xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision 8c749ce9)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40 
41 #define RQ_BUG_ON(expr)
42 
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49 
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51 				  enum i915_cache_level level)
52 {
53 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55 
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 		return true;
60 
61 	return obj->pin_display;
62 }
63 
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 				  size_t size)
67 {
68 	spin_lock(&dev_priv->mm.object_stat_lock);
69 	dev_priv->mm.object_count++;
70 	dev_priv->mm.object_memory += size;
71 	spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73 
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 				     size_t size)
76 {
77 	spin_lock(&dev_priv->mm.object_stat_lock);
78 	dev_priv->mm.object_count--;
79 	dev_priv->mm.object_memory -= size;
80 	spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82 
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86 	int ret;
87 
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89 		   i915_terminally_wedged(error))
90 	if (EXIT_COND)
91 		return 0;
92 
93 	/*
94 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 	 * userspace. If it takes that long something really bad is going on and
96 	 * we should simply try to bail out and fail as gracefully as possible.
97 	 */
98 	ret = wait_event_interruptible_timeout(error->reset_queue,
99 					       EXIT_COND,
100 					       10*HZ);
101 	if (ret == 0) {
102 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 		return -EIO;
104 	} else if (ret < 0) {
105 		return ret;
106 	}
107 #undef EXIT_COND
108 
109 	return 0;
110 }
111 
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114 	struct drm_i915_private *dev_priv = dev->dev_private;
115 	int ret;
116 
117 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 	if (ret)
119 		return ret;
120 
121 	ret = mutex_lock_interruptible(&dev->struct_mutex);
122 	if (ret)
123 		return ret;
124 
125 	WARN_ON(i915_verify_lists(dev));
126 	return 0;
127 }
128 
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131 			    struct drm_file *file)
132 {
133 	struct drm_i915_private *dev_priv = dev->dev_private;
134 	struct drm_i915_gem_get_aperture *args = data;
135 	struct i915_gtt *ggtt = &dev_priv->gtt;
136 	struct i915_vma *vma;
137 	size_t pinned;
138 
139 	pinned = 0;
140 	mutex_lock(&dev->struct_mutex);
141 	list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142 		if (vma->pin_count)
143 			pinned += vma->node.size;
144 	list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145 		if (vma->pin_count)
146 			pinned += vma->node.size;
147 	mutex_unlock(&dev->struct_mutex);
148 
149 	args->aper_size = dev_priv->gtt.base.total;
150 	args->aper_available_size = args->aper_size - pinned;
151 
152 	return 0;
153 }
154 
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 	char *vaddr = obj->phys_handle->vaddr;
160 	struct sg_table *st;
161 	struct scatterlist *sg;
162 	int i;
163 
164 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 		return -EINVAL;
166 
167 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 		struct page *page;
169 		char *src;
170 
171 		page = shmem_read_mapping_page(mapping, i);
172 		if (IS_ERR(page))
173 			return PTR_ERR(page);
174 
175 		src = kmap_atomic(page);
176 		memcpy(vaddr, src, PAGE_SIZE);
177 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 		kunmap_atomic(src);
179 
180 		page_cache_release(page);
181 		vaddr += PAGE_SIZE;
182 	}
183 
184 	i915_gem_chipset_flush(obj->base.dev);
185 
186 	st = kmalloc(sizeof(*st), GFP_KERNEL);
187 	if (st == NULL)
188 		return -ENOMEM;
189 
190 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 		kfree(st);
192 		return -ENOMEM;
193 	}
194 
195 	sg = st->sgl;
196 	sg->offset = 0;
197 	sg->length = obj->base.size;
198 
199 	sg_dma_address(sg) = obj->phys_handle->busaddr;
200 	sg_dma_len(sg) = obj->base.size;
201 
202 	obj->pages = st;
203 	return 0;
204 }
205 
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209 	int ret;
210 
211 	BUG_ON(obj->madv == __I915_MADV_PURGED);
212 
213 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 	if (ret) {
215 		/* In the event of a disaster, abandon all caches and
216 		 * hope for the best.
217 		 */
218 		WARN_ON(ret != -EIO);
219 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 	}
221 
222 	if (obj->madv == I915_MADV_DONTNEED)
223 		obj->dirty = 0;
224 
225 	if (obj->dirty) {
226 		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227 		char *vaddr = obj->phys_handle->vaddr;
228 		int i;
229 
230 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 			struct page *page;
232 			char *dst;
233 
234 			page = shmem_read_mapping_page(mapping, i);
235 			if (IS_ERR(page))
236 				continue;
237 
238 			dst = kmap_atomic(page);
239 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 			memcpy(dst, vaddr, PAGE_SIZE);
241 			kunmap_atomic(dst);
242 
243 			set_page_dirty(page);
244 			if (obj->madv == I915_MADV_WILLNEED)
245 				mark_page_accessed(page);
246 			page_cache_release(page);
247 			vaddr += PAGE_SIZE;
248 		}
249 		obj->dirty = 0;
250 	}
251 
252 	sg_free_table(obj->pages);
253 	kfree(obj->pages);
254 }
255 
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259 	drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261 
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 	.get_pages = i915_gem_object_get_pages_phys,
264 	.put_pages = i915_gem_object_put_pages_phys,
265 	.release = i915_gem_object_release_phys,
266 };
267 
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271 	struct i915_vma *vma, *next;
272 	int ret;
273 
274 	drm_gem_object_reference(&obj->base);
275 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276 		if (i915_vma_unbind(vma))
277 			break;
278 
279 	ret = i915_gem_object_put_pages(obj);
280 	drm_gem_object_unreference(&obj->base);
281 
282 	return ret;
283 }
284 
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 			    int align)
288 {
289 	drm_dma_handle_t *phys;
290 	int ret;
291 
292 	if (obj->phys_handle) {
293 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 			return -EBUSY;
295 
296 		return 0;
297 	}
298 
299 	if (obj->madv != I915_MADV_WILLNEED)
300 		return -EFAULT;
301 
302 	if (obj->base.filp == NULL)
303 		return -EINVAL;
304 
305 	ret = drop_pages(obj);
306 	if (ret)
307 		return ret;
308 
309 	/* create a new object */
310 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 	if (!phys)
312 		return -ENOMEM;
313 
314 	obj->phys_handle = phys;
315 	obj->ops = &i915_gem_phys_ops;
316 
317 	return i915_gem_object_get_pages(obj);
318 }
319 
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 		     struct drm_i915_gem_pwrite *args,
323 		     struct drm_file *file_priv)
324 {
325 	struct drm_device *dev = obj->base.dev;
326 	void *vaddr = obj->phys_handle->vaddr + args->offset;
327 	char __user *user_data = to_user_ptr(args->data_ptr);
328 	int ret = 0;
329 
330 	/* We manually control the domain here and pretend that it
331 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 	 */
333 	ret = i915_gem_object_wait_rendering(obj, false);
334 	if (ret)
335 		return ret;
336 
337 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 		unsigned long unwritten;
340 
341 		/* The physical object once assigned is fixed for the lifetime
342 		 * of the obj, so we can safely drop the lock and continue
343 		 * to access vaddr.
344 		 */
345 		mutex_unlock(&dev->struct_mutex);
346 		unwritten = copy_from_user(vaddr, user_data, args->size);
347 		mutex_lock(&dev->struct_mutex);
348 		if (unwritten) {
349 			ret = -EFAULT;
350 			goto out;
351 		}
352 	}
353 
354 	drm_clflush_virt_range(vaddr, args->size);
355 	i915_gem_chipset_flush(dev);
356 
357 out:
358 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359 	return ret;
360 }
361 
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364 	struct drm_i915_private *dev_priv = dev->dev_private;
365 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367 
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371 	kmem_cache_free(dev_priv->objects, obj);
372 }
373 
374 static int
375 i915_gem_create(struct drm_file *file,
376 		struct drm_device *dev,
377 		uint64_t size,
378 		uint32_t *handle_p)
379 {
380 	struct drm_i915_gem_object *obj;
381 	int ret;
382 	u32 handle;
383 
384 	size = roundup(size, PAGE_SIZE);
385 	if (size == 0)
386 		return -EINVAL;
387 
388 	/* Allocate the new object */
389 	obj = i915_gem_alloc_object(dev, size);
390 	if (obj == NULL)
391 		return -ENOMEM;
392 
393 	ret = drm_gem_handle_create(file, &obj->base, &handle);
394 	/* drop reference from allocate - handle holds it now */
395 	drm_gem_object_unreference_unlocked(&obj->base);
396 	if (ret)
397 		return ret;
398 
399 	*handle_p = handle;
400 	return 0;
401 }
402 
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405 		     struct drm_device *dev,
406 		     struct drm_mode_create_dumb *args)
407 {
408 	/* have to work out size/pitch and return them */
409 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 	args->size = args->pitch * args->height;
411 	return i915_gem_create(file, dev,
412 			       args->size, &args->handle);
413 }
414 
415 /**
416  * Creates a new mm object and returns a handle to it.
417  */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 		      struct drm_file *file)
421 {
422 	struct drm_i915_gem_create *args = data;
423 
424 	return i915_gem_create(file, dev,
425 			       args->size, &args->handle);
426 }
427 
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430 			const char *gpu_vaddr, int gpu_offset,
431 			int length)
432 {
433 	int ret, cpu_offset = 0;
434 
435 	while (length > 0) {
436 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 		int this_length = min(cacheline_end - gpu_offset, length);
438 		int swizzled_gpu_offset = gpu_offset ^ 64;
439 
440 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 				     gpu_vaddr + swizzled_gpu_offset,
442 				     this_length);
443 		if (ret)
444 			return ret + length;
445 
446 		cpu_offset += this_length;
447 		gpu_offset += this_length;
448 		length -= this_length;
449 	}
450 
451 	return 0;
452 }
453 
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 			  const char __user *cpu_vaddr,
457 			  int length)
458 {
459 	int ret, cpu_offset = 0;
460 
461 	while (length > 0) {
462 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 		int this_length = min(cacheline_end - gpu_offset, length);
464 		int swizzled_gpu_offset = gpu_offset ^ 64;
465 
466 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 				       cpu_vaddr + cpu_offset,
468 				       this_length);
469 		if (ret)
470 			return ret + length;
471 
472 		cpu_offset += this_length;
473 		gpu_offset += this_length;
474 		length -= this_length;
475 	}
476 
477 	return 0;
478 }
479 
480 /*
481  * Pins the specified object's pages and synchronizes the object with
482  * GPU accesses. Sets needs_clflush to non-zero if the caller should
483  * flush the object from the CPU cache.
484  */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 				    int *needs_clflush)
487 {
488 	int ret;
489 
490 	*needs_clflush = 0;
491 
492 	if (!obj->base.filp)
493 		return -EINVAL;
494 
495 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 		/* If we're not in the cpu read domain, set ourself into the gtt
497 		 * read domain and manually flush cachelines (if required). This
498 		 * optimizes for the case when the gpu will dirty the data
499 		 * anyway again before the next pread happens. */
500 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 							obj->cache_level);
502 		ret = i915_gem_object_wait_rendering(obj, true);
503 		if (ret)
504 			return ret;
505 	}
506 
507 	ret = i915_gem_object_get_pages(obj);
508 	if (ret)
509 		return ret;
510 
511 	i915_gem_object_pin_pages(obj);
512 
513 	return ret;
514 }
515 
516 /* Per-page copy function for the shmem pread fastpath.
517  * Flushes invalid cachelines before reading the target if
518  * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 		 char __user *user_data,
522 		 bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524 	char *vaddr;
525 	int ret;
526 
527 	if (unlikely(page_do_bit17_swizzling))
528 		return -EINVAL;
529 
530 	vaddr = kmap_atomic(page);
531 	if (needs_clflush)
532 		drm_clflush_virt_range(vaddr + shmem_page_offset,
533 				       page_length);
534 	ret = __copy_to_user_inatomic(user_data,
535 				      vaddr + shmem_page_offset,
536 				      page_length);
537 	kunmap_atomic(vaddr);
538 
539 	return ret ? -EFAULT : 0;
540 }
541 
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 			     bool swizzled)
545 {
546 	if (unlikely(swizzled)) {
547 		unsigned long start = (unsigned long) addr;
548 		unsigned long end = (unsigned long) addr + length;
549 
550 		/* For swizzling simply ensure that we always flush both
551 		 * channels. Lame, but simple and it works. Swizzled
552 		 * pwrite/pread is far from a hotpath - current userspace
553 		 * doesn't use it at all. */
554 		start = round_down(start, 128);
555 		end = round_up(end, 128);
556 
557 		drm_clflush_virt_range((void *)start, end - start);
558 	} else {
559 		drm_clflush_virt_range(addr, length);
560 	}
561 
562 }
563 
564 /* Only difference to the fast-path function is that this can handle bit17
565  * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 		 char __user *user_data,
569 		 bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571 	char *vaddr;
572 	int ret;
573 
574 	vaddr = kmap(page);
575 	if (needs_clflush)
576 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 					     page_length,
578 					     page_do_bit17_swizzling);
579 
580 	if (page_do_bit17_swizzling)
581 		ret = __copy_to_user_swizzled(user_data,
582 					      vaddr, shmem_page_offset,
583 					      page_length);
584 	else
585 		ret = __copy_to_user(user_data,
586 				     vaddr + shmem_page_offset,
587 				     page_length);
588 	kunmap(page);
589 
590 	return ret ? - EFAULT : 0;
591 }
592 
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595 		     struct drm_i915_gem_object *obj,
596 		     struct drm_i915_gem_pread *args,
597 		     struct drm_file *file)
598 {
599 	char __user *user_data;
600 	ssize_t remain;
601 	loff_t offset;
602 	int shmem_page_offset, page_length, ret = 0;
603 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604 	int prefaulted = 0;
605 	int needs_clflush = 0;
606 	struct sg_page_iter sg_iter;
607 
608 	user_data = to_user_ptr(args->data_ptr);
609 	remain = args->size;
610 
611 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612 
613 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 	if (ret)
615 		return ret;
616 
617 	offset = args->offset;
618 
619 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 			 offset >> PAGE_SHIFT) {
621 		struct page *page = sg_page_iter_page(&sg_iter);
622 
623 		if (remain <= 0)
624 			break;
625 
626 		/* Operation in this page
627 		 *
628 		 * shmem_page_offset = offset within page in shmem file
629 		 * page_length = bytes to copy for this page
630 		 */
631 		shmem_page_offset = offset_in_page(offset);
632 		page_length = remain;
633 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 			page_length = PAGE_SIZE - shmem_page_offset;
635 
636 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 			(page_to_phys(page) & (1 << 17)) != 0;
638 
639 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 				       user_data, page_do_bit17_swizzling,
641 				       needs_clflush);
642 		if (ret == 0)
643 			goto next_page;
644 
645 		mutex_unlock(&dev->struct_mutex);
646 
647 		if (likely(!i915.prefault_disable) && !prefaulted) {
648 			ret = fault_in_multipages_writeable(user_data, remain);
649 			/* Userspace is tricking us, but we've already clobbered
650 			 * its pages with the prefault and promised to write the
651 			 * data up to the first fault. Hence ignore any errors
652 			 * and just continue. */
653 			(void)ret;
654 			prefaulted = 1;
655 		}
656 
657 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 				       user_data, page_do_bit17_swizzling,
659 				       needs_clflush);
660 
661 		mutex_lock(&dev->struct_mutex);
662 
663 		if (ret)
664 			goto out;
665 
666 next_page:
667 		remain -= page_length;
668 		user_data += page_length;
669 		offset += page_length;
670 	}
671 
672 out:
673 	i915_gem_object_unpin_pages(obj);
674 
675 	return ret;
676 }
677 
678 /**
679  * Reads data from the object referenced by handle.
680  *
681  * On error, the contents of *data are undefined.
682  */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685 		     struct drm_file *file)
686 {
687 	struct drm_i915_gem_pread *args = data;
688 	struct drm_i915_gem_object *obj;
689 	int ret = 0;
690 
691 	if (args->size == 0)
692 		return 0;
693 
694 	if (!access_ok(VERIFY_WRITE,
695 		       to_user_ptr(args->data_ptr),
696 		       args->size))
697 		return -EFAULT;
698 
699 	ret = i915_mutex_lock_interruptible(dev);
700 	if (ret)
701 		return ret;
702 
703 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704 	if (&obj->base == NULL) {
705 		ret = -ENOENT;
706 		goto unlock;
707 	}
708 
709 	/* Bounds check source.  */
710 	if (args->offset > obj->base.size ||
711 	    args->size > obj->base.size - args->offset) {
712 		ret = -EINVAL;
713 		goto out;
714 	}
715 
716 	/* prime objects have no backing filp to GEM pread/pwrite
717 	 * pages from.
718 	 */
719 	if (!obj->base.filp) {
720 		ret = -EINVAL;
721 		goto out;
722 	}
723 
724 	trace_i915_gem_object_pread(obj, args->offset, args->size);
725 
726 	ret = i915_gem_shmem_pread(dev, obj, args, file);
727 
728 out:
729 	drm_gem_object_unreference(&obj->base);
730 unlock:
731 	mutex_unlock(&dev->struct_mutex);
732 	return ret;
733 }
734 
735 /* This is the fast write path which cannot handle
736  * page faults in the source data
737  */
738 
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741 		loff_t page_base, int page_offset,
742 		char __user *user_data,
743 		int length)
744 {
745 	void __iomem *vaddr_atomic;
746 	void *vaddr;
747 	unsigned long unwritten;
748 
749 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 	/* We can use the cpu mem copy function because this is X86. */
751 	vaddr = (void __force*)vaddr_atomic + page_offset;
752 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
753 						      user_data, length);
754 	io_mapping_unmap_atomic(vaddr_atomic);
755 	return unwritten;
756 }
757 
758 /**
759  * This is the fast pwrite path, where we copy the data directly from the
760  * user into the GTT, uncached.
761  */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 			 struct drm_i915_gem_object *obj,
765 			 struct drm_i915_gem_pwrite *args,
766 			 struct drm_file *file)
767 {
768 	struct drm_i915_private *dev_priv = dev->dev_private;
769 	ssize_t remain;
770 	loff_t offset, page_base;
771 	char __user *user_data;
772 	int page_offset, page_length, ret;
773 
774 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775 	if (ret)
776 		goto out;
777 
778 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 	if (ret)
780 		goto out_unpin;
781 
782 	ret = i915_gem_object_put_fence(obj);
783 	if (ret)
784 		goto out_unpin;
785 
786 	user_data = to_user_ptr(args->data_ptr);
787 	remain = args->size;
788 
789 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790 
791 	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792 
793 	while (remain > 0) {
794 		/* Operation in this page
795 		 *
796 		 * page_base = page offset within aperture
797 		 * page_offset = offset within page
798 		 * page_length = bytes to copy for this page
799 		 */
800 		page_base = offset & PAGE_MASK;
801 		page_offset = offset_in_page(offset);
802 		page_length = remain;
803 		if ((page_offset + remain) > PAGE_SIZE)
804 			page_length = PAGE_SIZE - page_offset;
805 
806 		/* If we get a fault while copying data, then (presumably) our
807 		 * source page isn't available.  Return the error and we'll
808 		 * retry in the slow path.
809 		 */
810 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
811 				    page_offset, user_data, page_length)) {
812 			ret = -EFAULT;
813 			goto out_flush;
814 		}
815 
816 		remain -= page_length;
817 		user_data += page_length;
818 		offset += page_length;
819 	}
820 
821 out_flush:
822 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824 	i915_gem_object_ggtt_unpin(obj);
825 out:
826 	return ret;
827 }
828 
829 /* Per-page copy function for the shmem pwrite fastpath.
830  * Flushes invalid cachelines before writing to the target if
831  * needs_clflush_before is set and flushes out any written cachelines after
832  * writing if needs_clflush is set. */
833 static int
834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 		  char __user *user_data,
836 		  bool page_do_bit17_swizzling,
837 		  bool needs_clflush_before,
838 		  bool needs_clflush_after)
839 {
840 	char *vaddr;
841 	int ret;
842 
843 	if (unlikely(page_do_bit17_swizzling))
844 		return -EINVAL;
845 
846 	vaddr = kmap_atomic(page);
847 	if (needs_clflush_before)
848 		drm_clflush_virt_range(vaddr + shmem_page_offset,
849 				       page_length);
850 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 					user_data, page_length);
852 	if (needs_clflush_after)
853 		drm_clflush_virt_range(vaddr + shmem_page_offset,
854 				       page_length);
855 	kunmap_atomic(vaddr);
856 
857 	return ret ? -EFAULT : 0;
858 }
859 
860 /* Only difference to the fast-path function is that this can handle bit17
861  * and uses non-atomic copy and kmap functions. */
862 static int
863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 		  char __user *user_data,
865 		  bool page_do_bit17_swizzling,
866 		  bool needs_clflush_before,
867 		  bool needs_clflush_after)
868 {
869 	char *vaddr;
870 	int ret;
871 
872 	vaddr = kmap(page);
873 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 					     page_length,
876 					     page_do_bit17_swizzling);
877 	if (page_do_bit17_swizzling)
878 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879 						user_data,
880 						page_length);
881 	else
882 		ret = __copy_from_user(vaddr + shmem_page_offset,
883 				       user_data,
884 				       page_length);
885 	if (needs_clflush_after)
886 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 					     page_length,
888 					     page_do_bit17_swizzling);
889 	kunmap(page);
890 
891 	return ret ? -EFAULT : 0;
892 }
893 
894 static int
895 i915_gem_shmem_pwrite(struct drm_device *dev,
896 		      struct drm_i915_gem_object *obj,
897 		      struct drm_i915_gem_pwrite *args,
898 		      struct drm_file *file)
899 {
900 	ssize_t remain;
901 	loff_t offset;
902 	char __user *user_data;
903 	int shmem_page_offset, page_length, ret = 0;
904 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905 	int hit_slowpath = 0;
906 	int needs_clflush_after = 0;
907 	int needs_clflush_before = 0;
908 	struct sg_page_iter sg_iter;
909 
910 	user_data = to_user_ptr(args->data_ptr);
911 	remain = args->size;
912 
913 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914 
915 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 		/* If we're not in the cpu write domain, set ourself into the gtt
917 		 * write domain and manually flush cachelines (if required). This
918 		 * optimizes for the case when the gpu will use the data
919 		 * right away and we therefore have to clflush anyway. */
920 		needs_clflush_after = cpu_write_needs_clflush(obj);
921 		ret = i915_gem_object_wait_rendering(obj, false);
922 		if (ret)
923 			return ret;
924 	}
925 	/* Same trick applies to invalidate partially written cachelines read
926 	 * before writing. */
927 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 		needs_clflush_before =
929 			!cpu_cache_is_coherent(dev, obj->cache_level);
930 
931 	ret = i915_gem_object_get_pages(obj);
932 	if (ret)
933 		return ret;
934 
935 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936 
937 	i915_gem_object_pin_pages(obj);
938 
939 	offset = args->offset;
940 	obj->dirty = 1;
941 
942 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 			 offset >> PAGE_SHIFT) {
944 		struct page *page = sg_page_iter_page(&sg_iter);
945 		int partial_cacheline_write;
946 
947 		if (remain <= 0)
948 			break;
949 
950 		/* Operation in this page
951 		 *
952 		 * shmem_page_offset = offset within page in shmem file
953 		 * page_length = bytes to copy for this page
954 		 */
955 		shmem_page_offset = offset_in_page(offset);
956 
957 		page_length = remain;
958 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 			page_length = PAGE_SIZE - shmem_page_offset;
960 
961 		/* If we don't overwrite a cacheline completely we need to be
962 		 * careful to have up-to-date data by first clflushing. Don't
963 		 * overcomplicate things and flush the entire patch. */
964 		partial_cacheline_write = needs_clflush_before &&
965 			((shmem_page_offset | page_length)
966 				& (boot_cpu_data.x86_clflush_size - 1));
967 
968 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 			(page_to_phys(page) & (1 << 17)) != 0;
970 
971 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 					user_data, page_do_bit17_swizzling,
973 					partial_cacheline_write,
974 					needs_clflush_after);
975 		if (ret == 0)
976 			goto next_page;
977 
978 		hit_slowpath = 1;
979 		mutex_unlock(&dev->struct_mutex);
980 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 					user_data, page_do_bit17_swizzling,
982 					partial_cacheline_write,
983 					needs_clflush_after);
984 
985 		mutex_lock(&dev->struct_mutex);
986 
987 		if (ret)
988 			goto out;
989 
990 next_page:
991 		remain -= page_length;
992 		user_data += page_length;
993 		offset += page_length;
994 	}
995 
996 out:
997 	i915_gem_object_unpin_pages(obj);
998 
999 	if (hit_slowpath) {
1000 		/*
1001 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 		 * cachelines in-line while writing and the object moved
1003 		 * out of the cpu write domain while we've dropped the lock.
1004 		 */
1005 		if (!needs_clflush_after &&
1006 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007 			if (i915_gem_clflush_object(obj, obj->pin_display))
1008 				needs_clflush_after = true;
1009 		}
1010 	}
1011 
1012 	if (needs_clflush_after)
1013 		i915_gem_chipset_flush(dev);
1014 	else
1015 		obj->cache_dirty = true;
1016 
1017 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018 	return ret;
1019 }
1020 
1021 /**
1022  * Writes data to the object referenced by handle.
1023  *
1024  * On error, the contents of the buffer that were to be modified are undefined.
1025  */
1026 int
1027 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028 		      struct drm_file *file)
1029 {
1030 	struct drm_i915_private *dev_priv = dev->dev_private;
1031 	struct drm_i915_gem_pwrite *args = data;
1032 	struct drm_i915_gem_object *obj;
1033 	int ret;
1034 
1035 	if (args->size == 0)
1036 		return 0;
1037 
1038 	if (!access_ok(VERIFY_READ,
1039 		       to_user_ptr(args->data_ptr),
1040 		       args->size))
1041 		return -EFAULT;
1042 
1043 	if (likely(!i915.prefault_disable)) {
1044 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045 						   args->size);
1046 		if (ret)
1047 			return -EFAULT;
1048 	}
1049 
1050 	intel_runtime_pm_get(dev_priv);
1051 
1052 	ret = i915_mutex_lock_interruptible(dev);
1053 	if (ret)
1054 		goto put_rpm;
1055 
1056 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057 	if (&obj->base == NULL) {
1058 		ret = -ENOENT;
1059 		goto unlock;
1060 	}
1061 
1062 	/* Bounds check destination. */
1063 	if (args->offset > obj->base.size ||
1064 	    args->size > obj->base.size - args->offset) {
1065 		ret = -EINVAL;
1066 		goto out;
1067 	}
1068 
1069 	/* prime objects have no backing filp to GEM pread/pwrite
1070 	 * pages from.
1071 	 */
1072 	if (!obj->base.filp) {
1073 		ret = -EINVAL;
1074 		goto out;
1075 	}
1076 
1077 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078 
1079 	ret = -EFAULT;
1080 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 	 * it would end up going through the fenced access, and we'll get
1082 	 * different detiling behavior between reading and writing.
1083 	 * pread/pwrite currently are reading and writing from the CPU
1084 	 * perspective, requiring manual detiling by the client.
1085 	 */
1086 	if (obj->tiling_mode == I915_TILING_NONE &&
1087 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 	    cpu_write_needs_clflush(obj)) {
1089 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090 		/* Note that the gtt paths might fail with non-page-backed user
1091 		 * pointers (e.g. gtt mappings when moving data between
1092 		 * textures). Fallback to the shmem path in that case. */
1093 	}
1094 
1095 	if (ret == -EFAULT || ret == -ENOSPC) {
1096 		if (obj->phys_handle)
1097 			ret = i915_gem_phys_pwrite(obj, args, file);
1098 		else
1099 			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 	}
1101 
1102 out:
1103 	drm_gem_object_unreference(&obj->base);
1104 unlock:
1105 	mutex_unlock(&dev->struct_mutex);
1106 put_rpm:
1107 	intel_runtime_pm_put(dev_priv);
1108 
1109 	return ret;
1110 }
1111 
1112 int
1113 i915_gem_check_wedge(struct i915_gpu_error *error,
1114 		     bool interruptible)
1115 {
1116 	if (i915_reset_in_progress(error)) {
1117 		/* Non-interruptible callers can't handle -EAGAIN, hence return
1118 		 * -EIO unconditionally for these. */
1119 		if (!interruptible)
1120 			return -EIO;
1121 
1122 		/* Recovery complete, but the reset failed ... */
1123 		if (i915_terminally_wedged(error))
1124 			return -EIO;
1125 
1126 		/*
1127 		 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 		 * to work properly to reinit the hw state while the gpu is
1129 		 * still marked as reset-in-progress. Handle this with a flag.
1130 		 */
1131 		if (!error->reload_in_reset)
1132 			return -EAGAIN;
1133 	}
1134 
1135 	return 0;
1136 }
1137 
1138 static void fake_irq(unsigned long data)
1139 {
1140 	wake_up_process((struct task_struct *)data);
1141 }
1142 
1143 static bool missed_irq(struct drm_i915_private *dev_priv,
1144 		       struct intel_engine_cs *ring)
1145 {
1146 	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147 }
1148 
1149 static unsigned long local_clock_us(unsigned *cpu)
1150 {
1151 	unsigned long t;
1152 
1153 	/* Cheaply and approximately convert from nanoseconds to microseconds.
1154 	 * The result and subsequent calculations are also defined in the same
1155 	 * approximate microseconds units. The principal source of timing
1156 	 * error here is from the simple truncation.
1157 	 *
1158 	 * Note that local_clock() is only defined wrt to the current CPU;
1159 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1160 	 * blocking preemption for the entire busywait, we can detect the CPU
1161 	 * switch and use that as indicator of system load and a reason to
1162 	 * stop busywaiting, see busywait_stop().
1163 	 */
1164 	*cpu = get_cpu();
1165 	t = local_clock() >> 10;
1166 	put_cpu();
1167 
1168 	return t;
1169 }
1170 
1171 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1172 {
1173 	unsigned this_cpu;
1174 
1175 	if (time_after(local_clock_us(&this_cpu), timeout))
1176 		return true;
1177 
1178 	return this_cpu != cpu;
1179 }
1180 
1181 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1182 {
1183 	unsigned long timeout;
1184 	unsigned cpu;
1185 
1186 	/* When waiting for high frequency requests, e.g. during synchronous
1187 	 * rendering split between the CPU and GPU, the finite amount of time
1188 	 * required to set up the irq and wait upon it limits the response
1189 	 * rate. By busywaiting on the request completion for a short while we
1190 	 * can service the high frequency waits as quick as possible. However,
1191 	 * if it is a slow request, we want to sleep as quickly as possible.
1192 	 * The tradeoff between waiting and sleeping is roughly the time it
1193 	 * takes to sleep on a request, on the order of a microsecond.
1194 	 */
1195 
1196 	if (req->ring->irq_refcount)
1197 		return -EBUSY;
1198 
1199 	/* Only spin if we know the GPU is processing this request */
1200 	if (!i915_gem_request_started(req, true))
1201 		return -EAGAIN;
1202 
1203 	timeout = local_clock_us(&cpu) + 5;
1204 	while (!need_resched()) {
1205 		if (i915_gem_request_completed(req, true))
1206 			return 0;
1207 
1208 		if (signal_pending_state(state, current))
1209 			break;
1210 
1211 		if (busywait_stop(timeout, cpu))
1212 			break;
1213 
1214 		cpu_relax_lowlatency();
1215 	}
1216 
1217 	if (i915_gem_request_completed(req, false))
1218 		return 0;
1219 
1220 	return -EAGAIN;
1221 }
1222 
1223 /**
1224  * __i915_wait_request - wait until execution of request has finished
1225  * @req: duh!
1226  * @reset_counter: reset sequence associated with the given request
1227  * @interruptible: do an interruptible wait (normally yes)
1228  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1229  *
1230  * Note: It is of utmost importance that the passed in seqno and reset_counter
1231  * values have been read by the caller in an smp safe manner. Where read-side
1232  * locks are involved, it is sufficient to read the reset_counter before
1233  * unlocking the lock that protects the seqno. For lockless tricks, the
1234  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1235  * inserted.
1236  *
1237  * Returns 0 if the request was found within the alloted time. Else returns the
1238  * errno with remaining time filled in timeout argument.
1239  */
1240 int __i915_wait_request(struct drm_i915_gem_request *req,
1241 			unsigned reset_counter,
1242 			bool interruptible,
1243 			s64 *timeout,
1244 			struct intel_rps_client *rps)
1245 {
1246 	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1247 	struct drm_device *dev = ring->dev;
1248 	struct drm_i915_private *dev_priv = dev->dev_private;
1249 	const bool irq_test_in_progress =
1250 		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1251 	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1252 	DEFINE_WAIT(wait);
1253 	unsigned long timeout_expire;
1254 	s64 before, now;
1255 	int ret;
1256 
1257 	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1258 
1259 	if (list_empty(&req->list))
1260 		return 0;
1261 
1262 	if (i915_gem_request_completed(req, true))
1263 		return 0;
1264 
1265 	timeout_expire = 0;
1266 	if (timeout) {
1267 		if (WARN_ON(*timeout < 0))
1268 			return -EINVAL;
1269 
1270 		if (*timeout == 0)
1271 			return -ETIME;
1272 
1273 		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1274 	}
1275 
1276 	if (INTEL_INFO(dev_priv)->gen >= 6)
1277 		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1278 
1279 	/* Record current time in case interrupted by signal, or wedged */
1280 	trace_i915_gem_request_wait_begin(req);
1281 	before = ktime_get_raw_ns();
1282 
1283 	/* Optimistic spin for the next jiffie before touching IRQs */
1284 	ret = __i915_spin_request(req, state);
1285 	if (ret == 0)
1286 		goto out;
1287 
1288 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1289 		ret = -ENODEV;
1290 		goto out;
1291 	}
1292 
1293 	for (;;) {
1294 		struct timer_list timer;
1295 
1296 		prepare_to_wait(&ring->irq_queue, &wait, state);
1297 
1298 		/* We need to check whether any gpu reset happened in between
1299 		 * the caller grabbing the seqno and now ... */
1300 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1301 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
1302 			 * is truely gone. */
1303 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1304 			if (ret == 0)
1305 				ret = -EAGAIN;
1306 			break;
1307 		}
1308 
1309 		if (i915_gem_request_completed(req, false)) {
1310 			ret = 0;
1311 			break;
1312 		}
1313 
1314 		if (signal_pending_state(state, current)) {
1315 			ret = -ERESTARTSYS;
1316 			break;
1317 		}
1318 
1319 		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1320 			ret = -ETIME;
1321 			break;
1322 		}
1323 
1324 		timer.function = NULL;
1325 		if (timeout || missed_irq(dev_priv, ring)) {
1326 			unsigned long expire;
1327 
1328 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1329 			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1330 			mod_timer(&timer, expire);
1331 		}
1332 
1333 		io_schedule();
1334 
1335 		if (timer.function) {
1336 			del_singleshot_timer_sync(&timer);
1337 			destroy_timer_on_stack(&timer);
1338 		}
1339 	}
1340 	if (!irq_test_in_progress)
1341 		ring->irq_put(ring);
1342 
1343 	finish_wait(&ring->irq_queue, &wait);
1344 
1345 out:
1346 	now = ktime_get_raw_ns();
1347 	trace_i915_gem_request_wait_end(req);
1348 
1349 	if (timeout) {
1350 		s64 tres = *timeout - (now - before);
1351 
1352 		*timeout = tres < 0 ? 0 : tres;
1353 
1354 		/*
1355 		 * Apparently ktime isn't accurate enough and occasionally has a
1356 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1357 		 * things up to make the test happy. We allow up to 1 jiffy.
1358 		 *
1359 		 * This is a regrssion from the timespec->ktime conversion.
1360 		 */
1361 		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1362 			*timeout = 0;
1363 	}
1364 
1365 	return ret;
1366 }
1367 
1368 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1369 				   struct drm_file *file)
1370 {
1371 	struct drm_i915_private *dev_private;
1372 	struct drm_i915_file_private *file_priv;
1373 
1374 	WARN_ON(!req || !file || req->file_priv);
1375 
1376 	if (!req || !file)
1377 		return -EINVAL;
1378 
1379 	if (req->file_priv)
1380 		return -EINVAL;
1381 
1382 	dev_private = req->ring->dev->dev_private;
1383 	file_priv = file->driver_priv;
1384 
1385 	spin_lock(&file_priv->mm.lock);
1386 	req->file_priv = file_priv;
1387 	list_add_tail(&req->client_list, &file_priv->mm.request_list);
1388 	spin_unlock(&file_priv->mm.lock);
1389 
1390 	req->pid = get_pid(task_pid(current));
1391 
1392 	return 0;
1393 }
1394 
1395 static inline void
1396 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1397 {
1398 	struct drm_i915_file_private *file_priv = request->file_priv;
1399 
1400 	if (!file_priv)
1401 		return;
1402 
1403 	spin_lock(&file_priv->mm.lock);
1404 	list_del(&request->client_list);
1405 	request->file_priv = NULL;
1406 	spin_unlock(&file_priv->mm.lock);
1407 
1408 	put_pid(request->pid);
1409 	request->pid = NULL;
1410 }
1411 
1412 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1413 {
1414 	trace_i915_gem_request_retire(request);
1415 
1416 	/* We know the GPU must have read the request to have
1417 	 * sent us the seqno + interrupt, so use the position
1418 	 * of tail of the request to update the last known position
1419 	 * of the GPU head.
1420 	 *
1421 	 * Note this requires that we are always called in request
1422 	 * completion order.
1423 	 */
1424 	request->ringbuf->last_retired_head = request->postfix;
1425 
1426 	list_del_init(&request->list);
1427 	i915_gem_request_remove_from_client(request);
1428 
1429 	i915_gem_request_unreference(request);
1430 }
1431 
1432 static void
1433 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1434 {
1435 	struct intel_engine_cs *engine = req->ring;
1436 	struct drm_i915_gem_request *tmp;
1437 
1438 	lockdep_assert_held(&engine->dev->struct_mutex);
1439 
1440 	if (list_empty(&req->list))
1441 		return;
1442 
1443 	do {
1444 		tmp = list_first_entry(&engine->request_list,
1445 				       typeof(*tmp), list);
1446 
1447 		i915_gem_request_retire(tmp);
1448 	} while (tmp != req);
1449 
1450 	WARN_ON(i915_verify_lists(engine->dev));
1451 }
1452 
1453 /**
1454  * Waits for a request to be signaled, and cleans up the
1455  * request and object lists appropriately for that event.
1456  */
1457 int
1458 i915_wait_request(struct drm_i915_gem_request *req)
1459 {
1460 	struct drm_device *dev;
1461 	struct drm_i915_private *dev_priv;
1462 	bool interruptible;
1463 	int ret;
1464 
1465 	BUG_ON(req == NULL);
1466 
1467 	dev = req->ring->dev;
1468 	dev_priv = dev->dev_private;
1469 	interruptible = dev_priv->mm.interruptible;
1470 
1471 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1472 
1473 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1474 	if (ret)
1475 		return ret;
1476 
1477 	ret = __i915_wait_request(req,
1478 				  atomic_read(&dev_priv->gpu_error.reset_counter),
1479 				  interruptible, NULL, NULL);
1480 	if (ret)
1481 		return ret;
1482 
1483 	__i915_gem_request_retire__upto(req);
1484 	return 0;
1485 }
1486 
1487 /**
1488  * Ensures that all rendering to the object has completed and the object is
1489  * safe to unbind from the GTT or access from the CPU.
1490  */
1491 int
1492 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1493 			       bool readonly)
1494 {
1495 	int ret, i;
1496 
1497 	if (!obj->active)
1498 		return 0;
1499 
1500 	if (readonly) {
1501 		if (obj->last_write_req != NULL) {
1502 			ret = i915_wait_request(obj->last_write_req);
1503 			if (ret)
1504 				return ret;
1505 
1506 			i = obj->last_write_req->ring->id;
1507 			if (obj->last_read_req[i] == obj->last_write_req)
1508 				i915_gem_object_retire__read(obj, i);
1509 			else
1510 				i915_gem_object_retire__write(obj);
1511 		}
1512 	} else {
1513 		for (i = 0; i < I915_NUM_RINGS; i++) {
1514 			if (obj->last_read_req[i] == NULL)
1515 				continue;
1516 
1517 			ret = i915_wait_request(obj->last_read_req[i]);
1518 			if (ret)
1519 				return ret;
1520 
1521 			i915_gem_object_retire__read(obj, i);
1522 		}
1523 		RQ_BUG_ON(obj->active);
1524 	}
1525 
1526 	return 0;
1527 }
1528 
1529 static void
1530 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1531 			       struct drm_i915_gem_request *req)
1532 {
1533 	int ring = req->ring->id;
1534 
1535 	if (obj->last_read_req[ring] == req)
1536 		i915_gem_object_retire__read(obj, ring);
1537 	else if (obj->last_write_req == req)
1538 		i915_gem_object_retire__write(obj);
1539 
1540 	__i915_gem_request_retire__upto(req);
1541 }
1542 
1543 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1544  * as the object state may change during this call.
1545  */
1546 static __must_check int
1547 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1548 					    struct intel_rps_client *rps,
1549 					    bool readonly)
1550 {
1551 	struct drm_device *dev = obj->base.dev;
1552 	struct drm_i915_private *dev_priv = dev->dev_private;
1553 	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1554 	unsigned reset_counter;
1555 	int ret, i, n = 0;
1556 
1557 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1558 	BUG_ON(!dev_priv->mm.interruptible);
1559 
1560 	if (!obj->active)
1561 		return 0;
1562 
1563 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1564 	if (ret)
1565 		return ret;
1566 
1567 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1568 
1569 	if (readonly) {
1570 		struct drm_i915_gem_request *req;
1571 
1572 		req = obj->last_write_req;
1573 		if (req == NULL)
1574 			return 0;
1575 
1576 		requests[n++] = i915_gem_request_reference(req);
1577 	} else {
1578 		for (i = 0; i < I915_NUM_RINGS; i++) {
1579 			struct drm_i915_gem_request *req;
1580 
1581 			req = obj->last_read_req[i];
1582 			if (req == NULL)
1583 				continue;
1584 
1585 			requests[n++] = i915_gem_request_reference(req);
1586 		}
1587 	}
1588 
1589 	mutex_unlock(&dev->struct_mutex);
1590 	for (i = 0; ret == 0 && i < n; i++)
1591 		ret = __i915_wait_request(requests[i], reset_counter, true,
1592 					  NULL, rps);
1593 	mutex_lock(&dev->struct_mutex);
1594 
1595 	for (i = 0; i < n; i++) {
1596 		if (ret == 0)
1597 			i915_gem_object_retire_request(obj, requests[i]);
1598 		i915_gem_request_unreference(requests[i]);
1599 	}
1600 
1601 	return ret;
1602 }
1603 
1604 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1605 {
1606 	struct drm_i915_file_private *fpriv = file->driver_priv;
1607 	return &fpriv->rps;
1608 }
1609 
1610 /**
1611  * Called when user space prepares to use an object with the CPU, either
1612  * through the mmap ioctl's mapping or a GTT mapping.
1613  */
1614 int
1615 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1616 			  struct drm_file *file)
1617 {
1618 	struct drm_i915_gem_set_domain *args = data;
1619 	struct drm_i915_gem_object *obj;
1620 	uint32_t read_domains = args->read_domains;
1621 	uint32_t write_domain = args->write_domain;
1622 	int ret;
1623 
1624 	/* Only handle setting domains to types used by the CPU. */
1625 	if (write_domain & I915_GEM_GPU_DOMAINS)
1626 		return -EINVAL;
1627 
1628 	if (read_domains & I915_GEM_GPU_DOMAINS)
1629 		return -EINVAL;
1630 
1631 	/* Having something in the write domain implies it's in the read
1632 	 * domain, and only that read domain.  Enforce that in the request.
1633 	 */
1634 	if (write_domain != 0 && read_domains != write_domain)
1635 		return -EINVAL;
1636 
1637 	ret = i915_mutex_lock_interruptible(dev);
1638 	if (ret)
1639 		return ret;
1640 
1641 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1642 	if (&obj->base == NULL) {
1643 		ret = -ENOENT;
1644 		goto unlock;
1645 	}
1646 
1647 	/* Try to flush the object off the GPU without holding the lock.
1648 	 * We will repeat the flush holding the lock in the normal manner
1649 	 * to catch cases where we are gazumped.
1650 	 */
1651 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1652 							  to_rps_client(file),
1653 							  !write_domain);
1654 	if (ret)
1655 		goto unref;
1656 
1657 	if (read_domains & I915_GEM_DOMAIN_GTT)
1658 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1659 	else
1660 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1661 
1662 	if (write_domain != 0)
1663 		intel_fb_obj_invalidate(obj,
1664 					write_domain == I915_GEM_DOMAIN_GTT ?
1665 					ORIGIN_GTT : ORIGIN_CPU);
1666 
1667 unref:
1668 	drm_gem_object_unreference(&obj->base);
1669 unlock:
1670 	mutex_unlock(&dev->struct_mutex);
1671 	return ret;
1672 }
1673 
1674 /**
1675  * Called when user space has done writes to this buffer
1676  */
1677 int
1678 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1679 			 struct drm_file *file)
1680 {
1681 	struct drm_i915_gem_sw_finish *args = data;
1682 	struct drm_i915_gem_object *obj;
1683 	int ret = 0;
1684 
1685 	ret = i915_mutex_lock_interruptible(dev);
1686 	if (ret)
1687 		return ret;
1688 
1689 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1690 	if (&obj->base == NULL) {
1691 		ret = -ENOENT;
1692 		goto unlock;
1693 	}
1694 
1695 	/* Pinned buffers may be scanout, so flush the cache */
1696 	if (obj->pin_display)
1697 		i915_gem_object_flush_cpu_write_domain(obj);
1698 
1699 	drm_gem_object_unreference(&obj->base);
1700 unlock:
1701 	mutex_unlock(&dev->struct_mutex);
1702 	return ret;
1703 }
1704 
1705 /**
1706  * Maps the contents of an object, returning the address it is mapped
1707  * into.
1708  *
1709  * While the mapping holds a reference on the contents of the object, it doesn't
1710  * imply a ref on the object itself.
1711  *
1712  * IMPORTANT:
1713  *
1714  * DRM driver writers who look a this function as an example for how to do GEM
1715  * mmap support, please don't implement mmap support like here. The modern way
1716  * to implement DRM mmap support is with an mmap offset ioctl (like
1717  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1718  * That way debug tooling like valgrind will understand what's going on, hiding
1719  * the mmap call in a driver private ioctl will break that. The i915 driver only
1720  * does cpu mmaps this way because we didn't know better.
1721  */
1722 int
1723 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1724 		    struct drm_file *file)
1725 {
1726 	struct drm_i915_gem_mmap *args = data;
1727 	struct drm_gem_object *obj;
1728 	unsigned long addr;
1729 
1730 	if (args->flags & ~(I915_MMAP_WC))
1731 		return -EINVAL;
1732 
1733 	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1734 		return -ENODEV;
1735 
1736 	obj = drm_gem_object_lookup(dev, file, args->handle);
1737 	if (obj == NULL)
1738 		return -ENOENT;
1739 
1740 	/* prime objects have no backing filp to GEM mmap
1741 	 * pages from.
1742 	 */
1743 	if (!obj->filp) {
1744 		drm_gem_object_unreference_unlocked(obj);
1745 		return -EINVAL;
1746 	}
1747 
1748 	addr = vm_mmap(obj->filp, 0, args->size,
1749 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1750 		       args->offset);
1751 	if (args->flags & I915_MMAP_WC) {
1752 		struct mm_struct *mm = current->mm;
1753 		struct vm_area_struct *vma;
1754 
1755 		down_write(&mm->mmap_sem);
1756 		vma = find_vma(mm, addr);
1757 		if (vma)
1758 			vma->vm_page_prot =
1759 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1760 		else
1761 			addr = -ENOMEM;
1762 		up_write(&mm->mmap_sem);
1763 	}
1764 	drm_gem_object_unreference_unlocked(obj);
1765 	if (IS_ERR((void *)addr))
1766 		return addr;
1767 
1768 	args->addr_ptr = (uint64_t) addr;
1769 
1770 	return 0;
1771 }
1772 
1773 /**
1774  * i915_gem_fault - fault a page into the GTT
1775  * @vma: VMA in question
1776  * @vmf: fault info
1777  *
1778  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1779  * from userspace.  The fault handler takes care of binding the object to
1780  * the GTT (if needed), allocating and programming a fence register (again,
1781  * only if needed based on whether the old reg is still valid or the object
1782  * is tiled) and inserting a new PTE into the faulting process.
1783  *
1784  * Note that the faulting process may involve evicting existing objects
1785  * from the GTT and/or fence registers to make room.  So performance may
1786  * suffer if the GTT working set is large or there are few fence registers
1787  * left.
1788  */
1789 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1790 {
1791 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1792 	struct drm_device *dev = obj->base.dev;
1793 	struct drm_i915_private *dev_priv = dev->dev_private;
1794 	struct i915_ggtt_view view = i915_ggtt_view_normal;
1795 	pgoff_t page_offset;
1796 	unsigned long pfn;
1797 	int ret = 0;
1798 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1799 
1800 	intel_runtime_pm_get(dev_priv);
1801 
1802 	/* We don't use vmf->pgoff since that has the fake offset */
1803 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1804 		PAGE_SHIFT;
1805 
1806 	ret = i915_mutex_lock_interruptible(dev);
1807 	if (ret)
1808 		goto out;
1809 
1810 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1811 
1812 	/* Try to flush the object off the GPU first without holding the lock.
1813 	 * Upon reacquiring the lock, we will perform our sanity checks and then
1814 	 * repeat the flush holding the lock in the normal manner to catch cases
1815 	 * where we are gazumped.
1816 	 */
1817 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1818 	if (ret)
1819 		goto unlock;
1820 
1821 	/* Access to snoopable pages through the GTT is incoherent. */
1822 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1823 		ret = -EFAULT;
1824 		goto unlock;
1825 	}
1826 
1827 	/* Use a partial view if the object is bigger than the aperture. */
1828 	if (obj->base.size >= dev_priv->gtt.mappable_end &&
1829 	    obj->tiling_mode == I915_TILING_NONE) {
1830 		static const unsigned int chunk_size = 256; // 1 MiB
1831 
1832 		memset(&view, 0, sizeof(view));
1833 		view.type = I915_GGTT_VIEW_PARTIAL;
1834 		view.params.partial.offset = rounddown(page_offset, chunk_size);
1835 		view.params.partial.size =
1836 			min_t(unsigned int,
1837 			      chunk_size,
1838 			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1839 			      view.params.partial.offset);
1840 	}
1841 
1842 	/* Now pin it into the GTT if needed */
1843 	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1844 	if (ret)
1845 		goto unlock;
1846 
1847 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1848 	if (ret)
1849 		goto unpin;
1850 
1851 	ret = i915_gem_object_get_fence(obj);
1852 	if (ret)
1853 		goto unpin;
1854 
1855 	/* Finally, remap it using the new GTT offset */
1856 	pfn = dev_priv->gtt.mappable_base +
1857 		i915_gem_obj_ggtt_offset_view(obj, &view);
1858 	pfn >>= PAGE_SHIFT;
1859 
1860 	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1861 		/* Overriding existing pages in partial view does not cause
1862 		 * us any trouble as TLBs are still valid because the fault
1863 		 * is due to userspace losing part of the mapping or never
1864 		 * having accessed it before (at this partials' range).
1865 		 */
1866 		unsigned long base = vma->vm_start +
1867 				     (view.params.partial.offset << PAGE_SHIFT);
1868 		unsigned int i;
1869 
1870 		for (i = 0; i < view.params.partial.size; i++) {
1871 			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1872 			if (ret)
1873 				break;
1874 		}
1875 
1876 		obj->fault_mappable = true;
1877 	} else {
1878 		if (!obj->fault_mappable) {
1879 			unsigned long size = min_t(unsigned long,
1880 						   vma->vm_end - vma->vm_start,
1881 						   obj->base.size);
1882 			int i;
1883 
1884 			for (i = 0; i < size >> PAGE_SHIFT; i++) {
1885 				ret = vm_insert_pfn(vma,
1886 						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
1887 						    pfn + i);
1888 				if (ret)
1889 					break;
1890 			}
1891 
1892 			obj->fault_mappable = true;
1893 		} else
1894 			ret = vm_insert_pfn(vma,
1895 					    (unsigned long)vmf->virtual_address,
1896 					    pfn + page_offset);
1897 	}
1898 unpin:
1899 	i915_gem_object_ggtt_unpin_view(obj, &view);
1900 unlock:
1901 	mutex_unlock(&dev->struct_mutex);
1902 out:
1903 	switch (ret) {
1904 	case -EIO:
1905 		/*
1906 		 * We eat errors when the gpu is terminally wedged to avoid
1907 		 * userspace unduly crashing (gl has no provisions for mmaps to
1908 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1909 		 * and so needs to be reported.
1910 		 */
1911 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1912 			ret = VM_FAULT_SIGBUS;
1913 			break;
1914 		}
1915 	case -EAGAIN:
1916 		/*
1917 		 * EAGAIN means the gpu is hung and we'll wait for the error
1918 		 * handler to reset everything when re-faulting in
1919 		 * i915_mutex_lock_interruptible.
1920 		 */
1921 	case 0:
1922 	case -ERESTARTSYS:
1923 	case -EINTR:
1924 	case -EBUSY:
1925 		/*
1926 		 * EBUSY is ok: this just means that another thread
1927 		 * already did the job.
1928 		 */
1929 		ret = VM_FAULT_NOPAGE;
1930 		break;
1931 	case -ENOMEM:
1932 		ret = VM_FAULT_OOM;
1933 		break;
1934 	case -ENOSPC:
1935 	case -EFAULT:
1936 		ret = VM_FAULT_SIGBUS;
1937 		break;
1938 	default:
1939 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1940 		ret = VM_FAULT_SIGBUS;
1941 		break;
1942 	}
1943 
1944 	intel_runtime_pm_put(dev_priv);
1945 	return ret;
1946 }
1947 
1948 /**
1949  * i915_gem_release_mmap - remove physical page mappings
1950  * @obj: obj in question
1951  *
1952  * Preserve the reservation of the mmapping with the DRM core code, but
1953  * relinquish ownership of the pages back to the system.
1954  *
1955  * It is vital that we remove the page mapping if we have mapped a tiled
1956  * object through the GTT and then lose the fence register due to
1957  * resource pressure. Similarly if the object has been moved out of the
1958  * aperture, than pages mapped into userspace must be revoked. Removing the
1959  * mapping will then trigger a page fault on the next user access, allowing
1960  * fixup by i915_gem_fault().
1961  */
1962 void
1963 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1964 {
1965 	if (!obj->fault_mappable)
1966 		return;
1967 
1968 	drm_vma_node_unmap(&obj->base.vma_node,
1969 			   obj->base.dev->anon_inode->i_mapping);
1970 	obj->fault_mappable = false;
1971 }
1972 
1973 void
1974 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1975 {
1976 	struct drm_i915_gem_object *obj;
1977 
1978 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1979 		i915_gem_release_mmap(obj);
1980 }
1981 
1982 uint32_t
1983 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1984 {
1985 	uint32_t gtt_size;
1986 
1987 	if (INTEL_INFO(dev)->gen >= 4 ||
1988 	    tiling_mode == I915_TILING_NONE)
1989 		return size;
1990 
1991 	/* Previous chips need a power-of-two fence region when tiling */
1992 	if (INTEL_INFO(dev)->gen == 3)
1993 		gtt_size = 1024*1024;
1994 	else
1995 		gtt_size = 512*1024;
1996 
1997 	while (gtt_size < size)
1998 		gtt_size <<= 1;
1999 
2000 	return gtt_size;
2001 }
2002 
2003 /**
2004  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2005  * @obj: object to check
2006  *
2007  * Return the required GTT alignment for an object, taking into account
2008  * potential fence register mapping.
2009  */
2010 uint32_t
2011 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2012 			   int tiling_mode, bool fenced)
2013 {
2014 	/*
2015 	 * Minimum alignment is 4k (GTT page size), but might be greater
2016 	 * if a fence register is needed for the object.
2017 	 */
2018 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2019 	    tiling_mode == I915_TILING_NONE)
2020 		return 4096;
2021 
2022 	/*
2023 	 * Previous chips need to be aligned to the size of the smallest
2024 	 * fence register that can contain the object.
2025 	 */
2026 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2027 }
2028 
2029 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2030 {
2031 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2032 	int ret;
2033 
2034 	if (drm_vma_node_has_offset(&obj->base.vma_node))
2035 		return 0;
2036 
2037 	dev_priv->mm.shrinker_no_lock_stealing = true;
2038 
2039 	ret = drm_gem_create_mmap_offset(&obj->base);
2040 	if (ret != -ENOSPC)
2041 		goto out;
2042 
2043 	/* Badly fragmented mmap space? The only way we can recover
2044 	 * space is by destroying unwanted objects. We can't randomly release
2045 	 * mmap_offsets as userspace expects them to be persistent for the
2046 	 * lifetime of the objects. The closest we can is to release the
2047 	 * offsets on purgeable objects by truncating it and marking it purged,
2048 	 * which prevents userspace from ever using that object again.
2049 	 */
2050 	i915_gem_shrink(dev_priv,
2051 			obj->base.size >> PAGE_SHIFT,
2052 			I915_SHRINK_BOUND |
2053 			I915_SHRINK_UNBOUND |
2054 			I915_SHRINK_PURGEABLE);
2055 	ret = drm_gem_create_mmap_offset(&obj->base);
2056 	if (ret != -ENOSPC)
2057 		goto out;
2058 
2059 	i915_gem_shrink_all(dev_priv);
2060 	ret = drm_gem_create_mmap_offset(&obj->base);
2061 out:
2062 	dev_priv->mm.shrinker_no_lock_stealing = false;
2063 
2064 	return ret;
2065 }
2066 
2067 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2068 {
2069 	drm_gem_free_mmap_offset(&obj->base);
2070 }
2071 
2072 int
2073 i915_gem_mmap_gtt(struct drm_file *file,
2074 		  struct drm_device *dev,
2075 		  uint32_t handle,
2076 		  uint64_t *offset)
2077 {
2078 	struct drm_i915_gem_object *obj;
2079 	int ret;
2080 
2081 	ret = i915_mutex_lock_interruptible(dev);
2082 	if (ret)
2083 		return ret;
2084 
2085 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2086 	if (&obj->base == NULL) {
2087 		ret = -ENOENT;
2088 		goto unlock;
2089 	}
2090 
2091 	if (obj->madv != I915_MADV_WILLNEED) {
2092 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2093 		ret = -EFAULT;
2094 		goto out;
2095 	}
2096 
2097 	ret = i915_gem_object_create_mmap_offset(obj);
2098 	if (ret)
2099 		goto out;
2100 
2101 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2102 
2103 out:
2104 	drm_gem_object_unreference(&obj->base);
2105 unlock:
2106 	mutex_unlock(&dev->struct_mutex);
2107 	return ret;
2108 }
2109 
2110 /**
2111  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2112  * @dev: DRM device
2113  * @data: GTT mapping ioctl data
2114  * @file: GEM object info
2115  *
2116  * Simply returns the fake offset to userspace so it can mmap it.
2117  * The mmap call will end up in drm_gem_mmap(), which will set things
2118  * up so we can get faults in the handler above.
2119  *
2120  * The fault handler will take care of binding the object into the GTT
2121  * (since it may have been evicted to make room for something), allocating
2122  * a fence register, and mapping the appropriate aperture address into
2123  * userspace.
2124  */
2125 int
2126 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2127 			struct drm_file *file)
2128 {
2129 	struct drm_i915_gem_mmap_gtt *args = data;
2130 
2131 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2132 }
2133 
2134 /* Immediately discard the backing storage */
2135 static void
2136 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2137 {
2138 	i915_gem_object_free_mmap_offset(obj);
2139 
2140 	if (obj->base.filp == NULL)
2141 		return;
2142 
2143 	/* Our goal here is to return as much of the memory as
2144 	 * is possible back to the system as we are called from OOM.
2145 	 * To do this we must instruct the shmfs to drop all of its
2146 	 * backing pages, *now*.
2147 	 */
2148 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2149 	obj->madv = __I915_MADV_PURGED;
2150 }
2151 
2152 /* Try to discard unwanted pages */
2153 static void
2154 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2155 {
2156 	struct address_space *mapping;
2157 
2158 	switch (obj->madv) {
2159 	case I915_MADV_DONTNEED:
2160 		i915_gem_object_truncate(obj);
2161 	case __I915_MADV_PURGED:
2162 		return;
2163 	}
2164 
2165 	if (obj->base.filp == NULL)
2166 		return;
2167 
2168 	mapping = file_inode(obj->base.filp)->i_mapping,
2169 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2170 }
2171 
2172 static void
2173 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2174 {
2175 	struct sg_page_iter sg_iter;
2176 	int ret;
2177 
2178 	BUG_ON(obj->madv == __I915_MADV_PURGED);
2179 
2180 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2181 	if (ret) {
2182 		/* In the event of a disaster, abandon all caches and
2183 		 * hope for the best.
2184 		 */
2185 		WARN_ON(ret != -EIO);
2186 		i915_gem_clflush_object(obj, true);
2187 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2188 	}
2189 
2190 	i915_gem_gtt_finish_object(obj);
2191 
2192 	if (i915_gem_object_needs_bit17_swizzle(obj))
2193 		i915_gem_object_save_bit_17_swizzle(obj);
2194 
2195 	if (obj->madv == I915_MADV_DONTNEED)
2196 		obj->dirty = 0;
2197 
2198 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2199 		struct page *page = sg_page_iter_page(&sg_iter);
2200 
2201 		if (obj->dirty)
2202 			set_page_dirty(page);
2203 
2204 		if (obj->madv == I915_MADV_WILLNEED)
2205 			mark_page_accessed(page);
2206 
2207 		page_cache_release(page);
2208 	}
2209 	obj->dirty = 0;
2210 
2211 	sg_free_table(obj->pages);
2212 	kfree(obj->pages);
2213 }
2214 
2215 int
2216 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2217 {
2218 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2219 
2220 	if (obj->pages == NULL)
2221 		return 0;
2222 
2223 	if (obj->pages_pin_count)
2224 		return -EBUSY;
2225 
2226 	BUG_ON(i915_gem_obj_bound_any(obj));
2227 
2228 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2229 	 * array, hence protect them from being reaped by removing them from gtt
2230 	 * lists early. */
2231 	list_del(&obj->global_list);
2232 
2233 	ops->put_pages(obj);
2234 	obj->pages = NULL;
2235 
2236 	i915_gem_object_invalidate(obj);
2237 
2238 	return 0;
2239 }
2240 
2241 static int
2242 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2243 {
2244 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2245 	int page_count, i;
2246 	struct address_space *mapping;
2247 	struct sg_table *st;
2248 	struct scatterlist *sg;
2249 	struct sg_page_iter sg_iter;
2250 	struct page *page;
2251 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2252 	int ret;
2253 	gfp_t gfp;
2254 
2255 	/* Assert that the object is not currently in any GPU domain. As it
2256 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2257 	 * a GPU cache
2258 	 */
2259 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2260 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2261 
2262 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2263 	if (st == NULL)
2264 		return -ENOMEM;
2265 
2266 	page_count = obj->base.size / PAGE_SIZE;
2267 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2268 		kfree(st);
2269 		return -ENOMEM;
2270 	}
2271 
2272 	/* Get the list of pages out of our struct file.  They'll be pinned
2273 	 * at this point until we release them.
2274 	 *
2275 	 * Fail silently without starting the shrinker
2276 	 */
2277 	mapping = file_inode(obj->base.filp)->i_mapping;
2278 	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2279 	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2280 	sg = st->sgl;
2281 	st->nents = 0;
2282 	for (i = 0; i < page_count; i++) {
2283 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2284 		if (IS_ERR(page)) {
2285 			i915_gem_shrink(dev_priv,
2286 					page_count,
2287 					I915_SHRINK_BOUND |
2288 					I915_SHRINK_UNBOUND |
2289 					I915_SHRINK_PURGEABLE);
2290 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2291 		}
2292 		if (IS_ERR(page)) {
2293 			/* We've tried hard to allocate the memory by reaping
2294 			 * our own buffer, now let the real VM do its job and
2295 			 * go down in flames if truly OOM.
2296 			 */
2297 			i915_gem_shrink_all(dev_priv);
2298 			page = shmem_read_mapping_page(mapping, i);
2299 			if (IS_ERR(page)) {
2300 				ret = PTR_ERR(page);
2301 				goto err_pages;
2302 			}
2303 		}
2304 #ifdef CONFIG_SWIOTLB
2305 		if (swiotlb_nr_tbl()) {
2306 			st->nents++;
2307 			sg_set_page(sg, page, PAGE_SIZE, 0);
2308 			sg = sg_next(sg);
2309 			continue;
2310 		}
2311 #endif
2312 		if (!i || page_to_pfn(page) != last_pfn + 1) {
2313 			if (i)
2314 				sg = sg_next(sg);
2315 			st->nents++;
2316 			sg_set_page(sg, page, PAGE_SIZE, 0);
2317 		} else {
2318 			sg->length += PAGE_SIZE;
2319 		}
2320 		last_pfn = page_to_pfn(page);
2321 
2322 		/* Check that the i965g/gm workaround works. */
2323 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2324 	}
2325 #ifdef CONFIG_SWIOTLB
2326 	if (!swiotlb_nr_tbl())
2327 #endif
2328 		sg_mark_end(sg);
2329 	obj->pages = st;
2330 
2331 	ret = i915_gem_gtt_prepare_object(obj);
2332 	if (ret)
2333 		goto err_pages;
2334 
2335 	if (i915_gem_object_needs_bit17_swizzle(obj))
2336 		i915_gem_object_do_bit_17_swizzle(obj);
2337 
2338 	if (obj->tiling_mode != I915_TILING_NONE &&
2339 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2340 		i915_gem_object_pin_pages(obj);
2341 
2342 	return 0;
2343 
2344 err_pages:
2345 	sg_mark_end(sg);
2346 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2347 		page_cache_release(sg_page_iter_page(&sg_iter));
2348 	sg_free_table(st);
2349 	kfree(st);
2350 
2351 	/* shmemfs first checks if there is enough memory to allocate the page
2352 	 * and reports ENOSPC should there be insufficient, along with the usual
2353 	 * ENOMEM for a genuine allocation failure.
2354 	 *
2355 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2356 	 * space and so want to translate the error from shmemfs back to our
2357 	 * usual understanding of ENOMEM.
2358 	 */
2359 	if (ret == -ENOSPC)
2360 		ret = -ENOMEM;
2361 
2362 	return ret;
2363 }
2364 
2365 /* Ensure that the associated pages are gathered from the backing storage
2366  * and pinned into our object. i915_gem_object_get_pages() may be called
2367  * multiple times before they are released by a single call to
2368  * i915_gem_object_put_pages() - once the pages are no longer referenced
2369  * either as a result of memory pressure (reaping pages under the shrinker)
2370  * or as the object is itself released.
2371  */
2372 int
2373 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2374 {
2375 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2376 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2377 	int ret;
2378 
2379 	if (obj->pages)
2380 		return 0;
2381 
2382 	if (obj->madv != I915_MADV_WILLNEED) {
2383 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2384 		return -EFAULT;
2385 	}
2386 
2387 	BUG_ON(obj->pages_pin_count);
2388 
2389 	ret = ops->get_pages(obj);
2390 	if (ret)
2391 		return ret;
2392 
2393 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2394 
2395 	obj->get_page.sg = obj->pages->sgl;
2396 	obj->get_page.last = 0;
2397 
2398 	return 0;
2399 }
2400 
2401 void i915_vma_move_to_active(struct i915_vma *vma,
2402 			     struct drm_i915_gem_request *req)
2403 {
2404 	struct drm_i915_gem_object *obj = vma->obj;
2405 	struct intel_engine_cs *ring;
2406 
2407 	ring = i915_gem_request_get_ring(req);
2408 
2409 	/* Add a reference if we're newly entering the active list. */
2410 	if (obj->active == 0)
2411 		drm_gem_object_reference(&obj->base);
2412 	obj->active |= intel_ring_flag(ring);
2413 
2414 	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2415 	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2416 
2417 	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2418 }
2419 
2420 static void
2421 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2422 {
2423 	RQ_BUG_ON(obj->last_write_req == NULL);
2424 	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2425 
2426 	i915_gem_request_assign(&obj->last_write_req, NULL);
2427 	intel_fb_obj_flush(obj, true, ORIGIN_CS);
2428 }
2429 
2430 static void
2431 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2432 {
2433 	struct i915_vma *vma;
2434 
2435 	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2436 	RQ_BUG_ON(!(obj->active & (1 << ring)));
2437 
2438 	list_del_init(&obj->ring_list[ring]);
2439 	i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2440 
2441 	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2442 		i915_gem_object_retire__write(obj);
2443 
2444 	obj->active &= ~(1 << ring);
2445 	if (obj->active)
2446 		return;
2447 
2448 	/* Bump our place on the bound list to keep it roughly in LRU order
2449 	 * so that we don't steal from recently used but inactive objects
2450 	 * (unless we are forced to ofc!)
2451 	 */
2452 	list_move_tail(&obj->global_list,
2453 		       &to_i915(obj->base.dev)->mm.bound_list);
2454 
2455 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
2456 		if (!list_empty(&vma->mm_list))
2457 			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2458 	}
2459 
2460 	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2461 	drm_gem_object_unreference(&obj->base);
2462 }
2463 
2464 static int
2465 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2466 {
2467 	struct drm_i915_private *dev_priv = dev->dev_private;
2468 	struct intel_engine_cs *ring;
2469 	int ret, i, j;
2470 
2471 	/* Carefully retire all requests without writing to the rings */
2472 	for_each_ring(ring, dev_priv, i) {
2473 		ret = intel_ring_idle(ring);
2474 		if (ret)
2475 			return ret;
2476 	}
2477 	i915_gem_retire_requests(dev);
2478 
2479 	/* Finally reset hw state */
2480 	for_each_ring(ring, dev_priv, i) {
2481 		intel_ring_init_seqno(ring, seqno);
2482 
2483 		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2484 			ring->semaphore.sync_seqno[j] = 0;
2485 	}
2486 
2487 	return 0;
2488 }
2489 
2490 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2491 {
2492 	struct drm_i915_private *dev_priv = dev->dev_private;
2493 	int ret;
2494 
2495 	if (seqno == 0)
2496 		return -EINVAL;
2497 
2498 	/* HWS page needs to be set less than what we
2499 	 * will inject to ring
2500 	 */
2501 	ret = i915_gem_init_seqno(dev, seqno - 1);
2502 	if (ret)
2503 		return ret;
2504 
2505 	/* Carefully set the last_seqno value so that wrap
2506 	 * detection still works
2507 	 */
2508 	dev_priv->next_seqno = seqno;
2509 	dev_priv->last_seqno = seqno - 1;
2510 	if (dev_priv->last_seqno == 0)
2511 		dev_priv->last_seqno--;
2512 
2513 	return 0;
2514 }
2515 
2516 int
2517 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2518 {
2519 	struct drm_i915_private *dev_priv = dev->dev_private;
2520 
2521 	/* reserve 0 for non-seqno */
2522 	if (dev_priv->next_seqno == 0) {
2523 		int ret = i915_gem_init_seqno(dev, 0);
2524 		if (ret)
2525 			return ret;
2526 
2527 		dev_priv->next_seqno = 1;
2528 	}
2529 
2530 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2531 	return 0;
2532 }
2533 
2534 /*
2535  * NB: This function is not allowed to fail. Doing so would mean the the
2536  * request is not being tracked for completion but the work itself is
2537  * going to happen on the hardware. This would be a Bad Thing(tm).
2538  */
2539 void __i915_add_request(struct drm_i915_gem_request *request,
2540 			struct drm_i915_gem_object *obj,
2541 			bool flush_caches)
2542 {
2543 	struct intel_engine_cs *ring;
2544 	struct drm_i915_private *dev_priv;
2545 	struct intel_ringbuffer *ringbuf;
2546 	u32 request_start;
2547 	int ret;
2548 
2549 	if (WARN_ON(request == NULL))
2550 		return;
2551 
2552 	ring = request->ring;
2553 	dev_priv = ring->dev->dev_private;
2554 	ringbuf = request->ringbuf;
2555 
2556 	/*
2557 	 * To ensure that this call will not fail, space for its emissions
2558 	 * should already have been reserved in the ring buffer. Let the ring
2559 	 * know that it is time to use that space up.
2560 	 */
2561 	intel_ring_reserved_space_use(ringbuf);
2562 
2563 	request_start = intel_ring_get_tail(ringbuf);
2564 	/*
2565 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2566 	 * after having emitted the batchbuffer command. Hence we need to fix
2567 	 * things up similar to emitting the lazy request. The difference here
2568 	 * is that the flush _must_ happen before the next request, no matter
2569 	 * what.
2570 	 */
2571 	if (flush_caches) {
2572 		if (i915.enable_execlists)
2573 			ret = logical_ring_flush_all_caches(request);
2574 		else
2575 			ret = intel_ring_flush_all_caches(request);
2576 		/* Not allowed to fail! */
2577 		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2578 	}
2579 
2580 	/* Record the position of the start of the request so that
2581 	 * should we detect the updated seqno part-way through the
2582 	 * GPU processing the request, we never over-estimate the
2583 	 * position of the head.
2584 	 */
2585 	request->postfix = intel_ring_get_tail(ringbuf);
2586 
2587 	if (i915.enable_execlists)
2588 		ret = ring->emit_request(request);
2589 	else {
2590 		ret = ring->add_request(request);
2591 
2592 		request->tail = intel_ring_get_tail(ringbuf);
2593 	}
2594 	/* Not allowed to fail! */
2595 	WARN(ret, "emit|add_request failed: %d!\n", ret);
2596 
2597 	request->head = request_start;
2598 
2599 	/* Whilst this request exists, batch_obj will be on the
2600 	 * active_list, and so will hold the active reference. Only when this
2601 	 * request is retired will the the batch_obj be moved onto the
2602 	 * inactive_list and lose its active reference. Hence we do not need
2603 	 * to explicitly hold another reference here.
2604 	 */
2605 	request->batch_obj = obj;
2606 
2607 	request->emitted_jiffies = jiffies;
2608 	request->previous_seqno = ring->last_submitted_seqno;
2609 	ring->last_submitted_seqno = request->seqno;
2610 	list_add_tail(&request->list, &ring->request_list);
2611 
2612 	trace_i915_gem_request_add(request);
2613 
2614 	i915_queue_hangcheck(ring->dev);
2615 
2616 	queue_delayed_work(dev_priv->wq,
2617 			   &dev_priv->mm.retire_work,
2618 			   round_jiffies_up_relative(HZ));
2619 	intel_mark_busy(dev_priv->dev);
2620 
2621 	/* Sanity check that the reserved size was large enough. */
2622 	intel_ring_reserved_space_end(ringbuf);
2623 }
2624 
2625 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2626 				   const struct intel_context *ctx)
2627 {
2628 	unsigned long elapsed;
2629 
2630 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2631 
2632 	if (ctx->hang_stats.banned)
2633 		return true;
2634 
2635 	if (ctx->hang_stats.ban_period_seconds &&
2636 	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2637 		if (!i915_gem_context_is_default(ctx)) {
2638 			DRM_DEBUG("context hanging too fast, banning!\n");
2639 			return true;
2640 		} else if (i915_stop_ring_allow_ban(dev_priv)) {
2641 			if (i915_stop_ring_allow_warn(dev_priv))
2642 				DRM_ERROR("gpu hanging too fast, banning!\n");
2643 			return true;
2644 		}
2645 	}
2646 
2647 	return false;
2648 }
2649 
2650 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2651 				  struct intel_context *ctx,
2652 				  const bool guilty)
2653 {
2654 	struct i915_ctx_hang_stats *hs;
2655 
2656 	if (WARN_ON(!ctx))
2657 		return;
2658 
2659 	hs = &ctx->hang_stats;
2660 
2661 	if (guilty) {
2662 		hs->banned = i915_context_is_banned(dev_priv, ctx);
2663 		hs->batch_active++;
2664 		hs->guilty_ts = get_seconds();
2665 	} else {
2666 		hs->batch_pending++;
2667 	}
2668 }
2669 
2670 void i915_gem_request_free(struct kref *req_ref)
2671 {
2672 	struct drm_i915_gem_request *req = container_of(req_ref,
2673 						 typeof(*req), ref);
2674 	struct intel_context *ctx = req->ctx;
2675 
2676 	if (req->file_priv)
2677 		i915_gem_request_remove_from_client(req);
2678 
2679 	if (ctx) {
2680 		if (i915.enable_execlists) {
2681 			if (ctx != req->ring->default_context)
2682 				intel_lr_context_unpin(req);
2683 		}
2684 
2685 		i915_gem_context_unreference(ctx);
2686 	}
2687 
2688 	kmem_cache_free(req->i915->requests, req);
2689 }
2690 
2691 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2692 			   struct intel_context *ctx,
2693 			   struct drm_i915_gem_request **req_out)
2694 {
2695 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
2696 	struct drm_i915_gem_request *req;
2697 	int ret;
2698 
2699 	if (!req_out)
2700 		return -EINVAL;
2701 
2702 	*req_out = NULL;
2703 
2704 	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2705 	if (req == NULL)
2706 		return -ENOMEM;
2707 
2708 	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2709 	if (ret)
2710 		goto err;
2711 
2712 	kref_init(&req->ref);
2713 	req->i915 = dev_priv;
2714 	req->ring = ring;
2715 	req->ctx  = ctx;
2716 	i915_gem_context_reference(req->ctx);
2717 
2718 	if (i915.enable_execlists)
2719 		ret = intel_logical_ring_alloc_request_extras(req);
2720 	else
2721 		ret = intel_ring_alloc_request_extras(req);
2722 	if (ret) {
2723 		i915_gem_context_unreference(req->ctx);
2724 		goto err;
2725 	}
2726 
2727 	/*
2728 	 * Reserve space in the ring buffer for all the commands required to
2729 	 * eventually emit this request. This is to guarantee that the
2730 	 * i915_add_request() call can't fail. Note that the reserve may need
2731 	 * to be redone if the request is not actually submitted straight
2732 	 * away, e.g. because a GPU scheduler has deferred it.
2733 	 */
2734 	if (i915.enable_execlists)
2735 		ret = intel_logical_ring_reserve_space(req);
2736 	else
2737 		ret = intel_ring_reserve_space(req);
2738 	if (ret) {
2739 		/*
2740 		 * At this point, the request is fully allocated even if not
2741 		 * fully prepared. Thus it can be cleaned up using the proper
2742 		 * free code.
2743 		 */
2744 		i915_gem_request_cancel(req);
2745 		return ret;
2746 	}
2747 
2748 	*req_out = req;
2749 	return 0;
2750 
2751 err:
2752 	kmem_cache_free(dev_priv->requests, req);
2753 	return ret;
2754 }
2755 
2756 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2757 {
2758 	intel_ring_reserved_space_cancel(req->ringbuf);
2759 
2760 	i915_gem_request_unreference(req);
2761 }
2762 
2763 struct drm_i915_gem_request *
2764 i915_gem_find_active_request(struct intel_engine_cs *ring)
2765 {
2766 	struct drm_i915_gem_request *request;
2767 
2768 	list_for_each_entry(request, &ring->request_list, list) {
2769 		if (i915_gem_request_completed(request, false))
2770 			continue;
2771 
2772 		return request;
2773 	}
2774 
2775 	return NULL;
2776 }
2777 
2778 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2779 				       struct intel_engine_cs *ring)
2780 {
2781 	struct drm_i915_gem_request *request;
2782 	bool ring_hung;
2783 
2784 	request = i915_gem_find_active_request(ring);
2785 
2786 	if (request == NULL)
2787 		return;
2788 
2789 	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2790 
2791 	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2792 
2793 	list_for_each_entry_continue(request, &ring->request_list, list)
2794 		i915_set_reset_status(dev_priv, request->ctx, false);
2795 }
2796 
2797 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2798 					struct intel_engine_cs *ring)
2799 {
2800 	struct intel_ringbuffer *buffer;
2801 
2802 	while (!list_empty(&ring->active_list)) {
2803 		struct drm_i915_gem_object *obj;
2804 
2805 		obj = list_first_entry(&ring->active_list,
2806 				       struct drm_i915_gem_object,
2807 				       ring_list[ring->id]);
2808 
2809 		i915_gem_object_retire__read(obj, ring->id);
2810 	}
2811 
2812 	/*
2813 	 * Clear the execlists queue up before freeing the requests, as those
2814 	 * are the ones that keep the context and ringbuffer backing objects
2815 	 * pinned in place.
2816 	 */
2817 
2818 	if (i915.enable_execlists) {
2819 		spin_lock_irq(&ring->execlist_lock);
2820 
2821 		/* list_splice_tail_init checks for empty lists */
2822 		list_splice_tail_init(&ring->execlist_queue,
2823 				      &ring->execlist_retired_req_list);
2824 
2825 		spin_unlock_irq(&ring->execlist_lock);
2826 		intel_execlists_retire_requests(ring);
2827 	}
2828 
2829 	/*
2830 	 * We must free the requests after all the corresponding objects have
2831 	 * been moved off active lists. Which is the same order as the normal
2832 	 * retire_requests function does. This is important if object hold
2833 	 * implicit references on things like e.g. ppgtt address spaces through
2834 	 * the request.
2835 	 */
2836 	while (!list_empty(&ring->request_list)) {
2837 		struct drm_i915_gem_request *request;
2838 
2839 		request = list_first_entry(&ring->request_list,
2840 					   struct drm_i915_gem_request,
2841 					   list);
2842 
2843 		i915_gem_request_retire(request);
2844 	}
2845 
2846 	/* Having flushed all requests from all queues, we know that all
2847 	 * ringbuffers must now be empty. However, since we do not reclaim
2848 	 * all space when retiring the request (to prevent HEADs colliding
2849 	 * with rapid ringbuffer wraparound) the amount of available space
2850 	 * upon reset is less than when we start. Do one more pass over
2851 	 * all the ringbuffers to reset last_retired_head.
2852 	 */
2853 	list_for_each_entry(buffer, &ring->buffers, link) {
2854 		buffer->last_retired_head = buffer->tail;
2855 		intel_ring_update_space(buffer);
2856 	}
2857 }
2858 
2859 void i915_gem_reset(struct drm_device *dev)
2860 {
2861 	struct drm_i915_private *dev_priv = dev->dev_private;
2862 	struct intel_engine_cs *ring;
2863 	int i;
2864 
2865 	/*
2866 	 * Before we free the objects from the requests, we need to inspect
2867 	 * them for finding the guilty party. As the requests only borrow
2868 	 * their reference to the objects, the inspection must be done first.
2869 	 */
2870 	for_each_ring(ring, dev_priv, i)
2871 		i915_gem_reset_ring_status(dev_priv, ring);
2872 
2873 	for_each_ring(ring, dev_priv, i)
2874 		i915_gem_reset_ring_cleanup(dev_priv, ring);
2875 
2876 	i915_gem_context_reset(dev);
2877 
2878 	i915_gem_restore_fences(dev);
2879 
2880 	WARN_ON(i915_verify_lists(dev));
2881 }
2882 
2883 /**
2884  * This function clears the request list as sequence numbers are passed.
2885  */
2886 void
2887 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2888 {
2889 	WARN_ON(i915_verify_lists(ring->dev));
2890 
2891 	/* Retire requests first as we use it above for the early return.
2892 	 * If we retire requests last, we may use a later seqno and so clear
2893 	 * the requests lists without clearing the active list, leading to
2894 	 * confusion.
2895 	 */
2896 	while (!list_empty(&ring->request_list)) {
2897 		struct drm_i915_gem_request *request;
2898 
2899 		request = list_first_entry(&ring->request_list,
2900 					   struct drm_i915_gem_request,
2901 					   list);
2902 
2903 		if (!i915_gem_request_completed(request, true))
2904 			break;
2905 
2906 		i915_gem_request_retire(request);
2907 	}
2908 
2909 	/* Move any buffers on the active list that are no longer referenced
2910 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
2911 	 * before we free the context associated with the requests.
2912 	 */
2913 	while (!list_empty(&ring->active_list)) {
2914 		struct drm_i915_gem_object *obj;
2915 
2916 		obj = list_first_entry(&ring->active_list,
2917 				      struct drm_i915_gem_object,
2918 				      ring_list[ring->id]);
2919 
2920 		if (!list_empty(&obj->last_read_req[ring->id]->list))
2921 			break;
2922 
2923 		i915_gem_object_retire__read(obj, ring->id);
2924 	}
2925 
2926 	if (unlikely(ring->trace_irq_req &&
2927 		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2928 		ring->irq_put(ring);
2929 		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2930 	}
2931 
2932 	WARN_ON(i915_verify_lists(ring->dev));
2933 }
2934 
2935 bool
2936 i915_gem_retire_requests(struct drm_device *dev)
2937 {
2938 	struct drm_i915_private *dev_priv = dev->dev_private;
2939 	struct intel_engine_cs *ring;
2940 	bool idle = true;
2941 	int i;
2942 
2943 	for_each_ring(ring, dev_priv, i) {
2944 		i915_gem_retire_requests_ring(ring);
2945 		idle &= list_empty(&ring->request_list);
2946 		if (i915.enable_execlists) {
2947 			unsigned long flags;
2948 
2949 			spin_lock_irqsave(&ring->execlist_lock, flags);
2950 			idle &= list_empty(&ring->execlist_queue);
2951 			spin_unlock_irqrestore(&ring->execlist_lock, flags);
2952 
2953 			intel_execlists_retire_requests(ring);
2954 		}
2955 	}
2956 
2957 	if (idle)
2958 		mod_delayed_work(dev_priv->wq,
2959 				   &dev_priv->mm.idle_work,
2960 				   msecs_to_jiffies(100));
2961 
2962 	return idle;
2963 }
2964 
2965 static void
2966 i915_gem_retire_work_handler(struct work_struct *work)
2967 {
2968 	struct drm_i915_private *dev_priv =
2969 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
2970 	struct drm_device *dev = dev_priv->dev;
2971 	bool idle;
2972 
2973 	/* Come back later if the device is busy... */
2974 	idle = false;
2975 	if (mutex_trylock(&dev->struct_mutex)) {
2976 		idle = i915_gem_retire_requests(dev);
2977 		mutex_unlock(&dev->struct_mutex);
2978 	}
2979 	if (!idle)
2980 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2981 				   round_jiffies_up_relative(HZ));
2982 }
2983 
2984 static void
2985 i915_gem_idle_work_handler(struct work_struct *work)
2986 {
2987 	struct drm_i915_private *dev_priv =
2988 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2989 	struct drm_device *dev = dev_priv->dev;
2990 	struct intel_engine_cs *ring;
2991 	int i;
2992 
2993 	for_each_ring(ring, dev_priv, i)
2994 		if (!list_empty(&ring->request_list))
2995 			return;
2996 
2997 	/* we probably should sync with hangcheck here, using cancel_work_sync.
2998 	 * Also locking seems to be fubar here, ring->request_list is protected
2999 	 * by dev->struct_mutex. */
3000 
3001 	intel_mark_idle(dev);
3002 
3003 	if (mutex_trylock(&dev->struct_mutex)) {
3004 		struct intel_engine_cs *ring;
3005 		int i;
3006 
3007 		for_each_ring(ring, dev_priv, i)
3008 			i915_gem_batch_pool_fini(&ring->batch_pool);
3009 
3010 		mutex_unlock(&dev->struct_mutex);
3011 	}
3012 }
3013 
3014 /**
3015  * Ensures that an object will eventually get non-busy by flushing any required
3016  * write domains, emitting any outstanding lazy request and retiring and
3017  * completed requests.
3018  */
3019 static int
3020 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3021 {
3022 	int i;
3023 
3024 	if (!obj->active)
3025 		return 0;
3026 
3027 	for (i = 0; i < I915_NUM_RINGS; i++) {
3028 		struct drm_i915_gem_request *req;
3029 
3030 		req = obj->last_read_req[i];
3031 		if (req == NULL)
3032 			continue;
3033 
3034 		if (list_empty(&req->list))
3035 			goto retire;
3036 
3037 		if (i915_gem_request_completed(req, true)) {
3038 			__i915_gem_request_retire__upto(req);
3039 retire:
3040 			i915_gem_object_retire__read(obj, i);
3041 		}
3042 	}
3043 
3044 	return 0;
3045 }
3046 
3047 /**
3048  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3049  * @DRM_IOCTL_ARGS: standard ioctl arguments
3050  *
3051  * Returns 0 if successful, else an error is returned with the remaining time in
3052  * the timeout parameter.
3053  *  -ETIME: object is still busy after timeout
3054  *  -ERESTARTSYS: signal interrupted the wait
3055  *  -ENONENT: object doesn't exist
3056  * Also possible, but rare:
3057  *  -EAGAIN: GPU wedged
3058  *  -ENOMEM: damn
3059  *  -ENODEV: Internal IRQ fail
3060  *  -E?: The add request failed
3061  *
3062  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3063  * non-zero timeout parameter the wait ioctl will wait for the given number of
3064  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3065  * without holding struct_mutex the object may become re-busied before this
3066  * function completes. A similar but shorter * race condition exists in the busy
3067  * ioctl
3068  */
3069 int
3070 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3071 {
3072 	struct drm_i915_private *dev_priv = dev->dev_private;
3073 	struct drm_i915_gem_wait *args = data;
3074 	struct drm_i915_gem_object *obj;
3075 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3076 	unsigned reset_counter;
3077 	int i, n = 0;
3078 	int ret;
3079 
3080 	if (args->flags != 0)
3081 		return -EINVAL;
3082 
3083 	ret = i915_mutex_lock_interruptible(dev);
3084 	if (ret)
3085 		return ret;
3086 
3087 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3088 	if (&obj->base == NULL) {
3089 		mutex_unlock(&dev->struct_mutex);
3090 		return -ENOENT;
3091 	}
3092 
3093 	/* Need to make sure the object gets inactive eventually. */
3094 	ret = i915_gem_object_flush_active(obj);
3095 	if (ret)
3096 		goto out;
3097 
3098 	if (!obj->active)
3099 		goto out;
3100 
3101 	/* Do this after OLR check to make sure we make forward progress polling
3102 	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3103 	 */
3104 	if (args->timeout_ns == 0) {
3105 		ret = -ETIME;
3106 		goto out;
3107 	}
3108 
3109 	drm_gem_object_unreference(&obj->base);
3110 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3111 
3112 	for (i = 0; i < I915_NUM_RINGS; i++) {
3113 		if (obj->last_read_req[i] == NULL)
3114 			continue;
3115 
3116 		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3117 	}
3118 
3119 	mutex_unlock(&dev->struct_mutex);
3120 
3121 	for (i = 0; i < n; i++) {
3122 		if (ret == 0)
3123 			ret = __i915_wait_request(req[i], reset_counter, true,
3124 						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3125 						  to_rps_client(file));
3126 		i915_gem_request_unreference__unlocked(req[i]);
3127 	}
3128 	return ret;
3129 
3130 out:
3131 	drm_gem_object_unreference(&obj->base);
3132 	mutex_unlock(&dev->struct_mutex);
3133 	return ret;
3134 }
3135 
3136 static int
3137 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3138 		       struct intel_engine_cs *to,
3139 		       struct drm_i915_gem_request *from_req,
3140 		       struct drm_i915_gem_request **to_req)
3141 {
3142 	struct intel_engine_cs *from;
3143 	int ret;
3144 
3145 	from = i915_gem_request_get_ring(from_req);
3146 	if (to == from)
3147 		return 0;
3148 
3149 	if (i915_gem_request_completed(from_req, true))
3150 		return 0;
3151 
3152 	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3153 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3154 		ret = __i915_wait_request(from_req,
3155 					  atomic_read(&i915->gpu_error.reset_counter),
3156 					  i915->mm.interruptible,
3157 					  NULL,
3158 					  &i915->rps.semaphores);
3159 		if (ret)
3160 			return ret;
3161 
3162 		i915_gem_object_retire_request(obj, from_req);
3163 	} else {
3164 		int idx = intel_ring_sync_index(from, to);
3165 		u32 seqno = i915_gem_request_get_seqno(from_req);
3166 
3167 		WARN_ON(!to_req);
3168 
3169 		if (seqno <= from->semaphore.sync_seqno[idx])
3170 			return 0;
3171 
3172 		if (*to_req == NULL) {
3173 			ret = i915_gem_request_alloc(to, to->default_context, to_req);
3174 			if (ret)
3175 				return ret;
3176 		}
3177 
3178 		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3179 		ret = to->semaphore.sync_to(*to_req, from, seqno);
3180 		if (ret)
3181 			return ret;
3182 
3183 		/* We use last_read_req because sync_to()
3184 		 * might have just caused seqno wrap under
3185 		 * the radar.
3186 		 */
3187 		from->semaphore.sync_seqno[idx] =
3188 			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3189 	}
3190 
3191 	return 0;
3192 }
3193 
3194 /**
3195  * i915_gem_object_sync - sync an object to a ring.
3196  *
3197  * @obj: object which may be in use on another ring.
3198  * @to: ring we wish to use the object on. May be NULL.
3199  * @to_req: request we wish to use the object for. See below.
3200  *          This will be allocated and returned if a request is
3201  *          required but not passed in.
3202  *
3203  * This code is meant to abstract object synchronization with the GPU.
3204  * Calling with NULL implies synchronizing the object with the CPU
3205  * rather than a particular GPU ring. Conceptually we serialise writes
3206  * between engines inside the GPU. We only allow one engine to write
3207  * into a buffer at any time, but multiple readers. To ensure each has
3208  * a coherent view of memory, we must:
3209  *
3210  * - If there is an outstanding write request to the object, the new
3211  *   request must wait for it to complete (either CPU or in hw, requests
3212  *   on the same ring will be naturally ordered).
3213  *
3214  * - If we are a write request (pending_write_domain is set), the new
3215  *   request must wait for outstanding read requests to complete.
3216  *
3217  * For CPU synchronisation (NULL to) no request is required. For syncing with
3218  * rings to_req must be non-NULL. However, a request does not have to be
3219  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3220  * request will be allocated automatically and returned through *to_req. Note
3221  * that it is not guaranteed that commands will be emitted (because the system
3222  * might already be idle). Hence there is no need to create a request that
3223  * might never have any work submitted. Note further that if a request is
3224  * returned in *to_req, it is the responsibility of the caller to submit
3225  * that request (after potentially adding more work to it).
3226  *
3227  * Returns 0 if successful, else propagates up the lower layer error.
3228  */
3229 int
3230 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3231 		     struct intel_engine_cs *to,
3232 		     struct drm_i915_gem_request **to_req)
3233 {
3234 	const bool readonly = obj->base.pending_write_domain == 0;
3235 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3236 	int ret, i, n;
3237 
3238 	if (!obj->active)
3239 		return 0;
3240 
3241 	if (to == NULL)
3242 		return i915_gem_object_wait_rendering(obj, readonly);
3243 
3244 	n = 0;
3245 	if (readonly) {
3246 		if (obj->last_write_req)
3247 			req[n++] = obj->last_write_req;
3248 	} else {
3249 		for (i = 0; i < I915_NUM_RINGS; i++)
3250 			if (obj->last_read_req[i])
3251 				req[n++] = obj->last_read_req[i];
3252 	}
3253 	for (i = 0; i < n; i++) {
3254 		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3255 		if (ret)
3256 			return ret;
3257 	}
3258 
3259 	return 0;
3260 }
3261 
3262 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3263 {
3264 	u32 old_write_domain, old_read_domains;
3265 
3266 	/* Force a pagefault for domain tracking on next user access */
3267 	i915_gem_release_mmap(obj);
3268 
3269 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3270 		return;
3271 
3272 	/* Wait for any direct GTT access to complete */
3273 	mb();
3274 
3275 	old_read_domains = obj->base.read_domains;
3276 	old_write_domain = obj->base.write_domain;
3277 
3278 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3279 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3280 
3281 	trace_i915_gem_object_change_domain(obj,
3282 					    old_read_domains,
3283 					    old_write_domain);
3284 }
3285 
3286 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3287 {
3288 	struct drm_i915_gem_object *obj = vma->obj;
3289 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3290 	int ret;
3291 
3292 	if (list_empty(&vma->vma_link))
3293 		return 0;
3294 
3295 	if (!drm_mm_node_allocated(&vma->node)) {
3296 		i915_gem_vma_destroy(vma);
3297 		return 0;
3298 	}
3299 
3300 	if (vma->pin_count)
3301 		return -EBUSY;
3302 
3303 	BUG_ON(obj->pages == NULL);
3304 
3305 	if (wait) {
3306 		ret = i915_gem_object_wait_rendering(obj, false);
3307 		if (ret)
3308 			return ret;
3309 	}
3310 
3311 	if (i915_is_ggtt(vma->vm) &&
3312 	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3313 		i915_gem_object_finish_gtt(obj);
3314 
3315 		/* release the fence reg _after_ flushing */
3316 		ret = i915_gem_object_put_fence(obj);
3317 		if (ret)
3318 			return ret;
3319 	}
3320 
3321 	trace_i915_vma_unbind(vma);
3322 
3323 	vma->vm->unbind_vma(vma);
3324 	vma->bound = 0;
3325 
3326 	list_del_init(&vma->mm_list);
3327 	if (i915_is_ggtt(vma->vm)) {
3328 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3329 			obj->map_and_fenceable = false;
3330 		} else if (vma->ggtt_view.pages) {
3331 			sg_free_table(vma->ggtt_view.pages);
3332 			kfree(vma->ggtt_view.pages);
3333 		}
3334 		vma->ggtt_view.pages = NULL;
3335 	}
3336 
3337 	drm_mm_remove_node(&vma->node);
3338 	i915_gem_vma_destroy(vma);
3339 
3340 	/* Since the unbound list is global, only move to that list if
3341 	 * no more VMAs exist. */
3342 	if (list_empty(&obj->vma_list))
3343 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3344 
3345 	/* And finally now the object is completely decoupled from this vma,
3346 	 * we can drop its hold on the backing storage and allow it to be
3347 	 * reaped by the shrinker.
3348 	 */
3349 	i915_gem_object_unpin_pages(obj);
3350 
3351 	return 0;
3352 }
3353 
3354 int i915_vma_unbind(struct i915_vma *vma)
3355 {
3356 	return __i915_vma_unbind(vma, true);
3357 }
3358 
3359 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3360 {
3361 	return __i915_vma_unbind(vma, false);
3362 }
3363 
3364 int i915_gpu_idle(struct drm_device *dev)
3365 {
3366 	struct drm_i915_private *dev_priv = dev->dev_private;
3367 	struct intel_engine_cs *ring;
3368 	int ret, i;
3369 
3370 	/* Flush everything onto the inactive list. */
3371 	for_each_ring(ring, dev_priv, i) {
3372 		if (!i915.enable_execlists) {
3373 			struct drm_i915_gem_request *req;
3374 
3375 			ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3376 			if (ret)
3377 				return ret;
3378 
3379 			ret = i915_switch_context(req);
3380 			if (ret) {
3381 				i915_gem_request_cancel(req);
3382 				return ret;
3383 			}
3384 
3385 			i915_add_request_no_flush(req);
3386 		}
3387 
3388 		ret = intel_ring_idle(ring);
3389 		if (ret)
3390 			return ret;
3391 	}
3392 
3393 	WARN_ON(i915_verify_lists(dev));
3394 	return 0;
3395 }
3396 
3397 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3398 				     unsigned long cache_level)
3399 {
3400 	struct drm_mm_node *gtt_space = &vma->node;
3401 	struct drm_mm_node *other;
3402 
3403 	/*
3404 	 * On some machines we have to be careful when putting differing types
3405 	 * of snoopable memory together to avoid the prefetcher crossing memory
3406 	 * domains and dying. During vm initialisation, we decide whether or not
3407 	 * these constraints apply and set the drm_mm.color_adjust
3408 	 * appropriately.
3409 	 */
3410 	if (vma->vm->mm.color_adjust == NULL)
3411 		return true;
3412 
3413 	if (!drm_mm_node_allocated(gtt_space))
3414 		return true;
3415 
3416 	if (list_empty(&gtt_space->node_list))
3417 		return true;
3418 
3419 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3420 	if (other->allocated && !other->hole_follows && other->color != cache_level)
3421 		return false;
3422 
3423 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3424 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3425 		return false;
3426 
3427 	return true;
3428 }
3429 
3430 /**
3431  * Finds free space in the GTT aperture and binds the object or a view of it
3432  * there.
3433  */
3434 static struct i915_vma *
3435 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3436 			   struct i915_address_space *vm,
3437 			   const struct i915_ggtt_view *ggtt_view,
3438 			   unsigned alignment,
3439 			   uint64_t flags)
3440 {
3441 	struct drm_device *dev = obj->base.dev;
3442 	struct drm_i915_private *dev_priv = dev->dev_private;
3443 	u32 fence_alignment, unfenced_alignment;
3444 	u32 search_flag, alloc_flag;
3445 	u64 start, end;
3446 	u64 size, fence_size;
3447 	struct i915_vma *vma;
3448 	int ret;
3449 
3450 	if (i915_is_ggtt(vm)) {
3451 		u32 view_size;
3452 
3453 		if (WARN_ON(!ggtt_view))
3454 			return ERR_PTR(-EINVAL);
3455 
3456 		view_size = i915_ggtt_view_size(obj, ggtt_view);
3457 
3458 		fence_size = i915_gem_get_gtt_size(dev,
3459 						   view_size,
3460 						   obj->tiling_mode);
3461 		fence_alignment = i915_gem_get_gtt_alignment(dev,
3462 							     view_size,
3463 							     obj->tiling_mode,
3464 							     true);
3465 		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3466 								view_size,
3467 								obj->tiling_mode,
3468 								false);
3469 		size = flags & PIN_MAPPABLE ? fence_size : view_size;
3470 	} else {
3471 		fence_size = i915_gem_get_gtt_size(dev,
3472 						   obj->base.size,
3473 						   obj->tiling_mode);
3474 		fence_alignment = i915_gem_get_gtt_alignment(dev,
3475 							     obj->base.size,
3476 							     obj->tiling_mode,
3477 							     true);
3478 		unfenced_alignment =
3479 			i915_gem_get_gtt_alignment(dev,
3480 						   obj->base.size,
3481 						   obj->tiling_mode,
3482 						   false);
3483 		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3484 	}
3485 
3486 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3487 	end = vm->total;
3488 	if (flags & PIN_MAPPABLE)
3489 		end = min_t(u64, end, dev_priv->gtt.mappable_end);
3490 	if (flags & PIN_ZONE_4G)
3491 		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3492 
3493 	if (alignment == 0)
3494 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3495 						unfenced_alignment;
3496 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3497 		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3498 			  ggtt_view ? ggtt_view->type : 0,
3499 			  alignment);
3500 		return ERR_PTR(-EINVAL);
3501 	}
3502 
3503 	/* If binding the object/GGTT view requires more space than the entire
3504 	 * aperture has, reject it early before evicting everything in a vain
3505 	 * attempt to find space.
3506 	 */
3507 	if (size > end) {
3508 		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3509 			  ggtt_view ? ggtt_view->type : 0,
3510 			  size,
3511 			  flags & PIN_MAPPABLE ? "mappable" : "total",
3512 			  end);
3513 		return ERR_PTR(-E2BIG);
3514 	}
3515 
3516 	ret = i915_gem_object_get_pages(obj);
3517 	if (ret)
3518 		return ERR_PTR(ret);
3519 
3520 	i915_gem_object_pin_pages(obj);
3521 
3522 	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3523 			  i915_gem_obj_lookup_or_create_vma(obj, vm);
3524 
3525 	if (IS_ERR(vma))
3526 		goto err_unpin;
3527 
3528 	if (flags & PIN_OFFSET_FIXED) {
3529 		uint64_t offset = flags & PIN_OFFSET_MASK;
3530 
3531 		if (offset & (alignment - 1) || offset + size > end) {
3532 			ret = -EINVAL;
3533 			goto err_free_vma;
3534 		}
3535 		vma->node.start = offset;
3536 		vma->node.size = size;
3537 		vma->node.color = obj->cache_level;
3538 		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3539 		if (ret) {
3540 			ret = i915_gem_evict_for_vma(vma);
3541 			if (ret == 0)
3542 				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3543 		}
3544 		if (ret)
3545 			goto err_free_vma;
3546 	} else {
3547 		if (flags & PIN_HIGH) {
3548 			search_flag = DRM_MM_SEARCH_BELOW;
3549 			alloc_flag = DRM_MM_CREATE_TOP;
3550 		} else {
3551 			search_flag = DRM_MM_SEARCH_DEFAULT;
3552 			alloc_flag = DRM_MM_CREATE_DEFAULT;
3553 		}
3554 
3555 search_free:
3556 		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3557 							  size, alignment,
3558 							  obj->cache_level,
3559 							  start, end,
3560 							  search_flag,
3561 							  alloc_flag);
3562 		if (ret) {
3563 			ret = i915_gem_evict_something(dev, vm, size, alignment,
3564 						       obj->cache_level,
3565 						       start, end,
3566 						       flags);
3567 			if (ret == 0)
3568 				goto search_free;
3569 
3570 			goto err_free_vma;
3571 		}
3572 	}
3573 	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3574 		ret = -EINVAL;
3575 		goto err_remove_node;
3576 	}
3577 
3578 	trace_i915_vma_bind(vma, flags);
3579 	ret = i915_vma_bind(vma, obj->cache_level, flags);
3580 	if (ret)
3581 		goto err_remove_node;
3582 
3583 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3584 	list_add_tail(&vma->mm_list, &vm->inactive_list);
3585 
3586 	return vma;
3587 
3588 err_remove_node:
3589 	drm_mm_remove_node(&vma->node);
3590 err_free_vma:
3591 	i915_gem_vma_destroy(vma);
3592 	vma = ERR_PTR(ret);
3593 err_unpin:
3594 	i915_gem_object_unpin_pages(obj);
3595 	return vma;
3596 }
3597 
3598 bool
3599 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3600 			bool force)
3601 {
3602 	/* If we don't have a page list set up, then we're not pinned
3603 	 * to GPU, and we can ignore the cache flush because it'll happen
3604 	 * again at bind time.
3605 	 */
3606 	if (obj->pages == NULL)
3607 		return false;
3608 
3609 	/*
3610 	 * Stolen memory is always coherent with the GPU as it is explicitly
3611 	 * marked as wc by the system, or the system is cache-coherent.
3612 	 */
3613 	if (obj->stolen || obj->phys_handle)
3614 		return false;
3615 
3616 	/* If the GPU is snooping the contents of the CPU cache,
3617 	 * we do not need to manually clear the CPU cache lines.  However,
3618 	 * the caches are only snooped when the render cache is
3619 	 * flushed/invalidated.  As we always have to emit invalidations
3620 	 * and flushes when moving into and out of the RENDER domain, correct
3621 	 * snooping behaviour occurs naturally as the result of our domain
3622 	 * tracking.
3623 	 */
3624 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3625 		obj->cache_dirty = true;
3626 		return false;
3627 	}
3628 
3629 	trace_i915_gem_object_clflush(obj);
3630 	drm_clflush_sg(obj->pages);
3631 	obj->cache_dirty = false;
3632 
3633 	return true;
3634 }
3635 
3636 /** Flushes the GTT write domain for the object if it's dirty. */
3637 static void
3638 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3639 {
3640 	uint32_t old_write_domain;
3641 
3642 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3643 		return;
3644 
3645 	/* No actual flushing is required for the GTT write domain.  Writes
3646 	 * to it immediately go to main memory as far as we know, so there's
3647 	 * no chipset flush.  It also doesn't land in render cache.
3648 	 *
3649 	 * However, we do have to enforce the order so that all writes through
3650 	 * the GTT land before any writes to the device, such as updates to
3651 	 * the GATT itself.
3652 	 */
3653 	wmb();
3654 
3655 	old_write_domain = obj->base.write_domain;
3656 	obj->base.write_domain = 0;
3657 
3658 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3659 
3660 	trace_i915_gem_object_change_domain(obj,
3661 					    obj->base.read_domains,
3662 					    old_write_domain);
3663 }
3664 
3665 /** Flushes the CPU write domain for the object if it's dirty. */
3666 static void
3667 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3668 {
3669 	uint32_t old_write_domain;
3670 
3671 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3672 		return;
3673 
3674 	if (i915_gem_clflush_object(obj, obj->pin_display))
3675 		i915_gem_chipset_flush(obj->base.dev);
3676 
3677 	old_write_domain = obj->base.write_domain;
3678 	obj->base.write_domain = 0;
3679 
3680 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3681 
3682 	trace_i915_gem_object_change_domain(obj,
3683 					    obj->base.read_domains,
3684 					    old_write_domain);
3685 }
3686 
3687 /**
3688  * Moves a single object to the GTT read, and possibly write domain.
3689  *
3690  * This function returns when the move is complete, including waiting on
3691  * flushes to occur.
3692  */
3693 int
3694 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3695 {
3696 	uint32_t old_write_domain, old_read_domains;
3697 	struct i915_vma *vma;
3698 	int ret;
3699 
3700 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3701 		return 0;
3702 
3703 	ret = i915_gem_object_wait_rendering(obj, !write);
3704 	if (ret)
3705 		return ret;
3706 
3707 	/* Flush and acquire obj->pages so that we are coherent through
3708 	 * direct access in memory with previous cached writes through
3709 	 * shmemfs and that our cache domain tracking remains valid.
3710 	 * For example, if the obj->filp was moved to swap without us
3711 	 * being notified and releasing the pages, we would mistakenly
3712 	 * continue to assume that the obj remained out of the CPU cached
3713 	 * domain.
3714 	 */
3715 	ret = i915_gem_object_get_pages(obj);
3716 	if (ret)
3717 		return ret;
3718 
3719 	i915_gem_object_flush_cpu_write_domain(obj);
3720 
3721 	/* Serialise direct access to this object with the barriers for
3722 	 * coherent writes from the GPU, by effectively invalidating the
3723 	 * GTT domain upon first access.
3724 	 */
3725 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3726 		mb();
3727 
3728 	old_write_domain = obj->base.write_domain;
3729 	old_read_domains = obj->base.read_domains;
3730 
3731 	/* It should now be out of any other write domains, and we can update
3732 	 * the domain values for our changes.
3733 	 */
3734 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3735 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3736 	if (write) {
3737 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3738 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3739 		obj->dirty = 1;
3740 	}
3741 
3742 	trace_i915_gem_object_change_domain(obj,
3743 					    old_read_domains,
3744 					    old_write_domain);
3745 
3746 	/* And bump the LRU for this access */
3747 	vma = i915_gem_obj_to_ggtt(obj);
3748 	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3749 		list_move_tail(&vma->mm_list,
3750 			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3751 
3752 	return 0;
3753 }
3754 
3755 /**
3756  * Changes the cache-level of an object across all VMA.
3757  *
3758  * After this function returns, the object will be in the new cache-level
3759  * across all GTT and the contents of the backing storage will be coherent,
3760  * with respect to the new cache-level. In order to keep the backing storage
3761  * coherent for all users, we only allow a single cache level to be set
3762  * globally on the object and prevent it from being changed whilst the
3763  * hardware is reading from the object. That is if the object is currently
3764  * on the scanout it will be set to uncached (or equivalent display
3765  * cache coherency) and all non-MOCS GPU access will also be uncached so
3766  * that all direct access to the scanout remains coherent.
3767  */
3768 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3769 				    enum i915_cache_level cache_level)
3770 {
3771 	struct drm_device *dev = obj->base.dev;
3772 	struct i915_vma *vma, *next;
3773 	bool bound = false;
3774 	int ret = 0;
3775 
3776 	if (obj->cache_level == cache_level)
3777 		goto out;
3778 
3779 	/* Inspect the list of currently bound VMA and unbind any that would
3780 	 * be invalid given the new cache-level. This is principally to
3781 	 * catch the issue of the CS prefetch crossing page boundaries and
3782 	 * reading an invalid PTE on older architectures.
3783 	 */
3784 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3785 		if (!drm_mm_node_allocated(&vma->node))
3786 			continue;
3787 
3788 		if (vma->pin_count) {
3789 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3790 			return -EBUSY;
3791 		}
3792 
3793 		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3794 			ret = i915_vma_unbind(vma);
3795 			if (ret)
3796 				return ret;
3797 		} else
3798 			bound = true;
3799 	}
3800 
3801 	/* We can reuse the existing drm_mm nodes but need to change the
3802 	 * cache-level on the PTE. We could simply unbind them all and
3803 	 * rebind with the correct cache-level on next use. However since
3804 	 * we already have a valid slot, dma mapping, pages etc, we may as
3805 	 * rewrite the PTE in the belief that doing so tramples upon less
3806 	 * state and so involves less work.
3807 	 */
3808 	if (bound) {
3809 		/* Before we change the PTE, the GPU must not be accessing it.
3810 		 * If we wait upon the object, we know that all the bound
3811 		 * VMA are no longer active.
3812 		 */
3813 		ret = i915_gem_object_wait_rendering(obj, false);
3814 		if (ret)
3815 			return ret;
3816 
3817 		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3818 			/* Access to snoopable pages through the GTT is
3819 			 * incoherent and on some machines causes a hard
3820 			 * lockup. Relinquish the CPU mmaping to force
3821 			 * userspace to refault in the pages and we can
3822 			 * then double check if the GTT mapping is still
3823 			 * valid for that pointer access.
3824 			 */
3825 			i915_gem_release_mmap(obj);
3826 
3827 			/* As we no longer need a fence for GTT access,
3828 			 * we can relinquish it now (and so prevent having
3829 			 * to steal a fence from someone else on the next
3830 			 * fence request). Note GPU activity would have
3831 			 * dropped the fence as all snoopable access is
3832 			 * supposed to be linear.
3833 			 */
3834 			ret = i915_gem_object_put_fence(obj);
3835 			if (ret)
3836 				return ret;
3837 		} else {
3838 			/* We either have incoherent backing store and
3839 			 * so no GTT access or the architecture is fully
3840 			 * coherent. In such cases, existing GTT mmaps
3841 			 * ignore the cache bit in the PTE and we can
3842 			 * rewrite it without confusing the GPU or having
3843 			 * to force userspace to fault back in its mmaps.
3844 			 */
3845 		}
3846 
3847 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
3848 			if (!drm_mm_node_allocated(&vma->node))
3849 				continue;
3850 
3851 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3852 			if (ret)
3853 				return ret;
3854 		}
3855 	}
3856 
3857 	list_for_each_entry(vma, &obj->vma_list, vma_link)
3858 		vma->node.color = cache_level;
3859 	obj->cache_level = cache_level;
3860 
3861 out:
3862 	/* Flush the dirty CPU caches to the backing storage so that the
3863 	 * object is now coherent at its new cache level (with respect
3864 	 * to the access domain).
3865 	 */
3866 	if (obj->cache_dirty &&
3867 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3868 	    cpu_write_needs_clflush(obj)) {
3869 		if (i915_gem_clflush_object(obj, true))
3870 			i915_gem_chipset_flush(obj->base.dev);
3871 	}
3872 
3873 	return 0;
3874 }
3875 
3876 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3877 			       struct drm_file *file)
3878 {
3879 	struct drm_i915_gem_caching *args = data;
3880 	struct drm_i915_gem_object *obj;
3881 
3882 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3883 	if (&obj->base == NULL)
3884 		return -ENOENT;
3885 
3886 	switch (obj->cache_level) {
3887 	case I915_CACHE_LLC:
3888 	case I915_CACHE_L3_LLC:
3889 		args->caching = I915_CACHING_CACHED;
3890 		break;
3891 
3892 	case I915_CACHE_WT:
3893 		args->caching = I915_CACHING_DISPLAY;
3894 		break;
3895 
3896 	default:
3897 		args->caching = I915_CACHING_NONE;
3898 		break;
3899 	}
3900 
3901 	drm_gem_object_unreference_unlocked(&obj->base);
3902 	return 0;
3903 }
3904 
3905 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3906 			       struct drm_file *file)
3907 {
3908 	struct drm_i915_private *dev_priv = dev->dev_private;
3909 	struct drm_i915_gem_caching *args = data;
3910 	struct drm_i915_gem_object *obj;
3911 	enum i915_cache_level level;
3912 	int ret;
3913 
3914 	switch (args->caching) {
3915 	case I915_CACHING_NONE:
3916 		level = I915_CACHE_NONE;
3917 		break;
3918 	case I915_CACHING_CACHED:
3919 		/*
3920 		 * Due to a HW issue on BXT A stepping, GPU stores via a
3921 		 * snooped mapping may leave stale data in a corresponding CPU
3922 		 * cacheline, whereas normally such cachelines would get
3923 		 * invalidated.
3924 		 */
3925 		if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
3926 			return -ENODEV;
3927 
3928 		level = I915_CACHE_LLC;
3929 		break;
3930 	case I915_CACHING_DISPLAY:
3931 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3932 		break;
3933 	default:
3934 		return -EINVAL;
3935 	}
3936 
3937 	intel_runtime_pm_get(dev_priv);
3938 
3939 	ret = i915_mutex_lock_interruptible(dev);
3940 	if (ret)
3941 		goto rpm_put;
3942 
3943 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3944 	if (&obj->base == NULL) {
3945 		ret = -ENOENT;
3946 		goto unlock;
3947 	}
3948 
3949 	ret = i915_gem_object_set_cache_level(obj, level);
3950 
3951 	drm_gem_object_unreference(&obj->base);
3952 unlock:
3953 	mutex_unlock(&dev->struct_mutex);
3954 rpm_put:
3955 	intel_runtime_pm_put(dev_priv);
3956 
3957 	return ret;
3958 }
3959 
3960 /*
3961  * Prepare buffer for display plane (scanout, cursors, etc).
3962  * Can be called from an uninterruptible phase (modesetting) and allows
3963  * any flushes to be pipelined (for pageflips).
3964  */
3965 int
3966 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3967 				     u32 alignment,
3968 				     const struct i915_ggtt_view *view)
3969 {
3970 	u32 old_read_domains, old_write_domain;
3971 	int ret;
3972 
3973 	/* Mark the pin_display early so that we account for the
3974 	 * display coherency whilst setting up the cache domains.
3975 	 */
3976 	obj->pin_display++;
3977 
3978 	/* The display engine is not coherent with the LLC cache on gen6.  As
3979 	 * a result, we make sure that the pinning that is about to occur is
3980 	 * done with uncached PTEs. This is lowest common denominator for all
3981 	 * chipsets.
3982 	 *
3983 	 * However for gen6+, we could do better by using the GFDT bit instead
3984 	 * of uncaching, which would allow us to flush all the LLC-cached data
3985 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3986 	 */
3987 	ret = i915_gem_object_set_cache_level(obj,
3988 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3989 	if (ret)
3990 		goto err_unpin_display;
3991 
3992 	/* As the user may map the buffer once pinned in the display plane
3993 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3994 	 * always use map_and_fenceable for all scanout buffers.
3995 	 */
3996 	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3997 				       view->type == I915_GGTT_VIEW_NORMAL ?
3998 				       PIN_MAPPABLE : 0);
3999 	if (ret)
4000 		goto err_unpin_display;
4001 
4002 	i915_gem_object_flush_cpu_write_domain(obj);
4003 
4004 	old_write_domain = obj->base.write_domain;
4005 	old_read_domains = obj->base.read_domains;
4006 
4007 	/* It should now be out of any other write domains, and we can update
4008 	 * the domain values for our changes.
4009 	 */
4010 	obj->base.write_domain = 0;
4011 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4012 
4013 	trace_i915_gem_object_change_domain(obj,
4014 					    old_read_domains,
4015 					    old_write_domain);
4016 
4017 	return 0;
4018 
4019 err_unpin_display:
4020 	obj->pin_display--;
4021 	return ret;
4022 }
4023 
4024 void
4025 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4026 					 const struct i915_ggtt_view *view)
4027 {
4028 	if (WARN_ON(obj->pin_display == 0))
4029 		return;
4030 
4031 	i915_gem_object_ggtt_unpin_view(obj, view);
4032 
4033 	obj->pin_display--;
4034 }
4035 
4036 /**
4037  * Moves a single object to the CPU read, and possibly write domain.
4038  *
4039  * This function returns when the move is complete, including waiting on
4040  * flushes to occur.
4041  */
4042 int
4043 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4044 {
4045 	uint32_t old_write_domain, old_read_domains;
4046 	int ret;
4047 
4048 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4049 		return 0;
4050 
4051 	ret = i915_gem_object_wait_rendering(obj, !write);
4052 	if (ret)
4053 		return ret;
4054 
4055 	i915_gem_object_flush_gtt_write_domain(obj);
4056 
4057 	old_write_domain = obj->base.write_domain;
4058 	old_read_domains = obj->base.read_domains;
4059 
4060 	/* Flush the CPU cache if it's still invalid. */
4061 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4062 		i915_gem_clflush_object(obj, false);
4063 
4064 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4065 	}
4066 
4067 	/* It should now be out of any other write domains, and we can update
4068 	 * the domain values for our changes.
4069 	 */
4070 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4071 
4072 	/* If we're writing through the CPU, then the GPU read domains will
4073 	 * need to be invalidated at next use.
4074 	 */
4075 	if (write) {
4076 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4077 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4078 	}
4079 
4080 	trace_i915_gem_object_change_domain(obj,
4081 					    old_read_domains,
4082 					    old_write_domain);
4083 
4084 	return 0;
4085 }
4086 
4087 /* Throttle our rendering by waiting until the ring has completed our requests
4088  * emitted over 20 msec ago.
4089  *
4090  * Note that if we were to use the current jiffies each time around the loop,
4091  * we wouldn't escape the function with any frames outstanding if the time to
4092  * render a frame was over 20ms.
4093  *
4094  * This should get us reasonable parallelism between CPU and GPU but also
4095  * relatively low latency when blocking on a particular request to finish.
4096  */
4097 static int
4098 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4099 {
4100 	struct drm_i915_private *dev_priv = dev->dev_private;
4101 	struct drm_i915_file_private *file_priv = file->driver_priv;
4102 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4103 	struct drm_i915_gem_request *request, *target = NULL;
4104 	unsigned reset_counter;
4105 	int ret;
4106 
4107 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4108 	if (ret)
4109 		return ret;
4110 
4111 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4112 	if (ret)
4113 		return ret;
4114 
4115 	spin_lock(&file_priv->mm.lock);
4116 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4117 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4118 			break;
4119 
4120 		/*
4121 		 * Note that the request might not have been submitted yet.
4122 		 * In which case emitted_jiffies will be zero.
4123 		 */
4124 		if (!request->emitted_jiffies)
4125 			continue;
4126 
4127 		target = request;
4128 	}
4129 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4130 	if (target)
4131 		i915_gem_request_reference(target);
4132 	spin_unlock(&file_priv->mm.lock);
4133 
4134 	if (target == NULL)
4135 		return 0;
4136 
4137 	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4138 	if (ret == 0)
4139 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4140 
4141 	i915_gem_request_unreference__unlocked(target);
4142 
4143 	return ret;
4144 }
4145 
4146 static bool
4147 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4148 {
4149 	struct drm_i915_gem_object *obj = vma->obj;
4150 
4151 	if (alignment &&
4152 	    vma->node.start & (alignment - 1))
4153 		return true;
4154 
4155 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4156 		return true;
4157 
4158 	if (flags & PIN_OFFSET_BIAS &&
4159 	    vma->node.start < (flags & PIN_OFFSET_MASK))
4160 		return true;
4161 
4162 	if (flags & PIN_OFFSET_FIXED &&
4163 	    vma->node.start != (flags & PIN_OFFSET_MASK))
4164 		return true;
4165 
4166 	return false;
4167 }
4168 
4169 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4170 {
4171 	struct drm_i915_gem_object *obj = vma->obj;
4172 	bool mappable, fenceable;
4173 	u32 fence_size, fence_alignment;
4174 
4175 	fence_size = i915_gem_get_gtt_size(obj->base.dev,
4176 					   obj->base.size,
4177 					   obj->tiling_mode);
4178 	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4179 						     obj->base.size,
4180 						     obj->tiling_mode,
4181 						     true);
4182 
4183 	fenceable = (vma->node.size == fence_size &&
4184 		     (vma->node.start & (fence_alignment - 1)) == 0);
4185 
4186 	mappable = (vma->node.start + fence_size <=
4187 		    to_i915(obj->base.dev)->gtt.mappable_end);
4188 
4189 	obj->map_and_fenceable = mappable && fenceable;
4190 }
4191 
4192 static int
4193 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4194 		       struct i915_address_space *vm,
4195 		       const struct i915_ggtt_view *ggtt_view,
4196 		       uint32_t alignment,
4197 		       uint64_t flags)
4198 {
4199 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4200 	struct i915_vma *vma;
4201 	unsigned bound;
4202 	int ret;
4203 
4204 	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4205 		return -ENODEV;
4206 
4207 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4208 		return -EINVAL;
4209 
4210 	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4211 		return -EINVAL;
4212 
4213 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4214 		return -EINVAL;
4215 
4216 	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4217 			  i915_gem_obj_to_vma(obj, vm);
4218 
4219 	if (IS_ERR(vma))
4220 		return PTR_ERR(vma);
4221 
4222 	if (vma) {
4223 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4224 			return -EBUSY;
4225 
4226 		if (i915_vma_misplaced(vma, alignment, flags)) {
4227 			WARN(vma->pin_count,
4228 			     "bo is already pinned in %s with incorrect alignment:"
4229 			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4230 			     " obj->map_and_fenceable=%d\n",
4231 			     ggtt_view ? "ggtt" : "ppgtt",
4232 			     upper_32_bits(vma->node.start),
4233 			     lower_32_bits(vma->node.start),
4234 			     alignment,
4235 			     !!(flags & PIN_MAPPABLE),
4236 			     obj->map_and_fenceable);
4237 			ret = i915_vma_unbind(vma);
4238 			if (ret)
4239 				return ret;
4240 
4241 			vma = NULL;
4242 		}
4243 	}
4244 
4245 	bound = vma ? vma->bound : 0;
4246 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4247 		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4248 						 flags);
4249 		if (IS_ERR(vma))
4250 			return PTR_ERR(vma);
4251 	} else {
4252 		ret = i915_vma_bind(vma, obj->cache_level, flags);
4253 		if (ret)
4254 			return ret;
4255 	}
4256 
4257 	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4258 	    (bound ^ vma->bound) & GLOBAL_BIND) {
4259 		__i915_vma_set_map_and_fenceable(vma);
4260 		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4261 	}
4262 
4263 	vma->pin_count++;
4264 	return 0;
4265 }
4266 
4267 int
4268 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4269 		    struct i915_address_space *vm,
4270 		    uint32_t alignment,
4271 		    uint64_t flags)
4272 {
4273 	return i915_gem_object_do_pin(obj, vm,
4274 				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4275 				      alignment, flags);
4276 }
4277 
4278 int
4279 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4280 			 const struct i915_ggtt_view *view,
4281 			 uint32_t alignment,
4282 			 uint64_t flags)
4283 {
4284 	if (WARN_ONCE(!view, "no view specified"))
4285 		return -EINVAL;
4286 
4287 	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4288 				      alignment, flags | PIN_GLOBAL);
4289 }
4290 
4291 void
4292 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4293 				const struct i915_ggtt_view *view)
4294 {
4295 	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4296 
4297 	BUG_ON(!vma);
4298 	WARN_ON(vma->pin_count == 0);
4299 	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4300 
4301 	--vma->pin_count;
4302 }
4303 
4304 int
4305 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4306 		    struct drm_file *file)
4307 {
4308 	struct drm_i915_gem_busy *args = data;
4309 	struct drm_i915_gem_object *obj;
4310 	int ret;
4311 
4312 	ret = i915_mutex_lock_interruptible(dev);
4313 	if (ret)
4314 		return ret;
4315 
4316 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4317 	if (&obj->base == NULL) {
4318 		ret = -ENOENT;
4319 		goto unlock;
4320 	}
4321 
4322 	/* Count all active objects as busy, even if they are currently not used
4323 	 * by the gpu. Users of this interface expect objects to eventually
4324 	 * become non-busy without any further actions, therefore emit any
4325 	 * necessary flushes here.
4326 	 */
4327 	ret = i915_gem_object_flush_active(obj);
4328 	if (ret)
4329 		goto unref;
4330 
4331 	BUILD_BUG_ON(I915_NUM_RINGS > 16);
4332 	args->busy = obj->active << 16;
4333 	if (obj->last_write_req)
4334 		args->busy |= obj->last_write_req->ring->id;
4335 
4336 unref:
4337 	drm_gem_object_unreference(&obj->base);
4338 unlock:
4339 	mutex_unlock(&dev->struct_mutex);
4340 	return ret;
4341 }
4342 
4343 int
4344 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4345 			struct drm_file *file_priv)
4346 {
4347 	return i915_gem_ring_throttle(dev, file_priv);
4348 }
4349 
4350 int
4351 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4352 		       struct drm_file *file_priv)
4353 {
4354 	struct drm_i915_private *dev_priv = dev->dev_private;
4355 	struct drm_i915_gem_madvise *args = data;
4356 	struct drm_i915_gem_object *obj;
4357 	int ret;
4358 
4359 	switch (args->madv) {
4360 	case I915_MADV_DONTNEED:
4361 	case I915_MADV_WILLNEED:
4362 	    break;
4363 	default:
4364 	    return -EINVAL;
4365 	}
4366 
4367 	ret = i915_mutex_lock_interruptible(dev);
4368 	if (ret)
4369 		return ret;
4370 
4371 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4372 	if (&obj->base == NULL) {
4373 		ret = -ENOENT;
4374 		goto unlock;
4375 	}
4376 
4377 	if (i915_gem_obj_is_pinned(obj)) {
4378 		ret = -EINVAL;
4379 		goto out;
4380 	}
4381 
4382 	if (obj->pages &&
4383 	    obj->tiling_mode != I915_TILING_NONE &&
4384 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4385 		if (obj->madv == I915_MADV_WILLNEED)
4386 			i915_gem_object_unpin_pages(obj);
4387 		if (args->madv == I915_MADV_WILLNEED)
4388 			i915_gem_object_pin_pages(obj);
4389 	}
4390 
4391 	if (obj->madv != __I915_MADV_PURGED)
4392 		obj->madv = args->madv;
4393 
4394 	/* if the object is no longer attached, discard its backing storage */
4395 	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4396 		i915_gem_object_truncate(obj);
4397 
4398 	args->retained = obj->madv != __I915_MADV_PURGED;
4399 
4400 out:
4401 	drm_gem_object_unreference(&obj->base);
4402 unlock:
4403 	mutex_unlock(&dev->struct_mutex);
4404 	return ret;
4405 }
4406 
4407 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4408 			  const struct drm_i915_gem_object_ops *ops)
4409 {
4410 	int i;
4411 
4412 	INIT_LIST_HEAD(&obj->global_list);
4413 	for (i = 0; i < I915_NUM_RINGS; i++)
4414 		INIT_LIST_HEAD(&obj->ring_list[i]);
4415 	INIT_LIST_HEAD(&obj->obj_exec_link);
4416 	INIT_LIST_HEAD(&obj->vma_list);
4417 	INIT_LIST_HEAD(&obj->batch_pool_link);
4418 
4419 	obj->ops = ops;
4420 
4421 	obj->fence_reg = I915_FENCE_REG_NONE;
4422 	obj->madv = I915_MADV_WILLNEED;
4423 
4424 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4425 }
4426 
4427 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4428 	.get_pages = i915_gem_object_get_pages_gtt,
4429 	.put_pages = i915_gem_object_put_pages_gtt,
4430 };
4431 
4432 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4433 						  size_t size)
4434 {
4435 	struct drm_i915_gem_object *obj;
4436 	struct address_space *mapping;
4437 	gfp_t mask;
4438 
4439 	obj = i915_gem_object_alloc(dev);
4440 	if (obj == NULL)
4441 		return NULL;
4442 
4443 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4444 		i915_gem_object_free(obj);
4445 		return NULL;
4446 	}
4447 
4448 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4449 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4450 		/* 965gm cannot relocate objects above 4GiB. */
4451 		mask &= ~__GFP_HIGHMEM;
4452 		mask |= __GFP_DMA32;
4453 	}
4454 
4455 	mapping = file_inode(obj->base.filp)->i_mapping;
4456 	mapping_set_gfp_mask(mapping, mask);
4457 
4458 	i915_gem_object_init(obj, &i915_gem_object_ops);
4459 
4460 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4461 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4462 
4463 	if (HAS_LLC(dev)) {
4464 		/* On some devices, we can have the GPU use the LLC (the CPU
4465 		 * cache) for about a 10% performance improvement
4466 		 * compared to uncached.  Graphics requests other than
4467 		 * display scanout are coherent with the CPU in
4468 		 * accessing this cache.  This means in this mode we
4469 		 * don't need to clflush on the CPU side, and on the
4470 		 * GPU side we only need to flush internal caches to
4471 		 * get data visible to the CPU.
4472 		 *
4473 		 * However, we maintain the display planes as UC, and so
4474 		 * need to rebind when first used as such.
4475 		 */
4476 		obj->cache_level = I915_CACHE_LLC;
4477 	} else
4478 		obj->cache_level = I915_CACHE_NONE;
4479 
4480 	trace_i915_gem_object_create(obj);
4481 
4482 	return obj;
4483 }
4484 
4485 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4486 {
4487 	/* If we are the last user of the backing storage (be it shmemfs
4488 	 * pages or stolen etc), we know that the pages are going to be
4489 	 * immediately released. In this case, we can then skip copying
4490 	 * back the contents from the GPU.
4491 	 */
4492 
4493 	if (obj->madv != I915_MADV_WILLNEED)
4494 		return false;
4495 
4496 	if (obj->base.filp == NULL)
4497 		return true;
4498 
4499 	/* At first glance, this looks racy, but then again so would be
4500 	 * userspace racing mmap against close. However, the first external
4501 	 * reference to the filp can only be obtained through the
4502 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4503 	 * acquiring such a reference whilst we are in the middle of
4504 	 * freeing the object.
4505 	 */
4506 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4507 }
4508 
4509 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4510 {
4511 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4512 	struct drm_device *dev = obj->base.dev;
4513 	struct drm_i915_private *dev_priv = dev->dev_private;
4514 	struct i915_vma *vma, *next;
4515 
4516 	intel_runtime_pm_get(dev_priv);
4517 
4518 	trace_i915_gem_object_destroy(obj);
4519 
4520 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4521 		int ret;
4522 
4523 		vma->pin_count = 0;
4524 		ret = i915_vma_unbind(vma);
4525 		if (WARN_ON(ret == -ERESTARTSYS)) {
4526 			bool was_interruptible;
4527 
4528 			was_interruptible = dev_priv->mm.interruptible;
4529 			dev_priv->mm.interruptible = false;
4530 
4531 			WARN_ON(i915_vma_unbind(vma));
4532 
4533 			dev_priv->mm.interruptible = was_interruptible;
4534 		}
4535 	}
4536 
4537 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4538 	 * before progressing. */
4539 	if (obj->stolen)
4540 		i915_gem_object_unpin_pages(obj);
4541 
4542 	WARN_ON(obj->frontbuffer_bits);
4543 
4544 	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4545 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4546 	    obj->tiling_mode != I915_TILING_NONE)
4547 		i915_gem_object_unpin_pages(obj);
4548 
4549 	if (WARN_ON(obj->pages_pin_count))
4550 		obj->pages_pin_count = 0;
4551 	if (discard_backing_storage(obj))
4552 		obj->madv = I915_MADV_DONTNEED;
4553 	i915_gem_object_put_pages(obj);
4554 	i915_gem_object_free_mmap_offset(obj);
4555 
4556 	BUG_ON(obj->pages);
4557 
4558 	if (obj->base.import_attach)
4559 		drm_prime_gem_destroy(&obj->base, NULL);
4560 
4561 	if (obj->ops->release)
4562 		obj->ops->release(obj);
4563 
4564 	drm_gem_object_release(&obj->base);
4565 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4566 
4567 	kfree(obj->bit_17);
4568 	i915_gem_object_free(obj);
4569 
4570 	intel_runtime_pm_put(dev_priv);
4571 }
4572 
4573 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4574 				     struct i915_address_space *vm)
4575 {
4576 	struct i915_vma *vma;
4577 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
4578 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4579 		    vma->vm == vm)
4580 			return vma;
4581 	}
4582 	return NULL;
4583 }
4584 
4585 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4586 					   const struct i915_ggtt_view *view)
4587 {
4588 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4589 	struct i915_vma *vma;
4590 
4591 	if (WARN_ONCE(!view, "no view specified"))
4592 		return ERR_PTR(-EINVAL);
4593 
4594 	list_for_each_entry(vma, &obj->vma_list, vma_link)
4595 		if (vma->vm == ggtt &&
4596 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4597 			return vma;
4598 	return NULL;
4599 }
4600 
4601 void i915_gem_vma_destroy(struct i915_vma *vma)
4602 {
4603 	struct i915_address_space *vm = NULL;
4604 	WARN_ON(vma->node.allocated);
4605 
4606 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4607 	if (!list_empty(&vma->exec_list))
4608 		return;
4609 
4610 	vm = vma->vm;
4611 
4612 	if (!i915_is_ggtt(vm))
4613 		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4614 
4615 	list_del(&vma->vma_link);
4616 
4617 	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4618 }
4619 
4620 static void
4621 i915_gem_stop_ringbuffers(struct drm_device *dev)
4622 {
4623 	struct drm_i915_private *dev_priv = dev->dev_private;
4624 	struct intel_engine_cs *ring;
4625 	int i;
4626 
4627 	for_each_ring(ring, dev_priv, i)
4628 		dev_priv->gt.stop_ring(ring);
4629 }
4630 
4631 int
4632 i915_gem_suspend(struct drm_device *dev)
4633 {
4634 	struct drm_i915_private *dev_priv = dev->dev_private;
4635 	int ret = 0;
4636 
4637 	mutex_lock(&dev->struct_mutex);
4638 	ret = i915_gpu_idle(dev);
4639 	if (ret)
4640 		goto err;
4641 
4642 	i915_gem_retire_requests(dev);
4643 
4644 	i915_gem_stop_ringbuffers(dev);
4645 	mutex_unlock(&dev->struct_mutex);
4646 
4647 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4648 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4649 	flush_delayed_work(&dev_priv->mm.idle_work);
4650 
4651 	/* Assert that we sucessfully flushed all the work and
4652 	 * reset the GPU back to its idle, low power state.
4653 	 */
4654 	WARN_ON(dev_priv->mm.busy);
4655 
4656 	return 0;
4657 
4658 err:
4659 	mutex_unlock(&dev->struct_mutex);
4660 	return ret;
4661 }
4662 
4663 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4664 {
4665 	struct intel_engine_cs *ring = req->ring;
4666 	struct drm_device *dev = ring->dev;
4667 	struct drm_i915_private *dev_priv = dev->dev_private;
4668 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4669 	int i, ret;
4670 
4671 	if (!HAS_L3_DPF(dev) || !remap_info)
4672 		return 0;
4673 
4674 	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4675 	if (ret)
4676 		return ret;
4677 
4678 	/*
4679 	 * Note: We do not worry about the concurrent register cacheline hang
4680 	 * here because no other code should access these registers other than
4681 	 * at initialization time.
4682 	 */
4683 	for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4684 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4685 		intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
4686 		intel_ring_emit(ring, remap_info[i]);
4687 	}
4688 
4689 	intel_ring_advance(ring);
4690 
4691 	return ret;
4692 }
4693 
4694 void i915_gem_init_swizzling(struct drm_device *dev)
4695 {
4696 	struct drm_i915_private *dev_priv = dev->dev_private;
4697 
4698 	if (INTEL_INFO(dev)->gen < 5 ||
4699 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4700 		return;
4701 
4702 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4703 				 DISP_TILE_SURFACE_SWIZZLING);
4704 
4705 	if (IS_GEN5(dev))
4706 		return;
4707 
4708 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4709 	if (IS_GEN6(dev))
4710 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4711 	else if (IS_GEN7(dev))
4712 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4713 	else if (IS_GEN8(dev))
4714 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4715 	else
4716 		BUG();
4717 }
4718 
4719 static void init_unused_ring(struct drm_device *dev, u32 base)
4720 {
4721 	struct drm_i915_private *dev_priv = dev->dev_private;
4722 
4723 	I915_WRITE(RING_CTL(base), 0);
4724 	I915_WRITE(RING_HEAD(base), 0);
4725 	I915_WRITE(RING_TAIL(base), 0);
4726 	I915_WRITE(RING_START(base), 0);
4727 }
4728 
4729 static void init_unused_rings(struct drm_device *dev)
4730 {
4731 	if (IS_I830(dev)) {
4732 		init_unused_ring(dev, PRB1_BASE);
4733 		init_unused_ring(dev, SRB0_BASE);
4734 		init_unused_ring(dev, SRB1_BASE);
4735 		init_unused_ring(dev, SRB2_BASE);
4736 		init_unused_ring(dev, SRB3_BASE);
4737 	} else if (IS_GEN2(dev)) {
4738 		init_unused_ring(dev, SRB0_BASE);
4739 		init_unused_ring(dev, SRB1_BASE);
4740 	} else if (IS_GEN3(dev)) {
4741 		init_unused_ring(dev, PRB1_BASE);
4742 		init_unused_ring(dev, PRB2_BASE);
4743 	}
4744 }
4745 
4746 int i915_gem_init_rings(struct drm_device *dev)
4747 {
4748 	struct drm_i915_private *dev_priv = dev->dev_private;
4749 	int ret;
4750 
4751 	ret = intel_init_render_ring_buffer(dev);
4752 	if (ret)
4753 		return ret;
4754 
4755 	if (HAS_BSD(dev)) {
4756 		ret = intel_init_bsd_ring_buffer(dev);
4757 		if (ret)
4758 			goto cleanup_render_ring;
4759 	}
4760 
4761 	if (HAS_BLT(dev)) {
4762 		ret = intel_init_blt_ring_buffer(dev);
4763 		if (ret)
4764 			goto cleanup_bsd_ring;
4765 	}
4766 
4767 	if (HAS_VEBOX(dev)) {
4768 		ret = intel_init_vebox_ring_buffer(dev);
4769 		if (ret)
4770 			goto cleanup_blt_ring;
4771 	}
4772 
4773 	if (HAS_BSD2(dev)) {
4774 		ret = intel_init_bsd2_ring_buffer(dev);
4775 		if (ret)
4776 			goto cleanup_vebox_ring;
4777 	}
4778 
4779 	return 0;
4780 
4781 cleanup_vebox_ring:
4782 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4783 cleanup_blt_ring:
4784 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4785 cleanup_bsd_ring:
4786 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4787 cleanup_render_ring:
4788 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4789 
4790 	return ret;
4791 }
4792 
4793 int
4794 i915_gem_init_hw(struct drm_device *dev)
4795 {
4796 	struct drm_i915_private *dev_priv = dev->dev_private;
4797 	struct intel_engine_cs *ring;
4798 	int ret, i, j;
4799 
4800 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4801 		return -EIO;
4802 
4803 	/* Double layer security blanket, see i915_gem_init() */
4804 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4805 
4806 	if (dev_priv->ellc_size)
4807 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4808 
4809 	if (IS_HASWELL(dev))
4810 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4811 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4812 
4813 	if (HAS_PCH_NOP(dev)) {
4814 		if (IS_IVYBRIDGE(dev)) {
4815 			u32 temp = I915_READ(GEN7_MSG_CTL);
4816 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4817 			I915_WRITE(GEN7_MSG_CTL, temp);
4818 		} else if (INTEL_INFO(dev)->gen >= 7) {
4819 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4820 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4821 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4822 		}
4823 	}
4824 
4825 	i915_gem_init_swizzling(dev);
4826 
4827 	/*
4828 	 * At least 830 can leave some of the unused rings
4829 	 * "active" (ie. head != tail) after resume which
4830 	 * will prevent c3 entry. Makes sure all unused rings
4831 	 * are totally idle.
4832 	 */
4833 	init_unused_rings(dev);
4834 
4835 	BUG_ON(!dev_priv->ring[RCS].default_context);
4836 
4837 	ret = i915_ppgtt_init_hw(dev);
4838 	if (ret) {
4839 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4840 		goto out;
4841 	}
4842 
4843 	/* Need to do basic initialisation of all rings first: */
4844 	for_each_ring(ring, dev_priv, i) {
4845 		ret = ring->init_hw(ring);
4846 		if (ret)
4847 			goto out;
4848 	}
4849 
4850 	/* We can't enable contexts until all firmware is loaded */
4851 	if (HAS_GUC_UCODE(dev)) {
4852 		ret = intel_guc_ucode_load(dev);
4853 		if (ret) {
4854 			DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4855 			ret = -EIO;
4856 			goto out;
4857 		}
4858 	}
4859 
4860 	/*
4861 	 * Increment the next seqno by 0x100 so we have a visible break
4862 	 * on re-initialisation
4863 	 */
4864 	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4865 	if (ret)
4866 		goto out;
4867 
4868 	/* Now it is safe to go back round and do everything else: */
4869 	for_each_ring(ring, dev_priv, i) {
4870 		struct drm_i915_gem_request *req;
4871 
4872 		WARN_ON(!ring->default_context);
4873 
4874 		ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4875 		if (ret) {
4876 			i915_gem_cleanup_ringbuffer(dev);
4877 			goto out;
4878 		}
4879 
4880 		if (ring->id == RCS) {
4881 			for (j = 0; j < NUM_L3_SLICES(dev); j++)
4882 				i915_gem_l3_remap(req, j);
4883 		}
4884 
4885 		ret = i915_ppgtt_init_ring(req);
4886 		if (ret && ret != -EIO) {
4887 			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4888 			i915_gem_request_cancel(req);
4889 			i915_gem_cleanup_ringbuffer(dev);
4890 			goto out;
4891 		}
4892 
4893 		ret = i915_gem_context_enable(req);
4894 		if (ret && ret != -EIO) {
4895 			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4896 			i915_gem_request_cancel(req);
4897 			i915_gem_cleanup_ringbuffer(dev);
4898 			goto out;
4899 		}
4900 
4901 		i915_add_request_no_flush(req);
4902 	}
4903 
4904 out:
4905 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4906 	return ret;
4907 }
4908 
4909 int i915_gem_init(struct drm_device *dev)
4910 {
4911 	struct drm_i915_private *dev_priv = dev->dev_private;
4912 	int ret;
4913 
4914 	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4915 			i915.enable_execlists);
4916 
4917 	mutex_lock(&dev->struct_mutex);
4918 
4919 	if (!i915.enable_execlists) {
4920 		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4921 		dev_priv->gt.init_rings = i915_gem_init_rings;
4922 		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4923 		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4924 	} else {
4925 		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4926 		dev_priv->gt.init_rings = intel_logical_rings_init;
4927 		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4928 		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4929 	}
4930 
4931 	/* This is just a security blanket to placate dragons.
4932 	 * On some systems, we very sporadically observe that the first TLBs
4933 	 * used by the CS may be stale, despite us poking the TLB reset. If
4934 	 * we hold the forcewake during initialisation these problems
4935 	 * just magically go away.
4936 	 */
4937 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4938 
4939 	ret = i915_gem_init_userptr(dev);
4940 	if (ret)
4941 		goto out_unlock;
4942 
4943 	i915_gem_init_global_gtt(dev);
4944 
4945 	ret = i915_gem_context_init(dev);
4946 	if (ret)
4947 		goto out_unlock;
4948 
4949 	ret = dev_priv->gt.init_rings(dev);
4950 	if (ret)
4951 		goto out_unlock;
4952 
4953 	ret = i915_gem_init_hw(dev);
4954 	if (ret == -EIO) {
4955 		/* Allow ring initialisation to fail by marking the GPU as
4956 		 * wedged. But we only want to do this where the GPU is angry,
4957 		 * for all other failure, such as an allocation failure, bail.
4958 		 */
4959 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4960 		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4961 		ret = 0;
4962 	}
4963 
4964 out_unlock:
4965 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4966 	mutex_unlock(&dev->struct_mutex);
4967 
4968 	return ret;
4969 }
4970 
4971 void
4972 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4973 {
4974 	struct drm_i915_private *dev_priv = dev->dev_private;
4975 	struct intel_engine_cs *ring;
4976 	int i;
4977 
4978 	for_each_ring(ring, dev_priv, i)
4979 		dev_priv->gt.cleanup_ring(ring);
4980 
4981     if (i915.enable_execlists)
4982             /*
4983              * Neither the BIOS, ourselves or any other kernel
4984              * expects the system to be in execlists mode on startup,
4985              * so we need to reset the GPU back to legacy mode.
4986              */
4987             intel_gpu_reset(dev);
4988 }
4989 
4990 static void
4991 init_ring_lists(struct intel_engine_cs *ring)
4992 {
4993 	INIT_LIST_HEAD(&ring->active_list);
4994 	INIT_LIST_HEAD(&ring->request_list);
4995 }
4996 
4997 void
4998 i915_gem_load(struct drm_device *dev)
4999 {
5000 	struct drm_i915_private *dev_priv = dev->dev_private;
5001 	int i;
5002 
5003 	dev_priv->objects =
5004 		kmem_cache_create("i915_gem_object",
5005 				  sizeof(struct drm_i915_gem_object), 0,
5006 				  SLAB_HWCACHE_ALIGN,
5007 				  NULL);
5008 	dev_priv->vmas =
5009 		kmem_cache_create("i915_gem_vma",
5010 				  sizeof(struct i915_vma), 0,
5011 				  SLAB_HWCACHE_ALIGN,
5012 				  NULL);
5013 	dev_priv->requests =
5014 		kmem_cache_create("i915_gem_request",
5015 				  sizeof(struct drm_i915_gem_request), 0,
5016 				  SLAB_HWCACHE_ALIGN,
5017 				  NULL);
5018 
5019 	INIT_LIST_HEAD(&dev_priv->vm_list);
5020 	INIT_LIST_HEAD(&dev_priv->context_list);
5021 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5022 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5023 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5024 	for (i = 0; i < I915_NUM_RINGS; i++)
5025 		init_ring_lists(&dev_priv->ring[i]);
5026 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5027 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5028 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5029 			  i915_gem_retire_work_handler);
5030 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5031 			  i915_gem_idle_work_handler);
5032 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5033 
5034 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5035 
5036 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
5037 		dev_priv->num_fence_regs = 32;
5038 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5039 		dev_priv->num_fence_regs = 16;
5040 	else
5041 		dev_priv->num_fence_regs = 8;
5042 
5043 	if (intel_vgpu_active(dev))
5044 		dev_priv->num_fence_regs =
5045 				I915_READ(vgtif_reg(avail_rs.fence_num));
5046 
5047 	/*
5048 	 * Set initial sequence number for requests.
5049 	 * Using this number allows the wraparound to happen early,
5050 	 * catching any obvious problems.
5051 	 */
5052 	dev_priv->next_seqno = ((u32)~0 - 0x1100);
5053 	dev_priv->last_seqno = ((u32)~0 - 0x1101);
5054 
5055 	/* Initialize fence registers to zero */
5056 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5057 	i915_gem_restore_fences(dev);
5058 
5059 	i915_gem_detect_bit_6_swizzle(dev);
5060 	init_waitqueue_head(&dev_priv->pending_flip_queue);
5061 
5062 	dev_priv->mm.interruptible = true;
5063 
5064 	i915_gem_shrinker_init(dev_priv);
5065 
5066 	mutex_init(&dev_priv->fb_tracking.lock);
5067 }
5068 
5069 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5070 {
5071 	struct drm_i915_file_private *file_priv = file->driver_priv;
5072 
5073 	/* Clean up our request list when the client is going away, so that
5074 	 * later retire_requests won't dereference our soon-to-be-gone
5075 	 * file_priv.
5076 	 */
5077 	spin_lock(&file_priv->mm.lock);
5078 	while (!list_empty(&file_priv->mm.request_list)) {
5079 		struct drm_i915_gem_request *request;
5080 
5081 		request = list_first_entry(&file_priv->mm.request_list,
5082 					   struct drm_i915_gem_request,
5083 					   client_list);
5084 		list_del(&request->client_list);
5085 		request->file_priv = NULL;
5086 	}
5087 	spin_unlock(&file_priv->mm.lock);
5088 
5089 	if (!list_empty(&file_priv->rps.link)) {
5090 		spin_lock(&to_i915(dev)->rps.client_lock);
5091 		list_del(&file_priv->rps.link);
5092 		spin_unlock(&to_i915(dev)->rps.client_lock);
5093 	}
5094 }
5095 
5096 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5097 {
5098 	struct drm_i915_file_private *file_priv;
5099 	int ret;
5100 
5101 	DRM_DEBUG_DRIVER("\n");
5102 
5103 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5104 	if (!file_priv)
5105 		return -ENOMEM;
5106 
5107 	file->driver_priv = file_priv;
5108 	file_priv->dev_priv = dev->dev_private;
5109 	file_priv->file = file;
5110 	INIT_LIST_HEAD(&file_priv->rps.link);
5111 
5112 	spin_lock_init(&file_priv->mm.lock);
5113 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5114 
5115 	ret = i915_gem_context_open(dev, file);
5116 	if (ret)
5117 		kfree(file_priv);
5118 
5119 	return ret;
5120 }
5121 
5122 /**
5123  * i915_gem_track_fb - update frontbuffer tracking
5124  * @old: current GEM buffer for the frontbuffer slots
5125  * @new: new GEM buffer for the frontbuffer slots
5126  * @frontbuffer_bits: bitmask of frontbuffer slots
5127  *
5128  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5129  * from @old and setting them in @new. Both @old and @new can be NULL.
5130  */
5131 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5132 		       struct drm_i915_gem_object *new,
5133 		       unsigned frontbuffer_bits)
5134 {
5135 	if (old) {
5136 		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5137 		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5138 		old->frontbuffer_bits &= ~frontbuffer_bits;
5139 	}
5140 
5141 	if (new) {
5142 		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5143 		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5144 		new->frontbuffer_bits |= frontbuffer_bits;
5145 	}
5146 }
5147 
5148 /* All the new VM stuff */
5149 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5150 			struct i915_address_space *vm)
5151 {
5152 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5153 	struct i915_vma *vma;
5154 
5155 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5156 
5157 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5158 		if (i915_is_ggtt(vma->vm) &&
5159 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5160 			continue;
5161 		if (vma->vm == vm)
5162 			return vma->node.start;
5163 	}
5164 
5165 	WARN(1, "%s vma for this object not found.\n",
5166 	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5167 	return -1;
5168 }
5169 
5170 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5171 				  const struct i915_ggtt_view *view)
5172 {
5173 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5174 	struct i915_vma *vma;
5175 
5176 	list_for_each_entry(vma, &o->vma_list, vma_link)
5177 		if (vma->vm == ggtt &&
5178 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5179 			return vma->node.start;
5180 
5181 	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5182 	return -1;
5183 }
5184 
5185 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5186 			struct i915_address_space *vm)
5187 {
5188 	struct i915_vma *vma;
5189 
5190 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5191 		if (i915_is_ggtt(vma->vm) &&
5192 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5193 			continue;
5194 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5195 			return true;
5196 	}
5197 
5198 	return false;
5199 }
5200 
5201 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5202 				  const struct i915_ggtt_view *view)
5203 {
5204 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5205 	struct i915_vma *vma;
5206 
5207 	list_for_each_entry(vma, &o->vma_list, vma_link)
5208 		if (vma->vm == ggtt &&
5209 		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5210 		    drm_mm_node_allocated(&vma->node))
5211 			return true;
5212 
5213 	return false;
5214 }
5215 
5216 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5217 {
5218 	struct i915_vma *vma;
5219 
5220 	list_for_each_entry(vma, &o->vma_list, vma_link)
5221 		if (drm_mm_node_allocated(&vma->node))
5222 			return true;
5223 
5224 	return false;
5225 }
5226 
5227 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5228 				struct i915_address_space *vm)
5229 {
5230 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5231 	struct i915_vma *vma;
5232 
5233 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5234 
5235 	BUG_ON(list_empty(&o->vma_list));
5236 
5237 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5238 		if (i915_is_ggtt(vma->vm) &&
5239 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5240 			continue;
5241 		if (vma->vm == vm)
5242 			return vma->node.size;
5243 	}
5244 	return 0;
5245 }
5246 
5247 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5248 {
5249 	struct i915_vma *vma;
5250 	list_for_each_entry(vma, &obj->vma_list, vma_link)
5251 		if (vma->pin_count > 0)
5252 			return true;
5253 
5254 	return false;
5255 }
5256 
5257 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5258 struct page *
5259 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5260 {
5261 	struct page *page;
5262 
5263 	/* Only default objects have per-page dirty tracking */
5264 	if (WARN_ON(obj->ops != &i915_gem_object_ops))
5265 		return NULL;
5266 
5267 	page = i915_gem_object_get_page(obj, n);
5268 	set_page_dirty(page);
5269 	return page;
5270 }
5271 
5272 /* Allocate a new GEM object and fill it with the supplied data */
5273 struct drm_i915_gem_object *
5274 i915_gem_object_create_from_data(struct drm_device *dev,
5275 			         const void *data, size_t size)
5276 {
5277 	struct drm_i915_gem_object *obj;
5278 	struct sg_table *sg;
5279 	size_t bytes;
5280 	int ret;
5281 
5282 	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5283 	if (IS_ERR_OR_NULL(obj))
5284 		return obj;
5285 
5286 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
5287 	if (ret)
5288 		goto fail;
5289 
5290 	ret = i915_gem_object_get_pages(obj);
5291 	if (ret)
5292 		goto fail;
5293 
5294 	i915_gem_object_pin_pages(obj);
5295 	sg = obj->pages;
5296 	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5297 	obj->dirty = 1;		/* Backing store is now out of date */
5298 	i915_gem_object_unpin_pages(obj);
5299 
5300 	if (WARN_ON(bytes != size)) {
5301 		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5302 		ret = -EFAULT;
5303 		goto fail;
5304 	}
5305 
5306 	return obj;
5307 
5308 fail:
5309 	drm_gem_object_unreference(&obj->base);
5310 	return ERR_PTR(ret);
5311 }
5312