xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision a09d2831)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36 
37 #define I915_GEM_GPU_DOMAINS	(~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
38 
39 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
42 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43 					     int write);
44 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45 						     uint64_t offset,
46 						     uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50 					   unsigned alignment);
51 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
52 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
53 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55 				struct drm_i915_gem_pwrite *args,
56 				struct drm_file *file_priv);
57 
58 static LIST_HEAD(shrink_list);
59 static DEFINE_SPINLOCK(shrink_list_lock);
60 
61 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
62 		     unsigned long end)
63 {
64 	drm_i915_private_t *dev_priv = dev->dev_private;
65 
66 	if (start >= end ||
67 	    (start & (PAGE_SIZE - 1)) != 0 ||
68 	    (end & (PAGE_SIZE - 1)) != 0) {
69 		return -EINVAL;
70 	}
71 
72 	drm_mm_init(&dev_priv->mm.gtt_space, start,
73 		    end - start);
74 
75 	dev->gtt_total = (uint32_t) (end - start);
76 
77 	return 0;
78 }
79 
80 int
81 i915_gem_init_ioctl(struct drm_device *dev, void *data,
82 		    struct drm_file *file_priv)
83 {
84 	struct drm_i915_gem_init *args = data;
85 	int ret;
86 
87 	mutex_lock(&dev->struct_mutex);
88 	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
89 	mutex_unlock(&dev->struct_mutex);
90 
91 	return ret;
92 }
93 
94 int
95 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
96 			    struct drm_file *file_priv)
97 {
98 	struct drm_i915_gem_get_aperture *args = data;
99 
100 	if (!(dev->driver->driver_features & DRIVER_GEM))
101 		return -ENODEV;
102 
103 	args->aper_size = dev->gtt_total;
104 	args->aper_available_size = (args->aper_size -
105 				     atomic_read(&dev->pin_memory));
106 
107 	return 0;
108 }
109 
110 
111 /**
112  * Creates a new mm object and returns a handle to it.
113  */
114 int
115 i915_gem_create_ioctl(struct drm_device *dev, void *data,
116 		      struct drm_file *file_priv)
117 {
118 	struct drm_i915_gem_create *args = data;
119 	struct drm_gem_object *obj;
120 	int ret;
121 	u32 handle;
122 
123 	args->size = roundup(args->size, PAGE_SIZE);
124 
125 	/* Allocate the new object */
126 	obj = drm_gem_object_alloc(dev, args->size);
127 	if (obj == NULL)
128 		return -ENOMEM;
129 
130 	ret = drm_gem_handle_create(file_priv, obj, &handle);
131 	mutex_lock(&dev->struct_mutex);
132 	drm_gem_object_handle_unreference(obj);
133 	mutex_unlock(&dev->struct_mutex);
134 
135 	if (ret)
136 		return ret;
137 
138 	args->handle = handle;
139 
140 	return 0;
141 }
142 
143 static inline int
144 fast_shmem_read(struct page **pages,
145 		loff_t page_base, int page_offset,
146 		char __user *data,
147 		int length)
148 {
149 	char __iomem *vaddr;
150 	int unwritten;
151 
152 	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
153 	if (vaddr == NULL)
154 		return -ENOMEM;
155 	unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
156 	kunmap_atomic(vaddr, KM_USER0);
157 
158 	if (unwritten)
159 		return -EFAULT;
160 
161 	return 0;
162 }
163 
164 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
165 {
166 	drm_i915_private_t *dev_priv = obj->dev->dev_private;
167 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
168 
169 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
170 		obj_priv->tiling_mode != I915_TILING_NONE;
171 }
172 
173 static inline int
174 slow_shmem_copy(struct page *dst_page,
175 		int dst_offset,
176 		struct page *src_page,
177 		int src_offset,
178 		int length)
179 {
180 	char *dst_vaddr, *src_vaddr;
181 
182 	dst_vaddr = kmap_atomic(dst_page, KM_USER0);
183 	if (dst_vaddr == NULL)
184 		return -ENOMEM;
185 
186 	src_vaddr = kmap_atomic(src_page, KM_USER1);
187 	if (src_vaddr == NULL) {
188 		kunmap_atomic(dst_vaddr, KM_USER0);
189 		return -ENOMEM;
190 	}
191 
192 	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
193 
194 	kunmap_atomic(src_vaddr, KM_USER1);
195 	kunmap_atomic(dst_vaddr, KM_USER0);
196 
197 	return 0;
198 }
199 
200 static inline int
201 slow_shmem_bit17_copy(struct page *gpu_page,
202 		      int gpu_offset,
203 		      struct page *cpu_page,
204 		      int cpu_offset,
205 		      int length,
206 		      int is_read)
207 {
208 	char *gpu_vaddr, *cpu_vaddr;
209 
210 	/* Use the unswizzled path if this page isn't affected. */
211 	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
212 		if (is_read)
213 			return slow_shmem_copy(cpu_page, cpu_offset,
214 					       gpu_page, gpu_offset, length);
215 		else
216 			return slow_shmem_copy(gpu_page, gpu_offset,
217 					       cpu_page, cpu_offset, length);
218 	}
219 
220 	gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
221 	if (gpu_vaddr == NULL)
222 		return -ENOMEM;
223 
224 	cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
225 	if (cpu_vaddr == NULL) {
226 		kunmap_atomic(gpu_vaddr, KM_USER0);
227 		return -ENOMEM;
228 	}
229 
230 	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
231 	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
232 	 */
233 	while (length > 0) {
234 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
235 		int this_length = min(cacheline_end - gpu_offset, length);
236 		int swizzled_gpu_offset = gpu_offset ^ 64;
237 
238 		if (is_read) {
239 			memcpy(cpu_vaddr + cpu_offset,
240 			       gpu_vaddr + swizzled_gpu_offset,
241 			       this_length);
242 		} else {
243 			memcpy(gpu_vaddr + swizzled_gpu_offset,
244 			       cpu_vaddr + cpu_offset,
245 			       this_length);
246 		}
247 		cpu_offset += this_length;
248 		gpu_offset += this_length;
249 		length -= this_length;
250 	}
251 
252 	kunmap_atomic(cpu_vaddr, KM_USER1);
253 	kunmap_atomic(gpu_vaddr, KM_USER0);
254 
255 	return 0;
256 }
257 
258 /**
259  * This is the fast shmem pread path, which attempts to copy_from_user directly
260  * from the backing pages of the object to the user's address space.  On a
261  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
262  */
263 static int
264 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
265 			  struct drm_i915_gem_pread *args,
266 			  struct drm_file *file_priv)
267 {
268 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
269 	ssize_t remain;
270 	loff_t offset, page_base;
271 	char __user *user_data;
272 	int page_offset, page_length;
273 	int ret;
274 
275 	user_data = (char __user *) (uintptr_t) args->data_ptr;
276 	remain = args->size;
277 
278 	mutex_lock(&dev->struct_mutex);
279 
280 	ret = i915_gem_object_get_pages(obj);
281 	if (ret != 0)
282 		goto fail_unlock;
283 
284 	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
285 							args->size);
286 	if (ret != 0)
287 		goto fail_put_pages;
288 
289 	obj_priv = obj->driver_private;
290 	offset = args->offset;
291 
292 	while (remain > 0) {
293 		/* Operation in this page
294 		 *
295 		 * page_base = page offset within aperture
296 		 * page_offset = offset within page
297 		 * page_length = bytes to copy for this page
298 		 */
299 		page_base = (offset & ~(PAGE_SIZE-1));
300 		page_offset = offset & (PAGE_SIZE-1);
301 		page_length = remain;
302 		if ((page_offset + remain) > PAGE_SIZE)
303 			page_length = PAGE_SIZE - page_offset;
304 
305 		ret = fast_shmem_read(obj_priv->pages,
306 				      page_base, page_offset,
307 				      user_data, page_length);
308 		if (ret)
309 			goto fail_put_pages;
310 
311 		remain -= page_length;
312 		user_data += page_length;
313 		offset += page_length;
314 	}
315 
316 fail_put_pages:
317 	i915_gem_object_put_pages(obj);
318 fail_unlock:
319 	mutex_unlock(&dev->struct_mutex);
320 
321 	return ret;
322 }
323 
324 static inline gfp_t
325 i915_gem_object_get_page_gfp_mask (struct drm_gem_object *obj)
326 {
327 	return mapping_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping);
328 }
329 
330 static inline void
331 i915_gem_object_set_page_gfp_mask (struct drm_gem_object *obj, gfp_t gfp)
332 {
333 	mapping_set_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping, gfp);
334 }
335 
336 static int
337 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
338 {
339 	int ret;
340 
341 	ret = i915_gem_object_get_pages(obj);
342 
343 	/* If we've insufficient memory to map in the pages, attempt
344 	 * to make some space by throwing out some old buffers.
345 	 */
346 	if (ret == -ENOMEM) {
347 		struct drm_device *dev = obj->dev;
348 		gfp_t gfp;
349 
350 		ret = i915_gem_evict_something(dev, obj->size);
351 		if (ret)
352 			return ret;
353 
354 		gfp = i915_gem_object_get_page_gfp_mask(obj);
355 		i915_gem_object_set_page_gfp_mask(obj, gfp & ~__GFP_NORETRY);
356 		ret = i915_gem_object_get_pages(obj);
357 		i915_gem_object_set_page_gfp_mask (obj, gfp);
358 	}
359 
360 	return ret;
361 }
362 
363 /**
364  * This is the fallback shmem pread path, which allocates temporary storage
365  * in kernel space to copy_to_user into outside of the struct_mutex, so we
366  * can copy out of the object's backing pages while holding the struct mutex
367  * and not take page faults.
368  */
369 static int
370 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
371 			  struct drm_i915_gem_pread *args,
372 			  struct drm_file *file_priv)
373 {
374 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
375 	struct mm_struct *mm = current->mm;
376 	struct page **user_pages;
377 	ssize_t remain;
378 	loff_t offset, pinned_pages, i;
379 	loff_t first_data_page, last_data_page, num_pages;
380 	int shmem_page_index, shmem_page_offset;
381 	int data_page_index,  data_page_offset;
382 	int page_length;
383 	int ret;
384 	uint64_t data_ptr = args->data_ptr;
385 	int do_bit17_swizzling;
386 
387 	remain = args->size;
388 
389 	/* Pin the user pages containing the data.  We can't fault while
390 	 * holding the struct mutex, yet we want to hold it while
391 	 * dereferencing the user data.
392 	 */
393 	first_data_page = data_ptr / PAGE_SIZE;
394 	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
395 	num_pages = last_data_page - first_data_page + 1;
396 
397 	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
398 	if (user_pages == NULL)
399 		return -ENOMEM;
400 
401 	down_read(&mm->mmap_sem);
402 	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
403 				      num_pages, 1, 0, user_pages, NULL);
404 	up_read(&mm->mmap_sem);
405 	if (pinned_pages < num_pages) {
406 		ret = -EFAULT;
407 		goto fail_put_user_pages;
408 	}
409 
410 	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
411 
412 	mutex_lock(&dev->struct_mutex);
413 
414 	ret = i915_gem_object_get_pages_or_evict(obj);
415 	if (ret)
416 		goto fail_unlock;
417 
418 	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
419 							args->size);
420 	if (ret != 0)
421 		goto fail_put_pages;
422 
423 	obj_priv = obj->driver_private;
424 	offset = args->offset;
425 
426 	while (remain > 0) {
427 		/* Operation in this page
428 		 *
429 		 * shmem_page_index = page number within shmem file
430 		 * shmem_page_offset = offset within page in shmem file
431 		 * data_page_index = page number in get_user_pages return
432 		 * data_page_offset = offset with data_page_index page.
433 		 * page_length = bytes to copy for this page
434 		 */
435 		shmem_page_index = offset / PAGE_SIZE;
436 		shmem_page_offset = offset & ~PAGE_MASK;
437 		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
438 		data_page_offset = data_ptr & ~PAGE_MASK;
439 
440 		page_length = remain;
441 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
442 			page_length = PAGE_SIZE - shmem_page_offset;
443 		if ((data_page_offset + page_length) > PAGE_SIZE)
444 			page_length = PAGE_SIZE - data_page_offset;
445 
446 		if (do_bit17_swizzling) {
447 			ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
448 						    shmem_page_offset,
449 						    user_pages[data_page_index],
450 						    data_page_offset,
451 						    page_length,
452 						    1);
453 		} else {
454 			ret = slow_shmem_copy(user_pages[data_page_index],
455 					      data_page_offset,
456 					      obj_priv->pages[shmem_page_index],
457 					      shmem_page_offset,
458 					      page_length);
459 		}
460 		if (ret)
461 			goto fail_put_pages;
462 
463 		remain -= page_length;
464 		data_ptr += page_length;
465 		offset += page_length;
466 	}
467 
468 fail_put_pages:
469 	i915_gem_object_put_pages(obj);
470 fail_unlock:
471 	mutex_unlock(&dev->struct_mutex);
472 fail_put_user_pages:
473 	for (i = 0; i < pinned_pages; i++) {
474 		SetPageDirty(user_pages[i]);
475 		page_cache_release(user_pages[i]);
476 	}
477 	drm_free_large(user_pages);
478 
479 	return ret;
480 }
481 
482 /**
483  * Reads data from the object referenced by handle.
484  *
485  * On error, the contents of *data are undefined.
486  */
487 int
488 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
489 		     struct drm_file *file_priv)
490 {
491 	struct drm_i915_gem_pread *args = data;
492 	struct drm_gem_object *obj;
493 	struct drm_i915_gem_object *obj_priv;
494 	int ret;
495 
496 	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
497 	if (obj == NULL)
498 		return -EBADF;
499 	obj_priv = obj->driver_private;
500 
501 	/* Bounds check source.
502 	 *
503 	 * XXX: This could use review for overflow issues...
504 	 */
505 	if (args->offset > obj->size || args->size > obj->size ||
506 	    args->offset + args->size > obj->size) {
507 		drm_gem_object_unreference(obj);
508 		return -EINVAL;
509 	}
510 
511 	if (i915_gem_object_needs_bit17_swizzle(obj)) {
512 		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
513 	} else {
514 		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
515 		if (ret != 0)
516 			ret = i915_gem_shmem_pread_slow(dev, obj, args,
517 							file_priv);
518 	}
519 
520 	drm_gem_object_unreference(obj);
521 
522 	return ret;
523 }
524 
525 /* This is the fast write path which cannot handle
526  * page faults in the source data
527  */
528 
529 static inline int
530 fast_user_write(struct io_mapping *mapping,
531 		loff_t page_base, int page_offset,
532 		char __user *user_data,
533 		int length)
534 {
535 	char *vaddr_atomic;
536 	unsigned long unwritten;
537 
538 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
539 	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
540 						      user_data, length);
541 	io_mapping_unmap_atomic(vaddr_atomic);
542 	if (unwritten)
543 		return -EFAULT;
544 	return 0;
545 }
546 
547 /* Here's the write path which can sleep for
548  * page faults
549  */
550 
551 static inline int
552 slow_kernel_write(struct io_mapping *mapping,
553 		  loff_t gtt_base, int gtt_offset,
554 		  struct page *user_page, int user_offset,
555 		  int length)
556 {
557 	char *src_vaddr, *dst_vaddr;
558 	unsigned long unwritten;
559 
560 	dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
561 	src_vaddr = kmap_atomic(user_page, KM_USER1);
562 	unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
563 						      src_vaddr + user_offset,
564 						      length);
565 	kunmap_atomic(src_vaddr, KM_USER1);
566 	io_mapping_unmap_atomic(dst_vaddr);
567 	if (unwritten)
568 		return -EFAULT;
569 	return 0;
570 }
571 
572 static inline int
573 fast_shmem_write(struct page **pages,
574 		 loff_t page_base, int page_offset,
575 		 char __user *data,
576 		 int length)
577 {
578 	char __iomem *vaddr;
579 	unsigned long unwritten;
580 
581 	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
582 	if (vaddr == NULL)
583 		return -ENOMEM;
584 	unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
585 	kunmap_atomic(vaddr, KM_USER0);
586 
587 	if (unwritten)
588 		return -EFAULT;
589 	return 0;
590 }
591 
592 /**
593  * This is the fast pwrite path, where we copy the data directly from the
594  * user into the GTT, uncached.
595  */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
598 			 struct drm_i915_gem_pwrite *args,
599 			 struct drm_file *file_priv)
600 {
601 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
602 	drm_i915_private_t *dev_priv = dev->dev_private;
603 	ssize_t remain;
604 	loff_t offset, page_base;
605 	char __user *user_data;
606 	int page_offset, page_length;
607 	int ret;
608 
609 	user_data = (char __user *) (uintptr_t) args->data_ptr;
610 	remain = args->size;
611 	if (!access_ok(VERIFY_READ, user_data, remain))
612 		return -EFAULT;
613 
614 
615 	mutex_lock(&dev->struct_mutex);
616 	ret = i915_gem_object_pin(obj, 0);
617 	if (ret) {
618 		mutex_unlock(&dev->struct_mutex);
619 		return ret;
620 	}
621 	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
622 	if (ret)
623 		goto fail;
624 
625 	obj_priv = obj->driver_private;
626 	offset = obj_priv->gtt_offset + args->offset;
627 
628 	while (remain > 0) {
629 		/* Operation in this page
630 		 *
631 		 * page_base = page offset within aperture
632 		 * page_offset = offset within page
633 		 * page_length = bytes to copy for this page
634 		 */
635 		page_base = (offset & ~(PAGE_SIZE-1));
636 		page_offset = offset & (PAGE_SIZE-1);
637 		page_length = remain;
638 		if ((page_offset + remain) > PAGE_SIZE)
639 			page_length = PAGE_SIZE - page_offset;
640 
641 		ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
642 				       page_offset, user_data, page_length);
643 
644 		/* If we get a fault while copying data, then (presumably) our
645 		 * source page isn't available.  Return the error and we'll
646 		 * retry in the slow path.
647 		 */
648 		if (ret)
649 			goto fail;
650 
651 		remain -= page_length;
652 		user_data += page_length;
653 		offset += page_length;
654 	}
655 
656 fail:
657 	i915_gem_object_unpin(obj);
658 	mutex_unlock(&dev->struct_mutex);
659 
660 	return ret;
661 }
662 
663 /**
664  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
665  * the memory and maps it using kmap_atomic for copying.
666  *
667  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
668  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
669  */
670 static int
671 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
672 			 struct drm_i915_gem_pwrite *args,
673 			 struct drm_file *file_priv)
674 {
675 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
676 	drm_i915_private_t *dev_priv = dev->dev_private;
677 	ssize_t remain;
678 	loff_t gtt_page_base, offset;
679 	loff_t first_data_page, last_data_page, num_pages;
680 	loff_t pinned_pages, i;
681 	struct page **user_pages;
682 	struct mm_struct *mm = current->mm;
683 	int gtt_page_offset, data_page_offset, data_page_index, page_length;
684 	int ret;
685 	uint64_t data_ptr = args->data_ptr;
686 
687 	remain = args->size;
688 
689 	/* Pin the user pages containing the data.  We can't fault while
690 	 * holding the struct mutex, and all of the pwrite implementations
691 	 * want to hold it while dereferencing the user data.
692 	 */
693 	first_data_page = data_ptr / PAGE_SIZE;
694 	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
695 	num_pages = last_data_page - first_data_page + 1;
696 
697 	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
698 	if (user_pages == NULL)
699 		return -ENOMEM;
700 
701 	down_read(&mm->mmap_sem);
702 	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
703 				      num_pages, 0, 0, user_pages, NULL);
704 	up_read(&mm->mmap_sem);
705 	if (pinned_pages < num_pages) {
706 		ret = -EFAULT;
707 		goto out_unpin_pages;
708 	}
709 
710 	mutex_lock(&dev->struct_mutex);
711 	ret = i915_gem_object_pin(obj, 0);
712 	if (ret)
713 		goto out_unlock;
714 
715 	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
716 	if (ret)
717 		goto out_unpin_object;
718 
719 	obj_priv = obj->driver_private;
720 	offset = obj_priv->gtt_offset + args->offset;
721 
722 	while (remain > 0) {
723 		/* Operation in this page
724 		 *
725 		 * gtt_page_base = page offset within aperture
726 		 * gtt_page_offset = offset within page in aperture
727 		 * data_page_index = page number in get_user_pages return
728 		 * data_page_offset = offset with data_page_index page.
729 		 * page_length = bytes to copy for this page
730 		 */
731 		gtt_page_base = offset & PAGE_MASK;
732 		gtt_page_offset = offset & ~PAGE_MASK;
733 		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
734 		data_page_offset = data_ptr & ~PAGE_MASK;
735 
736 		page_length = remain;
737 		if ((gtt_page_offset + page_length) > PAGE_SIZE)
738 			page_length = PAGE_SIZE - gtt_page_offset;
739 		if ((data_page_offset + page_length) > PAGE_SIZE)
740 			page_length = PAGE_SIZE - data_page_offset;
741 
742 		ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
743 					gtt_page_base, gtt_page_offset,
744 					user_pages[data_page_index],
745 					data_page_offset,
746 					page_length);
747 
748 		/* If we get a fault while copying data, then (presumably) our
749 		 * source page isn't available.  Return the error and we'll
750 		 * retry in the slow path.
751 		 */
752 		if (ret)
753 			goto out_unpin_object;
754 
755 		remain -= page_length;
756 		offset += page_length;
757 		data_ptr += page_length;
758 	}
759 
760 out_unpin_object:
761 	i915_gem_object_unpin(obj);
762 out_unlock:
763 	mutex_unlock(&dev->struct_mutex);
764 out_unpin_pages:
765 	for (i = 0; i < pinned_pages; i++)
766 		page_cache_release(user_pages[i]);
767 	drm_free_large(user_pages);
768 
769 	return ret;
770 }
771 
772 /**
773  * This is the fast shmem pwrite path, which attempts to directly
774  * copy_from_user into the kmapped pages backing the object.
775  */
776 static int
777 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
778 			   struct drm_i915_gem_pwrite *args,
779 			   struct drm_file *file_priv)
780 {
781 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
782 	ssize_t remain;
783 	loff_t offset, page_base;
784 	char __user *user_data;
785 	int page_offset, page_length;
786 	int ret;
787 
788 	user_data = (char __user *) (uintptr_t) args->data_ptr;
789 	remain = args->size;
790 
791 	mutex_lock(&dev->struct_mutex);
792 
793 	ret = i915_gem_object_get_pages(obj);
794 	if (ret != 0)
795 		goto fail_unlock;
796 
797 	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
798 	if (ret != 0)
799 		goto fail_put_pages;
800 
801 	obj_priv = obj->driver_private;
802 	offset = args->offset;
803 	obj_priv->dirty = 1;
804 
805 	while (remain > 0) {
806 		/* Operation in this page
807 		 *
808 		 * page_base = page offset within aperture
809 		 * page_offset = offset within page
810 		 * page_length = bytes to copy for this page
811 		 */
812 		page_base = (offset & ~(PAGE_SIZE-1));
813 		page_offset = offset & (PAGE_SIZE-1);
814 		page_length = remain;
815 		if ((page_offset + remain) > PAGE_SIZE)
816 			page_length = PAGE_SIZE - page_offset;
817 
818 		ret = fast_shmem_write(obj_priv->pages,
819 				       page_base, page_offset,
820 				       user_data, page_length);
821 		if (ret)
822 			goto fail_put_pages;
823 
824 		remain -= page_length;
825 		user_data += page_length;
826 		offset += page_length;
827 	}
828 
829 fail_put_pages:
830 	i915_gem_object_put_pages(obj);
831 fail_unlock:
832 	mutex_unlock(&dev->struct_mutex);
833 
834 	return ret;
835 }
836 
837 /**
838  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
839  * the memory and maps it using kmap_atomic for copying.
840  *
841  * This avoids taking mmap_sem for faulting on the user's address while the
842  * struct_mutex is held.
843  */
844 static int
845 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
846 			   struct drm_i915_gem_pwrite *args,
847 			   struct drm_file *file_priv)
848 {
849 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
850 	struct mm_struct *mm = current->mm;
851 	struct page **user_pages;
852 	ssize_t remain;
853 	loff_t offset, pinned_pages, i;
854 	loff_t first_data_page, last_data_page, num_pages;
855 	int shmem_page_index, shmem_page_offset;
856 	int data_page_index,  data_page_offset;
857 	int page_length;
858 	int ret;
859 	uint64_t data_ptr = args->data_ptr;
860 	int do_bit17_swizzling;
861 
862 	remain = args->size;
863 
864 	/* Pin the user pages containing the data.  We can't fault while
865 	 * holding the struct mutex, and all of the pwrite implementations
866 	 * want to hold it while dereferencing the user data.
867 	 */
868 	first_data_page = data_ptr / PAGE_SIZE;
869 	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
870 	num_pages = last_data_page - first_data_page + 1;
871 
872 	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
873 	if (user_pages == NULL)
874 		return -ENOMEM;
875 
876 	down_read(&mm->mmap_sem);
877 	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
878 				      num_pages, 0, 0, user_pages, NULL);
879 	up_read(&mm->mmap_sem);
880 	if (pinned_pages < num_pages) {
881 		ret = -EFAULT;
882 		goto fail_put_user_pages;
883 	}
884 
885 	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
886 
887 	mutex_lock(&dev->struct_mutex);
888 
889 	ret = i915_gem_object_get_pages_or_evict(obj);
890 	if (ret)
891 		goto fail_unlock;
892 
893 	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
894 	if (ret != 0)
895 		goto fail_put_pages;
896 
897 	obj_priv = obj->driver_private;
898 	offset = args->offset;
899 	obj_priv->dirty = 1;
900 
901 	while (remain > 0) {
902 		/* Operation in this page
903 		 *
904 		 * shmem_page_index = page number within shmem file
905 		 * shmem_page_offset = offset within page in shmem file
906 		 * data_page_index = page number in get_user_pages return
907 		 * data_page_offset = offset with data_page_index page.
908 		 * page_length = bytes to copy for this page
909 		 */
910 		shmem_page_index = offset / PAGE_SIZE;
911 		shmem_page_offset = offset & ~PAGE_MASK;
912 		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
913 		data_page_offset = data_ptr & ~PAGE_MASK;
914 
915 		page_length = remain;
916 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
917 			page_length = PAGE_SIZE - shmem_page_offset;
918 		if ((data_page_offset + page_length) > PAGE_SIZE)
919 			page_length = PAGE_SIZE - data_page_offset;
920 
921 		if (do_bit17_swizzling) {
922 			ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
923 						    shmem_page_offset,
924 						    user_pages[data_page_index],
925 						    data_page_offset,
926 						    page_length,
927 						    0);
928 		} else {
929 			ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
930 					      shmem_page_offset,
931 					      user_pages[data_page_index],
932 					      data_page_offset,
933 					      page_length);
934 		}
935 		if (ret)
936 			goto fail_put_pages;
937 
938 		remain -= page_length;
939 		data_ptr += page_length;
940 		offset += page_length;
941 	}
942 
943 fail_put_pages:
944 	i915_gem_object_put_pages(obj);
945 fail_unlock:
946 	mutex_unlock(&dev->struct_mutex);
947 fail_put_user_pages:
948 	for (i = 0; i < pinned_pages; i++)
949 		page_cache_release(user_pages[i]);
950 	drm_free_large(user_pages);
951 
952 	return ret;
953 }
954 
955 /**
956  * Writes data to the object referenced by handle.
957  *
958  * On error, the contents of the buffer that were to be modified are undefined.
959  */
960 int
961 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
962 		      struct drm_file *file_priv)
963 {
964 	struct drm_i915_gem_pwrite *args = data;
965 	struct drm_gem_object *obj;
966 	struct drm_i915_gem_object *obj_priv;
967 	int ret = 0;
968 
969 	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
970 	if (obj == NULL)
971 		return -EBADF;
972 	obj_priv = obj->driver_private;
973 
974 	/* Bounds check destination.
975 	 *
976 	 * XXX: This could use review for overflow issues...
977 	 */
978 	if (args->offset > obj->size || args->size > obj->size ||
979 	    args->offset + args->size > obj->size) {
980 		drm_gem_object_unreference(obj);
981 		return -EINVAL;
982 	}
983 
984 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
985 	 * it would end up going through the fenced access, and we'll get
986 	 * different detiling behavior between reading and writing.
987 	 * pread/pwrite currently are reading and writing from the CPU
988 	 * perspective, requiring manual detiling by the client.
989 	 */
990 	if (obj_priv->phys_obj)
991 		ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
992 	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
993 		 dev->gtt_total != 0) {
994 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
995 		if (ret == -EFAULT) {
996 			ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
997 						       file_priv);
998 		}
999 	} else if (i915_gem_object_needs_bit17_swizzle(obj)) {
1000 		ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
1001 	} else {
1002 		ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
1003 		if (ret == -EFAULT) {
1004 			ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
1005 							 file_priv);
1006 		}
1007 	}
1008 
1009 #if WATCH_PWRITE
1010 	if (ret)
1011 		DRM_INFO("pwrite failed %d\n", ret);
1012 #endif
1013 
1014 	drm_gem_object_unreference(obj);
1015 
1016 	return ret;
1017 }
1018 
1019 /**
1020  * Called when user space prepares to use an object with the CPU, either
1021  * through the mmap ioctl's mapping or a GTT mapping.
1022  */
1023 int
1024 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1025 			  struct drm_file *file_priv)
1026 {
1027 	struct drm_i915_private *dev_priv = dev->dev_private;
1028 	struct drm_i915_gem_set_domain *args = data;
1029 	struct drm_gem_object *obj;
1030 	struct drm_i915_gem_object *obj_priv;
1031 	uint32_t read_domains = args->read_domains;
1032 	uint32_t write_domain = args->write_domain;
1033 	int ret;
1034 
1035 	if (!(dev->driver->driver_features & DRIVER_GEM))
1036 		return -ENODEV;
1037 
1038 	/* Only handle setting domains to types used by the CPU. */
1039 	if (write_domain & I915_GEM_GPU_DOMAINS)
1040 		return -EINVAL;
1041 
1042 	if (read_domains & I915_GEM_GPU_DOMAINS)
1043 		return -EINVAL;
1044 
1045 	/* Having something in the write domain implies it's in the read
1046 	 * domain, and only that read domain.  Enforce that in the request.
1047 	 */
1048 	if (write_domain != 0 && read_domains != write_domain)
1049 		return -EINVAL;
1050 
1051 	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1052 	if (obj == NULL)
1053 		return -EBADF;
1054 	obj_priv = obj->driver_private;
1055 
1056 	mutex_lock(&dev->struct_mutex);
1057 
1058 	intel_mark_busy(dev, obj);
1059 
1060 #if WATCH_BUF
1061 	DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1062 		 obj, obj->size, read_domains, write_domain);
1063 #endif
1064 	if (read_domains & I915_GEM_DOMAIN_GTT) {
1065 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1066 
1067 		/* Update the LRU on the fence for the CPU access that's
1068 		 * about to occur.
1069 		 */
1070 		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1071 			list_move_tail(&obj_priv->fence_list,
1072 				       &dev_priv->mm.fence_list);
1073 		}
1074 
1075 		/* Silently promote "you're not bound, there was nothing to do"
1076 		 * to success, since the client was just asking us to
1077 		 * make sure everything was done.
1078 		 */
1079 		if (ret == -EINVAL)
1080 			ret = 0;
1081 	} else {
1082 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1083 	}
1084 
1085 	drm_gem_object_unreference(obj);
1086 	mutex_unlock(&dev->struct_mutex);
1087 	return ret;
1088 }
1089 
1090 /**
1091  * Called when user space has done writes to this buffer
1092  */
1093 int
1094 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1095 		      struct drm_file *file_priv)
1096 {
1097 	struct drm_i915_gem_sw_finish *args = data;
1098 	struct drm_gem_object *obj;
1099 	struct drm_i915_gem_object *obj_priv;
1100 	int ret = 0;
1101 
1102 	if (!(dev->driver->driver_features & DRIVER_GEM))
1103 		return -ENODEV;
1104 
1105 	mutex_lock(&dev->struct_mutex);
1106 	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1107 	if (obj == NULL) {
1108 		mutex_unlock(&dev->struct_mutex);
1109 		return -EBADF;
1110 	}
1111 
1112 #if WATCH_BUF
1113 	DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1114 		 __func__, args->handle, obj, obj->size);
1115 #endif
1116 	obj_priv = obj->driver_private;
1117 
1118 	/* Pinned buffers may be scanout, so flush the cache */
1119 	if (obj_priv->pin_count)
1120 		i915_gem_object_flush_cpu_write_domain(obj);
1121 
1122 	drm_gem_object_unreference(obj);
1123 	mutex_unlock(&dev->struct_mutex);
1124 	return ret;
1125 }
1126 
1127 /**
1128  * Maps the contents of an object, returning the address it is mapped
1129  * into.
1130  *
1131  * While the mapping holds a reference on the contents of the object, it doesn't
1132  * imply a ref on the object itself.
1133  */
1134 int
1135 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1136 		   struct drm_file *file_priv)
1137 {
1138 	struct drm_i915_gem_mmap *args = data;
1139 	struct drm_gem_object *obj;
1140 	loff_t offset;
1141 	unsigned long addr;
1142 
1143 	if (!(dev->driver->driver_features & DRIVER_GEM))
1144 		return -ENODEV;
1145 
1146 	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1147 	if (obj == NULL)
1148 		return -EBADF;
1149 
1150 	offset = args->offset;
1151 
1152 	down_write(&current->mm->mmap_sem);
1153 	addr = do_mmap(obj->filp, 0, args->size,
1154 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1155 		       args->offset);
1156 	up_write(&current->mm->mmap_sem);
1157 	mutex_lock(&dev->struct_mutex);
1158 	drm_gem_object_unreference(obj);
1159 	mutex_unlock(&dev->struct_mutex);
1160 	if (IS_ERR((void *)addr))
1161 		return addr;
1162 
1163 	args->addr_ptr = (uint64_t) addr;
1164 
1165 	return 0;
1166 }
1167 
1168 /**
1169  * i915_gem_fault - fault a page into the GTT
1170  * vma: VMA in question
1171  * vmf: fault info
1172  *
1173  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1174  * from userspace.  The fault handler takes care of binding the object to
1175  * the GTT (if needed), allocating and programming a fence register (again,
1176  * only if needed based on whether the old reg is still valid or the object
1177  * is tiled) and inserting a new PTE into the faulting process.
1178  *
1179  * Note that the faulting process may involve evicting existing objects
1180  * from the GTT and/or fence registers to make room.  So performance may
1181  * suffer if the GTT working set is large or there are few fence registers
1182  * left.
1183  */
1184 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1185 {
1186 	struct drm_gem_object *obj = vma->vm_private_data;
1187 	struct drm_device *dev = obj->dev;
1188 	struct drm_i915_private *dev_priv = dev->dev_private;
1189 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1190 	pgoff_t page_offset;
1191 	unsigned long pfn;
1192 	int ret = 0;
1193 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1194 
1195 	/* We don't use vmf->pgoff since that has the fake offset */
1196 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1197 		PAGE_SHIFT;
1198 
1199 	/* Now bind it into the GTT if needed */
1200 	mutex_lock(&dev->struct_mutex);
1201 	if (!obj_priv->gtt_space) {
1202 		ret = i915_gem_object_bind_to_gtt(obj, 0);
1203 		if (ret)
1204 			goto unlock;
1205 
1206 		list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1207 
1208 		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1209 		if (ret)
1210 			goto unlock;
1211 	}
1212 
1213 	/* Need a new fence register? */
1214 	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1215 		ret = i915_gem_object_get_fence_reg(obj);
1216 		if (ret)
1217 			goto unlock;
1218 	}
1219 
1220 	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1221 		page_offset;
1222 
1223 	/* Finally, remap it using the new GTT offset */
1224 	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1225 unlock:
1226 	mutex_unlock(&dev->struct_mutex);
1227 
1228 	switch (ret) {
1229 	case 0:
1230 	case -ERESTARTSYS:
1231 		return VM_FAULT_NOPAGE;
1232 	case -ENOMEM:
1233 	case -EAGAIN:
1234 		return VM_FAULT_OOM;
1235 	default:
1236 		return VM_FAULT_SIGBUS;
1237 	}
1238 }
1239 
1240 /**
1241  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1242  * @obj: obj in question
1243  *
1244  * GEM memory mapping works by handing back to userspace a fake mmap offset
1245  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1246  * up the object based on the offset and sets up the various memory mapping
1247  * structures.
1248  *
1249  * This routine allocates and attaches a fake offset for @obj.
1250  */
1251 static int
1252 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1253 {
1254 	struct drm_device *dev = obj->dev;
1255 	struct drm_gem_mm *mm = dev->mm_private;
1256 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1257 	struct drm_map_list *list;
1258 	struct drm_local_map *map;
1259 	int ret = 0;
1260 
1261 	/* Set the object up for mmap'ing */
1262 	list = &obj->map_list;
1263 	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1264 	if (!list->map)
1265 		return -ENOMEM;
1266 
1267 	map = list->map;
1268 	map->type = _DRM_GEM;
1269 	map->size = obj->size;
1270 	map->handle = obj;
1271 
1272 	/* Get a DRM GEM mmap offset allocated... */
1273 	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1274 						    obj->size / PAGE_SIZE, 0, 0);
1275 	if (!list->file_offset_node) {
1276 		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1277 		ret = -ENOMEM;
1278 		goto out_free_list;
1279 	}
1280 
1281 	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1282 						  obj->size / PAGE_SIZE, 0);
1283 	if (!list->file_offset_node) {
1284 		ret = -ENOMEM;
1285 		goto out_free_list;
1286 	}
1287 
1288 	list->hash.key = list->file_offset_node->start;
1289 	if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1290 		DRM_ERROR("failed to add to map hash\n");
1291 		ret = -ENOMEM;
1292 		goto out_free_mm;
1293 	}
1294 
1295 	/* By now we should be all set, any drm_mmap request on the offset
1296 	 * below will get to our mmap & fault handler */
1297 	obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1298 
1299 	return 0;
1300 
1301 out_free_mm:
1302 	drm_mm_put_block(list->file_offset_node);
1303 out_free_list:
1304 	kfree(list->map);
1305 
1306 	return ret;
1307 }
1308 
1309 /**
1310  * i915_gem_release_mmap - remove physical page mappings
1311  * @obj: obj in question
1312  *
1313  * Preserve the reservation of the mmapping with the DRM core code, but
1314  * relinquish ownership of the pages back to the system.
1315  *
1316  * It is vital that we remove the page mapping if we have mapped a tiled
1317  * object through the GTT and then lose the fence register due to
1318  * resource pressure. Similarly if the object has been moved out of the
1319  * aperture, than pages mapped into userspace must be revoked. Removing the
1320  * mapping will then trigger a page fault on the next user access, allowing
1321  * fixup by i915_gem_fault().
1322  */
1323 void
1324 i915_gem_release_mmap(struct drm_gem_object *obj)
1325 {
1326 	struct drm_device *dev = obj->dev;
1327 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1328 
1329 	if (dev->dev_mapping)
1330 		unmap_mapping_range(dev->dev_mapping,
1331 				    obj_priv->mmap_offset, obj->size, 1);
1332 }
1333 
1334 static void
1335 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1336 {
1337 	struct drm_device *dev = obj->dev;
1338 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1339 	struct drm_gem_mm *mm = dev->mm_private;
1340 	struct drm_map_list *list;
1341 
1342 	list = &obj->map_list;
1343 	drm_ht_remove_item(&mm->offset_hash, &list->hash);
1344 
1345 	if (list->file_offset_node) {
1346 		drm_mm_put_block(list->file_offset_node);
1347 		list->file_offset_node = NULL;
1348 	}
1349 
1350 	if (list->map) {
1351 		kfree(list->map);
1352 		list->map = NULL;
1353 	}
1354 
1355 	obj_priv->mmap_offset = 0;
1356 }
1357 
1358 /**
1359  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1360  * @obj: object to check
1361  *
1362  * Return the required GTT alignment for an object, taking into account
1363  * potential fence register mapping if needed.
1364  */
1365 static uint32_t
1366 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1367 {
1368 	struct drm_device *dev = obj->dev;
1369 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1370 	int start, i;
1371 
1372 	/*
1373 	 * Minimum alignment is 4k (GTT page size), but might be greater
1374 	 * if a fence register is needed for the object.
1375 	 */
1376 	if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1377 		return 4096;
1378 
1379 	/*
1380 	 * Previous chips need to be aligned to the size of the smallest
1381 	 * fence register that can contain the object.
1382 	 */
1383 	if (IS_I9XX(dev))
1384 		start = 1024*1024;
1385 	else
1386 		start = 512*1024;
1387 
1388 	for (i = start; i < obj->size; i <<= 1)
1389 		;
1390 
1391 	return i;
1392 }
1393 
1394 /**
1395  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1396  * @dev: DRM device
1397  * @data: GTT mapping ioctl data
1398  * @file_priv: GEM object info
1399  *
1400  * Simply returns the fake offset to userspace so it can mmap it.
1401  * The mmap call will end up in drm_gem_mmap(), which will set things
1402  * up so we can get faults in the handler above.
1403  *
1404  * The fault handler will take care of binding the object into the GTT
1405  * (since it may have been evicted to make room for something), allocating
1406  * a fence register, and mapping the appropriate aperture address into
1407  * userspace.
1408  */
1409 int
1410 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1411 			struct drm_file *file_priv)
1412 {
1413 	struct drm_i915_gem_mmap_gtt *args = data;
1414 	struct drm_i915_private *dev_priv = dev->dev_private;
1415 	struct drm_gem_object *obj;
1416 	struct drm_i915_gem_object *obj_priv;
1417 	int ret;
1418 
1419 	if (!(dev->driver->driver_features & DRIVER_GEM))
1420 		return -ENODEV;
1421 
1422 	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1423 	if (obj == NULL)
1424 		return -EBADF;
1425 
1426 	mutex_lock(&dev->struct_mutex);
1427 
1428 	obj_priv = obj->driver_private;
1429 
1430 	if (obj_priv->madv != I915_MADV_WILLNEED) {
1431 		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1432 		drm_gem_object_unreference(obj);
1433 		mutex_unlock(&dev->struct_mutex);
1434 		return -EINVAL;
1435 	}
1436 
1437 
1438 	if (!obj_priv->mmap_offset) {
1439 		ret = i915_gem_create_mmap_offset(obj);
1440 		if (ret) {
1441 			drm_gem_object_unreference(obj);
1442 			mutex_unlock(&dev->struct_mutex);
1443 			return ret;
1444 		}
1445 	}
1446 
1447 	args->offset = obj_priv->mmap_offset;
1448 
1449 	/*
1450 	 * Pull it into the GTT so that we have a page list (makes the
1451 	 * initial fault faster and any subsequent flushing possible).
1452 	 */
1453 	if (!obj_priv->agp_mem) {
1454 		ret = i915_gem_object_bind_to_gtt(obj, 0);
1455 		if (ret) {
1456 			drm_gem_object_unreference(obj);
1457 			mutex_unlock(&dev->struct_mutex);
1458 			return ret;
1459 		}
1460 		list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1461 	}
1462 
1463 	drm_gem_object_unreference(obj);
1464 	mutex_unlock(&dev->struct_mutex);
1465 
1466 	return 0;
1467 }
1468 
1469 void
1470 i915_gem_object_put_pages(struct drm_gem_object *obj)
1471 {
1472 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1473 	int page_count = obj->size / PAGE_SIZE;
1474 	int i;
1475 
1476 	BUG_ON(obj_priv->pages_refcount == 0);
1477 	BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1478 
1479 	if (--obj_priv->pages_refcount != 0)
1480 		return;
1481 
1482 	if (obj_priv->tiling_mode != I915_TILING_NONE)
1483 		i915_gem_object_save_bit_17_swizzle(obj);
1484 
1485 	if (obj_priv->madv == I915_MADV_DONTNEED)
1486 		obj_priv->dirty = 0;
1487 
1488 	for (i = 0; i < page_count; i++) {
1489 		if (obj_priv->pages[i] == NULL)
1490 			break;
1491 
1492 		if (obj_priv->dirty)
1493 			set_page_dirty(obj_priv->pages[i]);
1494 
1495 		if (obj_priv->madv == I915_MADV_WILLNEED)
1496 			mark_page_accessed(obj_priv->pages[i]);
1497 
1498 		page_cache_release(obj_priv->pages[i]);
1499 	}
1500 	obj_priv->dirty = 0;
1501 
1502 	drm_free_large(obj_priv->pages);
1503 	obj_priv->pages = NULL;
1504 }
1505 
1506 static void
1507 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1508 {
1509 	struct drm_device *dev = obj->dev;
1510 	drm_i915_private_t *dev_priv = dev->dev_private;
1511 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1512 
1513 	/* Add a reference if we're newly entering the active list. */
1514 	if (!obj_priv->active) {
1515 		drm_gem_object_reference(obj);
1516 		obj_priv->active = 1;
1517 	}
1518 	/* Move from whatever list we were on to the tail of execution. */
1519 	spin_lock(&dev_priv->mm.active_list_lock);
1520 	list_move_tail(&obj_priv->list,
1521 		       &dev_priv->mm.active_list);
1522 	spin_unlock(&dev_priv->mm.active_list_lock);
1523 	obj_priv->last_rendering_seqno = seqno;
1524 }
1525 
1526 static void
1527 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1528 {
1529 	struct drm_device *dev = obj->dev;
1530 	drm_i915_private_t *dev_priv = dev->dev_private;
1531 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1532 
1533 	BUG_ON(!obj_priv->active);
1534 	list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1535 	obj_priv->last_rendering_seqno = 0;
1536 }
1537 
1538 /* Immediately discard the backing storage */
1539 static void
1540 i915_gem_object_truncate(struct drm_gem_object *obj)
1541 {
1542 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1543 	struct inode *inode;
1544 
1545 	inode = obj->filp->f_path.dentry->d_inode;
1546 	if (inode->i_op->truncate)
1547 		inode->i_op->truncate (inode);
1548 
1549 	obj_priv->madv = __I915_MADV_PURGED;
1550 }
1551 
1552 static inline int
1553 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1554 {
1555 	return obj_priv->madv == I915_MADV_DONTNEED;
1556 }
1557 
1558 static void
1559 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1560 {
1561 	struct drm_device *dev = obj->dev;
1562 	drm_i915_private_t *dev_priv = dev->dev_private;
1563 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1564 
1565 	i915_verify_inactive(dev, __FILE__, __LINE__);
1566 	if (obj_priv->pin_count != 0)
1567 		list_del_init(&obj_priv->list);
1568 	else
1569 		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1570 
1571 	obj_priv->last_rendering_seqno = 0;
1572 	if (obj_priv->active) {
1573 		obj_priv->active = 0;
1574 		drm_gem_object_unreference(obj);
1575 	}
1576 	i915_verify_inactive(dev, __FILE__, __LINE__);
1577 }
1578 
1579 /**
1580  * Creates a new sequence number, emitting a write of it to the status page
1581  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1582  *
1583  * Must be called with struct_lock held.
1584  *
1585  * Returned sequence numbers are nonzero on success.
1586  */
1587 uint32_t
1588 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1589 		 uint32_t flush_domains)
1590 {
1591 	drm_i915_private_t *dev_priv = dev->dev_private;
1592 	struct drm_i915_file_private *i915_file_priv = NULL;
1593 	struct drm_i915_gem_request *request;
1594 	uint32_t seqno;
1595 	int was_empty;
1596 	RING_LOCALS;
1597 
1598 	if (file_priv != NULL)
1599 		i915_file_priv = file_priv->driver_priv;
1600 
1601 	request = kzalloc(sizeof(*request), GFP_KERNEL);
1602 	if (request == NULL)
1603 		return 0;
1604 
1605 	/* Grab the seqno we're going to make this request be, and bump the
1606 	 * next (skipping 0 so it can be the reserved no-seqno value).
1607 	 */
1608 	seqno = dev_priv->mm.next_gem_seqno;
1609 	dev_priv->mm.next_gem_seqno++;
1610 	if (dev_priv->mm.next_gem_seqno == 0)
1611 		dev_priv->mm.next_gem_seqno++;
1612 
1613 	BEGIN_LP_RING(4);
1614 	OUT_RING(MI_STORE_DWORD_INDEX);
1615 	OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1616 	OUT_RING(seqno);
1617 
1618 	OUT_RING(MI_USER_INTERRUPT);
1619 	ADVANCE_LP_RING();
1620 
1621 	DRM_DEBUG_DRIVER("%d\n", seqno);
1622 
1623 	request->seqno = seqno;
1624 	request->emitted_jiffies = jiffies;
1625 	was_empty = list_empty(&dev_priv->mm.request_list);
1626 	list_add_tail(&request->list, &dev_priv->mm.request_list);
1627 	if (i915_file_priv) {
1628 		list_add_tail(&request->client_list,
1629 			      &i915_file_priv->mm.request_list);
1630 	} else {
1631 		INIT_LIST_HEAD(&request->client_list);
1632 	}
1633 
1634 	/* Associate any objects on the flushing list matching the write
1635 	 * domain we're flushing with our flush.
1636 	 */
1637 	if (flush_domains != 0) {
1638 		struct drm_i915_gem_object *obj_priv, *next;
1639 
1640 		list_for_each_entry_safe(obj_priv, next,
1641 					 &dev_priv->mm.flushing_list, list) {
1642 			struct drm_gem_object *obj = obj_priv->obj;
1643 
1644 			if ((obj->write_domain & flush_domains) ==
1645 			    obj->write_domain) {
1646 				uint32_t old_write_domain = obj->write_domain;
1647 
1648 				obj->write_domain = 0;
1649 				i915_gem_object_move_to_active(obj, seqno);
1650 
1651 				trace_i915_gem_object_change_domain(obj,
1652 								    obj->read_domains,
1653 								    old_write_domain);
1654 			}
1655 		}
1656 
1657 	}
1658 
1659 	if (!dev_priv->mm.suspended) {
1660 		mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1661 		if (was_empty)
1662 			queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1663 	}
1664 	return seqno;
1665 }
1666 
1667 /**
1668  * Command execution barrier
1669  *
1670  * Ensures that all commands in the ring are finished
1671  * before signalling the CPU
1672  */
1673 static uint32_t
1674 i915_retire_commands(struct drm_device *dev)
1675 {
1676 	drm_i915_private_t *dev_priv = dev->dev_private;
1677 	uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1678 	uint32_t flush_domains = 0;
1679 	RING_LOCALS;
1680 
1681 	/* The sampler always gets flushed on i965 (sigh) */
1682 	if (IS_I965G(dev))
1683 		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1684 	BEGIN_LP_RING(2);
1685 	OUT_RING(cmd);
1686 	OUT_RING(0); /* noop */
1687 	ADVANCE_LP_RING();
1688 	return flush_domains;
1689 }
1690 
1691 /**
1692  * Moves buffers associated only with the given active seqno from the active
1693  * to inactive list, potentially freeing them.
1694  */
1695 static void
1696 i915_gem_retire_request(struct drm_device *dev,
1697 			struct drm_i915_gem_request *request)
1698 {
1699 	drm_i915_private_t *dev_priv = dev->dev_private;
1700 
1701 	trace_i915_gem_request_retire(dev, request->seqno);
1702 
1703 	/* Move any buffers on the active list that are no longer referenced
1704 	 * by the ringbuffer to the flushing/inactive lists as appropriate.
1705 	 */
1706 	spin_lock(&dev_priv->mm.active_list_lock);
1707 	while (!list_empty(&dev_priv->mm.active_list)) {
1708 		struct drm_gem_object *obj;
1709 		struct drm_i915_gem_object *obj_priv;
1710 
1711 		obj_priv = list_first_entry(&dev_priv->mm.active_list,
1712 					    struct drm_i915_gem_object,
1713 					    list);
1714 		obj = obj_priv->obj;
1715 
1716 		/* If the seqno being retired doesn't match the oldest in the
1717 		 * list, then the oldest in the list must still be newer than
1718 		 * this seqno.
1719 		 */
1720 		if (obj_priv->last_rendering_seqno != request->seqno)
1721 			goto out;
1722 
1723 #if WATCH_LRU
1724 		DRM_INFO("%s: retire %d moves to inactive list %p\n",
1725 			 __func__, request->seqno, obj);
1726 #endif
1727 
1728 		if (obj->write_domain != 0)
1729 			i915_gem_object_move_to_flushing(obj);
1730 		else {
1731 			/* Take a reference on the object so it won't be
1732 			 * freed while the spinlock is held.  The list
1733 			 * protection for this spinlock is safe when breaking
1734 			 * the lock like this since the next thing we do
1735 			 * is just get the head of the list again.
1736 			 */
1737 			drm_gem_object_reference(obj);
1738 			i915_gem_object_move_to_inactive(obj);
1739 			spin_unlock(&dev_priv->mm.active_list_lock);
1740 			drm_gem_object_unreference(obj);
1741 			spin_lock(&dev_priv->mm.active_list_lock);
1742 		}
1743 	}
1744 out:
1745 	spin_unlock(&dev_priv->mm.active_list_lock);
1746 }
1747 
1748 /**
1749  * Returns true if seq1 is later than seq2.
1750  */
1751 bool
1752 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1753 {
1754 	return (int32_t)(seq1 - seq2) >= 0;
1755 }
1756 
1757 uint32_t
1758 i915_get_gem_seqno(struct drm_device *dev)
1759 {
1760 	drm_i915_private_t *dev_priv = dev->dev_private;
1761 
1762 	return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1763 }
1764 
1765 /**
1766  * This function clears the request list as sequence numbers are passed.
1767  */
1768 void
1769 i915_gem_retire_requests(struct drm_device *dev)
1770 {
1771 	drm_i915_private_t *dev_priv = dev->dev_private;
1772 	uint32_t seqno;
1773 
1774 	if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
1775 		return;
1776 
1777 	seqno = i915_get_gem_seqno(dev);
1778 
1779 	while (!list_empty(&dev_priv->mm.request_list)) {
1780 		struct drm_i915_gem_request *request;
1781 		uint32_t retiring_seqno;
1782 
1783 		request = list_first_entry(&dev_priv->mm.request_list,
1784 					   struct drm_i915_gem_request,
1785 					   list);
1786 		retiring_seqno = request->seqno;
1787 
1788 		if (i915_seqno_passed(seqno, retiring_seqno) ||
1789 		    atomic_read(&dev_priv->mm.wedged)) {
1790 			i915_gem_retire_request(dev, request);
1791 
1792 			list_del(&request->list);
1793 			list_del(&request->client_list);
1794 			kfree(request);
1795 		} else
1796 			break;
1797 	}
1798 
1799 	if (unlikely (dev_priv->trace_irq_seqno &&
1800 		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1801 		i915_user_irq_put(dev);
1802 		dev_priv->trace_irq_seqno = 0;
1803 	}
1804 }
1805 
1806 void
1807 i915_gem_retire_work_handler(struct work_struct *work)
1808 {
1809 	drm_i915_private_t *dev_priv;
1810 	struct drm_device *dev;
1811 
1812 	dev_priv = container_of(work, drm_i915_private_t,
1813 				mm.retire_work.work);
1814 	dev = dev_priv->dev;
1815 
1816 	mutex_lock(&dev->struct_mutex);
1817 	i915_gem_retire_requests(dev);
1818 	if (!dev_priv->mm.suspended &&
1819 	    !list_empty(&dev_priv->mm.request_list))
1820 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1821 	mutex_unlock(&dev->struct_mutex);
1822 }
1823 
1824 int
1825 i915_do_wait_request(struct drm_device *dev, uint32_t seqno, int interruptible)
1826 {
1827 	drm_i915_private_t *dev_priv = dev->dev_private;
1828 	u32 ier;
1829 	int ret = 0;
1830 
1831 	BUG_ON(seqno == 0);
1832 
1833 	if (atomic_read(&dev_priv->mm.wedged))
1834 		return -EIO;
1835 
1836 	if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1837 		if (IS_IRONLAKE(dev))
1838 			ier = I915_READ(DEIER) | I915_READ(GTIER);
1839 		else
1840 			ier = I915_READ(IER);
1841 		if (!ier) {
1842 			DRM_ERROR("something (likely vbetool) disabled "
1843 				  "interrupts, re-enabling\n");
1844 			i915_driver_irq_preinstall(dev);
1845 			i915_driver_irq_postinstall(dev);
1846 		}
1847 
1848 		trace_i915_gem_request_wait_begin(dev, seqno);
1849 
1850 		dev_priv->mm.waiting_gem_seqno = seqno;
1851 		i915_user_irq_get(dev);
1852 		if (interruptible)
1853 			ret = wait_event_interruptible(dev_priv->irq_queue,
1854 				i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1855 				atomic_read(&dev_priv->mm.wedged));
1856 		else
1857 			wait_event(dev_priv->irq_queue,
1858 				i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1859 				atomic_read(&dev_priv->mm.wedged));
1860 
1861 		i915_user_irq_put(dev);
1862 		dev_priv->mm.waiting_gem_seqno = 0;
1863 
1864 		trace_i915_gem_request_wait_end(dev, seqno);
1865 	}
1866 	if (atomic_read(&dev_priv->mm.wedged))
1867 		ret = -EIO;
1868 
1869 	if (ret && ret != -ERESTARTSYS)
1870 		DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1871 			  __func__, ret, seqno, i915_get_gem_seqno(dev));
1872 
1873 	/* Directly dispatch request retiring.  While we have the work queue
1874 	 * to handle this, the waiter on a request often wants an associated
1875 	 * buffer to have made it to the inactive list, and we would need
1876 	 * a separate wait queue to handle that.
1877 	 */
1878 	if (ret == 0)
1879 		i915_gem_retire_requests(dev);
1880 
1881 	return ret;
1882 }
1883 
1884 /**
1885  * Waits for a sequence number to be signaled, and cleans up the
1886  * request and object lists appropriately for that event.
1887  */
1888 static int
1889 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1890 {
1891 	return i915_do_wait_request(dev, seqno, 1);
1892 }
1893 
1894 static void
1895 i915_gem_flush(struct drm_device *dev,
1896 	       uint32_t invalidate_domains,
1897 	       uint32_t flush_domains)
1898 {
1899 	drm_i915_private_t *dev_priv = dev->dev_private;
1900 	uint32_t cmd;
1901 	RING_LOCALS;
1902 
1903 #if WATCH_EXEC
1904 	DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1905 		  invalidate_domains, flush_domains);
1906 #endif
1907 	trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
1908 				     invalidate_domains, flush_domains);
1909 
1910 	if (flush_domains & I915_GEM_DOMAIN_CPU)
1911 		drm_agp_chipset_flush(dev);
1912 
1913 	if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1914 		/*
1915 		 * read/write caches:
1916 		 *
1917 		 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1918 		 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1919 		 * also flushed at 2d versus 3d pipeline switches.
1920 		 *
1921 		 * read-only caches:
1922 		 *
1923 		 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1924 		 * MI_READ_FLUSH is set, and is always flushed on 965.
1925 		 *
1926 		 * I915_GEM_DOMAIN_COMMAND may not exist?
1927 		 *
1928 		 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1929 		 * invalidated when MI_EXE_FLUSH is set.
1930 		 *
1931 		 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1932 		 * invalidated with every MI_FLUSH.
1933 		 *
1934 		 * TLBs:
1935 		 *
1936 		 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1937 		 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1938 		 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1939 		 * are flushed at any MI_FLUSH.
1940 		 */
1941 
1942 		cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1943 		if ((invalidate_domains|flush_domains) &
1944 		    I915_GEM_DOMAIN_RENDER)
1945 			cmd &= ~MI_NO_WRITE_FLUSH;
1946 		if (!IS_I965G(dev)) {
1947 			/*
1948 			 * On the 965, the sampler cache always gets flushed
1949 			 * and this bit is reserved.
1950 			 */
1951 			if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1952 				cmd |= MI_READ_FLUSH;
1953 		}
1954 		if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1955 			cmd |= MI_EXE_FLUSH;
1956 
1957 #if WATCH_EXEC
1958 		DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1959 #endif
1960 		BEGIN_LP_RING(2);
1961 		OUT_RING(cmd);
1962 		OUT_RING(MI_NOOP);
1963 		ADVANCE_LP_RING();
1964 	}
1965 }
1966 
1967 /**
1968  * Ensures that all rendering to the object has completed and the object is
1969  * safe to unbind from the GTT or access from the CPU.
1970  */
1971 static int
1972 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1973 {
1974 	struct drm_device *dev = obj->dev;
1975 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
1976 	int ret;
1977 
1978 	/* This function only exists to support waiting for existing rendering,
1979 	 * not for emitting required flushes.
1980 	 */
1981 	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1982 
1983 	/* If there is rendering queued on the buffer being evicted, wait for
1984 	 * it.
1985 	 */
1986 	if (obj_priv->active) {
1987 #if WATCH_BUF
1988 		DRM_INFO("%s: object %p wait for seqno %08x\n",
1989 			  __func__, obj, obj_priv->last_rendering_seqno);
1990 #endif
1991 		ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1992 		if (ret != 0)
1993 			return ret;
1994 	}
1995 
1996 	return 0;
1997 }
1998 
1999 /**
2000  * Unbinds an object from the GTT aperture.
2001  */
2002 int
2003 i915_gem_object_unbind(struct drm_gem_object *obj)
2004 {
2005 	struct drm_device *dev = obj->dev;
2006 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
2007 	int ret = 0;
2008 
2009 #if WATCH_BUF
2010 	DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
2011 	DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
2012 #endif
2013 	if (obj_priv->gtt_space == NULL)
2014 		return 0;
2015 
2016 	if (obj_priv->pin_count != 0) {
2017 		DRM_ERROR("Attempting to unbind pinned buffer\n");
2018 		return -EINVAL;
2019 	}
2020 
2021 	/* blow away mappings if mapped through GTT */
2022 	i915_gem_release_mmap(obj);
2023 
2024 	/* Move the object to the CPU domain to ensure that
2025 	 * any possible CPU writes while it's not in the GTT
2026 	 * are flushed when we go to remap it. This will
2027 	 * also ensure that all pending GPU writes are finished
2028 	 * before we unbind.
2029 	 */
2030 	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2031 	if (ret) {
2032 		if (ret != -ERESTARTSYS)
2033 			DRM_ERROR("set_domain failed: %d\n", ret);
2034 		return ret;
2035 	}
2036 
2037 	BUG_ON(obj_priv->active);
2038 
2039 	/* release the fence reg _after_ flushing */
2040 	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2041 		i915_gem_clear_fence_reg(obj);
2042 
2043 	if (obj_priv->agp_mem != NULL) {
2044 		drm_unbind_agp(obj_priv->agp_mem);
2045 		drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2046 		obj_priv->agp_mem = NULL;
2047 	}
2048 
2049 	i915_gem_object_put_pages(obj);
2050 	BUG_ON(obj_priv->pages_refcount);
2051 
2052 	if (obj_priv->gtt_space) {
2053 		atomic_dec(&dev->gtt_count);
2054 		atomic_sub(obj->size, &dev->gtt_memory);
2055 
2056 		drm_mm_put_block(obj_priv->gtt_space);
2057 		obj_priv->gtt_space = NULL;
2058 	}
2059 
2060 	/* Remove ourselves from the LRU list if present. */
2061 	if (!list_empty(&obj_priv->list))
2062 		list_del_init(&obj_priv->list);
2063 
2064 	if (i915_gem_object_is_purgeable(obj_priv))
2065 		i915_gem_object_truncate(obj);
2066 
2067 	trace_i915_gem_object_unbind(obj);
2068 
2069 	return 0;
2070 }
2071 
2072 static struct drm_gem_object *
2073 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2074 {
2075 	drm_i915_private_t *dev_priv = dev->dev_private;
2076 	struct drm_i915_gem_object *obj_priv;
2077 	struct drm_gem_object *best = NULL;
2078 	struct drm_gem_object *first = NULL;
2079 
2080 	/* Try to find the smallest clean object */
2081 	list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2082 		struct drm_gem_object *obj = obj_priv->obj;
2083 		if (obj->size >= min_size) {
2084 			if ((!obj_priv->dirty ||
2085 			     i915_gem_object_is_purgeable(obj_priv)) &&
2086 			    (!best || obj->size < best->size)) {
2087 				best = obj;
2088 				if (best->size == min_size)
2089 					return best;
2090 			}
2091 			if (!first)
2092 			    first = obj;
2093 		}
2094 	}
2095 
2096 	return best ? best : first;
2097 }
2098 
2099 static int
2100 i915_gem_evict_everything(struct drm_device *dev)
2101 {
2102 	drm_i915_private_t *dev_priv = dev->dev_private;
2103 	uint32_t seqno;
2104 	int ret;
2105 	bool lists_empty;
2106 
2107 	spin_lock(&dev_priv->mm.active_list_lock);
2108 	lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2109 		       list_empty(&dev_priv->mm.flushing_list) &&
2110 		       list_empty(&dev_priv->mm.active_list));
2111 	spin_unlock(&dev_priv->mm.active_list_lock);
2112 
2113 	if (lists_empty)
2114 		return -ENOSPC;
2115 
2116 	/* Flush everything (on to the inactive lists) and evict */
2117 	i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2118 	seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2119 	if (seqno == 0)
2120 		return -ENOMEM;
2121 
2122 	ret = i915_wait_request(dev, seqno);
2123 	if (ret)
2124 		return ret;
2125 
2126 	ret = i915_gem_evict_from_inactive_list(dev);
2127 	if (ret)
2128 		return ret;
2129 
2130 	spin_lock(&dev_priv->mm.active_list_lock);
2131 	lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2132 		       list_empty(&dev_priv->mm.flushing_list) &&
2133 		       list_empty(&dev_priv->mm.active_list));
2134 	spin_unlock(&dev_priv->mm.active_list_lock);
2135 	BUG_ON(!lists_empty);
2136 
2137 	return 0;
2138 }
2139 
2140 static int
2141 i915_gem_evict_something(struct drm_device *dev, int min_size)
2142 {
2143 	drm_i915_private_t *dev_priv = dev->dev_private;
2144 	struct drm_gem_object *obj;
2145 	int ret;
2146 
2147 	for (;;) {
2148 		i915_gem_retire_requests(dev);
2149 
2150 		/* If there's an inactive buffer available now, grab it
2151 		 * and be done.
2152 		 */
2153 		obj = i915_gem_find_inactive_object(dev, min_size);
2154 		if (obj) {
2155 			struct drm_i915_gem_object *obj_priv;
2156 
2157 #if WATCH_LRU
2158 			DRM_INFO("%s: evicting %p\n", __func__, obj);
2159 #endif
2160 			obj_priv = obj->driver_private;
2161 			BUG_ON(obj_priv->pin_count != 0);
2162 			BUG_ON(obj_priv->active);
2163 
2164 			/* Wait on the rendering and unbind the buffer. */
2165 			return i915_gem_object_unbind(obj);
2166 		}
2167 
2168 		/* If we didn't get anything, but the ring is still processing
2169 		 * things, wait for the next to finish and hopefully leave us
2170 		 * a buffer to evict.
2171 		 */
2172 		if (!list_empty(&dev_priv->mm.request_list)) {
2173 			struct drm_i915_gem_request *request;
2174 
2175 			request = list_first_entry(&dev_priv->mm.request_list,
2176 						   struct drm_i915_gem_request,
2177 						   list);
2178 
2179 			ret = i915_wait_request(dev, request->seqno);
2180 			if (ret)
2181 				return ret;
2182 
2183 			continue;
2184 		}
2185 
2186 		/* If we didn't have anything on the request list but there
2187 		 * are buffers awaiting a flush, emit one and try again.
2188 		 * When we wait on it, those buffers waiting for that flush
2189 		 * will get moved to inactive.
2190 		 */
2191 		if (!list_empty(&dev_priv->mm.flushing_list)) {
2192 			struct drm_i915_gem_object *obj_priv;
2193 
2194 			/* Find an object that we can immediately reuse */
2195 			list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2196 				obj = obj_priv->obj;
2197 				if (obj->size >= min_size)
2198 					break;
2199 
2200 				obj = NULL;
2201 			}
2202 
2203 			if (obj != NULL) {
2204 				uint32_t seqno;
2205 
2206 				i915_gem_flush(dev,
2207 					       obj->write_domain,
2208 					       obj->write_domain);
2209 				seqno = i915_add_request(dev, NULL, obj->write_domain);
2210 				if (seqno == 0)
2211 					return -ENOMEM;
2212 
2213 				ret = i915_wait_request(dev, seqno);
2214 				if (ret)
2215 					return ret;
2216 
2217 				continue;
2218 			}
2219 		}
2220 
2221 		/* If we didn't do any of the above, there's no single buffer
2222 		 * large enough to swap out for the new one, so just evict
2223 		 * everything and start again. (This should be rare.)
2224 		 */
2225 		if (!list_empty (&dev_priv->mm.inactive_list))
2226 			return i915_gem_evict_from_inactive_list(dev);
2227 		else
2228 			return i915_gem_evict_everything(dev);
2229 	}
2230 }
2231 
2232 int
2233 i915_gem_object_get_pages(struct drm_gem_object *obj)
2234 {
2235 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
2236 	int page_count, i;
2237 	struct address_space *mapping;
2238 	struct inode *inode;
2239 	struct page *page;
2240 	int ret;
2241 
2242 	if (obj_priv->pages_refcount++ != 0)
2243 		return 0;
2244 
2245 	/* Get the list of pages out of our struct file.  They'll be pinned
2246 	 * at this point until we release them.
2247 	 */
2248 	page_count = obj->size / PAGE_SIZE;
2249 	BUG_ON(obj_priv->pages != NULL);
2250 	obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2251 	if (obj_priv->pages == NULL) {
2252 		obj_priv->pages_refcount--;
2253 		return -ENOMEM;
2254 	}
2255 
2256 	inode = obj->filp->f_path.dentry->d_inode;
2257 	mapping = inode->i_mapping;
2258 	for (i = 0; i < page_count; i++) {
2259 		page = read_mapping_page(mapping, i, NULL);
2260 		if (IS_ERR(page)) {
2261 			ret = PTR_ERR(page);
2262 			i915_gem_object_put_pages(obj);
2263 			return ret;
2264 		}
2265 		obj_priv->pages[i] = page;
2266 	}
2267 
2268 	if (obj_priv->tiling_mode != I915_TILING_NONE)
2269 		i915_gem_object_do_bit_17_swizzle(obj);
2270 
2271 	return 0;
2272 }
2273 
2274 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2275 {
2276 	struct drm_gem_object *obj = reg->obj;
2277 	struct drm_device *dev = obj->dev;
2278 	drm_i915_private_t *dev_priv = dev->dev_private;
2279 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
2280 	int regnum = obj_priv->fence_reg;
2281 	uint64_t val;
2282 
2283 	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2284 		    0xfffff000) << 32;
2285 	val |= obj_priv->gtt_offset & 0xfffff000;
2286 	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2287 	if (obj_priv->tiling_mode == I915_TILING_Y)
2288 		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2289 	val |= I965_FENCE_REG_VALID;
2290 
2291 	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2292 }
2293 
2294 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2295 {
2296 	struct drm_gem_object *obj = reg->obj;
2297 	struct drm_device *dev = obj->dev;
2298 	drm_i915_private_t *dev_priv = dev->dev_private;
2299 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
2300 	int regnum = obj_priv->fence_reg;
2301 	int tile_width;
2302 	uint32_t fence_reg, val;
2303 	uint32_t pitch_val;
2304 
2305 	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2306 	    (obj_priv->gtt_offset & (obj->size - 1))) {
2307 		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2308 		     __func__, obj_priv->gtt_offset, obj->size);
2309 		return;
2310 	}
2311 
2312 	if (obj_priv->tiling_mode == I915_TILING_Y &&
2313 	    HAS_128_BYTE_Y_TILING(dev))
2314 		tile_width = 128;
2315 	else
2316 		tile_width = 512;
2317 
2318 	/* Note: pitch better be a power of two tile widths */
2319 	pitch_val = obj_priv->stride / tile_width;
2320 	pitch_val = ffs(pitch_val) - 1;
2321 
2322 	val = obj_priv->gtt_offset;
2323 	if (obj_priv->tiling_mode == I915_TILING_Y)
2324 		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2325 	val |= I915_FENCE_SIZE_BITS(obj->size);
2326 	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2327 	val |= I830_FENCE_REG_VALID;
2328 
2329 	if (regnum < 8)
2330 		fence_reg = FENCE_REG_830_0 + (regnum * 4);
2331 	else
2332 		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2333 	I915_WRITE(fence_reg, val);
2334 }
2335 
2336 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2337 {
2338 	struct drm_gem_object *obj = reg->obj;
2339 	struct drm_device *dev = obj->dev;
2340 	drm_i915_private_t *dev_priv = dev->dev_private;
2341 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
2342 	int regnum = obj_priv->fence_reg;
2343 	uint32_t val;
2344 	uint32_t pitch_val;
2345 	uint32_t fence_size_bits;
2346 
2347 	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2348 	    (obj_priv->gtt_offset & (obj->size - 1))) {
2349 		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2350 		     __func__, obj_priv->gtt_offset);
2351 		return;
2352 	}
2353 
2354 	pitch_val = obj_priv->stride / 128;
2355 	pitch_val = ffs(pitch_val) - 1;
2356 	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2357 
2358 	val = obj_priv->gtt_offset;
2359 	if (obj_priv->tiling_mode == I915_TILING_Y)
2360 		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2361 	fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2362 	WARN_ON(fence_size_bits & ~0x00000f00);
2363 	val |= fence_size_bits;
2364 	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2365 	val |= I830_FENCE_REG_VALID;
2366 
2367 	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2368 }
2369 
2370 /**
2371  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2372  * @obj: object to map through a fence reg
2373  *
2374  * When mapping objects through the GTT, userspace wants to be able to write
2375  * to them without having to worry about swizzling if the object is tiled.
2376  *
2377  * This function walks the fence regs looking for a free one for @obj,
2378  * stealing one if it can't find any.
2379  *
2380  * It then sets up the reg based on the object's properties: address, pitch
2381  * and tiling format.
2382  */
2383 int
2384 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2385 {
2386 	struct drm_device *dev = obj->dev;
2387 	struct drm_i915_private *dev_priv = dev->dev_private;
2388 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
2389 	struct drm_i915_fence_reg *reg = NULL;
2390 	struct drm_i915_gem_object *old_obj_priv = NULL;
2391 	int i, ret, avail;
2392 
2393 	/* Just update our place in the LRU if our fence is getting used. */
2394 	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2395 		list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2396 		return 0;
2397 	}
2398 
2399 	switch (obj_priv->tiling_mode) {
2400 	case I915_TILING_NONE:
2401 		WARN(1, "allocating a fence for non-tiled object?\n");
2402 		break;
2403 	case I915_TILING_X:
2404 		if (!obj_priv->stride)
2405 			return -EINVAL;
2406 		WARN((obj_priv->stride & (512 - 1)),
2407 		     "object 0x%08x is X tiled but has non-512B pitch\n",
2408 		     obj_priv->gtt_offset);
2409 		break;
2410 	case I915_TILING_Y:
2411 		if (!obj_priv->stride)
2412 			return -EINVAL;
2413 		WARN((obj_priv->stride & (128 - 1)),
2414 		     "object 0x%08x is Y tiled but has non-128B pitch\n",
2415 		     obj_priv->gtt_offset);
2416 		break;
2417 	}
2418 
2419 	/* First try to find a free reg */
2420 	avail = 0;
2421 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2422 		reg = &dev_priv->fence_regs[i];
2423 		if (!reg->obj)
2424 			break;
2425 
2426 		old_obj_priv = reg->obj->driver_private;
2427 		if (!old_obj_priv->pin_count)
2428 		    avail++;
2429 	}
2430 
2431 	/* None available, try to steal one or wait for a user to finish */
2432 	if (i == dev_priv->num_fence_regs) {
2433 		struct drm_gem_object *old_obj = NULL;
2434 
2435 		if (avail == 0)
2436 			return -ENOSPC;
2437 
2438 		list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2439 				    fence_list) {
2440 			old_obj = old_obj_priv->obj;
2441 
2442 			if (old_obj_priv->pin_count)
2443 				continue;
2444 
2445 			/* Take a reference, as otherwise the wait_rendering
2446 			 * below may cause the object to get freed out from
2447 			 * under us.
2448 			 */
2449 			drm_gem_object_reference(old_obj);
2450 
2451 			/* i915 uses fences for GPU access to tiled buffers */
2452 			if (IS_I965G(dev) || !old_obj_priv->active)
2453 				break;
2454 
2455 			/* This brings the object to the head of the LRU if it
2456 			 * had been written to.  The only way this should
2457 			 * result in us waiting longer than the expected
2458 			 * optimal amount of time is if there was a
2459 			 * fence-using buffer later that was read-only.
2460 			 */
2461 			i915_gem_object_flush_gpu_write_domain(old_obj);
2462 			ret = i915_gem_object_wait_rendering(old_obj);
2463 			if (ret != 0) {
2464 				drm_gem_object_unreference(old_obj);
2465 				return ret;
2466 			}
2467 
2468 			break;
2469 		}
2470 
2471 		/*
2472 		 * Zap this virtual mapping so we can set up a fence again
2473 		 * for this object next time we need it.
2474 		 */
2475 		i915_gem_release_mmap(old_obj);
2476 
2477 		i = old_obj_priv->fence_reg;
2478 		reg = &dev_priv->fence_regs[i];
2479 
2480 		old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2481 		list_del_init(&old_obj_priv->fence_list);
2482 
2483 		drm_gem_object_unreference(old_obj);
2484 	}
2485 
2486 	obj_priv->fence_reg = i;
2487 	list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2488 
2489 	reg->obj = obj;
2490 
2491 	if (IS_I965G(dev))
2492 		i965_write_fence_reg(reg);
2493 	else if (IS_I9XX(dev))
2494 		i915_write_fence_reg(reg);
2495 	else
2496 		i830_write_fence_reg(reg);
2497 
2498 	trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode);
2499 
2500 	return 0;
2501 }
2502 
2503 /**
2504  * i915_gem_clear_fence_reg - clear out fence register info
2505  * @obj: object to clear
2506  *
2507  * Zeroes out the fence register itself and clears out the associated
2508  * data structures in dev_priv and obj_priv.
2509  */
2510 static void
2511 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2512 {
2513 	struct drm_device *dev = obj->dev;
2514 	drm_i915_private_t *dev_priv = dev->dev_private;
2515 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
2516 
2517 	if (IS_I965G(dev))
2518 		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2519 	else {
2520 		uint32_t fence_reg;
2521 
2522 		if (obj_priv->fence_reg < 8)
2523 			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2524 		else
2525 			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2526 						       8) * 4;
2527 
2528 		I915_WRITE(fence_reg, 0);
2529 	}
2530 
2531 	dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2532 	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2533 	list_del_init(&obj_priv->fence_list);
2534 }
2535 
2536 /**
2537  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2538  * to the buffer to finish, and then resets the fence register.
2539  * @obj: tiled object holding a fence register.
2540  *
2541  * Zeroes out the fence register itself and clears out the associated
2542  * data structures in dev_priv and obj_priv.
2543  */
2544 int
2545 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2546 {
2547 	struct drm_device *dev = obj->dev;
2548 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
2549 
2550 	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2551 		return 0;
2552 
2553 	/* On the i915, GPU access to tiled buffers is via a fence,
2554 	 * therefore we must wait for any outstanding access to complete
2555 	 * before clearing the fence.
2556 	 */
2557 	if (!IS_I965G(dev)) {
2558 		int ret;
2559 
2560 		i915_gem_object_flush_gpu_write_domain(obj);
2561 		i915_gem_object_flush_gtt_write_domain(obj);
2562 		ret = i915_gem_object_wait_rendering(obj);
2563 		if (ret != 0)
2564 			return ret;
2565 	}
2566 
2567 	i915_gem_clear_fence_reg (obj);
2568 
2569 	return 0;
2570 }
2571 
2572 /**
2573  * Finds free space in the GTT aperture and binds the object there.
2574  */
2575 static int
2576 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2577 {
2578 	struct drm_device *dev = obj->dev;
2579 	drm_i915_private_t *dev_priv = dev->dev_private;
2580 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
2581 	struct drm_mm_node *free_space;
2582 	bool retry_alloc = false;
2583 	int ret;
2584 
2585 	if (obj_priv->madv != I915_MADV_WILLNEED) {
2586 		DRM_ERROR("Attempting to bind a purgeable object\n");
2587 		return -EINVAL;
2588 	}
2589 
2590 	if (alignment == 0)
2591 		alignment = i915_gem_get_gtt_alignment(obj);
2592 	if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2593 		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2594 		return -EINVAL;
2595 	}
2596 
2597  search_free:
2598 	free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2599 					obj->size, alignment, 0);
2600 	if (free_space != NULL) {
2601 		obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2602 						       alignment);
2603 		if (obj_priv->gtt_space != NULL) {
2604 			obj_priv->gtt_space->private = obj;
2605 			obj_priv->gtt_offset = obj_priv->gtt_space->start;
2606 		}
2607 	}
2608 	if (obj_priv->gtt_space == NULL) {
2609 		/* If the gtt is empty and we're still having trouble
2610 		 * fitting our object in, we're out of memory.
2611 		 */
2612 #if WATCH_LRU
2613 		DRM_INFO("%s: GTT full, evicting something\n", __func__);
2614 #endif
2615 		ret = i915_gem_evict_something(dev, obj->size);
2616 		if (ret)
2617 			return ret;
2618 
2619 		goto search_free;
2620 	}
2621 
2622 #if WATCH_BUF
2623 	DRM_INFO("Binding object of size %zd at 0x%08x\n",
2624 		 obj->size, obj_priv->gtt_offset);
2625 #endif
2626 	if (retry_alloc) {
2627 		i915_gem_object_set_page_gfp_mask (obj,
2628 						   i915_gem_object_get_page_gfp_mask (obj) & ~__GFP_NORETRY);
2629 	}
2630 	ret = i915_gem_object_get_pages(obj);
2631 	if (retry_alloc) {
2632 		i915_gem_object_set_page_gfp_mask (obj,
2633 						   i915_gem_object_get_page_gfp_mask (obj) | __GFP_NORETRY);
2634 	}
2635 	if (ret) {
2636 		drm_mm_put_block(obj_priv->gtt_space);
2637 		obj_priv->gtt_space = NULL;
2638 
2639 		if (ret == -ENOMEM) {
2640 			/* first try to clear up some space from the GTT */
2641 			ret = i915_gem_evict_something(dev, obj->size);
2642 			if (ret) {
2643 				/* now try to shrink everyone else */
2644 				if (! retry_alloc) {
2645 				    retry_alloc = true;
2646 				    goto search_free;
2647 				}
2648 
2649 				return ret;
2650 			}
2651 
2652 			goto search_free;
2653 		}
2654 
2655 		return ret;
2656 	}
2657 
2658 	/* Create an AGP memory structure pointing at our pages, and bind it
2659 	 * into the GTT.
2660 	 */
2661 	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2662 					       obj_priv->pages,
2663 					       obj->size >> PAGE_SHIFT,
2664 					       obj_priv->gtt_offset,
2665 					       obj_priv->agp_type);
2666 	if (obj_priv->agp_mem == NULL) {
2667 		i915_gem_object_put_pages(obj);
2668 		drm_mm_put_block(obj_priv->gtt_space);
2669 		obj_priv->gtt_space = NULL;
2670 
2671 		ret = i915_gem_evict_something(dev, obj->size);
2672 		if (ret)
2673 			return ret;
2674 
2675 		goto search_free;
2676 	}
2677 	atomic_inc(&dev->gtt_count);
2678 	atomic_add(obj->size, &dev->gtt_memory);
2679 
2680 	/* Assert that the object is not currently in any GPU domain. As it
2681 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2682 	 * a GPU cache
2683 	 */
2684 	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2685 	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2686 
2687 	trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2688 
2689 	return 0;
2690 }
2691 
2692 void
2693 i915_gem_clflush_object(struct drm_gem_object *obj)
2694 {
2695 	struct drm_i915_gem_object	*obj_priv = obj->driver_private;
2696 
2697 	/* If we don't have a page list set up, then we're not pinned
2698 	 * to GPU, and we can ignore the cache flush because it'll happen
2699 	 * again at bind time.
2700 	 */
2701 	if (obj_priv->pages == NULL)
2702 		return;
2703 
2704 	trace_i915_gem_object_clflush(obj);
2705 
2706 	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2707 }
2708 
2709 /** Flushes any GPU write domain for the object if it's dirty. */
2710 static void
2711 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2712 {
2713 	struct drm_device *dev = obj->dev;
2714 	uint32_t seqno;
2715 	uint32_t old_write_domain;
2716 
2717 	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2718 		return;
2719 
2720 	/* Queue the GPU write cache flushing we need. */
2721 	old_write_domain = obj->write_domain;
2722 	i915_gem_flush(dev, 0, obj->write_domain);
2723 	seqno = i915_add_request(dev, NULL, obj->write_domain);
2724 	obj->write_domain = 0;
2725 	i915_gem_object_move_to_active(obj, seqno);
2726 
2727 	trace_i915_gem_object_change_domain(obj,
2728 					    obj->read_domains,
2729 					    old_write_domain);
2730 }
2731 
2732 /** Flushes the GTT write domain for the object if it's dirty. */
2733 static void
2734 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2735 {
2736 	uint32_t old_write_domain;
2737 
2738 	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2739 		return;
2740 
2741 	/* No actual flushing is required for the GTT write domain.   Writes
2742 	 * to it immediately go to main memory as far as we know, so there's
2743 	 * no chipset flush.  It also doesn't land in render cache.
2744 	 */
2745 	old_write_domain = obj->write_domain;
2746 	obj->write_domain = 0;
2747 
2748 	trace_i915_gem_object_change_domain(obj,
2749 					    obj->read_domains,
2750 					    old_write_domain);
2751 }
2752 
2753 /** Flushes the CPU write domain for the object if it's dirty. */
2754 static void
2755 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2756 {
2757 	struct drm_device *dev = obj->dev;
2758 	uint32_t old_write_domain;
2759 
2760 	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2761 		return;
2762 
2763 	i915_gem_clflush_object(obj);
2764 	drm_agp_chipset_flush(dev);
2765 	old_write_domain = obj->write_domain;
2766 	obj->write_domain = 0;
2767 
2768 	trace_i915_gem_object_change_domain(obj,
2769 					    obj->read_domains,
2770 					    old_write_domain);
2771 }
2772 
2773 void
2774 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2775 {
2776 	switch (obj->write_domain) {
2777 	case I915_GEM_DOMAIN_GTT:
2778 		i915_gem_object_flush_gtt_write_domain(obj);
2779 		break;
2780 	case I915_GEM_DOMAIN_CPU:
2781 		i915_gem_object_flush_cpu_write_domain(obj);
2782 		break;
2783 	default:
2784 		i915_gem_object_flush_gpu_write_domain(obj);
2785 		break;
2786 	}
2787 }
2788 
2789 /**
2790  * Moves a single object to the GTT read, and possibly write domain.
2791  *
2792  * This function returns when the move is complete, including waiting on
2793  * flushes to occur.
2794  */
2795 int
2796 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2797 {
2798 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
2799 	uint32_t old_write_domain, old_read_domains;
2800 	int ret;
2801 
2802 	/* Not valid to be called on unbound objects. */
2803 	if (obj_priv->gtt_space == NULL)
2804 		return -EINVAL;
2805 
2806 	i915_gem_object_flush_gpu_write_domain(obj);
2807 	/* Wait on any GPU rendering and flushing to occur. */
2808 	ret = i915_gem_object_wait_rendering(obj);
2809 	if (ret != 0)
2810 		return ret;
2811 
2812 	old_write_domain = obj->write_domain;
2813 	old_read_domains = obj->read_domains;
2814 
2815 	/* If we're writing through the GTT domain, then CPU and GPU caches
2816 	 * will need to be invalidated at next use.
2817 	 */
2818 	if (write)
2819 		obj->read_domains &= I915_GEM_DOMAIN_GTT;
2820 
2821 	i915_gem_object_flush_cpu_write_domain(obj);
2822 
2823 	/* It should now be out of any other write domains, and we can update
2824 	 * the domain values for our changes.
2825 	 */
2826 	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2827 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
2828 	if (write) {
2829 		obj->write_domain = I915_GEM_DOMAIN_GTT;
2830 		obj_priv->dirty = 1;
2831 	}
2832 
2833 	trace_i915_gem_object_change_domain(obj,
2834 					    old_read_domains,
2835 					    old_write_domain);
2836 
2837 	return 0;
2838 }
2839 
2840 /**
2841  * Moves a single object to the CPU read, and possibly write domain.
2842  *
2843  * This function returns when the move is complete, including waiting on
2844  * flushes to occur.
2845  */
2846 static int
2847 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2848 {
2849 	uint32_t old_write_domain, old_read_domains;
2850 	int ret;
2851 
2852 	i915_gem_object_flush_gpu_write_domain(obj);
2853 	/* Wait on any GPU rendering and flushing to occur. */
2854 	ret = i915_gem_object_wait_rendering(obj);
2855 	if (ret != 0)
2856 		return ret;
2857 
2858 	i915_gem_object_flush_gtt_write_domain(obj);
2859 
2860 	/* If we have a partially-valid cache of the object in the CPU,
2861 	 * finish invalidating it and free the per-page flags.
2862 	 */
2863 	i915_gem_object_set_to_full_cpu_read_domain(obj);
2864 
2865 	old_write_domain = obj->write_domain;
2866 	old_read_domains = obj->read_domains;
2867 
2868 	/* Flush the CPU cache if it's still invalid. */
2869 	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2870 		i915_gem_clflush_object(obj);
2871 
2872 		obj->read_domains |= I915_GEM_DOMAIN_CPU;
2873 	}
2874 
2875 	/* It should now be out of any other write domains, and we can update
2876 	 * the domain values for our changes.
2877 	 */
2878 	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2879 
2880 	/* If we're writing through the CPU, then the GPU read domains will
2881 	 * need to be invalidated at next use.
2882 	 */
2883 	if (write) {
2884 		obj->read_domains &= I915_GEM_DOMAIN_CPU;
2885 		obj->write_domain = I915_GEM_DOMAIN_CPU;
2886 	}
2887 
2888 	trace_i915_gem_object_change_domain(obj,
2889 					    old_read_domains,
2890 					    old_write_domain);
2891 
2892 	return 0;
2893 }
2894 
2895 /*
2896  * Set the next domain for the specified object. This
2897  * may not actually perform the necessary flushing/invaliding though,
2898  * as that may want to be batched with other set_domain operations
2899  *
2900  * This is (we hope) the only really tricky part of gem. The goal
2901  * is fairly simple -- track which caches hold bits of the object
2902  * and make sure they remain coherent. A few concrete examples may
2903  * help to explain how it works. For shorthand, we use the notation
2904  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2905  * a pair of read and write domain masks.
2906  *
2907  * Case 1: the batch buffer
2908  *
2909  *	1. Allocated
2910  *	2. Written by CPU
2911  *	3. Mapped to GTT
2912  *	4. Read by GPU
2913  *	5. Unmapped from GTT
2914  *	6. Freed
2915  *
2916  *	Let's take these a step at a time
2917  *
2918  *	1. Allocated
2919  *		Pages allocated from the kernel may still have
2920  *		cache contents, so we set them to (CPU, CPU) always.
2921  *	2. Written by CPU (using pwrite)
2922  *		The pwrite function calls set_domain (CPU, CPU) and
2923  *		this function does nothing (as nothing changes)
2924  *	3. Mapped by GTT
2925  *		This function asserts that the object is not
2926  *		currently in any GPU-based read or write domains
2927  *	4. Read by GPU
2928  *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
2929  *		As write_domain is zero, this function adds in the
2930  *		current read domains (CPU+COMMAND, 0).
2931  *		flush_domains is set to CPU.
2932  *		invalidate_domains is set to COMMAND
2933  *		clflush is run to get data out of the CPU caches
2934  *		then i915_dev_set_domain calls i915_gem_flush to
2935  *		emit an MI_FLUSH and drm_agp_chipset_flush
2936  *	5. Unmapped from GTT
2937  *		i915_gem_object_unbind calls set_domain (CPU, CPU)
2938  *		flush_domains and invalidate_domains end up both zero
2939  *		so no flushing/invalidating happens
2940  *	6. Freed
2941  *		yay, done
2942  *
2943  * Case 2: The shared render buffer
2944  *
2945  *	1. Allocated
2946  *	2. Mapped to GTT
2947  *	3. Read/written by GPU
2948  *	4. set_domain to (CPU,CPU)
2949  *	5. Read/written by CPU
2950  *	6. Read/written by GPU
2951  *
2952  *	1. Allocated
2953  *		Same as last example, (CPU, CPU)
2954  *	2. Mapped to GTT
2955  *		Nothing changes (assertions find that it is not in the GPU)
2956  *	3. Read/written by GPU
2957  *		execbuffer calls set_domain (RENDER, RENDER)
2958  *		flush_domains gets CPU
2959  *		invalidate_domains gets GPU
2960  *		clflush (obj)
2961  *		MI_FLUSH and drm_agp_chipset_flush
2962  *	4. set_domain (CPU, CPU)
2963  *		flush_domains gets GPU
2964  *		invalidate_domains gets CPU
2965  *		wait_rendering (obj) to make sure all drawing is complete.
2966  *		This will include an MI_FLUSH to get the data from GPU
2967  *		to memory
2968  *		clflush (obj) to invalidate the CPU cache
2969  *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2970  *	5. Read/written by CPU
2971  *		cache lines are loaded and dirtied
2972  *	6. Read written by GPU
2973  *		Same as last GPU access
2974  *
2975  * Case 3: The constant buffer
2976  *
2977  *	1. Allocated
2978  *	2. Written by CPU
2979  *	3. Read by GPU
2980  *	4. Updated (written) by CPU again
2981  *	5. Read by GPU
2982  *
2983  *	1. Allocated
2984  *		(CPU, CPU)
2985  *	2. Written by CPU
2986  *		(CPU, CPU)
2987  *	3. Read by GPU
2988  *		(CPU+RENDER, 0)
2989  *		flush_domains = CPU
2990  *		invalidate_domains = RENDER
2991  *		clflush (obj)
2992  *		MI_FLUSH
2993  *		drm_agp_chipset_flush
2994  *	4. Updated (written) by CPU again
2995  *		(CPU, CPU)
2996  *		flush_domains = 0 (no previous write domain)
2997  *		invalidate_domains = 0 (no new read domains)
2998  *	5. Read by GPU
2999  *		(CPU+RENDER, 0)
3000  *		flush_domains = CPU
3001  *		invalidate_domains = RENDER
3002  *		clflush (obj)
3003  *		MI_FLUSH
3004  *		drm_agp_chipset_flush
3005  */
3006 static void
3007 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3008 {
3009 	struct drm_device		*dev = obj->dev;
3010 	struct drm_i915_gem_object	*obj_priv = obj->driver_private;
3011 	uint32_t			invalidate_domains = 0;
3012 	uint32_t			flush_domains = 0;
3013 	uint32_t			old_read_domains;
3014 
3015 	BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3016 	BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3017 
3018 	intel_mark_busy(dev, obj);
3019 
3020 #if WATCH_BUF
3021 	DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3022 		 __func__, obj,
3023 		 obj->read_domains, obj->pending_read_domains,
3024 		 obj->write_domain, obj->pending_write_domain);
3025 #endif
3026 	/*
3027 	 * If the object isn't moving to a new write domain,
3028 	 * let the object stay in multiple read domains
3029 	 */
3030 	if (obj->pending_write_domain == 0)
3031 		obj->pending_read_domains |= obj->read_domains;
3032 	else
3033 		obj_priv->dirty = 1;
3034 
3035 	/*
3036 	 * Flush the current write domain if
3037 	 * the new read domains don't match. Invalidate
3038 	 * any read domains which differ from the old
3039 	 * write domain
3040 	 */
3041 	if (obj->write_domain &&
3042 	    obj->write_domain != obj->pending_read_domains) {
3043 		flush_domains |= obj->write_domain;
3044 		invalidate_domains |=
3045 			obj->pending_read_domains & ~obj->write_domain;
3046 	}
3047 	/*
3048 	 * Invalidate any read caches which may have
3049 	 * stale data. That is, any new read domains.
3050 	 */
3051 	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3052 	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3053 #if WATCH_BUF
3054 		DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3055 			 __func__, flush_domains, invalidate_domains);
3056 #endif
3057 		i915_gem_clflush_object(obj);
3058 	}
3059 
3060 	old_read_domains = obj->read_domains;
3061 
3062 	/* The actual obj->write_domain will be updated with
3063 	 * pending_write_domain after we emit the accumulated flush for all
3064 	 * of our domain changes in execbuffers (which clears objects'
3065 	 * write_domains).  So if we have a current write domain that we
3066 	 * aren't changing, set pending_write_domain to that.
3067 	 */
3068 	if (flush_domains == 0 && obj->pending_write_domain == 0)
3069 		obj->pending_write_domain = obj->write_domain;
3070 	obj->read_domains = obj->pending_read_domains;
3071 
3072 	dev->invalidate_domains |= invalidate_domains;
3073 	dev->flush_domains |= flush_domains;
3074 #if WATCH_BUF
3075 	DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3076 		 __func__,
3077 		 obj->read_domains, obj->write_domain,
3078 		 dev->invalidate_domains, dev->flush_domains);
3079 #endif
3080 
3081 	trace_i915_gem_object_change_domain(obj,
3082 					    old_read_domains,
3083 					    obj->write_domain);
3084 }
3085 
3086 /**
3087  * Moves the object from a partially CPU read to a full one.
3088  *
3089  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3090  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3091  */
3092 static void
3093 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3094 {
3095 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
3096 
3097 	if (!obj_priv->page_cpu_valid)
3098 		return;
3099 
3100 	/* If we're partially in the CPU read domain, finish moving it in.
3101 	 */
3102 	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3103 		int i;
3104 
3105 		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3106 			if (obj_priv->page_cpu_valid[i])
3107 				continue;
3108 			drm_clflush_pages(obj_priv->pages + i, 1);
3109 		}
3110 	}
3111 
3112 	/* Free the page_cpu_valid mappings which are now stale, whether
3113 	 * or not we've got I915_GEM_DOMAIN_CPU.
3114 	 */
3115 	kfree(obj_priv->page_cpu_valid);
3116 	obj_priv->page_cpu_valid = NULL;
3117 }
3118 
3119 /**
3120  * Set the CPU read domain on a range of the object.
3121  *
3122  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3123  * not entirely valid.  The page_cpu_valid member of the object flags which
3124  * pages have been flushed, and will be respected by
3125  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3126  * of the whole object.
3127  *
3128  * This function returns when the move is complete, including waiting on
3129  * flushes to occur.
3130  */
3131 static int
3132 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3133 					  uint64_t offset, uint64_t size)
3134 {
3135 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
3136 	uint32_t old_read_domains;
3137 	int i, ret;
3138 
3139 	if (offset == 0 && size == obj->size)
3140 		return i915_gem_object_set_to_cpu_domain(obj, 0);
3141 
3142 	i915_gem_object_flush_gpu_write_domain(obj);
3143 	/* Wait on any GPU rendering and flushing to occur. */
3144 	ret = i915_gem_object_wait_rendering(obj);
3145 	if (ret != 0)
3146 		return ret;
3147 	i915_gem_object_flush_gtt_write_domain(obj);
3148 
3149 	/* If we're already fully in the CPU read domain, we're done. */
3150 	if (obj_priv->page_cpu_valid == NULL &&
3151 	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3152 		return 0;
3153 
3154 	/* Otherwise, create/clear the per-page CPU read domain flag if we're
3155 	 * newly adding I915_GEM_DOMAIN_CPU
3156 	 */
3157 	if (obj_priv->page_cpu_valid == NULL) {
3158 		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3159 						   GFP_KERNEL);
3160 		if (obj_priv->page_cpu_valid == NULL)
3161 			return -ENOMEM;
3162 	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3163 		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3164 
3165 	/* Flush the cache on any pages that are still invalid from the CPU's
3166 	 * perspective.
3167 	 */
3168 	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3169 	     i++) {
3170 		if (obj_priv->page_cpu_valid[i])
3171 			continue;
3172 
3173 		drm_clflush_pages(obj_priv->pages + i, 1);
3174 
3175 		obj_priv->page_cpu_valid[i] = 1;
3176 	}
3177 
3178 	/* It should now be out of any other write domains, and we can update
3179 	 * the domain values for our changes.
3180 	 */
3181 	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3182 
3183 	old_read_domains = obj->read_domains;
3184 	obj->read_domains |= I915_GEM_DOMAIN_CPU;
3185 
3186 	trace_i915_gem_object_change_domain(obj,
3187 					    old_read_domains,
3188 					    obj->write_domain);
3189 
3190 	return 0;
3191 }
3192 
3193 /**
3194  * Pin an object to the GTT and evaluate the relocations landing in it.
3195  */
3196 static int
3197 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3198 				 struct drm_file *file_priv,
3199 				 struct drm_i915_gem_exec_object2 *entry,
3200 				 struct drm_i915_gem_relocation_entry *relocs)
3201 {
3202 	struct drm_device *dev = obj->dev;
3203 	drm_i915_private_t *dev_priv = dev->dev_private;
3204 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
3205 	int i, ret;
3206 	void __iomem *reloc_page;
3207 	bool need_fence;
3208 
3209 	need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3210 	             obj_priv->tiling_mode != I915_TILING_NONE;
3211 
3212 	/* Check fence reg constraints and rebind if necessary */
3213 	if (need_fence && !i915_obj_fenceable(dev, obj))
3214 		i915_gem_object_unbind(obj);
3215 
3216 	/* Choose the GTT offset for our buffer and put it there. */
3217 	ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3218 	if (ret)
3219 		return ret;
3220 
3221 	/*
3222 	 * Pre-965 chips need a fence register set up in order to
3223 	 * properly handle blits to/from tiled surfaces.
3224 	 */
3225 	if (need_fence) {
3226 		ret = i915_gem_object_get_fence_reg(obj);
3227 		if (ret != 0) {
3228 			if (ret != -EBUSY && ret != -ERESTARTSYS)
3229 				DRM_ERROR("Failure to install fence: %d\n",
3230 					  ret);
3231 			i915_gem_object_unpin(obj);
3232 			return ret;
3233 		}
3234 	}
3235 
3236 	entry->offset = obj_priv->gtt_offset;
3237 
3238 	/* Apply the relocations, using the GTT aperture to avoid cache
3239 	 * flushing requirements.
3240 	 */
3241 	for (i = 0; i < entry->relocation_count; i++) {
3242 		struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3243 		struct drm_gem_object *target_obj;
3244 		struct drm_i915_gem_object *target_obj_priv;
3245 		uint32_t reloc_val, reloc_offset;
3246 		uint32_t __iomem *reloc_entry;
3247 
3248 		target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3249 						   reloc->target_handle);
3250 		if (target_obj == NULL) {
3251 			i915_gem_object_unpin(obj);
3252 			return -EBADF;
3253 		}
3254 		target_obj_priv = target_obj->driver_private;
3255 
3256 #if WATCH_RELOC
3257 		DRM_INFO("%s: obj %p offset %08x target %d "
3258 			 "read %08x write %08x gtt %08x "
3259 			 "presumed %08x delta %08x\n",
3260 			 __func__,
3261 			 obj,
3262 			 (int) reloc->offset,
3263 			 (int) reloc->target_handle,
3264 			 (int) reloc->read_domains,
3265 			 (int) reloc->write_domain,
3266 			 (int) target_obj_priv->gtt_offset,
3267 			 (int) reloc->presumed_offset,
3268 			 reloc->delta);
3269 #endif
3270 
3271 		/* The target buffer should have appeared before us in the
3272 		 * exec_object list, so it should have a GTT space bound by now.
3273 		 */
3274 		if (target_obj_priv->gtt_space == NULL) {
3275 			DRM_ERROR("No GTT space found for object %d\n",
3276 				  reloc->target_handle);
3277 			drm_gem_object_unreference(target_obj);
3278 			i915_gem_object_unpin(obj);
3279 			return -EINVAL;
3280 		}
3281 
3282 		/* Validate that the target is in a valid r/w GPU domain */
3283 		if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3284 		    reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3285 			DRM_ERROR("reloc with read/write CPU domains: "
3286 				  "obj %p target %d offset %d "
3287 				  "read %08x write %08x",
3288 				  obj, reloc->target_handle,
3289 				  (int) reloc->offset,
3290 				  reloc->read_domains,
3291 				  reloc->write_domain);
3292 			drm_gem_object_unreference(target_obj);
3293 			i915_gem_object_unpin(obj);
3294 			return -EINVAL;
3295 		}
3296 		if (reloc->write_domain && target_obj->pending_write_domain &&
3297 		    reloc->write_domain != target_obj->pending_write_domain) {
3298 			DRM_ERROR("Write domain conflict: "
3299 				  "obj %p target %d offset %d "
3300 				  "new %08x old %08x\n",
3301 				  obj, reloc->target_handle,
3302 				  (int) reloc->offset,
3303 				  reloc->write_domain,
3304 				  target_obj->pending_write_domain);
3305 			drm_gem_object_unreference(target_obj);
3306 			i915_gem_object_unpin(obj);
3307 			return -EINVAL;
3308 		}
3309 
3310 		target_obj->pending_read_domains |= reloc->read_domains;
3311 		target_obj->pending_write_domain |= reloc->write_domain;
3312 
3313 		/* If the relocation already has the right value in it, no
3314 		 * more work needs to be done.
3315 		 */
3316 		if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3317 			drm_gem_object_unreference(target_obj);
3318 			continue;
3319 		}
3320 
3321 		/* Check that the relocation address is valid... */
3322 		if (reloc->offset > obj->size - 4) {
3323 			DRM_ERROR("Relocation beyond object bounds: "
3324 				  "obj %p target %d offset %d size %d.\n",
3325 				  obj, reloc->target_handle,
3326 				  (int) reloc->offset, (int) obj->size);
3327 			drm_gem_object_unreference(target_obj);
3328 			i915_gem_object_unpin(obj);
3329 			return -EINVAL;
3330 		}
3331 		if (reloc->offset & 3) {
3332 			DRM_ERROR("Relocation not 4-byte aligned: "
3333 				  "obj %p target %d offset %d.\n",
3334 				  obj, reloc->target_handle,
3335 				  (int) reloc->offset);
3336 			drm_gem_object_unreference(target_obj);
3337 			i915_gem_object_unpin(obj);
3338 			return -EINVAL;
3339 		}
3340 
3341 		/* and points to somewhere within the target object. */
3342 		if (reloc->delta >= target_obj->size) {
3343 			DRM_ERROR("Relocation beyond target object bounds: "
3344 				  "obj %p target %d delta %d size %d.\n",
3345 				  obj, reloc->target_handle,
3346 				  (int) reloc->delta, (int) target_obj->size);
3347 			drm_gem_object_unreference(target_obj);
3348 			i915_gem_object_unpin(obj);
3349 			return -EINVAL;
3350 		}
3351 
3352 		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3353 		if (ret != 0) {
3354 			drm_gem_object_unreference(target_obj);
3355 			i915_gem_object_unpin(obj);
3356 			return -EINVAL;
3357 		}
3358 
3359 		/* Map the page containing the relocation we're going to
3360 		 * perform.
3361 		 */
3362 		reloc_offset = obj_priv->gtt_offset + reloc->offset;
3363 		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3364 						      (reloc_offset &
3365 						       ~(PAGE_SIZE - 1)));
3366 		reloc_entry = (uint32_t __iomem *)(reloc_page +
3367 						   (reloc_offset & (PAGE_SIZE - 1)));
3368 		reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3369 
3370 #if WATCH_BUF
3371 		DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3372 			  obj, (unsigned int) reloc->offset,
3373 			  readl(reloc_entry), reloc_val);
3374 #endif
3375 		writel(reloc_val, reloc_entry);
3376 		io_mapping_unmap_atomic(reloc_page);
3377 
3378 		/* The updated presumed offset for this entry will be
3379 		 * copied back out to the user.
3380 		 */
3381 		reloc->presumed_offset = target_obj_priv->gtt_offset;
3382 
3383 		drm_gem_object_unreference(target_obj);
3384 	}
3385 
3386 #if WATCH_BUF
3387 	if (0)
3388 		i915_gem_dump_object(obj, 128, __func__, ~0);
3389 #endif
3390 	return 0;
3391 }
3392 
3393 /** Dispatch a batchbuffer to the ring
3394  */
3395 static int
3396 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3397 			      struct drm_i915_gem_execbuffer2 *exec,
3398 			      struct drm_clip_rect *cliprects,
3399 			      uint64_t exec_offset)
3400 {
3401 	drm_i915_private_t *dev_priv = dev->dev_private;
3402 	int nbox = exec->num_cliprects;
3403 	int i = 0, count;
3404 	uint32_t exec_start, exec_len;
3405 	RING_LOCALS;
3406 
3407 	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3408 	exec_len = (uint32_t) exec->batch_len;
3409 
3410 	trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
3411 
3412 	count = nbox ? nbox : 1;
3413 
3414 	for (i = 0; i < count; i++) {
3415 		if (i < nbox) {
3416 			int ret = i915_emit_box(dev, cliprects, i,
3417 						exec->DR1, exec->DR4);
3418 			if (ret)
3419 				return ret;
3420 		}
3421 
3422 		if (IS_I830(dev) || IS_845G(dev)) {
3423 			BEGIN_LP_RING(4);
3424 			OUT_RING(MI_BATCH_BUFFER);
3425 			OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3426 			OUT_RING(exec_start + exec_len - 4);
3427 			OUT_RING(0);
3428 			ADVANCE_LP_RING();
3429 		} else {
3430 			BEGIN_LP_RING(2);
3431 			if (IS_I965G(dev)) {
3432 				OUT_RING(MI_BATCH_BUFFER_START |
3433 					 (2 << 6) |
3434 					 MI_BATCH_NON_SECURE_I965);
3435 				OUT_RING(exec_start);
3436 			} else {
3437 				OUT_RING(MI_BATCH_BUFFER_START |
3438 					 (2 << 6));
3439 				OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3440 			}
3441 			ADVANCE_LP_RING();
3442 		}
3443 	}
3444 
3445 	/* XXX breadcrumb */
3446 	return 0;
3447 }
3448 
3449 /* Throttle our rendering by waiting until the ring has completed our requests
3450  * emitted over 20 msec ago.
3451  *
3452  * Note that if we were to use the current jiffies each time around the loop,
3453  * we wouldn't escape the function with any frames outstanding if the time to
3454  * render a frame was over 20ms.
3455  *
3456  * This should get us reasonable parallelism between CPU and GPU but also
3457  * relatively low latency when blocking on a particular request to finish.
3458  */
3459 static int
3460 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3461 {
3462 	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3463 	int ret = 0;
3464 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3465 
3466 	mutex_lock(&dev->struct_mutex);
3467 	while (!list_empty(&i915_file_priv->mm.request_list)) {
3468 		struct drm_i915_gem_request *request;
3469 
3470 		request = list_first_entry(&i915_file_priv->mm.request_list,
3471 					   struct drm_i915_gem_request,
3472 					   client_list);
3473 
3474 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3475 			break;
3476 
3477 		ret = i915_wait_request(dev, request->seqno);
3478 		if (ret != 0)
3479 			break;
3480 	}
3481 	mutex_unlock(&dev->struct_mutex);
3482 
3483 	return ret;
3484 }
3485 
3486 static int
3487 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3488 			      uint32_t buffer_count,
3489 			      struct drm_i915_gem_relocation_entry **relocs)
3490 {
3491 	uint32_t reloc_count = 0, reloc_index = 0, i;
3492 	int ret;
3493 
3494 	*relocs = NULL;
3495 	for (i = 0; i < buffer_count; i++) {
3496 		if (reloc_count + exec_list[i].relocation_count < reloc_count)
3497 			return -EINVAL;
3498 		reloc_count += exec_list[i].relocation_count;
3499 	}
3500 
3501 	*relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3502 	if (*relocs == NULL) {
3503 		DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3504 		return -ENOMEM;
3505 	}
3506 
3507 	for (i = 0; i < buffer_count; i++) {
3508 		struct drm_i915_gem_relocation_entry __user *user_relocs;
3509 
3510 		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3511 
3512 		ret = copy_from_user(&(*relocs)[reloc_index],
3513 				     user_relocs,
3514 				     exec_list[i].relocation_count *
3515 				     sizeof(**relocs));
3516 		if (ret != 0) {
3517 			drm_free_large(*relocs);
3518 			*relocs = NULL;
3519 			return -EFAULT;
3520 		}
3521 
3522 		reloc_index += exec_list[i].relocation_count;
3523 	}
3524 
3525 	return 0;
3526 }
3527 
3528 static int
3529 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3530 			    uint32_t buffer_count,
3531 			    struct drm_i915_gem_relocation_entry *relocs)
3532 {
3533 	uint32_t reloc_count = 0, i;
3534 	int ret = 0;
3535 
3536 	for (i = 0; i < buffer_count; i++) {
3537 		struct drm_i915_gem_relocation_entry __user *user_relocs;
3538 		int unwritten;
3539 
3540 		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3541 
3542 		unwritten = copy_to_user(user_relocs,
3543 					 &relocs[reloc_count],
3544 					 exec_list[i].relocation_count *
3545 					 sizeof(*relocs));
3546 
3547 		if (unwritten) {
3548 			ret = -EFAULT;
3549 			goto err;
3550 		}
3551 
3552 		reloc_count += exec_list[i].relocation_count;
3553 	}
3554 
3555 err:
3556 	drm_free_large(relocs);
3557 
3558 	return ret;
3559 }
3560 
3561 static int
3562 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3563 			   uint64_t exec_offset)
3564 {
3565 	uint32_t exec_start, exec_len;
3566 
3567 	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3568 	exec_len = (uint32_t) exec->batch_len;
3569 
3570 	if ((exec_start | exec_len) & 0x7)
3571 		return -EINVAL;
3572 
3573 	if (!exec_start)
3574 		return -EINVAL;
3575 
3576 	return 0;
3577 }
3578 
3579 static int
3580 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3581 			       struct drm_gem_object **object_list,
3582 			       int count)
3583 {
3584 	drm_i915_private_t *dev_priv = dev->dev_private;
3585 	struct drm_i915_gem_object *obj_priv;
3586 	DEFINE_WAIT(wait);
3587 	int i, ret = 0;
3588 
3589 	for (;;) {
3590 		prepare_to_wait(&dev_priv->pending_flip_queue,
3591 				&wait, TASK_INTERRUPTIBLE);
3592 		for (i = 0; i < count; i++) {
3593 			obj_priv = object_list[i]->driver_private;
3594 			if (atomic_read(&obj_priv->pending_flip) > 0)
3595 				break;
3596 		}
3597 		if (i == count)
3598 			break;
3599 
3600 		if (!signal_pending(current)) {
3601 			mutex_unlock(&dev->struct_mutex);
3602 			schedule();
3603 			mutex_lock(&dev->struct_mutex);
3604 			continue;
3605 		}
3606 		ret = -ERESTARTSYS;
3607 		break;
3608 	}
3609 	finish_wait(&dev_priv->pending_flip_queue, &wait);
3610 
3611 	return ret;
3612 }
3613 
3614 int
3615 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3616 		       struct drm_file *file_priv,
3617 		       struct drm_i915_gem_execbuffer2 *args,
3618 		       struct drm_i915_gem_exec_object2 *exec_list)
3619 {
3620 	drm_i915_private_t *dev_priv = dev->dev_private;
3621 	struct drm_gem_object **object_list = NULL;
3622 	struct drm_gem_object *batch_obj;
3623 	struct drm_i915_gem_object *obj_priv;
3624 	struct drm_clip_rect *cliprects = NULL;
3625 	struct drm_i915_gem_relocation_entry *relocs;
3626 	int ret = 0, ret2, i, pinned = 0;
3627 	uint64_t exec_offset;
3628 	uint32_t seqno, flush_domains, reloc_index;
3629 	int pin_tries, flips;
3630 
3631 #if WATCH_EXEC
3632 	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3633 		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3634 #endif
3635 
3636 	if (args->buffer_count < 1) {
3637 		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3638 		return -EINVAL;
3639 	}
3640 	object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3641 	if (object_list == NULL) {
3642 		DRM_ERROR("Failed to allocate object list for %d buffers\n",
3643 			  args->buffer_count);
3644 		ret = -ENOMEM;
3645 		goto pre_mutex_err;
3646 	}
3647 
3648 	if (args->num_cliprects != 0) {
3649 		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3650 				    GFP_KERNEL);
3651 		if (cliprects == NULL)
3652 			goto pre_mutex_err;
3653 
3654 		ret = copy_from_user(cliprects,
3655 				     (struct drm_clip_rect __user *)
3656 				     (uintptr_t) args->cliprects_ptr,
3657 				     sizeof(*cliprects) * args->num_cliprects);
3658 		if (ret != 0) {
3659 			DRM_ERROR("copy %d cliprects failed: %d\n",
3660 				  args->num_cliprects, ret);
3661 			goto pre_mutex_err;
3662 		}
3663 	}
3664 
3665 	ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3666 					    &relocs);
3667 	if (ret != 0)
3668 		goto pre_mutex_err;
3669 
3670 	mutex_lock(&dev->struct_mutex);
3671 
3672 	i915_verify_inactive(dev, __FILE__, __LINE__);
3673 
3674 	if (atomic_read(&dev_priv->mm.wedged)) {
3675 		mutex_unlock(&dev->struct_mutex);
3676 		ret = -EIO;
3677 		goto pre_mutex_err;
3678 	}
3679 
3680 	if (dev_priv->mm.suspended) {
3681 		mutex_unlock(&dev->struct_mutex);
3682 		ret = -EBUSY;
3683 		goto pre_mutex_err;
3684 	}
3685 
3686 	/* Look up object handles */
3687 	flips = 0;
3688 	for (i = 0; i < args->buffer_count; i++) {
3689 		object_list[i] = drm_gem_object_lookup(dev, file_priv,
3690 						       exec_list[i].handle);
3691 		if (object_list[i] == NULL) {
3692 			DRM_ERROR("Invalid object handle %d at index %d\n",
3693 				   exec_list[i].handle, i);
3694 			ret = -EBADF;
3695 			goto err;
3696 		}
3697 
3698 		obj_priv = object_list[i]->driver_private;
3699 		if (obj_priv->in_execbuffer) {
3700 			DRM_ERROR("Object %p appears more than once in object list\n",
3701 				   object_list[i]);
3702 			ret = -EBADF;
3703 			goto err;
3704 		}
3705 		obj_priv->in_execbuffer = true;
3706 		flips += atomic_read(&obj_priv->pending_flip);
3707 	}
3708 
3709 	if (flips > 0) {
3710 		ret = i915_gem_wait_for_pending_flip(dev, object_list,
3711 						     args->buffer_count);
3712 		if (ret)
3713 			goto err;
3714 	}
3715 
3716 	/* Pin and relocate */
3717 	for (pin_tries = 0; ; pin_tries++) {
3718 		ret = 0;
3719 		reloc_index = 0;
3720 
3721 		for (i = 0; i < args->buffer_count; i++) {
3722 			object_list[i]->pending_read_domains = 0;
3723 			object_list[i]->pending_write_domain = 0;
3724 			ret = i915_gem_object_pin_and_relocate(object_list[i],
3725 							       file_priv,
3726 							       &exec_list[i],
3727 							       &relocs[reloc_index]);
3728 			if (ret)
3729 				break;
3730 			pinned = i + 1;
3731 			reloc_index += exec_list[i].relocation_count;
3732 		}
3733 		/* success */
3734 		if (ret == 0)
3735 			break;
3736 
3737 		/* error other than GTT full, or we've already tried again */
3738 		if (ret != -ENOSPC || pin_tries >= 1) {
3739 			if (ret != -ERESTARTSYS) {
3740 				unsigned long long total_size = 0;
3741 				for (i = 0; i < args->buffer_count; i++)
3742 					total_size += object_list[i]->size;
3743 				DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3744 					  pinned+1, args->buffer_count,
3745 					  total_size, ret);
3746 				DRM_ERROR("%d objects [%d pinned], "
3747 					  "%d object bytes [%d pinned], "
3748 					  "%d/%d gtt bytes\n",
3749 					  atomic_read(&dev->object_count),
3750 					  atomic_read(&dev->pin_count),
3751 					  atomic_read(&dev->object_memory),
3752 					  atomic_read(&dev->pin_memory),
3753 					  atomic_read(&dev->gtt_memory),
3754 					  dev->gtt_total);
3755 			}
3756 			goto err;
3757 		}
3758 
3759 		/* unpin all of our buffers */
3760 		for (i = 0; i < pinned; i++)
3761 			i915_gem_object_unpin(object_list[i]);
3762 		pinned = 0;
3763 
3764 		/* evict everyone we can from the aperture */
3765 		ret = i915_gem_evict_everything(dev);
3766 		if (ret && ret != -ENOSPC)
3767 			goto err;
3768 	}
3769 
3770 	/* Set the pending read domains for the batch buffer to COMMAND */
3771 	batch_obj = object_list[args->buffer_count-1];
3772 	if (batch_obj->pending_write_domain) {
3773 		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3774 		ret = -EINVAL;
3775 		goto err;
3776 	}
3777 	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3778 
3779 	/* Sanity check the batch buffer, prior to moving objects */
3780 	exec_offset = exec_list[args->buffer_count - 1].offset;
3781 	ret = i915_gem_check_execbuffer (args, exec_offset);
3782 	if (ret != 0) {
3783 		DRM_ERROR("execbuf with invalid offset/length\n");
3784 		goto err;
3785 	}
3786 
3787 	i915_verify_inactive(dev, __FILE__, __LINE__);
3788 
3789 	/* Zero the global flush/invalidate flags. These
3790 	 * will be modified as new domains are computed
3791 	 * for each object
3792 	 */
3793 	dev->invalidate_domains = 0;
3794 	dev->flush_domains = 0;
3795 
3796 	for (i = 0; i < args->buffer_count; i++) {
3797 		struct drm_gem_object *obj = object_list[i];
3798 
3799 		/* Compute new gpu domains and update invalidate/flush */
3800 		i915_gem_object_set_to_gpu_domain(obj);
3801 	}
3802 
3803 	i915_verify_inactive(dev, __FILE__, __LINE__);
3804 
3805 	if (dev->invalidate_domains | dev->flush_domains) {
3806 #if WATCH_EXEC
3807 		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3808 			  __func__,
3809 			 dev->invalidate_domains,
3810 			 dev->flush_domains);
3811 #endif
3812 		i915_gem_flush(dev,
3813 			       dev->invalidate_domains,
3814 			       dev->flush_domains);
3815 		if (dev->flush_domains)
3816 			(void)i915_add_request(dev, file_priv,
3817 					       dev->flush_domains);
3818 	}
3819 
3820 	for (i = 0; i < args->buffer_count; i++) {
3821 		struct drm_gem_object *obj = object_list[i];
3822 		uint32_t old_write_domain = obj->write_domain;
3823 
3824 		obj->write_domain = obj->pending_write_domain;
3825 		trace_i915_gem_object_change_domain(obj,
3826 						    obj->read_domains,
3827 						    old_write_domain);
3828 	}
3829 
3830 	i915_verify_inactive(dev, __FILE__, __LINE__);
3831 
3832 #if WATCH_COHERENCY
3833 	for (i = 0; i < args->buffer_count; i++) {
3834 		i915_gem_object_check_coherency(object_list[i],
3835 						exec_list[i].handle);
3836 	}
3837 #endif
3838 
3839 #if WATCH_EXEC
3840 	i915_gem_dump_object(batch_obj,
3841 			      args->batch_len,
3842 			      __func__,
3843 			      ~0);
3844 #endif
3845 
3846 	/* Exec the batchbuffer */
3847 	ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3848 	if (ret) {
3849 		DRM_ERROR("dispatch failed %d\n", ret);
3850 		goto err;
3851 	}
3852 
3853 	/*
3854 	 * Ensure that the commands in the batch buffer are
3855 	 * finished before the interrupt fires
3856 	 */
3857 	flush_domains = i915_retire_commands(dev);
3858 
3859 	i915_verify_inactive(dev, __FILE__, __LINE__);
3860 
3861 	/*
3862 	 * Get a seqno representing the execution of the current buffer,
3863 	 * which we can wait on.  We would like to mitigate these interrupts,
3864 	 * likely by only creating seqnos occasionally (so that we have
3865 	 * *some* interrupts representing completion of buffers that we can
3866 	 * wait on when trying to clear up gtt space).
3867 	 */
3868 	seqno = i915_add_request(dev, file_priv, flush_domains);
3869 	BUG_ON(seqno == 0);
3870 	for (i = 0; i < args->buffer_count; i++) {
3871 		struct drm_gem_object *obj = object_list[i];
3872 
3873 		i915_gem_object_move_to_active(obj, seqno);
3874 #if WATCH_LRU
3875 		DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3876 #endif
3877 	}
3878 #if WATCH_LRU
3879 	i915_dump_lru(dev, __func__);
3880 #endif
3881 
3882 	i915_verify_inactive(dev, __FILE__, __LINE__);
3883 
3884 err:
3885 	for (i = 0; i < pinned; i++)
3886 		i915_gem_object_unpin(object_list[i]);
3887 
3888 	for (i = 0; i < args->buffer_count; i++) {
3889 		if (object_list[i]) {
3890 			obj_priv = object_list[i]->driver_private;
3891 			obj_priv->in_execbuffer = false;
3892 		}
3893 		drm_gem_object_unreference(object_list[i]);
3894 	}
3895 
3896 	mutex_unlock(&dev->struct_mutex);
3897 
3898 	/* Copy the updated relocations out regardless of current error
3899 	 * state.  Failure to update the relocs would mean that the next
3900 	 * time userland calls execbuf, it would do so with presumed offset
3901 	 * state that didn't match the actual object state.
3902 	 */
3903 	ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3904 					   relocs);
3905 	if (ret2 != 0) {
3906 		DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3907 
3908 		if (ret == 0)
3909 			ret = ret2;
3910 	}
3911 
3912 pre_mutex_err:
3913 	drm_free_large(object_list);
3914 	kfree(cliprects);
3915 
3916 	return ret;
3917 }
3918 
3919 /*
3920  * Legacy execbuffer just creates an exec2 list from the original exec object
3921  * list array and passes it to the real function.
3922  */
3923 int
3924 i915_gem_execbuffer(struct drm_device *dev, void *data,
3925 		    struct drm_file *file_priv)
3926 {
3927 	struct drm_i915_gem_execbuffer *args = data;
3928 	struct drm_i915_gem_execbuffer2 exec2;
3929 	struct drm_i915_gem_exec_object *exec_list = NULL;
3930 	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3931 	int ret, i;
3932 
3933 #if WATCH_EXEC
3934 	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3935 		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3936 #endif
3937 
3938 	if (args->buffer_count < 1) {
3939 		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3940 		return -EINVAL;
3941 	}
3942 
3943 	/* Copy in the exec list from userland */
3944 	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3945 	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3946 	if (exec_list == NULL || exec2_list == NULL) {
3947 		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3948 			  args->buffer_count);
3949 		drm_free_large(exec_list);
3950 		drm_free_large(exec2_list);
3951 		return -ENOMEM;
3952 	}
3953 	ret = copy_from_user(exec_list,
3954 			     (struct drm_i915_relocation_entry __user *)
3955 			     (uintptr_t) args->buffers_ptr,
3956 			     sizeof(*exec_list) * args->buffer_count);
3957 	if (ret != 0) {
3958 		DRM_ERROR("copy %d exec entries failed %d\n",
3959 			  args->buffer_count, ret);
3960 		drm_free_large(exec_list);
3961 		drm_free_large(exec2_list);
3962 		return -EFAULT;
3963 	}
3964 
3965 	for (i = 0; i < args->buffer_count; i++) {
3966 		exec2_list[i].handle = exec_list[i].handle;
3967 		exec2_list[i].relocation_count = exec_list[i].relocation_count;
3968 		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3969 		exec2_list[i].alignment = exec_list[i].alignment;
3970 		exec2_list[i].offset = exec_list[i].offset;
3971 		if (!IS_I965G(dev))
3972 			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3973 		else
3974 			exec2_list[i].flags = 0;
3975 	}
3976 
3977 	exec2.buffers_ptr = args->buffers_ptr;
3978 	exec2.buffer_count = args->buffer_count;
3979 	exec2.batch_start_offset = args->batch_start_offset;
3980 	exec2.batch_len = args->batch_len;
3981 	exec2.DR1 = args->DR1;
3982 	exec2.DR4 = args->DR4;
3983 	exec2.num_cliprects = args->num_cliprects;
3984 	exec2.cliprects_ptr = args->cliprects_ptr;
3985 	exec2.flags = 0;
3986 
3987 	ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3988 	if (!ret) {
3989 		/* Copy the new buffer offsets back to the user's exec list. */
3990 		for (i = 0; i < args->buffer_count; i++)
3991 			exec_list[i].offset = exec2_list[i].offset;
3992 		/* ... and back out to userspace */
3993 		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3994 				   (uintptr_t) args->buffers_ptr,
3995 				   exec_list,
3996 				   sizeof(*exec_list) * args->buffer_count);
3997 		if (ret) {
3998 			ret = -EFAULT;
3999 			DRM_ERROR("failed to copy %d exec entries "
4000 				  "back to user (%d)\n",
4001 				  args->buffer_count, ret);
4002 		}
4003 	} else {
4004 		DRM_ERROR("i915_gem_do_execbuffer returns %d\n", ret);
4005 	}
4006 
4007 	drm_free_large(exec_list);
4008 	drm_free_large(exec2_list);
4009 	return ret;
4010 }
4011 
4012 int
4013 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4014 		     struct drm_file *file_priv)
4015 {
4016 	struct drm_i915_gem_execbuffer2 *args = data;
4017 	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4018 	int ret;
4019 
4020 #if WATCH_EXEC
4021 	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4022 		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4023 #endif
4024 
4025 	if (args->buffer_count < 1) {
4026 		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4027 		return -EINVAL;
4028 	}
4029 
4030 	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4031 	if (exec2_list == NULL) {
4032 		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4033 			  args->buffer_count);
4034 		return -ENOMEM;
4035 	}
4036 	ret = copy_from_user(exec2_list,
4037 			     (struct drm_i915_relocation_entry __user *)
4038 			     (uintptr_t) args->buffers_ptr,
4039 			     sizeof(*exec2_list) * args->buffer_count);
4040 	if (ret != 0) {
4041 		DRM_ERROR("copy %d exec entries failed %d\n",
4042 			  args->buffer_count, ret);
4043 		drm_free_large(exec2_list);
4044 		return -EFAULT;
4045 	}
4046 
4047 	ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4048 	if (!ret) {
4049 		/* Copy the new buffer offsets back to the user's exec list. */
4050 		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4051 				   (uintptr_t) args->buffers_ptr,
4052 				   exec2_list,
4053 				   sizeof(*exec2_list) * args->buffer_count);
4054 		if (ret) {
4055 			ret = -EFAULT;
4056 			DRM_ERROR("failed to copy %d exec entries "
4057 				  "back to user (%d)\n",
4058 				  args->buffer_count, ret);
4059 		}
4060 	}
4061 
4062 	drm_free_large(exec2_list);
4063 	return ret;
4064 }
4065 
4066 int
4067 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4068 {
4069 	struct drm_device *dev = obj->dev;
4070 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
4071 	int ret;
4072 
4073 	i915_verify_inactive(dev, __FILE__, __LINE__);
4074 	if (obj_priv->gtt_space == NULL) {
4075 		ret = i915_gem_object_bind_to_gtt(obj, alignment);
4076 		if (ret)
4077 			return ret;
4078 	}
4079 
4080 	obj_priv->pin_count++;
4081 
4082 	/* If the object is not active and not pending a flush,
4083 	 * remove it from the inactive list
4084 	 */
4085 	if (obj_priv->pin_count == 1) {
4086 		atomic_inc(&dev->pin_count);
4087 		atomic_add(obj->size, &dev->pin_memory);
4088 		if (!obj_priv->active &&
4089 		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
4090 		    !list_empty(&obj_priv->list))
4091 			list_del_init(&obj_priv->list);
4092 	}
4093 	i915_verify_inactive(dev, __FILE__, __LINE__);
4094 
4095 	return 0;
4096 }
4097 
4098 void
4099 i915_gem_object_unpin(struct drm_gem_object *obj)
4100 {
4101 	struct drm_device *dev = obj->dev;
4102 	drm_i915_private_t *dev_priv = dev->dev_private;
4103 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
4104 
4105 	i915_verify_inactive(dev, __FILE__, __LINE__);
4106 	obj_priv->pin_count--;
4107 	BUG_ON(obj_priv->pin_count < 0);
4108 	BUG_ON(obj_priv->gtt_space == NULL);
4109 
4110 	/* If the object is no longer pinned, and is
4111 	 * neither active nor being flushed, then stick it on
4112 	 * the inactive list
4113 	 */
4114 	if (obj_priv->pin_count == 0) {
4115 		if (!obj_priv->active &&
4116 		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4117 			list_move_tail(&obj_priv->list,
4118 				       &dev_priv->mm.inactive_list);
4119 		atomic_dec(&dev->pin_count);
4120 		atomic_sub(obj->size, &dev->pin_memory);
4121 	}
4122 	i915_verify_inactive(dev, __FILE__, __LINE__);
4123 }
4124 
4125 int
4126 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4127 		   struct drm_file *file_priv)
4128 {
4129 	struct drm_i915_gem_pin *args = data;
4130 	struct drm_gem_object *obj;
4131 	struct drm_i915_gem_object *obj_priv;
4132 	int ret;
4133 
4134 	mutex_lock(&dev->struct_mutex);
4135 
4136 	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4137 	if (obj == NULL) {
4138 		DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4139 			  args->handle);
4140 		mutex_unlock(&dev->struct_mutex);
4141 		return -EBADF;
4142 	}
4143 	obj_priv = obj->driver_private;
4144 
4145 	if (obj_priv->madv != I915_MADV_WILLNEED) {
4146 		DRM_ERROR("Attempting to pin a purgeable buffer\n");
4147 		drm_gem_object_unreference(obj);
4148 		mutex_unlock(&dev->struct_mutex);
4149 		return -EINVAL;
4150 	}
4151 
4152 	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4153 		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4154 			  args->handle);
4155 		drm_gem_object_unreference(obj);
4156 		mutex_unlock(&dev->struct_mutex);
4157 		return -EINVAL;
4158 	}
4159 
4160 	obj_priv->user_pin_count++;
4161 	obj_priv->pin_filp = file_priv;
4162 	if (obj_priv->user_pin_count == 1) {
4163 		ret = i915_gem_object_pin(obj, args->alignment);
4164 		if (ret != 0) {
4165 			drm_gem_object_unreference(obj);
4166 			mutex_unlock(&dev->struct_mutex);
4167 			return ret;
4168 		}
4169 	}
4170 
4171 	/* XXX - flush the CPU caches for pinned objects
4172 	 * as the X server doesn't manage domains yet
4173 	 */
4174 	i915_gem_object_flush_cpu_write_domain(obj);
4175 	args->offset = obj_priv->gtt_offset;
4176 	drm_gem_object_unreference(obj);
4177 	mutex_unlock(&dev->struct_mutex);
4178 
4179 	return 0;
4180 }
4181 
4182 int
4183 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4184 		     struct drm_file *file_priv)
4185 {
4186 	struct drm_i915_gem_pin *args = data;
4187 	struct drm_gem_object *obj;
4188 	struct drm_i915_gem_object *obj_priv;
4189 
4190 	mutex_lock(&dev->struct_mutex);
4191 
4192 	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4193 	if (obj == NULL) {
4194 		DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4195 			  args->handle);
4196 		mutex_unlock(&dev->struct_mutex);
4197 		return -EBADF;
4198 	}
4199 
4200 	obj_priv = obj->driver_private;
4201 	if (obj_priv->pin_filp != file_priv) {
4202 		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4203 			  args->handle);
4204 		drm_gem_object_unreference(obj);
4205 		mutex_unlock(&dev->struct_mutex);
4206 		return -EINVAL;
4207 	}
4208 	obj_priv->user_pin_count--;
4209 	if (obj_priv->user_pin_count == 0) {
4210 		obj_priv->pin_filp = NULL;
4211 		i915_gem_object_unpin(obj);
4212 	}
4213 
4214 	drm_gem_object_unreference(obj);
4215 	mutex_unlock(&dev->struct_mutex);
4216 	return 0;
4217 }
4218 
4219 int
4220 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4221 		    struct drm_file *file_priv)
4222 {
4223 	struct drm_i915_gem_busy *args = data;
4224 	struct drm_gem_object *obj;
4225 	struct drm_i915_gem_object *obj_priv;
4226 
4227 	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4228 	if (obj == NULL) {
4229 		DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4230 			  args->handle);
4231 		return -EBADF;
4232 	}
4233 
4234 	mutex_lock(&dev->struct_mutex);
4235 	/* Update the active list for the hardware's current position.
4236 	 * Otherwise this only updates on a delayed timer or when irqs are
4237 	 * actually unmasked, and our working set ends up being larger than
4238 	 * required.
4239 	 */
4240 	i915_gem_retire_requests(dev);
4241 
4242 	obj_priv = obj->driver_private;
4243 	/* Don't count being on the flushing list against the object being
4244 	 * done.  Otherwise, a buffer left on the flushing list but not getting
4245 	 * flushed (because nobody's flushing that domain) won't ever return
4246 	 * unbusy and get reused by libdrm's bo cache.  The other expected
4247 	 * consumer of this interface, OpenGL's occlusion queries, also specs
4248 	 * that the objects get unbusy "eventually" without any interference.
4249 	 */
4250 	args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4251 
4252 	drm_gem_object_unreference(obj);
4253 	mutex_unlock(&dev->struct_mutex);
4254 	return 0;
4255 }
4256 
4257 int
4258 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4259 			struct drm_file *file_priv)
4260 {
4261     return i915_gem_ring_throttle(dev, file_priv);
4262 }
4263 
4264 int
4265 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4266 		       struct drm_file *file_priv)
4267 {
4268 	struct drm_i915_gem_madvise *args = data;
4269 	struct drm_gem_object *obj;
4270 	struct drm_i915_gem_object *obj_priv;
4271 
4272 	switch (args->madv) {
4273 	case I915_MADV_DONTNEED:
4274 	case I915_MADV_WILLNEED:
4275 	    break;
4276 	default:
4277 	    return -EINVAL;
4278 	}
4279 
4280 	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4281 	if (obj == NULL) {
4282 		DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4283 			  args->handle);
4284 		return -EBADF;
4285 	}
4286 
4287 	mutex_lock(&dev->struct_mutex);
4288 	obj_priv = obj->driver_private;
4289 
4290 	if (obj_priv->pin_count) {
4291 		drm_gem_object_unreference(obj);
4292 		mutex_unlock(&dev->struct_mutex);
4293 
4294 		DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4295 		return -EINVAL;
4296 	}
4297 
4298 	if (obj_priv->madv != __I915_MADV_PURGED)
4299 		obj_priv->madv = args->madv;
4300 
4301 	/* if the object is no longer bound, discard its backing storage */
4302 	if (i915_gem_object_is_purgeable(obj_priv) &&
4303 	    obj_priv->gtt_space == NULL)
4304 		i915_gem_object_truncate(obj);
4305 
4306 	args->retained = obj_priv->madv != __I915_MADV_PURGED;
4307 
4308 	drm_gem_object_unreference(obj);
4309 	mutex_unlock(&dev->struct_mutex);
4310 
4311 	return 0;
4312 }
4313 
4314 int i915_gem_init_object(struct drm_gem_object *obj)
4315 {
4316 	struct drm_i915_gem_object *obj_priv;
4317 
4318 	obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4319 	if (obj_priv == NULL)
4320 		return -ENOMEM;
4321 
4322 	/*
4323 	 * We've just allocated pages from the kernel,
4324 	 * so they've just been written by the CPU with
4325 	 * zeros. They'll need to be clflushed before we
4326 	 * use them with the GPU.
4327 	 */
4328 	obj->write_domain = I915_GEM_DOMAIN_CPU;
4329 	obj->read_domains = I915_GEM_DOMAIN_CPU;
4330 
4331 	obj_priv->agp_type = AGP_USER_MEMORY;
4332 
4333 	obj->driver_private = obj_priv;
4334 	obj_priv->obj = obj;
4335 	obj_priv->fence_reg = I915_FENCE_REG_NONE;
4336 	INIT_LIST_HEAD(&obj_priv->list);
4337 	INIT_LIST_HEAD(&obj_priv->fence_list);
4338 	obj_priv->madv = I915_MADV_WILLNEED;
4339 
4340 	trace_i915_gem_object_create(obj);
4341 
4342 	return 0;
4343 }
4344 
4345 void i915_gem_free_object(struct drm_gem_object *obj)
4346 {
4347 	struct drm_device *dev = obj->dev;
4348 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
4349 
4350 	trace_i915_gem_object_destroy(obj);
4351 
4352 	while (obj_priv->pin_count > 0)
4353 		i915_gem_object_unpin(obj);
4354 
4355 	if (obj_priv->phys_obj)
4356 		i915_gem_detach_phys_object(dev, obj);
4357 
4358 	i915_gem_object_unbind(obj);
4359 
4360 	if (obj_priv->mmap_offset)
4361 		i915_gem_free_mmap_offset(obj);
4362 
4363 	kfree(obj_priv->page_cpu_valid);
4364 	kfree(obj_priv->bit_17);
4365 	kfree(obj->driver_private);
4366 }
4367 
4368 /** Unbinds all inactive objects. */
4369 static int
4370 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4371 {
4372 	drm_i915_private_t *dev_priv = dev->dev_private;
4373 
4374 	while (!list_empty(&dev_priv->mm.inactive_list)) {
4375 		struct drm_gem_object *obj;
4376 		int ret;
4377 
4378 		obj = list_first_entry(&dev_priv->mm.inactive_list,
4379 				       struct drm_i915_gem_object,
4380 				       list)->obj;
4381 
4382 		ret = i915_gem_object_unbind(obj);
4383 		if (ret != 0) {
4384 			DRM_ERROR("Error unbinding object: %d\n", ret);
4385 			return ret;
4386 		}
4387 	}
4388 
4389 	return 0;
4390 }
4391 
4392 int
4393 i915_gem_idle(struct drm_device *dev)
4394 {
4395 	drm_i915_private_t *dev_priv = dev->dev_private;
4396 	uint32_t seqno, cur_seqno, last_seqno;
4397 	int stuck, ret;
4398 
4399 	mutex_lock(&dev->struct_mutex);
4400 
4401 	if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4402 		mutex_unlock(&dev->struct_mutex);
4403 		return 0;
4404 	}
4405 
4406 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
4407 	 * We need to replace this with a semaphore, or something.
4408 	 */
4409 	dev_priv->mm.suspended = 1;
4410 	del_timer(&dev_priv->hangcheck_timer);
4411 
4412 	/* Cancel the retire work handler, wait for it to finish if running
4413 	 */
4414 	mutex_unlock(&dev->struct_mutex);
4415 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4416 	mutex_lock(&dev->struct_mutex);
4417 
4418 	i915_kernel_lost_context(dev);
4419 
4420 	/* Flush the GPU along with all non-CPU write domains
4421 	 */
4422 	i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
4423 	seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
4424 
4425 	if (seqno == 0) {
4426 		mutex_unlock(&dev->struct_mutex);
4427 		return -ENOMEM;
4428 	}
4429 
4430 	dev_priv->mm.waiting_gem_seqno = seqno;
4431 	last_seqno = 0;
4432 	stuck = 0;
4433 	for (;;) {
4434 		cur_seqno = i915_get_gem_seqno(dev);
4435 		if (i915_seqno_passed(cur_seqno, seqno))
4436 			break;
4437 		if (last_seqno == cur_seqno) {
4438 			if (stuck++ > 100) {
4439 				DRM_ERROR("hardware wedged\n");
4440 				atomic_set(&dev_priv->mm.wedged, 1);
4441 				DRM_WAKEUP(&dev_priv->irq_queue);
4442 				break;
4443 			}
4444 		}
4445 		msleep(10);
4446 		last_seqno = cur_seqno;
4447 	}
4448 	dev_priv->mm.waiting_gem_seqno = 0;
4449 
4450 	i915_gem_retire_requests(dev);
4451 
4452 	spin_lock(&dev_priv->mm.active_list_lock);
4453 	if (!atomic_read(&dev_priv->mm.wedged)) {
4454 		/* Active and flushing should now be empty as we've
4455 		 * waited for a sequence higher than any pending execbuffer
4456 		 */
4457 		WARN_ON(!list_empty(&dev_priv->mm.active_list));
4458 		WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
4459 		/* Request should now be empty as we've also waited
4460 		 * for the last request in the list
4461 		 */
4462 		WARN_ON(!list_empty(&dev_priv->mm.request_list));
4463 	}
4464 
4465 	/* Empty the active and flushing lists to inactive.  If there's
4466 	 * anything left at this point, it means that we're wedged and
4467 	 * nothing good's going to happen by leaving them there.  So strip
4468 	 * the GPU domains and just stuff them onto inactive.
4469 	 */
4470 	while (!list_empty(&dev_priv->mm.active_list)) {
4471 		struct drm_gem_object *obj;
4472 		uint32_t old_write_domain;
4473 
4474 		obj = list_first_entry(&dev_priv->mm.active_list,
4475 				       struct drm_i915_gem_object,
4476 				       list)->obj;
4477 		old_write_domain = obj->write_domain;
4478 		obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4479 		i915_gem_object_move_to_inactive(obj);
4480 
4481 		trace_i915_gem_object_change_domain(obj,
4482 						    obj->read_domains,
4483 						    old_write_domain);
4484 	}
4485 	spin_unlock(&dev_priv->mm.active_list_lock);
4486 
4487 	while (!list_empty(&dev_priv->mm.flushing_list)) {
4488 		struct drm_gem_object *obj;
4489 		uint32_t old_write_domain;
4490 
4491 		obj = list_first_entry(&dev_priv->mm.flushing_list,
4492 				       struct drm_i915_gem_object,
4493 				       list)->obj;
4494 		old_write_domain = obj->write_domain;
4495 		obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4496 		i915_gem_object_move_to_inactive(obj);
4497 
4498 		trace_i915_gem_object_change_domain(obj,
4499 						    obj->read_domains,
4500 						    old_write_domain);
4501 	}
4502 
4503 
4504 	/* Move all inactive buffers out of the GTT. */
4505 	ret = i915_gem_evict_from_inactive_list(dev);
4506 	WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
4507 	if (ret) {
4508 		mutex_unlock(&dev->struct_mutex);
4509 		return ret;
4510 	}
4511 
4512 	i915_gem_cleanup_ringbuffer(dev);
4513 	mutex_unlock(&dev->struct_mutex);
4514 
4515 	return 0;
4516 }
4517 
4518 static int
4519 i915_gem_init_hws(struct drm_device *dev)
4520 {
4521 	drm_i915_private_t *dev_priv = dev->dev_private;
4522 	struct drm_gem_object *obj;
4523 	struct drm_i915_gem_object *obj_priv;
4524 	int ret;
4525 
4526 	/* If we need a physical address for the status page, it's already
4527 	 * initialized at driver load time.
4528 	 */
4529 	if (!I915_NEED_GFX_HWS(dev))
4530 		return 0;
4531 
4532 	obj = drm_gem_object_alloc(dev, 4096);
4533 	if (obj == NULL) {
4534 		DRM_ERROR("Failed to allocate status page\n");
4535 		return -ENOMEM;
4536 	}
4537 	obj_priv = obj->driver_private;
4538 	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4539 
4540 	ret = i915_gem_object_pin(obj, 4096);
4541 	if (ret != 0) {
4542 		drm_gem_object_unreference(obj);
4543 		return ret;
4544 	}
4545 
4546 	dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4547 
4548 	dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4549 	if (dev_priv->hw_status_page == NULL) {
4550 		DRM_ERROR("Failed to map status page.\n");
4551 		memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4552 		i915_gem_object_unpin(obj);
4553 		drm_gem_object_unreference(obj);
4554 		return -EINVAL;
4555 	}
4556 	dev_priv->hws_obj = obj;
4557 	memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4558 	I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4559 	I915_READ(HWS_PGA); /* posting read */
4560 	DRM_DEBUG_DRIVER("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4561 
4562 	return 0;
4563 }
4564 
4565 static void
4566 i915_gem_cleanup_hws(struct drm_device *dev)
4567 {
4568 	drm_i915_private_t *dev_priv = dev->dev_private;
4569 	struct drm_gem_object *obj;
4570 	struct drm_i915_gem_object *obj_priv;
4571 
4572 	if (dev_priv->hws_obj == NULL)
4573 		return;
4574 
4575 	obj = dev_priv->hws_obj;
4576 	obj_priv = obj->driver_private;
4577 
4578 	kunmap(obj_priv->pages[0]);
4579 	i915_gem_object_unpin(obj);
4580 	drm_gem_object_unreference(obj);
4581 	dev_priv->hws_obj = NULL;
4582 
4583 	memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4584 	dev_priv->hw_status_page = NULL;
4585 
4586 	/* Write high address into HWS_PGA when disabling. */
4587 	I915_WRITE(HWS_PGA, 0x1ffff000);
4588 }
4589 
4590 int
4591 i915_gem_init_ringbuffer(struct drm_device *dev)
4592 {
4593 	drm_i915_private_t *dev_priv = dev->dev_private;
4594 	struct drm_gem_object *obj;
4595 	struct drm_i915_gem_object *obj_priv;
4596 	drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4597 	int ret;
4598 	u32 head;
4599 
4600 	ret = i915_gem_init_hws(dev);
4601 	if (ret != 0)
4602 		return ret;
4603 
4604 	obj = drm_gem_object_alloc(dev, 128 * 1024);
4605 	if (obj == NULL) {
4606 		DRM_ERROR("Failed to allocate ringbuffer\n");
4607 		i915_gem_cleanup_hws(dev);
4608 		return -ENOMEM;
4609 	}
4610 	obj_priv = obj->driver_private;
4611 
4612 	ret = i915_gem_object_pin(obj, 4096);
4613 	if (ret != 0) {
4614 		drm_gem_object_unreference(obj);
4615 		i915_gem_cleanup_hws(dev);
4616 		return ret;
4617 	}
4618 
4619 	/* Set up the kernel mapping for the ring. */
4620 	ring->Size = obj->size;
4621 
4622 	ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4623 	ring->map.size = obj->size;
4624 	ring->map.type = 0;
4625 	ring->map.flags = 0;
4626 	ring->map.mtrr = 0;
4627 
4628 	drm_core_ioremap_wc(&ring->map, dev);
4629 	if (ring->map.handle == NULL) {
4630 		DRM_ERROR("Failed to map ringbuffer.\n");
4631 		memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4632 		i915_gem_object_unpin(obj);
4633 		drm_gem_object_unreference(obj);
4634 		i915_gem_cleanup_hws(dev);
4635 		return -EINVAL;
4636 	}
4637 	ring->ring_obj = obj;
4638 	ring->virtual_start = ring->map.handle;
4639 
4640 	/* Stop the ring if it's running. */
4641 	I915_WRITE(PRB0_CTL, 0);
4642 	I915_WRITE(PRB0_TAIL, 0);
4643 	I915_WRITE(PRB0_HEAD, 0);
4644 
4645 	/* Initialize the ring. */
4646 	I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4647 	head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4648 
4649 	/* G45 ring initialization fails to reset head to zero */
4650 	if (head != 0) {
4651 		DRM_ERROR("Ring head not reset to zero "
4652 			  "ctl %08x head %08x tail %08x start %08x\n",
4653 			  I915_READ(PRB0_CTL),
4654 			  I915_READ(PRB0_HEAD),
4655 			  I915_READ(PRB0_TAIL),
4656 			  I915_READ(PRB0_START));
4657 		I915_WRITE(PRB0_HEAD, 0);
4658 
4659 		DRM_ERROR("Ring head forced to zero "
4660 			  "ctl %08x head %08x tail %08x start %08x\n",
4661 			  I915_READ(PRB0_CTL),
4662 			  I915_READ(PRB0_HEAD),
4663 			  I915_READ(PRB0_TAIL),
4664 			  I915_READ(PRB0_START));
4665 	}
4666 
4667 	I915_WRITE(PRB0_CTL,
4668 		   ((obj->size - 4096) & RING_NR_PAGES) |
4669 		   RING_NO_REPORT |
4670 		   RING_VALID);
4671 
4672 	head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4673 
4674 	/* If the head is still not zero, the ring is dead */
4675 	if (head != 0) {
4676 		DRM_ERROR("Ring initialization failed "
4677 			  "ctl %08x head %08x tail %08x start %08x\n",
4678 			  I915_READ(PRB0_CTL),
4679 			  I915_READ(PRB0_HEAD),
4680 			  I915_READ(PRB0_TAIL),
4681 			  I915_READ(PRB0_START));
4682 		return -EIO;
4683 	}
4684 
4685 	/* Update our cache of the ring state */
4686 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4687 		i915_kernel_lost_context(dev);
4688 	else {
4689 		ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4690 		ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4691 		ring->space = ring->head - (ring->tail + 8);
4692 		if (ring->space < 0)
4693 			ring->space += ring->Size;
4694 	}
4695 
4696 	return 0;
4697 }
4698 
4699 void
4700 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4701 {
4702 	drm_i915_private_t *dev_priv = dev->dev_private;
4703 
4704 	if (dev_priv->ring.ring_obj == NULL)
4705 		return;
4706 
4707 	drm_core_ioremapfree(&dev_priv->ring.map, dev);
4708 
4709 	i915_gem_object_unpin(dev_priv->ring.ring_obj);
4710 	drm_gem_object_unreference(dev_priv->ring.ring_obj);
4711 	dev_priv->ring.ring_obj = NULL;
4712 	memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4713 
4714 	i915_gem_cleanup_hws(dev);
4715 }
4716 
4717 int
4718 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4719 		       struct drm_file *file_priv)
4720 {
4721 	drm_i915_private_t *dev_priv = dev->dev_private;
4722 	int ret;
4723 
4724 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4725 		return 0;
4726 
4727 	if (atomic_read(&dev_priv->mm.wedged)) {
4728 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4729 		atomic_set(&dev_priv->mm.wedged, 0);
4730 	}
4731 
4732 	mutex_lock(&dev->struct_mutex);
4733 	dev_priv->mm.suspended = 0;
4734 
4735 	ret = i915_gem_init_ringbuffer(dev);
4736 	if (ret != 0) {
4737 		mutex_unlock(&dev->struct_mutex);
4738 		return ret;
4739 	}
4740 
4741 	spin_lock(&dev_priv->mm.active_list_lock);
4742 	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4743 	spin_unlock(&dev_priv->mm.active_list_lock);
4744 
4745 	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4746 	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4747 	BUG_ON(!list_empty(&dev_priv->mm.request_list));
4748 	mutex_unlock(&dev->struct_mutex);
4749 
4750 	drm_irq_install(dev);
4751 
4752 	return 0;
4753 }
4754 
4755 int
4756 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4757 		       struct drm_file *file_priv)
4758 {
4759 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4760 		return 0;
4761 
4762 	drm_irq_uninstall(dev);
4763 	return i915_gem_idle(dev);
4764 }
4765 
4766 void
4767 i915_gem_lastclose(struct drm_device *dev)
4768 {
4769 	int ret;
4770 
4771 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4772 		return;
4773 
4774 	ret = i915_gem_idle(dev);
4775 	if (ret)
4776 		DRM_ERROR("failed to idle hardware: %d\n", ret);
4777 }
4778 
4779 void
4780 i915_gem_load(struct drm_device *dev)
4781 {
4782 	int i;
4783 	drm_i915_private_t *dev_priv = dev->dev_private;
4784 
4785 	spin_lock_init(&dev_priv->mm.active_list_lock);
4786 	INIT_LIST_HEAD(&dev_priv->mm.active_list);
4787 	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4788 	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4789 	INIT_LIST_HEAD(&dev_priv->mm.request_list);
4790 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4791 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4792 			  i915_gem_retire_work_handler);
4793 	dev_priv->mm.next_gem_seqno = 1;
4794 
4795 	spin_lock(&shrink_list_lock);
4796 	list_add(&dev_priv->mm.shrink_list, &shrink_list);
4797 	spin_unlock(&shrink_list_lock);
4798 
4799 	/* Old X drivers will take 0-2 for front, back, depth buffers */
4800 	dev_priv->fence_reg_start = 3;
4801 
4802 	if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4803 		dev_priv->num_fence_regs = 16;
4804 	else
4805 		dev_priv->num_fence_regs = 8;
4806 
4807 	/* Initialize fence registers to zero */
4808 	if (IS_I965G(dev)) {
4809 		for (i = 0; i < 16; i++)
4810 			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4811 	} else {
4812 		for (i = 0; i < 8; i++)
4813 			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4814 		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4815 			for (i = 0; i < 8; i++)
4816 				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4817 	}
4818 	i915_gem_detect_bit_6_swizzle(dev);
4819 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4820 }
4821 
4822 /*
4823  * Create a physically contiguous memory object for this object
4824  * e.g. for cursor + overlay regs
4825  */
4826 int i915_gem_init_phys_object(struct drm_device *dev,
4827 			      int id, int size)
4828 {
4829 	drm_i915_private_t *dev_priv = dev->dev_private;
4830 	struct drm_i915_gem_phys_object *phys_obj;
4831 	int ret;
4832 
4833 	if (dev_priv->mm.phys_objs[id - 1] || !size)
4834 		return 0;
4835 
4836 	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4837 	if (!phys_obj)
4838 		return -ENOMEM;
4839 
4840 	phys_obj->id = id;
4841 
4842 	phys_obj->handle = drm_pci_alloc(dev, size, 0);
4843 	if (!phys_obj->handle) {
4844 		ret = -ENOMEM;
4845 		goto kfree_obj;
4846 	}
4847 #ifdef CONFIG_X86
4848 	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4849 #endif
4850 
4851 	dev_priv->mm.phys_objs[id - 1] = phys_obj;
4852 
4853 	return 0;
4854 kfree_obj:
4855 	kfree(phys_obj);
4856 	return ret;
4857 }
4858 
4859 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4860 {
4861 	drm_i915_private_t *dev_priv = dev->dev_private;
4862 	struct drm_i915_gem_phys_object *phys_obj;
4863 
4864 	if (!dev_priv->mm.phys_objs[id - 1])
4865 		return;
4866 
4867 	phys_obj = dev_priv->mm.phys_objs[id - 1];
4868 	if (phys_obj->cur_obj) {
4869 		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4870 	}
4871 
4872 #ifdef CONFIG_X86
4873 	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4874 #endif
4875 	drm_pci_free(dev, phys_obj->handle);
4876 	kfree(phys_obj);
4877 	dev_priv->mm.phys_objs[id - 1] = NULL;
4878 }
4879 
4880 void i915_gem_free_all_phys_object(struct drm_device *dev)
4881 {
4882 	int i;
4883 
4884 	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4885 		i915_gem_free_phys_object(dev, i);
4886 }
4887 
4888 void i915_gem_detach_phys_object(struct drm_device *dev,
4889 				 struct drm_gem_object *obj)
4890 {
4891 	struct drm_i915_gem_object *obj_priv;
4892 	int i;
4893 	int ret;
4894 	int page_count;
4895 
4896 	obj_priv = obj->driver_private;
4897 	if (!obj_priv->phys_obj)
4898 		return;
4899 
4900 	ret = i915_gem_object_get_pages(obj);
4901 	if (ret)
4902 		goto out;
4903 
4904 	page_count = obj->size / PAGE_SIZE;
4905 
4906 	for (i = 0; i < page_count; i++) {
4907 		char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4908 		char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4909 
4910 		memcpy(dst, src, PAGE_SIZE);
4911 		kunmap_atomic(dst, KM_USER0);
4912 	}
4913 	drm_clflush_pages(obj_priv->pages, page_count);
4914 	drm_agp_chipset_flush(dev);
4915 
4916 	i915_gem_object_put_pages(obj);
4917 out:
4918 	obj_priv->phys_obj->cur_obj = NULL;
4919 	obj_priv->phys_obj = NULL;
4920 }
4921 
4922 int
4923 i915_gem_attach_phys_object(struct drm_device *dev,
4924 			    struct drm_gem_object *obj, int id)
4925 {
4926 	drm_i915_private_t *dev_priv = dev->dev_private;
4927 	struct drm_i915_gem_object *obj_priv;
4928 	int ret = 0;
4929 	int page_count;
4930 	int i;
4931 
4932 	if (id > I915_MAX_PHYS_OBJECT)
4933 		return -EINVAL;
4934 
4935 	obj_priv = obj->driver_private;
4936 
4937 	if (obj_priv->phys_obj) {
4938 		if (obj_priv->phys_obj->id == id)
4939 			return 0;
4940 		i915_gem_detach_phys_object(dev, obj);
4941 	}
4942 
4943 
4944 	/* create a new object */
4945 	if (!dev_priv->mm.phys_objs[id - 1]) {
4946 		ret = i915_gem_init_phys_object(dev, id,
4947 						obj->size);
4948 		if (ret) {
4949 			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4950 			goto out;
4951 		}
4952 	}
4953 
4954 	/* bind to the object */
4955 	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4956 	obj_priv->phys_obj->cur_obj = obj;
4957 
4958 	ret = i915_gem_object_get_pages(obj);
4959 	if (ret) {
4960 		DRM_ERROR("failed to get page list\n");
4961 		goto out;
4962 	}
4963 
4964 	page_count = obj->size / PAGE_SIZE;
4965 
4966 	for (i = 0; i < page_count; i++) {
4967 		char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4968 		char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4969 
4970 		memcpy(dst, src, PAGE_SIZE);
4971 		kunmap_atomic(src, KM_USER0);
4972 	}
4973 
4974 	i915_gem_object_put_pages(obj);
4975 
4976 	return 0;
4977 out:
4978 	return ret;
4979 }
4980 
4981 static int
4982 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4983 		     struct drm_i915_gem_pwrite *args,
4984 		     struct drm_file *file_priv)
4985 {
4986 	struct drm_i915_gem_object *obj_priv = obj->driver_private;
4987 	void *obj_addr;
4988 	int ret;
4989 	char __user *user_data;
4990 
4991 	user_data = (char __user *) (uintptr_t) args->data_ptr;
4992 	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4993 
4994 	DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4995 	ret = copy_from_user(obj_addr, user_data, args->size);
4996 	if (ret)
4997 		return -EFAULT;
4998 
4999 	drm_agp_chipset_flush(dev);
5000 	return 0;
5001 }
5002 
5003 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
5004 {
5005 	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
5006 
5007 	/* Clean up our request list when the client is going away, so that
5008 	 * later retire_requests won't dereference our soon-to-be-gone
5009 	 * file_priv.
5010 	 */
5011 	mutex_lock(&dev->struct_mutex);
5012 	while (!list_empty(&i915_file_priv->mm.request_list))
5013 		list_del_init(i915_file_priv->mm.request_list.next);
5014 	mutex_unlock(&dev->struct_mutex);
5015 }
5016 
5017 static int
5018 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
5019 {
5020 	drm_i915_private_t *dev_priv, *next_dev;
5021 	struct drm_i915_gem_object *obj_priv, *next_obj;
5022 	int cnt = 0;
5023 	int would_deadlock = 1;
5024 
5025 	/* "fast-path" to count number of available objects */
5026 	if (nr_to_scan == 0) {
5027 		spin_lock(&shrink_list_lock);
5028 		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5029 			struct drm_device *dev = dev_priv->dev;
5030 
5031 			if (mutex_trylock(&dev->struct_mutex)) {
5032 				list_for_each_entry(obj_priv,
5033 						    &dev_priv->mm.inactive_list,
5034 						    list)
5035 					cnt++;
5036 				mutex_unlock(&dev->struct_mutex);
5037 			}
5038 		}
5039 		spin_unlock(&shrink_list_lock);
5040 
5041 		return (cnt / 100) * sysctl_vfs_cache_pressure;
5042 	}
5043 
5044 	spin_lock(&shrink_list_lock);
5045 
5046 	/* first scan for clean buffers */
5047 	list_for_each_entry_safe(dev_priv, next_dev,
5048 				 &shrink_list, mm.shrink_list) {
5049 		struct drm_device *dev = dev_priv->dev;
5050 
5051 		if (! mutex_trylock(&dev->struct_mutex))
5052 			continue;
5053 
5054 		spin_unlock(&shrink_list_lock);
5055 
5056 		i915_gem_retire_requests(dev);
5057 
5058 		list_for_each_entry_safe(obj_priv, next_obj,
5059 					 &dev_priv->mm.inactive_list,
5060 					 list) {
5061 			if (i915_gem_object_is_purgeable(obj_priv)) {
5062 				i915_gem_object_unbind(obj_priv->obj);
5063 				if (--nr_to_scan <= 0)
5064 					break;
5065 			}
5066 		}
5067 
5068 		spin_lock(&shrink_list_lock);
5069 		mutex_unlock(&dev->struct_mutex);
5070 
5071 		would_deadlock = 0;
5072 
5073 		if (nr_to_scan <= 0)
5074 			break;
5075 	}
5076 
5077 	/* second pass, evict/count anything still on the inactive list */
5078 	list_for_each_entry_safe(dev_priv, next_dev,
5079 				 &shrink_list, mm.shrink_list) {
5080 		struct drm_device *dev = dev_priv->dev;
5081 
5082 		if (! mutex_trylock(&dev->struct_mutex))
5083 			continue;
5084 
5085 		spin_unlock(&shrink_list_lock);
5086 
5087 		list_for_each_entry_safe(obj_priv, next_obj,
5088 					 &dev_priv->mm.inactive_list,
5089 					 list) {
5090 			if (nr_to_scan > 0) {
5091 				i915_gem_object_unbind(obj_priv->obj);
5092 				nr_to_scan--;
5093 			} else
5094 				cnt++;
5095 		}
5096 
5097 		spin_lock(&shrink_list_lock);
5098 		mutex_unlock(&dev->struct_mutex);
5099 
5100 		would_deadlock = 0;
5101 	}
5102 
5103 	spin_unlock(&shrink_list_lock);
5104 
5105 	if (would_deadlock)
5106 		return -1;
5107 	else if (cnt > 0)
5108 		return (cnt / 100) * sysctl_vfs_cache_pressure;
5109 	else
5110 		return 0;
5111 }
5112 
5113 static struct shrinker shrinker = {
5114 	.shrink = i915_gem_shrink,
5115 	.seeks = DEFAULT_SEEKS,
5116 };
5117 
5118 __init void
5119 i915_gem_shrinker_init(void)
5120 {
5121     register_shrinker(&shrinker);
5122 }
5123 
5124 __exit void
5125 i915_gem_shrinker_exit(void)
5126 {
5127     unregister_shrinker(&shrinker);
5128 }
5129