1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drmP.h> 29 #include <drm/i915_drm.h> 30 #include "i915_drv.h" 31 #include "i915_trace.h" 32 #include "intel_drv.h" 33 #include <linux/shmem_fs.h> 34 #include <linux/slab.h> 35 #include <linux/swap.h> 36 #include <linux/pci.h> 37 #include <linux/dma-buf.h> 38 39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); 40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj); 41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, 42 unsigned alignment, 43 bool map_and_fenceable, 44 bool nonblocking); 45 static int i915_gem_phys_pwrite(struct drm_device *dev, 46 struct drm_i915_gem_object *obj, 47 struct drm_i915_gem_pwrite *args, 48 struct drm_file *file); 49 50 static void i915_gem_write_fence(struct drm_device *dev, int reg, 51 struct drm_i915_gem_object *obj); 52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 53 struct drm_i915_fence_reg *fence, 54 bool enable); 55 56 static int i915_gem_inactive_shrink(struct shrinker *shrinker, 57 struct shrink_control *sc); 58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target); 59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv); 60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj); 61 62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj) 63 { 64 if (obj->tiling_mode) 65 i915_gem_release_mmap(obj); 66 67 /* As we do not have an associated fence register, we will force 68 * a tiling change if we ever need to acquire one. 69 */ 70 obj->fence_dirty = false; 71 obj->fence_reg = I915_FENCE_REG_NONE; 72 } 73 74 /* some bookkeeping */ 75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, 76 size_t size) 77 { 78 dev_priv->mm.object_count++; 79 dev_priv->mm.object_memory += size; 80 } 81 82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, 83 size_t size) 84 { 85 dev_priv->mm.object_count--; 86 dev_priv->mm.object_memory -= size; 87 } 88 89 static int 90 i915_gem_wait_for_error(struct i915_gpu_error *error) 91 { 92 int ret; 93 94 #define EXIT_COND (!i915_reset_in_progress(error)) 95 if (EXIT_COND) 96 return 0; 97 98 /* GPU is already declared terminally dead, give up. */ 99 if (i915_terminally_wedged(error)) 100 return -EIO; 101 102 /* 103 * Only wait 10 seconds for the gpu reset to complete to avoid hanging 104 * userspace. If it takes that long something really bad is going on and 105 * we should simply try to bail out and fail as gracefully as possible. 106 */ 107 ret = wait_event_interruptible_timeout(error->reset_queue, 108 EXIT_COND, 109 10*HZ); 110 if (ret == 0) { 111 DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); 112 return -EIO; 113 } else if (ret < 0) { 114 return ret; 115 } 116 #undef EXIT_COND 117 118 return 0; 119 } 120 121 int i915_mutex_lock_interruptible(struct drm_device *dev) 122 { 123 struct drm_i915_private *dev_priv = dev->dev_private; 124 int ret; 125 126 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 127 if (ret) 128 return ret; 129 130 ret = mutex_lock_interruptible(&dev->struct_mutex); 131 if (ret) 132 return ret; 133 134 WARN_ON(i915_verify_lists(dev)); 135 return 0; 136 } 137 138 static inline bool 139 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj) 140 { 141 return obj->gtt_space && !obj->active; 142 } 143 144 int 145 i915_gem_init_ioctl(struct drm_device *dev, void *data, 146 struct drm_file *file) 147 { 148 struct drm_i915_private *dev_priv = dev->dev_private; 149 struct drm_i915_gem_init *args = data; 150 151 if (drm_core_check_feature(dev, DRIVER_MODESET)) 152 return -ENODEV; 153 154 if (args->gtt_start >= args->gtt_end || 155 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1)) 156 return -EINVAL; 157 158 /* GEM with user mode setting was never supported on ilk and later. */ 159 if (INTEL_INFO(dev)->gen >= 5) 160 return -ENODEV; 161 162 mutex_lock(&dev->struct_mutex); 163 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end, 164 args->gtt_end); 165 dev_priv->gtt.mappable_end = args->gtt_end; 166 mutex_unlock(&dev->struct_mutex); 167 168 return 0; 169 } 170 171 int 172 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 173 struct drm_file *file) 174 { 175 struct drm_i915_private *dev_priv = dev->dev_private; 176 struct drm_i915_gem_get_aperture *args = data; 177 struct drm_i915_gem_object *obj; 178 size_t pinned; 179 180 pinned = 0; 181 mutex_lock(&dev->struct_mutex); 182 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list) 183 if (obj->pin_count) 184 pinned += obj->gtt_space->size; 185 mutex_unlock(&dev->struct_mutex); 186 187 args->aper_size = dev_priv->gtt.total; 188 args->aper_available_size = args->aper_size - pinned; 189 190 return 0; 191 } 192 193 void *i915_gem_object_alloc(struct drm_device *dev) 194 { 195 struct drm_i915_private *dev_priv = dev->dev_private; 196 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO); 197 } 198 199 void i915_gem_object_free(struct drm_i915_gem_object *obj) 200 { 201 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 202 kmem_cache_free(dev_priv->slab, obj); 203 } 204 205 static int 206 i915_gem_create(struct drm_file *file, 207 struct drm_device *dev, 208 uint64_t size, 209 uint32_t *handle_p) 210 { 211 struct drm_i915_gem_object *obj; 212 int ret; 213 u32 handle; 214 215 size = roundup(size, PAGE_SIZE); 216 if (size == 0) 217 return -EINVAL; 218 219 /* Allocate the new object */ 220 obj = i915_gem_alloc_object(dev, size); 221 if (obj == NULL) 222 return -ENOMEM; 223 224 ret = drm_gem_handle_create(file, &obj->base, &handle); 225 if (ret) { 226 drm_gem_object_release(&obj->base); 227 i915_gem_info_remove_obj(dev->dev_private, obj->base.size); 228 i915_gem_object_free(obj); 229 return ret; 230 } 231 232 /* drop reference from allocate - handle holds it now */ 233 drm_gem_object_unreference(&obj->base); 234 trace_i915_gem_object_create(obj); 235 236 *handle_p = handle; 237 return 0; 238 } 239 240 int 241 i915_gem_dumb_create(struct drm_file *file, 242 struct drm_device *dev, 243 struct drm_mode_create_dumb *args) 244 { 245 /* have to work out size/pitch and return them */ 246 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64); 247 args->size = args->pitch * args->height; 248 return i915_gem_create(file, dev, 249 args->size, &args->handle); 250 } 251 252 int i915_gem_dumb_destroy(struct drm_file *file, 253 struct drm_device *dev, 254 uint32_t handle) 255 { 256 return drm_gem_handle_delete(file, handle); 257 } 258 259 /** 260 * Creates a new mm object and returns a handle to it. 261 */ 262 int 263 i915_gem_create_ioctl(struct drm_device *dev, void *data, 264 struct drm_file *file) 265 { 266 struct drm_i915_gem_create *args = data; 267 268 return i915_gem_create(file, dev, 269 args->size, &args->handle); 270 } 271 272 static inline int 273 __copy_to_user_swizzled(char __user *cpu_vaddr, 274 const char *gpu_vaddr, int gpu_offset, 275 int length) 276 { 277 int ret, cpu_offset = 0; 278 279 while (length > 0) { 280 int cacheline_end = ALIGN(gpu_offset + 1, 64); 281 int this_length = min(cacheline_end - gpu_offset, length); 282 int swizzled_gpu_offset = gpu_offset ^ 64; 283 284 ret = __copy_to_user(cpu_vaddr + cpu_offset, 285 gpu_vaddr + swizzled_gpu_offset, 286 this_length); 287 if (ret) 288 return ret + length; 289 290 cpu_offset += this_length; 291 gpu_offset += this_length; 292 length -= this_length; 293 } 294 295 return 0; 296 } 297 298 static inline int 299 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, 300 const char __user *cpu_vaddr, 301 int length) 302 { 303 int ret, cpu_offset = 0; 304 305 while (length > 0) { 306 int cacheline_end = ALIGN(gpu_offset + 1, 64); 307 int this_length = min(cacheline_end - gpu_offset, length); 308 int swizzled_gpu_offset = gpu_offset ^ 64; 309 310 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, 311 cpu_vaddr + cpu_offset, 312 this_length); 313 if (ret) 314 return ret + length; 315 316 cpu_offset += this_length; 317 gpu_offset += this_length; 318 length -= this_length; 319 } 320 321 return 0; 322 } 323 324 /* Per-page copy function for the shmem pread fastpath. 325 * Flushes invalid cachelines before reading the target if 326 * needs_clflush is set. */ 327 static int 328 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length, 329 char __user *user_data, 330 bool page_do_bit17_swizzling, bool needs_clflush) 331 { 332 char *vaddr; 333 int ret; 334 335 if (unlikely(page_do_bit17_swizzling)) 336 return -EINVAL; 337 338 vaddr = kmap_atomic(page); 339 if (needs_clflush) 340 drm_clflush_virt_range(vaddr + shmem_page_offset, 341 page_length); 342 ret = __copy_to_user_inatomic(user_data, 343 vaddr + shmem_page_offset, 344 page_length); 345 kunmap_atomic(vaddr); 346 347 return ret ? -EFAULT : 0; 348 } 349 350 static void 351 shmem_clflush_swizzled_range(char *addr, unsigned long length, 352 bool swizzled) 353 { 354 if (unlikely(swizzled)) { 355 unsigned long start = (unsigned long) addr; 356 unsigned long end = (unsigned long) addr + length; 357 358 /* For swizzling simply ensure that we always flush both 359 * channels. Lame, but simple and it works. Swizzled 360 * pwrite/pread is far from a hotpath - current userspace 361 * doesn't use it at all. */ 362 start = round_down(start, 128); 363 end = round_up(end, 128); 364 365 drm_clflush_virt_range((void *)start, end - start); 366 } else { 367 drm_clflush_virt_range(addr, length); 368 } 369 370 } 371 372 /* Only difference to the fast-path function is that this can handle bit17 373 * and uses non-atomic copy and kmap functions. */ 374 static int 375 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length, 376 char __user *user_data, 377 bool page_do_bit17_swizzling, bool needs_clflush) 378 { 379 char *vaddr; 380 int ret; 381 382 vaddr = kmap(page); 383 if (needs_clflush) 384 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 385 page_length, 386 page_do_bit17_swizzling); 387 388 if (page_do_bit17_swizzling) 389 ret = __copy_to_user_swizzled(user_data, 390 vaddr, shmem_page_offset, 391 page_length); 392 else 393 ret = __copy_to_user(user_data, 394 vaddr + shmem_page_offset, 395 page_length); 396 kunmap(page); 397 398 return ret ? - EFAULT : 0; 399 } 400 401 static int 402 i915_gem_shmem_pread(struct drm_device *dev, 403 struct drm_i915_gem_object *obj, 404 struct drm_i915_gem_pread *args, 405 struct drm_file *file) 406 { 407 char __user *user_data; 408 ssize_t remain; 409 loff_t offset; 410 int shmem_page_offset, page_length, ret = 0; 411 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 412 int prefaulted = 0; 413 int needs_clflush = 0; 414 struct scatterlist *sg; 415 int i; 416 417 user_data = (char __user *) (uintptr_t) args->data_ptr; 418 remain = args->size; 419 420 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 421 422 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) { 423 /* If we're not in the cpu read domain, set ourself into the gtt 424 * read domain and manually flush cachelines (if required). This 425 * optimizes for the case when the gpu will dirty the data 426 * anyway again before the next pread happens. */ 427 if (obj->cache_level == I915_CACHE_NONE) 428 needs_clflush = 1; 429 if (obj->gtt_space) { 430 ret = i915_gem_object_set_to_gtt_domain(obj, false); 431 if (ret) 432 return ret; 433 } 434 } 435 436 ret = i915_gem_object_get_pages(obj); 437 if (ret) 438 return ret; 439 440 i915_gem_object_pin_pages(obj); 441 442 offset = args->offset; 443 444 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) { 445 struct page *page; 446 447 if (i < offset >> PAGE_SHIFT) 448 continue; 449 450 if (remain <= 0) 451 break; 452 453 /* Operation in this page 454 * 455 * shmem_page_offset = offset within page in shmem file 456 * page_length = bytes to copy for this page 457 */ 458 shmem_page_offset = offset_in_page(offset); 459 page_length = remain; 460 if ((shmem_page_offset + page_length) > PAGE_SIZE) 461 page_length = PAGE_SIZE - shmem_page_offset; 462 463 page = sg_page(sg); 464 page_do_bit17_swizzling = obj_do_bit17_swizzling && 465 (page_to_phys(page) & (1 << 17)) != 0; 466 467 ret = shmem_pread_fast(page, shmem_page_offset, page_length, 468 user_data, page_do_bit17_swizzling, 469 needs_clflush); 470 if (ret == 0) 471 goto next_page; 472 473 mutex_unlock(&dev->struct_mutex); 474 475 if (!prefaulted) { 476 ret = fault_in_multipages_writeable(user_data, remain); 477 /* Userspace is tricking us, but we've already clobbered 478 * its pages with the prefault and promised to write the 479 * data up to the first fault. Hence ignore any errors 480 * and just continue. */ 481 (void)ret; 482 prefaulted = 1; 483 } 484 485 ret = shmem_pread_slow(page, shmem_page_offset, page_length, 486 user_data, page_do_bit17_swizzling, 487 needs_clflush); 488 489 mutex_lock(&dev->struct_mutex); 490 491 next_page: 492 mark_page_accessed(page); 493 494 if (ret) 495 goto out; 496 497 remain -= page_length; 498 user_data += page_length; 499 offset += page_length; 500 } 501 502 out: 503 i915_gem_object_unpin_pages(obj); 504 505 return ret; 506 } 507 508 /** 509 * Reads data from the object referenced by handle. 510 * 511 * On error, the contents of *data are undefined. 512 */ 513 int 514 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 515 struct drm_file *file) 516 { 517 struct drm_i915_gem_pread *args = data; 518 struct drm_i915_gem_object *obj; 519 int ret = 0; 520 521 if (args->size == 0) 522 return 0; 523 524 if (!access_ok(VERIFY_WRITE, 525 (char __user *)(uintptr_t)args->data_ptr, 526 args->size)) 527 return -EFAULT; 528 529 ret = i915_mutex_lock_interruptible(dev); 530 if (ret) 531 return ret; 532 533 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 534 if (&obj->base == NULL) { 535 ret = -ENOENT; 536 goto unlock; 537 } 538 539 /* Bounds check source. */ 540 if (args->offset > obj->base.size || 541 args->size > obj->base.size - args->offset) { 542 ret = -EINVAL; 543 goto out; 544 } 545 546 /* prime objects have no backing filp to GEM pread/pwrite 547 * pages from. 548 */ 549 if (!obj->base.filp) { 550 ret = -EINVAL; 551 goto out; 552 } 553 554 trace_i915_gem_object_pread(obj, args->offset, args->size); 555 556 ret = i915_gem_shmem_pread(dev, obj, args, file); 557 558 out: 559 drm_gem_object_unreference(&obj->base); 560 unlock: 561 mutex_unlock(&dev->struct_mutex); 562 return ret; 563 } 564 565 /* This is the fast write path which cannot handle 566 * page faults in the source data 567 */ 568 569 static inline int 570 fast_user_write(struct io_mapping *mapping, 571 loff_t page_base, int page_offset, 572 char __user *user_data, 573 int length) 574 { 575 void __iomem *vaddr_atomic; 576 void *vaddr; 577 unsigned long unwritten; 578 579 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base); 580 /* We can use the cpu mem copy function because this is X86. */ 581 vaddr = (void __force*)vaddr_atomic + page_offset; 582 unwritten = __copy_from_user_inatomic_nocache(vaddr, 583 user_data, length); 584 io_mapping_unmap_atomic(vaddr_atomic); 585 return unwritten; 586 } 587 588 /** 589 * This is the fast pwrite path, where we copy the data directly from the 590 * user into the GTT, uncached. 591 */ 592 static int 593 i915_gem_gtt_pwrite_fast(struct drm_device *dev, 594 struct drm_i915_gem_object *obj, 595 struct drm_i915_gem_pwrite *args, 596 struct drm_file *file) 597 { 598 drm_i915_private_t *dev_priv = dev->dev_private; 599 ssize_t remain; 600 loff_t offset, page_base; 601 char __user *user_data; 602 int page_offset, page_length, ret; 603 604 ret = i915_gem_object_pin(obj, 0, true, true); 605 if (ret) 606 goto out; 607 608 ret = i915_gem_object_set_to_gtt_domain(obj, true); 609 if (ret) 610 goto out_unpin; 611 612 ret = i915_gem_object_put_fence(obj); 613 if (ret) 614 goto out_unpin; 615 616 user_data = (char __user *) (uintptr_t) args->data_ptr; 617 remain = args->size; 618 619 offset = obj->gtt_offset + args->offset; 620 621 while (remain > 0) { 622 /* Operation in this page 623 * 624 * page_base = page offset within aperture 625 * page_offset = offset within page 626 * page_length = bytes to copy for this page 627 */ 628 page_base = offset & PAGE_MASK; 629 page_offset = offset_in_page(offset); 630 page_length = remain; 631 if ((page_offset + remain) > PAGE_SIZE) 632 page_length = PAGE_SIZE - page_offset; 633 634 /* If we get a fault while copying data, then (presumably) our 635 * source page isn't available. Return the error and we'll 636 * retry in the slow path. 637 */ 638 if (fast_user_write(dev_priv->gtt.mappable, page_base, 639 page_offset, user_data, page_length)) { 640 ret = -EFAULT; 641 goto out_unpin; 642 } 643 644 remain -= page_length; 645 user_data += page_length; 646 offset += page_length; 647 } 648 649 out_unpin: 650 i915_gem_object_unpin(obj); 651 out: 652 return ret; 653 } 654 655 /* Per-page copy function for the shmem pwrite fastpath. 656 * Flushes invalid cachelines before writing to the target if 657 * needs_clflush_before is set and flushes out any written cachelines after 658 * writing if needs_clflush is set. */ 659 static int 660 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length, 661 char __user *user_data, 662 bool page_do_bit17_swizzling, 663 bool needs_clflush_before, 664 bool needs_clflush_after) 665 { 666 char *vaddr; 667 int ret; 668 669 if (unlikely(page_do_bit17_swizzling)) 670 return -EINVAL; 671 672 vaddr = kmap_atomic(page); 673 if (needs_clflush_before) 674 drm_clflush_virt_range(vaddr + shmem_page_offset, 675 page_length); 676 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset, 677 user_data, 678 page_length); 679 if (needs_clflush_after) 680 drm_clflush_virt_range(vaddr + shmem_page_offset, 681 page_length); 682 kunmap_atomic(vaddr); 683 684 return ret ? -EFAULT : 0; 685 } 686 687 /* Only difference to the fast-path function is that this can handle bit17 688 * and uses non-atomic copy and kmap functions. */ 689 static int 690 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length, 691 char __user *user_data, 692 bool page_do_bit17_swizzling, 693 bool needs_clflush_before, 694 bool needs_clflush_after) 695 { 696 char *vaddr; 697 int ret; 698 699 vaddr = kmap(page); 700 if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) 701 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 702 page_length, 703 page_do_bit17_swizzling); 704 if (page_do_bit17_swizzling) 705 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset, 706 user_data, 707 page_length); 708 else 709 ret = __copy_from_user(vaddr + shmem_page_offset, 710 user_data, 711 page_length); 712 if (needs_clflush_after) 713 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 714 page_length, 715 page_do_bit17_swizzling); 716 kunmap(page); 717 718 return ret ? -EFAULT : 0; 719 } 720 721 static int 722 i915_gem_shmem_pwrite(struct drm_device *dev, 723 struct drm_i915_gem_object *obj, 724 struct drm_i915_gem_pwrite *args, 725 struct drm_file *file) 726 { 727 ssize_t remain; 728 loff_t offset; 729 char __user *user_data; 730 int shmem_page_offset, page_length, ret = 0; 731 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 732 int hit_slowpath = 0; 733 int needs_clflush_after = 0; 734 int needs_clflush_before = 0; 735 int i; 736 struct scatterlist *sg; 737 738 user_data = (char __user *) (uintptr_t) args->data_ptr; 739 remain = args->size; 740 741 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 742 743 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 744 /* If we're not in the cpu write domain, set ourself into the gtt 745 * write domain and manually flush cachelines (if required). This 746 * optimizes for the case when the gpu will use the data 747 * right away and we therefore have to clflush anyway. */ 748 if (obj->cache_level == I915_CACHE_NONE) 749 needs_clflush_after = 1; 750 if (obj->gtt_space) { 751 ret = i915_gem_object_set_to_gtt_domain(obj, true); 752 if (ret) 753 return ret; 754 } 755 } 756 /* Same trick applies for invalidate partially written cachelines before 757 * writing. */ 758 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU) 759 && obj->cache_level == I915_CACHE_NONE) 760 needs_clflush_before = 1; 761 762 ret = i915_gem_object_get_pages(obj); 763 if (ret) 764 return ret; 765 766 i915_gem_object_pin_pages(obj); 767 768 offset = args->offset; 769 obj->dirty = 1; 770 771 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) { 772 struct page *page; 773 int partial_cacheline_write; 774 775 if (i < offset >> PAGE_SHIFT) 776 continue; 777 778 if (remain <= 0) 779 break; 780 781 /* Operation in this page 782 * 783 * shmem_page_offset = offset within page in shmem file 784 * page_length = bytes to copy for this page 785 */ 786 shmem_page_offset = offset_in_page(offset); 787 788 page_length = remain; 789 if ((shmem_page_offset + page_length) > PAGE_SIZE) 790 page_length = PAGE_SIZE - shmem_page_offset; 791 792 /* If we don't overwrite a cacheline completely we need to be 793 * careful to have up-to-date data by first clflushing. Don't 794 * overcomplicate things and flush the entire patch. */ 795 partial_cacheline_write = needs_clflush_before && 796 ((shmem_page_offset | page_length) 797 & (boot_cpu_data.x86_clflush_size - 1)); 798 799 page = sg_page(sg); 800 page_do_bit17_swizzling = obj_do_bit17_swizzling && 801 (page_to_phys(page) & (1 << 17)) != 0; 802 803 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length, 804 user_data, page_do_bit17_swizzling, 805 partial_cacheline_write, 806 needs_clflush_after); 807 if (ret == 0) 808 goto next_page; 809 810 hit_slowpath = 1; 811 mutex_unlock(&dev->struct_mutex); 812 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length, 813 user_data, page_do_bit17_swizzling, 814 partial_cacheline_write, 815 needs_clflush_after); 816 817 mutex_lock(&dev->struct_mutex); 818 819 next_page: 820 set_page_dirty(page); 821 mark_page_accessed(page); 822 823 if (ret) 824 goto out; 825 826 remain -= page_length; 827 user_data += page_length; 828 offset += page_length; 829 } 830 831 out: 832 i915_gem_object_unpin_pages(obj); 833 834 if (hit_slowpath) { 835 /* 836 * Fixup: Flush cpu caches in case we didn't flush the dirty 837 * cachelines in-line while writing and the object moved 838 * out of the cpu write domain while we've dropped the lock. 839 */ 840 if (!needs_clflush_after && 841 obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 842 i915_gem_clflush_object(obj); 843 i915_gem_chipset_flush(dev); 844 } 845 } 846 847 if (needs_clflush_after) 848 i915_gem_chipset_flush(dev); 849 850 return ret; 851 } 852 853 /** 854 * Writes data to the object referenced by handle. 855 * 856 * On error, the contents of the buffer that were to be modified are undefined. 857 */ 858 int 859 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 860 struct drm_file *file) 861 { 862 struct drm_i915_gem_pwrite *args = data; 863 struct drm_i915_gem_object *obj; 864 int ret; 865 866 if (args->size == 0) 867 return 0; 868 869 if (!access_ok(VERIFY_READ, 870 (char __user *)(uintptr_t)args->data_ptr, 871 args->size)) 872 return -EFAULT; 873 874 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr, 875 args->size); 876 if (ret) 877 return -EFAULT; 878 879 ret = i915_mutex_lock_interruptible(dev); 880 if (ret) 881 return ret; 882 883 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 884 if (&obj->base == NULL) { 885 ret = -ENOENT; 886 goto unlock; 887 } 888 889 /* Bounds check destination. */ 890 if (args->offset > obj->base.size || 891 args->size > obj->base.size - args->offset) { 892 ret = -EINVAL; 893 goto out; 894 } 895 896 /* prime objects have no backing filp to GEM pread/pwrite 897 * pages from. 898 */ 899 if (!obj->base.filp) { 900 ret = -EINVAL; 901 goto out; 902 } 903 904 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 905 906 ret = -EFAULT; 907 /* We can only do the GTT pwrite on untiled buffers, as otherwise 908 * it would end up going through the fenced access, and we'll get 909 * different detiling behavior between reading and writing. 910 * pread/pwrite currently are reading and writing from the CPU 911 * perspective, requiring manual detiling by the client. 912 */ 913 if (obj->phys_obj) { 914 ret = i915_gem_phys_pwrite(dev, obj, args, file); 915 goto out; 916 } 917 918 if (obj->cache_level == I915_CACHE_NONE && 919 obj->tiling_mode == I915_TILING_NONE && 920 obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 921 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file); 922 /* Note that the gtt paths might fail with non-page-backed user 923 * pointers (e.g. gtt mappings when moving data between 924 * textures). Fallback to the shmem path in that case. */ 925 } 926 927 if (ret == -EFAULT || ret == -ENOSPC) 928 ret = i915_gem_shmem_pwrite(dev, obj, args, file); 929 930 out: 931 drm_gem_object_unreference(&obj->base); 932 unlock: 933 mutex_unlock(&dev->struct_mutex); 934 return ret; 935 } 936 937 int 938 i915_gem_check_wedge(struct i915_gpu_error *error, 939 bool interruptible) 940 { 941 if (i915_reset_in_progress(error)) { 942 /* Non-interruptible callers can't handle -EAGAIN, hence return 943 * -EIO unconditionally for these. */ 944 if (!interruptible) 945 return -EIO; 946 947 /* Recovery complete, but the reset failed ... */ 948 if (i915_terminally_wedged(error)) 949 return -EIO; 950 951 return -EAGAIN; 952 } 953 954 return 0; 955 } 956 957 /* 958 * Compare seqno against outstanding lazy request. Emit a request if they are 959 * equal. 960 */ 961 static int 962 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno) 963 { 964 int ret; 965 966 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex)); 967 968 ret = 0; 969 if (seqno == ring->outstanding_lazy_request) 970 ret = i915_add_request(ring, NULL, NULL); 971 972 return ret; 973 } 974 975 /** 976 * __wait_seqno - wait until execution of seqno has finished 977 * @ring: the ring expected to report seqno 978 * @seqno: duh! 979 * @reset_counter: reset sequence associated with the given seqno 980 * @interruptible: do an interruptible wait (normally yes) 981 * @timeout: in - how long to wait (NULL forever); out - how much time remaining 982 * 983 * Note: It is of utmost importance that the passed in seqno and reset_counter 984 * values have been read by the caller in an smp safe manner. Where read-side 985 * locks are involved, it is sufficient to read the reset_counter before 986 * unlocking the lock that protects the seqno. For lockless tricks, the 987 * reset_counter _must_ be read before, and an appropriate smp_rmb must be 988 * inserted. 989 * 990 * Returns 0 if the seqno was found within the alloted time. Else returns the 991 * errno with remaining time filled in timeout argument. 992 */ 993 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno, 994 unsigned reset_counter, 995 bool interruptible, struct timespec *timeout) 996 { 997 drm_i915_private_t *dev_priv = ring->dev->dev_private; 998 struct timespec before, now, wait_time={1,0}; 999 unsigned long timeout_jiffies; 1000 long end; 1001 bool wait_forever = true; 1002 int ret; 1003 1004 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno)) 1005 return 0; 1006 1007 trace_i915_gem_request_wait_begin(ring, seqno); 1008 1009 if (timeout != NULL) { 1010 wait_time = *timeout; 1011 wait_forever = false; 1012 } 1013 1014 timeout_jiffies = timespec_to_jiffies(&wait_time); 1015 1016 if (WARN_ON(!ring->irq_get(ring))) 1017 return -ENODEV; 1018 1019 /* Record current time in case interrupted by signal, or wedged * */ 1020 getrawmonotonic(&before); 1021 1022 #define EXIT_COND \ 1023 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \ 1024 i915_reset_in_progress(&dev_priv->gpu_error) || \ 1025 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) 1026 do { 1027 if (interruptible) 1028 end = wait_event_interruptible_timeout(ring->irq_queue, 1029 EXIT_COND, 1030 timeout_jiffies); 1031 else 1032 end = wait_event_timeout(ring->irq_queue, EXIT_COND, 1033 timeout_jiffies); 1034 1035 /* We need to check whether any gpu reset happened in between 1036 * the caller grabbing the seqno and now ... */ 1037 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) 1038 end = -EAGAIN; 1039 1040 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely 1041 * gone. */ 1042 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1043 if (ret) 1044 end = ret; 1045 } while (end == 0 && wait_forever); 1046 1047 getrawmonotonic(&now); 1048 1049 ring->irq_put(ring); 1050 trace_i915_gem_request_wait_end(ring, seqno); 1051 #undef EXIT_COND 1052 1053 if (timeout) { 1054 struct timespec sleep_time = timespec_sub(now, before); 1055 *timeout = timespec_sub(*timeout, sleep_time); 1056 } 1057 1058 switch (end) { 1059 case -EIO: 1060 case -EAGAIN: /* Wedged */ 1061 case -ERESTARTSYS: /* Signal */ 1062 return (int)end; 1063 case 0: /* Timeout */ 1064 if (timeout) 1065 set_normalized_timespec(timeout, 0, 0); 1066 return -ETIME; 1067 default: /* Completed */ 1068 WARN_ON(end < 0); /* We're not aware of other errors */ 1069 return 0; 1070 } 1071 } 1072 1073 /** 1074 * Waits for a sequence number to be signaled, and cleans up the 1075 * request and object lists appropriately for that event. 1076 */ 1077 int 1078 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno) 1079 { 1080 struct drm_device *dev = ring->dev; 1081 struct drm_i915_private *dev_priv = dev->dev_private; 1082 bool interruptible = dev_priv->mm.interruptible; 1083 int ret; 1084 1085 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1086 BUG_ON(seqno == 0); 1087 1088 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1089 if (ret) 1090 return ret; 1091 1092 ret = i915_gem_check_olr(ring, seqno); 1093 if (ret) 1094 return ret; 1095 1096 return __wait_seqno(ring, seqno, 1097 atomic_read(&dev_priv->gpu_error.reset_counter), 1098 interruptible, NULL); 1099 } 1100 1101 /** 1102 * Ensures that all rendering to the object has completed and the object is 1103 * safe to unbind from the GTT or access from the CPU. 1104 */ 1105 static __must_check int 1106 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 1107 bool readonly) 1108 { 1109 struct intel_ring_buffer *ring = obj->ring; 1110 u32 seqno; 1111 int ret; 1112 1113 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1114 if (seqno == 0) 1115 return 0; 1116 1117 ret = i915_wait_seqno(ring, seqno); 1118 if (ret) 1119 return ret; 1120 1121 i915_gem_retire_requests_ring(ring); 1122 1123 /* Manually manage the write flush as we may have not yet 1124 * retired the buffer. 1125 */ 1126 if (obj->last_write_seqno && 1127 i915_seqno_passed(seqno, obj->last_write_seqno)) { 1128 obj->last_write_seqno = 0; 1129 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS; 1130 } 1131 1132 return 0; 1133 } 1134 1135 /* A nonblocking variant of the above wait. This is a highly dangerous routine 1136 * as the object state may change during this call. 1137 */ 1138 static __must_check int 1139 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj, 1140 bool readonly) 1141 { 1142 struct drm_device *dev = obj->base.dev; 1143 struct drm_i915_private *dev_priv = dev->dev_private; 1144 struct intel_ring_buffer *ring = obj->ring; 1145 unsigned reset_counter; 1146 u32 seqno; 1147 int ret; 1148 1149 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1150 BUG_ON(!dev_priv->mm.interruptible); 1151 1152 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1153 if (seqno == 0) 1154 return 0; 1155 1156 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true); 1157 if (ret) 1158 return ret; 1159 1160 ret = i915_gem_check_olr(ring, seqno); 1161 if (ret) 1162 return ret; 1163 1164 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 1165 mutex_unlock(&dev->struct_mutex); 1166 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL); 1167 mutex_lock(&dev->struct_mutex); 1168 1169 i915_gem_retire_requests_ring(ring); 1170 1171 /* Manually manage the write flush as we may have not yet 1172 * retired the buffer. 1173 */ 1174 if (obj->last_write_seqno && 1175 i915_seqno_passed(seqno, obj->last_write_seqno)) { 1176 obj->last_write_seqno = 0; 1177 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS; 1178 } 1179 1180 return ret; 1181 } 1182 1183 /** 1184 * Called when user space prepares to use an object with the CPU, either 1185 * through the mmap ioctl's mapping or a GTT mapping. 1186 */ 1187 int 1188 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 1189 struct drm_file *file) 1190 { 1191 struct drm_i915_gem_set_domain *args = data; 1192 struct drm_i915_gem_object *obj; 1193 uint32_t read_domains = args->read_domains; 1194 uint32_t write_domain = args->write_domain; 1195 int ret; 1196 1197 /* Only handle setting domains to types used by the CPU. */ 1198 if (write_domain & I915_GEM_GPU_DOMAINS) 1199 return -EINVAL; 1200 1201 if (read_domains & I915_GEM_GPU_DOMAINS) 1202 return -EINVAL; 1203 1204 /* Having something in the write domain implies it's in the read 1205 * domain, and only that read domain. Enforce that in the request. 1206 */ 1207 if (write_domain != 0 && read_domains != write_domain) 1208 return -EINVAL; 1209 1210 ret = i915_mutex_lock_interruptible(dev); 1211 if (ret) 1212 return ret; 1213 1214 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1215 if (&obj->base == NULL) { 1216 ret = -ENOENT; 1217 goto unlock; 1218 } 1219 1220 /* Try to flush the object off the GPU without holding the lock. 1221 * We will repeat the flush holding the lock in the normal manner 1222 * to catch cases where we are gazumped. 1223 */ 1224 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain); 1225 if (ret) 1226 goto unref; 1227 1228 if (read_domains & I915_GEM_DOMAIN_GTT) { 1229 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); 1230 1231 /* Silently promote "you're not bound, there was nothing to do" 1232 * to success, since the client was just asking us to 1233 * make sure everything was done. 1234 */ 1235 if (ret == -EINVAL) 1236 ret = 0; 1237 } else { 1238 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); 1239 } 1240 1241 unref: 1242 drm_gem_object_unreference(&obj->base); 1243 unlock: 1244 mutex_unlock(&dev->struct_mutex); 1245 return ret; 1246 } 1247 1248 /** 1249 * Called when user space has done writes to this buffer 1250 */ 1251 int 1252 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1253 struct drm_file *file) 1254 { 1255 struct drm_i915_gem_sw_finish *args = data; 1256 struct drm_i915_gem_object *obj; 1257 int ret = 0; 1258 1259 ret = i915_mutex_lock_interruptible(dev); 1260 if (ret) 1261 return ret; 1262 1263 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1264 if (&obj->base == NULL) { 1265 ret = -ENOENT; 1266 goto unlock; 1267 } 1268 1269 /* Pinned buffers may be scanout, so flush the cache */ 1270 if (obj->pin_count) 1271 i915_gem_object_flush_cpu_write_domain(obj); 1272 1273 drm_gem_object_unreference(&obj->base); 1274 unlock: 1275 mutex_unlock(&dev->struct_mutex); 1276 return ret; 1277 } 1278 1279 /** 1280 * Maps the contents of an object, returning the address it is mapped 1281 * into. 1282 * 1283 * While the mapping holds a reference on the contents of the object, it doesn't 1284 * imply a ref on the object itself. 1285 */ 1286 int 1287 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1288 struct drm_file *file) 1289 { 1290 struct drm_i915_gem_mmap *args = data; 1291 struct drm_gem_object *obj; 1292 unsigned long addr; 1293 1294 obj = drm_gem_object_lookup(dev, file, args->handle); 1295 if (obj == NULL) 1296 return -ENOENT; 1297 1298 /* prime objects have no backing filp to GEM mmap 1299 * pages from. 1300 */ 1301 if (!obj->filp) { 1302 drm_gem_object_unreference_unlocked(obj); 1303 return -EINVAL; 1304 } 1305 1306 addr = vm_mmap(obj->filp, 0, args->size, 1307 PROT_READ | PROT_WRITE, MAP_SHARED, 1308 args->offset); 1309 drm_gem_object_unreference_unlocked(obj); 1310 if (IS_ERR((void *)addr)) 1311 return addr; 1312 1313 args->addr_ptr = (uint64_t) addr; 1314 1315 return 0; 1316 } 1317 1318 /** 1319 * i915_gem_fault - fault a page into the GTT 1320 * vma: VMA in question 1321 * vmf: fault info 1322 * 1323 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1324 * from userspace. The fault handler takes care of binding the object to 1325 * the GTT (if needed), allocating and programming a fence register (again, 1326 * only if needed based on whether the old reg is still valid or the object 1327 * is tiled) and inserting a new PTE into the faulting process. 1328 * 1329 * Note that the faulting process may involve evicting existing objects 1330 * from the GTT and/or fence registers to make room. So performance may 1331 * suffer if the GTT working set is large or there are few fence registers 1332 * left. 1333 */ 1334 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1335 { 1336 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data); 1337 struct drm_device *dev = obj->base.dev; 1338 drm_i915_private_t *dev_priv = dev->dev_private; 1339 pgoff_t page_offset; 1340 unsigned long pfn; 1341 int ret = 0; 1342 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 1343 1344 /* We don't use vmf->pgoff since that has the fake offset */ 1345 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >> 1346 PAGE_SHIFT; 1347 1348 ret = i915_mutex_lock_interruptible(dev); 1349 if (ret) 1350 goto out; 1351 1352 trace_i915_gem_object_fault(obj, page_offset, true, write); 1353 1354 /* Access to snoopable pages through the GTT is incoherent. */ 1355 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) { 1356 ret = -EINVAL; 1357 goto unlock; 1358 } 1359 1360 /* Now bind it into the GTT if needed */ 1361 ret = i915_gem_object_pin(obj, 0, true, false); 1362 if (ret) 1363 goto unlock; 1364 1365 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1366 if (ret) 1367 goto unpin; 1368 1369 ret = i915_gem_object_get_fence(obj); 1370 if (ret) 1371 goto unpin; 1372 1373 obj->fault_mappable = true; 1374 1375 pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) + 1376 page_offset; 1377 1378 /* Finally, remap it using the new GTT offset */ 1379 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn); 1380 unpin: 1381 i915_gem_object_unpin(obj); 1382 unlock: 1383 mutex_unlock(&dev->struct_mutex); 1384 out: 1385 switch (ret) { 1386 case -EIO: 1387 /* If this -EIO is due to a gpu hang, give the reset code a 1388 * chance to clean up the mess. Otherwise return the proper 1389 * SIGBUS. */ 1390 if (i915_terminally_wedged(&dev_priv->gpu_error)) 1391 return VM_FAULT_SIGBUS; 1392 case -EAGAIN: 1393 /* Give the error handler a chance to run and move the 1394 * objects off the GPU active list. Next time we service the 1395 * fault, we should be able to transition the page into the 1396 * GTT without touching the GPU (and so avoid further 1397 * EIO/EGAIN). If the GPU is wedged, then there is no issue 1398 * with coherency, just lost writes. 1399 */ 1400 set_need_resched(); 1401 case 0: 1402 case -ERESTARTSYS: 1403 case -EINTR: 1404 case -EBUSY: 1405 /* 1406 * EBUSY is ok: this just means that another thread 1407 * already did the job. 1408 */ 1409 return VM_FAULT_NOPAGE; 1410 case -ENOMEM: 1411 return VM_FAULT_OOM; 1412 case -ENOSPC: 1413 return VM_FAULT_SIGBUS; 1414 default: 1415 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); 1416 return VM_FAULT_SIGBUS; 1417 } 1418 } 1419 1420 /** 1421 * i915_gem_release_mmap - remove physical page mappings 1422 * @obj: obj in question 1423 * 1424 * Preserve the reservation of the mmapping with the DRM core code, but 1425 * relinquish ownership of the pages back to the system. 1426 * 1427 * It is vital that we remove the page mapping if we have mapped a tiled 1428 * object through the GTT and then lose the fence register due to 1429 * resource pressure. Similarly if the object has been moved out of the 1430 * aperture, than pages mapped into userspace must be revoked. Removing the 1431 * mapping will then trigger a page fault on the next user access, allowing 1432 * fixup by i915_gem_fault(). 1433 */ 1434 void 1435 i915_gem_release_mmap(struct drm_i915_gem_object *obj) 1436 { 1437 if (!obj->fault_mappable) 1438 return; 1439 1440 if (obj->base.dev->dev_mapping) 1441 unmap_mapping_range(obj->base.dev->dev_mapping, 1442 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT, 1443 obj->base.size, 1); 1444 1445 obj->fault_mappable = false; 1446 } 1447 1448 uint32_t 1449 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode) 1450 { 1451 uint32_t gtt_size; 1452 1453 if (INTEL_INFO(dev)->gen >= 4 || 1454 tiling_mode == I915_TILING_NONE) 1455 return size; 1456 1457 /* Previous chips need a power-of-two fence region when tiling */ 1458 if (INTEL_INFO(dev)->gen == 3) 1459 gtt_size = 1024*1024; 1460 else 1461 gtt_size = 512*1024; 1462 1463 while (gtt_size < size) 1464 gtt_size <<= 1; 1465 1466 return gtt_size; 1467 } 1468 1469 /** 1470 * i915_gem_get_gtt_alignment - return required GTT alignment for an object 1471 * @obj: object to check 1472 * 1473 * Return the required GTT alignment for an object, taking into account 1474 * potential fence register mapping. 1475 */ 1476 uint32_t 1477 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size, 1478 int tiling_mode, bool fenced) 1479 { 1480 /* 1481 * Minimum alignment is 4k (GTT page size), but might be greater 1482 * if a fence register is needed for the object. 1483 */ 1484 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) || 1485 tiling_mode == I915_TILING_NONE) 1486 return 4096; 1487 1488 /* 1489 * Previous chips need to be aligned to the size of the smallest 1490 * fence register that can contain the object. 1491 */ 1492 return i915_gem_get_gtt_size(dev, size, tiling_mode); 1493 } 1494 1495 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) 1496 { 1497 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1498 int ret; 1499 1500 if (obj->base.map_list.map) 1501 return 0; 1502 1503 dev_priv->mm.shrinker_no_lock_stealing = true; 1504 1505 ret = drm_gem_create_mmap_offset(&obj->base); 1506 if (ret != -ENOSPC) 1507 goto out; 1508 1509 /* Badly fragmented mmap space? The only way we can recover 1510 * space is by destroying unwanted objects. We can't randomly release 1511 * mmap_offsets as userspace expects them to be persistent for the 1512 * lifetime of the objects. The closest we can is to release the 1513 * offsets on purgeable objects by truncating it and marking it purged, 1514 * which prevents userspace from ever using that object again. 1515 */ 1516 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT); 1517 ret = drm_gem_create_mmap_offset(&obj->base); 1518 if (ret != -ENOSPC) 1519 goto out; 1520 1521 i915_gem_shrink_all(dev_priv); 1522 ret = drm_gem_create_mmap_offset(&obj->base); 1523 out: 1524 dev_priv->mm.shrinker_no_lock_stealing = false; 1525 1526 return ret; 1527 } 1528 1529 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) 1530 { 1531 if (!obj->base.map_list.map) 1532 return; 1533 1534 drm_gem_free_mmap_offset(&obj->base); 1535 } 1536 1537 int 1538 i915_gem_mmap_gtt(struct drm_file *file, 1539 struct drm_device *dev, 1540 uint32_t handle, 1541 uint64_t *offset) 1542 { 1543 struct drm_i915_private *dev_priv = dev->dev_private; 1544 struct drm_i915_gem_object *obj; 1545 int ret; 1546 1547 ret = i915_mutex_lock_interruptible(dev); 1548 if (ret) 1549 return ret; 1550 1551 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle)); 1552 if (&obj->base == NULL) { 1553 ret = -ENOENT; 1554 goto unlock; 1555 } 1556 1557 if (obj->base.size > dev_priv->gtt.mappable_end) { 1558 ret = -E2BIG; 1559 goto out; 1560 } 1561 1562 if (obj->madv != I915_MADV_WILLNEED) { 1563 DRM_ERROR("Attempting to mmap a purgeable buffer\n"); 1564 ret = -EINVAL; 1565 goto out; 1566 } 1567 1568 ret = i915_gem_object_create_mmap_offset(obj); 1569 if (ret) 1570 goto out; 1571 1572 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT; 1573 1574 out: 1575 drm_gem_object_unreference(&obj->base); 1576 unlock: 1577 mutex_unlock(&dev->struct_mutex); 1578 return ret; 1579 } 1580 1581 /** 1582 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 1583 * @dev: DRM device 1584 * @data: GTT mapping ioctl data 1585 * @file: GEM object info 1586 * 1587 * Simply returns the fake offset to userspace so it can mmap it. 1588 * The mmap call will end up in drm_gem_mmap(), which will set things 1589 * up so we can get faults in the handler above. 1590 * 1591 * The fault handler will take care of binding the object into the GTT 1592 * (since it may have been evicted to make room for something), allocating 1593 * a fence register, and mapping the appropriate aperture address into 1594 * userspace. 1595 */ 1596 int 1597 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 1598 struct drm_file *file) 1599 { 1600 struct drm_i915_gem_mmap_gtt *args = data; 1601 1602 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); 1603 } 1604 1605 /* Immediately discard the backing storage */ 1606 static void 1607 i915_gem_object_truncate(struct drm_i915_gem_object *obj) 1608 { 1609 struct inode *inode; 1610 1611 i915_gem_object_free_mmap_offset(obj); 1612 1613 if (obj->base.filp == NULL) 1614 return; 1615 1616 /* Our goal here is to return as much of the memory as 1617 * is possible back to the system as we are called from OOM. 1618 * To do this we must instruct the shmfs to drop all of its 1619 * backing pages, *now*. 1620 */ 1621 inode = file_inode(obj->base.filp); 1622 shmem_truncate_range(inode, 0, (loff_t)-1); 1623 1624 obj->madv = __I915_MADV_PURGED; 1625 } 1626 1627 static inline int 1628 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj) 1629 { 1630 return obj->madv == I915_MADV_DONTNEED; 1631 } 1632 1633 static void 1634 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj) 1635 { 1636 int page_count = obj->base.size / PAGE_SIZE; 1637 struct scatterlist *sg; 1638 int ret, i; 1639 1640 BUG_ON(obj->madv == __I915_MADV_PURGED); 1641 1642 ret = i915_gem_object_set_to_cpu_domain(obj, true); 1643 if (ret) { 1644 /* In the event of a disaster, abandon all caches and 1645 * hope for the best. 1646 */ 1647 WARN_ON(ret != -EIO); 1648 i915_gem_clflush_object(obj); 1649 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; 1650 } 1651 1652 if (i915_gem_object_needs_bit17_swizzle(obj)) 1653 i915_gem_object_save_bit_17_swizzle(obj); 1654 1655 if (obj->madv == I915_MADV_DONTNEED) 1656 obj->dirty = 0; 1657 1658 for_each_sg(obj->pages->sgl, sg, page_count, i) { 1659 struct page *page = sg_page(sg); 1660 1661 if (obj->dirty) 1662 set_page_dirty(page); 1663 1664 if (obj->madv == I915_MADV_WILLNEED) 1665 mark_page_accessed(page); 1666 1667 page_cache_release(page); 1668 } 1669 obj->dirty = 0; 1670 1671 sg_free_table(obj->pages); 1672 kfree(obj->pages); 1673 } 1674 1675 int 1676 i915_gem_object_put_pages(struct drm_i915_gem_object *obj) 1677 { 1678 const struct drm_i915_gem_object_ops *ops = obj->ops; 1679 1680 if (obj->pages == NULL) 1681 return 0; 1682 1683 BUG_ON(obj->gtt_space); 1684 1685 if (obj->pages_pin_count) 1686 return -EBUSY; 1687 1688 /* ->put_pages might need to allocate memory for the bit17 swizzle 1689 * array, hence protect them from being reaped by removing them from gtt 1690 * lists early. */ 1691 list_del(&obj->gtt_list); 1692 1693 ops->put_pages(obj); 1694 obj->pages = NULL; 1695 1696 if (i915_gem_object_is_purgeable(obj)) 1697 i915_gem_object_truncate(obj); 1698 1699 return 0; 1700 } 1701 1702 static long 1703 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target, 1704 bool purgeable_only) 1705 { 1706 struct drm_i915_gem_object *obj, *next; 1707 long count = 0; 1708 1709 list_for_each_entry_safe(obj, next, 1710 &dev_priv->mm.unbound_list, 1711 gtt_list) { 1712 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) && 1713 i915_gem_object_put_pages(obj) == 0) { 1714 count += obj->base.size >> PAGE_SHIFT; 1715 if (count >= target) 1716 return count; 1717 } 1718 } 1719 1720 list_for_each_entry_safe(obj, next, 1721 &dev_priv->mm.inactive_list, 1722 mm_list) { 1723 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) && 1724 i915_gem_object_unbind(obj) == 0 && 1725 i915_gem_object_put_pages(obj) == 0) { 1726 count += obj->base.size >> PAGE_SHIFT; 1727 if (count >= target) 1728 return count; 1729 } 1730 } 1731 1732 return count; 1733 } 1734 1735 static long 1736 i915_gem_purge(struct drm_i915_private *dev_priv, long target) 1737 { 1738 return __i915_gem_shrink(dev_priv, target, true); 1739 } 1740 1741 static void 1742 i915_gem_shrink_all(struct drm_i915_private *dev_priv) 1743 { 1744 struct drm_i915_gem_object *obj, *next; 1745 1746 i915_gem_evict_everything(dev_priv->dev); 1747 1748 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list) 1749 i915_gem_object_put_pages(obj); 1750 } 1751 1752 static int 1753 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) 1754 { 1755 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1756 int page_count, i; 1757 struct address_space *mapping; 1758 struct sg_table *st; 1759 struct scatterlist *sg; 1760 struct page *page; 1761 gfp_t gfp; 1762 1763 /* Assert that the object is not currently in any GPU domain. As it 1764 * wasn't in the GTT, there shouldn't be any way it could have been in 1765 * a GPU cache 1766 */ 1767 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); 1768 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); 1769 1770 st = kmalloc(sizeof(*st), GFP_KERNEL); 1771 if (st == NULL) 1772 return -ENOMEM; 1773 1774 page_count = obj->base.size / PAGE_SIZE; 1775 if (sg_alloc_table(st, page_count, GFP_KERNEL)) { 1776 sg_free_table(st); 1777 kfree(st); 1778 return -ENOMEM; 1779 } 1780 1781 /* Get the list of pages out of our struct file. They'll be pinned 1782 * at this point until we release them. 1783 * 1784 * Fail silently without starting the shrinker 1785 */ 1786 mapping = file_inode(obj->base.filp)->i_mapping; 1787 gfp = mapping_gfp_mask(mapping); 1788 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD; 1789 gfp &= ~(__GFP_IO | __GFP_WAIT); 1790 for_each_sg(st->sgl, sg, page_count, i) { 1791 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1792 if (IS_ERR(page)) { 1793 i915_gem_purge(dev_priv, page_count); 1794 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1795 } 1796 if (IS_ERR(page)) { 1797 /* We've tried hard to allocate the memory by reaping 1798 * our own buffer, now let the real VM do its job and 1799 * go down in flames if truly OOM. 1800 */ 1801 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD); 1802 gfp |= __GFP_IO | __GFP_WAIT; 1803 1804 i915_gem_shrink_all(dev_priv); 1805 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1806 if (IS_ERR(page)) 1807 goto err_pages; 1808 1809 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD; 1810 gfp &= ~(__GFP_IO | __GFP_WAIT); 1811 } 1812 1813 sg_set_page(sg, page, PAGE_SIZE, 0); 1814 } 1815 1816 obj->pages = st; 1817 1818 if (i915_gem_object_needs_bit17_swizzle(obj)) 1819 i915_gem_object_do_bit_17_swizzle(obj); 1820 1821 return 0; 1822 1823 err_pages: 1824 for_each_sg(st->sgl, sg, i, page_count) 1825 page_cache_release(sg_page(sg)); 1826 sg_free_table(st); 1827 kfree(st); 1828 return PTR_ERR(page); 1829 } 1830 1831 /* Ensure that the associated pages are gathered from the backing storage 1832 * and pinned into our object. i915_gem_object_get_pages() may be called 1833 * multiple times before they are released by a single call to 1834 * i915_gem_object_put_pages() - once the pages are no longer referenced 1835 * either as a result of memory pressure (reaping pages under the shrinker) 1836 * or as the object is itself released. 1837 */ 1838 int 1839 i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 1840 { 1841 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1842 const struct drm_i915_gem_object_ops *ops = obj->ops; 1843 int ret; 1844 1845 if (obj->pages) 1846 return 0; 1847 1848 if (obj->madv != I915_MADV_WILLNEED) { 1849 DRM_ERROR("Attempting to obtain a purgeable object\n"); 1850 return -EINVAL; 1851 } 1852 1853 BUG_ON(obj->pages_pin_count); 1854 1855 ret = ops->get_pages(obj); 1856 if (ret) 1857 return ret; 1858 1859 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list); 1860 return 0; 1861 } 1862 1863 void 1864 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj, 1865 struct intel_ring_buffer *ring) 1866 { 1867 struct drm_device *dev = obj->base.dev; 1868 struct drm_i915_private *dev_priv = dev->dev_private; 1869 u32 seqno = intel_ring_get_seqno(ring); 1870 1871 BUG_ON(ring == NULL); 1872 obj->ring = ring; 1873 1874 /* Add a reference if we're newly entering the active list. */ 1875 if (!obj->active) { 1876 drm_gem_object_reference(&obj->base); 1877 obj->active = 1; 1878 } 1879 1880 /* Move from whatever list we were on to the tail of execution. */ 1881 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list); 1882 list_move_tail(&obj->ring_list, &ring->active_list); 1883 1884 obj->last_read_seqno = seqno; 1885 1886 if (obj->fenced_gpu_access) { 1887 obj->last_fenced_seqno = seqno; 1888 1889 /* Bump MRU to take account of the delayed flush */ 1890 if (obj->fence_reg != I915_FENCE_REG_NONE) { 1891 struct drm_i915_fence_reg *reg; 1892 1893 reg = &dev_priv->fence_regs[obj->fence_reg]; 1894 list_move_tail(®->lru_list, 1895 &dev_priv->mm.fence_list); 1896 } 1897 } 1898 } 1899 1900 static void 1901 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj) 1902 { 1903 struct drm_device *dev = obj->base.dev; 1904 struct drm_i915_private *dev_priv = dev->dev_private; 1905 1906 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS); 1907 BUG_ON(!obj->active); 1908 1909 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 1910 1911 list_del_init(&obj->ring_list); 1912 obj->ring = NULL; 1913 1914 obj->last_read_seqno = 0; 1915 obj->last_write_seqno = 0; 1916 obj->base.write_domain = 0; 1917 1918 obj->last_fenced_seqno = 0; 1919 obj->fenced_gpu_access = false; 1920 1921 obj->active = 0; 1922 drm_gem_object_unreference(&obj->base); 1923 1924 WARN_ON(i915_verify_lists(dev)); 1925 } 1926 1927 static int 1928 i915_gem_init_seqno(struct drm_device *dev, u32 seqno) 1929 { 1930 struct drm_i915_private *dev_priv = dev->dev_private; 1931 struct intel_ring_buffer *ring; 1932 int ret, i, j; 1933 1934 /* Carefully retire all requests without writing to the rings */ 1935 for_each_ring(ring, dev_priv, i) { 1936 ret = intel_ring_idle(ring); 1937 if (ret) 1938 return ret; 1939 } 1940 i915_gem_retire_requests(dev); 1941 1942 /* Finally reset hw state */ 1943 for_each_ring(ring, dev_priv, i) { 1944 intel_ring_init_seqno(ring, seqno); 1945 1946 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++) 1947 ring->sync_seqno[j] = 0; 1948 } 1949 1950 return 0; 1951 } 1952 1953 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno) 1954 { 1955 struct drm_i915_private *dev_priv = dev->dev_private; 1956 int ret; 1957 1958 if (seqno == 0) 1959 return -EINVAL; 1960 1961 /* HWS page needs to be set less than what we 1962 * will inject to ring 1963 */ 1964 ret = i915_gem_init_seqno(dev, seqno - 1); 1965 if (ret) 1966 return ret; 1967 1968 /* Carefully set the last_seqno value so that wrap 1969 * detection still works 1970 */ 1971 dev_priv->next_seqno = seqno; 1972 dev_priv->last_seqno = seqno - 1; 1973 if (dev_priv->last_seqno == 0) 1974 dev_priv->last_seqno--; 1975 1976 return 0; 1977 } 1978 1979 int 1980 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno) 1981 { 1982 struct drm_i915_private *dev_priv = dev->dev_private; 1983 1984 /* reserve 0 for non-seqno */ 1985 if (dev_priv->next_seqno == 0) { 1986 int ret = i915_gem_init_seqno(dev, 0); 1987 if (ret) 1988 return ret; 1989 1990 dev_priv->next_seqno = 1; 1991 } 1992 1993 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++; 1994 return 0; 1995 } 1996 1997 int 1998 i915_add_request(struct intel_ring_buffer *ring, 1999 struct drm_file *file, 2000 u32 *out_seqno) 2001 { 2002 drm_i915_private_t *dev_priv = ring->dev->dev_private; 2003 struct drm_i915_gem_request *request; 2004 u32 request_ring_position; 2005 int was_empty; 2006 int ret; 2007 2008 /* 2009 * Emit any outstanding flushes - execbuf can fail to emit the flush 2010 * after having emitted the batchbuffer command. Hence we need to fix 2011 * things up similar to emitting the lazy request. The difference here 2012 * is that the flush _must_ happen before the next request, no matter 2013 * what. 2014 */ 2015 ret = intel_ring_flush_all_caches(ring); 2016 if (ret) 2017 return ret; 2018 2019 request = kmalloc(sizeof(*request), GFP_KERNEL); 2020 if (request == NULL) 2021 return -ENOMEM; 2022 2023 2024 /* Record the position of the start of the request so that 2025 * should we detect the updated seqno part-way through the 2026 * GPU processing the request, we never over-estimate the 2027 * position of the head. 2028 */ 2029 request_ring_position = intel_ring_get_tail(ring); 2030 2031 ret = ring->add_request(ring); 2032 if (ret) { 2033 kfree(request); 2034 return ret; 2035 } 2036 2037 request->seqno = intel_ring_get_seqno(ring); 2038 request->ring = ring; 2039 request->tail = request_ring_position; 2040 request->emitted_jiffies = jiffies; 2041 was_empty = list_empty(&ring->request_list); 2042 list_add_tail(&request->list, &ring->request_list); 2043 request->file_priv = NULL; 2044 2045 if (file) { 2046 struct drm_i915_file_private *file_priv = file->driver_priv; 2047 2048 spin_lock(&file_priv->mm.lock); 2049 request->file_priv = file_priv; 2050 list_add_tail(&request->client_list, 2051 &file_priv->mm.request_list); 2052 spin_unlock(&file_priv->mm.lock); 2053 } 2054 2055 trace_i915_gem_request_add(ring, request->seqno); 2056 ring->outstanding_lazy_request = 0; 2057 2058 if (!dev_priv->mm.suspended) { 2059 if (i915_enable_hangcheck) { 2060 mod_timer(&dev_priv->gpu_error.hangcheck_timer, 2061 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES)); 2062 } 2063 if (was_empty) { 2064 queue_delayed_work(dev_priv->wq, 2065 &dev_priv->mm.retire_work, 2066 round_jiffies_up_relative(HZ)); 2067 intel_mark_busy(dev_priv->dev); 2068 } 2069 } 2070 2071 if (out_seqno) 2072 *out_seqno = request->seqno; 2073 return 0; 2074 } 2075 2076 static inline void 2077 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request) 2078 { 2079 struct drm_i915_file_private *file_priv = request->file_priv; 2080 2081 if (!file_priv) 2082 return; 2083 2084 spin_lock(&file_priv->mm.lock); 2085 if (request->file_priv) { 2086 list_del(&request->client_list); 2087 request->file_priv = NULL; 2088 } 2089 spin_unlock(&file_priv->mm.lock); 2090 } 2091 2092 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv, 2093 struct intel_ring_buffer *ring) 2094 { 2095 while (!list_empty(&ring->request_list)) { 2096 struct drm_i915_gem_request *request; 2097 2098 request = list_first_entry(&ring->request_list, 2099 struct drm_i915_gem_request, 2100 list); 2101 2102 list_del(&request->list); 2103 i915_gem_request_remove_from_client(request); 2104 kfree(request); 2105 } 2106 2107 while (!list_empty(&ring->active_list)) { 2108 struct drm_i915_gem_object *obj; 2109 2110 obj = list_first_entry(&ring->active_list, 2111 struct drm_i915_gem_object, 2112 ring_list); 2113 2114 i915_gem_object_move_to_inactive(obj); 2115 } 2116 } 2117 2118 static void i915_gem_reset_fences(struct drm_device *dev) 2119 { 2120 struct drm_i915_private *dev_priv = dev->dev_private; 2121 int i; 2122 2123 for (i = 0; i < dev_priv->num_fence_regs; i++) { 2124 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; 2125 2126 i915_gem_write_fence(dev, i, NULL); 2127 2128 if (reg->obj) 2129 i915_gem_object_fence_lost(reg->obj); 2130 2131 reg->pin_count = 0; 2132 reg->obj = NULL; 2133 INIT_LIST_HEAD(®->lru_list); 2134 } 2135 2136 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 2137 } 2138 2139 void i915_gem_reset(struct drm_device *dev) 2140 { 2141 struct drm_i915_private *dev_priv = dev->dev_private; 2142 struct drm_i915_gem_object *obj; 2143 struct intel_ring_buffer *ring; 2144 int i; 2145 2146 for_each_ring(ring, dev_priv, i) 2147 i915_gem_reset_ring_lists(dev_priv, ring); 2148 2149 /* Move everything out of the GPU domains to ensure we do any 2150 * necessary invalidation upon reuse. 2151 */ 2152 list_for_each_entry(obj, 2153 &dev_priv->mm.inactive_list, 2154 mm_list) 2155 { 2156 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; 2157 } 2158 2159 /* The fence registers are invalidated so clear them out */ 2160 i915_gem_reset_fences(dev); 2161 } 2162 2163 /** 2164 * This function clears the request list as sequence numbers are passed. 2165 */ 2166 void 2167 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring) 2168 { 2169 uint32_t seqno; 2170 2171 if (list_empty(&ring->request_list)) 2172 return; 2173 2174 WARN_ON(i915_verify_lists(ring->dev)); 2175 2176 seqno = ring->get_seqno(ring, true); 2177 2178 while (!list_empty(&ring->request_list)) { 2179 struct drm_i915_gem_request *request; 2180 2181 request = list_first_entry(&ring->request_list, 2182 struct drm_i915_gem_request, 2183 list); 2184 2185 if (!i915_seqno_passed(seqno, request->seqno)) 2186 break; 2187 2188 trace_i915_gem_request_retire(ring, request->seqno); 2189 /* We know the GPU must have read the request to have 2190 * sent us the seqno + interrupt, so use the position 2191 * of tail of the request to update the last known position 2192 * of the GPU head. 2193 */ 2194 ring->last_retired_head = request->tail; 2195 2196 list_del(&request->list); 2197 i915_gem_request_remove_from_client(request); 2198 kfree(request); 2199 } 2200 2201 /* Move any buffers on the active list that are no longer referenced 2202 * by the ringbuffer to the flushing/inactive lists as appropriate. 2203 */ 2204 while (!list_empty(&ring->active_list)) { 2205 struct drm_i915_gem_object *obj; 2206 2207 obj = list_first_entry(&ring->active_list, 2208 struct drm_i915_gem_object, 2209 ring_list); 2210 2211 if (!i915_seqno_passed(seqno, obj->last_read_seqno)) 2212 break; 2213 2214 i915_gem_object_move_to_inactive(obj); 2215 } 2216 2217 if (unlikely(ring->trace_irq_seqno && 2218 i915_seqno_passed(seqno, ring->trace_irq_seqno))) { 2219 ring->irq_put(ring); 2220 ring->trace_irq_seqno = 0; 2221 } 2222 2223 WARN_ON(i915_verify_lists(ring->dev)); 2224 } 2225 2226 void 2227 i915_gem_retire_requests(struct drm_device *dev) 2228 { 2229 drm_i915_private_t *dev_priv = dev->dev_private; 2230 struct intel_ring_buffer *ring; 2231 int i; 2232 2233 for_each_ring(ring, dev_priv, i) 2234 i915_gem_retire_requests_ring(ring); 2235 } 2236 2237 static void 2238 i915_gem_retire_work_handler(struct work_struct *work) 2239 { 2240 drm_i915_private_t *dev_priv; 2241 struct drm_device *dev; 2242 struct intel_ring_buffer *ring; 2243 bool idle; 2244 int i; 2245 2246 dev_priv = container_of(work, drm_i915_private_t, 2247 mm.retire_work.work); 2248 dev = dev_priv->dev; 2249 2250 /* Come back later if the device is busy... */ 2251 if (!mutex_trylock(&dev->struct_mutex)) { 2252 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 2253 round_jiffies_up_relative(HZ)); 2254 return; 2255 } 2256 2257 i915_gem_retire_requests(dev); 2258 2259 /* Send a periodic flush down the ring so we don't hold onto GEM 2260 * objects indefinitely. 2261 */ 2262 idle = true; 2263 for_each_ring(ring, dev_priv, i) { 2264 if (ring->gpu_caches_dirty) 2265 i915_add_request(ring, NULL, NULL); 2266 2267 idle &= list_empty(&ring->request_list); 2268 } 2269 2270 if (!dev_priv->mm.suspended && !idle) 2271 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 2272 round_jiffies_up_relative(HZ)); 2273 if (idle) 2274 intel_mark_idle(dev); 2275 2276 mutex_unlock(&dev->struct_mutex); 2277 } 2278 2279 /** 2280 * Ensures that an object will eventually get non-busy by flushing any required 2281 * write domains, emitting any outstanding lazy request and retiring and 2282 * completed requests. 2283 */ 2284 static int 2285 i915_gem_object_flush_active(struct drm_i915_gem_object *obj) 2286 { 2287 int ret; 2288 2289 if (obj->active) { 2290 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno); 2291 if (ret) 2292 return ret; 2293 2294 i915_gem_retire_requests_ring(obj->ring); 2295 } 2296 2297 return 0; 2298 } 2299 2300 /** 2301 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT 2302 * @DRM_IOCTL_ARGS: standard ioctl arguments 2303 * 2304 * Returns 0 if successful, else an error is returned with the remaining time in 2305 * the timeout parameter. 2306 * -ETIME: object is still busy after timeout 2307 * -ERESTARTSYS: signal interrupted the wait 2308 * -ENONENT: object doesn't exist 2309 * Also possible, but rare: 2310 * -EAGAIN: GPU wedged 2311 * -ENOMEM: damn 2312 * -ENODEV: Internal IRQ fail 2313 * -E?: The add request failed 2314 * 2315 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any 2316 * non-zero timeout parameter the wait ioctl will wait for the given number of 2317 * nanoseconds on an object becoming unbusy. Since the wait itself does so 2318 * without holding struct_mutex the object may become re-busied before this 2319 * function completes. A similar but shorter * race condition exists in the busy 2320 * ioctl 2321 */ 2322 int 2323 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 2324 { 2325 drm_i915_private_t *dev_priv = dev->dev_private; 2326 struct drm_i915_gem_wait *args = data; 2327 struct drm_i915_gem_object *obj; 2328 struct intel_ring_buffer *ring = NULL; 2329 struct timespec timeout_stack, *timeout = NULL; 2330 unsigned reset_counter; 2331 u32 seqno = 0; 2332 int ret = 0; 2333 2334 if (args->timeout_ns >= 0) { 2335 timeout_stack = ns_to_timespec(args->timeout_ns); 2336 timeout = &timeout_stack; 2337 } 2338 2339 ret = i915_mutex_lock_interruptible(dev); 2340 if (ret) 2341 return ret; 2342 2343 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle)); 2344 if (&obj->base == NULL) { 2345 mutex_unlock(&dev->struct_mutex); 2346 return -ENOENT; 2347 } 2348 2349 /* Need to make sure the object gets inactive eventually. */ 2350 ret = i915_gem_object_flush_active(obj); 2351 if (ret) 2352 goto out; 2353 2354 if (obj->active) { 2355 seqno = obj->last_read_seqno; 2356 ring = obj->ring; 2357 } 2358 2359 if (seqno == 0) 2360 goto out; 2361 2362 /* Do this after OLR check to make sure we make forward progress polling 2363 * on this IOCTL with a 0 timeout (like busy ioctl) 2364 */ 2365 if (!args->timeout_ns) { 2366 ret = -ETIME; 2367 goto out; 2368 } 2369 2370 drm_gem_object_unreference(&obj->base); 2371 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 2372 mutex_unlock(&dev->struct_mutex); 2373 2374 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout); 2375 if (timeout) { 2376 WARN_ON(!timespec_valid(timeout)); 2377 args->timeout_ns = timespec_to_ns(timeout); 2378 } 2379 return ret; 2380 2381 out: 2382 drm_gem_object_unreference(&obj->base); 2383 mutex_unlock(&dev->struct_mutex); 2384 return ret; 2385 } 2386 2387 /** 2388 * i915_gem_object_sync - sync an object to a ring. 2389 * 2390 * @obj: object which may be in use on another ring. 2391 * @to: ring we wish to use the object on. May be NULL. 2392 * 2393 * This code is meant to abstract object synchronization with the GPU. 2394 * Calling with NULL implies synchronizing the object with the CPU 2395 * rather than a particular GPU ring. 2396 * 2397 * Returns 0 if successful, else propagates up the lower layer error. 2398 */ 2399 int 2400 i915_gem_object_sync(struct drm_i915_gem_object *obj, 2401 struct intel_ring_buffer *to) 2402 { 2403 struct intel_ring_buffer *from = obj->ring; 2404 u32 seqno; 2405 int ret, idx; 2406 2407 if (from == NULL || to == from) 2408 return 0; 2409 2410 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev)) 2411 return i915_gem_object_wait_rendering(obj, false); 2412 2413 idx = intel_ring_sync_index(from, to); 2414 2415 seqno = obj->last_read_seqno; 2416 if (seqno <= from->sync_seqno[idx]) 2417 return 0; 2418 2419 ret = i915_gem_check_olr(obj->ring, seqno); 2420 if (ret) 2421 return ret; 2422 2423 ret = to->sync_to(to, from, seqno); 2424 if (!ret) 2425 /* We use last_read_seqno because sync_to() 2426 * might have just caused seqno wrap under 2427 * the radar. 2428 */ 2429 from->sync_seqno[idx] = obj->last_read_seqno; 2430 2431 return ret; 2432 } 2433 2434 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj) 2435 { 2436 u32 old_write_domain, old_read_domains; 2437 2438 /* Force a pagefault for domain tracking on next user access */ 2439 i915_gem_release_mmap(obj); 2440 2441 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 2442 return; 2443 2444 /* Wait for any direct GTT access to complete */ 2445 mb(); 2446 2447 old_read_domains = obj->base.read_domains; 2448 old_write_domain = obj->base.write_domain; 2449 2450 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT; 2451 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT; 2452 2453 trace_i915_gem_object_change_domain(obj, 2454 old_read_domains, 2455 old_write_domain); 2456 } 2457 2458 /** 2459 * Unbinds an object from the GTT aperture. 2460 */ 2461 int 2462 i915_gem_object_unbind(struct drm_i915_gem_object *obj) 2463 { 2464 drm_i915_private_t *dev_priv = obj->base.dev->dev_private; 2465 int ret; 2466 2467 if (obj->gtt_space == NULL) 2468 return 0; 2469 2470 if (obj->pin_count) 2471 return -EBUSY; 2472 2473 BUG_ON(obj->pages == NULL); 2474 2475 ret = i915_gem_object_finish_gpu(obj); 2476 if (ret) 2477 return ret; 2478 /* Continue on if we fail due to EIO, the GPU is hung so we 2479 * should be safe and we need to cleanup or else we might 2480 * cause memory corruption through use-after-free. 2481 */ 2482 2483 i915_gem_object_finish_gtt(obj); 2484 2485 /* release the fence reg _after_ flushing */ 2486 ret = i915_gem_object_put_fence(obj); 2487 if (ret) 2488 return ret; 2489 2490 trace_i915_gem_object_unbind(obj); 2491 2492 if (obj->has_global_gtt_mapping) 2493 i915_gem_gtt_unbind_object(obj); 2494 if (obj->has_aliasing_ppgtt_mapping) { 2495 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj); 2496 obj->has_aliasing_ppgtt_mapping = 0; 2497 } 2498 i915_gem_gtt_finish_object(obj); 2499 2500 list_del(&obj->mm_list); 2501 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list); 2502 /* Avoid an unnecessary call to unbind on rebind. */ 2503 obj->map_and_fenceable = true; 2504 2505 drm_mm_put_block(obj->gtt_space); 2506 obj->gtt_space = NULL; 2507 obj->gtt_offset = 0; 2508 2509 return 0; 2510 } 2511 2512 int i915_gpu_idle(struct drm_device *dev) 2513 { 2514 drm_i915_private_t *dev_priv = dev->dev_private; 2515 struct intel_ring_buffer *ring; 2516 int ret, i; 2517 2518 /* Flush everything onto the inactive list. */ 2519 for_each_ring(ring, dev_priv, i) { 2520 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID); 2521 if (ret) 2522 return ret; 2523 2524 ret = intel_ring_idle(ring); 2525 if (ret) 2526 return ret; 2527 } 2528 2529 return 0; 2530 } 2531 2532 static void i965_write_fence_reg(struct drm_device *dev, int reg, 2533 struct drm_i915_gem_object *obj) 2534 { 2535 drm_i915_private_t *dev_priv = dev->dev_private; 2536 int fence_reg; 2537 int fence_pitch_shift; 2538 uint64_t val; 2539 2540 if (INTEL_INFO(dev)->gen >= 6) { 2541 fence_reg = FENCE_REG_SANDYBRIDGE_0; 2542 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT; 2543 } else { 2544 fence_reg = FENCE_REG_965_0; 2545 fence_pitch_shift = I965_FENCE_PITCH_SHIFT; 2546 } 2547 2548 if (obj) { 2549 u32 size = obj->gtt_space->size; 2550 2551 val = (uint64_t)((obj->gtt_offset + size - 4096) & 2552 0xfffff000) << 32; 2553 val |= obj->gtt_offset & 0xfffff000; 2554 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift; 2555 if (obj->tiling_mode == I915_TILING_Y) 2556 val |= 1 << I965_FENCE_TILING_Y_SHIFT; 2557 val |= I965_FENCE_REG_VALID; 2558 } else 2559 val = 0; 2560 2561 fence_reg += reg * 8; 2562 I915_WRITE64(fence_reg, val); 2563 POSTING_READ(fence_reg); 2564 } 2565 2566 static void i915_write_fence_reg(struct drm_device *dev, int reg, 2567 struct drm_i915_gem_object *obj) 2568 { 2569 drm_i915_private_t *dev_priv = dev->dev_private; 2570 u32 val; 2571 2572 if (obj) { 2573 u32 size = obj->gtt_space->size; 2574 int pitch_val; 2575 int tile_width; 2576 2577 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) || 2578 (size & -size) != size || 2579 (obj->gtt_offset & (size - 1)), 2580 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n", 2581 obj->gtt_offset, obj->map_and_fenceable, size); 2582 2583 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)) 2584 tile_width = 128; 2585 else 2586 tile_width = 512; 2587 2588 /* Note: pitch better be a power of two tile widths */ 2589 pitch_val = obj->stride / tile_width; 2590 pitch_val = ffs(pitch_val) - 1; 2591 2592 val = obj->gtt_offset; 2593 if (obj->tiling_mode == I915_TILING_Y) 2594 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 2595 val |= I915_FENCE_SIZE_BITS(size); 2596 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 2597 val |= I830_FENCE_REG_VALID; 2598 } else 2599 val = 0; 2600 2601 if (reg < 8) 2602 reg = FENCE_REG_830_0 + reg * 4; 2603 else 2604 reg = FENCE_REG_945_8 + (reg - 8) * 4; 2605 2606 I915_WRITE(reg, val); 2607 POSTING_READ(reg); 2608 } 2609 2610 static void i830_write_fence_reg(struct drm_device *dev, int reg, 2611 struct drm_i915_gem_object *obj) 2612 { 2613 drm_i915_private_t *dev_priv = dev->dev_private; 2614 uint32_t val; 2615 2616 if (obj) { 2617 u32 size = obj->gtt_space->size; 2618 uint32_t pitch_val; 2619 2620 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) || 2621 (size & -size) != size || 2622 (obj->gtt_offset & (size - 1)), 2623 "object 0x%08x not 512K or pot-size 0x%08x aligned\n", 2624 obj->gtt_offset, size); 2625 2626 pitch_val = obj->stride / 128; 2627 pitch_val = ffs(pitch_val) - 1; 2628 2629 val = obj->gtt_offset; 2630 if (obj->tiling_mode == I915_TILING_Y) 2631 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 2632 val |= I830_FENCE_SIZE_BITS(size); 2633 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 2634 val |= I830_FENCE_REG_VALID; 2635 } else 2636 val = 0; 2637 2638 I915_WRITE(FENCE_REG_830_0 + reg * 4, val); 2639 POSTING_READ(FENCE_REG_830_0 + reg * 4); 2640 } 2641 2642 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj) 2643 { 2644 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT; 2645 } 2646 2647 static void i915_gem_write_fence(struct drm_device *dev, int reg, 2648 struct drm_i915_gem_object *obj) 2649 { 2650 struct drm_i915_private *dev_priv = dev->dev_private; 2651 2652 /* Ensure that all CPU reads are completed before installing a fence 2653 * and all writes before removing the fence. 2654 */ 2655 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj)) 2656 mb(); 2657 2658 switch (INTEL_INFO(dev)->gen) { 2659 case 7: 2660 case 6: 2661 case 5: 2662 case 4: i965_write_fence_reg(dev, reg, obj); break; 2663 case 3: i915_write_fence_reg(dev, reg, obj); break; 2664 case 2: i830_write_fence_reg(dev, reg, obj); break; 2665 default: BUG(); 2666 } 2667 2668 /* And similarly be paranoid that no direct access to this region 2669 * is reordered to before the fence is installed. 2670 */ 2671 if (i915_gem_object_needs_mb(obj)) 2672 mb(); 2673 } 2674 2675 static inline int fence_number(struct drm_i915_private *dev_priv, 2676 struct drm_i915_fence_reg *fence) 2677 { 2678 return fence - dev_priv->fence_regs; 2679 } 2680 2681 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 2682 struct drm_i915_fence_reg *fence, 2683 bool enable) 2684 { 2685 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2686 int reg = fence_number(dev_priv, fence); 2687 2688 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL); 2689 2690 if (enable) { 2691 obj->fence_reg = reg; 2692 fence->obj = obj; 2693 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list); 2694 } else { 2695 obj->fence_reg = I915_FENCE_REG_NONE; 2696 fence->obj = NULL; 2697 list_del_init(&fence->lru_list); 2698 } 2699 } 2700 2701 static int 2702 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj) 2703 { 2704 if (obj->last_fenced_seqno) { 2705 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno); 2706 if (ret) 2707 return ret; 2708 2709 obj->last_fenced_seqno = 0; 2710 } 2711 2712 obj->fenced_gpu_access = false; 2713 return 0; 2714 } 2715 2716 int 2717 i915_gem_object_put_fence(struct drm_i915_gem_object *obj) 2718 { 2719 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2720 int ret; 2721 2722 ret = i915_gem_object_wait_fence(obj); 2723 if (ret) 2724 return ret; 2725 2726 if (obj->fence_reg == I915_FENCE_REG_NONE) 2727 return 0; 2728 2729 i915_gem_object_update_fence(obj, 2730 &dev_priv->fence_regs[obj->fence_reg], 2731 false); 2732 i915_gem_object_fence_lost(obj); 2733 2734 return 0; 2735 } 2736 2737 static struct drm_i915_fence_reg * 2738 i915_find_fence_reg(struct drm_device *dev) 2739 { 2740 struct drm_i915_private *dev_priv = dev->dev_private; 2741 struct drm_i915_fence_reg *reg, *avail; 2742 int i; 2743 2744 /* First try to find a free reg */ 2745 avail = NULL; 2746 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) { 2747 reg = &dev_priv->fence_regs[i]; 2748 if (!reg->obj) 2749 return reg; 2750 2751 if (!reg->pin_count) 2752 avail = reg; 2753 } 2754 2755 if (avail == NULL) 2756 return NULL; 2757 2758 /* None available, try to steal one or wait for a user to finish */ 2759 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) { 2760 if (reg->pin_count) 2761 continue; 2762 2763 return reg; 2764 } 2765 2766 return NULL; 2767 } 2768 2769 /** 2770 * i915_gem_object_get_fence - set up fencing for an object 2771 * @obj: object to map through a fence reg 2772 * 2773 * When mapping objects through the GTT, userspace wants to be able to write 2774 * to them without having to worry about swizzling if the object is tiled. 2775 * This function walks the fence regs looking for a free one for @obj, 2776 * stealing one if it can't find any. 2777 * 2778 * It then sets up the reg based on the object's properties: address, pitch 2779 * and tiling format. 2780 * 2781 * For an untiled surface, this removes any existing fence. 2782 */ 2783 int 2784 i915_gem_object_get_fence(struct drm_i915_gem_object *obj) 2785 { 2786 struct drm_device *dev = obj->base.dev; 2787 struct drm_i915_private *dev_priv = dev->dev_private; 2788 bool enable = obj->tiling_mode != I915_TILING_NONE; 2789 struct drm_i915_fence_reg *reg; 2790 int ret; 2791 2792 /* Have we updated the tiling parameters upon the object and so 2793 * will need to serialise the write to the associated fence register? 2794 */ 2795 if (obj->fence_dirty) { 2796 ret = i915_gem_object_wait_fence(obj); 2797 if (ret) 2798 return ret; 2799 } 2800 2801 /* Just update our place in the LRU if our fence is getting reused. */ 2802 if (obj->fence_reg != I915_FENCE_REG_NONE) { 2803 reg = &dev_priv->fence_regs[obj->fence_reg]; 2804 if (!obj->fence_dirty) { 2805 list_move_tail(®->lru_list, 2806 &dev_priv->mm.fence_list); 2807 return 0; 2808 } 2809 } else if (enable) { 2810 reg = i915_find_fence_reg(dev); 2811 if (reg == NULL) 2812 return -EDEADLK; 2813 2814 if (reg->obj) { 2815 struct drm_i915_gem_object *old = reg->obj; 2816 2817 ret = i915_gem_object_wait_fence(old); 2818 if (ret) 2819 return ret; 2820 2821 i915_gem_object_fence_lost(old); 2822 } 2823 } else 2824 return 0; 2825 2826 i915_gem_object_update_fence(obj, reg, enable); 2827 obj->fence_dirty = false; 2828 2829 return 0; 2830 } 2831 2832 static bool i915_gem_valid_gtt_space(struct drm_device *dev, 2833 struct drm_mm_node *gtt_space, 2834 unsigned long cache_level) 2835 { 2836 struct drm_mm_node *other; 2837 2838 /* On non-LLC machines we have to be careful when putting differing 2839 * types of snoopable memory together to avoid the prefetcher 2840 * crossing memory domains and dying. 2841 */ 2842 if (HAS_LLC(dev)) 2843 return true; 2844 2845 if (gtt_space == NULL) 2846 return true; 2847 2848 if (list_empty(>t_space->node_list)) 2849 return true; 2850 2851 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list); 2852 if (other->allocated && !other->hole_follows && other->color != cache_level) 2853 return false; 2854 2855 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list); 2856 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level) 2857 return false; 2858 2859 return true; 2860 } 2861 2862 static void i915_gem_verify_gtt(struct drm_device *dev) 2863 { 2864 #if WATCH_GTT 2865 struct drm_i915_private *dev_priv = dev->dev_private; 2866 struct drm_i915_gem_object *obj; 2867 int err = 0; 2868 2869 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) { 2870 if (obj->gtt_space == NULL) { 2871 printk(KERN_ERR "object found on GTT list with no space reserved\n"); 2872 err++; 2873 continue; 2874 } 2875 2876 if (obj->cache_level != obj->gtt_space->color) { 2877 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n", 2878 obj->gtt_space->start, 2879 obj->gtt_space->start + obj->gtt_space->size, 2880 obj->cache_level, 2881 obj->gtt_space->color); 2882 err++; 2883 continue; 2884 } 2885 2886 if (!i915_gem_valid_gtt_space(dev, 2887 obj->gtt_space, 2888 obj->cache_level)) { 2889 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n", 2890 obj->gtt_space->start, 2891 obj->gtt_space->start + obj->gtt_space->size, 2892 obj->cache_level); 2893 err++; 2894 continue; 2895 } 2896 } 2897 2898 WARN_ON(err); 2899 #endif 2900 } 2901 2902 /** 2903 * Finds free space in the GTT aperture and binds the object there. 2904 */ 2905 static int 2906 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, 2907 unsigned alignment, 2908 bool map_and_fenceable, 2909 bool nonblocking) 2910 { 2911 struct drm_device *dev = obj->base.dev; 2912 drm_i915_private_t *dev_priv = dev->dev_private; 2913 struct drm_mm_node *node; 2914 u32 size, fence_size, fence_alignment, unfenced_alignment; 2915 bool mappable, fenceable; 2916 int ret; 2917 2918 fence_size = i915_gem_get_gtt_size(dev, 2919 obj->base.size, 2920 obj->tiling_mode); 2921 fence_alignment = i915_gem_get_gtt_alignment(dev, 2922 obj->base.size, 2923 obj->tiling_mode, true); 2924 unfenced_alignment = 2925 i915_gem_get_gtt_alignment(dev, 2926 obj->base.size, 2927 obj->tiling_mode, false); 2928 2929 if (alignment == 0) 2930 alignment = map_and_fenceable ? fence_alignment : 2931 unfenced_alignment; 2932 if (map_and_fenceable && alignment & (fence_alignment - 1)) { 2933 DRM_ERROR("Invalid object alignment requested %u\n", alignment); 2934 return -EINVAL; 2935 } 2936 2937 size = map_and_fenceable ? fence_size : obj->base.size; 2938 2939 /* If the object is bigger than the entire aperture, reject it early 2940 * before evicting everything in a vain attempt to find space. 2941 */ 2942 if (obj->base.size > 2943 (map_and_fenceable ? dev_priv->gtt.mappable_end : dev_priv->gtt.total)) { 2944 DRM_ERROR("Attempting to bind an object larger than the aperture\n"); 2945 return -E2BIG; 2946 } 2947 2948 ret = i915_gem_object_get_pages(obj); 2949 if (ret) 2950 return ret; 2951 2952 i915_gem_object_pin_pages(obj); 2953 2954 node = kzalloc(sizeof(*node), GFP_KERNEL); 2955 if (node == NULL) { 2956 i915_gem_object_unpin_pages(obj); 2957 return -ENOMEM; 2958 } 2959 2960 search_free: 2961 if (map_and_fenceable) 2962 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node, 2963 size, alignment, obj->cache_level, 2964 0, dev_priv->gtt.mappable_end); 2965 else 2966 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node, 2967 size, alignment, obj->cache_level); 2968 if (ret) { 2969 ret = i915_gem_evict_something(dev, size, alignment, 2970 obj->cache_level, 2971 map_and_fenceable, 2972 nonblocking); 2973 if (ret == 0) 2974 goto search_free; 2975 2976 i915_gem_object_unpin_pages(obj); 2977 kfree(node); 2978 return ret; 2979 } 2980 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) { 2981 i915_gem_object_unpin_pages(obj); 2982 drm_mm_put_block(node); 2983 return -EINVAL; 2984 } 2985 2986 ret = i915_gem_gtt_prepare_object(obj); 2987 if (ret) { 2988 i915_gem_object_unpin_pages(obj); 2989 drm_mm_put_block(node); 2990 return ret; 2991 } 2992 2993 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list); 2994 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 2995 2996 obj->gtt_space = node; 2997 obj->gtt_offset = node->start; 2998 2999 fenceable = 3000 node->size == fence_size && 3001 (node->start & (fence_alignment - 1)) == 0; 3002 3003 mappable = 3004 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end; 3005 3006 obj->map_and_fenceable = mappable && fenceable; 3007 3008 i915_gem_object_unpin_pages(obj); 3009 trace_i915_gem_object_bind(obj, map_and_fenceable); 3010 i915_gem_verify_gtt(dev); 3011 return 0; 3012 } 3013 3014 void 3015 i915_gem_clflush_object(struct drm_i915_gem_object *obj) 3016 { 3017 /* If we don't have a page list set up, then we're not pinned 3018 * to GPU, and we can ignore the cache flush because it'll happen 3019 * again at bind time. 3020 */ 3021 if (obj->pages == NULL) 3022 return; 3023 3024 /* 3025 * Stolen memory is always coherent with the GPU as it is explicitly 3026 * marked as wc by the system, or the system is cache-coherent. 3027 */ 3028 if (obj->stolen) 3029 return; 3030 3031 /* If the GPU is snooping the contents of the CPU cache, 3032 * we do not need to manually clear the CPU cache lines. However, 3033 * the caches are only snooped when the render cache is 3034 * flushed/invalidated. As we always have to emit invalidations 3035 * and flushes when moving into and out of the RENDER domain, correct 3036 * snooping behaviour occurs naturally as the result of our domain 3037 * tracking. 3038 */ 3039 if (obj->cache_level != I915_CACHE_NONE) 3040 return; 3041 3042 trace_i915_gem_object_clflush(obj); 3043 3044 drm_clflush_sg(obj->pages); 3045 } 3046 3047 /** Flushes the GTT write domain for the object if it's dirty. */ 3048 static void 3049 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj) 3050 { 3051 uint32_t old_write_domain; 3052 3053 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT) 3054 return; 3055 3056 /* No actual flushing is required for the GTT write domain. Writes 3057 * to it immediately go to main memory as far as we know, so there's 3058 * no chipset flush. It also doesn't land in render cache. 3059 * 3060 * However, we do have to enforce the order so that all writes through 3061 * the GTT land before any writes to the device, such as updates to 3062 * the GATT itself. 3063 */ 3064 wmb(); 3065 3066 old_write_domain = obj->base.write_domain; 3067 obj->base.write_domain = 0; 3068 3069 trace_i915_gem_object_change_domain(obj, 3070 obj->base.read_domains, 3071 old_write_domain); 3072 } 3073 3074 /** Flushes the CPU write domain for the object if it's dirty. */ 3075 static void 3076 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj) 3077 { 3078 uint32_t old_write_domain; 3079 3080 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) 3081 return; 3082 3083 i915_gem_clflush_object(obj); 3084 i915_gem_chipset_flush(obj->base.dev); 3085 old_write_domain = obj->base.write_domain; 3086 obj->base.write_domain = 0; 3087 3088 trace_i915_gem_object_change_domain(obj, 3089 obj->base.read_domains, 3090 old_write_domain); 3091 } 3092 3093 /** 3094 * Moves a single object to the GTT read, and possibly write domain. 3095 * 3096 * This function returns when the move is complete, including waiting on 3097 * flushes to occur. 3098 */ 3099 int 3100 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) 3101 { 3102 drm_i915_private_t *dev_priv = obj->base.dev->dev_private; 3103 uint32_t old_write_domain, old_read_domains; 3104 int ret; 3105 3106 /* Not valid to be called on unbound objects. */ 3107 if (obj->gtt_space == NULL) 3108 return -EINVAL; 3109 3110 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) 3111 return 0; 3112 3113 ret = i915_gem_object_wait_rendering(obj, !write); 3114 if (ret) 3115 return ret; 3116 3117 i915_gem_object_flush_cpu_write_domain(obj); 3118 3119 /* Serialise direct access to this object with the barriers for 3120 * coherent writes from the GPU, by effectively invalidating the 3121 * GTT domain upon first access. 3122 */ 3123 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 3124 mb(); 3125 3126 old_write_domain = obj->base.write_domain; 3127 old_read_domains = obj->base.read_domains; 3128 3129 /* It should now be out of any other write domains, and we can update 3130 * the domain values for our changes. 3131 */ 3132 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 3133 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3134 if (write) { 3135 obj->base.read_domains = I915_GEM_DOMAIN_GTT; 3136 obj->base.write_domain = I915_GEM_DOMAIN_GTT; 3137 obj->dirty = 1; 3138 } 3139 3140 trace_i915_gem_object_change_domain(obj, 3141 old_read_domains, 3142 old_write_domain); 3143 3144 /* And bump the LRU for this access */ 3145 if (i915_gem_object_is_inactive(obj)) 3146 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 3147 3148 return 0; 3149 } 3150 3151 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3152 enum i915_cache_level cache_level) 3153 { 3154 struct drm_device *dev = obj->base.dev; 3155 drm_i915_private_t *dev_priv = dev->dev_private; 3156 int ret; 3157 3158 if (obj->cache_level == cache_level) 3159 return 0; 3160 3161 if (obj->pin_count) { 3162 DRM_DEBUG("can not change the cache level of pinned objects\n"); 3163 return -EBUSY; 3164 } 3165 3166 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) { 3167 ret = i915_gem_object_unbind(obj); 3168 if (ret) 3169 return ret; 3170 } 3171 3172 if (obj->gtt_space) { 3173 ret = i915_gem_object_finish_gpu(obj); 3174 if (ret) 3175 return ret; 3176 3177 i915_gem_object_finish_gtt(obj); 3178 3179 /* Before SandyBridge, you could not use tiling or fence 3180 * registers with snooped memory, so relinquish any fences 3181 * currently pointing to our region in the aperture. 3182 */ 3183 if (INTEL_INFO(dev)->gen < 6) { 3184 ret = i915_gem_object_put_fence(obj); 3185 if (ret) 3186 return ret; 3187 } 3188 3189 if (obj->has_global_gtt_mapping) 3190 i915_gem_gtt_bind_object(obj, cache_level); 3191 if (obj->has_aliasing_ppgtt_mapping) 3192 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt, 3193 obj, cache_level); 3194 3195 obj->gtt_space->color = cache_level; 3196 } 3197 3198 if (cache_level == I915_CACHE_NONE) { 3199 u32 old_read_domains, old_write_domain; 3200 3201 /* If we're coming from LLC cached, then we haven't 3202 * actually been tracking whether the data is in the 3203 * CPU cache or not, since we only allow one bit set 3204 * in obj->write_domain and have been skipping the clflushes. 3205 * Just set it to the CPU cache for now. 3206 */ 3207 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU); 3208 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU); 3209 3210 old_read_domains = obj->base.read_domains; 3211 old_write_domain = obj->base.write_domain; 3212 3213 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3214 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3215 3216 trace_i915_gem_object_change_domain(obj, 3217 old_read_domains, 3218 old_write_domain); 3219 } 3220 3221 obj->cache_level = cache_level; 3222 i915_gem_verify_gtt(dev); 3223 return 0; 3224 } 3225 3226 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3227 struct drm_file *file) 3228 { 3229 struct drm_i915_gem_caching *args = data; 3230 struct drm_i915_gem_object *obj; 3231 int ret; 3232 3233 ret = i915_mutex_lock_interruptible(dev); 3234 if (ret) 3235 return ret; 3236 3237 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3238 if (&obj->base == NULL) { 3239 ret = -ENOENT; 3240 goto unlock; 3241 } 3242 3243 args->caching = obj->cache_level != I915_CACHE_NONE; 3244 3245 drm_gem_object_unreference(&obj->base); 3246 unlock: 3247 mutex_unlock(&dev->struct_mutex); 3248 return ret; 3249 } 3250 3251 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3252 struct drm_file *file) 3253 { 3254 struct drm_i915_gem_caching *args = data; 3255 struct drm_i915_gem_object *obj; 3256 enum i915_cache_level level; 3257 int ret; 3258 3259 switch (args->caching) { 3260 case I915_CACHING_NONE: 3261 level = I915_CACHE_NONE; 3262 break; 3263 case I915_CACHING_CACHED: 3264 level = I915_CACHE_LLC; 3265 break; 3266 default: 3267 return -EINVAL; 3268 } 3269 3270 ret = i915_mutex_lock_interruptible(dev); 3271 if (ret) 3272 return ret; 3273 3274 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3275 if (&obj->base == NULL) { 3276 ret = -ENOENT; 3277 goto unlock; 3278 } 3279 3280 ret = i915_gem_object_set_cache_level(obj, level); 3281 3282 drm_gem_object_unreference(&obj->base); 3283 unlock: 3284 mutex_unlock(&dev->struct_mutex); 3285 return ret; 3286 } 3287 3288 /* 3289 * Prepare buffer for display plane (scanout, cursors, etc). 3290 * Can be called from an uninterruptible phase (modesetting) and allows 3291 * any flushes to be pipelined (for pageflips). 3292 */ 3293 int 3294 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3295 u32 alignment, 3296 struct intel_ring_buffer *pipelined) 3297 { 3298 u32 old_read_domains, old_write_domain; 3299 int ret; 3300 3301 if (pipelined != obj->ring) { 3302 ret = i915_gem_object_sync(obj, pipelined); 3303 if (ret) 3304 return ret; 3305 } 3306 3307 /* The display engine is not coherent with the LLC cache on gen6. As 3308 * a result, we make sure that the pinning that is about to occur is 3309 * done with uncached PTEs. This is lowest common denominator for all 3310 * chipsets. 3311 * 3312 * However for gen6+, we could do better by using the GFDT bit instead 3313 * of uncaching, which would allow us to flush all the LLC-cached data 3314 * with that bit in the PTE to main memory with just one PIPE_CONTROL. 3315 */ 3316 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE); 3317 if (ret) 3318 return ret; 3319 3320 /* As the user may map the buffer once pinned in the display plane 3321 * (e.g. libkms for the bootup splash), we have to ensure that we 3322 * always use map_and_fenceable for all scanout buffers. 3323 */ 3324 ret = i915_gem_object_pin(obj, alignment, true, false); 3325 if (ret) 3326 return ret; 3327 3328 i915_gem_object_flush_cpu_write_domain(obj); 3329 3330 old_write_domain = obj->base.write_domain; 3331 old_read_domains = obj->base.read_domains; 3332 3333 /* It should now be out of any other write domains, and we can update 3334 * the domain values for our changes. 3335 */ 3336 obj->base.write_domain = 0; 3337 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3338 3339 trace_i915_gem_object_change_domain(obj, 3340 old_read_domains, 3341 old_write_domain); 3342 3343 return 0; 3344 } 3345 3346 int 3347 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj) 3348 { 3349 int ret; 3350 3351 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0) 3352 return 0; 3353 3354 ret = i915_gem_object_wait_rendering(obj, false); 3355 if (ret) 3356 return ret; 3357 3358 /* Ensure that we invalidate the GPU's caches and TLBs. */ 3359 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; 3360 return 0; 3361 } 3362 3363 /** 3364 * Moves a single object to the CPU read, and possibly write domain. 3365 * 3366 * This function returns when the move is complete, including waiting on 3367 * flushes to occur. 3368 */ 3369 int 3370 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) 3371 { 3372 uint32_t old_write_domain, old_read_domains; 3373 int ret; 3374 3375 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) 3376 return 0; 3377 3378 ret = i915_gem_object_wait_rendering(obj, !write); 3379 if (ret) 3380 return ret; 3381 3382 i915_gem_object_flush_gtt_write_domain(obj); 3383 3384 old_write_domain = obj->base.write_domain; 3385 old_read_domains = obj->base.read_domains; 3386 3387 /* Flush the CPU cache if it's still invalid. */ 3388 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { 3389 i915_gem_clflush_object(obj); 3390 3391 obj->base.read_domains |= I915_GEM_DOMAIN_CPU; 3392 } 3393 3394 /* It should now be out of any other write domains, and we can update 3395 * the domain values for our changes. 3396 */ 3397 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); 3398 3399 /* If we're writing through the CPU, then the GPU read domains will 3400 * need to be invalidated at next use. 3401 */ 3402 if (write) { 3403 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3404 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3405 } 3406 3407 trace_i915_gem_object_change_domain(obj, 3408 old_read_domains, 3409 old_write_domain); 3410 3411 return 0; 3412 } 3413 3414 /* Throttle our rendering by waiting until the ring has completed our requests 3415 * emitted over 20 msec ago. 3416 * 3417 * Note that if we were to use the current jiffies each time around the loop, 3418 * we wouldn't escape the function with any frames outstanding if the time to 3419 * render a frame was over 20ms. 3420 * 3421 * This should get us reasonable parallelism between CPU and GPU but also 3422 * relatively low latency when blocking on a particular request to finish. 3423 */ 3424 static int 3425 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) 3426 { 3427 struct drm_i915_private *dev_priv = dev->dev_private; 3428 struct drm_i915_file_private *file_priv = file->driver_priv; 3429 unsigned long recent_enough = jiffies - msecs_to_jiffies(20); 3430 struct drm_i915_gem_request *request; 3431 struct intel_ring_buffer *ring = NULL; 3432 unsigned reset_counter; 3433 u32 seqno = 0; 3434 int ret; 3435 3436 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 3437 if (ret) 3438 return ret; 3439 3440 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false); 3441 if (ret) 3442 return ret; 3443 3444 spin_lock(&file_priv->mm.lock); 3445 list_for_each_entry(request, &file_priv->mm.request_list, client_list) { 3446 if (time_after_eq(request->emitted_jiffies, recent_enough)) 3447 break; 3448 3449 ring = request->ring; 3450 seqno = request->seqno; 3451 } 3452 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 3453 spin_unlock(&file_priv->mm.lock); 3454 3455 if (seqno == 0) 3456 return 0; 3457 3458 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL); 3459 if (ret == 0) 3460 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0); 3461 3462 return ret; 3463 } 3464 3465 int 3466 i915_gem_object_pin(struct drm_i915_gem_object *obj, 3467 uint32_t alignment, 3468 bool map_and_fenceable, 3469 bool nonblocking) 3470 { 3471 int ret; 3472 3473 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT)) 3474 return -EBUSY; 3475 3476 if (obj->gtt_space != NULL) { 3477 if ((alignment && obj->gtt_offset & (alignment - 1)) || 3478 (map_and_fenceable && !obj->map_and_fenceable)) { 3479 WARN(obj->pin_count, 3480 "bo is already pinned with incorrect alignment:" 3481 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d," 3482 " obj->map_and_fenceable=%d\n", 3483 obj->gtt_offset, alignment, 3484 map_and_fenceable, 3485 obj->map_and_fenceable); 3486 ret = i915_gem_object_unbind(obj); 3487 if (ret) 3488 return ret; 3489 } 3490 } 3491 3492 if (obj->gtt_space == NULL) { 3493 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3494 3495 ret = i915_gem_object_bind_to_gtt(obj, alignment, 3496 map_and_fenceable, 3497 nonblocking); 3498 if (ret) 3499 return ret; 3500 3501 if (!dev_priv->mm.aliasing_ppgtt) 3502 i915_gem_gtt_bind_object(obj, obj->cache_level); 3503 } 3504 3505 if (!obj->has_global_gtt_mapping && map_and_fenceable) 3506 i915_gem_gtt_bind_object(obj, obj->cache_level); 3507 3508 obj->pin_count++; 3509 obj->pin_mappable |= map_and_fenceable; 3510 3511 return 0; 3512 } 3513 3514 void 3515 i915_gem_object_unpin(struct drm_i915_gem_object *obj) 3516 { 3517 BUG_ON(obj->pin_count == 0); 3518 BUG_ON(obj->gtt_space == NULL); 3519 3520 if (--obj->pin_count == 0) 3521 obj->pin_mappable = false; 3522 } 3523 3524 int 3525 i915_gem_pin_ioctl(struct drm_device *dev, void *data, 3526 struct drm_file *file) 3527 { 3528 struct drm_i915_gem_pin *args = data; 3529 struct drm_i915_gem_object *obj; 3530 int ret; 3531 3532 ret = i915_mutex_lock_interruptible(dev); 3533 if (ret) 3534 return ret; 3535 3536 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3537 if (&obj->base == NULL) { 3538 ret = -ENOENT; 3539 goto unlock; 3540 } 3541 3542 if (obj->madv != I915_MADV_WILLNEED) { 3543 DRM_ERROR("Attempting to pin a purgeable buffer\n"); 3544 ret = -EINVAL; 3545 goto out; 3546 } 3547 3548 if (obj->pin_filp != NULL && obj->pin_filp != file) { 3549 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n", 3550 args->handle); 3551 ret = -EINVAL; 3552 goto out; 3553 } 3554 3555 if (obj->user_pin_count == 0) { 3556 ret = i915_gem_object_pin(obj, args->alignment, true, false); 3557 if (ret) 3558 goto out; 3559 } 3560 3561 obj->user_pin_count++; 3562 obj->pin_filp = file; 3563 3564 /* XXX - flush the CPU caches for pinned objects 3565 * as the X server doesn't manage domains yet 3566 */ 3567 i915_gem_object_flush_cpu_write_domain(obj); 3568 args->offset = obj->gtt_offset; 3569 out: 3570 drm_gem_object_unreference(&obj->base); 3571 unlock: 3572 mutex_unlock(&dev->struct_mutex); 3573 return ret; 3574 } 3575 3576 int 3577 i915_gem_unpin_ioctl(struct drm_device *dev, void *data, 3578 struct drm_file *file) 3579 { 3580 struct drm_i915_gem_pin *args = data; 3581 struct drm_i915_gem_object *obj; 3582 int ret; 3583 3584 ret = i915_mutex_lock_interruptible(dev); 3585 if (ret) 3586 return ret; 3587 3588 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3589 if (&obj->base == NULL) { 3590 ret = -ENOENT; 3591 goto unlock; 3592 } 3593 3594 if (obj->pin_filp != file) { 3595 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n", 3596 args->handle); 3597 ret = -EINVAL; 3598 goto out; 3599 } 3600 obj->user_pin_count--; 3601 if (obj->user_pin_count == 0) { 3602 obj->pin_filp = NULL; 3603 i915_gem_object_unpin(obj); 3604 } 3605 3606 out: 3607 drm_gem_object_unreference(&obj->base); 3608 unlock: 3609 mutex_unlock(&dev->struct_mutex); 3610 return ret; 3611 } 3612 3613 int 3614 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 3615 struct drm_file *file) 3616 { 3617 struct drm_i915_gem_busy *args = data; 3618 struct drm_i915_gem_object *obj; 3619 int ret; 3620 3621 ret = i915_mutex_lock_interruptible(dev); 3622 if (ret) 3623 return ret; 3624 3625 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3626 if (&obj->base == NULL) { 3627 ret = -ENOENT; 3628 goto unlock; 3629 } 3630 3631 /* Count all active objects as busy, even if they are currently not used 3632 * by the gpu. Users of this interface expect objects to eventually 3633 * become non-busy without any further actions, therefore emit any 3634 * necessary flushes here. 3635 */ 3636 ret = i915_gem_object_flush_active(obj); 3637 3638 args->busy = obj->active; 3639 if (obj->ring) { 3640 BUILD_BUG_ON(I915_NUM_RINGS > 16); 3641 args->busy |= intel_ring_flag(obj->ring) << 16; 3642 } 3643 3644 drm_gem_object_unreference(&obj->base); 3645 unlock: 3646 mutex_unlock(&dev->struct_mutex); 3647 return ret; 3648 } 3649 3650 int 3651 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 3652 struct drm_file *file_priv) 3653 { 3654 return i915_gem_ring_throttle(dev, file_priv); 3655 } 3656 3657 int 3658 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 3659 struct drm_file *file_priv) 3660 { 3661 struct drm_i915_gem_madvise *args = data; 3662 struct drm_i915_gem_object *obj; 3663 int ret; 3664 3665 switch (args->madv) { 3666 case I915_MADV_DONTNEED: 3667 case I915_MADV_WILLNEED: 3668 break; 3669 default: 3670 return -EINVAL; 3671 } 3672 3673 ret = i915_mutex_lock_interruptible(dev); 3674 if (ret) 3675 return ret; 3676 3677 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle)); 3678 if (&obj->base == NULL) { 3679 ret = -ENOENT; 3680 goto unlock; 3681 } 3682 3683 if (obj->pin_count) { 3684 ret = -EINVAL; 3685 goto out; 3686 } 3687 3688 if (obj->madv != __I915_MADV_PURGED) 3689 obj->madv = args->madv; 3690 3691 /* if the object is no longer attached, discard its backing storage */ 3692 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL) 3693 i915_gem_object_truncate(obj); 3694 3695 args->retained = obj->madv != __I915_MADV_PURGED; 3696 3697 out: 3698 drm_gem_object_unreference(&obj->base); 3699 unlock: 3700 mutex_unlock(&dev->struct_mutex); 3701 return ret; 3702 } 3703 3704 void i915_gem_object_init(struct drm_i915_gem_object *obj, 3705 const struct drm_i915_gem_object_ops *ops) 3706 { 3707 INIT_LIST_HEAD(&obj->mm_list); 3708 INIT_LIST_HEAD(&obj->gtt_list); 3709 INIT_LIST_HEAD(&obj->ring_list); 3710 INIT_LIST_HEAD(&obj->exec_list); 3711 3712 obj->ops = ops; 3713 3714 obj->fence_reg = I915_FENCE_REG_NONE; 3715 obj->madv = I915_MADV_WILLNEED; 3716 /* Avoid an unnecessary call to unbind on the first bind. */ 3717 obj->map_and_fenceable = true; 3718 3719 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size); 3720 } 3721 3722 static const struct drm_i915_gem_object_ops i915_gem_object_ops = { 3723 .get_pages = i915_gem_object_get_pages_gtt, 3724 .put_pages = i915_gem_object_put_pages_gtt, 3725 }; 3726 3727 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev, 3728 size_t size) 3729 { 3730 struct drm_i915_gem_object *obj; 3731 struct address_space *mapping; 3732 gfp_t mask; 3733 3734 obj = i915_gem_object_alloc(dev); 3735 if (obj == NULL) 3736 return NULL; 3737 3738 if (drm_gem_object_init(dev, &obj->base, size) != 0) { 3739 i915_gem_object_free(obj); 3740 return NULL; 3741 } 3742 3743 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 3744 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) { 3745 /* 965gm cannot relocate objects above 4GiB. */ 3746 mask &= ~__GFP_HIGHMEM; 3747 mask |= __GFP_DMA32; 3748 } 3749 3750 mapping = file_inode(obj->base.filp)->i_mapping; 3751 mapping_set_gfp_mask(mapping, mask); 3752 3753 i915_gem_object_init(obj, &i915_gem_object_ops); 3754 3755 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3756 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3757 3758 if (HAS_LLC(dev)) { 3759 /* On some devices, we can have the GPU use the LLC (the CPU 3760 * cache) for about a 10% performance improvement 3761 * compared to uncached. Graphics requests other than 3762 * display scanout are coherent with the CPU in 3763 * accessing this cache. This means in this mode we 3764 * don't need to clflush on the CPU side, and on the 3765 * GPU side we only need to flush internal caches to 3766 * get data visible to the CPU. 3767 * 3768 * However, we maintain the display planes as UC, and so 3769 * need to rebind when first used as such. 3770 */ 3771 obj->cache_level = I915_CACHE_LLC; 3772 } else 3773 obj->cache_level = I915_CACHE_NONE; 3774 3775 return obj; 3776 } 3777 3778 int i915_gem_init_object(struct drm_gem_object *obj) 3779 { 3780 BUG(); 3781 3782 return 0; 3783 } 3784 3785 void i915_gem_free_object(struct drm_gem_object *gem_obj) 3786 { 3787 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 3788 struct drm_device *dev = obj->base.dev; 3789 drm_i915_private_t *dev_priv = dev->dev_private; 3790 3791 trace_i915_gem_object_destroy(obj); 3792 3793 if (obj->phys_obj) 3794 i915_gem_detach_phys_object(dev, obj); 3795 3796 obj->pin_count = 0; 3797 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) { 3798 bool was_interruptible; 3799 3800 was_interruptible = dev_priv->mm.interruptible; 3801 dev_priv->mm.interruptible = false; 3802 3803 WARN_ON(i915_gem_object_unbind(obj)); 3804 3805 dev_priv->mm.interruptible = was_interruptible; 3806 } 3807 3808 obj->pages_pin_count = 0; 3809 i915_gem_object_put_pages(obj); 3810 i915_gem_object_free_mmap_offset(obj); 3811 i915_gem_object_release_stolen(obj); 3812 3813 BUG_ON(obj->pages); 3814 3815 if (obj->base.import_attach) 3816 drm_prime_gem_destroy(&obj->base, NULL); 3817 3818 drm_gem_object_release(&obj->base); 3819 i915_gem_info_remove_obj(dev_priv, obj->base.size); 3820 3821 kfree(obj->bit_17); 3822 i915_gem_object_free(obj); 3823 } 3824 3825 int 3826 i915_gem_idle(struct drm_device *dev) 3827 { 3828 drm_i915_private_t *dev_priv = dev->dev_private; 3829 int ret; 3830 3831 mutex_lock(&dev->struct_mutex); 3832 3833 if (dev_priv->mm.suspended) { 3834 mutex_unlock(&dev->struct_mutex); 3835 return 0; 3836 } 3837 3838 ret = i915_gpu_idle(dev); 3839 if (ret) { 3840 mutex_unlock(&dev->struct_mutex); 3841 return ret; 3842 } 3843 i915_gem_retire_requests(dev); 3844 3845 /* Under UMS, be paranoid and evict. */ 3846 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 3847 i915_gem_evict_everything(dev); 3848 3849 i915_gem_reset_fences(dev); 3850 3851 /* Hack! Don't let anybody do execbuf while we don't control the chip. 3852 * We need to replace this with a semaphore, or something. 3853 * And not confound mm.suspended! 3854 */ 3855 dev_priv->mm.suspended = 1; 3856 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer); 3857 3858 i915_kernel_lost_context(dev); 3859 i915_gem_cleanup_ringbuffer(dev); 3860 3861 mutex_unlock(&dev->struct_mutex); 3862 3863 /* Cancel the retire work handler, which should be idle now. */ 3864 cancel_delayed_work_sync(&dev_priv->mm.retire_work); 3865 3866 return 0; 3867 } 3868 3869 void i915_gem_l3_remap(struct drm_device *dev) 3870 { 3871 drm_i915_private_t *dev_priv = dev->dev_private; 3872 u32 misccpctl; 3873 int i; 3874 3875 if (!HAS_L3_GPU_CACHE(dev)) 3876 return; 3877 3878 if (!dev_priv->l3_parity.remap_info) 3879 return; 3880 3881 misccpctl = I915_READ(GEN7_MISCCPCTL); 3882 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); 3883 POSTING_READ(GEN7_MISCCPCTL); 3884 3885 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) { 3886 u32 remap = I915_READ(GEN7_L3LOG_BASE + i); 3887 if (remap && remap != dev_priv->l3_parity.remap_info[i/4]) 3888 DRM_DEBUG("0x%x was already programmed to %x\n", 3889 GEN7_L3LOG_BASE + i, remap); 3890 if (remap && !dev_priv->l3_parity.remap_info[i/4]) 3891 DRM_DEBUG_DRIVER("Clearing remapped register\n"); 3892 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]); 3893 } 3894 3895 /* Make sure all the writes land before disabling dop clock gating */ 3896 POSTING_READ(GEN7_L3LOG_BASE); 3897 3898 I915_WRITE(GEN7_MISCCPCTL, misccpctl); 3899 } 3900 3901 void i915_gem_init_swizzling(struct drm_device *dev) 3902 { 3903 drm_i915_private_t *dev_priv = dev->dev_private; 3904 3905 if (INTEL_INFO(dev)->gen < 5 || 3906 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 3907 return; 3908 3909 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | 3910 DISP_TILE_SURFACE_SWIZZLING); 3911 3912 if (IS_GEN5(dev)) 3913 return; 3914 3915 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); 3916 if (IS_GEN6(dev)) 3917 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 3918 else if (IS_GEN7(dev)) 3919 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 3920 else 3921 BUG(); 3922 } 3923 3924 static bool 3925 intel_enable_blt(struct drm_device *dev) 3926 { 3927 if (!HAS_BLT(dev)) 3928 return false; 3929 3930 /* The blitter was dysfunctional on early prototypes */ 3931 if (IS_GEN6(dev) && dev->pdev->revision < 8) { 3932 DRM_INFO("BLT not supported on this pre-production hardware;" 3933 " graphics performance will be degraded.\n"); 3934 return false; 3935 } 3936 3937 return true; 3938 } 3939 3940 static int i915_gem_init_rings(struct drm_device *dev) 3941 { 3942 struct drm_i915_private *dev_priv = dev->dev_private; 3943 int ret; 3944 3945 ret = intel_init_render_ring_buffer(dev); 3946 if (ret) 3947 return ret; 3948 3949 if (HAS_BSD(dev)) { 3950 ret = intel_init_bsd_ring_buffer(dev); 3951 if (ret) 3952 goto cleanup_render_ring; 3953 } 3954 3955 if (intel_enable_blt(dev)) { 3956 ret = intel_init_blt_ring_buffer(dev); 3957 if (ret) 3958 goto cleanup_bsd_ring; 3959 } 3960 3961 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000)); 3962 if (ret) 3963 goto cleanup_blt_ring; 3964 3965 return 0; 3966 3967 cleanup_blt_ring: 3968 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]); 3969 cleanup_bsd_ring: 3970 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]); 3971 cleanup_render_ring: 3972 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]); 3973 3974 return ret; 3975 } 3976 3977 int 3978 i915_gem_init_hw(struct drm_device *dev) 3979 { 3980 drm_i915_private_t *dev_priv = dev->dev_private; 3981 int ret; 3982 3983 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt()) 3984 return -EIO; 3985 3986 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1)) 3987 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000); 3988 3989 i915_gem_l3_remap(dev); 3990 3991 i915_gem_init_swizzling(dev); 3992 3993 ret = i915_gem_init_rings(dev); 3994 if (ret) 3995 return ret; 3996 3997 /* 3998 * XXX: There was some w/a described somewhere suggesting loading 3999 * contexts before PPGTT. 4000 */ 4001 i915_gem_context_init(dev); 4002 i915_gem_init_ppgtt(dev); 4003 4004 return 0; 4005 } 4006 4007 int i915_gem_init(struct drm_device *dev) 4008 { 4009 struct drm_i915_private *dev_priv = dev->dev_private; 4010 int ret; 4011 4012 mutex_lock(&dev->struct_mutex); 4013 i915_gem_init_global_gtt(dev); 4014 ret = i915_gem_init_hw(dev); 4015 mutex_unlock(&dev->struct_mutex); 4016 if (ret) { 4017 i915_gem_cleanup_aliasing_ppgtt(dev); 4018 return ret; 4019 } 4020 4021 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */ 4022 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4023 dev_priv->dri1.allow_batchbuffer = 1; 4024 return 0; 4025 } 4026 4027 void 4028 i915_gem_cleanup_ringbuffer(struct drm_device *dev) 4029 { 4030 drm_i915_private_t *dev_priv = dev->dev_private; 4031 struct intel_ring_buffer *ring; 4032 int i; 4033 4034 for_each_ring(ring, dev_priv, i) 4035 intel_cleanup_ring_buffer(ring); 4036 } 4037 4038 int 4039 i915_gem_entervt_ioctl(struct drm_device *dev, void *data, 4040 struct drm_file *file_priv) 4041 { 4042 drm_i915_private_t *dev_priv = dev->dev_private; 4043 int ret; 4044 4045 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4046 return 0; 4047 4048 if (i915_reset_in_progress(&dev_priv->gpu_error)) { 4049 DRM_ERROR("Reenabling wedged hardware, good luck\n"); 4050 atomic_set(&dev_priv->gpu_error.reset_counter, 0); 4051 } 4052 4053 mutex_lock(&dev->struct_mutex); 4054 dev_priv->mm.suspended = 0; 4055 4056 ret = i915_gem_init_hw(dev); 4057 if (ret != 0) { 4058 mutex_unlock(&dev->struct_mutex); 4059 return ret; 4060 } 4061 4062 BUG_ON(!list_empty(&dev_priv->mm.active_list)); 4063 mutex_unlock(&dev->struct_mutex); 4064 4065 ret = drm_irq_install(dev); 4066 if (ret) 4067 goto cleanup_ringbuffer; 4068 4069 return 0; 4070 4071 cleanup_ringbuffer: 4072 mutex_lock(&dev->struct_mutex); 4073 i915_gem_cleanup_ringbuffer(dev); 4074 dev_priv->mm.suspended = 1; 4075 mutex_unlock(&dev->struct_mutex); 4076 4077 return ret; 4078 } 4079 4080 int 4081 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data, 4082 struct drm_file *file_priv) 4083 { 4084 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4085 return 0; 4086 4087 drm_irq_uninstall(dev); 4088 return i915_gem_idle(dev); 4089 } 4090 4091 void 4092 i915_gem_lastclose(struct drm_device *dev) 4093 { 4094 int ret; 4095 4096 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4097 return; 4098 4099 ret = i915_gem_idle(dev); 4100 if (ret) 4101 DRM_ERROR("failed to idle hardware: %d\n", ret); 4102 } 4103 4104 static void 4105 init_ring_lists(struct intel_ring_buffer *ring) 4106 { 4107 INIT_LIST_HEAD(&ring->active_list); 4108 INIT_LIST_HEAD(&ring->request_list); 4109 } 4110 4111 void 4112 i915_gem_load(struct drm_device *dev) 4113 { 4114 drm_i915_private_t *dev_priv = dev->dev_private; 4115 int i; 4116 4117 dev_priv->slab = 4118 kmem_cache_create("i915_gem_object", 4119 sizeof(struct drm_i915_gem_object), 0, 4120 SLAB_HWCACHE_ALIGN, 4121 NULL); 4122 4123 INIT_LIST_HEAD(&dev_priv->mm.active_list); 4124 INIT_LIST_HEAD(&dev_priv->mm.inactive_list); 4125 INIT_LIST_HEAD(&dev_priv->mm.unbound_list); 4126 INIT_LIST_HEAD(&dev_priv->mm.bound_list); 4127 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4128 for (i = 0; i < I915_NUM_RINGS; i++) 4129 init_ring_lists(&dev_priv->ring[i]); 4130 for (i = 0; i < I915_MAX_NUM_FENCES; i++) 4131 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list); 4132 INIT_DELAYED_WORK(&dev_priv->mm.retire_work, 4133 i915_gem_retire_work_handler); 4134 init_waitqueue_head(&dev_priv->gpu_error.reset_queue); 4135 4136 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ 4137 if (IS_GEN3(dev)) { 4138 I915_WRITE(MI_ARB_STATE, 4139 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE)); 4140 } 4141 4142 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL; 4143 4144 /* Old X drivers will take 0-2 for front, back, depth buffers */ 4145 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4146 dev_priv->fence_reg_start = 3; 4147 4148 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) 4149 dev_priv->num_fence_regs = 16; 4150 else 4151 dev_priv->num_fence_regs = 8; 4152 4153 /* Initialize fence registers to zero */ 4154 i915_gem_reset_fences(dev); 4155 4156 i915_gem_detect_bit_6_swizzle(dev); 4157 init_waitqueue_head(&dev_priv->pending_flip_queue); 4158 4159 dev_priv->mm.interruptible = true; 4160 4161 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink; 4162 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS; 4163 register_shrinker(&dev_priv->mm.inactive_shrinker); 4164 } 4165 4166 /* 4167 * Create a physically contiguous memory object for this object 4168 * e.g. for cursor + overlay regs 4169 */ 4170 static int i915_gem_init_phys_object(struct drm_device *dev, 4171 int id, int size, int align) 4172 { 4173 drm_i915_private_t *dev_priv = dev->dev_private; 4174 struct drm_i915_gem_phys_object *phys_obj; 4175 int ret; 4176 4177 if (dev_priv->mm.phys_objs[id - 1] || !size) 4178 return 0; 4179 4180 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL); 4181 if (!phys_obj) 4182 return -ENOMEM; 4183 4184 phys_obj->id = id; 4185 4186 phys_obj->handle = drm_pci_alloc(dev, size, align); 4187 if (!phys_obj->handle) { 4188 ret = -ENOMEM; 4189 goto kfree_obj; 4190 } 4191 #ifdef CONFIG_X86 4192 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); 4193 #endif 4194 4195 dev_priv->mm.phys_objs[id - 1] = phys_obj; 4196 4197 return 0; 4198 kfree_obj: 4199 kfree(phys_obj); 4200 return ret; 4201 } 4202 4203 static void i915_gem_free_phys_object(struct drm_device *dev, int id) 4204 { 4205 drm_i915_private_t *dev_priv = dev->dev_private; 4206 struct drm_i915_gem_phys_object *phys_obj; 4207 4208 if (!dev_priv->mm.phys_objs[id - 1]) 4209 return; 4210 4211 phys_obj = dev_priv->mm.phys_objs[id - 1]; 4212 if (phys_obj->cur_obj) { 4213 i915_gem_detach_phys_object(dev, phys_obj->cur_obj); 4214 } 4215 4216 #ifdef CONFIG_X86 4217 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); 4218 #endif 4219 drm_pci_free(dev, phys_obj->handle); 4220 kfree(phys_obj); 4221 dev_priv->mm.phys_objs[id - 1] = NULL; 4222 } 4223 4224 void i915_gem_free_all_phys_object(struct drm_device *dev) 4225 { 4226 int i; 4227 4228 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++) 4229 i915_gem_free_phys_object(dev, i); 4230 } 4231 4232 void i915_gem_detach_phys_object(struct drm_device *dev, 4233 struct drm_i915_gem_object *obj) 4234 { 4235 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping; 4236 char *vaddr; 4237 int i; 4238 int page_count; 4239 4240 if (!obj->phys_obj) 4241 return; 4242 vaddr = obj->phys_obj->handle->vaddr; 4243 4244 page_count = obj->base.size / PAGE_SIZE; 4245 for (i = 0; i < page_count; i++) { 4246 struct page *page = shmem_read_mapping_page(mapping, i); 4247 if (!IS_ERR(page)) { 4248 char *dst = kmap_atomic(page); 4249 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE); 4250 kunmap_atomic(dst); 4251 4252 drm_clflush_pages(&page, 1); 4253 4254 set_page_dirty(page); 4255 mark_page_accessed(page); 4256 page_cache_release(page); 4257 } 4258 } 4259 i915_gem_chipset_flush(dev); 4260 4261 obj->phys_obj->cur_obj = NULL; 4262 obj->phys_obj = NULL; 4263 } 4264 4265 int 4266 i915_gem_attach_phys_object(struct drm_device *dev, 4267 struct drm_i915_gem_object *obj, 4268 int id, 4269 int align) 4270 { 4271 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping; 4272 drm_i915_private_t *dev_priv = dev->dev_private; 4273 int ret = 0; 4274 int page_count; 4275 int i; 4276 4277 if (id > I915_MAX_PHYS_OBJECT) 4278 return -EINVAL; 4279 4280 if (obj->phys_obj) { 4281 if (obj->phys_obj->id == id) 4282 return 0; 4283 i915_gem_detach_phys_object(dev, obj); 4284 } 4285 4286 /* create a new object */ 4287 if (!dev_priv->mm.phys_objs[id - 1]) { 4288 ret = i915_gem_init_phys_object(dev, id, 4289 obj->base.size, align); 4290 if (ret) { 4291 DRM_ERROR("failed to init phys object %d size: %zu\n", 4292 id, obj->base.size); 4293 return ret; 4294 } 4295 } 4296 4297 /* bind to the object */ 4298 obj->phys_obj = dev_priv->mm.phys_objs[id - 1]; 4299 obj->phys_obj->cur_obj = obj; 4300 4301 page_count = obj->base.size / PAGE_SIZE; 4302 4303 for (i = 0; i < page_count; i++) { 4304 struct page *page; 4305 char *dst, *src; 4306 4307 page = shmem_read_mapping_page(mapping, i); 4308 if (IS_ERR(page)) 4309 return PTR_ERR(page); 4310 4311 src = kmap_atomic(page); 4312 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE); 4313 memcpy(dst, src, PAGE_SIZE); 4314 kunmap_atomic(src); 4315 4316 mark_page_accessed(page); 4317 page_cache_release(page); 4318 } 4319 4320 return 0; 4321 } 4322 4323 static int 4324 i915_gem_phys_pwrite(struct drm_device *dev, 4325 struct drm_i915_gem_object *obj, 4326 struct drm_i915_gem_pwrite *args, 4327 struct drm_file *file_priv) 4328 { 4329 void *vaddr = obj->phys_obj->handle->vaddr + args->offset; 4330 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr; 4331 4332 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) { 4333 unsigned long unwritten; 4334 4335 /* The physical object once assigned is fixed for the lifetime 4336 * of the obj, so we can safely drop the lock and continue 4337 * to access vaddr. 4338 */ 4339 mutex_unlock(&dev->struct_mutex); 4340 unwritten = copy_from_user(vaddr, user_data, args->size); 4341 mutex_lock(&dev->struct_mutex); 4342 if (unwritten) 4343 return -EFAULT; 4344 } 4345 4346 i915_gem_chipset_flush(dev); 4347 return 0; 4348 } 4349 4350 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 4351 { 4352 struct drm_i915_file_private *file_priv = file->driver_priv; 4353 4354 /* Clean up our request list when the client is going away, so that 4355 * later retire_requests won't dereference our soon-to-be-gone 4356 * file_priv. 4357 */ 4358 spin_lock(&file_priv->mm.lock); 4359 while (!list_empty(&file_priv->mm.request_list)) { 4360 struct drm_i915_gem_request *request; 4361 4362 request = list_first_entry(&file_priv->mm.request_list, 4363 struct drm_i915_gem_request, 4364 client_list); 4365 list_del(&request->client_list); 4366 request->file_priv = NULL; 4367 } 4368 spin_unlock(&file_priv->mm.lock); 4369 } 4370 4371 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task) 4372 { 4373 if (!mutex_is_locked(mutex)) 4374 return false; 4375 4376 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES) 4377 return mutex->owner == task; 4378 #else 4379 /* Since UP may be pre-empted, we cannot assume that we own the lock */ 4380 return false; 4381 #endif 4382 } 4383 4384 static int 4385 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc) 4386 { 4387 struct drm_i915_private *dev_priv = 4388 container_of(shrinker, 4389 struct drm_i915_private, 4390 mm.inactive_shrinker); 4391 struct drm_device *dev = dev_priv->dev; 4392 struct drm_i915_gem_object *obj; 4393 int nr_to_scan = sc->nr_to_scan; 4394 bool unlock = true; 4395 int cnt; 4396 4397 if (!mutex_trylock(&dev->struct_mutex)) { 4398 if (!mutex_is_locked_by(&dev->struct_mutex, current)) 4399 return 0; 4400 4401 if (dev_priv->mm.shrinker_no_lock_stealing) 4402 return 0; 4403 4404 unlock = false; 4405 } 4406 4407 if (nr_to_scan) { 4408 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan); 4409 if (nr_to_scan > 0) 4410 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan, 4411 false); 4412 if (nr_to_scan > 0) 4413 i915_gem_shrink_all(dev_priv); 4414 } 4415 4416 cnt = 0; 4417 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list) 4418 if (obj->pages_pin_count == 0) 4419 cnt += obj->base.size >> PAGE_SHIFT; 4420 list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list) 4421 if (obj->pin_count == 0 && obj->pages_pin_count == 0) 4422 cnt += obj->base.size >> PAGE_SHIFT; 4423 4424 if (unlock) 4425 mutex_unlock(&dev->struct_mutex); 4426 return cnt; 4427 } 4428