xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision 97da55fc)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38 
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 						    unsigned alignment,
43 						    bool map_and_fenceable,
44 						    bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 				struct drm_i915_gem_object *obj,
47 				struct drm_i915_gem_pwrite *args,
48 				struct drm_file *file);
49 
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 				 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 					 struct drm_i915_fence_reg *fence,
54 					 bool enable);
55 
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 				    struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61 
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 	if (obj->tiling_mode)
65 		i915_gem_release_mmap(obj);
66 
67 	/* As we do not have an associated fence register, we will force
68 	 * a tiling change if we ever need to acquire one.
69 	 */
70 	obj->fence_dirty = false;
71 	obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73 
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 				  size_t size)
77 {
78 	dev_priv->mm.object_count++;
79 	dev_priv->mm.object_memory += size;
80 }
81 
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 				     size_t size)
84 {
85 	dev_priv->mm.object_count--;
86 	dev_priv->mm.object_memory -= size;
87 }
88 
89 static int
90 i915_gem_wait_for_error(struct i915_gpu_error *error)
91 {
92 	int ret;
93 
94 #define EXIT_COND (!i915_reset_in_progress(error))
95 	if (EXIT_COND)
96 		return 0;
97 
98 	/* GPU is already declared terminally dead, give up. */
99 	if (i915_terminally_wedged(error))
100 		return -EIO;
101 
102 	/*
103 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
104 	 * userspace. If it takes that long something really bad is going on and
105 	 * we should simply try to bail out and fail as gracefully as possible.
106 	 */
107 	ret = wait_event_interruptible_timeout(error->reset_queue,
108 					       EXIT_COND,
109 					       10*HZ);
110 	if (ret == 0) {
111 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
112 		return -EIO;
113 	} else if (ret < 0) {
114 		return ret;
115 	}
116 #undef EXIT_COND
117 
118 	return 0;
119 }
120 
121 int i915_mutex_lock_interruptible(struct drm_device *dev)
122 {
123 	struct drm_i915_private *dev_priv = dev->dev_private;
124 	int ret;
125 
126 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
127 	if (ret)
128 		return ret;
129 
130 	ret = mutex_lock_interruptible(&dev->struct_mutex);
131 	if (ret)
132 		return ret;
133 
134 	WARN_ON(i915_verify_lists(dev));
135 	return 0;
136 }
137 
138 static inline bool
139 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
140 {
141 	return obj->gtt_space && !obj->active;
142 }
143 
144 int
145 i915_gem_init_ioctl(struct drm_device *dev, void *data,
146 		    struct drm_file *file)
147 {
148 	struct drm_i915_private *dev_priv = dev->dev_private;
149 	struct drm_i915_gem_init *args = data;
150 
151 	if (drm_core_check_feature(dev, DRIVER_MODESET))
152 		return -ENODEV;
153 
154 	if (args->gtt_start >= args->gtt_end ||
155 	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
156 		return -EINVAL;
157 
158 	/* GEM with user mode setting was never supported on ilk and later. */
159 	if (INTEL_INFO(dev)->gen >= 5)
160 		return -ENODEV;
161 
162 	mutex_lock(&dev->struct_mutex);
163 	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
164 				  args->gtt_end);
165 	dev_priv->gtt.mappable_end = args->gtt_end;
166 	mutex_unlock(&dev->struct_mutex);
167 
168 	return 0;
169 }
170 
171 int
172 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
173 			    struct drm_file *file)
174 {
175 	struct drm_i915_private *dev_priv = dev->dev_private;
176 	struct drm_i915_gem_get_aperture *args = data;
177 	struct drm_i915_gem_object *obj;
178 	size_t pinned;
179 
180 	pinned = 0;
181 	mutex_lock(&dev->struct_mutex);
182 	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
183 		if (obj->pin_count)
184 			pinned += obj->gtt_space->size;
185 	mutex_unlock(&dev->struct_mutex);
186 
187 	args->aper_size = dev_priv->gtt.total;
188 	args->aper_available_size = args->aper_size - pinned;
189 
190 	return 0;
191 }
192 
193 void *i915_gem_object_alloc(struct drm_device *dev)
194 {
195 	struct drm_i915_private *dev_priv = dev->dev_private;
196 	return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
197 }
198 
199 void i915_gem_object_free(struct drm_i915_gem_object *obj)
200 {
201 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
202 	kmem_cache_free(dev_priv->slab, obj);
203 }
204 
205 static int
206 i915_gem_create(struct drm_file *file,
207 		struct drm_device *dev,
208 		uint64_t size,
209 		uint32_t *handle_p)
210 {
211 	struct drm_i915_gem_object *obj;
212 	int ret;
213 	u32 handle;
214 
215 	size = roundup(size, PAGE_SIZE);
216 	if (size == 0)
217 		return -EINVAL;
218 
219 	/* Allocate the new object */
220 	obj = i915_gem_alloc_object(dev, size);
221 	if (obj == NULL)
222 		return -ENOMEM;
223 
224 	ret = drm_gem_handle_create(file, &obj->base, &handle);
225 	if (ret) {
226 		drm_gem_object_release(&obj->base);
227 		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
228 		i915_gem_object_free(obj);
229 		return ret;
230 	}
231 
232 	/* drop reference from allocate - handle holds it now */
233 	drm_gem_object_unreference(&obj->base);
234 	trace_i915_gem_object_create(obj);
235 
236 	*handle_p = handle;
237 	return 0;
238 }
239 
240 int
241 i915_gem_dumb_create(struct drm_file *file,
242 		     struct drm_device *dev,
243 		     struct drm_mode_create_dumb *args)
244 {
245 	/* have to work out size/pitch and return them */
246 	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
247 	args->size = args->pitch * args->height;
248 	return i915_gem_create(file, dev,
249 			       args->size, &args->handle);
250 }
251 
252 int i915_gem_dumb_destroy(struct drm_file *file,
253 			  struct drm_device *dev,
254 			  uint32_t handle)
255 {
256 	return drm_gem_handle_delete(file, handle);
257 }
258 
259 /**
260  * Creates a new mm object and returns a handle to it.
261  */
262 int
263 i915_gem_create_ioctl(struct drm_device *dev, void *data,
264 		      struct drm_file *file)
265 {
266 	struct drm_i915_gem_create *args = data;
267 
268 	return i915_gem_create(file, dev,
269 			       args->size, &args->handle);
270 }
271 
272 static inline int
273 __copy_to_user_swizzled(char __user *cpu_vaddr,
274 			const char *gpu_vaddr, int gpu_offset,
275 			int length)
276 {
277 	int ret, cpu_offset = 0;
278 
279 	while (length > 0) {
280 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
281 		int this_length = min(cacheline_end - gpu_offset, length);
282 		int swizzled_gpu_offset = gpu_offset ^ 64;
283 
284 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
285 				     gpu_vaddr + swizzled_gpu_offset,
286 				     this_length);
287 		if (ret)
288 			return ret + length;
289 
290 		cpu_offset += this_length;
291 		gpu_offset += this_length;
292 		length -= this_length;
293 	}
294 
295 	return 0;
296 }
297 
298 static inline int
299 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
300 			  const char __user *cpu_vaddr,
301 			  int length)
302 {
303 	int ret, cpu_offset = 0;
304 
305 	while (length > 0) {
306 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
307 		int this_length = min(cacheline_end - gpu_offset, length);
308 		int swizzled_gpu_offset = gpu_offset ^ 64;
309 
310 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
311 				       cpu_vaddr + cpu_offset,
312 				       this_length);
313 		if (ret)
314 			return ret + length;
315 
316 		cpu_offset += this_length;
317 		gpu_offset += this_length;
318 		length -= this_length;
319 	}
320 
321 	return 0;
322 }
323 
324 /* Per-page copy function for the shmem pread fastpath.
325  * Flushes invalid cachelines before reading the target if
326  * needs_clflush is set. */
327 static int
328 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
329 		 char __user *user_data,
330 		 bool page_do_bit17_swizzling, bool needs_clflush)
331 {
332 	char *vaddr;
333 	int ret;
334 
335 	if (unlikely(page_do_bit17_swizzling))
336 		return -EINVAL;
337 
338 	vaddr = kmap_atomic(page);
339 	if (needs_clflush)
340 		drm_clflush_virt_range(vaddr + shmem_page_offset,
341 				       page_length);
342 	ret = __copy_to_user_inatomic(user_data,
343 				      vaddr + shmem_page_offset,
344 				      page_length);
345 	kunmap_atomic(vaddr);
346 
347 	return ret ? -EFAULT : 0;
348 }
349 
350 static void
351 shmem_clflush_swizzled_range(char *addr, unsigned long length,
352 			     bool swizzled)
353 {
354 	if (unlikely(swizzled)) {
355 		unsigned long start = (unsigned long) addr;
356 		unsigned long end = (unsigned long) addr + length;
357 
358 		/* For swizzling simply ensure that we always flush both
359 		 * channels. Lame, but simple and it works. Swizzled
360 		 * pwrite/pread is far from a hotpath - current userspace
361 		 * doesn't use it at all. */
362 		start = round_down(start, 128);
363 		end = round_up(end, 128);
364 
365 		drm_clflush_virt_range((void *)start, end - start);
366 	} else {
367 		drm_clflush_virt_range(addr, length);
368 	}
369 
370 }
371 
372 /* Only difference to the fast-path function is that this can handle bit17
373  * and uses non-atomic copy and kmap functions. */
374 static int
375 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
376 		 char __user *user_data,
377 		 bool page_do_bit17_swizzling, bool needs_clflush)
378 {
379 	char *vaddr;
380 	int ret;
381 
382 	vaddr = kmap(page);
383 	if (needs_clflush)
384 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
385 					     page_length,
386 					     page_do_bit17_swizzling);
387 
388 	if (page_do_bit17_swizzling)
389 		ret = __copy_to_user_swizzled(user_data,
390 					      vaddr, shmem_page_offset,
391 					      page_length);
392 	else
393 		ret = __copy_to_user(user_data,
394 				     vaddr + shmem_page_offset,
395 				     page_length);
396 	kunmap(page);
397 
398 	return ret ? - EFAULT : 0;
399 }
400 
401 static int
402 i915_gem_shmem_pread(struct drm_device *dev,
403 		     struct drm_i915_gem_object *obj,
404 		     struct drm_i915_gem_pread *args,
405 		     struct drm_file *file)
406 {
407 	char __user *user_data;
408 	ssize_t remain;
409 	loff_t offset;
410 	int shmem_page_offset, page_length, ret = 0;
411 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
412 	int prefaulted = 0;
413 	int needs_clflush = 0;
414 	struct scatterlist *sg;
415 	int i;
416 
417 	user_data = (char __user *) (uintptr_t) args->data_ptr;
418 	remain = args->size;
419 
420 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
421 
422 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
423 		/* If we're not in the cpu read domain, set ourself into the gtt
424 		 * read domain and manually flush cachelines (if required). This
425 		 * optimizes for the case when the gpu will dirty the data
426 		 * anyway again before the next pread happens. */
427 		if (obj->cache_level == I915_CACHE_NONE)
428 			needs_clflush = 1;
429 		if (obj->gtt_space) {
430 			ret = i915_gem_object_set_to_gtt_domain(obj, false);
431 			if (ret)
432 				return ret;
433 		}
434 	}
435 
436 	ret = i915_gem_object_get_pages(obj);
437 	if (ret)
438 		return ret;
439 
440 	i915_gem_object_pin_pages(obj);
441 
442 	offset = args->offset;
443 
444 	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
445 		struct page *page;
446 
447 		if (i < offset >> PAGE_SHIFT)
448 			continue;
449 
450 		if (remain <= 0)
451 			break;
452 
453 		/* Operation in this page
454 		 *
455 		 * shmem_page_offset = offset within page in shmem file
456 		 * page_length = bytes to copy for this page
457 		 */
458 		shmem_page_offset = offset_in_page(offset);
459 		page_length = remain;
460 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
461 			page_length = PAGE_SIZE - shmem_page_offset;
462 
463 		page = sg_page(sg);
464 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
465 			(page_to_phys(page) & (1 << 17)) != 0;
466 
467 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
468 				       user_data, page_do_bit17_swizzling,
469 				       needs_clflush);
470 		if (ret == 0)
471 			goto next_page;
472 
473 		mutex_unlock(&dev->struct_mutex);
474 
475 		if (!prefaulted) {
476 			ret = fault_in_multipages_writeable(user_data, remain);
477 			/* Userspace is tricking us, but we've already clobbered
478 			 * its pages with the prefault and promised to write the
479 			 * data up to the first fault. Hence ignore any errors
480 			 * and just continue. */
481 			(void)ret;
482 			prefaulted = 1;
483 		}
484 
485 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
486 				       user_data, page_do_bit17_swizzling,
487 				       needs_clflush);
488 
489 		mutex_lock(&dev->struct_mutex);
490 
491 next_page:
492 		mark_page_accessed(page);
493 
494 		if (ret)
495 			goto out;
496 
497 		remain -= page_length;
498 		user_data += page_length;
499 		offset += page_length;
500 	}
501 
502 out:
503 	i915_gem_object_unpin_pages(obj);
504 
505 	return ret;
506 }
507 
508 /**
509  * Reads data from the object referenced by handle.
510  *
511  * On error, the contents of *data are undefined.
512  */
513 int
514 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
515 		     struct drm_file *file)
516 {
517 	struct drm_i915_gem_pread *args = data;
518 	struct drm_i915_gem_object *obj;
519 	int ret = 0;
520 
521 	if (args->size == 0)
522 		return 0;
523 
524 	if (!access_ok(VERIFY_WRITE,
525 		       (char __user *)(uintptr_t)args->data_ptr,
526 		       args->size))
527 		return -EFAULT;
528 
529 	ret = i915_mutex_lock_interruptible(dev);
530 	if (ret)
531 		return ret;
532 
533 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
534 	if (&obj->base == NULL) {
535 		ret = -ENOENT;
536 		goto unlock;
537 	}
538 
539 	/* Bounds check source.  */
540 	if (args->offset > obj->base.size ||
541 	    args->size > obj->base.size - args->offset) {
542 		ret = -EINVAL;
543 		goto out;
544 	}
545 
546 	/* prime objects have no backing filp to GEM pread/pwrite
547 	 * pages from.
548 	 */
549 	if (!obj->base.filp) {
550 		ret = -EINVAL;
551 		goto out;
552 	}
553 
554 	trace_i915_gem_object_pread(obj, args->offset, args->size);
555 
556 	ret = i915_gem_shmem_pread(dev, obj, args, file);
557 
558 out:
559 	drm_gem_object_unreference(&obj->base);
560 unlock:
561 	mutex_unlock(&dev->struct_mutex);
562 	return ret;
563 }
564 
565 /* This is the fast write path which cannot handle
566  * page faults in the source data
567  */
568 
569 static inline int
570 fast_user_write(struct io_mapping *mapping,
571 		loff_t page_base, int page_offset,
572 		char __user *user_data,
573 		int length)
574 {
575 	void __iomem *vaddr_atomic;
576 	void *vaddr;
577 	unsigned long unwritten;
578 
579 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
580 	/* We can use the cpu mem copy function because this is X86. */
581 	vaddr = (void __force*)vaddr_atomic + page_offset;
582 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
583 						      user_data, length);
584 	io_mapping_unmap_atomic(vaddr_atomic);
585 	return unwritten;
586 }
587 
588 /**
589  * This is the fast pwrite path, where we copy the data directly from the
590  * user into the GTT, uncached.
591  */
592 static int
593 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
594 			 struct drm_i915_gem_object *obj,
595 			 struct drm_i915_gem_pwrite *args,
596 			 struct drm_file *file)
597 {
598 	drm_i915_private_t *dev_priv = dev->dev_private;
599 	ssize_t remain;
600 	loff_t offset, page_base;
601 	char __user *user_data;
602 	int page_offset, page_length, ret;
603 
604 	ret = i915_gem_object_pin(obj, 0, true, true);
605 	if (ret)
606 		goto out;
607 
608 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
609 	if (ret)
610 		goto out_unpin;
611 
612 	ret = i915_gem_object_put_fence(obj);
613 	if (ret)
614 		goto out_unpin;
615 
616 	user_data = (char __user *) (uintptr_t) args->data_ptr;
617 	remain = args->size;
618 
619 	offset = obj->gtt_offset + args->offset;
620 
621 	while (remain > 0) {
622 		/* Operation in this page
623 		 *
624 		 * page_base = page offset within aperture
625 		 * page_offset = offset within page
626 		 * page_length = bytes to copy for this page
627 		 */
628 		page_base = offset & PAGE_MASK;
629 		page_offset = offset_in_page(offset);
630 		page_length = remain;
631 		if ((page_offset + remain) > PAGE_SIZE)
632 			page_length = PAGE_SIZE - page_offset;
633 
634 		/* If we get a fault while copying data, then (presumably) our
635 		 * source page isn't available.  Return the error and we'll
636 		 * retry in the slow path.
637 		 */
638 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
639 				    page_offset, user_data, page_length)) {
640 			ret = -EFAULT;
641 			goto out_unpin;
642 		}
643 
644 		remain -= page_length;
645 		user_data += page_length;
646 		offset += page_length;
647 	}
648 
649 out_unpin:
650 	i915_gem_object_unpin(obj);
651 out:
652 	return ret;
653 }
654 
655 /* Per-page copy function for the shmem pwrite fastpath.
656  * Flushes invalid cachelines before writing to the target if
657  * needs_clflush_before is set and flushes out any written cachelines after
658  * writing if needs_clflush is set. */
659 static int
660 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
661 		  char __user *user_data,
662 		  bool page_do_bit17_swizzling,
663 		  bool needs_clflush_before,
664 		  bool needs_clflush_after)
665 {
666 	char *vaddr;
667 	int ret;
668 
669 	if (unlikely(page_do_bit17_swizzling))
670 		return -EINVAL;
671 
672 	vaddr = kmap_atomic(page);
673 	if (needs_clflush_before)
674 		drm_clflush_virt_range(vaddr + shmem_page_offset,
675 				       page_length);
676 	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
677 						user_data,
678 						page_length);
679 	if (needs_clflush_after)
680 		drm_clflush_virt_range(vaddr + shmem_page_offset,
681 				       page_length);
682 	kunmap_atomic(vaddr);
683 
684 	return ret ? -EFAULT : 0;
685 }
686 
687 /* Only difference to the fast-path function is that this can handle bit17
688  * and uses non-atomic copy and kmap functions. */
689 static int
690 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
691 		  char __user *user_data,
692 		  bool page_do_bit17_swizzling,
693 		  bool needs_clflush_before,
694 		  bool needs_clflush_after)
695 {
696 	char *vaddr;
697 	int ret;
698 
699 	vaddr = kmap(page);
700 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
701 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
702 					     page_length,
703 					     page_do_bit17_swizzling);
704 	if (page_do_bit17_swizzling)
705 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
706 						user_data,
707 						page_length);
708 	else
709 		ret = __copy_from_user(vaddr + shmem_page_offset,
710 				       user_data,
711 				       page_length);
712 	if (needs_clflush_after)
713 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
714 					     page_length,
715 					     page_do_bit17_swizzling);
716 	kunmap(page);
717 
718 	return ret ? -EFAULT : 0;
719 }
720 
721 static int
722 i915_gem_shmem_pwrite(struct drm_device *dev,
723 		      struct drm_i915_gem_object *obj,
724 		      struct drm_i915_gem_pwrite *args,
725 		      struct drm_file *file)
726 {
727 	ssize_t remain;
728 	loff_t offset;
729 	char __user *user_data;
730 	int shmem_page_offset, page_length, ret = 0;
731 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
732 	int hit_slowpath = 0;
733 	int needs_clflush_after = 0;
734 	int needs_clflush_before = 0;
735 	int i;
736 	struct scatterlist *sg;
737 
738 	user_data = (char __user *) (uintptr_t) args->data_ptr;
739 	remain = args->size;
740 
741 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
742 
743 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
744 		/* If we're not in the cpu write domain, set ourself into the gtt
745 		 * write domain and manually flush cachelines (if required). This
746 		 * optimizes for the case when the gpu will use the data
747 		 * right away and we therefore have to clflush anyway. */
748 		if (obj->cache_level == I915_CACHE_NONE)
749 			needs_clflush_after = 1;
750 		if (obj->gtt_space) {
751 			ret = i915_gem_object_set_to_gtt_domain(obj, true);
752 			if (ret)
753 				return ret;
754 		}
755 	}
756 	/* Same trick applies for invalidate partially written cachelines before
757 	 * writing.  */
758 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
759 	    && obj->cache_level == I915_CACHE_NONE)
760 		needs_clflush_before = 1;
761 
762 	ret = i915_gem_object_get_pages(obj);
763 	if (ret)
764 		return ret;
765 
766 	i915_gem_object_pin_pages(obj);
767 
768 	offset = args->offset;
769 	obj->dirty = 1;
770 
771 	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
772 		struct page *page;
773 		int partial_cacheline_write;
774 
775 		if (i < offset >> PAGE_SHIFT)
776 			continue;
777 
778 		if (remain <= 0)
779 			break;
780 
781 		/* Operation in this page
782 		 *
783 		 * shmem_page_offset = offset within page in shmem file
784 		 * page_length = bytes to copy for this page
785 		 */
786 		shmem_page_offset = offset_in_page(offset);
787 
788 		page_length = remain;
789 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
790 			page_length = PAGE_SIZE - shmem_page_offset;
791 
792 		/* If we don't overwrite a cacheline completely we need to be
793 		 * careful to have up-to-date data by first clflushing. Don't
794 		 * overcomplicate things and flush the entire patch. */
795 		partial_cacheline_write = needs_clflush_before &&
796 			((shmem_page_offset | page_length)
797 				& (boot_cpu_data.x86_clflush_size - 1));
798 
799 		page = sg_page(sg);
800 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
801 			(page_to_phys(page) & (1 << 17)) != 0;
802 
803 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
804 					user_data, page_do_bit17_swizzling,
805 					partial_cacheline_write,
806 					needs_clflush_after);
807 		if (ret == 0)
808 			goto next_page;
809 
810 		hit_slowpath = 1;
811 		mutex_unlock(&dev->struct_mutex);
812 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
813 					user_data, page_do_bit17_swizzling,
814 					partial_cacheline_write,
815 					needs_clflush_after);
816 
817 		mutex_lock(&dev->struct_mutex);
818 
819 next_page:
820 		set_page_dirty(page);
821 		mark_page_accessed(page);
822 
823 		if (ret)
824 			goto out;
825 
826 		remain -= page_length;
827 		user_data += page_length;
828 		offset += page_length;
829 	}
830 
831 out:
832 	i915_gem_object_unpin_pages(obj);
833 
834 	if (hit_slowpath) {
835 		/*
836 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
837 		 * cachelines in-line while writing and the object moved
838 		 * out of the cpu write domain while we've dropped the lock.
839 		 */
840 		if (!needs_clflush_after &&
841 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
842 			i915_gem_clflush_object(obj);
843 			i915_gem_chipset_flush(dev);
844 		}
845 	}
846 
847 	if (needs_clflush_after)
848 		i915_gem_chipset_flush(dev);
849 
850 	return ret;
851 }
852 
853 /**
854  * Writes data to the object referenced by handle.
855  *
856  * On error, the contents of the buffer that were to be modified are undefined.
857  */
858 int
859 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
860 		      struct drm_file *file)
861 {
862 	struct drm_i915_gem_pwrite *args = data;
863 	struct drm_i915_gem_object *obj;
864 	int ret;
865 
866 	if (args->size == 0)
867 		return 0;
868 
869 	if (!access_ok(VERIFY_READ,
870 		       (char __user *)(uintptr_t)args->data_ptr,
871 		       args->size))
872 		return -EFAULT;
873 
874 	ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
875 					   args->size);
876 	if (ret)
877 		return -EFAULT;
878 
879 	ret = i915_mutex_lock_interruptible(dev);
880 	if (ret)
881 		return ret;
882 
883 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
884 	if (&obj->base == NULL) {
885 		ret = -ENOENT;
886 		goto unlock;
887 	}
888 
889 	/* Bounds check destination. */
890 	if (args->offset > obj->base.size ||
891 	    args->size > obj->base.size - args->offset) {
892 		ret = -EINVAL;
893 		goto out;
894 	}
895 
896 	/* prime objects have no backing filp to GEM pread/pwrite
897 	 * pages from.
898 	 */
899 	if (!obj->base.filp) {
900 		ret = -EINVAL;
901 		goto out;
902 	}
903 
904 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
905 
906 	ret = -EFAULT;
907 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
908 	 * it would end up going through the fenced access, and we'll get
909 	 * different detiling behavior between reading and writing.
910 	 * pread/pwrite currently are reading and writing from the CPU
911 	 * perspective, requiring manual detiling by the client.
912 	 */
913 	if (obj->phys_obj) {
914 		ret = i915_gem_phys_pwrite(dev, obj, args, file);
915 		goto out;
916 	}
917 
918 	if (obj->cache_level == I915_CACHE_NONE &&
919 	    obj->tiling_mode == I915_TILING_NONE &&
920 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
921 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
922 		/* Note that the gtt paths might fail with non-page-backed user
923 		 * pointers (e.g. gtt mappings when moving data between
924 		 * textures). Fallback to the shmem path in that case. */
925 	}
926 
927 	if (ret == -EFAULT || ret == -ENOSPC)
928 		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
929 
930 out:
931 	drm_gem_object_unreference(&obj->base);
932 unlock:
933 	mutex_unlock(&dev->struct_mutex);
934 	return ret;
935 }
936 
937 int
938 i915_gem_check_wedge(struct i915_gpu_error *error,
939 		     bool interruptible)
940 {
941 	if (i915_reset_in_progress(error)) {
942 		/* Non-interruptible callers can't handle -EAGAIN, hence return
943 		 * -EIO unconditionally for these. */
944 		if (!interruptible)
945 			return -EIO;
946 
947 		/* Recovery complete, but the reset failed ... */
948 		if (i915_terminally_wedged(error))
949 			return -EIO;
950 
951 		return -EAGAIN;
952 	}
953 
954 	return 0;
955 }
956 
957 /*
958  * Compare seqno against outstanding lazy request. Emit a request if they are
959  * equal.
960  */
961 static int
962 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
963 {
964 	int ret;
965 
966 	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
967 
968 	ret = 0;
969 	if (seqno == ring->outstanding_lazy_request)
970 		ret = i915_add_request(ring, NULL, NULL);
971 
972 	return ret;
973 }
974 
975 /**
976  * __wait_seqno - wait until execution of seqno has finished
977  * @ring: the ring expected to report seqno
978  * @seqno: duh!
979  * @reset_counter: reset sequence associated with the given seqno
980  * @interruptible: do an interruptible wait (normally yes)
981  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
982  *
983  * Note: It is of utmost importance that the passed in seqno and reset_counter
984  * values have been read by the caller in an smp safe manner. Where read-side
985  * locks are involved, it is sufficient to read the reset_counter before
986  * unlocking the lock that protects the seqno. For lockless tricks, the
987  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
988  * inserted.
989  *
990  * Returns 0 if the seqno was found within the alloted time. Else returns the
991  * errno with remaining time filled in timeout argument.
992  */
993 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
994 			unsigned reset_counter,
995 			bool interruptible, struct timespec *timeout)
996 {
997 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
998 	struct timespec before, now, wait_time={1,0};
999 	unsigned long timeout_jiffies;
1000 	long end;
1001 	bool wait_forever = true;
1002 	int ret;
1003 
1004 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1005 		return 0;
1006 
1007 	trace_i915_gem_request_wait_begin(ring, seqno);
1008 
1009 	if (timeout != NULL) {
1010 		wait_time = *timeout;
1011 		wait_forever = false;
1012 	}
1013 
1014 	timeout_jiffies = timespec_to_jiffies(&wait_time);
1015 
1016 	if (WARN_ON(!ring->irq_get(ring)))
1017 		return -ENODEV;
1018 
1019 	/* Record current time in case interrupted by signal, or wedged * */
1020 	getrawmonotonic(&before);
1021 
1022 #define EXIT_COND \
1023 	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1024 	 i915_reset_in_progress(&dev_priv->gpu_error) || \
1025 	 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1026 	do {
1027 		if (interruptible)
1028 			end = wait_event_interruptible_timeout(ring->irq_queue,
1029 							       EXIT_COND,
1030 							       timeout_jiffies);
1031 		else
1032 			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1033 						 timeout_jiffies);
1034 
1035 		/* We need to check whether any gpu reset happened in between
1036 		 * the caller grabbing the seqno and now ... */
1037 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1038 			end = -EAGAIN;
1039 
1040 		/* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1041 		 * gone. */
1042 		ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1043 		if (ret)
1044 			end = ret;
1045 	} while (end == 0 && wait_forever);
1046 
1047 	getrawmonotonic(&now);
1048 
1049 	ring->irq_put(ring);
1050 	trace_i915_gem_request_wait_end(ring, seqno);
1051 #undef EXIT_COND
1052 
1053 	if (timeout) {
1054 		struct timespec sleep_time = timespec_sub(now, before);
1055 		*timeout = timespec_sub(*timeout, sleep_time);
1056 	}
1057 
1058 	switch (end) {
1059 	case -EIO:
1060 	case -EAGAIN: /* Wedged */
1061 	case -ERESTARTSYS: /* Signal */
1062 		return (int)end;
1063 	case 0: /* Timeout */
1064 		if (timeout)
1065 			set_normalized_timespec(timeout, 0, 0);
1066 		return -ETIME;
1067 	default: /* Completed */
1068 		WARN_ON(end < 0); /* We're not aware of other errors */
1069 		return 0;
1070 	}
1071 }
1072 
1073 /**
1074  * Waits for a sequence number to be signaled, and cleans up the
1075  * request and object lists appropriately for that event.
1076  */
1077 int
1078 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1079 {
1080 	struct drm_device *dev = ring->dev;
1081 	struct drm_i915_private *dev_priv = dev->dev_private;
1082 	bool interruptible = dev_priv->mm.interruptible;
1083 	int ret;
1084 
1085 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1086 	BUG_ON(seqno == 0);
1087 
1088 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1089 	if (ret)
1090 		return ret;
1091 
1092 	ret = i915_gem_check_olr(ring, seqno);
1093 	if (ret)
1094 		return ret;
1095 
1096 	return __wait_seqno(ring, seqno,
1097 			    atomic_read(&dev_priv->gpu_error.reset_counter),
1098 			    interruptible, NULL);
1099 }
1100 
1101 /**
1102  * Ensures that all rendering to the object has completed and the object is
1103  * safe to unbind from the GTT or access from the CPU.
1104  */
1105 static __must_check int
1106 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1107 			       bool readonly)
1108 {
1109 	struct intel_ring_buffer *ring = obj->ring;
1110 	u32 seqno;
1111 	int ret;
1112 
1113 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1114 	if (seqno == 0)
1115 		return 0;
1116 
1117 	ret = i915_wait_seqno(ring, seqno);
1118 	if (ret)
1119 		return ret;
1120 
1121 	i915_gem_retire_requests_ring(ring);
1122 
1123 	/* Manually manage the write flush as we may have not yet
1124 	 * retired the buffer.
1125 	 */
1126 	if (obj->last_write_seqno &&
1127 	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
1128 		obj->last_write_seqno = 0;
1129 		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1130 	}
1131 
1132 	return 0;
1133 }
1134 
1135 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1136  * as the object state may change during this call.
1137  */
1138 static __must_check int
1139 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1140 					    bool readonly)
1141 {
1142 	struct drm_device *dev = obj->base.dev;
1143 	struct drm_i915_private *dev_priv = dev->dev_private;
1144 	struct intel_ring_buffer *ring = obj->ring;
1145 	unsigned reset_counter;
1146 	u32 seqno;
1147 	int ret;
1148 
1149 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1150 	BUG_ON(!dev_priv->mm.interruptible);
1151 
1152 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1153 	if (seqno == 0)
1154 		return 0;
1155 
1156 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1157 	if (ret)
1158 		return ret;
1159 
1160 	ret = i915_gem_check_olr(ring, seqno);
1161 	if (ret)
1162 		return ret;
1163 
1164 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1165 	mutex_unlock(&dev->struct_mutex);
1166 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1167 	mutex_lock(&dev->struct_mutex);
1168 
1169 	i915_gem_retire_requests_ring(ring);
1170 
1171 	/* Manually manage the write flush as we may have not yet
1172 	 * retired the buffer.
1173 	 */
1174 	if (obj->last_write_seqno &&
1175 	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
1176 		obj->last_write_seqno = 0;
1177 		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1178 	}
1179 
1180 	return ret;
1181 }
1182 
1183 /**
1184  * Called when user space prepares to use an object with the CPU, either
1185  * through the mmap ioctl's mapping or a GTT mapping.
1186  */
1187 int
1188 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1189 			  struct drm_file *file)
1190 {
1191 	struct drm_i915_gem_set_domain *args = data;
1192 	struct drm_i915_gem_object *obj;
1193 	uint32_t read_domains = args->read_domains;
1194 	uint32_t write_domain = args->write_domain;
1195 	int ret;
1196 
1197 	/* Only handle setting domains to types used by the CPU. */
1198 	if (write_domain & I915_GEM_GPU_DOMAINS)
1199 		return -EINVAL;
1200 
1201 	if (read_domains & I915_GEM_GPU_DOMAINS)
1202 		return -EINVAL;
1203 
1204 	/* Having something in the write domain implies it's in the read
1205 	 * domain, and only that read domain.  Enforce that in the request.
1206 	 */
1207 	if (write_domain != 0 && read_domains != write_domain)
1208 		return -EINVAL;
1209 
1210 	ret = i915_mutex_lock_interruptible(dev);
1211 	if (ret)
1212 		return ret;
1213 
1214 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1215 	if (&obj->base == NULL) {
1216 		ret = -ENOENT;
1217 		goto unlock;
1218 	}
1219 
1220 	/* Try to flush the object off the GPU without holding the lock.
1221 	 * We will repeat the flush holding the lock in the normal manner
1222 	 * to catch cases where we are gazumped.
1223 	 */
1224 	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1225 	if (ret)
1226 		goto unref;
1227 
1228 	if (read_domains & I915_GEM_DOMAIN_GTT) {
1229 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1230 
1231 		/* Silently promote "you're not bound, there was nothing to do"
1232 		 * to success, since the client was just asking us to
1233 		 * make sure everything was done.
1234 		 */
1235 		if (ret == -EINVAL)
1236 			ret = 0;
1237 	} else {
1238 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1239 	}
1240 
1241 unref:
1242 	drm_gem_object_unreference(&obj->base);
1243 unlock:
1244 	mutex_unlock(&dev->struct_mutex);
1245 	return ret;
1246 }
1247 
1248 /**
1249  * Called when user space has done writes to this buffer
1250  */
1251 int
1252 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1253 			 struct drm_file *file)
1254 {
1255 	struct drm_i915_gem_sw_finish *args = data;
1256 	struct drm_i915_gem_object *obj;
1257 	int ret = 0;
1258 
1259 	ret = i915_mutex_lock_interruptible(dev);
1260 	if (ret)
1261 		return ret;
1262 
1263 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1264 	if (&obj->base == NULL) {
1265 		ret = -ENOENT;
1266 		goto unlock;
1267 	}
1268 
1269 	/* Pinned buffers may be scanout, so flush the cache */
1270 	if (obj->pin_count)
1271 		i915_gem_object_flush_cpu_write_domain(obj);
1272 
1273 	drm_gem_object_unreference(&obj->base);
1274 unlock:
1275 	mutex_unlock(&dev->struct_mutex);
1276 	return ret;
1277 }
1278 
1279 /**
1280  * Maps the contents of an object, returning the address it is mapped
1281  * into.
1282  *
1283  * While the mapping holds a reference on the contents of the object, it doesn't
1284  * imply a ref on the object itself.
1285  */
1286 int
1287 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1288 		    struct drm_file *file)
1289 {
1290 	struct drm_i915_gem_mmap *args = data;
1291 	struct drm_gem_object *obj;
1292 	unsigned long addr;
1293 
1294 	obj = drm_gem_object_lookup(dev, file, args->handle);
1295 	if (obj == NULL)
1296 		return -ENOENT;
1297 
1298 	/* prime objects have no backing filp to GEM mmap
1299 	 * pages from.
1300 	 */
1301 	if (!obj->filp) {
1302 		drm_gem_object_unreference_unlocked(obj);
1303 		return -EINVAL;
1304 	}
1305 
1306 	addr = vm_mmap(obj->filp, 0, args->size,
1307 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1308 		       args->offset);
1309 	drm_gem_object_unreference_unlocked(obj);
1310 	if (IS_ERR((void *)addr))
1311 		return addr;
1312 
1313 	args->addr_ptr = (uint64_t) addr;
1314 
1315 	return 0;
1316 }
1317 
1318 /**
1319  * i915_gem_fault - fault a page into the GTT
1320  * vma: VMA in question
1321  * vmf: fault info
1322  *
1323  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1324  * from userspace.  The fault handler takes care of binding the object to
1325  * the GTT (if needed), allocating and programming a fence register (again,
1326  * only if needed based on whether the old reg is still valid or the object
1327  * is tiled) and inserting a new PTE into the faulting process.
1328  *
1329  * Note that the faulting process may involve evicting existing objects
1330  * from the GTT and/or fence registers to make room.  So performance may
1331  * suffer if the GTT working set is large or there are few fence registers
1332  * left.
1333  */
1334 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1335 {
1336 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1337 	struct drm_device *dev = obj->base.dev;
1338 	drm_i915_private_t *dev_priv = dev->dev_private;
1339 	pgoff_t page_offset;
1340 	unsigned long pfn;
1341 	int ret = 0;
1342 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1343 
1344 	/* We don't use vmf->pgoff since that has the fake offset */
1345 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1346 		PAGE_SHIFT;
1347 
1348 	ret = i915_mutex_lock_interruptible(dev);
1349 	if (ret)
1350 		goto out;
1351 
1352 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1353 
1354 	/* Access to snoopable pages through the GTT is incoherent. */
1355 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1356 		ret = -EINVAL;
1357 		goto unlock;
1358 	}
1359 
1360 	/* Now bind it into the GTT if needed */
1361 	ret = i915_gem_object_pin(obj, 0, true, false);
1362 	if (ret)
1363 		goto unlock;
1364 
1365 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1366 	if (ret)
1367 		goto unpin;
1368 
1369 	ret = i915_gem_object_get_fence(obj);
1370 	if (ret)
1371 		goto unpin;
1372 
1373 	obj->fault_mappable = true;
1374 
1375 	pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
1376 		page_offset;
1377 
1378 	/* Finally, remap it using the new GTT offset */
1379 	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1380 unpin:
1381 	i915_gem_object_unpin(obj);
1382 unlock:
1383 	mutex_unlock(&dev->struct_mutex);
1384 out:
1385 	switch (ret) {
1386 	case -EIO:
1387 		/* If this -EIO is due to a gpu hang, give the reset code a
1388 		 * chance to clean up the mess. Otherwise return the proper
1389 		 * SIGBUS. */
1390 		if (i915_terminally_wedged(&dev_priv->gpu_error))
1391 			return VM_FAULT_SIGBUS;
1392 	case -EAGAIN:
1393 		/* Give the error handler a chance to run and move the
1394 		 * objects off the GPU active list. Next time we service the
1395 		 * fault, we should be able to transition the page into the
1396 		 * GTT without touching the GPU (and so avoid further
1397 		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1398 		 * with coherency, just lost writes.
1399 		 */
1400 		set_need_resched();
1401 	case 0:
1402 	case -ERESTARTSYS:
1403 	case -EINTR:
1404 	case -EBUSY:
1405 		/*
1406 		 * EBUSY is ok: this just means that another thread
1407 		 * already did the job.
1408 		 */
1409 		return VM_FAULT_NOPAGE;
1410 	case -ENOMEM:
1411 		return VM_FAULT_OOM;
1412 	case -ENOSPC:
1413 		return VM_FAULT_SIGBUS;
1414 	default:
1415 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1416 		return VM_FAULT_SIGBUS;
1417 	}
1418 }
1419 
1420 /**
1421  * i915_gem_release_mmap - remove physical page mappings
1422  * @obj: obj in question
1423  *
1424  * Preserve the reservation of the mmapping with the DRM core code, but
1425  * relinquish ownership of the pages back to the system.
1426  *
1427  * It is vital that we remove the page mapping if we have mapped a tiled
1428  * object through the GTT and then lose the fence register due to
1429  * resource pressure. Similarly if the object has been moved out of the
1430  * aperture, than pages mapped into userspace must be revoked. Removing the
1431  * mapping will then trigger a page fault on the next user access, allowing
1432  * fixup by i915_gem_fault().
1433  */
1434 void
1435 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1436 {
1437 	if (!obj->fault_mappable)
1438 		return;
1439 
1440 	if (obj->base.dev->dev_mapping)
1441 		unmap_mapping_range(obj->base.dev->dev_mapping,
1442 				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1443 				    obj->base.size, 1);
1444 
1445 	obj->fault_mappable = false;
1446 }
1447 
1448 uint32_t
1449 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1450 {
1451 	uint32_t gtt_size;
1452 
1453 	if (INTEL_INFO(dev)->gen >= 4 ||
1454 	    tiling_mode == I915_TILING_NONE)
1455 		return size;
1456 
1457 	/* Previous chips need a power-of-two fence region when tiling */
1458 	if (INTEL_INFO(dev)->gen == 3)
1459 		gtt_size = 1024*1024;
1460 	else
1461 		gtt_size = 512*1024;
1462 
1463 	while (gtt_size < size)
1464 		gtt_size <<= 1;
1465 
1466 	return gtt_size;
1467 }
1468 
1469 /**
1470  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1471  * @obj: object to check
1472  *
1473  * Return the required GTT alignment for an object, taking into account
1474  * potential fence register mapping.
1475  */
1476 uint32_t
1477 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1478 			   int tiling_mode, bool fenced)
1479 {
1480 	/*
1481 	 * Minimum alignment is 4k (GTT page size), but might be greater
1482 	 * if a fence register is needed for the object.
1483 	 */
1484 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1485 	    tiling_mode == I915_TILING_NONE)
1486 		return 4096;
1487 
1488 	/*
1489 	 * Previous chips need to be aligned to the size of the smallest
1490 	 * fence register that can contain the object.
1491 	 */
1492 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1493 }
1494 
1495 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1496 {
1497 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1498 	int ret;
1499 
1500 	if (obj->base.map_list.map)
1501 		return 0;
1502 
1503 	dev_priv->mm.shrinker_no_lock_stealing = true;
1504 
1505 	ret = drm_gem_create_mmap_offset(&obj->base);
1506 	if (ret != -ENOSPC)
1507 		goto out;
1508 
1509 	/* Badly fragmented mmap space? The only way we can recover
1510 	 * space is by destroying unwanted objects. We can't randomly release
1511 	 * mmap_offsets as userspace expects them to be persistent for the
1512 	 * lifetime of the objects. The closest we can is to release the
1513 	 * offsets on purgeable objects by truncating it and marking it purged,
1514 	 * which prevents userspace from ever using that object again.
1515 	 */
1516 	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1517 	ret = drm_gem_create_mmap_offset(&obj->base);
1518 	if (ret != -ENOSPC)
1519 		goto out;
1520 
1521 	i915_gem_shrink_all(dev_priv);
1522 	ret = drm_gem_create_mmap_offset(&obj->base);
1523 out:
1524 	dev_priv->mm.shrinker_no_lock_stealing = false;
1525 
1526 	return ret;
1527 }
1528 
1529 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1530 {
1531 	if (!obj->base.map_list.map)
1532 		return;
1533 
1534 	drm_gem_free_mmap_offset(&obj->base);
1535 }
1536 
1537 int
1538 i915_gem_mmap_gtt(struct drm_file *file,
1539 		  struct drm_device *dev,
1540 		  uint32_t handle,
1541 		  uint64_t *offset)
1542 {
1543 	struct drm_i915_private *dev_priv = dev->dev_private;
1544 	struct drm_i915_gem_object *obj;
1545 	int ret;
1546 
1547 	ret = i915_mutex_lock_interruptible(dev);
1548 	if (ret)
1549 		return ret;
1550 
1551 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1552 	if (&obj->base == NULL) {
1553 		ret = -ENOENT;
1554 		goto unlock;
1555 	}
1556 
1557 	if (obj->base.size > dev_priv->gtt.mappable_end) {
1558 		ret = -E2BIG;
1559 		goto out;
1560 	}
1561 
1562 	if (obj->madv != I915_MADV_WILLNEED) {
1563 		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1564 		ret = -EINVAL;
1565 		goto out;
1566 	}
1567 
1568 	ret = i915_gem_object_create_mmap_offset(obj);
1569 	if (ret)
1570 		goto out;
1571 
1572 	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1573 
1574 out:
1575 	drm_gem_object_unreference(&obj->base);
1576 unlock:
1577 	mutex_unlock(&dev->struct_mutex);
1578 	return ret;
1579 }
1580 
1581 /**
1582  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1583  * @dev: DRM device
1584  * @data: GTT mapping ioctl data
1585  * @file: GEM object info
1586  *
1587  * Simply returns the fake offset to userspace so it can mmap it.
1588  * The mmap call will end up in drm_gem_mmap(), which will set things
1589  * up so we can get faults in the handler above.
1590  *
1591  * The fault handler will take care of binding the object into the GTT
1592  * (since it may have been evicted to make room for something), allocating
1593  * a fence register, and mapping the appropriate aperture address into
1594  * userspace.
1595  */
1596 int
1597 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1598 			struct drm_file *file)
1599 {
1600 	struct drm_i915_gem_mmap_gtt *args = data;
1601 
1602 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1603 }
1604 
1605 /* Immediately discard the backing storage */
1606 static void
1607 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1608 {
1609 	struct inode *inode;
1610 
1611 	i915_gem_object_free_mmap_offset(obj);
1612 
1613 	if (obj->base.filp == NULL)
1614 		return;
1615 
1616 	/* Our goal here is to return as much of the memory as
1617 	 * is possible back to the system as we are called from OOM.
1618 	 * To do this we must instruct the shmfs to drop all of its
1619 	 * backing pages, *now*.
1620 	 */
1621 	inode = file_inode(obj->base.filp);
1622 	shmem_truncate_range(inode, 0, (loff_t)-1);
1623 
1624 	obj->madv = __I915_MADV_PURGED;
1625 }
1626 
1627 static inline int
1628 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1629 {
1630 	return obj->madv == I915_MADV_DONTNEED;
1631 }
1632 
1633 static void
1634 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1635 {
1636 	int page_count = obj->base.size / PAGE_SIZE;
1637 	struct scatterlist *sg;
1638 	int ret, i;
1639 
1640 	BUG_ON(obj->madv == __I915_MADV_PURGED);
1641 
1642 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1643 	if (ret) {
1644 		/* In the event of a disaster, abandon all caches and
1645 		 * hope for the best.
1646 		 */
1647 		WARN_ON(ret != -EIO);
1648 		i915_gem_clflush_object(obj);
1649 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1650 	}
1651 
1652 	if (i915_gem_object_needs_bit17_swizzle(obj))
1653 		i915_gem_object_save_bit_17_swizzle(obj);
1654 
1655 	if (obj->madv == I915_MADV_DONTNEED)
1656 		obj->dirty = 0;
1657 
1658 	for_each_sg(obj->pages->sgl, sg, page_count, i) {
1659 		struct page *page = sg_page(sg);
1660 
1661 		if (obj->dirty)
1662 			set_page_dirty(page);
1663 
1664 		if (obj->madv == I915_MADV_WILLNEED)
1665 			mark_page_accessed(page);
1666 
1667 		page_cache_release(page);
1668 	}
1669 	obj->dirty = 0;
1670 
1671 	sg_free_table(obj->pages);
1672 	kfree(obj->pages);
1673 }
1674 
1675 int
1676 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1677 {
1678 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1679 
1680 	if (obj->pages == NULL)
1681 		return 0;
1682 
1683 	BUG_ON(obj->gtt_space);
1684 
1685 	if (obj->pages_pin_count)
1686 		return -EBUSY;
1687 
1688 	/* ->put_pages might need to allocate memory for the bit17 swizzle
1689 	 * array, hence protect them from being reaped by removing them from gtt
1690 	 * lists early. */
1691 	list_del(&obj->gtt_list);
1692 
1693 	ops->put_pages(obj);
1694 	obj->pages = NULL;
1695 
1696 	if (i915_gem_object_is_purgeable(obj))
1697 		i915_gem_object_truncate(obj);
1698 
1699 	return 0;
1700 }
1701 
1702 static long
1703 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1704 		  bool purgeable_only)
1705 {
1706 	struct drm_i915_gem_object *obj, *next;
1707 	long count = 0;
1708 
1709 	list_for_each_entry_safe(obj, next,
1710 				 &dev_priv->mm.unbound_list,
1711 				 gtt_list) {
1712 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1713 		    i915_gem_object_put_pages(obj) == 0) {
1714 			count += obj->base.size >> PAGE_SHIFT;
1715 			if (count >= target)
1716 				return count;
1717 		}
1718 	}
1719 
1720 	list_for_each_entry_safe(obj, next,
1721 				 &dev_priv->mm.inactive_list,
1722 				 mm_list) {
1723 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1724 		    i915_gem_object_unbind(obj) == 0 &&
1725 		    i915_gem_object_put_pages(obj) == 0) {
1726 			count += obj->base.size >> PAGE_SHIFT;
1727 			if (count >= target)
1728 				return count;
1729 		}
1730 	}
1731 
1732 	return count;
1733 }
1734 
1735 static long
1736 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1737 {
1738 	return __i915_gem_shrink(dev_priv, target, true);
1739 }
1740 
1741 static void
1742 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1743 {
1744 	struct drm_i915_gem_object *obj, *next;
1745 
1746 	i915_gem_evict_everything(dev_priv->dev);
1747 
1748 	list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1749 		i915_gem_object_put_pages(obj);
1750 }
1751 
1752 static int
1753 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1754 {
1755 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1756 	int page_count, i;
1757 	struct address_space *mapping;
1758 	struct sg_table *st;
1759 	struct scatterlist *sg;
1760 	struct page *page;
1761 	gfp_t gfp;
1762 
1763 	/* Assert that the object is not currently in any GPU domain. As it
1764 	 * wasn't in the GTT, there shouldn't be any way it could have been in
1765 	 * a GPU cache
1766 	 */
1767 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1768 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1769 
1770 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1771 	if (st == NULL)
1772 		return -ENOMEM;
1773 
1774 	page_count = obj->base.size / PAGE_SIZE;
1775 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1776 		sg_free_table(st);
1777 		kfree(st);
1778 		return -ENOMEM;
1779 	}
1780 
1781 	/* Get the list of pages out of our struct file.  They'll be pinned
1782 	 * at this point until we release them.
1783 	 *
1784 	 * Fail silently without starting the shrinker
1785 	 */
1786 	mapping = file_inode(obj->base.filp)->i_mapping;
1787 	gfp = mapping_gfp_mask(mapping);
1788 	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1789 	gfp &= ~(__GFP_IO | __GFP_WAIT);
1790 	for_each_sg(st->sgl, sg, page_count, i) {
1791 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1792 		if (IS_ERR(page)) {
1793 			i915_gem_purge(dev_priv, page_count);
1794 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1795 		}
1796 		if (IS_ERR(page)) {
1797 			/* We've tried hard to allocate the memory by reaping
1798 			 * our own buffer, now let the real VM do its job and
1799 			 * go down in flames if truly OOM.
1800 			 */
1801 			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1802 			gfp |= __GFP_IO | __GFP_WAIT;
1803 
1804 			i915_gem_shrink_all(dev_priv);
1805 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1806 			if (IS_ERR(page))
1807 				goto err_pages;
1808 
1809 			gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1810 			gfp &= ~(__GFP_IO | __GFP_WAIT);
1811 		}
1812 
1813 		sg_set_page(sg, page, PAGE_SIZE, 0);
1814 	}
1815 
1816 	obj->pages = st;
1817 
1818 	if (i915_gem_object_needs_bit17_swizzle(obj))
1819 		i915_gem_object_do_bit_17_swizzle(obj);
1820 
1821 	return 0;
1822 
1823 err_pages:
1824 	for_each_sg(st->sgl, sg, i, page_count)
1825 		page_cache_release(sg_page(sg));
1826 	sg_free_table(st);
1827 	kfree(st);
1828 	return PTR_ERR(page);
1829 }
1830 
1831 /* Ensure that the associated pages are gathered from the backing storage
1832  * and pinned into our object. i915_gem_object_get_pages() may be called
1833  * multiple times before they are released by a single call to
1834  * i915_gem_object_put_pages() - once the pages are no longer referenced
1835  * either as a result of memory pressure (reaping pages under the shrinker)
1836  * or as the object is itself released.
1837  */
1838 int
1839 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1840 {
1841 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1842 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1843 	int ret;
1844 
1845 	if (obj->pages)
1846 		return 0;
1847 
1848 	if (obj->madv != I915_MADV_WILLNEED) {
1849 		DRM_ERROR("Attempting to obtain a purgeable object\n");
1850 		return -EINVAL;
1851 	}
1852 
1853 	BUG_ON(obj->pages_pin_count);
1854 
1855 	ret = ops->get_pages(obj);
1856 	if (ret)
1857 		return ret;
1858 
1859 	list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1860 	return 0;
1861 }
1862 
1863 void
1864 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1865 			       struct intel_ring_buffer *ring)
1866 {
1867 	struct drm_device *dev = obj->base.dev;
1868 	struct drm_i915_private *dev_priv = dev->dev_private;
1869 	u32 seqno = intel_ring_get_seqno(ring);
1870 
1871 	BUG_ON(ring == NULL);
1872 	obj->ring = ring;
1873 
1874 	/* Add a reference if we're newly entering the active list. */
1875 	if (!obj->active) {
1876 		drm_gem_object_reference(&obj->base);
1877 		obj->active = 1;
1878 	}
1879 
1880 	/* Move from whatever list we were on to the tail of execution. */
1881 	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1882 	list_move_tail(&obj->ring_list, &ring->active_list);
1883 
1884 	obj->last_read_seqno = seqno;
1885 
1886 	if (obj->fenced_gpu_access) {
1887 		obj->last_fenced_seqno = seqno;
1888 
1889 		/* Bump MRU to take account of the delayed flush */
1890 		if (obj->fence_reg != I915_FENCE_REG_NONE) {
1891 			struct drm_i915_fence_reg *reg;
1892 
1893 			reg = &dev_priv->fence_regs[obj->fence_reg];
1894 			list_move_tail(&reg->lru_list,
1895 				       &dev_priv->mm.fence_list);
1896 		}
1897 	}
1898 }
1899 
1900 static void
1901 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1902 {
1903 	struct drm_device *dev = obj->base.dev;
1904 	struct drm_i915_private *dev_priv = dev->dev_private;
1905 
1906 	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1907 	BUG_ON(!obj->active);
1908 
1909 	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1910 
1911 	list_del_init(&obj->ring_list);
1912 	obj->ring = NULL;
1913 
1914 	obj->last_read_seqno = 0;
1915 	obj->last_write_seqno = 0;
1916 	obj->base.write_domain = 0;
1917 
1918 	obj->last_fenced_seqno = 0;
1919 	obj->fenced_gpu_access = false;
1920 
1921 	obj->active = 0;
1922 	drm_gem_object_unreference(&obj->base);
1923 
1924 	WARN_ON(i915_verify_lists(dev));
1925 }
1926 
1927 static int
1928 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1929 {
1930 	struct drm_i915_private *dev_priv = dev->dev_private;
1931 	struct intel_ring_buffer *ring;
1932 	int ret, i, j;
1933 
1934 	/* Carefully retire all requests without writing to the rings */
1935 	for_each_ring(ring, dev_priv, i) {
1936 		ret = intel_ring_idle(ring);
1937 		if (ret)
1938 			return ret;
1939 	}
1940 	i915_gem_retire_requests(dev);
1941 
1942 	/* Finally reset hw state */
1943 	for_each_ring(ring, dev_priv, i) {
1944 		intel_ring_init_seqno(ring, seqno);
1945 
1946 		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1947 			ring->sync_seqno[j] = 0;
1948 	}
1949 
1950 	return 0;
1951 }
1952 
1953 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1954 {
1955 	struct drm_i915_private *dev_priv = dev->dev_private;
1956 	int ret;
1957 
1958 	if (seqno == 0)
1959 		return -EINVAL;
1960 
1961 	/* HWS page needs to be set less than what we
1962 	 * will inject to ring
1963 	 */
1964 	ret = i915_gem_init_seqno(dev, seqno - 1);
1965 	if (ret)
1966 		return ret;
1967 
1968 	/* Carefully set the last_seqno value so that wrap
1969 	 * detection still works
1970 	 */
1971 	dev_priv->next_seqno = seqno;
1972 	dev_priv->last_seqno = seqno - 1;
1973 	if (dev_priv->last_seqno == 0)
1974 		dev_priv->last_seqno--;
1975 
1976 	return 0;
1977 }
1978 
1979 int
1980 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1981 {
1982 	struct drm_i915_private *dev_priv = dev->dev_private;
1983 
1984 	/* reserve 0 for non-seqno */
1985 	if (dev_priv->next_seqno == 0) {
1986 		int ret = i915_gem_init_seqno(dev, 0);
1987 		if (ret)
1988 			return ret;
1989 
1990 		dev_priv->next_seqno = 1;
1991 	}
1992 
1993 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
1994 	return 0;
1995 }
1996 
1997 int
1998 i915_add_request(struct intel_ring_buffer *ring,
1999 		 struct drm_file *file,
2000 		 u32 *out_seqno)
2001 {
2002 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
2003 	struct drm_i915_gem_request *request;
2004 	u32 request_ring_position;
2005 	int was_empty;
2006 	int ret;
2007 
2008 	/*
2009 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2010 	 * after having emitted the batchbuffer command. Hence we need to fix
2011 	 * things up similar to emitting the lazy request. The difference here
2012 	 * is that the flush _must_ happen before the next request, no matter
2013 	 * what.
2014 	 */
2015 	ret = intel_ring_flush_all_caches(ring);
2016 	if (ret)
2017 		return ret;
2018 
2019 	request = kmalloc(sizeof(*request), GFP_KERNEL);
2020 	if (request == NULL)
2021 		return -ENOMEM;
2022 
2023 
2024 	/* Record the position of the start of the request so that
2025 	 * should we detect the updated seqno part-way through the
2026 	 * GPU processing the request, we never over-estimate the
2027 	 * position of the head.
2028 	 */
2029 	request_ring_position = intel_ring_get_tail(ring);
2030 
2031 	ret = ring->add_request(ring);
2032 	if (ret) {
2033 		kfree(request);
2034 		return ret;
2035 	}
2036 
2037 	request->seqno = intel_ring_get_seqno(ring);
2038 	request->ring = ring;
2039 	request->tail = request_ring_position;
2040 	request->emitted_jiffies = jiffies;
2041 	was_empty = list_empty(&ring->request_list);
2042 	list_add_tail(&request->list, &ring->request_list);
2043 	request->file_priv = NULL;
2044 
2045 	if (file) {
2046 		struct drm_i915_file_private *file_priv = file->driver_priv;
2047 
2048 		spin_lock(&file_priv->mm.lock);
2049 		request->file_priv = file_priv;
2050 		list_add_tail(&request->client_list,
2051 			      &file_priv->mm.request_list);
2052 		spin_unlock(&file_priv->mm.lock);
2053 	}
2054 
2055 	trace_i915_gem_request_add(ring, request->seqno);
2056 	ring->outstanding_lazy_request = 0;
2057 
2058 	if (!dev_priv->mm.suspended) {
2059 		if (i915_enable_hangcheck) {
2060 			mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2061 				  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2062 		}
2063 		if (was_empty) {
2064 			queue_delayed_work(dev_priv->wq,
2065 					   &dev_priv->mm.retire_work,
2066 					   round_jiffies_up_relative(HZ));
2067 			intel_mark_busy(dev_priv->dev);
2068 		}
2069 	}
2070 
2071 	if (out_seqno)
2072 		*out_seqno = request->seqno;
2073 	return 0;
2074 }
2075 
2076 static inline void
2077 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2078 {
2079 	struct drm_i915_file_private *file_priv = request->file_priv;
2080 
2081 	if (!file_priv)
2082 		return;
2083 
2084 	spin_lock(&file_priv->mm.lock);
2085 	if (request->file_priv) {
2086 		list_del(&request->client_list);
2087 		request->file_priv = NULL;
2088 	}
2089 	spin_unlock(&file_priv->mm.lock);
2090 }
2091 
2092 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2093 				      struct intel_ring_buffer *ring)
2094 {
2095 	while (!list_empty(&ring->request_list)) {
2096 		struct drm_i915_gem_request *request;
2097 
2098 		request = list_first_entry(&ring->request_list,
2099 					   struct drm_i915_gem_request,
2100 					   list);
2101 
2102 		list_del(&request->list);
2103 		i915_gem_request_remove_from_client(request);
2104 		kfree(request);
2105 	}
2106 
2107 	while (!list_empty(&ring->active_list)) {
2108 		struct drm_i915_gem_object *obj;
2109 
2110 		obj = list_first_entry(&ring->active_list,
2111 				       struct drm_i915_gem_object,
2112 				       ring_list);
2113 
2114 		i915_gem_object_move_to_inactive(obj);
2115 	}
2116 }
2117 
2118 static void i915_gem_reset_fences(struct drm_device *dev)
2119 {
2120 	struct drm_i915_private *dev_priv = dev->dev_private;
2121 	int i;
2122 
2123 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2124 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2125 
2126 		i915_gem_write_fence(dev, i, NULL);
2127 
2128 		if (reg->obj)
2129 			i915_gem_object_fence_lost(reg->obj);
2130 
2131 		reg->pin_count = 0;
2132 		reg->obj = NULL;
2133 		INIT_LIST_HEAD(&reg->lru_list);
2134 	}
2135 
2136 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2137 }
2138 
2139 void i915_gem_reset(struct drm_device *dev)
2140 {
2141 	struct drm_i915_private *dev_priv = dev->dev_private;
2142 	struct drm_i915_gem_object *obj;
2143 	struct intel_ring_buffer *ring;
2144 	int i;
2145 
2146 	for_each_ring(ring, dev_priv, i)
2147 		i915_gem_reset_ring_lists(dev_priv, ring);
2148 
2149 	/* Move everything out of the GPU domains to ensure we do any
2150 	 * necessary invalidation upon reuse.
2151 	 */
2152 	list_for_each_entry(obj,
2153 			    &dev_priv->mm.inactive_list,
2154 			    mm_list)
2155 	{
2156 		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2157 	}
2158 
2159 	/* The fence registers are invalidated so clear them out */
2160 	i915_gem_reset_fences(dev);
2161 }
2162 
2163 /**
2164  * This function clears the request list as sequence numbers are passed.
2165  */
2166 void
2167 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2168 {
2169 	uint32_t seqno;
2170 
2171 	if (list_empty(&ring->request_list))
2172 		return;
2173 
2174 	WARN_ON(i915_verify_lists(ring->dev));
2175 
2176 	seqno = ring->get_seqno(ring, true);
2177 
2178 	while (!list_empty(&ring->request_list)) {
2179 		struct drm_i915_gem_request *request;
2180 
2181 		request = list_first_entry(&ring->request_list,
2182 					   struct drm_i915_gem_request,
2183 					   list);
2184 
2185 		if (!i915_seqno_passed(seqno, request->seqno))
2186 			break;
2187 
2188 		trace_i915_gem_request_retire(ring, request->seqno);
2189 		/* We know the GPU must have read the request to have
2190 		 * sent us the seqno + interrupt, so use the position
2191 		 * of tail of the request to update the last known position
2192 		 * of the GPU head.
2193 		 */
2194 		ring->last_retired_head = request->tail;
2195 
2196 		list_del(&request->list);
2197 		i915_gem_request_remove_from_client(request);
2198 		kfree(request);
2199 	}
2200 
2201 	/* Move any buffers on the active list that are no longer referenced
2202 	 * by the ringbuffer to the flushing/inactive lists as appropriate.
2203 	 */
2204 	while (!list_empty(&ring->active_list)) {
2205 		struct drm_i915_gem_object *obj;
2206 
2207 		obj = list_first_entry(&ring->active_list,
2208 				      struct drm_i915_gem_object,
2209 				      ring_list);
2210 
2211 		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2212 			break;
2213 
2214 		i915_gem_object_move_to_inactive(obj);
2215 	}
2216 
2217 	if (unlikely(ring->trace_irq_seqno &&
2218 		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2219 		ring->irq_put(ring);
2220 		ring->trace_irq_seqno = 0;
2221 	}
2222 
2223 	WARN_ON(i915_verify_lists(ring->dev));
2224 }
2225 
2226 void
2227 i915_gem_retire_requests(struct drm_device *dev)
2228 {
2229 	drm_i915_private_t *dev_priv = dev->dev_private;
2230 	struct intel_ring_buffer *ring;
2231 	int i;
2232 
2233 	for_each_ring(ring, dev_priv, i)
2234 		i915_gem_retire_requests_ring(ring);
2235 }
2236 
2237 static void
2238 i915_gem_retire_work_handler(struct work_struct *work)
2239 {
2240 	drm_i915_private_t *dev_priv;
2241 	struct drm_device *dev;
2242 	struct intel_ring_buffer *ring;
2243 	bool idle;
2244 	int i;
2245 
2246 	dev_priv = container_of(work, drm_i915_private_t,
2247 				mm.retire_work.work);
2248 	dev = dev_priv->dev;
2249 
2250 	/* Come back later if the device is busy... */
2251 	if (!mutex_trylock(&dev->struct_mutex)) {
2252 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2253 				   round_jiffies_up_relative(HZ));
2254 		return;
2255 	}
2256 
2257 	i915_gem_retire_requests(dev);
2258 
2259 	/* Send a periodic flush down the ring so we don't hold onto GEM
2260 	 * objects indefinitely.
2261 	 */
2262 	idle = true;
2263 	for_each_ring(ring, dev_priv, i) {
2264 		if (ring->gpu_caches_dirty)
2265 			i915_add_request(ring, NULL, NULL);
2266 
2267 		idle &= list_empty(&ring->request_list);
2268 	}
2269 
2270 	if (!dev_priv->mm.suspended && !idle)
2271 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2272 				   round_jiffies_up_relative(HZ));
2273 	if (idle)
2274 		intel_mark_idle(dev);
2275 
2276 	mutex_unlock(&dev->struct_mutex);
2277 }
2278 
2279 /**
2280  * Ensures that an object will eventually get non-busy by flushing any required
2281  * write domains, emitting any outstanding lazy request and retiring and
2282  * completed requests.
2283  */
2284 static int
2285 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2286 {
2287 	int ret;
2288 
2289 	if (obj->active) {
2290 		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2291 		if (ret)
2292 			return ret;
2293 
2294 		i915_gem_retire_requests_ring(obj->ring);
2295 	}
2296 
2297 	return 0;
2298 }
2299 
2300 /**
2301  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2302  * @DRM_IOCTL_ARGS: standard ioctl arguments
2303  *
2304  * Returns 0 if successful, else an error is returned with the remaining time in
2305  * the timeout parameter.
2306  *  -ETIME: object is still busy after timeout
2307  *  -ERESTARTSYS: signal interrupted the wait
2308  *  -ENONENT: object doesn't exist
2309  * Also possible, but rare:
2310  *  -EAGAIN: GPU wedged
2311  *  -ENOMEM: damn
2312  *  -ENODEV: Internal IRQ fail
2313  *  -E?: The add request failed
2314  *
2315  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2316  * non-zero timeout parameter the wait ioctl will wait for the given number of
2317  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2318  * without holding struct_mutex the object may become re-busied before this
2319  * function completes. A similar but shorter * race condition exists in the busy
2320  * ioctl
2321  */
2322 int
2323 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2324 {
2325 	drm_i915_private_t *dev_priv = dev->dev_private;
2326 	struct drm_i915_gem_wait *args = data;
2327 	struct drm_i915_gem_object *obj;
2328 	struct intel_ring_buffer *ring = NULL;
2329 	struct timespec timeout_stack, *timeout = NULL;
2330 	unsigned reset_counter;
2331 	u32 seqno = 0;
2332 	int ret = 0;
2333 
2334 	if (args->timeout_ns >= 0) {
2335 		timeout_stack = ns_to_timespec(args->timeout_ns);
2336 		timeout = &timeout_stack;
2337 	}
2338 
2339 	ret = i915_mutex_lock_interruptible(dev);
2340 	if (ret)
2341 		return ret;
2342 
2343 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2344 	if (&obj->base == NULL) {
2345 		mutex_unlock(&dev->struct_mutex);
2346 		return -ENOENT;
2347 	}
2348 
2349 	/* Need to make sure the object gets inactive eventually. */
2350 	ret = i915_gem_object_flush_active(obj);
2351 	if (ret)
2352 		goto out;
2353 
2354 	if (obj->active) {
2355 		seqno = obj->last_read_seqno;
2356 		ring = obj->ring;
2357 	}
2358 
2359 	if (seqno == 0)
2360 		 goto out;
2361 
2362 	/* Do this after OLR check to make sure we make forward progress polling
2363 	 * on this IOCTL with a 0 timeout (like busy ioctl)
2364 	 */
2365 	if (!args->timeout_ns) {
2366 		ret = -ETIME;
2367 		goto out;
2368 	}
2369 
2370 	drm_gem_object_unreference(&obj->base);
2371 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2372 	mutex_unlock(&dev->struct_mutex);
2373 
2374 	ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2375 	if (timeout) {
2376 		WARN_ON(!timespec_valid(timeout));
2377 		args->timeout_ns = timespec_to_ns(timeout);
2378 	}
2379 	return ret;
2380 
2381 out:
2382 	drm_gem_object_unreference(&obj->base);
2383 	mutex_unlock(&dev->struct_mutex);
2384 	return ret;
2385 }
2386 
2387 /**
2388  * i915_gem_object_sync - sync an object to a ring.
2389  *
2390  * @obj: object which may be in use on another ring.
2391  * @to: ring we wish to use the object on. May be NULL.
2392  *
2393  * This code is meant to abstract object synchronization with the GPU.
2394  * Calling with NULL implies synchronizing the object with the CPU
2395  * rather than a particular GPU ring.
2396  *
2397  * Returns 0 if successful, else propagates up the lower layer error.
2398  */
2399 int
2400 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2401 		     struct intel_ring_buffer *to)
2402 {
2403 	struct intel_ring_buffer *from = obj->ring;
2404 	u32 seqno;
2405 	int ret, idx;
2406 
2407 	if (from == NULL || to == from)
2408 		return 0;
2409 
2410 	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2411 		return i915_gem_object_wait_rendering(obj, false);
2412 
2413 	idx = intel_ring_sync_index(from, to);
2414 
2415 	seqno = obj->last_read_seqno;
2416 	if (seqno <= from->sync_seqno[idx])
2417 		return 0;
2418 
2419 	ret = i915_gem_check_olr(obj->ring, seqno);
2420 	if (ret)
2421 		return ret;
2422 
2423 	ret = to->sync_to(to, from, seqno);
2424 	if (!ret)
2425 		/* We use last_read_seqno because sync_to()
2426 		 * might have just caused seqno wrap under
2427 		 * the radar.
2428 		 */
2429 		from->sync_seqno[idx] = obj->last_read_seqno;
2430 
2431 	return ret;
2432 }
2433 
2434 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2435 {
2436 	u32 old_write_domain, old_read_domains;
2437 
2438 	/* Force a pagefault for domain tracking on next user access */
2439 	i915_gem_release_mmap(obj);
2440 
2441 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2442 		return;
2443 
2444 	/* Wait for any direct GTT access to complete */
2445 	mb();
2446 
2447 	old_read_domains = obj->base.read_domains;
2448 	old_write_domain = obj->base.write_domain;
2449 
2450 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2451 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2452 
2453 	trace_i915_gem_object_change_domain(obj,
2454 					    old_read_domains,
2455 					    old_write_domain);
2456 }
2457 
2458 /**
2459  * Unbinds an object from the GTT aperture.
2460  */
2461 int
2462 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2463 {
2464 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2465 	int ret;
2466 
2467 	if (obj->gtt_space == NULL)
2468 		return 0;
2469 
2470 	if (obj->pin_count)
2471 		return -EBUSY;
2472 
2473 	BUG_ON(obj->pages == NULL);
2474 
2475 	ret = i915_gem_object_finish_gpu(obj);
2476 	if (ret)
2477 		return ret;
2478 	/* Continue on if we fail due to EIO, the GPU is hung so we
2479 	 * should be safe and we need to cleanup or else we might
2480 	 * cause memory corruption through use-after-free.
2481 	 */
2482 
2483 	i915_gem_object_finish_gtt(obj);
2484 
2485 	/* release the fence reg _after_ flushing */
2486 	ret = i915_gem_object_put_fence(obj);
2487 	if (ret)
2488 		return ret;
2489 
2490 	trace_i915_gem_object_unbind(obj);
2491 
2492 	if (obj->has_global_gtt_mapping)
2493 		i915_gem_gtt_unbind_object(obj);
2494 	if (obj->has_aliasing_ppgtt_mapping) {
2495 		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2496 		obj->has_aliasing_ppgtt_mapping = 0;
2497 	}
2498 	i915_gem_gtt_finish_object(obj);
2499 
2500 	list_del(&obj->mm_list);
2501 	list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2502 	/* Avoid an unnecessary call to unbind on rebind. */
2503 	obj->map_and_fenceable = true;
2504 
2505 	drm_mm_put_block(obj->gtt_space);
2506 	obj->gtt_space = NULL;
2507 	obj->gtt_offset = 0;
2508 
2509 	return 0;
2510 }
2511 
2512 int i915_gpu_idle(struct drm_device *dev)
2513 {
2514 	drm_i915_private_t *dev_priv = dev->dev_private;
2515 	struct intel_ring_buffer *ring;
2516 	int ret, i;
2517 
2518 	/* Flush everything onto the inactive list. */
2519 	for_each_ring(ring, dev_priv, i) {
2520 		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2521 		if (ret)
2522 			return ret;
2523 
2524 		ret = intel_ring_idle(ring);
2525 		if (ret)
2526 			return ret;
2527 	}
2528 
2529 	return 0;
2530 }
2531 
2532 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2533 				 struct drm_i915_gem_object *obj)
2534 {
2535 	drm_i915_private_t *dev_priv = dev->dev_private;
2536 	int fence_reg;
2537 	int fence_pitch_shift;
2538 	uint64_t val;
2539 
2540 	if (INTEL_INFO(dev)->gen >= 6) {
2541 		fence_reg = FENCE_REG_SANDYBRIDGE_0;
2542 		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2543 	} else {
2544 		fence_reg = FENCE_REG_965_0;
2545 		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2546 	}
2547 
2548 	if (obj) {
2549 		u32 size = obj->gtt_space->size;
2550 
2551 		val = (uint64_t)((obj->gtt_offset + size - 4096) &
2552 				 0xfffff000) << 32;
2553 		val |= obj->gtt_offset & 0xfffff000;
2554 		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2555 		if (obj->tiling_mode == I915_TILING_Y)
2556 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2557 		val |= I965_FENCE_REG_VALID;
2558 	} else
2559 		val = 0;
2560 
2561 	fence_reg += reg * 8;
2562 	I915_WRITE64(fence_reg, val);
2563 	POSTING_READ(fence_reg);
2564 }
2565 
2566 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2567 				 struct drm_i915_gem_object *obj)
2568 {
2569 	drm_i915_private_t *dev_priv = dev->dev_private;
2570 	u32 val;
2571 
2572 	if (obj) {
2573 		u32 size = obj->gtt_space->size;
2574 		int pitch_val;
2575 		int tile_width;
2576 
2577 		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2578 		     (size & -size) != size ||
2579 		     (obj->gtt_offset & (size - 1)),
2580 		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2581 		     obj->gtt_offset, obj->map_and_fenceable, size);
2582 
2583 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2584 			tile_width = 128;
2585 		else
2586 			tile_width = 512;
2587 
2588 		/* Note: pitch better be a power of two tile widths */
2589 		pitch_val = obj->stride / tile_width;
2590 		pitch_val = ffs(pitch_val) - 1;
2591 
2592 		val = obj->gtt_offset;
2593 		if (obj->tiling_mode == I915_TILING_Y)
2594 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2595 		val |= I915_FENCE_SIZE_BITS(size);
2596 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2597 		val |= I830_FENCE_REG_VALID;
2598 	} else
2599 		val = 0;
2600 
2601 	if (reg < 8)
2602 		reg = FENCE_REG_830_0 + reg * 4;
2603 	else
2604 		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2605 
2606 	I915_WRITE(reg, val);
2607 	POSTING_READ(reg);
2608 }
2609 
2610 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2611 				struct drm_i915_gem_object *obj)
2612 {
2613 	drm_i915_private_t *dev_priv = dev->dev_private;
2614 	uint32_t val;
2615 
2616 	if (obj) {
2617 		u32 size = obj->gtt_space->size;
2618 		uint32_t pitch_val;
2619 
2620 		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2621 		     (size & -size) != size ||
2622 		     (obj->gtt_offset & (size - 1)),
2623 		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2624 		     obj->gtt_offset, size);
2625 
2626 		pitch_val = obj->stride / 128;
2627 		pitch_val = ffs(pitch_val) - 1;
2628 
2629 		val = obj->gtt_offset;
2630 		if (obj->tiling_mode == I915_TILING_Y)
2631 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2632 		val |= I830_FENCE_SIZE_BITS(size);
2633 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2634 		val |= I830_FENCE_REG_VALID;
2635 	} else
2636 		val = 0;
2637 
2638 	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2639 	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2640 }
2641 
2642 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2643 {
2644 	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2645 }
2646 
2647 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2648 				 struct drm_i915_gem_object *obj)
2649 {
2650 	struct drm_i915_private *dev_priv = dev->dev_private;
2651 
2652 	/* Ensure that all CPU reads are completed before installing a fence
2653 	 * and all writes before removing the fence.
2654 	 */
2655 	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2656 		mb();
2657 
2658 	switch (INTEL_INFO(dev)->gen) {
2659 	case 7:
2660 	case 6:
2661 	case 5:
2662 	case 4: i965_write_fence_reg(dev, reg, obj); break;
2663 	case 3: i915_write_fence_reg(dev, reg, obj); break;
2664 	case 2: i830_write_fence_reg(dev, reg, obj); break;
2665 	default: BUG();
2666 	}
2667 
2668 	/* And similarly be paranoid that no direct access to this region
2669 	 * is reordered to before the fence is installed.
2670 	 */
2671 	if (i915_gem_object_needs_mb(obj))
2672 		mb();
2673 }
2674 
2675 static inline int fence_number(struct drm_i915_private *dev_priv,
2676 			       struct drm_i915_fence_reg *fence)
2677 {
2678 	return fence - dev_priv->fence_regs;
2679 }
2680 
2681 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2682 					 struct drm_i915_fence_reg *fence,
2683 					 bool enable)
2684 {
2685 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2686 	int reg = fence_number(dev_priv, fence);
2687 
2688 	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2689 
2690 	if (enable) {
2691 		obj->fence_reg = reg;
2692 		fence->obj = obj;
2693 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2694 	} else {
2695 		obj->fence_reg = I915_FENCE_REG_NONE;
2696 		fence->obj = NULL;
2697 		list_del_init(&fence->lru_list);
2698 	}
2699 }
2700 
2701 static int
2702 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2703 {
2704 	if (obj->last_fenced_seqno) {
2705 		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2706 		if (ret)
2707 			return ret;
2708 
2709 		obj->last_fenced_seqno = 0;
2710 	}
2711 
2712 	obj->fenced_gpu_access = false;
2713 	return 0;
2714 }
2715 
2716 int
2717 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2718 {
2719 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2720 	int ret;
2721 
2722 	ret = i915_gem_object_wait_fence(obj);
2723 	if (ret)
2724 		return ret;
2725 
2726 	if (obj->fence_reg == I915_FENCE_REG_NONE)
2727 		return 0;
2728 
2729 	i915_gem_object_update_fence(obj,
2730 				     &dev_priv->fence_regs[obj->fence_reg],
2731 				     false);
2732 	i915_gem_object_fence_lost(obj);
2733 
2734 	return 0;
2735 }
2736 
2737 static struct drm_i915_fence_reg *
2738 i915_find_fence_reg(struct drm_device *dev)
2739 {
2740 	struct drm_i915_private *dev_priv = dev->dev_private;
2741 	struct drm_i915_fence_reg *reg, *avail;
2742 	int i;
2743 
2744 	/* First try to find a free reg */
2745 	avail = NULL;
2746 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2747 		reg = &dev_priv->fence_regs[i];
2748 		if (!reg->obj)
2749 			return reg;
2750 
2751 		if (!reg->pin_count)
2752 			avail = reg;
2753 	}
2754 
2755 	if (avail == NULL)
2756 		return NULL;
2757 
2758 	/* None available, try to steal one or wait for a user to finish */
2759 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2760 		if (reg->pin_count)
2761 			continue;
2762 
2763 		return reg;
2764 	}
2765 
2766 	return NULL;
2767 }
2768 
2769 /**
2770  * i915_gem_object_get_fence - set up fencing for an object
2771  * @obj: object to map through a fence reg
2772  *
2773  * When mapping objects through the GTT, userspace wants to be able to write
2774  * to them without having to worry about swizzling if the object is tiled.
2775  * This function walks the fence regs looking for a free one for @obj,
2776  * stealing one if it can't find any.
2777  *
2778  * It then sets up the reg based on the object's properties: address, pitch
2779  * and tiling format.
2780  *
2781  * For an untiled surface, this removes any existing fence.
2782  */
2783 int
2784 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2785 {
2786 	struct drm_device *dev = obj->base.dev;
2787 	struct drm_i915_private *dev_priv = dev->dev_private;
2788 	bool enable = obj->tiling_mode != I915_TILING_NONE;
2789 	struct drm_i915_fence_reg *reg;
2790 	int ret;
2791 
2792 	/* Have we updated the tiling parameters upon the object and so
2793 	 * will need to serialise the write to the associated fence register?
2794 	 */
2795 	if (obj->fence_dirty) {
2796 		ret = i915_gem_object_wait_fence(obj);
2797 		if (ret)
2798 			return ret;
2799 	}
2800 
2801 	/* Just update our place in the LRU if our fence is getting reused. */
2802 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2803 		reg = &dev_priv->fence_regs[obj->fence_reg];
2804 		if (!obj->fence_dirty) {
2805 			list_move_tail(&reg->lru_list,
2806 				       &dev_priv->mm.fence_list);
2807 			return 0;
2808 		}
2809 	} else if (enable) {
2810 		reg = i915_find_fence_reg(dev);
2811 		if (reg == NULL)
2812 			return -EDEADLK;
2813 
2814 		if (reg->obj) {
2815 			struct drm_i915_gem_object *old = reg->obj;
2816 
2817 			ret = i915_gem_object_wait_fence(old);
2818 			if (ret)
2819 				return ret;
2820 
2821 			i915_gem_object_fence_lost(old);
2822 		}
2823 	} else
2824 		return 0;
2825 
2826 	i915_gem_object_update_fence(obj, reg, enable);
2827 	obj->fence_dirty = false;
2828 
2829 	return 0;
2830 }
2831 
2832 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2833 				     struct drm_mm_node *gtt_space,
2834 				     unsigned long cache_level)
2835 {
2836 	struct drm_mm_node *other;
2837 
2838 	/* On non-LLC machines we have to be careful when putting differing
2839 	 * types of snoopable memory together to avoid the prefetcher
2840 	 * crossing memory domains and dying.
2841 	 */
2842 	if (HAS_LLC(dev))
2843 		return true;
2844 
2845 	if (gtt_space == NULL)
2846 		return true;
2847 
2848 	if (list_empty(&gtt_space->node_list))
2849 		return true;
2850 
2851 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2852 	if (other->allocated && !other->hole_follows && other->color != cache_level)
2853 		return false;
2854 
2855 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2856 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2857 		return false;
2858 
2859 	return true;
2860 }
2861 
2862 static void i915_gem_verify_gtt(struct drm_device *dev)
2863 {
2864 #if WATCH_GTT
2865 	struct drm_i915_private *dev_priv = dev->dev_private;
2866 	struct drm_i915_gem_object *obj;
2867 	int err = 0;
2868 
2869 	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2870 		if (obj->gtt_space == NULL) {
2871 			printk(KERN_ERR "object found on GTT list with no space reserved\n");
2872 			err++;
2873 			continue;
2874 		}
2875 
2876 		if (obj->cache_level != obj->gtt_space->color) {
2877 			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2878 			       obj->gtt_space->start,
2879 			       obj->gtt_space->start + obj->gtt_space->size,
2880 			       obj->cache_level,
2881 			       obj->gtt_space->color);
2882 			err++;
2883 			continue;
2884 		}
2885 
2886 		if (!i915_gem_valid_gtt_space(dev,
2887 					      obj->gtt_space,
2888 					      obj->cache_level)) {
2889 			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2890 			       obj->gtt_space->start,
2891 			       obj->gtt_space->start + obj->gtt_space->size,
2892 			       obj->cache_level);
2893 			err++;
2894 			continue;
2895 		}
2896 	}
2897 
2898 	WARN_ON(err);
2899 #endif
2900 }
2901 
2902 /**
2903  * Finds free space in the GTT aperture and binds the object there.
2904  */
2905 static int
2906 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2907 			    unsigned alignment,
2908 			    bool map_and_fenceable,
2909 			    bool nonblocking)
2910 {
2911 	struct drm_device *dev = obj->base.dev;
2912 	drm_i915_private_t *dev_priv = dev->dev_private;
2913 	struct drm_mm_node *node;
2914 	u32 size, fence_size, fence_alignment, unfenced_alignment;
2915 	bool mappable, fenceable;
2916 	int ret;
2917 
2918 	fence_size = i915_gem_get_gtt_size(dev,
2919 					   obj->base.size,
2920 					   obj->tiling_mode);
2921 	fence_alignment = i915_gem_get_gtt_alignment(dev,
2922 						     obj->base.size,
2923 						     obj->tiling_mode, true);
2924 	unfenced_alignment =
2925 		i915_gem_get_gtt_alignment(dev,
2926 						    obj->base.size,
2927 						    obj->tiling_mode, false);
2928 
2929 	if (alignment == 0)
2930 		alignment = map_and_fenceable ? fence_alignment :
2931 						unfenced_alignment;
2932 	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2933 		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2934 		return -EINVAL;
2935 	}
2936 
2937 	size = map_and_fenceable ? fence_size : obj->base.size;
2938 
2939 	/* If the object is bigger than the entire aperture, reject it early
2940 	 * before evicting everything in a vain attempt to find space.
2941 	 */
2942 	if (obj->base.size >
2943 	    (map_and_fenceable ? dev_priv->gtt.mappable_end : dev_priv->gtt.total)) {
2944 		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2945 		return -E2BIG;
2946 	}
2947 
2948 	ret = i915_gem_object_get_pages(obj);
2949 	if (ret)
2950 		return ret;
2951 
2952 	i915_gem_object_pin_pages(obj);
2953 
2954 	node = kzalloc(sizeof(*node), GFP_KERNEL);
2955 	if (node == NULL) {
2956 		i915_gem_object_unpin_pages(obj);
2957 		return -ENOMEM;
2958 	}
2959 
2960  search_free:
2961 	if (map_and_fenceable)
2962 		ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
2963 							  size, alignment, obj->cache_level,
2964 							  0, dev_priv->gtt.mappable_end);
2965 	else
2966 		ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2967 						 size, alignment, obj->cache_level);
2968 	if (ret) {
2969 		ret = i915_gem_evict_something(dev, size, alignment,
2970 					       obj->cache_level,
2971 					       map_and_fenceable,
2972 					       nonblocking);
2973 		if (ret == 0)
2974 			goto search_free;
2975 
2976 		i915_gem_object_unpin_pages(obj);
2977 		kfree(node);
2978 		return ret;
2979 	}
2980 	if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
2981 		i915_gem_object_unpin_pages(obj);
2982 		drm_mm_put_block(node);
2983 		return -EINVAL;
2984 	}
2985 
2986 	ret = i915_gem_gtt_prepare_object(obj);
2987 	if (ret) {
2988 		i915_gem_object_unpin_pages(obj);
2989 		drm_mm_put_block(node);
2990 		return ret;
2991 	}
2992 
2993 	list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2994 	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2995 
2996 	obj->gtt_space = node;
2997 	obj->gtt_offset = node->start;
2998 
2999 	fenceable =
3000 		node->size == fence_size &&
3001 		(node->start & (fence_alignment - 1)) == 0;
3002 
3003 	mappable =
3004 		obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
3005 
3006 	obj->map_and_fenceable = mappable && fenceable;
3007 
3008 	i915_gem_object_unpin_pages(obj);
3009 	trace_i915_gem_object_bind(obj, map_and_fenceable);
3010 	i915_gem_verify_gtt(dev);
3011 	return 0;
3012 }
3013 
3014 void
3015 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3016 {
3017 	/* If we don't have a page list set up, then we're not pinned
3018 	 * to GPU, and we can ignore the cache flush because it'll happen
3019 	 * again at bind time.
3020 	 */
3021 	if (obj->pages == NULL)
3022 		return;
3023 
3024 	/*
3025 	 * Stolen memory is always coherent with the GPU as it is explicitly
3026 	 * marked as wc by the system, or the system is cache-coherent.
3027 	 */
3028 	if (obj->stolen)
3029 		return;
3030 
3031 	/* If the GPU is snooping the contents of the CPU cache,
3032 	 * we do not need to manually clear the CPU cache lines.  However,
3033 	 * the caches are only snooped when the render cache is
3034 	 * flushed/invalidated.  As we always have to emit invalidations
3035 	 * and flushes when moving into and out of the RENDER domain, correct
3036 	 * snooping behaviour occurs naturally as the result of our domain
3037 	 * tracking.
3038 	 */
3039 	if (obj->cache_level != I915_CACHE_NONE)
3040 		return;
3041 
3042 	trace_i915_gem_object_clflush(obj);
3043 
3044 	drm_clflush_sg(obj->pages);
3045 }
3046 
3047 /** Flushes the GTT write domain for the object if it's dirty. */
3048 static void
3049 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3050 {
3051 	uint32_t old_write_domain;
3052 
3053 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3054 		return;
3055 
3056 	/* No actual flushing is required for the GTT write domain.  Writes
3057 	 * to it immediately go to main memory as far as we know, so there's
3058 	 * no chipset flush.  It also doesn't land in render cache.
3059 	 *
3060 	 * However, we do have to enforce the order so that all writes through
3061 	 * the GTT land before any writes to the device, such as updates to
3062 	 * the GATT itself.
3063 	 */
3064 	wmb();
3065 
3066 	old_write_domain = obj->base.write_domain;
3067 	obj->base.write_domain = 0;
3068 
3069 	trace_i915_gem_object_change_domain(obj,
3070 					    obj->base.read_domains,
3071 					    old_write_domain);
3072 }
3073 
3074 /** Flushes the CPU write domain for the object if it's dirty. */
3075 static void
3076 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3077 {
3078 	uint32_t old_write_domain;
3079 
3080 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3081 		return;
3082 
3083 	i915_gem_clflush_object(obj);
3084 	i915_gem_chipset_flush(obj->base.dev);
3085 	old_write_domain = obj->base.write_domain;
3086 	obj->base.write_domain = 0;
3087 
3088 	trace_i915_gem_object_change_domain(obj,
3089 					    obj->base.read_domains,
3090 					    old_write_domain);
3091 }
3092 
3093 /**
3094  * Moves a single object to the GTT read, and possibly write domain.
3095  *
3096  * This function returns when the move is complete, including waiting on
3097  * flushes to occur.
3098  */
3099 int
3100 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3101 {
3102 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3103 	uint32_t old_write_domain, old_read_domains;
3104 	int ret;
3105 
3106 	/* Not valid to be called on unbound objects. */
3107 	if (obj->gtt_space == NULL)
3108 		return -EINVAL;
3109 
3110 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3111 		return 0;
3112 
3113 	ret = i915_gem_object_wait_rendering(obj, !write);
3114 	if (ret)
3115 		return ret;
3116 
3117 	i915_gem_object_flush_cpu_write_domain(obj);
3118 
3119 	/* Serialise direct access to this object with the barriers for
3120 	 * coherent writes from the GPU, by effectively invalidating the
3121 	 * GTT domain upon first access.
3122 	 */
3123 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3124 		mb();
3125 
3126 	old_write_domain = obj->base.write_domain;
3127 	old_read_domains = obj->base.read_domains;
3128 
3129 	/* It should now be out of any other write domains, and we can update
3130 	 * the domain values for our changes.
3131 	 */
3132 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3133 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3134 	if (write) {
3135 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3136 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3137 		obj->dirty = 1;
3138 	}
3139 
3140 	trace_i915_gem_object_change_domain(obj,
3141 					    old_read_domains,
3142 					    old_write_domain);
3143 
3144 	/* And bump the LRU for this access */
3145 	if (i915_gem_object_is_inactive(obj))
3146 		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3147 
3148 	return 0;
3149 }
3150 
3151 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3152 				    enum i915_cache_level cache_level)
3153 {
3154 	struct drm_device *dev = obj->base.dev;
3155 	drm_i915_private_t *dev_priv = dev->dev_private;
3156 	int ret;
3157 
3158 	if (obj->cache_level == cache_level)
3159 		return 0;
3160 
3161 	if (obj->pin_count) {
3162 		DRM_DEBUG("can not change the cache level of pinned objects\n");
3163 		return -EBUSY;
3164 	}
3165 
3166 	if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3167 		ret = i915_gem_object_unbind(obj);
3168 		if (ret)
3169 			return ret;
3170 	}
3171 
3172 	if (obj->gtt_space) {
3173 		ret = i915_gem_object_finish_gpu(obj);
3174 		if (ret)
3175 			return ret;
3176 
3177 		i915_gem_object_finish_gtt(obj);
3178 
3179 		/* Before SandyBridge, you could not use tiling or fence
3180 		 * registers with snooped memory, so relinquish any fences
3181 		 * currently pointing to our region in the aperture.
3182 		 */
3183 		if (INTEL_INFO(dev)->gen < 6) {
3184 			ret = i915_gem_object_put_fence(obj);
3185 			if (ret)
3186 				return ret;
3187 		}
3188 
3189 		if (obj->has_global_gtt_mapping)
3190 			i915_gem_gtt_bind_object(obj, cache_level);
3191 		if (obj->has_aliasing_ppgtt_mapping)
3192 			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3193 					       obj, cache_level);
3194 
3195 		obj->gtt_space->color = cache_level;
3196 	}
3197 
3198 	if (cache_level == I915_CACHE_NONE) {
3199 		u32 old_read_domains, old_write_domain;
3200 
3201 		/* If we're coming from LLC cached, then we haven't
3202 		 * actually been tracking whether the data is in the
3203 		 * CPU cache or not, since we only allow one bit set
3204 		 * in obj->write_domain and have been skipping the clflushes.
3205 		 * Just set it to the CPU cache for now.
3206 		 */
3207 		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3208 		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3209 
3210 		old_read_domains = obj->base.read_domains;
3211 		old_write_domain = obj->base.write_domain;
3212 
3213 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3214 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3215 
3216 		trace_i915_gem_object_change_domain(obj,
3217 						    old_read_domains,
3218 						    old_write_domain);
3219 	}
3220 
3221 	obj->cache_level = cache_level;
3222 	i915_gem_verify_gtt(dev);
3223 	return 0;
3224 }
3225 
3226 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3227 			       struct drm_file *file)
3228 {
3229 	struct drm_i915_gem_caching *args = data;
3230 	struct drm_i915_gem_object *obj;
3231 	int ret;
3232 
3233 	ret = i915_mutex_lock_interruptible(dev);
3234 	if (ret)
3235 		return ret;
3236 
3237 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3238 	if (&obj->base == NULL) {
3239 		ret = -ENOENT;
3240 		goto unlock;
3241 	}
3242 
3243 	args->caching = obj->cache_level != I915_CACHE_NONE;
3244 
3245 	drm_gem_object_unreference(&obj->base);
3246 unlock:
3247 	mutex_unlock(&dev->struct_mutex);
3248 	return ret;
3249 }
3250 
3251 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3252 			       struct drm_file *file)
3253 {
3254 	struct drm_i915_gem_caching *args = data;
3255 	struct drm_i915_gem_object *obj;
3256 	enum i915_cache_level level;
3257 	int ret;
3258 
3259 	switch (args->caching) {
3260 	case I915_CACHING_NONE:
3261 		level = I915_CACHE_NONE;
3262 		break;
3263 	case I915_CACHING_CACHED:
3264 		level = I915_CACHE_LLC;
3265 		break;
3266 	default:
3267 		return -EINVAL;
3268 	}
3269 
3270 	ret = i915_mutex_lock_interruptible(dev);
3271 	if (ret)
3272 		return ret;
3273 
3274 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3275 	if (&obj->base == NULL) {
3276 		ret = -ENOENT;
3277 		goto unlock;
3278 	}
3279 
3280 	ret = i915_gem_object_set_cache_level(obj, level);
3281 
3282 	drm_gem_object_unreference(&obj->base);
3283 unlock:
3284 	mutex_unlock(&dev->struct_mutex);
3285 	return ret;
3286 }
3287 
3288 /*
3289  * Prepare buffer for display plane (scanout, cursors, etc).
3290  * Can be called from an uninterruptible phase (modesetting) and allows
3291  * any flushes to be pipelined (for pageflips).
3292  */
3293 int
3294 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3295 				     u32 alignment,
3296 				     struct intel_ring_buffer *pipelined)
3297 {
3298 	u32 old_read_domains, old_write_domain;
3299 	int ret;
3300 
3301 	if (pipelined != obj->ring) {
3302 		ret = i915_gem_object_sync(obj, pipelined);
3303 		if (ret)
3304 			return ret;
3305 	}
3306 
3307 	/* The display engine is not coherent with the LLC cache on gen6.  As
3308 	 * a result, we make sure that the pinning that is about to occur is
3309 	 * done with uncached PTEs. This is lowest common denominator for all
3310 	 * chipsets.
3311 	 *
3312 	 * However for gen6+, we could do better by using the GFDT bit instead
3313 	 * of uncaching, which would allow us to flush all the LLC-cached data
3314 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3315 	 */
3316 	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3317 	if (ret)
3318 		return ret;
3319 
3320 	/* As the user may map the buffer once pinned in the display plane
3321 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3322 	 * always use map_and_fenceable for all scanout buffers.
3323 	 */
3324 	ret = i915_gem_object_pin(obj, alignment, true, false);
3325 	if (ret)
3326 		return ret;
3327 
3328 	i915_gem_object_flush_cpu_write_domain(obj);
3329 
3330 	old_write_domain = obj->base.write_domain;
3331 	old_read_domains = obj->base.read_domains;
3332 
3333 	/* It should now be out of any other write domains, and we can update
3334 	 * the domain values for our changes.
3335 	 */
3336 	obj->base.write_domain = 0;
3337 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3338 
3339 	trace_i915_gem_object_change_domain(obj,
3340 					    old_read_domains,
3341 					    old_write_domain);
3342 
3343 	return 0;
3344 }
3345 
3346 int
3347 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3348 {
3349 	int ret;
3350 
3351 	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3352 		return 0;
3353 
3354 	ret = i915_gem_object_wait_rendering(obj, false);
3355 	if (ret)
3356 		return ret;
3357 
3358 	/* Ensure that we invalidate the GPU's caches and TLBs. */
3359 	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3360 	return 0;
3361 }
3362 
3363 /**
3364  * Moves a single object to the CPU read, and possibly write domain.
3365  *
3366  * This function returns when the move is complete, including waiting on
3367  * flushes to occur.
3368  */
3369 int
3370 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3371 {
3372 	uint32_t old_write_domain, old_read_domains;
3373 	int ret;
3374 
3375 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3376 		return 0;
3377 
3378 	ret = i915_gem_object_wait_rendering(obj, !write);
3379 	if (ret)
3380 		return ret;
3381 
3382 	i915_gem_object_flush_gtt_write_domain(obj);
3383 
3384 	old_write_domain = obj->base.write_domain;
3385 	old_read_domains = obj->base.read_domains;
3386 
3387 	/* Flush the CPU cache if it's still invalid. */
3388 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3389 		i915_gem_clflush_object(obj);
3390 
3391 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3392 	}
3393 
3394 	/* It should now be out of any other write domains, and we can update
3395 	 * the domain values for our changes.
3396 	 */
3397 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3398 
3399 	/* If we're writing through the CPU, then the GPU read domains will
3400 	 * need to be invalidated at next use.
3401 	 */
3402 	if (write) {
3403 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3404 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3405 	}
3406 
3407 	trace_i915_gem_object_change_domain(obj,
3408 					    old_read_domains,
3409 					    old_write_domain);
3410 
3411 	return 0;
3412 }
3413 
3414 /* Throttle our rendering by waiting until the ring has completed our requests
3415  * emitted over 20 msec ago.
3416  *
3417  * Note that if we were to use the current jiffies each time around the loop,
3418  * we wouldn't escape the function with any frames outstanding if the time to
3419  * render a frame was over 20ms.
3420  *
3421  * This should get us reasonable parallelism between CPU and GPU but also
3422  * relatively low latency when blocking on a particular request to finish.
3423  */
3424 static int
3425 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3426 {
3427 	struct drm_i915_private *dev_priv = dev->dev_private;
3428 	struct drm_i915_file_private *file_priv = file->driver_priv;
3429 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3430 	struct drm_i915_gem_request *request;
3431 	struct intel_ring_buffer *ring = NULL;
3432 	unsigned reset_counter;
3433 	u32 seqno = 0;
3434 	int ret;
3435 
3436 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3437 	if (ret)
3438 		return ret;
3439 
3440 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3441 	if (ret)
3442 		return ret;
3443 
3444 	spin_lock(&file_priv->mm.lock);
3445 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3446 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3447 			break;
3448 
3449 		ring = request->ring;
3450 		seqno = request->seqno;
3451 	}
3452 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3453 	spin_unlock(&file_priv->mm.lock);
3454 
3455 	if (seqno == 0)
3456 		return 0;
3457 
3458 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3459 	if (ret == 0)
3460 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3461 
3462 	return ret;
3463 }
3464 
3465 int
3466 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3467 		    uint32_t alignment,
3468 		    bool map_and_fenceable,
3469 		    bool nonblocking)
3470 {
3471 	int ret;
3472 
3473 	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3474 		return -EBUSY;
3475 
3476 	if (obj->gtt_space != NULL) {
3477 		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3478 		    (map_and_fenceable && !obj->map_and_fenceable)) {
3479 			WARN(obj->pin_count,
3480 			     "bo is already pinned with incorrect alignment:"
3481 			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3482 			     " obj->map_and_fenceable=%d\n",
3483 			     obj->gtt_offset, alignment,
3484 			     map_and_fenceable,
3485 			     obj->map_and_fenceable);
3486 			ret = i915_gem_object_unbind(obj);
3487 			if (ret)
3488 				return ret;
3489 		}
3490 	}
3491 
3492 	if (obj->gtt_space == NULL) {
3493 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3494 
3495 		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3496 						  map_and_fenceable,
3497 						  nonblocking);
3498 		if (ret)
3499 			return ret;
3500 
3501 		if (!dev_priv->mm.aliasing_ppgtt)
3502 			i915_gem_gtt_bind_object(obj, obj->cache_level);
3503 	}
3504 
3505 	if (!obj->has_global_gtt_mapping && map_and_fenceable)
3506 		i915_gem_gtt_bind_object(obj, obj->cache_level);
3507 
3508 	obj->pin_count++;
3509 	obj->pin_mappable |= map_and_fenceable;
3510 
3511 	return 0;
3512 }
3513 
3514 void
3515 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3516 {
3517 	BUG_ON(obj->pin_count == 0);
3518 	BUG_ON(obj->gtt_space == NULL);
3519 
3520 	if (--obj->pin_count == 0)
3521 		obj->pin_mappable = false;
3522 }
3523 
3524 int
3525 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3526 		   struct drm_file *file)
3527 {
3528 	struct drm_i915_gem_pin *args = data;
3529 	struct drm_i915_gem_object *obj;
3530 	int ret;
3531 
3532 	ret = i915_mutex_lock_interruptible(dev);
3533 	if (ret)
3534 		return ret;
3535 
3536 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3537 	if (&obj->base == NULL) {
3538 		ret = -ENOENT;
3539 		goto unlock;
3540 	}
3541 
3542 	if (obj->madv != I915_MADV_WILLNEED) {
3543 		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3544 		ret = -EINVAL;
3545 		goto out;
3546 	}
3547 
3548 	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3549 		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3550 			  args->handle);
3551 		ret = -EINVAL;
3552 		goto out;
3553 	}
3554 
3555 	if (obj->user_pin_count == 0) {
3556 		ret = i915_gem_object_pin(obj, args->alignment, true, false);
3557 		if (ret)
3558 			goto out;
3559 	}
3560 
3561 	obj->user_pin_count++;
3562 	obj->pin_filp = file;
3563 
3564 	/* XXX - flush the CPU caches for pinned objects
3565 	 * as the X server doesn't manage domains yet
3566 	 */
3567 	i915_gem_object_flush_cpu_write_domain(obj);
3568 	args->offset = obj->gtt_offset;
3569 out:
3570 	drm_gem_object_unreference(&obj->base);
3571 unlock:
3572 	mutex_unlock(&dev->struct_mutex);
3573 	return ret;
3574 }
3575 
3576 int
3577 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3578 		     struct drm_file *file)
3579 {
3580 	struct drm_i915_gem_pin *args = data;
3581 	struct drm_i915_gem_object *obj;
3582 	int ret;
3583 
3584 	ret = i915_mutex_lock_interruptible(dev);
3585 	if (ret)
3586 		return ret;
3587 
3588 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3589 	if (&obj->base == NULL) {
3590 		ret = -ENOENT;
3591 		goto unlock;
3592 	}
3593 
3594 	if (obj->pin_filp != file) {
3595 		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3596 			  args->handle);
3597 		ret = -EINVAL;
3598 		goto out;
3599 	}
3600 	obj->user_pin_count--;
3601 	if (obj->user_pin_count == 0) {
3602 		obj->pin_filp = NULL;
3603 		i915_gem_object_unpin(obj);
3604 	}
3605 
3606 out:
3607 	drm_gem_object_unreference(&obj->base);
3608 unlock:
3609 	mutex_unlock(&dev->struct_mutex);
3610 	return ret;
3611 }
3612 
3613 int
3614 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3615 		    struct drm_file *file)
3616 {
3617 	struct drm_i915_gem_busy *args = data;
3618 	struct drm_i915_gem_object *obj;
3619 	int ret;
3620 
3621 	ret = i915_mutex_lock_interruptible(dev);
3622 	if (ret)
3623 		return ret;
3624 
3625 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3626 	if (&obj->base == NULL) {
3627 		ret = -ENOENT;
3628 		goto unlock;
3629 	}
3630 
3631 	/* Count all active objects as busy, even if they are currently not used
3632 	 * by the gpu. Users of this interface expect objects to eventually
3633 	 * become non-busy without any further actions, therefore emit any
3634 	 * necessary flushes here.
3635 	 */
3636 	ret = i915_gem_object_flush_active(obj);
3637 
3638 	args->busy = obj->active;
3639 	if (obj->ring) {
3640 		BUILD_BUG_ON(I915_NUM_RINGS > 16);
3641 		args->busy |= intel_ring_flag(obj->ring) << 16;
3642 	}
3643 
3644 	drm_gem_object_unreference(&obj->base);
3645 unlock:
3646 	mutex_unlock(&dev->struct_mutex);
3647 	return ret;
3648 }
3649 
3650 int
3651 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3652 			struct drm_file *file_priv)
3653 {
3654 	return i915_gem_ring_throttle(dev, file_priv);
3655 }
3656 
3657 int
3658 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3659 		       struct drm_file *file_priv)
3660 {
3661 	struct drm_i915_gem_madvise *args = data;
3662 	struct drm_i915_gem_object *obj;
3663 	int ret;
3664 
3665 	switch (args->madv) {
3666 	case I915_MADV_DONTNEED:
3667 	case I915_MADV_WILLNEED:
3668 	    break;
3669 	default:
3670 	    return -EINVAL;
3671 	}
3672 
3673 	ret = i915_mutex_lock_interruptible(dev);
3674 	if (ret)
3675 		return ret;
3676 
3677 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3678 	if (&obj->base == NULL) {
3679 		ret = -ENOENT;
3680 		goto unlock;
3681 	}
3682 
3683 	if (obj->pin_count) {
3684 		ret = -EINVAL;
3685 		goto out;
3686 	}
3687 
3688 	if (obj->madv != __I915_MADV_PURGED)
3689 		obj->madv = args->madv;
3690 
3691 	/* if the object is no longer attached, discard its backing storage */
3692 	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3693 		i915_gem_object_truncate(obj);
3694 
3695 	args->retained = obj->madv != __I915_MADV_PURGED;
3696 
3697 out:
3698 	drm_gem_object_unreference(&obj->base);
3699 unlock:
3700 	mutex_unlock(&dev->struct_mutex);
3701 	return ret;
3702 }
3703 
3704 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3705 			  const struct drm_i915_gem_object_ops *ops)
3706 {
3707 	INIT_LIST_HEAD(&obj->mm_list);
3708 	INIT_LIST_HEAD(&obj->gtt_list);
3709 	INIT_LIST_HEAD(&obj->ring_list);
3710 	INIT_LIST_HEAD(&obj->exec_list);
3711 
3712 	obj->ops = ops;
3713 
3714 	obj->fence_reg = I915_FENCE_REG_NONE;
3715 	obj->madv = I915_MADV_WILLNEED;
3716 	/* Avoid an unnecessary call to unbind on the first bind. */
3717 	obj->map_and_fenceable = true;
3718 
3719 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3720 }
3721 
3722 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3723 	.get_pages = i915_gem_object_get_pages_gtt,
3724 	.put_pages = i915_gem_object_put_pages_gtt,
3725 };
3726 
3727 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3728 						  size_t size)
3729 {
3730 	struct drm_i915_gem_object *obj;
3731 	struct address_space *mapping;
3732 	gfp_t mask;
3733 
3734 	obj = i915_gem_object_alloc(dev);
3735 	if (obj == NULL)
3736 		return NULL;
3737 
3738 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3739 		i915_gem_object_free(obj);
3740 		return NULL;
3741 	}
3742 
3743 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3744 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3745 		/* 965gm cannot relocate objects above 4GiB. */
3746 		mask &= ~__GFP_HIGHMEM;
3747 		mask |= __GFP_DMA32;
3748 	}
3749 
3750 	mapping = file_inode(obj->base.filp)->i_mapping;
3751 	mapping_set_gfp_mask(mapping, mask);
3752 
3753 	i915_gem_object_init(obj, &i915_gem_object_ops);
3754 
3755 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3756 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3757 
3758 	if (HAS_LLC(dev)) {
3759 		/* On some devices, we can have the GPU use the LLC (the CPU
3760 		 * cache) for about a 10% performance improvement
3761 		 * compared to uncached.  Graphics requests other than
3762 		 * display scanout are coherent with the CPU in
3763 		 * accessing this cache.  This means in this mode we
3764 		 * don't need to clflush on the CPU side, and on the
3765 		 * GPU side we only need to flush internal caches to
3766 		 * get data visible to the CPU.
3767 		 *
3768 		 * However, we maintain the display planes as UC, and so
3769 		 * need to rebind when first used as such.
3770 		 */
3771 		obj->cache_level = I915_CACHE_LLC;
3772 	} else
3773 		obj->cache_level = I915_CACHE_NONE;
3774 
3775 	return obj;
3776 }
3777 
3778 int i915_gem_init_object(struct drm_gem_object *obj)
3779 {
3780 	BUG();
3781 
3782 	return 0;
3783 }
3784 
3785 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3786 {
3787 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3788 	struct drm_device *dev = obj->base.dev;
3789 	drm_i915_private_t *dev_priv = dev->dev_private;
3790 
3791 	trace_i915_gem_object_destroy(obj);
3792 
3793 	if (obj->phys_obj)
3794 		i915_gem_detach_phys_object(dev, obj);
3795 
3796 	obj->pin_count = 0;
3797 	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3798 		bool was_interruptible;
3799 
3800 		was_interruptible = dev_priv->mm.interruptible;
3801 		dev_priv->mm.interruptible = false;
3802 
3803 		WARN_ON(i915_gem_object_unbind(obj));
3804 
3805 		dev_priv->mm.interruptible = was_interruptible;
3806 	}
3807 
3808 	obj->pages_pin_count = 0;
3809 	i915_gem_object_put_pages(obj);
3810 	i915_gem_object_free_mmap_offset(obj);
3811 	i915_gem_object_release_stolen(obj);
3812 
3813 	BUG_ON(obj->pages);
3814 
3815 	if (obj->base.import_attach)
3816 		drm_prime_gem_destroy(&obj->base, NULL);
3817 
3818 	drm_gem_object_release(&obj->base);
3819 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3820 
3821 	kfree(obj->bit_17);
3822 	i915_gem_object_free(obj);
3823 }
3824 
3825 int
3826 i915_gem_idle(struct drm_device *dev)
3827 {
3828 	drm_i915_private_t *dev_priv = dev->dev_private;
3829 	int ret;
3830 
3831 	mutex_lock(&dev->struct_mutex);
3832 
3833 	if (dev_priv->mm.suspended) {
3834 		mutex_unlock(&dev->struct_mutex);
3835 		return 0;
3836 	}
3837 
3838 	ret = i915_gpu_idle(dev);
3839 	if (ret) {
3840 		mutex_unlock(&dev->struct_mutex);
3841 		return ret;
3842 	}
3843 	i915_gem_retire_requests(dev);
3844 
3845 	/* Under UMS, be paranoid and evict. */
3846 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
3847 		i915_gem_evict_everything(dev);
3848 
3849 	i915_gem_reset_fences(dev);
3850 
3851 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
3852 	 * We need to replace this with a semaphore, or something.
3853 	 * And not confound mm.suspended!
3854 	 */
3855 	dev_priv->mm.suspended = 1;
3856 	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3857 
3858 	i915_kernel_lost_context(dev);
3859 	i915_gem_cleanup_ringbuffer(dev);
3860 
3861 	mutex_unlock(&dev->struct_mutex);
3862 
3863 	/* Cancel the retire work handler, which should be idle now. */
3864 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3865 
3866 	return 0;
3867 }
3868 
3869 void i915_gem_l3_remap(struct drm_device *dev)
3870 {
3871 	drm_i915_private_t *dev_priv = dev->dev_private;
3872 	u32 misccpctl;
3873 	int i;
3874 
3875 	if (!HAS_L3_GPU_CACHE(dev))
3876 		return;
3877 
3878 	if (!dev_priv->l3_parity.remap_info)
3879 		return;
3880 
3881 	misccpctl = I915_READ(GEN7_MISCCPCTL);
3882 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3883 	POSTING_READ(GEN7_MISCCPCTL);
3884 
3885 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3886 		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3887 		if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3888 			DRM_DEBUG("0x%x was already programmed to %x\n",
3889 				  GEN7_L3LOG_BASE + i, remap);
3890 		if (remap && !dev_priv->l3_parity.remap_info[i/4])
3891 			DRM_DEBUG_DRIVER("Clearing remapped register\n");
3892 		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3893 	}
3894 
3895 	/* Make sure all the writes land before disabling dop clock gating */
3896 	POSTING_READ(GEN7_L3LOG_BASE);
3897 
3898 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3899 }
3900 
3901 void i915_gem_init_swizzling(struct drm_device *dev)
3902 {
3903 	drm_i915_private_t *dev_priv = dev->dev_private;
3904 
3905 	if (INTEL_INFO(dev)->gen < 5 ||
3906 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3907 		return;
3908 
3909 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3910 				 DISP_TILE_SURFACE_SWIZZLING);
3911 
3912 	if (IS_GEN5(dev))
3913 		return;
3914 
3915 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3916 	if (IS_GEN6(dev))
3917 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3918 	else if (IS_GEN7(dev))
3919 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3920 	else
3921 		BUG();
3922 }
3923 
3924 static bool
3925 intel_enable_blt(struct drm_device *dev)
3926 {
3927 	if (!HAS_BLT(dev))
3928 		return false;
3929 
3930 	/* The blitter was dysfunctional on early prototypes */
3931 	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3932 		DRM_INFO("BLT not supported on this pre-production hardware;"
3933 			 " graphics performance will be degraded.\n");
3934 		return false;
3935 	}
3936 
3937 	return true;
3938 }
3939 
3940 static int i915_gem_init_rings(struct drm_device *dev)
3941 {
3942 	struct drm_i915_private *dev_priv = dev->dev_private;
3943 	int ret;
3944 
3945 	ret = intel_init_render_ring_buffer(dev);
3946 	if (ret)
3947 		return ret;
3948 
3949 	if (HAS_BSD(dev)) {
3950 		ret = intel_init_bsd_ring_buffer(dev);
3951 		if (ret)
3952 			goto cleanup_render_ring;
3953 	}
3954 
3955 	if (intel_enable_blt(dev)) {
3956 		ret = intel_init_blt_ring_buffer(dev);
3957 		if (ret)
3958 			goto cleanup_bsd_ring;
3959 	}
3960 
3961 	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
3962 	if (ret)
3963 		goto cleanup_blt_ring;
3964 
3965 	return 0;
3966 
3967 cleanup_blt_ring:
3968 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
3969 cleanup_bsd_ring:
3970 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3971 cleanup_render_ring:
3972 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3973 
3974 	return ret;
3975 }
3976 
3977 int
3978 i915_gem_init_hw(struct drm_device *dev)
3979 {
3980 	drm_i915_private_t *dev_priv = dev->dev_private;
3981 	int ret;
3982 
3983 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3984 		return -EIO;
3985 
3986 	if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3987 		I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3988 
3989 	i915_gem_l3_remap(dev);
3990 
3991 	i915_gem_init_swizzling(dev);
3992 
3993 	ret = i915_gem_init_rings(dev);
3994 	if (ret)
3995 		return ret;
3996 
3997 	/*
3998 	 * XXX: There was some w/a described somewhere suggesting loading
3999 	 * contexts before PPGTT.
4000 	 */
4001 	i915_gem_context_init(dev);
4002 	i915_gem_init_ppgtt(dev);
4003 
4004 	return 0;
4005 }
4006 
4007 int i915_gem_init(struct drm_device *dev)
4008 {
4009 	struct drm_i915_private *dev_priv = dev->dev_private;
4010 	int ret;
4011 
4012 	mutex_lock(&dev->struct_mutex);
4013 	i915_gem_init_global_gtt(dev);
4014 	ret = i915_gem_init_hw(dev);
4015 	mutex_unlock(&dev->struct_mutex);
4016 	if (ret) {
4017 		i915_gem_cleanup_aliasing_ppgtt(dev);
4018 		return ret;
4019 	}
4020 
4021 	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4022 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4023 		dev_priv->dri1.allow_batchbuffer = 1;
4024 	return 0;
4025 }
4026 
4027 void
4028 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4029 {
4030 	drm_i915_private_t *dev_priv = dev->dev_private;
4031 	struct intel_ring_buffer *ring;
4032 	int i;
4033 
4034 	for_each_ring(ring, dev_priv, i)
4035 		intel_cleanup_ring_buffer(ring);
4036 }
4037 
4038 int
4039 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4040 		       struct drm_file *file_priv)
4041 {
4042 	drm_i915_private_t *dev_priv = dev->dev_private;
4043 	int ret;
4044 
4045 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4046 		return 0;
4047 
4048 	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4049 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4050 		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4051 	}
4052 
4053 	mutex_lock(&dev->struct_mutex);
4054 	dev_priv->mm.suspended = 0;
4055 
4056 	ret = i915_gem_init_hw(dev);
4057 	if (ret != 0) {
4058 		mutex_unlock(&dev->struct_mutex);
4059 		return ret;
4060 	}
4061 
4062 	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4063 	mutex_unlock(&dev->struct_mutex);
4064 
4065 	ret = drm_irq_install(dev);
4066 	if (ret)
4067 		goto cleanup_ringbuffer;
4068 
4069 	return 0;
4070 
4071 cleanup_ringbuffer:
4072 	mutex_lock(&dev->struct_mutex);
4073 	i915_gem_cleanup_ringbuffer(dev);
4074 	dev_priv->mm.suspended = 1;
4075 	mutex_unlock(&dev->struct_mutex);
4076 
4077 	return ret;
4078 }
4079 
4080 int
4081 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4082 		       struct drm_file *file_priv)
4083 {
4084 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4085 		return 0;
4086 
4087 	drm_irq_uninstall(dev);
4088 	return i915_gem_idle(dev);
4089 }
4090 
4091 void
4092 i915_gem_lastclose(struct drm_device *dev)
4093 {
4094 	int ret;
4095 
4096 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4097 		return;
4098 
4099 	ret = i915_gem_idle(dev);
4100 	if (ret)
4101 		DRM_ERROR("failed to idle hardware: %d\n", ret);
4102 }
4103 
4104 static void
4105 init_ring_lists(struct intel_ring_buffer *ring)
4106 {
4107 	INIT_LIST_HEAD(&ring->active_list);
4108 	INIT_LIST_HEAD(&ring->request_list);
4109 }
4110 
4111 void
4112 i915_gem_load(struct drm_device *dev)
4113 {
4114 	drm_i915_private_t *dev_priv = dev->dev_private;
4115 	int i;
4116 
4117 	dev_priv->slab =
4118 		kmem_cache_create("i915_gem_object",
4119 				  sizeof(struct drm_i915_gem_object), 0,
4120 				  SLAB_HWCACHE_ALIGN,
4121 				  NULL);
4122 
4123 	INIT_LIST_HEAD(&dev_priv->mm.active_list);
4124 	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4125 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4126 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4127 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4128 	for (i = 0; i < I915_NUM_RINGS; i++)
4129 		init_ring_lists(&dev_priv->ring[i]);
4130 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4131 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4132 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4133 			  i915_gem_retire_work_handler);
4134 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4135 
4136 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4137 	if (IS_GEN3(dev)) {
4138 		I915_WRITE(MI_ARB_STATE,
4139 			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4140 	}
4141 
4142 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4143 
4144 	/* Old X drivers will take 0-2 for front, back, depth buffers */
4145 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4146 		dev_priv->fence_reg_start = 3;
4147 
4148 	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4149 		dev_priv->num_fence_regs = 16;
4150 	else
4151 		dev_priv->num_fence_regs = 8;
4152 
4153 	/* Initialize fence registers to zero */
4154 	i915_gem_reset_fences(dev);
4155 
4156 	i915_gem_detect_bit_6_swizzle(dev);
4157 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4158 
4159 	dev_priv->mm.interruptible = true;
4160 
4161 	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4162 	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4163 	register_shrinker(&dev_priv->mm.inactive_shrinker);
4164 }
4165 
4166 /*
4167  * Create a physically contiguous memory object for this object
4168  * e.g. for cursor + overlay regs
4169  */
4170 static int i915_gem_init_phys_object(struct drm_device *dev,
4171 				     int id, int size, int align)
4172 {
4173 	drm_i915_private_t *dev_priv = dev->dev_private;
4174 	struct drm_i915_gem_phys_object *phys_obj;
4175 	int ret;
4176 
4177 	if (dev_priv->mm.phys_objs[id - 1] || !size)
4178 		return 0;
4179 
4180 	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4181 	if (!phys_obj)
4182 		return -ENOMEM;
4183 
4184 	phys_obj->id = id;
4185 
4186 	phys_obj->handle = drm_pci_alloc(dev, size, align);
4187 	if (!phys_obj->handle) {
4188 		ret = -ENOMEM;
4189 		goto kfree_obj;
4190 	}
4191 #ifdef CONFIG_X86
4192 	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4193 #endif
4194 
4195 	dev_priv->mm.phys_objs[id - 1] = phys_obj;
4196 
4197 	return 0;
4198 kfree_obj:
4199 	kfree(phys_obj);
4200 	return ret;
4201 }
4202 
4203 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4204 {
4205 	drm_i915_private_t *dev_priv = dev->dev_private;
4206 	struct drm_i915_gem_phys_object *phys_obj;
4207 
4208 	if (!dev_priv->mm.phys_objs[id - 1])
4209 		return;
4210 
4211 	phys_obj = dev_priv->mm.phys_objs[id - 1];
4212 	if (phys_obj->cur_obj) {
4213 		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4214 	}
4215 
4216 #ifdef CONFIG_X86
4217 	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4218 #endif
4219 	drm_pci_free(dev, phys_obj->handle);
4220 	kfree(phys_obj);
4221 	dev_priv->mm.phys_objs[id - 1] = NULL;
4222 }
4223 
4224 void i915_gem_free_all_phys_object(struct drm_device *dev)
4225 {
4226 	int i;
4227 
4228 	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4229 		i915_gem_free_phys_object(dev, i);
4230 }
4231 
4232 void i915_gem_detach_phys_object(struct drm_device *dev,
4233 				 struct drm_i915_gem_object *obj)
4234 {
4235 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4236 	char *vaddr;
4237 	int i;
4238 	int page_count;
4239 
4240 	if (!obj->phys_obj)
4241 		return;
4242 	vaddr = obj->phys_obj->handle->vaddr;
4243 
4244 	page_count = obj->base.size / PAGE_SIZE;
4245 	for (i = 0; i < page_count; i++) {
4246 		struct page *page = shmem_read_mapping_page(mapping, i);
4247 		if (!IS_ERR(page)) {
4248 			char *dst = kmap_atomic(page);
4249 			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4250 			kunmap_atomic(dst);
4251 
4252 			drm_clflush_pages(&page, 1);
4253 
4254 			set_page_dirty(page);
4255 			mark_page_accessed(page);
4256 			page_cache_release(page);
4257 		}
4258 	}
4259 	i915_gem_chipset_flush(dev);
4260 
4261 	obj->phys_obj->cur_obj = NULL;
4262 	obj->phys_obj = NULL;
4263 }
4264 
4265 int
4266 i915_gem_attach_phys_object(struct drm_device *dev,
4267 			    struct drm_i915_gem_object *obj,
4268 			    int id,
4269 			    int align)
4270 {
4271 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4272 	drm_i915_private_t *dev_priv = dev->dev_private;
4273 	int ret = 0;
4274 	int page_count;
4275 	int i;
4276 
4277 	if (id > I915_MAX_PHYS_OBJECT)
4278 		return -EINVAL;
4279 
4280 	if (obj->phys_obj) {
4281 		if (obj->phys_obj->id == id)
4282 			return 0;
4283 		i915_gem_detach_phys_object(dev, obj);
4284 	}
4285 
4286 	/* create a new object */
4287 	if (!dev_priv->mm.phys_objs[id - 1]) {
4288 		ret = i915_gem_init_phys_object(dev, id,
4289 						obj->base.size, align);
4290 		if (ret) {
4291 			DRM_ERROR("failed to init phys object %d size: %zu\n",
4292 				  id, obj->base.size);
4293 			return ret;
4294 		}
4295 	}
4296 
4297 	/* bind to the object */
4298 	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4299 	obj->phys_obj->cur_obj = obj;
4300 
4301 	page_count = obj->base.size / PAGE_SIZE;
4302 
4303 	for (i = 0; i < page_count; i++) {
4304 		struct page *page;
4305 		char *dst, *src;
4306 
4307 		page = shmem_read_mapping_page(mapping, i);
4308 		if (IS_ERR(page))
4309 			return PTR_ERR(page);
4310 
4311 		src = kmap_atomic(page);
4312 		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4313 		memcpy(dst, src, PAGE_SIZE);
4314 		kunmap_atomic(src);
4315 
4316 		mark_page_accessed(page);
4317 		page_cache_release(page);
4318 	}
4319 
4320 	return 0;
4321 }
4322 
4323 static int
4324 i915_gem_phys_pwrite(struct drm_device *dev,
4325 		     struct drm_i915_gem_object *obj,
4326 		     struct drm_i915_gem_pwrite *args,
4327 		     struct drm_file *file_priv)
4328 {
4329 	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4330 	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4331 
4332 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4333 		unsigned long unwritten;
4334 
4335 		/* The physical object once assigned is fixed for the lifetime
4336 		 * of the obj, so we can safely drop the lock and continue
4337 		 * to access vaddr.
4338 		 */
4339 		mutex_unlock(&dev->struct_mutex);
4340 		unwritten = copy_from_user(vaddr, user_data, args->size);
4341 		mutex_lock(&dev->struct_mutex);
4342 		if (unwritten)
4343 			return -EFAULT;
4344 	}
4345 
4346 	i915_gem_chipset_flush(dev);
4347 	return 0;
4348 }
4349 
4350 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4351 {
4352 	struct drm_i915_file_private *file_priv = file->driver_priv;
4353 
4354 	/* Clean up our request list when the client is going away, so that
4355 	 * later retire_requests won't dereference our soon-to-be-gone
4356 	 * file_priv.
4357 	 */
4358 	spin_lock(&file_priv->mm.lock);
4359 	while (!list_empty(&file_priv->mm.request_list)) {
4360 		struct drm_i915_gem_request *request;
4361 
4362 		request = list_first_entry(&file_priv->mm.request_list,
4363 					   struct drm_i915_gem_request,
4364 					   client_list);
4365 		list_del(&request->client_list);
4366 		request->file_priv = NULL;
4367 	}
4368 	spin_unlock(&file_priv->mm.lock);
4369 }
4370 
4371 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4372 {
4373 	if (!mutex_is_locked(mutex))
4374 		return false;
4375 
4376 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4377 	return mutex->owner == task;
4378 #else
4379 	/* Since UP may be pre-empted, we cannot assume that we own the lock */
4380 	return false;
4381 #endif
4382 }
4383 
4384 static int
4385 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4386 {
4387 	struct drm_i915_private *dev_priv =
4388 		container_of(shrinker,
4389 			     struct drm_i915_private,
4390 			     mm.inactive_shrinker);
4391 	struct drm_device *dev = dev_priv->dev;
4392 	struct drm_i915_gem_object *obj;
4393 	int nr_to_scan = sc->nr_to_scan;
4394 	bool unlock = true;
4395 	int cnt;
4396 
4397 	if (!mutex_trylock(&dev->struct_mutex)) {
4398 		if (!mutex_is_locked_by(&dev->struct_mutex, current))
4399 			return 0;
4400 
4401 		if (dev_priv->mm.shrinker_no_lock_stealing)
4402 			return 0;
4403 
4404 		unlock = false;
4405 	}
4406 
4407 	if (nr_to_scan) {
4408 		nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4409 		if (nr_to_scan > 0)
4410 			nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4411 							false);
4412 		if (nr_to_scan > 0)
4413 			i915_gem_shrink_all(dev_priv);
4414 	}
4415 
4416 	cnt = 0;
4417 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4418 		if (obj->pages_pin_count == 0)
4419 			cnt += obj->base.size >> PAGE_SHIFT;
4420 	list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list)
4421 		if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4422 			cnt += obj->base.size >> PAGE_SHIFT;
4423 
4424 	if (unlock)
4425 		mutex_unlock(&dev->struct_mutex);
4426 	return cnt;
4427 }
4428