xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision 9cfc5c90)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40 
41 #define RQ_BUG_ON(expr)
42 
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49 
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51 				  enum i915_cache_level level)
52 {
53 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55 
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 		return true;
60 
61 	return obj->pin_display;
62 }
63 
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 				  size_t size)
67 {
68 	spin_lock(&dev_priv->mm.object_stat_lock);
69 	dev_priv->mm.object_count++;
70 	dev_priv->mm.object_memory += size;
71 	spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73 
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 				     size_t size)
76 {
77 	spin_lock(&dev_priv->mm.object_stat_lock);
78 	dev_priv->mm.object_count--;
79 	dev_priv->mm.object_memory -= size;
80 	spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82 
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86 	int ret;
87 
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89 		   i915_terminally_wedged(error))
90 	if (EXIT_COND)
91 		return 0;
92 
93 	/*
94 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 	 * userspace. If it takes that long something really bad is going on and
96 	 * we should simply try to bail out and fail as gracefully as possible.
97 	 */
98 	ret = wait_event_interruptible_timeout(error->reset_queue,
99 					       EXIT_COND,
100 					       10*HZ);
101 	if (ret == 0) {
102 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 		return -EIO;
104 	} else if (ret < 0) {
105 		return ret;
106 	}
107 #undef EXIT_COND
108 
109 	return 0;
110 }
111 
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114 	struct drm_i915_private *dev_priv = dev->dev_private;
115 	int ret;
116 
117 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 	if (ret)
119 		return ret;
120 
121 	ret = mutex_lock_interruptible(&dev->struct_mutex);
122 	if (ret)
123 		return ret;
124 
125 	WARN_ON(i915_verify_lists(dev));
126 	return 0;
127 }
128 
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131 			    struct drm_file *file)
132 {
133 	struct drm_i915_private *dev_priv = dev->dev_private;
134 	struct drm_i915_gem_get_aperture *args = data;
135 	struct i915_gtt *ggtt = &dev_priv->gtt;
136 	struct i915_vma *vma;
137 	size_t pinned;
138 
139 	pinned = 0;
140 	mutex_lock(&dev->struct_mutex);
141 	list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142 		if (vma->pin_count)
143 			pinned += vma->node.size;
144 	list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145 		if (vma->pin_count)
146 			pinned += vma->node.size;
147 	mutex_unlock(&dev->struct_mutex);
148 
149 	args->aper_size = dev_priv->gtt.base.total;
150 	args->aper_available_size = args->aper_size - pinned;
151 
152 	return 0;
153 }
154 
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 	char *vaddr = obj->phys_handle->vaddr;
160 	struct sg_table *st;
161 	struct scatterlist *sg;
162 	int i;
163 
164 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 		return -EINVAL;
166 
167 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 		struct page *page;
169 		char *src;
170 
171 		page = shmem_read_mapping_page(mapping, i);
172 		if (IS_ERR(page))
173 			return PTR_ERR(page);
174 
175 		src = kmap_atomic(page);
176 		memcpy(vaddr, src, PAGE_SIZE);
177 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 		kunmap_atomic(src);
179 
180 		page_cache_release(page);
181 		vaddr += PAGE_SIZE;
182 	}
183 
184 	i915_gem_chipset_flush(obj->base.dev);
185 
186 	st = kmalloc(sizeof(*st), GFP_KERNEL);
187 	if (st == NULL)
188 		return -ENOMEM;
189 
190 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 		kfree(st);
192 		return -ENOMEM;
193 	}
194 
195 	sg = st->sgl;
196 	sg->offset = 0;
197 	sg->length = obj->base.size;
198 
199 	sg_dma_address(sg) = obj->phys_handle->busaddr;
200 	sg_dma_len(sg) = obj->base.size;
201 
202 	obj->pages = st;
203 	return 0;
204 }
205 
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209 	int ret;
210 
211 	BUG_ON(obj->madv == __I915_MADV_PURGED);
212 
213 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 	if (ret) {
215 		/* In the event of a disaster, abandon all caches and
216 		 * hope for the best.
217 		 */
218 		WARN_ON(ret != -EIO);
219 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 	}
221 
222 	if (obj->madv == I915_MADV_DONTNEED)
223 		obj->dirty = 0;
224 
225 	if (obj->dirty) {
226 		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227 		char *vaddr = obj->phys_handle->vaddr;
228 		int i;
229 
230 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 			struct page *page;
232 			char *dst;
233 
234 			page = shmem_read_mapping_page(mapping, i);
235 			if (IS_ERR(page))
236 				continue;
237 
238 			dst = kmap_atomic(page);
239 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 			memcpy(dst, vaddr, PAGE_SIZE);
241 			kunmap_atomic(dst);
242 
243 			set_page_dirty(page);
244 			if (obj->madv == I915_MADV_WILLNEED)
245 				mark_page_accessed(page);
246 			page_cache_release(page);
247 			vaddr += PAGE_SIZE;
248 		}
249 		obj->dirty = 0;
250 	}
251 
252 	sg_free_table(obj->pages);
253 	kfree(obj->pages);
254 }
255 
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259 	drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261 
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 	.get_pages = i915_gem_object_get_pages_phys,
264 	.put_pages = i915_gem_object_put_pages_phys,
265 	.release = i915_gem_object_release_phys,
266 };
267 
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271 	struct i915_vma *vma, *next;
272 	int ret;
273 
274 	drm_gem_object_reference(&obj->base);
275 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276 		if (i915_vma_unbind(vma))
277 			break;
278 
279 	ret = i915_gem_object_put_pages(obj);
280 	drm_gem_object_unreference(&obj->base);
281 
282 	return ret;
283 }
284 
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 			    int align)
288 {
289 	drm_dma_handle_t *phys;
290 	int ret;
291 
292 	if (obj->phys_handle) {
293 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 			return -EBUSY;
295 
296 		return 0;
297 	}
298 
299 	if (obj->madv != I915_MADV_WILLNEED)
300 		return -EFAULT;
301 
302 	if (obj->base.filp == NULL)
303 		return -EINVAL;
304 
305 	ret = drop_pages(obj);
306 	if (ret)
307 		return ret;
308 
309 	/* create a new object */
310 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 	if (!phys)
312 		return -ENOMEM;
313 
314 	obj->phys_handle = phys;
315 	obj->ops = &i915_gem_phys_ops;
316 
317 	return i915_gem_object_get_pages(obj);
318 }
319 
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 		     struct drm_i915_gem_pwrite *args,
323 		     struct drm_file *file_priv)
324 {
325 	struct drm_device *dev = obj->base.dev;
326 	void *vaddr = obj->phys_handle->vaddr + args->offset;
327 	char __user *user_data = to_user_ptr(args->data_ptr);
328 	int ret = 0;
329 
330 	/* We manually control the domain here and pretend that it
331 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 	 */
333 	ret = i915_gem_object_wait_rendering(obj, false);
334 	if (ret)
335 		return ret;
336 
337 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 		unsigned long unwritten;
340 
341 		/* The physical object once assigned is fixed for the lifetime
342 		 * of the obj, so we can safely drop the lock and continue
343 		 * to access vaddr.
344 		 */
345 		mutex_unlock(&dev->struct_mutex);
346 		unwritten = copy_from_user(vaddr, user_data, args->size);
347 		mutex_lock(&dev->struct_mutex);
348 		if (unwritten) {
349 			ret = -EFAULT;
350 			goto out;
351 		}
352 	}
353 
354 	drm_clflush_virt_range(vaddr, args->size);
355 	i915_gem_chipset_flush(dev);
356 
357 out:
358 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359 	return ret;
360 }
361 
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364 	struct drm_i915_private *dev_priv = dev->dev_private;
365 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367 
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371 	kmem_cache_free(dev_priv->objects, obj);
372 }
373 
374 static int
375 i915_gem_create(struct drm_file *file,
376 		struct drm_device *dev,
377 		uint64_t size,
378 		uint32_t *handle_p)
379 {
380 	struct drm_i915_gem_object *obj;
381 	int ret;
382 	u32 handle;
383 
384 	size = roundup(size, PAGE_SIZE);
385 	if (size == 0)
386 		return -EINVAL;
387 
388 	/* Allocate the new object */
389 	obj = i915_gem_alloc_object(dev, size);
390 	if (obj == NULL)
391 		return -ENOMEM;
392 
393 	ret = drm_gem_handle_create(file, &obj->base, &handle);
394 	/* drop reference from allocate - handle holds it now */
395 	drm_gem_object_unreference_unlocked(&obj->base);
396 	if (ret)
397 		return ret;
398 
399 	*handle_p = handle;
400 	return 0;
401 }
402 
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405 		     struct drm_device *dev,
406 		     struct drm_mode_create_dumb *args)
407 {
408 	/* have to work out size/pitch and return them */
409 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 	args->size = args->pitch * args->height;
411 	return i915_gem_create(file, dev,
412 			       args->size, &args->handle);
413 }
414 
415 /**
416  * Creates a new mm object and returns a handle to it.
417  */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 		      struct drm_file *file)
421 {
422 	struct drm_i915_gem_create *args = data;
423 
424 	return i915_gem_create(file, dev,
425 			       args->size, &args->handle);
426 }
427 
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430 			const char *gpu_vaddr, int gpu_offset,
431 			int length)
432 {
433 	int ret, cpu_offset = 0;
434 
435 	while (length > 0) {
436 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 		int this_length = min(cacheline_end - gpu_offset, length);
438 		int swizzled_gpu_offset = gpu_offset ^ 64;
439 
440 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 				     gpu_vaddr + swizzled_gpu_offset,
442 				     this_length);
443 		if (ret)
444 			return ret + length;
445 
446 		cpu_offset += this_length;
447 		gpu_offset += this_length;
448 		length -= this_length;
449 	}
450 
451 	return 0;
452 }
453 
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 			  const char __user *cpu_vaddr,
457 			  int length)
458 {
459 	int ret, cpu_offset = 0;
460 
461 	while (length > 0) {
462 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 		int this_length = min(cacheline_end - gpu_offset, length);
464 		int swizzled_gpu_offset = gpu_offset ^ 64;
465 
466 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 				       cpu_vaddr + cpu_offset,
468 				       this_length);
469 		if (ret)
470 			return ret + length;
471 
472 		cpu_offset += this_length;
473 		gpu_offset += this_length;
474 		length -= this_length;
475 	}
476 
477 	return 0;
478 }
479 
480 /*
481  * Pins the specified object's pages and synchronizes the object with
482  * GPU accesses. Sets needs_clflush to non-zero if the caller should
483  * flush the object from the CPU cache.
484  */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 				    int *needs_clflush)
487 {
488 	int ret;
489 
490 	*needs_clflush = 0;
491 
492 	if (!obj->base.filp)
493 		return -EINVAL;
494 
495 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 		/* If we're not in the cpu read domain, set ourself into the gtt
497 		 * read domain and manually flush cachelines (if required). This
498 		 * optimizes for the case when the gpu will dirty the data
499 		 * anyway again before the next pread happens. */
500 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 							obj->cache_level);
502 		ret = i915_gem_object_wait_rendering(obj, true);
503 		if (ret)
504 			return ret;
505 	}
506 
507 	ret = i915_gem_object_get_pages(obj);
508 	if (ret)
509 		return ret;
510 
511 	i915_gem_object_pin_pages(obj);
512 
513 	return ret;
514 }
515 
516 /* Per-page copy function for the shmem pread fastpath.
517  * Flushes invalid cachelines before reading the target if
518  * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 		 char __user *user_data,
522 		 bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524 	char *vaddr;
525 	int ret;
526 
527 	if (unlikely(page_do_bit17_swizzling))
528 		return -EINVAL;
529 
530 	vaddr = kmap_atomic(page);
531 	if (needs_clflush)
532 		drm_clflush_virt_range(vaddr + shmem_page_offset,
533 				       page_length);
534 	ret = __copy_to_user_inatomic(user_data,
535 				      vaddr + shmem_page_offset,
536 				      page_length);
537 	kunmap_atomic(vaddr);
538 
539 	return ret ? -EFAULT : 0;
540 }
541 
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 			     bool swizzled)
545 {
546 	if (unlikely(swizzled)) {
547 		unsigned long start = (unsigned long) addr;
548 		unsigned long end = (unsigned long) addr + length;
549 
550 		/* For swizzling simply ensure that we always flush both
551 		 * channels. Lame, but simple and it works. Swizzled
552 		 * pwrite/pread is far from a hotpath - current userspace
553 		 * doesn't use it at all. */
554 		start = round_down(start, 128);
555 		end = round_up(end, 128);
556 
557 		drm_clflush_virt_range((void *)start, end - start);
558 	} else {
559 		drm_clflush_virt_range(addr, length);
560 	}
561 
562 }
563 
564 /* Only difference to the fast-path function is that this can handle bit17
565  * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 		 char __user *user_data,
569 		 bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571 	char *vaddr;
572 	int ret;
573 
574 	vaddr = kmap(page);
575 	if (needs_clflush)
576 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 					     page_length,
578 					     page_do_bit17_swizzling);
579 
580 	if (page_do_bit17_swizzling)
581 		ret = __copy_to_user_swizzled(user_data,
582 					      vaddr, shmem_page_offset,
583 					      page_length);
584 	else
585 		ret = __copy_to_user(user_data,
586 				     vaddr + shmem_page_offset,
587 				     page_length);
588 	kunmap(page);
589 
590 	return ret ? - EFAULT : 0;
591 }
592 
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595 		     struct drm_i915_gem_object *obj,
596 		     struct drm_i915_gem_pread *args,
597 		     struct drm_file *file)
598 {
599 	char __user *user_data;
600 	ssize_t remain;
601 	loff_t offset;
602 	int shmem_page_offset, page_length, ret = 0;
603 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604 	int prefaulted = 0;
605 	int needs_clflush = 0;
606 	struct sg_page_iter sg_iter;
607 
608 	user_data = to_user_ptr(args->data_ptr);
609 	remain = args->size;
610 
611 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612 
613 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 	if (ret)
615 		return ret;
616 
617 	offset = args->offset;
618 
619 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 			 offset >> PAGE_SHIFT) {
621 		struct page *page = sg_page_iter_page(&sg_iter);
622 
623 		if (remain <= 0)
624 			break;
625 
626 		/* Operation in this page
627 		 *
628 		 * shmem_page_offset = offset within page in shmem file
629 		 * page_length = bytes to copy for this page
630 		 */
631 		shmem_page_offset = offset_in_page(offset);
632 		page_length = remain;
633 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 			page_length = PAGE_SIZE - shmem_page_offset;
635 
636 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 			(page_to_phys(page) & (1 << 17)) != 0;
638 
639 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 				       user_data, page_do_bit17_swizzling,
641 				       needs_clflush);
642 		if (ret == 0)
643 			goto next_page;
644 
645 		mutex_unlock(&dev->struct_mutex);
646 
647 		if (likely(!i915.prefault_disable) && !prefaulted) {
648 			ret = fault_in_multipages_writeable(user_data, remain);
649 			/* Userspace is tricking us, but we've already clobbered
650 			 * its pages with the prefault and promised to write the
651 			 * data up to the first fault. Hence ignore any errors
652 			 * and just continue. */
653 			(void)ret;
654 			prefaulted = 1;
655 		}
656 
657 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 				       user_data, page_do_bit17_swizzling,
659 				       needs_clflush);
660 
661 		mutex_lock(&dev->struct_mutex);
662 
663 		if (ret)
664 			goto out;
665 
666 next_page:
667 		remain -= page_length;
668 		user_data += page_length;
669 		offset += page_length;
670 	}
671 
672 out:
673 	i915_gem_object_unpin_pages(obj);
674 
675 	return ret;
676 }
677 
678 /**
679  * Reads data from the object referenced by handle.
680  *
681  * On error, the contents of *data are undefined.
682  */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685 		     struct drm_file *file)
686 {
687 	struct drm_i915_gem_pread *args = data;
688 	struct drm_i915_gem_object *obj;
689 	int ret = 0;
690 
691 	if (args->size == 0)
692 		return 0;
693 
694 	if (!access_ok(VERIFY_WRITE,
695 		       to_user_ptr(args->data_ptr),
696 		       args->size))
697 		return -EFAULT;
698 
699 	ret = i915_mutex_lock_interruptible(dev);
700 	if (ret)
701 		return ret;
702 
703 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704 	if (&obj->base == NULL) {
705 		ret = -ENOENT;
706 		goto unlock;
707 	}
708 
709 	/* Bounds check source.  */
710 	if (args->offset > obj->base.size ||
711 	    args->size > obj->base.size - args->offset) {
712 		ret = -EINVAL;
713 		goto out;
714 	}
715 
716 	/* prime objects have no backing filp to GEM pread/pwrite
717 	 * pages from.
718 	 */
719 	if (!obj->base.filp) {
720 		ret = -EINVAL;
721 		goto out;
722 	}
723 
724 	trace_i915_gem_object_pread(obj, args->offset, args->size);
725 
726 	ret = i915_gem_shmem_pread(dev, obj, args, file);
727 
728 out:
729 	drm_gem_object_unreference(&obj->base);
730 unlock:
731 	mutex_unlock(&dev->struct_mutex);
732 	return ret;
733 }
734 
735 /* This is the fast write path which cannot handle
736  * page faults in the source data
737  */
738 
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741 		loff_t page_base, int page_offset,
742 		char __user *user_data,
743 		int length)
744 {
745 	void __iomem *vaddr_atomic;
746 	void *vaddr;
747 	unsigned long unwritten;
748 
749 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 	/* We can use the cpu mem copy function because this is X86. */
751 	vaddr = (void __force*)vaddr_atomic + page_offset;
752 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
753 						      user_data, length);
754 	io_mapping_unmap_atomic(vaddr_atomic);
755 	return unwritten;
756 }
757 
758 /**
759  * This is the fast pwrite path, where we copy the data directly from the
760  * user into the GTT, uncached.
761  */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 			 struct drm_i915_gem_object *obj,
765 			 struct drm_i915_gem_pwrite *args,
766 			 struct drm_file *file)
767 {
768 	struct drm_i915_private *dev_priv = dev->dev_private;
769 	ssize_t remain;
770 	loff_t offset, page_base;
771 	char __user *user_data;
772 	int page_offset, page_length, ret;
773 
774 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775 	if (ret)
776 		goto out;
777 
778 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 	if (ret)
780 		goto out_unpin;
781 
782 	ret = i915_gem_object_put_fence(obj);
783 	if (ret)
784 		goto out_unpin;
785 
786 	user_data = to_user_ptr(args->data_ptr);
787 	remain = args->size;
788 
789 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790 
791 	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792 
793 	while (remain > 0) {
794 		/* Operation in this page
795 		 *
796 		 * page_base = page offset within aperture
797 		 * page_offset = offset within page
798 		 * page_length = bytes to copy for this page
799 		 */
800 		page_base = offset & PAGE_MASK;
801 		page_offset = offset_in_page(offset);
802 		page_length = remain;
803 		if ((page_offset + remain) > PAGE_SIZE)
804 			page_length = PAGE_SIZE - page_offset;
805 
806 		/* If we get a fault while copying data, then (presumably) our
807 		 * source page isn't available.  Return the error and we'll
808 		 * retry in the slow path.
809 		 */
810 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
811 				    page_offset, user_data, page_length)) {
812 			ret = -EFAULT;
813 			goto out_flush;
814 		}
815 
816 		remain -= page_length;
817 		user_data += page_length;
818 		offset += page_length;
819 	}
820 
821 out_flush:
822 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824 	i915_gem_object_ggtt_unpin(obj);
825 out:
826 	return ret;
827 }
828 
829 /* Per-page copy function for the shmem pwrite fastpath.
830  * Flushes invalid cachelines before writing to the target if
831  * needs_clflush_before is set and flushes out any written cachelines after
832  * writing if needs_clflush is set. */
833 static int
834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 		  char __user *user_data,
836 		  bool page_do_bit17_swizzling,
837 		  bool needs_clflush_before,
838 		  bool needs_clflush_after)
839 {
840 	char *vaddr;
841 	int ret;
842 
843 	if (unlikely(page_do_bit17_swizzling))
844 		return -EINVAL;
845 
846 	vaddr = kmap_atomic(page);
847 	if (needs_clflush_before)
848 		drm_clflush_virt_range(vaddr + shmem_page_offset,
849 				       page_length);
850 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 					user_data, page_length);
852 	if (needs_clflush_after)
853 		drm_clflush_virt_range(vaddr + shmem_page_offset,
854 				       page_length);
855 	kunmap_atomic(vaddr);
856 
857 	return ret ? -EFAULT : 0;
858 }
859 
860 /* Only difference to the fast-path function is that this can handle bit17
861  * and uses non-atomic copy and kmap functions. */
862 static int
863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 		  char __user *user_data,
865 		  bool page_do_bit17_swizzling,
866 		  bool needs_clflush_before,
867 		  bool needs_clflush_after)
868 {
869 	char *vaddr;
870 	int ret;
871 
872 	vaddr = kmap(page);
873 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 					     page_length,
876 					     page_do_bit17_swizzling);
877 	if (page_do_bit17_swizzling)
878 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879 						user_data,
880 						page_length);
881 	else
882 		ret = __copy_from_user(vaddr + shmem_page_offset,
883 				       user_data,
884 				       page_length);
885 	if (needs_clflush_after)
886 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 					     page_length,
888 					     page_do_bit17_swizzling);
889 	kunmap(page);
890 
891 	return ret ? -EFAULT : 0;
892 }
893 
894 static int
895 i915_gem_shmem_pwrite(struct drm_device *dev,
896 		      struct drm_i915_gem_object *obj,
897 		      struct drm_i915_gem_pwrite *args,
898 		      struct drm_file *file)
899 {
900 	ssize_t remain;
901 	loff_t offset;
902 	char __user *user_data;
903 	int shmem_page_offset, page_length, ret = 0;
904 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905 	int hit_slowpath = 0;
906 	int needs_clflush_after = 0;
907 	int needs_clflush_before = 0;
908 	struct sg_page_iter sg_iter;
909 
910 	user_data = to_user_ptr(args->data_ptr);
911 	remain = args->size;
912 
913 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914 
915 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 		/* If we're not in the cpu write domain, set ourself into the gtt
917 		 * write domain and manually flush cachelines (if required). This
918 		 * optimizes for the case when the gpu will use the data
919 		 * right away and we therefore have to clflush anyway. */
920 		needs_clflush_after = cpu_write_needs_clflush(obj);
921 		ret = i915_gem_object_wait_rendering(obj, false);
922 		if (ret)
923 			return ret;
924 	}
925 	/* Same trick applies to invalidate partially written cachelines read
926 	 * before writing. */
927 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 		needs_clflush_before =
929 			!cpu_cache_is_coherent(dev, obj->cache_level);
930 
931 	ret = i915_gem_object_get_pages(obj);
932 	if (ret)
933 		return ret;
934 
935 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936 
937 	i915_gem_object_pin_pages(obj);
938 
939 	offset = args->offset;
940 	obj->dirty = 1;
941 
942 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 			 offset >> PAGE_SHIFT) {
944 		struct page *page = sg_page_iter_page(&sg_iter);
945 		int partial_cacheline_write;
946 
947 		if (remain <= 0)
948 			break;
949 
950 		/* Operation in this page
951 		 *
952 		 * shmem_page_offset = offset within page in shmem file
953 		 * page_length = bytes to copy for this page
954 		 */
955 		shmem_page_offset = offset_in_page(offset);
956 
957 		page_length = remain;
958 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 			page_length = PAGE_SIZE - shmem_page_offset;
960 
961 		/* If we don't overwrite a cacheline completely we need to be
962 		 * careful to have up-to-date data by first clflushing. Don't
963 		 * overcomplicate things and flush the entire patch. */
964 		partial_cacheline_write = needs_clflush_before &&
965 			((shmem_page_offset | page_length)
966 				& (boot_cpu_data.x86_clflush_size - 1));
967 
968 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 			(page_to_phys(page) & (1 << 17)) != 0;
970 
971 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 					user_data, page_do_bit17_swizzling,
973 					partial_cacheline_write,
974 					needs_clflush_after);
975 		if (ret == 0)
976 			goto next_page;
977 
978 		hit_slowpath = 1;
979 		mutex_unlock(&dev->struct_mutex);
980 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 					user_data, page_do_bit17_swizzling,
982 					partial_cacheline_write,
983 					needs_clflush_after);
984 
985 		mutex_lock(&dev->struct_mutex);
986 
987 		if (ret)
988 			goto out;
989 
990 next_page:
991 		remain -= page_length;
992 		user_data += page_length;
993 		offset += page_length;
994 	}
995 
996 out:
997 	i915_gem_object_unpin_pages(obj);
998 
999 	if (hit_slowpath) {
1000 		/*
1001 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 		 * cachelines in-line while writing and the object moved
1003 		 * out of the cpu write domain while we've dropped the lock.
1004 		 */
1005 		if (!needs_clflush_after &&
1006 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007 			if (i915_gem_clflush_object(obj, obj->pin_display))
1008 				needs_clflush_after = true;
1009 		}
1010 	}
1011 
1012 	if (needs_clflush_after)
1013 		i915_gem_chipset_flush(dev);
1014 	else
1015 		obj->cache_dirty = true;
1016 
1017 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018 	return ret;
1019 }
1020 
1021 /**
1022  * Writes data to the object referenced by handle.
1023  *
1024  * On error, the contents of the buffer that were to be modified are undefined.
1025  */
1026 int
1027 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028 		      struct drm_file *file)
1029 {
1030 	struct drm_i915_private *dev_priv = dev->dev_private;
1031 	struct drm_i915_gem_pwrite *args = data;
1032 	struct drm_i915_gem_object *obj;
1033 	int ret;
1034 
1035 	if (args->size == 0)
1036 		return 0;
1037 
1038 	if (!access_ok(VERIFY_READ,
1039 		       to_user_ptr(args->data_ptr),
1040 		       args->size))
1041 		return -EFAULT;
1042 
1043 	if (likely(!i915.prefault_disable)) {
1044 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045 						   args->size);
1046 		if (ret)
1047 			return -EFAULT;
1048 	}
1049 
1050 	intel_runtime_pm_get(dev_priv);
1051 
1052 	ret = i915_mutex_lock_interruptible(dev);
1053 	if (ret)
1054 		goto put_rpm;
1055 
1056 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057 	if (&obj->base == NULL) {
1058 		ret = -ENOENT;
1059 		goto unlock;
1060 	}
1061 
1062 	/* Bounds check destination. */
1063 	if (args->offset > obj->base.size ||
1064 	    args->size > obj->base.size - args->offset) {
1065 		ret = -EINVAL;
1066 		goto out;
1067 	}
1068 
1069 	/* prime objects have no backing filp to GEM pread/pwrite
1070 	 * pages from.
1071 	 */
1072 	if (!obj->base.filp) {
1073 		ret = -EINVAL;
1074 		goto out;
1075 	}
1076 
1077 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078 
1079 	ret = -EFAULT;
1080 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 	 * it would end up going through the fenced access, and we'll get
1082 	 * different detiling behavior between reading and writing.
1083 	 * pread/pwrite currently are reading and writing from the CPU
1084 	 * perspective, requiring manual detiling by the client.
1085 	 */
1086 	if (obj->tiling_mode == I915_TILING_NONE &&
1087 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 	    cpu_write_needs_clflush(obj)) {
1089 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090 		/* Note that the gtt paths might fail with non-page-backed user
1091 		 * pointers (e.g. gtt mappings when moving data between
1092 		 * textures). Fallback to the shmem path in that case. */
1093 	}
1094 
1095 	if (ret == -EFAULT || ret == -ENOSPC) {
1096 		if (obj->phys_handle)
1097 			ret = i915_gem_phys_pwrite(obj, args, file);
1098 		else
1099 			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 	}
1101 
1102 out:
1103 	drm_gem_object_unreference(&obj->base);
1104 unlock:
1105 	mutex_unlock(&dev->struct_mutex);
1106 put_rpm:
1107 	intel_runtime_pm_put(dev_priv);
1108 
1109 	return ret;
1110 }
1111 
1112 int
1113 i915_gem_check_wedge(struct i915_gpu_error *error,
1114 		     bool interruptible)
1115 {
1116 	if (i915_reset_in_progress(error)) {
1117 		/* Non-interruptible callers can't handle -EAGAIN, hence return
1118 		 * -EIO unconditionally for these. */
1119 		if (!interruptible)
1120 			return -EIO;
1121 
1122 		/* Recovery complete, but the reset failed ... */
1123 		if (i915_terminally_wedged(error))
1124 			return -EIO;
1125 
1126 		/*
1127 		 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 		 * to work properly to reinit the hw state while the gpu is
1129 		 * still marked as reset-in-progress. Handle this with a flag.
1130 		 */
1131 		if (!error->reload_in_reset)
1132 			return -EAGAIN;
1133 	}
1134 
1135 	return 0;
1136 }
1137 
1138 static void fake_irq(unsigned long data)
1139 {
1140 	wake_up_process((struct task_struct *)data);
1141 }
1142 
1143 static bool missed_irq(struct drm_i915_private *dev_priv,
1144 		       struct intel_engine_cs *ring)
1145 {
1146 	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147 }
1148 
1149 static int __i915_spin_request(struct drm_i915_gem_request *req)
1150 {
1151 	unsigned long timeout;
1152 
1153 	if (i915_gem_request_get_ring(req)->irq_refcount)
1154 		return -EBUSY;
1155 
1156 	timeout = jiffies + 1;
1157 	while (!need_resched()) {
1158 		if (i915_gem_request_completed(req, true))
1159 			return 0;
1160 
1161 		if (time_after_eq(jiffies, timeout))
1162 			break;
1163 
1164 		cpu_relax_lowlatency();
1165 	}
1166 	if (i915_gem_request_completed(req, false))
1167 		return 0;
1168 
1169 	return -EAGAIN;
1170 }
1171 
1172 /**
1173  * __i915_wait_request - wait until execution of request has finished
1174  * @req: duh!
1175  * @reset_counter: reset sequence associated with the given request
1176  * @interruptible: do an interruptible wait (normally yes)
1177  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1178  *
1179  * Note: It is of utmost importance that the passed in seqno and reset_counter
1180  * values have been read by the caller in an smp safe manner. Where read-side
1181  * locks are involved, it is sufficient to read the reset_counter before
1182  * unlocking the lock that protects the seqno. For lockless tricks, the
1183  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1184  * inserted.
1185  *
1186  * Returns 0 if the request was found within the alloted time. Else returns the
1187  * errno with remaining time filled in timeout argument.
1188  */
1189 int __i915_wait_request(struct drm_i915_gem_request *req,
1190 			unsigned reset_counter,
1191 			bool interruptible,
1192 			s64 *timeout,
1193 			struct intel_rps_client *rps)
1194 {
1195 	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1196 	struct drm_device *dev = ring->dev;
1197 	struct drm_i915_private *dev_priv = dev->dev_private;
1198 	const bool irq_test_in_progress =
1199 		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1200 	DEFINE_WAIT(wait);
1201 	unsigned long timeout_expire;
1202 	s64 before, now;
1203 	int ret;
1204 
1205 	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1206 
1207 	if (list_empty(&req->list))
1208 		return 0;
1209 
1210 	if (i915_gem_request_completed(req, true))
1211 		return 0;
1212 
1213 	timeout_expire = timeout ?
1214 		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1215 
1216 	if (INTEL_INFO(dev_priv)->gen >= 6)
1217 		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1218 
1219 	/* Record current time in case interrupted by signal, or wedged */
1220 	trace_i915_gem_request_wait_begin(req);
1221 	before = ktime_get_raw_ns();
1222 
1223 	/* Optimistic spin for the next jiffie before touching IRQs */
1224 	ret = __i915_spin_request(req);
1225 	if (ret == 0)
1226 		goto out;
1227 
1228 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1229 		ret = -ENODEV;
1230 		goto out;
1231 	}
1232 
1233 	for (;;) {
1234 		struct timer_list timer;
1235 
1236 		prepare_to_wait(&ring->irq_queue, &wait,
1237 				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1238 
1239 		/* We need to check whether any gpu reset happened in between
1240 		 * the caller grabbing the seqno and now ... */
1241 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1242 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
1243 			 * is truely gone. */
1244 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1245 			if (ret == 0)
1246 				ret = -EAGAIN;
1247 			break;
1248 		}
1249 
1250 		if (i915_gem_request_completed(req, false)) {
1251 			ret = 0;
1252 			break;
1253 		}
1254 
1255 		if (interruptible && signal_pending(current)) {
1256 			ret = -ERESTARTSYS;
1257 			break;
1258 		}
1259 
1260 		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1261 			ret = -ETIME;
1262 			break;
1263 		}
1264 
1265 		timer.function = NULL;
1266 		if (timeout || missed_irq(dev_priv, ring)) {
1267 			unsigned long expire;
1268 
1269 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1270 			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1271 			mod_timer(&timer, expire);
1272 		}
1273 
1274 		io_schedule();
1275 
1276 		if (timer.function) {
1277 			del_singleshot_timer_sync(&timer);
1278 			destroy_timer_on_stack(&timer);
1279 		}
1280 	}
1281 	if (!irq_test_in_progress)
1282 		ring->irq_put(ring);
1283 
1284 	finish_wait(&ring->irq_queue, &wait);
1285 
1286 out:
1287 	now = ktime_get_raw_ns();
1288 	trace_i915_gem_request_wait_end(req);
1289 
1290 	if (timeout) {
1291 		s64 tres = *timeout - (now - before);
1292 
1293 		*timeout = tres < 0 ? 0 : tres;
1294 
1295 		/*
1296 		 * Apparently ktime isn't accurate enough and occasionally has a
1297 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1298 		 * things up to make the test happy. We allow up to 1 jiffy.
1299 		 *
1300 		 * This is a regrssion from the timespec->ktime conversion.
1301 		 */
1302 		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1303 			*timeout = 0;
1304 	}
1305 
1306 	return ret;
1307 }
1308 
1309 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1310 				   struct drm_file *file)
1311 {
1312 	struct drm_i915_private *dev_private;
1313 	struct drm_i915_file_private *file_priv;
1314 
1315 	WARN_ON(!req || !file || req->file_priv);
1316 
1317 	if (!req || !file)
1318 		return -EINVAL;
1319 
1320 	if (req->file_priv)
1321 		return -EINVAL;
1322 
1323 	dev_private = req->ring->dev->dev_private;
1324 	file_priv = file->driver_priv;
1325 
1326 	spin_lock(&file_priv->mm.lock);
1327 	req->file_priv = file_priv;
1328 	list_add_tail(&req->client_list, &file_priv->mm.request_list);
1329 	spin_unlock(&file_priv->mm.lock);
1330 
1331 	req->pid = get_pid(task_pid(current));
1332 
1333 	return 0;
1334 }
1335 
1336 static inline void
1337 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1338 {
1339 	struct drm_i915_file_private *file_priv = request->file_priv;
1340 
1341 	if (!file_priv)
1342 		return;
1343 
1344 	spin_lock(&file_priv->mm.lock);
1345 	list_del(&request->client_list);
1346 	request->file_priv = NULL;
1347 	spin_unlock(&file_priv->mm.lock);
1348 
1349 	put_pid(request->pid);
1350 	request->pid = NULL;
1351 }
1352 
1353 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1354 {
1355 	trace_i915_gem_request_retire(request);
1356 
1357 	/* We know the GPU must have read the request to have
1358 	 * sent us the seqno + interrupt, so use the position
1359 	 * of tail of the request to update the last known position
1360 	 * of the GPU head.
1361 	 *
1362 	 * Note this requires that we are always called in request
1363 	 * completion order.
1364 	 */
1365 	request->ringbuf->last_retired_head = request->postfix;
1366 
1367 	list_del_init(&request->list);
1368 	i915_gem_request_remove_from_client(request);
1369 
1370 	i915_gem_request_unreference(request);
1371 }
1372 
1373 static void
1374 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1375 {
1376 	struct intel_engine_cs *engine = req->ring;
1377 	struct drm_i915_gem_request *tmp;
1378 
1379 	lockdep_assert_held(&engine->dev->struct_mutex);
1380 
1381 	if (list_empty(&req->list))
1382 		return;
1383 
1384 	do {
1385 		tmp = list_first_entry(&engine->request_list,
1386 				       typeof(*tmp), list);
1387 
1388 		i915_gem_request_retire(tmp);
1389 	} while (tmp != req);
1390 
1391 	WARN_ON(i915_verify_lists(engine->dev));
1392 }
1393 
1394 /**
1395  * Waits for a request to be signaled, and cleans up the
1396  * request and object lists appropriately for that event.
1397  */
1398 int
1399 i915_wait_request(struct drm_i915_gem_request *req)
1400 {
1401 	struct drm_device *dev;
1402 	struct drm_i915_private *dev_priv;
1403 	bool interruptible;
1404 	int ret;
1405 
1406 	BUG_ON(req == NULL);
1407 
1408 	dev = req->ring->dev;
1409 	dev_priv = dev->dev_private;
1410 	interruptible = dev_priv->mm.interruptible;
1411 
1412 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1413 
1414 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1415 	if (ret)
1416 		return ret;
1417 
1418 	ret = __i915_wait_request(req,
1419 				  atomic_read(&dev_priv->gpu_error.reset_counter),
1420 				  interruptible, NULL, NULL);
1421 	if (ret)
1422 		return ret;
1423 
1424 	__i915_gem_request_retire__upto(req);
1425 	return 0;
1426 }
1427 
1428 /**
1429  * Ensures that all rendering to the object has completed and the object is
1430  * safe to unbind from the GTT or access from the CPU.
1431  */
1432 int
1433 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1434 			       bool readonly)
1435 {
1436 	int ret, i;
1437 
1438 	if (!obj->active)
1439 		return 0;
1440 
1441 	if (readonly) {
1442 		if (obj->last_write_req != NULL) {
1443 			ret = i915_wait_request(obj->last_write_req);
1444 			if (ret)
1445 				return ret;
1446 
1447 			i = obj->last_write_req->ring->id;
1448 			if (obj->last_read_req[i] == obj->last_write_req)
1449 				i915_gem_object_retire__read(obj, i);
1450 			else
1451 				i915_gem_object_retire__write(obj);
1452 		}
1453 	} else {
1454 		for (i = 0; i < I915_NUM_RINGS; i++) {
1455 			if (obj->last_read_req[i] == NULL)
1456 				continue;
1457 
1458 			ret = i915_wait_request(obj->last_read_req[i]);
1459 			if (ret)
1460 				return ret;
1461 
1462 			i915_gem_object_retire__read(obj, i);
1463 		}
1464 		RQ_BUG_ON(obj->active);
1465 	}
1466 
1467 	return 0;
1468 }
1469 
1470 static void
1471 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1472 			       struct drm_i915_gem_request *req)
1473 {
1474 	int ring = req->ring->id;
1475 
1476 	if (obj->last_read_req[ring] == req)
1477 		i915_gem_object_retire__read(obj, ring);
1478 	else if (obj->last_write_req == req)
1479 		i915_gem_object_retire__write(obj);
1480 
1481 	__i915_gem_request_retire__upto(req);
1482 }
1483 
1484 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1485  * as the object state may change during this call.
1486  */
1487 static __must_check int
1488 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1489 					    struct intel_rps_client *rps,
1490 					    bool readonly)
1491 {
1492 	struct drm_device *dev = obj->base.dev;
1493 	struct drm_i915_private *dev_priv = dev->dev_private;
1494 	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1495 	unsigned reset_counter;
1496 	int ret, i, n = 0;
1497 
1498 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1499 	BUG_ON(!dev_priv->mm.interruptible);
1500 
1501 	if (!obj->active)
1502 		return 0;
1503 
1504 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1505 	if (ret)
1506 		return ret;
1507 
1508 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1509 
1510 	if (readonly) {
1511 		struct drm_i915_gem_request *req;
1512 
1513 		req = obj->last_write_req;
1514 		if (req == NULL)
1515 			return 0;
1516 
1517 		requests[n++] = i915_gem_request_reference(req);
1518 	} else {
1519 		for (i = 0; i < I915_NUM_RINGS; i++) {
1520 			struct drm_i915_gem_request *req;
1521 
1522 			req = obj->last_read_req[i];
1523 			if (req == NULL)
1524 				continue;
1525 
1526 			requests[n++] = i915_gem_request_reference(req);
1527 		}
1528 	}
1529 
1530 	mutex_unlock(&dev->struct_mutex);
1531 	for (i = 0; ret == 0 && i < n; i++)
1532 		ret = __i915_wait_request(requests[i], reset_counter, true,
1533 					  NULL, rps);
1534 	mutex_lock(&dev->struct_mutex);
1535 
1536 	for (i = 0; i < n; i++) {
1537 		if (ret == 0)
1538 			i915_gem_object_retire_request(obj, requests[i]);
1539 		i915_gem_request_unreference(requests[i]);
1540 	}
1541 
1542 	return ret;
1543 }
1544 
1545 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1546 {
1547 	struct drm_i915_file_private *fpriv = file->driver_priv;
1548 	return &fpriv->rps;
1549 }
1550 
1551 /**
1552  * Called when user space prepares to use an object with the CPU, either
1553  * through the mmap ioctl's mapping or a GTT mapping.
1554  */
1555 int
1556 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1557 			  struct drm_file *file)
1558 {
1559 	struct drm_i915_gem_set_domain *args = data;
1560 	struct drm_i915_gem_object *obj;
1561 	uint32_t read_domains = args->read_domains;
1562 	uint32_t write_domain = args->write_domain;
1563 	int ret;
1564 
1565 	/* Only handle setting domains to types used by the CPU. */
1566 	if (write_domain & I915_GEM_GPU_DOMAINS)
1567 		return -EINVAL;
1568 
1569 	if (read_domains & I915_GEM_GPU_DOMAINS)
1570 		return -EINVAL;
1571 
1572 	/* Having something in the write domain implies it's in the read
1573 	 * domain, and only that read domain.  Enforce that in the request.
1574 	 */
1575 	if (write_domain != 0 && read_domains != write_domain)
1576 		return -EINVAL;
1577 
1578 	ret = i915_mutex_lock_interruptible(dev);
1579 	if (ret)
1580 		return ret;
1581 
1582 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1583 	if (&obj->base == NULL) {
1584 		ret = -ENOENT;
1585 		goto unlock;
1586 	}
1587 
1588 	/* Try to flush the object off the GPU without holding the lock.
1589 	 * We will repeat the flush holding the lock in the normal manner
1590 	 * to catch cases where we are gazumped.
1591 	 */
1592 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1593 							  to_rps_client(file),
1594 							  !write_domain);
1595 	if (ret)
1596 		goto unref;
1597 
1598 	if (read_domains & I915_GEM_DOMAIN_GTT)
1599 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1600 	else
1601 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1602 
1603 	if (write_domain != 0)
1604 		intel_fb_obj_invalidate(obj,
1605 					write_domain == I915_GEM_DOMAIN_GTT ?
1606 					ORIGIN_GTT : ORIGIN_CPU);
1607 
1608 unref:
1609 	drm_gem_object_unreference(&obj->base);
1610 unlock:
1611 	mutex_unlock(&dev->struct_mutex);
1612 	return ret;
1613 }
1614 
1615 /**
1616  * Called when user space has done writes to this buffer
1617  */
1618 int
1619 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1620 			 struct drm_file *file)
1621 {
1622 	struct drm_i915_gem_sw_finish *args = data;
1623 	struct drm_i915_gem_object *obj;
1624 	int ret = 0;
1625 
1626 	ret = i915_mutex_lock_interruptible(dev);
1627 	if (ret)
1628 		return ret;
1629 
1630 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1631 	if (&obj->base == NULL) {
1632 		ret = -ENOENT;
1633 		goto unlock;
1634 	}
1635 
1636 	/* Pinned buffers may be scanout, so flush the cache */
1637 	if (obj->pin_display)
1638 		i915_gem_object_flush_cpu_write_domain(obj);
1639 
1640 	drm_gem_object_unreference(&obj->base);
1641 unlock:
1642 	mutex_unlock(&dev->struct_mutex);
1643 	return ret;
1644 }
1645 
1646 /**
1647  * Maps the contents of an object, returning the address it is mapped
1648  * into.
1649  *
1650  * While the mapping holds a reference on the contents of the object, it doesn't
1651  * imply a ref on the object itself.
1652  *
1653  * IMPORTANT:
1654  *
1655  * DRM driver writers who look a this function as an example for how to do GEM
1656  * mmap support, please don't implement mmap support like here. The modern way
1657  * to implement DRM mmap support is with an mmap offset ioctl (like
1658  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1659  * That way debug tooling like valgrind will understand what's going on, hiding
1660  * the mmap call in a driver private ioctl will break that. The i915 driver only
1661  * does cpu mmaps this way because we didn't know better.
1662  */
1663 int
1664 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1665 		    struct drm_file *file)
1666 {
1667 	struct drm_i915_gem_mmap *args = data;
1668 	struct drm_gem_object *obj;
1669 	unsigned long addr;
1670 
1671 	if (args->flags & ~(I915_MMAP_WC))
1672 		return -EINVAL;
1673 
1674 	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1675 		return -ENODEV;
1676 
1677 	obj = drm_gem_object_lookup(dev, file, args->handle);
1678 	if (obj == NULL)
1679 		return -ENOENT;
1680 
1681 	/* prime objects have no backing filp to GEM mmap
1682 	 * pages from.
1683 	 */
1684 	if (!obj->filp) {
1685 		drm_gem_object_unreference_unlocked(obj);
1686 		return -EINVAL;
1687 	}
1688 
1689 	addr = vm_mmap(obj->filp, 0, args->size,
1690 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1691 		       args->offset);
1692 	if (args->flags & I915_MMAP_WC) {
1693 		struct mm_struct *mm = current->mm;
1694 		struct vm_area_struct *vma;
1695 
1696 		down_write(&mm->mmap_sem);
1697 		vma = find_vma(mm, addr);
1698 		if (vma)
1699 			vma->vm_page_prot =
1700 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1701 		else
1702 			addr = -ENOMEM;
1703 		up_write(&mm->mmap_sem);
1704 	}
1705 	drm_gem_object_unreference_unlocked(obj);
1706 	if (IS_ERR((void *)addr))
1707 		return addr;
1708 
1709 	args->addr_ptr = (uint64_t) addr;
1710 
1711 	return 0;
1712 }
1713 
1714 /**
1715  * i915_gem_fault - fault a page into the GTT
1716  * @vma: VMA in question
1717  * @vmf: fault info
1718  *
1719  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1720  * from userspace.  The fault handler takes care of binding the object to
1721  * the GTT (if needed), allocating and programming a fence register (again,
1722  * only if needed based on whether the old reg is still valid or the object
1723  * is tiled) and inserting a new PTE into the faulting process.
1724  *
1725  * Note that the faulting process may involve evicting existing objects
1726  * from the GTT and/or fence registers to make room.  So performance may
1727  * suffer if the GTT working set is large or there are few fence registers
1728  * left.
1729  */
1730 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1731 {
1732 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1733 	struct drm_device *dev = obj->base.dev;
1734 	struct drm_i915_private *dev_priv = dev->dev_private;
1735 	struct i915_ggtt_view view = i915_ggtt_view_normal;
1736 	pgoff_t page_offset;
1737 	unsigned long pfn;
1738 	int ret = 0;
1739 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1740 
1741 	intel_runtime_pm_get(dev_priv);
1742 
1743 	/* We don't use vmf->pgoff since that has the fake offset */
1744 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1745 		PAGE_SHIFT;
1746 
1747 	ret = i915_mutex_lock_interruptible(dev);
1748 	if (ret)
1749 		goto out;
1750 
1751 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1752 
1753 	/* Try to flush the object off the GPU first without holding the lock.
1754 	 * Upon reacquiring the lock, we will perform our sanity checks and then
1755 	 * repeat the flush holding the lock in the normal manner to catch cases
1756 	 * where we are gazumped.
1757 	 */
1758 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1759 	if (ret)
1760 		goto unlock;
1761 
1762 	/* Access to snoopable pages through the GTT is incoherent. */
1763 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1764 		ret = -EFAULT;
1765 		goto unlock;
1766 	}
1767 
1768 	/* Use a partial view if the object is bigger than the aperture. */
1769 	if (obj->base.size >= dev_priv->gtt.mappable_end &&
1770 	    obj->tiling_mode == I915_TILING_NONE) {
1771 		static const unsigned int chunk_size = 256; // 1 MiB
1772 
1773 		memset(&view, 0, sizeof(view));
1774 		view.type = I915_GGTT_VIEW_PARTIAL;
1775 		view.params.partial.offset = rounddown(page_offset, chunk_size);
1776 		view.params.partial.size =
1777 			min_t(unsigned int,
1778 			      chunk_size,
1779 			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1780 			      view.params.partial.offset);
1781 	}
1782 
1783 	/* Now pin it into the GTT if needed */
1784 	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1785 	if (ret)
1786 		goto unlock;
1787 
1788 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1789 	if (ret)
1790 		goto unpin;
1791 
1792 	ret = i915_gem_object_get_fence(obj);
1793 	if (ret)
1794 		goto unpin;
1795 
1796 	/* Finally, remap it using the new GTT offset */
1797 	pfn = dev_priv->gtt.mappable_base +
1798 		i915_gem_obj_ggtt_offset_view(obj, &view);
1799 	pfn >>= PAGE_SHIFT;
1800 
1801 	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1802 		/* Overriding existing pages in partial view does not cause
1803 		 * us any trouble as TLBs are still valid because the fault
1804 		 * is due to userspace losing part of the mapping or never
1805 		 * having accessed it before (at this partials' range).
1806 		 */
1807 		unsigned long base = vma->vm_start +
1808 				     (view.params.partial.offset << PAGE_SHIFT);
1809 		unsigned int i;
1810 
1811 		for (i = 0; i < view.params.partial.size; i++) {
1812 			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1813 			if (ret)
1814 				break;
1815 		}
1816 
1817 		obj->fault_mappable = true;
1818 	} else {
1819 		if (!obj->fault_mappable) {
1820 			unsigned long size = min_t(unsigned long,
1821 						   vma->vm_end - vma->vm_start,
1822 						   obj->base.size);
1823 			int i;
1824 
1825 			for (i = 0; i < size >> PAGE_SHIFT; i++) {
1826 				ret = vm_insert_pfn(vma,
1827 						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
1828 						    pfn + i);
1829 				if (ret)
1830 					break;
1831 			}
1832 
1833 			obj->fault_mappable = true;
1834 		} else
1835 			ret = vm_insert_pfn(vma,
1836 					    (unsigned long)vmf->virtual_address,
1837 					    pfn + page_offset);
1838 	}
1839 unpin:
1840 	i915_gem_object_ggtt_unpin_view(obj, &view);
1841 unlock:
1842 	mutex_unlock(&dev->struct_mutex);
1843 out:
1844 	switch (ret) {
1845 	case -EIO:
1846 		/*
1847 		 * We eat errors when the gpu is terminally wedged to avoid
1848 		 * userspace unduly crashing (gl has no provisions for mmaps to
1849 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1850 		 * and so needs to be reported.
1851 		 */
1852 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1853 			ret = VM_FAULT_SIGBUS;
1854 			break;
1855 		}
1856 	case -EAGAIN:
1857 		/*
1858 		 * EAGAIN means the gpu is hung and we'll wait for the error
1859 		 * handler to reset everything when re-faulting in
1860 		 * i915_mutex_lock_interruptible.
1861 		 */
1862 	case 0:
1863 	case -ERESTARTSYS:
1864 	case -EINTR:
1865 	case -EBUSY:
1866 		/*
1867 		 * EBUSY is ok: this just means that another thread
1868 		 * already did the job.
1869 		 */
1870 		ret = VM_FAULT_NOPAGE;
1871 		break;
1872 	case -ENOMEM:
1873 		ret = VM_FAULT_OOM;
1874 		break;
1875 	case -ENOSPC:
1876 	case -EFAULT:
1877 		ret = VM_FAULT_SIGBUS;
1878 		break;
1879 	default:
1880 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1881 		ret = VM_FAULT_SIGBUS;
1882 		break;
1883 	}
1884 
1885 	intel_runtime_pm_put(dev_priv);
1886 	return ret;
1887 }
1888 
1889 /**
1890  * i915_gem_release_mmap - remove physical page mappings
1891  * @obj: obj in question
1892  *
1893  * Preserve the reservation of the mmapping with the DRM core code, but
1894  * relinquish ownership of the pages back to the system.
1895  *
1896  * It is vital that we remove the page mapping if we have mapped a tiled
1897  * object through the GTT and then lose the fence register due to
1898  * resource pressure. Similarly if the object has been moved out of the
1899  * aperture, than pages mapped into userspace must be revoked. Removing the
1900  * mapping will then trigger a page fault on the next user access, allowing
1901  * fixup by i915_gem_fault().
1902  */
1903 void
1904 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1905 {
1906 	if (!obj->fault_mappable)
1907 		return;
1908 
1909 	drm_vma_node_unmap(&obj->base.vma_node,
1910 			   obj->base.dev->anon_inode->i_mapping);
1911 	obj->fault_mappable = false;
1912 }
1913 
1914 void
1915 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1916 {
1917 	struct drm_i915_gem_object *obj;
1918 
1919 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1920 		i915_gem_release_mmap(obj);
1921 }
1922 
1923 uint32_t
1924 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1925 {
1926 	uint32_t gtt_size;
1927 
1928 	if (INTEL_INFO(dev)->gen >= 4 ||
1929 	    tiling_mode == I915_TILING_NONE)
1930 		return size;
1931 
1932 	/* Previous chips need a power-of-two fence region when tiling */
1933 	if (INTEL_INFO(dev)->gen == 3)
1934 		gtt_size = 1024*1024;
1935 	else
1936 		gtt_size = 512*1024;
1937 
1938 	while (gtt_size < size)
1939 		gtt_size <<= 1;
1940 
1941 	return gtt_size;
1942 }
1943 
1944 /**
1945  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1946  * @obj: object to check
1947  *
1948  * Return the required GTT alignment for an object, taking into account
1949  * potential fence register mapping.
1950  */
1951 uint32_t
1952 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1953 			   int tiling_mode, bool fenced)
1954 {
1955 	/*
1956 	 * Minimum alignment is 4k (GTT page size), but might be greater
1957 	 * if a fence register is needed for the object.
1958 	 */
1959 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1960 	    tiling_mode == I915_TILING_NONE)
1961 		return 4096;
1962 
1963 	/*
1964 	 * Previous chips need to be aligned to the size of the smallest
1965 	 * fence register that can contain the object.
1966 	 */
1967 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1968 }
1969 
1970 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1971 {
1972 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1973 	int ret;
1974 
1975 	if (drm_vma_node_has_offset(&obj->base.vma_node))
1976 		return 0;
1977 
1978 	dev_priv->mm.shrinker_no_lock_stealing = true;
1979 
1980 	ret = drm_gem_create_mmap_offset(&obj->base);
1981 	if (ret != -ENOSPC)
1982 		goto out;
1983 
1984 	/* Badly fragmented mmap space? The only way we can recover
1985 	 * space is by destroying unwanted objects. We can't randomly release
1986 	 * mmap_offsets as userspace expects them to be persistent for the
1987 	 * lifetime of the objects. The closest we can is to release the
1988 	 * offsets on purgeable objects by truncating it and marking it purged,
1989 	 * which prevents userspace from ever using that object again.
1990 	 */
1991 	i915_gem_shrink(dev_priv,
1992 			obj->base.size >> PAGE_SHIFT,
1993 			I915_SHRINK_BOUND |
1994 			I915_SHRINK_UNBOUND |
1995 			I915_SHRINK_PURGEABLE);
1996 	ret = drm_gem_create_mmap_offset(&obj->base);
1997 	if (ret != -ENOSPC)
1998 		goto out;
1999 
2000 	i915_gem_shrink_all(dev_priv);
2001 	ret = drm_gem_create_mmap_offset(&obj->base);
2002 out:
2003 	dev_priv->mm.shrinker_no_lock_stealing = false;
2004 
2005 	return ret;
2006 }
2007 
2008 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2009 {
2010 	drm_gem_free_mmap_offset(&obj->base);
2011 }
2012 
2013 int
2014 i915_gem_mmap_gtt(struct drm_file *file,
2015 		  struct drm_device *dev,
2016 		  uint32_t handle,
2017 		  uint64_t *offset)
2018 {
2019 	struct drm_i915_gem_object *obj;
2020 	int ret;
2021 
2022 	ret = i915_mutex_lock_interruptible(dev);
2023 	if (ret)
2024 		return ret;
2025 
2026 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2027 	if (&obj->base == NULL) {
2028 		ret = -ENOENT;
2029 		goto unlock;
2030 	}
2031 
2032 	if (obj->madv != I915_MADV_WILLNEED) {
2033 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2034 		ret = -EFAULT;
2035 		goto out;
2036 	}
2037 
2038 	ret = i915_gem_object_create_mmap_offset(obj);
2039 	if (ret)
2040 		goto out;
2041 
2042 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2043 
2044 out:
2045 	drm_gem_object_unreference(&obj->base);
2046 unlock:
2047 	mutex_unlock(&dev->struct_mutex);
2048 	return ret;
2049 }
2050 
2051 /**
2052  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2053  * @dev: DRM device
2054  * @data: GTT mapping ioctl data
2055  * @file: GEM object info
2056  *
2057  * Simply returns the fake offset to userspace so it can mmap it.
2058  * The mmap call will end up in drm_gem_mmap(), which will set things
2059  * up so we can get faults in the handler above.
2060  *
2061  * The fault handler will take care of binding the object into the GTT
2062  * (since it may have been evicted to make room for something), allocating
2063  * a fence register, and mapping the appropriate aperture address into
2064  * userspace.
2065  */
2066 int
2067 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2068 			struct drm_file *file)
2069 {
2070 	struct drm_i915_gem_mmap_gtt *args = data;
2071 
2072 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2073 }
2074 
2075 /* Immediately discard the backing storage */
2076 static void
2077 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2078 {
2079 	i915_gem_object_free_mmap_offset(obj);
2080 
2081 	if (obj->base.filp == NULL)
2082 		return;
2083 
2084 	/* Our goal here is to return as much of the memory as
2085 	 * is possible back to the system as we are called from OOM.
2086 	 * To do this we must instruct the shmfs to drop all of its
2087 	 * backing pages, *now*.
2088 	 */
2089 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2090 	obj->madv = __I915_MADV_PURGED;
2091 }
2092 
2093 /* Try to discard unwanted pages */
2094 static void
2095 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2096 {
2097 	struct address_space *mapping;
2098 
2099 	switch (obj->madv) {
2100 	case I915_MADV_DONTNEED:
2101 		i915_gem_object_truncate(obj);
2102 	case __I915_MADV_PURGED:
2103 		return;
2104 	}
2105 
2106 	if (obj->base.filp == NULL)
2107 		return;
2108 
2109 	mapping = file_inode(obj->base.filp)->i_mapping,
2110 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2111 }
2112 
2113 static void
2114 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2115 {
2116 	struct sg_page_iter sg_iter;
2117 	int ret;
2118 
2119 	BUG_ON(obj->madv == __I915_MADV_PURGED);
2120 
2121 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2122 	if (ret) {
2123 		/* In the event of a disaster, abandon all caches and
2124 		 * hope for the best.
2125 		 */
2126 		WARN_ON(ret != -EIO);
2127 		i915_gem_clflush_object(obj, true);
2128 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2129 	}
2130 
2131 	i915_gem_gtt_finish_object(obj);
2132 
2133 	if (i915_gem_object_needs_bit17_swizzle(obj))
2134 		i915_gem_object_save_bit_17_swizzle(obj);
2135 
2136 	if (obj->madv == I915_MADV_DONTNEED)
2137 		obj->dirty = 0;
2138 
2139 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2140 		struct page *page = sg_page_iter_page(&sg_iter);
2141 
2142 		if (obj->dirty)
2143 			set_page_dirty(page);
2144 
2145 		if (obj->madv == I915_MADV_WILLNEED)
2146 			mark_page_accessed(page);
2147 
2148 		page_cache_release(page);
2149 	}
2150 	obj->dirty = 0;
2151 
2152 	sg_free_table(obj->pages);
2153 	kfree(obj->pages);
2154 }
2155 
2156 int
2157 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2158 {
2159 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2160 
2161 	if (obj->pages == NULL)
2162 		return 0;
2163 
2164 	if (obj->pages_pin_count)
2165 		return -EBUSY;
2166 
2167 	BUG_ON(i915_gem_obj_bound_any(obj));
2168 
2169 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2170 	 * array, hence protect them from being reaped by removing them from gtt
2171 	 * lists early. */
2172 	list_del(&obj->global_list);
2173 
2174 	ops->put_pages(obj);
2175 	obj->pages = NULL;
2176 
2177 	i915_gem_object_invalidate(obj);
2178 
2179 	return 0;
2180 }
2181 
2182 static int
2183 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2184 {
2185 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2186 	int page_count, i;
2187 	struct address_space *mapping;
2188 	struct sg_table *st;
2189 	struct scatterlist *sg;
2190 	struct sg_page_iter sg_iter;
2191 	struct page *page;
2192 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2193 	int ret;
2194 	gfp_t gfp;
2195 
2196 	/* Assert that the object is not currently in any GPU domain. As it
2197 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2198 	 * a GPU cache
2199 	 */
2200 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2201 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2202 
2203 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2204 	if (st == NULL)
2205 		return -ENOMEM;
2206 
2207 	page_count = obj->base.size / PAGE_SIZE;
2208 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2209 		kfree(st);
2210 		return -ENOMEM;
2211 	}
2212 
2213 	/* Get the list of pages out of our struct file.  They'll be pinned
2214 	 * at this point until we release them.
2215 	 *
2216 	 * Fail silently without starting the shrinker
2217 	 */
2218 	mapping = file_inode(obj->base.filp)->i_mapping;
2219 	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2220 	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2221 	sg = st->sgl;
2222 	st->nents = 0;
2223 	for (i = 0; i < page_count; i++) {
2224 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2225 		if (IS_ERR(page)) {
2226 			i915_gem_shrink(dev_priv,
2227 					page_count,
2228 					I915_SHRINK_BOUND |
2229 					I915_SHRINK_UNBOUND |
2230 					I915_SHRINK_PURGEABLE);
2231 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2232 		}
2233 		if (IS_ERR(page)) {
2234 			/* We've tried hard to allocate the memory by reaping
2235 			 * our own buffer, now let the real VM do its job and
2236 			 * go down in flames if truly OOM.
2237 			 */
2238 			i915_gem_shrink_all(dev_priv);
2239 			page = shmem_read_mapping_page(mapping, i);
2240 			if (IS_ERR(page)) {
2241 				ret = PTR_ERR(page);
2242 				goto err_pages;
2243 			}
2244 		}
2245 #ifdef CONFIG_SWIOTLB
2246 		if (swiotlb_nr_tbl()) {
2247 			st->nents++;
2248 			sg_set_page(sg, page, PAGE_SIZE, 0);
2249 			sg = sg_next(sg);
2250 			continue;
2251 		}
2252 #endif
2253 		if (!i || page_to_pfn(page) != last_pfn + 1) {
2254 			if (i)
2255 				sg = sg_next(sg);
2256 			st->nents++;
2257 			sg_set_page(sg, page, PAGE_SIZE, 0);
2258 		} else {
2259 			sg->length += PAGE_SIZE;
2260 		}
2261 		last_pfn = page_to_pfn(page);
2262 
2263 		/* Check that the i965g/gm workaround works. */
2264 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2265 	}
2266 #ifdef CONFIG_SWIOTLB
2267 	if (!swiotlb_nr_tbl())
2268 #endif
2269 		sg_mark_end(sg);
2270 	obj->pages = st;
2271 
2272 	ret = i915_gem_gtt_prepare_object(obj);
2273 	if (ret)
2274 		goto err_pages;
2275 
2276 	if (i915_gem_object_needs_bit17_swizzle(obj))
2277 		i915_gem_object_do_bit_17_swizzle(obj);
2278 
2279 	if (obj->tiling_mode != I915_TILING_NONE &&
2280 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2281 		i915_gem_object_pin_pages(obj);
2282 
2283 	return 0;
2284 
2285 err_pages:
2286 	sg_mark_end(sg);
2287 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2288 		page_cache_release(sg_page_iter_page(&sg_iter));
2289 	sg_free_table(st);
2290 	kfree(st);
2291 
2292 	/* shmemfs first checks if there is enough memory to allocate the page
2293 	 * and reports ENOSPC should there be insufficient, along with the usual
2294 	 * ENOMEM for a genuine allocation failure.
2295 	 *
2296 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2297 	 * space and so want to translate the error from shmemfs back to our
2298 	 * usual understanding of ENOMEM.
2299 	 */
2300 	if (ret == -ENOSPC)
2301 		ret = -ENOMEM;
2302 
2303 	return ret;
2304 }
2305 
2306 /* Ensure that the associated pages are gathered from the backing storage
2307  * and pinned into our object. i915_gem_object_get_pages() may be called
2308  * multiple times before they are released by a single call to
2309  * i915_gem_object_put_pages() - once the pages are no longer referenced
2310  * either as a result of memory pressure (reaping pages under the shrinker)
2311  * or as the object is itself released.
2312  */
2313 int
2314 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2315 {
2316 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2317 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2318 	int ret;
2319 
2320 	if (obj->pages)
2321 		return 0;
2322 
2323 	if (obj->madv != I915_MADV_WILLNEED) {
2324 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2325 		return -EFAULT;
2326 	}
2327 
2328 	BUG_ON(obj->pages_pin_count);
2329 
2330 	ret = ops->get_pages(obj);
2331 	if (ret)
2332 		return ret;
2333 
2334 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2335 
2336 	obj->get_page.sg = obj->pages->sgl;
2337 	obj->get_page.last = 0;
2338 
2339 	return 0;
2340 }
2341 
2342 void i915_vma_move_to_active(struct i915_vma *vma,
2343 			     struct drm_i915_gem_request *req)
2344 {
2345 	struct drm_i915_gem_object *obj = vma->obj;
2346 	struct intel_engine_cs *ring;
2347 
2348 	ring = i915_gem_request_get_ring(req);
2349 
2350 	/* Add a reference if we're newly entering the active list. */
2351 	if (obj->active == 0)
2352 		drm_gem_object_reference(&obj->base);
2353 	obj->active |= intel_ring_flag(ring);
2354 
2355 	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2356 	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2357 
2358 	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2359 }
2360 
2361 static void
2362 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2363 {
2364 	RQ_BUG_ON(obj->last_write_req == NULL);
2365 	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2366 
2367 	i915_gem_request_assign(&obj->last_write_req, NULL);
2368 	intel_fb_obj_flush(obj, true, ORIGIN_CS);
2369 }
2370 
2371 static void
2372 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2373 {
2374 	struct i915_vma *vma;
2375 
2376 	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2377 	RQ_BUG_ON(!(obj->active & (1 << ring)));
2378 
2379 	list_del_init(&obj->ring_list[ring]);
2380 	i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2381 
2382 	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2383 		i915_gem_object_retire__write(obj);
2384 
2385 	obj->active &= ~(1 << ring);
2386 	if (obj->active)
2387 		return;
2388 
2389 	/* Bump our place on the bound list to keep it roughly in LRU order
2390 	 * so that we don't steal from recently used but inactive objects
2391 	 * (unless we are forced to ofc!)
2392 	 */
2393 	list_move_tail(&obj->global_list,
2394 		       &to_i915(obj->base.dev)->mm.bound_list);
2395 
2396 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
2397 		if (!list_empty(&vma->mm_list))
2398 			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2399 	}
2400 
2401 	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2402 	drm_gem_object_unreference(&obj->base);
2403 }
2404 
2405 static int
2406 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2407 {
2408 	struct drm_i915_private *dev_priv = dev->dev_private;
2409 	struct intel_engine_cs *ring;
2410 	int ret, i, j;
2411 
2412 	/* Carefully retire all requests without writing to the rings */
2413 	for_each_ring(ring, dev_priv, i) {
2414 		ret = intel_ring_idle(ring);
2415 		if (ret)
2416 			return ret;
2417 	}
2418 	i915_gem_retire_requests(dev);
2419 
2420 	/* Finally reset hw state */
2421 	for_each_ring(ring, dev_priv, i) {
2422 		intel_ring_init_seqno(ring, seqno);
2423 
2424 		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2425 			ring->semaphore.sync_seqno[j] = 0;
2426 	}
2427 
2428 	return 0;
2429 }
2430 
2431 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2432 {
2433 	struct drm_i915_private *dev_priv = dev->dev_private;
2434 	int ret;
2435 
2436 	if (seqno == 0)
2437 		return -EINVAL;
2438 
2439 	/* HWS page needs to be set less than what we
2440 	 * will inject to ring
2441 	 */
2442 	ret = i915_gem_init_seqno(dev, seqno - 1);
2443 	if (ret)
2444 		return ret;
2445 
2446 	/* Carefully set the last_seqno value so that wrap
2447 	 * detection still works
2448 	 */
2449 	dev_priv->next_seqno = seqno;
2450 	dev_priv->last_seqno = seqno - 1;
2451 	if (dev_priv->last_seqno == 0)
2452 		dev_priv->last_seqno--;
2453 
2454 	return 0;
2455 }
2456 
2457 int
2458 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2459 {
2460 	struct drm_i915_private *dev_priv = dev->dev_private;
2461 
2462 	/* reserve 0 for non-seqno */
2463 	if (dev_priv->next_seqno == 0) {
2464 		int ret = i915_gem_init_seqno(dev, 0);
2465 		if (ret)
2466 			return ret;
2467 
2468 		dev_priv->next_seqno = 1;
2469 	}
2470 
2471 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2472 	return 0;
2473 }
2474 
2475 /*
2476  * NB: This function is not allowed to fail. Doing so would mean the the
2477  * request is not being tracked for completion but the work itself is
2478  * going to happen on the hardware. This would be a Bad Thing(tm).
2479  */
2480 void __i915_add_request(struct drm_i915_gem_request *request,
2481 			struct drm_i915_gem_object *obj,
2482 			bool flush_caches)
2483 {
2484 	struct intel_engine_cs *ring;
2485 	struct drm_i915_private *dev_priv;
2486 	struct intel_ringbuffer *ringbuf;
2487 	u32 request_start;
2488 	int ret;
2489 
2490 	if (WARN_ON(request == NULL))
2491 		return;
2492 
2493 	ring = request->ring;
2494 	dev_priv = ring->dev->dev_private;
2495 	ringbuf = request->ringbuf;
2496 
2497 	/*
2498 	 * To ensure that this call will not fail, space for its emissions
2499 	 * should already have been reserved in the ring buffer. Let the ring
2500 	 * know that it is time to use that space up.
2501 	 */
2502 	intel_ring_reserved_space_use(ringbuf);
2503 
2504 	request_start = intel_ring_get_tail(ringbuf);
2505 	/*
2506 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2507 	 * after having emitted the batchbuffer command. Hence we need to fix
2508 	 * things up similar to emitting the lazy request. The difference here
2509 	 * is that the flush _must_ happen before the next request, no matter
2510 	 * what.
2511 	 */
2512 	if (flush_caches) {
2513 		if (i915.enable_execlists)
2514 			ret = logical_ring_flush_all_caches(request);
2515 		else
2516 			ret = intel_ring_flush_all_caches(request);
2517 		/* Not allowed to fail! */
2518 		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2519 	}
2520 
2521 	/* Record the position of the start of the request so that
2522 	 * should we detect the updated seqno part-way through the
2523 	 * GPU processing the request, we never over-estimate the
2524 	 * position of the head.
2525 	 */
2526 	request->postfix = intel_ring_get_tail(ringbuf);
2527 
2528 	if (i915.enable_execlists)
2529 		ret = ring->emit_request(request);
2530 	else {
2531 		ret = ring->add_request(request);
2532 
2533 		request->tail = intel_ring_get_tail(ringbuf);
2534 	}
2535 	/* Not allowed to fail! */
2536 	WARN(ret, "emit|add_request failed: %d!\n", ret);
2537 
2538 	request->head = request_start;
2539 
2540 	/* Whilst this request exists, batch_obj will be on the
2541 	 * active_list, and so will hold the active reference. Only when this
2542 	 * request is retired will the the batch_obj be moved onto the
2543 	 * inactive_list and lose its active reference. Hence we do not need
2544 	 * to explicitly hold another reference here.
2545 	 */
2546 	request->batch_obj = obj;
2547 
2548 	request->emitted_jiffies = jiffies;
2549 	ring->last_submitted_seqno = request->seqno;
2550 	list_add_tail(&request->list, &ring->request_list);
2551 
2552 	trace_i915_gem_request_add(request);
2553 
2554 	i915_queue_hangcheck(ring->dev);
2555 
2556 	queue_delayed_work(dev_priv->wq,
2557 			   &dev_priv->mm.retire_work,
2558 			   round_jiffies_up_relative(HZ));
2559 	intel_mark_busy(dev_priv->dev);
2560 
2561 	/* Sanity check that the reserved size was large enough. */
2562 	intel_ring_reserved_space_end(ringbuf);
2563 }
2564 
2565 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2566 				   const struct intel_context *ctx)
2567 {
2568 	unsigned long elapsed;
2569 
2570 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2571 
2572 	if (ctx->hang_stats.banned)
2573 		return true;
2574 
2575 	if (ctx->hang_stats.ban_period_seconds &&
2576 	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2577 		if (!i915_gem_context_is_default(ctx)) {
2578 			DRM_DEBUG("context hanging too fast, banning!\n");
2579 			return true;
2580 		} else if (i915_stop_ring_allow_ban(dev_priv)) {
2581 			if (i915_stop_ring_allow_warn(dev_priv))
2582 				DRM_ERROR("gpu hanging too fast, banning!\n");
2583 			return true;
2584 		}
2585 	}
2586 
2587 	return false;
2588 }
2589 
2590 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2591 				  struct intel_context *ctx,
2592 				  const bool guilty)
2593 {
2594 	struct i915_ctx_hang_stats *hs;
2595 
2596 	if (WARN_ON(!ctx))
2597 		return;
2598 
2599 	hs = &ctx->hang_stats;
2600 
2601 	if (guilty) {
2602 		hs->banned = i915_context_is_banned(dev_priv, ctx);
2603 		hs->batch_active++;
2604 		hs->guilty_ts = get_seconds();
2605 	} else {
2606 		hs->batch_pending++;
2607 	}
2608 }
2609 
2610 void i915_gem_request_free(struct kref *req_ref)
2611 {
2612 	struct drm_i915_gem_request *req = container_of(req_ref,
2613 						 typeof(*req), ref);
2614 	struct intel_context *ctx = req->ctx;
2615 
2616 	if (req->file_priv)
2617 		i915_gem_request_remove_from_client(req);
2618 
2619 	if (ctx) {
2620 		if (i915.enable_execlists) {
2621 			if (ctx != req->ring->default_context)
2622 				intel_lr_context_unpin(req);
2623 		}
2624 
2625 		i915_gem_context_unreference(ctx);
2626 	}
2627 
2628 	kmem_cache_free(req->i915->requests, req);
2629 }
2630 
2631 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2632 			   struct intel_context *ctx,
2633 			   struct drm_i915_gem_request **req_out)
2634 {
2635 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
2636 	struct drm_i915_gem_request *req;
2637 	int ret;
2638 
2639 	if (!req_out)
2640 		return -EINVAL;
2641 
2642 	*req_out = NULL;
2643 
2644 	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2645 	if (req == NULL)
2646 		return -ENOMEM;
2647 
2648 	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2649 	if (ret)
2650 		goto err;
2651 
2652 	kref_init(&req->ref);
2653 	req->i915 = dev_priv;
2654 	req->ring = ring;
2655 	req->ctx  = ctx;
2656 	i915_gem_context_reference(req->ctx);
2657 
2658 	if (i915.enable_execlists)
2659 		ret = intel_logical_ring_alloc_request_extras(req);
2660 	else
2661 		ret = intel_ring_alloc_request_extras(req);
2662 	if (ret) {
2663 		i915_gem_context_unreference(req->ctx);
2664 		goto err;
2665 	}
2666 
2667 	/*
2668 	 * Reserve space in the ring buffer for all the commands required to
2669 	 * eventually emit this request. This is to guarantee that the
2670 	 * i915_add_request() call can't fail. Note that the reserve may need
2671 	 * to be redone if the request is not actually submitted straight
2672 	 * away, e.g. because a GPU scheduler has deferred it.
2673 	 */
2674 	if (i915.enable_execlists)
2675 		ret = intel_logical_ring_reserve_space(req);
2676 	else
2677 		ret = intel_ring_reserve_space(req);
2678 	if (ret) {
2679 		/*
2680 		 * At this point, the request is fully allocated even if not
2681 		 * fully prepared. Thus it can be cleaned up using the proper
2682 		 * free code.
2683 		 */
2684 		i915_gem_request_cancel(req);
2685 		return ret;
2686 	}
2687 
2688 	*req_out = req;
2689 	return 0;
2690 
2691 err:
2692 	kmem_cache_free(dev_priv->requests, req);
2693 	return ret;
2694 }
2695 
2696 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2697 {
2698 	intel_ring_reserved_space_cancel(req->ringbuf);
2699 
2700 	i915_gem_request_unreference(req);
2701 }
2702 
2703 struct drm_i915_gem_request *
2704 i915_gem_find_active_request(struct intel_engine_cs *ring)
2705 {
2706 	struct drm_i915_gem_request *request;
2707 
2708 	list_for_each_entry(request, &ring->request_list, list) {
2709 		if (i915_gem_request_completed(request, false))
2710 			continue;
2711 
2712 		return request;
2713 	}
2714 
2715 	return NULL;
2716 }
2717 
2718 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2719 				       struct intel_engine_cs *ring)
2720 {
2721 	struct drm_i915_gem_request *request;
2722 	bool ring_hung;
2723 
2724 	request = i915_gem_find_active_request(ring);
2725 
2726 	if (request == NULL)
2727 		return;
2728 
2729 	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2730 
2731 	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2732 
2733 	list_for_each_entry_continue(request, &ring->request_list, list)
2734 		i915_set_reset_status(dev_priv, request->ctx, false);
2735 }
2736 
2737 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2738 					struct intel_engine_cs *ring)
2739 {
2740 	while (!list_empty(&ring->active_list)) {
2741 		struct drm_i915_gem_object *obj;
2742 
2743 		obj = list_first_entry(&ring->active_list,
2744 				       struct drm_i915_gem_object,
2745 				       ring_list[ring->id]);
2746 
2747 		i915_gem_object_retire__read(obj, ring->id);
2748 	}
2749 
2750 	/*
2751 	 * Clear the execlists queue up before freeing the requests, as those
2752 	 * are the ones that keep the context and ringbuffer backing objects
2753 	 * pinned in place.
2754 	 */
2755 	while (!list_empty(&ring->execlist_queue)) {
2756 		struct drm_i915_gem_request *submit_req;
2757 
2758 		submit_req = list_first_entry(&ring->execlist_queue,
2759 				struct drm_i915_gem_request,
2760 				execlist_link);
2761 		list_del(&submit_req->execlist_link);
2762 
2763 		if (submit_req->ctx != ring->default_context)
2764 			intel_lr_context_unpin(submit_req);
2765 
2766 		i915_gem_request_unreference(submit_req);
2767 	}
2768 
2769 	/*
2770 	 * We must free the requests after all the corresponding objects have
2771 	 * been moved off active lists. Which is the same order as the normal
2772 	 * retire_requests function does. This is important if object hold
2773 	 * implicit references on things like e.g. ppgtt address spaces through
2774 	 * the request.
2775 	 */
2776 	while (!list_empty(&ring->request_list)) {
2777 		struct drm_i915_gem_request *request;
2778 
2779 		request = list_first_entry(&ring->request_list,
2780 					   struct drm_i915_gem_request,
2781 					   list);
2782 
2783 		i915_gem_request_retire(request);
2784 	}
2785 }
2786 
2787 void i915_gem_reset(struct drm_device *dev)
2788 {
2789 	struct drm_i915_private *dev_priv = dev->dev_private;
2790 	struct intel_engine_cs *ring;
2791 	int i;
2792 
2793 	/*
2794 	 * Before we free the objects from the requests, we need to inspect
2795 	 * them for finding the guilty party. As the requests only borrow
2796 	 * their reference to the objects, the inspection must be done first.
2797 	 */
2798 	for_each_ring(ring, dev_priv, i)
2799 		i915_gem_reset_ring_status(dev_priv, ring);
2800 
2801 	for_each_ring(ring, dev_priv, i)
2802 		i915_gem_reset_ring_cleanup(dev_priv, ring);
2803 
2804 	i915_gem_context_reset(dev);
2805 
2806 	i915_gem_restore_fences(dev);
2807 
2808 	WARN_ON(i915_verify_lists(dev));
2809 }
2810 
2811 /**
2812  * This function clears the request list as sequence numbers are passed.
2813  */
2814 void
2815 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2816 {
2817 	WARN_ON(i915_verify_lists(ring->dev));
2818 
2819 	/* Retire requests first as we use it above for the early return.
2820 	 * If we retire requests last, we may use a later seqno and so clear
2821 	 * the requests lists without clearing the active list, leading to
2822 	 * confusion.
2823 	 */
2824 	while (!list_empty(&ring->request_list)) {
2825 		struct drm_i915_gem_request *request;
2826 
2827 		request = list_first_entry(&ring->request_list,
2828 					   struct drm_i915_gem_request,
2829 					   list);
2830 
2831 		if (!i915_gem_request_completed(request, true))
2832 			break;
2833 
2834 		i915_gem_request_retire(request);
2835 	}
2836 
2837 	/* Move any buffers on the active list that are no longer referenced
2838 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
2839 	 * before we free the context associated with the requests.
2840 	 */
2841 	while (!list_empty(&ring->active_list)) {
2842 		struct drm_i915_gem_object *obj;
2843 
2844 		obj = list_first_entry(&ring->active_list,
2845 				      struct drm_i915_gem_object,
2846 				      ring_list[ring->id]);
2847 
2848 		if (!list_empty(&obj->last_read_req[ring->id]->list))
2849 			break;
2850 
2851 		i915_gem_object_retire__read(obj, ring->id);
2852 	}
2853 
2854 	if (unlikely(ring->trace_irq_req &&
2855 		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2856 		ring->irq_put(ring);
2857 		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2858 	}
2859 
2860 	WARN_ON(i915_verify_lists(ring->dev));
2861 }
2862 
2863 bool
2864 i915_gem_retire_requests(struct drm_device *dev)
2865 {
2866 	struct drm_i915_private *dev_priv = dev->dev_private;
2867 	struct intel_engine_cs *ring;
2868 	bool idle = true;
2869 	int i;
2870 
2871 	for_each_ring(ring, dev_priv, i) {
2872 		i915_gem_retire_requests_ring(ring);
2873 		idle &= list_empty(&ring->request_list);
2874 		if (i915.enable_execlists) {
2875 			unsigned long flags;
2876 
2877 			spin_lock_irqsave(&ring->execlist_lock, flags);
2878 			idle &= list_empty(&ring->execlist_queue);
2879 			spin_unlock_irqrestore(&ring->execlist_lock, flags);
2880 
2881 			intel_execlists_retire_requests(ring);
2882 		}
2883 	}
2884 
2885 	if (idle)
2886 		mod_delayed_work(dev_priv->wq,
2887 				   &dev_priv->mm.idle_work,
2888 				   msecs_to_jiffies(100));
2889 
2890 	return idle;
2891 }
2892 
2893 static void
2894 i915_gem_retire_work_handler(struct work_struct *work)
2895 {
2896 	struct drm_i915_private *dev_priv =
2897 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
2898 	struct drm_device *dev = dev_priv->dev;
2899 	bool idle;
2900 
2901 	/* Come back later if the device is busy... */
2902 	idle = false;
2903 	if (mutex_trylock(&dev->struct_mutex)) {
2904 		idle = i915_gem_retire_requests(dev);
2905 		mutex_unlock(&dev->struct_mutex);
2906 	}
2907 	if (!idle)
2908 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2909 				   round_jiffies_up_relative(HZ));
2910 }
2911 
2912 static void
2913 i915_gem_idle_work_handler(struct work_struct *work)
2914 {
2915 	struct drm_i915_private *dev_priv =
2916 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2917 	struct drm_device *dev = dev_priv->dev;
2918 	struct intel_engine_cs *ring;
2919 	int i;
2920 
2921 	for_each_ring(ring, dev_priv, i)
2922 		if (!list_empty(&ring->request_list))
2923 			return;
2924 
2925 	intel_mark_idle(dev);
2926 
2927 	if (mutex_trylock(&dev->struct_mutex)) {
2928 		struct intel_engine_cs *ring;
2929 		int i;
2930 
2931 		for_each_ring(ring, dev_priv, i)
2932 			i915_gem_batch_pool_fini(&ring->batch_pool);
2933 
2934 		mutex_unlock(&dev->struct_mutex);
2935 	}
2936 }
2937 
2938 /**
2939  * Ensures that an object will eventually get non-busy by flushing any required
2940  * write domains, emitting any outstanding lazy request and retiring and
2941  * completed requests.
2942  */
2943 static int
2944 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2945 {
2946 	int i;
2947 
2948 	if (!obj->active)
2949 		return 0;
2950 
2951 	for (i = 0; i < I915_NUM_RINGS; i++) {
2952 		struct drm_i915_gem_request *req;
2953 
2954 		req = obj->last_read_req[i];
2955 		if (req == NULL)
2956 			continue;
2957 
2958 		if (list_empty(&req->list))
2959 			goto retire;
2960 
2961 		if (i915_gem_request_completed(req, true)) {
2962 			__i915_gem_request_retire__upto(req);
2963 retire:
2964 			i915_gem_object_retire__read(obj, i);
2965 		}
2966 	}
2967 
2968 	return 0;
2969 }
2970 
2971 /**
2972  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2973  * @DRM_IOCTL_ARGS: standard ioctl arguments
2974  *
2975  * Returns 0 if successful, else an error is returned with the remaining time in
2976  * the timeout parameter.
2977  *  -ETIME: object is still busy after timeout
2978  *  -ERESTARTSYS: signal interrupted the wait
2979  *  -ENONENT: object doesn't exist
2980  * Also possible, but rare:
2981  *  -EAGAIN: GPU wedged
2982  *  -ENOMEM: damn
2983  *  -ENODEV: Internal IRQ fail
2984  *  -E?: The add request failed
2985  *
2986  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2987  * non-zero timeout parameter the wait ioctl will wait for the given number of
2988  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2989  * without holding struct_mutex the object may become re-busied before this
2990  * function completes. A similar but shorter * race condition exists in the busy
2991  * ioctl
2992  */
2993 int
2994 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2995 {
2996 	struct drm_i915_private *dev_priv = dev->dev_private;
2997 	struct drm_i915_gem_wait *args = data;
2998 	struct drm_i915_gem_object *obj;
2999 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3000 	unsigned reset_counter;
3001 	int i, n = 0;
3002 	int ret;
3003 
3004 	if (args->flags != 0)
3005 		return -EINVAL;
3006 
3007 	ret = i915_mutex_lock_interruptible(dev);
3008 	if (ret)
3009 		return ret;
3010 
3011 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3012 	if (&obj->base == NULL) {
3013 		mutex_unlock(&dev->struct_mutex);
3014 		return -ENOENT;
3015 	}
3016 
3017 	/* Need to make sure the object gets inactive eventually. */
3018 	ret = i915_gem_object_flush_active(obj);
3019 	if (ret)
3020 		goto out;
3021 
3022 	if (!obj->active)
3023 		goto out;
3024 
3025 	/* Do this after OLR check to make sure we make forward progress polling
3026 	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3027 	 */
3028 	if (args->timeout_ns == 0) {
3029 		ret = -ETIME;
3030 		goto out;
3031 	}
3032 
3033 	drm_gem_object_unreference(&obj->base);
3034 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3035 
3036 	for (i = 0; i < I915_NUM_RINGS; i++) {
3037 		if (obj->last_read_req[i] == NULL)
3038 			continue;
3039 
3040 		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3041 	}
3042 
3043 	mutex_unlock(&dev->struct_mutex);
3044 
3045 	for (i = 0; i < n; i++) {
3046 		if (ret == 0)
3047 			ret = __i915_wait_request(req[i], reset_counter, true,
3048 						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3049 						  file->driver_priv);
3050 		i915_gem_request_unreference__unlocked(req[i]);
3051 	}
3052 	return ret;
3053 
3054 out:
3055 	drm_gem_object_unreference(&obj->base);
3056 	mutex_unlock(&dev->struct_mutex);
3057 	return ret;
3058 }
3059 
3060 static int
3061 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3062 		       struct intel_engine_cs *to,
3063 		       struct drm_i915_gem_request *from_req,
3064 		       struct drm_i915_gem_request **to_req)
3065 {
3066 	struct intel_engine_cs *from;
3067 	int ret;
3068 
3069 	from = i915_gem_request_get_ring(from_req);
3070 	if (to == from)
3071 		return 0;
3072 
3073 	if (i915_gem_request_completed(from_req, true))
3074 		return 0;
3075 
3076 	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3077 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3078 		ret = __i915_wait_request(from_req,
3079 					  atomic_read(&i915->gpu_error.reset_counter),
3080 					  i915->mm.interruptible,
3081 					  NULL,
3082 					  &i915->rps.semaphores);
3083 		if (ret)
3084 			return ret;
3085 
3086 		i915_gem_object_retire_request(obj, from_req);
3087 	} else {
3088 		int idx = intel_ring_sync_index(from, to);
3089 		u32 seqno = i915_gem_request_get_seqno(from_req);
3090 
3091 		WARN_ON(!to_req);
3092 
3093 		if (seqno <= from->semaphore.sync_seqno[idx])
3094 			return 0;
3095 
3096 		if (*to_req == NULL) {
3097 			ret = i915_gem_request_alloc(to, to->default_context, to_req);
3098 			if (ret)
3099 				return ret;
3100 		}
3101 
3102 		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3103 		ret = to->semaphore.sync_to(*to_req, from, seqno);
3104 		if (ret)
3105 			return ret;
3106 
3107 		/* We use last_read_req because sync_to()
3108 		 * might have just caused seqno wrap under
3109 		 * the radar.
3110 		 */
3111 		from->semaphore.sync_seqno[idx] =
3112 			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3113 	}
3114 
3115 	return 0;
3116 }
3117 
3118 /**
3119  * i915_gem_object_sync - sync an object to a ring.
3120  *
3121  * @obj: object which may be in use on another ring.
3122  * @to: ring we wish to use the object on. May be NULL.
3123  * @to_req: request we wish to use the object for. See below.
3124  *          This will be allocated and returned if a request is
3125  *          required but not passed in.
3126  *
3127  * This code is meant to abstract object synchronization with the GPU.
3128  * Calling with NULL implies synchronizing the object with the CPU
3129  * rather than a particular GPU ring. Conceptually we serialise writes
3130  * between engines inside the GPU. We only allow one engine to write
3131  * into a buffer at any time, but multiple readers. To ensure each has
3132  * a coherent view of memory, we must:
3133  *
3134  * - If there is an outstanding write request to the object, the new
3135  *   request must wait for it to complete (either CPU or in hw, requests
3136  *   on the same ring will be naturally ordered).
3137  *
3138  * - If we are a write request (pending_write_domain is set), the new
3139  *   request must wait for outstanding read requests to complete.
3140  *
3141  * For CPU synchronisation (NULL to) no request is required. For syncing with
3142  * rings to_req must be non-NULL. However, a request does not have to be
3143  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3144  * request will be allocated automatically and returned through *to_req. Note
3145  * that it is not guaranteed that commands will be emitted (because the system
3146  * might already be idle). Hence there is no need to create a request that
3147  * might never have any work submitted. Note further that if a request is
3148  * returned in *to_req, it is the responsibility of the caller to submit
3149  * that request (after potentially adding more work to it).
3150  *
3151  * Returns 0 if successful, else propagates up the lower layer error.
3152  */
3153 int
3154 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3155 		     struct intel_engine_cs *to,
3156 		     struct drm_i915_gem_request **to_req)
3157 {
3158 	const bool readonly = obj->base.pending_write_domain == 0;
3159 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3160 	int ret, i, n;
3161 
3162 	if (!obj->active)
3163 		return 0;
3164 
3165 	if (to == NULL)
3166 		return i915_gem_object_wait_rendering(obj, readonly);
3167 
3168 	n = 0;
3169 	if (readonly) {
3170 		if (obj->last_write_req)
3171 			req[n++] = obj->last_write_req;
3172 	} else {
3173 		for (i = 0; i < I915_NUM_RINGS; i++)
3174 			if (obj->last_read_req[i])
3175 				req[n++] = obj->last_read_req[i];
3176 	}
3177 	for (i = 0; i < n; i++) {
3178 		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3179 		if (ret)
3180 			return ret;
3181 	}
3182 
3183 	return 0;
3184 }
3185 
3186 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3187 {
3188 	u32 old_write_domain, old_read_domains;
3189 
3190 	/* Force a pagefault for domain tracking on next user access */
3191 	i915_gem_release_mmap(obj);
3192 
3193 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3194 		return;
3195 
3196 	/* Wait for any direct GTT access to complete */
3197 	mb();
3198 
3199 	old_read_domains = obj->base.read_domains;
3200 	old_write_domain = obj->base.write_domain;
3201 
3202 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3203 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3204 
3205 	trace_i915_gem_object_change_domain(obj,
3206 					    old_read_domains,
3207 					    old_write_domain);
3208 }
3209 
3210 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3211 {
3212 	struct drm_i915_gem_object *obj = vma->obj;
3213 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3214 	int ret;
3215 
3216 	if (list_empty(&vma->vma_link))
3217 		return 0;
3218 
3219 	if (!drm_mm_node_allocated(&vma->node)) {
3220 		i915_gem_vma_destroy(vma);
3221 		return 0;
3222 	}
3223 
3224 	if (vma->pin_count)
3225 		return -EBUSY;
3226 
3227 	BUG_ON(obj->pages == NULL);
3228 
3229 	if (wait) {
3230 		ret = i915_gem_object_wait_rendering(obj, false);
3231 		if (ret)
3232 			return ret;
3233 	}
3234 
3235 	if (i915_is_ggtt(vma->vm) &&
3236 	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3237 		i915_gem_object_finish_gtt(obj);
3238 
3239 		/* release the fence reg _after_ flushing */
3240 		ret = i915_gem_object_put_fence(obj);
3241 		if (ret)
3242 			return ret;
3243 	}
3244 
3245 	trace_i915_vma_unbind(vma);
3246 
3247 	vma->vm->unbind_vma(vma);
3248 	vma->bound = 0;
3249 
3250 	list_del_init(&vma->mm_list);
3251 	if (i915_is_ggtt(vma->vm)) {
3252 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3253 			obj->map_and_fenceable = false;
3254 		} else if (vma->ggtt_view.pages) {
3255 			sg_free_table(vma->ggtt_view.pages);
3256 			kfree(vma->ggtt_view.pages);
3257 		}
3258 		vma->ggtt_view.pages = NULL;
3259 	}
3260 
3261 	drm_mm_remove_node(&vma->node);
3262 	i915_gem_vma_destroy(vma);
3263 
3264 	/* Since the unbound list is global, only move to that list if
3265 	 * no more VMAs exist. */
3266 	if (list_empty(&obj->vma_list))
3267 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3268 
3269 	/* And finally now the object is completely decoupled from this vma,
3270 	 * we can drop its hold on the backing storage and allow it to be
3271 	 * reaped by the shrinker.
3272 	 */
3273 	i915_gem_object_unpin_pages(obj);
3274 
3275 	return 0;
3276 }
3277 
3278 int i915_vma_unbind(struct i915_vma *vma)
3279 {
3280 	return __i915_vma_unbind(vma, true);
3281 }
3282 
3283 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3284 {
3285 	return __i915_vma_unbind(vma, false);
3286 }
3287 
3288 int i915_gpu_idle(struct drm_device *dev)
3289 {
3290 	struct drm_i915_private *dev_priv = dev->dev_private;
3291 	struct intel_engine_cs *ring;
3292 	int ret, i;
3293 
3294 	/* Flush everything onto the inactive list. */
3295 	for_each_ring(ring, dev_priv, i) {
3296 		if (!i915.enable_execlists) {
3297 			struct drm_i915_gem_request *req;
3298 
3299 			ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3300 			if (ret)
3301 				return ret;
3302 
3303 			ret = i915_switch_context(req);
3304 			if (ret) {
3305 				i915_gem_request_cancel(req);
3306 				return ret;
3307 			}
3308 
3309 			i915_add_request_no_flush(req);
3310 		}
3311 
3312 		ret = intel_ring_idle(ring);
3313 		if (ret)
3314 			return ret;
3315 	}
3316 
3317 	WARN_ON(i915_verify_lists(dev));
3318 	return 0;
3319 }
3320 
3321 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3322 				     unsigned long cache_level)
3323 {
3324 	struct drm_mm_node *gtt_space = &vma->node;
3325 	struct drm_mm_node *other;
3326 
3327 	/*
3328 	 * On some machines we have to be careful when putting differing types
3329 	 * of snoopable memory together to avoid the prefetcher crossing memory
3330 	 * domains and dying. During vm initialisation, we decide whether or not
3331 	 * these constraints apply and set the drm_mm.color_adjust
3332 	 * appropriately.
3333 	 */
3334 	if (vma->vm->mm.color_adjust == NULL)
3335 		return true;
3336 
3337 	if (!drm_mm_node_allocated(gtt_space))
3338 		return true;
3339 
3340 	if (list_empty(&gtt_space->node_list))
3341 		return true;
3342 
3343 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3344 	if (other->allocated && !other->hole_follows && other->color != cache_level)
3345 		return false;
3346 
3347 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3348 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3349 		return false;
3350 
3351 	return true;
3352 }
3353 
3354 /**
3355  * Finds free space in the GTT aperture and binds the object or a view of it
3356  * there.
3357  */
3358 static struct i915_vma *
3359 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3360 			   struct i915_address_space *vm,
3361 			   const struct i915_ggtt_view *ggtt_view,
3362 			   unsigned alignment,
3363 			   uint64_t flags)
3364 {
3365 	struct drm_device *dev = obj->base.dev;
3366 	struct drm_i915_private *dev_priv = dev->dev_private;
3367 	u32 fence_alignment, unfenced_alignment;
3368 	u32 search_flag, alloc_flag;
3369 	u64 start, end;
3370 	u64 size, fence_size;
3371 	struct i915_vma *vma;
3372 	int ret;
3373 
3374 	if (i915_is_ggtt(vm)) {
3375 		u32 view_size;
3376 
3377 		if (WARN_ON(!ggtt_view))
3378 			return ERR_PTR(-EINVAL);
3379 
3380 		view_size = i915_ggtt_view_size(obj, ggtt_view);
3381 
3382 		fence_size = i915_gem_get_gtt_size(dev,
3383 						   view_size,
3384 						   obj->tiling_mode);
3385 		fence_alignment = i915_gem_get_gtt_alignment(dev,
3386 							     view_size,
3387 							     obj->tiling_mode,
3388 							     true);
3389 		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3390 								view_size,
3391 								obj->tiling_mode,
3392 								false);
3393 		size = flags & PIN_MAPPABLE ? fence_size : view_size;
3394 	} else {
3395 		fence_size = i915_gem_get_gtt_size(dev,
3396 						   obj->base.size,
3397 						   obj->tiling_mode);
3398 		fence_alignment = i915_gem_get_gtt_alignment(dev,
3399 							     obj->base.size,
3400 							     obj->tiling_mode,
3401 							     true);
3402 		unfenced_alignment =
3403 			i915_gem_get_gtt_alignment(dev,
3404 						   obj->base.size,
3405 						   obj->tiling_mode,
3406 						   false);
3407 		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3408 	}
3409 
3410 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3411 	end = vm->total;
3412 	if (flags & PIN_MAPPABLE)
3413 		end = min_t(u64, end, dev_priv->gtt.mappable_end);
3414 	if (flags & PIN_ZONE_4G)
3415 		end = min_t(u64, end, (1ULL << 32));
3416 
3417 	if (alignment == 0)
3418 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3419 						unfenced_alignment;
3420 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3421 		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3422 			  ggtt_view ? ggtt_view->type : 0,
3423 			  alignment);
3424 		return ERR_PTR(-EINVAL);
3425 	}
3426 
3427 	/* If binding the object/GGTT view requires more space than the entire
3428 	 * aperture has, reject it early before evicting everything in a vain
3429 	 * attempt to find space.
3430 	 */
3431 	if (size > end) {
3432 		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3433 			  ggtt_view ? ggtt_view->type : 0,
3434 			  size,
3435 			  flags & PIN_MAPPABLE ? "mappable" : "total",
3436 			  end);
3437 		return ERR_PTR(-E2BIG);
3438 	}
3439 
3440 	ret = i915_gem_object_get_pages(obj);
3441 	if (ret)
3442 		return ERR_PTR(ret);
3443 
3444 	i915_gem_object_pin_pages(obj);
3445 
3446 	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3447 			  i915_gem_obj_lookup_or_create_vma(obj, vm);
3448 
3449 	if (IS_ERR(vma))
3450 		goto err_unpin;
3451 
3452 	if (flags & PIN_HIGH) {
3453 		search_flag = DRM_MM_SEARCH_BELOW;
3454 		alloc_flag = DRM_MM_CREATE_TOP;
3455 	} else {
3456 		search_flag = DRM_MM_SEARCH_DEFAULT;
3457 		alloc_flag = DRM_MM_CREATE_DEFAULT;
3458 	}
3459 
3460 search_free:
3461 	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3462 						  size, alignment,
3463 						  obj->cache_level,
3464 						  start, end,
3465 						  search_flag,
3466 						  alloc_flag);
3467 	if (ret) {
3468 		ret = i915_gem_evict_something(dev, vm, size, alignment,
3469 					       obj->cache_level,
3470 					       start, end,
3471 					       flags);
3472 		if (ret == 0)
3473 			goto search_free;
3474 
3475 		goto err_free_vma;
3476 	}
3477 	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3478 		ret = -EINVAL;
3479 		goto err_remove_node;
3480 	}
3481 
3482 	trace_i915_vma_bind(vma, flags);
3483 	ret = i915_vma_bind(vma, obj->cache_level, flags);
3484 	if (ret)
3485 		goto err_remove_node;
3486 
3487 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3488 	list_add_tail(&vma->mm_list, &vm->inactive_list);
3489 
3490 	return vma;
3491 
3492 err_remove_node:
3493 	drm_mm_remove_node(&vma->node);
3494 err_free_vma:
3495 	i915_gem_vma_destroy(vma);
3496 	vma = ERR_PTR(ret);
3497 err_unpin:
3498 	i915_gem_object_unpin_pages(obj);
3499 	return vma;
3500 }
3501 
3502 bool
3503 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3504 			bool force)
3505 {
3506 	/* If we don't have a page list set up, then we're not pinned
3507 	 * to GPU, and we can ignore the cache flush because it'll happen
3508 	 * again at bind time.
3509 	 */
3510 	if (obj->pages == NULL)
3511 		return false;
3512 
3513 	/*
3514 	 * Stolen memory is always coherent with the GPU as it is explicitly
3515 	 * marked as wc by the system, or the system is cache-coherent.
3516 	 */
3517 	if (obj->stolen || obj->phys_handle)
3518 		return false;
3519 
3520 	/* If the GPU is snooping the contents of the CPU cache,
3521 	 * we do not need to manually clear the CPU cache lines.  However,
3522 	 * the caches are only snooped when the render cache is
3523 	 * flushed/invalidated.  As we always have to emit invalidations
3524 	 * and flushes when moving into and out of the RENDER domain, correct
3525 	 * snooping behaviour occurs naturally as the result of our domain
3526 	 * tracking.
3527 	 */
3528 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3529 		obj->cache_dirty = true;
3530 		return false;
3531 	}
3532 
3533 	trace_i915_gem_object_clflush(obj);
3534 	drm_clflush_sg(obj->pages);
3535 	obj->cache_dirty = false;
3536 
3537 	return true;
3538 }
3539 
3540 /** Flushes the GTT write domain for the object if it's dirty. */
3541 static void
3542 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3543 {
3544 	uint32_t old_write_domain;
3545 
3546 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3547 		return;
3548 
3549 	/* No actual flushing is required for the GTT write domain.  Writes
3550 	 * to it immediately go to main memory as far as we know, so there's
3551 	 * no chipset flush.  It also doesn't land in render cache.
3552 	 *
3553 	 * However, we do have to enforce the order so that all writes through
3554 	 * the GTT land before any writes to the device, such as updates to
3555 	 * the GATT itself.
3556 	 */
3557 	wmb();
3558 
3559 	old_write_domain = obj->base.write_domain;
3560 	obj->base.write_domain = 0;
3561 
3562 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3563 
3564 	trace_i915_gem_object_change_domain(obj,
3565 					    obj->base.read_domains,
3566 					    old_write_domain);
3567 }
3568 
3569 /** Flushes the CPU write domain for the object if it's dirty. */
3570 static void
3571 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3572 {
3573 	uint32_t old_write_domain;
3574 
3575 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3576 		return;
3577 
3578 	if (i915_gem_clflush_object(obj, obj->pin_display))
3579 		i915_gem_chipset_flush(obj->base.dev);
3580 
3581 	old_write_domain = obj->base.write_domain;
3582 	obj->base.write_domain = 0;
3583 
3584 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3585 
3586 	trace_i915_gem_object_change_domain(obj,
3587 					    obj->base.read_domains,
3588 					    old_write_domain);
3589 }
3590 
3591 /**
3592  * Moves a single object to the GTT read, and possibly write domain.
3593  *
3594  * This function returns when the move is complete, including waiting on
3595  * flushes to occur.
3596  */
3597 int
3598 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3599 {
3600 	uint32_t old_write_domain, old_read_domains;
3601 	struct i915_vma *vma;
3602 	int ret;
3603 
3604 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3605 		return 0;
3606 
3607 	ret = i915_gem_object_wait_rendering(obj, !write);
3608 	if (ret)
3609 		return ret;
3610 
3611 	/* Flush and acquire obj->pages so that we are coherent through
3612 	 * direct access in memory with previous cached writes through
3613 	 * shmemfs and that our cache domain tracking remains valid.
3614 	 * For example, if the obj->filp was moved to swap without us
3615 	 * being notified and releasing the pages, we would mistakenly
3616 	 * continue to assume that the obj remained out of the CPU cached
3617 	 * domain.
3618 	 */
3619 	ret = i915_gem_object_get_pages(obj);
3620 	if (ret)
3621 		return ret;
3622 
3623 	i915_gem_object_flush_cpu_write_domain(obj);
3624 
3625 	/* Serialise direct access to this object with the barriers for
3626 	 * coherent writes from the GPU, by effectively invalidating the
3627 	 * GTT domain upon first access.
3628 	 */
3629 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3630 		mb();
3631 
3632 	old_write_domain = obj->base.write_domain;
3633 	old_read_domains = obj->base.read_domains;
3634 
3635 	/* It should now be out of any other write domains, and we can update
3636 	 * the domain values for our changes.
3637 	 */
3638 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3639 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3640 	if (write) {
3641 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3642 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3643 		obj->dirty = 1;
3644 	}
3645 
3646 	trace_i915_gem_object_change_domain(obj,
3647 					    old_read_domains,
3648 					    old_write_domain);
3649 
3650 	/* And bump the LRU for this access */
3651 	vma = i915_gem_obj_to_ggtt(obj);
3652 	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3653 		list_move_tail(&vma->mm_list,
3654 			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3655 
3656 	return 0;
3657 }
3658 
3659 /**
3660  * Changes the cache-level of an object across all VMA.
3661  *
3662  * After this function returns, the object will be in the new cache-level
3663  * across all GTT and the contents of the backing storage will be coherent,
3664  * with respect to the new cache-level. In order to keep the backing storage
3665  * coherent for all users, we only allow a single cache level to be set
3666  * globally on the object and prevent it from being changed whilst the
3667  * hardware is reading from the object. That is if the object is currently
3668  * on the scanout it will be set to uncached (or equivalent display
3669  * cache coherency) and all non-MOCS GPU access will also be uncached so
3670  * that all direct access to the scanout remains coherent.
3671  */
3672 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3673 				    enum i915_cache_level cache_level)
3674 {
3675 	struct drm_device *dev = obj->base.dev;
3676 	struct i915_vma *vma, *next;
3677 	bool bound = false;
3678 	int ret = 0;
3679 
3680 	if (obj->cache_level == cache_level)
3681 		goto out;
3682 
3683 	/* Inspect the list of currently bound VMA and unbind any that would
3684 	 * be invalid given the new cache-level. This is principally to
3685 	 * catch the issue of the CS prefetch crossing page boundaries and
3686 	 * reading an invalid PTE on older architectures.
3687 	 */
3688 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3689 		if (!drm_mm_node_allocated(&vma->node))
3690 			continue;
3691 
3692 		if (vma->pin_count) {
3693 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3694 			return -EBUSY;
3695 		}
3696 
3697 		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3698 			ret = i915_vma_unbind(vma);
3699 			if (ret)
3700 				return ret;
3701 		} else
3702 			bound = true;
3703 	}
3704 
3705 	/* We can reuse the existing drm_mm nodes but need to change the
3706 	 * cache-level on the PTE. We could simply unbind them all and
3707 	 * rebind with the correct cache-level on next use. However since
3708 	 * we already have a valid slot, dma mapping, pages etc, we may as
3709 	 * rewrite the PTE in the belief that doing so tramples upon less
3710 	 * state and so involves less work.
3711 	 */
3712 	if (bound) {
3713 		/* Before we change the PTE, the GPU must not be accessing it.
3714 		 * If we wait upon the object, we know that all the bound
3715 		 * VMA are no longer active.
3716 		 */
3717 		ret = i915_gem_object_wait_rendering(obj, false);
3718 		if (ret)
3719 			return ret;
3720 
3721 		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3722 			/* Access to snoopable pages through the GTT is
3723 			 * incoherent and on some machines causes a hard
3724 			 * lockup. Relinquish the CPU mmaping to force
3725 			 * userspace to refault in the pages and we can
3726 			 * then double check if the GTT mapping is still
3727 			 * valid for that pointer access.
3728 			 */
3729 			i915_gem_release_mmap(obj);
3730 
3731 			/* As we no longer need a fence for GTT access,
3732 			 * we can relinquish it now (and so prevent having
3733 			 * to steal a fence from someone else on the next
3734 			 * fence request). Note GPU activity would have
3735 			 * dropped the fence as all snoopable access is
3736 			 * supposed to be linear.
3737 			 */
3738 			ret = i915_gem_object_put_fence(obj);
3739 			if (ret)
3740 				return ret;
3741 		} else {
3742 			/* We either have incoherent backing store and
3743 			 * so no GTT access or the architecture is fully
3744 			 * coherent. In such cases, existing GTT mmaps
3745 			 * ignore the cache bit in the PTE and we can
3746 			 * rewrite it without confusing the GPU or having
3747 			 * to force userspace to fault back in its mmaps.
3748 			 */
3749 		}
3750 
3751 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
3752 			if (!drm_mm_node_allocated(&vma->node))
3753 				continue;
3754 
3755 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3756 			if (ret)
3757 				return ret;
3758 		}
3759 	}
3760 
3761 	list_for_each_entry(vma, &obj->vma_list, vma_link)
3762 		vma->node.color = cache_level;
3763 	obj->cache_level = cache_level;
3764 
3765 out:
3766 	/* Flush the dirty CPU caches to the backing storage so that the
3767 	 * object is now coherent at its new cache level (with respect
3768 	 * to the access domain).
3769 	 */
3770 	if (obj->cache_dirty &&
3771 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3772 	    cpu_write_needs_clflush(obj)) {
3773 		if (i915_gem_clflush_object(obj, true))
3774 			i915_gem_chipset_flush(obj->base.dev);
3775 	}
3776 
3777 	return 0;
3778 }
3779 
3780 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3781 			       struct drm_file *file)
3782 {
3783 	struct drm_i915_gem_caching *args = data;
3784 	struct drm_i915_gem_object *obj;
3785 
3786 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3787 	if (&obj->base == NULL)
3788 		return -ENOENT;
3789 
3790 	switch (obj->cache_level) {
3791 	case I915_CACHE_LLC:
3792 	case I915_CACHE_L3_LLC:
3793 		args->caching = I915_CACHING_CACHED;
3794 		break;
3795 
3796 	case I915_CACHE_WT:
3797 		args->caching = I915_CACHING_DISPLAY;
3798 		break;
3799 
3800 	default:
3801 		args->caching = I915_CACHING_NONE;
3802 		break;
3803 	}
3804 
3805 	drm_gem_object_unreference_unlocked(&obj->base);
3806 	return 0;
3807 }
3808 
3809 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3810 			       struct drm_file *file)
3811 {
3812 	struct drm_i915_gem_caching *args = data;
3813 	struct drm_i915_gem_object *obj;
3814 	enum i915_cache_level level;
3815 	int ret;
3816 
3817 	switch (args->caching) {
3818 	case I915_CACHING_NONE:
3819 		level = I915_CACHE_NONE;
3820 		break;
3821 	case I915_CACHING_CACHED:
3822 		/*
3823 		 * Due to a HW issue on BXT A stepping, GPU stores via a
3824 		 * snooped mapping may leave stale data in a corresponding CPU
3825 		 * cacheline, whereas normally such cachelines would get
3826 		 * invalidated.
3827 		 */
3828 		if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)
3829 			return -ENODEV;
3830 
3831 		level = I915_CACHE_LLC;
3832 		break;
3833 	case I915_CACHING_DISPLAY:
3834 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3835 		break;
3836 	default:
3837 		return -EINVAL;
3838 	}
3839 
3840 	ret = i915_mutex_lock_interruptible(dev);
3841 	if (ret)
3842 		return ret;
3843 
3844 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3845 	if (&obj->base == NULL) {
3846 		ret = -ENOENT;
3847 		goto unlock;
3848 	}
3849 
3850 	ret = i915_gem_object_set_cache_level(obj, level);
3851 
3852 	drm_gem_object_unreference(&obj->base);
3853 unlock:
3854 	mutex_unlock(&dev->struct_mutex);
3855 	return ret;
3856 }
3857 
3858 /*
3859  * Prepare buffer for display plane (scanout, cursors, etc).
3860  * Can be called from an uninterruptible phase (modesetting) and allows
3861  * any flushes to be pipelined (for pageflips).
3862  */
3863 int
3864 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3865 				     u32 alignment,
3866 				     struct intel_engine_cs *pipelined,
3867 				     struct drm_i915_gem_request **pipelined_request,
3868 				     const struct i915_ggtt_view *view)
3869 {
3870 	u32 old_read_domains, old_write_domain;
3871 	int ret;
3872 
3873 	ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
3874 	if (ret)
3875 		return ret;
3876 
3877 	/* Mark the pin_display early so that we account for the
3878 	 * display coherency whilst setting up the cache domains.
3879 	 */
3880 	obj->pin_display++;
3881 
3882 	/* The display engine is not coherent with the LLC cache on gen6.  As
3883 	 * a result, we make sure that the pinning that is about to occur is
3884 	 * done with uncached PTEs. This is lowest common denominator for all
3885 	 * chipsets.
3886 	 *
3887 	 * However for gen6+, we could do better by using the GFDT bit instead
3888 	 * of uncaching, which would allow us to flush all the LLC-cached data
3889 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3890 	 */
3891 	ret = i915_gem_object_set_cache_level(obj,
3892 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3893 	if (ret)
3894 		goto err_unpin_display;
3895 
3896 	/* As the user may map the buffer once pinned in the display plane
3897 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3898 	 * always use map_and_fenceable for all scanout buffers.
3899 	 */
3900 	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3901 				       view->type == I915_GGTT_VIEW_NORMAL ?
3902 				       PIN_MAPPABLE : 0);
3903 	if (ret)
3904 		goto err_unpin_display;
3905 
3906 	i915_gem_object_flush_cpu_write_domain(obj);
3907 
3908 	old_write_domain = obj->base.write_domain;
3909 	old_read_domains = obj->base.read_domains;
3910 
3911 	/* It should now be out of any other write domains, and we can update
3912 	 * the domain values for our changes.
3913 	 */
3914 	obj->base.write_domain = 0;
3915 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3916 
3917 	trace_i915_gem_object_change_domain(obj,
3918 					    old_read_domains,
3919 					    old_write_domain);
3920 
3921 	return 0;
3922 
3923 err_unpin_display:
3924 	obj->pin_display--;
3925 	return ret;
3926 }
3927 
3928 void
3929 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3930 					 const struct i915_ggtt_view *view)
3931 {
3932 	if (WARN_ON(obj->pin_display == 0))
3933 		return;
3934 
3935 	i915_gem_object_ggtt_unpin_view(obj, view);
3936 
3937 	obj->pin_display--;
3938 }
3939 
3940 /**
3941  * Moves a single object to the CPU read, and possibly write domain.
3942  *
3943  * This function returns when the move is complete, including waiting on
3944  * flushes to occur.
3945  */
3946 int
3947 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3948 {
3949 	uint32_t old_write_domain, old_read_domains;
3950 	int ret;
3951 
3952 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3953 		return 0;
3954 
3955 	ret = i915_gem_object_wait_rendering(obj, !write);
3956 	if (ret)
3957 		return ret;
3958 
3959 	i915_gem_object_flush_gtt_write_domain(obj);
3960 
3961 	old_write_domain = obj->base.write_domain;
3962 	old_read_domains = obj->base.read_domains;
3963 
3964 	/* Flush the CPU cache if it's still invalid. */
3965 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3966 		i915_gem_clflush_object(obj, false);
3967 
3968 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3969 	}
3970 
3971 	/* It should now be out of any other write domains, and we can update
3972 	 * the domain values for our changes.
3973 	 */
3974 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3975 
3976 	/* If we're writing through the CPU, then the GPU read domains will
3977 	 * need to be invalidated at next use.
3978 	 */
3979 	if (write) {
3980 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3981 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3982 	}
3983 
3984 	trace_i915_gem_object_change_domain(obj,
3985 					    old_read_domains,
3986 					    old_write_domain);
3987 
3988 	return 0;
3989 }
3990 
3991 /* Throttle our rendering by waiting until the ring has completed our requests
3992  * emitted over 20 msec ago.
3993  *
3994  * Note that if we were to use the current jiffies each time around the loop,
3995  * we wouldn't escape the function with any frames outstanding if the time to
3996  * render a frame was over 20ms.
3997  *
3998  * This should get us reasonable parallelism between CPU and GPU but also
3999  * relatively low latency when blocking on a particular request to finish.
4000  */
4001 static int
4002 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4003 {
4004 	struct drm_i915_private *dev_priv = dev->dev_private;
4005 	struct drm_i915_file_private *file_priv = file->driver_priv;
4006 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4007 	struct drm_i915_gem_request *request, *target = NULL;
4008 	unsigned reset_counter;
4009 	int ret;
4010 
4011 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4012 	if (ret)
4013 		return ret;
4014 
4015 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4016 	if (ret)
4017 		return ret;
4018 
4019 	spin_lock(&file_priv->mm.lock);
4020 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4021 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4022 			break;
4023 
4024 		/*
4025 		 * Note that the request might not have been submitted yet.
4026 		 * In which case emitted_jiffies will be zero.
4027 		 */
4028 		if (!request->emitted_jiffies)
4029 			continue;
4030 
4031 		target = request;
4032 	}
4033 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4034 	if (target)
4035 		i915_gem_request_reference(target);
4036 	spin_unlock(&file_priv->mm.lock);
4037 
4038 	if (target == NULL)
4039 		return 0;
4040 
4041 	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4042 	if (ret == 0)
4043 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4044 
4045 	i915_gem_request_unreference__unlocked(target);
4046 
4047 	return ret;
4048 }
4049 
4050 static bool
4051 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4052 {
4053 	struct drm_i915_gem_object *obj = vma->obj;
4054 
4055 	if (alignment &&
4056 	    vma->node.start & (alignment - 1))
4057 		return true;
4058 
4059 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4060 		return true;
4061 
4062 	if (flags & PIN_OFFSET_BIAS &&
4063 	    vma->node.start < (flags & PIN_OFFSET_MASK))
4064 		return true;
4065 
4066 	return false;
4067 }
4068 
4069 static int
4070 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4071 		       struct i915_address_space *vm,
4072 		       const struct i915_ggtt_view *ggtt_view,
4073 		       uint32_t alignment,
4074 		       uint64_t flags)
4075 {
4076 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4077 	struct i915_vma *vma;
4078 	unsigned bound;
4079 	int ret;
4080 
4081 	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4082 		return -ENODEV;
4083 
4084 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4085 		return -EINVAL;
4086 
4087 	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4088 		return -EINVAL;
4089 
4090 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4091 		return -EINVAL;
4092 
4093 	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4094 			  i915_gem_obj_to_vma(obj, vm);
4095 
4096 	if (IS_ERR(vma))
4097 		return PTR_ERR(vma);
4098 
4099 	if (vma) {
4100 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4101 			return -EBUSY;
4102 
4103 		if (i915_vma_misplaced(vma, alignment, flags)) {
4104 			WARN(vma->pin_count,
4105 			     "bo is already pinned in %s with incorrect alignment:"
4106 			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4107 			     " obj->map_and_fenceable=%d\n",
4108 			     ggtt_view ? "ggtt" : "ppgtt",
4109 			     upper_32_bits(vma->node.start),
4110 			     lower_32_bits(vma->node.start),
4111 			     alignment,
4112 			     !!(flags & PIN_MAPPABLE),
4113 			     obj->map_and_fenceable);
4114 			ret = i915_vma_unbind(vma);
4115 			if (ret)
4116 				return ret;
4117 
4118 			vma = NULL;
4119 		}
4120 	}
4121 
4122 	bound = vma ? vma->bound : 0;
4123 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4124 		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4125 						 flags);
4126 		if (IS_ERR(vma))
4127 			return PTR_ERR(vma);
4128 	} else {
4129 		ret = i915_vma_bind(vma, obj->cache_level, flags);
4130 		if (ret)
4131 			return ret;
4132 	}
4133 
4134 	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4135 	    (bound ^ vma->bound) & GLOBAL_BIND) {
4136 		bool mappable, fenceable;
4137 		u32 fence_size, fence_alignment;
4138 
4139 		fence_size = i915_gem_get_gtt_size(obj->base.dev,
4140 						   obj->base.size,
4141 						   obj->tiling_mode);
4142 		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4143 							     obj->base.size,
4144 							     obj->tiling_mode,
4145 							     true);
4146 
4147 		fenceable = (vma->node.size == fence_size &&
4148 			     (vma->node.start & (fence_alignment - 1)) == 0);
4149 
4150 		mappable = (vma->node.start + fence_size <=
4151 			    dev_priv->gtt.mappable_end);
4152 
4153 		obj->map_and_fenceable = mappable && fenceable;
4154 
4155 		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4156 	}
4157 
4158 	vma->pin_count++;
4159 	return 0;
4160 }
4161 
4162 int
4163 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4164 		    struct i915_address_space *vm,
4165 		    uint32_t alignment,
4166 		    uint64_t flags)
4167 {
4168 	return i915_gem_object_do_pin(obj, vm,
4169 				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4170 				      alignment, flags);
4171 }
4172 
4173 int
4174 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4175 			 const struct i915_ggtt_view *view,
4176 			 uint32_t alignment,
4177 			 uint64_t flags)
4178 {
4179 	if (WARN_ONCE(!view, "no view specified"))
4180 		return -EINVAL;
4181 
4182 	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4183 				      alignment, flags | PIN_GLOBAL);
4184 }
4185 
4186 void
4187 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4188 				const struct i915_ggtt_view *view)
4189 {
4190 	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4191 
4192 	BUG_ON(!vma);
4193 	WARN_ON(vma->pin_count == 0);
4194 	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4195 
4196 	--vma->pin_count;
4197 }
4198 
4199 int
4200 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4201 		    struct drm_file *file)
4202 {
4203 	struct drm_i915_gem_busy *args = data;
4204 	struct drm_i915_gem_object *obj;
4205 	int ret;
4206 
4207 	ret = i915_mutex_lock_interruptible(dev);
4208 	if (ret)
4209 		return ret;
4210 
4211 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4212 	if (&obj->base == NULL) {
4213 		ret = -ENOENT;
4214 		goto unlock;
4215 	}
4216 
4217 	/* Count all active objects as busy, even if they are currently not used
4218 	 * by the gpu. Users of this interface expect objects to eventually
4219 	 * become non-busy without any further actions, therefore emit any
4220 	 * necessary flushes here.
4221 	 */
4222 	ret = i915_gem_object_flush_active(obj);
4223 	if (ret)
4224 		goto unref;
4225 
4226 	BUILD_BUG_ON(I915_NUM_RINGS > 16);
4227 	args->busy = obj->active << 16;
4228 	if (obj->last_write_req)
4229 		args->busy |= obj->last_write_req->ring->id;
4230 
4231 unref:
4232 	drm_gem_object_unreference(&obj->base);
4233 unlock:
4234 	mutex_unlock(&dev->struct_mutex);
4235 	return ret;
4236 }
4237 
4238 int
4239 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4240 			struct drm_file *file_priv)
4241 {
4242 	return i915_gem_ring_throttle(dev, file_priv);
4243 }
4244 
4245 int
4246 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4247 		       struct drm_file *file_priv)
4248 {
4249 	struct drm_i915_private *dev_priv = dev->dev_private;
4250 	struct drm_i915_gem_madvise *args = data;
4251 	struct drm_i915_gem_object *obj;
4252 	int ret;
4253 
4254 	switch (args->madv) {
4255 	case I915_MADV_DONTNEED:
4256 	case I915_MADV_WILLNEED:
4257 	    break;
4258 	default:
4259 	    return -EINVAL;
4260 	}
4261 
4262 	ret = i915_mutex_lock_interruptible(dev);
4263 	if (ret)
4264 		return ret;
4265 
4266 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4267 	if (&obj->base == NULL) {
4268 		ret = -ENOENT;
4269 		goto unlock;
4270 	}
4271 
4272 	if (i915_gem_obj_is_pinned(obj)) {
4273 		ret = -EINVAL;
4274 		goto out;
4275 	}
4276 
4277 	if (obj->pages &&
4278 	    obj->tiling_mode != I915_TILING_NONE &&
4279 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4280 		if (obj->madv == I915_MADV_WILLNEED)
4281 			i915_gem_object_unpin_pages(obj);
4282 		if (args->madv == I915_MADV_WILLNEED)
4283 			i915_gem_object_pin_pages(obj);
4284 	}
4285 
4286 	if (obj->madv != __I915_MADV_PURGED)
4287 		obj->madv = args->madv;
4288 
4289 	/* if the object is no longer attached, discard its backing storage */
4290 	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4291 		i915_gem_object_truncate(obj);
4292 
4293 	args->retained = obj->madv != __I915_MADV_PURGED;
4294 
4295 out:
4296 	drm_gem_object_unreference(&obj->base);
4297 unlock:
4298 	mutex_unlock(&dev->struct_mutex);
4299 	return ret;
4300 }
4301 
4302 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4303 			  const struct drm_i915_gem_object_ops *ops)
4304 {
4305 	int i;
4306 
4307 	INIT_LIST_HEAD(&obj->global_list);
4308 	for (i = 0; i < I915_NUM_RINGS; i++)
4309 		INIT_LIST_HEAD(&obj->ring_list[i]);
4310 	INIT_LIST_HEAD(&obj->obj_exec_link);
4311 	INIT_LIST_HEAD(&obj->vma_list);
4312 	INIT_LIST_HEAD(&obj->batch_pool_link);
4313 
4314 	obj->ops = ops;
4315 
4316 	obj->fence_reg = I915_FENCE_REG_NONE;
4317 	obj->madv = I915_MADV_WILLNEED;
4318 
4319 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4320 }
4321 
4322 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4323 	.get_pages = i915_gem_object_get_pages_gtt,
4324 	.put_pages = i915_gem_object_put_pages_gtt,
4325 };
4326 
4327 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4328 						  size_t size)
4329 {
4330 	struct drm_i915_gem_object *obj;
4331 	struct address_space *mapping;
4332 	gfp_t mask;
4333 
4334 	obj = i915_gem_object_alloc(dev);
4335 	if (obj == NULL)
4336 		return NULL;
4337 
4338 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4339 		i915_gem_object_free(obj);
4340 		return NULL;
4341 	}
4342 
4343 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4344 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4345 		/* 965gm cannot relocate objects above 4GiB. */
4346 		mask &= ~__GFP_HIGHMEM;
4347 		mask |= __GFP_DMA32;
4348 	}
4349 
4350 	mapping = file_inode(obj->base.filp)->i_mapping;
4351 	mapping_set_gfp_mask(mapping, mask);
4352 
4353 	i915_gem_object_init(obj, &i915_gem_object_ops);
4354 
4355 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4356 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4357 
4358 	if (HAS_LLC(dev)) {
4359 		/* On some devices, we can have the GPU use the LLC (the CPU
4360 		 * cache) for about a 10% performance improvement
4361 		 * compared to uncached.  Graphics requests other than
4362 		 * display scanout are coherent with the CPU in
4363 		 * accessing this cache.  This means in this mode we
4364 		 * don't need to clflush on the CPU side, and on the
4365 		 * GPU side we only need to flush internal caches to
4366 		 * get data visible to the CPU.
4367 		 *
4368 		 * However, we maintain the display planes as UC, and so
4369 		 * need to rebind when first used as such.
4370 		 */
4371 		obj->cache_level = I915_CACHE_LLC;
4372 	} else
4373 		obj->cache_level = I915_CACHE_NONE;
4374 
4375 	trace_i915_gem_object_create(obj);
4376 
4377 	return obj;
4378 }
4379 
4380 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4381 {
4382 	/* If we are the last user of the backing storage (be it shmemfs
4383 	 * pages or stolen etc), we know that the pages are going to be
4384 	 * immediately released. In this case, we can then skip copying
4385 	 * back the contents from the GPU.
4386 	 */
4387 
4388 	if (obj->madv != I915_MADV_WILLNEED)
4389 		return false;
4390 
4391 	if (obj->base.filp == NULL)
4392 		return true;
4393 
4394 	/* At first glance, this looks racy, but then again so would be
4395 	 * userspace racing mmap against close. However, the first external
4396 	 * reference to the filp can only be obtained through the
4397 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4398 	 * acquiring such a reference whilst we are in the middle of
4399 	 * freeing the object.
4400 	 */
4401 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4402 }
4403 
4404 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4405 {
4406 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4407 	struct drm_device *dev = obj->base.dev;
4408 	struct drm_i915_private *dev_priv = dev->dev_private;
4409 	struct i915_vma *vma, *next;
4410 
4411 	intel_runtime_pm_get(dev_priv);
4412 
4413 	trace_i915_gem_object_destroy(obj);
4414 
4415 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4416 		int ret;
4417 
4418 		vma->pin_count = 0;
4419 		ret = i915_vma_unbind(vma);
4420 		if (WARN_ON(ret == -ERESTARTSYS)) {
4421 			bool was_interruptible;
4422 
4423 			was_interruptible = dev_priv->mm.interruptible;
4424 			dev_priv->mm.interruptible = false;
4425 
4426 			WARN_ON(i915_vma_unbind(vma));
4427 
4428 			dev_priv->mm.interruptible = was_interruptible;
4429 		}
4430 	}
4431 
4432 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4433 	 * before progressing. */
4434 	if (obj->stolen)
4435 		i915_gem_object_unpin_pages(obj);
4436 
4437 	WARN_ON(obj->frontbuffer_bits);
4438 
4439 	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4440 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4441 	    obj->tiling_mode != I915_TILING_NONE)
4442 		i915_gem_object_unpin_pages(obj);
4443 
4444 	if (WARN_ON(obj->pages_pin_count))
4445 		obj->pages_pin_count = 0;
4446 	if (discard_backing_storage(obj))
4447 		obj->madv = I915_MADV_DONTNEED;
4448 	i915_gem_object_put_pages(obj);
4449 	i915_gem_object_free_mmap_offset(obj);
4450 
4451 	BUG_ON(obj->pages);
4452 
4453 	if (obj->base.import_attach)
4454 		drm_prime_gem_destroy(&obj->base, NULL);
4455 
4456 	if (obj->ops->release)
4457 		obj->ops->release(obj);
4458 
4459 	drm_gem_object_release(&obj->base);
4460 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4461 
4462 	kfree(obj->bit_17);
4463 	i915_gem_object_free(obj);
4464 
4465 	intel_runtime_pm_put(dev_priv);
4466 }
4467 
4468 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4469 				     struct i915_address_space *vm)
4470 {
4471 	struct i915_vma *vma;
4472 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
4473 		if (i915_is_ggtt(vma->vm) &&
4474 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4475 			continue;
4476 		if (vma->vm == vm)
4477 			return vma;
4478 	}
4479 	return NULL;
4480 }
4481 
4482 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4483 					   const struct i915_ggtt_view *view)
4484 {
4485 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4486 	struct i915_vma *vma;
4487 
4488 	if (WARN_ONCE(!view, "no view specified"))
4489 		return ERR_PTR(-EINVAL);
4490 
4491 	list_for_each_entry(vma, &obj->vma_list, vma_link)
4492 		if (vma->vm == ggtt &&
4493 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4494 			return vma;
4495 	return NULL;
4496 }
4497 
4498 void i915_gem_vma_destroy(struct i915_vma *vma)
4499 {
4500 	struct i915_address_space *vm = NULL;
4501 	WARN_ON(vma->node.allocated);
4502 
4503 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4504 	if (!list_empty(&vma->exec_list))
4505 		return;
4506 
4507 	vm = vma->vm;
4508 
4509 	if (!i915_is_ggtt(vm))
4510 		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4511 
4512 	list_del(&vma->vma_link);
4513 
4514 	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4515 }
4516 
4517 static void
4518 i915_gem_stop_ringbuffers(struct drm_device *dev)
4519 {
4520 	struct drm_i915_private *dev_priv = dev->dev_private;
4521 	struct intel_engine_cs *ring;
4522 	int i;
4523 
4524 	for_each_ring(ring, dev_priv, i)
4525 		dev_priv->gt.stop_ring(ring);
4526 }
4527 
4528 int
4529 i915_gem_suspend(struct drm_device *dev)
4530 {
4531 	struct drm_i915_private *dev_priv = dev->dev_private;
4532 	int ret = 0;
4533 
4534 	mutex_lock(&dev->struct_mutex);
4535 	ret = i915_gpu_idle(dev);
4536 	if (ret)
4537 		goto err;
4538 
4539 	i915_gem_retire_requests(dev);
4540 
4541 	i915_gem_stop_ringbuffers(dev);
4542 	mutex_unlock(&dev->struct_mutex);
4543 
4544 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4545 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4546 	flush_delayed_work(&dev_priv->mm.idle_work);
4547 
4548 	/* Assert that we sucessfully flushed all the work and
4549 	 * reset the GPU back to its idle, low power state.
4550 	 */
4551 	WARN_ON(dev_priv->mm.busy);
4552 
4553 	return 0;
4554 
4555 err:
4556 	mutex_unlock(&dev->struct_mutex);
4557 	return ret;
4558 }
4559 
4560 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4561 {
4562 	struct intel_engine_cs *ring = req->ring;
4563 	struct drm_device *dev = ring->dev;
4564 	struct drm_i915_private *dev_priv = dev->dev_private;
4565 	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4566 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4567 	int i, ret;
4568 
4569 	if (!HAS_L3_DPF(dev) || !remap_info)
4570 		return 0;
4571 
4572 	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4573 	if (ret)
4574 		return ret;
4575 
4576 	/*
4577 	 * Note: We do not worry about the concurrent register cacheline hang
4578 	 * here because no other code should access these registers other than
4579 	 * at initialization time.
4580 	 */
4581 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4582 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4583 		intel_ring_emit(ring, reg_base + i);
4584 		intel_ring_emit(ring, remap_info[i/4]);
4585 	}
4586 
4587 	intel_ring_advance(ring);
4588 
4589 	return ret;
4590 }
4591 
4592 void i915_gem_init_swizzling(struct drm_device *dev)
4593 {
4594 	struct drm_i915_private *dev_priv = dev->dev_private;
4595 
4596 	if (INTEL_INFO(dev)->gen < 5 ||
4597 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4598 		return;
4599 
4600 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4601 				 DISP_TILE_SURFACE_SWIZZLING);
4602 
4603 	if (IS_GEN5(dev))
4604 		return;
4605 
4606 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4607 	if (IS_GEN6(dev))
4608 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4609 	else if (IS_GEN7(dev))
4610 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4611 	else if (IS_GEN8(dev))
4612 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4613 	else
4614 		BUG();
4615 }
4616 
4617 static void init_unused_ring(struct drm_device *dev, u32 base)
4618 {
4619 	struct drm_i915_private *dev_priv = dev->dev_private;
4620 
4621 	I915_WRITE(RING_CTL(base), 0);
4622 	I915_WRITE(RING_HEAD(base), 0);
4623 	I915_WRITE(RING_TAIL(base), 0);
4624 	I915_WRITE(RING_START(base), 0);
4625 }
4626 
4627 static void init_unused_rings(struct drm_device *dev)
4628 {
4629 	if (IS_I830(dev)) {
4630 		init_unused_ring(dev, PRB1_BASE);
4631 		init_unused_ring(dev, SRB0_BASE);
4632 		init_unused_ring(dev, SRB1_BASE);
4633 		init_unused_ring(dev, SRB2_BASE);
4634 		init_unused_ring(dev, SRB3_BASE);
4635 	} else if (IS_GEN2(dev)) {
4636 		init_unused_ring(dev, SRB0_BASE);
4637 		init_unused_ring(dev, SRB1_BASE);
4638 	} else if (IS_GEN3(dev)) {
4639 		init_unused_ring(dev, PRB1_BASE);
4640 		init_unused_ring(dev, PRB2_BASE);
4641 	}
4642 }
4643 
4644 int i915_gem_init_rings(struct drm_device *dev)
4645 {
4646 	struct drm_i915_private *dev_priv = dev->dev_private;
4647 	int ret;
4648 
4649 	ret = intel_init_render_ring_buffer(dev);
4650 	if (ret)
4651 		return ret;
4652 
4653 	if (HAS_BSD(dev)) {
4654 		ret = intel_init_bsd_ring_buffer(dev);
4655 		if (ret)
4656 			goto cleanup_render_ring;
4657 	}
4658 
4659 	if (HAS_BLT(dev)) {
4660 		ret = intel_init_blt_ring_buffer(dev);
4661 		if (ret)
4662 			goto cleanup_bsd_ring;
4663 	}
4664 
4665 	if (HAS_VEBOX(dev)) {
4666 		ret = intel_init_vebox_ring_buffer(dev);
4667 		if (ret)
4668 			goto cleanup_blt_ring;
4669 	}
4670 
4671 	if (HAS_BSD2(dev)) {
4672 		ret = intel_init_bsd2_ring_buffer(dev);
4673 		if (ret)
4674 			goto cleanup_vebox_ring;
4675 	}
4676 
4677 	return 0;
4678 
4679 cleanup_vebox_ring:
4680 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4681 cleanup_blt_ring:
4682 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4683 cleanup_bsd_ring:
4684 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4685 cleanup_render_ring:
4686 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4687 
4688 	return ret;
4689 }
4690 
4691 int
4692 i915_gem_init_hw(struct drm_device *dev)
4693 {
4694 	struct drm_i915_private *dev_priv = dev->dev_private;
4695 	struct intel_engine_cs *ring;
4696 	int ret, i, j;
4697 
4698 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4699 		return -EIO;
4700 
4701 	/* Double layer security blanket, see i915_gem_init() */
4702 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4703 
4704 	if (dev_priv->ellc_size)
4705 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4706 
4707 	if (IS_HASWELL(dev))
4708 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4709 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4710 
4711 	if (HAS_PCH_NOP(dev)) {
4712 		if (IS_IVYBRIDGE(dev)) {
4713 			u32 temp = I915_READ(GEN7_MSG_CTL);
4714 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4715 			I915_WRITE(GEN7_MSG_CTL, temp);
4716 		} else if (INTEL_INFO(dev)->gen >= 7) {
4717 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4718 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4719 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4720 		}
4721 	}
4722 
4723 	i915_gem_init_swizzling(dev);
4724 
4725 	/*
4726 	 * At least 830 can leave some of the unused rings
4727 	 * "active" (ie. head != tail) after resume which
4728 	 * will prevent c3 entry. Makes sure all unused rings
4729 	 * are totally idle.
4730 	 */
4731 	init_unused_rings(dev);
4732 
4733 	BUG_ON(!dev_priv->ring[RCS].default_context);
4734 
4735 	ret = i915_ppgtt_init_hw(dev);
4736 	if (ret) {
4737 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4738 		goto out;
4739 	}
4740 
4741 	/* Need to do basic initialisation of all rings first: */
4742 	for_each_ring(ring, dev_priv, i) {
4743 		ret = ring->init_hw(ring);
4744 		if (ret)
4745 			goto out;
4746 	}
4747 
4748 	/* We can't enable contexts until all firmware is loaded */
4749 	if (HAS_GUC_UCODE(dev)) {
4750 		ret = intel_guc_ucode_load(dev);
4751 		if (ret) {
4752 			/*
4753 			 * If we got an error and GuC submission is enabled, map
4754 			 * the error to -EIO so the GPU will be declared wedged.
4755 			 * OTOH, if we didn't intend to use the GuC anyway, just
4756 			 * discard the error and carry on.
4757 			 */
4758 			DRM_ERROR("Failed to initialize GuC, error %d%s\n", ret,
4759 				  i915.enable_guc_submission ? "" :
4760 				  " (ignored)");
4761 			ret = i915.enable_guc_submission ? -EIO : 0;
4762 			if (ret)
4763 				goto out;
4764 		}
4765 	}
4766 
4767 	/*
4768 	 * Increment the next seqno by 0x100 so we have a visible break
4769 	 * on re-initialisation
4770 	 */
4771 	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4772 	if (ret)
4773 		goto out;
4774 
4775 	/* Now it is safe to go back round and do everything else: */
4776 	for_each_ring(ring, dev_priv, i) {
4777 		struct drm_i915_gem_request *req;
4778 
4779 		WARN_ON(!ring->default_context);
4780 
4781 		ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4782 		if (ret) {
4783 			i915_gem_cleanup_ringbuffer(dev);
4784 			goto out;
4785 		}
4786 
4787 		if (ring->id == RCS) {
4788 			for (j = 0; j < NUM_L3_SLICES(dev); j++)
4789 				i915_gem_l3_remap(req, j);
4790 		}
4791 
4792 		ret = i915_ppgtt_init_ring(req);
4793 		if (ret && ret != -EIO) {
4794 			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4795 			i915_gem_request_cancel(req);
4796 			i915_gem_cleanup_ringbuffer(dev);
4797 			goto out;
4798 		}
4799 
4800 		ret = i915_gem_context_enable(req);
4801 		if (ret && ret != -EIO) {
4802 			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4803 			i915_gem_request_cancel(req);
4804 			i915_gem_cleanup_ringbuffer(dev);
4805 			goto out;
4806 		}
4807 
4808 		i915_add_request_no_flush(req);
4809 	}
4810 
4811 out:
4812 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4813 	return ret;
4814 }
4815 
4816 int i915_gem_init(struct drm_device *dev)
4817 {
4818 	struct drm_i915_private *dev_priv = dev->dev_private;
4819 	int ret;
4820 
4821 	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4822 			i915.enable_execlists);
4823 
4824 	mutex_lock(&dev->struct_mutex);
4825 
4826 	if (IS_VALLEYVIEW(dev)) {
4827 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4828 		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4829 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4830 			      VLV_GTLC_ALLOWWAKEACK), 10))
4831 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4832 	}
4833 
4834 	if (!i915.enable_execlists) {
4835 		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4836 		dev_priv->gt.init_rings = i915_gem_init_rings;
4837 		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4838 		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4839 	} else {
4840 		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4841 		dev_priv->gt.init_rings = intel_logical_rings_init;
4842 		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4843 		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4844 	}
4845 
4846 	/* This is just a security blanket to placate dragons.
4847 	 * On some systems, we very sporadically observe that the first TLBs
4848 	 * used by the CS may be stale, despite us poking the TLB reset. If
4849 	 * we hold the forcewake during initialisation these problems
4850 	 * just magically go away.
4851 	 */
4852 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4853 
4854 	ret = i915_gem_init_userptr(dev);
4855 	if (ret)
4856 		goto out_unlock;
4857 
4858 	i915_gem_init_global_gtt(dev);
4859 
4860 	ret = i915_gem_context_init(dev);
4861 	if (ret)
4862 		goto out_unlock;
4863 
4864 	ret = dev_priv->gt.init_rings(dev);
4865 	if (ret)
4866 		goto out_unlock;
4867 
4868 	ret = i915_gem_init_hw(dev);
4869 	if (ret == -EIO) {
4870 		/* Allow ring initialisation to fail by marking the GPU as
4871 		 * wedged. But we only want to do this where the GPU is angry,
4872 		 * for all other failure, such as an allocation failure, bail.
4873 		 */
4874 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4875 		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4876 		ret = 0;
4877 	}
4878 
4879 out_unlock:
4880 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4881 	mutex_unlock(&dev->struct_mutex);
4882 
4883 	return ret;
4884 }
4885 
4886 void
4887 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4888 {
4889 	struct drm_i915_private *dev_priv = dev->dev_private;
4890 	struct intel_engine_cs *ring;
4891 	int i;
4892 
4893 	for_each_ring(ring, dev_priv, i)
4894 		dev_priv->gt.cleanup_ring(ring);
4895 
4896     if (i915.enable_execlists)
4897             /*
4898              * Neither the BIOS, ourselves or any other kernel
4899              * expects the system to be in execlists mode on startup,
4900              * so we need to reset the GPU back to legacy mode.
4901              */
4902             intel_gpu_reset(dev);
4903 }
4904 
4905 static void
4906 init_ring_lists(struct intel_engine_cs *ring)
4907 {
4908 	INIT_LIST_HEAD(&ring->active_list);
4909 	INIT_LIST_HEAD(&ring->request_list);
4910 }
4911 
4912 void
4913 i915_gem_load(struct drm_device *dev)
4914 {
4915 	struct drm_i915_private *dev_priv = dev->dev_private;
4916 	int i;
4917 
4918 	dev_priv->objects =
4919 		kmem_cache_create("i915_gem_object",
4920 				  sizeof(struct drm_i915_gem_object), 0,
4921 				  SLAB_HWCACHE_ALIGN,
4922 				  NULL);
4923 	dev_priv->vmas =
4924 		kmem_cache_create("i915_gem_vma",
4925 				  sizeof(struct i915_vma), 0,
4926 				  SLAB_HWCACHE_ALIGN,
4927 				  NULL);
4928 	dev_priv->requests =
4929 		kmem_cache_create("i915_gem_request",
4930 				  sizeof(struct drm_i915_gem_request), 0,
4931 				  SLAB_HWCACHE_ALIGN,
4932 				  NULL);
4933 
4934 	INIT_LIST_HEAD(&dev_priv->vm_list);
4935 	INIT_LIST_HEAD(&dev_priv->context_list);
4936 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4937 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4938 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4939 	for (i = 0; i < I915_NUM_RINGS; i++)
4940 		init_ring_lists(&dev_priv->ring[i]);
4941 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4942 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4943 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4944 			  i915_gem_retire_work_handler);
4945 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4946 			  i915_gem_idle_work_handler);
4947 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4948 
4949 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4950 
4951 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4952 		dev_priv->num_fence_regs = 32;
4953 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4954 		dev_priv->num_fence_regs = 16;
4955 	else
4956 		dev_priv->num_fence_regs = 8;
4957 
4958 	if (intel_vgpu_active(dev))
4959 		dev_priv->num_fence_regs =
4960 				I915_READ(vgtif_reg(avail_rs.fence_num));
4961 
4962 	/*
4963 	 * Set initial sequence number for requests.
4964 	 * Using this number allows the wraparound to happen early,
4965 	 * catching any obvious problems.
4966 	 */
4967 	dev_priv->next_seqno = ((u32)~0 - 0x1100);
4968 	dev_priv->last_seqno = ((u32)~0 - 0x1101);
4969 
4970 	/* Initialize fence registers to zero */
4971 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4972 	i915_gem_restore_fences(dev);
4973 
4974 	i915_gem_detect_bit_6_swizzle(dev);
4975 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4976 
4977 	dev_priv->mm.interruptible = true;
4978 
4979 	i915_gem_shrinker_init(dev_priv);
4980 
4981 	mutex_init(&dev_priv->fb_tracking.lock);
4982 }
4983 
4984 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4985 {
4986 	struct drm_i915_file_private *file_priv = file->driver_priv;
4987 
4988 	/* Clean up our request list when the client is going away, so that
4989 	 * later retire_requests won't dereference our soon-to-be-gone
4990 	 * file_priv.
4991 	 */
4992 	spin_lock(&file_priv->mm.lock);
4993 	while (!list_empty(&file_priv->mm.request_list)) {
4994 		struct drm_i915_gem_request *request;
4995 
4996 		request = list_first_entry(&file_priv->mm.request_list,
4997 					   struct drm_i915_gem_request,
4998 					   client_list);
4999 		list_del(&request->client_list);
5000 		request->file_priv = NULL;
5001 	}
5002 	spin_unlock(&file_priv->mm.lock);
5003 
5004 	if (!list_empty(&file_priv->rps.link)) {
5005 		spin_lock(&to_i915(dev)->rps.client_lock);
5006 		list_del(&file_priv->rps.link);
5007 		spin_unlock(&to_i915(dev)->rps.client_lock);
5008 	}
5009 }
5010 
5011 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5012 {
5013 	struct drm_i915_file_private *file_priv;
5014 	int ret;
5015 
5016 	DRM_DEBUG_DRIVER("\n");
5017 
5018 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5019 	if (!file_priv)
5020 		return -ENOMEM;
5021 
5022 	file->driver_priv = file_priv;
5023 	file_priv->dev_priv = dev->dev_private;
5024 	file_priv->file = file;
5025 	INIT_LIST_HEAD(&file_priv->rps.link);
5026 
5027 	spin_lock_init(&file_priv->mm.lock);
5028 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5029 
5030 	ret = i915_gem_context_open(dev, file);
5031 	if (ret)
5032 		kfree(file_priv);
5033 
5034 	return ret;
5035 }
5036 
5037 /**
5038  * i915_gem_track_fb - update frontbuffer tracking
5039  * @old: current GEM buffer for the frontbuffer slots
5040  * @new: new GEM buffer for the frontbuffer slots
5041  * @frontbuffer_bits: bitmask of frontbuffer slots
5042  *
5043  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5044  * from @old and setting them in @new. Both @old and @new can be NULL.
5045  */
5046 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5047 		       struct drm_i915_gem_object *new,
5048 		       unsigned frontbuffer_bits)
5049 {
5050 	if (old) {
5051 		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5052 		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5053 		old->frontbuffer_bits &= ~frontbuffer_bits;
5054 	}
5055 
5056 	if (new) {
5057 		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5058 		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5059 		new->frontbuffer_bits |= frontbuffer_bits;
5060 	}
5061 }
5062 
5063 /* All the new VM stuff */
5064 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5065 			struct i915_address_space *vm)
5066 {
5067 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5068 	struct i915_vma *vma;
5069 
5070 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5071 
5072 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5073 		if (i915_is_ggtt(vma->vm) &&
5074 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5075 			continue;
5076 		if (vma->vm == vm)
5077 			return vma->node.start;
5078 	}
5079 
5080 	WARN(1, "%s vma for this object not found.\n",
5081 	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5082 	return -1;
5083 }
5084 
5085 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5086 				  const struct i915_ggtt_view *view)
5087 {
5088 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5089 	struct i915_vma *vma;
5090 
5091 	list_for_each_entry(vma, &o->vma_list, vma_link)
5092 		if (vma->vm == ggtt &&
5093 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5094 			return vma->node.start;
5095 
5096 	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5097 	return -1;
5098 }
5099 
5100 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5101 			struct i915_address_space *vm)
5102 {
5103 	struct i915_vma *vma;
5104 
5105 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5106 		if (i915_is_ggtt(vma->vm) &&
5107 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5108 			continue;
5109 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5110 			return true;
5111 	}
5112 
5113 	return false;
5114 }
5115 
5116 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5117 				  const struct i915_ggtt_view *view)
5118 {
5119 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5120 	struct i915_vma *vma;
5121 
5122 	list_for_each_entry(vma, &o->vma_list, vma_link)
5123 		if (vma->vm == ggtt &&
5124 		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5125 		    drm_mm_node_allocated(&vma->node))
5126 			return true;
5127 
5128 	return false;
5129 }
5130 
5131 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5132 {
5133 	struct i915_vma *vma;
5134 
5135 	list_for_each_entry(vma, &o->vma_list, vma_link)
5136 		if (drm_mm_node_allocated(&vma->node))
5137 			return true;
5138 
5139 	return false;
5140 }
5141 
5142 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5143 				struct i915_address_space *vm)
5144 {
5145 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5146 	struct i915_vma *vma;
5147 
5148 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5149 
5150 	BUG_ON(list_empty(&o->vma_list));
5151 
5152 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5153 		if (i915_is_ggtt(vma->vm) &&
5154 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5155 			continue;
5156 		if (vma->vm == vm)
5157 			return vma->node.size;
5158 	}
5159 	return 0;
5160 }
5161 
5162 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5163 {
5164 	struct i915_vma *vma;
5165 	list_for_each_entry(vma, &obj->vma_list, vma_link)
5166 		if (vma->pin_count > 0)
5167 			return true;
5168 
5169 	return false;
5170 }
5171 
5172 /* Allocate a new GEM object and fill it with the supplied data */
5173 struct drm_i915_gem_object *
5174 i915_gem_object_create_from_data(struct drm_device *dev,
5175 			         const void *data, size_t size)
5176 {
5177 	struct drm_i915_gem_object *obj;
5178 	struct sg_table *sg;
5179 	size_t bytes;
5180 	int ret;
5181 
5182 	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5183 	if (IS_ERR_OR_NULL(obj))
5184 		return obj;
5185 
5186 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
5187 	if (ret)
5188 		goto fail;
5189 
5190 	ret = i915_gem_object_get_pages(obj);
5191 	if (ret)
5192 		goto fail;
5193 
5194 	i915_gem_object_pin_pages(obj);
5195 	sg = obj->pages;
5196 	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5197 	i915_gem_object_unpin_pages(obj);
5198 
5199 	if (WARN_ON(bytes != size)) {
5200 		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5201 		ret = -EFAULT;
5202 		goto fail;
5203 	}
5204 
5205 	return obj;
5206 
5207 fail:
5208 	drm_gem_object_unreference(&obj->base);
5209 	return ERR_PTR(ret);
5210 }
5211