xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision 9b9c2cd4)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40 
41 #define RQ_BUG_ON(expr)
42 
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49 
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51 				  enum i915_cache_level level)
52 {
53 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55 
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 		return true;
60 
61 	return obj->pin_display;
62 }
63 
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 				  size_t size)
67 {
68 	spin_lock(&dev_priv->mm.object_stat_lock);
69 	dev_priv->mm.object_count++;
70 	dev_priv->mm.object_memory += size;
71 	spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73 
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 				     size_t size)
76 {
77 	spin_lock(&dev_priv->mm.object_stat_lock);
78 	dev_priv->mm.object_count--;
79 	dev_priv->mm.object_memory -= size;
80 	spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82 
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86 	int ret;
87 
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89 		   i915_terminally_wedged(error))
90 	if (EXIT_COND)
91 		return 0;
92 
93 	/*
94 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 	 * userspace. If it takes that long something really bad is going on and
96 	 * we should simply try to bail out and fail as gracefully as possible.
97 	 */
98 	ret = wait_event_interruptible_timeout(error->reset_queue,
99 					       EXIT_COND,
100 					       10*HZ);
101 	if (ret == 0) {
102 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 		return -EIO;
104 	} else if (ret < 0) {
105 		return ret;
106 	}
107 #undef EXIT_COND
108 
109 	return 0;
110 }
111 
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114 	struct drm_i915_private *dev_priv = dev->dev_private;
115 	int ret;
116 
117 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 	if (ret)
119 		return ret;
120 
121 	ret = mutex_lock_interruptible(&dev->struct_mutex);
122 	if (ret)
123 		return ret;
124 
125 	WARN_ON(i915_verify_lists(dev));
126 	return 0;
127 }
128 
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131 			    struct drm_file *file)
132 {
133 	struct drm_i915_private *dev_priv = dev->dev_private;
134 	struct drm_i915_gem_get_aperture *args = data;
135 	struct i915_gtt *ggtt = &dev_priv->gtt;
136 	struct i915_vma *vma;
137 	size_t pinned;
138 
139 	pinned = 0;
140 	mutex_lock(&dev->struct_mutex);
141 	list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142 		if (vma->pin_count)
143 			pinned += vma->node.size;
144 	list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145 		if (vma->pin_count)
146 			pinned += vma->node.size;
147 	mutex_unlock(&dev->struct_mutex);
148 
149 	args->aper_size = dev_priv->gtt.base.total;
150 	args->aper_available_size = args->aper_size - pinned;
151 
152 	return 0;
153 }
154 
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 	char *vaddr = obj->phys_handle->vaddr;
160 	struct sg_table *st;
161 	struct scatterlist *sg;
162 	int i;
163 
164 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 		return -EINVAL;
166 
167 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 		struct page *page;
169 		char *src;
170 
171 		page = shmem_read_mapping_page(mapping, i);
172 		if (IS_ERR(page))
173 			return PTR_ERR(page);
174 
175 		src = kmap_atomic(page);
176 		memcpy(vaddr, src, PAGE_SIZE);
177 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 		kunmap_atomic(src);
179 
180 		page_cache_release(page);
181 		vaddr += PAGE_SIZE;
182 	}
183 
184 	i915_gem_chipset_flush(obj->base.dev);
185 
186 	st = kmalloc(sizeof(*st), GFP_KERNEL);
187 	if (st == NULL)
188 		return -ENOMEM;
189 
190 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 		kfree(st);
192 		return -ENOMEM;
193 	}
194 
195 	sg = st->sgl;
196 	sg->offset = 0;
197 	sg->length = obj->base.size;
198 
199 	sg_dma_address(sg) = obj->phys_handle->busaddr;
200 	sg_dma_len(sg) = obj->base.size;
201 
202 	obj->pages = st;
203 	return 0;
204 }
205 
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209 	int ret;
210 
211 	BUG_ON(obj->madv == __I915_MADV_PURGED);
212 
213 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 	if (ret) {
215 		/* In the event of a disaster, abandon all caches and
216 		 * hope for the best.
217 		 */
218 		WARN_ON(ret != -EIO);
219 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 	}
221 
222 	if (obj->madv == I915_MADV_DONTNEED)
223 		obj->dirty = 0;
224 
225 	if (obj->dirty) {
226 		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227 		char *vaddr = obj->phys_handle->vaddr;
228 		int i;
229 
230 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 			struct page *page;
232 			char *dst;
233 
234 			page = shmem_read_mapping_page(mapping, i);
235 			if (IS_ERR(page))
236 				continue;
237 
238 			dst = kmap_atomic(page);
239 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 			memcpy(dst, vaddr, PAGE_SIZE);
241 			kunmap_atomic(dst);
242 
243 			set_page_dirty(page);
244 			if (obj->madv == I915_MADV_WILLNEED)
245 				mark_page_accessed(page);
246 			page_cache_release(page);
247 			vaddr += PAGE_SIZE;
248 		}
249 		obj->dirty = 0;
250 	}
251 
252 	sg_free_table(obj->pages);
253 	kfree(obj->pages);
254 }
255 
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259 	drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261 
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 	.get_pages = i915_gem_object_get_pages_phys,
264 	.put_pages = i915_gem_object_put_pages_phys,
265 	.release = i915_gem_object_release_phys,
266 };
267 
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271 	struct i915_vma *vma, *next;
272 	int ret;
273 
274 	drm_gem_object_reference(&obj->base);
275 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276 		if (i915_vma_unbind(vma))
277 			break;
278 
279 	ret = i915_gem_object_put_pages(obj);
280 	drm_gem_object_unreference(&obj->base);
281 
282 	return ret;
283 }
284 
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 			    int align)
288 {
289 	drm_dma_handle_t *phys;
290 	int ret;
291 
292 	if (obj->phys_handle) {
293 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 			return -EBUSY;
295 
296 		return 0;
297 	}
298 
299 	if (obj->madv != I915_MADV_WILLNEED)
300 		return -EFAULT;
301 
302 	if (obj->base.filp == NULL)
303 		return -EINVAL;
304 
305 	ret = drop_pages(obj);
306 	if (ret)
307 		return ret;
308 
309 	/* create a new object */
310 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 	if (!phys)
312 		return -ENOMEM;
313 
314 	obj->phys_handle = phys;
315 	obj->ops = &i915_gem_phys_ops;
316 
317 	return i915_gem_object_get_pages(obj);
318 }
319 
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 		     struct drm_i915_gem_pwrite *args,
323 		     struct drm_file *file_priv)
324 {
325 	struct drm_device *dev = obj->base.dev;
326 	void *vaddr = obj->phys_handle->vaddr + args->offset;
327 	char __user *user_data = to_user_ptr(args->data_ptr);
328 	int ret = 0;
329 
330 	/* We manually control the domain here and pretend that it
331 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 	 */
333 	ret = i915_gem_object_wait_rendering(obj, false);
334 	if (ret)
335 		return ret;
336 
337 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 		unsigned long unwritten;
340 
341 		/* The physical object once assigned is fixed for the lifetime
342 		 * of the obj, so we can safely drop the lock and continue
343 		 * to access vaddr.
344 		 */
345 		mutex_unlock(&dev->struct_mutex);
346 		unwritten = copy_from_user(vaddr, user_data, args->size);
347 		mutex_lock(&dev->struct_mutex);
348 		if (unwritten) {
349 			ret = -EFAULT;
350 			goto out;
351 		}
352 	}
353 
354 	drm_clflush_virt_range(vaddr, args->size);
355 	i915_gem_chipset_flush(dev);
356 
357 out:
358 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359 	return ret;
360 }
361 
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364 	struct drm_i915_private *dev_priv = dev->dev_private;
365 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367 
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371 	kmem_cache_free(dev_priv->objects, obj);
372 }
373 
374 static int
375 i915_gem_create(struct drm_file *file,
376 		struct drm_device *dev,
377 		uint64_t size,
378 		uint32_t *handle_p)
379 {
380 	struct drm_i915_gem_object *obj;
381 	int ret;
382 	u32 handle;
383 
384 	size = roundup(size, PAGE_SIZE);
385 	if (size == 0)
386 		return -EINVAL;
387 
388 	/* Allocate the new object */
389 	obj = i915_gem_alloc_object(dev, size);
390 	if (obj == NULL)
391 		return -ENOMEM;
392 
393 	ret = drm_gem_handle_create(file, &obj->base, &handle);
394 	/* drop reference from allocate - handle holds it now */
395 	drm_gem_object_unreference_unlocked(&obj->base);
396 	if (ret)
397 		return ret;
398 
399 	*handle_p = handle;
400 	return 0;
401 }
402 
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405 		     struct drm_device *dev,
406 		     struct drm_mode_create_dumb *args)
407 {
408 	/* have to work out size/pitch and return them */
409 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 	args->size = args->pitch * args->height;
411 	return i915_gem_create(file, dev,
412 			       args->size, &args->handle);
413 }
414 
415 /**
416  * Creates a new mm object and returns a handle to it.
417  */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 		      struct drm_file *file)
421 {
422 	struct drm_i915_gem_create *args = data;
423 
424 	return i915_gem_create(file, dev,
425 			       args->size, &args->handle);
426 }
427 
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430 			const char *gpu_vaddr, int gpu_offset,
431 			int length)
432 {
433 	int ret, cpu_offset = 0;
434 
435 	while (length > 0) {
436 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 		int this_length = min(cacheline_end - gpu_offset, length);
438 		int swizzled_gpu_offset = gpu_offset ^ 64;
439 
440 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 				     gpu_vaddr + swizzled_gpu_offset,
442 				     this_length);
443 		if (ret)
444 			return ret + length;
445 
446 		cpu_offset += this_length;
447 		gpu_offset += this_length;
448 		length -= this_length;
449 	}
450 
451 	return 0;
452 }
453 
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 			  const char __user *cpu_vaddr,
457 			  int length)
458 {
459 	int ret, cpu_offset = 0;
460 
461 	while (length > 0) {
462 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 		int this_length = min(cacheline_end - gpu_offset, length);
464 		int swizzled_gpu_offset = gpu_offset ^ 64;
465 
466 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 				       cpu_vaddr + cpu_offset,
468 				       this_length);
469 		if (ret)
470 			return ret + length;
471 
472 		cpu_offset += this_length;
473 		gpu_offset += this_length;
474 		length -= this_length;
475 	}
476 
477 	return 0;
478 }
479 
480 /*
481  * Pins the specified object's pages and synchronizes the object with
482  * GPU accesses. Sets needs_clflush to non-zero if the caller should
483  * flush the object from the CPU cache.
484  */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 				    int *needs_clflush)
487 {
488 	int ret;
489 
490 	*needs_clflush = 0;
491 
492 	if (!obj->base.filp)
493 		return -EINVAL;
494 
495 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 		/* If we're not in the cpu read domain, set ourself into the gtt
497 		 * read domain and manually flush cachelines (if required). This
498 		 * optimizes for the case when the gpu will dirty the data
499 		 * anyway again before the next pread happens. */
500 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 							obj->cache_level);
502 		ret = i915_gem_object_wait_rendering(obj, true);
503 		if (ret)
504 			return ret;
505 	}
506 
507 	ret = i915_gem_object_get_pages(obj);
508 	if (ret)
509 		return ret;
510 
511 	i915_gem_object_pin_pages(obj);
512 
513 	return ret;
514 }
515 
516 /* Per-page copy function for the shmem pread fastpath.
517  * Flushes invalid cachelines before reading the target if
518  * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 		 char __user *user_data,
522 		 bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524 	char *vaddr;
525 	int ret;
526 
527 	if (unlikely(page_do_bit17_swizzling))
528 		return -EINVAL;
529 
530 	vaddr = kmap_atomic(page);
531 	if (needs_clflush)
532 		drm_clflush_virt_range(vaddr + shmem_page_offset,
533 				       page_length);
534 	ret = __copy_to_user_inatomic(user_data,
535 				      vaddr + shmem_page_offset,
536 				      page_length);
537 	kunmap_atomic(vaddr);
538 
539 	return ret ? -EFAULT : 0;
540 }
541 
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 			     bool swizzled)
545 {
546 	if (unlikely(swizzled)) {
547 		unsigned long start = (unsigned long) addr;
548 		unsigned long end = (unsigned long) addr + length;
549 
550 		/* For swizzling simply ensure that we always flush both
551 		 * channels. Lame, but simple and it works. Swizzled
552 		 * pwrite/pread is far from a hotpath - current userspace
553 		 * doesn't use it at all. */
554 		start = round_down(start, 128);
555 		end = round_up(end, 128);
556 
557 		drm_clflush_virt_range((void *)start, end - start);
558 	} else {
559 		drm_clflush_virt_range(addr, length);
560 	}
561 
562 }
563 
564 /* Only difference to the fast-path function is that this can handle bit17
565  * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 		 char __user *user_data,
569 		 bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571 	char *vaddr;
572 	int ret;
573 
574 	vaddr = kmap(page);
575 	if (needs_clflush)
576 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 					     page_length,
578 					     page_do_bit17_swizzling);
579 
580 	if (page_do_bit17_swizzling)
581 		ret = __copy_to_user_swizzled(user_data,
582 					      vaddr, shmem_page_offset,
583 					      page_length);
584 	else
585 		ret = __copy_to_user(user_data,
586 				     vaddr + shmem_page_offset,
587 				     page_length);
588 	kunmap(page);
589 
590 	return ret ? - EFAULT : 0;
591 }
592 
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595 		     struct drm_i915_gem_object *obj,
596 		     struct drm_i915_gem_pread *args,
597 		     struct drm_file *file)
598 {
599 	char __user *user_data;
600 	ssize_t remain;
601 	loff_t offset;
602 	int shmem_page_offset, page_length, ret = 0;
603 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604 	int prefaulted = 0;
605 	int needs_clflush = 0;
606 	struct sg_page_iter sg_iter;
607 
608 	user_data = to_user_ptr(args->data_ptr);
609 	remain = args->size;
610 
611 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612 
613 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 	if (ret)
615 		return ret;
616 
617 	offset = args->offset;
618 
619 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 			 offset >> PAGE_SHIFT) {
621 		struct page *page = sg_page_iter_page(&sg_iter);
622 
623 		if (remain <= 0)
624 			break;
625 
626 		/* Operation in this page
627 		 *
628 		 * shmem_page_offset = offset within page in shmem file
629 		 * page_length = bytes to copy for this page
630 		 */
631 		shmem_page_offset = offset_in_page(offset);
632 		page_length = remain;
633 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 			page_length = PAGE_SIZE - shmem_page_offset;
635 
636 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 			(page_to_phys(page) & (1 << 17)) != 0;
638 
639 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 				       user_data, page_do_bit17_swizzling,
641 				       needs_clflush);
642 		if (ret == 0)
643 			goto next_page;
644 
645 		mutex_unlock(&dev->struct_mutex);
646 
647 		if (likely(!i915.prefault_disable) && !prefaulted) {
648 			ret = fault_in_multipages_writeable(user_data, remain);
649 			/* Userspace is tricking us, but we've already clobbered
650 			 * its pages with the prefault and promised to write the
651 			 * data up to the first fault. Hence ignore any errors
652 			 * and just continue. */
653 			(void)ret;
654 			prefaulted = 1;
655 		}
656 
657 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 				       user_data, page_do_bit17_swizzling,
659 				       needs_clflush);
660 
661 		mutex_lock(&dev->struct_mutex);
662 
663 		if (ret)
664 			goto out;
665 
666 next_page:
667 		remain -= page_length;
668 		user_data += page_length;
669 		offset += page_length;
670 	}
671 
672 out:
673 	i915_gem_object_unpin_pages(obj);
674 
675 	return ret;
676 }
677 
678 /**
679  * Reads data from the object referenced by handle.
680  *
681  * On error, the contents of *data are undefined.
682  */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685 		     struct drm_file *file)
686 {
687 	struct drm_i915_gem_pread *args = data;
688 	struct drm_i915_gem_object *obj;
689 	int ret = 0;
690 
691 	if (args->size == 0)
692 		return 0;
693 
694 	if (!access_ok(VERIFY_WRITE,
695 		       to_user_ptr(args->data_ptr),
696 		       args->size))
697 		return -EFAULT;
698 
699 	ret = i915_mutex_lock_interruptible(dev);
700 	if (ret)
701 		return ret;
702 
703 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704 	if (&obj->base == NULL) {
705 		ret = -ENOENT;
706 		goto unlock;
707 	}
708 
709 	/* Bounds check source.  */
710 	if (args->offset > obj->base.size ||
711 	    args->size > obj->base.size - args->offset) {
712 		ret = -EINVAL;
713 		goto out;
714 	}
715 
716 	/* prime objects have no backing filp to GEM pread/pwrite
717 	 * pages from.
718 	 */
719 	if (!obj->base.filp) {
720 		ret = -EINVAL;
721 		goto out;
722 	}
723 
724 	trace_i915_gem_object_pread(obj, args->offset, args->size);
725 
726 	ret = i915_gem_shmem_pread(dev, obj, args, file);
727 
728 out:
729 	drm_gem_object_unreference(&obj->base);
730 unlock:
731 	mutex_unlock(&dev->struct_mutex);
732 	return ret;
733 }
734 
735 /* This is the fast write path which cannot handle
736  * page faults in the source data
737  */
738 
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741 		loff_t page_base, int page_offset,
742 		char __user *user_data,
743 		int length)
744 {
745 	void __iomem *vaddr_atomic;
746 	void *vaddr;
747 	unsigned long unwritten;
748 
749 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 	/* We can use the cpu mem copy function because this is X86. */
751 	vaddr = (void __force*)vaddr_atomic + page_offset;
752 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
753 						      user_data, length);
754 	io_mapping_unmap_atomic(vaddr_atomic);
755 	return unwritten;
756 }
757 
758 /**
759  * This is the fast pwrite path, where we copy the data directly from the
760  * user into the GTT, uncached.
761  */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 			 struct drm_i915_gem_object *obj,
765 			 struct drm_i915_gem_pwrite *args,
766 			 struct drm_file *file)
767 {
768 	struct drm_i915_private *dev_priv = dev->dev_private;
769 	ssize_t remain;
770 	loff_t offset, page_base;
771 	char __user *user_data;
772 	int page_offset, page_length, ret;
773 
774 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775 	if (ret)
776 		goto out;
777 
778 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 	if (ret)
780 		goto out_unpin;
781 
782 	ret = i915_gem_object_put_fence(obj);
783 	if (ret)
784 		goto out_unpin;
785 
786 	user_data = to_user_ptr(args->data_ptr);
787 	remain = args->size;
788 
789 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790 
791 	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792 
793 	while (remain > 0) {
794 		/* Operation in this page
795 		 *
796 		 * page_base = page offset within aperture
797 		 * page_offset = offset within page
798 		 * page_length = bytes to copy for this page
799 		 */
800 		page_base = offset & PAGE_MASK;
801 		page_offset = offset_in_page(offset);
802 		page_length = remain;
803 		if ((page_offset + remain) > PAGE_SIZE)
804 			page_length = PAGE_SIZE - page_offset;
805 
806 		/* If we get a fault while copying data, then (presumably) our
807 		 * source page isn't available.  Return the error and we'll
808 		 * retry in the slow path.
809 		 */
810 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
811 				    page_offset, user_data, page_length)) {
812 			ret = -EFAULT;
813 			goto out_flush;
814 		}
815 
816 		remain -= page_length;
817 		user_data += page_length;
818 		offset += page_length;
819 	}
820 
821 out_flush:
822 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824 	i915_gem_object_ggtt_unpin(obj);
825 out:
826 	return ret;
827 }
828 
829 /* Per-page copy function for the shmem pwrite fastpath.
830  * Flushes invalid cachelines before writing to the target if
831  * needs_clflush_before is set and flushes out any written cachelines after
832  * writing if needs_clflush is set. */
833 static int
834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 		  char __user *user_data,
836 		  bool page_do_bit17_swizzling,
837 		  bool needs_clflush_before,
838 		  bool needs_clflush_after)
839 {
840 	char *vaddr;
841 	int ret;
842 
843 	if (unlikely(page_do_bit17_swizzling))
844 		return -EINVAL;
845 
846 	vaddr = kmap_atomic(page);
847 	if (needs_clflush_before)
848 		drm_clflush_virt_range(vaddr + shmem_page_offset,
849 				       page_length);
850 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 					user_data, page_length);
852 	if (needs_clflush_after)
853 		drm_clflush_virt_range(vaddr + shmem_page_offset,
854 				       page_length);
855 	kunmap_atomic(vaddr);
856 
857 	return ret ? -EFAULT : 0;
858 }
859 
860 /* Only difference to the fast-path function is that this can handle bit17
861  * and uses non-atomic copy and kmap functions. */
862 static int
863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 		  char __user *user_data,
865 		  bool page_do_bit17_swizzling,
866 		  bool needs_clflush_before,
867 		  bool needs_clflush_after)
868 {
869 	char *vaddr;
870 	int ret;
871 
872 	vaddr = kmap(page);
873 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 					     page_length,
876 					     page_do_bit17_swizzling);
877 	if (page_do_bit17_swizzling)
878 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879 						user_data,
880 						page_length);
881 	else
882 		ret = __copy_from_user(vaddr + shmem_page_offset,
883 				       user_data,
884 				       page_length);
885 	if (needs_clflush_after)
886 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 					     page_length,
888 					     page_do_bit17_swizzling);
889 	kunmap(page);
890 
891 	return ret ? -EFAULT : 0;
892 }
893 
894 static int
895 i915_gem_shmem_pwrite(struct drm_device *dev,
896 		      struct drm_i915_gem_object *obj,
897 		      struct drm_i915_gem_pwrite *args,
898 		      struct drm_file *file)
899 {
900 	ssize_t remain;
901 	loff_t offset;
902 	char __user *user_data;
903 	int shmem_page_offset, page_length, ret = 0;
904 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905 	int hit_slowpath = 0;
906 	int needs_clflush_after = 0;
907 	int needs_clflush_before = 0;
908 	struct sg_page_iter sg_iter;
909 
910 	user_data = to_user_ptr(args->data_ptr);
911 	remain = args->size;
912 
913 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914 
915 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 		/* If we're not in the cpu write domain, set ourself into the gtt
917 		 * write domain and manually flush cachelines (if required). This
918 		 * optimizes for the case when the gpu will use the data
919 		 * right away and we therefore have to clflush anyway. */
920 		needs_clflush_after = cpu_write_needs_clflush(obj);
921 		ret = i915_gem_object_wait_rendering(obj, false);
922 		if (ret)
923 			return ret;
924 	}
925 	/* Same trick applies to invalidate partially written cachelines read
926 	 * before writing. */
927 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 		needs_clflush_before =
929 			!cpu_cache_is_coherent(dev, obj->cache_level);
930 
931 	ret = i915_gem_object_get_pages(obj);
932 	if (ret)
933 		return ret;
934 
935 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936 
937 	i915_gem_object_pin_pages(obj);
938 
939 	offset = args->offset;
940 	obj->dirty = 1;
941 
942 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 			 offset >> PAGE_SHIFT) {
944 		struct page *page = sg_page_iter_page(&sg_iter);
945 		int partial_cacheline_write;
946 
947 		if (remain <= 0)
948 			break;
949 
950 		/* Operation in this page
951 		 *
952 		 * shmem_page_offset = offset within page in shmem file
953 		 * page_length = bytes to copy for this page
954 		 */
955 		shmem_page_offset = offset_in_page(offset);
956 
957 		page_length = remain;
958 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 			page_length = PAGE_SIZE - shmem_page_offset;
960 
961 		/* If we don't overwrite a cacheline completely we need to be
962 		 * careful to have up-to-date data by first clflushing. Don't
963 		 * overcomplicate things and flush the entire patch. */
964 		partial_cacheline_write = needs_clflush_before &&
965 			((shmem_page_offset | page_length)
966 				& (boot_cpu_data.x86_clflush_size - 1));
967 
968 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 			(page_to_phys(page) & (1 << 17)) != 0;
970 
971 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 					user_data, page_do_bit17_swizzling,
973 					partial_cacheline_write,
974 					needs_clflush_after);
975 		if (ret == 0)
976 			goto next_page;
977 
978 		hit_slowpath = 1;
979 		mutex_unlock(&dev->struct_mutex);
980 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 					user_data, page_do_bit17_swizzling,
982 					partial_cacheline_write,
983 					needs_clflush_after);
984 
985 		mutex_lock(&dev->struct_mutex);
986 
987 		if (ret)
988 			goto out;
989 
990 next_page:
991 		remain -= page_length;
992 		user_data += page_length;
993 		offset += page_length;
994 	}
995 
996 out:
997 	i915_gem_object_unpin_pages(obj);
998 
999 	if (hit_slowpath) {
1000 		/*
1001 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 		 * cachelines in-line while writing and the object moved
1003 		 * out of the cpu write domain while we've dropped the lock.
1004 		 */
1005 		if (!needs_clflush_after &&
1006 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007 			if (i915_gem_clflush_object(obj, obj->pin_display))
1008 				needs_clflush_after = true;
1009 		}
1010 	}
1011 
1012 	if (needs_clflush_after)
1013 		i915_gem_chipset_flush(dev);
1014 	else
1015 		obj->cache_dirty = true;
1016 
1017 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018 	return ret;
1019 }
1020 
1021 /**
1022  * Writes data to the object referenced by handle.
1023  *
1024  * On error, the contents of the buffer that were to be modified are undefined.
1025  */
1026 int
1027 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028 		      struct drm_file *file)
1029 {
1030 	struct drm_i915_private *dev_priv = dev->dev_private;
1031 	struct drm_i915_gem_pwrite *args = data;
1032 	struct drm_i915_gem_object *obj;
1033 	int ret;
1034 
1035 	if (args->size == 0)
1036 		return 0;
1037 
1038 	if (!access_ok(VERIFY_READ,
1039 		       to_user_ptr(args->data_ptr),
1040 		       args->size))
1041 		return -EFAULT;
1042 
1043 	if (likely(!i915.prefault_disable)) {
1044 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045 						   args->size);
1046 		if (ret)
1047 			return -EFAULT;
1048 	}
1049 
1050 	intel_runtime_pm_get(dev_priv);
1051 
1052 	ret = i915_mutex_lock_interruptible(dev);
1053 	if (ret)
1054 		goto put_rpm;
1055 
1056 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057 	if (&obj->base == NULL) {
1058 		ret = -ENOENT;
1059 		goto unlock;
1060 	}
1061 
1062 	/* Bounds check destination. */
1063 	if (args->offset > obj->base.size ||
1064 	    args->size > obj->base.size - args->offset) {
1065 		ret = -EINVAL;
1066 		goto out;
1067 	}
1068 
1069 	/* prime objects have no backing filp to GEM pread/pwrite
1070 	 * pages from.
1071 	 */
1072 	if (!obj->base.filp) {
1073 		ret = -EINVAL;
1074 		goto out;
1075 	}
1076 
1077 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078 
1079 	ret = -EFAULT;
1080 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 	 * it would end up going through the fenced access, and we'll get
1082 	 * different detiling behavior between reading and writing.
1083 	 * pread/pwrite currently are reading and writing from the CPU
1084 	 * perspective, requiring manual detiling by the client.
1085 	 */
1086 	if (obj->tiling_mode == I915_TILING_NONE &&
1087 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 	    cpu_write_needs_clflush(obj)) {
1089 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090 		/* Note that the gtt paths might fail with non-page-backed user
1091 		 * pointers (e.g. gtt mappings when moving data between
1092 		 * textures). Fallback to the shmem path in that case. */
1093 	}
1094 
1095 	if (ret == -EFAULT || ret == -ENOSPC) {
1096 		if (obj->phys_handle)
1097 			ret = i915_gem_phys_pwrite(obj, args, file);
1098 		else
1099 			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 	}
1101 
1102 out:
1103 	drm_gem_object_unreference(&obj->base);
1104 unlock:
1105 	mutex_unlock(&dev->struct_mutex);
1106 put_rpm:
1107 	intel_runtime_pm_put(dev_priv);
1108 
1109 	return ret;
1110 }
1111 
1112 int
1113 i915_gem_check_wedge(struct i915_gpu_error *error,
1114 		     bool interruptible)
1115 {
1116 	if (i915_reset_in_progress(error)) {
1117 		/* Non-interruptible callers can't handle -EAGAIN, hence return
1118 		 * -EIO unconditionally for these. */
1119 		if (!interruptible)
1120 			return -EIO;
1121 
1122 		/* Recovery complete, but the reset failed ... */
1123 		if (i915_terminally_wedged(error))
1124 			return -EIO;
1125 
1126 		/*
1127 		 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 		 * to work properly to reinit the hw state while the gpu is
1129 		 * still marked as reset-in-progress. Handle this with a flag.
1130 		 */
1131 		if (!error->reload_in_reset)
1132 			return -EAGAIN;
1133 	}
1134 
1135 	return 0;
1136 }
1137 
1138 static void fake_irq(unsigned long data)
1139 {
1140 	wake_up_process((struct task_struct *)data);
1141 }
1142 
1143 static bool missed_irq(struct drm_i915_private *dev_priv,
1144 		       struct intel_engine_cs *ring)
1145 {
1146 	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147 }
1148 
1149 static unsigned long local_clock_us(unsigned *cpu)
1150 {
1151 	unsigned long t;
1152 
1153 	/* Cheaply and approximately convert from nanoseconds to microseconds.
1154 	 * The result and subsequent calculations are also defined in the same
1155 	 * approximate microseconds units. The principal source of timing
1156 	 * error here is from the simple truncation.
1157 	 *
1158 	 * Note that local_clock() is only defined wrt to the current CPU;
1159 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1160 	 * blocking preemption for the entire busywait, we can detect the CPU
1161 	 * switch and use that as indicator of system load and a reason to
1162 	 * stop busywaiting, see busywait_stop().
1163 	 */
1164 	*cpu = get_cpu();
1165 	t = local_clock() >> 10;
1166 	put_cpu();
1167 
1168 	return t;
1169 }
1170 
1171 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1172 {
1173 	unsigned this_cpu;
1174 
1175 	if (time_after(local_clock_us(&this_cpu), timeout))
1176 		return true;
1177 
1178 	return this_cpu != cpu;
1179 }
1180 
1181 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1182 {
1183 	unsigned long timeout;
1184 	unsigned cpu;
1185 
1186 	/* When waiting for high frequency requests, e.g. during synchronous
1187 	 * rendering split between the CPU and GPU, the finite amount of time
1188 	 * required to set up the irq and wait upon it limits the response
1189 	 * rate. By busywaiting on the request completion for a short while we
1190 	 * can service the high frequency waits as quick as possible. However,
1191 	 * if it is a slow request, we want to sleep as quickly as possible.
1192 	 * The tradeoff between waiting and sleeping is roughly the time it
1193 	 * takes to sleep on a request, on the order of a microsecond.
1194 	 */
1195 
1196 	if (req->ring->irq_refcount)
1197 		return -EBUSY;
1198 
1199 	/* Only spin if we know the GPU is processing this request */
1200 	if (!i915_gem_request_started(req, true))
1201 		return -EAGAIN;
1202 
1203 	timeout = local_clock_us(&cpu) + 5;
1204 	while (!need_resched()) {
1205 		if (i915_gem_request_completed(req, true))
1206 			return 0;
1207 
1208 		if (signal_pending_state(state, current))
1209 			break;
1210 
1211 		if (busywait_stop(timeout, cpu))
1212 			break;
1213 
1214 		cpu_relax_lowlatency();
1215 	}
1216 
1217 	if (i915_gem_request_completed(req, false))
1218 		return 0;
1219 
1220 	return -EAGAIN;
1221 }
1222 
1223 /**
1224  * __i915_wait_request - wait until execution of request has finished
1225  * @req: duh!
1226  * @reset_counter: reset sequence associated with the given request
1227  * @interruptible: do an interruptible wait (normally yes)
1228  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1229  *
1230  * Note: It is of utmost importance that the passed in seqno and reset_counter
1231  * values have been read by the caller in an smp safe manner. Where read-side
1232  * locks are involved, it is sufficient to read the reset_counter before
1233  * unlocking the lock that protects the seqno. For lockless tricks, the
1234  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1235  * inserted.
1236  *
1237  * Returns 0 if the request was found within the alloted time. Else returns the
1238  * errno with remaining time filled in timeout argument.
1239  */
1240 int __i915_wait_request(struct drm_i915_gem_request *req,
1241 			unsigned reset_counter,
1242 			bool interruptible,
1243 			s64 *timeout,
1244 			struct intel_rps_client *rps)
1245 {
1246 	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1247 	struct drm_device *dev = ring->dev;
1248 	struct drm_i915_private *dev_priv = dev->dev_private;
1249 	const bool irq_test_in_progress =
1250 		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1251 	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1252 	DEFINE_WAIT(wait);
1253 	unsigned long timeout_expire;
1254 	s64 before, now;
1255 	int ret;
1256 
1257 	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1258 
1259 	if (list_empty(&req->list))
1260 		return 0;
1261 
1262 	if (i915_gem_request_completed(req, true))
1263 		return 0;
1264 
1265 	timeout_expire = 0;
1266 	if (timeout) {
1267 		if (WARN_ON(*timeout < 0))
1268 			return -EINVAL;
1269 
1270 		if (*timeout == 0)
1271 			return -ETIME;
1272 
1273 		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1274 	}
1275 
1276 	if (INTEL_INFO(dev_priv)->gen >= 6)
1277 		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1278 
1279 	/* Record current time in case interrupted by signal, or wedged */
1280 	trace_i915_gem_request_wait_begin(req);
1281 	before = ktime_get_raw_ns();
1282 
1283 	/* Optimistic spin for the next jiffie before touching IRQs */
1284 	ret = __i915_spin_request(req, state);
1285 	if (ret == 0)
1286 		goto out;
1287 
1288 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1289 		ret = -ENODEV;
1290 		goto out;
1291 	}
1292 
1293 	for (;;) {
1294 		struct timer_list timer;
1295 
1296 		prepare_to_wait(&ring->irq_queue, &wait, state);
1297 
1298 		/* We need to check whether any gpu reset happened in between
1299 		 * the caller grabbing the seqno and now ... */
1300 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1301 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
1302 			 * is truely gone. */
1303 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1304 			if (ret == 0)
1305 				ret = -EAGAIN;
1306 			break;
1307 		}
1308 
1309 		if (i915_gem_request_completed(req, false)) {
1310 			ret = 0;
1311 			break;
1312 		}
1313 
1314 		if (signal_pending_state(state, current)) {
1315 			ret = -ERESTARTSYS;
1316 			break;
1317 		}
1318 
1319 		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1320 			ret = -ETIME;
1321 			break;
1322 		}
1323 
1324 		timer.function = NULL;
1325 		if (timeout || missed_irq(dev_priv, ring)) {
1326 			unsigned long expire;
1327 
1328 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1329 			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1330 			mod_timer(&timer, expire);
1331 		}
1332 
1333 		io_schedule();
1334 
1335 		if (timer.function) {
1336 			del_singleshot_timer_sync(&timer);
1337 			destroy_timer_on_stack(&timer);
1338 		}
1339 	}
1340 	if (!irq_test_in_progress)
1341 		ring->irq_put(ring);
1342 
1343 	finish_wait(&ring->irq_queue, &wait);
1344 
1345 out:
1346 	now = ktime_get_raw_ns();
1347 	trace_i915_gem_request_wait_end(req);
1348 
1349 	if (timeout) {
1350 		s64 tres = *timeout - (now - before);
1351 
1352 		*timeout = tres < 0 ? 0 : tres;
1353 
1354 		/*
1355 		 * Apparently ktime isn't accurate enough and occasionally has a
1356 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1357 		 * things up to make the test happy. We allow up to 1 jiffy.
1358 		 *
1359 		 * This is a regrssion from the timespec->ktime conversion.
1360 		 */
1361 		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1362 			*timeout = 0;
1363 	}
1364 
1365 	return ret;
1366 }
1367 
1368 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1369 				   struct drm_file *file)
1370 {
1371 	struct drm_i915_private *dev_private;
1372 	struct drm_i915_file_private *file_priv;
1373 
1374 	WARN_ON(!req || !file || req->file_priv);
1375 
1376 	if (!req || !file)
1377 		return -EINVAL;
1378 
1379 	if (req->file_priv)
1380 		return -EINVAL;
1381 
1382 	dev_private = req->ring->dev->dev_private;
1383 	file_priv = file->driver_priv;
1384 
1385 	spin_lock(&file_priv->mm.lock);
1386 	req->file_priv = file_priv;
1387 	list_add_tail(&req->client_list, &file_priv->mm.request_list);
1388 	spin_unlock(&file_priv->mm.lock);
1389 
1390 	req->pid = get_pid(task_pid(current));
1391 
1392 	return 0;
1393 }
1394 
1395 static inline void
1396 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1397 {
1398 	struct drm_i915_file_private *file_priv = request->file_priv;
1399 
1400 	if (!file_priv)
1401 		return;
1402 
1403 	spin_lock(&file_priv->mm.lock);
1404 	list_del(&request->client_list);
1405 	request->file_priv = NULL;
1406 	spin_unlock(&file_priv->mm.lock);
1407 
1408 	put_pid(request->pid);
1409 	request->pid = NULL;
1410 }
1411 
1412 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1413 {
1414 	trace_i915_gem_request_retire(request);
1415 
1416 	/* We know the GPU must have read the request to have
1417 	 * sent us the seqno + interrupt, so use the position
1418 	 * of tail of the request to update the last known position
1419 	 * of the GPU head.
1420 	 *
1421 	 * Note this requires that we are always called in request
1422 	 * completion order.
1423 	 */
1424 	request->ringbuf->last_retired_head = request->postfix;
1425 
1426 	list_del_init(&request->list);
1427 	i915_gem_request_remove_from_client(request);
1428 
1429 	i915_gem_request_unreference(request);
1430 }
1431 
1432 static void
1433 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1434 {
1435 	struct intel_engine_cs *engine = req->ring;
1436 	struct drm_i915_gem_request *tmp;
1437 
1438 	lockdep_assert_held(&engine->dev->struct_mutex);
1439 
1440 	if (list_empty(&req->list))
1441 		return;
1442 
1443 	do {
1444 		tmp = list_first_entry(&engine->request_list,
1445 				       typeof(*tmp), list);
1446 
1447 		i915_gem_request_retire(tmp);
1448 	} while (tmp != req);
1449 
1450 	WARN_ON(i915_verify_lists(engine->dev));
1451 }
1452 
1453 /**
1454  * Waits for a request to be signaled, and cleans up the
1455  * request and object lists appropriately for that event.
1456  */
1457 int
1458 i915_wait_request(struct drm_i915_gem_request *req)
1459 {
1460 	struct drm_device *dev;
1461 	struct drm_i915_private *dev_priv;
1462 	bool interruptible;
1463 	int ret;
1464 
1465 	BUG_ON(req == NULL);
1466 
1467 	dev = req->ring->dev;
1468 	dev_priv = dev->dev_private;
1469 	interruptible = dev_priv->mm.interruptible;
1470 
1471 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1472 
1473 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1474 	if (ret)
1475 		return ret;
1476 
1477 	ret = __i915_wait_request(req,
1478 				  atomic_read(&dev_priv->gpu_error.reset_counter),
1479 				  interruptible, NULL, NULL);
1480 	if (ret)
1481 		return ret;
1482 
1483 	__i915_gem_request_retire__upto(req);
1484 	return 0;
1485 }
1486 
1487 /**
1488  * Ensures that all rendering to the object has completed and the object is
1489  * safe to unbind from the GTT or access from the CPU.
1490  */
1491 int
1492 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1493 			       bool readonly)
1494 {
1495 	int ret, i;
1496 
1497 	if (!obj->active)
1498 		return 0;
1499 
1500 	if (readonly) {
1501 		if (obj->last_write_req != NULL) {
1502 			ret = i915_wait_request(obj->last_write_req);
1503 			if (ret)
1504 				return ret;
1505 
1506 			i = obj->last_write_req->ring->id;
1507 			if (obj->last_read_req[i] == obj->last_write_req)
1508 				i915_gem_object_retire__read(obj, i);
1509 			else
1510 				i915_gem_object_retire__write(obj);
1511 		}
1512 	} else {
1513 		for (i = 0; i < I915_NUM_RINGS; i++) {
1514 			if (obj->last_read_req[i] == NULL)
1515 				continue;
1516 
1517 			ret = i915_wait_request(obj->last_read_req[i]);
1518 			if (ret)
1519 				return ret;
1520 
1521 			i915_gem_object_retire__read(obj, i);
1522 		}
1523 		RQ_BUG_ON(obj->active);
1524 	}
1525 
1526 	return 0;
1527 }
1528 
1529 static void
1530 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1531 			       struct drm_i915_gem_request *req)
1532 {
1533 	int ring = req->ring->id;
1534 
1535 	if (obj->last_read_req[ring] == req)
1536 		i915_gem_object_retire__read(obj, ring);
1537 	else if (obj->last_write_req == req)
1538 		i915_gem_object_retire__write(obj);
1539 
1540 	__i915_gem_request_retire__upto(req);
1541 }
1542 
1543 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1544  * as the object state may change during this call.
1545  */
1546 static __must_check int
1547 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1548 					    struct intel_rps_client *rps,
1549 					    bool readonly)
1550 {
1551 	struct drm_device *dev = obj->base.dev;
1552 	struct drm_i915_private *dev_priv = dev->dev_private;
1553 	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1554 	unsigned reset_counter;
1555 	int ret, i, n = 0;
1556 
1557 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1558 	BUG_ON(!dev_priv->mm.interruptible);
1559 
1560 	if (!obj->active)
1561 		return 0;
1562 
1563 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1564 	if (ret)
1565 		return ret;
1566 
1567 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1568 
1569 	if (readonly) {
1570 		struct drm_i915_gem_request *req;
1571 
1572 		req = obj->last_write_req;
1573 		if (req == NULL)
1574 			return 0;
1575 
1576 		requests[n++] = i915_gem_request_reference(req);
1577 	} else {
1578 		for (i = 0; i < I915_NUM_RINGS; i++) {
1579 			struct drm_i915_gem_request *req;
1580 
1581 			req = obj->last_read_req[i];
1582 			if (req == NULL)
1583 				continue;
1584 
1585 			requests[n++] = i915_gem_request_reference(req);
1586 		}
1587 	}
1588 
1589 	mutex_unlock(&dev->struct_mutex);
1590 	for (i = 0; ret == 0 && i < n; i++)
1591 		ret = __i915_wait_request(requests[i], reset_counter, true,
1592 					  NULL, rps);
1593 	mutex_lock(&dev->struct_mutex);
1594 
1595 	for (i = 0; i < n; i++) {
1596 		if (ret == 0)
1597 			i915_gem_object_retire_request(obj, requests[i]);
1598 		i915_gem_request_unreference(requests[i]);
1599 	}
1600 
1601 	return ret;
1602 }
1603 
1604 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1605 {
1606 	struct drm_i915_file_private *fpriv = file->driver_priv;
1607 	return &fpriv->rps;
1608 }
1609 
1610 /**
1611  * Called when user space prepares to use an object with the CPU, either
1612  * through the mmap ioctl's mapping or a GTT mapping.
1613  */
1614 int
1615 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1616 			  struct drm_file *file)
1617 {
1618 	struct drm_i915_gem_set_domain *args = data;
1619 	struct drm_i915_gem_object *obj;
1620 	uint32_t read_domains = args->read_domains;
1621 	uint32_t write_domain = args->write_domain;
1622 	int ret;
1623 
1624 	/* Only handle setting domains to types used by the CPU. */
1625 	if (write_domain & I915_GEM_GPU_DOMAINS)
1626 		return -EINVAL;
1627 
1628 	if (read_domains & I915_GEM_GPU_DOMAINS)
1629 		return -EINVAL;
1630 
1631 	/* Having something in the write domain implies it's in the read
1632 	 * domain, and only that read domain.  Enforce that in the request.
1633 	 */
1634 	if (write_domain != 0 && read_domains != write_domain)
1635 		return -EINVAL;
1636 
1637 	ret = i915_mutex_lock_interruptible(dev);
1638 	if (ret)
1639 		return ret;
1640 
1641 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1642 	if (&obj->base == NULL) {
1643 		ret = -ENOENT;
1644 		goto unlock;
1645 	}
1646 
1647 	/* Try to flush the object off the GPU without holding the lock.
1648 	 * We will repeat the flush holding the lock in the normal manner
1649 	 * to catch cases where we are gazumped.
1650 	 */
1651 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1652 							  to_rps_client(file),
1653 							  !write_domain);
1654 	if (ret)
1655 		goto unref;
1656 
1657 	if (read_domains & I915_GEM_DOMAIN_GTT)
1658 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1659 	else
1660 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1661 
1662 	if (write_domain != 0)
1663 		intel_fb_obj_invalidate(obj,
1664 					write_domain == I915_GEM_DOMAIN_GTT ?
1665 					ORIGIN_GTT : ORIGIN_CPU);
1666 
1667 unref:
1668 	drm_gem_object_unreference(&obj->base);
1669 unlock:
1670 	mutex_unlock(&dev->struct_mutex);
1671 	return ret;
1672 }
1673 
1674 /**
1675  * Called when user space has done writes to this buffer
1676  */
1677 int
1678 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1679 			 struct drm_file *file)
1680 {
1681 	struct drm_i915_gem_sw_finish *args = data;
1682 	struct drm_i915_gem_object *obj;
1683 	int ret = 0;
1684 
1685 	ret = i915_mutex_lock_interruptible(dev);
1686 	if (ret)
1687 		return ret;
1688 
1689 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1690 	if (&obj->base == NULL) {
1691 		ret = -ENOENT;
1692 		goto unlock;
1693 	}
1694 
1695 	/* Pinned buffers may be scanout, so flush the cache */
1696 	if (obj->pin_display)
1697 		i915_gem_object_flush_cpu_write_domain(obj);
1698 
1699 	drm_gem_object_unreference(&obj->base);
1700 unlock:
1701 	mutex_unlock(&dev->struct_mutex);
1702 	return ret;
1703 }
1704 
1705 /**
1706  * Maps the contents of an object, returning the address it is mapped
1707  * into.
1708  *
1709  * While the mapping holds a reference on the contents of the object, it doesn't
1710  * imply a ref on the object itself.
1711  *
1712  * IMPORTANT:
1713  *
1714  * DRM driver writers who look a this function as an example for how to do GEM
1715  * mmap support, please don't implement mmap support like here. The modern way
1716  * to implement DRM mmap support is with an mmap offset ioctl (like
1717  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1718  * That way debug tooling like valgrind will understand what's going on, hiding
1719  * the mmap call in a driver private ioctl will break that. The i915 driver only
1720  * does cpu mmaps this way because we didn't know better.
1721  */
1722 int
1723 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1724 		    struct drm_file *file)
1725 {
1726 	struct drm_i915_gem_mmap *args = data;
1727 	struct drm_gem_object *obj;
1728 	unsigned long addr;
1729 
1730 	if (args->flags & ~(I915_MMAP_WC))
1731 		return -EINVAL;
1732 
1733 	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1734 		return -ENODEV;
1735 
1736 	obj = drm_gem_object_lookup(dev, file, args->handle);
1737 	if (obj == NULL)
1738 		return -ENOENT;
1739 
1740 	/* prime objects have no backing filp to GEM mmap
1741 	 * pages from.
1742 	 */
1743 	if (!obj->filp) {
1744 		drm_gem_object_unreference_unlocked(obj);
1745 		return -EINVAL;
1746 	}
1747 
1748 	addr = vm_mmap(obj->filp, 0, args->size,
1749 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1750 		       args->offset);
1751 	if (args->flags & I915_MMAP_WC) {
1752 		struct mm_struct *mm = current->mm;
1753 		struct vm_area_struct *vma;
1754 
1755 		down_write(&mm->mmap_sem);
1756 		vma = find_vma(mm, addr);
1757 		if (vma)
1758 			vma->vm_page_prot =
1759 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1760 		else
1761 			addr = -ENOMEM;
1762 		up_write(&mm->mmap_sem);
1763 	}
1764 	drm_gem_object_unreference_unlocked(obj);
1765 	if (IS_ERR((void *)addr))
1766 		return addr;
1767 
1768 	args->addr_ptr = (uint64_t) addr;
1769 
1770 	return 0;
1771 }
1772 
1773 /**
1774  * i915_gem_fault - fault a page into the GTT
1775  * @vma: VMA in question
1776  * @vmf: fault info
1777  *
1778  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1779  * from userspace.  The fault handler takes care of binding the object to
1780  * the GTT (if needed), allocating and programming a fence register (again,
1781  * only if needed based on whether the old reg is still valid or the object
1782  * is tiled) and inserting a new PTE into the faulting process.
1783  *
1784  * Note that the faulting process may involve evicting existing objects
1785  * from the GTT and/or fence registers to make room.  So performance may
1786  * suffer if the GTT working set is large or there are few fence registers
1787  * left.
1788  */
1789 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1790 {
1791 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1792 	struct drm_device *dev = obj->base.dev;
1793 	struct drm_i915_private *dev_priv = dev->dev_private;
1794 	struct i915_ggtt_view view = i915_ggtt_view_normal;
1795 	pgoff_t page_offset;
1796 	unsigned long pfn;
1797 	int ret = 0;
1798 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1799 
1800 	intel_runtime_pm_get(dev_priv);
1801 
1802 	/* We don't use vmf->pgoff since that has the fake offset */
1803 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1804 		PAGE_SHIFT;
1805 
1806 	ret = i915_mutex_lock_interruptible(dev);
1807 	if (ret)
1808 		goto out;
1809 
1810 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1811 
1812 	/* Try to flush the object off the GPU first without holding the lock.
1813 	 * Upon reacquiring the lock, we will perform our sanity checks and then
1814 	 * repeat the flush holding the lock in the normal manner to catch cases
1815 	 * where we are gazumped.
1816 	 */
1817 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1818 	if (ret)
1819 		goto unlock;
1820 
1821 	/* Access to snoopable pages through the GTT is incoherent. */
1822 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1823 		ret = -EFAULT;
1824 		goto unlock;
1825 	}
1826 
1827 	/* Use a partial view if the object is bigger than the aperture. */
1828 	if (obj->base.size >= dev_priv->gtt.mappable_end &&
1829 	    obj->tiling_mode == I915_TILING_NONE) {
1830 		static const unsigned int chunk_size = 256; // 1 MiB
1831 
1832 		memset(&view, 0, sizeof(view));
1833 		view.type = I915_GGTT_VIEW_PARTIAL;
1834 		view.params.partial.offset = rounddown(page_offset, chunk_size);
1835 		view.params.partial.size =
1836 			min_t(unsigned int,
1837 			      chunk_size,
1838 			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1839 			      view.params.partial.offset);
1840 	}
1841 
1842 	/* Now pin it into the GTT if needed */
1843 	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1844 	if (ret)
1845 		goto unlock;
1846 
1847 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1848 	if (ret)
1849 		goto unpin;
1850 
1851 	ret = i915_gem_object_get_fence(obj);
1852 	if (ret)
1853 		goto unpin;
1854 
1855 	/* Finally, remap it using the new GTT offset */
1856 	pfn = dev_priv->gtt.mappable_base +
1857 		i915_gem_obj_ggtt_offset_view(obj, &view);
1858 	pfn >>= PAGE_SHIFT;
1859 
1860 	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1861 		/* Overriding existing pages in partial view does not cause
1862 		 * us any trouble as TLBs are still valid because the fault
1863 		 * is due to userspace losing part of the mapping or never
1864 		 * having accessed it before (at this partials' range).
1865 		 */
1866 		unsigned long base = vma->vm_start +
1867 				     (view.params.partial.offset << PAGE_SHIFT);
1868 		unsigned int i;
1869 
1870 		for (i = 0; i < view.params.partial.size; i++) {
1871 			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1872 			if (ret)
1873 				break;
1874 		}
1875 
1876 		obj->fault_mappable = true;
1877 	} else {
1878 		if (!obj->fault_mappable) {
1879 			unsigned long size = min_t(unsigned long,
1880 						   vma->vm_end - vma->vm_start,
1881 						   obj->base.size);
1882 			int i;
1883 
1884 			for (i = 0; i < size >> PAGE_SHIFT; i++) {
1885 				ret = vm_insert_pfn(vma,
1886 						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
1887 						    pfn + i);
1888 				if (ret)
1889 					break;
1890 			}
1891 
1892 			obj->fault_mappable = true;
1893 		} else
1894 			ret = vm_insert_pfn(vma,
1895 					    (unsigned long)vmf->virtual_address,
1896 					    pfn + page_offset);
1897 	}
1898 unpin:
1899 	i915_gem_object_ggtt_unpin_view(obj, &view);
1900 unlock:
1901 	mutex_unlock(&dev->struct_mutex);
1902 out:
1903 	switch (ret) {
1904 	case -EIO:
1905 		/*
1906 		 * We eat errors when the gpu is terminally wedged to avoid
1907 		 * userspace unduly crashing (gl has no provisions for mmaps to
1908 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1909 		 * and so needs to be reported.
1910 		 */
1911 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1912 			ret = VM_FAULT_SIGBUS;
1913 			break;
1914 		}
1915 	case -EAGAIN:
1916 		/*
1917 		 * EAGAIN means the gpu is hung and we'll wait for the error
1918 		 * handler to reset everything when re-faulting in
1919 		 * i915_mutex_lock_interruptible.
1920 		 */
1921 	case 0:
1922 	case -ERESTARTSYS:
1923 	case -EINTR:
1924 	case -EBUSY:
1925 		/*
1926 		 * EBUSY is ok: this just means that another thread
1927 		 * already did the job.
1928 		 */
1929 		ret = VM_FAULT_NOPAGE;
1930 		break;
1931 	case -ENOMEM:
1932 		ret = VM_FAULT_OOM;
1933 		break;
1934 	case -ENOSPC:
1935 	case -EFAULT:
1936 		ret = VM_FAULT_SIGBUS;
1937 		break;
1938 	default:
1939 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1940 		ret = VM_FAULT_SIGBUS;
1941 		break;
1942 	}
1943 
1944 	intel_runtime_pm_put(dev_priv);
1945 	return ret;
1946 }
1947 
1948 /**
1949  * i915_gem_release_mmap - remove physical page mappings
1950  * @obj: obj in question
1951  *
1952  * Preserve the reservation of the mmapping with the DRM core code, but
1953  * relinquish ownership of the pages back to the system.
1954  *
1955  * It is vital that we remove the page mapping if we have mapped a tiled
1956  * object through the GTT and then lose the fence register due to
1957  * resource pressure. Similarly if the object has been moved out of the
1958  * aperture, than pages mapped into userspace must be revoked. Removing the
1959  * mapping will then trigger a page fault on the next user access, allowing
1960  * fixup by i915_gem_fault().
1961  */
1962 void
1963 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1964 {
1965 	if (!obj->fault_mappable)
1966 		return;
1967 
1968 	drm_vma_node_unmap(&obj->base.vma_node,
1969 			   obj->base.dev->anon_inode->i_mapping);
1970 	obj->fault_mappable = false;
1971 }
1972 
1973 void
1974 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1975 {
1976 	struct drm_i915_gem_object *obj;
1977 
1978 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1979 		i915_gem_release_mmap(obj);
1980 }
1981 
1982 uint32_t
1983 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1984 {
1985 	uint32_t gtt_size;
1986 
1987 	if (INTEL_INFO(dev)->gen >= 4 ||
1988 	    tiling_mode == I915_TILING_NONE)
1989 		return size;
1990 
1991 	/* Previous chips need a power-of-two fence region when tiling */
1992 	if (INTEL_INFO(dev)->gen == 3)
1993 		gtt_size = 1024*1024;
1994 	else
1995 		gtt_size = 512*1024;
1996 
1997 	while (gtt_size < size)
1998 		gtt_size <<= 1;
1999 
2000 	return gtt_size;
2001 }
2002 
2003 /**
2004  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2005  * @obj: object to check
2006  *
2007  * Return the required GTT alignment for an object, taking into account
2008  * potential fence register mapping.
2009  */
2010 uint32_t
2011 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2012 			   int tiling_mode, bool fenced)
2013 {
2014 	/*
2015 	 * Minimum alignment is 4k (GTT page size), but might be greater
2016 	 * if a fence register is needed for the object.
2017 	 */
2018 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2019 	    tiling_mode == I915_TILING_NONE)
2020 		return 4096;
2021 
2022 	/*
2023 	 * Previous chips need to be aligned to the size of the smallest
2024 	 * fence register that can contain the object.
2025 	 */
2026 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2027 }
2028 
2029 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2030 {
2031 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2032 	int ret;
2033 
2034 	if (drm_vma_node_has_offset(&obj->base.vma_node))
2035 		return 0;
2036 
2037 	dev_priv->mm.shrinker_no_lock_stealing = true;
2038 
2039 	ret = drm_gem_create_mmap_offset(&obj->base);
2040 	if (ret != -ENOSPC)
2041 		goto out;
2042 
2043 	/* Badly fragmented mmap space? The only way we can recover
2044 	 * space is by destroying unwanted objects. We can't randomly release
2045 	 * mmap_offsets as userspace expects them to be persistent for the
2046 	 * lifetime of the objects. The closest we can is to release the
2047 	 * offsets on purgeable objects by truncating it and marking it purged,
2048 	 * which prevents userspace from ever using that object again.
2049 	 */
2050 	i915_gem_shrink(dev_priv,
2051 			obj->base.size >> PAGE_SHIFT,
2052 			I915_SHRINK_BOUND |
2053 			I915_SHRINK_UNBOUND |
2054 			I915_SHRINK_PURGEABLE);
2055 	ret = drm_gem_create_mmap_offset(&obj->base);
2056 	if (ret != -ENOSPC)
2057 		goto out;
2058 
2059 	i915_gem_shrink_all(dev_priv);
2060 	ret = drm_gem_create_mmap_offset(&obj->base);
2061 out:
2062 	dev_priv->mm.shrinker_no_lock_stealing = false;
2063 
2064 	return ret;
2065 }
2066 
2067 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2068 {
2069 	drm_gem_free_mmap_offset(&obj->base);
2070 }
2071 
2072 int
2073 i915_gem_mmap_gtt(struct drm_file *file,
2074 		  struct drm_device *dev,
2075 		  uint32_t handle,
2076 		  uint64_t *offset)
2077 {
2078 	struct drm_i915_gem_object *obj;
2079 	int ret;
2080 
2081 	ret = i915_mutex_lock_interruptible(dev);
2082 	if (ret)
2083 		return ret;
2084 
2085 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2086 	if (&obj->base == NULL) {
2087 		ret = -ENOENT;
2088 		goto unlock;
2089 	}
2090 
2091 	if (obj->madv != I915_MADV_WILLNEED) {
2092 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2093 		ret = -EFAULT;
2094 		goto out;
2095 	}
2096 
2097 	ret = i915_gem_object_create_mmap_offset(obj);
2098 	if (ret)
2099 		goto out;
2100 
2101 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2102 
2103 out:
2104 	drm_gem_object_unreference(&obj->base);
2105 unlock:
2106 	mutex_unlock(&dev->struct_mutex);
2107 	return ret;
2108 }
2109 
2110 /**
2111  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2112  * @dev: DRM device
2113  * @data: GTT mapping ioctl data
2114  * @file: GEM object info
2115  *
2116  * Simply returns the fake offset to userspace so it can mmap it.
2117  * The mmap call will end up in drm_gem_mmap(), which will set things
2118  * up so we can get faults in the handler above.
2119  *
2120  * The fault handler will take care of binding the object into the GTT
2121  * (since it may have been evicted to make room for something), allocating
2122  * a fence register, and mapping the appropriate aperture address into
2123  * userspace.
2124  */
2125 int
2126 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2127 			struct drm_file *file)
2128 {
2129 	struct drm_i915_gem_mmap_gtt *args = data;
2130 
2131 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2132 }
2133 
2134 /* Immediately discard the backing storage */
2135 static void
2136 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2137 {
2138 	i915_gem_object_free_mmap_offset(obj);
2139 
2140 	if (obj->base.filp == NULL)
2141 		return;
2142 
2143 	/* Our goal here is to return as much of the memory as
2144 	 * is possible back to the system as we are called from OOM.
2145 	 * To do this we must instruct the shmfs to drop all of its
2146 	 * backing pages, *now*.
2147 	 */
2148 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2149 	obj->madv = __I915_MADV_PURGED;
2150 }
2151 
2152 /* Try to discard unwanted pages */
2153 static void
2154 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2155 {
2156 	struct address_space *mapping;
2157 
2158 	switch (obj->madv) {
2159 	case I915_MADV_DONTNEED:
2160 		i915_gem_object_truncate(obj);
2161 	case __I915_MADV_PURGED:
2162 		return;
2163 	}
2164 
2165 	if (obj->base.filp == NULL)
2166 		return;
2167 
2168 	mapping = file_inode(obj->base.filp)->i_mapping,
2169 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2170 }
2171 
2172 static void
2173 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2174 {
2175 	struct sg_page_iter sg_iter;
2176 	int ret;
2177 
2178 	BUG_ON(obj->madv == __I915_MADV_PURGED);
2179 
2180 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2181 	if (ret) {
2182 		/* In the event of a disaster, abandon all caches and
2183 		 * hope for the best.
2184 		 */
2185 		WARN_ON(ret != -EIO);
2186 		i915_gem_clflush_object(obj, true);
2187 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2188 	}
2189 
2190 	i915_gem_gtt_finish_object(obj);
2191 
2192 	if (i915_gem_object_needs_bit17_swizzle(obj))
2193 		i915_gem_object_save_bit_17_swizzle(obj);
2194 
2195 	if (obj->madv == I915_MADV_DONTNEED)
2196 		obj->dirty = 0;
2197 
2198 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2199 		struct page *page = sg_page_iter_page(&sg_iter);
2200 
2201 		if (obj->dirty)
2202 			set_page_dirty(page);
2203 
2204 		if (obj->madv == I915_MADV_WILLNEED)
2205 			mark_page_accessed(page);
2206 
2207 		page_cache_release(page);
2208 	}
2209 	obj->dirty = 0;
2210 
2211 	sg_free_table(obj->pages);
2212 	kfree(obj->pages);
2213 }
2214 
2215 int
2216 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2217 {
2218 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2219 
2220 	if (obj->pages == NULL)
2221 		return 0;
2222 
2223 	if (obj->pages_pin_count)
2224 		return -EBUSY;
2225 
2226 	BUG_ON(i915_gem_obj_bound_any(obj));
2227 
2228 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2229 	 * array, hence protect them from being reaped by removing them from gtt
2230 	 * lists early. */
2231 	list_del(&obj->global_list);
2232 
2233 	ops->put_pages(obj);
2234 	obj->pages = NULL;
2235 
2236 	i915_gem_object_invalidate(obj);
2237 
2238 	return 0;
2239 }
2240 
2241 static int
2242 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2243 {
2244 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2245 	int page_count, i;
2246 	struct address_space *mapping;
2247 	struct sg_table *st;
2248 	struct scatterlist *sg;
2249 	struct sg_page_iter sg_iter;
2250 	struct page *page;
2251 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2252 	int ret;
2253 	gfp_t gfp;
2254 
2255 	/* Assert that the object is not currently in any GPU domain. As it
2256 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2257 	 * a GPU cache
2258 	 */
2259 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2260 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2261 
2262 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2263 	if (st == NULL)
2264 		return -ENOMEM;
2265 
2266 	page_count = obj->base.size / PAGE_SIZE;
2267 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2268 		kfree(st);
2269 		return -ENOMEM;
2270 	}
2271 
2272 	/* Get the list of pages out of our struct file.  They'll be pinned
2273 	 * at this point until we release them.
2274 	 *
2275 	 * Fail silently without starting the shrinker
2276 	 */
2277 	mapping = file_inode(obj->base.filp)->i_mapping;
2278 	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2279 	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2280 	sg = st->sgl;
2281 	st->nents = 0;
2282 	for (i = 0; i < page_count; i++) {
2283 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2284 		if (IS_ERR(page)) {
2285 			i915_gem_shrink(dev_priv,
2286 					page_count,
2287 					I915_SHRINK_BOUND |
2288 					I915_SHRINK_UNBOUND |
2289 					I915_SHRINK_PURGEABLE);
2290 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2291 		}
2292 		if (IS_ERR(page)) {
2293 			/* We've tried hard to allocate the memory by reaping
2294 			 * our own buffer, now let the real VM do its job and
2295 			 * go down in flames if truly OOM.
2296 			 */
2297 			i915_gem_shrink_all(dev_priv);
2298 			page = shmem_read_mapping_page(mapping, i);
2299 			if (IS_ERR(page)) {
2300 				ret = PTR_ERR(page);
2301 				goto err_pages;
2302 			}
2303 		}
2304 #ifdef CONFIG_SWIOTLB
2305 		if (swiotlb_nr_tbl()) {
2306 			st->nents++;
2307 			sg_set_page(sg, page, PAGE_SIZE, 0);
2308 			sg = sg_next(sg);
2309 			continue;
2310 		}
2311 #endif
2312 		if (!i || page_to_pfn(page) != last_pfn + 1) {
2313 			if (i)
2314 				sg = sg_next(sg);
2315 			st->nents++;
2316 			sg_set_page(sg, page, PAGE_SIZE, 0);
2317 		} else {
2318 			sg->length += PAGE_SIZE;
2319 		}
2320 		last_pfn = page_to_pfn(page);
2321 
2322 		/* Check that the i965g/gm workaround works. */
2323 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2324 	}
2325 #ifdef CONFIG_SWIOTLB
2326 	if (!swiotlb_nr_tbl())
2327 #endif
2328 		sg_mark_end(sg);
2329 	obj->pages = st;
2330 
2331 	ret = i915_gem_gtt_prepare_object(obj);
2332 	if (ret)
2333 		goto err_pages;
2334 
2335 	if (i915_gem_object_needs_bit17_swizzle(obj))
2336 		i915_gem_object_do_bit_17_swizzle(obj);
2337 
2338 	if (obj->tiling_mode != I915_TILING_NONE &&
2339 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2340 		i915_gem_object_pin_pages(obj);
2341 
2342 	return 0;
2343 
2344 err_pages:
2345 	sg_mark_end(sg);
2346 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2347 		page_cache_release(sg_page_iter_page(&sg_iter));
2348 	sg_free_table(st);
2349 	kfree(st);
2350 
2351 	/* shmemfs first checks if there is enough memory to allocate the page
2352 	 * and reports ENOSPC should there be insufficient, along with the usual
2353 	 * ENOMEM for a genuine allocation failure.
2354 	 *
2355 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2356 	 * space and so want to translate the error from shmemfs back to our
2357 	 * usual understanding of ENOMEM.
2358 	 */
2359 	if (ret == -ENOSPC)
2360 		ret = -ENOMEM;
2361 
2362 	return ret;
2363 }
2364 
2365 /* Ensure that the associated pages are gathered from the backing storage
2366  * and pinned into our object. i915_gem_object_get_pages() may be called
2367  * multiple times before they are released by a single call to
2368  * i915_gem_object_put_pages() - once the pages are no longer referenced
2369  * either as a result of memory pressure (reaping pages under the shrinker)
2370  * or as the object is itself released.
2371  */
2372 int
2373 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2374 {
2375 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2376 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2377 	int ret;
2378 
2379 	if (obj->pages)
2380 		return 0;
2381 
2382 	if (obj->madv != I915_MADV_WILLNEED) {
2383 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2384 		return -EFAULT;
2385 	}
2386 
2387 	BUG_ON(obj->pages_pin_count);
2388 
2389 	ret = ops->get_pages(obj);
2390 	if (ret)
2391 		return ret;
2392 
2393 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2394 
2395 	obj->get_page.sg = obj->pages->sgl;
2396 	obj->get_page.last = 0;
2397 
2398 	return 0;
2399 }
2400 
2401 void i915_vma_move_to_active(struct i915_vma *vma,
2402 			     struct drm_i915_gem_request *req)
2403 {
2404 	struct drm_i915_gem_object *obj = vma->obj;
2405 	struct intel_engine_cs *ring;
2406 
2407 	ring = i915_gem_request_get_ring(req);
2408 
2409 	/* Add a reference if we're newly entering the active list. */
2410 	if (obj->active == 0)
2411 		drm_gem_object_reference(&obj->base);
2412 	obj->active |= intel_ring_flag(ring);
2413 
2414 	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2415 	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2416 
2417 	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2418 }
2419 
2420 static void
2421 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2422 {
2423 	RQ_BUG_ON(obj->last_write_req == NULL);
2424 	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2425 
2426 	i915_gem_request_assign(&obj->last_write_req, NULL);
2427 	intel_fb_obj_flush(obj, true, ORIGIN_CS);
2428 }
2429 
2430 static void
2431 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2432 {
2433 	struct i915_vma *vma;
2434 
2435 	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2436 	RQ_BUG_ON(!(obj->active & (1 << ring)));
2437 
2438 	list_del_init(&obj->ring_list[ring]);
2439 	i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2440 
2441 	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2442 		i915_gem_object_retire__write(obj);
2443 
2444 	obj->active &= ~(1 << ring);
2445 	if (obj->active)
2446 		return;
2447 
2448 	/* Bump our place on the bound list to keep it roughly in LRU order
2449 	 * so that we don't steal from recently used but inactive objects
2450 	 * (unless we are forced to ofc!)
2451 	 */
2452 	list_move_tail(&obj->global_list,
2453 		       &to_i915(obj->base.dev)->mm.bound_list);
2454 
2455 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
2456 		if (!list_empty(&vma->mm_list))
2457 			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2458 	}
2459 
2460 	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2461 	drm_gem_object_unreference(&obj->base);
2462 }
2463 
2464 static int
2465 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2466 {
2467 	struct drm_i915_private *dev_priv = dev->dev_private;
2468 	struct intel_engine_cs *ring;
2469 	int ret, i, j;
2470 
2471 	/* Carefully retire all requests without writing to the rings */
2472 	for_each_ring(ring, dev_priv, i) {
2473 		ret = intel_ring_idle(ring);
2474 		if (ret)
2475 			return ret;
2476 	}
2477 	i915_gem_retire_requests(dev);
2478 
2479 	/* Finally reset hw state */
2480 	for_each_ring(ring, dev_priv, i) {
2481 		intel_ring_init_seqno(ring, seqno);
2482 
2483 		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2484 			ring->semaphore.sync_seqno[j] = 0;
2485 	}
2486 
2487 	return 0;
2488 }
2489 
2490 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2491 {
2492 	struct drm_i915_private *dev_priv = dev->dev_private;
2493 	int ret;
2494 
2495 	if (seqno == 0)
2496 		return -EINVAL;
2497 
2498 	/* HWS page needs to be set less than what we
2499 	 * will inject to ring
2500 	 */
2501 	ret = i915_gem_init_seqno(dev, seqno - 1);
2502 	if (ret)
2503 		return ret;
2504 
2505 	/* Carefully set the last_seqno value so that wrap
2506 	 * detection still works
2507 	 */
2508 	dev_priv->next_seqno = seqno;
2509 	dev_priv->last_seqno = seqno - 1;
2510 	if (dev_priv->last_seqno == 0)
2511 		dev_priv->last_seqno--;
2512 
2513 	return 0;
2514 }
2515 
2516 int
2517 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2518 {
2519 	struct drm_i915_private *dev_priv = dev->dev_private;
2520 
2521 	/* reserve 0 for non-seqno */
2522 	if (dev_priv->next_seqno == 0) {
2523 		int ret = i915_gem_init_seqno(dev, 0);
2524 		if (ret)
2525 			return ret;
2526 
2527 		dev_priv->next_seqno = 1;
2528 	}
2529 
2530 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2531 	return 0;
2532 }
2533 
2534 /*
2535  * NB: This function is not allowed to fail. Doing so would mean the the
2536  * request is not being tracked for completion but the work itself is
2537  * going to happen on the hardware. This would be a Bad Thing(tm).
2538  */
2539 void __i915_add_request(struct drm_i915_gem_request *request,
2540 			struct drm_i915_gem_object *obj,
2541 			bool flush_caches)
2542 {
2543 	struct intel_engine_cs *ring;
2544 	struct drm_i915_private *dev_priv;
2545 	struct intel_ringbuffer *ringbuf;
2546 	u32 request_start;
2547 	int ret;
2548 
2549 	if (WARN_ON(request == NULL))
2550 		return;
2551 
2552 	ring = request->ring;
2553 	dev_priv = ring->dev->dev_private;
2554 	ringbuf = request->ringbuf;
2555 
2556 	/*
2557 	 * To ensure that this call will not fail, space for its emissions
2558 	 * should already have been reserved in the ring buffer. Let the ring
2559 	 * know that it is time to use that space up.
2560 	 */
2561 	intel_ring_reserved_space_use(ringbuf);
2562 
2563 	request_start = intel_ring_get_tail(ringbuf);
2564 	/*
2565 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2566 	 * after having emitted the batchbuffer command. Hence we need to fix
2567 	 * things up similar to emitting the lazy request. The difference here
2568 	 * is that the flush _must_ happen before the next request, no matter
2569 	 * what.
2570 	 */
2571 	if (flush_caches) {
2572 		if (i915.enable_execlists)
2573 			ret = logical_ring_flush_all_caches(request);
2574 		else
2575 			ret = intel_ring_flush_all_caches(request);
2576 		/* Not allowed to fail! */
2577 		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2578 	}
2579 
2580 	/* Record the position of the start of the request so that
2581 	 * should we detect the updated seqno part-way through the
2582 	 * GPU processing the request, we never over-estimate the
2583 	 * position of the head.
2584 	 */
2585 	request->postfix = intel_ring_get_tail(ringbuf);
2586 
2587 	if (i915.enable_execlists)
2588 		ret = ring->emit_request(request);
2589 	else {
2590 		ret = ring->add_request(request);
2591 
2592 		request->tail = intel_ring_get_tail(ringbuf);
2593 	}
2594 	/* Not allowed to fail! */
2595 	WARN(ret, "emit|add_request failed: %d!\n", ret);
2596 
2597 	request->head = request_start;
2598 
2599 	/* Whilst this request exists, batch_obj will be on the
2600 	 * active_list, and so will hold the active reference. Only when this
2601 	 * request is retired will the the batch_obj be moved onto the
2602 	 * inactive_list and lose its active reference. Hence we do not need
2603 	 * to explicitly hold another reference here.
2604 	 */
2605 	request->batch_obj = obj;
2606 
2607 	request->emitted_jiffies = jiffies;
2608 	request->previous_seqno = ring->last_submitted_seqno;
2609 	ring->last_submitted_seqno = request->seqno;
2610 	list_add_tail(&request->list, &ring->request_list);
2611 
2612 	trace_i915_gem_request_add(request);
2613 
2614 	i915_queue_hangcheck(ring->dev);
2615 
2616 	queue_delayed_work(dev_priv->wq,
2617 			   &dev_priv->mm.retire_work,
2618 			   round_jiffies_up_relative(HZ));
2619 	intel_mark_busy(dev_priv->dev);
2620 
2621 	/* Sanity check that the reserved size was large enough. */
2622 	intel_ring_reserved_space_end(ringbuf);
2623 }
2624 
2625 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2626 				   const struct intel_context *ctx)
2627 {
2628 	unsigned long elapsed;
2629 
2630 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2631 
2632 	if (ctx->hang_stats.banned)
2633 		return true;
2634 
2635 	if (ctx->hang_stats.ban_period_seconds &&
2636 	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2637 		if (!i915_gem_context_is_default(ctx)) {
2638 			DRM_DEBUG("context hanging too fast, banning!\n");
2639 			return true;
2640 		} else if (i915_stop_ring_allow_ban(dev_priv)) {
2641 			if (i915_stop_ring_allow_warn(dev_priv))
2642 				DRM_ERROR("gpu hanging too fast, banning!\n");
2643 			return true;
2644 		}
2645 	}
2646 
2647 	return false;
2648 }
2649 
2650 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2651 				  struct intel_context *ctx,
2652 				  const bool guilty)
2653 {
2654 	struct i915_ctx_hang_stats *hs;
2655 
2656 	if (WARN_ON(!ctx))
2657 		return;
2658 
2659 	hs = &ctx->hang_stats;
2660 
2661 	if (guilty) {
2662 		hs->banned = i915_context_is_banned(dev_priv, ctx);
2663 		hs->batch_active++;
2664 		hs->guilty_ts = get_seconds();
2665 	} else {
2666 		hs->batch_pending++;
2667 	}
2668 }
2669 
2670 void i915_gem_request_free(struct kref *req_ref)
2671 {
2672 	struct drm_i915_gem_request *req = container_of(req_ref,
2673 						 typeof(*req), ref);
2674 	struct intel_context *ctx = req->ctx;
2675 
2676 	if (req->file_priv)
2677 		i915_gem_request_remove_from_client(req);
2678 
2679 	if (ctx) {
2680 		if (i915.enable_execlists) {
2681 			if (ctx != req->ring->default_context)
2682 				intel_lr_context_unpin(req);
2683 		}
2684 
2685 		i915_gem_context_unreference(ctx);
2686 	}
2687 
2688 	kmem_cache_free(req->i915->requests, req);
2689 }
2690 
2691 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2692 			   struct intel_context *ctx,
2693 			   struct drm_i915_gem_request **req_out)
2694 {
2695 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
2696 	struct drm_i915_gem_request *req;
2697 	int ret;
2698 
2699 	if (!req_out)
2700 		return -EINVAL;
2701 
2702 	*req_out = NULL;
2703 
2704 	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2705 	if (req == NULL)
2706 		return -ENOMEM;
2707 
2708 	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2709 	if (ret)
2710 		goto err;
2711 
2712 	kref_init(&req->ref);
2713 	req->i915 = dev_priv;
2714 	req->ring = ring;
2715 	req->ctx  = ctx;
2716 	i915_gem_context_reference(req->ctx);
2717 
2718 	if (i915.enable_execlists)
2719 		ret = intel_logical_ring_alloc_request_extras(req);
2720 	else
2721 		ret = intel_ring_alloc_request_extras(req);
2722 	if (ret) {
2723 		i915_gem_context_unreference(req->ctx);
2724 		goto err;
2725 	}
2726 
2727 	/*
2728 	 * Reserve space in the ring buffer for all the commands required to
2729 	 * eventually emit this request. This is to guarantee that the
2730 	 * i915_add_request() call can't fail. Note that the reserve may need
2731 	 * to be redone if the request is not actually submitted straight
2732 	 * away, e.g. because a GPU scheduler has deferred it.
2733 	 */
2734 	if (i915.enable_execlists)
2735 		ret = intel_logical_ring_reserve_space(req);
2736 	else
2737 		ret = intel_ring_reserve_space(req);
2738 	if (ret) {
2739 		/*
2740 		 * At this point, the request is fully allocated even if not
2741 		 * fully prepared. Thus it can be cleaned up using the proper
2742 		 * free code.
2743 		 */
2744 		i915_gem_request_cancel(req);
2745 		return ret;
2746 	}
2747 
2748 	*req_out = req;
2749 	return 0;
2750 
2751 err:
2752 	kmem_cache_free(dev_priv->requests, req);
2753 	return ret;
2754 }
2755 
2756 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2757 {
2758 	intel_ring_reserved_space_cancel(req->ringbuf);
2759 
2760 	i915_gem_request_unreference(req);
2761 }
2762 
2763 struct drm_i915_gem_request *
2764 i915_gem_find_active_request(struct intel_engine_cs *ring)
2765 {
2766 	struct drm_i915_gem_request *request;
2767 
2768 	list_for_each_entry(request, &ring->request_list, list) {
2769 		if (i915_gem_request_completed(request, false))
2770 			continue;
2771 
2772 		return request;
2773 	}
2774 
2775 	return NULL;
2776 }
2777 
2778 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2779 				       struct intel_engine_cs *ring)
2780 {
2781 	struct drm_i915_gem_request *request;
2782 	bool ring_hung;
2783 
2784 	request = i915_gem_find_active_request(ring);
2785 
2786 	if (request == NULL)
2787 		return;
2788 
2789 	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2790 
2791 	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2792 
2793 	list_for_each_entry_continue(request, &ring->request_list, list)
2794 		i915_set_reset_status(dev_priv, request->ctx, false);
2795 }
2796 
2797 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2798 					struct intel_engine_cs *ring)
2799 {
2800 	while (!list_empty(&ring->active_list)) {
2801 		struct drm_i915_gem_object *obj;
2802 
2803 		obj = list_first_entry(&ring->active_list,
2804 				       struct drm_i915_gem_object,
2805 				       ring_list[ring->id]);
2806 
2807 		i915_gem_object_retire__read(obj, ring->id);
2808 	}
2809 
2810 	/*
2811 	 * Clear the execlists queue up before freeing the requests, as those
2812 	 * are the ones that keep the context and ringbuffer backing objects
2813 	 * pinned in place.
2814 	 */
2815 	while (!list_empty(&ring->execlist_queue)) {
2816 		struct drm_i915_gem_request *submit_req;
2817 
2818 		submit_req = list_first_entry(&ring->execlist_queue,
2819 				struct drm_i915_gem_request,
2820 				execlist_link);
2821 		list_del(&submit_req->execlist_link);
2822 
2823 		if (submit_req->ctx != ring->default_context)
2824 			intel_lr_context_unpin(submit_req);
2825 
2826 		i915_gem_request_unreference(submit_req);
2827 	}
2828 
2829 	/*
2830 	 * We must free the requests after all the corresponding objects have
2831 	 * been moved off active lists. Which is the same order as the normal
2832 	 * retire_requests function does. This is important if object hold
2833 	 * implicit references on things like e.g. ppgtt address spaces through
2834 	 * the request.
2835 	 */
2836 	while (!list_empty(&ring->request_list)) {
2837 		struct drm_i915_gem_request *request;
2838 
2839 		request = list_first_entry(&ring->request_list,
2840 					   struct drm_i915_gem_request,
2841 					   list);
2842 
2843 		i915_gem_request_retire(request);
2844 	}
2845 }
2846 
2847 void i915_gem_reset(struct drm_device *dev)
2848 {
2849 	struct drm_i915_private *dev_priv = dev->dev_private;
2850 	struct intel_engine_cs *ring;
2851 	int i;
2852 
2853 	/*
2854 	 * Before we free the objects from the requests, we need to inspect
2855 	 * them for finding the guilty party. As the requests only borrow
2856 	 * their reference to the objects, the inspection must be done first.
2857 	 */
2858 	for_each_ring(ring, dev_priv, i)
2859 		i915_gem_reset_ring_status(dev_priv, ring);
2860 
2861 	for_each_ring(ring, dev_priv, i)
2862 		i915_gem_reset_ring_cleanup(dev_priv, ring);
2863 
2864 	i915_gem_context_reset(dev);
2865 
2866 	i915_gem_restore_fences(dev);
2867 
2868 	WARN_ON(i915_verify_lists(dev));
2869 }
2870 
2871 /**
2872  * This function clears the request list as sequence numbers are passed.
2873  */
2874 void
2875 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2876 {
2877 	WARN_ON(i915_verify_lists(ring->dev));
2878 
2879 	/* Retire requests first as we use it above for the early return.
2880 	 * If we retire requests last, we may use a later seqno and so clear
2881 	 * the requests lists without clearing the active list, leading to
2882 	 * confusion.
2883 	 */
2884 	while (!list_empty(&ring->request_list)) {
2885 		struct drm_i915_gem_request *request;
2886 
2887 		request = list_first_entry(&ring->request_list,
2888 					   struct drm_i915_gem_request,
2889 					   list);
2890 
2891 		if (!i915_gem_request_completed(request, true))
2892 			break;
2893 
2894 		i915_gem_request_retire(request);
2895 	}
2896 
2897 	/* Move any buffers on the active list that are no longer referenced
2898 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
2899 	 * before we free the context associated with the requests.
2900 	 */
2901 	while (!list_empty(&ring->active_list)) {
2902 		struct drm_i915_gem_object *obj;
2903 
2904 		obj = list_first_entry(&ring->active_list,
2905 				      struct drm_i915_gem_object,
2906 				      ring_list[ring->id]);
2907 
2908 		if (!list_empty(&obj->last_read_req[ring->id]->list))
2909 			break;
2910 
2911 		i915_gem_object_retire__read(obj, ring->id);
2912 	}
2913 
2914 	if (unlikely(ring->trace_irq_req &&
2915 		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2916 		ring->irq_put(ring);
2917 		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2918 	}
2919 
2920 	WARN_ON(i915_verify_lists(ring->dev));
2921 }
2922 
2923 bool
2924 i915_gem_retire_requests(struct drm_device *dev)
2925 {
2926 	struct drm_i915_private *dev_priv = dev->dev_private;
2927 	struct intel_engine_cs *ring;
2928 	bool idle = true;
2929 	int i;
2930 
2931 	for_each_ring(ring, dev_priv, i) {
2932 		i915_gem_retire_requests_ring(ring);
2933 		idle &= list_empty(&ring->request_list);
2934 		if (i915.enable_execlists) {
2935 			unsigned long flags;
2936 
2937 			spin_lock_irqsave(&ring->execlist_lock, flags);
2938 			idle &= list_empty(&ring->execlist_queue);
2939 			spin_unlock_irqrestore(&ring->execlist_lock, flags);
2940 
2941 			intel_execlists_retire_requests(ring);
2942 		}
2943 	}
2944 
2945 	if (idle)
2946 		mod_delayed_work(dev_priv->wq,
2947 				   &dev_priv->mm.idle_work,
2948 				   msecs_to_jiffies(100));
2949 
2950 	return idle;
2951 }
2952 
2953 static void
2954 i915_gem_retire_work_handler(struct work_struct *work)
2955 {
2956 	struct drm_i915_private *dev_priv =
2957 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
2958 	struct drm_device *dev = dev_priv->dev;
2959 	bool idle;
2960 
2961 	/* Come back later if the device is busy... */
2962 	idle = false;
2963 	if (mutex_trylock(&dev->struct_mutex)) {
2964 		idle = i915_gem_retire_requests(dev);
2965 		mutex_unlock(&dev->struct_mutex);
2966 	}
2967 	if (!idle)
2968 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2969 				   round_jiffies_up_relative(HZ));
2970 }
2971 
2972 static void
2973 i915_gem_idle_work_handler(struct work_struct *work)
2974 {
2975 	struct drm_i915_private *dev_priv =
2976 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2977 	struct drm_device *dev = dev_priv->dev;
2978 	struct intel_engine_cs *ring;
2979 	int i;
2980 
2981 	for_each_ring(ring, dev_priv, i)
2982 		if (!list_empty(&ring->request_list))
2983 			return;
2984 
2985 	intel_mark_idle(dev);
2986 
2987 	if (mutex_trylock(&dev->struct_mutex)) {
2988 		struct intel_engine_cs *ring;
2989 		int i;
2990 
2991 		for_each_ring(ring, dev_priv, i)
2992 			i915_gem_batch_pool_fini(&ring->batch_pool);
2993 
2994 		mutex_unlock(&dev->struct_mutex);
2995 	}
2996 }
2997 
2998 /**
2999  * Ensures that an object will eventually get non-busy by flushing any required
3000  * write domains, emitting any outstanding lazy request and retiring and
3001  * completed requests.
3002  */
3003 static int
3004 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3005 {
3006 	int i;
3007 
3008 	if (!obj->active)
3009 		return 0;
3010 
3011 	for (i = 0; i < I915_NUM_RINGS; i++) {
3012 		struct drm_i915_gem_request *req;
3013 
3014 		req = obj->last_read_req[i];
3015 		if (req == NULL)
3016 			continue;
3017 
3018 		if (list_empty(&req->list))
3019 			goto retire;
3020 
3021 		if (i915_gem_request_completed(req, true)) {
3022 			__i915_gem_request_retire__upto(req);
3023 retire:
3024 			i915_gem_object_retire__read(obj, i);
3025 		}
3026 	}
3027 
3028 	return 0;
3029 }
3030 
3031 /**
3032  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3033  * @DRM_IOCTL_ARGS: standard ioctl arguments
3034  *
3035  * Returns 0 if successful, else an error is returned with the remaining time in
3036  * the timeout parameter.
3037  *  -ETIME: object is still busy after timeout
3038  *  -ERESTARTSYS: signal interrupted the wait
3039  *  -ENONENT: object doesn't exist
3040  * Also possible, but rare:
3041  *  -EAGAIN: GPU wedged
3042  *  -ENOMEM: damn
3043  *  -ENODEV: Internal IRQ fail
3044  *  -E?: The add request failed
3045  *
3046  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3047  * non-zero timeout parameter the wait ioctl will wait for the given number of
3048  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3049  * without holding struct_mutex the object may become re-busied before this
3050  * function completes. A similar but shorter * race condition exists in the busy
3051  * ioctl
3052  */
3053 int
3054 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3055 {
3056 	struct drm_i915_private *dev_priv = dev->dev_private;
3057 	struct drm_i915_gem_wait *args = data;
3058 	struct drm_i915_gem_object *obj;
3059 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3060 	unsigned reset_counter;
3061 	int i, n = 0;
3062 	int ret;
3063 
3064 	if (args->flags != 0)
3065 		return -EINVAL;
3066 
3067 	ret = i915_mutex_lock_interruptible(dev);
3068 	if (ret)
3069 		return ret;
3070 
3071 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3072 	if (&obj->base == NULL) {
3073 		mutex_unlock(&dev->struct_mutex);
3074 		return -ENOENT;
3075 	}
3076 
3077 	/* Need to make sure the object gets inactive eventually. */
3078 	ret = i915_gem_object_flush_active(obj);
3079 	if (ret)
3080 		goto out;
3081 
3082 	if (!obj->active)
3083 		goto out;
3084 
3085 	/* Do this after OLR check to make sure we make forward progress polling
3086 	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3087 	 */
3088 	if (args->timeout_ns == 0) {
3089 		ret = -ETIME;
3090 		goto out;
3091 	}
3092 
3093 	drm_gem_object_unreference(&obj->base);
3094 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3095 
3096 	for (i = 0; i < I915_NUM_RINGS; i++) {
3097 		if (obj->last_read_req[i] == NULL)
3098 			continue;
3099 
3100 		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3101 	}
3102 
3103 	mutex_unlock(&dev->struct_mutex);
3104 
3105 	for (i = 0; i < n; i++) {
3106 		if (ret == 0)
3107 			ret = __i915_wait_request(req[i], reset_counter, true,
3108 						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3109 						  file->driver_priv);
3110 		i915_gem_request_unreference__unlocked(req[i]);
3111 	}
3112 	return ret;
3113 
3114 out:
3115 	drm_gem_object_unreference(&obj->base);
3116 	mutex_unlock(&dev->struct_mutex);
3117 	return ret;
3118 }
3119 
3120 static int
3121 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3122 		       struct intel_engine_cs *to,
3123 		       struct drm_i915_gem_request *from_req,
3124 		       struct drm_i915_gem_request **to_req)
3125 {
3126 	struct intel_engine_cs *from;
3127 	int ret;
3128 
3129 	from = i915_gem_request_get_ring(from_req);
3130 	if (to == from)
3131 		return 0;
3132 
3133 	if (i915_gem_request_completed(from_req, true))
3134 		return 0;
3135 
3136 	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3137 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3138 		ret = __i915_wait_request(from_req,
3139 					  atomic_read(&i915->gpu_error.reset_counter),
3140 					  i915->mm.interruptible,
3141 					  NULL,
3142 					  &i915->rps.semaphores);
3143 		if (ret)
3144 			return ret;
3145 
3146 		i915_gem_object_retire_request(obj, from_req);
3147 	} else {
3148 		int idx = intel_ring_sync_index(from, to);
3149 		u32 seqno = i915_gem_request_get_seqno(from_req);
3150 
3151 		WARN_ON(!to_req);
3152 
3153 		if (seqno <= from->semaphore.sync_seqno[idx])
3154 			return 0;
3155 
3156 		if (*to_req == NULL) {
3157 			ret = i915_gem_request_alloc(to, to->default_context, to_req);
3158 			if (ret)
3159 				return ret;
3160 		}
3161 
3162 		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3163 		ret = to->semaphore.sync_to(*to_req, from, seqno);
3164 		if (ret)
3165 			return ret;
3166 
3167 		/* We use last_read_req because sync_to()
3168 		 * might have just caused seqno wrap under
3169 		 * the radar.
3170 		 */
3171 		from->semaphore.sync_seqno[idx] =
3172 			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3173 	}
3174 
3175 	return 0;
3176 }
3177 
3178 /**
3179  * i915_gem_object_sync - sync an object to a ring.
3180  *
3181  * @obj: object which may be in use on another ring.
3182  * @to: ring we wish to use the object on. May be NULL.
3183  * @to_req: request we wish to use the object for. See below.
3184  *          This will be allocated and returned if a request is
3185  *          required but not passed in.
3186  *
3187  * This code is meant to abstract object synchronization with the GPU.
3188  * Calling with NULL implies synchronizing the object with the CPU
3189  * rather than a particular GPU ring. Conceptually we serialise writes
3190  * between engines inside the GPU. We only allow one engine to write
3191  * into a buffer at any time, but multiple readers. To ensure each has
3192  * a coherent view of memory, we must:
3193  *
3194  * - If there is an outstanding write request to the object, the new
3195  *   request must wait for it to complete (either CPU or in hw, requests
3196  *   on the same ring will be naturally ordered).
3197  *
3198  * - If we are a write request (pending_write_domain is set), the new
3199  *   request must wait for outstanding read requests to complete.
3200  *
3201  * For CPU synchronisation (NULL to) no request is required. For syncing with
3202  * rings to_req must be non-NULL. However, a request does not have to be
3203  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3204  * request will be allocated automatically and returned through *to_req. Note
3205  * that it is not guaranteed that commands will be emitted (because the system
3206  * might already be idle). Hence there is no need to create a request that
3207  * might never have any work submitted. Note further that if a request is
3208  * returned in *to_req, it is the responsibility of the caller to submit
3209  * that request (after potentially adding more work to it).
3210  *
3211  * Returns 0 if successful, else propagates up the lower layer error.
3212  */
3213 int
3214 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3215 		     struct intel_engine_cs *to,
3216 		     struct drm_i915_gem_request **to_req)
3217 {
3218 	const bool readonly = obj->base.pending_write_domain == 0;
3219 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3220 	int ret, i, n;
3221 
3222 	if (!obj->active)
3223 		return 0;
3224 
3225 	if (to == NULL)
3226 		return i915_gem_object_wait_rendering(obj, readonly);
3227 
3228 	n = 0;
3229 	if (readonly) {
3230 		if (obj->last_write_req)
3231 			req[n++] = obj->last_write_req;
3232 	} else {
3233 		for (i = 0; i < I915_NUM_RINGS; i++)
3234 			if (obj->last_read_req[i])
3235 				req[n++] = obj->last_read_req[i];
3236 	}
3237 	for (i = 0; i < n; i++) {
3238 		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3239 		if (ret)
3240 			return ret;
3241 	}
3242 
3243 	return 0;
3244 }
3245 
3246 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3247 {
3248 	u32 old_write_domain, old_read_domains;
3249 
3250 	/* Force a pagefault for domain tracking on next user access */
3251 	i915_gem_release_mmap(obj);
3252 
3253 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3254 		return;
3255 
3256 	/* Wait for any direct GTT access to complete */
3257 	mb();
3258 
3259 	old_read_domains = obj->base.read_domains;
3260 	old_write_domain = obj->base.write_domain;
3261 
3262 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3263 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3264 
3265 	trace_i915_gem_object_change_domain(obj,
3266 					    old_read_domains,
3267 					    old_write_domain);
3268 }
3269 
3270 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3271 {
3272 	struct drm_i915_gem_object *obj = vma->obj;
3273 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3274 	int ret;
3275 
3276 	if (list_empty(&vma->vma_link))
3277 		return 0;
3278 
3279 	if (!drm_mm_node_allocated(&vma->node)) {
3280 		i915_gem_vma_destroy(vma);
3281 		return 0;
3282 	}
3283 
3284 	if (vma->pin_count)
3285 		return -EBUSY;
3286 
3287 	BUG_ON(obj->pages == NULL);
3288 
3289 	if (wait) {
3290 		ret = i915_gem_object_wait_rendering(obj, false);
3291 		if (ret)
3292 			return ret;
3293 	}
3294 
3295 	if (i915_is_ggtt(vma->vm) &&
3296 	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3297 		i915_gem_object_finish_gtt(obj);
3298 
3299 		/* release the fence reg _after_ flushing */
3300 		ret = i915_gem_object_put_fence(obj);
3301 		if (ret)
3302 			return ret;
3303 	}
3304 
3305 	trace_i915_vma_unbind(vma);
3306 
3307 	vma->vm->unbind_vma(vma);
3308 	vma->bound = 0;
3309 
3310 	list_del_init(&vma->mm_list);
3311 	if (i915_is_ggtt(vma->vm)) {
3312 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3313 			obj->map_and_fenceable = false;
3314 		} else if (vma->ggtt_view.pages) {
3315 			sg_free_table(vma->ggtt_view.pages);
3316 			kfree(vma->ggtt_view.pages);
3317 		}
3318 		vma->ggtt_view.pages = NULL;
3319 	}
3320 
3321 	drm_mm_remove_node(&vma->node);
3322 	i915_gem_vma_destroy(vma);
3323 
3324 	/* Since the unbound list is global, only move to that list if
3325 	 * no more VMAs exist. */
3326 	if (list_empty(&obj->vma_list))
3327 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3328 
3329 	/* And finally now the object is completely decoupled from this vma,
3330 	 * we can drop its hold on the backing storage and allow it to be
3331 	 * reaped by the shrinker.
3332 	 */
3333 	i915_gem_object_unpin_pages(obj);
3334 
3335 	return 0;
3336 }
3337 
3338 int i915_vma_unbind(struct i915_vma *vma)
3339 {
3340 	return __i915_vma_unbind(vma, true);
3341 }
3342 
3343 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3344 {
3345 	return __i915_vma_unbind(vma, false);
3346 }
3347 
3348 int i915_gpu_idle(struct drm_device *dev)
3349 {
3350 	struct drm_i915_private *dev_priv = dev->dev_private;
3351 	struct intel_engine_cs *ring;
3352 	int ret, i;
3353 
3354 	/* Flush everything onto the inactive list. */
3355 	for_each_ring(ring, dev_priv, i) {
3356 		if (!i915.enable_execlists) {
3357 			struct drm_i915_gem_request *req;
3358 
3359 			ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3360 			if (ret)
3361 				return ret;
3362 
3363 			ret = i915_switch_context(req);
3364 			if (ret) {
3365 				i915_gem_request_cancel(req);
3366 				return ret;
3367 			}
3368 
3369 			i915_add_request_no_flush(req);
3370 		}
3371 
3372 		ret = intel_ring_idle(ring);
3373 		if (ret)
3374 			return ret;
3375 	}
3376 
3377 	WARN_ON(i915_verify_lists(dev));
3378 	return 0;
3379 }
3380 
3381 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3382 				     unsigned long cache_level)
3383 {
3384 	struct drm_mm_node *gtt_space = &vma->node;
3385 	struct drm_mm_node *other;
3386 
3387 	/*
3388 	 * On some machines we have to be careful when putting differing types
3389 	 * of snoopable memory together to avoid the prefetcher crossing memory
3390 	 * domains and dying. During vm initialisation, we decide whether or not
3391 	 * these constraints apply and set the drm_mm.color_adjust
3392 	 * appropriately.
3393 	 */
3394 	if (vma->vm->mm.color_adjust == NULL)
3395 		return true;
3396 
3397 	if (!drm_mm_node_allocated(gtt_space))
3398 		return true;
3399 
3400 	if (list_empty(&gtt_space->node_list))
3401 		return true;
3402 
3403 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3404 	if (other->allocated && !other->hole_follows && other->color != cache_level)
3405 		return false;
3406 
3407 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3408 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3409 		return false;
3410 
3411 	return true;
3412 }
3413 
3414 /**
3415  * Finds free space in the GTT aperture and binds the object or a view of it
3416  * there.
3417  */
3418 static struct i915_vma *
3419 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3420 			   struct i915_address_space *vm,
3421 			   const struct i915_ggtt_view *ggtt_view,
3422 			   unsigned alignment,
3423 			   uint64_t flags)
3424 {
3425 	struct drm_device *dev = obj->base.dev;
3426 	struct drm_i915_private *dev_priv = dev->dev_private;
3427 	u32 fence_alignment, unfenced_alignment;
3428 	u32 search_flag, alloc_flag;
3429 	u64 start, end;
3430 	u64 size, fence_size;
3431 	struct i915_vma *vma;
3432 	int ret;
3433 
3434 	if (i915_is_ggtt(vm)) {
3435 		u32 view_size;
3436 
3437 		if (WARN_ON(!ggtt_view))
3438 			return ERR_PTR(-EINVAL);
3439 
3440 		view_size = i915_ggtt_view_size(obj, ggtt_view);
3441 
3442 		fence_size = i915_gem_get_gtt_size(dev,
3443 						   view_size,
3444 						   obj->tiling_mode);
3445 		fence_alignment = i915_gem_get_gtt_alignment(dev,
3446 							     view_size,
3447 							     obj->tiling_mode,
3448 							     true);
3449 		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3450 								view_size,
3451 								obj->tiling_mode,
3452 								false);
3453 		size = flags & PIN_MAPPABLE ? fence_size : view_size;
3454 	} else {
3455 		fence_size = i915_gem_get_gtt_size(dev,
3456 						   obj->base.size,
3457 						   obj->tiling_mode);
3458 		fence_alignment = i915_gem_get_gtt_alignment(dev,
3459 							     obj->base.size,
3460 							     obj->tiling_mode,
3461 							     true);
3462 		unfenced_alignment =
3463 			i915_gem_get_gtt_alignment(dev,
3464 						   obj->base.size,
3465 						   obj->tiling_mode,
3466 						   false);
3467 		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3468 	}
3469 
3470 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3471 	end = vm->total;
3472 	if (flags & PIN_MAPPABLE)
3473 		end = min_t(u64, end, dev_priv->gtt.mappable_end);
3474 	if (flags & PIN_ZONE_4G)
3475 		end = min_t(u64, end, (1ULL << 32));
3476 
3477 	if (alignment == 0)
3478 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3479 						unfenced_alignment;
3480 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3481 		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3482 			  ggtt_view ? ggtt_view->type : 0,
3483 			  alignment);
3484 		return ERR_PTR(-EINVAL);
3485 	}
3486 
3487 	/* If binding the object/GGTT view requires more space than the entire
3488 	 * aperture has, reject it early before evicting everything in a vain
3489 	 * attempt to find space.
3490 	 */
3491 	if (size > end) {
3492 		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3493 			  ggtt_view ? ggtt_view->type : 0,
3494 			  size,
3495 			  flags & PIN_MAPPABLE ? "mappable" : "total",
3496 			  end);
3497 		return ERR_PTR(-E2BIG);
3498 	}
3499 
3500 	ret = i915_gem_object_get_pages(obj);
3501 	if (ret)
3502 		return ERR_PTR(ret);
3503 
3504 	i915_gem_object_pin_pages(obj);
3505 
3506 	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3507 			  i915_gem_obj_lookup_or_create_vma(obj, vm);
3508 
3509 	if (IS_ERR(vma))
3510 		goto err_unpin;
3511 
3512 	if (flags & PIN_HIGH) {
3513 		search_flag = DRM_MM_SEARCH_BELOW;
3514 		alloc_flag = DRM_MM_CREATE_TOP;
3515 	} else {
3516 		search_flag = DRM_MM_SEARCH_DEFAULT;
3517 		alloc_flag = DRM_MM_CREATE_DEFAULT;
3518 	}
3519 
3520 search_free:
3521 	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3522 						  size, alignment,
3523 						  obj->cache_level,
3524 						  start, end,
3525 						  search_flag,
3526 						  alloc_flag);
3527 	if (ret) {
3528 		ret = i915_gem_evict_something(dev, vm, size, alignment,
3529 					       obj->cache_level,
3530 					       start, end,
3531 					       flags);
3532 		if (ret == 0)
3533 			goto search_free;
3534 
3535 		goto err_free_vma;
3536 	}
3537 	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3538 		ret = -EINVAL;
3539 		goto err_remove_node;
3540 	}
3541 
3542 	trace_i915_vma_bind(vma, flags);
3543 	ret = i915_vma_bind(vma, obj->cache_level, flags);
3544 	if (ret)
3545 		goto err_remove_node;
3546 
3547 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3548 	list_add_tail(&vma->mm_list, &vm->inactive_list);
3549 
3550 	return vma;
3551 
3552 err_remove_node:
3553 	drm_mm_remove_node(&vma->node);
3554 err_free_vma:
3555 	i915_gem_vma_destroy(vma);
3556 	vma = ERR_PTR(ret);
3557 err_unpin:
3558 	i915_gem_object_unpin_pages(obj);
3559 	return vma;
3560 }
3561 
3562 bool
3563 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3564 			bool force)
3565 {
3566 	/* If we don't have a page list set up, then we're not pinned
3567 	 * to GPU, and we can ignore the cache flush because it'll happen
3568 	 * again at bind time.
3569 	 */
3570 	if (obj->pages == NULL)
3571 		return false;
3572 
3573 	/*
3574 	 * Stolen memory is always coherent with the GPU as it is explicitly
3575 	 * marked as wc by the system, or the system is cache-coherent.
3576 	 */
3577 	if (obj->stolen || obj->phys_handle)
3578 		return false;
3579 
3580 	/* If the GPU is snooping the contents of the CPU cache,
3581 	 * we do not need to manually clear the CPU cache lines.  However,
3582 	 * the caches are only snooped when the render cache is
3583 	 * flushed/invalidated.  As we always have to emit invalidations
3584 	 * and flushes when moving into and out of the RENDER domain, correct
3585 	 * snooping behaviour occurs naturally as the result of our domain
3586 	 * tracking.
3587 	 */
3588 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3589 		obj->cache_dirty = true;
3590 		return false;
3591 	}
3592 
3593 	trace_i915_gem_object_clflush(obj);
3594 	drm_clflush_sg(obj->pages);
3595 	obj->cache_dirty = false;
3596 
3597 	return true;
3598 }
3599 
3600 /** Flushes the GTT write domain for the object if it's dirty. */
3601 static void
3602 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3603 {
3604 	uint32_t old_write_domain;
3605 
3606 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3607 		return;
3608 
3609 	/* No actual flushing is required for the GTT write domain.  Writes
3610 	 * to it immediately go to main memory as far as we know, so there's
3611 	 * no chipset flush.  It also doesn't land in render cache.
3612 	 *
3613 	 * However, we do have to enforce the order so that all writes through
3614 	 * the GTT land before any writes to the device, such as updates to
3615 	 * the GATT itself.
3616 	 */
3617 	wmb();
3618 
3619 	old_write_domain = obj->base.write_domain;
3620 	obj->base.write_domain = 0;
3621 
3622 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3623 
3624 	trace_i915_gem_object_change_domain(obj,
3625 					    obj->base.read_domains,
3626 					    old_write_domain);
3627 }
3628 
3629 /** Flushes the CPU write domain for the object if it's dirty. */
3630 static void
3631 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3632 {
3633 	uint32_t old_write_domain;
3634 
3635 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3636 		return;
3637 
3638 	if (i915_gem_clflush_object(obj, obj->pin_display))
3639 		i915_gem_chipset_flush(obj->base.dev);
3640 
3641 	old_write_domain = obj->base.write_domain;
3642 	obj->base.write_domain = 0;
3643 
3644 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3645 
3646 	trace_i915_gem_object_change_domain(obj,
3647 					    obj->base.read_domains,
3648 					    old_write_domain);
3649 }
3650 
3651 /**
3652  * Moves a single object to the GTT read, and possibly write domain.
3653  *
3654  * This function returns when the move is complete, including waiting on
3655  * flushes to occur.
3656  */
3657 int
3658 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3659 {
3660 	uint32_t old_write_domain, old_read_domains;
3661 	struct i915_vma *vma;
3662 	int ret;
3663 
3664 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3665 		return 0;
3666 
3667 	ret = i915_gem_object_wait_rendering(obj, !write);
3668 	if (ret)
3669 		return ret;
3670 
3671 	/* Flush and acquire obj->pages so that we are coherent through
3672 	 * direct access in memory with previous cached writes through
3673 	 * shmemfs and that our cache domain tracking remains valid.
3674 	 * For example, if the obj->filp was moved to swap without us
3675 	 * being notified and releasing the pages, we would mistakenly
3676 	 * continue to assume that the obj remained out of the CPU cached
3677 	 * domain.
3678 	 */
3679 	ret = i915_gem_object_get_pages(obj);
3680 	if (ret)
3681 		return ret;
3682 
3683 	i915_gem_object_flush_cpu_write_domain(obj);
3684 
3685 	/* Serialise direct access to this object with the barriers for
3686 	 * coherent writes from the GPU, by effectively invalidating the
3687 	 * GTT domain upon first access.
3688 	 */
3689 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3690 		mb();
3691 
3692 	old_write_domain = obj->base.write_domain;
3693 	old_read_domains = obj->base.read_domains;
3694 
3695 	/* It should now be out of any other write domains, and we can update
3696 	 * the domain values for our changes.
3697 	 */
3698 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3699 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3700 	if (write) {
3701 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3702 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3703 		obj->dirty = 1;
3704 	}
3705 
3706 	trace_i915_gem_object_change_domain(obj,
3707 					    old_read_domains,
3708 					    old_write_domain);
3709 
3710 	/* And bump the LRU for this access */
3711 	vma = i915_gem_obj_to_ggtt(obj);
3712 	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3713 		list_move_tail(&vma->mm_list,
3714 			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3715 
3716 	return 0;
3717 }
3718 
3719 /**
3720  * Changes the cache-level of an object across all VMA.
3721  *
3722  * After this function returns, the object will be in the new cache-level
3723  * across all GTT and the contents of the backing storage will be coherent,
3724  * with respect to the new cache-level. In order to keep the backing storage
3725  * coherent for all users, we only allow a single cache level to be set
3726  * globally on the object and prevent it from being changed whilst the
3727  * hardware is reading from the object. That is if the object is currently
3728  * on the scanout it will be set to uncached (or equivalent display
3729  * cache coherency) and all non-MOCS GPU access will also be uncached so
3730  * that all direct access to the scanout remains coherent.
3731  */
3732 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3733 				    enum i915_cache_level cache_level)
3734 {
3735 	struct drm_device *dev = obj->base.dev;
3736 	struct i915_vma *vma, *next;
3737 	bool bound = false;
3738 	int ret = 0;
3739 
3740 	if (obj->cache_level == cache_level)
3741 		goto out;
3742 
3743 	/* Inspect the list of currently bound VMA and unbind any that would
3744 	 * be invalid given the new cache-level. This is principally to
3745 	 * catch the issue of the CS prefetch crossing page boundaries and
3746 	 * reading an invalid PTE on older architectures.
3747 	 */
3748 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3749 		if (!drm_mm_node_allocated(&vma->node))
3750 			continue;
3751 
3752 		if (vma->pin_count) {
3753 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3754 			return -EBUSY;
3755 		}
3756 
3757 		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3758 			ret = i915_vma_unbind(vma);
3759 			if (ret)
3760 				return ret;
3761 		} else
3762 			bound = true;
3763 	}
3764 
3765 	/* We can reuse the existing drm_mm nodes but need to change the
3766 	 * cache-level on the PTE. We could simply unbind them all and
3767 	 * rebind with the correct cache-level on next use. However since
3768 	 * we already have a valid slot, dma mapping, pages etc, we may as
3769 	 * rewrite the PTE in the belief that doing so tramples upon less
3770 	 * state and so involves less work.
3771 	 */
3772 	if (bound) {
3773 		/* Before we change the PTE, the GPU must not be accessing it.
3774 		 * If we wait upon the object, we know that all the bound
3775 		 * VMA are no longer active.
3776 		 */
3777 		ret = i915_gem_object_wait_rendering(obj, false);
3778 		if (ret)
3779 			return ret;
3780 
3781 		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3782 			/* Access to snoopable pages through the GTT is
3783 			 * incoherent and on some machines causes a hard
3784 			 * lockup. Relinquish the CPU mmaping to force
3785 			 * userspace to refault in the pages and we can
3786 			 * then double check if the GTT mapping is still
3787 			 * valid for that pointer access.
3788 			 */
3789 			i915_gem_release_mmap(obj);
3790 
3791 			/* As we no longer need a fence for GTT access,
3792 			 * we can relinquish it now (and so prevent having
3793 			 * to steal a fence from someone else on the next
3794 			 * fence request). Note GPU activity would have
3795 			 * dropped the fence as all snoopable access is
3796 			 * supposed to be linear.
3797 			 */
3798 			ret = i915_gem_object_put_fence(obj);
3799 			if (ret)
3800 				return ret;
3801 		} else {
3802 			/* We either have incoherent backing store and
3803 			 * so no GTT access or the architecture is fully
3804 			 * coherent. In such cases, existing GTT mmaps
3805 			 * ignore the cache bit in the PTE and we can
3806 			 * rewrite it without confusing the GPU or having
3807 			 * to force userspace to fault back in its mmaps.
3808 			 */
3809 		}
3810 
3811 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
3812 			if (!drm_mm_node_allocated(&vma->node))
3813 				continue;
3814 
3815 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3816 			if (ret)
3817 				return ret;
3818 		}
3819 	}
3820 
3821 	list_for_each_entry(vma, &obj->vma_list, vma_link)
3822 		vma->node.color = cache_level;
3823 	obj->cache_level = cache_level;
3824 
3825 out:
3826 	/* Flush the dirty CPU caches to the backing storage so that the
3827 	 * object is now coherent at its new cache level (with respect
3828 	 * to the access domain).
3829 	 */
3830 	if (obj->cache_dirty &&
3831 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3832 	    cpu_write_needs_clflush(obj)) {
3833 		if (i915_gem_clflush_object(obj, true))
3834 			i915_gem_chipset_flush(obj->base.dev);
3835 	}
3836 
3837 	return 0;
3838 }
3839 
3840 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3841 			       struct drm_file *file)
3842 {
3843 	struct drm_i915_gem_caching *args = data;
3844 	struct drm_i915_gem_object *obj;
3845 
3846 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3847 	if (&obj->base == NULL)
3848 		return -ENOENT;
3849 
3850 	switch (obj->cache_level) {
3851 	case I915_CACHE_LLC:
3852 	case I915_CACHE_L3_LLC:
3853 		args->caching = I915_CACHING_CACHED;
3854 		break;
3855 
3856 	case I915_CACHE_WT:
3857 		args->caching = I915_CACHING_DISPLAY;
3858 		break;
3859 
3860 	default:
3861 		args->caching = I915_CACHING_NONE;
3862 		break;
3863 	}
3864 
3865 	drm_gem_object_unreference_unlocked(&obj->base);
3866 	return 0;
3867 }
3868 
3869 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3870 			       struct drm_file *file)
3871 {
3872 	struct drm_i915_private *dev_priv = dev->dev_private;
3873 	struct drm_i915_gem_caching *args = data;
3874 	struct drm_i915_gem_object *obj;
3875 	enum i915_cache_level level;
3876 	int ret;
3877 
3878 	switch (args->caching) {
3879 	case I915_CACHING_NONE:
3880 		level = I915_CACHE_NONE;
3881 		break;
3882 	case I915_CACHING_CACHED:
3883 		/*
3884 		 * Due to a HW issue on BXT A stepping, GPU stores via a
3885 		 * snooped mapping may leave stale data in a corresponding CPU
3886 		 * cacheline, whereas normally such cachelines would get
3887 		 * invalidated.
3888 		 */
3889 		if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)
3890 			return -ENODEV;
3891 
3892 		level = I915_CACHE_LLC;
3893 		break;
3894 	case I915_CACHING_DISPLAY:
3895 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3896 		break;
3897 	default:
3898 		return -EINVAL;
3899 	}
3900 
3901 	intel_runtime_pm_get(dev_priv);
3902 
3903 	ret = i915_mutex_lock_interruptible(dev);
3904 	if (ret)
3905 		goto rpm_put;
3906 
3907 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3908 	if (&obj->base == NULL) {
3909 		ret = -ENOENT;
3910 		goto unlock;
3911 	}
3912 
3913 	ret = i915_gem_object_set_cache_level(obj, level);
3914 
3915 	drm_gem_object_unreference(&obj->base);
3916 unlock:
3917 	mutex_unlock(&dev->struct_mutex);
3918 rpm_put:
3919 	intel_runtime_pm_put(dev_priv);
3920 
3921 	return ret;
3922 }
3923 
3924 /*
3925  * Prepare buffer for display plane (scanout, cursors, etc).
3926  * Can be called from an uninterruptible phase (modesetting) and allows
3927  * any flushes to be pipelined (for pageflips).
3928  */
3929 int
3930 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3931 				     u32 alignment,
3932 				     struct intel_engine_cs *pipelined,
3933 				     struct drm_i915_gem_request **pipelined_request,
3934 				     const struct i915_ggtt_view *view)
3935 {
3936 	u32 old_read_domains, old_write_domain;
3937 	int ret;
3938 
3939 	ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
3940 	if (ret)
3941 		return ret;
3942 
3943 	/* Mark the pin_display early so that we account for the
3944 	 * display coherency whilst setting up the cache domains.
3945 	 */
3946 	obj->pin_display++;
3947 
3948 	/* The display engine is not coherent with the LLC cache on gen6.  As
3949 	 * a result, we make sure that the pinning that is about to occur is
3950 	 * done with uncached PTEs. This is lowest common denominator for all
3951 	 * chipsets.
3952 	 *
3953 	 * However for gen6+, we could do better by using the GFDT bit instead
3954 	 * of uncaching, which would allow us to flush all the LLC-cached data
3955 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3956 	 */
3957 	ret = i915_gem_object_set_cache_level(obj,
3958 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3959 	if (ret)
3960 		goto err_unpin_display;
3961 
3962 	/* As the user may map the buffer once pinned in the display plane
3963 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3964 	 * always use map_and_fenceable for all scanout buffers.
3965 	 */
3966 	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3967 				       view->type == I915_GGTT_VIEW_NORMAL ?
3968 				       PIN_MAPPABLE : 0);
3969 	if (ret)
3970 		goto err_unpin_display;
3971 
3972 	i915_gem_object_flush_cpu_write_domain(obj);
3973 
3974 	old_write_domain = obj->base.write_domain;
3975 	old_read_domains = obj->base.read_domains;
3976 
3977 	/* It should now be out of any other write domains, and we can update
3978 	 * the domain values for our changes.
3979 	 */
3980 	obj->base.write_domain = 0;
3981 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3982 
3983 	trace_i915_gem_object_change_domain(obj,
3984 					    old_read_domains,
3985 					    old_write_domain);
3986 
3987 	return 0;
3988 
3989 err_unpin_display:
3990 	obj->pin_display--;
3991 	return ret;
3992 }
3993 
3994 void
3995 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3996 					 const struct i915_ggtt_view *view)
3997 {
3998 	if (WARN_ON(obj->pin_display == 0))
3999 		return;
4000 
4001 	i915_gem_object_ggtt_unpin_view(obj, view);
4002 
4003 	obj->pin_display--;
4004 }
4005 
4006 /**
4007  * Moves a single object to the CPU read, and possibly write domain.
4008  *
4009  * This function returns when the move is complete, including waiting on
4010  * flushes to occur.
4011  */
4012 int
4013 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4014 {
4015 	uint32_t old_write_domain, old_read_domains;
4016 	int ret;
4017 
4018 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4019 		return 0;
4020 
4021 	ret = i915_gem_object_wait_rendering(obj, !write);
4022 	if (ret)
4023 		return ret;
4024 
4025 	i915_gem_object_flush_gtt_write_domain(obj);
4026 
4027 	old_write_domain = obj->base.write_domain;
4028 	old_read_domains = obj->base.read_domains;
4029 
4030 	/* Flush the CPU cache if it's still invalid. */
4031 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4032 		i915_gem_clflush_object(obj, false);
4033 
4034 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4035 	}
4036 
4037 	/* It should now be out of any other write domains, and we can update
4038 	 * the domain values for our changes.
4039 	 */
4040 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4041 
4042 	/* If we're writing through the CPU, then the GPU read domains will
4043 	 * need to be invalidated at next use.
4044 	 */
4045 	if (write) {
4046 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4047 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4048 	}
4049 
4050 	trace_i915_gem_object_change_domain(obj,
4051 					    old_read_domains,
4052 					    old_write_domain);
4053 
4054 	return 0;
4055 }
4056 
4057 /* Throttle our rendering by waiting until the ring has completed our requests
4058  * emitted over 20 msec ago.
4059  *
4060  * Note that if we were to use the current jiffies each time around the loop,
4061  * we wouldn't escape the function with any frames outstanding if the time to
4062  * render a frame was over 20ms.
4063  *
4064  * This should get us reasonable parallelism between CPU and GPU but also
4065  * relatively low latency when blocking on a particular request to finish.
4066  */
4067 static int
4068 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4069 {
4070 	struct drm_i915_private *dev_priv = dev->dev_private;
4071 	struct drm_i915_file_private *file_priv = file->driver_priv;
4072 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4073 	struct drm_i915_gem_request *request, *target = NULL;
4074 	unsigned reset_counter;
4075 	int ret;
4076 
4077 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4078 	if (ret)
4079 		return ret;
4080 
4081 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4082 	if (ret)
4083 		return ret;
4084 
4085 	spin_lock(&file_priv->mm.lock);
4086 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4087 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4088 			break;
4089 
4090 		/*
4091 		 * Note that the request might not have been submitted yet.
4092 		 * In which case emitted_jiffies will be zero.
4093 		 */
4094 		if (!request->emitted_jiffies)
4095 			continue;
4096 
4097 		target = request;
4098 	}
4099 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4100 	if (target)
4101 		i915_gem_request_reference(target);
4102 	spin_unlock(&file_priv->mm.lock);
4103 
4104 	if (target == NULL)
4105 		return 0;
4106 
4107 	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4108 	if (ret == 0)
4109 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4110 
4111 	i915_gem_request_unreference__unlocked(target);
4112 
4113 	return ret;
4114 }
4115 
4116 static bool
4117 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4118 {
4119 	struct drm_i915_gem_object *obj = vma->obj;
4120 
4121 	if (alignment &&
4122 	    vma->node.start & (alignment - 1))
4123 		return true;
4124 
4125 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4126 		return true;
4127 
4128 	if (flags & PIN_OFFSET_BIAS &&
4129 	    vma->node.start < (flags & PIN_OFFSET_MASK))
4130 		return true;
4131 
4132 	return false;
4133 }
4134 
4135 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4136 {
4137 	struct drm_i915_gem_object *obj = vma->obj;
4138 	bool mappable, fenceable;
4139 	u32 fence_size, fence_alignment;
4140 
4141 	fence_size = i915_gem_get_gtt_size(obj->base.dev,
4142 					   obj->base.size,
4143 					   obj->tiling_mode);
4144 	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4145 						     obj->base.size,
4146 						     obj->tiling_mode,
4147 						     true);
4148 
4149 	fenceable = (vma->node.size == fence_size &&
4150 		     (vma->node.start & (fence_alignment - 1)) == 0);
4151 
4152 	mappable = (vma->node.start + fence_size <=
4153 		    to_i915(obj->base.dev)->gtt.mappable_end);
4154 
4155 	obj->map_and_fenceable = mappable && fenceable;
4156 }
4157 
4158 static int
4159 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4160 		       struct i915_address_space *vm,
4161 		       const struct i915_ggtt_view *ggtt_view,
4162 		       uint32_t alignment,
4163 		       uint64_t flags)
4164 {
4165 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4166 	struct i915_vma *vma;
4167 	unsigned bound;
4168 	int ret;
4169 
4170 	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4171 		return -ENODEV;
4172 
4173 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4174 		return -EINVAL;
4175 
4176 	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4177 		return -EINVAL;
4178 
4179 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4180 		return -EINVAL;
4181 
4182 	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4183 			  i915_gem_obj_to_vma(obj, vm);
4184 
4185 	if (IS_ERR(vma))
4186 		return PTR_ERR(vma);
4187 
4188 	if (vma) {
4189 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4190 			return -EBUSY;
4191 
4192 		if (i915_vma_misplaced(vma, alignment, flags)) {
4193 			WARN(vma->pin_count,
4194 			     "bo is already pinned in %s with incorrect alignment:"
4195 			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4196 			     " obj->map_and_fenceable=%d\n",
4197 			     ggtt_view ? "ggtt" : "ppgtt",
4198 			     upper_32_bits(vma->node.start),
4199 			     lower_32_bits(vma->node.start),
4200 			     alignment,
4201 			     !!(flags & PIN_MAPPABLE),
4202 			     obj->map_and_fenceable);
4203 			ret = i915_vma_unbind(vma);
4204 			if (ret)
4205 				return ret;
4206 
4207 			vma = NULL;
4208 		}
4209 	}
4210 
4211 	bound = vma ? vma->bound : 0;
4212 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4213 		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4214 						 flags);
4215 		if (IS_ERR(vma))
4216 			return PTR_ERR(vma);
4217 	} else {
4218 		ret = i915_vma_bind(vma, obj->cache_level, flags);
4219 		if (ret)
4220 			return ret;
4221 	}
4222 
4223 	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4224 	    (bound ^ vma->bound) & GLOBAL_BIND) {
4225 		__i915_vma_set_map_and_fenceable(vma);
4226 		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4227 	}
4228 
4229 	vma->pin_count++;
4230 	return 0;
4231 }
4232 
4233 int
4234 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4235 		    struct i915_address_space *vm,
4236 		    uint32_t alignment,
4237 		    uint64_t flags)
4238 {
4239 	return i915_gem_object_do_pin(obj, vm,
4240 				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4241 				      alignment, flags);
4242 }
4243 
4244 int
4245 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4246 			 const struct i915_ggtt_view *view,
4247 			 uint32_t alignment,
4248 			 uint64_t flags)
4249 {
4250 	if (WARN_ONCE(!view, "no view specified"))
4251 		return -EINVAL;
4252 
4253 	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4254 				      alignment, flags | PIN_GLOBAL);
4255 }
4256 
4257 void
4258 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4259 				const struct i915_ggtt_view *view)
4260 {
4261 	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4262 
4263 	BUG_ON(!vma);
4264 	WARN_ON(vma->pin_count == 0);
4265 	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4266 
4267 	--vma->pin_count;
4268 }
4269 
4270 int
4271 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4272 		    struct drm_file *file)
4273 {
4274 	struct drm_i915_gem_busy *args = data;
4275 	struct drm_i915_gem_object *obj;
4276 	int ret;
4277 
4278 	ret = i915_mutex_lock_interruptible(dev);
4279 	if (ret)
4280 		return ret;
4281 
4282 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4283 	if (&obj->base == NULL) {
4284 		ret = -ENOENT;
4285 		goto unlock;
4286 	}
4287 
4288 	/* Count all active objects as busy, even if they are currently not used
4289 	 * by the gpu. Users of this interface expect objects to eventually
4290 	 * become non-busy without any further actions, therefore emit any
4291 	 * necessary flushes here.
4292 	 */
4293 	ret = i915_gem_object_flush_active(obj);
4294 	if (ret)
4295 		goto unref;
4296 
4297 	BUILD_BUG_ON(I915_NUM_RINGS > 16);
4298 	args->busy = obj->active << 16;
4299 	if (obj->last_write_req)
4300 		args->busy |= obj->last_write_req->ring->id;
4301 
4302 unref:
4303 	drm_gem_object_unreference(&obj->base);
4304 unlock:
4305 	mutex_unlock(&dev->struct_mutex);
4306 	return ret;
4307 }
4308 
4309 int
4310 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4311 			struct drm_file *file_priv)
4312 {
4313 	return i915_gem_ring_throttle(dev, file_priv);
4314 }
4315 
4316 int
4317 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4318 		       struct drm_file *file_priv)
4319 {
4320 	struct drm_i915_private *dev_priv = dev->dev_private;
4321 	struct drm_i915_gem_madvise *args = data;
4322 	struct drm_i915_gem_object *obj;
4323 	int ret;
4324 
4325 	switch (args->madv) {
4326 	case I915_MADV_DONTNEED:
4327 	case I915_MADV_WILLNEED:
4328 	    break;
4329 	default:
4330 	    return -EINVAL;
4331 	}
4332 
4333 	ret = i915_mutex_lock_interruptible(dev);
4334 	if (ret)
4335 		return ret;
4336 
4337 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4338 	if (&obj->base == NULL) {
4339 		ret = -ENOENT;
4340 		goto unlock;
4341 	}
4342 
4343 	if (i915_gem_obj_is_pinned(obj)) {
4344 		ret = -EINVAL;
4345 		goto out;
4346 	}
4347 
4348 	if (obj->pages &&
4349 	    obj->tiling_mode != I915_TILING_NONE &&
4350 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4351 		if (obj->madv == I915_MADV_WILLNEED)
4352 			i915_gem_object_unpin_pages(obj);
4353 		if (args->madv == I915_MADV_WILLNEED)
4354 			i915_gem_object_pin_pages(obj);
4355 	}
4356 
4357 	if (obj->madv != __I915_MADV_PURGED)
4358 		obj->madv = args->madv;
4359 
4360 	/* if the object is no longer attached, discard its backing storage */
4361 	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4362 		i915_gem_object_truncate(obj);
4363 
4364 	args->retained = obj->madv != __I915_MADV_PURGED;
4365 
4366 out:
4367 	drm_gem_object_unreference(&obj->base);
4368 unlock:
4369 	mutex_unlock(&dev->struct_mutex);
4370 	return ret;
4371 }
4372 
4373 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4374 			  const struct drm_i915_gem_object_ops *ops)
4375 {
4376 	int i;
4377 
4378 	INIT_LIST_HEAD(&obj->global_list);
4379 	for (i = 0; i < I915_NUM_RINGS; i++)
4380 		INIT_LIST_HEAD(&obj->ring_list[i]);
4381 	INIT_LIST_HEAD(&obj->obj_exec_link);
4382 	INIT_LIST_HEAD(&obj->vma_list);
4383 	INIT_LIST_HEAD(&obj->batch_pool_link);
4384 
4385 	obj->ops = ops;
4386 
4387 	obj->fence_reg = I915_FENCE_REG_NONE;
4388 	obj->madv = I915_MADV_WILLNEED;
4389 
4390 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4391 }
4392 
4393 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4394 	.get_pages = i915_gem_object_get_pages_gtt,
4395 	.put_pages = i915_gem_object_put_pages_gtt,
4396 };
4397 
4398 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4399 						  size_t size)
4400 {
4401 	struct drm_i915_gem_object *obj;
4402 	struct address_space *mapping;
4403 	gfp_t mask;
4404 
4405 	obj = i915_gem_object_alloc(dev);
4406 	if (obj == NULL)
4407 		return NULL;
4408 
4409 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4410 		i915_gem_object_free(obj);
4411 		return NULL;
4412 	}
4413 
4414 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4415 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4416 		/* 965gm cannot relocate objects above 4GiB. */
4417 		mask &= ~__GFP_HIGHMEM;
4418 		mask |= __GFP_DMA32;
4419 	}
4420 
4421 	mapping = file_inode(obj->base.filp)->i_mapping;
4422 	mapping_set_gfp_mask(mapping, mask);
4423 
4424 	i915_gem_object_init(obj, &i915_gem_object_ops);
4425 
4426 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4427 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4428 
4429 	if (HAS_LLC(dev)) {
4430 		/* On some devices, we can have the GPU use the LLC (the CPU
4431 		 * cache) for about a 10% performance improvement
4432 		 * compared to uncached.  Graphics requests other than
4433 		 * display scanout are coherent with the CPU in
4434 		 * accessing this cache.  This means in this mode we
4435 		 * don't need to clflush on the CPU side, and on the
4436 		 * GPU side we only need to flush internal caches to
4437 		 * get data visible to the CPU.
4438 		 *
4439 		 * However, we maintain the display planes as UC, and so
4440 		 * need to rebind when first used as such.
4441 		 */
4442 		obj->cache_level = I915_CACHE_LLC;
4443 	} else
4444 		obj->cache_level = I915_CACHE_NONE;
4445 
4446 	trace_i915_gem_object_create(obj);
4447 
4448 	return obj;
4449 }
4450 
4451 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4452 {
4453 	/* If we are the last user of the backing storage (be it shmemfs
4454 	 * pages or stolen etc), we know that the pages are going to be
4455 	 * immediately released. In this case, we can then skip copying
4456 	 * back the contents from the GPU.
4457 	 */
4458 
4459 	if (obj->madv != I915_MADV_WILLNEED)
4460 		return false;
4461 
4462 	if (obj->base.filp == NULL)
4463 		return true;
4464 
4465 	/* At first glance, this looks racy, but then again so would be
4466 	 * userspace racing mmap against close. However, the first external
4467 	 * reference to the filp can only be obtained through the
4468 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4469 	 * acquiring such a reference whilst we are in the middle of
4470 	 * freeing the object.
4471 	 */
4472 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4473 }
4474 
4475 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4476 {
4477 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4478 	struct drm_device *dev = obj->base.dev;
4479 	struct drm_i915_private *dev_priv = dev->dev_private;
4480 	struct i915_vma *vma, *next;
4481 
4482 	intel_runtime_pm_get(dev_priv);
4483 
4484 	trace_i915_gem_object_destroy(obj);
4485 
4486 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4487 		int ret;
4488 
4489 		vma->pin_count = 0;
4490 		ret = i915_vma_unbind(vma);
4491 		if (WARN_ON(ret == -ERESTARTSYS)) {
4492 			bool was_interruptible;
4493 
4494 			was_interruptible = dev_priv->mm.interruptible;
4495 			dev_priv->mm.interruptible = false;
4496 
4497 			WARN_ON(i915_vma_unbind(vma));
4498 
4499 			dev_priv->mm.interruptible = was_interruptible;
4500 		}
4501 	}
4502 
4503 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4504 	 * before progressing. */
4505 	if (obj->stolen)
4506 		i915_gem_object_unpin_pages(obj);
4507 
4508 	WARN_ON(obj->frontbuffer_bits);
4509 
4510 	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4511 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4512 	    obj->tiling_mode != I915_TILING_NONE)
4513 		i915_gem_object_unpin_pages(obj);
4514 
4515 	if (WARN_ON(obj->pages_pin_count))
4516 		obj->pages_pin_count = 0;
4517 	if (discard_backing_storage(obj))
4518 		obj->madv = I915_MADV_DONTNEED;
4519 	i915_gem_object_put_pages(obj);
4520 	i915_gem_object_free_mmap_offset(obj);
4521 
4522 	BUG_ON(obj->pages);
4523 
4524 	if (obj->base.import_attach)
4525 		drm_prime_gem_destroy(&obj->base, NULL);
4526 
4527 	if (obj->ops->release)
4528 		obj->ops->release(obj);
4529 
4530 	drm_gem_object_release(&obj->base);
4531 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4532 
4533 	kfree(obj->bit_17);
4534 	i915_gem_object_free(obj);
4535 
4536 	intel_runtime_pm_put(dev_priv);
4537 }
4538 
4539 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4540 				     struct i915_address_space *vm)
4541 {
4542 	struct i915_vma *vma;
4543 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
4544 		if (i915_is_ggtt(vma->vm) &&
4545 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4546 			continue;
4547 		if (vma->vm == vm)
4548 			return vma;
4549 	}
4550 	return NULL;
4551 }
4552 
4553 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4554 					   const struct i915_ggtt_view *view)
4555 {
4556 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4557 	struct i915_vma *vma;
4558 
4559 	if (WARN_ONCE(!view, "no view specified"))
4560 		return ERR_PTR(-EINVAL);
4561 
4562 	list_for_each_entry(vma, &obj->vma_list, vma_link)
4563 		if (vma->vm == ggtt &&
4564 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4565 			return vma;
4566 	return NULL;
4567 }
4568 
4569 void i915_gem_vma_destroy(struct i915_vma *vma)
4570 {
4571 	struct i915_address_space *vm = NULL;
4572 	WARN_ON(vma->node.allocated);
4573 
4574 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4575 	if (!list_empty(&vma->exec_list))
4576 		return;
4577 
4578 	vm = vma->vm;
4579 
4580 	if (!i915_is_ggtt(vm))
4581 		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4582 
4583 	list_del(&vma->vma_link);
4584 
4585 	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4586 }
4587 
4588 static void
4589 i915_gem_stop_ringbuffers(struct drm_device *dev)
4590 {
4591 	struct drm_i915_private *dev_priv = dev->dev_private;
4592 	struct intel_engine_cs *ring;
4593 	int i;
4594 
4595 	for_each_ring(ring, dev_priv, i)
4596 		dev_priv->gt.stop_ring(ring);
4597 }
4598 
4599 int
4600 i915_gem_suspend(struct drm_device *dev)
4601 {
4602 	struct drm_i915_private *dev_priv = dev->dev_private;
4603 	int ret = 0;
4604 
4605 	mutex_lock(&dev->struct_mutex);
4606 	ret = i915_gpu_idle(dev);
4607 	if (ret)
4608 		goto err;
4609 
4610 	i915_gem_retire_requests(dev);
4611 
4612 	i915_gem_stop_ringbuffers(dev);
4613 	mutex_unlock(&dev->struct_mutex);
4614 
4615 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4616 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4617 	flush_delayed_work(&dev_priv->mm.idle_work);
4618 
4619 	/* Assert that we sucessfully flushed all the work and
4620 	 * reset the GPU back to its idle, low power state.
4621 	 */
4622 	WARN_ON(dev_priv->mm.busy);
4623 
4624 	return 0;
4625 
4626 err:
4627 	mutex_unlock(&dev->struct_mutex);
4628 	return ret;
4629 }
4630 
4631 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4632 {
4633 	struct intel_engine_cs *ring = req->ring;
4634 	struct drm_device *dev = ring->dev;
4635 	struct drm_i915_private *dev_priv = dev->dev_private;
4636 	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4637 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4638 	int i, ret;
4639 
4640 	if (!HAS_L3_DPF(dev) || !remap_info)
4641 		return 0;
4642 
4643 	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4644 	if (ret)
4645 		return ret;
4646 
4647 	/*
4648 	 * Note: We do not worry about the concurrent register cacheline hang
4649 	 * here because no other code should access these registers other than
4650 	 * at initialization time.
4651 	 */
4652 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4653 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4654 		intel_ring_emit(ring, reg_base + i);
4655 		intel_ring_emit(ring, remap_info[i/4]);
4656 	}
4657 
4658 	intel_ring_advance(ring);
4659 
4660 	return ret;
4661 }
4662 
4663 void i915_gem_init_swizzling(struct drm_device *dev)
4664 {
4665 	struct drm_i915_private *dev_priv = dev->dev_private;
4666 
4667 	if (INTEL_INFO(dev)->gen < 5 ||
4668 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4669 		return;
4670 
4671 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4672 				 DISP_TILE_SURFACE_SWIZZLING);
4673 
4674 	if (IS_GEN5(dev))
4675 		return;
4676 
4677 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4678 	if (IS_GEN6(dev))
4679 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4680 	else if (IS_GEN7(dev))
4681 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4682 	else if (IS_GEN8(dev))
4683 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4684 	else
4685 		BUG();
4686 }
4687 
4688 static void init_unused_ring(struct drm_device *dev, u32 base)
4689 {
4690 	struct drm_i915_private *dev_priv = dev->dev_private;
4691 
4692 	I915_WRITE(RING_CTL(base), 0);
4693 	I915_WRITE(RING_HEAD(base), 0);
4694 	I915_WRITE(RING_TAIL(base), 0);
4695 	I915_WRITE(RING_START(base), 0);
4696 }
4697 
4698 static void init_unused_rings(struct drm_device *dev)
4699 {
4700 	if (IS_I830(dev)) {
4701 		init_unused_ring(dev, PRB1_BASE);
4702 		init_unused_ring(dev, SRB0_BASE);
4703 		init_unused_ring(dev, SRB1_BASE);
4704 		init_unused_ring(dev, SRB2_BASE);
4705 		init_unused_ring(dev, SRB3_BASE);
4706 	} else if (IS_GEN2(dev)) {
4707 		init_unused_ring(dev, SRB0_BASE);
4708 		init_unused_ring(dev, SRB1_BASE);
4709 	} else if (IS_GEN3(dev)) {
4710 		init_unused_ring(dev, PRB1_BASE);
4711 		init_unused_ring(dev, PRB2_BASE);
4712 	}
4713 }
4714 
4715 int i915_gem_init_rings(struct drm_device *dev)
4716 {
4717 	struct drm_i915_private *dev_priv = dev->dev_private;
4718 	int ret;
4719 
4720 	ret = intel_init_render_ring_buffer(dev);
4721 	if (ret)
4722 		return ret;
4723 
4724 	if (HAS_BSD(dev)) {
4725 		ret = intel_init_bsd_ring_buffer(dev);
4726 		if (ret)
4727 			goto cleanup_render_ring;
4728 	}
4729 
4730 	if (HAS_BLT(dev)) {
4731 		ret = intel_init_blt_ring_buffer(dev);
4732 		if (ret)
4733 			goto cleanup_bsd_ring;
4734 	}
4735 
4736 	if (HAS_VEBOX(dev)) {
4737 		ret = intel_init_vebox_ring_buffer(dev);
4738 		if (ret)
4739 			goto cleanup_blt_ring;
4740 	}
4741 
4742 	if (HAS_BSD2(dev)) {
4743 		ret = intel_init_bsd2_ring_buffer(dev);
4744 		if (ret)
4745 			goto cleanup_vebox_ring;
4746 	}
4747 
4748 	return 0;
4749 
4750 cleanup_vebox_ring:
4751 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4752 cleanup_blt_ring:
4753 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4754 cleanup_bsd_ring:
4755 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4756 cleanup_render_ring:
4757 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4758 
4759 	return ret;
4760 }
4761 
4762 int
4763 i915_gem_init_hw(struct drm_device *dev)
4764 {
4765 	struct drm_i915_private *dev_priv = dev->dev_private;
4766 	struct intel_engine_cs *ring;
4767 	int ret, i, j;
4768 
4769 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4770 		return -EIO;
4771 
4772 	/* Double layer security blanket, see i915_gem_init() */
4773 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4774 
4775 	if (dev_priv->ellc_size)
4776 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4777 
4778 	if (IS_HASWELL(dev))
4779 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4780 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4781 
4782 	if (HAS_PCH_NOP(dev)) {
4783 		if (IS_IVYBRIDGE(dev)) {
4784 			u32 temp = I915_READ(GEN7_MSG_CTL);
4785 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4786 			I915_WRITE(GEN7_MSG_CTL, temp);
4787 		} else if (INTEL_INFO(dev)->gen >= 7) {
4788 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4789 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4790 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4791 		}
4792 	}
4793 
4794 	i915_gem_init_swizzling(dev);
4795 
4796 	/*
4797 	 * At least 830 can leave some of the unused rings
4798 	 * "active" (ie. head != tail) after resume which
4799 	 * will prevent c3 entry. Makes sure all unused rings
4800 	 * are totally idle.
4801 	 */
4802 	init_unused_rings(dev);
4803 
4804 	BUG_ON(!dev_priv->ring[RCS].default_context);
4805 
4806 	ret = i915_ppgtt_init_hw(dev);
4807 	if (ret) {
4808 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4809 		goto out;
4810 	}
4811 
4812 	/* Need to do basic initialisation of all rings first: */
4813 	for_each_ring(ring, dev_priv, i) {
4814 		ret = ring->init_hw(ring);
4815 		if (ret)
4816 			goto out;
4817 	}
4818 
4819 	/* We can't enable contexts until all firmware is loaded */
4820 	if (HAS_GUC_UCODE(dev)) {
4821 		ret = intel_guc_ucode_load(dev);
4822 		if (ret) {
4823 			/*
4824 			 * If we got an error and GuC submission is enabled, map
4825 			 * the error to -EIO so the GPU will be declared wedged.
4826 			 * OTOH, if we didn't intend to use the GuC anyway, just
4827 			 * discard the error and carry on.
4828 			 */
4829 			DRM_ERROR("Failed to initialize GuC, error %d%s\n", ret,
4830 				  i915.enable_guc_submission ? "" :
4831 				  " (ignored)");
4832 			ret = i915.enable_guc_submission ? -EIO : 0;
4833 			if (ret)
4834 				goto out;
4835 		}
4836 	}
4837 
4838 	/*
4839 	 * Increment the next seqno by 0x100 so we have a visible break
4840 	 * on re-initialisation
4841 	 */
4842 	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4843 	if (ret)
4844 		goto out;
4845 
4846 	/* Now it is safe to go back round and do everything else: */
4847 	for_each_ring(ring, dev_priv, i) {
4848 		struct drm_i915_gem_request *req;
4849 
4850 		WARN_ON(!ring->default_context);
4851 
4852 		ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4853 		if (ret) {
4854 			i915_gem_cleanup_ringbuffer(dev);
4855 			goto out;
4856 		}
4857 
4858 		if (ring->id == RCS) {
4859 			for (j = 0; j < NUM_L3_SLICES(dev); j++)
4860 				i915_gem_l3_remap(req, j);
4861 		}
4862 
4863 		ret = i915_ppgtt_init_ring(req);
4864 		if (ret && ret != -EIO) {
4865 			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4866 			i915_gem_request_cancel(req);
4867 			i915_gem_cleanup_ringbuffer(dev);
4868 			goto out;
4869 		}
4870 
4871 		ret = i915_gem_context_enable(req);
4872 		if (ret && ret != -EIO) {
4873 			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4874 			i915_gem_request_cancel(req);
4875 			i915_gem_cleanup_ringbuffer(dev);
4876 			goto out;
4877 		}
4878 
4879 		i915_add_request_no_flush(req);
4880 	}
4881 
4882 out:
4883 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4884 	return ret;
4885 }
4886 
4887 int i915_gem_init(struct drm_device *dev)
4888 {
4889 	struct drm_i915_private *dev_priv = dev->dev_private;
4890 	int ret;
4891 
4892 	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4893 			i915.enable_execlists);
4894 
4895 	mutex_lock(&dev->struct_mutex);
4896 
4897 	if (IS_VALLEYVIEW(dev)) {
4898 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4899 		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4900 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4901 			      VLV_GTLC_ALLOWWAKEACK), 10))
4902 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4903 	}
4904 
4905 	if (!i915.enable_execlists) {
4906 		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4907 		dev_priv->gt.init_rings = i915_gem_init_rings;
4908 		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4909 		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4910 	} else {
4911 		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4912 		dev_priv->gt.init_rings = intel_logical_rings_init;
4913 		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4914 		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4915 	}
4916 
4917 	/* This is just a security blanket to placate dragons.
4918 	 * On some systems, we very sporadically observe that the first TLBs
4919 	 * used by the CS may be stale, despite us poking the TLB reset. If
4920 	 * we hold the forcewake during initialisation these problems
4921 	 * just magically go away.
4922 	 */
4923 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4924 
4925 	ret = i915_gem_init_userptr(dev);
4926 	if (ret)
4927 		goto out_unlock;
4928 
4929 	i915_gem_init_global_gtt(dev);
4930 
4931 	ret = i915_gem_context_init(dev);
4932 	if (ret)
4933 		goto out_unlock;
4934 
4935 	ret = dev_priv->gt.init_rings(dev);
4936 	if (ret)
4937 		goto out_unlock;
4938 
4939 	ret = i915_gem_init_hw(dev);
4940 	if (ret == -EIO) {
4941 		/* Allow ring initialisation to fail by marking the GPU as
4942 		 * wedged. But we only want to do this where the GPU is angry,
4943 		 * for all other failure, such as an allocation failure, bail.
4944 		 */
4945 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4946 		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4947 		ret = 0;
4948 	}
4949 
4950 out_unlock:
4951 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4952 	mutex_unlock(&dev->struct_mutex);
4953 
4954 	return ret;
4955 }
4956 
4957 void
4958 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4959 {
4960 	struct drm_i915_private *dev_priv = dev->dev_private;
4961 	struct intel_engine_cs *ring;
4962 	int i;
4963 
4964 	for_each_ring(ring, dev_priv, i)
4965 		dev_priv->gt.cleanup_ring(ring);
4966 
4967     if (i915.enable_execlists)
4968             /*
4969              * Neither the BIOS, ourselves or any other kernel
4970              * expects the system to be in execlists mode on startup,
4971              * so we need to reset the GPU back to legacy mode.
4972              */
4973             intel_gpu_reset(dev);
4974 }
4975 
4976 static void
4977 init_ring_lists(struct intel_engine_cs *ring)
4978 {
4979 	INIT_LIST_HEAD(&ring->active_list);
4980 	INIT_LIST_HEAD(&ring->request_list);
4981 }
4982 
4983 void
4984 i915_gem_load(struct drm_device *dev)
4985 {
4986 	struct drm_i915_private *dev_priv = dev->dev_private;
4987 	int i;
4988 
4989 	dev_priv->objects =
4990 		kmem_cache_create("i915_gem_object",
4991 				  sizeof(struct drm_i915_gem_object), 0,
4992 				  SLAB_HWCACHE_ALIGN,
4993 				  NULL);
4994 	dev_priv->vmas =
4995 		kmem_cache_create("i915_gem_vma",
4996 				  sizeof(struct i915_vma), 0,
4997 				  SLAB_HWCACHE_ALIGN,
4998 				  NULL);
4999 	dev_priv->requests =
5000 		kmem_cache_create("i915_gem_request",
5001 				  sizeof(struct drm_i915_gem_request), 0,
5002 				  SLAB_HWCACHE_ALIGN,
5003 				  NULL);
5004 
5005 	INIT_LIST_HEAD(&dev_priv->vm_list);
5006 	INIT_LIST_HEAD(&dev_priv->context_list);
5007 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5008 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5009 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5010 	for (i = 0; i < I915_NUM_RINGS; i++)
5011 		init_ring_lists(&dev_priv->ring[i]);
5012 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5013 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5014 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5015 			  i915_gem_retire_work_handler);
5016 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5017 			  i915_gem_idle_work_handler);
5018 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5019 
5020 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5021 
5022 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5023 		dev_priv->num_fence_regs = 32;
5024 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5025 		dev_priv->num_fence_regs = 16;
5026 	else
5027 		dev_priv->num_fence_regs = 8;
5028 
5029 	if (intel_vgpu_active(dev))
5030 		dev_priv->num_fence_regs =
5031 				I915_READ(vgtif_reg(avail_rs.fence_num));
5032 
5033 	/*
5034 	 * Set initial sequence number for requests.
5035 	 * Using this number allows the wraparound to happen early,
5036 	 * catching any obvious problems.
5037 	 */
5038 	dev_priv->next_seqno = ((u32)~0 - 0x1100);
5039 	dev_priv->last_seqno = ((u32)~0 - 0x1101);
5040 
5041 	/* Initialize fence registers to zero */
5042 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5043 	i915_gem_restore_fences(dev);
5044 
5045 	i915_gem_detect_bit_6_swizzle(dev);
5046 	init_waitqueue_head(&dev_priv->pending_flip_queue);
5047 
5048 	dev_priv->mm.interruptible = true;
5049 
5050 	i915_gem_shrinker_init(dev_priv);
5051 
5052 	mutex_init(&dev_priv->fb_tracking.lock);
5053 }
5054 
5055 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5056 {
5057 	struct drm_i915_file_private *file_priv = file->driver_priv;
5058 
5059 	/* Clean up our request list when the client is going away, so that
5060 	 * later retire_requests won't dereference our soon-to-be-gone
5061 	 * file_priv.
5062 	 */
5063 	spin_lock(&file_priv->mm.lock);
5064 	while (!list_empty(&file_priv->mm.request_list)) {
5065 		struct drm_i915_gem_request *request;
5066 
5067 		request = list_first_entry(&file_priv->mm.request_list,
5068 					   struct drm_i915_gem_request,
5069 					   client_list);
5070 		list_del(&request->client_list);
5071 		request->file_priv = NULL;
5072 	}
5073 	spin_unlock(&file_priv->mm.lock);
5074 
5075 	if (!list_empty(&file_priv->rps.link)) {
5076 		spin_lock(&to_i915(dev)->rps.client_lock);
5077 		list_del(&file_priv->rps.link);
5078 		spin_unlock(&to_i915(dev)->rps.client_lock);
5079 	}
5080 }
5081 
5082 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5083 {
5084 	struct drm_i915_file_private *file_priv;
5085 	int ret;
5086 
5087 	DRM_DEBUG_DRIVER("\n");
5088 
5089 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5090 	if (!file_priv)
5091 		return -ENOMEM;
5092 
5093 	file->driver_priv = file_priv;
5094 	file_priv->dev_priv = dev->dev_private;
5095 	file_priv->file = file;
5096 	INIT_LIST_HEAD(&file_priv->rps.link);
5097 
5098 	spin_lock_init(&file_priv->mm.lock);
5099 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5100 
5101 	ret = i915_gem_context_open(dev, file);
5102 	if (ret)
5103 		kfree(file_priv);
5104 
5105 	return ret;
5106 }
5107 
5108 /**
5109  * i915_gem_track_fb - update frontbuffer tracking
5110  * @old: current GEM buffer for the frontbuffer slots
5111  * @new: new GEM buffer for the frontbuffer slots
5112  * @frontbuffer_bits: bitmask of frontbuffer slots
5113  *
5114  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5115  * from @old and setting them in @new. Both @old and @new can be NULL.
5116  */
5117 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5118 		       struct drm_i915_gem_object *new,
5119 		       unsigned frontbuffer_bits)
5120 {
5121 	if (old) {
5122 		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5123 		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5124 		old->frontbuffer_bits &= ~frontbuffer_bits;
5125 	}
5126 
5127 	if (new) {
5128 		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5129 		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5130 		new->frontbuffer_bits |= frontbuffer_bits;
5131 	}
5132 }
5133 
5134 /* All the new VM stuff */
5135 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5136 			struct i915_address_space *vm)
5137 {
5138 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5139 	struct i915_vma *vma;
5140 
5141 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5142 
5143 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5144 		if (i915_is_ggtt(vma->vm) &&
5145 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5146 			continue;
5147 		if (vma->vm == vm)
5148 			return vma->node.start;
5149 	}
5150 
5151 	WARN(1, "%s vma for this object not found.\n",
5152 	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5153 	return -1;
5154 }
5155 
5156 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5157 				  const struct i915_ggtt_view *view)
5158 {
5159 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5160 	struct i915_vma *vma;
5161 
5162 	list_for_each_entry(vma, &o->vma_list, vma_link)
5163 		if (vma->vm == ggtt &&
5164 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5165 			return vma->node.start;
5166 
5167 	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5168 	return -1;
5169 }
5170 
5171 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5172 			struct i915_address_space *vm)
5173 {
5174 	struct i915_vma *vma;
5175 
5176 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5177 		if (i915_is_ggtt(vma->vm) &&
5178 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5179 			continue;
5180 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5181 			return true;
5182 	}
5183 
5184 	return false;
5185 }
5186 
5187 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5188 				  const struct i915_ggtt_view *view)
5189 {
5190 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5191 	struct i915_vma *vma;
5192 
5193 	list_for_each_entry(vma, &o->vma_list, vma_link)
5194 		if (vma->vm == ggtt &&
5195 		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5196 		    drm_mm_node_allocated(&vma->node))
5197 			return true;
5198 
5199 	return false;
5200 }
5201 
5202 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5203 {
5204 	struct i915_vma *vma;
5205 
5206 	list_for_each_entry(vma, &o->vma_list, vma_link)
5207 		if (drm_mm_node_allocated(&vma->node))
5208 			return true;
5209 
5210 	return false;
5211 }
5212 
5213 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5214 				struct i915_address_space *vm)
5215 {
5216 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5217 	struct i915_vma *vma;
5218 
5219 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5220 
5221 	BUG_ON(list_empty(&o->vma_list));
5222 
5223 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5224 		if (i915_is_ggtt(vma->vm) &&
5225 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5226 			continue;
5227 		if (vma->vm == vm)
5228 			return vma->node.size;
5229 	}
5230 	return 0;
5231 }
5232 
5233 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5234 {
5235 	struct i915_vma *vma;
5236 	list_for_each_entry(vma, &obj->vma_list, vma_link)
5237 		if (vma->pin_count > 0)
5238 			return true;
5239 
5240 	return false;
5241 }
5242 
5243 /* Allocate a new GEM object and fill it with the supplied data */
5244 struct drm_i915_gem_object *
5245 i915_gem_object_create_from_data(struct drm_device *dev,
5246 			         const void *data, size_t size)
5247 {
5248 	struct drm_i915_gem_object *obj;
5249 	struct sg_table *sg;
5250 	size_t bytes;
5251 	int ret;
5252 
5253 	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5254 	if (IS_ERR_OR_NULL(obj))
5255 		return obj;
5256 
5257 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
5258 	if (ret)
5259 		goto fail;
5260 
5261 	ret = i915_gem_object_get_pages(obj);
5262 	if (ret)
5263 		goto fail;
5264 
5265 	i915_gem_object_pin_pages(obj);
5266 	sg = obj->pages;
5267 	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5268 	i915_gem_object_unpin_pages(obj);
5269 
5270 	if (WARN_ON(bytes != size)) {
5271 		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5272 		ret = -EFAULT;
5273 		goto fail;
5274 	}
5275 
5276 	return obj;
5277 
5278 fail:
5279 	drm_gem_object_unreference(&obj->base);
5280 	return ERR_PTR(ret);
5281 }
5282