xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision 95777591)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "intel_workarounds.h"
39 #include "i915_gemfs.h"
40 #include <linux/dma-fence-array.h>
41 #include <linux/kthread.h>
42 #include <linux/reservation.h>
43 #include <linux/shmem_fs.h>
44 #include <linux/slab.h>
45 #include <linux/stop_machine.h>
46 #include <linux/swap.h>
47 #include <linux/pci.h>
48 #include <linux/dma-buf.h>
49 
50 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51 
52 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53 {
54 	if (obj->cache_dirty)
55 		return false;
56 
57 	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58 		return true;
59 
60 	return obj->pin_global; /* currently in use by HW, keep flushed */
61 }
62 
63 static int
64 insert_mappable_node(struct i915_ggtt *ggtt,
65                      struct drm_mm_node *node, u32 size)
66 {
67 	memset(node, 0, sizeof(*node));
68 	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
69 					   size, 0, I915_COLOR_UNEVICTABLE,
70 					   0, ggtt->mappable_end,
71 					   DRM_MM_INSERT_LOW);
72 }
73 
74 static void
75 remove_mappable_node(struct drm_mm_node *node)
76 {
77 	drm_mm_remove_node(node);
78 }
79 
80 /* some bookkeeping */
81 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82 				  u64 size)
83 {
84 	spin_lock(&dev_priv->mm.object_stat_lock);
85 	dev_priv->mm.object_count++;
86 	dev_priv->mm.object_memory += size;
87 	spin_unlock(&dev_priv->mm.object_stat_lock);
88 }
89 
90 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91 				     u64 size)
92 {
93 	spin_lock(&dev_priv->mm.object_stat_lock);
94 	dev_priv->mm.object_count--;
95 	dev_priv->mm.object_memory -= size;
96 	spin_unlock(&dev_priv->mm.object_stat_lock);
97 }
98 
99 static int
100 i915_gem_wait_for_error(struct i915_gpu_error *error)
101 {
102 	int ret;
103 
104 	might_sleep();
105 
106 	/*
107 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108 	 * userspace. If it takes that long something really bad is going on and
109 	 * we should simply try to bail out and fail as gracefully as possible.
110 	 */
111 	ret = wait_event_interruptible_timeout(error->reset_queue,
112 					       !i915_reset_backoff(error),
113 					       I915_RESET_TIMEOUT);
114 	if (ret == 0) {
115 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116 		return -EIO;
117 	} else if (ret < 0) {
118 		return ret;
119 	} else {
120 		return 0;
121 	}
122 }
123 
124 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 {
126 	struct drm_i915_private *dev_priv = to_i915(dev);
127 	int ret;
128 
129 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 	if (ret)
131 		return ret;
132 
133 	ret = mutex_lock_interruptible(&dev->struct_mutex);
134 	if (ret)
135 		return ret;
136 
137 	return 0;
138 }
139 
140 static u32 __i915_gem_park(struct drm_i915_private *i915)
141 {
142 	GEM_TRACE("\n");
143 
144 	lockdep_assert_held(&i915->drm.struct_mutex);
145 	GEM_BUG_ON(i915->gt.active_requests);
146 	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
147 
148 	if (!i915->gt.awake)
149 		return I915_EPOCH_INVALID;
150 
151 	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);
152 
153 	/*
154 	 * Be paranoid and flush a concurrent interrupt to make sure
155 	 * we don't reactivate any irq tasklets after parking.
156 	 *
157 	 * FIXME: Note that even though we have waited for execlists to be idle,
158 	 * there may still be an in-flight interrupt even though the CSB
159 	 * is now empty. synchronize_irq() makes sure that a residual interrupt
160 	 * is completed before we continue, but it doesn't prevent the HW from
161 	 * raising a spurious interrupt later. To complete the shield we should
162 	 * coordinate disabling the CS irq with flushing the interrupts.
163 	 */
164 	synchronize_irq(i915->drm.irq);
165 
166 	intel_engines_park(i915);
167 	i915_timelines_park(i915);
168 
169 	i915_pmu_gt_parked(i915);
170 	i915_vma_parked(i915);
171 
172 	i915->gt.awake = false;
173 
174 	if (INTEL_GEN(i915) >= 6)
175 		gen6_rps_idle(i915);
176 
177 	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);
178 
179 	intel_runtime_pm_put(i915);
180 
181 	return i915->gt.epoch;
182 }
183 
184 void i915_gem_park(struct drm_i915_private *i915)
185 {
186 	GEM_TRACE("\n");
187 
188 	lockdep_assert_held(&i915->drm.struct_mutex);
189 	GEM_BUG_ON(i915->gt.active_requests);
190 
191 	if (!i915->gt.awake)
192 		return;
193 
194 	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
195 	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
196 }
197 
198 void i915_gem_unpark(struct drm_i915_private *i915)
199 {
200 	GEM_TRACE("\n");
201 
202 	lockdep_assert_held(&i915->drm.struct_mutex);
203 	GEM_BUG_ON(!i915->gt.active_requests);
204 
205 	if (i915->gt.awake)
206 		return;
207 
208 	intel_runtime_pm_get_noresume(i915);
209 
210 	/*
211 	 * It seems that the DMC likes to transition between the DC states a lot
212 	 * when there are no connected displays (no active power domains) during
213 	 * command submission.
214 	 *
215 	 * This activity has negative impact on the performance of the chip with
216 	 * huge latencies observed in the interrupt handler and elsewhere.
217 	 *
218 	 * Work around it by grabbing a GT IRQ power domain whilst there is any
219 	 * GT activity, preventing any DC state transitions.
220 	 */
221 	intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
222 
223 	i915->gt.awake = true;
224 	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
225 		i915->gt.epoch = 1;
226 
227 	intel_enable_gt_powersave(i915);
228 	i915_update_gfx_val(i915);
229 	if (INTEL_GEN(i915) >= 6)
230 		gen6_rps_busy(i915);
231 	i915_pmu_gt_unparked(i915);
232 
233 	intel_engines_unpark(i915);
234 
235 	i915_queue_hangcheck(i915);
236 
237 	queue_delayed_work(i915->wq,
238 			   &i915->gt.retire_work,
239 			   round_jiffies_up_relative(HZ));
240 }
241 
242 int
243 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
244 			    struct drm_file *file)
245 {
246 	struct drm_i915_private *dev_priv = to_i915(dev);
247 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
248 	struct drm_i915_gem_get_aperture *args = data;
249 	struct i915_vma *vma;
250 	u64 pinned;
251 
252 	pinned = ggtt->vm.reserved;
253 	mutex_lock(&dev->struct_mutex);
254 	list_for_each_entry(vma, &ggtt->vm.active_list, vm_link)
255 		if (i915_vma_is_pinned(vma))
256 			pinned += vma->node.size;
257 	list_for_each_entry(vma, &ggtt->vm.inactive_list, vm_link)
258 		if (i915_vma_is_pinned(vma))
259 			pinned += vma->node.size;
260 	mutex_unlock(&dev->struct_mutex);
261 
262 	args->aper_size = ggtt->vm.total;
263 	args->aper_available_size = args->aper_size - pinned;
264 
265 	return 0;
266 }
267 
268 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
269 {
270 	struct address_space *mapping = obj->base.filp->f_mapping;
271 	drm_dma_handle_t *phys;
272 	struct sg_table *st;
273 	struct scatterlist *sg;
274 	char *vaddr;
275 	int i;
276 	int err;
277 
278 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
279 		return -EINVAL;
280 
281 	/* Always aligning to the object size, allows a single allocation
282 	 * to handle all possible callers, and given typical object sizes,
283 	 * the alignment of the buddy allocation will naturally match.
284 	 */
285 	phys = drm_pci_alloc(obj->base.dev,
286 			     roundup_pow_of_two(obj->base.size),
287 			     roundup_pow_of_two(obj->base.size));
288 	if (!phys)
289 		return -ENOMEM;
290 
291 	vaddr = phys->vaddr;
292 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
293 		struct page *page;
294 		char *src;
295 
296 		page = shmem_read_mapping_page(mapping, i);
297 		if (IS_ERR(page)) {
298 			err = PTR_ERR(page);
299 			goto err_phys;
300 		}
301 
302 		src = kmap_atomic(page);
303 		memcpy(vaddr, src, PAGE_SIZE);
304 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
305 		kunmap_atomic(src);
306 
307 		put_page(page);
308 		vaddr += PAGE_SIZE;
309 	}
310 
311 	i915_gem_chipset_flush(to_i915(obj->base.dev));
312 
313 	st = kmalloc(sizeof(*st), GFP_KERNEL);
314 	if (!st) {
315 		err = -ENOMEM;
316 		goto err_phys;
317 	}
318 
319 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
320 		kfree(st);
321 		err = -ENOMEM;
322 		goto err_phys;
323 	}
324 
325 	sg = st->sgl;
326 	sg->offset = 0;
327 	sg->length = obj->base.size;
328 
329 	sg_dma_address(sg) = phys->busaddr;
330 	sg_dma_len(sg) = obj->base.size;
331 
332 	obj->phys_handle = phys;
333 
334 	__i915_gem_object_set_pages(obj, st, sg->length);
335 
336 	return 0;
337 
338 err_phys:
339 	drm_pci_free(obj->base.dev, phys);
340 
341 	return err;
342 }
343 
344 static void __start_cpu_write(struct drm_i915_gem_object *obj)
345 {
346 	obj->read_domains = I915_GEM_DOMAIN_CPU;
347 	obj->write_domain = I915_GEM_DOMAIN_CPU;
348 	if (cpu_write_needs_clflush(obj))
349 		obj->cache_dirty = true;
350 }
351 
352 static void
353 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
354 				struct sg_table *pages,
355 				bool needs_clflush)
356 {
357 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
358 
359 	if (obj->mm.madv == I915_MADV_DONTNEED)
360 		obj->mm.dirty = false;
361 
362 	if (needs_clflush &&
363 	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
364 	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
365 		drm_clflush_sg(pages);
366 
367 	__start_cpu_write(obj);
368 }
369 
370 static void
371 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
372 			       struct sg_table *pages)
373 {
374 	__i915_gem_object_release_shmem(obj, pages, false);
375 
376 	if (obj->mm.dirty) {
377 		struct address_space *mapping = obj->base.filp->f_mapping;
378 		char *vaddr = obj->phys_handle->vaddr;
379 		int i;
380 
381 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
382 			struct page *page;
383 			char *dst;
384 
385 			page = shmem_read_mapping_page(mapping, i);
386 			if (IS_ERR(page))
387 				continue;
388 
389 			dst = kmap_atomic(page);
390 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
391 			memcpy(dst, vaddr, PAGE_SIZE);
392 			kunmap_atomic(dst);
393 
394 			set_page_dirty(page);
395 			if (obj->mm.madv == I915_MADV_WILLNEED)
396 				mark_page_accessed(page);
397 			put_page(page);
398 			vaddr += PAGE_SIZE;
399 		}
400 		obj->mm.dirty = false;
401 	}
402 
403 	sg_free_table(pages);
404 	kfree(pages);
405 
406 	drm_pci_free(obj->base.dev, obj->phys_handle);
407 }
408 
409 static void
410 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
411 {
412 	i915_gem_object_unpin_pages(obj);
413 }
414 
415 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
416 	.get_pages = i915_gem_object_get_pages_phys,
417 	.put_pages = i915_gem_object_put_pages_phys,
418 	.release = i915_gem_object_release_phys,
419 };
420 
421 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
422 
423 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
424 {
425 	struct i915_vma *vma;
426 	LIST_HEAD(still_in_list);
427 	int ret;
428 
429 	lockdep_assert_held(&obj->base.dev->struct_mutex);
430 
431 	/* Closed vma are removed from the obj->vma_list - but they may
432 	 * still have an active binding on the object. To remove those we
433 	 * must wait for all rendering to complete to the object (as unbinding
434 	 * must anyway), and retire the requests.
435 	 */
436 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
437 	if (ret)
438 		return ret;
439 
440 	while ((vma = list_first_entry_or_null(&obj->vma_list,
441 					       struct i915_vma,
442 					       obj_link))) {
443 		list_move_tail(&vma->obj_link, &still_in_list);
444 		ret = i915_vma_unbind(vma);
445 		if (ret)
446 			break;
447 	}
448 	list_splice(&still_in_list, &obj->vma_list);
449 
450 	return ret;
451 }
452 
453 static long
454 i915_gem_object_wait_fence(struct dma_fence *fence,
455 			   unsigned int flags,
456 			   long timeout,
457 			   struct intel_rps_client *rps_client)
458 {
459 	struct i915_request *rq;
460 
461 	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
462 
463 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
464 		return timeout;
465 
466 	if (!dma_fence_is_i915(fence))
467 		return dma_fence_wait_timeout(fence,
468 					      flags & I915_WAIT_INTERRUPTIBLE,
469 					      timeout);
470 
471 	rq = to_request(fence);
472 	if (i915_request_completed(rq))
473 		goto out;
474 
475 	/*
476 	 * This client is about to stall waiting for the GPU. In many cases
477 	 * this is undesirable and limits the throughput of the system, as
478 	 * many clients cannot continue processing user input/output whilst
479 	 * blocked. RPS autotuning may take tens of milliseconds to respond
480 	 * to the GPU load and thus incurs additional latency for the client.
481 	 * We can circumvent that by promoting the GPU frequency to maximum
482 	 * before we wait. This makes the GPU throttle up much more quickly
483 	 * (good for benchmarks and user experience, e.g. window animations),
484 	 * but at a cost of spending more power processing the workload
485 	 * (bad for battery). Not all clients even want their results
486 	 * immediately and for them we should just let the GPU select its own
487 	 * frequency to maximise efficiency. To prevent a single client from
488 	 * forcing the clocks too high for the whole system, we only allow
489 	 * each client to waitboost once in a busy period.
490 	 */
491 	if (rps_client && !i915_request_started(rq)) {
492 		if (INTEL_GEN(rq->i915) >= 6)
493 			gen6_rps_boost(rq, rps_client);
494 	}
495 
496 	timeout = i915_request_wait(rq, flags, timeout);
497 
498 out:
499 	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
500 		i915_request_retire_upto(rq);
501 
502 	return timeout;
503 }
504 
505 static long
506 i915_gem_object_wait_reservation(struct reservation_object *resv,
507 				 unsigned int flags,
508 				 long timeout,
509 				 struct intel_rps_client *rps_client)
510 {
511 	unsigned int seq = __read_seqcount_begin(&resv->seq);
512 	struct dma_fence *excl;
513 	bool prune_fences = false;
514 
515 	if (flags & I915_WAIT_ALL) {
516 		struct dma_fence **shared;
517 		unsigned int count, i;
518 		int ret;
519 
520 		ret = reservation_object_get_fences_rcu(resv,
521 							&excl, &count, &shared);
522 		if (ret)
523 			return ret;
524 
525 		for (i = 0; i < count; i++) {
526 			timeout = i915_gem_object_wait_fence(shared[i],
527 							     flags, timeout,
528 							     rps_client);
529 			if (timeout < 0)
530 				break;
531 
532 			dma_fence_put(shared[i]);
533 		}
534 
535 		for (; i < count; i++)
536 			dma_fence_put(shared[i]);
537 		kfree(shared);
538 
539 		/*
540 		 * If both shared fences and an exclusive fence exist,
541 		 * then by construction the shared fences must be later
542 		 * than the exclusive fence. If we successfully wait for
543 		 * all the shared fences, we know that the exclusive fence
544 		 * must all be signaled. If all the shared fences are
545 		 * signaled, we can prune the array and recover the
546 		 * floating references on the fences/requests.
547 		 */
548 		prune_fences = count && timeout >= 0;
549 	} else {
550 		excl = reservation_object_get_excl_rcu(resv);
551 	}
552 
553 	if (excl && timeout >= 0)
554 		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
555 						     rps_client);
556 
557 	dma_fence_put(excl);
558 
559 	/*
560 	 * Opportunistically prune the fences iff we know they have *all* been
561 	 * signaled and that the reservation object has not been changed (i.e.
562 	 * no new fences have been added).
563 	 */
564 	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
565 		if (reservation_object_trylock(resv)) {
566 			if (!__read_seqcount_retry(&resv->seq, seq))
567 				reservation_object_add_excl_fence(resv, NULL);
568 			reservation_object_unlock(resv);
569 		}
570 	}
571 
572 	return timeout;
573 }
574 
575 static void __fence_set_priority(struct dma_fence *fence,
576 				 const struct i915_sched_attr *attr)
577 {
578 	struct i915_request *rq;
579 	struct intel_engine_cs *engine;
580 
581 	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
582 		return;
583 
584 	rq = to_request(fence);
585 	engine = rq->engine;
586 
587 	local_bh_disable();
588 	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
589 	if (engine->schedule)
590 		engine->schedule(rq, attr);
591 	rcu_read_unlock();
592 	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
593 }
594 
595 static void fence_set_priority(struct dma_fence *fence,
596 			       const struct i915_sched_attr *attr)
597 {
598 	/* Recurse once into a fence-array */
599 	if (dma_fence_is_array(fence)) {
600 		struct dma_fence_array *array = to_dma_fence_array(fence);
601 		int i;
602 
603 		for (i = 0; i < array->num_fences; i++)
604 			__fence_set_priority(array->fences[i], attr);
605 	} else {
606 		__fence_set_priority(fence, attr);
607 	}
608 }
609 
610 int
611 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
612 			      unsigned int flags,
613 			      const struct i915_sched_attr *attr)
614 {
615 	struct dma_fence *excl;
616 
617 	if (flags & I915_WAIT_ALL) {
618 		struct dma_fence **shared;
619 		unsigned int count, i;
620 		int ret;
621 
622 		ret = reservation_object_get_fences_rcu(obj->resv,
623 							&excl, &count, &shared);
624 		if (ret)
625 			return ret;
626 
627 		for (i = 0; i < count; i++) {
628 			fence_set_priority(shared[i], attr);
629 			dma_fence_put(shared[i]);
630 		}
631 
632 		kfree(shared);
633 	} else {
634 		excl = reservation_object_get_excl_rcu(obj->resv);
635 	}
636 
637 	if (excl) {
638 		fence_set_priority(excl, attr);
639 		dma_fence_put(excl);
640 	}
641 	return 0;
642 }
643 
644 /**
645  * Waits for rendering to the object to be completed
646  * @obj: i915 gem object
647  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
648  * @timeout: how long to wait
649  * @rps_client: client (user process) to charge for any waitboosting
650  */
651 int
652 i915_gem_object_wait(struct drm_i915_gem_object *obj,
653 		     unsigned int flags,
654 		     long timeout,
655 		     struct intel_rps_client *rps_client)
656 {
657 	might_sleep();
658 #if IS_ENABLED(CONFIG_LOCKDEP)
659 	GEM_BUG_ON(debug_locks &&
660 		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
661 		   !!(flags & I915_WAIT_LOCKED));
662 #endif
663 	GEM_BUG_ON(timeout < 0);
664 
665 	timeout = i915_gem_object_wait_reservation(obj->resv,
666 						   flags, timeout,
667 						   rps_client);
668 	return timeout < 0 ? timeout : 0;
669 }
670 
671 static struct intel_rps_client *to_rps_client(struct drm_file *file)
672 {
673 	struct drm_i915_file_private *fpriv = file->driver_priv;
674 
675 	return &fpriv->rps_client;
676 }
677 
678 static int
679 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
680 		     struct drm_i915_gem_pwrite *args,
681 		     struct drm_file *file)
682 {
683 	void *vaddr = obj->phys_handle->vaddr + args->offset;
684 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
685 
686 	/* We manually control the domain here and pretend that it
687 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
688 	 */
689 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
690 	if (copy_from_user(vaddr, user_data, args->size))
691 		return -EFAULT;
692 
693 	drm_clflush_virt_range(vaddr, args->size);
694 	i915_gem_chipset_flush(to_i915(obj->base.dev));
695 
696 	intel_fb_obj_flush(obj, ORIGIN_CPU);
697 	return 0;
698 }
699 
700 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
701 {
702 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
703 }
704 
705 void i915_gem_object_free(struct drm_i915_gem_object *obj)
706 {
707 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
708 	kmem_cache_free(dev_priv->objects, obj);
709 }
710 
711 static int
712 i915_gem_create(struct drm_file *file,
713 		struct drm_i915_private *dev_priv,
714 		uint64_t size,
715 		uint32_t *handle_p)
716 {
717 	struct drm_i915_gem_object *obj;
718 	int ret;
719 	u32 handle;
720 
721 	size = roundup(size, PAGE_SIZE);
722 	if (size == 0)
723 		return -EINVAL;
724 
725 	/* Allocate the new object */
726 	obj = i915_gem_object_create(dev_priv, size);
727 	if (IS_ERR(obj))
728 		return PTR_ERR(obj);
729 
730 	ret = drm_gem_handle_create(file, &obj->base, &handle);
731 	/* drop reference from allocate - handle holds it now */
732 	i915_gem_object_put(obj);
733 	if (ret)
734 		return ret;
735 
736 	*handle_p = handle;
737 	return 0;
738 }
739 
740 int
741 i915_gem_dumb_create(struct drm_file *file,
742 		     struct drm_device *dev,
743 		     struct drm_mode_create_dumb *args)
744 {
745 	/* have to work out size/pitch and return them */
746 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
747 	args->size = args->pitch * args->height;
748 	return i915_gem_create(file, to_i915(dev),
749 			       args->size, &args->handle);
750 }
751 
752 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
753 {
754 	return !(obj->cache_level == I915_CACHE_NONE ||
755 		 obj->cache_level == I915_CACHE_WT);
756 }
757 
758 /**
759  * Creates a new mm object and returns a handle to it.
760  * @dev: drm device pointer
761  * @data: ioctl data blob
762  * @file: drm file pointer
763  */
764 int
765 i915_gem_create_ioctl(struct drm_device *dev, void *data,
766 		      struct drm_file *file)
767 {
768 	struct drm_i915_private *dev_priv = to_i915(dev);
769 	struct drm_i915_gem_create *args = data;
770 
771 	i915_gem_flush_free_objects(dev_priv);
772 
773 	return i915_gem_create(file, dev_priv,
774 			       args->size, &args->handle);
775 }
776 
777 static inline enum fb_op_origin
778 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
779 {
780 	return (domain == I915_GEM_DOMAIN_GTT ?
781 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
782 }
783 
784 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
785 {
786 	/*
787 	 * No actual flushing is required for the GTT write domain for reads
788 	 * from the GTT domain. Writes to it "immediately" go to main memory
789 	 * as far as we know, so there's no chipset flush. It also doesn't
790 	 * land in the GPU render cache.
791 	 *
792 	 * However, we do have to enforce the order so that all writes through
793 	 * the GTT land before any writes to the device, such as updates to
794 	 * the GATT itself.
795 	 *
796 	 * We also have to wait a bit for the writes to land from the GTT.
797 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
798 	 * timing. This issue has only been observed when switching quickly
799 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
800 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
801 	 * system agents we cannot reproduce this behaviour, until Cannonlake
802 	 * that was!).
803 	 */
804 
805 	wmb();
806 
807 	if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
808 		return;
809 
810 	i915_gem_chipset_flush(dev_priv);
811 
812 	intel_runtime_pm_get(dev_priv);
813 	spin_lock_irq(&dev_priv->uncore.lock);
814 
815 	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
816 
817 	spin_unlock_irq(&dev_priv->uncore.lock);
818 	intel_runtime_pm_put(dev_priv);
819 }
820 
821 static void
822 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
823 {
824 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
825 	struct i915_vma *vma;
826 
827 	if (!(obj->write_domain & flush_domains))
828 		return;
829 
830 	switch (obj->write_domain) {
831 	case I915_GEM_DOMAIN_GTT:
832 		i915_gem_flush_ggtt_writes(dev_priv);
833 
834 		intel_fb_obj_flush(obj,
835 				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
836 
837 		for_each_ggtt_vma(vma, obj) {
838 			if (vma->iomap)
839 				continue;
840 
841 			i915_vma_unset_ggtt_write(vma);
842 		}
843 		break;
844 
845 	case I915_GEM_DOMAIN_WC:
846 		wmb();
847 		break;
848 
849 	case I915_GEM_DOMAIN_CPU:
850 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
851 		break;
852 
853 	case I915_GEM_DOMAIN_RENDER:
854 		if (gpu_write_needs_clflush(obj))
855 			obj->cache_dirty = true;
856 		break;
857 	}
858 
859 	obj->write_domain = 0;
860 }
861 
862 static inline int
863 __copy_to_user_swizzled(char __user *cpu_vaddr,
864 			const char *gpu_vaddr, int gpu_offset,
865 			int length)
866 {
867 	int ret, cpu_offset = 0;
868 
869 	while (length > 0) {
870 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
871 		int this_length = min(cacheline_end - gpu_offset, length);
872 		int swizzled_gpu_offset = gpu_offset ^ 64;
873 
874 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
875 				     gpu_vaddr + swizzled_gpu_offset,
876 				     this_length);
877 		if (ret)
878 			return ret + length;
879 
880 		cpu_offset += this_length;
881 		gpu_offset += this_length;
882 		length -= this_length;
883 	}
884 
885 	return 0;
886 }
887 
888 static inline int
889 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
890 			  const char __user *cpu_vaddr,
891 			  int length)
892 {
893 	int ret, cpu_offset = 0;
894 
895 	while (length > 0) {
896 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
897 		int this_length = min(cacheline_end - gpu_offset, length);
898 		int swizzled_gpu_offset = gpu_offset ^ 64;
899 
900 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
901 				       cpu_vaddr + cpu_offset,
902 				       this_length);
903 		if (ret)
904 			return ret + length;
905 
906 		cpu_offset += this_length;
907 		gpu_offset += this_length;
908 		length -= this_length;
909 	}
910 
911 	return 0;
912 }
913 
914 /*
915  * Pins the specified object's pages and synchronizes the object with
916  * GPU accesses. Sets needs_clflush to non-zero if the caller should
917  * flush the object from the CPU cache.
918  */
919 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
920 				    unsigned int *needs_clflush)
921 {
922 	int ret;
923 
924 	lockdep_assert_held(&obj->base.dev->struct_mutex);
925 
926 	*needs_clflush = 0;
927 	if (!i915_gem_object_has_struct_page(obj))
928 		return -ENODEV;
929 
930 	ret = i915_gem_object_wait(obj,
931 				   I915_WAIT_INTERRUPTIBLE |
932 				   I915_WAIT_LOCKED,
933 				   MAX_SCHEDULE_TIMEOUT,
934 				   NULL);
935 	if (ret)
936 		return ret;
937 
938 	ret = i915_gem_object_pin_pages(obj);
939 	if (ret)
940 		return ret;
941 
942 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
943 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
944 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
945 		if (ret)
946 			goto err_unpin;
947 		else
948 			goto out;
949 	}
950 
951 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
952 
953 	/* If we're not in the cpu read domain, set ourself into the gtt
954 	 * read domain and manually flush cachelines (if required). This
955 	 * optimizes for the case when the gpu will dirty the data
956 	 * anyway again before the next pread happens.
957 	 */
958 	if (!obj->cache_dirty &&
959 	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
960 		*needs_clflush = CLFLUSH_BEFORE;
961 
962 out:
963 	/* return with the pages pinned */
964 	return 0;
965 
966 err_unpin:
967 	i915_gem_object_unpin_pages(obj);
968 	return ret;
969 }
970 
971 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
972 				     unsigned int *needs_clflush)
973 {
974 	int ret;
975 
976 	lockdep_assert_held(&obj->base.dev->struct_mutex);
977 
978 	*needs_clflush = 0;
979 	if (!i915_gem_object_has_struct_page(obj))
980 		return -ENODEV;
981 
982 	ret = i915_gem_object_wait(obj,
983 				   I915_WAIT_INTERRUPTIBLE |
984 				   I915_WAIT_LOCKED |
985 				   I915_WAIT_ALL,
986 				   MAX_SCHEDULE_TIMEOUT,
987 				   NULL);
988 	if (ret)
989 		return ret;
990 
991 	ret = i915_gem_object_pin_pages(obj);
992 	if (ret)
993 		return ret;
994 
995 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
996 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
997 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
998 		if (ret)
999 			goto err_unpin;
1000 		else
1001 			goto out;
1002 	}
1003 
1004 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
1005 
1006 	/* If we're not in the cpu write domain, set ourself into the
1007 	 * gtt write domain and manually flush cachelines (as required).
1008 	 * This optimizes for the case when the gpu will use the data
1009 	 * right away and we therefore have to clflush anyway.
1010 	 */
1011 	if (!obj->cache_dirty) {
1012 		*needs_clflush |= CLFLUSH_AFTER;
1013 
1014 		/*
1015 		 * Same trick applies to invalidate partially written
1016 		 * cachelines read before writing.
1017 		 */
1018 		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1019 			*needs_clflush |= CLFLUSH_BEFORE;
1020 	}
1021 
1022 out:
1023 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1024 	obj->mm.dirty = true;
1025 	/* return with the pages pinned */
1026 	return 0;
1027 
1028 err_unpin:
1029 	i915_gem_object_unpin_pages(obj);
1030 	return ret;
1031 }
1032 
1033 static void
1034 shmem_clflush_swizzled_range(char *addr, unsigned long length,
1035 			     bool swizzled)
1036 {
1037 	if (unlikely(swizzled)) {
1038 		unsigned long start = (unsigned long) addr;
1039 		unsigned long end = (unsigned long) addr + length;
1040 
1041 		/* For swizzling simply ensure that we always flush both
1042 		 * channels. Lame, but simple and it works. Swizzled
1043 		 * pwrite/pread is far from a hotpath - current userspace
1044 		 * doesn't use it at all. */
1045 		start = round_down(start, 128);
1046 		end = round_up(end, 128);
1047 
1048 		drm_clflush_virt_range((void *)start, end - start);
1049 	} else {
1050 		drm_clflush_virt_range(addr, length);
1051 	}
1052 
1053 }
1054 
1055 /* Only difference to the fast-path function is that this can handle bit17
1056  * and uses non-atomic copy and kmap functions. */
1057 static int
1058 shmem_pread_slow(struct page *page, int offset, int length,
1059 		 char __user *user_data,
1060 		 bool page_do_bit17_swizzling, bool needs_clflush)
1061 {
1062 	char *vaddr;
1063 	int ret;
1064 
1065 	vaddr = kmap(page);
1066 	if (needs_clflush)
1067 		shmem_clflush_swizzled_range(vaddr + offset, length,
1068 					     page_do_bit17_swizzling);
1069 
1070 	if (page_do_bit17_swizzling)
1071 		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1072 	else
1073 		ret = __copy_to_user(user_data, vaddr + offset, length);
1074 	kunmap(page);
1075 
1076 	return ret ? - EFAULT : 0;
1077 }
1078 
1079 static int
1080 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
1081 	    bool page_do_bit17_swizzling, bool needs_clflush)
1082 {
1083 	int ret;
1084 
1085 	ret = -ENODEV;
1086 	if (!page_do_bit17_swizzling) {
1087 		char *vaddr = kmap_atomic(page);
1088 
1089 		if (needs_clflush)
1090 			drm_clflush_virt_range(vaddr + offset, length);
1091 		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1092 		kunmap_atomic(vaddr);
1093 	}
1094 	if (ret == 0)
1095 		return 0;
1096 
1097 	return shmem_pread_slow(page, offset, length, user_data,
1098 				page_do_bit17_swizzling, needs_clflush);
1099 }
1100 
1101 static int
1102 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
1103 		     struct drm_i915_gem_pread *args)
1104 {
1105 	char __user *user_data;
1106 	u64 remain;
1107 	unsigned int obj_do_bit17_swizzling;
1108 	unsigned int needs_clflush;
1109 	unsigned int idx, offset;
1110 	int ret;
1111 
1112 	obj_do_bit17_swizzling = 0;
1113 	if (i915_gem_object_needs_bit17_swizzle(obj))
1114 		obj_do_bit17_swizzling = BIT(17);
1115 
1116 	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1117 	if (ret)
1118 		return ret;
1119 
1120 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1121 	mutex_unlock(&obj->base.dev->struct_mutex);
1122 	if (ret)
1123 		return ret;
1124 
1125 	remain = args->size;
1126 	user_data = u64_to_user_ptr(args->data_ptr);
1127 	offset = offset_in_page(args->offset);
1128 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1129 		struct page *page = i915_gem_object_get_page(obj, idx);
1130 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1131 
1132 		ret = shmem_pread(page, offset, length, user_data,
1133 				  page_to_phys(page) & obj_do_bit17_swizzling,
1134 				  needs_clflush);
1135 		if (ret)
1136 			break;
1137 
1138 		remain -= length;
1139 		user_data += length;
1140 		offset = 0;
1141 	}
1142 
1143 	i915_gem_obj_finish_shmem_access(obj);
1144 	return ret;
1145 }
1146 
1147 static inline bool
1148 gtt_user_read(struct io_mapping *mapping,
1149 	      loff_t base, int offset,
1150 	      char __user *user_data, int length)
1151 {
1152 	void __iomem *vaddr;
1153 	unsigned long unwritten;
1154 
1155 	/* We can use the cpu mem copy function because this is X86. */
1156 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1157 	unwritten = __copy_to_user_inatomic(user_data,
1158 					    (void __force *)vaddr + offset,
1159 					    length);
1160 	io_mapping_unmap_atomic(vaddr);
1161 	if (unwritten) {
1162 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1163 		unwritten = copy_to_user(user_data,
1164 					 (void __force *)vaddr + offset,
1165 					 length);
1166 		io_mapping_unmap(vaddr);
1167 	}
1168 	return unwritten;
1169 }
1170 
1171 static int
1172 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1173 		   const struct drm_i915_gem_pread *args)
1174 {
1175 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1176 	struct i915_ggtt *ggtt = &i915->ggtt;
1177 	struct drm_mm_node node;
1178 	struct i915_vma *vma;
1179 	void __user *user_data;
1180 	u64 remain, offset;
1181 	int ret;
1182 
1183 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1184 	if (ret)
1185 		return ret;
1186 
1187 	intel_runtime_pm_get(i915);
1188 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1189 				       PIN_MAPPABLE |
1190 				       PIN_NONFAULT |
1191 				       PIN_NONBLOCK);
1192 	if (!IS_ERR(vma)) {
1193 		node.start = i915_ggtt_offset(vma);
1194 		node.allocated = false;
1195 		ret = i915_vma_put_fence(vma);
1196 		if (ret) {
1197 			i915_vma_unpin(vma);
1198 			vma = ERR_PTR(ret);
1199 		}
1200 	}
1201 	if (IS_ERR(vma)) {
1202 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1203 		if (ret)
1204 			goto out_unlock;
1205 		GEM_BUG_ON(!node.allocated);
1206 	}
1207 
1208 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1209 	if (ret)
1210 		goto out_unpin;
1211 
1212 	mutex_unlock(&i915->drm.struct_mutex);
1213 
1214 	user_data = u64_to_user_ptr(args->data_ptr);
1215 	remain = args->size;
1216 	offset = args->offset;
1217 
1218 	while (remain > 0) {
1219 		/* Operation in this page
1220 		 *
1221 		 * page_base = page offset within aperture
1222 		 * page_offset = offset within page
1223 		 * page_length = bytes to copy for this page
1224 		 */
1225 		u32 page_base = node.start;
1226 		unsigned page_offset = offset_in_page(offset);
1227 		unsigned page_length = PAGE_SIZE - page_offset;
1228 		page_length = remain < page_length ? remain : page_length;
1229 		if (node.allocated) {
1230 			wmb();
1231 			ggtt->vm.insert_page(&ggtt->vm,
1232 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1233 					     node.start, I915_CACHE_NONE, 0);
1234 			wmb();
1235 		} else {
1236 			page_base += offset & PAGE_MASK;
1237 		}
1238 
1239 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1240 				  user_data, page_length)) {
1241 			ret = -EFAULT;
1242 			break;
1243 		}
1244 
1245 		remain -= page_length;
1246 		user_data += page_length;
1247 		offset += page_length;
1248 	}
1249 
1250 	mutex_lock(&i915->drm.struct_mutex);
1251 out_unpin:
1252 	if (node.allocated) {
1253 		wmb();
1254 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1255 		remove_mappable_node(&node);
1256 	} else {
1257 		i915_vma_unpin(vma);
1258 	}
1259 out_unlock:
1260 	intel_runtime_pm_put(i915);
1261 	mutex_unlock(&i915->drm.struct_mutex);
1262 
1263 	return ret;
1264 }
1265 
1266 /**
1267  * Reads data from the object referenced by handle.
1268  * @dev: drm device pointer
1269  * @data: ioctl data blob
1270  * @file: drm file pointer
1271  *
1272  * On error, the contents of *data are undefined.
1273  */
1274 int
1275 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1276 		     struct drm_file *file)
1277 {
1278 	struct drm_i915_gem_pread *args = data;
1279 	struct drm_i915_gem_object *obj;
1280 	int ret;
1281 
1282 	if (args->size == 0)
1283 		return 0;
1284 
1285 	if (!access_ok(u64_to_user_ptr(args->data_ptr),
1286 		       args->size))
1287 		return -EFAULT;
1288 
1289 	obj = i915_gem_object_lookup(file, args->handle);
1290 	if (!obj)
1291 		return -ENOENT;
1292 
1293 	/* Bounds check source.  */
1294 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1295 		ret = -EINVAL;
1296 		goto out;
1297 	}
1298 
1299 	trace_i915_gem_object_pread(obj, args->offset, args->size);
1300 
1301 	ret = i915_gem_object_wait(obj,
1302 				   I915_WAIT_INTERRUPTIBLE,
1303 				   MAX_SCHEDULE_TIMEOUT,
1304 				   to_rps_client(file));
1305 	if (ret)
1306 		goto out;
1307 
1308 	ret = i915_gem_object_pin_pages(obj);
1309 	if (ret)
1310 		goto out;
1311 
1312 	ret = i915_gem_shmem_pread(obj, args);
1313 	if (ret == -EFAULT || ret == -ENODEV)
1314 		ret = i915_gem_gtt_pread(obj, args);
1315 
1316 	i915_gem_object_unpin_pages(obj);
1317 out:
1318 	i915_gem_object_put(obj);
1319 	return ret;
1320 }
1321 
1322 /* This is the fast write path which cannot handle
1323  * page faults in the source data
1324  */
1325 
1326 static inline bool
1327 ggtt_write(struct io_mapping *mapping,
1328 	   loff_t base, int offset,
1329 	   char __user *user_data, int length)
1330 {
1331 	void __iomem *vaddr;
1332 	unsigned long unwritten;
1333 
1334 	/* We can use the cpu mem copy function because this is X86. */
1335 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1336 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1337 						      user_data, length);
1338 	io_mapping_unmap_atomic(vaddr);
1339 	if (unwritten) {
1340 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1341 		unwritten = copy_from_user((void __force *)vaddr + offset,
1342 					   user_data, length);
1343 		io_mapping_unmap(vaddr);
1344 	}
1345 
1346 	return unwritten;
1347 }
1348 
1349 /**
1350  * This is the fast pwrite path, where we copy the data directly from the
1351  * user into the GTT, uncached.
1352  * @obj: i915 GEM object
1353  * @args: pwrite arguments structure
1354  */
1355 static int
1356 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1357 			 const struct drm_i915_gem_pwrite *args)
1358 {
1359 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1360 	struct i915_ggtt *ggtt = &i915->ggtt;
1361 	struct drm_mm_node node;
1362 	struct i915_vma *vma;
1363 	u64 remain, offset;
1364 	void __user *user_data;
1365 	int ret;
1366 
1367 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1368 	if (ret)
1369 		return ret;
1370 
1371 	if (i915_gem_object_has_struct_page(obj)) {
1372 		/*
1373 		 * Avoid waking the device up if we can fallback, as
1374 		 * waking/resuming is very slow (worst-case 10-100 ms
1375 		 * depending on PCI sleeps and our own resume time).
1376 		 * This easily dwarfs any performance advantage from
1377 		 * using the cache bypass of indirect GGTT access.
1378 		 */
1379 		if (!intel_runtime_pm_get_if_in_use(i915)) {
1380 			ret = -EFAULT;
1381 			goto out_unlock;
1382 		}
1383 	} else {
1384 		/* No backing pages, no fallback, we must force GGTT access */
1385 		intel_runtime_pm_get(i915);
1386 	}
1387 
1388 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1389 				       PIN_MAPPABLE |
1390 				       PIN_NONFAULT |
1391 				       PIN_NONBLOCK);
1392 	if (!IS_ERR(vma)) {
1393 		node.start = i915_ggtt_offset(vma);
1394 		node.allocated = false;
1395 		ret = i915_vma_put_fence(vma);
1396 		if (ret) {
1397 			i915_vma_unpin(vma);
1398 			vma = ERR_PTR(ret);
1399 		}
1400 	}
1401 	if (IS_ERR(vma)) {
1402 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1403 		if (ret)
1404 			goto out_rpm;
1405 		GEM_BUG_ON(!node.allocated);
1406 	}
1407 
1408 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1409 	if (ret)
1410 		goto out_unpin;
1411 
1412 	mutex_unlock(&i915->drm.struct_mutex);
1413 
1414 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1415 
1416 	user_data = u64_to_user_ptr(args->data_ptr);
1417 	offset = args->offset;
1418 	remain = args->size;
1419 	while (remain) {
1420 		/* Operation in this page
1421 		 *
1422 		 * page_base = page offset within aperture
1423 		 * page_offset = offset within page
1424 		 * page_length = bytes to copy for this page
1425 		 */
1426 		u32 page_base = node.start;
1427 		unsigned int page_offset = offset_in_page(offset);
1428 		unsigned int page_length = PAGE_SIZE - page_offset;
1429 		page_length = remain < page_length ? remain : page_length;
1430 		if (node.allocated) {
1431 			wmb(); /* flush the write before we modify the GGTT */
1432 			ggtt->vm.insert_page(&ggtt->vm,
1433 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1434 					     node.start, I915_CACHE_NONE, 0);
1435 			wmb(); /* flush modifications to the GGTT (insert_page) */
1436 		} else {
1437 			page_base += offset & PAGE_MASK;
1438 		}
1439 		/* If we get a fault while copying data, then (presumably) our
1440 		 * source page isn't available.  Return the error and we'll
1441 		 * retry in the slow path.
1442 		 * If the object is non-shmem backed, we retry again with the
1443 		 * path that handles page fault.
1444 		 */
1445 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1446 			       user_data, page_length)) {
1447 			ret = -EFAULT;
1448 			break;
1449 		}
1450 
1451 		remain -= page_length;
1452 		user_data += page_length;
1453 		offset += page_length;
1454 	}
1455 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1456 
1457 	mutex_lock(&i915->drm.struct_mutex);
1458 out_unpin:
1459 	if (node.allocated) {
1460 		wmb();
1461 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1462 		remove_mappable_node(&node);
1463 	} else {
1464 		i915_vma_unpin(vma);
1465 	}
1466 out_rpm:
1467 	intel_runtime_pm_put(i915);
1468 out_unlock:
1469 	mutex_unlock(&i915->drm.struct_mutex);
1470 	return ret;
1471 }
1472 
1473 static int
1474 shmem_pwrite_slow(struct page *page, int offset, int length,
1475 		  char __user *user_data,
1476 		  bool page_do_bit17_swizzling,
1477 		  bool needs_clflush_before,
1478 		  bool needs_clflush_after)
1479 {
1480 	char *vaddr;
1481 	int ret;
1482 
1483 	vaddr = kmap(page);
1484 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1485 		shmem_clflush_swizzled_range(vaddr + offset, length,
1486 					     page_do_bit17_swizzling);
1487 	if (page_do_bit17_swizzling)
1488 		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1489 						length);
1490 	else
1491 		ret = __copy_from_user(vaddr + offset, user_data, length);
1492 	if (needs_clflush_after)
1493 		shmem_clflush_swizzled_range(vaddr + offset, length,
1494 					     page_do_bit17_swizzling);
1495 	kunmap(page);
1496 
1497 	return ret ? -EFAULT : 0;
1498 }
1499 
1500 /* Per-page copy function for the shmem pwrite fastpath.
1501  * Flushes invalid cachelines before writing to the target if
1502  * needs_clflush_before is set and flushes out any written cachelines after
1503  * writing if needs_clflush is set.
1504  */
1505 static int
1506 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1507 	     bool page_do_bit17_swizzling,
1508 	     bool needs_clflush_before,
1509 	     bool needs_clflush_after)
1510 {
1511 	int ret;
1512 
1513 	ret = -ENODEV;
1514 	if (!page_do_bit17_swizzling) {
1515 		char *vaddr = kmap_atomic(page);
1516 
1517 		if (needs_clflush_before)
1518 			drm_clflush_virt_range(vaddr + offset, len);
1519 		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1520 		if (needs_clflush_after)
1521 			drm_clflush_virt_range(vaddr + offset, len);
1522 
1523 		kunmap_atomic(vaddr);
1524 	}
1525 	if (ret == 0)
1526 		return ret;
1527 
1528 	return shmem_pwrite_slow(page, offset, len, user_data,
1529 				 page_do_bit17_swizzling,
1530 				 needs_clflush_before,
1531 				 needs_clflush_after);
1532 }
1533 
1534 static int
1535 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1536 		      const struct drm_i915_gem_pwrite *args)
1537 {
1538 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1539 	void __user *user_data;
1540 	u64 remain;
1541 	unsigned int obj_do_bit17_swizzling;
1542 	unsigned int partial_cacheline_write;
1543 	unsigned int needs_clflush;
1544 	unsigned int offset, idx;
1545 	int ret;
1546 
1547 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1548 	if (ret)
1549 		return ret;
1550 
1551 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1552 	mutex_unlock(&i915->drm.struct_mutex);
1553 	if (ret)
1554 		return ret;
1555 
1556 	obj_do_bit17_swizzling = 0;
1557 	if (i915_gem_object_needs_bit17_swizzle(obj))
1558 		obj_do_bit17_swizzling = BIT(17);
1559 
1560 	/* If we don't overwrite a cacheline completely we need to be
1561 	 * careful to have up-to-date data by first clflushing. Don't
1562 	 * overcomplicate things and flush the entire patch.
1563 	 */
1564 	partial_cacheline_write = 0;
1565 	if (needs_clflush & CLFLUSH_BEFORE)
1566 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1567 
1568 	user_data = u64_to_user_ptr(args->data_ptr);
1569 	remain = args->size;
1570 	offset = offset_in_page(args->offset);
1571 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1572 		struct page *page = i915_gem_object_get_page(obj, idx);
1573 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1574 
1575 		ret = shmem_pwrite(page, offset, length, user_data,
1576 				   page_to_phys(page) & obj_do_bit17_swizzling,
1577 				   (offset | length) & partial_cacheline_write,
1578 				   needs_clflush & CLFLUSH_AFTER);
1579 		if (ret)
1580 			break;
1581 
1582 		remain -= length;
1583 		user_data += length;
1584 		offset = 0;
1585 	}
1586 
1587 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1588 	i915_gem_obj_finish_shmem_access(obj);
1589 	return ret;
1590 }
1591 
1592 /**
1593  * Writes data to the object referenced by handle.
1594  * @dev: drm device
1595  * @data: ioctl data blob
1596  * @file: drm file
1597  *
1598  * On error, the contents of the buffer that were to be modified are undefined.
1599  */
1600 int
1601 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1602 		      struct drm_file *file)
1603 {
1604 	struct drm_i915_gem_pwrite *args = data;
1605 	struct drm_i915_gem_object *obj;
1606 	int ret;
1607 
1608 	if (args->size == 0)
1609 		return 0;
1610 
1611 	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
1612 		return -EFAULT;
1613 
1614 	obj = i915_gem_object_lookup(file, args->handle);
1615 	if (!obj)
1616 		return -ENOENT;
1617 
1618 	/* Bounds check destination. */
1619 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1620 		ret = -EINVAL;
1621 		goto err;
1622 	}
1623 
1624 	/* Writes not allowed into this read-only object */
1625 	if (i915_gem_object_is_readonly(obj)) {
1626 		ret = -EINVAL;
1627 		goto err;
1628 	}
1629 
1630 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1631 
1632 	ret = -ENODEV;
1633 	if (obj->ops->pwrite)
1634 		ret = obj->ops->pwrite(obj, args);
1635 	if (ret != -ENODEV)
1636 		goto err;
1637 
1638 	ret = i915_gem_object_wait(obj,
1639 				   I915_WAIT_INTERRUPTIBLE |
1640 				   I915_WAIT_ALL,
1641 				   MAX_SCHEDULE_TIMEOUT,
1642 				   to_rps_client(file));
1643 	if (ret)
1644 		goto err;
1645 
1646 	ret = i915_gem_object_pin_pages(obj);
1647 	if (ret)
1648 		goto err;
1649 
1650 	ret = -EFAULT;
1651 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1652 	 * it would end up going through the fenced access, and we'll get
1653 	 * different detiling behavior between reading and writing.
1654 	 * pread/pwrite currently are reading and writing from the CPU
1655 	 * perspective, requiring manual detiling by the client.
1656 	 */
1657 	if (!i915_gem_object_has_struct_page(obj) ||
1658 	    cpu_write_needs_clflush(obj))
1659 		/* Note that the gtt paths might fail with non-page-backed user
1660 		 * pointers (e.g. gtt mappings when moving data between
1661 		 * textures). Fallback to the shmem path in that case.
1662 		 */
1663 		ret = i915_gem_gtt_pwrite_fast(obj, args);
1664 
1665 	if (ret == -EFAULT || ret == -ENOSPC) {
1666 		if (obj->phys_handle)
1667 			ret = i915_gem_phys_pwrite(obj, args, file);
1668 		else
1669 			ret = i915_gem_shmem_pwrite(obj, args);
1670 	}
1671 
1672 	i915_gem_object_unpin_pages(obj);
1673 err:
1674 	i915_gem_object_put(obj);
1675 	return ret;
1676 }
1677 
1678 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1679 {
1680 	struct drm_i915_private *i915;
1681 	struct list_head *list;
1682 	struct i915_vma *vma;
1683 
1684 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1685 
1686 	for_each_ggtt_vma(vma, obj) {
1687 		if (i915_vma_is_active(vma))
1688 			continue;
1689 
1690 		if (!drm_mm_node_allocated(&vma->node))
1691 			continue;
1692 
1693 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1694 	}
1695 
1696 	i915 = to_i915(obj->base.dev);
1697 	spin_lock(&i915->mm.obj_lock);
1698 	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1699 	list_move_tail(&obj->mm.link, list);
1700 	spin_unlock(&i915->mm.obj_lock);
1701 }
1702 
1703 /**
1704  * Called when user space prepares to use an object with the CPU, either
1705  * through the mmap ioctl's mapping or a GTT mapping.
1706  * @dev: drm device
1707  * @data: ioctl data blob
1708  * @file: drm file
1709  */
1710 int
1711 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1712 			  struct drm_file *file)
1713 {
1714 	struct drm_i915_gem_set_domain *args = data;
1715 	struct drm_i915_gem_object *obj;
1716 	uint32_t read_domains = args->read_domains;
1717 	uint32_t write_domain = args->write_domain;
1718 	int err;
1719 
1720 	/* Only handle setting domains to types used by the CPU. */
1721 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1722 		return -EINVAL;
1723 
1724 	/* Having something in the write domain implies it's in the read
1725 	 * domain, and only that read domain.  Enforce that in the request.
1726 	 */
1727 	if (write_domain != 0 && read_domains != write_domain)
1728 		return -EINVAL;
1729 
1730 	obj = i915_gem_object_lookup(file, args->handle);
1731 	if (!obj)
1732 		return -ENOENT;
1733 
1734 	/* Try to flush the object off the GPU without holding the lock.
1735 	 * We will repeat the flush holding the lock in the normal manner
1736 	 * to catch cases where we are gazumped.
1737 	 */
1738 	err = i915_gem_object_wait(obj,
1739 				   I915_WAIT_INTERRUPTIBLE |
1740 				   I915_WAIT_PRIORITY |
1741 				   (write_domain ? I915_WAIT_ALL : 0),
1742 				   MAX_SCHEDULE_TIMEOUT,
1743 				   to_rps_client(file));
1744 	if (err)
1745 		goto out;
1746 
1747 	/*
1748 	 * Proxy objects do not control access to the backing storage, ergo
1749 	 * they cannot be used as a means to manipulate the cache domain
1750 	 * tracking for that backing storage. The proxy object is always
1751 	 * considered to be outside of any cache domain.
1752 	 */
1753 	if (i915_gem_object_is_proxy(obj)) {
1754 		err = -ENXIO;
1755 		goto out;
1756 	}
1757 
1758 	/*
1759 	 * Flush and acquire obj->pages so that we are coherent through
1760 	 * direct access in memory with previous cached writes through
1761 	 * shmemfs and that our cache domain tracking remains valid.
1762 	 * For example, if the obj->filp was moved to swap without us
1763 	 * being notified and releasing the pages, we would mistakenly
1764 	 * continue to assume that the obj remained out of the CPU cached
1765 	 * domain.
1766 	 */
1767 	err = i915_gem_object_pin_pages(obj);
1768 	if (err)
1769 		goto out;
1770 
1771 	err = i915_mutex_lock_interruptible(dev);
1772 	if (err)
1773 		goto out_unpin;
1774 
1775 	if (read_domains & I915_GEM_DOMAIN_WC)
1776 		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1777 	else if (read_domains & I915_GEM_DOMAIN_GTT)
1778 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1779 	else
1780 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1781 
1782 	/* And bump the LRU for this access */
1783 	i915_gem_object_bump_inactive_ggtt(obj);
1784 
1785 	mutex_unlock(&dev->struct_mutex);
1786 
1787 	if (write_domain != 0)
1788 		intel_fb_obj_invalidate(obj,
1789 					fb_write_origin(obj, write_domain));
1790 
1791 out_unpin:
1792 	i915_gem_object_unpin_pages(obj);
1793 out:
1794 	i915_gem_object_put(obj);
1795 	return err;
1796 }
1797 
1798 /**
1799  * Called when user space has done writes to this buffer
1800  * @dev: drm device
1801  * @data: ioctl data blob
1802  * @file: drm file
1803  */
1804 int
1805 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1806 			 struct drm_file *file)
1807 {
1808 	struct drm_i915_gem_sw_finish *args = data;
1809 	struct drm_i915_gem_object *obj;
1810 
1811 	obj = i915_gem_object_lookup(file, args->handle);
1812 	if (!obj)
1813 		return -ENOENT;
1814 
1815 	/*
1816 	 * Proxy objects are barred from CPU access, so there is no
1817 	 * need to ban sw_finish as it is a nop.
1818 	 */
1819 
1820 	/* Pinned buffers may be scanout, so flush the cache */
1821 	i915_gem_object_flush_if_display(obj);
1822 	i915_gem_object_put(obj);
1823 
1824 	return 0;
1825 }
1826 
1827 static inline bool
1828 __vma_matches(struct vm_area_struct *vma, struct file *filp,
1829 	      unsigned long addr, unsigned long size)
1830 {
1831 	if (vma->vm_file != filp)
1832 		return false;
1833 
1834 	return vma->vm_start == addr && (vma->vm_end - vma->vm_start) == size;
1835 }
1836 
1837 /**
1838  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1839  *			 it is mapped to.
1840  * @dev: drm device
1841  * @data: ioctl data blob
1842  * @file: drm file
1843  *
1844  * While the mapping holds a reference on the contents of the object, it doesn't
1845  * imply a ref on the object itself.
1846  *
1847  * IMPORTANT:
1848  *
1849  * DRM driver writers who look a this function as an example for how to do GEM
1850  * mmap support, please don't implement mmap support like here. The modern way
1851  * to implement DRM mmap support is with an mmap offset ioctl (like
1852  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1853  * That way debug tooling like valgrind will understand what's going on, hiding
1854  * the mmap call in a driver private ioctl will break that. The i915 driver only
1855  * does cpu mmaps this way because we didn't know better.
1856  */
1857 int
1858 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1859 		    struct drm_file *file)
1860 {
1861 	struct drm_i915_gem_mmap *args = data;
1862 	struct drm_i915_gem_object *obj;
1863 	unsigned long addr;
1864 
1865 	if (args->flags & ~(I915_MMAP_WC))
1866 		return -EINVAL;
1867 
1868 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1869 		return -ENODEV;
1870 
1871 	obj = i915_gem_object_lookup(file, args->handle);
1872 	if (!obj)
1873 		return -ENOENT;
1874 
1875 	/* prime objects have no backing filp to GEM mmap
1876 	 * pages from.
1877 	 */
1878 	if (!obj->base.filp) {
1879 		i915_gem_object_put(obj);
1880 		return -ENXIO;
1881 	}
1882 
1883 	addr = vm_mmap(obj->base.filp, 0, args->size,
1884 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1885 		       args->offset);
1886 	if (args->flags & I915_MMAP_WC) {
1887 		struct mm_struct *mm = current->mm;
1888 		struct vm_area_struct *vma;
1889 
1890 		if (down_write_killable(&mm->mmap_sem)) {
1891 			i915_gem_object_put(obj);
1892 			return -EINTR;
1893 		}
1894 		vma = find_vma(mm, addr);
1895 		if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
1896 			vma->vm_page_prot =
1897 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1898 		else
1899 			addr = -ENOMEM;
1900 		up_write(&mm->mmap_sem);
1901 
1902 		/* This may race, but that's ok, it only gets set */
1903 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1904 	}
1905 	i915_gem_object_put(obj);
1906 	if (IS_ERR((void *)addr))
1907 		return addr;
1908 
1909 	args->addr_ptr = (uint64_t) addr;
1910 
1911 	return 0;
1912 }
1913 
1914 static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
1915 {
1916 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1917 }
1918 
1919 /**
1920  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1921  *
1922  * A history of the GTT mmap interface:
1923  *
1924  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1925  *     aligned and suitable for fencing, and still fit into the available
1926  *     mappable space left by the pinned display objects. A classic problem
1927  *     we called the page-fault-of-doom where we would ping-pong between
1928  *     two objects that could not fit inside the GTT and so the memcpy
1929  *     would page one object in at the expense of the other between every
1930  *     single byte.
1931  *
1932  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1933  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1934  *     object is too large for the available space (or simply too large
1935  *     for the mappable aperture!), a view is created instead and faulted
1936  *     into userspace. (This view is aligned and sized appropriately for
1937  *     fenced access.)
1938  *
1939  * 2 - Recognise WC as a separate cache domain so that we can flush the
1940  *     delayed writes via GTT before performing direct access via WC.
1941  *
1942  * Restrictions:
1943  *
1944  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1945  *    hangs on some architectures, corruption on others. An attempt to service
1946  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1947  *
1948  *  * the object must be able to fit into RAM (physical memory, though no
1949  *    limited to the mappable aperture).
1950  *
1951  *
1952  * Caveats:
1953  *
1954  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1955  *    all data to system memory. Subsequent access will not be synchronized.
1956  *
1957  *  * all mappings are revoked on runtime device suspend.
1958  *
1959  *  * there are only 8, 16 or 32 fence registers to share between all users
1960  *    (older machines require fence register for display and blitter access
1961  *    as well). Contention of the fence registers will cause the previous users
1962  *    to be unmapped and any new access will generate new page faults.
1963  *
1964  *  * running out of memory while servicing a fault may generate a SIGBUS,
1965  *    rather than the expected SIGSEGV.
1966  */
1967 int i915_gem_mmap_gtt_version(void)
1968 {
1969 	return 2;
1970 }
1971 
1972 static inline struct i915_ggtt_view
1973 compute_partial_view(const struct drm_i915_gem_object *obj,
1974 		     pgoff_t page_offset,
1975 		     unsigned int chunk)
1976 {
1977 	struct i915_ggtt_view view;
1978 
1979 	if (i915_gem_object_is_tiled(obj))
1980 		chunk = roundup(chunk, tile_row_pages(obj));
1981 
1982 	view.type = I915_GGTT_VIEW_PARTIAL;
1983 	view.partial.offset = rounddown(page_offset, chunk);
1984 	view.partial.size =
1985 		min_t(unsigned int, chunk,
1986 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1987 
1988 	/* If the partial covers the entire object, just create a normal VMA. */
1989 	if (chunk >= obj->base.size >> PAGE_SHIFT)
1990 		view.type = I915_GGTT_VIEW_NORMAL;
1991 
1992 	return view;
1993 }
1994 
1995 /**
1996  * i915_gem_fault - fault a page into the GTT
1997  * @vmf: fault info
1998  *
1999  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
2000  * from userspace.  The fault handler takes care of binding the object to
2001  * the GTT (if needed), allocating and programming a fence register (again,
2002  * only if needed based on whether the old reg is still valid or the object
2003  * is tiled) and inserting a new PTE into the faulting process.
2004  *
2005  * Note that the faulting process may involve evicting existing objects
2006  * from the GTT and/or fence registers to make room.  So performance may
2007  * suffer if the GTT working set is large or there are few fence registers
2008  * left.
2009  *
2010  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
2011  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
2012  */
2013 vm_fault_t i915_gem_fault(struct vm_fault *vmf)
2014 {
2015 #define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
2016 	struct vm_area_struct *area = vmf->vma;
2017 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
2018 	struct drm_device *dev = obj->base.dev;
2019 	struct drm_i915_private *dev_priv = to_i915(dev);
2020 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2021 	bool write = area->vm_flags & VM_WRITE;
2022 	struct i915_vma *vma;
2023 	pgoff_t page_offset;
2024 	int ret;
2025 
2026 	/* Sanity check that we allow writing into this object */
2027 	if (i915_gem_object_is_readonly(obj) && write)
2028 		return VM_FAULT_SIGBUS;
2029 
2030 	/* We don't use vmf->pgoff since that has the fake offset */
2031 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2032 
2033 	trace_i915_gem_object_fault(obj, page_offset, true, write);
2034 
2035 	/* Try to flush the object off the GPU first without holding the lock.
2036 	 * Upon acquiring the lock, we will perform our sanity checks and then
2037 	 * repeat the flush holding the lock in the normal manner to catch cases
2038 	 * where we are gazumped.
2039 	 */
2040 	ret = i915_gem_object_wait(obj,
2041 				   I915_WAIT_INTERRUPTIBLE,
2042 				   MAX_SCHEDULE_TIMEOUT,
2043 				   NULL);
2044 	if (ret)
2045 		goto err;
2046 
2047 	ret = i915_gem_object_pin_pages(obj);
2048 	if (ret)
2049 		goto err;
2050 
2051 	intel_runtime_pm_get(dev_priv);
2052 
2053 	ret = i915_mutex_lock_interruptible(dev);
2054 	if (ret)
2055 		goto err_rpm;
2056 
2057 	/* Access to snoopable pages through the GTT is incoherent. */
2058 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2059 		ret = -EFAULT;
2060 		goto err_unlock;
2061 	}
2062 
2063 
2064 	/* Now pin it into the GTT as needed */
2065 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
2066 				       PIN_MAPPABLE |
2067 				       PIN_NONBLOCK |
2068 				       PIN_NONFAULT);
2069 	if (IS_ERR(vma)) {
2070 		/* Use a partial view if it is bigger than available space */
2071 		struct i915_ggtt_view view =
2072 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2073 		unsigned int flags;
2074 
2075 		flags = PIN_MAPPABLE;
2076 		if (view.type == I915_GGTT_VIEW_NORMAL)
2077 			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */
2078 
2079 		/*
2080 		 * Userspace is now writing through an untracked VMA, abandon
2081 		 * all hope that the hardware is able to track future writes.
2082 		 */
2083 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
2084 
2085 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2086 		if (IS_ERR(vma) && !view.type) {
2087 			flags = PIN_MAPPABLE;
2088 			view.type = I915_GGTT_VIEW_PARTIAL;
2089 			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2090 		}
2091 	}
2092 	if (IS_ERR(vma)) {
2093 		ret = PTR_ERR(vma);
2094 		goto err_unlock;
2095 	}
2096 
2097 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
2098 	if (ret)
2099 		goto err_unpin;
2100 
2101 	ret = i915_vma_pin_fence(vma);
2102 	if (ret)
2103 		goto err_unpin;
2104 
2105 	/* Finally, remap it using the new GTT offset */
2106 	ret = remap_io_mapping(area,
2107 			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2108 			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2109 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
2110 			       &ggtt->iomap);
2111 	if (ret)
2112 		goto err_fence;
2113 
2114 	/* Mark as being mmapped into userspace for later revocation */
2115 	assert_rpm_wakelock_held(dev_priv);
2116 	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
2117 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
2118 	GEM_BUG_ON(!obj->userfault_count);
2119 
2120 	i915_vma_set_ggtt_write(vma);
2121 
2122 err_fence:
2123 	i915_vma_unpin_fence(vma);
2124 err_unpin:
2125 	__i915_vma_unpin(vma);
2126 err_unlock:
2127 	mutex_unlock(&dev->struct_mutex);
2128 err_rpm:
2129 	intel_runtime_pm_put(dev_priv);
2130 	i915_gem_object_unpin_pages(obj);
2131 err:
2132 	switch (ret) {
2133 	case -EIO:
2134 		/*
2135 		 * We eat errors when the gpu is terminally wedged to avoid
2136 		 * userspace unduly crashing (gl has no provisions for mmaps to
2137 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2138 		 * and so needs to be reported.
2139 		 */
2140 		if (!i915_terminally_wedged(&dev_priv->gpu_error))
2141 			return VM_FAULT_SIGBUS;
2142 		/* else: fall through */
2143 	case -EAGAIN:
2144 		/*
2145 		 * EAGAIN means the gpu is hung and we'll wait for the error
2146 		 * handler to reset everything when re-faulting in
2147 		 * i915_mutex_lock_interruptible.
2148 		 */
2149 	case 0:
2150 	case -ERESTARTSYS:
2151 	case -EINTR:
2152 	case -EBUSY:
2153 		/*
2154 		 * EBUSY is ok: this just means that another thread
2155 		 * already did the job.
2156 		 */
2157 		return VM_FAULT_NOPAGE;
2158 	case -ENOMEM:
2159 		return VM_FAULT_OOM;
2160 	case -ENOSPC:
2161 	case -EFAULT:
2162 		return VM_FAULT_SIGBUS;
2163 	default:
2164 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2165 		return VM_FAULT_SIGBUS;
2166 	}
2167 }
2168 
2169 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2170 {
2171 	struct i915_vma *vma;
2172 
2173 	GEM_BUG_ON(!obj->userfault_count);
2174 
2175 	obj->userfault_count = 0;
2176 	list_del(&obj->userfault_link);
2177 	drm_vma_node_unmap(&obj->base.vma_node,
2178 			   obj->base.dev->anon_inode->i_mapping);
2179 
2180 	for_each_ggtt_vma(vma, obj)
2181 		i915_vma_unset_userfault(vma);
2182 }
2183 
2184 /**
2185  * i915_gem_release_mmap - remove physical page mappings
2186  * @obj: obj in question
2187  *
2188  * Preserve the reservation of the mmapping with the DRM core code, but
2189  * relinquish ownership of the pages back to the system.
2190  *
2191  * It is vital that we remove the page mapping if we have mapped a tiled
2192  * object through the GTT and then lose the fence register due to
2193  * resource pressure. Similarly if the object has been moved out of the
2194  * aperture, than pages mapped into userspace must be revoked. Removing the
2195  * mapping will then trigger a page fault on the next user access, allowing
2196  * fixup by i915_gem_fault().
2197  */
2198 void
2199 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2200 {
2201 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2202 
2203 	/* Serialisation between user GTT access and our code depends upon
2204 	 * revoking the CPU's PTE whilst the mutex is held. The next user
2205 	 * pagefault then has to wait until we release the mutex.
2206 	 *
2207 	 * Note that RPM complicates somewhat by adding an additional
2208 	 * requirement that operations to the GGTT be made holding the RPM
2209 	 * wakeref.
2210 	 */
2211 	lockdep_assert_held(&i915->drm.struct_mutex);
2212 	intel_runtime_pm_get(i915);
2213 
2214 	if (!obj->userfault_count)
2215 		goto out;
2216 
2217 	__i915_gem_object_release_mmap(obj);
2218 
2219 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
2220 	 * memory transactions from userspace before we return. The TLB
2221 	 * flushing implied above by changing the PTE above *should* be
2222 	 * sufficient, an extra barrier here just provides us with a bit
2223 	 * of paranoid documentation about our requirement to serialise
2224 	 * memory writes before touching registers / GSM.
2225 	 */
2226 	wmb();
2227 
2228 out:
2229 	intel_runtime_pm_put(i915);
2230 }
2231 
2232 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2233 {
2234 	struct drm_i915_gem_object *obj, *on;
2235 	int i;
2236 
2237 	/*
2238 	 * Only called during RPM suspend. All users of the userfault_list
2239 	 * must be holding an RPM wakeref to ensure that this can not
2240 	 * run concurrently with themselves (and use the struct_mutex for
2241 	 * protection between themselves).
2242 	 */
2243 
2244 	list_for_each_entry_safe(obj, on,
2245 				 &dev_priv->mm.userfault_list, userfault_link)
2246 		__i915_gem_object_release_mmap(obj);
2247 
2248 	/* The fence will be lost when the device powers down. If any were
2249 	 * in use by hardware (i.e. they are pinned), we should not be powering
2250 	 * down! All other fences will be reacquired by the user upon waking.
2251 	 */
2252 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2253 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2254 
2255 		/* Ideally we want to assert that the fence register is not
2256 		 * live at this point (i.e. that no piece of code will be
2257 		 * trying to write through fence + GTT, as that both violates
2258 		 * our tracking of activity and associated locking/barriers,
2259 		 * but also is illegal given that the hw is powered down).
2260 		 *
2261 		 * Previously we used reg->pin_count as a "liveness" indicator.
2262 		 * That is not sufficient, and we need a more fine-grained
2263 		 * tool if we want to have a sanity check here.
2264 		 */
2265 
2266 		if (!reg->vma)
2267 			continue;
2268 
2269 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2270 		reg->dirty = true;
2271 	}
2272 }
2273 
2274 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2275 {
2276 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2277 	int err;
2278 
2279 	err = drm_gem_create_mmap_offset(&obj->base);
2280 	if (likely(!err))
2281 		return 0;
2282 
2283 	/* Attempt to reap some mmap space from dead objects */
2284 	do {
2285 		err = i915_gem_wait_for_idle(dev_priv,
2286 					     I915_WAIT_INTERRUPTIBLE,
2287 					     MAX_SCHEDULE_TIMEOUT);
2288 		if (err)
2289 			break;
2290 
2291 		i915_gem_drain_freed_objects(dev_priv);
2292 		err = drm_gem_create_mmap_offset(&obj->base);
2293 		if (!err)
2294 			break;
2295 
2296 	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2297 
2298 	return err;
2299 }
2300 
2301 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2302 {
2303 	drm_gem_free_mmap_offset(&obj->base);
2304 }
2305 
2306 int
2307 i915_gem_mmap_gtt(struct drm_file *file,
2308 		  struct drm_device *dev,
2309 		  uint32_t handle,
2310 		  uint64_t *offset)
2311 {
2312 	struct drm_i915_gem_object *obj;
2313 	int ret;
2314 
2315 	obj = i915_gem_object_lookup(file, handle);
2316 	if (!obj)
2317 		return -ENOENT;
2318 
2319 	ret = i915_gem_object_create_mmap_offset(obj);
2320 	if (ret == 0)
2321 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2322 
2323 	i915_gem_object_put(obj);
2324 	return ret;
2325 }
2326 
2327 /**
2328  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2329  * @dev: DRM device
2330  * @data: GTT mapping ioctl data
2331  * @file: GEM object info
2332  *
2333  * Simply returns the fake offset to userspace so it can mmap it.
2334  * The mmap call will end up in drm_gem_mmap(), which will set things
2335  * up so we can get faults in the handler above.
2336  *
2337  * The fault handler will take care of binding the object into the GTT
2338  * (since it may have been evicted to make room for something), allocating
2339  * a fence register, and mapping the appropriate aperture address into
2340  * userspace.
2341  */
2342 int
2343 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2344 			struct drm_file *file)
2345 {
2346 	struct drm_i915_gem_mmap_gtt *args = data;
2347 
2348 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2349 }
2350 
2351 /* Immediately discard the backing storage */
2352 static void
2353 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2354 {
2355 	i915_gem_object_free_mmap_offset(obj);
2356 
2357 	if (obj->base.filp == NULL)
2358 		return;
2359 
2360 	/* Our goal here is to return as much of the memory as
2361 	 * is possible back to the system as we are called from OOM.
2362 	 * To do this we must instruct the shmfs to drop all of its
2363 	 * backing pages, *now*.
2364 	 */
2365 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2366 	obj->mm.madv = __I915_MADV_PURGED;
2367 	obj->mm.pages = ERR_PTR(-EFAULT);
2368 }
2369 
2370 /* Try to discard unwanted pages */
2371 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2372 {
2373 	struct address_space *mapping;
2374 
2375 	lockdep_assert_held(&obj->mm.lock);
2376 	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2377 
2378 	switch (obj->mm.madv) {
2379 	case I915_MADV_DONTNEED:
2380 		i915_gem_object_truncate(obj);
2381 	case __I915_MADV_PURGED:
2382 		return;
2383 	}
2384 
2385 	if (obj->base.filp == NULL)
2386 		return;
2387 
2388 	mapping = obj->base.filp->f_mapping,
2389 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2390 }
2391 
2392 /*
2393  * Move pages to appropriate lru and release the pagevec, decrementing the
2394  * ref count of those pages.
2395  */
2396 static void check_release_pagevec(struct pagevec *pvec)
2397 {
2398 	check_move_unevictable_pages(pvec);
2399 	__pagevec_release(pvec);
2400 	cond_resched();
2401 }
2402 
2403 static void
2404 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2405 			      struct sg_table *pages)
2406 {
2407 	struct sgt_iter sgt_iter;
2408 	struct pagevec pvec;
2409 	struct page *page;
2410 
2411 	__i915_gem_object_release_shmem(obj, pages, true);
2412 
2413 	i915_gem_gtt_finish_pages(obj, pages);
2414 
2415 	if (i915_gem_object_needs_bit17_swizzle(obj))
2416 		i915_gem_object_save_bit_17_swizzle(obj, pages);
2417 
2418 	mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping);
2419 
2420 	pagevec_init(&pvec);
2421 	for_each_sgt_page(page, sgt_iter, pages) {
2422 		if (obj->mm.dirty)
2423 			set_page_dirty(page);
2424 
2425 		if (obj->mm.madv == I915_MADV_WILLNEED)
2426 			mark_page_accessed(page);
2427 
2428 		if (!pagevec_add(&pvec, page))
2429 			check_release_pagevec(&pvec);
2430 	}
2431 	if (pagevec_count(&pvec))
2432 		check_release_pagevec(&pvec);
2433 	obj->mm.dirty = false;
2434 
2435 	sg_free_table(pages);
2436 	kfree(pages);
2437 }
2438 
2439 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2440 {
2441 	struct radix_tree_iter iter;
2442 	void __rcu **slot;
2443 
2444 	rcu_read_lock();
2445 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2446 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2447 	rcu_read_unlock();
2448 }
2449 
2450 static struct sg_table *
2451 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2452 {
2453 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2454 	struct sg_table *pages;
2455 
2456 	pages = fetch_and_zero(&obj->mm.pages);
2457 	if (!pages)
2458 		return NULL;
2459 
2460 	spin_lock(&i915->mm.obj_lock);
2461 	list_del(&obj->mm.link);
2462 	spin_unlock(&i915->mm.obj_lock);
2463 
2464 	if (obj->mm.mapping) {
2465 		void *ptr;
2466 
2467 		ptr = page_mask_bits(obj->mm.mapping);
2468 		if (is_vmalloc_addr(ptr))
2469 			vunmap(ptr);
2470 		else
2471 			kunmap(kmap_to_page(ptr));
2472 
2473 		obj->mm.mapping = NULL;
2474 	}
2475 
2476 	__i915_gem_object_reset_page_iter(obj);
2477 	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2478 
2479 	return pages;
2480 }
2481 
2482 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2483 				 enum i915_mm_subclass subclass)
2484 {
2485 	struct sg_table *pages;
2486 
2487 	if (i915_gem_object_has_pinned_pages(obj))
2488 		return;
2489 
2490 	GEM_BUG_ON(obj->bind_count);
2491 	if (!i915_gem_object_has_pages(obj))
2492 		return;
2493 
2494 	/* May be called by shrinker from within get_pages() (on another bo) */
2495 	mutex_lock_nested(&obj->mm.lock, subclass);
2496 	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2497 		goto unlock;
2498 
2499 	/*
2500 	 * ->put_pages might need to allocate memory for the bit17 swizzle
2501 	 * array, hence protect them from being reaped by removing them from gtt
2502 	 * lists early.
2503 	 */
2504 	pages = __i915_gem_object_unset_pages(obj);
2505 	if (!IS_ERR(pages))
2506 		obj->ops->put_pages(obj, pages);
2507 
2508 unlock:
2509 	mutex_unlock(&obj->mm.lock);
2510 }
2511 
2512 bool i915_sg_trim(struct sg_table *orig_st)
2513 {
2514 	struct sg_table new_st;
2515 	struct scatterlist *sg, *new_sg;
2516 	unsigned int i;
2517 
2518 	if (orig_st->nents == orig_st->orig_nents)
2519 		return false;
2520 
2521 	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2522 		return false;
2523 
2524 	new_sg = new_st.sgl;
2525 	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2526 		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2527 		sg_dma_address(new_sg) = sg_dma_address(sg);
2528 		sg_dma_len(new_sg) = sg_dma_len(sg);
2529 
2530 		new_sg = sg_next(new_sg);
2531 	}
2532 	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2533 
2534 	sg_free_table(orig_st);
2535 
2536 	*orig_st = new_st;
2537 	return true;
2538 }
2539 
2540 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2541 {
2542 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2543 	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2544 	unsigned long i;
2545 	struct address_space *mapping;
2546 	struct sg_table *st;
2547 	struct scatterlist *sg;
2548 	struct sgt_iter sgt_iter;
2549 	struct page *page;
2550 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2551 	unsigned int max_segment = i915_sg_segment_size();
2552 	unsigned int sg_page_sizes;
2553 	struct pagevec pvec;
2554 	gfp_t noreclaim;
2555 	int ret;
2556 
2557 	/*
2558 	 * Assert that the object is not currently in any GPU domain. As it
2559 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2560 	 * a GPU cache
2561 	 */
2562 	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2563 	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2564 
2565 	/*
2566 	 * If there's no chance of allocating enough pages for the whole
2567 	 * object, bail early.
2568 	 */
2569 	if (page_count > totalram_pages())
2570 		return -ENOMEM;
2571 
2572 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2573 	if (st == NULL)
2574 		return -ENOMEM;
2575 
2576 rebuild_st:
2577 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2578 		kfree(st);
2579 		return -ENOMEM;
2580 	}
2581 
2582 	/*
2583 	 * Get the list of pages out of our struct file.  They'll be pinned
2584 	 * at this point until we release them.
2585 	 *
2586 	 * Fail silently without starting the shrinker
2587 	 */
2588 	mapping = obj->base.filp->f_mapping;
2589 	mapping_set_unevictable(mapping);
2590 	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2591 	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2592 
2593 	sg = st->sgl;
2594 	st->nents = 0;
2595 	sg_page_sizes = 0;
2596 	for (i = 0; i < page_count; i++) {
2597 		const unsigned int shrink[] = {
2598 			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2599 			0,
2600 		}, *s = shrink;
2601 		gfp_t gfp = noreclaim;
2602 
2603 		do {
2604 			cond_resched();
2605 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2606 			if (likely(!IS_ERR(page)))
2607 				break;
2608 
2609 			if (!*s) {
2610 				ret = PTR_ERR(page);
2611 				goto err_sg;
2612 			}
2613 
2614 			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2615 
2616 			/*
2617 			 * We've tried hard to allocate the memory by reaping
2618 			 * our own buffer, now let the real VM do its job and
2619 			 * go down in flames if truly OOM.
2620 			 *
2621 			 * However, since graphics tend to be disposable,
2622 			 * defer the oom here by reporting the ENOMEM back
2623 			 * to userspace.
2624 			 */
2625 			if (!*s) {
2626 				/* reclaim and warn, but no oom */
2627 				gfp = mapping_gfp_mask(mapping);
2628 
2629 				/*
2630 				 * Our bo are always dirty and so we require
2631 				 * kswapd to reclaim our pages (direct reclaim
2632 				 * does not effectively begin pageout of our
2633 				 * buffers on its own). However, direct reclaim
2634 				 * only waits for kswapd when under allocation
2635 				 * congestion. So as a result __GFP_RECLAIM is
2636 				 * unreliable and fails to actually reclaim our
2637 				 * dirty pages -- unless you try over and over
2638 				 * again with !__GFP_NORETRY. However, we still
2639 				 * want to fail this allocation rather than
2640 				 * trigger the out-of-memory killer and for
2641 				 * this we want __GFP_RETRY_MAYFAIL.
2642 				 */
2643 				gfp |= __GFP_RETRY_MAYFAIL;
2644 			}
2645 		} while (1);
2646 
2647 		if (!i ||
2648 		    sg->length >= max_segment ||
2649 		    page_to_pfn(page) != last_pfn + 1) {
2650 			if (i) {
2651 				sg_page_sizes |= sg->length;
2652 				sg = sg_next(sg);
2653 			}
2654 			st->nents++;
2655 			sg_set_page(sg, page, PAGE_SIZE, 0);
2656 		} else {
2657 			sg->length += PAGE_SIZE;
2658 		}
2659 		last_pfn = page_to_pfn(page);
2660 
2661 		/* Check that the i965g/gm workaround works. */
2662 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2663 	}
2664 	if (sg) { /* loop terminated early; short sg table */
2665 		sg_page_sizes |= sg->length;
2666 		sg_mark_end(sg);
2667 	}
2668 
2669 	/* Trim unused sg entries to avoid wasting memory. */
2670 	i915_sg_trim(st);
2671 
2672 	ret = i915_gem_gtt_prepare_pages(obj, st);
2673 	if (ret) {
2674 		/*
2675 		 * DMA remapping failed? One possible cause is that
2676 		 * it could not reserve enough large entries, asking
2677 		 * for PAGE_SIZE chunks instead may be helpful.
2678 		 */
2679 		if (max_segment > PAGE_SIZE) {
2680 			for_each_sgt_page(page, sgt_iter, st)
2681 				put_page(page);
2682 			sg_free_table(st);
2683 
2684 			max_segment = PAGE_SIZE;
2685 			goto rebuild_st;
2686 		} else {
2687 			dev_warn(&dev_priv->drm.pdev->dev,
2688 				 "Failed to DMA remap %lu pages\n",
2689 				 page_count);
2690 			goto err_pages;
2691 		}
2692 	}
2693 
2694 	if (i915_gem_object_needs_bit17_swizzle(obj))
2695 		i915_gem_object_do_bit_17_swizzle(obj, st);
2696 
2697 	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2698 
2699 	return 0;
2700 
2701 err_sg:
2702 	sg_mark_end(sg);
2703 err_pages:
2704 	mapping_clear_unevictable(mapping);
2705 	pagevec_init(&pvec);
2706 	for_each_sgt_page(page, sgt_iter, st) {
2707 		if (!pagevec_add(&pvec, page))
2708 			check_release_pagevec(&pvec);
2709 	}
2710 	if (pagevec_count(&pvec))
2711 		check_release_pagevec(&pvec);
2712 	sg_free_table(st);
2713 	kfree(st);
2714 
2715 	/*
2716 	 * shmemfs first checks if there is enough memory to allocate the page
2717 	 * and reports ENOSPC should there be insufficient, along with the usual
2718 	 * ENOMEM for a genuine allocation failure.
2719 	 *
2720 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2721 	 * space and so want to translate the error from shmemfs back to our
2722 	 * usual understanding of ENOMEM.
2723 	 */
2724 	if (ret == -ENOSPC)
2725 		ret = -ENOMEM;
2726 
2727 	return ret;
2728 }
2729 
2730 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2731 				 struct sg_table *pages,
2732 				 unsigned int sg_page_sizes)
2733 {
2734 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2735 	unsigned long supported = INTEL_INFO(i915)->page_sizes;
2736 	int i;
2737 
2738 	lockdep_assert_held(&obj->mm.lock);
2739 
2740 	obj->mm.get_page.sg_pos = pages->sgl;
2741 	obj->mm.get_page.sg_idx = 0;
2742 
2743 	obj->mm.pages = pages;
2744 
2745 	if (i915_gem_object_is_tiled(obj) &&
2746 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2747 		GEM_BUG_ON(obj->mm.quirked);
2748 		__i915_gem_object_pin_pages(obj);
2749 		obj->mm.quirked = true;
2750 	}
2751 
2752 	GEM_BUG_ON(!sg_page_sizes);
2753 	obj->mm.page_sizes.phys = sg_page_sizes;
2754 
2755 	/*
2756 	 * Calculate the supported page-sizes which fit into the given
2757 	 * sg_page_sizes. This will give us the page-sizes which we may be able
2758 	 * to use opportunistically when later inserting into the GTT. For
2759 	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2760 	 * 64K or 4K pages, although in practice this will depend on a number of
2761 	 * other factors.
2762 	 */
2763 	obj->mm.page_sizes.sg = 0;
2764 	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2765 		if (obj->mm.page_sizes.phys & ~0u << i)
2766 			obj->mm.page_sizes.sg |= BIT(i);
2767 	}
2768 	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2769 
2770 	spin_lock(&i915->mm.obj_lock);
2771 	list_add(&obj->mm.link, &i915->mm.unbound_list);
2772 	spin_unlock(&i915->mm.obj_lock);
2773 }
2774 
2775 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2776 {
2777 	int err;
2778 
2779 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2780 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2781 		return -EFAULT;
2782 	}
2783 
2784 	err = obj->ops->get_pages(obj);
2785 	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2786 
2787 	return err;
2788 }
2789 
2790 /* Ensure that the associated pages are gathered from the backing storage
2791  * and pinned into our object. i915_gem_object_pin_pages() may be called
2792  * multiple times before they are released by a single call to
2793  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2794  * either as a result of memory pressure (reaping pages under the shrinker)
2795  * or as the object is itself released.
2796  */
2797 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2798 {
2799 	int err;
2800 
2801 	err = mutex_lock_interruptible(&obj->mm.lock);
2802 	if (err)
2803 		return err;
2804 
2805 	if (unlikely(!i915_gem_object_has_pages(obj))) {
2806 		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2807 
2808 		err = ____i915_gem_object_get_pages(obj);
2809 		if (err)
2810 			goto unlock;
2811 
2812 		smp_mb__before_atomic();
2813 	}
2814 	atomic_inc(&obj->mm.pages_pin_count);
2815 
2816 unlock:
2817 	mutex_unlock(&obj->mm.lock);
2818 	return err;
2819 }
2820 
2821 /* The 'mapping' part of i915_gem_object_pin_map() below */
2822 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2823 				 enum i915_map_type type)
2824 {
2825 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2826 	struct sg_table *sgt = obj->mm.pages;
2827 	struct sgt_iter sgt_iter;
2828 	struct page *page;
2829 	struct page *stack_pages[32];
2830 	struct page **pages = stack_pages;
2831 	unsigned long i = 0;
2832 	pgprot_t pgprot;
2833 	void *addr;
2834 
2835 	/* A single page can always be kmapped */
2836 	if (n_pages == 1 && type == I915_MAP_WB)
2837 		return kmap(sg_page(sgt->sgl));
2838 
2839 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2840 		/* Too big for stack -- allocate temporary array instead */
2841 		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2842 		if (!pages)
2843 			return NULL;
2844 	}
2845 
2846 	for_each_sgt_page(page, sgt_iter, sgt)
2847 		pages[i++] = page;
2848 
2849 	/* Check that we have the expected number of pages */
2850 	GEM_BUG_ON(i != n_pages);
2851 
2852 	switch (type) {
2853 	default:
2854 		MISSING_CASE(type);
2855 		/* fallthrough to use PAGE_KERNEL anyway */
2856 	case I915_MAP_WB:
2857 		pgprot = PAGE_KERNEL;
2858 		break;
2859 	case I915_MAP_WC:
2860 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2861 		break;
2862 	}
2863 	addr = vmap(pages, n_pages, 0, pgprot);
2864 
2865 	if (pages != stack_pages)
2866 		kvfree(pages);
2867 
2868 	return addr;
2869 }
2870 
2871 /* get, pin, and map the pages of the object into kernel space */
2872 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2873 			      enum i915_map_type type)
2874 {
2875 	enum i915_map_type has_type;
2876 	bool pinned;
2877 	void *ptr;
2878 	int ret;
2879 
2880 	if (unlikely(!i915_gem_object_has_struct_page(obj)))
2881 		return ERR_PTR(-ENXIO);
2882 
2883 	ret = mutex_lock_interruptible(&obj->mm.lock);
2884 	if (ret)
2885 		return ERR_PTR(ret);
2886 
2887 	pinned = !(type & I915_MAP_OVERRIDE);
2888 	type &= ~I915_MAP_OVERRIDE;
2889 
2890 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2891 		if (unlikely(!i915_gem_object_has_pages(obj))) {
2892 			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2893 
2894 			ret = ____i915_gem_object_get_pages(obj);
2895 			if (ret)
2896 				goto err_unlock;
2897 
2898 			smp_mb__before_atomic();
2899 		}
2900 		atomic_inc(&obj->mm.pages_pin_count);
2901 		pinned = false;
2902 	}
2903 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2904 
2905 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2906 	if (ptr && has_type != type) {
2907 		if (pinned) {
2908 			ret = -EBUSY;
2909 			goto err_unpin;
2910 		}
2911 
2912 		if (is_vmalloc_addr(ptr))
2913 			vunmap(ptr);
2914 		else
2915 			kunmap(kmap_to_page(ptr));
2916 
2917 		ptr = obj->mm.mapping = NULL;
2918 	}
2919 
2920 	if (!ptr) {
2921 		ptr = i915_gem_object_map(obj, type);
2922 		if (!ptr) {
2923 			ret = -ENOMEM;
2924 			goto err_unpin;
2925 		}
2926 
2927 		obj->mm.mapping = page_pack_bits(ptr, type);
2928 	}
2929 
2930 out_unlock:
2931 	mutex_unlock(&obj->mm.lock);
2932 	return ptr;
2933 
2934 err_unpin:
2935 	atomic_dec(&obj->mm.pages_pin_count);
2936 err_unlock:
2937 	ptr = ERR_PTR(ret);
2938 	goto out_unlock;
2939 }
2940 
2941 static int
2942 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2943 			   const struct drm_i915_gem_pwrite *arg)
2944 {
2945 	struct address_space *mapping = obj->base.filp->f_mapping;
2946 	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2947 	u64 remain, offset;
2948 	unsigned int pg;
2949 
2950 	/* Before we instantiate/pin the backing store for our use, we
2951 	 * can prepopulate the shmemfs filp efficiently using a write into
2952 	 * the pagecache. We avoid the penalty of instantiating all the
2953 	 * pages, important if the user is just writing to a few and never
2954 	 * uses the object on the GPU, and using a direct write into shmemfs
2955 	 * allows it to avoid the cost of retrieving a page (either swapin
2956 	 * or clearing-before-use) before it is overwritten.
2957 	 */
2958 	if (i915_gem_object_has_pages(obj))
2959 		return -ENODEV;
2960 
2961 	if (obj->mm.madv != I915_MADV_WILLNEED)
2962 		return -EFAULT;
2963 
2964 	/* Before the pages are instantiated the object is treated as being
2965 	 * in the CPU domain. The pages will be clflushed as required before
2966 	 * use, and we can freely write into the pages directly. If userspace
2967 	 * races pwrite with any other operation; corruption will ensue -
2968 	 * that is userspace's prerogative!
2969 	 */
2970 
2971 	remain = arg->size;
2972 	offset = arg->offset;
2973 	pg = offset_in_page(offset);
2974 
2975 	do {
2976 		unsigned int len, unwritten;
2977 		struct page *page;
2978 		void *data, *vaddr;
2979 		int err;
2980 
2981 		len = PAGE_SIZE - pg;
2982 		if (len > remain)
2983 			len = remain;
2984 
2985 		err = pagecache_write_begin(obj->base.filp, mapping,
2986 					    offset, len, 0,
2987 					    &page, &data);
2988 		if (err < 0)
2989 			return err;
2990 
2991 		vaddr = kmap(page);
2992 		unwritten = copy_from_user(vaddr + pg, user_data, len);
2993 		kunmap(page);
2994 
2995 		err = pagecache_write_end(obj->base.filp, mapping,
2996 					  offset, len, len - unwritten,
2997 					  page, data);
2998 		if (err < 0)
2999 			return err;
3000 
3001 		if (unwritten)
3002 			return -EFAULT;
3003 
3004 		remain -= len;
3005 		user_data += len;
3006 		offset += len;
3007 		pg = 0;
3008 	} while (remain);
3009 
3010 	return 0;
3011 }
3012 
3013 static void i915_gem_client_mark_guilty(struct drm_i915_file_private *file_priv,
3014 					const struct i915_gem_context *ctx)
3015 {
3016 	unsigned int score;
3017 	unsigned long prev_hang;
3018 
3019 	if (i915_gem_context_is_banned(ctx))
3020 		score = I915_CLIENT_SCORE_CONTEXT_BAN;
3021 	else
3022 		score = 0;
3023 
3024 	prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
3025 	if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
3026 		score += I915_CLIENT_SCORE_HANG_FAST;
3027 
3028 	if (score) {
3029 		atomic_add(score, &file_priv->ban_score);
3030 
3031 		DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
3032 				 ctx->name, score,
3033 				 atomic_read(&file_priv->ban_score));
3034 	}
3035 }
3036 
3037 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
3038 {
3039 	unsigned int score;
3040 	bool banned, bannable;
3041 
3042 	atomic_inc(&ctx->guilty_count);
3043 
3044 	bannable = i915_gem_context_is_bannable(ctx);
3045 	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
3046 	banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
3047 
3048 	/* Cool contexts don't accumulate client ban score */
3049 	if (!bannable)
3050 		return;
3051 
3052 	if (banned) {
3053 		DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, banned\n",
3054 				 ctx->name, atomic_read(&ctx->guilty_count),
3055 				 score);
3056 		i915_gem_context_set_banned(ctx);
3057 	}
3058 
3059 	if (!IS_ERR_OR_NULL(ctx->file_priv))
3060 		i915_gem_client_mark_guilty(ctx->file_priv, ctx);
3061 }
3062 
3063 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
3064 {
3065 	atomic_inc(&ctx->active_count);
3066 }
3067 
3068 struct i915_request *
3069 i915_gem_find_active_request(struct intel_engine_cs *engine)
3070 {
3071 	struct i915_request *request, *active = NULL;
3072 	unsigned long flags;
3073 
3074 	/*
3075 	 * We are called by the error capture, reset and to dump engine
3076 	 * state at random points in time. In particular, note that neither is
3077 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
3078 	 * and we assume that no more writes can happen (we waited long enough
3079 	 * for all writes that were in transaction to be flushed) - adding an
3080 	 * extra delay for a recent interrupt is pointless. Hence, we do
3081 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
3082 	 * At all other times, we must assume the GPU is still running, but
3083 	 * we only care about the snapshot of this moment.
3084 	 */
3085 	spin_lock_irqsave(&engine->timeline.lock, flags);
3086 	list_for_each_entry(request, &engine->timeline.requests, link) {
3087 		if (__i915_request_completed(request, request->global_seqno))
3088 			continue;
3089 
3090 		active = request;
3091 		break;
3092 	}
3093 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3094 
3095 	return active;
3096 }
3097 
3098 /*
3099  * Ensure irq handler finishes, and not run again.
3100  * Also return the active request so that we only search for it once.
3101  */
3102 struct i915_request *
3103 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
3104 {
3105 	struct i915_request *request;
3106 
3107 	/*
3108 	 * During the reset sequence, we must prevent the engine from
3109 	 * entering RC6. As the context state is undefined until we restart
3110 	 * the engine, if it does enter RC6 during the reset, the state
3111 	 * written to the powercontext is undefined and so we may lose
3112 	 * GPU state upon resume, i.e. fail to restart after a reset.
3113 	 */
3114 	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
3115 
3116 	request = engine->reset.prepare(engine);
3117 	if (request && request->fence.error == -EIO)
3118 		request = ERR_PTR(-EIO); /* Previous reset failed! */
3119 
3120 	return request;
3121 }
3122 
3123 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3124 {
3125 	struct intel_engine_cs *engine;
3126 	struct i915_request *request;
3127 	enum intel_engine_id id;
3128 	int err = 0;
3129 
3130 	for_each_engine(engine, dev_priv, id) {
3131 		request = i915_gem_reset_prepare_engine(engine);
3132 		if (IS_ERR(request)) {
3133 			err = PTR_ERR(request);
3134 			continue;
3135 		}
3136 
3137 		engine->hangcheck.active_request = request;
3138 	}
3139 
3140 	i915_gem_revoke_fences(dev_priv);
3141 	intel_uc_sanitize(dev_priv);
3142 
3143 	return err;
3144 }
3145 
3146 static void engine_skip_context(struct i915_request *request)
3147 {
3148 	struct intel_engine_cs *engine = request->engine;
3149 	struct i915_gem_context *hung_ctx = request->gem_context;
3150 	struct i915_timeline *timeline = request->timeline;
3151 	unsigned long flags;
3152 
3153 	GEM_BUG_ON(timeline == &engine->timeline);
3154 
3155 	spin_lock_irqsave(&engine->timeline.lock, flags);
3156 	spin_lock(&timeline->lock);
3157 
3158 	list_for_each_entry_continue(request, &engine->timeline.requests, link)
3159 		if (request->gem_context == hung_ctx)
3160 			i915_request_skip(request, -EIO);
3161 
3162 	list_for_each_entry(request, &timeline->requests, link)
3163 		i915_request_skip(request, -EIO);
3164 
3165 	spin_unlock(&timeline->lock);
3166 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3167 }
3168 
3169 /* Returns the request if it was guilty of the hang */
3170 static struct i915_request *
3171 i915_gem_reset_request(struct intel_engine_cs *engine,
3172 		       struct i915_request *request,
3173 		       bool stalled)
3174 {
3175 	/* The guilty request will get skipped on a hung engine.
3176 	 *
3177 	 * Users of client default contexts do not rely on logical
3178 	 * state preserved between batches so it is safe to execute
3179 	 * queued requests following the hang. Non default contexts
3180 	 * rely on preserved state, so skipping a batch loses the
3181 	 * evolution of the state and it needs to be considered corrupted.
3182 	 * Executing more queued batches on top of corrupted state is
3183 	 * risky. But we take the risk by trying to advance through
3184 	 * the queued requests in order to make the client behaviour
3185 	 * more predictable around resets, by not throwing away random
3186 	 * amount of batches it has prepared for execution. Sophisticated
3187 	 * clients can use gem_reset_stats_ioctl and dma fence status
3188 	 * (exported via sync_file info ioctl on explicit fences) to observe
3189 	 * when it loses the context state and should rebuild accordingly.
3190 	 *
3191 	 * The context ban, and ultimately the client ban, mechanism are safety
3192 	 * valves if client submission ends up resulting in nothing more than
3193 	 * subsequent hangs.
3194 	 */
3195 
3196 	if (i915_request_completed(request)) {
3197 		GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
3198 			  engine->name, request->global_seqno,
3199 			  request->fence.context, request->fence.seqno,
3200 			  intel_engine_get_seqno(engine));
3201 		stalled = false;
3202 	}
3203 
3204 	if (stalled) {
3205 		i915_gem_context_mark_guilty(request->gem_context);
3206 		i915_request_skip(request, -EIO);
3207 
3208 		/* If this context is now banned, skip all pending requests. */
3209 		if (i915_gem_context_is_banned(request->gem_context))
3210 			engine_skip_context(request);
3211 	} else {
3212 		/*
3213 		 * Since this is not the hung engine, it may have advanced
3214 		 * since the hang declaration. Double check by refinding
3215 		 * the active request at the time of the reset.
3216 		 */
3217 		request = i915_gem_find_active_request(engine);
3218 		if (request) {
3219 			unsigned long flags;
3220 
3221 			i915_gem_context_mark_innocent(request->gem_context);
3222 			dma_fence_set_error(&request->fence, -EAGAIN);
3223 
3224 			/* Rewind the engine to replay the incomplete rq */
3225 			spin_lock_irqsave(&engine->timeline.lock, flags);
3226 			request = list_prev_entry(request, link);
3227 			if (&request->link == &engine->timeline.requests)
3228 				request = NULL;
3229 			spin_unlock_irqrestore(&engine->timeline.lock, flags);
3230 		}
3231 	}
3232 
3233 	return request;
3234 }
3235 
3236 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3237 			   struct i915_request *request,
3238 			   bool stalled)
3239 {
3240 	/*
3241 	 * Make sure this write is visible before we re-enable the interrupt
3242 	 * handlers on another CPU, as tasklet_enable() resolves to just
3243 	 * a compiler barrier which is insufficient for our purpose here.
3244 	 */
3245 	smp_store_mb(engine->irq_posted, 0);
3246 
3247 	if (request)
3248 		request = i915_gem_reset_request(engine, request, stalled);
3249 
3250 	/* Setup the CS to resume from the breadcrumb of the hung request */
3251 	engine->reset.reset(engine, request);
3252 }
3253 
3254 void i915_gem_reset(struct drm_i915_private *dev_priv,
3255 		    unsigned int stalled_mask)
3256 {
3257 	struct intel_engine_cs *engine;
3258 	enum intel_engine_id id;
3259 
3260 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3261 
3262 	i915_retire_requests(dev_priv);
3263 
3264 	for_each_engine(engine, dev_priv, id) {
3265 		struct intel_context *ce;
3266 
3267 		i915_gem_reset_engine(engine,
3268 				      engine->hangcheck.active_request,
3269 				      stalled_mask & ENGINE_MASK(id));
3270 		ce = fetch_and_zero(&engine->last_retired_context);
3271 		if (ce)
3272 			intel_context_unpin(ce);
3273 
3274 		/*
3275 		 * Ostensibily, we always want a context loaded for powersaving,
3276 		 * so if the engine is idle after the reset, send a request
3277 		 * to load our scratch kernel_context.
3278 		 *
3279 		 * More mysteriously, if we leave the engine idle after a reset,
3280 		 * the next userspace batch may hang, with what appears to be
3281 		 * an incoherent read by the CS (presumably stale TLB). An
3282 		 * empty request appears sufficient to paper over the glitch.
3283 		 */
3284 		if (intel_engine_is_idle(engine)) {
3285 			struct i915_request *rq;
3286 
3287 			rq = i915_request_alloc(engine,
3288 						dev_priv->kernel_context);
3289 			if (!IS_ERR(rq))
3290 				i915_request_add(rq);
3291 		}
3292 	}
3293 
3294 	i915_gem_restore_fences(dev_priv);
3295 }
3296 
3297 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3298 {
3299 	engine->reset.finish(engine);
3300 
3301 	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3302 }
3303 
3304 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3305 {
3306 	struct intel_engine_cs *engine;
3307 	enum intel_engine_id id;
3308 
3309 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3310 
3311 	for_each_engine(engine, dev_priv, id) {
3312 		engine->hangcheck.active_request = NULL;
3313 		i915_gem_reset_finish_engine(engine);
3314 	}
3315 }
3316 
3317 static void nop_submit_request(struct i915_request *request)
3318 {
3319 	unsigned long flags;
3320 
3321 	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3322 		  request->engine->name,
3323 		  request->fence.context, request->fence.seqno);
3324 	dma_fence_set_error(&request->fence, -EIO);
3325 
3326 	spin_lock_irqsave(&request->engine->timeline.lock, flags);
3327 	__i915_request_submit(request);
3328 	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3329 	spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3330 }
3331 
3332 void i915_gem_set_wedged(struct drm_i915_private *i915)
3333 {
3334 	struct intel_engine_cs *engine;
3335 	enum intel_engine_id id;
3336 
3337 	GEM_TRACE("start\n");
3338 
3339 	if (GEM_SHOW_DEBUG()) {
3340 		struct drm_printer p = drm_debug_printer(__func__);
3341 
3342 		for_each_engine(engine, i915, id)
3343 			intel_engine_dump(engine, &p, "%s\n", engine->name);
3344 	}
3345 
3346 	if (test_and_set_bit(I915_WEDGED, &i915->gpu_error.flags))
3347 		goto out;
3348 
3349 	/*
3350 	 * First, stop submission to hw, but do not yet complete requests by
3351 	 * rolling the global seqno forward (since this would complete requests
3352 	 * for which we haven't set the fence error to EIO yet).
3353 	 */
3354 	for_each_engine(engine, i915, id)
3355 		i915_gem_reset_prepare_engine(engine);
3356 
3357 	/* Even if the GPU reset fails, it should still stop the engines */
3358 	if (INTEL_GEN(i915) >= 5)
3359 		intel_gpu_reset(i915, ALL_ENGINES);
3360 
3361 	for_each_engine(engine, i915, id) {
3362 		engine->submit_request = nop_submit_request;
3363 		engine->schedule = NULL;
3364 	}
3365 	i915->caps.scheduler = 0;
3366 
3367 	/*
3368 	 * Make sure no request can slip through without getting completed by
3369 	 * either this call here to intel_engine_init_global_seqno, or the one
3370 	 * in nop_submit_request.
3371 	 */
3372 	synchronize_rcu();
3373 
3374 	/* Mark all executing requests as skipped */
3375 	for_each_engine(engine, i915, id)
3376 		engine->cancel_requests(engine);
3377 
3378 	for_each_engine(engine, i915, id) {
3379 		i915_gem_reset_finish_engine(engine);
3380 		intel_engine_wakeup(engine);
3381 	}
3382 
3383 out:
3384 	GEM_TRACE("end\n");
3385 
3386 	wake_up_all(&i915->gpu_error.reset_queue);
3387 }
3388 
3389 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3390 {
3391 	struct i915_timeline *tl;
3392 
3393 	lockdep_assert_held(&i915->drm.struct_mutex);
3394 	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3395 		return true;
3396 
3397 	GEM_TRACE("start\n");
3398 
3399 	/*
3400 	 * Before unwedging, make sure that all pending operations
3401 	 * are flushed and errored out - we may have requests waiting upon
3402 	 * third party fences. We marked all inflight requests as EIO, and
3403 	 * every execbuf since returned EIO, for consistency we want all
3404 	 * the currently pending requests to also be marked as EIO, which
3405 	 * is done inside our nop_submit_request - and so we must wait.
3406 	 *
3407 	 * No more can be submitted until we reset the wedged bit.
3408 	 */
3409 	list_for_each_entry(tl, &i915->gt.timelines, link) {
3410 		struct i915_request *rq;
3411 
3412 		rq = i915_gem_active_peek(&tl->last_request,
3413 					  &i915->drm.struct_mutex);
3414 		if (!rq)
3415 			continue;
3416 
3417 		/*
3418 		 * We can't use our normal waiter as we want to
3419 		 * avoid recursively trying to handle the current
3420 		 * reset. The basic dma_fence_default_wait() installs
3421 		 * a callback for dma_fence_signal(), which is
3422 		 * triggered by our nop handler (indirectly, the
3423 		 * callback enables the signaler thread which is
3424 		 * woken by the nop_submit_request() advancing the seqno
3425 		 * and when the seqno passes the fence, the signaler
3426 		 * then signals the fence waking us up).
3427 		 */
3428 		if (dma_fence_default_wait(&rq->fence, true,
3429 					   MAX_SCHEDULE_TIMEOUT) < 0)
3430 			return false;
3431 	}
3432 	i915_retire_requests(i915);
3433 	GEM_BUG_ON(i915->gt.active_requests);
3434 
3435 	if (!intel_gpu_reset(i915, ALL_ENGINES))
3436 		intel_engines_sanitize(i915);
3437 
3438 	/*
3439 	 * Undo nop_submit_request. We prevent all new i915 requests from
3440 	 * being queued (by disallowing execbuf whilst wedged) so having
3441 	 * waited for all active requests above, we know the system is idle
3442 	 * and do not have to worry about a thread being inside
3443 	 * engine->submit_request() as we swap over. So unlike installing
3444 	 * the nop_submit_request on reset, we can do this from normal
3445 	 * context and do not require stop_machine().
3446 	 */
3447 	intel_engines_reset_default_submission(i915);
3448 	i915_gem_contexts_lost(i915);
3449 
3450 	GEM_TRACE("end\n");
3451 
3452 	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3453 	clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3454 
3455 	return true;
3456 }
3457 
3458 static void
3459 i915_gem_retire_work_handler(struct work_struct *work)
3460 {
3461 	struct drm_i915_private *dev_priv =
3462 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3463 	struct drm_device *dev = &dev_priv->drm;
3464 
3465 	/* Come back later if the device is busy... */
3466 	if (mutex_trylock(&dev->struct_mutex)) {
3467 		i915_retire_requests(dev_priv);
3468 		mutex_unlock(&dev->struct_mutex);
3469 	}
3470 
3471 	/*
3472 	 * Keep the retire handler running until we are finally idle.
3473 	 * We do not need to do this test under locking as in the worst-case
3474 	 * we queue the retire worker once too often.
3475 	 */
3476 	if (READ_ONCE(dev_priv->gt.awake))
3477 		queue_delayed_work(dev_priv->wq,
3478 				   &dev_priv->gt.retire_work,
3479 				   round_jiffies_up_relative(HZ));
3480 }
3481 
3482 static void shrink_caches(struct drm_i915_private *i915)
3483 {
3484 	/*
3485 	 * kmem_cache_shrink() discards empty slabs and reorders partially
3486 	 * filled slabs to prioritise allocating from the mostly full slabs,
3487 	 * with the aim of reducing fragmentation.
3488 	 */
3489 	kmem_cache_shrink(i915->priorities);
3490 	kmem_cache_shrink(i915->dependencies);
3491 	kmem_cache_shrink(i915->requests);
3492 	kmem_cache_shrink(i915->luts);
3493 	kmem_cache_shrink(i915->vmas);
3494 	kmem_cache_shrink(i915->objects);
3495 }
3496 
3497 struct sleep_rcu_work {
3498 	union {
3499 		struct rcu_head rcu;
3500 		struct work_struct work;
3501 	};
3502 	struct drm_i915_private *i915;
3503 	unsigned int epoch;
3504 };
3505 
3506 static inline bool
3507 same_epoch(struct drm_i915_private *i915, unsigned int epoch)
3508 {
3509 	/*
3510 	 * There is a small chance that the epoch wrapped since we started
3511 	 * sleeping. If we assume that epoch is at least a u32, then it will
3512 	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
3513 	 */
3514 	return epoch == READ_ONCE(i915->gt.epoch);
3515 }
3516 
3517 static void __sleep_work(struct work_struct *work)
3518 {
3519 	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
3520 	struct drm_i915_private *i915 = s->i915;
3521 	unsigned int epoch = s->epoch;
3522 
3523 	kfree(s);
3524 	if (same_epoch(i915, epoch))
3525 		shrink_caches(i915);
3526 }
3527 
3528 static void __sleep_rcu(struct rcu_head *rcu)
3529 {
3530 	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
3531 	struct drm_i915_private *i915 = s->i915;
3532 
3533 	destroy_rcu_head(&s->rcu);
3534 
3535 	if (same_epoch(i915, s->epoch)) {
3536 		INIT_WORK(&s->work, __sleep_work);
3537 		queue_work(i915->wq, &s->work);
3538 	} else {
3539 		kfree(s);
3540 	}
3541 }
3542 
3543 static inline bool
3544 new_requests_since_last_retire(const struct drm_i915_private *i915)
3545 {
3546 	return (READ_ONCE(i915->gt.active_requests) ||
3547 		work_pending(&i915->gt.idle_work.work));
3548 }
3549 
3550 static void assert_kernel_context_is_current(struct drm_i915_private *i915)
3551 {
3552 	struct intel_engine_cs *engine;
3553 	enum intel_engine_id id;
3554 
3555 	if (i915_terminally_wedged(&i915->gpu_error))
3556 		return;
3557 
3558 	GEM_BUG_ON(i915->gt.active_requests);
3559 	for_each_engine(engine, i915, id) {
3560 		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
3561 		GEM_BUG_ON(engine->last_retired_context !=
3562 			   to_intel_context(i915->kernel_context, engine));
3563 	}
3564 }
3565 
3566 static void
3567 i915_gem_idle_work_handler(struct work_struct *work)
3568 {
3569 	struct drm_i915_private *dev_priv =
3570 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3571 	unsigned int epoch = I915_EPOCH_INVALID;
3572 	bool rearm_hangcheck;
3573 
3574 	if (!READ_ONCE(dev_priv->gt.awake))
3575 		return;
3576 
3577 	if (READ_ONCE(dev_priv->gt.active_requests))
3578 		return;
3579 
3580 	/*
3581 	 * Flush out the last user context, leaving only the pinned
3582 	 * kernel context resident. When we are idling on the kernel_context,
3583 	 * no more new requests (with a context switch) are emitted and we
3584 	 * can finally rest. A consequence is that the idle work handler is
3585 	 * always called at least twice before idling (and if the system is
3586 	 * idle that implies a round trip through the retire worker).
3587 	 */
3588 	mutex_lock(&dev_priv->drm.struct_mutex);
3589 	i915_gem_switch_to_kernel_context(dev_priv);
3590 	mutex_unlock(&dev_priv->drm.struct_mutex);
3591 
3592 	GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
3593 		  READ_ONCE(dev_priv->gt.active_requests));
3594 
3595 	/*
3596 	 * Wait for last execlists context complete, but bail out in case a
3597 	 * new request is submitted. As we don't trust the hardware, we
3598 	 * continue on if the wait times out. This is necessary to allow
3599 	 * the machine to suspend even if the hardware dies, and we will
3600 	 * try to recover in resume (after depriving the hardware of power,
3601 	 * it may be in a better mmod).
3602 	 */
3603 	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
3604 		   intel_engines_are_idle(dev_priv),
3605 		   I915_IDLE_ENGINES_TIMEOUT * 1000,
3606 		   10, 500);
3607 
3608 	rearm_hangcheck =
3609 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3610 
3611 	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3612 		/* Currently busy, come back later */
3613 		mod_delayed_work(dev_priv->wq,
3614 				 &dev_priv->gt.idle_work,
3615 				 msecs_to_jiffies(50));
3616 		goto out_rearm;
3617 	}
3618 
3619 	/*
3620 	 * New request retired after this work handler started, extend active
3621 	 * period until next instance of the work.
3622 	 */
3623 	if (new_requests_since_last_retire(dev_priv))
3624 		goto out_unlock;
3625 
3626 	epoch = __i915_gem_park(dev_priv);
3627 
3628 	assert_kernel_context_is_current(dev_priv);
3629 
3630 	rearm_hangcheck = false;
3631 out_unlock:
3632 	mutex_unlock(&dev_priv->drm.struct_mutex);
3633 
3634 out_rearm:
3635 	if (rearm_hangcheck) {
3636 		GEM_BUG_ON(!dev_priv->gt.awake);
3637 		i915_queue_hangcheck(dev_priv);
3638 	}
3639 
3640 	/*
3641 	 * When we are idle, it is an opportune time to reap our caches.
3642 	 * However, we have many objects that utilise RCU and the ordered
3643 	 * i915->wq that this work is executing on. To try and flush any
3644 	 * pending frees now we are idle, we first wait for an RCU grace
3645 	 * period, and then queue a task (that will run last on the wq) to
3646 	 * shrink and re-optimize the caches.
3647 	 */
3648 	if (same_epoch(dev_priv, epoch)) {
3649 		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
3650 		if (s) {
3651 			init_rcu_head(&s->rcu);
3652 			s->i915 = dev_priv;
3653 			s->epoch = epoch;
3654 			call_rcu(&s->rcu, __sleep_rcu);
3655 		}
3656 	}
3657 }
3658 
3659 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3660 {
3661 	struct drm_i915_private *i915 = to_i915(gem->dev);
3662 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
3663 	struct drm_i915_file_private *fpriv = file->driver_priv;
3664 	struct i915_lut_handle *lut, *ln;
3665 
3666 	mutex_lock(&i915->drm.struct_mutex);
3667 
3668 	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3669 		struct i915_gem_context *ctx = lut->ctx;
3670 		struct i915_vma *vma;
3671 
3672 		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3673 		if (ctx->file_priv != fpriv)
3674 			continue;
3675 
3676 		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3677 		GEM_BUG_ON(vma->obj != obj);
3678 
3679 		/* We allow the process to have multiple handles to the same
3680 		 * vma, in the same fd namespace, by virtue of flink/open.
3681 		 */
3682 		GEM_BUG_ON(!vma->open_count);
3683 		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3684 			i915_vma_close(vma);
3685 
3686 		list_del(&lut->obj_link);
3687 		list_del(&lut->ctx_link);
3688 
3689 		kmem_cache_free(i915->luts, lut);
3690 		__i915_gem_object_release_unless_active(obj);
3691 	}
3692 
3693 	mutex_unlock(&i915->drm.struct_mutex);
3694 }
3695 
3696 static unsigned long to_wait_timeout(s64 timeout_ns)
3697 {
3698 	if (timeout_ns < 0)
3699 		return MAX_SCHEDULE_TIMEOUT;
3700 
3701 	if (timeout_ns == 0)
3702 		return 0;
3703 
3704 	return nsecs_to_jiffies_timeout(timeout_ns);
3705 }
3706 
3707 /**
3708  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3709  * @dev: drm device pointer
3710  * @data: ioctl data blob
3711  * @file: drm file pointer
3712  *
3713  * Returns 0 if successful, else an error is returned with the remaining time in
3714  * the timeout parameter.
3715  *  -ETIME: object is still busy after timeout
3716  *  -ERESTARTSYS: signal interrupted the wait
3717  *  -ENONENT: object doesn't exist
3718  * Also possible, but rare:
3719  *  -EAGAIN: incomplete, restart syscall
3720  *  -ENOMEM: damn
3721  *  -ENODEV: Internal IRQ fail
3722  *  -E?: The add request failed
3723  *
3724  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3725  * non-zero timeout parameter the wait ioctl will wait for the given number of
3726  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3727  * without holding struct_mutex the object may become re-busied before this
3728  * function completes. A similar but shorter * race condition exists in the busy
3729  * ioctl
3730  */
3731 int
3732 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3733 {
3734 	struct drm_i915_gem_wait *args = data;
3735 	struct drm_i915_gem_object *obj;
3736 	ktime_t start;
3737 	long ret;
3738 
3739 	if (args->flags != 0)
3740 		return -EINVAL;
3741 
3742 	obj = i915_gem_object_lookup(file, args->bo_handle);
3743 	if (!obj)
3744 		return -ENOENT;
3745 
3746 	start = ktime_get();
3747 
3748 	ret = i915_gem_object_wait(obj,
3749 				   I915_WAIT_INTERRUPTIBLE |
3750 				   I915_WAIT_PRIORITY |
3751 				   I915_WAIT_ALL,
3752 				   to_wait_timeout(args->timeout_ns),
3753 				   to_rps_client(file));
3754 
3755 	if (args->timeout_ns > 0) {
3756 		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3757 		if (args->timeout_ns < 0)
3758 			args->timeout_ns = 0;
3759 
3760 		/*
3761 		 * Apparently ktime isn't accurate enough and occasionally has a
3762 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3763 		 * things up to make the test happy. We allow up to 1 jiffy.
3764 		 *
3765 		 * This is a regression from the timespec->ktime conversion.
3766 		 */
3767 		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3768 			args->timeout_ns = 0;
3769 
3770 		/* Asked to wait beyond the jiffie/scheduler precision? */
3771 		if (ret == -ETIME && args->timeout_ns)
3772 			ret = -EAGAIN;
3773 	}
3774 
3775 	i915_gem_object_put(obj);
3776 	return ret;
3777 }
3778 
3779 static long wait_for_timeline(struct i915_timeline *tl,
3780 			      unsigned int flags, long timeout)
3781 {
3782 	struct i915_request *rq;
3783 
3784 	rq = i915_gem_active_get_unlocked(&tl->last_request);
3785 	if (!rq)
3786 		return timeout;
3787 
3788 	/*
3789 	 * "Race-to-idle".
3790 	 *
3791 	 * Switching to the kernel context is often used a synchronous
3792 	 * step prior to idling, e.g. in suspend for flushing all
3793 	 * current operations to memory before sleeping. These we
3794 	 * want to complete as quickly as possible to avoid prolonged
3795 	 * stalls, so allow the gpu to boost to maximum clocks.
3796 	 */
3797 	if (flags & I915_WAIT_FOR_IDLE_BOOST)
3798 		gen6_rps_boost(rq, NULL);
3799 
3800 	timeout = i915_request_wait(rq, flags, timeout);
3801 	i915_request_put(rq);
3802 
3803 	return timeout;
3804 }
3805 
3806 static int wait_for_engines(struct drm_i915_private *i915)
3807 {
3808 	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3809 		dev_err(i915->drm.dev,
3810 			"Failed to idle engines, declaring wedged!\n");
3811 		GEM_TRACE_DUMP();
3812 		i915_gem_set_wedged(i915);
3813 		return -EIO;
3814 	}
3815 
3816 	return 0;
3817 }
3818 
3819 int i915_gem_wait_for_idle(struct drm_i915_private *i915,
3820 			   unsigned int flags, long timeout)
3821 {
3822 	GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
3823 		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
3824 		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3825 
3826 	/* If the device is asleep, we have no requests outstanding */
3827 	if (!READ_ONCE(i915->gt.awake))
3828 		return 0;
3829 
3830 	if (flags & I915_WAIT_LOCKED) {
3831 		struct i915_timeline *tl;
3832 		int err;
3833 
3834 		lockdep_assert_held(&i915->drm.struct_mutex);
3835 
3836 		list_for_each_entry(tl, &i915->gt.timelines, link) {
3837 			timeout = wait_for_timeline(tl, flags, timeout);
3838 			if (timeout < 0)
3839 				return timeout;
3840 		}
3841 		if (GEM_SHOW_DEBUG() && !timeout) {
3842 			/* Presume that timeout was non-zero to begin with! */
3843 			dev_warn(&i915->drm.pdev->dev,
3844 				 "Missed idle-completion interrupt!\n");
3845 			GEM_TRACE_DUMP();
3846 		}
3847 
3848 		err = wait_for_engines(i915);
3849 		if (err)
3850 			return err;
3851 
3852 		i915_retire_requests(i915);
3853 		GEM_BUG_ON(i915->gt.active_requests);
3854 	} else {
3855 		struct intel_engine_cs *engine;
3856 		enum intel_engine_id id;
3857 
3858 		for_each_engine(engine, i915, id) {
3859 			struct i915_timeline *tl = &engine->timeline;
3860 
3861 			timeout = wait_for_timeline(tl, flags, timeout);
3862 			if (timeout < 0)
3863 				return timeout;
3864 		}
3865 	}
3866 
3867 	return 0;
3868 }
3869 
3870 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3871 {
3872 	/*
3873 	 * We manually flush the CPU domain so that we can override and
3874 	 * force the flush for the display, and perform it asyncrhonously.
3875 	 */
3876 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3877 	if (obj->cache_dirty)
3878 		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3879 	obj->write_domain = 0;
3880 }
3881 
3882 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3883 {
3884 	if (!READ_ONCE(obj->pin_global))
3885 		return;
3886 
3887 	mutex_lock(&obj->base.dev->struct_mutex);
3888 	__i915_gem_object_flush_for_display(obj);
3889 	mutex_unlock(&obj->base.dev->struct_mutex);
3890 }
3891 
3892 /**
3893  * Moves a single object to the WC read, and possibly write domain.
3894  * @obj: object to act on
3895  * @write: ask for write access or read only
3896  *
3897  * This function returns when the move is complete, including waiting on
3898  * flushes to occur.
3899  */
3900 int
3901 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3902 {
3903 	int ret;
3904 
3905 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3906 
3907 	ret = i915_gem_object_wait(obj,
3908 				   I915_WAIT_INTERRUPTIBLE |
3909 				   I915_WAIT_LOCKED |
3910 				   (write ? I915_WAIT_ALL : 0),
3911 				   MAX_SCHEDULE_TIMEOUT,
3912 				   NULL);
3913 	if (ret)
3914 		return ret;
3915 
3916 	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3917 		return 0;
3918 
3919 	/* Flush and acquire obj->pages so that we are coherent through
3920 	 * direct access in memory with previous cached writes through
3921 	 * shmemfs and that our cache domain tracking remains valid.
3922 	 * For example, if the obj->filp was moved to swap without us
3923 	 * being notified and releasing the pages, we would mistakenly
3924 	 * continue to assume that the obj remained out of the CPU cached
3925 	 * domain.
3926 	 */
3927 	ret = i915_gem_object_pin_pages(obj);
3928 	if (ret)
3929 		return ret;
3930 
3931 	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3932 
3933 	/* Serialise direct access to this object with the barriers for
3934 	 * coherent writes from the GPU, by effectively invalidating the
3935 	 * WC domain upon first access.
3936 	 */
3937 	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3938 		mb();
3939 
3940 	/* It should now be out of any other write domains, and we can update
3941 	 * the domain values for our changes.
3942 	 */
3943 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3944 	obj->read_domains |= I915_GEM_DOMAIN_WC;
3945 	if (write) {
3946 		obj->read_domains = I915_GEM_DOMAIN_WC;
3947 		obj->write_domain = I915_GEM_DOMAIN_WC;
3948 		obj->mm.dirty = true;
3949 	}
3950 
3951 	i915_gem_object_unpin_pages(obj);
3952 	return 0;
3953 }
3954 
3955 /**
3956  * Moves a single object to the GTT read, and possibly write domain.
3957  * @obj: object to act on
3958  * @write: ask for write access or read only
3959  *
3960  * This function returns when the move is complete, including waiting on
3961  * flushes to occur.
3962  */
3963 int
3964 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3965 {
3966 	int ret;
3967 
3968 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3969 
3970 	ret = i915_gem_object_wait(obj,
3971 				   I915_WAIT_INTERRUPTIBLE |
3972 				   I915_WAIT_LOCKED |
3973 				   (write ? I915_WAIT_ALL : 0),
3974 				   MAX_SCHEDULE_TIMEOUT,
3975 				   NULL);
3976 	if (ret)
3977 		return ret;
3978 
3979 	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3980 		return 0;
3981 
3982 	/* Flush and acquire obj->pages so that we are coherent through
3983 	 * direct access in memory with previous cached writes through
3984 	 * shmemfs and that our cache domain tracking remains valid.
3985 	 * For example, if the obj->filp was moved to swap without us
3986 	 * being notified and releasing the pages, we would mistakenly
3987 	 * continue to assume that the obj remained out of the CPU cached
3988 	 * domain.
3989 	 */
3990 	ret = i915_gem_object_pin_pages(obj);
3991 	if (ret)
3992 		return ret;
3993 
3994 	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3995 
3996 	/* Serialise direct access to this object with the barriers for
3997 	 * coherent writes from the GPU, by effectively invalidating the
3998 	 * GTT domain upon first access.
3999 	 */
4000 	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
4001 		mb();
4002 
4003 	/* It should now be out of any other write domains, and we can update
4004 	 * the domain values for our changes.
4005 	 */
4006 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4007 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4008 	if (write) {
4009 		obj->read_domains = I915_GEM_DOMAIN_GTT;
4010 		obj->write_domain = I915_GEM_DOMAIN_GTT;
4011 		obj->mm.dirty = true;
4012 	}
4013 
4014 	i915_gem_object_unpin_pages(obj);
4015 	return 0;
4016 }
4017 
4018 /**
4019  * Changes the cache-level of an object across all VMA.
4020  * @obj: object to act on
4021  * @cache_level: new cache level to set for the object
4022  *
4023  * After this function returns, the object will be in the new cache-level
4024  * across all GTT and the contents of the backing storage will be coherent,
4025  * with respect to the new cache-level. In order to keep the backing storage
4026  * coherent for all users, we only allow a single cache level to be set
4027  * globally on the object and prevent it from being changed whilst the
4028  * hardware is reading from the object. That is if the object is currently
4029  * on the scanout it will be set to uncached (or equivalent display
4030  * cache coherency) and all non-MOCS GPU access will also be uncached so
4031  * that all direct access to the scanout remains coherent.
4032  */
4033 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4034 				    enum i915_cache_level cache_level)
4035 {
4036 	struct i915_vma *vma;
4037 	int ret;
4038 
4039 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4040 
4041 	if (obj->cache_level == cache_level)
4042 		return 0;
4043 
4044 	/* Inspect the list of currently bound VMA and unbind any that would
4045 	 * be invalid given the new cache-level. This is principally to
4046 	 * catch the issue of the CS prefetch crossing page boundaries and
4047 	 * reading an invalid PTE on older architectures.
4048 	 */
4049 restart:
4050 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4051 		if (!drm_mm_node_allocated(&vma->node))
4052 			continue;
4053 
4054 		if (i915_vma_is_pinned(vma)) {
4055 			DRM_DEBUG("can not change the cache level of pinned objects\n");
4056 			return -EBUSY;
4057 		}
4058 
4059 		if (!i915_vma_is_closed(vma) &&
4060 		    i915_gem_valid_gtt_space(vma, cache_level))
4061 			continue;
4062 
4063 		ret = i915_vma_unbind(vma);
4064 		if (ret)
4065 			return ret;
4066 
4067 		/* As unbinding may affect other elements in the
4068 		 * obj->vma_list (due to side-effects from retiring
4069 		 * an active vma), play safe and restart the iterator.
4070 		 */
4071 		goto restart;
4072 	}
4073 
4074 	/* We can reuse the existing drm_mm nodes but need to change the
4075 	 * cache-level on the PTE. We could simply unbind them all and
4076 	 * rebind with the correct cache-level on next use. However since
4077 	 * we already have a valid slot, dma mapping, pages etc, we may as
4078 	 * rewrite the PTE in the belief that doing so tramples upon less
4079 	 * state and so involves less work.
4080 	 */
4081 	if (obj->bind_count) {
4082 		/* Before we change the PTE, the GPU must not be accessing it.
4083 		 * If we wait upon the object, we know that all the bound
4084 		 * VMA are no longer active.
4085 		 */
4086 		ret = i915_gem_object_wait(obj,
4087 					   I915_WAIT_INTERRUPTIBLE |
4088 					   I915_WAIT_LOCKED |
4089 					   I915_WAIT_ALL,
4090 					   MAX_SCHEDULE_TIMEOUT,
4091 					   NULL);
4092 		if (ret)
4093 			return ret;
4094 
4095 		if (!HAS_LLC(to_i915(obj->base.dev)) &&
4096 		    cache_level != I915_CACHE_NONE) {
4097 			/* Access to snoopable pages through the GTT is
4098 			 * incoherent and on some machines causes a hard
4099 			 * lockup. Relinquish the CPU mmaping to force
4100 			 * userspace to refault in the pages and we can
4101 			 * then double check if the GTT mapping is still
4102 			 * valid for that pointer access.
4103 			 */
4104 			i915_gem_release_mmap(obj);
4105 
4106 			/* As we no longer need a fence for GTT access,
4107 			 * we can relinquish it now (and so prevent having
4108 			 * to steal a fence from someone else on the next
4109 			 * fence request). Note GPU activity would have
4110 			 * dropped the fence as all snoopable access is
4111 			 * supposed to be linear.
4112 			 */
4113 			for_each_ggtt_vma(vma, obj) {
4114 				ret = i915_vma_put_fence(vma);
4115 				if (ret)
4116 					return ret;
4117 			}
4118 		} else {
4119 			/* We either have incoherent backing store and
4120 			 * so no GTT access or the architecture is fully
4121 			 * coherent. In such cases, existing GTT mmaps
4122 			 * ignore the cache bit in the PTE and we can
4123 			 * rewrite it without confusing the GPU or having
4124 			 * to force userspace to fault back in its mmaps.
4125 			 */
4126 		}
4127 
4128 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4129 			if (!drm_mm_node_allocated(&vma->node))
4130 				continue;
4131 
4132 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4133 			if (ret)
4134 				return ret;
4135 		}
4136 	}
4137 
4138 	list_for_each_entry(vma, &obj->vma_list, obj_link)
4139 		vma->node.color = cache_level;
4140 	i915_gem_object_set_cache_coherency(obj, cache_level);
4141 	obj->cache_dirty = true; /* Always invalidate stale cachelines */
4142 
4143 	return 0;
4144 }
4145 
4146 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4147 			       struct drm_file *file)
4148 {
4149 	struct drm_i915_gem_caching *args = data;
4150 	struct drm_i915_gem_object *obj;
4151 	int err = 0;
4152 
4153 	rcu_read_lock();
4154 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4155 	if (!obj) {
4156 		err = -ENOENT;
4157 		goto out;
4158 	}
4159 
4160 	switch (obj->cache_level) {
4161 	case I915_CACHE_LLC:
4162 	case I915_CACHE_L3_LLC:
4163 		args->caching = I915_CACHING_CACHED;
4164 		break;
4165 
4166 	case I915_CACHE_WT:
4167 		args->caching = I915_CACHING_DISPLAY;
4168 		break;
4169 
4170 	default:
4171 		args->caching = I915_CACHING_NONE;
4172 		break;
4173 	}
4174 out:
4175 	rcu_read_unlock();
4176 	return err;
4177 }
4178 
4179 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4180 			       struct drm_file *file)
4181 {
4182 	struct drm_i915_private *i915 = to_i915(dev);
4183 	struct drm_i915_gem_caching *args = data;
4184 	struct drm_i915_gem_object *obj;
4185 	enum i915_cache_level level;
4186 	int ret = 0;
4187 
4188 	switch (args->caching) {
4189 	case I915_CACHING_NONE:
4190 		level = I915_CACHE_NONE;
4191 		break;
4192 	case I915_CACHING_CACHED:
4193 		/*
4194 		 * Due to a HW issue on BXT A stepping, GPU stores via a
4195 		 * snooped mapping may leave stale data in a corresponding CPU
4196 		 * cacheline, whereas normally such cachelines would get
4197 		 * invalidated.
4198 		 */
4199 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4200 			return -ENODEV;
4201 
4202 		level = I915_CACHE_LLC;
4203 		break;
4204 	case I915_CACHING_DISPLAY:
4205 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4206 		break;
4207 	default:
4208 		return -EINVAL;
4209 	}
4210 
4211 	obj = i915_gem_object_lookup(file, args->handle);
4212 	if (!obj)
4213 		return -ENOENT;
4214 
4215 	/*
4216 	 * The caching mode of proxy object is handled by its generator, and
4217 	 * not allowed to be changed by userspace.
4218 	 */
4219 	if (i915_gem_object_is_proxy(obj)) {
4220 		ret = -ENXIO;
4221 		goto out;
4222 	}
4223 
4224 	if (obj->cache_level == level)
4225 		goto out;
4226 
4227 	ret = i915_gem_object_wait(obj,
4228 				   I915_WAIT_INTERRUPTIBLE,
4229 				   MAX_SCHEDULE_TIMEOUT,
4230 				   to_rps_client(file));
4231 	if (ret)
4232 		goto out;
4233 
4234 	ret = i915_mutex_lock_interruptible(dev);
4235 	if (ret)
4236 		goto out;
4237 
4238 	ret = i915_gem_object_set_cache_level(obj, level);
4239 	mutex_unlock(&dev->struct_mutex);
4240 
4241 out:
4242 	i915_gem_object_put(obj);
4243 	return ret;
4244 }
4245 
4246 /*
4247  * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
4248  * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
4249  * (for pageflips). We only flush the caches while preparing the buffer for
4250  * display, the callers are responsible for frontbuffer flush.
4251  */
4252 struct i915_vma *
4253 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4254 				     u32 alignment,
4255 				     const struct i915_ggtt_view *view,
4256 				     unsigned int flags)
4257 {
4258 	struct i915_vma *vma;
4259 	int ret;
4260 
4261 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4262 
4263 	/* Mark the global pin early so that we account for the
4264 	 * display coherency whilst setting up the cache domains.
4265 	 */
4266 	obj->pin_global++;
4267 
4268 	/* The display engine is not coherent with the LLC cache on gen6.  As
4269 	 * a result, we make sure that the pinning that is about to occur is
4270 	 * done with uncached PTEs. This is lowest common denominator for all
4271 	 * chipsets.
4272 	 *
4273 	 * However for gen6+, we could do better by using the GFDT bit instead
4274 	 * of uncaching, which would allow us to flush all the LLC-cached data
4275 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4276 	 */
4277 	ret = i915_gem_object_set_cache_level(obj,
4278 					      HAS_WT(to_i915(obj->base.dev)) ?
4279 					      I915_CACHE_WT : I915_CACHE_NONE);
4280 	if (ret) {
4281 		vma = ERR_PTR(ret);
4282 		goto err_unpin_global;
4283 	}
4284 
4285 	/* As the user may map the buffer once pinned in the display plane
4286 	 * (e.g. libkms for the bootup splash), we have to ensure that we
4287 	 * always use map_and_fenceable for all scanout buffers. However,
4288 	 * it may simply be too big to fit into mappable, in which case
4289 	 * put it anyway and hope that userspace can cope (but always first
4290 	 * try to preserve the existing ABI).
4291 	 */
4292 	vma = ERR_PTR(-ENOSPC);
4293 	if ((flags & PIN_MAPPABLE) == 0 &&
4294 	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4295 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4296 					       flags |
4297 					       PIN_MAPPABLE |
4298 					       PIN_NONBLOCK);
4299 	if (IS_ERR(vma))
4300 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4301 	if (IS_ERR(vma))
4302 		goto err_unpin_global;
4303 
4304 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4305 
4306 	__i915_gem_object_flush_for_display(obj);
4307 
4308 	/* It should now be out of any other write domains, and we can update
4309 	 * the domain values for our changes.
4310 	 */
4311 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4312 
4313 	return vma;
4314 
4315 err_unpin_global:
4316 	obj->pin_global--;
4317 	return vma;
4318 }
4319 
4320 void
4321 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4322 {
4323 	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4324 
4325 	if (WARN_ON(vma->obj->pin_global == 0))
4326 		return;
4327 
4328 	if (--vma->obj->pin_global == 0)
4329 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4330 
4331 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4332 	i915_gem_object_bump_inactive_ggtt(vma->obj);
4333 
4334 	i915_vma_unpin(vma);
4335 }
4336 
4337 /**
4338  * Moves a single object to the CPU read, and possibly write domain.
4339  * @obj: object to act on
4340  * @write: requesting write or read-only access
4341  *
4342  * This function returns when the move is complete, including waiting on
4343  * flushes to occur.
4344  */
4345 int
4346 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4347 {
4348 	int ret;
4349 
4350 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4351 
4352 	ret = i915_gem_object_wait(obj,
4353 				   I915_WAIT_INTERRUPTIBLE |
4354 				   I915_WAIT_LOCKED |
4355 				   (write ? I915_WAIT_ALL : 0),
4356 				   MAX_SCHEDULE_TIMEOUT,
4357 				   NULL);
4358 	if (ret)
4359 		return ret;
4360 
4361 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4362 
4363 	/* Flush the CPU cache if it's still invalid. */
4364 	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4365 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4366 		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4367 	}
4368 
4369 	/* It should now be out of any other write domains, and we can update
4370 	 * the domain values for our changes.
4371 	 */
4372 	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4373 
4374 	/* If we're writing through the CPU, then the GPU read domains will
4375 	 * need to be invalidated at next use.
4376 	 */
4377 	if (write)
4378 		__start_cpu_write(obj);
4379 
4380 	return 0;
4381 }
4382 
4383 /* Throttle our rendering by waiting until the ring has completed our requests
4384  * emitted over 20 msec ago.
4385  *
4386  * Note that if we were to use the current jiffies each time around the loop,
4387  * we wouldn't escape the function with any frames outstanding if the time to
4388  * render a frame was over 20ms.
4389  *
4390  * This should get us reasonable parallelism between CPU and GPU but also
4391  * relatively low latency when blocking on a particular request to finish.
4392  */
4393 static int
4394 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4395 {
4396 	struct drm_i915_private *dev_priv = to_i915(dev);
4397 	struct drm_i915_file_private *file_priv = file->driver_priv;
4398 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4399 	struct i915_request *request, *target = NULL;
4400 	long ret;
4401 
4402 	/* ABI: return -EIO if already wedged */
4403 	if (i915_terminally_wedged(&dev_priv->gpu_error))
4404 		return -EIO;
4405 
4406 	spin_lock(&file_priv->mm.lock);
4407 	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4408 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4409 			break;
4410 
4411 		if (target) {
4412 			list_del(&target->client_link);
4413 			target->file_priv = NULL;
4414 		}
4415 
4416 		target = request;
4417 	}
4418 	if (target)
4419 		i915_request_get(target);
4420 	spin_unlock(&file_priv->mm.lock);
4421 
4422 	if (target == NULL)
4423 		return 0;
4424 
4425 	ret = i915_request_wait(target,
4426 				I915_WAIT_INTERRUPTIBLE,
4427 				MAX_SCHEDULE_TIMEOUT);
4428 	i915_request_put(target);
4429 
4430 	return ret < 0 ? ret : 0;
4431 }
4432 
4433 struct i915_vma *
4434 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4435 			 const struct i915_ggtt_view *view,
4436 			 u64 size,
4437 			 u64 alignment,
4438 			 u64 flags)
4439 {
4440 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4441 	struct i915_address_space *vm = &dev_priv->ggtt.vm;
4442 	struct i915_vma *vma;
4443 	int ret;
4444 
4445 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4446 
4447 	if (flags & PIN_MAPPABLE &&
4448 	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4449 		/* If the required space is larger than the available
4450 		 * aperture, we will not able to find a slot for the
4451 		 * object and unbinding the object now will be in
4452 		 * vain. Worse, doing so may cause us to ping-pong
4453 		 * the object in and out of the Global GTT and
4454 		 * waste a lot of cycles under the mutex.
4455 		 */
4456 		if (obj->base.size > dev_priv->ggtt.mappable_end)
4457 			return ERR_PTR(-E2BIG);
4458 
4459 		/* If NONBLOCK is set the caller is optimistically
4460 		 * trying to cache the full object within the mappable
4461 		 * aperture, and *must* have a fallback in place for
4462 		 * situations where we cannot bind the object. We
4463 		 * can be a little more lax here and use the fallback
4464 		 * more often to avoid costly migrations of ourselves
4465 		 * and other objects within the aperture.
4466 		 *
4467 		 * Half-the-aperture is used as a simple heuristic.
4468 		 * More interesting would to do search for a free
4469 		 * block prior to making the commitment to unbind.
4470 		 * That caters for the self-harm case, and with a
4471 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
4472 		 * we could try to minimise harm to others.
4473 		 */
4474 		if (flags & PIN_NONBLOCK &&
4475 		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
4476 			return ERR_PTR(-ENOSPC);
4477 	}
4478 
4479 	vma = i915_vma_instance(obj, vm, view);
4480 	if (unlikely(IS_ERR(vma)))
4481 		return vma;
4482 
4483 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4484 		if (flags & PIN_NONBLOCK) {
4485 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4486 				return ERR_PTR(-ENOSPC);
4487 
4488 			if (flags & PIN_MAPPABLE &&
4489 			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4490 				return ERR_PTR(-ENOSPC);
4491 		}
4492 
4493 		WARN(i915_vma_is_pinned(vma),
4494 		     "bo is already pinned in ggtt with incorrect alignment:"
4495 		     " offset=%08x, req.alignment=%llx,"
4496 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4497 		     i915_ggtt_offset(vma), alignment,
4498 		     !!(flags & PIN_MAPPABLE),
4499 		     i915_vma_is_map_and_fenceable(vma));
4500 		ret = i915_vma_unbind(vma);
4501 		if (ret)
4502 			return ERR_PTR(ret);
4503 	}
4504 
4505 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4506 	if (ret)
4507 		return ERR_PTR(ret);
4508 
4509 	return vma;
4510 }
4511 
4512 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4513 {
4514 	/* Note that we could alias engines in the execbuf API, but
4515 	 * that would be very unwise as it prevents userspace from
4516 	 * fine control over engine selection. Ahem.
4517 	 *
4518 	 * This should be something like EXEC_MAX_ENGINE instead of
4519 	 * I915_NUM_ENGINES.
4520 	 */
4521 	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4522 	return 0x10000 << id;
4523 }
4524 
4525 static __always_inline unsigned int __busy_write_id(unsigned int id)
4526 {
4527 	/* The uABI guarantees an active writer is also amongst the read
4528 	 * engines. This would be true if we accessed the activity tracking
4529 	 * under the lock, but as we perform the lookup of the object and
4530 	 * its activity locklessly we can not guarantee that the last_write
4531 	 * being active implies that we have set the same engine flag from
4532 	 * last_read - hence we always set both read and write busy for
4533 	 * last_write.
4534 	 */
4535 	return id | __busy_read_flag(id);
4536 }
4537 
4538 static __always_inline unsigned int
4539 __busy_set_if_active(const struct dma_fence *fence,
4540 		     unsigned int (*flag)(unsigned int id))
4541 {
4542 	struct i915_request *rq;
4543 
4544 	/* We have to check the current hw status of the fence as the uABI
4545 	 * guarantees forward progress. We could rely on the idle worker
4546 	 * to eventually flush us, but to minimise latency just ask the
4547 	 * hardware.
4548 	 *
4549 	 * Note we only report on the status of native fences.
4550 	 */
4551 	if (!dma_fence_is_i915(fence))
4552 		return 0;
4553 
4554 	/* opencode to_request() in order to avoid const warnings */
4555 	rq = container_of(fence, struct i915_request, fence);
4556 	if (i915_request_completed(rq))
4557 		return 0;
4558 
4559 	return flag(rq->engine->uabi_id);
4560 }
4561 
4562 static __always_inline unsigned int
4563 busy_check_reader(const struct dma_fence *fence)
4564 {
4565 	return __busy_set_if_active(fence, __busy_read_flag);
4566 }
4567 
4568 static __always_inline unsigned int
4569 busy_check_writer(const struct dma_fence *fence)
4570 {
4571 	if (!fence)
4572 		return 0;
4573 
4574 	return __busy_set_if_active(fence, __busy_write_id);
4575 }
4576 
4577 int
4578 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4579 		    struct drm_file *file)
4580 {
4581 	struct drm_i915_gem_busy *args = data;
4582 	struct drm_i915_gem_object *obj;
4583 	struct reservation_object_list *list;
4584 	unsigned int seq;
4585 	int err;
4586 
4587 	err = -ENOENT;
4588 	rcu_read_lock();
4589 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4590 	if (!obj)
4591 		goto out;
4592 
4593 	/* A discrepancy here is that we do not report the status of
4594 	 * non-i915 fences, i.e. even though we may report the object as idle,
4595 	 * a call to set-domain may still stall waiting for foreign rendering.
4596 	 * This also means that wait-ioctl may report an object as busy,
4597 	 * where busy-ioctl considers it idle.
4598 	 *
4599 	 * We trade the ability to warn of foreign fences to report on which
4600 	 * i915 engines are active for the object.
4601 	 *
4602 	 * Alternatively, we can trade that extra information on read/write
4603 	 * activity with
4604 	 *	args->busy =
4605 	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
4606 	 * to report the overall busyness. This is what the wait-ioctl does.
4607 	 *
4608 	 */
4609 retry:
4610 	seq = raw_read_seqcount(&obj->resv->seq);
4611 
4612 	/* Translate the exclusive fence to the READ *and* WRITE engine */
4613 	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4614 
4615 	/* Translate shared fences to READ set of engines */
4616 	list = rcu_dereference(obj->resv->fence);
4617 	if (list) {
4618 		unsigned int shared_count = list->shared_count, i;
4619 
4620 		for (i = 0; i < shared_count; ++i) {
4621 			struct dma_fence *fence =
4622 				rcu_dereference(list->shared[i]);
4623 
4624 			args->busy |= busy_check_reader(fence);
4625 		}
4626 	}
4627 
4628 	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4629 		goto retry;
4630 
4631 	err = 0;
4632 out:
4633 	rcu_read_unlock();
4634 	return err;
4635 }
4636 
4637 int
4638 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4639 			struct drm_file *file_priv)
4640 {
4641 	return i915_gem_ring_throttle(dev, file_priv);
4642 }
4643 
4644 int
4645 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4646 		       struct drm_file *file_priv)
4647 {
4648 	struct drm_i915_private *dev_priv = to_i915(dev);
4649 	struct drm_i915_gem_madvise *args = data;
4650 	struct drm_i915_gem_object *obj;
4651 	int err;
4652 
4653 	switch (args->madv) {
4654 	case I915_MADV_DONTNEED:
4655 	case I915_MADV_WILLNEED:
4656 	    break;
4657 	default:
4658 	    return -EINVAL;
4659 	}
4660 
4661 	obj = i915_gem_object_lookup(file_priv, args->handle);
4662 	if (!obj)
4663 		return -ENOENT;
4664 
4665 	err = mutex_lock_interruptible(&obj->mm.lock);
4666 	if (err)
4667 		goto out;
4668 
4669 	if (i915_gem_object_has_pages(obj) &&
4670 	    i915_gem_object_is_tiled(obj) &&
4671 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4672 		if (obj->mm.madv == I915_MADV_WILLNEED) {
4673 			GEM_BUG_ON(!obj->mm.quirked);
4674 			__i915_gem_object_unpin_pages(obj);
4675 			obj->mm.quirked = false;
4676 		}
4677 		if (args->madv == I915_MADV_WILLNEED) {
4678 			GEM_BUG_ON(obj->mm.quirked);
4679 			__i915_gem_object_pin_pages(obj);
4680 			obj->mm.quirked = true;
4681 		}
4682 	}
4683 
4684 	if (obj->mm.madv != __I915_MADV_PURGED)
4685 		obj->mm.madv = args->madv;
4686 
4687 	/* if the object is no longer attached, discard its backing storage */
4688 	if (obj->mm.madv == I915_MADV_DONTNEED &&
4689 	    !i915_gem_object_has_pages(obj))
4690 		i915_gem_object_truncate(obj);
4691 
4692 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4693 	mutex_unlock(&obj->mm.lock);
4694 
4695 out:
4696 	i915_gem_object_put(obj);
4697 	return err;
4698 }
4699 
4700 static void
4701 frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4702 {
4703 	struct drm_i915_gem_object *obj =
4704 		container_of(active, typeof(*obj), frontbuffer_write);
4705 
4706 	intel_fb_obj_flush(obj, ORIGIN_CS);
4707 }
4708 
4709 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4710 			  const struct drm_i915_gem_object_ops *ops)
4711 {
4712 	mutex_init(&obj->mm.lock);
4713 
4714 	INIT_LIST_HEAD(&obj->vma_list);
4715 	INIT_LIST_HEAD(&obj->lut_list);
4716 	INIT_LIST_HEAD(&obj->batch_pool_link);
4717 
4718 	init_rcu_head(&obj->rcu);
4719 
4720 	obj->ops = ops;
4721 
4722 	reservation_object_init(&obj->__builtin_resv);
4723 	obj->resv = &obj->__builtin_resv;
4724 
4725 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4726 	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4727 
4728 	obj->mm.madv = I915_MADV_WILLNEED;
4729 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4730 	mutex_init(&obj->mm.get_page.lock);
4731 
4732 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4733 }
4734 
4735 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4736 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4737 		 I915_GEM_OBJECT_IS_SHRINKABLE,
4738 
4739 	.get_pages = i915_gem_object_get_pages_gtt,
4740 	.put_pages = i915_gem_object_put_pages_gtt,
4741 
4742 	.pwrite = i915_gem_object_pwrite_gtt,
4743 };
4744 
4745 static int i915_gem_object_create_shmem(struct drm_device *dev,
4746 					struct drm_gem_object *obj,
4747 					size_t size)
4748 {
4749 	struct drm_i915_private *i915 = to_i915(dev);
4750 	unsigned long flags = VM_NORESERVE;
4751 	struct file *filp;
4752 
4753 	drm_gem_private_object_init(dev, obj, size);
4754 
4755 	if (i915->mm.gemfs)
4756 		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4757 						 flags);
4758 	else
4759 		filp = shmem_file_setup("i915", size, flags);
4760 
4761 	if (IS_ERR(filp))
4762 		return PTR_ERR(filp);
4763 
4764 	obj->filp = filp;
4765 
4766 	return 0;
4767 }
4768 
4769 struct drm_i915_gem_object *
4770 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4771 {
4772 	struct drm_i915_gem_object *obj;
4773 	struct address_space *mapping;
4774 	unsigned int cache_level;
4775 	gfp_t mask;
4776 	int ret;
4777 
4778 	/* There is a prevalence of the assumption that we fit the object's
4779 	 * page count inside a 32bit _signed_ variable. Let's document this and
4780 	 * catch if we ever need to fix it. In the meantime, if you do spot
4781 	 * such a local variable, please consider fixing!
4782 	 */
4783 	if (size >> PAGE_SHIFT > INT_MAX)
4784 		return ERR_PTR(-E2BIG);
4785 
4786 	if (overflows_type(size, obj->base.size))
4787 		return ERR_PTR(-E2BIG);
4788 
4789 	obj = i915_gem_object_alloc(dev_priv);
4790 	if (obj == NULL)
4791 		return ERR_PTR(-ENOMEM);
4792 
4793 	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4794 	if (ret)
4795 		goto fail;
4796 
4797 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4798 	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4799 		/* 965gm cannot relocate objects above 4GiB. */
4800 		mask &= ~__GFP_HIGHMEM;
4801 		mask |= __GFP_DMA32;
4802 	}
4803 
4804 	mapping = obj->base.filp->f_mapping;
4805 	mapping_set_gfp_mask(mapping, mask);
4806 	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4807 
4808 	i915_gem_object_init(obj, &i915_gem_object_ops);
4809 
4810 	obj->write_domain = I915_GEM_DOMAIN_CPU;
4811 	obj->read_domains = I915_GEM_DOMAIN_CPU;
4812 
4813 	if (HAS_LLC(dev_priv))
4814 		/* On some devices, we can have the GPU use the LLC (the CPU
4815 		 * cache) for about a 10% performance improvement
4816 		 * compared to uncached.  Graphics requests other than
4817 		 * display scanout are coherent with the CPU in
4818 		 * accessing this cache.  This means in this mode we
4819 		 * don't need to clflush on the CPU side, and on the
4820 		 * GPU side we only need to flush internal caches to
4821 		 * get data visible to the CPU.
4822 		 *
4823 		 * However, we maintain the display planes as UC, and so
4824 		 * need to rebind when first used as such.
4825 		 */
4826 		cache_level = I915_CACHE_LLC;
4827 	else
4828 		cache_level = I915_CACHE_NONE;
4829 
4830 	i915_gem_object_set_cache_coherency(obj, cache_level);
4831 
4832 	trace_i915_gem_object_create(obj);
4833 
4834 	return obj;
4835 
4836 fail:
4837 	i915_gem_object_free(obj);
4838 	return ERR_PTR(ret);
4839 }
4840 
4841 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4842 {
4843 	/* If we are the last user of the backing storage (be it shmemfs
4844 	 * pages or stolen etc), we know that the pages are going to be
4845 	 * immediately released. In this case, we can then skip copying
4846 	 * back the contents from the GPU.
4847 	 */
4848 
4849 	if (obj->mm.madv != I915_MADV_WILLNEED)
4850 		return false;
4851 
4852 	if (obj->base.filp == NULL)
4853 		return true;
4854 
4855 	/* At first glance, this looks racy, but then again so would be
4856 	 * userspace racing mmap against close. However, the first external
4857 	 * reference to the filp can only be obtained through the
4858 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4859 	 * acquiring such a reference whilst we are in the middle of
4860 	 * freeing the object.
4861 	 */
4862 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4863 }
4864 
4865 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4866 				    struct llist_node *freed)
4867 {
4868 	struct drm_i915_gem_object *obj, *on;
4869 
4870 	intel_runtime_pm_get(i915);
4871 	llist_for_each_entry_safe(obj, on, freed, freed) {
4872 		struct i915_vma *vma, *vn;
4873 
4874 		trace_i915_gem_object_destroy(obj);
4875 
4876 		mutex_lock(&i915->drm.struct_mutex);
4877 
4878 		GEM_BUG_ON(i915_gem_object_is_active(obj));
4879 		list_for_each_entry_safe(vma, vn,
4880 					 &obj->vma_list, obj_link) {
4881 			GEM_BUG_ON(i915_vma_is_active(vma));
4882 			vma->flags &= ~I915_VMA_PIN_MASK;
4883 			i915_vma_destroy(vma);
4884 		}
4885 		GEM_BUG_ON(!list_empty(&obj->vma_list));
4886 		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4887 
4888 		/* This serializes freeing with the shrinker. Since the free
4889 		 * is delayed, first by RCU then by the workqueue, we want the
4890 		 * shrinker to be able to free pages of unreferenced objects,
4891 		 * or else we may oom whilst there are plenty of deferred
4892 		 * freed objects.
4893 		 */
4894 		if (i915_gem_object_has_pages(obj)) {
4895 			spin_lock(&i915->mm.obj_lock);
4896 			list_del_init(&obj->mm.link);
4897 			spin_unlock(&i915->mm.obj_lock);
4898 		}
4899 
4900 		mutex_unlock(&i915->drm.struct_mutex);
4901 
4902 		GEM_BUG_ON(obj->bind_count);
4903 		GEM_BUG_ON(obj->userfault_count);
4904 		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4905 		GEM_BUG_ON(!list_empty(&obj->lut_list));
4906 
4907 		if (obj->ops->release)
4908 			obj->ops->release(obj);
4909 
4910 		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4911 			atomic_set(&obj->mm.pages_pin_count, 0);
4912 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4913 		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4914 
4915 		if (obj->base.import_attach)
4916 			drm_prime_gem_destroy(&obj->base, NULL);
4917 
4918 		reservation_object_fini(&obj->__builtin_resv);
4919 		drm_gem_object_release(&obj->base);
4920 		i915_gem_info_remove_obj(i915, obj->base.size);
4921 
4922 		kfree(obj->bit_17);
4923 		i915_gem_object_free(obj);
4924 
4925 		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
4926 		atomic_dec(&i915->mm.free_count);
4927 
4928 		if (on)
4929 			cond_resched();
4930 	}
4931 	intel_runtime_pm_put(i915);
4932 }
4933 
4934 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4935 {
4936 	struct llist_node *freed;
4937 
4938 	/* Free the oldest, most stale object to keep the free_list short */
4939 	freed = NULL;
4940 	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4941 		/* Only one consumer of llist_del_first() allowed */
4942 		spin_lock(&i915->mm.free_lock);
4943 		freed = llist_del_first(&i915->mm.free_list);
4944 		spin_unlock(&i915->mm.free_lock);
4945 	}
4946 	if (unlikely(freed)) {
4947 		freed->next = NULL;
4948 		__i915_gem_free_objects(i915, freed);
4949 	}
4950 }
4951 
4952 static void __i915_gem_free_work(struct work_struct *work)
4953 {
4954 	struct drm_i915_private *i915 =
4955 		container_of(work, struct drm_i915_private, mm.free_work);
4956 	struct llist_node *freed;
4957 
4958 	/*
4959 	 * All file-owned VMA should have been released by this point through
4960 	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4961 	 * However, the object may also be bound into the global GTT (e.g.
4962 	 * older GPUs without per-process support, or for direct access through
4963 	 * the GTT either for the user or for scanout). Those VMA still need to
4964 	 * unbound now.
4965 	 */
4966 
4967 	spin_lock(&i915->mm.free_lock);
4968 	while ((freed = llist_del_all(&i915->mm.free_list))) {
4969 		spin_unlock(&i915->mm.free_lock);
4970 
4971 		__i915_gem_free_objects(i915, freed);
4972 		if (need_resched())
4973 			return;
4974 
4975 		spin_lock(&i915->mm.free_lock);
4976 	}
4977 	spin_unlock(&i915->mm.free_lock);
4978 }
4979 
4980 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4981 {
4982 	struct drm_i915_gem_object *obj =
4983 		container_of(head, typeof(*obj), rcu);
4984 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4985 
4986 	/*
4987 	 * We reuse obj->rcu for the freed list, so we had better not treat
4988 	 * it like a rcu_head from this point forwards. And we expect all
4989 	 * objects to be freed via this path.
4990 	 */
4991 	destroy_rcu_head(&obj->rcu);
4992 
4993 	/*
4994 	 * Since we require blocking on struct_mutex to unbind the freed
4995 	 * object from the GPU before releasing resources back to the
4996 	 * system, we can not do that directly from the RCU callback (which may
4997 	 * be a softirq context), but must instead then defer that work onto a
4998 	 * kthread. We use the RCU callback rather than move the freed object
4999 	 * directly onto the work queue so that we can mix between using the
5000 	 * worker and performing frees directly from subsequent allocations for
5001 	 * crude but effective memory throttling.
5002 	 */
5003 	if (llist_add(&obj->freed, &i915->mm.free_list))
5004 		queue_work(i915->wq, &i915->mm.free_work);
5005 }
5006 
5007 void i915_gem_free_object(struct drm_gem_object *gem_obj)
5008 {
5009 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
5010 
5011 	if (obj->mm.quirked)
5012 		__i915_gem_object_unpin_pages(obj);
5013 
5014 	if (discard_backing_storage(obj))
5015 		obj->mm.madv = I915_MADV_DONTNEED;
5016 
5017 	/*
5018 	 * Before we free the object, make sure any pure RCU-only
5019 	 * read-side critical sections are complete, e.g.
5020 	 * i915_gem_busy_ioctl(). For the corresponding synchronized
5021 	 * lookup see i915_gem_object_lookup_rcu().
5022 	 */
5023 	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
5024 	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
5025 }
5026 
5027 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
5028 {
5029 	lockdep_assert_held(&obj->base.dev->struct_mutex);
5030 
5031 	if (!i915_gem_object_has_active_reference(obj) &&
5032 	    i915_gem_object_is_active(obj))
5033 		i915_gem_object_set_active_reference(obj);
5034 	else
5035 		i915_gem_object_put(obj);
5036 }
5037 
5038 void i915_gem_sanitize(struct drm_i915_private *i915)
5039 {
5040 	int err;
5041 
5042 	GEM_TRACE("\n");
5043 
5044 	mutex_lock(&i915->drm.struct_mutex);
5045 
5046 	intel_runtime_pm_get(i915);
5047 	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5048 
5049 	/*
5050 	 * As we have just resumed the machine and woken the device up from
5051 	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
5052 	 * back to defaults, recovering from whatever wedged state we left it
5053 	 * in and so worth trying to use the device once more.
5054 	 */
5055 	if (i915_terminally_wedged(&i915->gpu_error))
5056 		i915_gem_unset_wedged(i915);
5057 
5058 	/*
5059 	 * If we inherit context state from the BIOS or earlier occupants
5060 	 * of the GPU, the GPU may be in an inconsistent state when we
5061 	 * try to take over. The only way to remove the earlier state
5062 	 * is by resetting. However, resetting on earlier gen is tricky as
5063 	 * it may impact the display and we are uncertain about the stability
5064 	 * of the reset, so this could be applied to even earlier gen.
5065 	 */
5066 	err = -ENODEV;
5067 	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
5068 		err = WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
5069 	if (!err)
5070 		intel_engines_sanitize(i915);
5071 
5072 	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5073 	intel_runtime_pm_put(i915);
5074 
5075 	i915_gem_contexts_lost(i915);
5076 	mutex_unlock(&i915->drm.struct_mutex);
5077 }
5078 
5079 int i915_gem_suspend(struct drm_i915_private *i915)
5080 {
5081 	int ret;
5082 
5083 	GEM_TRACE("\n");
5084 
5085 	intel_runtime_pm_get(i915);
5086 	intel_suspend_gt_powersave(i915);
5087 
5088 	mutex_lock(&i915->drm.struct_mutex);
5089 
5090 	/*
5091 	 * We have to flush all the executing contexts to main memory so
5092 	 * that they can saved in the hibernation image. To ensure the last
5093 	 * context image is coherent, we have to switch away from it. That
5094 	 * leaves the i915->kernel_context still active when
5095 	 * we actually suspend, and its image in memory may not match the GPU
5096 	 * state. Fortunately, the kernel_context is disposable and we do
5097 	 * not rely on its state.
5098 	 */
5099 	if (!i915_terminally_wedged(&i915->gpu_error)) {
5100 		ret = i915_gem_switch_to_kernel_context(i915);
5101 		if (ret)
5102 			goto err_unlock;
5103 
5104 		ret = i915_gem_wait_for_idle(i915,
5105 					     I915_WAIT_INTERRUPTIBLE |
5106 					     I915_WAIT_LOCKED |
5107 					     I915_WAIT_FOR_IDLE_BOOST,
5108 					     MAX_SCHEDULE_TIMEOUT);
5109 		if (ret && ret != -EIO)
5110 			goto err_unlock;
5111 
5112 		assert_kernel_context_is_current(i915);
5113 	}
5114 	i915_retire_requests(i915); /* ensure we flush after wedging */
5115 
5116 	mutex_unlock(&i915->drm.struct_mutex);
5117 
5118 	intel_uc_suspend(i915);
5119 
5120 	cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
5121 	cancel_delayed_work_sync(&i915->gt.retire_work);
5122 
5123 	/*
5124 	 * As the idle_work is rearming if it detects a race, play safe and
5125 	 * repeat the flush until it is definitely idle.
5126 	 */
5127 	drain_delayed_work(&i915->gt.idle_work);
5128 
5129 	/*
5130 	 * Assert that we successfully flushed all the work and
5131 	 * reset the GPU back to its idle, low power state.
5132 	 */
5133 	WARN_ON(i915->gt.awake);
5134 	if (WARN_ON(!intel_engines_are_idle(i915)))
5135 		i915_gem_set_wedged(i915); /* no hope, discard everything */
5136 
5137 	intel_runtime_pm_put(i915);
5138 	return 0;
5139 
5140 err_unlock:
5141 	mutex_unlock(&i915->drm.struct_mutex);
5142 	intel_runtime_pm_put(i915);
5143 	return ret;
5144 }
5145 
5146 void i915_gem_suspend_late(struct drm_i915_private *i915)
5147 {
5148 	struct drm_i915_gem_object *obj;
5149 	struct list_head *phases[] = {
5150 		&i915->mm.unbound_list,
5151 		&i915->mm.bound_list,
5152 		NULL
5153 	}, **phase;
5154 
5155 	/*
5156 	 * Neither the BIOS, ourselves or any other kernel
5157 	 * expects the system to be in execlists mode on startup,
5158 	 * so we need to reset the GPU back to legacy mode. And the only
5159 	 * known way to disable logical contexts is through a GPU reset.
5160 	 *
5161 	 * So in order to leave the system in a known default configuration,
5162 	 * always reset the GPU upon unload and suspend. Afterwards we then
5163 	 * clean up the GEM state tracking, flushing off the requests and
5164 	 * leaving the system in a known idle state.
5165 	 *
5166 	 * Note that is of the upmost importance that the GPU is idle and
5167 	 * all stray writes are flushed *before* we dismantle the backing
5168 	 * storage for the pinned objects.
5169 	 *
5170 	 * However, since we are uncertain that resetting the GPU on older
5171 	 * machines is a good idea, we don't - just in case it leaves the
5172 	 * machine in an unusable condition.
5173 	 */
5174 
5175 	mutex_lock(&i915->drm.struct_mutex);
5176 	for (phase = phases; *phase; phase++) {
5177 		list_for_each_entry(obj, *phase, mm.link)
5178 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
5179 	}
5180 	mutex_unlock(&i915->drm.struct_mutex);
5181 
5182 	intel_uc_sanitize(i915);
5183 	i915_gem_sanitize(i915);
5184 }
5185 
5186 void i915_gem_resume(struct drm_i915_private *i915)
5187 {
5188 	GEM_TRACE("\n");
5189 
5190 	WARN_ON(i915->gt.awake);
5191 
5192 	mutex_lock(&i915->drm.struct_mutex);
5193 	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5194 
5195 	i915_gem_restore_gtt_mappings(i915);
5196 	i915_gem_restore_fences(i915);
5197 
5198 	/*
5199 	 * As we didn't flush the kernel context before suspend, we cannot
5200 	 * guarantee that the context image is complete. So let's just reset
5201 	 * it and start again.
5202 	 */
5203 	i915->gt.resume(i915);
5204 
5205 	if (i915_gem_init_hw(i915))
5206 		goto err_wedged;
5207 
5208 	intel_uc_resume(i915);
5209 
5210 	/* Always reload a context for powersaving. */
5211 	if (i915_gem_switch_to_kernel_context(i915))
5212 		goto err_wedged;
5213 
5214 out_unlock:
5215 	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5216 	mutex_unlock(&i915->drm.struct_mutex);
5217 	return;
5218 
5219 err_wedged:
5220 	if (!i915_terminally_wedged(&i915->gpu_error)) {
5221 		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
5222 		i915_gem_set_wedged(i915);
5223 	}
5224 	goto out_unlock;
5225 }
5226 
5227 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5228 {
5229 	if (INTEL_GEN(dev_priv) < 5 ||
5230 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5231 		return;
5232 
5233 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5234 				 DISP_TILE_SURFACE_SWIZZLING);
5235 
5236 	if (IS_GEN5(dev_priv))
5237 		return;
5238 
5239 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5240 	if (IS_GEN6(dev_priv))
5241 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5242 	else if (IS_GEN7(dev_priv))
5243 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5244 	else if (IS_GEN8(dev_priv))
5245 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5246 	else
5247 		BUG();
5248 }
5249 
5250 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5251 {
5252 	I915_WRITE(RING_CTL(base), 0);
5253 	I915_WRITE(RING_HEAD(base), 0);
5254 	I915_WRITE(RING_TAIL(base), 0);
5255 	I915_WRITE(RING_START(base), 0);
5256 }
5257 
5258 static void init_unused_rings(struct drm_i915_private *dev_priv)
5259 {
5260 	if (IS_I830(dev_priv)) {
5261 		init_unused_ring(dev_priv, PRB1_BASE);
5262 		init_unused_ring(dev_priv, SRB0_BASE);
5263 		init_unused_ring(dev_priv, SRB1_BASE);
5264 		init_unused_ring(dev_priv, SRB2_BASE);
5265 		init_unused_ring(dev_priv, SRB3_BASE);
5266 	} else if (IS_GEN2(dev_priv)) {
5267 		init_unused_ring(dev_priv, SRB0_BASE);
5268 		init_unused_ring(dev_priv, SRB1_BASE);
5269 	} else if (IS_GEN3(dev_priv)) {
5270 		init_unused_ring(dev_priv, PRB1_BASE);
5271 		init_unused_ring(dev_priv, PRB2_BASE);
5272 	}
5273 }
5274 
5275 static int __i915_gem_restart_engines(void *data)
5276 {
5277 	struct drm_i915_private *i915 = data;
5278 	struct intel_engine_cs *engine;
5279 	enum intel_engine_id id;
5280 	int err;
5281 
5282 	for_each_engine(engine, i915, id) {
5283 		err = engine->init_hw(engine);
5284 		if (err) {
5285 			DRM_ERROR("Failed to restart %s (%d)\n",
5286 				  engine->name, err);
5287 			return err;
5288 		}
5289 	}
5290 
5291 	return 0;
5292 }
5293 
5294 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
5295 {
5296 	int ret;
5297 
5298 	dev_priv->gt.last_init_time = ktime_get();
5299 
5300 	/* Double layer security blanket, see i915_gem_init() */
5301 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5302 
5303 	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5304 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5305 
5306 	if (IS_HASWELL(dev_priv))
5307 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5308 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5309 
5310 	/* Apply the GT workarounds... */
5311 	intel_gt_apply_workarounds(dev_priv);
5312 	/* ...and determine whether they are sticking. */
5313 	intel_gt_verify_workarounds(dev_priv, "init");
5314 
5315 	i915_gem_init_swizzling(dev_priv);
5316 
5317 	/*
5318 	 * At least 830 can leave some of the unused rings
5319 	 * "active" (ie. head != tail) after resume which
5320 	 * will prevent c3 entry. Makes sure all unused rings
5321 	 * are totally idle.
5322 	 */
5323 	init_unused_rings(dev_priv);
5324 
5325 	BUG_ON(!dev_priv->kernel_context);
5326 	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5327 		ret = -EIO;
5328 		goto out;
5329 	}
5330 
5331 	ret = i915_ppgtt_init_hw(dev_priv);
5332 	if (ret) {
5333 		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5334 		goto out;
5335 	}
5336 
5337 	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
5338 	if (ret) {
5339 		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
5340 		goto out;
5341 	}
5342 
5343 	/* We can't enable contexts until all firmware is loaded */
5344 	ret = intel_uc_init_hw(dev_priv);
5345 	if (ret) {
5346 		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5347 		goto out;
5348 	}
5349 
5350 	intel_mocs_init_l3cc_table(dev_priv);
5351 
5352 	/* Only when the HW is re-initialised, can we replay the requests */
5353 	ret = __i915_gem_restart_engines(dev_priv);
5354 	if (ret)
5355 		goto cleanup_uc;
5356 
5357 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5358 
5359 	return 0;
5360 
5361 cleanup_uc:
5362 	intel_uc_fini_hw(dev_priv);
5363 out:
5364 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5365 
5366 	return ret;
5367 }
5368 
5369 static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5370 {
5371 	struct i915_gem_context *ctx;
5372 	struct intel_engine_cs *engine;
5373 	enum intel_engine_id id;
5374 	int err;
5375 
5376 	/*
5377 	 * As we reset the gpu during very early sanitisation, the current
5378 	 * register state on the GPU should reflect its defaults values.
5379 	 * We load a context onto the hw (with restore-inhibit), then switch
5380 	 * over to a second context to save that default register state. We
5381 	 * can then prime every new context with that state so they all start
5382 	 * from the same default HW values.
5383 	 */
5384 
5385 	ctx = i915_gem_context_create_kernel(i915, 0);
5386 	if (IS_ERR(ctx))
5387 		return PTR_ERR(ctx);
5388 
5389 	for_each_engine(engine, i915, id) {
5390 		struct i915_request *rq;
5391 
5392 		rq = i915_request_alloc(engine, ctx);
5393 		if (IS_ERR(rq)) {
5394 			err = PTR_ERR(rq);
5395 			goto out_ctx;
5396 		}
5397 
5398 		err = 0;
5399 		if (engine->init_context)
5400 			err = engine->init_context(rq);
5401 
5402 		i915_request_add(rq);
5403 		if (err)
5404 			goto err_active;
5405 	}
5406 
5407 	err = i915_gem_switch_to_kernel_context(i915);
5408 	if (err)
5409 		goto err_active;
5410 
5411 	if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
5412 		i915_gem_set_wedged(i915);
5413 		err = -EIO; /* Caller will declare us wedged */
5414 		goto err_active;
5415 	}
5416 
5417 	assert_kernel_context_is_current(i915);
5418 
5419 	/*
5420 	 * Immediately park the GPU so that we enable powersaving and
5421 	 * treat it as idle. The next time we issue a request, we will
5422 	 * unpark and start using the engine->pinned_default_state, otherwise
5423 	 * it is in limbo and an early reset may fail.
5424 	 */
5425 	__i915_gem_park(i915);
5426 
5427 	for_each_engine(engine, i915, id) {
5428 		struct i915_vma *state;
5429 		void *vaddr;
5430 
5431 		GEM_BUG_ON(to_intel_context(ctx, engine)->pin_count);
5432 
5433 		state = to_intel_context(ctx, engine)->state;
5434 		if (!state)
5435 			continue;
5436 
5437 		/*
5438 		 * As we will hold a reference to the logical state, it will
5439 		 * not be torn down with the context, and importantly the
5440 		 * object will hold onto its vma (making it possible for a
5441 		 * stray GTT write to corrupt our defaults). Unmap the vma
5442 		 * from the GTT to prevent such accidents and reclaim the
5443 		 * space.
5444 		 */
5445 		err = i915_vma_unbind(state);
5446 		if (err)
5447 			goto err_active;
5448 
5449 		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5450 		if (err)
5451 			goto err_active;
5452 
5453 		engine->default_state = i915_gem_object_get(state->obj);
5454 
5455 		/* Check we can acquire the image of the context state */
5456 		vaddr = i915_gem_object_pin_map(engine->default_state,
5457 						I915_MAP_FORCE_WB);
5458 		if (IS_ERR(vaddr)) {
5459 			err = PTR_ERR(vaddr);
5460 			goto err_active;
5461 		}
5462 
5463 		i915_gem_object_unpin_map(engine->default_state);
5464 	}
5465 
5466 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5467 		unsigned int found = intel_engines_has_context_isolation(i915);
5468 
5469 		/*
5470 		 * Make sure that classes with multiple engine instances all
5471 		 * share the same basic configuration.
5472 		 */
5473 		for_each_engine(engine, i915, id) {
5474 			unsigned int bit = BIT(engine->uabi_class);
5475 			unsigned int expected = engine->default_state ? bit : 0;
5476 
5477 			if ((found & bit) != expected) {
5478 				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5479 					  engine->uabi_class, engine->name);
5480 			}
5481 		}
5482 	}
5483 
5484 out_ctx:
5485 	i915_gem_context_set_closed(ctx);
5486 	i915_gem_context_put(ctx);
5487 	return err;
5488 
5489 err_active:
5490 	/*
5491 	 * If we have to abandon now, we expect the engines to be idle
5492 	 * and ready to be torn-down. First try to flush any remaining
5493 	 * request, ensure we are pointing at the kernel context and
5494 	 * then remove it.
5495 	 */
5496 	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5497 		goto out_ctx;
5498 
5499 	if (WARN_ON(i915_gem_wait_for_idle(i915,
5500 					   I915_WAIT_LOCKED,
5501 					   MAX_SCHEDULE_TIMEOUT)))
5502 		goto out_ctx;
5503 
5504 	i915_gem_contexts_lost(i915);
5505 	goto out_ctx;
5506 }
5507 
5508 static int
5509 i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
5510 {
5511 	struct drm_i915_gem_object *obj;
5512 	struct i915_vma *vma;
5513 	int ret;
5514 
5515 	obj = i915_gem_object_create_stolen(i915, size);
5516 	if (!obj)
5517 		obj = i915_gem_object_create_internal(i915, size);
5518 	if (IS_ERR(obj)) {
5519 		DRM_ERROR("Failed to allocate scratch page\n");
5520 		return PTR_ERR(obj);
5521 	}
5522 
5523 	vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
5524 	if (IS_ERR(vma)) {
5525 		ret = PTR_ERR(vma);
5526 		goto err_unref;
5527 	}
5528 
5529 	ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
5530 	if (ret)
5531 		goto err_unref;
5532 
5533 	i915->gt.scratch = vma;
5534 	return 0;
5535 
5536 err_unref:
5537 	i915_gem_object_put(obj);
5538 	return ret;
5539 }
5540 
5541 static void i915_gem_fini_scratch(struct drm_i915_private *i915)
5542 {
5543 	i915_vma_unpin_and_release(&i915->gt.scratch, 0);
5544 }
5545 
5546 int i915_gem_init(struct drm_i915_private *dev_priv)
5547 {
5548 	int ret;
5549 
5550 	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
5551 	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
5552 		mkwrite_device_info(dev_priv)->page_sizes =
5553 			I915_GTT_PAGE_SIZE_4K;
5554 
5555 	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5556 
5557 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5558 		dev_priv->gt.resume = intel_lr_context_resume;
5559 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5560 	} else {
5561 		dev_priv->gt.resume = intel_legacy_submission_resume;
5562 		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5563 	}
5564 
5565 	ret = i915_gem_init_userptr(dev_priv);
5566 	if (ret)
5567 		return ret;
5568 
5569 	ret = intel_uc_init_misc(dev_priv);
5570 	if (ret)
5571 		return ret;
5572 
5573 	ret = intel_wopcm_init(&dev_priv->wopcm);
5574 	if (ret)
5575 		goto err_uc_misc;
5576 
5577 	/* This is just a security blanket to placate dragons.
5578 	 * On some systems, we very sporadically observe that the first TLBs
5579 	 * used by the CS may be stale, despite us poking the TLB reset. If
5580 	 * we hold the forcewake during initialisation these problems
5581 	 * just magically go away.
5582 	 */
5583 	mutex_lock(&dev_priv->drm.struct_mutex);
5584 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5585 
5586 	ret = i915_gem_init_ggtt(dev_priv);
5587 	if (ret) {
5588 		GEM_BUG_ON(ret == -EIO);
5589 		goto err_unlock;
5590 	}
5591 
5592 	ret = i915_gem_init_scratch(dev_priv,
5593 				    IS_GEN2(dev_priv) ? SZ_256K : PAGE_SIZE);
5594 	if (ret) {
5595 		GEM_BUG_ON(ret == -EIO);
5596 		goto err_ggtt;
5597 	}
5598 
5599 	ret = i915_gem_contexts_init(dev_priv);
5600 	if (ret) {
5601 		GEM_BUG_ON(ret == -EIO);
5602 		goto err_scratch;
5603 	}
5604 
5605 	ret = intel_engines_init(dev_priv);
5606 	if (ret) {
5607 		GEM_BUG_ON(ret == -EIO);
5608 		goto err_context;
5609 	}
5610 
5611 	intel_init_gt_powersave(dev_priv);
5612 
5613 	ret = intel_uc_init(dev_priv);
5614 	if (ret)
5615 		goto err_pm;
5616 
5617 	ret = i915_gem_init_hw(dev_priv);
5618 	if (ret)
5619 		goto err_uc_init;
5620 
5621 	/*
5622 	 * Despite its name intel_init_clock_gating applies both display
5623 	 * clock gating workarounds; GT mmio workarounds and the occasional
5624 	 * GT power context workaround. Worse, sometimes it includes a context
5625 	 * register workaround which we need to apply before we record the
5626 	 * default HW state for all contexts.
5627 	 *
5628 	 * FIXME: break up the workarounds and apply them at the right time!
5629 	 */
5630 	intel_init_clock_gating(dev_priv);
5631 
5632 	ret = __intel_engines_record_defaults(dev_priv);
5633 	if (ret)
5634 		goto err_init_hw;
5635 
5636 	if (i915_inject_load_failure()) {
5637 		ret = -ENODEV;
5638 		goto err_init_hw;
5639 	}
5640 
5641 	if (i915_inject_load_failure()) {
5642 		ret = -EIO;
5643 		goto err_init_hw;
5644 	}
5645 
5646 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5647 	mutex_unlock(&dev_priv->drm.struct_mutex);
5648 
5649 	return 0;
5650 
5651 	/*
5652 	 * Unwinding is complicated by that we want to handle -EIO to mean
5653 	 * disable GPU submission but keep KMS alive. We want to mark the
5654 	 * HW as irrevisibly wedged, but keep enough state around that the
5655 	 * driver doesn't explode during runtime.
5656 	 */
5657 err_init_hw:
5658 	mutex_unlock(&dev_priv->drm.struct_mutex);
5659 
5660 	WARN_ON(i915_gem_suspend(dev_priv));
5661 	i915_gem_suspend_late(dev_priv);
5662 
5663 	i915_gem_drain_workqueue(dev_priv);
5664 
5665 	mutex_lock(&dev_priv->drm.struct_mutex);
5666 	intel_uc_fini_hw(dev_priv);
5667 err_uc_init:
5668 	intel_uc_fini(dev_priv);
5669 err_pm:
5670 	if (ret != -EIO) {
5671 		intel_cleanup_gt_powersave(dev_priv);
5672 		i915_gem_cleanup_engines(dev_priv);
5673 	}
5674 err_context:
5675 	if (ret != -EIO)
5676 		i915_gem_contexts_fini(dev_priv);
5677 err_scratch:
5678 	i915_gem_fini_scratch(dev_priv);
5679 err_ggtt:
5680 err_unlock:
5681 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5682 	mutex_unlock(&dev_priv->drm.struct_mutex);
5683 
5684 err_uc_misc:
5685 	intel_uc_fini_misc(dev_priv);
5686 
5687 	if (ret != -EIO)
5688 		i915_gem_cleanup_userptr(dev_priv);
5689 
5690 	if (ret == -EIO) {
5691 		mutex_lock(&dev_priv->drm.struct_mutex);
5692 
5693 		/*
5694 		 * Allow engine initialisation to fail by marking the GPU as
5695 		 * wedged. But we only want to do this where the GPU is angry,
5696 		 * for all other failure, such as an allocation failure, bail.
5697 		 */
5698 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5699 			i915_load_error(dev_priv,
5700 					"Failed to initialize GPU, declaring it wedged!\n");
5701 			i915_gem_set_wedged(dev_priv);
5702 		}
5703 
5704 		/* Minimal basic recovery for KMS */
5705 		ret = i915_ggtt_enable_hw(dev_priv);
5706 		i915_gem_restore_gtt_mappings(dev_priv);
5707 		i915_gem_restore_fences(dev_priv);
5708 		intel_init_clock_gating(dev_priv);
5709 
5710 		mutex_unlock(&dev_priv->drm.struct_mutex);
5711 	}
5712 
5713 	i915_gem_drain_freed_objects(dev_priv);
5714 	return ret;
5715 }
5716 
5717 void i915_gem_fini(struct drm_i915_private *dev_priv)
5718 {
5719 	i915_gem_suspend_late(dev_priv);
5720 	intel_disable_gt_powersave(dev_priv);
5721 
5722 	/* Flush any outstanding unpin_work. */
5723 	i915_gem_drain_workqueue(dev_priv);
5724 
5725 	mutex_lock(&dev_priv->drm.struct_mutex);
5726 	intel_uc_fini_hw(dev_priv);
5727 	intel_uc_fini(dev_priv);
5728 	i915_gem_cleanup_engines(dev_priv);
5729 	i915_gem_contexts_fini(dev_priv);
5730 	i915_gem_fini_scratch(dev_priv);
5731 	mutex_unlock(&dev_priv->drm.struct_mutex);
5732 
5733 	intel_wa_list_free(&dev_priv->gt_wa_list);
5734 
5735 	intel_cleanup_gt_powersave(dev_priv);
5736 
5737 	intel_uc_fini_misc(dev_priv);
5738 	i915_gem_cleanup_userptr(dev_priv);
5739 
5740 	i915_gem_drain_freed_objects(dev_priv);
5741 
5742 	WARN_ON(!list_empty(&dev_priv->contexts.list));
5743 }
5744 
5745 void i915_gem_init_mmio(struct drm_i915_private *i915)
5746 {
5747 	i915_gem_sanitize(i915);
5748 }
5749 
5750 void
5751 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5752 {
5753 	struct intel_engine_cs *engine;
5754 	enum intel_engine_id id;
5755 
5756 	for_each_engine(engine, dev_priv, id)
5757 		dev_priv->gt.cleanup_engine(engine);
5758 }
5759 
5760 void
5761 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5762 {
5763 	int i;
5764 
5765 	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5766 	    !IS_CHERRYVIEW(dev_priv))
5767 		dev_priv->num_fence_regs = 32;
5768 	else if (INTEL_GEN(dev_priv) >= 4 ||
5769 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5770 		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5771 		dev_priv->num_fence_regs = 16;
5772 	else
5773 		dev_priv->num_fence_regs = 8;
5774 
5775 	if (intel_vgpu_active(dev_priv))
5776 		dev_priv->num_fence_regs =
5777 				I915_READ(vgtif_reg(avail_rs.fence_num));
5778 
5779 	/* Initialize fence registers to zero */
5780 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
5781 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5782 
5783 		fence->i915 = dev_priv;
5784 		fence->id = i;
5785 		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5786 	}
5787 	i915_gem_restore_fences(dev_priv);
5788 
5789 	i915_gem_detect_bit_6_swizzle(dev_priv);
5790 }
5791 
5792 static void i915_gem_init__mm(struct drm_i915_private *i915)
5793 {
5794 	spin_lock_init(&i915->mm.object_stat_lock);
5795 	spin_lock_init(&i915->mm.obj_lock);
5796 	spin_lock_init(&i915->mm.free_lock);
5797 
5798 	init_llist_head(&i915->mm.free_list);
5799 
5800 	INIT_LIST_HEAD(&i915->mm.unbound_list);
5801 	INIT_LIST_HEAD(&i915->mm.bound_list);
5802 	INIT_LIST_HEAD(&i915->mm.fence_list);
5803 	INIT_LIST_HEAD(&i915->mm.userfault_list);
5804 
5805 	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5806 }
5807 
5808 int i915_gem_init_early(struct drm_i915_private *dev_priv)
5809 {
5810 	int err = -ENOMEM;
5811 
5812 	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5813 	if (!dev_priv->objects)
5814 		goto err_out;
5815 
5816 	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5817 	if (!dev_priv->vmas)
5818 		goto err_objects;
5819 
5820 	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5821 	if (!dev_priv->luts)
5822 		goto err_vmas;
5823 
5824 	dev_priv->requests = KMEM_CACHE(i915_request,
5825 					SLAB_HWCACHE_ALIGN |
5826 					SLAB_RECLAIM_ACCOUNT |
5827 					SLAB_TYPESAFE_BY_RCU);
5828 	if (!dev_priv->requests)
5829 		goto err_luts;
5830 
5831 	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5832 					    SLAB_HWCACHE_ALIGN |
5833 					    SLAB_RECLAIM_ACCOUNT);
5834 	if (!dev_priv->dependencies)
5835 		goto err_requests;
5836 
5837 	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5838 	if (!dev_priv->priorities)
5839 		goto err_dependencies;
5840 
5841 	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5842 	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5843 	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5844 
5845 	i915_gem_init__mm(dev_priv);
5846 
5847 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5848 			  i915_gem_retire_work_handler);
5849 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5850 			  i915_gem_idle_work_handler);
5851 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5852 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5853 
5854 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5855 
5856 	spin_lock_init(&dev_priv->fb_tracking.lock);
5857 
5858 	err = i915_gemfs_init(dev_priv);
5859 	if (err)
5860 		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5861 
5862 	return 0;
5863 
5864 err_dependencies:
5865 	kmem_cache_destroy(dev_priv->dependencies);
5866 err_requests:
5867 	kmem_cache_destroy(dev_priv->requests);
5868 err_luts:
5869 	kmem_cache_destroy(dev_priv->luts);
5870 err_vmas:
5871 	kmem_cache_destroy(dev_priv->vmas);
5872 err_objects:
5873 	kmem_cache_destroy(dev_priv->objects);
5874 err_out:
5875 	return err;
5876 }
5877 
5878 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5879 {
5880 	i915_gem_drain_freed_objects(dev_priv);
5881 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
5882 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5883 	WARN_ON(dev_priv->mm.object_count);
5884 	WARN_ON(!list_empty(&dev_priv->gt.timelines));
5885 
5886 	kmem_cache_destroy(dev_priv->priorities);
5887 	kmem_cache_destroy(dev_priv->dependencies);
5888 	kmem_cache_destroy(dev_priv->requests);
5889 	kmem_cache_destroy(dev_priv->luts);
5890 	kmem_cache_destroy(dev_priv->vmas);
5891 	kmem_cache_destroy(dev_priv->objects);
5892 
5893 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5894 	rcu_barrier();
5895 
5896 	i915_gemfs_fini(dev_priv);
5897 }
5898 
5899 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5900 {
5901 	/* Discard all purgeable objects, let userspace recover those as
5902 	 * required after resuming.
5903 	 */
5904 	i915_gem_shrink_all(dev_priv);
5905 
5906 	return 0;
5907 }
5908 
5909 int i915_gem_freeze_late(struct drm_i915_private *i915)
5910 {
5911 	struct drm_i915_gem_object *obj;
5912 	struct list_head *phases[] = {
5913 		&i915->mm.unbound_list,
5914 		&i915->mm.bound_list,
5915 		NULL
5916 	}, **phase;
5917 
5918 	/*
5919 	 * Called just before we write the hibernation image.
5920 	 *
5921 	 * We need to update the domain tracking to reflect that the CPU
5922 	 * will be accessing all the pages to create and restore from the
5923 	 * hibernation, and so upon restoration those pages will be in the
5924 	 * CPU domain.
5925 	 *
5926 	 * To make sure the hibernation image contains the latest state,
5927 	 * we update that state just before writing out the image.
5928 	 *
5929 	 * To try and reduce the hibernation image, we manually shrink
5930 	 * the objects as well, see i915_gem_freeze()
5931 	 */
5932 
5933 	i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
5934 	i915_gem_drain_freed_objects(i915);
5935 
5936 	mutex_lock(&i915->drm.struct_mutex);
5937 	for (phase = phases; *phase; phase++) {
5938 		list_for_each_entry(obj, *phase, mm.link)
5939 			WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5940 	}
5941 	mutex_unlock(&i915->drm.struct_mutex);
5942 
5943 	return 0;
5944 }
5945 
5946 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5947 {
5948 	struct drm_i915_file_private *file_priv = file->driver_priv;
5949 	struct i915_request *request;
5950 
5951 	/* Clean up our request list when the client is going away, so that
5952 	 * later retire_requests won't dereference our soon-to-be-gone
5953 	 * file_priv.
5954 	 */
5955 	spin_lock(&file_priv->mm.lock);
5956 	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5957 		request->file_priv = NULL;
5958 	spin_unlock(&file_priv->mm.lock);
5959 }
5960 
5961 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5962 {
5963 	struct drm_i915_file_private *file_priv;
5964 	int ret;
5965 
5966 	DRM_DEBUG("\n");
5967 
5968 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5969 	if (!file_priv)
5970 		return -ENOMEM;
5971 
5972 	file->driver_priv = file_priv;
5973 	file_priv->dev_priv = i915;
5974 	file_priv->file = file;
5975 
5976 	spin_lock_init(&file_priv->mm.lock);
5977 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5978 
5979 	file_priv->bsd_engine = -1;
5980 	file_priv->hang_timestamp = jiffies;
5981 
5982 	ret = i915_gem_context_open(i915, file);
5983 	if (ret)
5984 		kfree(file_priv);
5985 
5986 	return ret;
5987 }
5988 
5989 /**
5990  * i915_gem_track_fb - update frontbuffer tracking
5991  * @old: current GEM buffer for the frontbuffer slots
5992  * @new: new GEM buffer for the frontbuffer slots
5993  * @frontbuffer_bits: bitmask of frontbuffer slots
5994  *
5995  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5996  * from @old and setting them in @new. Both @old and @new can be NULL.
5997  */
5998 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5999 		       struct drm_i915_gem_object *new,
6000 		       unsigned frontbuffer_bits)
6001 {
6002 	/* Control of individual bits within the mask are guarded by
6003 	 * the owning plane->mutex, i.e. we can never see concurrent
6004 	 * manipulation of individual bits. But since the bitfield as a whole
6005 	 * is updated using RMW, we need to use atomics in order to update
6006 	 * the bits.
6007 	 */
6008 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
6009 		     BITS_PER_TYPE(atomic_t));
6010 
6011 	if (old) {
6012 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
6013 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
6014 	}
6015 
6016 	if (new) {
6017 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
6018 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
6019 	}
6020 }
6021 
6022 /* Allocate a new GEM object and fill it with the supplied data */
6023 struct drm_i915_gem_object *
6024 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
6025 			         const void *data, size_t size)
6026 {
6027 	struct drm_i915_gem_object *obj;
6028 	struct file *file;
6029 	size_t offset;
6030 	int err;
6031 
6032 	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
6033 	if (IS_ERR(obj))
6034 		return obj;
6035 
6036 	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
6037 
6038 	file = obj->base.filp;
6039 	offset = 0;
6040 	do {
6041 		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
6042 		struct page *page;
6043 		void *pgdata, *vaddr;
6044 
6045 		err = pagecache_write_begin(file, file->f_mapping,
6046 					    offset, len, 0,
6047 					    &page, &pgdata);
6048 		if (err < 0)
6049 			goto fail;
6050 
6051 		vaddr = kmap(page);
6052 		memcpy(vaddr, data, len);
6053 		kunmap(page);
6054 
6055 		err = pagecache_write_end(file, file->f_mapping,
6056 					  offset, len, len,
6057 					  page, pgdata);
6058 		if (err < 0)
6059 			goto fail;
6060 
6061 		size -= len;
6062 		data += len;
6063 		offset += len;
6064 	} while (size);
6065 
6066 	return obj;
6067 
6068 fail:
6069 	i915_gem_object_put(obj);
6070 	return ERR_PTR(err);
6071 }
6072 
6073 struct scatterlist *
6074 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
6075 		       unsigned int n,
6076 		       unsigned int *offset)
6077 {
6078 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
6079 	struct scatterlist *sg;
6080 	unsigned int idx, count;
6081 
6082 	might_sleep();
6083 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
6084 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
6085 
6086 	/* As we iterate forward through the sg, we record each entry in a
6087 	 * radixtree for quick repeated (backwards) lookups. If we have seen
6088 	 * this index previously, we will have an entry for it.
6089 	 *
6090 	 * Initial lookup is O(N), but this is amortized to O(1) for
6091 	 * sequential page access (where each new request is consecutive
6092 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
6093 	 * i.e. O(1) with a large constant!
6094 	 */
6095 	if (n < READ_ONCE(iter->sg_idx))
6096 		goto lookup;
6097 
6098 	mutex_lock(&iter->lock);
6099 
6100 	/* We prefer to reuse the last sg so that repeated lookup of this
6101 	 * (or the subsequent) sg are fast - comparing against the last
6102 	 * sg is faster than going through the radixtree.
6103 	 */
6104 
6105 	sg = iter->sg_pos;
6106 	idx = iter->sg_idx;
6107 	count = __sg_page_count(sg);
6108 
6109 	while (idx + count <= n) {
6110 		void *entry;
6111 		unsigned long i;
6112 		int ret;
6113 
6114 		/* If we cannot allocate and insert this entry, or the
6115 		 * individual pages from this range, cancel updating the
6116 		 * sg_idx so that on this lookup we are forced to linearly
6117 		 * scan onwards, but on future lookups we will try the
6118 		 * insertion again (in which case we need to be careful of
6119 		 * the error return reporting that we have already inserted
6120 		 * this index).
6121 		 */
6122 		ret = radix_tree_insert(&iter->radix, idx, sg);
6123 		if (ret && ret != -EEXIST)
6124 			goto scan;
6125 
6126 		entry = xa_mk_value(idx);
6127 		for (i = 1; i < count; i++) {
6128 			ret = radix_tree_insert(&iter->radix, idx + i, entry);
6129 			if (ret && ret != -EEXIST)
6130 				goto scan;
6131 		}
6132 
6133 		idx += count;
6134 		sg = ____sg_next(sg);
6135 		count = __sg_page_count(sg);
6136 	}
6137 
6138 scan:
6139 	iter->sg_pos = sg;
6140 	iter->sg_idx = idx;
6141 
6142 	mutex_unlock(&iter->lock);
6143 
6144 	if (unlikely(n < idx)) /* insertion completed by another thread */
6145 		goto lookup;
6146 
6147 	/* In case we failed to insert the entry into the radixtree, we need
6148 	 * to look beyond the current sg.
6149 	 */
6150 	while (idx + count <= n) {
6151 		idx += count;
6152 		sg = ____sg_next(sg);
6153 		count = __sg_page_count(sg);
6154 	}
6155 
6156 	*offset = n - idx;
6157 	return sg;
6158 
6159 lookup:
6160 	rcu_read_lock();
6161 
6162 	sg = radix_tree_lookup(&iter->radix, n);
6163 	GEM_BUG_ON(!sg);
6164 
6165 	/* If this index is in the middle of multi-page sg entry,
6166 	 * the radix tree will contain a value entry that points
6167 	 * to the start of that range. We will return the pointer to
6168 	 * the base page and the offset of this page within the
6169 	 * sg entry's range.
6170 	 */
6171 	*offset = 0;
6172 	if (unlikely(xa_is_value(sg))) {
6173 		unsigned long base = xa_to_value(sg);
6174 
6175 		sg = radix_tree_lookup(&iter->radix, base);
6176 		GEM_BUG_ON(!sg);
6177 
6178 		*offset = n - base;
6179 	}
6180 
6181 	rcu_read_unlock();
6182 
6183 	return sg;
6184 }
6185 
6186 struct page *
6187 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
6188 {
6189 	struct scatterlist *sg;
6190 	unsigned int offset;
6191 
6192 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
6193 
6194 	sg = i915_gem_object_get_sg(obj, n, &offset);
6195 	return nth_page(sg_page(sg), offset);
6196 }
6197 
6198 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
6199 struct page *
6200 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
6201 			       unsigned int n)
6202 {
6203 	struct page *page;
6204 
6205 	page = i915_gem_object_get_page(obj, n);
6206 	if (!obj->mm.dirty)
6207 		set_page_dirty(page);
6208 
6209 	return page;
6210 }
6211 
6212 dma_addr_t
6213 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
6214 				unsigned long n)
6215 {
6216 	struct scatterlist *sg;
6217 	unsigned int offset;
6218 
6219 	sg = i915_gem_object_get_sg(obj, n, &offset);
6220 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
6221 }
6222 
6223 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
6224 {
6225 	struct sg_table *pages;
6226 	int err;
6227 
6228 	if (align > obj->base.size)
6229 		return -EINVAL;
6230 
6231 	if (obj->ops == &i915_gem_phys_ops)
6232 		return 0;
6233 
6234 	if (obj->ops != &i915_gem_object_ops)
6235 		return -EINVAL;
6236 
6237 	err = i915_gem_object_unbind(obj);
6238 	if (err)
6239 		return err;
6240 
6241 	mutex_lock(&obj->mm.lock);
6242 
6243 	if (obj->mm.madv != I915_MADV_WILLNEED) {
6244 		err = -EFAULT;
6245 		goto err_unlock;
6246 	}
6247 
6248 	if (obj->mm.quirked) {
6249 		err = -EFAULT;
6250 		goto err_unlock;
6251 	}
6252 
6253 	if (obj->mm.mapping) {
6254 		err = -EBUSY;
6255 		goto err_unlock;
6256 	}
6257 
6258 	pages = __i915_gem_object_unset_pages(obj);
6259 
6260 	obj->ops = &i915_gem_phys_ops;
6261 
6262 	err = ____i915_gem_object_get_pages(obj);
6263 	if (err)
6264 		goto err_xfer;
6265 
6266 	/* Perma-pin (until release) the physical set of pages */
6267 	__i915_gem_object_pin_pages(obj);
6268 
6269 	if (!IS_ERR_OR_NULL(pages))
6270 		i915_gem_object_ops.put_pages(obj, pages);
6271 	mutex_unlock(&obj->mm.lock);
6272 	return 0;
6273 
6274 err_xfer:
6275 	obj->ops = &i915_gem_object_ops;
6276 	if (!IS_ERR_OR_NULL(pages)) {
6277 		unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);
6278 
6279 		__i915_gem_object_set_pages(obj, pages, sg_page_sizes);
6280 	}
6281 err_unlock:
6282 	mutex_unlock(&obj->mm.lock);
6283 	return err;
6284 }
6285 
6286 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6287 #include "selftests/scatterlist.c"
6288 #include "selftests/mock_gem_device.c"
6289 #include "selftests/huge_gem_object.c"
6290 #include "selftests/huge_pages.c"
6291 #include "selftests/i915_gem_object.c"
6292 #include "selftests/i915_gem_coherency.c"
6293 #include "selftests/i915_gem.c"
6294 #endif
6295