xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision 8dfb839c)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "intel_workarounds.h"
39 #include "i915_gemfs.h"
40 #include <linux/dma-fence-array.h>
41 #include <linux/kthread.h>
42 #include <linux/reservation.h>
43 #include <linux/shmem_fs.h>
44 #include <linux/slab.h>
45 #include <linux/stop_machine.h>
46 #include <linux/swap.h>
47 #include <linux/pci.h>
48 #include <linux/dma-buf.h>
49 
50 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51 
52 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53 {
54 	if (obj->cache_dirty)
55 		return false;
56 
57 	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58 		return true;
59 
60 	return obj->pin_global; /* currently in use by HW, keep flushed */
61 }
62 
63 static int
64 insert_mappable_node(struct i915_ggtt *ggtt,
65                      struct drm_mm_node *node, u32 size)
66 {
67 	memset(node, 0, sizeof(*node));
68 	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
69 					   size, 0, I915_COLOR_UNEVICTABLE,
70 					   0, ggtt->mappable_end,
71 					   DRM_MM_INSERT_LOW);
72 }
73 
74 static void
75 remove_mappable_node(struct drm_mm_node *node)
76 {
77 	drm_mm_remove_node(node);
78 }
79 
80 /* some bookkeeping */
81 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82 				  u64 size)
83 {
84 	spin_lock(&dev_priv->mm.object_stat_lock);
85 	dev_priv->mm.object_count++;
86 	dev_priv->mm.object_memory += size;
87 	spin_unlock(&dev_priv->mm.object_stat_lock);
88 }
89 
90 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91 				     u64 size)
92 {
93 	spin_lock(&dev_priv->mm.object_stat_lock);
94 	dev_priv->mm.object_count--;
95 	dev_priv->mm.object_memory -= size;
96 	spin_unlock(&dev_priv->mm.object_stat_lock);
97 }
98 
99 static int
100 i915_gem_wait_for_error(struct i915_gpu_error *error)
101 {
102 	int ret;
103 
104 	might_sleep();
105 
106 	/*
107 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108 	 * userspace. If it takes that long something really bad is going on and
109 	 * we should simply try to bail out and fail as gracefully as possible.
110 	 */
111 	ret = wait_event_interruptible_timeout(error->reset_queue,
112 					       !i915_reset_backoff(error),
113 					       I915_RESET_TIMEOUT);
114 	if (ret == 0) {
115 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116 		return -EIO;
117 	} else if (ret < 0) {
118 		return ret;
119 	} else {
120 		return 0;
121 	}
122 }
123 
124 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 {
126 	struct drm_i915_private *dev_priv = to_i915(dev);
127 	int ret;
128 
129 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 	if (ret)
131 		return ret;
132 
133 	ret = mutex_lock_interruptible(&dev->struct_mutex);
134 	if (ret)
135 		return ret;
136 
137 	return 0;
138 }
139 
140 static u32 __i915_gem_park(struct drm_i915_private *i915)
141 {
142 	GEM_TRACE("\n");
143 
144 	lockdep_assert_held(&i915->drm.struct_mutex);
145 	GEM_BUG_ON(i915->gt.active_requests);
146 	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
147 
148 	if (!i915->gt.awake)
149 		return I915_EPOCH_INVALID;
150 
151 	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);
152 
153 	/*
154 	 * Be paranoid and flush a concurrent interrupt to make sure
155 	 * we don't reactivate any irq tasklets after parking.
156 	 *
157 	 * FIXME: Note that even though we have waited for execlists to be idle,
158 	 * there may still be an in-flight interrupt even though the CSB
159 	 * is now empty. synchronize_irq() makes sure that a residual interrupt
160 	 * is completed before we continue, but it doesn't prevent the HW from
161 	 * raising a spurious interrupt later. To complete the shield we should
162 	 * coordinate disabling the CS irq with flushing the interrupts.
163 	 */
164 	synchronize_irq(i915->drm.irq);
165 
166 	intel_engines_park(i915);
167 	i915_timelines_park(i915);
168 
169 	i915_pmu_gt_parked(i915);
170 	i915_vma_parked(i915);
171 
172 	i915->gt.awake = false;
173 
174 	if (INTEL_GEN(i915) >= 6)
175 		gen6_rps_idle(i915);
176 
177 	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);
178 
179 	intel_runtime_pm_put(i915);
180 
181 	return i915->gt.epoch;
182 }
183 
184 void i915_gem_park(struct drm_i915_private *i915)
185 {
186 	GEM_TRACE("\n");
187 
188 	lockdep_assert_held(&i915->drm.struct_mutex);
189 	GEM_BUG_ON(i915->gt.active_requests);
190 
191 	if (!i915->gt.awake)
192 		return;
193 
194 	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
195 	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
196 }
197 
198 void i915_gem_unpark(struct drm_i915_private *i915)
199 {
200 	GEM_TRACE("\n");
201 
202 	lockdep_assert_held(&i915->drm.struct_mutex);
203 	GEM_BUG_ON(!i915->gt.active_requests);
204 
205 	if (i915->gt.awake)
206 		return;
207 
208 	intel_runtime_pm_get_noresume(i915);
209 
210 	/*
211 	 * It seems that the DMC likes to transition between the DC states a lot
212 	 * when there are no connected displays (no active power domains) during
213 	 * command submission.
214 	 *
215 	 * This activity has negative impact on the performance of the chip with
216 	 * huge latencies observed in the interrupt handler and elsewhere.
217 	 *
218 	 * Work around it by grabbing a GT IRQ power domain whilst there is any
219 	 * GT activity, preventing any DC state transitions.
220 	 */
221 	intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
222 
223 	i915->gt.awake = true;
224 	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
225 		i915->gt.epoch = 1;
226 
227 	intel_enable_gt_powersave(i915);
228 	i915_update_gfx_val(i915);
229 	if (INTEL_GEN(i915) >= 6)
230 		gen6_rps_busy(i915);
231 	i915_pmu_gt_unparked(i915);
232 
233 	intel_engines_unpark(i915);
234 
235 	i915_queue_hangcheck(i915);
236 
237 	queue_delayed_work(i915->wq,
238 			   &i915->gt.retire_work,
239 			   round_jiffies_up_relative(HZ));
240 }
241 
242 int
243 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
244 			    struct drm_file *file)
245 {
246 	struct drm_i915_private *dev_priv = to_i915(dev);
247 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
248 	struct drm_i915_gem_get_aperture *args = data;
249 	struct i915_vma *vma;
250 	u64 pinned;
251 
252 	pinned = ggtt->vm.reserved;
253 	mutex_lock(&dev->struct_mutex);
254 	list_for_each_entry(vma, &ggtt->vm.active_list, vm_link)
255 		if (i915_vma_is_pinned(vma))
256 			pinned += vma->node.size;
257 	list_for_each_entry(vma, &ggtt->vm.inactive_list, vm_link)
258 		if (i915_vma_is_pinned(vma))
259 			pinned += vma->node.size;
260 	mutex_unlock(&dev->struct_mutex);
261 
262 	args->aper_size = ggtt->vm.total;
263 	args->aper_available_size = args->aper_size - pinned;
264 
265 	return 0;
266 }
267 
268 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
269 {
270 	struct address_space *mapping = obj->base.filp->f_mapping;
271 	drm_dma_handle_t *phys;
272 	struct sg_table *st;
273 	struct scatterlist *sg;
274 	char *vaddr;
275 	int i;
276 	int err;
277 
278 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
279 		return -EINVAL;
280 
281 	/* Always aligning to the object size, allows a single allocation
282 	 * to handle all possible callers, and given typical object sizes,
283 	 * the alignment of the buddy allocation will naturally match.
284 	 */
285 	phys = drm_pci_alloc(obj->base.dev,
286 			     roundup_pow_of_two(obj->base.size),
287 			     roundup_pow_of_two(obj->base.size));
288 	if (!phys)
289 		return -ENOMEM;
290 
291 	vaddr = phys->vaddr;
292 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
293 		struct page *page;
294 		char *src;
295 
296 		page = shmem_read_mapping_page(mapping, i);
297 		if (IS_ERR(page)) {
298 			err = PTR_ERR(page);
299 			goto err_phys;
300 		}
301 
302 		src = kmap_atomic(page);
303 		memcpy(vaddr, src, PAGE_SIZE);
304 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
305 		kunmap_atomic(src);
306 
307 		put_page(page);
308 		vaddr += PAGE_SIZE;
309 	}
310 
311 	i915_gem_chipset_flush(to_i915(obj->base.dev));
312 
313 	st = kmalloc(sizeof(*st), GFP_KERNEL);
314 	if (!st) {
315 		err = -ENOMEM;
316 		goto err_phys;
317 	}
318 
319 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
320 		kfree(st);
321 		err = -ENOMEM;
322 		goto err_phys;
323 	}
324 
325 	sg = st->sgl;
326 	sg->offset = 0;
327 	sg->length = obj->base.size;
328 
329 	sg_dma_address(sg) = phys->busaddr;
330 	sg_dma_len(sg) = obj->base.size;
331 
332 	obj->phys_handle = phys;
333 
334 	__i915_gem_object_set_pages(obj, st, sg->length);
335 
336 	return 0;
337 
338 err_phys:
339 	drm_pci_free(obj->base.dev, phys);
340 
341 	return err;
342 }
343 
344 static void __start_cpu_write(struct drm_i915_gem_object *obj)
345 {
346 	obj->read_domains = I915_GEM_DOMAIN_CPU;
347 	obj->write_domain = I915_GEM_DOMAIN_CPU;
348 	if (cpu_write_needs_clflush(obj))
349 		obj->cache_dirty = true;
350 }
351 
352 static void
353 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
354 				struct sg_table *pages,
355 				bool needs_clflush)
356 {
357 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
358 
359 	if (obj->mm.madv == I915_MADV_DONTNEED)
360 		obj->mm.dirty = false;
361 
362 	if (needs_clflush &&
363 	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
364 	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
365 		drm_clflush_sg(pages);
366 
367 	__start_cpu_write(obj);
368 }
369 
370 static void
371 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
372 			       struct sg_table *pages)
373 {
374 	__i915_gem_object_release_shmem(obj, pages, false);
375 
376 	if (obj->mm.dirty) {
377 		struct address_space *mapping = obj->base.filp->f_mapping;
378 		char *vaddr = obj->phys_handle->vaddr;
379 		int i;
380 
381 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
382 			struct page *page;
383 			char *dst;
384 
385 			page = shmem_read_mapping_page(mapping, i);
386 			if (IS_ERR(page))
387 				continue;
388 
389 			dst = kmap_atomic(page);
390 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
391 			memcpy(dst, vaddr, PAGE_SIZE);
392 			kunmap_atomic(dst);
393 
394 			set_page_dirty(page);
395 			if (obj->mm.madv == I915_MADV_WILLNEED)
396 				mark_page_accessed(page);
397 			put_page(page);
398 			vaddr += PAGE_SIZE;
399 		}
400 		obj->mm.dirty = false;
401 	}
402 
403 	sg_free_table(pages);
404 	kfree(pages);
405 
406 	drm_pci_free(obj->base.dev, obj->phys_handle);
407 }
408 
409 static void
410 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
411 {
412 	i915_gem_object_unpin_pages(obj);
413 }
414 
415 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
416 	.get_pages = i915_gem_object_get_pages_phys,
417 	.put_pages = i915_gem_object_put_pages_phys,
418 	.release = i915_gem_object_release_phys,
419 };
420 
421 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
422 
423 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
424 {
425 	struct i915_vma *vma;
426 	LIST_HEAD(still_in_list);
427 	int ret;
428 
429 	lockdep_assert_held(&obj->base.dev->struct_mutex);
430 
431 	/* Closed vma are removed from the obj->vma_list - but they may
432 	 * still have an active binding on the object. To remove those we
433 	 * must wait for all rendering to complete to the object (as unbinding
434 	 * must anyway), and retire the requests.
435 	 */
436 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
437 	if (ret)
438 		return ret;
439 
440 	while ((vma = list_first_entry_or_null(&obj->vma_list,
441 					       struct i915_vma,
442 					       obj_link))) {
443 		list_move_tail(&vma->obj_link, &still_in_list);
444 		ret = i915_vma_unbind(vma);
445 		if (ret)
446 			break;
447 	}
448 	list_splice(&still_in_list, &obj->vma_list);
449 
450 	return ret;
451 }
452 
453 static long
454 i915_gem_object_wait_fence(struct dma_fence *fence,
455 			   unsigned int flags,
456 			   long timeout,
457 			   struct intel_rps_client *rps_client)
458 {
459 	struct i915_request *rq;
460 
461 	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
462 
463 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
464 		return timeout;
465 
466 	if (!dma_fence_is_i915(fence))
467 		return dma_fence_wait_timeout(fence,
468 					      flags & I915_WAIT_INTERRUPTIBLE,
469 					      timeout);
470 
471 	rq = to_request(fence);
472 	if (i915_request_completed(rq))
473 		goto out;
474 
475 	/*
476 	 * This client is about to stall waiting for the GPU. In many cases
477 	 * this is undesirable and limits the throughput of the system, as
478 	 * many clients cannot continue processing user input/output whilst
479 	 * blocked. RPS autotuning may take tens of milliseconds to respond
480 	 * to the GPU load and thus incurs additional latency for the client.
481 	 * We can circumvent that by promoting the GPU frequency to maximum
482 	 * before we wait. This makes the GPU throttle up much more quickly
483 	 * (good for benchmarks and user experience, e.g. window animations),
484 	 * but at a cost of spending more power processing the workload
485 	 * (bad for battery). Not all clients even want their results
486 	 * immediately and for them we should just let the GPU select its own
487 	 * frequency to maximise efficiency. To prevent a single client from
488 	 * forcing the clocks too high for the whole system, we only allow
489 	 * each client to waitboost once in a busy period.
490 	 */
491 	if (rps_client && !i915_request_started(rq)) {
492 		if (INTEL_GEN(rq->i915) >= 6)
493 			gen6_rps_boost(rq, rps_client);
494 	}
495 
496 	timeout = i915_request_wait(rq, flags, timeout);
497 
498 out:
499 	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
500 		i915_request_retire_upto(rq);
501 
502 	return timeout;
503 }
504 
505 static long
506 i915_gem_object_wait_reservation(struct reservation_object *resv,
507 				 unsigned int flags,
508 				 long timeout,
509 				 struct intel_rps_client *rps_client)
510 {
511 	unsigned int seq = __read_seqcount_begin(&resv->seq);
512 	struct dma_fence *excl;
513 	bool prune_fences = false;
514 
515 	if (flags & I915_WAIT_ALL) {
516 		struct dma_fence **shared;
517 		unsigned int count, i;
518 		int ret;
519 
520 		ret = reservation_object_get_fences_rcu(resv,
521 							&excl, &count, &shared);
522 		if (ret)
523 			return ret;
524 
525 		for (i = 0; i < count; i++) {
526 			timeout = i915_gem_object_wait_fence(shared[i],
527 							     flags, timeout,
528 							     rps_client);
529 			if (timeout < 0)
530 				break;
531 
532 			dma_fence_put(shared[i]);
533 		}
534 
535 		for (; i < count; i++)
536 			dma_fence_put(shared[i]);
537 		kfree(shared);
538 
539 		/*
540 		 * If both shared fences and an exclusive fence exist,
541 		 * then by construction the shared fences must be later
542 		 * than the exclusive fence. If we successfully wait for
543 		 * all the shared fences, we know that the exclusive fence
544 		 * must all be signaled. If all the shared fences are
545 		 * signaled, we can prune the array and recover the
546 		 * floating references on the fences/requests.
547 		 */
548 		prune_fences = count && timeout >= 0;
549 	} else {
550 		excl = reservation_object_get_excl_rcu(resv);
551 	}
552 
553 	if (excl && timeout >= 0)
554 		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
555 						     rps_client);
556 
557 	dma_fence_put(excl);
558 
559 	/*
560 	 * Opportunistically prune the fences iff we know they have *all* been
561 	 * signaled and that the reservation object has not been changed (i.e.
562 	 * no new fences have been added).
563 	 */
564 	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
565 		if (reservation_object_trylock(resv)) {
566 			if (!__read_seqcount_retry(&resv->seq, seq))
567 				reservation_object_add_excl_fence(resv, NULL);
568 			reservation_object_unlock(resv);
569 		}
570 	}
571 
572 	return timeout;
573 }
574 
575 static void __fence_set_priority(struct dma_fence *fence,
576 				 const struct i915_sched_attr *attr)
577 {
578 	struct i915_request *rq;
579 	struct intel_engine_cs *engine;
580 
581 	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
582 		return;
583 
584 	rq = to_request(fence);
585 	engine = rq->engine;
586 
587 	local_bh_disable();
588 	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
589 	if (engine->schedule)
590 		engine->schedule(rq, attr);
591 	rcu_read_unlock();
592 	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
593 }
594 
595 static void fence_set_priority(struct dma_fence *fence,
596 			       const struct i915_sched_attr *attr)
597 {
598 	/* Recurse once into a fence-array */
599 	if (dma_fence_is_array(fence)) {
600 		struct dma_fence_array *array = to_dma_fence_array(fence);
601 		int i;
602 
603 		for (i = 0; i < array->num_fences; i++)
604 			__fence_set_priority(array->fences[i], attr);
605 	} else {
606 		__fence_set_priority(fence, attr);
607 	}
608 }
609 
610 int
611 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
612 			      unsigned int flags,
613 			      const struct i915_sched_attr *attr)
614 {
615 	struct dma_fence *excl;
616 
617 	if (flags & I915_WAIT_ALL) {
618 		struct dma_fence **shared;
619 		unsigned int count, i;
620 		int ret;
621 
622 		ret = reservation_object_get_fences_rcu(obj->resv,
623 							&excl, &count, &shared);
624 		if (ret)
625 			return ret;
626 
627 		for (i = 0; i < count; i++) {
628 			fence_set_priority(shared[i], attr);
629 			dma_fence_put(shared[i]);
630 		}
631 
632 		kfree(shared);
633 	} else {
634 		excl = reservation_object_get_excl_rcu(obj->resv);
635 	}
636 
637 	if (excl) {
638 		fence_set_priority(excl, attr);
639 		dma_fence_put(excl);
640 	}
641 	return 0;
642 }
643 
644 /**
645  * Waits for rendering to the object to be completed
646  * @obj: i915 gem object
647  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
648  * @timeout: how long to wait
649  * @rps_client: client (user process) to charge for any waitboosting
650  */
651 int
652 i915_gem_object_wait(struct drm_i915_gem_object *obj,
653 		     unsigned int flags,
654 		     long timeout,
655 		     struct intel_rps_client *rps_client)
656 {
657 	might_sleep();
658 #if IS_ENABLED(CONFIG_LOCKDEP)
659 	GEM_BUG_ON(debug_locks &&
660 		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
661 		   !!(flags & I915_WAIT_LOCKED));
662 #endif
663 	GEM_BUG_ON(timeout < 0);
664 
665 	timeout = i915_gem_object_wait_reservation(obj->resv,
666 						   flags, timeout,
667 						   rps_client);
668 	return timeout < 0 ? timeout : 0;
669 }
670 
671 static struct intel_rps_client *to_rps_client(struct drm_file *file)
672 {
673 	struct drm_i915_file_private *fpriv = file->driver_priv;
674 
675 	return &fpriv->rps_client;
676 }
677 
678 static int
679 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
680 		     struct drm_i915_gem_pwrite *args,
681 		     struct drm_file *file)
682 {
683 	void *vaddr = obj->phys_handle->vaddr + args->offset;
684 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
685 
686 	/* We manually control the domain here and pretend that it
687 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
688 	 */
689 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
690 	if (copy_from_user(vaddr, user_data, args->size))
691 		return -EFAULT;
692 
693 	drm_clflush_virt_range(vaddr, args->size);
694 	i915_gem_chipset_flush(to_i915(obj->base.dev));
695 
696 	intel_fb_obj_flush(obj, ORIGIN_CPU);
697 	return 0;
698 }
699 
700 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
701 {
702 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
703 }
704 
705 void i915_gem_object_free(struct drm_i915_gem_object *obj)
706 {
707 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
708 	kmem_cache_free(dev_priv->objects, obj);
709 }
710 
711 static int
712 i915_gem_create(struct drm_file *file,
713 		struct drm_i915_private *dev_priv,
714 		uint64_t size,
715 		uint32_t *handle_p)
716 {
717 	struct drm_i915_gem_object *obj;
718 	int ret;
719 	u32 handle;
720 
721 	size = roundup(size, PAGE_SIZE);
722 	if (size == 0)
723 		return -EINVAL;
724 
725 	/* Allocate the new object */
726 	obj = i915_gem_object_create(dev_priv, size);
727 	if (IS_ERR(obj))
728 		return PTR_ERR(obj);
729 
730 	ret = drm_gem_handle_create(file, &obj->base, &handle);
731 	/* drop reference from allocate - handle holds it now */
732 	i915_gem_object_put(obj);
733 	if (ret)
734 		return ret;
735 
736 	*handle_p = handle;
737 	return 0;
738 }
739 
740 int
741 i915_gem_dumb_create(struct drm_file *file,
742 		     struct drm_device *dev,
743 		     struct drm_mode_create_dumb *args)
744 {
745 	/* have to work out size/pitch and return them */
746 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
747 	args->size = args->pitch * args->height;
748 	return i915_gem_create(file, to_i915(dev),
749 			       args->size, &args->handle);
750 }
751 
752 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
753 {
754 	return !(obj->cache_level == I915_CACHE_NONE ||
755 		 obj->cache_level == I915_CACHE_WT);
756 }
757 
758 /**
759  * Creates a new mm object and returns a handle to it.
760  * @dev: drm device pointer
761  * @data: ioctl data blob
762  * @file: drm file pointer
763  */
764 int
765 i915_gem_create_ioctl(struct drm_device *dev, void *data,
766 		      struct drm_file *file)
767 {
768 	struct drm_i915_private *dev_priv = to_i915(dev);
769 	struct drm_i915_gem_create *args = data;
770 
771 	i915_gem_flush_free_objects(dev_priv);
772 
773 	return i915_gem_create(file, dev_priv,
774 			       args->size, &args->handle);
775 }
776 
777 static inline enum fb_op_origin
778 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
779 {
780 	return (domain == I915_GEM_DOMAIN_GTT ?
781 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
782 }
783 
784 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
785 {
786 	/*
787 	 * No actual flushing is required for the GTT write domain for reads
788 	 * from the GTT domain. Writes to it "immediately" go to main memory
789 	 * as far as we know, so there's no chipset flush. It also doesn't
790 	 * land in the GPU render cache.
791 	 *
792 	 * However, we do have to enforce the order so that all writes through
793 	 * the GTT land before any writes to the device, such as updates to
794 	 * the GATT itself.
795 	 *
796 	 * We also have to wait a bit for the writes to land from the GTT.
797 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
798 	 * timing. This issue has only been observed when switching quickly
799 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
800 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
801 	 * system agents we cannot reproduce this behaviour, until Cannonlake
802 	 * that was!).
803 	 */
804 
805 	wmb();
806 
807 	if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
808 		return;
809 
810 	i915_gem_chipset_flush(dev_priv);
811 
812 	intel_runtime_pm_get(dev_priv);
813 	spin_lock_irq(&dev_priv->uncore.lock);
814 
815 	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
816 
817 	spin_unlock_irq(&dev_priv->uncore.lock);
818 	intel_runtime_pm_put(dev_priv);
819 }
820 
821 static void
822 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
823 {
824 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
825 	struct i915_vma *vma;
826 
827 	if (!(obj->write_domain & flush_domains))
828 		return;
829 
830 	switch (obj->write_domain) {
831 	case I915_GEM_DOMAIN_GTT:
832 		i915_gem_flush_ggtt_writes(dev_priv);
833 
834 		intel_fb_obj_flush(obj,
835 				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
836 
837 		for_each_ggtt_vma(vma, obj) {
838 			if (vma->iomap)
839 				continue;
840 
841 			i915_vma_unset_ggtt_write(vma);
842 		}
843 		break;
844 
845 	case I915_GEM_DOMAIN_WC:
846 		wmb();
847 		break;
848 
849 	case I915_GEM_DOMAIN_CPU:
850 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
851 		break;
852 
853 	case I915_GEM_DOMAIN_RENDER:
854 		if (gpu_write_needs_clflush(obj))
855 			obj->cache_dirty = true;
856 		break;
857 	}
858 
859 	obj->write_domain = 0;
860 }
861 
862 static inline int
863 __copy_to_user_swizzled(char __user *cpu_vaddr,
864 			const char *gpu_vaddr, int gpu_offset,
865 			int length)
866 {
867 	int ret, cpu_offset = 0;
868 
869 	while (length > 0) {
870 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
871 		int this_length = min(cacheline_end - gpu_offset, length);
872 		int swizzled_gpu_offset = gpu_offset ^ 64;
873 
874 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
875 				     gpu_vaddr + swizzled_gpu_offset,
876 				     this_length);
877 		if (ret)
878 			return ret + length;
879 
880 		cpu_offset += this_length;
881 		gpu_offset += this_length;
882 		length -= this_length;
883 	}
884 
885 	return 0;
886 }
887 
888 static inline int
889 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
890 			  const char __user *cpu_vaddr,
891 			  int length)
892 {
893 	int ret, cpu_offset = 0;
894 
895 	while (length > 0) {
896 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
897 		int this_length = min(cacheline_end - gpu_offset, length);
898 		int swizzled_gpu_offset = gpu_offset ^ 64;
899 
900 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
901 				       cpu_vaddr + cpu_offset,
902 				       this_length);
903 		if (ret)
904 			return ret + length;
905 
906 		cpu_offset += this_length;
907 		gpu_offset += this_length;
908 		length -= this_length;
909 	}
910 
911 	return 0;
912 }
913 
914 /*
915  * Pins the specified object's pages and synchronizes the object with
916  * GPU accesses. Sets needs_clflush to non-zero if the caller should
917  * flush the object from the CPU cache.
918  */
919 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
920 				    unsigned int *needs_clflush)
921 {
922 	int ret;
923 
924 	lockdep_assert_held(&obj->base.dev->struct_mutex);
925 
926 	*needs_clflush = 0;
927 	if (!i915_gem_object_has_struct_page(obj))
928 		return -ENODEV;
929 
930 	ret = i915_gem_object_wait(obj,
931 				   I915_WAIT_INTERRUPTIBLE |
932 				   I915_WAIT_LOCKED,
933 				   MAX_SCHEDULE_TIMEOUT,
934 				   NULL);
935 	if (ret)
936 		return ret;
937 
938 	ret = i915_gem_object_pin_pages(obj);
939 	if (ret)
940 		return ret;
941 
942 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
943 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
944 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
945 		if (ret)
946 			goto err_unpin;
947 		else
948 			goto out;
949 	}
950 
951 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
952 
953 	/* If we're not in the cpu read domain, set ourself into the gtt
954 	 * read domain and manually flush cachelines (if required). This
955 	 * optimizes for the case when the gpu will dirty the data
956 	 * anyway again before the next pread happens.
957 	 */
958 	if (!obj->cache_dirty &&
959 	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
960 		*needs_clflush = CLFLUSH_BEFORE;
961 
962 out:
963 	/* return with the pages pinned */
964 	return 0;
965 
966 err_unpin:
967 	i915_gem_object_unpin_pages(obj);
968 	return ret;
969 }
970 
971 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
972 				     unsigned int *needs_clflush)
973 {
974 	int ret;
975 
976 	lockdep_assert_held(&obj->base.dev->struct_mutex);
977 
978 	*needs_clflush = 0;
979 	if (!i915_gem_object_has_struct_page(obj))
980 		return -ENODEV;
981 
982 	ret = i915_gem_object_wait(obj,
983 				   I915_WAIT_INTERRUPTIBLE |
984 				   I915_WAIT_LOCKED |
985 				   I915_WAIT_ALL,
986 				   MAX_SCHEDULE_TIMEOUT,
987 				   NULL);
988 	if (ret)
989 		return ret;
990 
991 	ret = i915_gem_object_pin_pages(obj);
992 	if (ret)
993 		return ret;
994 
995 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
996 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
997 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
998 		if (ret)
999 			goto err_unpin;
1000 		else
1001 			goto out;
1002 	}
1003 
1004 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
1005 
1006 	/* If we're not in the cpu write domain, set ourself into the
1007 	 * gtt write domain and manually flush cachelines (as required).
1008 	 * This optimizes for the case when the gpu will use the data
1009 	 * right away and we therefore have to clflush anyway.
1010 	 */
1011 	if (!obj->cache_dirty) {
1012 		*needs_clflush |= CLFLUSH_AFTER;
1013 
1014 		/*
1015 		 * Same trick applies to invalidate partially written
1016 		 * cachelines read before writing.
1017 		 */
1018 		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1019 			*needs_clflush |= CLFLUSH_BEFORE;
1020 	}
1021 
1022 out:
1023 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1024 	obj->mm.dirty = true;
1025 	/* return with the pages pinned */
1026 	return 0;
1027 
1028 err_unpin:
1029 	i915_gem_object_unpin_pages(obj);
1030 	return ret;
1031 }
1032 
1033 static void
1034 shmem_clflush_swizzled_range(char *addr, unsigned long length,
1035 			     bool swizzled)
1036 {
1037 	if (unlikely(swizzled)) {
1038 		unsigned long start = (unsigned long) addr;
1039 		unsigned long end = (unsigned long) addr + length;
1040 
1041 		/* For swizzling simply ensure that we always flush both
1042 		 * channels. Lame, but simple and it works. Swizzled
1043 		 * pwrite/pread is far from a hotpath - current userspace
1044 		 * doesn't use it at all. */
1045 		start = round_down(start, 128);
1046 		end = round_up(end, 128);
1047 
1048 		drm_clflush_virt_range((void *)start, end - start);
1049 	} else {
1050 		drm_clflush_virt_range(addr, length);
1051 	}
1052 
1053 }
1054 
1055 /* Only difference to the fast-path function is that this can handle bit17
1056  * and uses non-atomic copy and kmap functions. */
1057 static int
1058 shmem_pread_slow(struct page *page, int offset, int length,
1059 		 char __user *user_data,
1060 		 bool page_do_bit17_swizzling, bool needs_clflush)
1061 {
1062 	char *vaddr;
1063 	int ret;
1064 
1065 	vaddr = kmap(page);
1066 	if (needs_clflush)
1067 		shmem_clflush_swizzled_range(vaddr + offset, length,
1068 					     page_do_bit17_swizzling);
1069 
1070 	if (page_do_bit17_swizzling)
1071 		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1072 	else
1073 		ret = __copy_to_user(user_data, vaddr + offset, length);
1074 	kunmap(page);
1075 
1076 	return ret ? - EFAULT : 0;
1077 }
1078 
1079 static int
1080 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
1081 	    bool page_do_bit17_swizzling, bool needs_clflush)
1082 {
1083 	int ret;
1084 
1085 	ret = -ENODEV;
1086 	if (!page_do_bit17_swizzling) {
1087 		char *vaddr = kmap_atomic(page);
1088 
1089 		if (needs_clflush)
1090 			drm_clflush_virt_range(vaddr + offset, length);
1091 		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1092 		kunmap_atomic(vaddr);
1093 	}
1094 	if (ret == 0)
1095 		return 0;
1096 
1097 	return shmem_pread_slow(page, offset, length, user_data,
1098 				page_do_bit17_swizzling, needs_clflush);
1099 }
1100 
1101 static int
1102 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
1103 		     struct drm_i915_gem_pread *args)
1104 {
1105 	char __user *user_data;
1106 	u64 remain;
1107 	unsigned int obj_do_bit17_swizzling;
1108 	unsigned int needs_clflush;
1109 	unsigned int idx, offset;
1110 	int ret;
1111 
1112 	obj_do_bit17_swizzling = 0;
1113 	if (i915_gem_object_needs_bit17_swizzle(obj))
1114 		obj_do_bit17_swizzling = BIT(17);
1115 
1116 	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1117 	if (ret)
1118 		return ret;
1119 
1120 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1121 	mutex_unlock(&obj->base.dev->struct_mutex);
1122 	if (ret)
1123 		return ret;
1124 
1125 	remain = args->size;
1126 	user_data = u64_to_user_ptr(args->data_ptr);
1127 	offset = offset_in_page(args->offset);
1128 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1129 		struct page *page = i915_gem_object_get_page(obj, idx);
1130 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1131 
1132 		ret = shmem_pread(page, offset, length, user_data,
1133 				  page_to_phys(page) & obj_do_bit17_swizzling,
1134 				  needs_clflush);
1135 		if (ret)
1136 			break;
1137 
1138 		remain -= length;
1139 		user_data += length;
1140 		offset = 0;
1141 	}
1142 
1143 	i915_gem_obj_finish_shmem_access(obj);
1144 	return ret;
1145 }
1146 
1147 static inline bool
1148 gtt_user_read(struct io_mapping *mapping,
1149 	      loff_t base, int offset,
1150 	      char __user *user_data, int length)
1151 {
1152 	void __iomem *vaddr;
1153 	unsigned long unwritten;
1154 
1155 	/* We can use the cpu mem copy function because this is X86. */
1156 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1157 	unwritten = __copy_to_user_inatomic(user_data,
1158 					    (void __force *)vaddr + offset,
1159 					    length);
1160 	io_mapping_unmap_atomic(vaddr);
1161 	if (unwritten) {
1162 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1163 		unwritten = copy_to_user(user_data,
1164 					 (void __force *)vaddr + offset,
1165 					 length);
1166 		io_mapping_unmap(vaddr);
1167 	}
1168 	return unwritten;
1169 }
1170 
1171 static int
1172 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1173 		   const struct drm_i915_gem_pread *args)
1174 {
1175 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1176 	struct i915_ggtt *ggtt = &i915->ggtt;
1177 	struct drm_mm_node node;
1178 	struct i915_vma *vma;
1179 	void __user *user_data;
1180 	u64 remain, offset;
1181 	int ret;
1182 
1183 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1184 	if (ret)
1185 		return ret;
1186 
1187 	intel_runtime_pm_get(i915);
1188 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1189 				       PIN_MAPPABLE |
1190 				       PIN_NONFAULT |
1191 				       PIN_NONBLOCK);
1192 	if (!IS_ERR(vma)) {
1193 		node.start = i915_ggtt_offset(vma);
1194 		node.allocated = false;
1195 		ret = i915_vma_put_fence(vma);
1196 		if (ret) {
1197 			i915_vma_unpin(vma);
1198 			vma = ERR_PTR(ret);
1199 		}
1200 	}
1201 	if (IS_ERR(vma)) {
1202 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1203 		if (ret)
1204 			goto out_unlock;
1205 		GEM_BUG_ON(!node.allocated);
1206 	}
1207 
1208 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1209 	if (ret)
1210 		goto out_unpin;
1211 
1212 	mutex_unlock(&i915->drm.struct_mutex);
1213 
1214 	user_data = u64_to_user_ptr(args->data_ptr);
1215 	remain = args->size;
1216 	offset = args->offset;
1217 
1218 	while (remain > 0) {
1219 		/* Operation in this page
1220 		 *
1221 		 * page_base = page offset within aperture
1222 		 * page_offset = offset within page
1223 		 * page_length = bytes to copy for this page
1224 		 */
1225 		u32 page_base = node.start;
1226 		unsigned page_offset = offset_in_page(offset);
1227 		unsigned page_length = PAGE_SIZE - page_offset;
1228 		page_length = remain < page_length ? remain : page_length;
1229 		if (node.allocated) {
1230 			wmb();
1231 			ggtt->vm.insert_page(&ggtt->vm,
1232 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1233 					     node.start, I915_CACHE_NONE, 0);
1234 			wmb();
1235 		} else {
1236 			page_base += offset & PAGE_MASK;
1237 		}
1238 
1239 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1240 				  user_data, page_length)) {
1241 			ret = -EFAULT;
1242 			break;
1243 		}
1244 
1245 		remain -= page_length;
1246 		user_data += page_length;
1247 		offset += page_length;
1248 	}
1249 
1250 	mutex_lock(&i915->drm.struct_mutex);
1251 out_unpin:
1252 	if (node.allocated) {
1253 		wmb();
1254 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1255 		remove_mappable_node(&node);
1256 	} else {
1257 		i915_vma_unpin(vma);
1258 	}
1259 out_unlock:
1260 	intel_runtime_pm_put(i915);
1261 	mutex_unlock(&i915->drm.struct_mutex);
1262 
1263 	return ret;
1264 }
1265 
1266 /**
1267  * Reads data from the object referenced by handle.
1268  * @dev: drm device pointer
1269  * @data: ioctl data blob
1270  * @file: drm file pointer
1271  *
1272  * On error, the contents of *data are undefined.
1273  */
1274 int
1275 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1276 		     struct drm_file *file)
1277 {
1278 	struct drm_i915_gem_pread *args = data;
1279 	struct drm_i915_gem_object *obj;
1280 	int ret;
1281 
1282 	if (args->size == 0)
1283 		return 0;
1284 
1285 	if (!access_ok(VERIFY_WRITE,
1286 		       u64_to_user_ptr(args->data_ptr),
1287 		       args->size))
1288 		return -EFAULT;
1289 
1290 	obj = i915_gem_object_lookup(file, args->handle);
1291 	if (!obj)
1292 		return -ENOENT;
1293 
1294 	/* Bounds check source.  */
1295 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1296 		ret = -EINVAL;
1297 		goto out;
1298 	}
1299 
1300 	trace_i915_gem_object_pread(obj, args->offset, args->size);
1301 
1302 	ret = i915_gem_object_wait(obj,
1303 				   I915_WAIT_INTERRUPTIBLE,
1304 				   MAX_SCHEDULE_TIMEOUT,
1305 				   to_rps_client(file));
1306 	if (ret)
1307 		goto out;
1308 
1309 	ret = i915_gem_object_pin_pages(obj);
1310 	if (ret)
1311 		goto out;
1312 
1313 	ret = i915_gem_shmem_pread(obj, args);
1314 	if (ret == -EFAULT || ret == -ENODEV)
1315 		ret = i915_gem_gtt_pread(obj, args);
1316 
1317 	i915_gem_object_unpin_pages(obj);
1318 out:
1319 	i915_gem_object_put(obj);
1320 	return ret;
1321 }
1322 
1323 /* This is the fast write path which cannot handle
1324  * page faults in the source data
1325  */
1326 
1327 static inline bool
1328 ggtt_write(struct io_mapping *mapping,
1329 	   loff_t base, int offset,
1330 	   char __user *user_data, int length)
1331 {
1332 	void __iomem *vaddr;
1333 	unsigned long unwritten;
1334 
1335 	/* We can use the cpu mem copy function because this is X86. */
1336 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1337 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1338 						      user_data, length);
1339 	io_mapping_unmap_atomic(vaddr);
1340 	if (unwritten) {
1341 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1342 		unwritten = copy_from_user((void __force *)vaddr + offset,
1343 					   user_data, length);
1344 		io_mapping_unmap(vaddr);
1345 	}
1346 
1347 	return unwritten;
1348 }
1349 
1350 /**
1351  * This is the fast pwrite path, where we copy the data directly from the
1352  * user into the GTT, uncached.
1353  * @obj: i915 GEM object
1354  * @args: pwrite arguments structure
1355  */
1356 static int
1357 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1358 			 const struct drm_i915_gem_pwrite *args)
1359 {
1360 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1361 	struct i915_ggtt *ggtt = &i915->ggtt;
1362 	struct drm_mm_node node;
1363 	struct i915_vma *vma;
1364 	u64 remain, offset;
1365 	void __user *user_data;
1366 	int ret;
1367 
1368 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1369 	if (ret)
1370 		return ret;
1371 
1372 	if (i915_gem_object_has_struct_page(obj)) {
1373 		/*
1374 		 * Avoid waking the device up if we can fallback, as
1375 		 * waking/resuming is very slow (worst-case 10-100 ms
1376 		 * depending on PCI sleeps and our own resume time).
1377 		 * This easily dwarfs any performance advantage from
1378 		 * using the cache bypass of indirect GGTT access.
1379 		 */
1380 		if (!intel_runtime_pm_get_if_in_use(i915)) {
1381 			ret = -EFAULT;
1382 			goto out_unlock;
1383 		}
1384 	} else {
1385 		/* No backing pages, no fallback, we must force GGTT access */
1386 		intel_runtime_pm_get(i915);
1387 	}
1388 
1389 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1390 				       PIN_MAPPABLE |
1391 				       PIN_NONFAULT |
1392 				       PIN_NONBLOCK);
1393 	if (!IS_ERR(vma)) {
1394 		node.start = i915_ggtt_offset(vma);
1395 		node.allocated = false;
1396 		ret = i915_vma_put_fence(vma);
1397 		if (ret) {
1398 			i915_vma_unpin(vma);
1399 			vma = ERR_PTR(ret);
1400 		}
1401 	}
1402 	if (IS_ERR(vma)) {
1403 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1404 		if (ret)
1405 			goto out_rpm;
1406 		GEM_BUG_ON(!node.allocated);
1407 	}
1408 
1409 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1410 	if (ret)
1411 		goto out_unpin;
1412 
1413 	mutex_unlock(&i915->drm.struct_mutex);
1414 
1415 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1416 
1417 	user_data = u64_to_user_ptr(args->data_ptr);
1418 	offset = args->offset;
1419 	remain = args->size;
1420 	while (remain) {
1421 		/* Operation in this page
1422 		 *
1423 		 * page_base = page offset within aperture
1424 		 * page_offset = offset within page
1425 		 * page_length = bytes to copy for this page
1426 		 */
1427 		u32 page_base = node.start;
1428 		unsigned int page_offset = offset_in_page(offset);
1429 		unsigned int page_length = PAGE_SIZE - page_offset;
1430 		page_length = remain < page_length ? remain : page_length;
1431 		if (node.allocated) {
1432 			wmb(); /* flush the write before we modify the GGTT */
1433 			ggtt->vm.insert_page(&ggtt->vm,
1434 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1435 					     node.start, I915_CACHE_NONE, 0);
1436 			wmb(); /* flush modifications to the GGTT (insert_page) */
1437 		} else {
1438 			page_base += offset & PAGE_MASK;
1439 		}
1440 		/* If we get a fault while copying data, then (presumably) our
1441 		 * source page isn't available.  Return the error and we'll
1442 		 * retry in the slow path.
1443 		 * If the object is non-shmem backed, we retry again with the
1444 		 * path that handles page fault.
1445 		 */
1446 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1447 			       user_data, page_length)) {
1448 			ret = -EFAULT;
1449 			break;
1450 		}
1451 
1452 		remain -= page_length;
1453 		user_data += page_length;
1454 		offset += page_length;
1455 	}
1456 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1457 
1458 	mutex_lock(&i915->drm.struct_mutex);
1459 out_unpin:
1460 	if (node.allocated) {
1461 		wmb();
1462 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1463 		remove_mappable_node(&node);
1464 	} else {
1465 		i915_vma_unpin(vma);
1466 	}
1467 out_rpm:
1468 	intel_runtime_pm_put(i915);
1469 out_unlock:
1470 	mutex_unlock(&i915->drm.struct_mutex);
1471 	return ret;
1472 }
1473 
1474 static int
1475 shmem_pwrite_slow(struct page *page, int offset, int length,
1476 		  char __user *user_data,
1477 		  bool page_do_bit17_swizzling,
1478 		  bool needs_clflush_before,
1479 		  bool needs_clflush_after)
1480 {
1481 	char *vaddr;
1482 	int ret;
1483 
1484 	vaddr = kmap(page);
1485 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1486 		shmem_clflush_swizzled_range(vaddr + offset, length,
1487 					     page_do_bit17_swizzling);
1488 	if (page_do_bit17_swizzling)
1489 		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1490 						length);
1491 	else
1492 		ret = __copy_from_user(vaddr + offset, user_data, length);
1493 	if (needs_clflush_after)
1494 		shmem_clflush_swizzled_range(vaddr + offset, length,
1495 					     page_do_bit17_swizzling);
1496 	kunmap(page);
1497 
1498 	return ret ? -EFAULT : 0;
1499 }
1500 
1501 /* Per-page copy function for the shmem pwrite fastpath.
1502  * Flushes invalid cachelines before writing to the target if
1503  * needs_clflush_before is set and flushes out any written cachelines after
1504  * writing if needs_clflush is set.
1505  */
1506 static int
1507 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1508 	     bool page_do_bit17_swizzling,
1509 	     bool needs_clflush_before,
1510 	     bool needs_clflush_after)
1511 {
1512 	int ret;
1513 
1514 	ret = -ENODEV;
1515 	if (!page_do_bit17_swizzling) {
1516 		char *vaddr = kmap_atomic(page);
1517 
1518 		if (needs_clflush_before)
1519 			drm_clflush_virt_range(vaddr + offset, len);
1520 		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1521 		if (needs_clflush_after)
1522 			drm_clflush_virt_range(vaddr + offset, len);
1523 
1524 		kunmap_atomic(vaddr);
1525 	}
1526 	if (ret == 0)
1527 		return ret;
1528 
1529 	return shmem_pwrite_slow(page, offset, len, user_data,
1530 				 page_do_bit17_swizzling,
1531 				 needs_clflush_before,
1532 				 needs_clflush_after);
1533 }
1534 
1535 static int
1536 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1537 		      const struct drm_i915_gem_pwrite *args)
1538 {
1539 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1540 	void __user *user_data;
1541 	u64 remain;
1542 	unsigned int obj_do_bit17_swizzling;
1543 	unsigned int partial_cacheline_write;
1544 	unsigned int needs_clflush;
1545 	unsigned int offset, idx;
1546 	int ret;
1547 
1548 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1549 	if (ret)
1550 		return ret;
1551 
1552 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1553 	mutex_unlock(&i915->drm.struct_mutex);
1554 	if (ret)
1555 		return ret;
1556 
1557 	obj_do_bit17_swizzling = 0;
1558 	if (i915_gem_object_needs_bit17_swizzle(obj))
1559 		obj_do_bit17_swizzling = BIT(17);
1560 
1561 	/* If we don't overwrite a cacheline completely we need to be
1562 	 * careful to have up-to-date data by first clflushing. Don't
1563 	 * overcomplicate things and flush the entire patch.
1564 	 */
1565 	partial_cacheline_write = 0;
1566 	if (needs_clflush & CLFLUSH_BEFORE)
1567 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1568 
1569 	user_data = u64_to_user_ptr(args->data_ptr);
1570 	remain = args->size;
1571 	offset = offset_in_page(args->offset);
1572 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1573 		struct page *page = i915_gem_object_get_page(obj, idx);
1574 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1575 
1576 		ret = shmem_pwrite(page, offset, length, user_data,
1577 				   page_to_phys(page) & obj_do_bit17_swizzling,
1578 				   (offset | length) & partial_cacheline_write,
1579 				   needs_clflush & CLFLUSH_AFTER);
1580 		if (ret)
1581 			break;
1582 
1583 		remain -= length;
1584 		user_data += length;
1585 		offset = 0;
1586 	}
1587 
1588 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1589 	i915_gem_obj_finish_shmem_access(obj);
1590 	return ret;
1591 }
1592 
1593 /**
1594  * Writes data to the object referenced by handle.
1595  * @dev: drm device
1596  * @data: ioctl data blob
1597  * @file: drm file
1598  *
1599  * On error, the contents of the buffer that were to be modified are undefined.
1600  */
1601 int
1602 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1603 		      struct drm_file *file)
1604 {
1605 	struct drm_i915_gem_pwrite *args = data;
1606 	struct drm_i915_gem_object *obj;
1607 	int ret;
1608 
1609 	if (args->size == 0)
1610 		return 0;
1611 
1612 	if (!access_ok(VERIFY_READ,
1613 		       u64_to_user_ptr(args->data_ptr),
1614 		       args->size))
1615 		return -EFAULT;
1616 
1617 	obj = i915_gem_object_lookup(file, args->handle);
1618 	if (!obj)
1619 		return -ENOENT;
1620 
1621 	/* Bounds check destination. */
1622 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1623 		ret = -EINVAL;
1624 		goto err;
1625 	}
1626 
1627 	/* Writes not allowed into this read-only object */
1628 	if (i915_gem_object_is_readonly(obj)) {
1629 		ret = -EINVAL;
1630 		goto err;
1631 	}
1632 
1633 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1634 
1635 	ret = -ENODEV;
1636 	if (obj->ops->pwrite)
1637 		ret = obj->ops->pwrite(obj, args);
1638 	if (ret != -ENODEV)
1639 		goto err;
1640 
1641 	ret = i915_gem_object_wait(obj,
1642 				   I915_WAIT_INTERRUPTIBLE |
1643 				   I915_WAIT_ALL,
1644 				   MAX_SCHEDULE_TIMEOUT,
1645 				   to_rps_client(file));
1646 	if (ret)
1647 		goto err;
1648 
1649 	ret = i915_gem_object_pin_pages(obj);
1650 	if (ret)
1651 		goto err;
1652 
1653 	ret = -EFAULT;
1654 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1655 	 * it would end up going through the fenced access, and we'll get
1656 	 * different detiling behavior between reading and writing.
1657 	 * pread/pwrite currently are reading and writing from the CPU
1658 	 * perspective, requiring manual detiling by the client.
1659 	 */
1660 	if (!i915_gem_object_has_struct_page(obj) ||
1661 	    cpu_write_needs_clflush(obj))
1662 		/* Note that the gtt paths might fail with non-page-backed user
1663 		 * pointers (e.g. gtt mappings when moving data between
1664 		 * textures). Fallback to the shmem path in that case.
1665 		 */
1666 		ret = i915_gem_gtt_pwrite_fast(obj, args);
1667 
1668 	if (ret == -EFAULT || ret == -ENOSPC) {
1669 		if (obj->phys_handle)
1670 			ret = i915_gem_phys_pwrite(obj, args, file);
1671 		else
1672 			ret = i915_gem_shmem_pwrite(obj, args);
1673 	}
1674 
1675 	i915_gem_object_unpin_pages(obj);
1676 err:
1677 	i915_gem_object_put(obj);
1678 	return ret;
1679 }
1680 
1681 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1682 {
1683 	struct drm_i915_private *i915;
1684 	struct list_head *list;
1685 	struct i915_vma *vma;
1686 
1687 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1688 
1689 	for_each_ggtt_vma(vma, obj) {
1690 		if (i915_vma_is_active(vma))
1691 			continue;
1692 
1693 		if (!drm_mm_node_allocated(&vma->node))
1694 			continue;
1695 
1696 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1697 	}
1698 
1699 	i915 = to_i915(obj->base.dev);
1700 	spin_lock(&i915->mm.obj_lock);
1701 	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1702 	list_move_tail(&obj->mm.link, list);
1703 	spin_unlock(&i915->mm.obj_lock);
1704 }
1705 
1706 /**
1707  * Called when user space prepares to use an object with the CPU, either
1708  * through the mmap ioctl's mapping or a GTT mapping.
1709  * @dev: drm device
1710  * @data: ioctl data blob
1711  * @file: drm file
1712  */
1713 int
1714 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1715 			  struct drm_file *file)
1716 {
1717 	struct drm_i915_gem_set_domain *args = data;
1718 	struct drm_i915_gem_object *obj;
1719 	uint32_t read_domains = args->read_domains;
1720 	uint32_t write_domain = args->write_domain;
1721 	int err;
1722 
1723 	/* Only handle setting domains to types used by the CPU. */
1724 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1725 		return -EINVAL;
1726 
1727 	/* Having something in the write domain implies it's in the read
1728 	 * domain, and only that read domain.  Enforce that in the request.
1729 	 */
1730 	if (write_domain != 0 && read_domains != write_domain)
1731 		return -EINVAL;
1732 
1733 	obj = i915_gem_object_lookup(file, args->handle);
1734 	if (!obj)
1735 		return -ENOENT;
1736 
1737 	/* Try to flush the object off the GPU without holding the lock.
1738 	 * We will repeat the flush holding the lock in the normal manner
1739 	 * to catch cases where we are gazumped.
1740 	 */
1741 	err = i915_gem_object_wait(obj,
1742 				   I915_WAIT_INTERRUPTIBLE |
1743 				   I915_WAIT_PRIORITY |
1744 				   (write_domain ? I915_WAIT_ALL : 0),
1745 				   MAX_SCHEDULE_TIMEOUT,
1746 				   to_rps_client(file));
1747 	if (err)
1748 		goto out;
1749 
1750 	/*
1751 	 * Proxy objects do not control access to the backing storage, ergo
1752 	 * they cannot be used as a means to manipulate the cache domain
1753 	 * tracking for that backing storage. The proxy object is always
1754 	 * considered to be outside of any cache domain.
1755 	 */
1756 	if (i915_gem_object_is_proxy(obj)) {
1757 		err = -ENXIO;
1758 		goto out;
1759 	}
1760 
1761 	/*
1762 	 * Flush and acquire obj->pages so that we are coherent through
1763 	 * direct access in memory with previous cached writes through
1764 	 * shmemfs and that our cache domain tracking remains valid.
1765 	 * For example, if the obj->filp was moved to swap without us
1766 	 * being notified and releasing the pages, we would mistakenly
1767 	 * continue to assume that the obj remained out of the CPU cached
1768 	 * domain.
1769 	 */
1770 	err = i915_gem_object_pin_pages(obj);
1771 	if (err)
1772 		goto out;
1773 
1774 	err = i915_mutex_lock_interruptible(dev);
1775 	if (err)
1776 		goto out_unpin;
1777 
1778 	if (read_domains & I915_GEM_DOMAIN_WC)
1779 		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1780 	else if (read_domains & I915_GEM_DOMAIN_GTT)
1781 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1782 	else
1783 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1784 
1785 	/* And bump the LRU for this access */
1786 	i915_gem_object_bump_inactive_ggtt(obj);
1787 
1788 	mutex_unlock(&dev->struct_mutex);
1789 
1790 	if (write_domain != 0)
1791 		intel_fb_obj_invalidate(obj,
1792 					fb_write_origin(obj, write_domain));
1793 
1794 out_unpin:
1795 	i915_gem_object_unpin_pages(obj);
1796 out:
1797 	i915_gem_object_put(obj);
1798 	return err;
1799 }
1800 
1801 /**
1802  * Called when user space has done writes to this buffer
1803  * @dev: drm device
1804  * @data: ioctl data blob
1805  * @file: drm file
1806  */
1807 int
1808 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1809 			 struct drm_file *file)
1810 {
1811 	struct drm_i915_gem_sw_finish *args = data;
1812 	struct drm_i915_gem_object *obj;
1813 
1814 	obj = i915_gem_object_lookup(file, args->handle);
1815 	if (!obj)
1816 		return -ENOENT;
1817 
1818 	/*
1819 	 * Proxy objects are barred from CPU access, so there is no
1820 	 * need to ban sw_finish as it is a nop.
1821 	 */
1822 
1823 	/* Pinned buffers may be scanout, so flush the cache */
1824 	i915_gem_object_flush_if_display(obj);
1825 	i915_gem_object_put(obj);
1826 
1827 	return 0;
1828 }
1829 
1830 /**
1831  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1832  *			 it is mapped to.
1833  * @dev: drm device
1834  * @data: ioctl data blob
1835  * @file: drm file
1836  *
1837  * While the mapping holds a reference on the contents of the object, it doesn't
1838  * imply a ref on the object itself.
1839  *
1840  * IMPORTANT:
1841  *
1842  * DRM driver writers who look a this function as an example for how to do GEM
1843  * mmap support, please don't implement mmap support like here. The modern way
1844  * to implement DRM mmap support is with an mmap offset ioctl (like
1845  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1846  * That way debug tooling like valgrind will understand what's going on, hiding
1847  * the mmap call in a driver private ioctl will break that. The i915 driver only
1848  * does cpu mmaps this way because we didn't know better.
1849  */
1850 int
1851 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1852 		    struct drm_file *file)
1853 {
1854 	struct drm_i915_gem_mmap *args = data;
1855 	struct drm_i915_gem_object *obj;
1856 	unsigned long addr;
1857 
1858 	if (args->flags & ~(I915_MMAP_WC))
1859 		return -EINVAL;
1860 
1861 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1862 		return -ENODEV;
1863 
1864 	obj = i915_gem_object_lookup(file, args->handle);
1865 	if (!obj)
1866 		return -ENOENT;
1867 
1868 	/* prime objects have no backing filp to GEM mmap
1869 	 * pages from.
1870 	 */
1871 	if (!obj->base.filp) {
1872 		i915_gem_object_put(obj);
1873 		return -ENXIO;
1874 	}
1875 
1876 	addr = vm_mmap(obj->base.filp, 0, args->size,
1877 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1878 		       args->offset);
1879 	if (args->flags & I915_MMAP_WC) {
1880 		struct mm_struct *mm = current->mm;
1881 		struct vm_area_struct *vma;
1882 
1883 		if (down_write_killable(&mm->mmap_sem)) {
1884 			i915_gem_object_put(obj);
1885 			return -EINTR;
1886 		}
1887 		vma = find_vma(mm, addr);
1888 		if (vma)
1889 			vma->vm_page_prot =
1890 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1891 		else
1892 			addr = -ENOMEM;
1893 		up_write(&mm->mmap_sem);
1894 
1895 		/* This may race, but that's ok, it only gets set */
1896 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1897 	}
1898 	i915_gem_object_put(obj);
1899 	if (IS_ERR((void *)addr))
1900 		return addr;
1901 
1902 	args->addr_ptr = (uint64_t) addr;
1903 
1904 	return 0;
1905 }
1906 
1907 static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
1908 {
1909 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1910 }
1911 
1912 /**
1913  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1914  *
1915  * A history of the GTT mmap interface:
1916  *
1917  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1918  *     aligned and suitable for fencing, and still fit into the available
1919  *     mappable space left by the pinned display objects. A classic problem
1920  *     we called the page-fault-of-doom where we would ping-pong between
1921  *     two objects that could not fit inside the GTT and so the memcpy
1922  *     would page one object in at the expense of the other between every
1923  *     single byte.
1924  *
1925  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1926  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1927  *     object is too large for the available space (or simply too large
1928  *     for the mappable aperture!), a view is created instead and faulted
1929  *     into userspace. (This view is aligned and sized appropriately for
1930  *     fenced access.)
1931  *
1932  * 2 - Recognise WC as a separate cache domain so that we can flush the
1933  *     delayed writes via GTT before performing direct access via WC.
1934  *
1935  * Restrictions:
1936  *
1937  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1938  *    hangs on some architectures, corruption on others. An attempt to service
1939  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1940  *
1941  *  * the object must be able to fit into RAM (physical memory, though no
1942  *    limited to the mappable aperture).
1943  *
1944  *
1945  * Caveats:
1946  *
1947  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1948  *    all data to system memory. Subsequent access will not be synchronized.
1949  *
1950  *  * all mappings are revoked on runtime device suspend.
1951  *
1952  *  * there are only 8, 16 or 32 fence registers to share between all users
1953  *    (older machines require fence register for display and blitter access
1954  *    as well). Contention of the fence registers will cause the previous users
1955  *    to be unmapped and any new access will generate new page faults.
1956  *
1957  *  * running out of memory while servicing a fault may generate a SIGBUS,
1958  *    rather than the expected SIGSEGV.
1959  */
1960 int i915_gem_mmap_gtt_version(void)
1961 {
1962 	return 2;
1963 }
1964 
1965 static inline struct i915_ggtt_view
1966 compute_partial_view(const struct drm_i915_gem_object *obj,
1967 		     pgoff_t page_offset,
1968 		     unsigned int chunk)
1969 {
1970 	struct i915_ggtt_view view;
1971 
1972 	if (i915_gem_object_is_tiled(obj))
1973 		chunk = roundup(chunk, tile_row_pages(obj));
1974 
1975 	view.type = I915_GGTT_VIEW_PARTIAL;
1976 	view.partial.offset = rounddown(page_offset, chunk);
1977 	view.partial.size =
1978 		min_t(unsigned int, chunk,
1979 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1980 
1981 	/* If the partial covers the entire object, just create a normal VMA. */
1982 	if (chunk >= obj->base.size >> PAGE_SHIFT)
1983 		view.type = I915_GGTT_VIEW_NORMAL;
1984 
1985 	return view;
1986 }
1987 
1988 /**
1989  * i915_gem_fault - fault a page into the GTT
1990  * @vmf: fault info
1991  *
1992  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1993  * from userspace.  The fault handler takes care of binding the object to
1994  * the GTT (if needed), allocating and programming a fence register (again,
1995  * only if needed based on whether the old reg is still valid or the object
1996  * is tiled) and inserting a new PTE into the faulting process.
1997  *
1998  * Note that the faulting process may involve evicting existing objects
1999  * from the GTT and/or fence registers to make room.  So performance may
2000  * suffer if the GTT working set is large or there are few fence registers
2001  * left.
2002  *
2003  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
2004  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
2005  */
2006 vm_fault_t i915_gem_fault(struct vm_fault *vmf)
2007 {
2008 #define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
2009 	struct vm_area_struct *area = vmf->vma;
2010 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
2011 	struct drm_device *dev = obj->base.dev;
2012 	struct drm_i915_private *dev_priv = to_i915(dev);
2013 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2014 	bool write = area->vm_flags & VM_WRITE;
2015 	struct i915_vma *vma;
2016 	pgoff_t page_offset;
2017 	int ret;
2018 
2019 	/* Sanity check that we allow writing into this object */
2020 	if (i915_gem_object_is_readonly(obj) && write)
2021 		return VM_FAULT_SIGBUS;
2022 
2023 	/* We don't use vmf->pgoff since that has the fake offset */
2024 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2025 
2026 	trace_i915_gem_object_fault(obj, page_offset, true, write);
2027 
2028 	/* Try to flush the object off the GPU first without holding the lock.
2029 	 * Upon acquiring the lock, we will perform our sanity checks and then
2030 	 * repeat the flush holding the lock in the normal manner to catch cases
2031 	 * where we are gazumped.
2032 	 */
2033 	ret = i915_gem_object_wait(obj,
2034 				   I915_WAIT_INTERRUPTIBLE,
2035 				   MAX_SCHEDULE_TIMEOUT,
2036 				   NULL);
2037 	if (ret)
2038 		goto err;
2039 
2040 	ret = i915_gem_object_pin_pages(obj);
2041 	if (ret)
2042 		goto err;
2043 
2044 	intel_runtime_pm_get(dev_priv);
2045 
2046 	ret = i915_mutex_lock_interruptible(dev);
2047 	if (ret)
2048 		goto err_rpm;
2049 
2050 	/* Access to snoopable pages through the GTT is incoherent. */
2051 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2052 		ret = -EFAULT;
2053 		goto err_unlock;
2054 	}
2055 
2056 
2057 	/* Now pin it into the GTT as needed */
2058 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
2059 				       PIN_MAPPABLE |
2060 				       PIN_NONBLOCK |
2061 				       PIN_NONFAULT);
2062 	if (IS_ERR(vma)) {
2063 		/* Use a partial view if it is bigger than available space */
2064 		struct i915_ggtt_view view =
2065 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2066 		unsigned int flags;
2067 
2068 		flags = PIN_MAPPABLE;
2069 		if (view.type == I915_GGTT_VIEW_NORMAL)
2070 			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */
2071 
2072 		/*
2073 		 * Userspace is now writing through an untracked VMA, abandon
2074 		 * all hope that the hardware is able to track future writes.
2075 		 */
2076 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
2077 
2078 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2079 		if (IS_ERR(vma) && !view.type) {
2080 			flags = PIN_MAPPABLE;
2081 			view.type = I915_GGTT_VIEW_PARTIAL;
2082 			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2083 		}
2084 	}
2085 	if (IS_ERR(vma)) {
2086 		ret = PTR_ERR(vma);
2087 		goto err_unlock;
2088 	}
2089 
2090 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
2091 	if (ret)
2092 		goto err_unpin;
2093 
2094 	ret = i915_vma_pin_fence(vma);
2095 	if (ret)
2096 		goto err_unpin;
2097 
2098 	/* Finally, remap it using the new GTT offset */
2099 	ret = remap_io_mapping(area,
2100 			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2101 			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2102 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
2103 			       &ggtt->iomap);
2104 	if (ret)
2105 		goto err_fence;
2106 
2107 	/* Mark as being mmapped into userspace for later revocation */
2108 	assert_rpm_wakelock_held(dev_priv);
2109 	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
2110 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
2111 	GEM_BUG_ON(!obj->userfault_count);
2112 
2113 	i915_vma_set_ggtt_write(vma);
2114 
2115 err_fence:
2116 	i915_vma_unpin_fence(vma);
2117 err_unpin:
2118 	__i915_vma_unpin(vma);
2119 err_unlock:
2120 	mutex_unlock(&dev->struct_mutex);
2121 err_rpm:
2122 	intel_runtime_pm_put(dev_priv);
2123 	i915_gem_object_unpin_pages(obj);
2124 err:
2125 	switch (ret) {
2126 	case -EIO:
2127 		/*
2128 		 * We eat errors when the gpu is terminally wedged to avoid
2129 		 * userspace unduly crashing (gl has no provisions for mmaps to
2130 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2131 		 * and so needs to be reported.
2132 		 */
2133 		if (!i915_terminally_wedged(&dev_priv->gpu_error))
2134 			return VM_FAULT_SIGBUS;
2135 		/* else: fall through */
2136 	case -EAGAIN:
2137 		/*
2138 		 * EAGAIN means the gpu is hung and we'll wait for the error
2139 		 * handler to reset everything when re-faulting in
2140 		 * i915_mutex_lock_interruptible.
2141 		 */
2142 	case 0:
2143 	case -ERESTARTSYS:
2144 	case -EINTR:
2145 	case -EBUSY:
2146 		/*
2147 		 * EBUSY is ok: this just means that another thread
2148 		 * already did the job.
2149 		 */
2150 		return VM_FAULT_NOPAGE;
2151 	case -ENOMEM:
2152 		return VM_FAULT_OOM;
2153 	case -ENOSPC:
2154 	case -EFAULT:
2155 		return VM_FAULT_SIGBUS;
2156 	default:
2157 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2158 		return VM_FAULT_SIGBUS;
2159 	}
2160 }
2161 
2162 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2163 {
2164 	struct i915_vma *vma;
2165 
2166 	GEM_BUG_ON(!obj->userfault_count);
2167 
2168 	obj->userfault_count = 0;
2169 	list_del(&obj->userfault_link);
2170 	drm_vma_node_unmap(&obj->base.vma_node,
2171 			   obj->base.dev->anon_inode->i_mapping);
2172 
2173 	for_each_ggtt_vma(vma, obj)
2174 		i915_vma_unset_userfault(vma);
2175 }
2176 
2177 /**
2178  * i915_gem_release_mmap - remove physical page mappings
2179  * @obj: obj in question
2180  *
2181  * Preserve the reservation of the mmapping with the DRM core code, but
2182  * relinquish ownership of the pages back to the system.
2183  *
2184  * It is vital that we remove the page mapping if we have mapped a tiled
2185  * object through the GTT and then lose the fence register due to
2186  * resource pressure. Similarly if the object has been moved out of the
2187  * aperture, than pages mapped into userspace must be revoked. Removing the
2188  * mapping will then trigger a page fault on the next user access, allowing
2189  * fixup by i915_gem_fault().
2190  */
2191 void
2192 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2193 {
2194 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2195 
2196 	/* Serialisation between user GTT access and our code depends upon
2197 	 * revoking the CPU's PTE whilst the mutex is held. The next user
2198 	 * pagefault then has to wait until we release the mutex.
2199 	 *
2200 	 * Note that RPM complicates somewhat by adding an additional
2201 	 * requirement that operations to the GGTT be made holding the RPM
2202 	 * wakeref.
2203 	 */
2204 	lockdep_assert_held(&i915->drm.struct_mutex);
2205 	intel_runtime_pm_get(i915);
2206 
2207 	if (!obj->userfault_count)
2208 		goto out;
2209 
2210 	__i915_gem_object_release_mmap(obj);
2211 
2212 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
2213 	 * memory transactions from userspace before we return. The TLB
2214 	 * flushing implied above by changing the PTE above *should* be
2215 	 * sufficient, an extra barrier here just provides us with a bit
2216 	 * of paranoid documentation about our requirement to serialise
2217 	 * memory writes before touching registers / GSM.
2218 	 */
2219 	wmb();
2220 
2221 out:
2222 	intel_runtime_pm_put(i915);
2223 }
2224 
2225 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2226 {
2227 	struct drm_i915_gem_object *obj, *on;
2228 	int i;
2229 
2230 	/*
2231 	 * Only called during RPM suspend. All users of the userfault_list
2232 	 * must be holding an RPM wakeref to ensure that this can not
2233 	 * run concurrently with themselves (and use the struct_mutex for
2234 	 * protection between themselves).
2235 	 */
2236 
2237 	list_for_each_entry_safe(obj, on,
2238 				 &dev_priv->mm.userfault_list, userfault_link)
2239 		__i915_gem_object_release_mmap(obj);
2240 
2241 	/* The fence will be lost when the device powers down. If any were
2242 	 * in use by hardware (i.e. they are pinned), we should not be powering
2243 	 * down! All other fences will be reacquired by the user upon waking.
2244 	 */
2245 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2246 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2247 
2248 		/* Ideally we want to assert that the fence register is not
2249 		 * live at this point (i.e. that no piece of code will be
2250 		 * trying to write through fence + GTT, as that both violates
2251 		 * our tracking of activity and associated locking/barriers,
2252 		 * but also is illegal given that the hw is powered down).
2253 		 *
2254 		 * Previously we used reg->pin_count as a "liveness" indicator.
2255 		 * That is not sufficient, and we need a more fine-grained
2256 		 * tool if we want to have a sanity check here.
2257 		 */
2258 
2259 		if (!reg->vma)
2260 			continue;
2261 
2262 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2263 		reg->dirty = true;
2264 	}
2265 }
2266 
2267 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2268 {
2269 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2270 	int err;
2271 
2272 	err = drm_gem_create_mmap_offset(&obj->base);
2273 	if (likely(!err))
2274 		return 0;
2275 
2276 	/* Attempt to reap some mmap space from dead objects */
2277 	do {
2278 		err = i915_gem_wait_for_idle(dev_priv,
2279 					     I915_WAIT_INTERRUPTIBLE,
2280 					     MAX_SCHEDULE_TIMEOUT);
2281 		if (err)
2282 			break;
2283 
2284 		i915_gem_drain_freed_objects(dev_priv);
2285 		err = drm_gem_create_mmap_offset(&obj->base);
2286 		if (!err)
2287 			break;
2288 
2289 	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2290 
2291 	return err;
2292 }
2293 
2294 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2295 {
2296 	drm_gem_free_mmap_offset(&obj->base);
2297 }
2298 
2299 int
2300 i915_gem_mmap_gtt(struct drm_file *file,
2301 		  struct drm_device *dev,
2302 		  uint32_t handle,
2303 		  uint64_t *offset)
2304 {
2305 	struct drm_i915_gem_object *obj;
2306 	int ret;
2307 
2308 	obj = i915_gem_object_lookup(file, handle);
2309 	if (!obj)
2310 		return -ENOENT;
2311 
2312 	ret = i915_gem_object_create_mmap_offset(obj);
2313 	if (ret == 0)
2314 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2315 
2316 	i915_gem_object_put(obj);
2317 	return ret;
2318 }
2319 
2320 /**
2321  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2322  * @dev: DRM device
2323  * @data: GTT mapping ioctl data
2324  * @file: GEM object info
2325  *
2326  * Simply returns the fake offset to userspace so it can mmap it.
2327  * The mmap call will end up in drm_gem_mmap(), which will set things
2328  * up so we can get faults in the handler above.
2329  *
2330  * The fault handler will take care of binding the object into the GTT
2331  * (since it may have been evicted to make room for something), allocating
2332  * a fence register, and mapping the appropriate aperture address into
2333  * userspace.
2334  */
2335 int
2336 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2337 			struct drm_file *file)
2338 {
2339 	struct drm_i915_gem_mmap_gtt *args = data;
2340 
2341 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2342 }
2343 
2344 /* Immediately discard the backing storage */
2345 static void
2346 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2347 {
2348 	i915_gem_object_free_mmap_offset(obj);
2349 
2350 	if (obj->base.filp == NULL)
2351 		return;
2352 
2353 	/* Our goal here is to return as much of the memory as
2354 	 * is possible back to the system as we are called from OOM.
2355 	 * To do this we must instruct the shmfs to drop all of its
2356 	 * backing pages, *now*.
2357 	 */
2358 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2359 	obj->mm.madv = __I915_MADV_PURGED;
2360 	obj->mm.pages = ERR_PTR(-EFAULT);
2361 }
2362 
2363 /* Try to discard unwanted pages */
2364 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2365 {
2366 	struct address_space *mapping;
2367 
2368 	lockdep_assert_held(&obj->mm.lock);
2369 	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2370 
2371 	switch (obj->mm.madv) {
2372 	case I915_MADV_DONTNEED:
2373 		i915_gem_object_truncate(obj);
2374 	case __I915_MADV_PURGED:
2375 		return;
2376 	}
2377 
2378 	if (obj->base.filp == NULL)
2379 		return;
2380 
2381 	mapping = obj->base.filp->f_mapping,
2382 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2383 }
2384 
2385 static void
2386 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2387 			      struct sg_table *pages)
2388 {
2389 	struct sgt_iter sgt_iter;
2390 	struct page *page;
2391 
2392 	__i915_gem_object_release_shmem(obj, pages, true);
2393 
2394 	i915_gem_gtt_finish_pages(obj, pages);
2395 
2396 	if (i915_gem_object_needs_bit17_swizzle(obj))
2397 		i915_gem_object_save_bit_17_swizzle(obj, pages);
2398 
2399 	for_each_sgt_page(page, sgt_iter, pages) {
2400 		if (obj->mm.dirty)
2401 			set_page_dirty(page);
2402 
2403 		if (obj->mm.madv == I915_MADV_WILLNEED)
2404 			mark_page_accessed(page);
2405 
2406 		put_page(page);
2407 	}
2408 	obj->mm.dirty = false;
2409 
2410 	sg_free_table(pages);
2411 	kfree(pages);
2412 }
2413 
2414 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2415 {
2416 	struct radix_tree_iter iter;
2417 	void __rcu **slot;
2418 
2419 	rcu_read_lock();
2420 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2421 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2422 	rcu_read_unlock();
2423 }
2424 
2425 static struct sg_table *
2426 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2427 {
2428 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2429 	struct sg_table *pages;
2430 
2431 	pages = fetch_and_zero(&obj->mm.pages);
2432 	if (!pages)
2433 		return NULL;
2434 
2435 	spin_lock(&i915->mm.obj_lock);
2436 	list_del(&obj->mm.link);
2437 	spin_unlock(&i915->mm.obj_lock);
2438 
2439 	if (obj->mm.mapping) {
2440 		void *ptr;
2441 
2442 		ptr = page_mask_bits(obj->mm.mapping);
2443 		if (is_vmalloc_addr(ptr))
2444 			vunmap(ptr);
2445 		else
2446 			kunmap(kmap_to_page(ptr));
2447 
2448 		obj->mm.mapping = NULL;
2449 	}
2450 
2451 	__i915_gem_object_reset_page_iter(obj);
2452 	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2453 
2454 	return pages;
2455 }
2456 
2457 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2458 				 enum i915_mm_subclass subclass)
2459 {
2460 	struct sg_table *pages;
2461 
2462 	if (i915_gem_object_has_pinned_pages(obj))
2463 		return;
2464 
2465 	GEM_BUG_ON(obj->bind_count);
2466 	if (!i915_gem_object_has_pages(obj))
2467 		return;
2468 
2469 	/* May be called by shrinker from within get_pages() (on another bo) */
2470 	mutex_lock_nested(&obj->mm.lock, subclass);
2471 	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2472 		goto unlock;
2473 
2474 	/*
2475 	 * ->put_pages might need to allocate memory for the bit17 swizzle
2476 	 * array, hence protect them from being reaped by removing them from gtt
2477 	 * lists early.
2478 	 */
2479 	pages = __i915_gem_object_unset_pages(obj);
2480 	if (!IS_ERR(pages))
2481 		obj->ops->put_pages(obj, pages);
2482 
2483 unlock:
2484 	mutex_unlock(&obj->mm.lock);
2485 }
2486 
2487 bool i915_sg_trim(struct sg_table *orig_st)
2488 {
2489 	struct sg_table new_st;
2490 	struct scatterlist *sg, *new_sg;
2491 	unsigned int i;
2492 
2493 	if (orig_st->nents == orig_st->orig_nents)
2494 		return false;
2495 
2496 	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2497 		return false;
2498 
2499 	new_sg = new_st.sgl;
2500 	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2501 		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2502 		sg_dma_address(new_sg) = sg_dma_address(sg);
2503 		sg_dma_len(new_sg) = sg_dma_len(sg);
2504 
2505 		new_sg = sg_next(new_sg);
2506 	}
2507 	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2508 
2509 	sg_free_table(orig_st);
2510 
2511 	*orig_st = new_st;
2512 	return true;
2513 }
2514 
2515 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2516 {
2517 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2518 	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2519 	unsigned long i;
2520 	struct address_space *mapping;
2521 	struct sg_table *st;
2522 	struct scatterlist *sg;
2523 	struct sgt_iter sgt_iter;
2524 	struct page *page;
2525 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2526 	unsigned int max_segment = i915_sg_segment_size();
2527 	unsigned int sg_page_sizes;
2528 	gfp_t noreclaim;
2529 	int ret;
2530 
2531 	/*
2532 	 * Assert that the object is not currently in any GPU domain. As it
2533 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2534 	 * a GPU cache
2535 	 */
2536 	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2537 	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2538 
2539 	/*
2540 	 * If there's no chance of allocating enough pages for the whole
2541 	 * object, bail early.
2542 	 */
2543 	if (page_count > totalram_pages)
2544 		return -ENOMEM;
2545 
2546 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2547 	if (st == NULL)
2548 		return -ENOMEM;
2549 
2550 rebuild_st:
2551 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2552 		kfree(st);
2553 		return -ENOMEM;
2554 	}
2555 
2556 	/*
2557 	 * Get the list of pages out of our struct file.  They'll be pinned
2558 	 * at this point until we release them.
2559 	 *
2560 	 * Fail silently without starting the shrinker
2561 	 */
2562 	mapping = obj->base.filp->f_mapping;
2563 	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2564 	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2565 
2566 	sg = st->sgl;
2567 	st->nents = 0;
2568 	sg_page_sizes = 0;
2569 	for (i = 0; i < page_count; i++) {
2570 		const unsigned int shrink[] = {
2571 			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2572 			0,
2573 		}, *s = shrink;
2574 		gfp_t gfp = noreclaim;
2575 
2576 		do {
2577 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2578 			if (likely(!IS_ERR(page)))
2579 				break;
2580 
2581 			if (!*s) {
2582 				ret = PTR_ERR(page);
2583 				goto err_sg;
2584 			}
2585 
2586 			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2587 			cond_resched();
2588 
2589 			/*
2590 			 * We've tried hard to allocate the memory by reaping
2591 			 * our own buffer, now let the real VM do its job and
2592 			 * go down in flames if truly OOM.
2593 			 *
2594 			 * However, since graphics tend to be disposable,
2595 			 * defer the oom here by reporting the ENOMEM back
2596 			 * to userspace.
2597 			 */
2598 			if (!*s) {
2599 				/* reclaim and warn, but no oom */
2600 				gfp = mapping_gfp_mask(mapping);
2601 
2602 				/*
2603 				 * Our bo are always dirty and so we require
2604 				 * kswapd to reclaim our pages (direct reclaim
2605 				 * does not effectively begin pageout of our
2606 				 * buffers on its own). However, direct reclaim
2607 				 * only waits for kswapd when under allocation
2608 				 * congestion. So as a result __GFP_RECLAIM is
2609 				 * unreliable and fails to actually reclaim our
2610 				 * dirty pages -- unless you try over and over
2611 				 * again with !__GFP_NORETRY. However, we still
2612 				 * want to fail this allocation rather than
2613 				 * trigger the out-of-memory killer and for
2614 				 * this we want __GFP_RETRY_MAYFAIL.
2615 				 */
2616 				gfp |= __GFP_RETRY_MAYFAIL;
2617 			}
2618 		} while (1);
2619 
2620 		if (!i ||
2621 		    sg->length >= max_segment ||
2622 		    page_to_pfn(page) != last_pfn + 1) {
2623 			if (i) {
2624 				sg_page_sizes |= sg->length;
2625 				sg = sg_next(sg);
2626 			}
2627 			st->nents++;
2628 			sg_set_page(sg, page, PAGE_SIZE, 0);
2629 		} else {
2630 			sg->length += PAGE_SIZE;
2631 		}
2632 		last_pfn = page_to_pfn(page);
2633 
2634 		/* Check that the i965g/gm workaround works. */
2635 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2636 	}
2637 	if (sg) { /* loop terminated early; short sg table */
2638 		sg_page_sizes |= sg->length;
2639 		sg_mark_end(sg);
2640 	}
2641 
2642 	/* Trim unused sg entries to avoid wasting memory. */
2643 	i915_sg_trim(st);
2644 
2645 	ret = i915_gem_gtt_prepare_pages(obj, st);
2646 	if (ret) {
2647 		/*
2648 		 * DMA remapping failed? One possible cause is that
2649 		 * it could not reserve enough large entries, asking
2650 		 * for PAGE_SIZE chunks instead may be helpful.
2651 		 */
2652 		if (max_segment > PAGE_SIZE) {
2653 			for_each_sgt_page(page, sgt_iter, st)
2654 				put_page(page);
2655 			sg_free_table(st);
2656 
2657 			max_segment = PAGE_SIZE;
2658 			goto rebuild_st;
2659 		} else {
2660 			dev_warn(&dev_priv->drm.pdev->dev,
2661 				 "Failed to DMA remap %lu pages\n",
2662 				 page_count);
2663 			goto err_pages;
2664 		}
2665 	}
2666 
2667 	if (i915_gem_object_needs_bit17_swizzle(obj))
2668 		i915_gem_object_do_bit_17_swizzle(obj, st);
2669 
2670 	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2671 
2672 	return 0;
2673 
2674 err_sg:
2675 	sg_mark_end(sg);
2676 err_pages:
2677 	for_each_sgt_page(page, sgt_iter, st)
2678 		put_page(page);
2679 	sg_free_table(st);
2680 	kfree(st);
2681 
2682 	/*
2683 	 * shmemfs first checks if there is enough memory to allocate the page
2684 	 * and reports ENOSPC should there be insufficient, along with the usual
2685 	 * ENOMEM for a genuine allocation failure.
2686 	 *
2687 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2688 	 * space and so want to translate the error from shmemfs back to our
2689 	 * usual understanding of ENOMEM.
2690 	 */
2691 	if (ret == -ENOSPC)
2692 		ret = -ENOMEM;
2693 
2694 	return ret;
2695 }
2696 
2697 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2698 				 struct sg_table *pages,
2699 				 unsigned int sg_page_sizes)
2700 {
2701 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2702 	unsigned long supported = INTEL_INFO(i915)->page_sizes;
2703 	int i;
2704 
2705 	lockdep_assert_held(&obj->mm.lock);
2706 
2707 	obj->mm.get_page.sg_pos = pages->sgl;
2708 	obj->mm.get_page.sg_idx = 0;
2709 
2710 	obj->mm.pages = pages;
2711 
2712 	if (i915_gem_object_is_tiled(obj) &&
2713 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2714 		GEM_BUG_ON(obj->mm.quirked);
2715 		__i915_gem_object_pin_pages(obj);
2716 		obj->mm.quirked = true;
2717 	}
2718 
2719 	GEM_BUG_ON(!sg_page_sizes);
2720 	obj->mm.page_sizes.phys = sg_page_sizes;
2721 
2722 	/*
2723 	 * Calculate the supported page-sizes which fit into the given
2724 	 * sg_page_sizes. This will give us the page-sizes which we may be able
2725 	 * to use opportunistically when later inserting into the GTT. For
2726 	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2727 	 * 64K or 4K pages, although in practice this will depend on a number of
2728 	 * other factors.
2729 	 */
2730 	obj->mm.page_sizes.sg = 0;
2731 	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2732 		if (obj->mm.page_sizes.phys & ~0u << i)
2733 			obj->mm.page_sizes.sg |= BIT(i);
2734 	}
2735 	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2736 
2737 	spin_lock(&i915->mm.obj_lock);
2738 	list_add(&obj->mm.link, &i915->mm.unbound_list);
2739 	spin_unlock(&i915->mm.obj_lock);
2740 }
2741 
2742 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2743 {
2744 	int err;
2745 
2746 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2747 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2748 		return -EFAULT;
2749 	}
2750 
2751 	err = obj->ops->get_pages(obj);
2752 	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2753 
2754 	return err;
2755 }
2756 
2757 /* Ensure that the associated pages are gathered from the backing storage
2758  * and pinned into our object. i915_gem_object_pin_pages() may be called
2759  * multiple times before they are released by a single call to
2760  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2761  * either as a result of memory pressure (reaping pages under the shrinker)
2762  * or as the object is itself released.
2763  */
2764 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2765 {
2766 	int err;
2767 
2768 	err = mutex_lock_interruptible(&obj->mm.lock);
2769 	if (err)
2770 		return err;
2771 
2772 	if (unlikely(!i915_gem_object_has_pages(obj))) {
2773 		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2774 
2775 		err = ____i915_gem_object_get_pages(obj);
2776 		if (err)
2777 			goto unlock;
2778 
2779 		smp_mb__before_atomic();
2780 	}
2781 	atomic_inc(&obj->mm.pages_pin_count);
2782 
2783 unlock:
2784 	mutex_unlock(&obj->mm.lock);
2785 	return err;
2786 }
2787 
2788 /* The 'mapping' part of i915_gem_object_pin_map() below */
2789 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2790 				 enum i915_map_type type)
2791 {
2792 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2793 	struct sg_table *sgt = obj->mm.pages;
2794 	struct sgt_iter sgt_iter;
2795 	struct page *page;
2796 	struct page *stack_pages[32];
2797 	struct page **pages = stack_pages;
2798 	unsigned long i = 0;
2799 	pgprot_t pgprot;
2800 	void *addr;
2801 
2802 	/* A single page can always be kmapped */
2803 	if (n_pages == 1 && type == I915_MAP_WB)
2804 		return kmap(sg_page(sgt->sgl));
2805 
2806 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2807 		/* Too big for stack -- allocate temporary array instead */
2808 		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2809 		if (!pages)
2810 			return NULL;
2811 	}
2812 
2813 	for_each_sgt_page(page, sgt_iter, sgt)
2814 		pages[i++] = page;
2815 
2816 	/* Check that we have the expected number of pages */
2817 	GEM_BUG_ON(i != n_pages);
2818 
2819 	switch (type) {
2820 	default:
2821 		MISSING_CASE(type);
2822 		/* fallthrough to use PAGE_KERNEL anyway */
2823 	case I915_MAP_WB:
2824 		pgprot = PAGE_KERNEL;
2825 		break;
2826 	case I915_MAP_WC:
2827 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2828 		break;
2829 	}
2830 	addr = vmap(pages, n_pages, 0, pgprot);
2831 
2832 	if (pages != stack_pages)
2833 		kvfree(pages);
2834 
2835 	return addr;
2836 }
2837 
2838 /* get, pin, and map the pages of the object into kernel space */
2839 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2840 			      enum i915_map_type type)
2841 {
2842 	enum i915_map_type has_type;
2843 	bool pinned;
2844 	void *ptr;
2845 	int ret;
2846 
2847 	if (unlikely(!i915_gem_object_has_struct_page(obj)))
2848 		return ERR_PTR(-ENXIO);
2849 
2850 	ret = mutex_lock_interruptible(&obj->mm.lock);
2851 	if (ret)
2852 		return ERR_PTR(ret);
2853 
2854 	pinned = !(type & I915_MAP_OVERRIDE);
2855 	type &= ~I915_MAP_OVERRIDE;
2856 
2857 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2858 		if (unlikely(!i915_gem_object_has_pages(obj))) {
2859 			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2860 
2861 			ret = ____i915_gem_object_get_pages(obj);
2862 			if (ret)
2863 				goto err_unlock;
2864 
2865 			smp_mb__before_atomic();
2866 		}
2867 		atomic_inc(&obj->mm.pages_pin_count);
2868 		pinned = false;
2869 	}
2870 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2871 
2872 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2873 	if (ptr && has_type != type) {
2874 		if (pinned) {
2875 			ret = -EBUSY;
2876 			goto err_unpin;
2877 		}
2878 
2879 		if (is_vmalloc_addr(ptr))
2880 			vunmap(ptr);
2881 		else
2882 			kunmap(kmap_to_page(ptr));
2883 
2884 		ptr = obj->mm.mapping = NULL;
2885 	}
2886 
2887 	if (!ptr) {
2888 		ptr = i915_gem_object_map(obj, type);
2889 		if (!ptr) {
2890 			ret = -ENOMEM;
2891 			goto err_unpin;
2892 		}
2893 
2894 		obj->mm.mapping = page_pack_bits(ptr, type);
2895 	}
2896 
2897 out_unlock:
2898 	mutex_unlock(&obj->mm.lock);
2899 	return ptr;
2900 
2901 err_unpin:
2902 	atomic_dec(&obj->mm.pages_pin_count);
2903 err_unlock:
2904 	ptr = ERR_PTR(ret);
2905 	goto out_unlock;
2906 }
2907 
2908 static int
2909 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2910 			   const struct drm_i915_gem_pwrite *arg)
2911 {
2912 	struct address_space *mapping = obj->base.filp->f_mapping;
2913 	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2914 	u64 remain, offset;
2915 	unsigned int pg;
2916 
2917 	/* Before we instantiate/pin the backing store for our use, we
2918 	 * can prepopulate the shmemfs filp efficiently using a write into
2919 	 * the pagecache. We avoid the penalty of instantiating all the
2920 	 * pages, important if the user is just writing to a few and never
2921 	 * uses the object on the GPU, and using a direct write into shmemfs
2922 	 * allows it to avoid the cost of retrieving a page (either swapin
2923 	 * or clearing-before-use) before it is overwritten.
2924 	 */
2925 	if (i915_gem_object_has_pages(obj))
2926 		return -ENODEV;
2927 
2928 	if (obj->mm.madv != I915_MADV_WILLNEED)
2929 		return -EFAULT;
2930 
2931 	/* Before the pages are instantiated the object is treated as being
2932 	 * in the CPU domain. The pages will be clflushed as required before
2933 	 * use, and we can freely write into the pages directly. If userspace
2934 	 * races pwrite with any other operation; corruption will ensue -
2935 	 * that is userspace's prerogative!
2936 	 */
2937 
2938 	remain = arg->size;
2939 	offset = arg->offset;
2940 	pg = offset_in_page(offset);
2941 
2942 	do {
2943 		unsigned int len, unwritten;
2944 		struct page *page;
2945 		void *data, *vaddr;
2946 		int err;
2947 
2948 		len = PAGE_SIZE - pg;
2949 		if (len > remain)
2950 			len = remain;
2951 
2952 		err = pagecache_write_begin(obj->base.filp, mapping,
2953 					    offset, len, 0,
2954 					    &page, &data);
2955 		if (err < 0)
2956 			return err;
2957 
2958 		vaddr = kmap(page);
2959 		unwritten = copy_from_user(vaddr + pg, user_data, len);
2960 		kunmap(page);
2961 
2962 		err = pagecache_write_end(obj->base.filp, mapping,
2963 					  offset, len, len - unwritten,
2964 					  page, data);
2965 		if (err < 0)
2966 			return err;
2967 
2968 		if (unwritten)
2969 			return -EFAULT;
2970 
2971 		remain -= len;
2972 		user_data += len;
2973 		offset += len;
2974 		pg = 0;
2975 	} while (remain);
2976 
2977 	return 0;
2978 }
2979 
2980 static void i915_gem_client_mark_guilty(struct drm_i915_file_private *file_priv,
2981 					const struct i915_gem_context *ctx)
2982 {
2983 	unsigned int score;
2984 	unsigned long prev_hang;
2985 
2986 	if (i915_gem_context_is_banned(ctx))
2987 		score = I915_CLIENT_SCORE_CONTEXT_BAN;
2988 	else
2989 		score = 0;
2990 
2991 	prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
2992 	if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
2993 		score += I915_CLIENT_SCORE_HANG_FAST;
2994 
2995 	if (score) {
2996 		atomic_add(score, &file_priv->ban_score);
2997 
2998 		DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
2999 				 ctx->name, score,
3000 				 atomic_read(&file_priv->ban_score));
3001 	}
3002 }
3003 
3004 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
3005 {
3006 	unsigned int score;
3007 	bool banned, bannable;
3008 
3009 	atomic_inc(&ctx->guilty_count);
3010 
3011 	bannable = i915_gem_context_is_bannable(ctx);
3012 	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
3013 	banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
3014 
3015 	/* Cool contexts don't accumulate client ban score */
3016 	if (!bannable)
3017 		return;
3018 
3019 	if (banned) {
3020 		DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, banned\n",
3021 				 ctx->name, atomic_read(&ctx->guilty_count),
3022 				 score);
3023 		i915_gem_context_set_banned(ctx);
3024 	}
3025 
3026 	if (!IS_ERR_OR_NULL(ctx->file_priv))
3027 		i915_gem_client_mark_guilty(ctx->file_priv, ctx);
3028 }
3029 
3030 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
3031 {
3032 	atomic_inc(&ctx->active_count);
3033 }
3034 
3035 struct i915_request *
3036 i915_gem_find_active_request(struct intel_engine_cs *engine)
3037 {
3038 	struct i915_request *request, *active = NULL;
3039 	unsigned long flags;
3040 
3041 	/*
3042 	 * We are called by the error capture, reset and to dump engine
3043 	 * state at random points in time. In particular, note that neither is
3044 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
3045 	 * and we assume that no more writes can happen (we waited long enough
3046 	 * for all writes that were in transaction to be flushed) - adding an
3047 	 * extra delay for a recent interrupt is pointless. Hence, we do
3048 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
3049 	 * At all other times, we must assume the GPU is still running, but
3050 	 * we only care about the snapshot of this moment.
3051 	 */
3052 	spin_lock_irqsave(&engine->timeline.lock, flags);
3053 	list_for_each_entry(request, &engine->timeline.requests, link) {
3054 		if (__i915_request_completed(request, request->global_seqno))
3055 			continue;
3056 
3057 		active = request;
3058 		break;
3059 	}
3060 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3061 
3062 	return active;
3063 }
3064 
3065 /*
3066  * Ensure irq handler finishes, and not run again.
3067  * Also return the active request so that we only search for it once.
3068  */
3069 struct i915_request *
3070 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
3071 {
3072 	struct i915_request *request;
3073 
3074 	/*
3075 	 * During the reset sequence, we must prevent the engine from
3076 	 * entering RC6. As the context state is undefined until we restart
3077 	 * the engine, if it does enter RC6 during the reset, the state
3078 	 * written to the powercontext is undefined and so we may lose
3079 	 * GPU state upon resume, i.e. fail to restart after a reset.
3080 	 */
3081 	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
3082 
3083 	request = engine->reset.prepare(engine);
3084 	if (request && request->fence.error == -EIO)
3085 		request = ERR_PTR(-EIO); /* Previous reset failed! */
3086 
3087 	return request;
3088 }
3089 
3090 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3091 {
3092 	struct intel_engine_cs *engine;
3093 	struct i915_request *request;
3094 	enum intel_engine_id id;
3095 	int err = 0;
3096 
3097 	for_each_engine(engine, dev_priv, id) {
3098 		request = i915_gem_reset_prepare_engine(engine);
3099 		if (IS_ERR(request)) {
3100 			err = PTR_ERR(request);
3101 			continue;
3102 		}
3103 
3104 		engine->hangcheck.active_request = request;
3105 	}
3106 
3107 	i915_gem_revoke_fences(dev_priv);
3108 	intel_uc_sanitize(dev_priv);
3109 
3110 	return err;
3111 }
3112 
3113 static void engine_skip_context(struct i915_request *request)
3114 {
3115 	struct intel_engine_cs *engine = request->engine;
3116 	struct i915_gem_context *hung_ctx = request->gem_context;
3117 	struct i915_timeline *timeline = request->timeline;
3118 	unsigned long flags;
3119 
3120 	GEM_BUG_ON(timeline == &engine->timeline);
3121 
3122 	spin_lock_irqsave(&engine->timeline.lock, flags);
3123 	spin_lock(&timeline->lock);
3124 
3125 	list_for_each_entry_continue(request, &engine->timeline.requests, link)
3126 		if (request->gem_context == hung_ctx)
3127 			i915_request_skip(request, -EIO);
3128 
3129 	list_for_each_entry(request, &timeline->requests, link)
3130 		i915_request_skip(request, -EIO);
3131 
3132 	spin_unlock(&timeline->lock);
3133 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3134 }
3135 
3136 /* Returns the request if it was guilty of the hang */
3137 static struct i915_request *
3138 i915_gem_reset_request(struct intel_engine_cs *engine,
3139 		       struct i915_request *request,
3140 		       bool stalled)
3141 {
3142 	/* The guilty request will get skipped on a hung engine.
3143 	 *
3144 	 * Users of client default contexts do not rely on logical
3145 	 * state preserved between batches so it is safe to execute
3146 	 * queued requests following the hang. Non default contexts
3147 	 * rely on preserved state, so skipping a batch loses the
3148 	 * evolution of the state and it needs to be considered corrupted.
3149 	 * Executing more queued batches on top of corrupted state is
3150 	 * risky. But we take the risk by trying to advance through
3151 	 * the queued requests in order to make the client behaviour
3152 	 * more predictable around resets, by not throwing away random
3153 	 * amount of batches it has prepared for execution. Sophisticated
3154 	 * clients can use gem_reset_stats_ioctl and dma fence status
3155 	 * (exported via sync_file info ioctl on explicit fences) to observe
3156 	 * when it loses the context state and should rebuild accordingly.
3157 	 *
3158 	 * The context ban, and ultimately the client ban, mechanism are safety
3159 	 * valves if client submission ends up resulting in nothing more than
3160 	 * subsequent hangs.
3161 	 */
3162 
3163 	if (i915_request_completed(request)) {
3164 		GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
3165 			  engine->name, request->global_seqno,
3166 			  request->fence.context, request->fence.seqno,
3167 			  intel_engine_get_seqno(engine));
3168 		stalled = false;
3169 	}
3170 
3171 	if (stalled) {
3172 		i915_gem_context_mark_guilty(request->gem_context);
3173 		i915_request_skip(request, -EIO);
3174 
3175 		/* If this context is now banned, skip all pending requests. */
3176 		if (i915_gem_context_is_banned(request->gem_context))
3177 			engine_skip_context(request);
3178 	} else {
3179 		/*
3180 		 * Since this is not the hung engine, it may have advanced
3181 		 * since the hang declaration. Double check by refinding
3182 		 * the active request at the time of the reset.
3183 		 */
3184 		request = i915_gem_find_active_request(engine);
3185 		if (request) {
3186 			unsigned long flags;
3187 
3188 			i915_gem_context_mark_innocent(request->gem_context);
3189 			dma_fence_set_error(&request->fence, -EAGAIN);
3190 
3191 			/* Rewind the engine to replay the incomplete rq */
3192 			spin_lock_irqsave(&engine->timeline.lock, flags);
3193 			request = list_prev_entry(request, link);
3194 			if (&request->link == &engine->timeline.requests)
3195 				request = NULL;
3196 			spin_unlock_irqrestore(&engine->timeline.lock, flags);
3197 		}
3198 	}
3199 
3200 	return request;
3201 }
3202 
3203 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3204 			   struct i915_request *request,
3205 			   bool stalled)
3206 {
3207 	/*
3208 	 * Make sure this write is visible before we re-enable the interrupt
3209 	 * handlers on another CPU, as tasklet_enable() resolves to just
3210 	 * a compiler barrier which is insufficient for our purpose here.
3211 	 */
3212 	smp_store_mb(engine->irq_posted, 0);
3213 
3214 	if (request)
3215 		request = i915_gem_reset_request(engine, request, stalled);
3216 
3217 	/* Setup the CS to resume from the breadcrumb of the hung request */
3218 	engine->reset.reset(engine, request);
3219 }
3220 
3221 void i915_gem_reset(struct drm_i915_private *dev_priv,
3222 		    unsigned int stalled_mask)
3223 {
3224 	struct intel_engine_cs *engine;
3225 	enum intel_engine_id id;
3226 
3227 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3228 
3229 	i915_retire_requests(dev_priv);
3230 
3231 	for_each_engine(engine, dev_priv, id) {
3232 		struct intel_context *ce;
3233 
3234 		i915_gem_reset_engine(engine,
3235 				      engine->hangcheck.active_request,
3236 				      stalled_mask & ENGINE_MASK(id));
3237 		ce = fetch_and_zero(&engine->last_retired_context);
3238 		if (ce)
3239 			intel_context_unpin(ce);
3240 
3241 		/*
3242 		 * Ostensibily, we always want a context loaded for powersaving,
3243 		 * so if the engine is idle after the reset, send a request
3244 		 * to load our scratch kernel_context.
3245 		 *
3246 		 * More mysteriously, if we leave the engine idle after a reset,
3247 		 * the next userspace batch may hang, with what appears to be
3248 		 * an incoherent read by the CS (presumably stale TLB). An
3249 		 * empty request appears sufficient to paper over the glitch.
3250 		 */
3251 		if (intel_engine_is_idle(engine)) {
3252 			struct i915_request *rq;
3253 
3254 			rq = i915_request_alloc(engine,
3255 						dev_priv->kernel_context);
3256 			if (!IS_ERR(rq))
3257 				i915_request_add(rq);
3258 		}
3259 	}
3260 
3261 	i915_gem_restore_fences(dev_priv);
3262 }
3263 
3264 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3265 {
3266 	engine->reset.finish(engine);
3267 
3268 	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3269 }
3270 
3271 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3272 {
3273 	struct intel_engine_cs *engine;
3274 	enum intel_engine_id id;
3275 
3276 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3277 
3278 	for_each_engine(engine, dev_priv, id) {
3279 		engine->hangcheck.active_request = NULL;
3280 		i915_gem_reset_finish_engine(engine);
3281 	}
3282 }
3283 
3284 static void nop_submit_request(struct i915_request *request)
3285 {
3286 	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3287 		  request->engine->name,
3288 		  request->fence.context, request->fence.seqno);
3289 	dma_fence_set_error(&request->fence, -EIO);
3290 
3291 	i915_request_submit(request);
3292 }
3293 
3294 static void nop_complete_submit_request(struct i915_request *request)
3295 {
3296 	unsigned long flags;
3297 
3298 	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3299 		  request->engine->name,
3300 		  request->fence.context, request->fence.seqno);
3301 	dma_fence_set_error(&request->fence, -EIO);
3302 
3303 	spin_lock_irqsave(&request->engine->timeline.lock, flags);
3304 	__i915_request_submit(request);
3305 	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3306 	spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3307 }
3308 
3309 void i915_gem_set_wedged(struct drm_i915_private *i915)
3310 {
3311 	struct intel_engine_cs *engine;
3312 	enum intel_engine_id id;
3313 
3314 	GEM_TRACE("start\n");
3315 
3316 	if (GEM_SHOW_DEBUG()) {
3317 		struct drm_printer p = drm_debug_printer(__func__);
3318 
3319 		for_each_engine(engine, i915, id)
3320 			intel_engine_dump(engine, &p, "%s\n", engine->name);
3321 	}
3322 
3323 	if (test_and_set_bit(I915_WEDGED, &i915->gpu_error.flags))
3324 		goto out;
3325 
3326 	/*
3327 	 * First, stop submission to hw, but do not yet complete requests by
3328 	 * rolling the global seqno forward (since this would complete requests
3329 	 * for which we haven't set the fence error to EIO yet).
3330 	 */
3331 	for_each_engine(engine, i915, id) {
3332 		i915_gem_reset_prepare_engine(engine);
3333 
3334 		engine->submit_request = nop_submit_request;
3335 		engine->schedule = NULL;
3336 	}
3337 	i915->caps.scheduler = 0;
3338 
3339 	/* Even if the GPU reset fails, it should still stop the engines */
3340 	if (INTEL_GEN(i915) >= 5)
3341 		intel_gpu_reset(i915, ALL_ENGINES);
3342 
3343 	/*
3344 	 * Make sure no one is running the old callback before we proceed with
3345 	 * cancelling requests and resetting the completion tracking. Otherwise
3346 	 * we might submit a request to the hardware which never completes.
3347 	 */
3348 	synchronize_rcu();
3349 
3350 	for_each_engine(engine, i915, id) {
3351 		/* Mark all executing requests as skipped */
3352 		engine->cancel_requests(engine);
3353 
3354 		/*
3355 		 * Only once we've force-cancelled all in-flight requests can we
3356 		 * start to complete all requests.
3357 		 */
3358 		engine->submit_request = nop_complete_submit_request;
3359 	}
3360 
3361 	/*
3362 	 * Make sure no request can slip through without getting completed by
3363 	 * either this call here to intel_engine_init_global_seqno, or the one
3364 	 * in nop_complete_submit_request.
3365 	 */
3366 	synchronize_rcu();
3367 
3368 	for_each_engine(engine, i915, id) {
3369 		unsigned long flags;
3370 
3371 		/*
3372 		 * Mark all pending requests as complete so that any concurrent
3373 		 * (lockless) lookup doesn't try and wait upon the request as we
3374 		 * reset it.
3375 		 */
3376 		spin_lock_irqsave(&engine->timeline.lock, flags);
3377 		intel_engine_init_global_seqno(engine,
3378 					       intel_engine_last_submit(engine));
3379 		spin_unlock_irqrestore(&engine->timeline.lock, flags);
3380 
3381 		i915_gem_reset_finish_engine(engine);
3382 	}
3383 
3384 out:
3385 	GEM_TRACE("end\n");
3386 
3387 	wake_up_all(&i915->gpu_error.reset_queue);
3388 }
3389 
3390 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3391 {
3392 	struct i915_timeline *tl;
3393 
3394 	lockdep_assert_held(&i915->drm.struct_mutex);
3395 	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3396 		return true;
3397 
3398 	GEM_TRACE("start\n");
3399 
3400 	/*
3401 	 * Before unwedging, make sure that all pending operations
3402 	 * are flushed and errored out - we may have requests waiting upon
3403 	 * third party fences. We marked all inflight requests as EIO, and
3404 	 * every execbuf since returned EIO, for consistency we want all
3405 	 * the currently pending requests to also be marked as EIO, which
3406 	 * is done inside our nop_submit_request - and so we must wait.
3407 	 *
3408 	 * No more can be submitted until we reset the wedged bit.
3409 	 */
3410 	list_for_each_entry(tl, &i915->gt.timelines, link) {
3411 		struct i915_request *rq;
3412 
3413 		rq = i915_gem_active_peek(&tl->last_request,
3414 					  &i915->drm.struct_mutex);
3415 		if (!rq)
3416 			continue;
3417 
3418 		/*
3419 		 * We can't use our normal waiter as we want to
3420 		 * avoid recursively trying to handle the current
3421 		 * reset. The basic dma_fence_default_wait() installs
3422 		 * a callback for dma_fence_signal(), which is
3423 		 * triggered by our nop handler (indirectly, the
3424 		 * callback enables the signaler thread which is
3425 		 * woken by the nop_submit_request() advancing the seqno
3426 		 * and when the seqno passes the fence, the signaler
3427 		 * then signals the fence waking us up).
3428 		 */
3429 		if (dma_fence_default_wait(&rq->fence, true,
3430 					   MAX_SCHEDULE_TIMEOUT) < 0)
3431 			return false;
3432 	}
3433 	i915_retire_requests(i915);
3434 	GEM_BUG_ON(i915->gt.active_requests);
3435 
3436 	if (!intel_gpu_reset(i915, ALL_ENGINES))
3437 		intel_engines_sanitize(i915);
3438 
3439 	/*
3440 	 * Undo nop_submit_request. We prevent all new i915 requests from
3441 	 * being queued (by disallowing execbuf whilst wedged) so having
3442 	 * waited for all active requests above, we know the system is idle
3443 	 * and do not have to worry about a thread being inside
3444 	 * engine->submit_request() as we swap over. So unlike installing
3445 	 * the nop_submit_request on reset, we can do this from normal
3446 	 * context and do not require stop_machine().
3447 	 */
3448 	intel_engines_reset_default_submission(i915);
3449 	i915_gem_contexts_lost(i915);
3450 
3451 	GEM_TRACE("end\n");
3452 
3453 	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3454 	clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3455 
3456 	return true;
3457 }
3458 
3459 static void
3460 i915_gem_retire_work_handler(struct work_struct *work)
3461 {
3462 	struct drm_i915_private *dev_priv =
3463 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3464 	struct drm_device *dev = &dev_priv->drm;
3465 
3466 	/* Come back later if the device is busy... */
3467 	if (mutex_trylock(&dev->struct_mutex)) {
3468 		i915_retire_requests(dev_priv);
3469 		mutex_unlock(&dev->struct_mutex);
3470 	}
3471 
3472 	/*
3473 	 * Keep the retire handler running until we are finally idle.
3474 	 * We do not need to do this test under locking as in the worst-case
3475 	 * we queue the retire worker once too often.
3476 	 */
3477 	if (READ_ONCE(dev_priv->gt.awake))
3478 		queue_delayed_work(dev_priv->wq,
3479 				   &dev_priv->gt.retire_work,
3480 				   round_jiffies_up_relative(HZ));
3481 }
3482 
3483 static void shrink_caches(struct drm_i915_private *i915)
3484 {
3485 	/*
3486 	 * kmem_cache_shrink() discards empty slabs and reorders partially
3487 	 * filled slabs to prioritise allocating from the mostly full slabs,
3488 	 * with the aim of reducing fragmentation.
3489 	 */
3490 	kmem_cache_shrink(i915->priorities);
3491 	kmem_cache_shrink(i915->dependencies);
3492 	kmem_cache_shrink(i915->requests);
3493 	kmem_cache_shrink(i915->luts);
3494 	kmem_cache_shrink(i915->vmas);
3495 	kmem_cache_shrink(i915->objects);
3496 }
3497 
3498 struct sleep_rcu_work {
3499 	union {
3500 		struct rcu_head rcu;
3501 		struct work_struct work;
3502 	};
3503 	struct drm_i915_private *i915;
3504 	unsigned int epoch;
3505 };
3506 
3507 static inline bool
3508 same_epoch(struct drm_i915_private *i915, unsigned int epoch)
3509 {
3510 	/*
3511 	 * There is a small chance that the epoch wrapped since we started
3512 	 * sleeping. If we assume that epoch is at least a u32, then it will
3513 	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
3514 	 */
3515 	return epoch == READ_ONCE(i915->gt.epoch);
3516 }
3517 
3518 static void __sleep_work(struct work_struct *work)
3519 {
3520 	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
3521 	struct drm_i915_private *i915 = s->i915;
3522 	unsigned int epoch = s->epoch;
3523 
3524 	kfree(s);
3525 	if (same_epoch(i915, epoch))
3526 		shrink_caches(i915);
3527 }
3528 
3529 static void __sleep_rcu(struct rcu_head *rcu)
3530 {
3531 	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
3532 	struct drm_i915_private *i915 = s->i915;
3533 
3534 	if (same_epoch(i915, s->epoch)) {
3535 		INIT_WORK(&s->work, __sleep_work);
3536 		queue_work(i915->wq, &s->work);
3537 	} else {
3538 		kfree(s);
3539 	}
3540 }
3541 
3542 static inline bool
3543 new_requests_since_last_retire(const struct drm_i915_private *i915)
3544 {
3545 	return (READ_ONCE(i915->gt.active_requests) ||
3546 		work_pending(&i915->gt.idle_work.work));
3547 }
3548 
3549 static void assert_kernel_context_is_current(struct drm_i915_private *i915)
3550 {
3551 	struct intel_engine_cs *engine;
3552 	enum intel_engine_id id;
3553 
3554 	if (i915_terminally_wedged(&i915->gpu_error))
3555 		return;
3556 
3557 	GEM_BUG_ON(i915->gt.active_requests);
3558 	for_each_engine(engine, i915, id) {
3559 		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
3560 		GEM_BUG_ON(engine->last_retired_context !=
3561 			   to_intel_context(i915->kernel_context, engine));
3562 	}
3563 }
3564 
3565 static void
3566 i915_gem_idle_work_handler(struct work_struct *work)
3567 {
3568 	struct drm_i915_private *dev_priv =
3569 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3570 	unsigned int epoch = I915_EPOCH_INVALID;
3571 	bool rearm_hangcheck;
3572 
3573 	if (!READ_ONCE(dev_priv->gt.awake))
3574 		return;
3575 
3576 	if (READ_ONCE(dev_priv->gt.active_requests))
3577 		return;
3578 
3579 	/*
3580 	 * Flush out the last user context, leaving only the pinned
3581 	 * kernel context resident. When we are idling on the kernel_context,
3582 	 * no more new requests (with a context switch) are emitted and we
3583 	 * can finally rest. A consequence is that the idle work handler is
3584 	 * always called at least twice before idling (and if the system is
3585 	 * idle that implies a round trip through the retire worker).
3586 	 */
3587 	mutex_lock(&dev_priv->drm.struct_mutex);
3588 	i915_gem_switch_to_kernel_context(dev_priv);
3589 	mutex_unlock(&dev_priv->drm.struct_mutex);
3590 
3591 	GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
3592 		  READ_ONCE(dev_priv->gt.active_requests));
3593 
3594 	/*
3595 	 * Wait for last execlists context complete, but bail out in case a
3596 	 * new request is submitted. As we don't trust the hardware, we
3597 	 * continue on if the wait times out. This is necessary to allow
3598 	 * the machine to suspend even if the hardware dies, and we will
3599 	 * try to recover in resume (after depriving the hardware of power,
3600 	 * it may be in a better mmod).
3601 	 */
3602 	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
3603 		   intel_engines_are_idle(dev_priv),
3604 		   I915_IDLE_ENGINES_TIMEOUT * 1000,
3605 		   10, 500);
3606 
3607 	rearm_hangcheck =
3608 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3609 
3610 	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3611 		/* Currently busy, come back later */
3612 		mod_delayed_work(dev_priv->wq,
3613 				 &dev_priv->gt.idle_work,
3614 				 msecs_to_jiffies(50));
3615 		goto out_rearm;
3616 	}
3617 
3618 	/*
3619 	 * New request retired after this work handler started, extend active
3620 	 * period until next instance of the work.
3621 	 */
3622 	if (new_requests_since_last_retire(dev_priv))
3623 		goto out_unlock;
3624 
3625 	epoch = __i915_gem_park(dev_priv);
3626 
3627 	assert_kernel_context_is_current(dev_priv);
3628 
3629 	rearm_hangcheck = false;
3630 out_unlock:
3631 	mutex_unlock(&dev_priv->drm.struct_mutex);
3632 
3633 out_rearm:
3634 	if (rearm_hangcheck) {
3635 		GEM_BUG_ON(!dev_priv->gt.awake);
3636 		i915_queue_hangcheck(dev_priv);
3637 	}
3638 
3639 	/*
3640 	 * When we are idle, it is an opportune time to reap our caches.
3641 	 * However, we have many objects that utilise RCU and the ordered
3642 	 * i915->wq that this work is executing on. To try and flush any
3643 	 * pending frees now we are idle, we first wait for an RCU grace
3644 	 * period, and then queue a task (that will run last on the wq) to
3645 	 * shrink and re-optimize the caches.
3646 	 */
3647 	if (same_epoch(dev_priv, epoch)) {
3648 		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
3649 		if (s) {
3650 			s->i915 = dev_priv;
3651 			s->epoch = epoch;
3652 			call_rcu(&s->rcu, __sleep_rcu);
3653 		}
3654 	}
3655 }
3656 
3657 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3658 {
3659 	struct drm_i915_private *i915 = to_i915(gem->dev);
3660 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
3661 	struct drm_i915_file_private *fpriv = file->driver_priv;
3662 	struct i915_lut_handle *lut, *ln;
3663 
3664 	mutex_lock(&i915->drm.struct_mutex);
3665 
3666 	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3667 		struct i915_gem_context *ctx = lut->ctx;
3668 		struct i915_vma *vma;
3669 
3670 		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3671 		if (ctx->file_priv != fpriv)
3672 			continue;
3673 
3674 		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3675 		GEM_BUG_ON(vma->obj != obj);
3676 
3677 		/* We allow the process to have multiple handles to the same
3678 		 * vma, in the same fd namespace, by virtue of flink/open.
3679 		 */
3680 		GEM_BUG_ON(!vma->open_count);
3681 		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3682 			i915_vma_close(vma);
3683 
3684 		list_del(&lut->obj_link);
3685 		list_del(&lut->ctx_link);
3686 
3687 		kmem_cache_free(i915->luts, lut);
3688 		__i915_gem_object_release_unless_active(obj);
3689 	}
3690 
3691 	mutex_unlock(&i915->drm.struct_mutex);
3692 }
3693 
3694 static unsigned long to_wait_timeout(s64 timeout_ns)
3695 {
3696 	if (timeout_ns < 0)
3697 		return MAX_SCHEDULE_TIMEOUT;
3698 
3699 	if (timeout_ns == 0)
3700 		return 0;
3701 
3702 	return nsecs_to_jiffies_timeout(timeout_ns);
3703 }
3704 
3705 /**
3706  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3707  * @dev: drm device pointer
3708  * @data: ioctl data blob
3709  * @file: drm file pointer
3710  *
3711  * Returns 0 if successful, else an error is returned with the remaining time in
3712  * the timeout parameter.
3713  *  -ETIME: object is still busy after timeout
3714  *  -ERESTARTSYS: signal interrupted the wait
3715  *  -ENONENT: object doesn't exist
3716  * Also possible, but rare:
3717  *  -EAGAIN: incomplete, restart syscall
3718  *  -ENOMEM: damn
3719  *  -ENODEV: Internal IRQ fail
3720  *  -E?: The add request failed
3721  *
3722  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3723  * non-zero timeout parameter the wait ioctl will wait for the given number of
3724  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3725  * without holding struct_mutex the object may become re-busied before this
3726  * function completes. A similar but shorter * race condition exists in the busy
3727  * ioctl
3728  */
3729 int
3730 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3731 {
3732 	struct drm_i915_gem_wait *args = data;
3733 	struct drm_i915_gem_object *obj;
3734 	ktime_t start;
3735 	long ret;
3736 
3737 	if (args->flags != 0)
3738 		return -EINVAL;
3739 
3740 	obj = i915_gem_object_lookup(file, args->bo_handle);
3741 	if (!obj)
3742 		return -ENOENT;
3743 
3744 	start = ktime_get();
3745 
3746 	ret = i915_gem_object_wait(obj,
3747 				   I915_WAIT_INTERRUPTIBLE |
3748 				   I915_WAIT_PRIORITY |
3749 				   I915_WAIT_ALL,
3750 				   to_wait_timeout(args->timeout_ns),
3751 				   to_rps_client(file));
3752 
3753 	if (args->timeout_ns > 0) {
3754 		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3755 		if (args->timeout_ns < 0)
3756 			args->timeout_ns = 0;
3757 
3758 		/*
3759 		 * Apparently ktime isn't accurate enough and occasionally has a
3760 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3761 		 * things up to make the test happy. We allow up to 1 jiffy.
3762 		 *
3763 		 * This is a regression from the timespec->ktime conversion.
3764 		 */
3765 		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3766 			args->timeout_ns = 0;
3767 
3768 		/* Asked to wait beyond the jiffie/scheduler precision? */
3769 		if (ret == -ETIME && args->timeout_ns)
3770 			ret = -EAGAIN;
3771 	}
3772 
3773 	i915_gem_object_put(obj);
3774 	return ret;
3775 }
3776 
3777 static long wait_for_timeline(struct i915_timeline *tl,
3778 			      unsigned int flags, long timeout)
3779 {
3780 	struct i915_request *rq;
3781 
3782 	rq = i915_gem_active_get_unlocked(&tl->last_request);
3783 	if (!rq)
3784 		return timeout;
3785 
3786 	/*
3787 	 * "Race-to-idle".
3788 	 *
3789 	 * Switching to the kernel context is often used a synchronous
3790 	 * step prior to idling, e.g. in suspend for flushing all
3791 	 * current operations to memory before sleeping. These we
3792 	 * want to complete as quickly as possible to avoid prolonged
3793 	 * stalls, so allow the gpu to boost to maximum clocks.
3794 	 */
3795 	if (flags & I915_WAIT_FOR_IDLE_BOOST)
3796 		gen6_rps_boost(rq, NULL);
3797 
3798 	timeout = i915_request_wait(rq, flags, timeout);
3799 	i915_request_put(rq);
3800 
3801 	return timeout;
3802 }
3803 
3804 static int wait_for_engines(struct drm_i915_private *i915)
3805 {
3806 	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3807 		dev_err(i915->drm.dev,
3808 			"Failed to idle engines, declaring wedged!\n");
3809 		GEM_TRACE_DUMP();
3810 		i915_gem_set_wedged(i915);
3811 		return -EIO;
3812 	}
3813 
3814 	return 0;
3815 }
3816 
3817 int i915_gem_wait_for_idle(struct drm_i915_private *i915,
3818 			   unsigned int flags, long timeout)
3819 {
3820 	GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
3821 		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
3822 		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3823 
3824 	/* If the device is asleep, we have no requests outstanding */
3825 	if (!READ_ONCE(i915->gt.awake))
3826 		return 0;
3827 
3828 	if (flags & I915_WAIT_LOCKED) {
3829 		struct i915_timeline *tl;
3830 		int err;
3831 
3832 		lockdep_assert_held(&i915->drm.struct_mutex);
3833 
3834 		list_for_each_entry(tl, &i915->gt.timelines, link) {
3835 			timeout = wait_for_timeline(tl, flags, timeout);
3836 			if (timeout < 0)
3837 				return timeout;
3838 		}
3839 		if (GEM_SHOW_DEBUG() && !timeout) {
3840 			/* Presume that timeout was non-zero to begin with! */
3841 			dev_warn(&i915->drm.pdev->dev,
3842 				 "Missed idle-completion interrupt!\n");
3843 			GEM_TRACE_DUMP();
3844 		}
3845 
3846 		err = wait_for_engines(i915);
3847 		if (err)
3848 			return err;
3849 
3850 		i915_retire_requests(i915);
3851 		GEM_BUG_ON(i915->gt.active_requests);
3852 	} else {
3853 		struct intel_engine_cs *engine;
3854 		enum intel_engine_id id;
3855 
3856 		for_each_engine(engine, i915, id) {
3857 			struct i915_timeline *tl = &engine->timeline;
3858 
3859 			timeout = wait_for_timeline(tl, flags, timeout);
3860 			if (timeout < 0)
3861 				return timeout;
3862 		}
3863 	}
3864 
3865 	return 0;
3866 }
3867 
3868 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3869 {
3870 	/*
3871 	 * We manually flush the CPU domain so that we can override and
3872 	 * force the flush for the display, and perform it asyncrhonously.
3873 	 */
3874 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3875 	if (obj->cache_dirty)
3876 		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3877 	obj->write_domain = 0;
3878 }
3879 
3880 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3881 {
3882 	if (!READ_ONCE(obj->pin_global))
3883 		return;
3884 
3885 	mutex_lock(&obj->base.dev->struct_mutex);
3886 	__i915_gem_object_flush_for_display(obj);
3887 	mutex_unlock(&obj->base.dev->struct_mutex);
3888 }
3889 
3890 /**
3891  * Moves a single object to the WC read, and possibly write domain.
3892  * @obj: object to act on
3893  * @write: ask for write access or read only
3894  *
3895  * This function returns when the move is complete, including waiting on
3896  * flushes to occur.
3897  */
3898 int
3899 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3900 {
3901 	int ret;
3902 
3903 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3904 
3905 	ret = i915_gem_object_wait(obj,
3906 				   I915_WAIT_INTERRUPTIBLE |
3907 				   I915_WAIT_LOCKED |
3908 				   (write ? I915_WAIT_ALL : 0),
3909 				   MAX_SCHEDULE_TIMEOUT,
3910 				   NULL);
3911 	if (ret)
3912 		return ret;
3913 
3914 	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3915 		return 0;
3916 
3917 	/* Flush and acquire obj->pages so that we are coherent through
3918 	 * direct access in memory with previous cached writes through
3919 	 * shmemfs and that our cache domain tracking remains valid.
3920 	 * For example, if the obj->filp was moved to swap without us
3921 	 * being notified and releasing the pages, we would mistakenly
3922 	 * continue to assume that the obj remained out of the CPU cached
3923 	 * domain.
3924 	 */
3925 	ret = i915_gem_object_pin_pages(obj);
3926 	if (ret)
3927 		return ret;
3928 
3929 	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3930 
3931 	/* Serialise direct access to this object with the barriers for
3932 	 * coherent writes from the GPU, by effectively invalidating the
3933 	 * WC domain upon first access.
3934 	 */
3935 	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3936 		mb();
3937 
3938 	/* It should now be out of any other write domains, and we can update
3939 	 * the domain values for our changes.
3940 	 */
3941 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3942 	obj->read_domains |= I915_GEM_DOMAIN_WC;
3943 	if (write) {
3944 		obj->read_domains = I915_GEM_DOMAIN_WC;
3945 		obj->write_domain = I915_GEM_DOMAIN_WC;
3946 		obj->mm.dirty = true;
3947 	}
3948 
3949 	i915_gem_object_unpin_pages(obj);
3950 	return 0;
3951 }
3952 
3953 /**
3954  * Moves a single object to the GTT read, and possibly write domain.
3955  * @obj: object to act on
3956  * @write: ask for write access or read only
3957  *
3958  * This function returns when the move is complete, including waiting on
3959  * flushes to occur.
3960  */
3961 int
3962 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3963 {
3964 	int ret;
3965 
3966 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3967 
3968 	ret = i915_gem_object_wait(obj,
3969 				   I915_WAIT_INTERRUPTIBLE |
3970 				   I915_WAIT_LOCKED |
3971 				   (write ? I915_WAIT_ALL : 0),
3972 				   MAX_SCHEDULE_TIMEOUT,
3973 				   NULL);
3974 	if (ret)
3975 		return ret;
3976 
3977 	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3978 		return 0;
3979 
3980 	/* Flush and acquire obj->pages so that we are coherent through
3981 	 * direct access in memory with previous cached writes through
3982 	 * shmemfs and that our cache domain tracking remains valid.
3983 	 * For example, if the obj->filp was moved to swap without us
3984 	 * being notified and releasing the pages, we would mistakenly
3985 	 * continue to assume that the obj remained out of the CPU cached
3986 	 * domain.
3987 	 */
3988 	ret = i915_gem_object_pin_pages(obj);
3989 	if (ret)
3990 		return ret;
3991 
3992 	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3993 
3994 	/* Serialise direct access to this object with the barriers for
3995 	 * coherent writes from the GPU, by effectively invalidating the
3996 	 * GTT domain upon first access.
3997 	 */
3998 	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3999 		mb();
4000 
4001 	/* It should now be out of any other write domains, and we can update
4002 	 * the domain values for our changes.
4003 	 */
4004 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4005 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4006 	if (write) {
4007 		obj->read_domains = I915_GEM_DOMAIN_GTT;
4008 		obj->write_domain = I915_GEM_DOMAIN_GTT;
4009 		obj->mm.dirty = true;
4010 	}
4011 
4012 	i915_gem_object_unpin_pages(obj);
4013 	return 0;
4014 }
4015 
4016 /**
4017  * Changes the cache-level of an object across all VMA.
4018  * @obj: object to act on
4019  * @cache_level: new cache level to set for the object
4020  *
4021  * After this function returns, the object will be in the new cache-level
4022  * across all GTT and the contents of the backing storage will be coherent,
4023  * with respect to the new cache-level. In order to keep the backing storage
4024  * coherent for all users, we only allow a single cache level to be set
4025  * globally on the object and prevent it from being changed whilst the
4026  * hardware is reading from the object. That is if the object is currently
4027  * on the scanout it will be set to uncached (or equivalent display
4028  * cache coherency) and all non-MOCS GPU access will also be uncached so
4029  * that all direct access to the scanout remains coherent.
4030  */
4031 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4032 				    enum i915_cache_level cache_level)
4033 {
4034 	struct i915_vma *vma;
4035 	int ret;
4036 
4037 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4038 
4039 	if (obj->cache_level == cache_level)
4040 		return 0;
4041 
4042 	/* Inspect the list of currently bound VMA and unbind any that would
4043 	 * be invalid given the new cache-level. This is principally to
4044 	 * catch the issue of the CS prefetch crossing page boundaries and
4045 	 * reading an invalid PTE on older architectures.
4046 	 */
4047 restart:
4048 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4049 		if (!drm_mm_node_allocated(&vma->node))
4050 			continue;
4051 
4052 		if (i915_vma_is_pinned(vma)) {
4053 			DRM_DEBUG("can not change the cache level of pinned objects\n");
4054 			return -EBUSY;
4055 		}
4056 
4057 		if (!i915_vma_is_closed(vma) &&
4058 		    i915_gem_valid_gtt_space(vma, cache_level))
4059 			continue;
4060 
4061 		ret = i915_vma_unbind(vma);
4062 		if (ret)
4063 			return ret;
4064 
4065 		/* As unbinding may affect other elements in the
4066 		 * obj->vma_list (due to side-effects from retiring
4067 		 * an active vma), play safe and restart the iterator.
4068 		 */
4069 		goto restart;
4070 	}
4071 
4072 	/* We can reuse the existing drm_mm nodes but need to change the
4073 	 * cache-level on the PTE. We could simply unbind them all and
4074 	 * rebind with the correct cache-level on next use. However since
4075 	 * we already have a valid slot, dma mapping, pages etc, we may as
4076 	 * rewrite the PTE in the belief that doing so tramples upon less
4077 	 * state and so involves less work.
4078 	 */
4079 	if (obj->bind_count) {
4080 		/* Before we change the PTE, the GPU must not be accessing it.
4081 		 * If we wait upon the object, we know that all the bound
4082 		 * VMA are no longer active.
4083 		 */
4084 		ret = i915_gem_object_wait(obj,
4085 					   I915_WAIT_INTERRUPTIBLE |
4086 					   I915_WAIT_LOCKED |
4087 					   I915_WAIT_ALL,
4088 					   MAX_SCHEDULE_TIMEOUT,
4089 					   NULL);
4090 		if (ret)
4091 			return ret;
4092 
4093 		if (!HAS_LLC(to_i915(obj->base.dev)) &&
4094 		    cache_level != I915_CACHE_NONE) {
4095 			/* Access to snoopable pages through the GTT is
4096 			 * incoherent and on some machines causes a hard
4097 			 * lockup. Relinquish the CPU mmaping to force
4098 			 * userspace to refault in the pages and we can
4099 			 * then double check if the GTT mapping is still
4100 			 * valid for that pointer access.
4101 			 */
4102 			i915_gem_release_mmap(obj);
4103 
4104 			/* As we no longer need a fence for GTT access,
4105 			 * we can relinquish it now (and so prevent having
4106 			 * to steal a fence from someone else on the next
4107 			 * fence request). Note GPU activity would have
4108 			 * dropped the fence as all snoopable access is
4109 			 * supposed to be linear.
4110 			 */
4111 			for_each_ggtt_vma(vma, obj) {
4112 				ret = i915_vma_put_fence(vma);
4113 				if (ret)
4114 					return ret;
4115 			}
4116 		} else {
4117 			/* We either have incoherent backing store and
4118 			 * so no GTT access or the architecture is fully
4119 			 * coherent. In such cases, existing GTT mmaps
4120 			 * ignore the cache bit in the PTE and we can
4121 			 * rewrite it without confusing the GPU or having
4122 			 * to force userspace to fault back in its mmaps.
4123 			 */
4124 		}
4125 
4126 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4127 			if (!drm_mm_node_allocated(&vma->node))
4128 				continue;
4129 
4130 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4131 			if (ret)
4132 				return ret;
4133 		}
4134 	}
4135 
4136 	list_for_each_entry(vma, &obj->vma_list, obj_link)
4137 		vma->node.color = cache_level;
4138 	i915_gem_object_set_cache_coherency(obj, cache_level);
4139 	obj->cache_dirty = true; /* Always invalidate stale cachelines */
4140 
4141 	return 0;
4142 }
4143 
4144 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4145 			       struct drm_file *file)
4146 {
4147 	struct drm_i915_gem_caching *args = data;
4148 	struct drm_i915_gem_object *obj;
4149 	int err = 0;
4150 
4151 	rcu_read_lock();
4152 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4153 	if (!obj) {
4154 		err = -ENOENT;
4155 		goto out;
4156 	}
4157 
4158 	switch (obj->cache_level) {
4159 	case I915_CACHE_LLC:
4160 	case I915_CACHE_L3_LLC:
4161 		args->caching = I915_CACHING_CACHED;
4162 		break;
4163 
4164 	case I915_CACHE_WT:
4165 		args->caching = I915_CACHING_DISPLAY;
4166 		break;
4167 
4168 	default:
4169 		args->caching = I915_CACHING_NONE;
4170 		break;
4171 	}
4172 out:
4173 	rcu_read_unlock();
4174 	return err;
4175 }
4176 
4177 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4178 			       struct drm_file *file)
4179 {
4180 	struct drm_i915_private *i915 = to_i915(dev);
4181 	struct drm_i915_gem_caching *args = data;
4182 	struct drm_i915_gem_object *obj;
4183 	enum i915_cache_level level;
4184 	int ret = 0;
4185 
4186 	switch (args->caching) {
4187 	case I915_CACHING_NONE:
4188 		level = I915_CACHE_NONE;
4189 		break;
4190 	case I915_CACHING_CACHED:
4191 		/*
4192 		 * Due to a HW issue on BXT A stepping, GPU stores via a
4193 		 * snooped mapping may leave stale data in a corresponding CPU
4194 		 * cacheline, whereas normally such cachelines would get
4195 		 * invalidated.
4196 		 */
4197 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4198 			return -ENODEV;
4199 
4200 		level = I915_CACHE_LLC;
4201 		break;
4202 	case I915_CACHING_DISPLAY:
4203 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4204 		break;
4205 	default:
4206 		return -EINVAL;
4207 	}
4208 
4209 	obj = i915_gem_object_lookup(file, args->handle);
4210 	if (!obj)
4211 		return -ENOENT;
4212 
4213 	/*
4214 	 * The caching mode of proxy object is handled by its generator, and
4215 	 * not allowed to be changed by userspace.
4216 	 */
4217 	if (i915_gem_object_is_proxy(obj)) {
4218 		ret = -ENXIO;
4219 		goto out;
4220 	}
4221 
4222 	if (obj->cache_level == level)
4223 		goto out;
4224 
4225 	ret = i915_gem_object_wait(obj,
4226 				   I915_WAIT_INTERRUPTIBLE,
4227 				   MAX_SCHEDULE_TIMEOUT,
4228 				   to_rps_client(file));
4229 	if (ret)
4230 		goto out;
4231 
4232 	ret = i915_mutex_lock_interruptible(dev);
4233 	if (ret)
4234 		goto out;
4235 
4236 	ret = i915_gem_object_set_cache_level(obj, level);
4237 	mutex_unlock(&dev->struct_mutex);
4238 
4239 out:
4240 	i915_gem_object_put(obj);
4241 	return ret;
4242 }
4243 
4244 /*
4245  * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
4246  * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
4247  * (for pageflips). We only flush the caches while preparing the buffer for
4248  * display, the callers are responsible for frontbuffer flush.
4249  */
4250 struct i915_vma *
4251 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4252 				     u32 alignment,
4253 				     const struct i915_ggtt_view *view,
4254 				     unsigned int flags)
4255 {
4256 	struct i915_vma *vma;
4257 	int ret;
4258 
4259 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4260 
4261 	/* Mark the global pin early so that we account for the
4262 	 * display coherency whilst setting up the cache domains.
4263 	 */
4264 	obj->pin_global++;
4265 
4266 	/* The display engine is not coherent with the LLC cache on gen6.  As
4267 	 * a result, we make sure that the pinning that is about to occur is
4268 	 * done with uncached PTEs. This is lowest common denominator for all
4269 	 * chipsets.
4270 	 *
4271 	 * However for gen6+, we could do better by using the GFDT bit instead
4272 	 * of uncaching, which would allow us to flush all the LLC-cached data
4273 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4274 	 */
4275 	ret = i915_gem_object_set_cache_level(obj,
4276 					      HAS_WT(to_i915(obj->base.dev)) ?
4277 					      I915_CACHE_WT : I915_CACHE_NONE);
4278 	if (ret) {
4279 		vma = ERR_PTR(ret);
4280 		goto err_unpin_global;
4281 	}
4282 
4283 	/* As the user may map the buffer once pinned in the display plane
4284 	 * (e.g. libkms for the bootup splash), we have to ensure that we
4285 	 * always use map_and_fenceable for all scanout buffers. However,
4286 	 * it may simply be too big to fit into mappable, in which case
4287 	 * put it anyway and hope that userspace can cope (but always first
4288 	 * try to preserve the existing ABI).
4289 	 */
4290 	vma = ERR_PTR(-ENOSPC);
4291 	if ((flags & PIN_MAPPABLE) == 0 &&
4292 	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4293 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4294 					       flags |
4295 					       PIN_MAPPABLE |
4296 					       PIN_NONBLOCK);
4297 	if (IS_ERR(vma))
4298 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4299 	if (IS_ERR(vma))
4300 		goto err_unpin_global;
4301 
4302 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4303 
4304 	__i915_gem_object_flush_for_display(obj);
4305 
4306 	/* It should now be out of any other write domains, and we can update
4307 	 * the domain values for our changes.
4308 	 */
4309 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4310 
4311 	return vma;
4312 
4313 err_unpin_global:
4314 	obj->pin_global--;
4315 	return vma;
4316 }
4317 
4318 void
4319 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4320 {
4321 	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4322 
4323 	if (WARN_ON(vma->obj->pin_global == 0))
4324 		return;
4325 
4326 	if (--vma->obj->pin_global == 0)
4327 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4328 
4329 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4330 	i915_gem_object_bump_inactive_ggtt(vma->obj);
4331 
4332 	i915_vma_unpin(vma);
4333 }
4334 
4335 /**
4336  * Moves a single object to the CPU read, and possibly write domain.
4337  * @obj: object to act on
4338  * @write: requesting write or read-only access
4339  *
4340  * This function returns when the move is complete, including waiting on
4341  * flushes to occur.
4342  */
4343 int
4344 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4345 {
4346 	int ret;
4347 
4348 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4349 
4350 	ret = i915_gem_object_wait(obj,
4351 				   I915_WAIT_INTERRUPTIBLE |
4352 				   I915_WAIT_LOCKED |
4353 				   (write ? I915_WAIT_ALL : 0),
4354 				   MAX_SCHEDULE_TIMEOUT,
4355 				   NULL);
4356 	if (ret)
4357 		return ret;
4358 
4359 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4360 
4361 	/* Flush the CPU cache if it's still invalid. */
4362 	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4363 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4364 		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4365 	}
4366 
4367 	/* It should now be out of any other write domains, and we can update
4368 	 * the domain values for our changes.
4369 	 */
4370 	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4371 
4372 	/* If we're writing through the CPU, then the GPU read domains will
4373 	 * need to be invalidated at next use.
4374 	 */
4375 	if (write)
4376 		__start_cpu_write(obj);
4377 
4378 	return 0;
4379 }
4380 
4381 /* Throttle our rendering by waiting until the ring has completed our requests
4382  * emitted over 20 msec ago.
4383  *
4384  * Note that if we were to use the current jiffies each time around the loop,
4385  * we wouldn't escape the function with any frames outstanding if the time to
4386  * render a frame was over 20ms.
4387  *
4388  * This should get us reasonable parallelism between CPU and GPU but also
4389  * relatively low latency when blocking on a particular request to finish.
4390  */
4391 static int
4392 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4393 {
4394 	struct drm_i915_private *dev_priv = to_i915(dev);
4395 	struct drm_i915_file_private *file_priv = file->driver_priv;
4396 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4397 	struct i915_request *request, *target = NULL;
4398 	long ret;
4399 
4400 	/* ABI: return -EIO if already wedged */
4401 	if (i915_terminally_wedged(&dev_priv->gpu_error))
4402 		return -EIO;
4403 
4404 	spin_lock(&file_priv->mm.lock);
4405 	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4406 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4407 			break;
4408 
4409 		if (target) {
4410 			list_del(&target->client_link);
4411 			target->file_priv = NULL;
4412 		}
4413 
4414 		target = request;
4415 	}
4416 	if (target)
4417 		i915_request_get(target);
4418 	spin_unlock(&file_priv->mm.lock);
4419 
4420 	if (target == NULL)
4421 		return 0;
4422 
4423 	ret = i915_request_wait(target,
4424 				I915_WAIT_INTERRUPTIBLE,
4425 				MAX_SCHEDULE_TIMEOUT);
4426 	i915_request_put(target);
4427 
4428 	return ret < 0 ? ret : 0;
4429 }
4430 
4431 struct i915_vma *
4432 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4433 			 const struct i915_ggtt_view *view,
4434 			 u64 size,
4435 			 u64 alignment,
4436 			 u64 flags)
4437 {
4438 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4439 	struct i915_address_space *vm = &dev_priv->ggtt.vm;
4440 	struct i915_vma *vma;
4441 	int ret;
4442 
4443 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4444 
4445 	if (flags & PIN_MAPPABLE &&
4446 	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4447 		/* If the required space is larger than the available
4448 		 * aperture, we will not able to find a slot for the
4449 		 * object and unbinding the object now will be in
4450 		 * vain. Worse, doing so may cause us to ping-pong
4451 		 * the object in and out of the Global GTT and
4452 		 * waste a lot of cycles under the mutex.
4453 		 */
4454 		if (obj->base.size > dev_priv->ggtt.mappable_end)
4455 			return ERR_PTR(-E2BIG);
4456 
4457 		/* If NONBLOCK is set the caller is optimistically
4458 		 * trying to cache the full object within the mappable
4459 		 * aperture, and *must* have a fallback in place for
4460 		 * situations where we cannot bind the object. We
4461 		 * can be a little more lax here and use the fallback
4462 		 * more often to avoid costly migrations of ourselves
4463 		 * and other objects within the aperture.
4464 		 *
4465 		 * Half-the-aperture is used as a simple heuristic.
4466 		 * More interesting would to do search for a free
4467 		 * block prior to making the commitment to unbind.
4468 		 * That caters for the self-harm case, and with a
4469 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
4470 		 * we could try to minimise harm to others.
4471 		 */
4472 		if (flags & PIN_NONBLOCK &&
4473 		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
4474 			return ERR_PTR(-ENOSPC);
4475 	}
4476 
4477 	vma = i915_vma_instance(obj, vm, view);
4478 	if (unlikely(IS_ERR(vma)))
4479 		return vma;
4480 
4481 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4482 		if (flags & PIN_NONBLOCK) {
4483 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4484 				return ERR_PTR(-ENOSPC);
4485 
4486 			if (flags & PIN_MAPPABLE &&
4487 			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4488 				return ERR_PTR(-ENOSPC);
4489 		}
4490 
4491 		WARN(i915_vma_is_pinned(vma),
4492 		     "bo is already pinned in ggtt with incorrect alignment:"
4493 		     " offset=%08x, req.alignment=%llx,"
4494 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4495 		     i915_ggtt_offset(vma), alignment,
4496 		     !!(flags & PIN_MAPPABLE),
4497 		     i915_vma_is_map_and_fenceable(vma));
4498 		ret = i915_vma_unbind(vma);
4499 		if (ret)
4500 			return ERR_PTR(ret);
4501 	}
4502 
4503 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4504 	if (ret)
4505 		return ERR_PTR(ret);
4506 
4507 	return vma;
4508 }
4509 
4510 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4511 {
4512 	/* Note that we could alias engines in the execbuf API, but
4513 	 * that would be very unwise as it prevents userspace from
4514 	 * fine control over engine selection. Ahem.
4515 	 *
4516 	 * This should be something like EXEC_MAX_ENGINE instead of
4517 	 * I915_NUM_ENGINES.
4518 	 */
4519 	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4520 	return 0x10000 << id;
4521 }
4522 
4523 static __always_inline unsigned int __busy_write_id(unsigned int id)
4524 {
4525 	/* The uABI guarantees an active writer is also amongst the read
4526 	 * engines. This would be true if we accessed the activity tracking
4527 	 * under the lock, but as we perform the lookup of the object and
4528 	 * its activity locklessly we can not guarantee that the last_write
4529 	 * being active implies that we have set the same engine flag from
4530 	 * last_read - hence we always set both read and write busy for
4531 	 * last_write.
4532 	 */
4533 	return id | __busy_read_flag(id);
4534 }
4535 
4536 static __always_inline unsigned int
4537 __busy_set_if_active(const struct dma_fence *fence,
4538 		     unsigned int (*flag)(unsigned int id))
4539 {
4540 	struct i915_request *rq;
4541 
4542 	/* We have to check the current hw status of the fence as the uABI
4543 	 * guarantees forward progress. We could rely on the idle worker
4544 	 * to eventually flush us, but to minimise latency just ask the
4545 	 * hardware.
4546 	 *
4547 	 * Note we only report on the status of native fences.
4548 	 */
4549 	if (!dma_fence_is_i915(fence))
4550 		return 0;
4551 
4552 	/* opencode to_request() in order to avoid const warnings */
4553 	rq = container_of(fence, struct i915_request, fence);
4554 	if (i915_request_completed(rq))
4555 		return 0;
4556 
4557 	return flag(rq->engine->uabi_id);
4558 }
4559 
4560 static __always_inline unsigned int
4561 busy_check_reader(const struct dma_fence *fence)
4562 {
4563 	return __busy_set_if_active(fence, __busy_read_flag);
4564 }
4565 
4566 static __always_inline unsigned int
4567 busy_check_writer(const struct dma_fence *fence)
4568 {
4569 	if (!fence)
4570 		return 0;
4571 
4572 	return __busy_set_if_active(fence, __busy_write_id);
4573 }
4574 
4575 int
4576 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4577 		    struct drm_file *file)
4578 {
4579 	struct drm_i915_gem_busy *args = data;
4580 	struct drm_i915_gem_object *obj;
4581 	struct reservation_object_list *list;
4582 	unsigned int seq;
4583 	int err;
4584 
4585 	err = -ENOENT;
4586 	rcu_read_lock();
4587 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4588 	if (!obj)
4589 		goto out;
4590 
4591 	/* A discrepancy here is that we do not report the status of
4592 	 * non-i915 fences, i.e. even though we may report the object as idle,
4593 	 * a call to set-domain may still stall waiting for foreign rendering.
4594 	 * This also means that wait-ioctl may report an object as busy,
4595 	 * where busy-ioctl considers it idle.
4596 	 *
4597 	 * We trade the ability to warn of foreign fences to report on which
4598 	 * i915 engines are active for the object.
4599 	 *
4600 	 * Alternatively, we can trade that extra information on read/write
4601 	 * activity with
4602 	 *	args->busy =
4603 	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
4604 	 * to report the overall busyness. This is what the wait-ioctl does.
4605 	 *
4606 	 */
4607 retry:
4608 	seq = raw_read_seqcount(&obj->resv->seq);
4609 
4610 	/* Translate the exclusive fence to the READ *and* WRITE engine */
4611 	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4612 
4613 	/* Translate shared fences to READ set of engines */
4614 	list = rcu_dereference(obj->resv->fence);
4615 	if (list) {
4616 		unsigned int shared_count = list->shared_count, i;
4617 
4618 		for (i = 0; i < shared_count; ++i) {
4619 			struct dma_fence *fence =
4620 				rcu_dereference(list->shared[i]);
4621 
4622 			args->busy |= busy_check_reader(fence);
4623 		}
4624 	}
4625 
4626 	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4627 		goto retry;
4628 
4629 	err = 0;
4630 out:
4631 	rcu_read_unlock();
4632 	return err;
4633 }
4634 
4635 int
4636 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4637 			struct drm_file *file_priv)
4638 {
4639 	return i915_gem_ring_throttle(dev, file_priv);
4640 }
4641 
4642 int
4643 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4644 		       struct drm_file *file_priv)
4645 {
4646 	struct drm_i915_private *dev_priv = to_i915(dev);
4647 	struct drm_i915_gem_madvise *args = data;
4648 	struct drm_i915_gem_object *obj;
4649 	int err;
4650 
4651 	switch (args->madv) {
4652 	case I915_MADV_DONTNEED:
4653 	case I915_MADV_WILLNEED:
4654 	    break;
4655 	default:
4656 	    return -EINVAL;
4657 	}
4658 
4659 	obj = i915_gem_object_lookup(file_priv, args->handle);
4660 	if (!obj)
4661 		return -ENOENT;
4662 
4663 	err = mutex_lock_interruptible(&obj->mm.lock);
4664 	if (err)
4665 		goto out;
4666 
4667 	if (i915_gem_object_has_pages(obj) &&
4668 	    i915_gem_object_is_tiled(obj) &&
4669 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4670 		if (obj->mm.madv == I915_MADV_WILLNEED) {
4671 			GEM_BUG_ON(!obj->mm.quirked);
4672 			__i915_gem_object_unpin_pages(obj);
4673 			obj->mm.quirked = false;
4674 		}
4675 		if (args->madv == I915_MADV_WILLNEED) {
4676 			GEM_BUG_ON(obj->mm.quirked);
4677 			__i915_gem_object_pin_pages(obj);
4678 			obj->mm.quirked = true;
4679 		}
4680 	}
4681 
4682 	if (obj->mm.madv != __I915_MADV_PURGED)
4683 		obj->mm.madv = args->madv;
4684 
4685 	/* if the object is no longer attached, discard its backing storage */
4686 	if (obj->mm.madv == I915_MADV_DONTNEED &&
4687 	    !i915_gem_object_has_pages(obj))
4688 		i915_gem_object_truncate(obj);
4689 
4690 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4691 	mutex_unlock(&obj->mm.lock);
4692 
4693 out:
4694 	i915_gem_object_put(obj);
4695 	return err;
4696 }
4697 
4698 static void
4699 frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4700 {
4701 	struct drm_i915_gem_object *obj =
4702 		container_of(active, typeof(*obj), frontbuffer_write);
4703 
4704 	intel_fb_obj_flush(obj, ORIGIN_CS);
4705 }
4706 
4707 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4708 			  const struct drm_i915_gem_object_ops *ops)
4709 {
4710 	mutex_init(&obj->mm.lock);
4711 
4712 	INIT_LIST_HEAD(&obj->vma_list);
4713 	INIT_LIST_HEAD(&obj->lut_list);
4714 	INIT_LIST_HEAD(&obj->batch_pool_link);
4715 
4716 	obj->ops = ops;
4717 
4718 	reservation_object_init(&obj->__builtin_resv);
4719 	obj->resv = &obj->__builtin_resv;
4720 
4721 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4722 	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4723 
4724 	obj->mm.madv = I915_MADV_WILLNEED;
4725 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4726 	mutex_init(&obj->mm.get_page.lock);
4727 
4728 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4729 }
4730 
4731 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4732 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4733 		 I915_GEM_OBJECT_IS_SHRINKABLE,
4734 
4735 	.get_pages = i915_gem_object_get_pages_gtt,
4736 	.put_pages = i915_gem_object_put_pages_gtt,
4737 
4738 	.pwrite = i915_gem_object_pwrite_gtt,
4739 };
4740 
4741 static int i915_gem_object_create_shmem(struct drm_device *dev,
4742 					struct drm_gem_object *obj,
4743 					size_t size)
4744 {
4745 	struct drm_i915_private *i915 = to_i915(dev);
4746 	unsigned long flags = VM_NORESERVE;
4747 	struct file *filp;
4748 
4749 	drm_gem_private_object_init(dev, obj, size);
4750 
4751 	if (i915->mm.gemfs)
4752 		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4753 						 flags);
4754 	else
4755 		filp = shmem_file_setup("i915", size, flags);
4756 
4757 	if (IS_ERR(filp))
4758 		return PTR_ERR(filp);
4759 
4760 	obj->filp = filp;
4761 
4762 	return 0;
4763 }
4764 
4765 struct drm_i915_gem_object *
4766 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4767 {
4768 	struct drm_i915_gem_object *obj;
4769 	struct address_space *mapping;
4770 	unsigned int cache_level;
4771 	gfp_t mask;
4772 	int ret;
4773 
4774 	/* There is a prevalence of the assumption that we fit the object's
4775 	 * page count inside a 32bit _signed_ variable. Let's document this and
4776 	 * catch if we ever need to fix it. In the meantime, if you do spot
4777 	 * such a local variable, please consider fixing!
4778 	 */
4779 	if (size >> PAGE_SHIFT > INT_MAX)
4780 		return ERR_PTR(-E2BIG);
4781 
4782 	if (overflows_type(size, obj->base.size))
4783 		return ERR_PTR(-E2BIG);
4784 
4785 	obj = i915_gem_object_alloc(dev_priv);
4786 	if (obj == NULL)
4787 		return ERR_PTR(-ENOMEM);
4788 
4789 	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4790 	if (ret)
4791 		goto fail;
4792 
4793 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4794 	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4795 		/* 965gm cannot relocate objects above 4GiB. */
4796 		mask &= ~__GFP_HIGHMEM;
4797 		mask |= __GFP_DMA32;
4798 	}
4799 
4800 	mapping = obj->base.filp->f_mapping;
4801 	mapping_set_gfp_mask(mapping, mask);
4802 	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4803 
4804 	i915_gem_object_init(obj, &i915_gem_object_ops);
4805 
4806 	obj->write_domain = I915_GEM_DOMAIN_CPU;
4807 	obj->read_domains = I915_GEM_DOMAIN_CPU;
4808 
4809 	if (HAS_LLC(dev_priv))
4810 		/* On some devices, we can have the GPU use the LLC (the CPU
4811 		 * cache) for about a 10% performance improvement
4812 		 * compared to uncached.  Graphics requests other than
4813 		 * display scanout are coherent with the CPU in
4814 		 * accessing this cache.  This means in this mode we
4815 		 * don't need to clflush on the CPU side, and on the
4816 		 * GPU side we only need to flush internal caches to
4817 		 * get data visible to the CPU.
4818 		 *
4819 		 * However, we maintain the display planes as UC, and so
4820 		 * need to rebind when first used as such.
4821 		 */
4822 		cache_level = I915_CACHE_LLC;
4823 	else
4824 		cache_level = I915_CACHE_NONE;
4825 
4826 	i915_gem_object_set_cache_coherency(obj, cache_level);
4827 
4828 	trace_i915_gem_object_create(obj);
4829 
4830 	return obj;
4831 
4832 fail:
4833 	i915_gem_object_free(obj);
4834 	return ERR_PTR(ret);
4835 }
4836 
4837 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4838 {
4839 	/* If we are the last user of the backing storage (be it shmemfs
4840 	 * pages or stolen etc), we know that the pages are going to be
4841 	 * immediately released. In this case, we can then skip copying
4842 	 * back the contents from the GPU.
4843 	 */
4844 
4845 	if (obj->mm.madv != I915_MADV_WILLNEED)
4846 		return false;
4847 
4848 	if (obj->base.filp == NULL)
4849 		return true;
4850 
4851 	/* At first glance, this looks racy, but then again so would be
4852 	 * userspace racing mmap against close. However, the first external
4853 	 * reference to the filp can only be obtained through the
4854 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4855 	 * acquiring such a reference whilst we are in the middle of
4856 	 * freeing the object.
4857 	 */
4858 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4859 }
4860 
4861 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4862 				    struct llist_node *freed)
4863 {
4864 	struct drm_i915_gem_object *obj, *on;
4865 
4866 	intel_runtime_pm_get(i915);
4867 	llist_for_each_entry_safe(obj, on, freed, freed) {
4868 		struct i915_vma *vma, *vn;
4869 
4870 		trace_i915_gem_object_destroy(obj);
4871 
4872 		mutex_lock(&i915->drm.struct_mutex);
4873 
4874 		GEM_BUG_ON(i915_gem_object_is_active(obj));
4875 		list_for_each_entry_safe(vma, vn,
4876 					 &obj->vma_list, obj_link) {
4877 			GEM_BUG_ON(i915_vma_is_active(vma));
4878 			vma->flags &= ~I915_VMA_PIN_MASK;
4879 			i915_vma_destroy(vma);
4880 		}
4881 		GEM_BUG_ON(!list_empty(&obj->vma_list));
4882 		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4883 
4884 		/* This serializes freeing with the shrinker. Since the free
4885 		 * is delayed, first by RCU then by the workqueue, we want the
4886 		 * shrinker to be able to free pages of unreferenced objects,
4887 		 * or else we may oom whilst there are plenty of deferred
4888 		 * freed objects.
4889 		 */
4890 		if (i915_gem_object_has_pages(obj)) {
4891 			spin_lock(&i915->mm.obj_lock);
4892 			list_del_init(&obj->mm.link);
4893 			spin_unlock(&i915->mm.obj_lock);
4894 		}
4895 
4896 		mutex_unlock(&i915->drm.struct_mutex);
4897 
4898 		GEM_BUG_ON(obj->bind_count);
4899 		GEM_BUG_ON(obj->userfault_count);
4900 		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4901 		GEM_BUG_ON(!list_empty(&obj->lut_list));
4902 
4903 		if (obj->ops->release)
4904 			obj->ops->release(obj);
4905 
4906 		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4907 			atomic_set(&obj->mm.pages_pin_count, 0);
4908 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4909 		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4910 
4911 		if (obj->base.import_attach)
4912 			drm_prime_gem_destroy(&obj->base, NULL);
4913 
4914 		reservation_object_fini(&obj->__builtin_resv);
4915 		drm_gem_object_release(&obj->base);
4916 		i915_gem_info_remove_obj(i915, obj->base.size);
4917 
4918 		kfree(obj->bit_17);
4919 		i915_gem_object_free(obj);
4920 
4921 		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
4922 		atomic_dec(&i915->mm.free_count);
4923 
4924 		if (on)
4925 			cond_resched();
4926 	}
4927 	intel_runtime_pm_put(i915);
4928 }
4929 
4930 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4931 {
4932 	struct llist_node *freed;
4933 
4934 	/* Free the oldest, most stale object to keep the free_list short */
4935 	freed = NULL;
4936 	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4937 		/* Only one consumer of llist_del_first() allowed */
4938 		spin_lock(&i915->mm.free_lock);
4939 		freed = llist_del_first(&i915->mm.free_list);
4940 		spin_unlock(&i915->mm.free_lock);
4941 	}
4942 	if (unlikely(freed)) {
4943 		freed->next = NULL;
4944 		__i915_gem_free_objects(i915, freed);
4945 	}
4946 }
4947 
4948 static void __i915_gem_free_work(struct work_struct *work)
4949 {
4950 	struct drm_i915_private *i915 =
4951 		container_of(work, struct drm_i915_private, mm.free_work);
4952 	struct llist_node *freed;
4953 
4954 	/*
4955 	 * All file-owned VMA should have been released by this point through
4956 	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4957 	 * However, the object may also be bound into the global GTT (e.g.
4958 	 * older GPUs without per-process support, or for direct access through
4959 	 * the GTT either for the user or for scanout). Those VMA still need to
4960 	 * unbound now.
4961 	 */
4962 
4963 	spin_lock(&i915->mm.free_lock);
4964 	while ((freed = llist_del_all(&i915->mm.free_list))) {
4965 		spin_unlock(&i915->mm.free_lock);
4966 
4967 		__i915_gem_free_objects(i915, freed);
4968 		if (need_resched())
4969 			return;
4970 
4971 		spin_lock(&i915->mm.free_lock);
4972 	}
4973 	spin_unlock(&i915->mm.free_lock);
4974 }
4975 
4976 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4977 {
4978 	struct drm_i915_gem_object *obj =
4979 		container_of(head, typeof(*obj), rcu);
4980 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4981 
4982 	/*
4983 	 * Since we require blocking on struct_mutex to unbind the freed
4984 	 * object from the GPU before releasing resources back to the
4985 	 * system, we can not do that directly from the RCU callback (which may
4986 	 * be a softirq context), but must instead then defer that work onto a
4987 	 * kthread. We use the RCU callback rather than move the freed object
4988 	 * directly onto the work queue so that we can mix between using the
4989 	 * worker and performing frees directly from subsequent allocations for
4990 	 * crude but effective memory throttling.
4991 	 */
4992 	if (llist_add(&obj->freed, &i915->mm.free_list))
4993 		queue_work(i915->wq, &i915->mm.free_work);
4994 }
4995 
4996 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4997 {
4998 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4999 
5000 	if (obj->mm.quirked)
5001 		__i915_gem_object_unpin_pages(obj);
5002 
5003 	if (discard_backing_storage(obj))
5004 		obj->mm.madv = I915_MADV_DONTNEED;
5005 
5006 	/*
5007 	 * Before we free the object, make sure any pure RCU-only
5008 	 * read-side critical sections are complete, e.g.
5009 	 * i915_gem_busy_ioctl(). For the corresponding synchronized
5010 	 * lookup see i915_gem_object_lookup_rcu().
5011 	 */
5012 	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
5013 	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
5014 }
5015 
5016 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
5017 {
5018 	lockdep_assert_held(&obj->base.dev->struct_mutex);
5019 
5020 	if (!i915_gem_object_has_active_reference(obj) &&
5021 	    i915_gem_object_is_active(obj))
5022 		i915_gem_object_set_active_reference(obj);
5023 	else
5024 		i915_gem_object_put(obj);
5025 }
5026 
5027 void i915_gem_sanitize(struct drm_i915_private *i915)
5028 {
5029 	int err;
5030 
5031 	GEM_TRACE("\n");
5032 
5033 	mutex_lock(&i915->drm.struct_mutex);
5034 
5035 	intel_runtime_pm_get(i915);
5036 	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5037 
5038 	/*
5039 	 * As we have just resumed the machine and woken the device up from
5040 	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
5041 	 * back to defaults, recovering from whatever wedged state we left it
5042 	 * in and so worth trying to use the device once more.
5043 	 */
5044 	if (i915_terminally_wedged(&i915->gpu_error))
5045 		i915_gem_unset_wedged(i915);
5046 
5047 	/*
5048 	 * If we inherit context state from the BIOS or earlier occupants
5049 	 * of the GPU, the GPU may be in an inconsistent state when we
5050 	 * try to take over. The only way to remove the earlier state
5051 	 * is by resetting. However, resetting on earlier gen is tricky as
5052 	 * it may impact the display and we are uncertain about the stability
5053 	 * of the reset, so this could be applied to even earlier gen.
5054 	 */
5055 	err = -ENODEV;
5056 	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
5057 		err = WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
5058 	if (!err)
5059 		intel_engines_sanitize(i915);
5060 
5061 	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5062 	intel_runtime_pm_put(i915);
5063 
5064 	i915_gem_contexts_lost(i915);
5065 	mutex_unlock(&i915->drm.struct_mutex);
5066 }
5067 
5068 int i915_gem_suspend(struct drm_i915_private *i915)
5069 {
5070 	int ret;
5071 
5072 	GEM_TRACE("\n");
5073 
5074 	intel_runtime_pm_get(i915);
5075 	intel_suspend_gt_powersave(i915);
5076 
5077 	mutex_lock(&i915->drm.struct_mutex);
5078 
5079 	/*
5080 	 * We have to flush all the executing contexts to main memory so
5081 	 * that they can saved in the hibernation image. To ensure the last
5082 	 * context image is coherent, we have to switch away from it. That
5083 	 * leaves the i915->kernel_context still active when
5084 	 * we actually suspend, and its image in memory may not match the GPU
5085 	 * state. Fortunately, the kernel_context is disposable and we do
5086 	 * not rely on its state.
5087 	 */
5088 	if (!i915_terminally_wedged(&i915->gpu_error)) {
5089 		ret = i915_gem_switch_to_kernel_context(i915);
5090 		if (ret)
5091 			goto err_unlock;
5092 
5093 		ret = i915_gem_wait_for_idle(i915,
5094 					     I915_WAIT_INTERRUPTIBLE |
5095 					     I915_WAIT_LOCKED |
5096 					     I915_WAIT_FOR_IDLE_BOOST,
5097 					     MAX_SCHEDULE_TIMEOUT);
5098 		if (ret && ret != -EIO)
5099 			goto err_unlock;
5100 
5101 		assert_kernel_context_is_current(i915);
5102 	}
5103 	i915_retire_requests(i915); /* ensure we flush after wedging */
5104 
5105 	mutex_unlock(&i915->drm.struct_mutex);
5106 
5107 	intel_uc_suspend(i915);
5108 
5109 	cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
5110 	cancel_delayed_work_sync(&i915->gt.retire_work);
5111 
5112 	/*
5113 	 * As the idle_work is rearming if it detects a race, play safe and
5114 	 * repeat the flush until it is definitely idle.
5115 	 */
5116 	drain_delayed_work(&i915->gt.idle_work);
5117 
5118 	/*
5119 	 * Assert that we successfully flushed all the work and
5120 	 * reset the GPU back to its idle, low power state.
5121 	 */
5122 	WARN_ON(i915->gt.awake);
5123 	if (WARN_ON(!intel_engines_are_idle(i915)))
5124 		i915_gem_set_wedged(i915); /* no hope, discard everything */
5125 
5126 	intel_runtime_pm_put(i915);
5127 	return 0;
5128 
5129 err_unlock:
5130 	mutex_unlock(&i915->drm.struct_mutex);
5131 	intel_runtime_pm_put(i915);
5132 	return ret;
5133 }
5134 
5135 void i915_gem_suspend_late(struct drm_i915_private *i915)
5136 {
5137 	struct drm_i915_gem_object *obj;
5138 	struct list_head *phases[] = {
5139 		&i915->mm.unbound_list,
5140 		&i915->mm.bound_list,
5141 		NULL
5142 	}, **phase;
5143 
5144 	/*
5145 	 * Neither the BIOS, ourselves or any other kernel
5146 	 * expects the system to be in execlists mode on startup,
5147 	 * so we need to reset the GPU back to legacy mode. And the only
5148 	 * known way to disable logical contexts is through a GPU reset.
5149 	 *
5150 	 * So in order to leave the system in a known default configuration,
5151 	 * always reset the GPU upon unload and suspend. Afterwards we then
5152 	 * clean up the GEM state tracking, flushing off the requests and
5153 	 * leaving the system in a known idle state.
5154 	 *
5155 	 * Note that is of the upmost importance that the GPU is idle and
5156 	 * all stray writes are flushed *before* we dismantle the backing
5157 	 * storage for the pinned objects.
5158 	 *
5159 	 * However, since we are uncertain that resetting the GPU on older
5160 	 * machines is a good idea, we don't - just in case it leaves the
5161 	 * machine in an unusable condition.
5162 	 */
5163 
5164 	mutex_lock(&i915->drm.struct_mutex);
5165 	for (phase = phases; *phase; phase++) {
5166 		list_for_each_entry(obj, *phase, mm.link)
5167 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
5168 	}
5169 	mutex_unlock(&i915->drm.struct_mutex);
5170 
5171 	intel_uc_sanitize(i915);
5172 	i915_gem_sanitize(i915);
5173 }
5174 
5175 void i915_gem_resume(struct drm_i915_private *i915)
5176 {
5177 	GEM_TRACE("\n");
5178 
5179 	WARN_ON(i915->gt.awake);
5180 
5181 	mutex_lock(&i915->drm.struct_mutex);
5182 	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5183 
5184 	i915_gem_restore_gtt_mappings(i915);
5185 	i915_gem_restore_fences(i915);
5186 
5187 	/*
5188 	 * As we didn't flush the kernel context before suspend, we cannot
5189 	 * guarantee that the context image is complete. So let's just reset
5190 	 * it and start again.
5191 	 */
5192 	i915->gt.resume(i915);
5193 
5194 	if (i915_gem_init_hw(i915))
5195 		goto err_wedged;
5196 
5197 	intel_uc_resume(i915);
5198 
5199 	/* Always reload a context for powersaving. */
5200 	if (i915_gem_switch_to_kernel_context(i915))
5201 		goto err_wedged;
5202 
5203 out_unlock:
5204 	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5205 	mutex_unlock(&i915->drm.struct_mutex);
5206 	return;
5207 
5208 err_wedged:
5209 	if (!i915_terminally_wedged(&i915->gpu_error)) {
5210 		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
5211 		i915_gem_set_wedged(i915);
5212 	}
5213 	goto out_unlock;
5214 }
5215 
5216 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5217 {
5218 	if (INTEL_GEN(dev_priv) < 5 ||
5219 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5220 		return;
5221 
5222 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5223 				 DISP_TILE_SURFACE_SWIZZLING);
5224 
5225 	if (IS_GEN5(dev_priv))
5226 		return;
5227 
5228 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5229 	if (IS_GEN6(dev_priv))
5230 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5231 	else if (IS_GEN7(dev_priv))
5232 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5233 	else if (IS_GEN8(dev_priv))
5234 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5235 	else
5236 		BUG();
5237 }
5238 
5239 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5240 {
5241 	I915_WRITE(RING_CTL(base), 0);
5242 	I915_WRITE(RING_HEAD(base), 0);
5243 	I915_WRITE(RING_TAIL(base), 0);
5244 	I915_WRITE(RING_START(base), 0);
5245 }
5246 
5247 static void init_unused_rings(struct drm_i915_private *dev_priv)
5248 {
5249 	if (IS_I830(dev_priv)) {
5250 		init_unused_ring(dev_priv, PRB1_BASE);
5251 		init_unused_ring(dev_priv, SRB0_BASE);
5252 		init_unused_ring(dev_priv, SRB1_BASE);
5253 		init_unused_ring(dev_priv, SRB2_BASE);
5254 		init_unused_ring(dev_priv, SRB3_BASE);
5255 	} else if (IS_GEN2(dev_priv)) {
5256 		init_unused_ring(dev_priv, SRB0_BASE);
5257 		init_unused_ring(dev_priv, SRB1_BASE);
5258 	} else if (IS_GEN3(dev_priv)) {
5259 		init_unused_ring(dev_priv, PRB1_BASE);
5260 		init_unused_ring(dev_priv, PRB2_BASE);
5261 	}
5262 }
5263 
5264 static int __i915_gem_restart_engines(void *data)
5265 {
5266 	struct drm_i915_private *i915 = data;
5267 	struct intel_engine_cs *engine;
5268 	enum intel_engine_id id;
5269 	int err;
5270 
5271 	for_each_engine(engine, i915, id) {
5272 		err = engine->init_hw(engine);
5273 		if (err) {
5274 			DRM_ERROR("Failed to restart %s (%d)\n",
5275 				  engine->name, err);
5276 			return err;
5277 		}
5278 	}
5279 
5280 	return 0;
5281 }
5282 
5283 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
5284 {
5285 	int ret;
5286 
5287 	dev_priv->gt.last_init_time = ktime_get();
5288 
5289 	/* Double layer security blanket, see i915_gem_init() */
5290 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5291 
5292 	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5293 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5294 
5295 	if (IS_HASWELL(dev_priv))
5296 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5297 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5298 
5299 	intel_gt_workarounds_apply(dev_priv);
5300 
5301 	i915_gem_init_swizzling(dev_priv);
5302 
5303 	/*
5304 	 * At least 830 can leave some of the unused rings
5305 	 * "active" (ie. head != tail) after resume which
5306 	 * will prevent c3 entry. Makes sure all unused rings
5307 	 * are totally idle.
5308 	 */
5309 	init_unused_rings(dev_priv);
5310 
5311 	BUG_ON(!dev_priv->kernel_context);
5312 	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5313 		ret = -EIO;
5314 		goto out;
5315 	}
5316 
5317 	ret = i915_ppgtt_init_hw(dev_priv);
5318 	if (ret) {
5319 		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5320 		goto out;
5321 	}
5322 
5323 	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
5324 	if (ret) {
5325 		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
5326 		goto out;
5327 	}
5328 
5329 	/* We can't enable contexts until all firmware is loaded */
5330 	ret = intel_uc_init_hw(dev_priv);
5331 	if (ret) {
5332 		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5333 		goto out;
5334 	}
5335 
5336 	intel_mocs_init_l3cc_table(dev_priv);
5337 
5338 	/* Only when the HW is re-initialised, can we replay the requests */
5339 	ret = __i915_gem_restart_engines(dev_priv);
5340 	if (ret)
5341 		goto cleanup_uc;
5342 
5343 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5344 
5345 	return 0;
5346 
5347 cleanup_uc:
5348 	intel_uc_fini_hw(dev_priv);
5349 out:
5350 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5351 
5352 	return ret;
5353 }
5354 
5355 static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5356 {
5357 	struct i915_gem_context *ctx;
5358 	struct intel_engine_cs *engine;
5359 	enum intel_engine_id id;
5360 	int err;
5361 
5362 	/*
5363 	 * As we reset the gpu during very early sanitisation, the current
5364 	 * register state on the GPU should reflect its defaults values.
5365 	 * We load a context onto the hw (with restore-inhibit), then switch
5366 	 * over to a second context to save that default register state. We
5367 	 * can then prime every new context with that state so they all start
5368 	 * from the same default HW values.
5369 	 */
5370 
5371 	ctx = i915_gem_context_create_kernel(i915, 0);
5372 	if (IS_ERR(ctx))
5373 		return PTR_ERR(ctx);
5374 
5375 	for_each_engine(engine, i915, id) {
5376 		struct i915_request *rq;
5377 
5378 		rq = i915_request_alloc(engine, ctx);
5379 		if (IS_ERR(rq)) {
5380 			err = PTR_ERR(rq);
5381 			goto out_ctx;
5382 		}
5383 
5384 		err = 0;
5385 		if (engine->init_context)
5386 			err = engine->init_context(rq);
5387 
5388 		i915_request_add(rq);
5389 		if (err)
5390 			goto err_active;
5391 	}
5392 
5393 	err = i915_gem_switch_to_kernel_context(i915);
5394 	if (err)
5395 		goto err_active;
5396 
5397 	if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
5398 		i915_gem_set_wedged(i915);
5399 		err = -EIO; /* Caller will declare us wedged */
5400 		goto err_active;
5401 	}
5402 
5403 	assert_kernel_context_is_current(i915);
5404 
5405 	/*
5406 	 * Immediately park the GPU so that we enable powersaving and
5407 	 * treat it as idle. The next time we issue a request, we will
5408 	 * unpark and start using the engine->pinned_default_state, otherwise
5409 	 * it is in limbo and an early reset may fail.
5410 	 */
5411 	__i915_gem_park(i915);
5412 
5413 	for_each_engine(engine, i915, id) {
5414 		struct i915_vma *state;
5415 		void *vaddr;
5416 
5417 		GEM_BUG_ON(to_intel_context(ctx, engine)->pin_count);
5418 
5419 		state = to_intel_context(ctx, engine)->state;
5420 		if (!state)
5421 			continue;
5422 
5423 		/*
5424 		 * As we will hold a reference to the logical state, it will
5425 		 * not be torn down with the context, and importantly the
5426 		 * object will hold onto its vma (making it possible for a
5427 		 * stray GTT write to corrupt our defaults). Unmap the vma
5428 		 * from the GTT to prevent such accidents and reclaim the
5429 		 * space.
5430 		 */
5431 		err = i915_vma_unbind(state);
5432 		if (err)
5433 			goto err_active;
5434 
5435 		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5436 		if (err)
5437 			goto err_active;
5438 
5439 		engine->default_state = i915_gem_object_get(state->obj);
5440 
5441 		/* Check we can acquire the image of the context state */
5442 		vaddr = i915_gem_object_pin_map(engine->default_state,
5443 						I915_MAP_FORCE_WB);
5444 		if (IS_ERR(vaddr)) {
5445 			err = PTR_ERR(vaddr);
5446 			goto err_active;
5447 		}
5448 
5449 		i915_gem_object_unpin_map(engine->default_state);
5450 	}
5451 
5452 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5453 		unsigned int found = intel_engines_has_context_isolation(i915);
5454 
5455 		/*
5456 		 * Make sure that classes with multiple engine instances all
5457 		 * share the same basic configuration.
5458 		 */
5459 		for_each_engine(engine, i915, id) {
5460 			unsigned int bit = BIT(engine->uabi_class);
5461 			unsigned int expected = engine->default_state ? bit : 0;
5462 
5463 			if ((found & bit) != expected) {
5464 				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5465 					  engine->uabi_class, engine->name);
5466 			}
5467 		}
5468 	}
5469 
5470 out_ctx:
5471 	i915_gem_context_set_closed(ctx);
5472 	i915_gem_context_put(ctx);
5473 	return err;
5474 
5475 err_active:
5476 	/*
5477 	 * If we have to abandon now, we expect the engines to be idle
5478 	 * and ready to be torn-down. First try to flush any remaining
5479 	 * request, ensure we are pointing at the kernel context and
5480 	 * then remove it.
5481 	 */
5482 	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5483 		goto out_ctx;
5484 
5485 	if (WARN_ON(i915_gem_wait_for_idle(i915,
5486 					   I915_WAIT_LOCKED,
5487 					   MAX_SCHEDULE_TIMEOUT)))
5488 		goto out_ctx;
5489 
5490 	i915_gem_contexts_lost(i915);
5491 	goto out_ctx;
5492 }
5493 
5494 int i915_gem_init(struct drm_i915_private *dev_priv)
5495 {
5496 	int ret;
5497 
5498 	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
5499 	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
5500 		mkwrite_device_info(dev_priv)->page_sizes =
5501 			I915_GTT_PAGE_SIZE_4K;
5502 
5503 	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5504 
5505 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5506 		dev_priv->gt.resume = intel_lr_context_resume;
5507 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5508 	} else {
5509 		dev_priv->gt.resume = intel_legacy_submission_resume;
5510 		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5511 	}
5512 
5513 	ret = i915_gem_init_userptr(dev_priv);
5514 	if (ret)
5515 		return ret;
5516 
5517 	ret = intel_uc_init_misc(dev_priv);
5518 	if (ret)
5519 		return ret;
5520 
5521 	ret = intel_wopcm_init(&dev_priv->wopcm);
5522 	if (ret)
5523 		goto err_uc_misc;
5524 
5525 	/* This is just a security blanket to placate dragons.
5526 	 * On some systems, we very sporadically observe that the first TLBs
5527 	 * used by the CS may be stale, despite us poking the TLB reset. If
5528 	 * we hold the forcewake during initialisation these problems
5529 	 * just magically go away.
5530 	 */
5531 	mutex_lock(&dev_priv->drm.struct_mutex);
5532 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5533 
5534 	ret = i915_gem_init_ggtt(dev_priv);
5535 	if (ret) {
5536 		GEM_BUG_ON(ret == -EIO);
5537 		goto err_unlock;
5538 	}
5539 
5540 	ret = i915_gem_contexts_init(dev_priv);
5541 	if (ret) {
5542 		GEM_BUG_ON(ret == -EIO);
5543 		goto err_ggtt;
5544 	}
5545 
5546 	ret = intel_engines_init(dev_priv);
5547 	if (ret) {
5548 		GEM_BUG_ON(ret == -EIO);
5549 		goto err_context;
5550 	}
5551 
5552 	intel_init_gt_powersave(dev_priv);
5553 
5554 	ret = intel_uc_init(dev_priv);
5555 	if (ret)
5556 		goto err_pm;
5557 
5558 	ret = i915_gem_init_hw(dev_priv);
5559 	if (ret)
5560 		goto err_uc_init;
5561 
5562 	/*
5563 	 * Despite its name intel_init_clock_gating applies both display
5564 	 * clock gating workarounds; GT mmio workarounds and the occasional
5565 	 * GT power context workaround. Worse, sometimes it includes a context
5566 	 * register workaround which we need to apply before we record the
5567 	 * default HW state for all contexts.
5568 	 *
5569 	 * FIXME: break up the workarounds and apply them at the right time!
5570 	 */
5571 	intel_init_clock_gating(dev_priv);
5572 
5573 	ret = __intel_engines_record_defaults(dev_priv);
5574 	if (ret)
5575 		goto err_init_hw;
5576 
5577 	if (i915_inject_load_failure()) {
5578 		ret = -ENODEV;
5579 		goto err_init_hw;
5580 	}
5581 
5582 	if (i915_inject_load_failure()) {
5583 		ret = -EIO;
5584 		goto err_init_hw;
5585 	}
5586 
5587 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5588 	mutex_unlock(&dev_priv->drm.struct_mutex);
5589 
5590 	return 0;
5591 
5592 	/*
5593 	 * Unwinding is complicated by that we want to handle -EIO to mean
5594 	 * disable GPU submission but keep KMS alive. We want to mark the
5595 	 * HW as irrevisibly wedged, but keep enough state around that the
5596 	 * driver doesn't explode during runtime.
5597 	 */
5598 err_init_hw:
5599 	mutex_unlock(&dev_priv->drm.struct_mutex);
5600 
5601 	WARN_ON(i915_gem_suspend(dev_priv));
5602 	i915_gem_suspend_late(dev_priv);
5603 
5604 	i915_gem_drain_workqueue(dev_priv);
5605 
5606 	mutex_lock(&dev_priv->drm.struct_mutex);
5607 	intel_uc_fini_hw(dev_priv);
5608 err_uc_init:
5609 	intel_uc_fini(dev_priv);
5610 err_pm:
5611 	if (ret != -EIO) {
5612 		intel_cleanup_gt_powersave(dev_priv);
5613 		i915_gem_cleanup_engines(dev_priv);
5614 	}
5615 err_context:
5616 	if (ret != -EIO)
5617 		i915_gem_contexts_fini(dev_priv);
5618 err_ggtt:
5619 err_unlock:
5620 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5621 	mutex_unlock(&dev_priv->drm.struct_mutex);
5622 
5623 err_uc_misc:
5624 	intel_uc_fini_misc(dev_priv);
5625 
5626 	if (ret != -EIO)
5627 		i915_gem_cleanup_userptr(dev_priv);
5628 
5629 	if (ret == -EIO) {
5630 		mutex_lock(&dev_priv->drm.struct_mutex);
5631 
5632 		/*
5633 		 * Allow engine initialisation to fail by marking the GPU as
5634 		 * wedged. But we only want to do this where the GPU is angry,
5635 		 * for all other failure, such as an allocation failure, bail.
5636 		 */
5637 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5638 			i915_load_error(dev_priv,
5639 					"Failed to initialize GPU, declaring it wedged!\n");
5640 			i915_gem_set_wedged(dev_priv);
5641 		}
5642 
5643 		/* Minimal basic recovery for KMS */
5644 		ret = i915_ggtt_enable_hw(dev_priv);
5645 		i915_gem_restore_gtt_mappings(dev_priv);
5646 		i915_gem_restore_fences(dev_priv);
5647 		intel_init_clock_gating(dev_priv);
5648 
5649 		mutex_unlock(&dev_priv->drm.struct_mutex);
5650 	}
5651 
5652 	i915_gem_drain_freed_objects(dev_priv);
5653 	return ret;
5654 }
5655 
5656 void i915_gem_fini(struct drm_i915_private *dev_priv)
5657 {
5658 	i915_gem_suspend_late(dev_priv);
5659 	intel_disable_gt_powersave(dev_priv);
5660 
5661 	/* Flush any outstanding unpin_work. */
5662 	i915_gem_drain_workqueue(dev_priv);
5663 
5664 	mutex_lock(&dev_priv->drm.struct_mutex);
5665 	intel_uc_fini_hw(dev_priv);
5666 	intel_uc_fini(dev_priv);
5667 	i915_gem_cleanup_engines(dev_priv);
5668 	i915_gem_contexts_fini(dev_priv);
5669 	mutex_unlock(&dev_priv->drm.struct_mutex);
5670 
5671 	intel_cleanup_gt_powersave(dev_priv);
5672 
5673 	intel_uc_fini_misc(dev_priv);
5674 	i915_gem_cleanup_userptr(dev_priv);
5675 
5676 	i915_gem_drain_freed_objects(dev_priv);
5677 
5678 	WARN_ON(!list_empty(&dev_priv->contexts.list));
5679 }
5680 
5681 void i915_gem_init_mmio(struct drm_i915_private *i915)
5682 {
5683 	i915_gem_sanitize(i915);
5684 }
5685 
5686 void
5687 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5688 {
5689 	struct intel_engine_cs *engine;
5690 	enum intel_engine_id id;
5691 
5692 	for_each_engine(engine, dev_priv, id)
5693 		dev_priv->gt.cleanup_engine(engine);
5694 }
5695 
5696 void
5697 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5698 {
5699 	int i;
5700 
5701 	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5702 	    !IS_CHERRYVIEW(dev_priv))
5703 		dev_priv->num_fence_regs = 32;
5704 	else if (INTEL_GEN(dev_priv) >= 4 ||
5705 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5706 		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5707 		dev_priv->num_fence_regs = 16;
5708 	else
5709 		dev_priv->num_fence_regs = 8;
5710 
5711 	if (intel_vgpu_active(dev_priv))
5712 		dev_priv->num_fence_regs =
5713 				I915_READ(vgtif_reg(avail_rs.fence_num));
5714 
5715 	/* Initialize fence registers to zero */
5716 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
5717 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5718 
5719 		fence->i915 = dev_priv;
5720 		fence->id = i;
5721 		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5722 	}
5723 	i915_gem_restore_fences(dev_priv);
5724 
5725 	i915_gem_detect_bit_6_swizzle(dev_priv);
5726 }
5727 
5728 static void i915_gem_init__mm(struct drm_i915_private *i915)
5729 {
5730 	spin_lock_init(&i915->mm.object_stat_lock);
5731 	spin_lock_init(&i915->mm.obj_lock);
5732 	spin_lock_init(&i915->mm.free_lock);
5733 
5734 	init_llist_head(&i915->mm.free_list);
5735 
5736 	INIT_LIST_HEAD(&i915->mm.unbound_list);
5737 	INIT_LIST_HEAD(&i915->mm.bound_list);
5738 	INIT_LIST_HEAD(&i915->mm.fence_list);
5739 	INIT_LIST_HEAD(&i915->mm.userfault_list);
5740 
5741 	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5742 }
5743 
5744 int i915_gem_init_early(struct drm_i915_private *dev_priv)
5745 {
5746 	int err = -ENOMEM;
5747 
5748 	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5749 	if (!dev_priv->objects)
5750 		goto err_out;
5751 
5752 	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5753 	if (!dev_priv->vmas)
5754 		goto err_objects;
5755 
5756 	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5757 	if (!dev_priv->luts)
5758 		goto err_vmas;
5759 
5760 	dev_priv->requests = KMEM_CACHE(i915_request,
5761 					SLAB_HWCACHE_ALIGN |
5762 					SLAB_RECLAIM_ACCOUNT |
5763 					SLAB_TYPESAFE_BY_RCU);
5764 	if (!dev_priv->requests)
5765 		goto err_luts;
5766 
5767 	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5768 					    SLAB_HWCACHE_ALIGN |
5769 					    SLAB_RECLAIM_ACCOUNT);
5770 	if (!dev_priv->dependencies)
5771 		goto err_requests;
5772 
5773 	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5774 	if (!dev_priv->priorities)
5775 		goto err_dependencies;
5776 
5777 	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5778 	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5779 	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5780 
5781 	i915_gem_init__mm(dev_priv);
5782 
5783 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5784 			  i915_gem_retire_work_handler);
5785 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5786 			  i915_gem_idle_work_handler);
5787 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5788 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5789 
5790 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5791 
5792 	spin_lock_init(&dev_priv->fb_tracking.lock);
5793 
5794 	err = i915_gemfs_init(dev_priv);
5795 	if (err)
5796 		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5797 
5798 	return 0;
5799 
5800 err_dependencies:
5801 	kmem_cache_destroy(dev_priv->dependencies);
5802 err_requests:
5803 	kmem_cache_destroy(dev_priv->requests);
5804 err_luts:
5805 	kmem_cache_destroy(dev_priv->luts);
5806 err_vmas:
5807 	kmem_cache_destroy(dev_priv->vmas);
5808 err_objects:
5809 	kmem_cache_destroy(dev_priv->objects);
5810 err_out:
5811 	return err;
5812 }
5813 
5814 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5815 {
5816 	i915_gem_drain_freed_objects(dev_priv);
5817 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
5818 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5819 	WARN_ON(dev_priv->mm.object_count);
5820 	WARN_ON(!list_empty(&dev_priv->gt.timelines));
5821 
5822 	kmem_cache_destroy(dev_priv->priorities);
5823 	kmem_cache_destroy(dev_priv->dependencies);
5824 	kmem_cache_destroy(dev_priv->requests);
5825 	kmem_cache_destroy(dev_priv->luts);
5826 	kmem_cache_destroy(dev_priv->vmas);
5827 	kmem_cache_destroy(dev_priv->objects);
5828 
5829 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5830 	rcu_barrier();
5831 
5832 	i915_gemfs_fini(dev_priv);
5833 }
5834 
5835 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5836 {
5837 	/* Discard all purgeable objects, let userspace recover those as
5838 	 * required after resuming.
5839 	 */
5840 	i915_gem_shrink_all(dev_priv);
5841 
5842 	return 0;
5843 }
5844 
5845 int i915_gem_freeze_late(struct drm_i915_private *i915)
5846 {
5847 	struct drm_i915_gem_object *obj;
5848 	struct list_head *phases[] = {
5849 		&i915->mm.unbound_list,
5850 		&i915->mm.bound_list,
5851 		NULL
5852 	}, **phase;
5853 
5854 	/*
5855 	 * Called just before we write the hibernation image.
5856 	 *
5857 	 * We need to update the domain tracking to reflect that the CPU
5858 	 * will be accessing all the pages to create and restore from the
5859 	 * hibernation, and so upon restoration those pages will be in the
5860 	 * CPU domain.
5861 	 *
5862 	 * To make sure the hibernation image contains the latest state,
5863 	 * we update that state just before writing out the image.
5864 	 *
5865 	 * To try and reduce the hibernation image, we manually shrink
5866 	 * the objects as well, see i915_gem_freeze()
5867 	 */
5868 
5869 	i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
5870 	i915_gem_drain_freed_objects(i915);
5871 
5872 	mutex_lock(&i915->drm.struct_mutex);
5873 	for (phase = phases; *phase; phase++) {
5874 		list_for_each_entry(obj, *phase, mm.link)
5875 			WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5876 	}
5877 	mutex_unlock(&i915->drm.struct_mutex);
5878 
5879 	return 0;
5880 }
5881 
5882 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5883 {
5884 	struct drm_i915_file_private *file_priv = file->driver_priv;
5885 	struct i915_request *request;
5886 
5887 	/* Clean up our request list when the client is going away, so that
5888 	 * later retire_requests won't dereference our soon-to-be-gone
5889 	 * file_priv.
5890 	 */
5891 	spin_lock(&file_priv->mm.lock);
5892 	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5893 		request->file_priv = NULL;
5894 	spin_unlock(&file_priv->mm.lock);
5895 }
5896 
5897 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5898 {
5899 	struct drm_i915_file_private *file_priv;
5900 	int ret;
5901 
5902 	DRM_DEBUG("\n");
5903 
5904 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5905 	if (!file_priv)
5906 		return -ENOMEM;
5907 
5908 	file->driver_priv = file_priv;
5909 	file_priv->dev_priv = i915;
5910 	file_priv->file = file;
5911 
5912 	spin_lock_init(&file_priv->mm.lock);
5913 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5914 
5915 	file_priv->bsd_engine = -1;
5916 	file_priv->hang_timestamp = jiffies;
5917 
5918 	ret = i915_gem_context_open(i915, file);
5919 	if (ret)
5920 		kfree(file_priv);
5921 
5922 	return ret;
5923 }
5924 
5925 /**
5926  * i915_gem_track_fb - update frontbuffer tracking
5927  * @old: current GEM buffer for the frontbuffer slots
5928  * @new: new GEM buffer for the frontbuffer slots
5929  * @frontbuffer_bits: bitmask of frontbuffer slots
5930  *
5931  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5932  * from @old and setting them in @new. Both @old and @new can be NULL.
5933  */
5934 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5935 		       struct drm_i915_gem_object *new,
5936 		       unsigned frontbuffer_bits)
5937 {
5938 	/* Control of individual bits within the mask are guarded by
5939 	 * the owning plane->mutex, i.e. we can never see concurrent
5940 	 * manipulation of individual bits. But since the bitfield as a whole
5941 	 * is updated using RMW, we need to use atomics in order to update
5942 	 * the bits.
5943 	 */
5944 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5945 		     BITS_PER_TYPE(atomic_t));
5946 
5947 	if (old) {
5948 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5949 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5950 	}
5951 
5952 	if (new) {
5953 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5954 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5955 	}
5956 }
5957 
5958 /* Allocate a new GEM object and fill it with the supplied data */
5959 struct drm_i915_gem_object *
5960 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5961 			         const void *data, size_t size)
5962 {
5963 	struct drm_i915_gem_object *obj;
5964 	struct file *file;
5965 	size_t offset;
5966 	int err;
5967 
5968 	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5969 	if (IS_ERR(obj))
5970 		return obj;
5971 
5972 	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5973 
5974 	file = obj->base.filp;
5975 	offset = 0;
5976 	do {
5977 		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5978 		struct page *page;
5979 		void *pgdata, *vaddr;
5980 
5981 		err = pagecache_write_begin(file, file->f_mapping,
5982 					    offset, len, 0,
5983 					    &page, &pgdata);
5984 		if (err < 0)
5985 			goto fail;
5986 
5987 		vaddr = kmap(page);
5988 		memcpy(vaddr, data, len);
5989 		kunmap(page);
5990 
5991 		err = pagecache_write_end(file, file->f_mapping,
5992 					  offset, len, len,
5993 					  page, pgdata);
5994 		if (err < 0)
5995 			goto fail;
5996 
5997 		size -= len;
5998 		data += len;
5999 		offset += len;
6000 	} while (size);
6001 
6002 	return obj;
6003 
6004 fail:
6005 	i915_gem_object_put(obj);
6006 	return ERR_PTR(err);
6007 }
6008 
6009 struct scatterlist *
6010 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
6011 		       unsigned int n,
6012 		       unsigned int *offset)
6013 {
6014 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
6015 	struct scatterlist *sg;
6016 	unsigned int idx, count;
6017 
6018 	might_sleep();
6019 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
6020 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
6021 
6022 	/* As we iterate forward through the sg, we record each entry in a
6023 	 * radixtree for quick repeated (backwards) lookups. If we have seen
6024 	 * this index previously, we will have an entry for it.
6025 	 *
6026 	 * Initial lookup is O(N), but this is amortized to O(1) for
6027 	 * sequential page access (where each new request is consecutive
6028 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
6029 	 * i.e. O(1) with a large constant!
6030 	 */
6031 	if (n < READ_ONCE(iter->sg_idx))
6032 		goto lookup;
6033 
6034 	mutex_lock(&iter->lock);
6035 
6036 	/* We prefer to reuse the last sg so that repeated lookup of this
6037 	 * (or the subsequent) sg are fast - comparing against the last
6038 	 * sg is faster than going through the radixtree.
6039 	 */
6040 
6041 	sg = iter->sg_pos;
6042 	idx = iter->sg_idx;
6043 	count = __sg_page_count(sg);
6044 
6045 	while (idx + count <= n) {
6046 		unsigned long exception, i;
6047 		int ret;
6048 
6049 		/* If we cannot allocate and insert this entry, or the
6050 		 * individual pages from this range, cancel updating the
6051 		 * sg_idx so that on this lookup we are forced to linearly
6052 		 * scan onwards, but on future lookups we will try the
6053 		 * insertion again (in which case we need to be careful of
6054 		 * the error return reporting that we have already inserted
6055 		 * this index).
6056 		 */
6057 		ret = radix_tree_insert(&iter->radix, idx, sg);
6058 		if (ret && ret != -EEXIST)
6059 			goto scan;
6060 
6061 		exception =
6062 			RADIX_TREE_EXCEPTIONAL_ENTRY |
6063 			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
6064 		for (i = 1; i < count; i++) {
6065 			ret = radix_tree_insert(&iter->radix, idx + i,
6066 						(void *)exception);
6067 			if (ret && ret != -EEXIST)
6068 				goto scan;
6069 		}
6070 
6071 		idx += count;
6072 		sg = ____sg_next(sg);
6073 		count = __sg_page_count(sg);
6074 	}
6075 
6076 scan:
6077 	iter->sg_pos = sg;
6078 	iter->sg_idx = idx;
6079 
6080 	mutex_unlock(&iter->lock);
6081 
6082 	if (unlikely(n < idx)) /* insertion completed by another thread */
6083 		goto lookup;
6084 
6085 	/* In case we failed to insert the entry into the radixtree, we need
6086 	 * to look beyond the current sg.
6087 	 */
6088 	while (idx + count <= n) {
6089 		idx += count;
6090 		sg = ____sg_next(sg);
6091 		count = __sg_page_count(sg);
6092 	}
6093 
6094 	*offset = n - idx;
6095 	return sg;
6096 
6097 lookup:
6098 	rcu_read_lock();
6099 
6100 	sg = radix_tree_lookup(&iter->radix, n);
6101 	GEM_BUG_ON(!sg);
6102 
6103 	/* If this index is in the middle of multi-page sg entry,
6104 	 * the radixtree will contain an exceptional entry that points
6105 	 * to the start of that range. We will return the pointer to
6106 	 * the base page and the offset of this page within the
6107 	 * sg entry's range.
6108 	 */
6109 	*offset = 0;
6110 	if (unlikely(radix_tree_exception(sg))) {
6111 		unsigned long base =
6112 			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
6113 
6114 		sg = radix_tree_lookup(&iter->radix, base);
6115 		GEM_BUG_ON(!sg);
6116 
6117 		*offset = n - base;
6118 	}
6119 
6120 	rcu_read_unlock();
6121 
6122 	return sg;
6123 }
6124 
6125 struct page *
6126 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
6127 {
6128 	struct scatterlist *sg;
6129 	unsigned int offset;
6130 
6131 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
6132 
6133 	sg = i915_gem_object_get_sg(obj, n, &offset);
6134 	return nth_page(sg_page(sg), offset);
6135 }
6136 
6137 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
6138 struct page *
6139 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
6140 			       unsigned int n)
6141 {
6142 	struct page *page;
6143 
6144 	page = i915_gem_object_get_page(obj, n);
6145 	if (!obj->mm.dirty)
6146 		set_page_dirty(page);
6147 
6148 	return page;
6149 }
6150 
6151 dma_addr_t
6152 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
6153 				unsigned long n)
6154 {
6155 	struct scatterlist *sg;
6156 	unsigned int offset;
6157 
6158 	sg = i915_gem_object_get_sg(obj, n, &offset);
6159 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
6160 }
6161 
6162 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
6163 {
6164 	struct sg_table *pages;
6165 	int err;
6166 
6167 	if (align > obj->base.size)
6168 		return -EINVAL;
6169 
6170 	if (obj->ops == &i915_gem_phys_ops)
6171 		return 0;
6172 
6173 	if (obj->ops != &i915_gem_object_ops)
6174 		return -EINVAL;
6175 
6176 	err = i915_gem_object_unbind(obj);
6177 	if (err)
6178 		return err;
6179 
6180 	mutex_lock(&obj->mm.lock);
6181 
6182 	if (obj->mm.madv != I915_MADV_WILLNEED) {
6183 		err = -EFAULT;
6184 		goto err_unlock;
6185 	}
6186 
6187 	if (obj->mm.quirked) {
6188 		err = -EFAULT;
6189 		goto err_unlock;
6190 	}
6191 
6192 	if (obj->mm.mapping) {
6193 		err = -EBUSY;
6194 		goto err_unlock;
6195 	}
6196 
6197 	pages = __i915_gem_object_unset_pages(obj);
6198 
6199 	obj->ops = &i915_gem_phys_ops;
6200 
6201 	err = ____i915_gem_object_get_pages(obj);
6202 	if (err)
6203 		goto err_xfer;
6204 
6205 	/* Perma-pin (until release) the physical set of pages */
6206 	__i915_gem_object_pin_pages(obj);
6207 
6208 	if (!IS_ERR_OR_NULL(pages))
6209 		i915_gem_object_ops.put_pages(obj, pages);
6210 	mutex_unlock(&obj->mm.lock);
6211 	return 0;
6212 
6213 err_xfer:
6214 	obj->ops = &i915_gem_object_ops;
6215 	if (!IS_ERR_OR_NULL(pages)) {
6216 		unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);
6217 
6218 		__i915_gem_object_set_pages(obj, pages, sg_page_sizes);
6219 	}
6220 err_unlock:
6221 	mutex_unlock(&obj->mm.lock);
6222 	return err;
6223 }
6224 
6225 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6226 #include "selftests/scatterlist.c"
6227 #include "selftests/mock_gem_device.c"
6228 #include "selftests/huge_gem_object.c"
6229 #include "selftests/huge_pages.c"
6230 #include "selftests/i915_gem_object.c"
6231 #include "selftests/i915_gem_coherency.c"
6232 #include "selftests/i915_gem.c"
6233 #endif
6234