 960 int 961 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 962 struct drm_file *file_priv) 963 { 964 struct drm_i915_gem_pwrite *args = data; 965 struct drm_gem_object *obj; 966 struct drm_i915_gem_object *obj_priv; 967 int ret = 0; 968 969 obj = drm_gem_object_lookup(dev, file_priv, args->handle); 970 if (obj == NULL) 971 return -EBADF; 972 obj_priv = obj->driver_private; 973 974 /* Bounds check destination. 975 * 976 * XXX: This could use review for overflow issues... 977 */ 978 if (args->offset > obj->size || args->size > obj->size || 979 args->offset + args->size > obj->size) { 980 drm_gem_object_unreference(obj); 981 return -EINVAL; 982 } 983 984 /* We can only do the GTT pwrite on untiled buffers, as otherwise 985 * it would end up going through the fenced access, and we'll get 986 * different detiling behavior between reading and writing. 987 * pread/pwrite currently are reading and writing from the CPU 988 * perspective, requiring manual detiling by the client. 989 */ 990 if (obj_priv->phys_obj) 991 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv); 992 else if (obj_priv->tiling_mode == I915_TILING_NONE && 993 dev->gtt_total != 0) { 994 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv); 995 if (ret == -EFAULT) { 996 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, 997 file_priv); 998 } 999 } else if (i915_gem_object_needs_bit17_swizzle(obj)) { 1000 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv); 1001 } else { 1002 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv); 1003 if (ret == -EFAULT) { 1004 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, 1005 file_priv); 1006 } 1007 } 1008 1009 #if WATCH_PWRITE 1010 if (ret) 1011 DRM_INFO("pwrite failed %d\n", ret); 1012 #endif 1013 1014 drm_gem_object_unreference(obj); 1015 1016 return ret; 1017 } 1018 1019 /** 1020 * Called when user space prepares to use an object with the CPU, either 1021 * through the mmap ioctl's mapping or a GTT mapping. 1022 */ 1023 int 1024 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 1025 struct drm_file *file_priv) 1026 { 1027 struct drm_i915_private *dev_priv = dev->dev_private; 1028 struct drm_i915_gem_set_domain *args = data; 1029 struct drm_gem_object *obj; 1030 struct drm_i915_gem_object *obj_priv; 1031 uint32_t read_domains = args->read_domains; 1032 uint32_t write_domain = args->write_domain; 1033 int ret; 1034 1035 if (!(dev->driver->driver_features & DRIVER_GEM)) 1036 return -ENODEV; 1037 1038 /* Only handle setting domains to types used by the CPU. */ 1039 if (write_domain & I915_GEM_GPU_DOMAINS) 1040 return -EINVAL; 1041 1042 if (read_domains & I915_GEM_GPU_DOMAINS) 1043 return -EINVAL; 1044 1045 /* Having something in the write domain implies it's in the read 1046 * domain, and only that read domain. Enforce that in the request. 1047 */ 1048 if (write_domain != 0 && read_domains != write_domain) 1049 return -EINVAL; 1050 1051 obj = drm_gem_object_lookup(dev, file_priv, args->handle); 1052 if (obj == NULL) 1053 return -EBADF; 1054 obj_priv = obj->driver_private; 1055 1056 mutex_lock(&dev->struct_mutex); 1057 1058 intel_mark_busy(dev, obj); 1059 1060 #if WATCH_BUF 1061 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n", 1062 obj, obj->size, read_domains, write_domain); 1063 #endif 1064 if (read_domains & I915_GEM_DOMAIN_GTT) { 1065 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); 1066 1067 /* Update the LRU on the fence for the CPU access that's 1068 * about to occur. 1069 */ 1070 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) { 1071 list_move_tail(&obj_priv->fence_list, 1072 &dev_priv->mm.fence_list); 1073 } 1074 1075 /* Silently promote "you're not bound, there was nothing to do" 1076 * to success, since the client was just asking us to 1077 * make sure everything was done. 1078 */ 1079 if (ret == -EINVAL) 1080 ret = 0; 1081 } else { 1082 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); 1083 } 1084 1085 drm_gem_object_unreference(obj); 1086 mutex_unlock(&dev->struct_mutex); 1087 return ret; 1088 } 1089 1090 /** 1091 * Called when user space has done writes to this buffer 1092 */ 1093 int 1094 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1095 struct drm_file *file_priv) 1096 { 1097 struct drm_i915_gem_sw_finish *args = data; 1098 struct drm_gem_object *obj; 1099 struct drm_i915_gem_object *obj_priv; 1100 int ret = 0; 1101 1102 if (!(dev->driver->driver_features & DRIVER_GEM)) 1103 return -ENODEV; 1104 1105 mutex_lock(&dev->struct_mutex); 1106 obj = drm_gem_object_lookup(dev, file_priv, args->handle); 1107 if (obj == NULL) { 1108 mutex_unlock(&dev->struct_mutex); 1109 return -EBADF; 1110 } 1111 1112 #if WATCH_BUF 1113 DRM_INFO("%s: sw_finish %d (%p %zd)\n", 1114 __func__, args->handle, obj, obj->size); 1115 #endif 1116 obj_priv = obj->driver_private; 1117 1118 /* Pinned buffers may be scanout, so flush the cache */ 1119 if (obj_priv->pin_count) 1120 i915_gem_object_flush_cpu_write_domain(obj); 1121 1122 drm_gem_object_unreference(obj); 1123 mutex_unlock(&dev->struct_mutex); 1124 return ret; 1125 } 1126 1127 /** 1128 * Maps the contents of an object, returning the address it is mapped 1129 * into. 1130 * 1131 * While the mapping holds a reference on the contents of the object, it doesn't 1132 * imply a ref on the object itself. 1133 */ 1134 int 1135 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1136 struct drm_file *file_priv) 1137 { 1138 struct drm_i915_gem_mmap *args = data; 1139 struct drm_gem_object *obj; 1140 loff_t offset; 1141 unsigned long addr; 1142 1143 if (!(dev->driver->driver_features & DRIVER_GEM)) 1144 return -ENODEV; 1145 1146 obj = drm_gem_object_lookup(dev, file_priv, args->handle); 1147 if (obj == NULL) 1148 return -EBADF; 1149 1150 offset = args->offset; 1151 1152 down_write(¤t->mm->mmap_sem); 1153 addr = do_mmap(obj->filp, 0, args->size, 1154 PROT_READ | PROT_WRITE, MAP_SHARED, 1155 args->offset); 1156 up_write(¤t->mm->mmap_sem); 1157 mutex_lock(&dev->struct_mutex); 1158 drm_gem_object_unreference(obj); 1159 mutex_unlock(&dev->struct_mutex); 1160 if (IS_ERR((void *)addr)) 1161 return addr; 1162 1163 args->addr_ptr = (uint64_t) addr; 1164 1165 return 0; 1166 } 1167 1168 /** 1169 * i915_gem_fault - fault a page into the GTT 1170 * vma: VMA in question 1171 * vmf: fault info 1172 * 1173 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1174 * from userspace. The fault handler takes care of binding the object to 1175 * the GTT (if needed), allocating and programming a fence register (again, 1176 * only if needed based on whether the old reg is still valid or the object 1177 * is tiled) and inserting a new PTE into the faulting process. 1178 * 1179 * Note that the faulting process may involve evicting existing objects 1180 * from the GTT and/or fence registers to make room. So performance may 1181 * suffer if the GTT working set is large or there are few fence registers 1182 * left. 1183 */ 1184 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1185 { 1186 struct drm_gem_object *obj = vma->vm_private_data; 1187 struct drm_device *dev = obj->dev; 1188 struct drm_i915_private *dev_priv = dev->dev_private; 1189 struct drm_i915_gem_object *obj_priv = obj->driver_private; 1190 pgoff_t page_offset; 1191 unsigned long pfn; 1192 int ret = 0; 1193 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 1194 1195 /* We don't use vmf->pgoff since that has the fake offset */ 1196 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >> 1197 PAGE_SHIFT; 1198 1199 /* Now bind it into the GTT if needed */ 1200 mutex_lock(&dev->struct_mutex); 1201 if (!obj_priv->gtt_space) { 1202 ret = i915_gem_object_bind_to_gtt(obj, 0); 1203 if (ret) 1204 goto unlock; 1205 1206 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list); 1207 1208 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1209 if (ret) 1210 goto unlock; 1211 } 1212 1213 /* Need a new fence register? */ 1214 if (obj_priv->tiling_mode != I915_TILING_NONE) { 1215 ret = i915_gem_object_get_fence_reg(obj); 1216 if (ret) 1217 goto unlock; 1218 } 1219 1220 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) + 1221 page_offset; 1222 1223 /* Finally, remap it using the new GTT offset */ 1224 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn); 1225 unlock: 1226 mutex_unlock(&dev->struct_mutex); 1227 1228 switch (ret) { 1229 case 0: 1230 case -ERESTARTSYS: 1231 return VM_FAULT_NOPAGE; 1232 case -ENOMEM: 1233 case -EAGAIN: 1234 return VM_FAULT_OOM; 1235 default: 1236 return VM_FAULT_SIGBUS; 1237 } 1238 } 1239 1240 /** 1241 * i915_gem_create_mmap_offset - create a fake mmap offset for an object 1242 * @obj: obj in question 1243 * 1244 * GEM memory mapping works by handing back to userspace a fake mmap offset 1245 * it can use in a subsequent mmap(2) call. The DRM core code then looks 1246 * up the object based on the offset and sets up the various memory mapping 1247 * structures. 1248 * 1249 * This routine allocates and attaches a fake offset for @obj. 1250 */ 1251 static int 1252 i915_gem_create_mmap_offset(struct drm_gem_object *obj) 1253 { 1254 struct drm_device *dev = obj->dev; 1255 struct drm_gem_mm *mm = dev->mm_private; 1256 struct drm_i915_gem_object *obj_priv = obj->driver_private; 1257 struct drm_map_list *list; 1258 struct drm_local_map *map; 1259 int ret = 0; 1260 1261 /* Set the object up for mmap'ing */ 1262 list = &obj->map_list; 1263 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL); 1264 if (!list->map) 1265 return -ENOMEM; 1266 1267 map = list->map; 1268 map->type = _DRM_GEM; 1269 map->size = obj->size; 1270 map->handle = obj; 1271 1272 /* Get a DRM GEM mmap offset allocated... */ 1273 list->file_offset_node = drm_mm_search_free(&mm->offset_manager, 1274 obj->size / PAGE_SIZE, 0, 0); 1275 if (!list->file_offset_node) { 1276 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name); 1277 ret = -ENOMEM; 1278 goto out_free_list; 1279 } 1280 1281 list->file_offset_node = drm_mm_get_block(list->file_offset_node, 1282 obj->size / PAGE_SIZE, 0); 1283 if (!list->file_offset_node) { 1284 ret = -ENOMEM; 1285 goto out_free_list; 1286 } 1287 1288 list->hash.key = list->file_offset_node->start; 1289 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) { 1290 DRM_ERROR("failed to add to map hash\n"); 1291 ret = -ENOMEM; 1292 goto out_free_mm; 1293 } 1294 1295 /* By now we should be all set, any drm_mmap request on the offset 1296 * below will get to our mmap & fault handler */ 1297 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT; 1298 1299 return 0; 1300 1301 out_free_mm: 1302 drm_mm_put_block(list->file_offset_node); 1303 out_free_list: 1304 kfree(list->map); 1305 1306 return ret; 1307 } 1308 1309 /** 1310 * i915_gem_release_mmap - remove physical page mappings 1311 * @obj: obj in question 1312 * 1313 * Preserve the reservation of the mmapping with the DRM core code, but 1314 * relinquish ownership of the pages back to the system. 1315 * 1316 * It is vital that we remove the page mapping if we have mapped a tiled 1317 * object through the GTT and then lose the fence register due to 1318 * resource pressure. Similarly if the object has been moved out of the 1319 * aperture, than pages mapped into userspace must be revoked. Removing the 1320 * mapping will then trigger a page fault on the next user access, allowing 1321 * fixup by i915_gem_fault(). 1322 */ 1323 void 1324 i915_gem_release_mmap(struct drm_gem_object *obj) 1325 { 1326 struct drm_device *dev = obj->dev; 1327 struct drm_i915_gem_object *obj_priv = obj->driver_private; 1328 1329 if (dev->dev_mapping) 1330 unmap_mapping_range(dev->dev_mapping, 1331 obj_priv->mmap_offset, obj->size, 1); 1332 } 1333 1334 static void 1335 i915_gem_free_mmap_offset(struct drm_gem_object *obj) 1336 { 1337 struct drm_device *dev = obj->dev; 1338 struct drm_i915_gem_object *obj_priv = obj->driver_private; 1339 struct drm_gem_mm *mm = dev->mm_private; 1340 struct drm_map_list *list; 1341 1342 list = &obj->map_list; 1343 drm_ht_remove_item(&mm->offset_hash, &list->hash); 1344 1345 if (list->file_offset_node) { 1346 drm_mm_put_block(list->file_offset_node); 1347 list->file_offset_node = NULL; 1348 } 1349 1350 if (list->map) { 1351 kfree(list->map); 1352 list->map = NULL; 1353 } 1354 1355 obj_priv->mmap_offset = 0; 1356 } 1357 1358 /** 1359 * i915_gem_get_gtt_alignment - return required GTT alignment for an object 1360 * @obj: object to check 1361 * 1362 * Return the required GTT alignment for an object, taking into account 1363 * potential fence register mapping if needed. 1364 */ 1365 static uint32_t 1366 i915_gem_get_gtt_alignment(struct drm_gem_object *obj) 1367 { 1368 struct drm_device *dev = obj->dev; 1369 struct drm_i915_gem_object *obj_priv = obj->driver_private; 1370 int start, i; 1371 1372 /* 1373 * Minimum alignment is 4k (GTT page size), but might be greater 1374 * if a fence register is needed for the object. 1375 */ 1376 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE) 1377 return 4096; 1378 1379 /* 1380 * Previous chips need to be aligned to the size of the smallest 1381 * fence register that can contain the object. 1382 */ 1383 if (IS_I9XX(dev)) 1384 start = 1024*1024; 1385 else 1386 start = 512*1024; 1387 1388 for (i = start; i < obj->size; i <<= 1) 1389 ; 1390 1391 return i; 1392 } 1393 1394 /** 1395 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 1396 * @dev: DRM device 1397 * @data: GTT mapping ioctl data 1398 * @file_priv: GEM object info 1399 * 1400 * Simply returns the fake offset to userspace so it can mmap it. 1401 * The mmap call will end up in drm_gem_mmap(), which will set things 1402 * up so we can get faults in the handler above. 1403 * 1404 * The fault handler will take care of binding the object into the GTT 1405 * (since it may have been evicted to make room for something), allocating 1406 * a fence register, and mapping the appropriate aperture address into 1407 * userspace. 1408 */ 1409 int 1410 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 1411 struct drm_file *file_priv) 1412 { 1413 struct drm_i915_gem_mmap_gtt *args = data; 1414 struct drm_i915_private *dev_priv = dev->dev_private; 1415 struct drm_gem_object *obj; 1416 struct drm_i915_gem_object *obj_priv; 1417 int ret; 1418 1419 if (!(dev->driver->driver_features & DRIVER_GEM)) 1420 return -ENODEV; 1421 1422 obj = drm_gem_object_lookup(dev, file_priv, args->handle); 1423 if (obj == NULL) 1424 return -EBADF; 1425 1426 mutex_lock(&dev->struct_mutex); 1427 1428 obj_priv = obj->driver_private; 1429 1430 if (obj_priv->madv != I915_MADV_WILLNEED) { 1431 DRM_ERROR("Attempting to mmap a purgeable buffer\n"); 1432 drm_gem_object_unreference(obj); 1433 mutex_unlock(&dev->struct_mutex); 1434 return -EINVAL; 1435 } 1436 1437 1438 if (!obj_priv->mmap_offset) { 1439 ret = i915_gem_create_mmap_offset(obj); 1440 if (ret) { 1441 drm_gem_object_unreference(obj); 1442 mutex_unlock(&dev->struct_mutex); 1443 return ret; 1444 } 1445 } 1446 1447 args->offset = obj_priv->mmap_offset; 1448 1449 /* 1450 * Pull it into the GTT so that we have a page list (makes the 1451 * initial fault faster and any subsequent flushing possible). 1452 */ 1453 if (!obj_priv->agp_mem) { 1454 ret = i915_gem_object_bind_to_gtt(obj, 0); 1455 if (ret) { 1456 drm_gem_object_unreference(obj); 1457 mutex_unlock(&dev->struct_mutex); 1458 return ret; 1459 } 1460 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list); 1461 } 1462 1463 drm_gem_object_unreference(obj); 1464 mutex_unlock(&dev->struct_mutex); 1465 1466 return 0; 1467 } 1468 1469 void 1470 i915_gem_object_put_pages(struct drm_gem_object *obj) 1471 { 1472 struct drm_i915_gem_object *obj_priv = obj->driver_private; 1473 int page_count = obj->size / PAGE_SIZE; 1474 int i; 1475 1476 BUG_ON(obj_priv->pages_refcount == 0); 1477 BUG_ON(obj_priv->madv == __I915_MADV_PURGED); 1478 1479 if (--obj_priv->pages_refcount != 0) 1480 return; 1481 1482 if (obj_priv->tiling_mode != I915_TILING_NONE) 1483 i915_gem_object_save_bit_17_swizzle(obj); 1484 1485 if (obj_priv->madv == I915_MADV_DONTNEED) 1486 obj_priv->dirty = 0; 1487 1488 for (i = 0; i < page_count; i++) { 1489 if (obj_priv->pages[i] == NULL) 1490 break; 1491 1492 if (obj_priv->dirty) 1493 set_page_dirty(obj_priv->pages[i]); 1494 1495 if (obj_priv->madv == I915_MADV_WILLNEED) 1496 mark_page_accessed(obj_priv->pages[i]); 1497 1498 page_cache_release(obj_priv->pages[i]); 1499 } 1500 obj_priv->dirty = 0; 1501 1502 drm_free_large(obj_priv->pages); 1503 obj_priv->pages = NULL; 1504 } 1505 1506 static void 1507 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno) 1508 { 1509 struct drm_device *dev = obj->dev; 1510 drm_i915_private_t *dev_priv = dev->dev_private; 1511 struct drm_i915_gem_object *obj_priv = obj->driver_private; 1512 1513 /* Add a reference if we're newly entering the active list. */ 1514 if (!obj_priv->active) { 1515 drm_gem_object_reference(obj); 1516 obj_priv->active = 1; 1517 } 1518 /* Move from whatever list we were on to the tail of execution. */ 1519 spin_lock(&dev_priv->mm.active_list_lock); 1520 list_move_tail(&obj_priv->list, 1521 &dev_priv->mm.active_list); 1522 spin_unlock(&dev_priv->mm.active_list_lock); 1523 obj_priv->last_rendering_seqno = seqno; 1524 } 1525 1526 static void 1527 i915_gem_object_move_to_flushing(struct drm_gem_object *obj) 1528 { 1529 struct drm_device *dev = obj->dev; 1530 drm_i915_private_t *dev_priv = dev->dev_private; 1531 struct drm_i915_gem_object *obj_priv = obj->driver_private; 1532 1533 BUG_ON(!obj_priv->active); 1534 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list); 1535 obj_priv->last_rendering_seqno = 0; 1536 } 1537 1538 /* Immediately discard the backing storage */ 1539 static void 1540 i915_gem_object_truncate(struct drm_gem_object *obj) 1541 { 1542 struct drm_i915_gem_object *obj_priv = obj->driver_private; 1543 struct inode *inode; 1544 1545 inode = obj->filp->f_path.dentry->d_inode; 1546 if (inode->i_op->truncate) 1547 inode->i_op->truncate (inode); 1548 1549 obj_priv->madv = __I915_MADV_PURGED; 1550 } 1551 1552 static inline int 1553 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv) 1554 { 1555 return obj_priv->madv == I915_MADV_DONTNEED; 1556 } 1557 1558 static void 1559 i915_gem_object_move_to_inactive(struct drm_gem_object *obj) 1560 { 1561 struct drm_device *dev = obj->dev; 1562 drm_i915_private_t *dev_priv = dev->dev_private; 1563 struct drm_i915_gem_object *obj_priv = obj->driver_private; 1564 1565 i915_verify_inactive(dev, __FILE__, __LINE__); 1566 if (obj_priv->pin_count != 0) 1567 list_del_init(&obj_priv->list); 1568 else 1569 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list); 1570 1571 obj_priv->last_rendering_seqno = 0; 1572 if (obj_priv->active) { 1573 obj_priv->active = 0; 1574 drm_gem_object_unreference(obj); 1575 } 1576 i915_verify_inactive(dev, __FILE__, __LINE__); 1577 } 1578 1579 /** 1580 * Creates a new sequence number, emitting a write of it to the status page 1581 * plus an interrupt, which will trigger i915_user_interrupt_handler. 1582 * 1583 * Must be called with struct_lock held. 1584 * 1585 * Returned sequence numbers are nonzero on success. 1586 */ 1587 uint32_t 1588 i915_add_request(struct drm_device *dev, struct drm_file *file_priv, 1589 uint32_t flush_domains) 1590 { 1591 drm_i915_private_t *dev_priv = dev->dev_private; 1592 struct drm_i915_file_private *i915_file_priv = NULL; 1593 struct drm_i915_gem_request *request; 1594 uint32_t seqno; 1595 int was_empty; 1596 RING_LOCALS; 1597 1598 if (file_priv != NULL) 1599 i915_file_priv = file_priv->driver_priv; 1600 1601 request = kzalloc(sizeof(*request), GFP_KERNEL); 1602 if (request == NULL) 1603 return 0; 1604 1605 /* Grab the seqno we're going to make this request be, and bump the 1606 * next (skipping 0 so it can be the reserved no-seqno value). 1607 */ 1608 seqno = dev_priv->mm.next_gem_seqno; 1609 dev_priv->mm.next_gem_seqno++; 1610 if (dev_priv->mm.next_gem_seqno == 0) 1611 dev_priv->mm.next_gem_seqno++; 1612 1613 BEGIN_LP_RING(4); 1614 OUT_RING(MI_STORE_DWORD_INDEX); 1615 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT); 1616 OUT_RING(seqno); 1617 1618 OUT_RING(MI_USER_INTERRUPT); 1619 ADVANCE_LP_RING(); 1620 1621 DRM_DEBUG_DRIVER("%d\n", seqno); 1622 1623 request->seqno = seqno; 1624 request->emitted_jiffies = jiffies; 1625 was_empty = list_empty(&dev_priv->mm.request_list); 1626 list_add_tail(&request->list, &dev_priv->mm.request_list); 1627 if (i915_file_priv) { 1628 list_add_tail(&request->client_list, 1629 &i915_file_priv->mm.request_list); 1630 } else { 1631 INIT_LIST_HEAD(&request->client_list); 1632 } 1633 1634 /* Associate any objects on the flushing list matching the write 1635 * domain we're flushing with our flush. 1636 */ 1637 if (flush_domains != 0) { 1638 struct drm_i915_gem_object *obj_priv, *next; 1639 1640 list_for_each_entry_safe(obj_priv, next, 1641 &dev_priv->mm.flushing_list, list) { 1642 struct drm_gem_object *obj = obj_priv->obj; 1643 1644 if ((obj->write_domain & flush_domains) == 1645 obj->write_domain) { 1646 uint32_t old_write_domain = obj->write_domain; 1647 1648 obj->write_domain = 0; 1649 i915_gem_object_move_to_active(obj, seqno); 1650 1651 trace_i915_gem_object_change_domain(obj, 1652 obj->read_domains, 1653 old_write_domain); 1654 } 1655 } 1656 1657 } 1658 1659 if (!dev_priv->mm.suspended) { 1660 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD); 1661 if (was_empty) 1662 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ); 1663 } 1664 return seqno; 1665 } 1666 1667 /** 1668 * Command execution barrier 1669 * 1670 * Ensures that all commands in the ring are finished 1671 * before signalling the CPU 1672 */ 1673 static uint32_t 1674 i915_retire_commands(struct drm_device *dev) 1675 { 1676 drm_i915_private_t *dev_priv = dev->dev_private; 1677 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH; 1678 uint32_t flush_domains = 0; 1679 RING_LOCALS; 1680 1681 /* The sampler always gets flushed on i965 (sigh) */ 1682 if (IS_I965G(dev)) 1683 flush_domains |= I915_GEM_DOMAIN_SAMPLER; 1684 BEGIN_LP_RING(2); 1685 OUT_RING(cmd); 1686 OUT_RING(0); /* noop */ 1687 ADVANCE_LP_RING(); 1688 return flush_domains; 1689 } 1690 1691 /** 1692 * Moves buffers associated only with the given active seqno from the active 1693 * to inactive list, potentially freeing them. 1694 */ 1695 static void 1696 i915_gem_retire_request(struct drm_device *dev, 1697 struct drm_i915_gem_request *request) 1698 { 1699 drm_i915_private_t *dev_priv = dev->dev_private; 1700 1701 trace_i915_gem_request_retire(dev, request->seqno); 1702 1703 /* Move any buffers on the active list that are no longer referenced 1704 * by the ringbuffer to the flushing/inactive lists as appropriate. 1705 */ 1706 spin_lock(&dev_priv->mm.active_list_lock); 1707 while (!list_empty(&dev_priv->mm.active_list)) { 1708 struct drm_gem_object *obj; 1709 struct drm_i915_gem_object *obj_priv; 1710 1711 obj_priv = list_first_entry(&dev_priv->mm.active_list, 1712 struct drm_i915_gem_object, 1713 list); 1714 obj = obj_priv->obj; 1715 1716 /* If the seqno being retired doesn't match the oldest in the 1717 * list, then the oldest in the list must still be newer than 1718 * this seqno. 1719 */ 1720 if (obj_priv->last_rendering_seqno != request->seqno) 1721 goto out; 1722 1723 #if WATCH_LRU 1724 DRM_INFO("%s: retire %d moves to inactive list %p\n", 1725 __func__, request->seqno, obj); 1726 #endif 1727 1728 if (obj->write_domain != 0) 1729 i915_gem_object_move_to_flushing(obj); 1730 else { 1731 /* Take a reference on the object so it won't be 1732 * freed while the spinlock is held. The list 1733 * protection for this spinlock is safe when breaking 1734 * the lock like this since the next thing we do 1735 * is just get the head of the list again. 1736 */ 1737 drm_gem_object_reference(obj); 1738 i915_gem_object_move_to_inactive(obj); 1739 spin_unlock(&dev_priv->mm.active_list_lock); 1740 drm_gem_object_unreference(obj); 1741 spin_lock(&dev_priv->mm.active_list_lock); 1742 } 1743 } 1744 out: 1745 spin_unlock(&dev_priv->mm.active_list_lock); 1746 } 1747 1748 /** 1749 * Returns true if seq1 is later than seq2. 1750 */ 1751 bool 1752 i915_seqno_passed(uint32_t seq1, uint32_t seq2) 1753 { 1754 return (int32_t)(seq1 - seq2) >= 0; 1755 } 1756 1757 uint32_t 1758 i915_get_gem_seqno(struct drm_device *dev) 1759 { 1760 drm_i915_private_t *dev_priv = dev->dev_private; 1761 1762 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX); 1763 } 1764 1765 /** 1766 * This function clears the request list as sequence numbers are passed. 1767 */ 1768 void 1769 i915_gem_retire_requests(struct drm_device *dev) 1770 { 1771 drm_i915_private_t *dev_priv = dev->dev_private; 1772 uint32_t seqno; 1773 1774 if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list)) 1775 return; 1776 1777 seqno = i915_get_gem_seqno(dev); 1778 1779 while (!list_empty(&dev_priv->mm.request_list)) { 1780 struct drm_i915_gem_request *request; 1781 uint32_t retiring_seqno; 1782 1783 request = list_first_entry(&dev_priv->mm.request_list, 1784 struct drm_i915_gem_request, 1785 list); 1786 retiring_seqno = request->seqno; 1787 1788 if (i915_seqno_passed(seqno, retiring_seqno) || 1789 atomic_read(&dev_priv->mm.wedged)) { 1790 i915_gem_retire_request(dev, request); 1791 1792 list_del(&request->list); 1793 list_del(&request->client_list); 1794 kfree(request); 1795 } else 1796 break; 1797 } 1798 1799 if (unlikely (dev_priv->trace_irq_seqno && 1800 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) { 1801 i915_user_irq_put(dev); 1802 dev_priv->trace_irq_seqno = 0; 1803 } 1804 } 1805 1806 void 1807 i915_gem_retire_work_handler(struct work_struct *work) 1808 { 1809 drm_i915_private_t *dev_priv; 1810 struct drm_device *dev; 1811 1812 dev_priv = container_of(work, drm_i915_private_t, 1813 mm.retire_work.work); 1814 dev = dev_priv->dev; 1815 1816 mutex_lock(&dev->struct_mutex); 1817 i915_gem_retire_requests(dev); 1818 if (!dev_priv->mm.suspended && 1819 !list_empty(&dev_priv->mm.request_list)) 1820 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ); 1821 mutex_unlock(&dev->struct_mutex); 1822 } 1823 1824 int 1825 i915_do_wait_request(struct drm_device *dev, uint32_t seqno, int interruptible) 1826 { 1827 drm_i915_private_t *dev_priv = dev->dev_private; 1828 u32 ier; 1829 int ret = 0; 1830 1831 BUG_ON(seqno == 0); 1832 1833 if (atomic_read(&dev_priv->mm.wedged)) 1834 return -EIO; 1835 1836 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) { 1837 if (IS_IRONLAKE(dev)) 1838 ier = I915_READ(DEIER) | I915_READ(GTIER); 1839 else 1840 ier = I915_READ(IER); 1841 if (!ier) { 1842 DRM_ERROR("something (likely vbetool) disabled " 1843 "interrupts, re-enabling\n"); 1844 i915_driver_irq_preinstall(dev); 1845 i915_driver_irq_postinstall(dev); 1846 } 1847 1848 trace_i915_gem_request_wait_begin(dev, seqno); 1849 1850 dev_priv->mm.waiting_gem_seqno = seqno; 1851 i915_user_irq_get(dev); 1852 if (interruptible) 1853 ret = wait_event_interruptible(dev_priv->irq_queue, 1854 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) || 1855 atomic_read(&dev_priv->mm.wedged)); 1856 else 1857 wait_event(dev_priv->irq_queue, 1858 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) || 1859 atomic_read(&dev_priv->mm.wedged)); 1860 1861 i915_user_irq_put(dev); 1862 dev_priv->mm.waiting_gem_seqno = 0; 1863 1864 trace_i915_gem_request_wait_end(dev, seqno); 1865 } 1866 if (atomic_read(&dev_priv->mm.wedged)) 1867 ret = -EIO; 1868 1869 if (ret && ret != -ERESTARTSYS) 1870 DRM_ERROR("%s returns %d (awaiting %d at %d)\n", 1871 __func__, ret, seqno, i915_get_gem_seqno(dev)); 1872 1873 /* Directly dispatch request retiring. While we have the work queue 1874 * to handle this, the waiter on a request often wants an associated 1875 * buffer to have made it to the inactive list, and we would need 1876 * a separate wait queue to handle that. 1877 */ 1878 if (ret == 0) 1879 i915_gem_retire_requests(dev); 1880 1881 return ret; 1882 } 1883 1884 /** 1885 * Waits for a sequence number to be signaled, and cleans up the 1886 * request and object lists appropriately for that event. 1887 */ 1888 static int 1889 i915_wait_request(struct drm_device *dev, uint32_t seqno) 1890 { 1891 return i915_do_wait_request(dev, seqno, 1); 1892 } 1893 1894 static void 1895 i915_gem_flush(struct drm_device *dev, 1896 uint32_t invalidate_domains, 1897 uint32_t flush_domains) 1898 { 1899 drm_i915_private_t *dev_priv = dev->dev_private; 1900 uint32_t cmd; 1901 RING_LOCALS; 1902 1903 #if WATCH_EXEC 1904 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__, 1905 invalidate_domains, flush_domains); 1906 #endif 1907 trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno, 1908 invalidate_domains, flush_domains); 1909 1910 if (flush_domains & I915_GEM_DOMAIN_CPU) 1911 drm_agp_chipset_flush(dev); 1912 1913 if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) { 1914 /* 1915 * read/write caches: 1916 * 1917 * I915_GEM_DOMAIN_RENDER is always invalidated, but is 1918 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is 1919 * also flushed at 2d versus 3d pipeline switches. 1920 * 1921 * read-only caches: 1922 * 1923 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if 1924 * MI_READ_FLUSH is set, and is always flushed on 965. 1925 * 1926 * I915_GEM_DOMAIN_COMMAND may not exist? 1927 * 1928 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is 1929 * invalidated when MI_EXE_FLUSH is set. 1930 * 1931 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is 1932 * invalidated with every MI_FLUSH. 1933 * 1934 * TLBs: 1935 * 1936 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND 1937 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and 1938 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER 1939 * are flushed at any MI_FLUSH. 1940 */ 1941 1942 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH; 1943 if ((invalidate_domains|flush_domains) & 1944 I915_GEM_DOMAIN_RENDER) 1945 cmd &= ~MI_NO_WRITE_FLUSH; 1946 if (!IS_I965G(dev)) { 1947 /* 1948 * On the 965, the sampler cache always gets flushed 1949 * and this bit is reserved. 1950 */ 1951 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER) 1952 cmd |= MI_READ_FLUSH; 1953 } 1954 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION) 1955 cmd |= MI_EXE_FLUSH; 1956 1957 #if WATCH_EXEC 1958 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd); 1959 #endif 1960 BEGIN_LP_RING(2); 1961 OUT_RING(cmd); 1962 OUT_RING(MI_NOOP); 1963 ADVANCE_LP_RING(); 1964 } 1965 } 1966 1967 /** 1968 * Ensures that all rendering to the object has completed and the object is 1969 * safe to unbind from the GTT or access from the CPU. 1970 */ 1971 static int 1972 i915_gem_object_wait_rendering(struct drm_gem_object *obj) 1973 { 1974 struct drm_device *dev = obj->dev; 1975 struct drm_i915_gem_object *obj_priv = obj->driver_private; 1976 int ret; 1977 1978 /* This function only exists to support waiting for existing rendering, 1979 * not for emitting required flushes. 1980 */ 1981 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0); 1982 1983 /* If there is rendering queued on the buffer being evicted, wait for 1984 * it. 1985 */ 1986 if (obj_priv->active) { 1987 #if WATCH_BUF 1988 DRM_INFO("%s: object %p wait for seqno %08x\n", 1989 __func__, obj, obj_priv->last_rendering_seqno); 1990 #endif 1991 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno); 1992 if (ret != 0) 1993 return ret; 1994 } 1995 1996 return 0; 1997 } 1998 1999 /** 2000 * Unbinds an object from the GTT aperture. 2001 */ 2002 int 2003 i915_gem_object_unbind(struct drm_gem_object *obj) 2004 { 2005 struct drm_device *dev = obj->dev; 2006 struct drm_i915_gem_object *obj_priv = obj->driver_private; 2007 int ret = 0; 2008 2009 #if WATCH_BUF 2010 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj); 2011 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space); 2012 #endif 2013 if (obj_priv->gtt_space == NULL) 2014 return 0; 2015 2016 if (obj_priv->pin_count != 0) { 2017 DRM_ERROR("Attempting to unbind pinned buffer\n"); 2018 return -EINVAL; 2019 } 2020 2021 /* blow away mappings if mapped through GTT */ 2022 i915_gem_release_mmap(obj); 2023 2024 /* Move the object to the CPU domain to ensure that 2025 * any possible CPU writes while it's not in the GTT 2026 * are flushed when we go to remap it. This will 2027 * also ensure that all pending GPU writes are finished 2028 * before we unbind. 2029 */ 2030 ret = i915_gem_object_set_to_cpu_domain(obj, 1); 2031 if (ret) { 2032 if (ret != -ERESTARTSYS) 2033 DRM_ERROR("set_domain failed: %d\n", ret); 2034 return ret; 2035 } 2036 2037 BUG_ON(obj_priv->active); 2038 2039 /* release the fence reg _after_ flushing */ 2040 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) 2041 i915_gem_clear_fence_reg(obj); 2042 2043 if (obj_priv->agp_mem != NULL) { 2044 drm_unbind_agp(obj_priv->agp_mem); 2045 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE); 2046 obj_priv->agp_mem = NULL; 2047 } 2048 2049 i915_gem_object_put_pages(obj); 2050 BUG_ON(obj_priv->pages_refcount); 2051 2052 if (obj_priv->gtt_space) { 2053 atomic_dec(&dev->gtt_count); 2054 atomic_sub(obj->size, &dev->gtt_memory); 2055 2056 drm_mm_put_block(obj_priv->gtt_space); 2057 obj_priv->gtt_space = NULL; 2058 } 2059 2060 /* Remove ourselves from the LRU list if present. */ 2061 if (!list_empty(&obj_priv->list)) 2062 list_del_init(&obj_priv->list); 2063 2064 if (i915_gem_object_is_purgeable(obj_priv)) 2065 i915_gem_object_truncate(obj); 2066 2067 trace_i915_gem_object_unbind(obj); 2068 2069 return 0; 2070 } 2071 2072 static struct drm_gem_object * 2073 i915_gem_find_inactive_object(struct drm_device *dev, int min_size) 2074 { 2075 drm_i915_private_t *dev_priv = dev->dev_private; 2076 struct drm_i915_gem_object *obj_priv; 2077 struct drm_gem_object *best = NULL; 2078 struct drm_gem_object *first = NULL; 2079 2080 /* Try to find the smallest clean object */ 2081 list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) { 2082 struct drm_gem_object *obj = obj_priv->obj; 2083 if (obj->size >= min_size) { 2084 if ((!obj_priv->dirty || 2085 i915_gem_object_is_purgeable(obj_priv)) && 2086 (!best || obj->size < best->size)) { 2087 best = obj; 2088 if (best->size == min_size) 2089 return best; 2090 } 2091 if (!first) 2092 first = obj; 2093 } 2094 } 2095 2096 return best ? best : first; 2097 } 2098 2099 static int 2100 i915_gem_evict_everything(struct drm_device *dev) 2101 { 2102 drm_i915_private_t *dev_priv = dev->dev_private; 2103 uint32_t seqno; 2104 int ret; 2105 bool lists_empty; 2106 2107 spin_lock(&dev_priv->mm.active_list_lock); 2108 lists_empty = (list_empty(&dev_priv->mm.inactive_list) && 2109 list_empty(&dev_priv->mm.flushing_list) && 2110 list_empty(&dev_priv->mm.active_list)); 2111 spin_unlock(&dev_priv->mm.active_list_lock); 2112 2113 if (lists_empty) 2114 return -ENOSPC; 2115 2116 /* Flush everything (on to the inactive lists) and evict */ 2117 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS); 2118 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS); 2119 if (seqno == 0) 2120 return -ENOMEM; 2121 2122 ret = i915_wait_request(dev, seqno); 2123 if (ret) 2124 return ret; 2125 2126 ret = i915_gem_evict_from_inactive_list(dev); 2127 if (ret) 2128 return ret; 2129 2130 spin_lock(&dev_priv->mm.active_list_lock); 2131 lists_empty = (list_empty(&dev_priv->mm.inactive_list) && 2132 list_empty(&dev_priv->mm.flushing_list) && 2133 list_empty(&dev_priv->mm.active_list)); 2134 spin_unlock(&dev_priv->mm.active_list_lock); 2135 BUG_ON(!lists_empty); 2136 2137 return 0; 2138 } 2139 2140 static int 2141 i915_gem_evict_something(struct drm_device *dev, int min_size) 2142 { 2143 drm_i915_private_t *dev_priv = dev->dev_private; 2144 struct drm_gem_object *obj; 2145 int ret; 2146 2147 for (;;) { 2148 i915_gem_retire_requests(dev); 2149 2150 /* If there's an inactive buffer available now, grab it 2151 * and be done. 2152 */ 2153 obj = i915_gem_find_inactive_object(dev, min_size); 2154 if (obj) { 2155 struct drm_i915_gem_object *obj_priv; 2156 2157 #if WATCH_LRU 2158 DRM_INFO("%s: evicting %p\n", __func__, obj); 2159 #endif 2160 obj_priv = obj->driver_private; 2161 BUG_ON(obj_priv->pin_count != 0); 2162 BUG_ON(obj_priv->active); 2163 2164 /* Wait on the rendering and unbind the buffer. */ 2165 return i915_gem_object_unbind(obj); 2166 } 2167 2168 /* If we didn't get anything, but the ring is still processing 2169 * things, wait for the next to finish and hopefully leave us 2170 * a buffer to evict. 2171 */ 2172 if (!list_empty(&dev_priv->mm.request_list)) { 2173 struct drm_i915_gem_request *request; 2174 2175 request = list_first_entry(&dev_priv->mm.request_list, 2176 struct drm_i915_gem_request, 2177 list); 2178 2179 ret = i915_wait_request(dev, request->seqno); 2180 if (ret) 2181 return ret; 2182 2183 continue; 2184 } 2185 2186 /* If we didn't have anything on the request list but there 2187 * are buffers awaiting a flush, emit one and try again. 2188 * When we wait on it, those buffers waiting for that flush 2189 * will get moved to inactive. 2190 */ 2191 if (!list_empty(&dev_priv->mm.flushing_list)) { 2192 struct drm_i915_gem_object *obj_priv; 2193 2194 /* Find an object that we can immediately reuse */ 2195 list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) { 2196 obj = obj_priv->obj; 2197 if (obj->size >= min_size) 2198 break; 2199 2200 obj = NULL; 2201 } 2202 2203 if (obj != NULL) { 2204 uint32_t seqno; 2205 2206 i915_gem_flush(dev, 2207 obj->write_domain, 2208 obj->write_domain); 2209 seqno = i915_add_request(dev, NULL, obj->write_domain); 2210 if (seqno == 0) 2211 return -ENOMEM; 2212 2213 ret = i915_wait_request(dev, seqno); 2214 if (ret) 2215 return ret; 2216 2217 continue; 2218 } 2219 } 2220 2221 /* If we didn't do any of the above, there's no single buffer 2222 * large enough to swap out for the new one, so just evict 2223 * everything and start again. (This should be rare.) 2224 */ 2225 if (!list_empty (&dev_priv->mm.inactive_list)) 2226 return i915_gem_evict_from_inactive_list(dev); 2227 else 2228 return i915_gem_evict_everything(dev); 2229 } 2230 } 2231 2232 int 2233 i915_gem_object_get_pages(struct drm_gem_object *obj) 2234 { 2235 struct drm_i915_gem_object *obj_priv = obj->driver_private; 2236 int page_count, i; 2237 struct address_space *mapping; 2238 struct inode *inode; 2239 struct page *page; 2240 int ret; 2241 2242 if (obj_priv->pages_refcount++ != 0) 2243 return 0; 2244 2245 /* Get the list of pages out of our struct file. They'll be pinned 2246 * at this point until we release them. 2247 */ 2248 page_count = obj->size / PAGE_SIZE; 2249 BUG_ON(obj_priv->pages != NULL); 2250 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *)); 2251 if (obj_priv->pages == NULL) { 2252 obj_priv->pages_refcount--; 2253 return -ENOMEM; 2254 } 2255 2256 inode = obj->filp->f_path.dentry->d_inode; 2257 mapping = inode->i_mapping; 2258 for (i = 0; i < page_count; i++) { 2259 page = read_mapping_page(mapping, i, NULL); 2260 if (IS_ERR(page)) { 2261 ret = PTR_ERR(page); 2262 i915_gem_object_put_pages(obj); 2263 return ret; 2264 } 2265 obj_priv->pages[i] = page; 2266 } 2267 2268 if (obj_priv->tiling_mode != I915_TILING_NONE) 2269 i915_gem_object_do_bit_17_swizzle(obj); 2270 2271 return 0; 2272 } 2273 2274 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg) 2275 { 2276 struct drm_gem_object *obj = reg->obj; 2277 struct drm_device *dev = obj->dev; 2278 drm_i915_private_t *dev_priv = dev->dev_private; 2279 struct drm_i915_gem_object *obj_priv = obj->driver_private; 2280 int regnum = obj_priv->fence_reg; 2281 uint64_t val; 2282 2283 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) & 2284 0xfffff000) << 32; 2285 val |= obj_priv->gtt_offset & 0xfffff000; 2286 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT; 2287 if (obj_priv->tiling_mode == I915_TILING_Y) 2288 val |= 1 << I965_FENCE_TILING_Y_SHIFT; 2289 val |= I965_FENCE_REG_VALID; 2290 2291 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val); 2292 } 2293 2294 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg) 2295 { 2296 struct drm_gem_object *obj = reg->obj; 2297 struct drm_device *dev = obj->dev; 2298 drm_i915_private_t *dev_priv = dev->dev_private; 2299 struct drm_i915_gem_object *obj_priv = obj->driver_private; 2300 int regnum = obj_priv->fence_reg; 2301 int tile_width; 2302 uint32_t fence_reg, val; 2303 uint32_t pitch_val; 2304 2305 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) || 2306 (obj_priv->gtt_offset & (obj->size - 1))) { 2307 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n", 2308 __func__, obj_priv->gtt_offset, obj->size); 2309 return; 2310 } 2311 2312 if (obj_priv->tiling_mode == I915_TILING_Y && 2313 HAS_128_BYTE_Y_TILING(dev)) 2314 tile_width = 128; 2315 else 2316 tile_width = 512; 2317 2318 /* Note: pitch better be a power of two tile widths */ 2319 pitch_val = obj_priv->stride / tile_width; 2320 pitch_val = ffs(pitch_val) - 1; 2321 2322 val = obj_priv->gtt_offset; 2323 if (obj_priv->tiling_mode == I915_TILING_Y) 2324 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 2325 val |= I915_FENCE_SIZE_BITS(obj->size); 2326 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 2327 val |= I830_FENCE_REG_VALID; 2328 2329 if (regnum < 8) 2330 fence_reg = FENCE_REG_830_0 + (regnum * 4); 2331 else 2332 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4); 2333 I915_WRITE(fence_reg, val); 2334 } 2335 2336 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg) 2337 { 2338 struct drm_gem_object *obj = reg->obj; 2339 struct drm_device *dev = obj->dev; 2340 drm_i915_private_t *dev_priv = dev->dev_private; 2341 struct drm_i915_gem_object *obj_priv = obj->driver_private; 2342 int regnum = obj_priv->fence_reg; 2343 uint32_t val; 2344 uint32_t pitch_val; 2345 uint32_t fence_size_bits; 2346 2347 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) || 2348 (obj_priv->gtt_offset & (obj->size - 1))) { 2349 WARN(1, "%s: object 0x%08x not 512K or size aligned\n", 2350 __func__, obj_priv->gtt_offset); 2351 return; 2352 } 2353 2354 pitch_val = obj_priv->stride / 128; 2355 pitch_val = ffs(pitch_val) - 1; 2356 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL); 2357 2358 val = obj_priv->gtt_offset; 2359 if (obj_priv->tiling_mode == I915_TILING_Y) 2360 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 2361 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size); 2362 WARN_ON(fence_size_bits & ~0x00000f00); 2363 val |= fence_size_bits; 2364 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 2365 val |= I830_FENCE_REG_VALID; 2366 2367 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val); 2368 } 2369 2370 /** 2371 * i915_gem_object_get_fence_reg - set up a fence reg for an object 2372 * @obj: object to map through a fence reg 2373 * 2374 * When mapping objects through the GTT, userspace wants to be able to write 2375 * to them without having to worry about swizzling if the object is tiled. 2376 * 2377 * This function walks the fence regs looking for a free one for @obj, 2378 * stealing one if it can't find any. 2379 * 2380 * It then sets up the reg based on the object's properties: address, pitch 2381 * and tiling format. 2382 */ 2383 int 2384 i915_gem_object_get_fence_reg(struct drm_gem_object *obj) 2385 { 2386 struct drm_device *dev = obj->dev; 2387 struct drm_i915_private *dev_priv = dev->dev_private; 2388 struct drm_i915_gem_object *obj_priv = obj->driver_private; 2389 struct drm_i915_fence_reg *reg = NULL; 2390 struct drm_i915_gem_object *old_obj_priv = NULL; 2391 int i, ret, avail; 2392 2393 /* Just update our place in the LRU if our fence is getting used. */ 2394 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) { 2395 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list); 2396 return 0; 2397 } 2398 2399 switch (obj_priv->tiling_mode) { 2400 case I915_TILING_NONE: 2401 WARN(1, "allocating a fence for non-tiled object?\n"); 2402 break; 2403 case I915_TILING_X: 2404 if (!obj_priv->stride) 2405 return -EINVAL; 2406 WARN((obj_priv->stride & (512 - 1)), 2407 "object 0x%08x is X tiled but has non-512B pitch\n", 2408 obj_priv->gtt_offset); 2409 break; 2410 case I915_TILING_Y: 2411 if (!obj_priv->stride) 2412 return -EINVAL; 2413 WARN((obj_priv->stride & (128 - 1)), 2414 "object 0x%08x is Y tiled but has non-128B pitch\n", 2415 obj_priv->gtt_offset); 2416 break; 2417 } 2418 2419 /* First try to find a free reg */ 2420 avail = 0; 2421 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) { 2422 reg = &dev_priv->fence_regs[i]; 2423 if (!reg->obj) 2424 break; 2425 2426 old_obj_priv = reg->obj->driver_private; 2427 if (!old_obj_priv->pin_count) 2428 avail++; 2429 } 2430 2431 /* None available, try to steal one or wait for a user to finish */ 2432 if (i == dev_priv->num_fence_regs) { 2433 struct drm_gem_object *old_obj = NULL; 2434 2435 if (avail == 0) 2436 return -ENOSPC; 2437 2438 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list, 2439 fence_list) { 2440 old_obj = old_obj_priv->obj; 2441 2442 if (old_obj_priv->pin_count) 2443 continue; 2444 2445 /* Take a reference, as otherwise the wait_rendering 2446 * below may cause the object to get freed out from 2447 * under us. 2448 */ 2449 drm_gem_object_reference(old_obj); 2450 2451 /* i915 uses fences for GPU access to tiled buffers */ 2452 if (IS_I965G(dev) || !old_obj_priv->active) 2453 break; 2454 2455 /* This brings the object to the head of the LRU if it 2456 * had been written to. The only way this should 2457 * result in us waiting longer than the expected 2458 * optimal amount of time is if there was a 2459 * fence-using buffer later that was read-only. 2460 */ 2461 i915_gem_object_flush_gpu_write_domain(old_obj); 2462 ret = i915_gem_object_wait_rendering(old_obj); 2463 if (ret != 0) { 2464 drm_gem_object_unreference(old_obj); 2465 return ret; 2466 } 2467 2468 break; 2469 } 2470 2471 /* 2472 * Zap this virtual mapping so we can set up a fence again 2473 * for this object next time we need it. 2474 */ 2475 i915_gem_release_mmap(old_obj); 2476 2477 i = old_obj_priv->fence_reg; 2478 reg = &dev_priv->fence_regs[i]; 2479 2480 old_obj_priv->fence_reg = I915_FENCE_REG_NONE; 2481 list_del_init(&old_obj_priv->fence_list); 2482 2483 drm_gem_object_unreference(old_obj); 2484 } 2485 2486 obj_priv->fence_reg = i; 2487 list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list); 2488 2489 reg->obj = obj; 2490 2491 if (IS_I965G(dev)) 2492 i965_write_fence_reg(reg); 2493 else if (IS_I9XX(dev)) 2494 i915_write_fence_reg(reg); 2495 else 2496 i830_write_fence_reg(reg); 2497 2498 trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode); 2499 2500 return 0; 2501 } 2502 2503 /** 2504 * i915_gem_clear_fence_reg - clear out fence register info 2505 * @obj: object to clear 2506 * 2507 * Zeroes out the fence register itself and clears out the associated 2508 * data structures in dev_priv and obj_priv. 2509 */ 2510 static void 2511 i915_gem_clear_fence_reg(struct drm_gem_object *obj) 2512 { 2513 struct drm_device *dev = obj->dev; 2514 drm_i915_private_t *dev_priv = dev->dev_private; 2515 struct drm_i915_gem_object *obj_priv = obj->driver_private; 2516 2517 if (IS_I965G(dev)) 2518 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0); 2519 else { 2520 uint32_t fence_reg; 2521 2522 if (obj_priv->fence_reg < 8) 2523 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4; 2524 else 2525 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 2526 8) * 4; 2527 2528 I915_WRITE(fence_reg, 0); 2529 } 2530 2531 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL; 2532 obj_priv->fence_reg = I915_FENCE_REG_NONE; 2533 list_del_init(&obj_priv->fence_list); 2534 } 2535 2536 /** 2537 * i915_gem_object_put_fence_reg - waits on outstanding fenced access 2538 * to the buffer to finish, and then resets the fence register. 2539 * @obj: tiled object holding a fence register. 2540 * 2541 * Zeroes out the fence register itself and clears out the associated 2542 * data structures in dev_priv and obj_priv. 2543 */ 2544 int 2545 i915_gem_object_put_fence_reg(struct drm_gem_object *obj) 2546 { 2547 struct drm_device *dev = obj->dev; 2548 struct drm_i915_gem_object *obj_priv = obj->driver_private; 2549 2550 if (obj_priv->fence_reg == I915_FENCE_REG_NONE) 2551 return 0; 2552 2553 /* On the i915, GPU access to tiled buffers is via a fence, 2554 * therefore we must wait for any outstanding access to complete 2555 * before clearing the fence. 2556 */ 2557 if (!IS_I965G(dev)) { 2558 int ret; 2559 2560 i915_gem_object_flush_gpu_write_domain(obj); 2561 i915_gem_object_flush_gtt_write_domain(obj); 2562 ret = i915_gem_object_wait_rendering(obj); 2563 if (ret != 0) 2564 return ret; 2565 } 2566 2567 i915_gem_clear_fence_reg (obj); 2568 2569 return 0; 2570 } 2571 2572 /** 2573 * Finds free space in the GTT aperture and binds the object there. 2574 */ 2575 static int 2576 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment) 2577 { 2578 struct drm_device *dev = obj->dev; 2579 drm_i915_private_t *dev_priv = dev->dev_private; 2580 struct drm_i915_gem_object *obj_priv = obj->driver_private; 2581 struct drm_mm_node *free_space; 2582 bool retry_alloc = false; 2583 int ret; 2584 2585 if (obj_priv->madv != I915_MADV_WILLNEED) { 2586 DRM_ERROR("Attempting to bind a purgeable object\n"); 2587 return -EINVAL; 2588 } 2589 2590 if (alignment == 0) 2591 alignment = i915_gem_get_gtt_alignment(obj); 2592 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) { 2593 DRM_ERROR("Invalid object alignment requested %u\n", alignment); 2594 return -EINVAL; 2595 } 2596 2597 search_free: 2598 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space, 2599 obj->size, alignment, 0); 2600 if (free_space != NULL) { 2601 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size, 2602 alignment); 2603 if (obj_priv->gtt_space != NULL) { 2604 obj_priv->gtt_space->private = obj; 2605 obj_priv->gtt_offset = obj_priv->gtt_space->start; 2606 } 2607 } 2608 if (obj_priv->gtt_space == NULL) { 2609 /* If the gtt is empty and we're still having trouble 2610 * fitting our object in, we're out of memory. 2611 */ 2612 #if WATCH_LRU 2613 DRM_INFO("%s: GTT full, evicting something\n", __func__); 2614 #endif 2615 ret = i915_gem_evict_something(dev, obj->size); 2616 if (ret) 2617 return ret; 2618 2619 goto search_free; 2620 } 2621 2622 #if WATCH_BUF 2623 DRM_INFO("Binding object of size %zd at 0x%08x\n", 2624 obj->size, obj_priv->gtt_offset); 2625 #endif 2626 if (retry_alloc) { 2627 i915_gem_object_set_page_gfp_mask (obj, 2628 i915_gem_object_get_page_gfp_mask (obj) & ~__GFP_NORETRY); 2629 } 2630 ret = i915_gem_object_get_pages(obj); 2631 if (retry_alloc) { 2632 i915_gem_object_set_page_gfp_mask (obj, 2633 i915_gem_object_get_page_gfp_mask (obj) | __GFP_NORETRY); 2634 } 2635 if (ret) { 2636 drm_mm_put_block(obj_priv->gtt_space); 2637 obj_priv->gtt_space = NULL; 2638 2639 if (ret == -ENOMEM) { 2640 /* first try to clear up some space from the GTT */ 2641 ret = i915_gem_evict_something(dev, obj->size); 2642 if (ret) { 2643 /* now try to shrink everyone else */ 2644 if (! retry_alloc) { 2645 retry_alloc = true; 2646 goto search_free; 2647 } 2648 2649 return ret; 2650 } 2651 2652 goto search_free; 2653 } 2654 2655 return ret; 2656 } 2657 2658 /* Create an AGP memory structure pointing at our pages, and bind it 2659 * into the GTT. 2660 */ 2661 obj_priv->agp_mem = drm_agp_bind_pages(dev, 2662 obj_priv->pages, 2663 obj->size >> PAGE_SHIFT, 2664 obj_priv->gtt_offset, 2665 obj_priv->agp_type); 2666 if (obj_priv->agp_mem == NULL) { 2667 i915_gem_object_put_pages(obj); 2668 drm_mm_put_block(obj_priv->gtt_space); 2669 obj_priv->gtt_space = NULL; 2670 2671 ret = i915_gem_evict_something(dev, obj->size); 2672 if (ret) 2673 return ret; 2674 2675 goto search_free; 2676 } 2677 atomic_inc(&dev->gtt_count); 2678 atomic_add(obj->size, &dev->gtt_memory); 2679 2680 /* Assert that the object is not currently in any GPU domain. As it 2681 * wasn't in the GTT, there shouldn't be any way it could have been in 2682 * a GPU cache 2683 */ 2684 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS); 2685 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS); 2686 2687 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset); 2688 2689 return 0; 2690 } 2691 2692 void 2693 i915_gem_clflush_object(struct drm_gem_object *obj) 2694 { 2695 struct drm_i915_gem_object *obj_priv = obj->driver_private; 2696 2697 /* If we don't have a page list set up, then we're not pinned 2698 * to GPU, and we can ignore the cache flush because it'll happen 2699 * again at bind time. 2700 */ 2701 if (obj_priv->pages == NULL) 2702 return; 2703 2704 trace_i915_gem_object_clflush(obj); 2705 2706 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE); 2707 } 2708 2709 /** Flushes any GPU write domain for the object if it's dirty. */ 2710 static void 2711 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj) 2712 { 2713 struct drm_device *dev = obj->dev; 2714 uint32_t seqno; 2715 uint32_t old_write_domain; 2716 2717 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0) 2718 return; 2719 2720 /* Queue the GPU write cache flushing we need. */ 2721 old_write_domain = obj->write_domain; 2722 i915_gem_flush(dev, 0, obj->write_domain); 2723 seqno = i915_add_request(dev, NULL, obj->write_domain); 2724 obj->write_domain = 0; 2725 i915_gem_object_move_to_active(obj, seqno); 2726 2727 trace_i915_gem_object_change_domain(obj, 2728 obj->read_domains, 2729 old_write_domain); 2730 } 2731 2732 /** Flushes the GTT write domain for the object if it's dirty. */ 2733 static void 2734 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj) 2735 { 2736 uint32_t old_write_domain; 2737 2738 if (obj->write_domain != I915_GEM_DOMAIN_GTT) 2739 return; 2740 2741 /* No actual flushing is required for the GTT write domain. Writes 2742 * to it immediately go to main memory as far as we know, so there's 2743 * no chipset flush. It also doesn't land in render cache. 2744 */ 2745 old_write_domain = obj->write_domain; 2746 obj->write_domain = 0; 2747 2748 trace_i915_gem_object_change_domain(obj, 2749 obj->read_domains, 2750 old_write_domain); 2751 } 2752 2753 /** Flushes the CPU write domain for the object if it's dirty. */ 2754 static void 2755 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj) 2756 { 2757 struct drm_device *dev = obj->dev; 2758 uint32_t old_write_domain; 2759 2760 if (obj->write_domain != I915_GEM_DOMAIN_CPU) 2761 return; 2762 2763 i915_gem_clflush_object(obj); 2764 drm_agp_chipset_flush(dev); 2765 old_write_domain = obj->write_domain; 2766 obj->write_domain = 0; 2767 2768 trace_i915_gem_object_change_domain(obj, 2769 obj->read_domains, 2770 old_write_domain); 2771 } 2772 2773 void 2774 i915_gem_object_flush_write_domain(struct drm_gem_object *obj) 2775 { 2776 switch (obj->write_domain) { 2777 case I915_GEM_DOMAIN_GTT: 2778 i915_gem_object_flush_gtt_write_domain(obj); 2779 break; 2780 case I915_GEM_DOMAIN_CPU: 2781 i915_gem_object_flush_cpu_write_domain(obj); 2782 break; 2783 default: 2784 i915_gem_object_flush_gpu_write_domain(obj); 2785 break; 2786 } 2787 } 2788 2789 /** 2790 * Moves a single object to the GTT read, and possibly write domain. 2791 * 2792 * This function returns when the move is complete, including waiting on 2793 * flushes to occur. 2794 */ 2795 int 2796 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write) 2797 { 2798 struct drm_i915_gem_object *obj_priv = obj->driver_private; 2799 uint32_t old_write_domain, old_read_domains; 2800 int ret; 2801 2802 /* Not valid to be called on unbound objects. */ 2803 if (obj_priv->gtt_space == NULL) 2804 return -EINVAL; 2805 2806 i915_gem_object_flush_gpu_write_domain(obj); 2807 /* Wait on any GPU rendering and flushing to occur. */ 2808 ret = i915_gem_object_wait_rendering(obj); 2809 if (ret != 0) 2810 return ret; 2811 2812 old_write_domain = obj->write_domain; 2813 old_read_domains = obj->read_domains; 2814 2815 /* If we're writing through the GTT domain, then CPU and GPU caches 2816 * will need to be invalidated at next use. 2817 */ 2818 if (write) 2819 obj->read_domains &= I915_GEM_DOMAIN_GTT; 2820 2821 i915_gem_object_flush_cpu_write_domain(obj); 2822 2823 /* It should now be out of any other write domains, and we can update 2824 * the domain values for our changes. 2825 */ 2826 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 2827 obj->read_domains |= I915_GEM_DOMAIN_GTT; 2828 if (write) { 2829 obj->write_domain = I915_GEM_DOMAIN_GTT; 2830 obj_priv->dirty = 1; 2831 } 2832 2833 trace_i915_gem_object_change_domain(obj, 2834 old_read_domains, 2835 old_write_domain); 2836 2837 return 0; 2838 } 2839 2840 /** 2841 * Moves a single object to the CPU read, and possibly write domain. 2842 * 2843 * This function returns when the move is complete, including waiting on 2844 * flushes to occur. 2845 */ 2846 static int 2847 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write) 2848 { 2849 uint32_t old_write_domain, old_read_domains; 2850 int ret; 2851 2852 i915_gem_object_flush_gpu_write_domain(obj); 2853 /* Wait on any GPU rendering and flushing to occur. */ 2854 ret = i915_gem_object_wait_rendering(obj); 2855 if (ret != 0) 2856 return ret; 2857 2858 i915_gem_object_flush_gtt_write_domain(obj); 2859 2860 /* If we have a partially-valid cache of the object in the CPU, 2861 * finish invalidating it and free the per-page flags. 2862 */ 2863 i915_gem_object_set_to_full_cpu_read_domain(obj); 2864 2865 old_write_domain = obj->write_domain; 2866 old_read_domains = obj->read_domains; 2867 2868 /* Flush the CPU cache if it's still invalid. */ 2869 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) { 2870 i915_gem_clflush_object(obj); 2871 2872 obj->read_domains |= I915_GEM_DOMAIN_CPU; 2873 } 2874 2875 /* It should now be out of any other write domains, and we can update 2876 * the domain values for our changes. 2877 */ 2878 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0); 2879 2880 /* If we're writing through the CPU, then the GPU read domains will 2881 * need to be invalidated at next use. 2882 */ 2883 if (write) { 2884 obj->read_domains &= I915_GEM_DOMAIN_CPU; 2885 obj->write_domain = I915_GEM_DOMAIN_CPU; 2886 } 2887 2888 trace_i915_gem_object_change_domain(obj, 2889 old_read_domains, 2890 old_write_domain); 2891 2892 return 0; 2893 } 2894 2895 /* 2896 * Set the next domain for the specified object. This 2897 * may not actually perform the necessary flushing/invaliding though, 2898 * as that may want to be batched with other set_domain operations 2899 * 2900 * This is (we hope) the only really tricky part of gem. The goal 2901 * is fairly simple -- track which caches hold bits of the object 2902 * and make sure they remain coherent. A few concrete examples may 2903 * help to explain how it works. For shorthand, we use the notation 2904 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the 2905 * a pair of read and write domain masks. 2906 * 2907 * Case 1: the batch buffer 2908 * 2909 * 1. Allocated 2910 * 2. Written by CPU 2911 * 3. Mapped to GTT 2912 * 4. Read by GPU 2913 * 5. Unmapped from GTT 2914 * 6. Freed 2915 * 2916 * Let's take these a step at a time 2917 * 2918 * 1. Allocated 2919 * Pages allocated from the kernel may still have 2920 * cache contents, so we set them to (CPU, CPU) always. 2921 * 2. Written by CPU (using pwrite) 2922 * The pwrite function calls set_domain (CPU, CPU) and 2923 * this function does nothing (as nothing changes) 2924 * 3. Mapped by GTT 2925 * This function asserts that the object is not 2926 * currently in any GPU-based read or write domains 2927 * 4. Read by GPU 2928 * i915_gem_execbuffer calls set_domain (COMMAND, 0). 2929 * As write_domain is zero, this function adds in the 2930 * current read domains (CPU+COMMAND, 0). 2931 * flush_domains is set to CPU. 2932 * invalidate_domains is set to COMMAND 2933 * clflush is run to get data out of the CPU caches 2934 * then i915_dev_set_domain calls i915_gem_flush to 2935 * emit an MI_FLUSH and drm_agp_chipset_flush 2936 * 5. Unmapped from GTT 2937 * i915_gem_object_unbind calls set_domain (CPU, CPU) 2938 * flush_domains and invalidate_domains end up both zero 2939 * so no flushing/invalidating happens 2940 * 6. Freed 2941 * yay, done 2942 * 2943 * Case 2: The shared render buffer 2944 * 2945 * 1. Allocated 2946 * 2. Mapped to GTT 2947 * 3. Read/written by GPU 2948 * 4. set_domain to (CPU,CPU) 2949 * 5. Read/written by CPU 2950 * 6. Read/written by GPU 2951 * 2952 * 1. Allocated 2953 * Same as last example, (CPU, CPU) 2954 * 2. Mapped to GTT 2955 * Nothing changes (assertions find that it is not in the GPU) 2956 * 3. Read/written by GPU 2957 * execbuffer calls set_domain (RENDER, RENDER) 2958 * flush_domains gets CPU 2959 * invalidate_domains gets GPU 2960 * clflush (obj) 2961 * MI_FLUSH and drm_agp_chipset_flush 2962 * 4. set_domain (CPU, CPU) 2963 * flush_domains gets GPU 2964 * invalidate_domains gets CPU 2965 * wait_rendering (obj) to make sure all drawing is complete. 2966 * This will include an MI_FLUSH to get the data from GPU 2967 * to memory 2968 * clflush (obj) to invalidate the CPU cache 2969 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?) 2970 * 5. Read/written by CPU 2971 * cache lines are loaded and dirtied 2972 * 6. Read written by GPU 2973 * Same as last GPU access 2974 * 2975 * Case 3: The constant buffer 2976 * 2977 * 1. Allocated 2978 * 2. Written by CPU 2979 * 3. Read by GPU 2980 * 4. Updated (written) by CPU again 2981 * 5. Read by GPU 2982 * 2983 * 1. Allocated 2984 * (CPU, CPU) 2985 * 2. Written by CPU 2986 * (CPU, CPU) 2987 * 3. Read by GPU 2988 * (CPU+RENDER, 0) 2989 * flush_domains = CPU 2990 * invalidate_domains = RENDER 2991 * clflush (obj) 2992 * MI_FLUSH 2993 * drm_agp_chipset_flush 2994 * 4. Updated (written) by CPU again 2995 * (CPU, CPU) 2996 * flush_domains = 0 (no previous write domain) 2997 * invalidate_domains = 0 (no new read domains) 2998 * 5. Read by GPU 2999 * (CPU+RENDER, 0) 3000 * flush_domains = CPU 3001 * invalidate_domains = RENDER 3002 * clflush (obj) 3003 * MI_FLUSH 3004 * drm_agp_chipset_flush 3005 */ 3006 static void 3007 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj) 3008 { 3009 struct drm_device *dev = obj->dev; 3010 struct drm_i915_gem_object *obj_priv = obj->driver_private; 3011 uint32_t invalidate_domains = 0; 3012 uint32_t flush_domains = 0; 3013 uint32_t old_read_domains; 3014 3015 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU); 3016 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU); 3017 3018 intel_mark_busy(dev, obj); 3019 3020 #if WATCH_BUF 3021 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n", 3022 __func__, obj, 3023 obj->read_domains, obj->pending_read_domains, 3024 obj->write_domain, obj->pending_write_domain); 3025 #endif 3026 /* 3027 * If the object isn't moving to a new write domain, 3028 * let the object stay in multiple read domains 3029 */ 3030 if (obj->pending_write_domain == 0) 3031 obj->pending_read_domains |= obj->read_domains; 3032 else 3033 obj_priv->dirty = 1; 3034 3035 /* 3036 * Flush the current write domain if 3037 * the new read domains don't match. Invalidate 3038 * any read domains which differ from the old 3039 * write domain 3040 */ 3041 if (obj->write_domain && 3042 obj->write_domain != obj->pending_read_domains) { 3043 flush_domains |= obj->write_domain; 3044 invalidate_domains |= 3045 obj->pending_read_domains & ~obj->write_domain; 3046 } 3047 /* 3048 * Invalidate any read caches which may have 3049 * stale data. That is, any new read domains. 3050 */ 3051 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains; 3052 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) { 3053 #if WATCH_BUF 3054 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n", 3055 __func__, flush_domains, invalidate_domains); 3056 #endif 3057 i915_gem_clflush_object(obj); 3058 } 3059 3060 old_read_domains = obj->read_domains; 3061 3062 /* The actual obj->write_domain will be updated with 3063 * pending_write_domain after we emit the accumulated flush for all 3064 * of our domain changes in execbuffers (which clears objects' 3065 * write_domains). So if we have a current write domain that we 3066 * aren't changing, set pending_write_domain to that. 3067 */ 3068 if (flush_domains == 0 && obj->pending_write_domain == 0) 3069 obj->pending_write_domain = obj->write_domain; 3070 obj->read_domains = obj->pending_read_domains; 3071 3072 dev->invalidate_domains |= invalidate_domains; 3073 dev->flush_domains |= flush_domains; 3074 #if WATCH_BUF 3075 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n", 3076 __func__, 3077 obj->read_domains, obj->write_domain, 3078 dev->invalidate_domains, dev->flush_domains); 3079 #endif 3080 3081 trace_i915_gem_object_change_domain(obj, 3082 old_read_domains, 3083 obj->write_domain); 3084 } 3085 3086 /** 3087 * Moves the object from a partially CPU read to a full one. 3088 * 3089 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(), 3090 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU). 3091 */ 3092 static void 3093 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj) 3094 { 3095 struct drm_i915_gem_object *obj_priv = obj->driver_private; 3096 3097 if (!obj_priv->page_cpu_valid) 3098 return; 3099 3100 /* If we're partially in the CPU read domain, finish moving it in. 3101 */ 3102 if (obj->read_domains & I915_GEM_DOMAIN_CPU) { 3103 int i; 3104 3105 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) { 3106 if (obj_priv->page_cpu_valid[i]) 3107 continue; 3108 drm_clflush_pages(obj_priv->pages + i, 1); 3109 } 3110 } 3111 3112 /* Free the page_cpu_valid mappings which are now stale, whether 3113 * or not we've got I915_GEM_DOMAIN_CPU. 3114 */ 3115 kfree(obj_priv->page_cpu_valid); 3116 obj_priv->page_cpu_valid = NULL; 3117 } 3118 3119 /** 3120 * Set the CPU read domain on a range of the object. 3121 * 3122 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's 3123 * not entirely valid. The page_cpu_valid member of the object flags which 3124 * pages have been flushed, and will be respected by 3125 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping 3126 * of the whole object. 3127 * 3128 * This function returns when the move is complete, including waiting on 3129 * flushes to occur. 3130 */ 3131 static int 3132 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj, 3133 uint64_t offset, uint64_t size) 3134 { 3135 struct drm_i915_gem_object *obj_priv = obj->driver_private; 3136 uint32_t old_read_domains; 3137 int i, ret; 3138 3139 if (offset == 0 && size == obj->size) 3140 return i915_gem_object_set_to_cpu_domain(obj, 0); 3141 3142 i915_gem_object_flush_gpu_write_domain(obj); 3143 /* Wait on any GPU rendering and flushing to occur. */ 3144 ret = i915_gem_object_wait_rendering(obj); 3145 if (ret != 0) 3146 return ret; 3147 i915_gem_object_flush_gtt_write_domain(obj); 3148 3149 /* If we're already fully in the CPU read domain, we're done. */ 3150 if (obj_priv->page_cpu_valid == NULL && 3151 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0) 3152 return 0; 3153 3154 /* Otherwise, create/clear the per-page CPU read domain flag if we're 3155 * newly adding I915_GEM_DOMAIN_CPU 3156 */ 3157 if (obj_priv->page_cpu_valid == NULL) { 3158 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE, 3159 GFP_KERNEL); 3160 if (obj_priv->page_cpu_valid == NULL) 3161 return -ENOMEM; 3162 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) 3163 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE); 3164 3165 /* Flush the cache on any pages that are still invalid from the CPU's 3166 * perspective. 3167 */ 3168 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE; 3169 i++) { 3170 if (obj_priv->page_cpu_valid[i]) 3171 continue; 3172 3173 drm_clflush_pages(obj_priv->pages + i, 1); 3174 3175 obj_priv->page_cpu_valid[i] = 1; 3176 } 3177 3178 /* It should now be out of any other write domains, and we can update 3179 * the domain values for our changes. 3180 */ 3181 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0); 3182 3183 old_read_domains = obj->read_domains; 3184 obj->read_domains |= I915_GEM_DOMAIN_CPU; 3185 3186 trace_i915_gem_object_change_domain(obj, 3187 old_read_domains, 3188 obj->write_domain); 3189 3190 return 0; 3191 } 3192 3193 /** 3194 * Pin an object to the GTT and evaluate the relocations landing in it. 3195 */ 3196 static int 3197 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj, 3198 struct drm_file *file_priv, 3199 struct drm_i915_gem_exec_object2 *entry, 3200 struct drm_i915_gem_relocation_entry *relocs) 3201 { 3202 struct drm_device *dev = obj->dev; 3203 drm_i915_private_t *dev_priv = dev->dev_private; 3204 struct drm_i915_gem_object *obj_priv = obj->driver_private; 3205 int i, ret; 3206 void __iomem *reloc_page; 3207 bool need_fence; 3208 3209 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE && 3210 obj_priv->tiling_mode != I915_TILING_NONE; 3211 3212 /* Check fence reg constraints and rebind if necessary */ 3213 if (need_fence && !i915_obj_fenceable(dev, obj)) 3214 i915_gem_object_unbind(obj); 3215 3216 /* Choose the GTT offset for our buffer and put it there. */ 3217 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment); 3218 if (ret) 3219 return ret; 3220 3221 /* 3222 * Pre-965 chips need a fence register set up in order to 3223 * properly handle blits to/from tiled surfaces. 3224 */ 3225 if (need_fence) { 3226 ret = i915_gem_object_get_fence_reg(obj); 3227 if (ret != 0) { 3228 if (ret != -EBUSY && ret != -ERESTARTSYS) 3229 DRM_ERROR("Failure to install fence: %d\n", 3230 ret); 3231 i915_gem_object_unpin(obj); 3232 return ret; 3233 } 3234 } 3235 3236 entry->offset = obj_priv->gtt_offset; 3237 3238 /* Apply the relocations, using the GTT aperture to avoid cache 3239 * flushing requirements. 3240 */ 3241 for (i = 0; i < entry->relocation_count; i++) { 3242 struct drm_i915_gem_relocation_entry *reloc= &relocs[i]; 3243 struct drm_gem_object *target_obj; 3244 struct drm_i915_gem_object *target_obj_priv; 3245 uint32_t reloc_val, reloc_offset; 3246 uint32_t __iomem *reloc_entry; 3247 3248 target_obj = drm_gem_object_lookup(obj->dev, file_priv, 3249 reloc->target_handle); 3250 if (target_obj == NULL) { 3251 i915_gem_object_unpin(obj); 3252 return -EBADF; 3253 } 3254 target_obj_priv = target_obj->driver_private; 3255 3256 #if WATCH_RELOC 3257 DRM_INFO("%s: obj %p offset %08x target %d " 3258 "read %08x write %08x gtt %08x " 3259 "presumed %08x delta %08x\n", 3260 __func__, 3261 obj, 3262 (int) reloc->offset, 3263 (int) reloc->target_handle, 3264 (int) reloc->read_domains, 3265 (int) reloc->write_domain, 3266 (int) target_obj_priv->gtt_offset, 3267 (int) reloc->presumed_offset, 3268 reloc->delta); 3269 #endif 3270 3271 /* The target buffer should have appeared before us in the 3272 * exec_object list, so it should have a GTT space bound by now. 3273 */ 3274 if (target_obj_priv->gtt_space == NULL) { 3275 DRM_ERROR("No GTT space found for object %d\n", 3276 reloc->target_handle); 3277 drm_gem_object_unreference(target_obj); 3278 i915_gem_object_unpin(obj); 3279 return -EINVAL; 3280 } 3281 3282 /* Validate that the target is in a valid r/w GPU domain */ 3283 if (reloc->write_domain & I915_GEM_DOMAIN_CPU || 3284 reloc->read_domains & I915_GEM_DOMAIN_CPU) { 3285 DRM_ERROR("reloc with read/write CPU domains: " 3286 "obj %p target %d offset %d " 3287 "read %08x write %08x", 3288 obj, reloc->target_handle, 3289 (int) reloc->offset, 3290 reloc->read_domains, 3291 reloc->write_domain); 3292 drm_gem_object_unreference(target_obj); 3293 i915_gem_object_unpin(obj); 3294 return -EINVAL; 3295 } 3296 if (reloc->write_domain && target_obj->pending_write_domain && 3297 reloc->write_domain != target_obj->pending_write_domain) { 3298 DRM_ERROR("Write domain conflict: " 3299 "obj %p target %d offset %d " 3300 "new %08x old %08x\n", 3301 obj, reloc->target_handle, 3302 (int) reloc->offset, 3303 reloc->write_domain, 3304 target_obj->pending_write_domain); 3305 drm_gem_object_unreference(target_obj); 3306 i915_gem_object_unpin(obj); 3307 return -EINVAL; 3308 } 3309 3310 target_obj->pending_read_domains |= reloc->read_domains; 3311 target_obj->pending_write_domain |= reloc->write_domain; 3312 3313 /* If the relocation already has the right value in it, no 3314 * more work needs to be done. 3315 */ 3316 if (target_obj_priv->gtt_offset == reloc->presumed_offset) { 3317 drm_gem_object_unreference(target_obj); 3318 continue; 3319 } 3320 3321 /* Check that the relocation address is valid... */ 3322 if (reloc->offset > obj->size - 4) { 3323 DRM_ERROR("Relocation beyond object bounds: " 3324 "obj %p target %d offset %d size %d.\n", 3325 obj, reloc->target_handle, 3326 (int) reloc->offset, (int) obj->size); 3327 drm_gem_object_unreference(target_obj); 3328 i915_gem_object_unpin(obj); 3329 return -EINVAL; 3330 } 3331 if (reloc->offset & 3) { 3332 DRM_ERROR("Relocation not 4-byte aligned: " 3333 "obj %p target %d offset %d.\n", 3334 obj, reloc->target_handle, 3335 (int) reloc->offset); 3336 drm_gem_object_unreference(target_obj); 3337 i915_gem_object_unpin(obj); 3338 return -EINVAL; 3339 } 3340 3341 /* and points to somewhere within the target object. */ 3342 if (reloc->delta >= target_obj->size) { 3343 DRM_ERROR("Relocation beyond target object bounds: " 3344 "obj %p target %d delta %d size %d.\n", 3345 obj, reloc->target_handle, 3346 (int) reloc->delta, (int) target_obj->size); 3347 drm_gem_object_unreference(target_obj); 3348 i915_gem_object_unpin(obj); 3349 return -EINVAL; 3350 } 3351 3352 ret = i915_gem_object_set_to_gtt_domain(obj, 1); 3353 if (ret != 0) { 3354 drm_gem_object_unreference(target_obj); 3355 i915_gem_object_unpin(obj); 3356 return -EINVAL; 3357 } 3358 3359 /* Map the page containing the relocation we're going to 3360 * perform. 3361 */ 3362 reloc_offset = obj_priv->gtt_offset + reloc->offset; 3363 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping, 3364 (reloc_offset & 3365 ~(PAGE_SIZE - 1))); 3366 reloc_entry = (uint32_t __iomem *)(reloc_page + 3367 (reloc_offset & (PAGE_SIZE - 1))); 3368 reloc_val = target_obj_priv->gtt_offset + reloc->delta; 3369 3370 #if WATCH_BUF 3371 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n", 3372 obj, (unsigned int) reloc->offset, 3373 readl(reloc_entry), reloc_val); 3374 #endif 3375 writel(reloc_val, reloc_entry); 3376 io_mapping_unmap_atomic(reloc_page); 3377 3378 /* The updated presumed offset for this entry will be 3379 * copied back out to the user. 3380 */ 3381 reloc->presumed_offset = target_obj_priv->gtt_offset; 3382 3383 drm_gem_object_unreference(target_obj); 3384 } 3385 3386 #if WATCH_BUF 3387 if (0) 3388 i915_gem_dump_object(obj, 128, __func__, ~0); 3389 #endif 3390 return 0; 3391 } 3392 3393 /** Dispatch a batchbuffer to the ring 3394 */ 3395 static int 3396 i915_dispatch_gem_execbuffer(struct drm_device *dev, 3397 struct drm_i915_gem_execbuffer2 *exec, 3398 struct drm_clip_rect *cliprects, 3399 uint64_t exec_offset) 3400 { 3401 drm_i915_private_t *dev_priv = dev->dev_private; 3402 int nbox = exec->num_cliprects; 3403 int i = 0, count; 3404 uint32_t exec_start, exec_len; 3405 RING_LOCALS; 3406 3407 exec_start = (uint32_t) exec_offset + exec->batch_start_offset; 3408 exec_len = (uint32_t) exec->batch_len; 3409 3410 trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1); 3411 3412 count = nbox ? nbox : 1; 3413 3414 for (i = 0; i < count; i++) { 3415 if (i < nbox) { 3416 int ret = i915_emit_box(dev, cliprects, i, 3417 exec->DR1, exec->DR4); 3418 if (ret) 3419 return ret; 3420 } 3421 3422 if (IS_I830(dev) || IS_845G(dev)) { 3423 BEGIN_LP_RING(4); 3424 OUT_RING(MI_BATCH_BUFFER); 3425 OUT_RING(exec_start | MI_BATCH_NON_SECURE); 3426 OUT_RING(exec_start + exec_len - 4); 3427 OUT_RING(0); 3428 ADVANCE_LP_RING(); 3429 } else { 3430 BEGIN_LP_RING(2); 3431 if (IS_I965G(dev)) { 3432 OUT_RING(MI_BATCH_BUFFER_START | 3433 (2 << 6) | 3434 MI_BATCH_NON_SECURE_I965); 3435 OUT_RING(exec_start); 3436 } else { 3437 OUT_RING(MI_BATCH_BUFFER_START | 3438 (2 << 6)); 3439 OUT_RING(exec_start | MI_BATCH_NON_SECURE); 3440 } 3441 ADVANCE_LP_RING(); 3442 } 3443 } 3444 3445 /* XXX breadcrumb */ 3446 return 0; 3447 } 3448 3449 /* Throttle our rendering by waiting until the ring has completed our requests 3450 * emitted over 20 msec ago. 3451 * 3452 * Note that if we were to use the current jiffies each time around the loop, 3453 * we wouldn't escape the function with any frames outstanding if the time to 3454 * render a frame was over 20ms. 3455 * 3456 * This should get us reasonable parallelism between CPU and GPU but also 3457 * relatively low latency when blocking on a particular request to finish. 3458 */ 3459 static int 3460 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv) 3461 { 3462 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv; 3463 int ret = 0; 3464 unsigned long recent_enough = jiffies - msecs_to_jiffies(20); 3465 3466 mutex_lock(&dev->struct_mutex); 3467 while (!list_empty(&i915_file_priv->mm.request_list)) { 3468 struct drm_i915_gem_request *request; 3469 3470 request = list_first_entry(&i915_file_priv->mm.request_list, 3471 struct drm_i915_gem_request, 3472 client_list); 3473 3474 if (time_after_eq(request->emitted_jiffies, recent_enough)) 3475 break; 3476 3477 ret = i915_wait_request(dev, request->seqno); 3478 if (ret != 0) 3479 break; 3480 } 3481 mutex_unlock(&dev->struct_mutex); 3482 3483 return ret; 3484 } 3485 3486 static int 3487 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list, 3488 uint32_t buffer_count, 3489 struct drm_i915_gem_relocation_entry **relocs) 3490 { 3491 uint32_t reloc_count = 0, reloc_index = 0, i; 3492 int ret; 3493 3494 *relocs = NULL; 3495 for (i = 0; i < buffer_count; i++) { 3496 if (reloc_count + exec_list[i].relocation_count < reloc_count) 3497 return -EINVAL; 3498 reloc_count += exec_list[i].relocation_count; 3499 } 3500 3501 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs)); 3502 if (*relocs == NULL) { 3503 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count); 3504 return -ENOMEM; 3505 } 3506 3507 for (i = 0; i < buffer_count; i++) { 3508 struct drm_i915_gem_relocation_entry __user *user_relocs; 3509 3510 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr; 3511 3512 ret = copy_from_user(&(*relocs)[reloc_index], 3513 user_relocs, 3514 exec_list[i].relocation_count * 3515 sizeof(**relocs)); 3516 if (ret != 0) { 3517 drm_free_large(*relocs); 3518 *relocs = NULL; 3519 return -EFAULT; 3520 } 3521 3522 reloc_index += exec_list[i].relocation_count; 3523 } 3524 3525 return 0; 3526 } 3527 3528 static int 3529 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list, 3530 uint32_t buffer_count, 3531 struct drm_i915_gem_relocation_entry *relocs) 3532 { 3533 uint32_t reloc_count = 0, i; 3534 int ret = 0; 3535 3536 for (i = 0; i < buffer_count; i++) { 3537 struct drm_i915_gem_relocation_entry __user *user_relocs; 3538 int unwritten; 3539 3540 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr; 3541 3542 unwritten = copy_to_user(user_relocs, 3543 &relocs[reloc_count], 3544 exec_list[i].relocation_count * 3545 sizeof(*relocs)); 3546 3547 if (unwritten) { 3548 ret = -EFAULT; 3549 goto err; 3550 } 3551 3552 reloc_count += exec_list[i].relocation_count; 3553 } 3554 3555 err: 3556 drm_free_large(relocs); 3557 3558 return ret; 3559 } 3560 3561 static int 3562 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec, 3563 uint64_t exec_offset) 3564 { 3565 uint32_t exec_start, exec_len; 3566 3567 exec_start = (uint32_t) exec_offset + exec->batch_start_offset; 3568 exec_len = (uint32_t) exec->batch_len; 3569 3570 if ((exec_start | exec_len) & 0x7) 3571 return -EINVAL; 3572 3573 if (!exec_start) 3574 return -EINVAL; 3575 3576 return 0; 3577 } 3578 3579 static int 3580 i915_gem_wait_for_pending_flip(struct drm_device *dev, 3581 struct drm_gem_object **object_list, 3582 int count) 3583 { 3584 drm_i915_private_t *dev_priv = dev->dev_private; 3585 struct drm_i915_gem_object *obj_priv; 3586 DEFINE_WAIT(wait); 3587 int i, ret = 0; 3588 3589 for (;;) { 3590 prepare_to_wait(&dev_priv->pending_flip_queue, 3591 &wait, TASK_INTERRUPTIBLE); 3592 for (i = 0; i < count; i++) { 3593 obj_priv = object_list[i]->driver_private; 3594 if (atomic_read(&obj_priv->pending_flip) > 0) 3595 break; 3596 } 3597 if (i == count) 3598 break; 3599 3600 if (!signal_pending(current)) { 3601 mutex_unlock(&dev->struct_mutex); 3602 schedule(); 3603 mutex_lock(&dev->struct_mutex); 3604 continue; 3605 } 3606 ret = -ERESTARTSYS; 3607 break; 3608 } 3609 finish_wait(&dev_priv->pending_flip_queue, &wait); 3610 3611 return ret; 3612 } 3613 3614 int 3615 i915_gem_do_execbuffer(struct drm_device *dev, void *data, 3616 struct drm_file *file_priv, 3617 struct drm_i915_gem_execbuffer2 *args, 3618 struct drm_i915_gem_exec_object2 *exec_list) 3619 { 3620 drm_i915_private_t *dev_priv = dev->dev_private; 3621 struct drm_gem_object **object_list = NULL; 3622 struct drm_gem_object *batch_obj; 3623 struct drm_i915_gem_object *obj_priv; 3624 struct drm_clip_rect *cliprects = NULL; 3625 struct drm_i915_gem_relocation_entry *relocs; 3626 int ret = 0, ret2, i, pinned = 0; 3627 uint64_t exec_offset; 3628 uint32_t seqno, flush_domains, reloc_index; 3629 int pin_tries, flips; 3630 3631 #if WATCH_EXEC 3632 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n", 3633 (int) args->buffers_ptr, args->buffer_count, args->batch_len); 3634 #endif 3635 3636 if (args->buffer_count < 1) { 3637 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count); 3638 return -EINVAL; 3639 } 3640 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count); 3641 if (object_list == NULL) { 3642 DRM_ERROR("Failed to allocate object list for %d buffers\n", 3643 args->buffer_count); 3644 ret = -ENOMEM; 3645 goto pre_mutex_err; 3646 } 3647 3648 if (args->num_cliprects != 0) { 3649 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects), 3650 GFP_KERNEL); 3651 if (cliprects == NULL) 3652 goto pre_mutex_err; 3653 3654 ret = copy_from_user(cliprects, 3655 (struct drm_clip_rect __user *) 3656 (uintptr_t) args->cliprects_ptr, 3657 sizeof(*cliprects) * args->num_cliprects); 3658 if (ret != 0) { 3659 DRM_ERROR("copy %d cliprects failed: %d\n", 3660 args->num_cliprects, ret); 3661 goto pre_mutex_err; 3662 } 3663 } 3664 3665 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count, 3666 &relocs); 3667 if (ret != 0) 3668 goto pre_mutex_err; 3669 3670 mutex_lock(&dev->struct_mutex); 3671 3672 i915_verify_inactive(dev, __FILE__, __LINE__); 3673 3674 if (atomic_read(&dev_priv->mm.wedged)) { 3675 mutex_unlock(&dev->struct_mutex); 3676 ret = -EIO; 3677 goto pre_mutex_err; 3678 } 3679 3680 if (dev_priv->mm.suspended) { 3681 mutex_unlock(&dev->struct_mutex); 3682 ret = -EBUSY; 3683 goto pre_mutex_err; 3684 } 3685 3686 /* Look up object handles */ 3687 flips = 0; 3688 for (i = 0; i < args->buffer_count; i++) { 3689 object_list[i] = drm_gem_object_lookup(dev, file_priv, 3690 exec_list[i].handle); 3691 if (object_list[i] == NULL) { 3692 DRM_ERROR("Invalid object handle %d at index %d\n", 3693 exec_list[i].handle, i); 3694 ret = -EBADF; 3695 goto err; 3696 } 3697 3698 obj_priv = object_list[i]->driver_private; 3699 if (obj_priv->in_execbuffer) { 3700 DRM_ERROR("Object %p appears more than once in object list\n", 3701 object_list[i]); 3702 ret = -EBADF; 3703 goto err; 3704 } 3705 obj_priv->in_execbuffer = true; 3706 flips += atomic_read(&obj_priv->pending_flip); 3707 } 3708 3709 if (flips > 0) { 3710 ret = i915_gem_wait_for_pending_flip(dev, object_list, 3711 args->buffer_count); 3712 if (ret) 3713 goto err; 3714 } 3715 3716 /* Pin and relocate */ 3717 for (pin_tries = 0; ; pin_tries++) { 3718 ret = 0; 3719 reloc_index = 0; 3720 3721 for (i = 0; i < args->buffer_count; i++) { 3722 object_list[i]->pending_read_domains = 0; 3723 object_list[i]->pending_write_domain = 0; 3724 ret = i915_gem_object_pin_and_relocate(object_list[i], 3725 file_priv, 3726 &exec_list[i], 3727 &relocs[reloc_index]); 3728 if (ret) 3729 break; 3730 pinned = i + 1; 3731 reloc_index += exec_list[i].relocation_count; 3732 } 3733 /* success */ 3734 if (ret == 0) 3735 break; 3736 3737 /* error other than GTT full, or we've already tried again */ 3738 if (ret != -ENOSPC || pin_tries >= 1) { 3739 if (ret != -ERESTARTSYS) { 3740 unsigned long long total_size = 0; 3741 for (i = 0; i < args->buffer_count; i++) 3742 total_size += object_list[i]->size; 3743 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n", 3744 pinned+1, args->buffer_count, 3745 total_size, ret); 3746 DRM_ERROR("%d objects [%d pinned], " 3747 "%d object bytes [%d pinned], " 3748 "%d/%d gtt bytes\n", 3749 atomic_read(&dev->object_count), 3750 atomic_read(&dev->pin_count), 3751 atomic_read(&dev->object_memory), 3752 atomic_read(&dev->pin_memory), 3753 atomic_read(&dev->gtt_memory), 3754 dev->gtt_total); 3755 } 3756 goto err; 3757 } 3758 3759 /* unpin all of our buffers */ 3760 for (i = 0; i < pinned; i++) 3761 i915_gem_object_unpin(object_list[i]); 3762 pinned = 0; 3763 3764 /* evict everyone we can from the aperture */ 3765 ret = i915_gem_evict_everything(dev); 3766 if (ret && ret != -ENOSPC) 3767 goto err; 3768 } 3769 3770 /* Set the pending read domains for the batch buffer to COMMAND */ 3771 batch_obj = object_list[args->buffer_count-1]; 3772 if (batch_obj->pending_write_domain) { 3773 DRM_ERROR("Attempting to use self-modifying batch buffer\n"); 3774 ret = -EINVAL; 3775 goto err; 3776 } 3777 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND; 3778 3779 /* Sanity check the batch buffer, prior to moving objects */ 3780 exec_offset = exec_list[args->buffer_count - 1].offset; 3781 ret = i915_gem_check_execbuffer (args, exec_offset); 3782 if (ret != 0) { 3783 DRM_ERROR("execbuf with invalid offset/length\n"); 3784 goto err; 3785 } 3786 3787 i915_verify_inactive(dev, __FILE__, __LINE__); 3788 3789 /* Zero the global flush/invalidate flags. These 3790 * will be modified as new domains are computed 3791 * for each object 3792 */ 3793 dev->invalidate_domains = 0; 3794 dev->flush_domains = 0; 3795 3796 for (i = 0; i < args->buffer_count; i++) { 3797 struct drm_gem_object *obj = object_list[i]; 3798 3799 /* Compute new gpu domains and update invalidate/flush */ 3800 i915_gem_object_set_to_gpu_domain(obj); 3801 } 3802 3803 i915_verify_inactive(dev, __FILE__, __LINE__); 3804 3805 if (dev->invalidate_domains | dev->flush_domains) { 3806 #if WATCH_EXEC 3807 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n", 3808 __func__, 3809 dev->invalidate_domains, 3810 dev->flush_domains); 3811 #endif 3812 i915_gem_flush(dev, 3813 dev->invalidate_domains, 3814 dev->flush_domains); 3815 if (dev->flush_domains) 3816 (void)i915_add_request(dev, file_priv, 3817 dev->flush_domains); 3818 } 3819 3820 for (i = 0; i < args->buffer_count; i++) { 3821 struct drm_gem_object *obj = object_list[i]; 3822 uint32_t old_write_domain = obj->write_domain; 3823 3824 obj->write_domain = obj->pending_write_domain; 3825 trace_i915_gem_object_change_domain(obj, 3826 obj->read_domains, 3827 old_write_domain); 3828 } 3829 3830 i915_verify_inactive(dev, __FILE__, __LINE__); 3831 3832 #if WATCH_COHERENCY 3833 for (i = 0; i < args->buffer_count; i++) { 3834 i915_gem_object_check_coherency(object_list[i], 3835 exec_list[i].handle); 3836 } 3837 #endif 3838 3839 #if WATCH_EXEC 3840 i915_gem_dump_object(batch_obj, 3841 args->batch_len, 3842 __func__, 3843 ~0); 3844 #endif 3845 3846 /* Exec the batchbuffer */ 3847 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset); 3848 if (ret) { 3849 DRM_ERROR("dispatch failed %d\n", ret); 3850 goto err; 3851 } 3852 3853 /* 3854 * Ensure that the commands in the batch buffer are 3855 * finished before the interrupt fires 3856 */ 3857 flush_domains = i915_retire_commands(dev); 3858 3859 i915_verify_inactive(dev, __FILE__, __LINE__); 3860 3861 /* 3862 * Get a seqno representing the execution of the current buffer, 3863 * which we can wait on. We would like to mitigate these interrupts, 3864 * likely by only creating seqnos occasionally (so that we have 3865 * *some* interrupts representing completion of buffers that we can 3866 * wait on when trying to clear up gtt space). 3867 */ 3868 seqno = i915_add_request(dev, file_priv, flush_domains); 3869 BUG_ON(seqno == 0); 3870 for (i = 0; i < args->buffer_count; i++) { 3871 struct drm_gem_object *obj = object_list[i]; 3872 3873 i915_gem_object_move_to_active(obj, seqno); 3874 #if WATCH_LRU 3875 DRM_INFO("%s: move to exec list %p\n", __func__, obj); 3876 #endif 3877 } 3878 #if WATCH_LRU 3879 i915_dump_lru(dev, __func__); 3880 #endif 3881 3882 i915_verify_inactive(dev, __FILE__, __LINE__); 3883 3884 err: 3885 for (i = 0; i < pinned; i++) 3886 i915_gem_object_unpin(object_list[i]); 3887 3888 for (i = 0; i < args->buffer_count; i++) { 3889 if (object_list[i]) { 3890 obj_priv = object_list[i]->driver_private; 3891 obj_priv->in_execbuffer = false; 3892 } 3893 drm_gem_object_unreference(object_list[i]); 3894 } 3895 3896 mutex_unlock(&dev->struct_mutex); 3897 3898 /* Copy the updated relocations out regardless of current error 3899 * state. Failure to update the relocs would mean that the next 3900 * time userland calls execbuf, it would do so with presumed offset 3901 * state that didn't match the actual object state. 3902 */ 3903 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count, 3904 relocs); 3905 if (ret2 != 0) { 3906 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2); 3907 3908 if (ret == 0) 3909 ret = ret2; 3910 } 3911 3912 pre_mutex_err: 3913 drm_free_large(object_list); 3914 kfree(cliprects); 3915 3916 return ret; 3917 } 3918 3919 /* 3920 * Legacy execbuffer just creates an exec2 list from the original exec object 3921 * list array and passes it to the real function. 3922 */ 3923 int 3924 i915_gem_execbuffer(struct drm_device *dev, void *data, 3925 struct drm_file *file_priv) 3926 { 3927 struct drm_i915_gem_execbuffer *args = data; 3928 struct drm_i915_gem_execbuffer2 exec2; 3929 struct drm_i915_gem_exec_object *exec_list = NULL; 3930 struct drm_i915_gem_exec_object2 *exec2_list = NULL; 3931 int ret, i; 3932 3933 #if WATCH_EXEC 3934 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n", 3935 (int) args->buffers_ptr, args->buffer_count, args->batch_len); 3936 #endif 3937 3938 if (args->buffer_count < 1) { 3939 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count); 3940 return -EINVAL; 3941 } 3942 3943 /* Copy in the exec list from userland */ 3944 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count); 3945 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count); 3946 if (exec_list == NULL || exec2_list == NULL) { 3947 DRM_ERROR("Failed to allocate exec list for %d buffers\n", 3948 args->buffer_count); 3949 drm_free_large(exec_list); 3950 drm_free_large(exec2_list); 3951 return -ENOMEM; 3952 } 3953 ret = copy_from_user(exec_list, 3954 (struct drm_i915_relocation_entry __user *) 3955 (uintptr_t) args->buffers_ptr, 3956 sizeof(*exec_list) * args->buffer_count); 3957 if (ret != 0) { 3958 DRM_ERROR("copy %d exec entries failed %d\n", 3959 args->buffer_count, ret); 3960 drm_free_large(exec_list); 3961 drm_free_large(exec2_list); 3962 return -EFAULT; 3963 } 3964 3965 for (i = 0; i < args->buffer_count; i++) { 3966 exec2_list[i].handle = exec_list[i].handle; 3967 exec2_list[i].relocation_count = exec_list[i].relocation_count; 3968 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr; 3969 exec2_list[i].alignment = exec_list[i].alignment; 3970 exec2_list[i].offset = exec_list[i].offset; 3971 if (!IS_I965G(dev)) 3972 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE; 3973 else 3974 exec2_list[i].flags = 0; 3975 } 3976 3977 exec2.buffers_ptr = args->buffers_ptr; 3978 exec2.buffer_count = args->buffer_count; 3979 exec2.batch_start_offset = args->batch_start_offset; 3980 exec2.batch_len = args->batch_len; 3981 exec2.DR1 = args->DR1; 3982 exec2.DR4 = args->DR4; 3983 exec2.num_cliprects = args->num_cliprects; 3984 exec2.cliprects_ptr = args->cliprects_ptr; 3985 exec2.flags = 0; 3986 3987 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list); 3988 if (!ret) { 3989 /* Copy the new buffer offsets back to the user's exec list. */ 3990 for (i = 0; i < args->buffer_count; i++) 3991 exec_list[i].offset = exec2_list[i].offset; 3992 /* ... and back out to userspace */ 3993 ret = copy_to_user((struct drm_i915_relocation_entry __user *) 3994 (uintptr_t) args->buffers_ptr, 3995 exec_list, 3996 sizeof(*exec_list) * args->buffer_count); 3997 if (ret) { 3998 ret = -EFAULT; 3999 DRM_ERROR("failed to copy %d exec entries " 4000 "back to user (%d)\n", 4001 args->buffer_count, ret); 4002 } 4003 } else { 4004 DRM_ERROR("i915_gem_do_execbuffer returns %d\n", ret); 4005 } 4006 4007 drm_free_large(exec_list); 4008 drm_free_large(exec2_list); 4009 return ret; 4010 } 4011 4012 int 4013 i915_gem_execbuffer2(struct drm_device *dev, void *data, 4014 struct drm_file *file_priv) 4015 { 4016 struct drm_i915_gem_execbuffer2 *args = data; 4017 struct drm_i915_gem_exec_object2 *exec2_list = NULL; 4018 int ret; 4019 4020 #if WATCH_EXEC 4021 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n", 4022 (int) args->buffers_ptr, args->buffer_count, args->batch_len); 4023 #endif 4024 4025 if (args->buffer_count < 1) { 4026 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count); 4027 return -EINVAL; 4028 } 4029 4030 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count); 4031 if (exec2_list == NULL) { 4032 DRM_ERROR("Failed to allocate exec list for %d buffers\n", 4033 args->buffer_count); 4034 return -ENOMEM; 4035 } 4036 ret = copy_from_user(exec2_list, 4037 (struct drm_i915_relocation_entry __user *) 4038 (uintptr_t) args->buffers_ptr, 4039 sizeof(*exec2_list) * args->buffer_count); 4040 if (ret != 0) { 4041 DRM_ERROR("copy %d exec entries failed %d\n", 4042 args->buffer_count, ret); 4043 drm_free_large(exec2_list); 4044 return -EFAULT; 4045 } 4046 4047 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list); 4048 if (!ret) { 4049 /* Copy the new buffer offsets back to the user's exec list. */ 4050 ret = copy_to_user((struct drm_i915_relocation_entry __user *) 4051 (uintptr_t) args->buffers_ptr, 4052 exec2_list, 4053 sizeof(*exec2_list) * args->buffer_count); 4054 if (ret) { 4055 ret = -EFAULT; 4056 DRM_ERROR("failed to copy %d exec entries " 4057 "back to user (%d)\n", 4058 args->buffer_count, ret); 4059 } 4060 } 4061 4062 drm_free_large(exec2_list); 4063 return ret; 4064 } 4065 4066 int 4067 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment) 4068 { 4069 struct drm_device *dev = obj->dev; 4070 struct drm_i915_gem_object *obj_priv = obj->driver_private; 4071 int ret; 4072 4073 i915_verify_inactive(dev, __FILE__, __LINE__); 4074 if (obj_priv->gtt_space == NULL) { 4075 ret = i915_gem_object_bind_to_gtt(obj, alignment); 4076 if (ret) 4077 return ret; 4078 } 4079 4080 obj_priv->pin_count++; 4081 4082 /* If the object is not active and not pending a flush, 4083 * remove it from the inactive list 4084 */ 4085 if (obj_priv->pin_count == 1) { 4086 atomic_inc(&dev->pin_count); 4087 atomic_add(obj->size, &dev->pin_memory); 4088 if (!obj_priv->active && 4089 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 && 4090 !list_empty(&obj_priv->list)) 4091 list_del_init(&obj_priv->list); 4092 } 4093 i915_verify_inactive(dev, __FILE__, __LINE__); 4094 4095 return 0; 4096 } 4097 4098 void 4099 i915_gem_object_unpin(struct drm_gem_object *obj) 4100 { 4101 struct drm_device *dev = obj->dev; 4102 drm_i915_private_t *dev_priv = dev->dev_private; 4103 struct drm_i915_gem_object *obj_priv = obj->driver_private; 4104 4105 i915_verify_inactive(dev, __FILE__, __LINE__); 4106 obj_priv->pin_count--; 4107 BUG_ON(obj_priv->pin_count < 0); 4108 BUG_ON(obj_priv->gtt_space == NULL); 4109 4110 /* If the object is no longer pinned, and is 4111 * neither active nor being flushed, then stick it on 4112 * the inactive list 4113 */ 4114 if (obj_priv->pin_count == 0) { 4115 if (!obj_priv->active && 4116 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0) 4117 list_move_tail(&obj_priv->list, 4118 &dev_priv->mm.inactive_list); 4119 atomic_dec(&dev->pin_count); 4120 atomic_sub(obj->size, &dev->pin_memory); 4121 } 4122 i915_verify_inactive(dev, __FILE__, __LINE__); 4123 } 4124 4125 int 4126 i915_gem_pin_ioctl(struct drm_device *dev, void *data, 4127 struct drm_file *file_priv) 4128 { 4129 struct drm_i915_gem_pin *args = data; 4130 struct drm_gem_object *obj; 4131 struct drm_i915_gem_object *obj_priv; 4132 int ret; 4133 4134 mutex_lock(&dev->struct_mutex); 4135 4136 obj = drm_gem_object_lookup(dev, file_priv, args->handle); 4137 if (obj == NULL) { 4138 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n", 4139 args->handle); 4140 mutex_unlock(&dev->struct_mutex); 4141 return -EBADF; 4142 } 4143 obj_priv = obj->driver_private; 4144 4145 if (obj_priv->madv != I915_MADV_WILLNEED) { 4146 DRM_ERROR("Attempting to pin a purgeable buffer\n"); 4147 drm_gem_object_unreference(obj); 4148 mutex_unlock(&dev->struct_mutex); 4149 return -EINVAL; 4150 } 4151 4152 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) { 4153 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n", 4154 args->handle); 4155 drm_gem_object_unreference(obj); 4156 mutex_unlock(&dev->struct_mutex); 4157 return -EINVAL; 4158 } 4159 4160 obj_priv->user_pin_count++; 4161 obj_priv->pin_filp = file_priv; 4162 if (obj_priv->user_pin_count == 1) { 4163 ret = i915_gem_object_pin(obj, args->alignment); 4164 if (ret != 0) { 4165 drm_gem_object_unreference(obj); 4166 mutex_unlock(&dev->struct_mutex); 4167 return ret; 4168 } 4169 } 4170 4171 /* XXX - flush the CPU caches for pinned objects 4172 * as the X server doesn't manage domains yet 4173 */ 4174 i915_gem_object_flush_cpu_write_domain(obj); 4175 args->offset = obj_priv->gtt_offset; 4176 drm_gem_object_unreference(obj); 4177 mutex_unlock(&dev->struct_mutex); 4178 4179 return 0; 4180 } 4181 4182 int 4183 i915_gem_unpin_ioctl(struct drm_device *dev, void *data, 4184 struct drm_file *file_priv) 4185 { 4186 struct drm_i915_gem_pin *args = data; 4187 struct drm_gem_object *obj; 4188 struct drm_i915_gem_object *obj_priv; 4189 4190 mutex_lock(&dev->struct_mutex); 4191 4192 obj = drm_gem_object_lookup(dev, file_priv, args->handle); 4193 if (obj == NULL) { 4194 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n", 4195 args->handle); 4196 mutex_unlock(&dev->struct_mutex); 4197 return -EBADF; 4198 } 4199 4200 obj_priv = obj->driver_private; 4201 if (obj_priv->pin_filp != file_priv) { 4202 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n", 4203 args->handle); 4204 drm_gem_object_unreference(obj); 4205 mutex_unlock(&dev->struct_mutex); 4206 return -EINVAL; 4207 } 4208 obj_priv->user_pin_count--; 4209 if (obj_priv->user_pin_count == 0) { 4210 obj_priv->pin_filp = NULL; 4211 i915_gem_object_unpin(obj); 4212 } 4213 4214 drm_gem_object_unreference(obj); 4215 mutex_unlock(&dev->struct_mutex); 4216 return 0; 4217 } 4218 4219 int 4220 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 4221 struct drm_file *file_priv) 4222 { 4223 struct drm_i915_gem_busy *args = data; 4224 struct drm_gem_object *obj; 4225 struct drm_i915_gem_object *obj_priv; 4226 4227 obj = drm_gem_object_lookup(dev, file_priv, args->handle); 4228 if (obj == NULL) { 4229 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n", 4230 args->handle); 4231 return -EBADF; 4232 } 4233 4234 mutex_lock(&dev->struct_mutex); 4235 /* Update the active list for the hardware's current position. 4236 * Otherwise this only updates on a delayed timer or when irqs are 4237 * actually unmasked, and our working set ends up being larger than 4238 * required. 4239 */ 4240 i915_gem_retire_requests(dev); 4241 4242 obj_priv = obj->driver_private; 4243 /* Don't count being on the flushing list against the object being 4244 * done. Otherwise, a buffer left on the flushing list but not getting 4245 * flushed (because nobody's flushing that domain) won't ever return 4246 * unbusy and get reused by libdrm's bo cache. The other expected 4247 * consumer of this interface, OpenGL's occlusion queries, also specs 4248 * that the objects get unbusy "eventually" without any interference. 4249 */ 4250 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0; 4251 4252 drm_gem_object_unreference(obj); 4253 mutex_unlock(&dev->struct_mutex); 4254 return 0; 4255 } 4256 4257 int 4258 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 4259 struct drm_file *file_priv) 4260 { 4261 return i915_gem_ring_throttle(dev, file_priv); 4262 } 4263 4264 int 4265 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 4266 struct drm_file *file_priv) 4267 { 4268 struct drm_i915_gem_madvise *args = data; 4269 struct drm_gem_object *obj; 4270 struct drm_i915_gem_object *obj_priv; 4271 4272 switch (args->madv) { 4273 case I915_MADV_DONTNEED: 4274 case I915_MADV_WILLNEED: 4275 break; 4276 default: 4277 return -EINVAL; 4278 } 4279 4280 obj = drm_gem_object_lookup(dev, file_priv, args->handle); 4281 if (obj == NULL) { 4282 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n", 4283 args->handle); 4284 return -EBADF; 4285 } 4286 4287 mutex_lock(&dev->struct_mutex); 4288 obj_priv = obj->driver_private; 4289 4290 if (obj_priv->pin_count) { 4291 drm_gem_object_unreference(obj); 4292 mutex_unlock(&dev->struct_mutex); 4293 4294 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n"); 4295 return -EINVAL; 4296 } 4297 4298 if (obj_priv->madv != __I915_MADV_PURGED) 4299 obj_priv->madv = args->madv; 4300 4301 /* if the object is no longer bound, discard its backing storage */ 4302 if (i915_gem_object_is_purgeable(obj_priv) && 4303 obj_priv->gtt_space == NULL) 4304 i915_gem_object_truncate(obj); 4305 4306 args->retained = obj_priv->madv != __I915_MADV_PURGED; 4307 4308 drm_gem_object_unreference(obj); 4309 mutex_unlock(&dev->struct_mutex); 4310 4311 return 0; 4312 } 4313 4314 int i915_gem_init_object(struct drm_gem_object *obj) 4315 { 4316 struct drm_i915_gem_object *obj_priv; 4317 4318 obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL); 4319 if (obj_priv == NULL) 4320 return -ENOMEM; 4321 4322 /* 4323 * We've just allocated pages from the kernel, 4324 * so they've just been written by the CPU with 4325 * zeros. They'll need to be clflushed before we 4326 * use them with the GPU. 4327 */ 4328 obj->write_domain = I915_GEM_DOMAIN_CPU; 4329 obj->read_domains = I915_GEM_DOMAIN_CPU; 4330 4331 obj_priv->agp_type = AGP_USER_MEMORY; 4332 4333 obj->driver_private = obj_priv; 4334 obj_priv->obj = obj; 4335 obj_priv->fence_reg = I915_FENCE_REG_NONE; 4336 INIT_LIST_HEAD(&obj_priv->list); 4337 INIT_LIST_HEAD(&obj_priv->fence_list); 4338 obj_priv->madv = I915_MADV_WILLNEED; 4339 4340 trace_i915_gem_object_create(obj); 4341 4342 return 0; 4343 } 4344 4345 void i915_gem_free_object(struct drm_gem_object *obj) 4346 { 4347 struct drm_device *dev = obj->dev; 4348 struct drm_i915_gem_object *obj_priv = obj->driver_private; 4349 4350 trace_i915_gem_object_destroy(obj); 4351 4352 while (obj_priv->pin_count > 0) 4353 i915_gem_object_unpin(obj); 4354 4355 if (obj_priv->phys_obj) 4356 i915_gem_detach_phys_object(dev, obj); 4357 4358 i915_gem_object_unbind(obj); 4359 4360 if (obj_priv->mmap_offset) 4361 i915_gem_free_mmap_offset(obj); 4362 4363 kfree(obj_priv->page_cpu_valid); 4364 kfree(obj_priv->bit_17); 4365 kfree(obj->driver_private); 4366 } 4367 4368 /** Unbinds all inactive objects. */ 4369 static int 4370 i915_gem_evict_from_inactive_list(struct drm_device *dev) 4371 { 4372 drm_i915_private_t *dev_priv = dev->dev_private; 4373 4374 while (!list_empty(&dev_priv->mm.inactive_list)) { 4375 struct drm_gem_object *obj; 4376 int ret; 4377 4378 obj = list_first_entry(&dev_priv->mm.inactive_list, 4379 struct drm_i915_gem_object, 4380 list)->obj; 4381 4382 ret = i915_gem_object_unbind(obj); 4383 if (ret != 0) { 4384 DRM_ERROR("Error unbinding object: %d\n", ret); 4385 return ret; 4386 } 4387 } 4388 4389 return 0; 4390 } 4391 4392 int 4393 i915_gem_idle(struct drm_device *dev) 4394 { 4395 drm_i915_private_t *dev_priv = dev->dev_private; 4396 uint32_t seqno, cur_seqno, last_seqno; 4397 int stuck, ret; 4398 4399 mutex_lock(&dev->struct_mutex); 4400 4401 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) { 4402 mutex_unlock(&dev->struct_mutex); 4403 return 0; 4404 } 4405 4406 /* Hack! Don't let anybody do execbuf while we don't control the chip. 4407 * We need to replace this with a semaphore, or something. 4408 */ 4409 dev_priv->mm.suspended = 1; 4410 del_timer(&dev_priv->hangcheck_timer); 4411 4412 /* Cancel the retire work handler, wait for it to finish if running 4413 */ 4414 mutex_unlock(&dev->struct_mutex); 4415 cancel_delayed_work_sync(&dev_priv->mm.retire_work); 4416 mutex_lock(&dev->struct_mutex); 4417 4418 i915_kernel_lost_context(dev); 4419 4420 /* Flush the GPU along with all non-CPU write domains 4421 */ 4422 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS); 4423 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS); 4424 4425 if (seqno == 0) { 4426 mutex_unlock(&dev->struct_mutex); 4427 return -ENOMEM; 4428 } 4429 4430 dev_priv->mm.waiting_gem_seqno = seqno; 4431 last_seqno = 0; 4432 stuck = 0; 4433 for (;;) { 4434 cur_seqno = i915_get_gem_seqno(dev); 4435 if (i915_seqno_passed(cur_seqno, seqno)) 4436 break; 4437 if (last_seqno == cur_seqno) { 4438 if (stuck++ > 100) { 4439 DRM_ERROR("hardware wedged\n"); 4440 atomic_set(&dev_priv->mm.wedged, 1); 4441 DRM_WAKEUP(&dev_priv->irq_queue); 4442 break; 4443 } 4444 } 4445 msleep(10); 4446 last_seqno = cur_seqno; 4447 } 4448 dev_priv->mm.waiting_gem_seqno = 0; 4449 4450 i915_gem_retire_requests(dev); 4451 4452 spin_lock(&dev_priv->mm.active_list_lock); 4453 if (!atomic_read(&dev_priv->mm.wedged)) { 4454 /* Active and flushing should now be empty as we've 4455 * waited for a sequence higher than any pending execbuffer 4456 */ 4457 WARN_ON(!list_empty(&dev_priv->mm.active_list)); 4458 WARN_ON(!list_empty(&dev_priv->mm.flushing_list)); 4459 /* Request should now be empty as we've also waited 4460 * for the last request in the list 4461 */ 4462 WARN_ON(!list_empty(&dev_priv->mm.request_list)); 4463 } 4464 4465 /* Empty the active and flushing lists to inactive. If there's 4466 * anything left at this point, it means that we're wedged and 4467 * nothing good's going to happen by leaving them there. So strip 4468 * the GPU domains and just stuff them onto inactive. 4469 */ 4470 while (!list_empty(&dev_priv->mm.active_list)) { 4471 struct drm_gem_object *obj; 4472 uint32_t old_write_domain; 4473 4474 obj = list_first_entry(&dev_priv->mm.active_list, 4475 struct drm_i915_gem_object, 4476 list)->obj; 4477 old_write_domain = obj->write_domain; 4478 obj->write_domain &= ~I915_GEM_GPU_DOMAINS; 4479 i915_gem_object_move_to_inactive(obj); 4480 4481 trace_i915_gem_object_change_domain(obj, 4482 obj->read_domains, 4483 old_write_domain); 4484 } 4485 spin_unlock(&dev_priv->mm.active_list_lock); 4486 4487 while (!list_empty(&dev_priv->mm.flushing_list)) { 4488 struct drm_gem_object *obj; 4489 uint32_t old_write_domain; 4490 4491 obj = list_first_entry(&dev_priv->mm.flushing_list, 4492 struct drm_i915_gem_object, 4493 list)->obj; 4494 old_write_domain = obj->write_domain; 4495 obj->write_domain &= ~I915_GEM_GPU_DOMAINS; 4496 i915_gem_object_move_to_inactive(obj); 4497 4498 trace_i915_gem_object_change_domain(obj, 4499 obj->read_domains, 4500 old_write_domain); 4501 } 4502 4503 4504 /* Move all inactive buffers out of the GTT. */ 4505 ret = i915_gem_evict_from_inactive_list(dev); 4506 WARN_ON(!list_empty(&dev_priv->mm.inactive_list)); 4507 if (ret) { 4508 mutex_unlock(&dev->struct_mutex); 4509 return ret; 4510 } 4511 4512 i915_gem_cleanup_ringbuffer(dev); 4513 mutex_unlock(&dev->struct_mutex); 4514 4515 return 0; 4516 } 4517 4518 static int 4519 i915_gem_init_hws(struct drm_device *dev) 4520 { 4521 drm_i915_private_t *dev_priv = dev->dev_private; 4522 struct drm_gem_object *obj; 4523 struct drm_i915_gem_object *obj_priv; 4524 int ret; 4525 4526 /* If we need a physical address for the status page, it's already 4527 * initialized at driver load time. 4528 */ 4529 if (!I915_NEED_GFX_HWS(dev)) 4530 return 0; 4531 4532 obj = drm_gem_object_alloc(dev, 4096); 4533 if (obj == NULL) { 4534 DRM_ERROR("Failed to allocate status page\n"); 4535 return -ENOMEM; 4536 } 4537 obj_priv = obj->driver_private; 4538 obj_priv->agp_type = AGP_USER_CACHED_MEMORY; 4539 4540 ret = i915_gem_object_pin(obj, 4096); 4541 if (ret != 0) { 4542 drm_gem_object_unreference(obj); 4543 return ret; 4544 } 4545 4546 dev_priv->status_gfx_addr = obj_priv->gtt_offset; 4547 4548 dev_priv->hw_status_page = kmap(obj_priv->pages[0]); 4549 if (dev_priv->hw_status_page == NULL) { 4550 DRM_ERROR("Failed to map status page.\n"); 4551 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map)); 4552 i915_gem_object_unpin(obj); 4553 drm_gem_object_unreference(obj); 4554 return -EINVAL; 4555 } 4556 dev_priv->hws_obj = obj; 4557 memset(dev_priv->hw_status_page, 0, PAGE_SIZE); 4558 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr); 4559 I915_READ(HWS_PGA); /* posting read */ 4560 DRM_DEBUG_DRIVER("hws offset: 0x%08x\n", dev_priv->status_gfx_addr); 4561 4562 return 0; 4563 } 4564 4565 static void 4566 i915_gem_cleanup_hws(struct drm_device *dev) 4567 { 4568 drm_i915_private_t *dev_priv = dev->dev_private; 4569 struct drm_gem_object *obj; 4570 struct drm_i915_gem_object *obj_priv; 4571 4572 if (dev_priv->hws_obj == NULL) 4573 return; 4574 4575 obj = dev_priv->hws_obj; 4576 obj_priv = obj->driver_private; 4577 4578 kunmap(obj_priv->pages[0]); 4579 i915_gem_object_unpin(obj); 4580 drm_gem_object_unreference(obj); 4581 dev_priv->hws_obj = NULL; 4582 4583 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map)); 4584 dev_priv->hw_status_page = NULL; 4585 4586 /* Write high address into HWS_PGA when disabling. */ 4587 I915_WRITE(HWS_PGA, 0x1ffff000); 4588 } 4589 4590 int 4591 i915_gem_init_ringbuffer(struct drm_device *dev) 4592 { 4593 drm_i915_private_t *dev_priv = dev->dev_private; 4594 struct drm_gem_object *obj; 4595 struct drm_i915_gem_object *obj_priv; 4596 drm_i915_ring_buffer_t *ring = &dev_priv->ring; 4597 int ret; 4598 u32 head; 4599 4600 ret = i915_gem_init_hws(dev); 4601 if (ret != 0) 4602 return ret; 4603 4604 obj = drm_gem_object_alloc(dev, 128 * 1024); 4605 if (obj == NULL) { 4606 DRM_ERROR("Failed to allocate ringbuffer\n"); 4607 i915_gem_cleanup_hws(dev); 4608 return -ENOMEM; 4609 } 4610 obj_priv = obj->driver_private; 4611 4612 ret = i915_gem_object_pin(obj, 4096); 4613 if (ret != 0) { 4614 drm_gem_object_unreference(obj); 4615 i915_gem_cleanup_hws(dev); 4616 return ret; 4617 } 4618 4619 /* Set up the kernel mapping for the ring. */ 4620 ring->Size = obj->size; 4621 4622 ring->map.offset = dev->agp->base + obj_priv->gtt_offset; 4623 ring->map.size = obj->size; 4624 ring->map.type = 0; 4625 ring->map.flags = 0; 4626 ring->map.mtrr = 0; 4627 4628 drm_core_ioremap_wc(&ring->map, dev); 4629 if (ring->map.handle == NULL) { 4630 DRM_ERROR("Failed to map ringbuffer.\n"); 4631 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring)); 4632 i915_gem_object_unpin(obj); 4633 drm_gem_object_unreference(obj); 4634 i915_gem_cleanup_hws(dev); 4635 return -EINVAL; 4636 } 4637 ring->ring_obj = obj; 4638 ring->virtual_start = ring->map.handle; 4639 4640 /* Stop the ring if it's running. */ 4641 I915_WRITE(PRB0_CTL, 0); 4642 I915_WRITE(PRB0_TAIL, 0); 4643 I915_WRITE(PRB0_HEAD, 0); 4644 4645 /* Initialize the ring. */ 4646 I915_WRITE(PRB0_START, obj_priv->gtt_offset); 4647 head = I915_READ(PRB0_HEAD) & HEAD_ADDR; 4648 4649 /* G45 ring initialization fails to reset head to zero */ 4650 if (head != 0) { 4651 DRM_ERROR("Ring head not reset to zero " 4652 "ctl %08x head %08x tail %08x start %08x\n", 4653 I915_READ(PRB0_CTL), 4654 I915_READ(PRB0_HEAD), 4655 I915_READ(PRB0_TAIL), 4656 I915_READ(PRB0_START)); 4657 I915_WRITE(PRB0_HEAD, 0); 4658 4659 DRM_ERROR("Ring head forced to zero " 4660 "ctl %08x head %08x tail %08x start %08x\n", 4661 I915_READ(PRB0_CTL), 4662 I915_READ(PRB0_HEAD), 4663 I915_READ(PRB0_TAIL), 4664 I915_READ(PRB0_START)); 4665 } 4666 4667 I915_WRITE(PRB0_CTL, 4668 ((obj->size - 4096) & RING_NR_PAGES) | 4669 RING_NO_REPORT | 4670 RING_VALID); 4671 4672 head = I915_READ(PRB0_HEAD) & HEAD_ADDR; 4673 4674 /* If the head is still not zero, the ring is dead */ 4675 if (head != 0) { 4676 DRM_ERROR("Ring initialization failed " 4677 "ctl %08x head %08x tail %08x start %08x\n", 4678 I915_READ(PRB0_CTL), 4679 I915_READ(PRB0_HEAD), 4680 I915_READ(PRB0_TAIL), 4681 I915_READ(PRB0_START)); 4682 return -EIO; 4683 } 4684 4685 /* Update our cache of the ring state */ 4686 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4687 i915_kernel_lost_context(dev); 4688 else { 4689 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR; 4690 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR; 4691 ring->space = ring->head - (ring->tail + 8); 4692 if (ring->space < 0) 4693 ring->space += ring->Size; 4694 } 4695 4696 return 0; 4697 } 4698 4699 void 4700 i915_gem_cleanup_ringbuffer(struct drm_device *dev) 4701 { 4702 drm_i915_private_t *dev_priv = dev->dev_private; 4703 4704 if (dev_priv->ring.ring_obj == NULL) 4705 return; 4706 4707 drm_core_ioremapfree(&dev_priv->ring.map, dev); 4708 4709 i915_gem_object_unpin(dev_priv->ring.ring_obj); 4710 drm_gem_object_unreference(dev_priv->ring.ring_obj); 4711 dev_priv->ring.ring_obj = NULL; 4712 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring)); 4713 4714 i915_gem_cleanup_hws(dev); 4715 } 4716 4717 int 4718 i915_gem_entervt_ioctl(struct drm_device *dev, void *data, 4719 struct drm_file *file_priv) 4720 { 4721 drm_i915_private_t *dev_priv = dev->dev_private; 4722 int ret; 4723 4724 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4725 return 0; 4726 4727 if (atomic_read(&dev_priv->mm.wedged)) { 4728 DRM_ERROR("Reenabling wedged hardware, good luck\n"); 4729 atomic_set(&dev_priv->mm.wedged, 0); 4730 } 4731 4732 mutex_lock(&dev->struct_mutex); 4733 dev_priv->mm.suspended = 0; 4734 4735 ret = i915_gem_init_ringbuffer(dev); 4736 if (ret != 0) { 4737 mutex_unlock(&dev->struct_mutex); 4738 return ret; 4739 } 4740 4741 spin_lock(&dev_priv->mm.active_list_lock); 4742 BUG_ON(!list_empty(&dev_priv->mm.active_list)); 4743 spin_unlock(&dev_priv->mm.active_list_lock); 4744 4745 BUG_ON(!list_empty(&dev_priv->mm.flushing_list)); 4746 BUG_ON(!list_empty(&dev_priv->mm.inactive_list)); 4747 BUG_ON(!list_empty(&dev_priv->mm.request_list)); 4748 mutex_unlock(&dev->struct_mutex); 4749 4750 drm_irq_install(dev); 4751 4752 return 0; 4753 } 4754 4755 int 4756 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data, 4757 struct drm_file *file_priv) 4758 { 4759 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4760 return 0; 4761 4762 drm_irq_uninstall(dev); 4763 return i915_gem_idle(dev); 4764 } 4765 4766 void 4767 i915_gem_lastclose(struct drm_device *dev) 4768 { 4769 int ret; 4770 4771 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4772 return; 4773 4774 ret = i915_gem_idle(dev); 4775 if (ret) 4776 DRM_ERROR("failed to idle hardware: %d\n", ret); 4777 } 4778 4779 void 4780 i915_gem_load(struct drm_device *dev) 4781 { 4782 int i; 4783 drm_i915_private_t *dev_priv = dev->dev_private; 4784 4785 spin_lock_init(&dev_priv->mm.active_list_lock); 4786 INIT_LIST_HEAD(&dev_priv->mm.active_list); 4787 INIT_LIST_HEAD(&dev_priv->mm.flushing_list); 4788 INIT_LIST_HEAD(&dev_priv->mm.inactive_list); 4789 INIT_LIST_HEAD(&dev_priv->mm.request_list); 4790 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4791 INIT_DELAYED_WORK(&dev_priv->mm.retire_work, 4792 i915_gem_retire_work_handler); 4793 dev_priv->mm.next_gem_seqno = 1; 4794 4795 spin_lock(&shrink_list_lock); 4796 list_add(&dev_priv->mm.shrink_list, &shrink_list); 4797 spin_unlock(&shrink_list_lock); 4798 4799 /* Old X drivers will take 0-2 for front, back, depth buffers */ 4800 dev_priv->fence_reg_start = 3; 4801 4802 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) 4803 dev_priv->num_fence_regs = 16; 4804 else 4805 dev_priv->num_fence_regs = 8; 4806 4807 /* Initialize fence registers to zero */ 4808 if (IS_I965G(dev)) { 4809 for (i = 0; i < 16; i++) 4810 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0); 4811 } else { 4812 for (i = 0; i < 8; i++) 4813 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0); 4814 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) 4815 for (i = 0; i < 8; i++) 4816 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0); 4817 } 4818 i915_gem_detect_bit_6_swizzle(dev); 4819 init_waitqueue_head(&dev_priv->pending_flip_queue); 4820 } 4821 4822 /* 4823 * Create a physically contiguous memory object for this object 4824 * e.g. for cursor + overlay regs 4825 */ 4826 int i915_gem_init_phys_object(struct drm_device *dev, 4827 int id, int size) 4828 { 4829 drm_i915_private_t *dev_priv = dev->dev_private; 4830 struct drm_i915_gem_phys_object *phys_obj; 4831 int ret; 4832 4833 if (dev_priv->mm.phys_objs[id - 1] || !size) 4834 return 0; 4835 4836 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL); 4837 if (!phys_obj) 4838 return -ENOMEM; 4839 4840 phys_obj->id = id; 4841 4842 phys_obj->handle = drm_pci_alloc(dev, size, 0); 4843 if (!phys_obj->handle) { 4844 ret = -ENOMEM; 4845 goto kfree_obj; 4846 } 4847 #ifdef CONFIG_X86 4848 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); 4849 #endif 4850 4851 dev_priv->mm.phys_objs[id - 1] = phys_obj; 4852 4853 return 0; 4854 kfree_obj: 4855 kfree(phys_obj); 4856 return ret; 4857 } 4858 4859 void i915_gem_free_phys_object(struct drm_device *dev, int id) 4860 { 4861 drm_i915_private_t *dev_priv = dev->dev_private; 4862 struct drm_i915_gem_phys_object *phys_obj; 4863 4864 if (!dev_priv->mm.phys_objs[id - 1]) 4865 return; 4866 4867 phys_obj = dev_priv->mm.phys_objs[id - 1]; 4868 if (phys_obj->cur_obj) { 4869 i915_gem_detach_phys_object(dev, phys_obj->cur_obj); 4870 } 4871 4872 #ifdef CONFIG_X86 4873 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); 4874 #endif 4875 drm_pci_free(dev, phys_obj->handle); 4876 kfree(phys_obj); 4877 dev_priv->mm.phys_objs[id - 1] = NULL; 4878 } 4879 4880 void i915_gem_free_all_phys_object(struct drm_device *dev) 4881 { 4882 int i; 4883 4884 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++) 4885 i915_gem_free_phys_object(dev, i); 4886 } 4887 4888 void i915_gem_detach_phys_object(struct drm_device *dev, 4889 struct drm_gem_object *obj) 4890 { 4891 struct drm_i915_gem_object *obj_priv; 4892 int i; 4893 int ret; 4894 int page_count; 4895 4896 obj_priv = obj->driver_private; 4897 if (!obj_priv->phys_obj) 4898 return; 4899 4900 ret = i915_gem_object_get_pages(obj); 4901 if (ret) 4902 goto out; 4903 4904 page_count = obj->size / PAGE_SIZE; 4905 4906 for (i = 0; i < page_count; i++) { 4907 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0); 4908 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE); 4909 4910 memcpy(dst, src, PAGE_SIZE); 4911 kunmap_atomic(dst, KM_USER0); 4912 } 4913 drm_clflush_pages(obj_priv->pages, page_count); 4914 drm_agp_chipset_flush(dev); 4915 4916 i915_gem_object_put_pages(obj); 4917 out: 4918 obj_priv->phys_obj->cur_obj = NULL; 4919 obj_priv->phys_obj = NULL; 4920 } 4921 4922 int 4923 i915_gem_attach_phys_object(struct drm_device *dev, 4924 struct drm_gem_object *obj, int id) 4925 { 4926 drm_i915_private_t *dev_priv = dev->dev_private; 4927 struct drm_i915_gem_object *obj_priv; 4928 int ret = 0; 4929 int page_count; 4930 int i; 4931 4932 if (id > I915_MAX_PHYS_OBJECT) 4933 return -EINVAL; 4934 4935 obj_priv = obj->driver_private; 4936 4937 if (obj_priv->phys_obj) { 4938 if (obj_priv->phys_obj->id == id) 4939 return 0; 4940 i915_gem_detach_phys_object(dev, obj); 4941 } 4942 4943 4944 /* create a new object */ 4945 if (!dev_priv->mm.phys_objs[id - 1]) { 4946 ret = i915_gem_init_phys_object(dev, id, 4947 obj->size); 4948 if (ret) { 4949 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size); 4950 goto out; 4951 } 4952 } 4953 4954 /* bind to the object */ 4955 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1]; 4956 obj_priv->phys_obj->cur_obj = obj; 4957 4958 ret = i915_gem_object_get_pages(obj); 4959 if (ret) { 4960 DRM_ERROR("failed to get page list\n"); 4961 goto out; 4962 } 4963 4964 page_count = obj->size / PAGE_SIZE; 4965 4966 for (i = 0; i < page_count; i++) { 4967 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0); 4968 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE); 4969 4970 memcpy(dst, src, PAGE_SIZE); 4971 kunmap_atomic(src, KM_USER0); 4972 } 4973 4974 i915_gem_object_put_pages(obj); 4975 4976 return 0; 4977 out: 4978 return ret; 4979 } 4980 4981 static int 4982 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj, 4983 struct drm_i915_gem_pwrite *args, 4984 struct drm_file *file_priv) 4985 { 4986 struct drm_i915_gem_object *obj_priv = obj->driver_private; 4987 void *obj_addr; 4988 int ret; 4989 char __user *user_data; 4990 4991 user_data = (char __user *) (uintptr_t) args->data_ptr; 4992 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset; 4993 4994 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size); 4995 ret = copy_from_user(obj_addr, user_data, args->size); 4996 if (ret) 4997 return -EFAULT; 4998 4999 drm_agp_chipset_flush(dev); 5000 return 0; 5001 } 5002 5003 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv) 5004 { 5005 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv; 5006 5007 /* Clean up our request list when the client is going away, so that 5008 * later retire_requests won't dereference our soon-to-be-gone 5009 * file_priv. 5010 */ 5011 mutex_lock(&dev->struct_mutex); 5012 while (!list_empty(&i915_file_priv->mm.request_list)) 5013 list_del_init(i915_file_priv->mm.request_list.next); 5014 mutex_unlock(&dev->struct_mutex); 5015 } 5016 5017 static int 5018 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask) 5019 { 5020 drm_i915_private_t *dev_priv, *next_dev; 5021 struct drm_i915_gem_object *obj_priv, *next_obj; 5022 int cnt = 0; 5023 int would_deadlock = 1; 5024 5025 /* "fast-path" to count number of available objects */ 5026 if (nr_to_scan == 0) { 5027 spin_lock(&shrink_list_lock); 5028 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) { 5029 struct drm_device *dev = dev_priv->dev; 5030 5031 if (mutex_trylock(&dev->struct_mutex)) { 5032 list_for_each_entry(obj_priv, 5033 &dev_priv->mm.inactive_list, 5034 list) 5035 cnt++; 5036 mutex_unlock(&dev->struct_mutex); 5037 } 5038 } 5039 spin_unlock(&shrink_list_lock); 5040 5041 return (cnt / 100) * sysctl_vfs_cache_pressure; 5042 } 5043 5044 spin_lock(&shrink_list_lock); 5045 5046 /* first scan for clean buffers */ 5047 list_for_each_entry_safe(dev_priv, next_dev, 5048 &shrink_list, mm.shrink_list) { 5049 struct drm_device *dev = dev_priv->dev; 5050 5051 if (! mutex_trylock(&dev->struct_mutex)) 5052 continue; 5053 5054 spin_unlock(&shrink_list_lock); 5055 5056 i915_gem_retire_requests(dev); 5057 5058 list_for_each_entry_safe(obj_priv, next_obj, 5059 &dev_priv->mm.inactive_list, 5060 list) { 5061 if (i915_gem_object_is_purgeable(obj_priv)) { 5062 i915_gem_object_unbind(obj_priv->obj); 5063 if (--nr_to_scan <= 0) 5064 break; 5065 } 5066 } 5067 5068 spin_lock(&shrink_list_lock); 5069 mutex_unlock(&dev->struct_mutex); 5070 5071 would_deadlock = 0; 5072 5073 if (nr_to_scan <= 0) 5074 break; 5075 } 5076 5077 /* second pass, evict/count anything still on the inactive list */ 5078 list_for_each_entry_safe(dev_priv, next_dev, 5079 &shrink_list, mm.shrink_list) { 5080 struct drm_device *dev = dev_priv->dev; 5081 5082 if (! mutex_trylock(&dev->struct_mutex)) 5083 continue; 5084 5085 spin_unlock(&shrink_list_lock); 5086 5087 list_for_each_entry_safe(obj_priv, next_obj, 5088 &dev_priv->mm.inactive_list, 5089 list) { 5090 if (nr_to_scan > 0) { 5091 i915_gem_object_unbind(obj_priv->obj); 5092 nr_to_scan--; 5093 } else 5094 cnt++; 5095 } 5096 5097 spin_lock(&shrink_list_lock); 5098 mutex_unlock(&dev->struct_mutex); 5099 5100 would_deadlock = 0; 5101 } 5102 5103 spin_unlock(&shrink_list_lock); 5104 5105 if (would_deadlock) 5106 return -1; 5107 else if (cnt > 0) 5108 return (cnt / 100) * sysctl_vfs_cache_pressure; 5109 else 5110 return 0; 5111 } 5112 5113 static struct shrinker shrinker = { 5114 .shrink = i915_gem_shrink, 5115 .seeks = DEFAULT_SEEKS, 5116 }; 5117 5118 __init void 5119 i915_gem_shrinker_init(void) 5120 { 5121 register_shrinker(&shrinker); 5122 } 5123 5124 __exit void 5125 i915_gem_shrinker_exit(void) 5126 { 5127 unregister_shrinker(&shrinker); 5128 } 5129