1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drmP.h> 29 #include <drm/drm_vma_manager.h> 30 #include <drm/i915_drm.h> 31 #include "i915_drv.h" 32 #include "i915_vgpu.h" 33 #include "i915_trace.h" 34 #include "intel_drv.h" 35 #include <linux/shmem_fs.h> 36 #include <linux/slab.h> 37 #include <linux/swap.h> 38 #include <linux/pci.h> 39 #include <linux/dma-buf.h> 40 41 #define RQ_BUG_ON(expr) 42 43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); 44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj); 45 static void 46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj); 47 static void 48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring); 49 50 static bool cpu_cache_is_coherent(struct drm_device *dev, 51 enum i915_cache_level level) 52 { 53 return HAS_LLC(dev) || level != I915_CACHE_NONE; 54 } 55 56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj) 57 { 58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) 59 return true; 60 61 return obj->pin_display; 62 } 63 64 /* some bookkeeping */ 65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, 66 size_t size) 67 { 68 spin_lock(&dev_priv->mm.object_stat_lock); 69 dev_priv->mm.object_count++; 70 dev_priv->mm.object_memory += size; 71 spin_unlock(&dev_priv->mm.object_stat_lock); 72 } 73 74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, 75 size_t size) 76 { 77 spin_lock(&dev_priv->mm.object_stat_lock); 78 dev_priv->mm.object_count--; 79 dev_priv->mm.object_memory -= size; 80 spin_unlock(&dev_priv->mm.object_stat_lock); 81 } 82 83 static int 84 i915_gem_wait_for_error(struct i915_gpu_error *error) 85 { 86 int ret; 87 88 #define EXIT_COND (!i915_reset_in_progress(error) || \ 89 i915_terminally_wedged(error)) 90 if (EXIT_COND) 91 return 0; 92 93 /* 94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging 95 * userspace. If it takes that long something really bad is going on and 96 * we should simply try to bail out and fail as gracefully as possible. 97 */ 98 ret = wait_event_interruptible_timeout(error->reset_queue, 99 EXIT_COND, 100 10*HZ); 101 if (ret == 0) { 102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); 103 return -EIO; 104 } else if (ret < 0) { 105 return ret; 106 } 107 #undef EXIT_COND 108 109 return 0; 110 } 111 112 int i915_mutex_lock_interruptible(struct drm_device *dev) 113 { 114 struct drm_i915_private *dev_priv = dev->dev_private; 115 int ret; 116 117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 118 if (ret) 119 return ret; 120 121 ret = mutex_lock_interruptible(&dev->struct_mutex); 122 if (ret) 123 return ret; 124 125 WARN_ON(i915_verify_lists(dev)); 126 return 0; 127 } 128 129 int 130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 131 struct drm_file *file) 132 { 133 struct drm_i915_private *dev_priv = dev->dev_private; 134 struct drm_i915_gem_get_aperture *args = data; 135 struct i915_gtt *ggtt = &dev_priv->gtt; 136 struct i915_vma *vma; 137 size_t pinned; 138 139 pinned = 0; 140 mutex_lock(&dev->struct_mutex); 141 list_for_each_entry(vma, &ggtt->base.active_list, mm_list) 142 if (vma->pin_count) 143 pinned += vma->node.size; 144 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list) 145 if (vma->pin_count) 146 pinned += vma->node.size; 147 mutex_unlock(&dev->struct_mutex); 148 149 args->aper_size = dev_priv->gtt.base.total; 150 args->aper_available_size = args->aper_size - pinned; 151 152 return 0; 153 } 154 155 static int 156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj) 157 { 158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping; 159 char *vaddr = obj->phys_handle->vaddr; 160 struct sg_table *st; 161 struct scatterlist *sg; 162 int i; 163 164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj))) 165 return -EINVAL; 166 167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 168 struct page *page; 169 char *src; 170 171 page = shmem_read_mapping_page(mapping, i); 172 if (IS_ERR(page)) 173 return PTR_ERR(page); 174 175 src = kmap_atomic(page); 176 memcpy(vaddr, src, PAGE_SIZE); 177 drm_clflush_virt_range(vaddr, PAGE_SIZE); 178 kunmap_atomic(src); 179 180 page_cache_release(page); 181 vaddr += PAGE_SIZE; 182 } 183 184 i915_gem_chipset_flush(obj->base.dev); 185 186 st = kmalloc(sizeof(*st), GFP_KERNEL); 187 if (st == NULL) 188 return -ENOMEM; 189 190 if (sg_alloc_table(st, 1, GFP_KERNEL)) { 191 kfree(st); 192 return -ENOMEM; 193 } 194 195 sg = st->sgl; 196 sg->offset = 0; 197 sg->length = obj->base.size; 198 199 sg_dma_address(sg) = obj->phys_handle->busaddr; 200 sg_dma_len(sg) = obj->base.size; 201 202 obj->pages = st; 203 return 0; 204 } 205 206 static void 207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj) 208 { 209 int ret; 210 211 BUG_ON(obj->madv == __I915_MADV_PURGED); 212 213 ret = i915_gem_object_set_to_cpu_domain(obj, true); 214 if (ret) { 215 /* In the event of a disaster, abandon all caches and 216 * hope for the best. 217 */ 218 WARN_ON(ret != -EIO); 219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; 220 } 221 222 if (obj->madv == I915_MADV_DONTNEED) 223 obj->dirty = 0; 224 225 if (obj->dirty) { 226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping; 227 char *vaddr = obj->phys_handle->vaddr; 228 int i; 229 230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 231 struct page *page; 232 char *dst; 233 234 page = shmem_read_mapping_page(mapping, i); 235 if (IS_ERR(page)) 236 continue; 237 238 dst = kmap_atomic(page); 239 drm_clflush_virt_range(vaddr, PAGE_SIZE); 240 memcpy(dst, vaddr, PAGE_SIZE); 241 kunmap_atomic(dst); 242 243 set_page_dirty(page); 244 if (obj->madv == I915_MADV_WILLNEED) 245 mark_page_accessed(page); 246 page_cache_release(page); 247 vaddr += PAGE_SIZE; 248 } 249 obj->dirty = 0; 250 } 251 252 sg_free_table(obj->pages); 253 kfree(obj->pages); 254 } 255 256 static void 257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj) 258 { 259 drm_pci_free(obj->base.dev, obj->phys_handle); 260 } 261 262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = { 263 .get_pages = i915_gem_object_get_pages_phys, 264 .put_pages = i915_gem_object_put_pages_phys, 265 .release = i915_gem_object_release_phys, 266 }; 267 268 static int 269 drop_pages(struct drm_i915_gem_object *obj) 270 { 271 struct i915_vma *vma, *next; 272 int ret; 273 274 drm_gem_object_reference(&obj->base); 275 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) 276 if (i915_vma_unbind(vma)) 277 break; 278 279 ret = i915_gem_object_put_pages(obj); 280 drm_gem_object_unreference(&obj->base); 281 282 return ret; 283 } 284 285 int 286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 287 int align) 288 { 289 drm_dma_handle_t *phys; 290 int ret; 291 292 if (obj->phys_handle) { 293 if ((unsigned long)obj->phys_handle->vaddr & (align -1)) 294 return -EBUSY; 295 296 return 0; 297 } 298 299 if (obj->madv != I915_MADV_WILLNEED) 300 return -EFAULT; 301 302 if (obj->base.filp == NULL) 303 return -EINVAL; 304 305 ret = drop_pages(obj); 306 if (ret) 307 return ret; 308 309 /* create a new object */ 310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align); 311 if (!phys) 312 return -ENOMEM; 313 314 obj->phys_handle = phys; 315 obj->ops = &i915_gem_phys_ops; 316 317 return i915_gem_object_get_pages(obj); 318 } 319 320 static int 321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj, 322 struct drm_i915_gem_pwrite *args, 323 struct drm_file *file_priv) 324 { 325 struct drm_device *dev = obj->base.dev; 326 void *vaddr = obj->phys_handle->vaddr + args->offset; 327 char __user *user_data = to_user_ptr(args->data_ptr); 328 int ret = 0; 329 330 /* We manually control the domain here and pretend that it 331 * remains coherent i.e. in the GTT domain, like shmem_pwrite. 332 */ 333 ret = i915_gem_object_wait_rendering(obj, false); 334 if (ret) 335 return ret; 336 337 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) { 339 unsigned long unwritten; 340 341 /* The physical object once assigned is fixed for the lifetime 342 * of the obj, so we can safely drop the lock and continue 343 * to access vaddr. 344 */ 345 mutex_unlock(&dev->struct_mutex); 346 unwritten = copy_from_user(vaddr, user_data, args->size); 347 mutex_lock(&dev->struct_mutex); 348 if (unwritten) { 349 ret = -EFAULT; 350 goto out; 351 } 352 } 353 354 drm_clflush_virt_range(vaddr, args->size); 355 i915_gem_chipset_flush(dev); 356 357 out: 358 intel_fb_obj_flush(obj, false, ORIGIN_CPU); 359 return ret; 360 } 361 362 void *i915_gem_object_alloc(struct drm_device *dev) 363 { 364 struct drm_i915_private *dev_priv = dev->dev_private; 365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL); 366 } 367 368 void i915_gem_object_free(struct drm_i915_gem_object *obj) 369 { 370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 371 kmem_cache_free(dev_priv->objects, obj); 372 } 373 374 static int 375 i915_gem_create(struct drm_file *file, 376 struct drm_device *dev, 377 uint64_t size, 378 uint32_t *handle_p) 379 { 380 struct drm_i915_gem_object *obj; 381 int ret; 382 u32 handle; 383 384 size = roundup(size, PAGE_SIZE); 385 if (size == 0) 386 return -EINVAL; 387 388 /* Allocate the new object */ 389 obj = i915_gem_alloc_object(dev, size); 390 if (obj == NULL) 391 return -ENOMEM; 392 393 ret = drm_gem_handle_create(file, &obj->base, &handle); 394 /* drop reference from allocate - handle holds it now */ 395 drm_gem_object_unreference_unlocked(&obj->base); 396 if (ret) 397 return ret; 398 399 *handle_p = handle; 400 return 0; 401 } 402 403 int 404 i915_gem_dumb_create(struct drm_file *file, 405 struct drm_device *dev, 406 struct drm_mode_create_dumb *args) 407 { 408 /* have to work out size/pitch and return them */ 409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64); 410 args->size = args->pitch * args->height; 411 return i915_gem_create(file, dev, 412 args->size, &args->handle); 413 } 414 415 /** 416 * Creates a new mm object and returns a handle to it. 417 */ 418 int 419 i915_gem_create_ioctl(struct drm_device *dev, void *data, 420 struct drm_file *file) 421 { 422 struct drm_i915_gem_create *args = data; 423 424 return i915_gem_create(file, dev, 425 args->size, &args->handle); 426 } 427 428 static inline int 429 __copy_to_user_swizzled(char __user *cpu_vaddr, 430 const char *gpu_vaddr, int gpu_offset, 431 int length) 432 { 433 int ret, cpu_offset = 0; 434 435 while (length > 0) { 436 int cacheline_end = ALIGN(gpu_offset + 1, 64); 437 int this_length = min(cacheline_end - gpu_offset, length); 438 int swizzled_gpu_offset = gpu_offset ^ 64; 439 440 ret = __copy_to_user(cpu_vaddr + cpu_offset, 441 gpu_vaddr + swizzled_gpu_offset, 442 this_length); 443 if (ret) 444 return ret + length; 445 446 cpu_offset += this_length; 447 gpu_offset += this_length; 448 length -= this_length; 449 } 450 451 return 0; 452 } 453 454 static inline int 455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, 456 const char __user *cpu_vaddr, 457 int length) 458 { 459 int ret, cpu_offset = 0; 460 461 while (length > 0) { 462 int cacheline_end = ALIGN(gpu_offset + 1, 64); 463 int this_length = min(cacheline_end - gpu_offset, length); 464 int swizzled_gpu_offset = gpu_offset ^ 64; 465 466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, 467 cpu_vaddr + cpu_offset, 468 this_length); 469 if (ret) 470 return ret + length; 471 472 cpu_offset += this_length; 473 gpu_offset += this_length; 474 length -= this_length; 475 } 476 477 return 0; 478 } 479 480 /* 481 * Pins the specified object's pages and synchronizes the object with 482 * GPU accesses. Sets needs_clflush to non-zero if the caller should 483 * flush the object from the CPU cache. 484 */ 485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 486 int *needs_clflush) 487 { 488 int ret; 489 490 *needs_clflush = 0; 491 492 if (!obj->base.filp) 493 return -EINVAL; 494 495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) { 496 /* If we're not in the cpu read domain, set ourself into the gtt 497 * read domain and manually flush cachelines (if required). This 498 * optimizes for the case when the gpu will dirty the data 499 * anyway again before the next pread happens. */ 500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev, 501 obj->cache_level); 502 ret = i915_gem_object_wait_rendering(obj, true); 503 if (ret) 504 return ret; 505 } 506 507 ret = i915_gem_object_get_pages(obj); 508 if (ret) 509 return ret; 510 511 i915_gem_object_pin_pages(obj); 512 513 return ret; 514 } 515 516 /* Per-page copy function for the shmem pread fastpath. 517 * Flushes invalid cachelines before reading the target if 518 * needs_clflush is set. */ 519 static int 520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length, 521 char __user *user_data, 522 bool page_do_bit17_swizzling, bool needs_clflush) 523 { 524 char *vaddr; 525 int ret; 526 527 if (unlikely(page_do_bit17_swizzling)) 528 return -EINVAL; 529 530 vaddr = kmap_atomic(page); 531 if (needs_clflush) 532 drm_clflush_virt_range(vaddr + shmem_page_offset, 533 page_length); 534 ret = __copy_to_user_inatomic(user_data, 535 vaddr + shmem_page_offset, 536 page_length); 537 kunmap_atomic(vaddr); 538 539 return ret ? -EFAULT : 0; 540 } 541 542 static void 543 shmem_clflush_swizzled_range(char *addr, unsigned long length, 544 bool swizzled) 545 { 546 if (unlikely(swizzled)) { 547 unsigned long start = (unsigned long) addr; 548 unsigned long end = (unsigned long) addr + length; 549 550 /* For swizzling simply ensure that we always flush both 551 * channels. Lame, but simple and it works. Swizzled 552 * pwrite/pread is far from a hotpath - current userspace 553 * doesn't use it at all. */ 554 start = round_down(start, 128); 555 end = round_up(end, 128); 556 557 drm_clflush_virt_range((void *)start, end - start); 558 } else { 559 drm_clflush_virt_range(addr, length); 560 } 561 562 } 563 564 /* Only difference to the fast-path function is that this can handle bit17 565 * and uses non-atomic copy and kmap functions. */ 566 static int 567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length, 568 char __user *user_data, 569 bool page_do_bit17_swizzling, bool needs_clflush) 570 { 571 char *vaddr; 572 int ret; 573 574 vaddr = kmap(page); 575 if (needs_clflush) 576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 577 page_length, 578 page_do_bit17_swizzling); 579 580 if (page_do_bit17_swizzling) 581 ret = __copy_to_user_swizzled(user_data, 582 vaddr, shmem_page_offset, 583 page_length); 584 else 585 ret = __copy_to_user(user_data, 586 vaddr + shmem_page_offset, 587 page_length); 588 kunmap(page); 589 590 return ret ? - EFAULT : 0; 591 } 592 593 static int 594 i915_gem_shmem_pread(struct drm_device *dev, 595 struct drm_i915_gem_object *obj, 596 struct drm_i915_gem_pread *args, 597 struct drm_file *file) 598 { 599 char __user *user_data; 600 ssize_t remain; 601 loff_t offset; 602 int shmem_page_offset, page_length, ret = 0; 603 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 604 int prefaulted = 0; 605 int needs_clflush = 0; 606 struct sg_page_iter sg_iter; 607 608 user_data = to_user_ptr(args->data_ptr); 609 remain = args->size; 610 611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 612 613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush); 614 if (ret) 615 return ret; 616 617 offset = args->offset; 618 619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 620 offset >> PAGE_SHIFT) { 621 struct page *page = sg_page_iter_page(&sg_iter); 622 623 if (remain <= 0) 624 break; 625 626 /* Operation in this page 627 * 628 * shmem_page_offset = offset within page in shmem file 629 * page_length = bytes to copy for this page 630 */ 631 shmem_page_offset = offset_in_page(offset); 632 page_length = remain; 633 if ((shmem_page_offset + page_length) > PAGE_SIZE) 634 page_length = PAGE_SIZE - shmem_page_offset; 635 636 page_do_bit17_swizzling = obj_do_bit17_swizzling && 637 (page_to_phys(page) & (1 << 17)) != 0; 638 639 ret = shmem_pread_fast(page, shmem_page_offset, page_length, 640 user_data, page_do_bit17_swizzling, 641 needs_clflush); 642 if (ret == 0) 643 goto next_page; 644 645 mutex_unlock(&dev->struct_mutex); 646 647 if (likely(!i915.prefault_disable) && !prefaulted) { 648 ret = fault_in_multipages_writeable(user_data, remain); 649 /* Userspace is tricking us, but we've already clobbered 650 * its pages with the prefault and promised to write the 651 * data up to the first fault. Hence ignore any errors 652 * and just continue. */ 653 (void)ret; 654 prefaulted = 1; 655 } 656 657 ret = shmem_pread_slow(page, shmem_page_offset, page_length, 658 user_data, page_do_bit17_swizzling, 659 needs_clflush); 660 661 mutex_lock(&dev->struct_mutex); 662 663 if (ret) 664 goto out; 665 666 next_page: 667 remain -= page_length; 668 user_data += page_length; 669 offset += page_length; 670 } 671 672 out: 673 i915_gem_object_unpin_pages(obj); 674 675 return ret; 676 } 677 678 /** 679 * Reads data from the object referenced by handle. 680 * 681 * On error, the contents of *data are undefined. 682 */ 683 int 684 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 685 struct drm_file *file) 686 { 687 struct drm_i915_gem_pread *args = data; 688 struct drm_i915_gem_object *obj; 689 int ret = 0; 690 691 if (args->size == 0) 692 return 0; 693 694 if (!access_ok(VERIFY_WRITE, 695 to_user_ptr(args->data_ptr), 696 args->size)) 697 return -EFAULT; 698 699 ret = i915_mutex_lock_interruptible(dev); 700 if (ret) 701 return ret; 702 703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 704 if (&obj->base == NULL) { 705 ret = -ENOENT; 706 goto unlock; 707 } 708 709 /* Bounds check source. */ 710 if (args->offset > obj->base.size || 711 args->size > obj->base.size - args->offset) { 712 ret = -EINVAL; 713 goto out; 714 } 715 716 /* prime objects have no backing filp to GEM pread/pwrite 717 * pages from. 718 */ 719 if (!obj->base.filp) { 720 ret = -EINVAL; 721 goto out; 722 } 723 724 trace_i915_gem_object_pread(obj, args->offset, args->size); 725 726 ret = i915_gem_shmem_pread(dev, obj, args, file); 727 728 out: 729 drm_gem_object_unreference(&obj->base); 730 unlock: 731 mutex_unlock(&dev->struct_mutex); 732 return ret; 733 } 734 735 /* This is the fast write path which cannot handle 736 * page faults in the source data 737 */ 738 739 static inline int 740 fast_user_write(struct io_mapping *mapping, 741 loff_t page_base, int page_offset, 742 char __user *user_data, 743 int length) 744 { 745 void __iomem *vaddr_atomic; 746 void *vaddr; 747 unsigned long unwritten; 748 749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base); 750 /* We can use the cpu mem copy function because this is X86. */ 751 vaddr = (void __force*)vaddr_atomic + page_offset; 752 unwritten = __copy_from_user_inatomic_nocache(vaddr, 753 user_data, length); 754 io_mapping_unmap_atomic(vaddr_atomic); 755 return unwritten; 756 } 757 758 /** 759 * This is the fast pwrite path, where we copy the data directly from the 760 * user into the GTT, uncached. 761 */ 762 static int 763 i915_gem_gtt_pwrite_fast(struct drm_device *dev, 764 struct drm_i915_gem_object *obj, 765 struct drm_i915_gem_pwrite *args, 766 struct drm_file *file) 767 { 768 struct drm_i915_private *dev_priv = dev->dev_private; 769 ssize_t remain; 770 loff_t offset, page_base; 771 char __user *user_data; 772 int page_offset, page_length, ret; 773 774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK); 775 if (ret) 776 goto out; 777 778 ret = i915_gem_object_set_to_gtt_domain(obj, true); 779 if (ret) 780 goto out_unpin; 781 782 ret = i915_gem_object_put_fence(obj); 783 if (ret) 784 goto out_unpin; 785 786 user_data = to_user_ptr(args->data_ptr); 787 remain = args->size; 788 789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset; 790 791 intel_fb_obj_invalidate(obj, ORIGIN_GTT); 792 793 while (remain > 0) { 794 /* Operation in this page 795 * 796 * page_base = page offset within aperture 797 * page_offset = offset within page 798 * page_length = bytes to copy for this page 799 */ 800 page_base = offset & PAGE_MASK; 801 page_offset = offset_in_page(offset); 802 page_length = remain; 803 if ((page_offset + remain) > PAGE_SIZE) 804 page_length = PAGE_SIZE - page_offset; 805 806 /* If we get a fault while copying data, then (presumably) our 807 * source page isn't available. Return the error and we'll 808 * retry in the slow path. 809 */ 810 if (fast_user_write(dev_priv->gtt.mappable, page_base, 811 page_offset, user_data, page_length)) { 812 ret = -EFAULT; 813 goto out_flush; 814 } 815 816 remain -= page_length; 817 user_data += page_length; 818 offset += page_length; 819 } 820 821 out_flush: 822 intel_fb_obj_flush(obj, false, ORIGIN_GTT); 823 out_unpin: 824 i915_gem_object_ggtt_unpin(obj); 825 out: 826 return ret; 827 } 828 829 /* Per-page copy function for the shmem pwrite fastpath. 830 * Flushes invalid cachelines before writing to the target if 831 * needs_clflush_before is set and flushes out any written cachelines after 832 * writing if needs_clflush is set. */ 833 static int 834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length, 835 char __user *user_data, 836 bool page_do_bit17_swizzling, 837 bool needs_clflush_before, 838 bool needs_clflush_after) 839 { 840 char *vaddr; 841 int ret; 842 843 if (unlikely(page_do_bit17_swizzling)) 844 return -EINVAL; 845 846 vaddr = kmap_atomic(page); 847 if (needs_clflush_before) 848 drm_clflush_virt_range(vaddr + shmem_page_offset, 849 page_length); 850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset, 851 user_data, page_length); 852 if (needs_clflush_after) 853 drm_clflush_virt_range(vaddr + shmem_page_offset, 854 page_length); 855 kunmap_atomic(vaddr); 856 857 return ret ? -EFAULT : 0; 858 } 859 860 /* Only difference to the fast-path function is that this can handle bit17 861 * and uses non-atomic copy and kmap functions. */ 862 static int 863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length, 864 char __user *user_data, 865 bool page_do_bit17_swizzling, 866 bool needs_clflush_before, 867 bool needs_clflush_after) 868 { 869 char *vaddr; 870 int ret; 871 872 vaddr = kmap(page); 873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) 874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 875 page_length, 876 page_do_bit17_swizzling); 877 if (page_do_bit17_swizzling) 878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset, 879 user_data, 880 page_length); 881 else 882 ret = __copy_from_user(vaddr + shmem_page_offset, 883 user_data, 884 page_length); 885 if (needs_clflush_after) 886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 887 page_length, 888 page_do_bit17_swizzling); 889 kunmap(page); 890 891 return ret ? -EFAULT : 0; 892 } 893 894 static int 895 i915_gem_shmem_pwrite(struct drm_device *dev, 896 struct drm_i915_gem_object *obj, 897 struct drm_i915_gem_pwrite *args, 898 struct drm_file *file) 899 { 900 ssize_t remain; 901 loff_t offset; 902 char __user *user_data; 903 int shmem_page_offset, page_length, ret = 0; 904 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 905 int hit_slowpath = 0; 906 int needs_clflush_after = 0; 907 int needs_clflush_before = 0; 908 struct sg_page_iter sg_iter; 909 910 user_data = to_user_ptr(args->data_ptr); 911 remain = args->size; 912 913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 914 915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 916 /* If we're not in the cpu write domain, set ourself into the gtt 917 * write domain and manually flush cachelines (if required). This 918 * optimizes for the case when the gpu will use the data 919 * right away and we therefore have to clflush anyway. */ 920 needs_clflush_after = cpu_write_needs_clflush(obj); 921 ret = i915_gem_object_wait_rendering(obj, false); 922 if (ret) 923 return ret; 924 } 925 /* Same trick applies to invalidate partially written cachelines read 926 * before writing. */ 927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) 928 needs_clflush_before = 929 !cpu_cache_is_coherent(dev, obj->cache_level); 930 931 ret = i915_gem_object_get_pages(obj); 932 if (ret) 933 return ret; 934 935 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 936 937 i915_gem_object_pin_pages(obj); 938 939 offset = args->offset; 940 obj->dirty = 1; 941 942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 943 offset >> PAGE_SHIFT) { 944 struct page *page = sg_page_iter_page(&sg_iter); 945 int partial_cacheline_write; 946 947 if (remain <= 0) 948 break; 949 950 /* Operation in this page 951 * 952 * shmem_page_offset = offset within page in shmem file 953 * page_length = bytes to copy for this page 954 */ 955 shmem_page_offset = offset_in_page(offset); 956 957 page_length = remain; 958 if ((shmem_page_offset + page_length) > PAGE_SIZE) 959 page_length = PAGE_SIZE - shmem_page_offset; 960 961 /* If we don't overwrite a cacheline completely we need to be 962 * careful to have up-to-date data by first clflushing. Don't 963 * overcomplicate things and flush the entire patch. */ 964 partial_cacheline_write = needs_clflush_before && 965 ((shmem_page_offset | page_length) 966 & (boot_cpu_data.x86_clflush_size - 1)); 967 968 page_do_bit17_swizzling = obj_do_bit17_swizzling && 969 (page_to_phys(page) & (1 << 17)) != 0; 970 971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length, 972 user_data, page_do_bit17_swizzling, 973 partial_cacheline_write, 974 needs_clflush_after); 975 if (ret == 0) 976 goto next_page; 977 978 hit_slowpath = 1; 979 mutex_unlock(&dev->struct_mutex); 980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length, 981 user_data, page_do_bit17_swizzling, 982 partial_cacheline_write, 983 needs_clflush_after); 984 985 mutex_lock(&dev->struct_mutex); 986 987 if (ret) 988 goto out; 989 990 next_page: 991 remain -= page_length; 992 user_data += page_length; 993 offset += page_length; 994 } 995 996 out: 997 i915_gem_object_unpin_pages(obj); 998 999 if (hit_slowpath) { 1000 /* 1001 * Fixup: Flush cpu caches in case we didn't flush the dirty 1002 * cachelines in-line while writing and the object moved 1003 * out of the cpu write domain while we've dropped the lock. 1004 */ 1005 if (!needs_clflush_after && 1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 1007 if (i915_gem_clflush_object(obj, obj->pin_display)) 1008 needs_clflush_after = true; 1009 } 1010 } 1011 1012 if (needs_clflush_after) 1013 i915_gem_chipset_flush(dev); 1014 else 1015 obj->cache_dirty = true; 1016 1017 intel_fb_obj_flush(obj, false, ORIGIN_CPU); 1018 return ret; 1019 } 1020 1021 /** 1022 * Writes data to the object referenced by handle. 1023 * 1024 * On error, the contents of the buffer that were to be modified are undefined. 1025 */ 1026 int 1027 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 1028 struct drm_file *file) 1029 { 1030 struct drm_i915_private *dev_priv = dev->dev_private; 1031 struct drm_i915_gem_pwrite *args = data; 1032 struct drm_i915_gem_object *obj; 1033 int ret; 1034 1035 if (args->size == 0) 1036 return 0; 1037 1038 if (!access_ok(VERIFY_READ, 1039 to_user_ptr(args->data_ptr), 1040 args->size)) 1041 return -EFAULT; 1042 1043 if (likely(!i915.prefault_disable)) { 1044 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr), 1045 args->size); 1046 if (ret) 1047 return -EFAULT; 1048 } 1049 1050 intel_runtime_pm_get(dev_priv); 1051 1052 ret = i915_mutex_lock_interruptible(dev); 1053 if (ret) 1054 goto put_rpm; 1055 1056 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1057 if (&obj->base == NULL) { 1058 ret = -ENOENT; 1059 goto unlock; 1060 } 1061 1062 /* Bounds check destination. */ 1063 if (args->offset > obj->base.size || 1064 args->size > obj->base.size - args->offset) { 1065 ret = -EINVAL; 1066 goto out; 1067 } 1068 1069 /* prime objects have no backing filp to GEM pread/pwrite 1070 * pages from. 1071 */ 1072 if (!obj->base.filp) { 1073 ret = -EINVAL; 1074 goto out; 1075 } 1076 1077 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 1078 1079 ret = -EFAULT; 1080 /* We can only do the GTT pwrite on untiled buffers, as otherwise 1081 * it would end up going through the fenced access, and we'll get 1082 * different detiling behavior between reading and writing. 1083 * pread/pwrite currently are reading and writing from the CPU 1084 * perspective, requiring manual detiling by the client. 1085 */ 1086 if (obj->tiling_mode == I915_TILING_NONE && 1087 obj->base.write_domain != I915_GEM_DOMAIN_CPU && 1088 cpu_write_needs_clflush(obj)) { 1089 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file); 1090 /* Note that the gtt paths might fail with non-page-backed user 1091 * pointers (e.g. gtt mappings when moving data between 1092 * textures). Fallback to the shmem path in that case. */ 1093 } 1094 1095 if (ret == -EFAULT || ret == -ENOSPC) { 1096 if (obj->phys_handle) 1097 ret = i915_gem_phys_pwrite(obj, args, file); 1098 else 1099 ret = i915_gem_shmem_pwrite(dev, obj, args, file); 1100 } 1101 1102 out: 1103 drm_gem_object_unreference(&obj->base); 1104 unlock: 1105 mutex_unlock(&dev->struct_mutex); 1106 put_rpm: 1107 intel_runtime_pm_put(dev_priv); 1108 1109 return ret; 1110 } 1111 1112 int 1113 i915_gem_check_wedge(struct i915_gpu_error *error, 1114 bool interruptible) 1115 { 1116 if (i915_reset_in_progress(error)) { 1117 /* Non-interruptible callers can't handle -EAGAIN, hence return 1118 * -EIO unconditionally for these. */ 1119 if (!interruptible) 1120 return -EIO; 1121 1122 /* Recovery complete, but the reset failed ... */ 1123 if (i915_terminally_wedged(error)) 1124 return -EIO; 1125 1126 /* 1127 * Check if GPU Reset is in progress - we need intel_ring_begin 1128 * to work properly to reinit the hw state while the gpu is 1129 * still marked as reset-in-progress. Handle this with a flag. 1130 */ 1131 if (!error->reload_in_reset) 1132 return -EAGAIN; 1133 } 1134 1135 return 0; 1136 } 1137 1138 static void fake_irq(unsigned long data) 1139 { 1140 wake_up_process((struct task_struct *)data); 1141 } 1142 1143 static bool missed_irq(struct drm_i915_private *dev_priv, 1144 struct intel_engine_cs *ring) 1145 { 1146 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings); 1147 } 1148 1149 static unsigned long local_clock_us(unsigned *cpu) 1150 { 1151 unsigned long t; 1152 1153 /* Cheaply and approximately convert from nanoseconds to microseconds. 1154 * The result and subsequent calculations are also defined in the same 1155 * approximate microseconds units. The principal source of timing 1156 * error here is from the simple truncation. 1157 * 1158 * Note that local_clock() is only defined wrt to the current CPU; 1159 * the comparisons are no longer valid if we switch CPUs. Instead of 1160 * blocking preemption for the entire busywait, we can detect the CPU 1161 * switch and use that as indicator of system load and a reason to 1162 * stop busywaiting, see busywait_stop(). 1163 */ 1164 *cpu = get_cpu(); 1165 t = local_clock() >> 10; 1166 put_cpu(); 1167 1168 return t; 1169 } 1170 1171 static bool busywait_stop(unsigned long timeout, unsigned cpu) 1172 { 1173 unsigned this_cpu; 1174 1175 if (time_after(local_clock_us(&this_cpu), timeout)) 1176 return true; 1177 1178 return this_cpu != cpu; 1179 } 1180 1181 static int __i915_spin_request(struct drm_i915_gem_request *req, int state) 1182 { 1183 unsigned long timeout; 1184 unsigned cpu; 1185 1186 /* When waiting for high frequency requests, e.g. during synchronous 1187 * rendering split between the CPU and GPU, the finite amount of time 1188 * required to set up the irq and wait upon it limits the response 1189 * rate. By busywaiting on the request completion for a short while we 1190 * can service the high frequency waits as quick as possible. However, 1191 * if it is a slow request, we want to sleep as quickly as possible. 1192 * The tradeoff between waiting and sleeping is roughly the time it 1193 * takes to sleep on a request, on the order of a microsecond. 1194 */ 1195 1196 if (req->ring->irq_refcount) 1197 return -EBUSY; 1198 1199 /* Only spin if we know the GPU is processing this request */ 1200 if (!i915_gem_request_started(req, true)) 1201 return -EAGAIN; 1202 1203 timeout = local_clock_us(&cpu) + 5; 1204 while (!need_resched()) { 1205 if (i915_gem_request_completed(req, true)) 1206 return 0; 1207 1208 if (signal_pending_state(state, current)) 1209 break; 1210 1211 if (busywait_stop(timeout, cpu)) 1212 break; 1213 1214 cpu_relax_lowlatency(); 1215 } 1216 1217 if (i915_gem_request_completed(req, false)) 1218 return 0; 1219 1220 return -EAGAIN; 1221 } 1222 1223 /** 1224 * __i915_wait_request - wait until execution of request has finished 1225 * @req: duh! 1226 * @reset_counter: reset sequence associated with the given request 1227 * @interruptible: do an interruptible wait (normally yes) 1228 * @timeout: in - how long to wait (NULL forever); out - how much time remaining 1229 * 1230 * Note: It is of utmost importance that the passed in seqno and reset_counter 1231 * values have been read by the caller in an smp safe manner. Where read-side 1232 * locks are involved, it is sufficient to read the reset_counter before 1233 * unlocking the lock that protects the seqno. For lockless tricks, the 1234 * reset_counter _must_ be read before, and an appropriate smp_rmb must be 1235 * inserted. 1236 * 1237 * Returns 0 if the request was found within the alloted time. Else returns the 1238 * errno with remaining time filled in timeout argument. 1239 */ 1240 int __i915_wait_request(struct drm_i915_gem_request *req, 1241 unsigned reset_counter, 1242 bool interruptible, 1243 s64 *timeout, 1244 struct intel_rps_client *rps) 1245 { 1246 struct intel_engine_cs *ring = i915_gem_request_get_ring(req); 1247 struct drm_device *dev = ring->dev; 1248 struct drm_i915_private *dev_priv = dev->dev_private; 1249 const bool irq_test_in_progress = 1250 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring); 1251 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1252 DEFINE_WAIT(wait); 1253 unsigned long timeout_expire; 1254 s64 before, now; 1255 int ret; 1256 1257 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled"); 1258 1259 if (list_empty(&req->list)) 1260 return 0; 1261 1262 if (i915_gem_request_completed(req, true)) 1263 return 0; 1264 1265 timeout_expire = 0; 1266 if (timeout) { 1267 if (WARN_ON(*timeout < 0)) 1268 return -EINVAL; 1269 1270 if (*timeout == 0) 1271 return -ETIME; 1272 1273 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout); 1274 } 1275 1276 if (INTEL_INFO(dev_priv)->gen >= 6) 1277 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies); 1278 1279 /* Record current time in case interrupted by signal, or wedged */ 1280 trace_i915_gem_request_wait_begin(req); 1281 before = ktime_get_raw_ns(); 1282 1283 /* Optimistic spin for the next jiffie before touching IRQs */ 1284 ret = __i915_spin_request(req, state); 1285 if (ret == 0) 1286 goto out; 1287 1288 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) { 1289 ret = -ENODEV; 1290 goto out; 1291 } 1292 1293 for (;;) { 1294 struct timer_list timer; 1295 1296 prepare_to_wait(&ring->irq_queue, &wait, state); 1297 1298 /* We need to check whether any gpu reset happened in between 1299 * the caller grabbing the seqno and now ... */ 1300 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) { 1301 /* ... but upgrade the -EAGAIN to an -EIO if the gpu 1302 * is truely gone. */ 1303 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1304 if (ret == 0) 1305 ret = -EAGAIN; 1306 break; 1307 } 1308 1309 if (i915_gem_request_completed(req, false)) { 1310 ret = 0; 1311 break; 1312 } 1313 1314 if (signal_pending_state(state, current)) { 1315 ret = -ERESTARTSYS; 1316 break; 1317 } 1318 1319 if (timeout && time_after_eq(jiffies, timeout_expire)) { 1320 ret = -ETIME; 1321 break; 1322 } 1323 1324 timer.function = NULL; 1325 if (timeout || missed_irq(dev_priv, ring)) { 1326 unsigned long expire; 1327 1328 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current); 1329 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire; 1330 mod_timer(&timer, expire); 1331 } 1332 1333 io_schedule(); 1334 1335 if (timer.function) { 1336 del_singleshot_timer_sync(&timer); 1337 destroy_timer_on_stack(&timer); 1338 } 1339 } 1340 if (!irq_test_in_progress) 1341 ring->irq_put(ring); 1342 1343 finish_wait(&ring->irq_queue, &wait); 1344 1345 out: 1346 now = ktime_get_raw_ns(); 1347 trace_i915_gem_request_wait_end(req); 1348 1349 if (timeout) { 1350 s64 tres = *timeout - (now - before); 1351 1352 *timeout = tres < 0 ? 0 : tres; 1353 1354 /* 1355 * Apparently ktime isn't accurate enough and occasionally has a 1356 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch 1357 * things up to make the test happy. We allow up to 1 jiffy. 1358 * 1359 * This is a regrssion from the timespec->ktime conversion. 1360 */ 1361 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000) 1362 *timeout = 0; 1363 } 1364 1365 return ret; 1366 } 1367 1368 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req, 1369 struct drm_file *file) 1370 { 1371 struct drm_i915_private *dev_private; 1372 struct drm_i915_file_private *file_priv; 1373 1374 WARN_ON(!req || !file || req->file_priv); 1375 1376 if (!req || !file) 1377 return -EINVAL; 1378 1379 if (req->file_priv) 1380 return -EINVAL; 1381 1382 dev_private = req->ring->dev->dev_private; 1383 file_priv = file->driver_priv; 1384 1385 spin_lock(&file_priv->mm.lock); 1386 req->file_priv = file_priv; 1387 list_add_tail(&req->client_list, &file_priv->mm.request_list); 1388 spin_unlock(&file_priv->mm.lock); 1389 1390 req->pid = get_pid(task_pid(current)); 1391 1392 return 0; 1393 } 1394 1395 static inline void 1396 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request) 1397 { 1398 struct drm_i915_file_private *file_priv = request->file_priv; 1399 1400 if (!file_priv) 1401 return; 1402 1403 spin_lock(&file_priv->mm.lock); 1404 list_del(&request->client_list); 1405 request->file_priv = NULL; 1406 spin_unlock(&file_priv->mm.lock); 1407 1408 put_pid(request->pid); 1409 request->pid = NULL; 1410 } 1411 1412 static void i915_gem_request_retire(struct drm_i915_gem_request *request) 1413 { 1414 trace_i915_gem_request_retire(request); 1415 1416 /* We know the GPU must have read the request to have 1417 * sent us the seqno + interrupt, so use the position 1418 * of tail of the request to update the last known position 1419 * of the GPU head. 1420 * 1421 * Note this requires that we are always called in request 1422 * completion order. 1423 */ 1424 request->ringbuf->last_retired_head = request->postfix; 1425 1426 list_del_init(&request->list); 1427 i915_gem_request_remove_from_client(request); 1428 1429 i915_gem_request_unreference(request); 1430 } 1431 1432 static void 1433 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req) 1434 { 1435 struct intel_engine_cs *engine = req->ring; 1436 struct drm_i915_gem_request *tmp; 1437 1438 lockdep_assert_held(&engine->dev->struct_mutex); 1439 1440 if (list_empty(&req->list)) 1441 return; 1442 1443 do { 1444 tmp = list_first_entry(&engine->request_list, 1445 typeof(*tmp), list); 1446 1447 i915_gem_request_retire(tmp); 1448 } while (tmp != req); 1449 1450 WARN_ON(i915_verify_lists(engine->dev)); 1451 } 1452 1453 /** 1454 * Waits for a request to be signaled, and cleans up the 1455 * request and object lists appropriately for that event. 1456 */ 1457 int 1458 i915_wait_request(struct drm_i915_gem_request *req) 1459 { 1460 struct drm_device *dev; 1461 struct drm_i915_private *dev_priv; 1462 bool interruptible; 1463 int ret; 1464 1465 BUG_ON(req == NULL); 1466 1467 dev = req->ring->dev; 1468 dev_priv = dev->dev_private; 1469 interruptible = dev_priv->mm.interruptible; 1470 1471 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1472 1473 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1474 if (ret) 1475 return ret; 1476 1477 ret = __i915_wait_request(req, 1478 atomic_read(&dev_priv->gpu_error.reset_counter), 1479 interruptible, NULL, NULL); 1480 if (ret) 1481 return ret; 1482 1483 __i915_gem_request_retire__upto(req); 1484 return 0; 1485 } 1486 1487 /** 1488 * Ensures that all rendering to the object has completed and the object is 1489 * safe to unbind from the GTT or access from the CPU. 1490 */ 1491 int 1492 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 1493 bool readonly) 1494 { 1495 int ret, i; 1496 1497 if (!obj->active) 1498 return 0; 1499 1500 if (readonly) { 1501 if (obj->last_write_req != NULL) { 1502 ret = i915_wait_request(obj->last_write_req); 1503 if (ret) 1504 return ret; 1505 1506 i = obj->last_write_req->ring->id; 1507 if (obj->last_read_req[i] == obj->last_write_req) 1508 i915_gem_object_retire__read(obj, i); 1509 else 1510 i915_gem_object_retire__write(obj); 1511 } 1512 } else { 1513 for (i = 0; i < I915_NUM_RINGS; i++) { 1514 if (obj->last_read_req[i] == NULL) 1515 continue; 1516 1517 ret = i915_wait_request(obj->last_read_req[i]); 1518 if (ret) 1519 return ret; 1520 1521 i915_gem_object_retire__read(obj, i); 1522 } 1523 RQ_BUG_ON(obj->active); 1524 } 1525 1526 return 0; 1527 } 1528 1529 static void 1530 i915_gem_object_retire_request(struct drm_i915_gem_object *obj, 1531 struct drm_i915_gem_request *req) 1532 { 1533 int ring = req->ring->id; 1534 1535 if (obj->last_read_req[ring] == req) 1536 i915_gem_object_retire__read(obj, ring); 1537 else if (obj->last_write_req == req) 1538 i915_gem_object_retire__write(obj); 1539 1540 __i915_gem_request_retire__upto(req); 1541 } 1542 1543 /* A nonblocking variant of the above wait. This is a highly dangerous routine 1544 * as the object state may change during this call. 1545 */ 1546 static __must_check int 1547 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj, 1548 struct intel_rps_client *rps, 1549 bool readonly) 1550 { 1551 struct drm_device *dev = obj->base.dev; 1552 struct drm_i915_private *dev_priv = dev->dev_private; 1553 struct drm_i915_gem_request *requests[I915_NUM_RINGS]; 1554 unsigned reset_counter; 1555 int ret, i, n = 0; 1556 1557 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1558 BUG_ON(!dev_priv->mm.interruptible); 1559 1560 if (!obj->active) 1561 return 0; 1562 1563 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true); 1564 if (ret) 1565 return ret; 1566 1567 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 1568 1569 if (readonly) { 1570 struct drm_i915_gem_request *req; 1571 1572 req = obj->last_write_req; 1573 if (req == NULL) 1574 return 0; 1575 1576 requests[n++] = i915_gem_request_reference(req); 1577 } else { 1578 for (i = 0; i < I915_NUM_RINGS; i++) { 1579 struct drm_i915_gem_request *req; 1580 1581 req = obj->last_read_req[i]; 1582 if (req == NULL) 1583 continue; 1584 1585 requests[n++] = i915_gem_request_reference(req); 1586 } 1587 } 1588 1589 mutex_unlock(&dev->struct_mutex); 1590 for (i = 0; ret == 0 && i < n; i++) 1591 ret = __i915_wait_request(requests[i], reset_counter, true, 1592 NULL, rps); 1593 mutex_lock(&dev->struct_mutex); 1594 1595 for (i = 0; i < n; i++) { 1596 if (ret == 0) 1597 i915_gem_object_retire_request(obj, requests[i]); 1598 i915_gem_request_unreference(requests[i]); 1599 } 1600 1601 return ret; 1602 } 1603 1604 static struct intel_rps_client *to_rps_client(struct drm_file *file) 1605 { 1606 struct drm_i915_file_private *fpriv = file->driver_priv; 1607 return &fpriv->rps; 1608 } 1609 1610 /** 1611 * Called when user space prepares to use an object with the CPU, either 1612 * through the mmap ioctl's mapping or a GTT mapping. 1613 */ 1614 int 1615 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 1616 struct drm_file *file) 1617 { 1618 struct drm_i915_gem_set_domain *args = data; 1619 struct drm_i915_gem_object *obj; 1620 uint32_t read_domains = args->read_domains; 1621 uint32_t write_domain = args->write_domain; 1622 int ret; 1623 1624 /* Only handle setting domains to types used by the CPU. */ 1625 if (write_domain & I915_GEM_GPU_DOMAINS) 1626 return -EINVAL; 1627 1628 if (read_domains & I915_GEM_GPU_DOMAINS) 1629 return -EINVAL; 1630 1631 /* Having something in the write domain implies it's in the read 1632 * domain, and only that read domain. Enforce that in the request. 1633 */ 1634 if (write_domain != 0 && read_domains != write_domain) 1635 return -EINVAL; 1636 1637 ret = i915_mutex_lock_interruptible(dev); 1638 if (ret) 1639 return ret; 1640 1641 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1642 if (&obj->base == NULL) { 1643 ret = -ENOENT; 1644 goto unlock; 1645 } 1646 1647 /* Try to flush the object off the GPU without holding the lock. 1648 * We will repeat the flush holding the lock in the normal manner 1649 * to catch cases where we are gazumped. 1650 */ 1651 ret = i915_gem_object_wait_rendering__nonblocking(obj, 1652 to_rps_client(file), 1653 !write_domain); 1654 if (ret) 1655 goto unref; 1656 1657 if (read_domains & I915_GEM_DOMAIN_GTT) 1658 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); 1659 else 1660 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); 1661 1662 if (write_domain != 0) 1663 intel_fb_obj_invalidate(obj, 1664 write_domain == I915_GEM_DOMAIN_GTT ? 1665 ORIGIN_GTT : ORIGIN_CPU); 1666 1667 unref: 1668 drm_gem_object_unreference(&obj->base); 1669 unlock: 1670 mutex_unlock(&dev->struct_mutex); 1671 return ret; 1672 } 1673 1674 /** 1675 * Called when user space has done writes to this buffer 1676 */ 1677 int 1678 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1679 struct drm_file *file) 1680 { 1681 struct drm_i915_gem_sw_finish *args = data; 1682 struct drm_i915_gem_object *obj; 1683 int ret = 0; 1684 1685 ret = i915_mutex_lock_interruptible(dev); 1686 if (ret) 1687 return ret; 1688 1689 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1690 if (&obj->base == NULL) { 1691 ret = -ENOENT; 1692 goto unlock; 1693 } 1694 1695 /* Pinned buffers may be scanout, so flush the cache */ 1696 if (obj->pin_display) 1697 i915_gem_object_flush_cpu_write_domain(obj); 1698 1699 drm_gem_object_unreference(&obj->base); 1700 unlock: 1701 mutex_unlock(&dev->struct_mutex); 1702 return ret; 1703 } 1704 1705 /** 1706 * Maps the contents of an object, returning the address it is mapped 1707 * into. 1708 * 1709 * While the mapping holds a reference on the contents of the object, it doesn't 1710 * imply a ref on the object itself. 1711 * 1712 * IMPORTANT: 1713 * 1714 * DRM driver writers who look a this function as an example for how to do GEM 1715 * mmap support, please don't implement mmap support like here. The modern way 1716 * to implement DRM mmap support is with an mmap offset ioctl (like 1717 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly. 1718 * That way debug tooling like valgrind will understand what's going on, hiding 1719 * the mmap call in a driver private ioctl will break that. The i915 driver only 1720 * does cpu mmaps this way because we didn't know better. 1721 */ 1722 int 1723 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1724 struct drm_file *file) 1725 { 1726 struct drm_i915_gem_mmap *args = data; 1727 struct drm_gem_object *obj; 1728 unsigned long addr; 1729 1730 if (args->flags & ~(I915_MMAP_WC)) 1731 return -EINVAL; 1732 1733 if (args->flags & I915_MMAP_WC && !cpu_has_pat) 1734 return -ENODEV; 1735 1736 obj = drm_gem_object_lookup(dev, file, args->handle); 1737 if (obj == NULL) 1738 return -ENOENT; 1739 1740 /* prime objects have no backing filp to GEM mmap 1741 * pages from. 1742 */ 1743 if (!obj->filp) { 1744 drm_gem_object_unreference_unlocked(obj); 1745 return -EINVAL; 1746 } 1747 1748 addr = vm_mmap(obj->filp, 0, args->size, 1749 PROT_READ | PROT_WRITE, MAP_SHARED, 1750 args->offset); 1751 if (args->flags & I915_MMAP_WC) { 1752 struct mm_struct *mm = current->mm; 1753 struct vm_area_struct *vma; 1754 1755 down_write(&mm->mmap_sem); 1756 vma = find_vma(mm, addr); 1757 if (vma) 1758 vma->vm_page_prot = 1759 pgprot_writecombine(vm_get_page_prot(vma->vm_flags)); 1760 else 1761 addr = -ENOMEM; 1762 up_write(&mm->mmap_sem); 1763 } 1764 drm_gem_object_unreference_unlocked(obj); 1765 if (IS_ERR((void *)addr)) 1766 return addr; 1767 1768 args->addr_ptr = (uint64_t) addr; 1769 1770 return 0; 1771 } 1772 1773 /** 1774 * i915_gem_fault - fault a page into the GTT 1775 * @vma: VMA in question 1776 * @vmf: fault info 1777 * 1778 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1779 * from userspace. The fault handler takes care of binding the object to 1780 * the GTT (if needed), allocating and programming a fence register (again, 1781 * only if needed based on whether the old reg is still valid or the object 1782 * is tiled) and inserting a new PTE into the faulting process. 1783 * 1784 * Note that the faulting process may involve evicting existing objects 1785 * from the GTT and/or fence registers to make room. So performance may 1786 * suffer if the GTT working set is large or there are few fence registers 1787 * left. 1788 */ 1789 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1790 { 1791 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data); 1792 struct drm_device *dev = obj->base.dev; 1793 struct drm_i915_private *dev_priv = dev->dev_private; 1794 struct i915_ggtt_view view = i915_ggtt_view_normal; 1795 pgoff_t page_offset; 1796 unsigned long pfn; 1797 int ret = 0; 1798 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 1799 1800 intel_runtime_pm_get(dev_priv); 1801 1802 /* We don't use vmf->pgoff since that has the fake offset */ 1803 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >> 1804 PAGE_SHIFT; 1805 1806 ret = i915_mutex_lock_interruptible(dev); 1807 if (ret) 1808 goto out; 1809 1810 trace_i915_gem_object_fault(obj, page_offset, true, write); 1811 1812 /* Try to flush the object off the GPU first without holding the lock. 1813 * Upon reacquiring the lock, we will perform our sanity checks and then 1814 * repeat the flush holding the lock in the normal manner to catch cases 1815 * where we are gazumped. 1816 */ 1817 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write); 1818 if (ret) 1819 goto unlock; 1820 1821 /* Access to snoopable pages through the GTT is incoherent. */ 1822 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) { 1823 ret = -EFAULT; 1824 goto unlock; 1825 } 1826 1827 /* Use a partial view if the object is bigger than the aperture. */ 1828 if (obj->base.size >= dev_priv->gtt.mappable_end && 1829 obj->tiling_mode == I915_TILING_NONE) { 1830 static const unsigned int chunk_size = 256; // 1 MiB 1831 1832 memset(&view, 0, sizeof(view)); 1833 view.type = I915_GGTT_VIEW_PARTIAL; 1834 view.params.partial.offset = rounddown(page_offset, chunk_size); 1835 view.params.partial.size = 1836 min_t(unsigned int, 1837 chunk_size, 1838 (vma->vm_end - vma->vm_start)/PAGE_SIZE - 1839 view.params.partial.offset); 1840 } 1841 1842 /* Now pin it into the GTT if needed */ 1843 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE); 1844 if (ret) 1845 goto unlock; 1846 1847 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1848 if (ret) 1849 goto unpin; 1850 1851 ret = i915_gem_object_get_fence(obj); 1852 if (ret) 1853 goto unpin; 1854 1855 /* Finally, remap it using the new GTT offset */ 1856 pfn = dev_priv->gtt.mappable_base + 1857 i915_gem_obj_ggtt_offset_view(obj, &view); 1858 pfn >>= PAGE_SHIFT; 1859 1860 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) { 1861 /* Overriding existing pages in partial view does not cause 1862 * us any trouble as TLBs are still valid because the fault 1863 * is due to userspace losing part of the mapping or never 1864 * having accessed it before (at this partials' range). 1865 */ 1866 unsigned long base = vma->vm_start + 1867 (view.params.partial.offset << PAGE_SHIFT); 1868 unsigned int i; 1869 1870 for (i = 0; i < view.params.partial.size; i++) { 1871 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i); 1872 if (ret) 1873 break; 1874 } 1875 1876 obj->fault_mappable = true; 1877 } else { 1878 if (!obj->fault_mappable) { 1879 unsigned long size = min_t(unsigned long, 1880 vma->vm_end - vma->vm_start, 1881 obj->base.size); 1882 int i; 1883 1884 for (i = 0; i < size >> PAGE_SHIFT; i++) { 1885 ret = vm_insert_pfn(vma, 1886 (unsigned long)vma->vm_start + i * PAGE_SIZE, 1887 pfn + i); 1888 if (ret) 1889 break; 1890 } 1891 1892 obj->fault_mappable = true; 1893 } else 1894 ret = vm_insert_pfn(vma, 1895 (unsigned long)vmf->virtual_address, 1896 pfn + page_offset); 1897 } 1898 unpin: 1899 i915_gem_object_ggtt_unpin_view(obj, &view); 1900 unlock: 1901 mutex_unlock(&dev->struct_mutex); 1902 out: 1903 switch (ret) { 1904 case -EIO: 1905 /* 1906 * We eat errors when the gpu is terminally wedged to avoid 1907 * userspace unduly crashing (gl has no provisions for mmaps to 1908 * fail). But any other -EIO isn't ours (e.g. swap in failure) 1909 * and so needs to be reported. 1910 */ 1911 if (!i915_terminally_wedged(&dev_priv->gpu_error)) { 1912 ret = VM_FAULT_SIGBUS; 1913 break; 1914 } 1915 case -EAGAIN: 1916 /* 1917 * EAGAIN means the gpu is hung and we'll wait for the error 1918 * handler to reset everything when re-faulting in 1919 * i915_mutex_lock_interruptible. 1920 */ 1921 case 0: 1922 case -ERESTARTSYS: 1923 case -EINTR: 1924 case -EBUSY: 1925 /* 1926 * EBUSY is ok: this just means that another thread 1927 * already did the job. 1928 */ 1929 ret = VM_FAULT_NOPAGE; 1930 break; 1931 case -ENOMEM: 1932 ret = VM_FAULT_OOM; 1933 break; 1934 case -ENOSPC: 1935 case -EFAULT: 1936 ret = VM_FAULT_SIGBUS; 1937 break; 1938 default: 1939 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); 1940 ret = VM_FAULT_SIGBUS; 1941 break; 1942 } 1943 1944 intel_runtime_pm_put(dev_priv); 1945 return ret; 1946 } 1947 1948 /** 1949 * i915_gem_release_mmap - remove physical page mappings 1950 * @obj: obj in question 1951 * 1952 * Preserve the reservation of the mmapping with the DRM core code, but 1953 * relinquish ownership of the pages back to the system. 1954 * 1955 * It is vital that we remove the page mapping if we have mapped a tiled 1956 * object through the GTT and then lose the fence register due to 1957 * resource pressure. Similarly if the object has been moved out of the 1958 * aperture, than pages mapped into userspace must be revoked. Removing the 1959 * mapping will then trigger a page fault on the next user access, allowing 1960 * fixup by i915_gem_fault(). 1961 */ 1962 void 1963 i915_gem_release_mmap(struct drm_i915_gem_object *obj) 1964 { 1965 if (!obj->fault_mappable) 1966 return; 1967 1968 drm_vma_node_unmap(&obj->base.vma_node, 1969 obj->base.dev->anon_inode->i_mapping); 1970 obj->fault_mappable = false; 1971 } 1972 1973 void 1974 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv) 1975 { 1976 struct drm_i915_gem_object *obj; 1977 1978 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) 1979 i915_gem_release_mmap(obj); 1980 } 1981 1982 uint32_t 1983 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode) 1984 { 1985 uint32_t gtt_size; 1986 1987 if (INTEL_INFO(dev)->gen >= 4 || 1988 tiling_mode == I915_TILING_NONE) 1989 return size; 1990 1991 /* Previous chips need a power-of-two fence region when tiling */ 1992 if (INTEL_INFO(dev)->gen == 3) 1993 gtt_size = 1024*1024; 1994 else 1995 gtt_size = 512*1024; 1996 1997 while (gtt_size < size) 1998 gtt_size <<= 1; 1999 2000 return gtt_size; 2001 } 2002 2003 /** 2004 * i915_gem_get_gtt_alignment - return required GTT alignment for an object 2005 * @obj: object to check 2006 * 2007 * Return the required GTT alignment for an object, taking into account 2008 * potential fence register mapping. 2009 */ 2010 uint32_t 2011 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size, 2012 int tiling_mode, bool fenced) 2013 { 2014 /* 2015 * Minimum alignment is 4k (GTT page size), but might be greater 2016 * if a fence register is needed for the object. 2017 */ 2018 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) || 2019 tiling_mode == I915_TILING_NONE) 2020 return 4096; 2021 2022 /* 2023 * Previous chips need to be aligned to the size of the smallest 2024 * fence register that can contain the object. 2025 */ 2026 return i915_gem_get_gtt_size(dev, size, tiling_mode); 2027 } 2028 2029 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) 2030 { 2031 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2032 int ret; 2033 2034 if (drm_vma_node_has_offset(&obj->base.vma_node)) 2035 return 0; 2036 2037 dev_priv->mm.shrinker_no_lock_stealing = true; 2038 2039 ret = drm_gem_create_mmap_offset(&obj->base); 2040 if (ret != -ENOSPC) 2041 goto out; 2042 2043 /* Badly fragmented mmap space? The only way we can recover 2044 * space is by destroying unwanted objects. We can't randomly release 2045 * mmap_offsets as userspace expects them to be persistent for the 2046 * lifetime of the objects. The closest we can is to release the 2047 * offsets on purgeable objects by truncating it and marking it purged, 2048 * which prevents userspace from ever using that object again. 2049 */ 2050 i915_gem_shrink(dev_priv, 2051 obj->base.size >> PAGE_SHIFT, 2052 I915_SHRINK_BOUND | 2053 I915_SHRINK_UNBOUND | 2054 I915_SHRINK_PURGEABLE); 2055 ret = drm_gem_create_mmap_offset(&obj->base); 2056 if (ret != -ENOSPC) 2057 goto out; 2058 2059 i915_gem_shrink_all(dev_priv); 2060 ret = drm_gem_create_mmap_offset(&obj->base); 2061 out: 2062 dev_priv->mm.shrinker_no_lock_stealing = false; 2063 2064 return ret; 2065 } 2066 2067 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) 2068 { 2069 drm_gem_free_mmap_offset(&obj->base); 2070 } 2071 2072 int 2073 i915_gem_mmap_gtt(struct drm_file *file, 2074 struct drm_device *dev, 2075 uint32_t handle, 2076 uint64_t *offset) 2077 { 2078 struct drm_i915_gem_object *obj; 2079 int ret; 2080 2081 ret = i915_mutex_lock_interruptible(dev); 2082 if (ret) 2083 return ret; 2084 2085 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle)); 2086 if (&obj->base == NULL) { 2087 ret = -ENOENT; 2088 goto unlock; 2089 } 2090 2091 if (obj->madv != I915_MADV_WILLNEED) { 2092 DRM_DEBUG("Attempting to mmap a purgeable buffer\n"); 2093 ret = -EFAULT; 2094 goto out; 2095 } 2096 2097 ret = i915_gem_object_create_mmap_offset(obj); 2098 if (ret) 2099 goto out; 2100 2101 *offset = drm_vma_node_offset_addr(&obj->base.vma_node); 2102 2103 out: 2104 drm_gem_object_unreference(&obj->base); 2105 unlock: 2106 mutex_unlock(&dev->struct_mutex); 2107 return ret; 2108 } 2109 2110 /** 2111 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 2112 * @dev: DRM device 2113 * @data: GTT mapping ioctl data 2114 * @file: GEM object info 2115 * 2116 * Simply returns the fake offset to userspace so it can mmap it. 2117 * The mmap call will end up in drm_gem_mmap(), which will set things 2118 * up so we can get faults in the handler above. 2119 * 2120 * The fault handler will take care of binding the object into the GTT 2121 * (since it may have been evicted to make room for something), allocating 2122 * a fence register, and mapping the appropriate aperture address into 2123 * userspace. 2124 */ 2125 int 2126 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 2127 struct drm_file *file) 2128 { 2129 struct drm_i915_gem_mmap_gtt *args = data; 2130 2131 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); 2132 } 2133 2134 /* Immediately discard the backing storage */ 2135 static void 2136 i915_gem_object_truncate(struct drm_i915_gem_object *obj) 2137 { 2138 i915_gem_object_free_mmap_offset(obj); 2139 2140 if (obj->base.filp == NULL) 2141 return; 2142 2143 /* Our goal here is to return as much of the memory as 2144 * is possible back to the system as we are called from OOM. 2145 * To do this we must instruct the shmfs to drop all of its 2146 * backing pages, *now*. 2147 */ 2148 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1); 2149 obj->madv = __I915_MADV_PURGED; 2150 } 2151 2152 /* Try to discard unwanted pages */ 2153 static void 2154 i915_gem_object_invalidate(struct drm_i915_gem_object *obj) 2155 { 2156 struct address_space *mapping; 2157 2158 switch (obj->madv) { 2159 case I915_MADV_DONTNEED: 2160 i915_gem_object_truncate(obj); 2161 case __I915_MADV_PURGED: 2162 return; 2163 } 2164 2165 if (obj->base.filp == NULL) 2166 return; 2167 2168 mapping = file_inode(obj->base.filp)->i_mapping, 2169 invalidate_mapping_pages(mapping, 0, (loff_t)-1); 2170 } 2171 2172 static void 2173 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj) 2174 { 2175 struct sg_page_iter sg_iter; 2176 int ret; 2177 2178 BUG_ON(obj->madv == __I915_MADV_PURGED); 2179 2180 ret = i915_gem_object_set_to_cpu_domain(obj, true); 2181 if (ret) { 2182 /* In the event of a disaster, abandon all caches and 2183 * hope for the best. 2184 */ 2185 WARN_ON(ret != -EIO); 2186 i915_gem_clflush_object(obj, true); 2187 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; 2188 } 2189 2190 i915_gem_gtt_finish_object(obj); 2191 2192 if (i915_gem_object_needs_bit17_swizzle(obj)) 2193 i915_gem_object_save_bit_17_swizzle(obj); 2194 2195 if (obj->madv == I915_MADV_DONTNEED) 2196 obj->dirty = 0; 2197 2198 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) { 2199 struct page *page = sg_page_iter_page(&sg_iter); 2200 2201 if (obj->dirty) 2202 set_page_dirty(page); 2203 2204 if (obj->madv == I915_MADV_WILLNEED) 2205 mark_page_accessed(page); 2206 2207 page_cache_release(page); 2208 } 2209 obj->dirty = 0; 2210 2211 sg_free_table(obj->pages); 2212 kfree(obj->pages); 2213 } 2214 2215 int 2216 i915_gem_object_put_pages(struct drm_i915_gem_object *obj) 2217 { 2218 const struct drm_i915_gem_object_ops *ops = obj->ops; 2219 2220 if (obj->pages == NULL) 2221 return 0; 2222 2223 if (obj->pages_pin_count) 2224 return -EBUSY; 2225 2226 BUG_ON(i915_gem_obj_bound_any(obj)); 2227 2228 /* ->put_pages might need to allocate memory for the bit17 swizzle 2229 * array, hence protect them from being reaped by removing them from gtt 2230 * lists early. */ 2231 list_del(&obj->global_list); 2232 2233 ops->put_pages(obj); 2234 obj->pages = NULL; 2235 2236 i915_gem_object_invalidate(obj); 2237 2238 return 0; 2239 } 2240 2241 static int 2242 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) 2243 { 2244 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2245 int page_count, i; 2246 struct address_space *mapping; 2247 struct sg_table *st; 2248 struct scatterlist *sg; 2249 struct sg_page_iter sg_iter; 2250 struct page *page; 2251 unsigned long last_pfn = 0; /* suppress gcc warning */ 2252 int ret; 2253 gfp_t gfp; 2254 2255 /* Assert that the object is not currently in any GPU domain. As it 2256 * wasn't in the GTT, there shouldn't be any way it could have been in 2257 * a GPU cache 2258 */ 2259 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); 2260 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); 2261 2262 st = kmalloc(sizeof(*st), GFP_KERNEL); 2263 if (st == NULL) 2264 return -ENOMEM; 2265 2266 page_count = obj->base.size / PAGE_SIZE; 2267 if (sg_alloc_table(st, page_count, GFP_KERNEL)) { 2268 kfree(st); 2269 return -ENOMEM; 2270 } 2271 2272 /* Get the list of pages out of our struct file. They'll be pinned 2273 * at this point until we release them. 2274 * 2275 * Fail silently without starting the shrinker 2276 */ 2277 mapping = file_inode(obj->base.filp)->i_mapping; 2278 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM)); 2279 gfp |= __GFP_NORETRY | __GFP_NOWARN; 2280 sg = st->sgl; 2281 st->nents = 0; 2282 for (i = 0; i < page_count; i++) { 2283 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 2284 if (IS_ERR(page)) { 2285 i915_gem_shrink(dev_priv, 2286 page_count, 2287 I915_SHRINK_BOUND | 2288 I915_SHRINK_UNBOUND | 2289 I915_SHRINK_PURGEABLE); 2290 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 2291 } 2292 if (IS_ERR(page)) { 2293 /* We've tried hard to allocate the memory by reaping 2294 * our own buffer, now let the real VM do its job and 2295 * go down in flames if truly OOM. 2296 */ 2297 i915_gem_shrink_all(dev_priv); 2298 page = shmem_read_mapping_page(mapping, i); 2299 if (IS_ERR(page)) { 2300 ret = PTR_ERR(page); 2301 goto err_pages; 2302 } 2303 } 2304 #ifdef CONFIG_SWIOTLB 2305 if (swiotlb_nr_tbl()) { 2306 st->nents++; 2307 sg_set_page(sg, page, PAGE_SIZE, 0); 2308 sg = sg_next(sg); 2309 continue; 2310 } 2311 #endif 2312 if (!i || page_to_pfn(page) != last_pfn + 1) { 2313 if (i) 2314 sg = sg_next(sg); 2315 st->nents++; 2316 sg_set_page(sg, page, PAGE_SIZE, 0); 2317 } else { 2318 sg->length += PAGE_SIZE; 2319 } 2320 last_pfn = page_to_pfn(page); 2321 2322 /* Check that the i965g/gm workaround works. */ 2323 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL)); 2324 } 2325 #ifdef CONFIG_SWIOTLB 2326 if (!swiotlb_nr_tbl()) 2327 #endif 2328 sg_mark_end(sg); 2329 obj->pages = st; 2330 2331 ret = i915_gem_gtt_prepare_object(obj); 2332 if (ret) 2333 goto err_pages; 2334 2335 if (i915_gem_object_needs_bit17_swizzle(obj)) 2336 i915_gem_object_do_bit_17_swizzle(obj); 2337 2338 if (obj->tiling_mode != I915_TILING_NONE && 2339 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) 2340 i915_gem_object_pin_pages(obj); 2341 2342 return 0; 2343 2344 err_pages: 2345 sg_mark_end(sg); 2346 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) 2347 page_cache_release(sg_page_iter_page(&sg_iter)); 2348 sg_free_table(st); 2349 kfree(st); 2350 2351 /* shmemfs first checks if there is enough memory to allocate the page 2352 * and reports ENOSPC should there be insufficient, along with the usual 2353 * ENOMEM for a genuine allocation failure. 2354 * 2355 * We use ENOSPC in our driver to mean that we have run out of aperture 2356 * space and so want to translate the error from shmemfs back to our 2357 * usual understanding of ENOMEM. 2358 */ 2359 if (ret == -ENOSPC) 2360 ret = -ENOMEM; 2361 2362 return ret; 2363 } 2364 2365 /* Ensure that the associated pages are gathered from the backing storage 2366 * and pinned into our object. i915_gem_object_get_pages() may be called 2367 * multiple times before they are released by a single call to 2368 * i915_gem_object_put_pages() - once the pages are no longer referenced 2369 * either as a result of memory pressure (reaping pages under the shrinker) 2370 * or as the object is itself released. 2371 */ 2372 int 2373 i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 2374 { 2375 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2376 const struct drm_i915_gem_object_ops *ops = obj->ops; 2377 int ret; 2378 2379 if (obj->pages) 2380 return 0; 2381 2382 if (obj->madv != I915_MADV_WILLNEED) { 2383 DRM_DEBUG("Attempting to obtain a purgeable object\n"); 2384 return -EFAULT; 2385 } 2386 2387 BUG_ON(obj->pages_pin_count); 2388 2389 ret = ops->get_pages(obj); 2390 if (ret) 2391 return ret; 2392 2393 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list); 2394 2395 obj->get_page.sg = obj->pages->sgl; 2396 obj->get_page.last = 0; 2397 2398 return 0; 2399 } 2400 2401 void i915_vma_move_to_active(struct i915_vma *vma, 2402 struct drm_i915_gem_request *req) 2403 { 2404 struct drm_i915_gem_object *obj = vma->obj; 2405 struct intel_engine_cs *ring; 2406 2407 ring = i915_gem_request_get_ring(req); 2408 2409 /* Add a reference if we're newly entering the active list. */ 2410 if (obj->active == 0) 2411 drm_gem_object_reference(&obj->base); 2412 obj->active |= intel_ring_flag(ring); 2413 2414 list_move_tail(&obj->ring_list[ring->id], &ring->active_list); 2415 i915_gem_request_assign(&obj->last_read_req[ring->id], req); 2416 2417 list_move_tail(&vma->mm_list, &vma->vm->active_list); 2418 } 2419 2420 static void 2421 i915_gem_object_retire__write(struct drm_i915_gem_object *obj) 2422 { 2423 RQ_BUG_ON(obj->last_write_req == NULL); 2424 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring))); 2425 2426 i915_gem_request_assign(&obj->last_write_req, NULL); 2427 intel_fb_obj_flush(obj, true, ORIGIN_CS); 2428 } 2429 2430 static void 2431 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring) 2432 { 2433 struct i915_vma *vma; 2434 2435 RQ_BUG_ON(obj->last_read_req[ring] == NULL); 2436 RQ_BUG_ON(!(obj->active & (1 << ring))); 2437 2438 list_del_init(&obj->ring_list[ring]); 2439 i915_gem_request_assign(&obj->last_read_req[ring], NULL); 2440 2441 if (obj->last_write_req && obj->last_write_req->ring->id == ring) 2442 i915_gem_object_retire__write(obj); 2443 2444 obj->active &= ~(1 << ring); 2445 if (obj->active) 2446 return; 2447 2448 /* Bump our place on the bound list to keep it roughly in LRU order 2449 * so that we don't steal from recently used but inactive objects 2450 * (unless we are forced to ofc!) 2451 */ 2452 list_move_tail(&obj->global_list, 2453 &to_i915(obj->base.dev)->mm.bound_list); 2454 2455 list_for_each_entry(vma, &obj->vma_list, vma_link) { 2456 if (!list_empty(&vma->mm_list)) 2457 list_move_tail(&vma->mm_list, &vma->vm->inactive_list); 2458 } 2459 2460 i915_gem_request_assign(&obj->last_fenced_req, NULL); 2461 drm_gem_object_unreference(&obj->base); 2462 } 2463 2464 static int 2465 i915_gem_init_seqno(struct drm_device *dev, u32 seqno) 2466 { 2467 struct drm_i915_private *dev_priv = dev->dev_private; 2468 struct intel_engine_cs *ring; 2469 int ret, i, j; 2470 2471 /* Carefully retire all requests without writing to the rings */ 2472 for_each_ring(ring, dev_priv, i) { 2473 ret = intel_ring_idle(ring); 2474 if (ret) 2475 return ret; 2476 } 2477 i915_gem_retire_requests(dev); 2478 2479 /* Finally reset hw state */ 2480 for_each_ring(ring, dev_priv, i) { 2481 intel_ring_init_seqno(ring, seqno); 2482 2483 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++) 2484 ring->semaphore.sync_seqno[j] = 0; 2485 } 2486 2487 return 0; 2488 } 2489 2490 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno) 2491 { 2492 struct drm_i915_private *dev_priv = dev->dev_private; 2493 int ret; 2494 2495 if (seqno == 0) 2496 return -EINVAL; 2497 2498 /* HWS page needs to be set less than what we 2499 * will inject to ring 2500 */ 2501 ret = i915_gem_init_seqno(dev, seqno - 1); 2502 if (ret) 2503 return ret; 2504 2505 /* Carefully set the last_seqno value so that wrap 2506 * detection still works 2507 */ 2508 dev_priv->next_seqno = seqno; 2509 dev_priv->last_seqno = seqno - 1; 2510 if (dev_priv->last_seqno == 0) 2511 dev_priv->last_seqno--; 2512 2513 return 0; 2514 } 2515 2516 int 2517 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno) 2518 { 2519 struct drm_i915_private *dev_priv = dev->dev_private; 2520 2521 /* reserve 0 for non-seqno */ 2522 if (dev_priv->next_seqno == 0) { 2523 int ret = i915_gem_init_seqno(dev, 0); 2524 if (ret) 2525 return ret; 2526 2527 dev_priv->next_seqno = 1; 2528 } 2529 2530 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++; 2531 return 0; 2532 } 2533 2534 /* 2535 * NB: This function is not allowed to fail. Doing so would mean the the 2536 * request is not being tracked for completion but the work itself is 2537 * going to happen on the hardware. This would be a Bad Thing(tm). 2538 */ 2539 void __i915_add_request(struct drm_i915_gem_request *request, 2540 struct drm_i915_gem_object *obj, 2541 bool flush_caches) 2542 { 2543 struct intel_engine_cs *ring; 2544 struct drm_i915_private *dev_priv; 2545 struct intel_ringbuffer *ringbuf; 2546 u32 request_start; 2547 int ret; 2548 2549 if (WARN_ON(request == NULL)) 2550 return; 2551 2552 ring = request->ring; 2553 dev_priv = ring->dev->dev_private; 2554 ringbuf = request->ringbuf; 2555 2556 /* 2557 * To ensure that this call will not fail, space for its emissions 2558 * should already have been reserved in the ring buffer. Let the ring 2559 * know that it is time to use that space up. 2560 */ 2561 intel_ring_reserved_space_use(ringbuf); 2562 2563 request_start = intel_ring_get_tail(ringbuf); 2564 /* 2565 * Emit any outstanding flushes - execbuf can fail to emit the flush 2566 * after having emitted the batchbuffer command. Hence we need to fix 2567 * things up similar to emitting the lazy request. The difference here 2568 * is that the flush _must_ happen before the next request, no matter 2569 * what. 2570 */ 2571 if (flush_caches) { 2572 if (i915.enable_execlists) 2573 ret = logical_ring_flush_all_caches(request); 2574 else 2575 ret = intel_ring_flush_all_caches(request); 2576 /* Not allowed to fail! */ 2577 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret); 2578 } 2579 2580 /* Record the position of the start of the request so that 2581 * should we detect the updated seqno part-way through the 2582 * GPU processing the request, we never over-estimate the 2583 * position of the head. 2584 */ 2585 request->postfix = intel_ring_get_tail(ringbuf); 2586 2587 if (i915.enable_execlists) 2588 ret = ring->emit_request(request); 2589 else { 2590 ret = ring->add_request(request); 2591 2592 request->tail = intel_ring_get_tail(ringbuf); 2593 } 2594 /* Not allowed to fail! */ 2595 WARN(ret, "emit|add_request failed: %d!\n", ret); 2596 2597 request->head = request_start; 2598 2599 /* Whilst this request exists, batch_obj will be on the 2600 * active_list, and so will hold the active reference. Only when this 2601 * request is retired will the the batch_obj be moved onto the 2602 * inactive_list and lose its active reference. Hence we do not need 2603 * to explicitly hold another reference here. 2604 */ 2605 request->batch_obj = obj; 2606 2607 request->emitted_jiffies = jiffies; 2608 request->previous_seqno = ring->last_submitted_seqno; 2609 ring->last_submitted_seqno = request->seqno; 2610 list_add_tail(&request->list, &ring->request_list); 2611 2612 trace_i915_gem_request_add(request); 2613 2614 i915_queue_hangcheck(ring->dev); 2615 2616 queue_delayed_work(dev_priv->wq, 2617 &dev_priv->mm.retire_work, 2618 round_jiffies_up_relative(HZ)); 2619 intel_mark_busy(dev_priv->dev); 2620 2621 /* Sanity check that the reserved size was large enough. */ 2622 intel_ring_reserved_space_end(ringbuf); 2623 } 2624 2625 static bool i915_context_is_banned(struct drm_i915_private *dev_priv, 2626 const struct intel_context *ctx) 2627 { 2628 unsigned long elapsed; 2629 2630 elapsed = get_seconds() - ctx->hang_stats.guilty_ts; 2631 2632 if (ctx->hang_stats.banned) 2633 return true; 2634 2635 if (ctx->hang_stats.ban_period_seconds && 2636 elapsed <= ctx->hang_stats.ban_period_seconds) { 2637 if (!i915_gem_context_is_default(ctx)) { 2638 DRM_DEBUG("context hanging too fast, banning!\n"); 2639 return true; 2640 } else if (i915_stop_ring_allow_ban(dev_priv)) { 2641 if (i915_stop_ring_allow_warn(dev_priv)) 2642 DRM_ERROR("gpu hanging too fast, banning!\n"); 2643 return true; 2644 } 2645 } 2646 2647 return false; 2648 } 2649 2650 static void i915_set_reset_status(struct drm_i915_private *dev_priv, 2651 struct intel_context *ctx, 2652 const bool guilty) 2653 { 2654 struct i915_ctx_hang_stats *hs; 2655 2656 if (WARN_ON(!ctx)) 2657 return; 2658 2659 hs = &ctx->hang_stats; 2660 2661 if (guilty) { 2662 hs->banned = i915_context_is_banned(dev_priv, ctx); 2663 hs->batch_active++; 2664 hs->guilty_ts = get_seconds(); 2665 } else { 2666 hs->batch_pending++; 2667 } 2668 } 2669 2670 void i915_gem_request_free(struct kref *req_ref) 2671 { 2672 struct drm_i915_gem_request *req = container_of(req_ref, 2673 typeof(*req), ref); 2674 struct intel_context *ctx = req->ctx; 2675 2676 if (req->file_priv) 2677 i915_gem_request_remove_from_client(req); 2678 2679 if (ctx) { 2680 if (i915.enable_execlists) { 2681 if (ctx != req->ring->default_context) 2682 intel_lr_context_unpin(req); 2683 } 2684 2685 i915_gem_context_unreference(ctx); 2686 } 2687 2688 kmem_cache_free(req->i915->requests, req); 2689 } 2690 2691 int i915_gem_request_alloc(struct intel_engine_cs *ring, 2692 struct intel_context *ctx, 2693 struct drm_i915_gem_request **req_out) 2694 { 2695 struct drm_i915_private *dev_priv = to_i915(ring->dev); 2696 struct drm_i915_gem_request *req; 2697 int ret; 2698 2699 if (!req_out) 2700 return -EINVAL; 2701 2702 *req_out = NULL; 2703 2704 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL); 2705 if (req == NULL) 2706 return -ENOMEM; 2707 2708 ret = i915_gem_get_seqno(ring->dev, &req->seqno); 2709 if (ret) 2710 goto err; 2711 2712 kref_init(&req->ref); 2713 req->i915 = dev_priv; 2714 req->ring = ring; 2715 req->ctx = ctx; 2716 i915_gem_context_reference(req->ctx); 2717 2718 if (i915.enable_execlists) 2719 ret = intel_logical_ring_alloc_request_extras(req); 2720 else 2721 ret = intel_ring_alloc_request_extras(req); 2722 if (ret) { 2723 i915_gem_context_unreference(req->ctx); 2724 goto err; 2725 } 2726 2727 /* 2728 * Reserve space in the ring buffer for all the commands required to 2729 * eventually emit this request. This is to guarantee that the 2730 * i915_add_request() call can't fail. Note that the reserve may need 2731 * to be redone if the request is not actually submitted straight 2732 * away, e.g. because a GPU scheduler has deferred it. 2733 */ 2734 if (i915.enable_execlists) 2735 ret = intel_logical_ring_reserve_space(req); 2736 else 2737 ret = intel_ring_reserve_space(req); 2738 if (ret) { 2739 /* 2740 * At this point, the request is fully allocated even if not 2741 * fully prepared. Thus it can be cleaned up using the proper 2742 * free code. 2743 */ 2744 i915_gem_request_cancel(req); 2745 return ret; 2746 } 2747 2748 *req_out = req; 2749 return 0; 2750 2751 err: 2752 kmem_cache_free(dev_priv->requests, req); 2753 return ret; 2754 } 2755 2756 void i915_gem_request_cancel(struct drm_i915_gem_request *req) 2757 { 2758 intel_ring_reserved_space_cancel(req->ringbuf); 2759 2760 i915_gem_request_unreference(req); 2761 } 2762 2763 struct drm_i915_gem_request * 2764 i915_gem_find_active_request(struct intel_engine_cs *ring) 2765 { 2766 struct drm_i915_gem_request *request; 2767 2768 list_for_each_entry(request, &ring->request_list, list) { 2769 if (i915_gem_request_completed(request, false)) 2770 continue; 2771 2772 return request; 2773 } 2774 2775 return NULL; 2776 } 2777 2778 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv, 2779 struct intel_engine_cs *ring) 2780 { 2781 struct drm_i915_gem_request *request; 2782 bool ring_hung; 2783 2784 request = i915_gem_find_active_request(ring); 2785 2786 if (request == NULL) 2787 return; 2788 2789 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG; 2790 2791 i915_set_reset_status(dev_priv, request->ctx, ring_hung); 2792 2793 list_for_each_entry_continue(request, &ring->request_list, list) 2794 i915_set_reset_status(dev_priv, request->ctx, false); 2795 } 2796 2797 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv, 2798 struct intel_engine_cs *ring) 2799 { 2800 struct intel_ringbuffer *buffer; 2801 2802 while (!list_empty(&ring->active_list)) { 2803 struct drm_i915_gem_object *obj; 2804 2805 obj = list_first_entry(&ring->active_list, 2806 struct drm_i915_gem_object, 2807 ring_list[ring->id]); 2808 2809 i915_gem_object_retire__read(obj, ring->id); 2810 } 2811 2812 /* 2813 * Clear the execlists queue up before freeing the requests, as those 2814 * are the ones that keep the context and ringbuffer backing objects 2815 * pinned in place. 2816 */ 2817 2818 if (i915.enable_execlists) { 2819 spin_lock_irq(&ring->execlist_lock); 2820 2821 /* list_splice_tail_init checks for empty lists */ 2822 list_splice_tail_init(&ring->execlist_queue, 2823 &ring->execlist_retired_req_list); 2824 2825 spin_unlock_irq(&ring->execlist_lock); 2826 intel_execlists_retire_requests(ring); 2827 } 2828 2829 /* 2830 * We must free the requests after all the corresponding objects have 2831 * been moved off active lists. Which is the same order as the normal 2832 * retire_requests function does. This is important if object hold 2833 * implicit references on things like e.g. ppgtt address spaces through 2834 * the request. 2835 */ 2836 while (!list_empty(&ring->request_list)) { 2837 struct drm_i915_gem_request *request; 2838 2839 request = list_first_entry(&ring->request_list, 2840 struct drm_i915_gem_request, 2841 list); 2842 2843 i915_gem_request_retire(request); 2844 } 2845 2846 /* Having flushed all requests from all queues, we know that all 2847 * ringbuffers must now be empty. However, since we do not reclaim 2848 * all space when retiring the request (to prevent HEADs colliding 2849 * with rapid ringbuffer wraparound) the amount of available space 2850 * upon reset is less than when we start. Do one more pass over 2851 * all the ringbuffers to reset last_retired_head. 2852 */ 2853 list_for_each_entry(buffer, &ring->buffers, link) { 2854 buffer->last_retired_head = buffer->tail; 2855 intel_ring_update_space(buffer); 2856 } 2857 } 2858 2859 void i915_gem_reset(struct drm_device *dev) 2860 { 2861 struct drm_i915_private *dev_priv = dev->dev_private; 2862 struct intel_engine_cs *ring; 2863 int i; 2864 2865 /* 2866 * Before we free the objects from the requests, we need to inspect 2867 * them for finding the guilty party. As the requests only borrow 2868 * their reference to the objects, the inspection must be done first. 2869 */ 2870 for_each_ring(ring, dev_priv, i) 2871 i915_gem_reset_ring_status(dev_priv, ring); 2872 2873 for_each_ring(ring, dev_priv, i) 2874 i915_gem_reset_ring_cleanup(dev_priv, ring); 2875 2876 i915_gem_context_reset(dev); 2877 2878 i915_gem_restore_fences(dev); 2879 2880 WARN_ON(i915_verify_lists(dev)); 2881 } 2882 2883 /** 2884 * This function clears the request list as sequence numbers are passed. 2885 */ 2886 void 2887 i915_gem_retire_requests_ring(struct intel_engine_cs *ring) 2888 { 2889 WARN_ON(i915_verify_lists(ring->dev)); 2890 2891 /* Retire requests first as we use it above for the early return. 2892 * If we retire requests last, we may use a later seqno and so clear 2893 * the requests lists without clearing the active list, leading to 2894 * confusion. 2895 */ 2896 while (!list_empty(&ring->request_list)) { 2897 struct drm_i915_gem_request *request; 2898 2899 request = list_first_entry(&ring->request_list, 2900 struct drm_i915_gem_request, 2901 list); 2902 2903 if (!i915_gem_request_completed(request, true)) 2904 break; 2905 2906 i915_gem_request_retire(request); 2907 } 2908 2909 /* Move any buffers on the active list that are no longer referenced 2910 * by the ringbuffer to the flushing/inactive lists as appropriate, 2911 * before we free the context associated with the requests. 2912 */ 2913 while (!list_empty(&ring->active_list)) { 2914 struct drm_i915_gem_object *obj; 2915 2916 obj = list_first_entry(&ring->active_list, 2917 struct drm_i915_gem_object, 2918 ring_list[ring->id]); 2919 2920 if (!list_empty(&obj->last_read_req[ring->id]->list)) 2921 break; 2922 2923 i915_gem_object_retire__read(obj, ring->id); 2924 } 2925 2926 if (unlikely(ring->trace_irq_req && 2927 i915_gem_request_completed(ring->trace_irq_req, true))) { 2928 ring->irq_put(ring); 2929 i915_gem_request_assign(&ring->trace_irq_req, NULL); 2930 } 2931 2932 WARN_ON(i915_verify_lists(ring->dev)); 2933 } 2934 2935 bool 2936 i915_gem_retire_requests(struct drm_device *dev) 2937 { 2938 struct drm_i915_private *dev_priv = dev->dev_private; 2939 struct intel_engine_cs *ring; 2940 bool idle = true; 2941 int i; 2942 2943 for_each_ring(ring, dev_priv, i) { 2944 i915_gem_retire_requests_ring(ring); 2945 idle &= list_empty(&ring->request_list); 2946 if (i915.enable_execlists) { 2947 unsigned long flags; 2948 2949 spin_lock_irqsave(&ring->execlist_lock, flags); 2950 idle &= list_empty(&ring->execlist_queue); 2951 spin_unlock_irqrestore(&ring->execlist_lock, flags); 2952 2953 intel_execlists_retire_requests(ring); 2954 } 2955 } 2956 2957 if (idle) 2958 mod_delayed_work(dev_priv->wq, 2959 &dev_priv->mm.idle_work, 2960 msecs_to_jiffies(100)); 2961 2962 return idle; 2963 } 2964 2965 static void 2966 i915_gem_retire_work_handler(struct work_struct *work) 2967 { 2968 struct drm_i915_private *dev_priv = 2969 container_of(work, typeof(*dev_priv), mm.retire_work.work); 2970 struct drm_device *dev = dev_priv->dev; 2971 bool idle; 2972 2973 /* Come back later if the device is busy... */ 2974 idle = false; 2975 if (mutex_trylock(&dev->struct_mutex)) { 2976 idle = i915_gem_retire_requests(dev); 2977 mutex_unlock(&dev->struct_mutex); 2978 } 2979 if (!idle) 2980 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 2981 round_jiffies_up_relative(HZ)); 2982 } 2983 2984 static void 2985 i915_gem_idle_work_handler(struct work_struct *work) 2986 { 2987 struct drm_i915_private *dev_priv = 2988 container_of(work, typeof(*dev_priv), mm.idle_work.work); 2989 struct drm_device *dev = dev_priv->dev; 2990 struct intel_engine_cs *ring; 2991 int i; 2992 2993 for_each_ring(ring, dev_priv, i) 2994 if (!list_empty(&ring->request_list)) 2995 return; 2996 2997 /* we probably should sync with hangcheck here, using cancel_work_sync. 2998 * Also locking seems to be fubar here, ring->request_list is protected 2999 * by dev->struct_mutex. */ 3000 3001 intel_mark_idle(dev); 3002 3003 if (mutex_trylock(&dev->struct_mutex)) { 3004 struct intel_engine_cs *ring; 3005 int i; 3006 3007 for_each_ring(ring, dev_priv, i) 3008 i915_gem_batch_pool_fini(&ring->batch_pool); 3009 3010 mutex_unlock(&dev->struct_mutex); 3011 } 3012 } 3013 3014 /** 3015 * Ensures that an object will eventually get non-busy by flushing any required 3016 * write domains, emitting any outstanding lazy request and retiring and 3017 * completed requests. 3018 */ 3019 static int 3020 i915_gem_object_flush_active(struct drm_i915_gem_object *obj) 3021 { 3022 int i; 3023 3024 if (!obj->active) 3025 return 0; 3026 3027 for (i = 0; i < I915_NUM_RINGS; i++) { 3028 struct drm_i915_gem_request *req; 3029 3030 req = obj->last_read_req[i]; 3031 if (req == NULL) 3032 continue; 3033 3034 if (list_empty(&req->list)) 3035 goto retire; 3036 3037 if (i915_gem_request_completed(req, true)) { 3038 __i915_gem_request_retire__upto(req); 3039 retire: 3040 i915_gem_object_retire__read(obj, i); 3041 } 3042 } 3043 3044 return 0; 3045 } 3046 3047 /** 3048 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT 3049 * @DRM_IOCTL_ARGS: standard ioctl arguments 3050 * 3051 * Returns 0 if successful, else an error is returned with the remaining time in 3052 * the timeout parameter. 3053 * -ETIME: object is still busy after timeout 3054 * -ERESTARTSYS: signal interrupted the wait 3055 * -ENONENT: object doesn't exist 3056 * Also possible, but rare: 3057 * -EAGAIN: GPU wedged 3058 * -ENOMEM: damn 3059 * -ENODEV: Internal IRQ fail 3060 * -E?: The add request failed 3061 * 3062 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any 3063 * non-zero timeout parameter the wait ioctl will wait for the given number of 3064 * nanoseconds on an object becoming unbusy. Since the wait itself does so 3065 * without holding struct_mutex the object may become re-busied before this 3066 * function completes. A similar but shorter * race condition exists in the busy 3067 * ioctl 3068 */ 3069 int 3070 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 3071 { 3072 struct drm_i915_private *dev_priv = dev->dev_private; 3073 struct drm_i915_gem_wait *args = data; 3074 struct drm_i915_gem_object *obj; 3075 struct drm_i915_gem_request *req[I915_NUM_RINGS]; 3076 unsigned reset_counter; 3077 int i, n = 0; 3078 int ret; 3079 3080 if (args->flags != 0) 3081 return -EINVAL; 3082 3083 ret = i915_mutex_lock_interruptible(dev); 3084 if (ret) 3085 return ret; 3086 3087 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle)); 3088 if (&obj->base == NULL) { 3089 mutex_unlock(&dev->struct_mutex); 3090 return -ENOENT; 3091 } 3092 3093 /* Need to make sure the object gets inactive eventually. */ 3094 ret = i915_gem_object_flush_active(obj); 3095 if (ret) 3096 goto out; 3097 3098 if (!obj->active) 3099 goto out; 3100 3101 /* Do this after OLR check to make sure we make forward progress polling 3102 * on this IOCTL with a timeout == 0 (like busy ioctl) 3103 */ 3104 if (args->timeout_ns == 0) { 3105 ret = -ETIME; 3106 goto out; 3107 } 3108 3109 drm_gem_object_unreference(&obj->base); 3110 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 3111 3112 for (i = 0; i < I915_NUM_RINGS; i++) { 3113 if (obj->last_read_req[i] == NULL) 3114 continue; 3115 3116 req[n++] = i915_gem_request_reference(obj->last_read_req[i]); 3117 } 3118 3119 mutex_unlock(&dev->struct_mutex); 3120 3121 for (i = 0; i < n; i++) { 3122 if (ret == 0) 3123 ret = __i915_wait_request(req[i], reset_counter, true, 3124 args->timeout_ns > 0 ? &args->timeout_ns : NULL, 3125 to_rps_client(file)); 3126 i915_gem_request_unreference__unlocked(req[i]); 3127 } 3128 return ret; 3129 3130 out: 3131 drm_gem_object_unreference(&obj->base); 3132 mutex_unlock(&dev->struct_mutex); 3133 return ret; 3134 } 3135 3136 static int 3137 __i915_gem_object_sync(struct drm_i915_gem_object *obj, 3138 struct intel_engine_cs *to, 3139 struct drm_i915_gem_request *from_req, 3140 struct drm_i915_gem_request **to_req) 3141 { 3142 struct intel_engine_cs *from; 3143 int ret; 3144 3145 from = i915_gem_request_get_ring(from_req); 3146 if (to == from) 3147 return 0; 3148 3149 if (i915_gem_request_completed(from_req, true)) 3150 return 0; 3151 3152 if (!i915_semaphore_is_enabled(obj->base.dev)) { 3153 struct drm_i915_private *i915 = to_i915(obj->base.dev); 3154 ret = __i915_wait_request(from_req, 3155 atomic_read(&i915->gpu_error.reset_counter), 3156 i915->mm.interruptible, 3157 NULL, 3158 &i915->rps.semaphores); 3159 if (ret) 3160 return ret; 3161 3162 i915_gem_object_retire_request(obj, from_req); 3163 } else { 3164 int idx = intel_ring_sync_index(from, to); 3165 u32 seqno = i915_gem_request_get_seqno(from_req); 3166 3167 WARN_ON(!to_req); 3168 3169 if (seqno <= from->semaphore.sync_seqno[idx]) 3170 return 0; 3171 3172 if (*to_req == NULL) { 3173 ret = i915_gem_request_alloc(to, to->default_context, to_req); 3174 if (ret) 3175 return ret; 3176 } 3177 3178 trace_i915_gem_ring_sync_to(*to_req, from, from_req); 3179 ret = to->semaphore.sync_to(*to_req, from, seqno); 3180 if (ret) 3181 return ret; 3182 3183 /* We use last_read_req because sync_to() 3184 * might have just caused seqno wrap under 3185 * the radar. 3186 */ 3187 from->semaphore.sync_seqno[idx] = 3188 i915_gem_request_get_seqno(obj->last_read_req[from->id]); 3189 } 3190 3191 return 0; 3192 } 3193 3194 /** 3195 * i915_gem_object_sync - sync an object to a ring. 3196 * 3197 * @obj: object which may be in use on another ring. 3198 * @to: ring we wish to use the object on. May be NULL. 3199 * @to_req: request we wish to use the object for. See below. 3200 * This will be allocated and returned if a request is 3201 * required but not passed in. 3202 * 3203 * This code is meant to abstract object synchronization with the GPU. 3204 * Calling with NULL implies synchronizing the object with the CPU 3205 * rather than a particular GPU ring. Conceptually we serialise writes 3206 * between engines inside the GPU. We only allow one engine to write 3207 * into a buffer at any time, but multiple readers. To ensure each has 3208 * a coherent view of memory, we must: 3209 * 3210 * - If there is an outstanding write request to the object, the new 3211 * request must wait for it to complete (either CPU or in hw, requests 3212 * on the same ring will be naturally ordered). 3213 * 3214 * - If we are a write request (pending_write_domain is set), the new 3215 * request must wait for outstanding read requests to complete. 3216 * 3217 * For CPU synchronisation (NULL to) no request is required. For syncing with 3218 * rings to_req must be non-NULL. However, a request does not have to be 3219 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a 3220 * request will be allocated automatically and returned through *to_req. Note 3221 * that it is not guaranteed that commands will be emitted (because the system 3222 * might already be idle). Hence there is no need to create a request that 3223 * might never have any work submitted. Note further that if a request is 3224 * returned in *to_req, it is the responsibility of the caller to submit 3225 * that request (after potentially adding more work to it). 3226 * 3227 * Returns 0 if successful, else propagates up the lower layer error. 3228 */ 3229 int 3230 i915_gem_object_sync(struct drm_i915_gem_object *obj, 3231 struct intel_engine_cs *to, 3232 struct drm_i915_gem_request **to_req) 3233 { 3234 const bool readonly = obj->base.pending_write_domain == 0; 3235 struct drm_i915_gem_request *req[I915_NUM_RINGS]; 3236 int ret, i, n; 3237 3238 if (!obj->active) 3239 return 0; 3240 3241 if (to == NULL) 3242 return i915_gem_object_wait_rendering(obj, readonly); 3243 3244 n = 0; 3245 if (readonly) { 3246 if (obj->last_write_req) 3247 req[n++] = obj->last_write_req; 3248 } else { 3249 for (i = 0; i < I915_NUM_RINGS; i++) 3250 if (obj->last_read_req[i]) 3251 req[n++] = obj->last_read_req[i]; 3252 } 3253 for (i = 0; i < n; i++) { 3254 ret = __i915_gem_object_sync(obj, to, req[i], to_req); 3255 if (ret) 3256 return ret; 3257 } 3258 3259 return 0; 3260 } 3261 3262 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj) 3263 { 3264 u32 old_write_domain, old_read_domains; 3265 3266 /* Force a pagefault for domain tracking on next user access */ 3267 i915_gem_release_mmap(obj); 3268 3269 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 3270 return; 3271 3272 /* Wait for any direct GTT access to complete */ 3273 mb(); 3274 3275 old_read_domains = obj->base.read_domains; 3276 old_write_domain = obj->base.write_domain; 3277 3278 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT; 3279 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT; 3280 3281 trace_i915_gem_object_change_domain(obj, 3282 old_read_domains, 3283 old_write_domain); 3284 } 3285 3286 static int __i915_vma_unbind(struct i915_vma *vma, bool wait) 3287 { 3288 struct drm_i915_gem_object *obj = vma->obj; 3289 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3290 int ret; 3291 3292 if (list_empty(&vma->vma_link)) 3293 return 0; 3294 3295 if (!drm_mm_node_allocated(&vma->node)) { 3296 i915_gem_vma_destroy(vma); 3297 return 0; 3298 } 3299 3300 if (vma->pin_count) 3301 return -EBUSY; 3302 3303 BUG_ON(obj->pages == NULL); 3304 3305 if (wait) { 3306 ret = i915_gem_object_wait_rendering(obj, false); 3307 if (ret) 3308 return ret; 3309 } 3310 3311 if (i915_is_ggtt(vma->vm) && 3312 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) { 3313 i915_gem_object_finish_gtt(obj); 3314 3315 /* release the fence reg _after_ flushing */ 3316 ret = i915_gem_object_put_fence(obj); 3317 if (ret) 3318 return ret; 3319 } 3320 3321 trace_i915_vma_unbind(vma); 3322 3323 vma->vm->unbind_vma(vma); 3324 vma->bound = 0; 3325 3326 list_del_init(&vma->mm_list); 3327 if (i915_is_ggtt(vma->vm)) { 3328 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) { 3329 obj->map_and_fenceable = false; 3330 } else if (vma->ggtt_view.pages) { 3331 sg_free_table(vma->ggtt_view.pages); 3332 kfree(vma->ggtt_view.pages); 3333 } 3334 vma->ggtt_view.pages = NULL; 3335 } 3336 3337 drm_mm_remove_node(&vma->node); 3338 i915_gem_vma_destroy(vma); 3339 3340 /* Since the unbound list is global, only move to that list if 3341 * no more VMAs exist. */ 3342 if (list_empty(&obj->vma_list)) 3343 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list); 3344 3345 /* And finally now the object is completely decoupled from this vma, 3346 * we can drop its hold on the backing storage and allow it to be 3347 * reaped by the shrinker. 3348 */ 3349 i915_gem_object_unpin_pages(obj); 3350 3351 return 0; 3352 } 3353 3354 int i915_vma_unbind(struct i915_vma *vma) 3355 { 3356 return __i915_vma_unbind(vma, true); 3357 } 3358 3359 int __i915_vma_unbind_no_wait(struct i915_vma *vma) 3360 { 3361 return __i915_vma_unbind(vma, false); 3362 } 3363 3364 int i915_gpu_idle(struct drm_device *dev) 3365 { 3366 struct drm_i915_private *dev_priv = dev->dev_private; 3367 struct intel_engine_cs *ring; 3368 int ret, i; 3369 3370 /* Flush everything onto the inactive list. */ 3371 for_each_ring(ring, dev_priv, i) { 3372 if (!i915.enable_execlists) { 3373 struct drm_i915_gem_request *req; 3374 3375 ret = i915_gem_request_alloc(ring, ring->default_context, &req); 3376 if (ret) 3377 return ret; 3378 3379 ret = i915_switch_context(req); 3380 if (ret) { 3381 i915_gem_request_cancel(req); 3382 return ret; 3383 } 3384 3385 i915_add_request_no_flush(req); 3386 } 3387 3388 ret = intel_ring_idle(ring); 3389 if (ret) 3390 return ret; 3391 } 3392 3393 WARN_ON(i915_verify_lists(dev)); 3394 return 0; 3395 } 3396 3397 static bool i915_gem_valid_gtt_space(struct i915_vma *vma, 3398 unsigned long cache_level) 3399 { 3400 struct drm_mm_node *gtt_space = &vma->node; 3401 struct drm_mm_node *other; 3402 3403 /* 3404 * On some machines we have to be careful when putting differing types 3405 * of snoopable memory together to avoid the prefetcher crossing memory 3406 * domains and dying. During vm initialisation, we decide whether or not 3407 * these constraints apply and set the drm_mm.color_adjust 3408 * appropriately. 3409 */ 3410 if (vma->vm->mm.color_adjust == NULL) 3411 return true; 3412 3413 if (!drm_mm_node_allocated(gtt_space)) 3414 return true; 3415 3416 if (list_empty(>t_space->node_list)) 3417 return true; 3418 3419 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list); 3420 if (other->allocated && !other->hole_follows && other->color != cache_level) 3421 return false; 3422 3423 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list); 3424 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level) 3425 return false; 3426 3427 return true; 3428 } 3429 3430 /** 3431 * Finds free space in the GTT aperture and binds the object or a view of it 3432 * there. 3433 */ 3434 static struct i915_vma * 3435 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj, 3436 struct i915_address_space *vm, 3437 const struct i915_ggtt_view *ggtt_view, 3438 unsigned alignment, 3439 uint64_t flags) 3440 { 3441 struct drm_device *dev = obj->base.dev; 3442 struct drm_i915_private *dev_priv = dev->dev_private; 3443 u32 fence_alignment, unfenced_alignment; 3444 u32 search_flag, alloc_flag; 3445 u64 start, end; 3446 u64 size, fence_size; 3447 struct i915_vma *vma; 3448 int ret; 3449 3450 if (i915_is_ggtt(vm)) { 3451 u32 view_size; 3452 3453 if (WARN_ON(!ggtt_view)) 3454 return ERR_PTR(-EINVAL); 3455 3456 view_size = i915_ggtt_view_size(obj, ggtt_view); 3457 3458 fence_size = i915_gem_get_gtt_size(dev, 3459 view_size, 3460 obj->tiling_mode); 3461 fence_alignment = i915_gem_get_gtt_alignment(dev, 3462 view_size, 3463 obj->tiling_mode, 3464 true); 3465 unfenced_alignment = i915_gem_get_gtt_alignment(dev, 3466 view_size, 3467 obj->tiling_mode, 3468 false); 3469 size = flags & PIN_MAPPABLE ? fence_size : view_size; 3470 } else { 3471 fence_size = i915_gem_get_gtt_size(dev, 3472 obj->base.size, 3473 obj->tiling_mode); 3474 fence_alignment = i915_gem_get_gtt_alignment(dev, 3475 obj->base.size, 3476 obj->tiling_mode, 3477 true); 3478 unfenced_alignment = 3479 i915_gem_get_gtt_alignment(dev, 3480 obj->base.size, 3481 obj->tiling_mode, 3482 false); 3483 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size; 3484 } 3485 3486 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0; 3487 end = vm->total; 3488 if (flags & PIN_MAPPABLE) 3489 end = min_t(u64, end, dev_priv->gtt.mappable_end); 3490 if (flags & PIN_ZONE_4G) 3491 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE); 3492 3493 if (alignment == 0) 3494 alignment = flags & PIN_MAPPABLE ? fence_alignment : 3495 unfenced_alignment; 3496 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) { 3497 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n", 3498 ggtt_view ? ggtt_view->type : 0, 3499 alignment); 3500 return ERR_PTR(-EINVAL); 3501 } 3502 3503 /* If binding the object/GGTT view requires more space than the entire 3504 * aperture has, reject it early before evicting everything in a vain 3505 * attempt to find space. 3506 */ 3507 if (size > end) { 3508 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n", 3509 ggtt_view ? ggtt_view->type : 0, 3510 size, 3511 flags & PIN_MAPPABLE ? "mappable" : "total", 3512 end); 3513 return ERR_PTR(-E2BIG); 3514 } 3515 3516 ret = i915_gem_object_get_pages(obj); 3517 if (ret) 3518 return ERR_PTR(ret); 3519 3520 i915_gem_object_pin_pages(obj); 3521 3522 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) : 3523 i915_gem_obj_lookup_or_create_vma(obj, vm); 3524 3525 if (IS_ERR(vma)) 3526 goto err_unpin; 3527 3528 if (flags & PIN_OFFSET_FIXED) { 3529 uint64_t offset = flags & PIN_OFFSET_MASK; 3530 3531 if (offset & (alignment - 1) || offset + size > end) { 3532 ret = -EINVAL; 3533 goto err_free_vma; 3534 } 3535 vma->node.start = offset; 3536 vma->node.size = size; 3537 vma->node.color = obj->cache_level; 3538 ret = drm_mm_reserve_node(&vm->mm, &vma->node); 3539 if (ret) { 3540 ret = i915_gem_evict_for_vma(vma); 3541 if (ret == 0) 3542 ret = drm_mm_reserve_node(&vm->mm, &vma->node); 3543 } 3544 if (ret) 3545 goto err_free_vma; 3546 } else { 3547 if (flags & PIN_HIGH) { 3548 search_flag = DRM_MM_SEARCH_BELOW; 3549 alloc_flag = DRM_MM_CREATE_TOP; 3550 } else { 3551 search_flag = DRM_MM_SEARCH_DEFAULT; 3552 alloc_flag = DRM_MM_CREATE_DEFAULT; 3553 } 3554 3555 search_free: 3556 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node, 3557 size, alignment, 3558 obj->cache_level, 3559 start, end, 3560 search_flag, 3561 alloc_flag); 3562 if (ret) { 3563 ret = i915_gem_evict_something(dev, vm, size, alignment, 3564 obj->cache_level, 3565 start, end, 3566 flags); 3567 if (ret == 0) 3568 goto search_free; 3569 3570 goto err_free_vma; 3571 } 3572 } 3573 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) { 3574 ret = -EINVAL; 3575 goto err_remove_node; 3576 } 3577 3578 trace_i915_vma_bind(vma, flags); 3579 ret = i915_vma_bind(vma, obj->cache_level, flags); 3580 if (ret) 3581 goto err_remove_node; 3582 3583 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list); 3584 list_add_tail(&vma->mm_list, &vm->inactive_list); 3585 3586 return vma; 3587 3588 err_remove_node: 3589 drm_mm_remove_node(&vma->node); 3590 err_free_vma: 3591 i915_gem_vma_destroy(vma); 3592 vma = ERR_PTR(ret); 3593 err_unpin: 3594 i915_gem_object_unpin_pages(obj); 3595 return vma; 3596 } 3597 3598 bool 3599 i915_gem_clflush_object(struct drm_i915_gem_object *obj, 3600 bool force) 3601 { 3602 /* If we don't have a page list set up, then we're not pinned 3603 * to GPU, and we can ignore the cache flush because it'll happen 3604 * again at bind time. 3605 */ 3606 if (obj->pages == NULL) 3607 return false; 3608 3609 /* 3610 * Stolen memory is always coherent with the GPU as it is explicitly 3611 * marked as wc by the system, or the system is cache-coherent. 3612 */ 3613 if (obj->stolen || obj->phys_handle) 3614 return false; 3615 3616 /* If the GPU is snooping the contents of the CPU cache, 3617 * we do not need to manually clear the CPU cache lines. However, 3618 * the caches are only snooped when the render cache is 3619 * flushed/invalidated. As we always have to emit invalidations 3620 * and flushes when moving into and out of the RENDER domain, correct 3621 * snooping behaviour occurs naturally as the result of our domain 3622 * tracking. 3623 */ 3624 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) { 3625 obj->cache_dirty = true; 3626 return false; 3627 } 3628 3629 trace_i915_gem_object_clflush(obj); 3630 drm_clflush_sg(obj->pages); 3631 obj->cache_dirty = false; 3632 3633 return true; 3634 } 3635 3636 /** Flushes the GTT write domain for the object if it's dirty. */ 3637 static void 3638 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj) 3639 { 3640 uint32_t old_write_domain; 3641 3642 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT) 3643 return; 3644 3645 /* No actual flushing is required for the GTT write domain. Writes 3646 * to it immediately go to main memory as far as we know, so there's 3647 * no chipset flush. It also doesn't land in render cache. 3648 * 3649 * However, we do have to enforce the order so that all writes through 3650 * the GTT land before any writes to the device, such as updates to 3651 * the GATT itself. 3652 */ 3653 wmb(); 3654 3655 old_write_domain = obj->base.write_domain; 3656 obj->base.write_domain = 0; 3657 3658 intel_fb_obj_flush(obj, false, ORIGIN_GTT); 3659 3660 trace_i915_gem_object_change_domain(obj, 3661 obj->base.read_domains, 3662 old_write_domain); 3663 } 3664 3665 /** Flushes the CPU write domain for the object if it's dirty. */ 3666 static void 3667 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj) 3668 { 3669 uint32_t old_write_domain; 3670 3671 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) 3672 return; 3673 3674 if (i915_gem_clflush_object(obj, obj->pin_display)) 3675 i915_gem_chipset_flush(obj->base.dev); 3676 3677 old_write_domain = obj->base.write_domain; 3678 obj->base.write_domain = 0; 3679 3680 intel_fb_obj_flush(obj, false, ORIGIN_CPU); 3681 3682 trace_i915_gem_object_change_domain(obj, 3683 obj->base.read_domains, 3684 old_write_domain); 3685 } 3686 3687 /** 3688 * Moves a single object to the GTT read, and possibly write domain. 3689 * 3690 * This function returns when the move is complete, including waiting on 3691 * flushes to occur. 3692 */ 3693 int 3694 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) 3695 { 3696 uint32_t old_write_domain, old_read_domains; 3697 struct i915_vma *vma; 3698 int ret; 3699 3700 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) 3701 return 0; 3702 3703 ret = i915_gem_object_wait_rendering(obj, !write); 3704 if (ret) 3705 return ret; 3706 3707 /* Flush and acquire obj->pages so that we are coherent through 3708 * direct access in memory with previous cached writes through 3709 * shmemfs and that our cache domain tracking remains valid. 3710 * For example, if the obj->filp was moved to swap without us 3711 * being notified and releasing the pages, we would mistakenly 3712 * continue to assume that the obj remained out of the CPU cached 3713 * domain. 3714 */ 3715 ret = i915_gem_object_get_pages(obj); 3716 if (ret) 3717 return ret; 3718 3719 i915_gem_object_flush_cpu_write_domain(obj); 3720 3721 /* Serialise direct access to this object with the barriers for 3722 * coherent writes from the GPU, by effectively invalidating the 3723 * GTT domain upon first access. 3724 */ 3725 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 3726 mb(); 3727 3728 old_write_domain = obj->base.write_domain; 3729 old_read_domains = obj->base.read_domains; 3730 3731 /* It should now be out of any other write domains, and we can update 3732 * the domain values for our changes. 3733 */ 3734 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 3735 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3736 if (write) { 3737 obj->base.read_domains = I915_GEM_DOMAIN_GTT; 3738 obj->base.write_domain = I915_GEM_DOMAIN_GTT; 3739 obj->dirty = 1; 3740 } 3741 3742 trace_i915_gem_object_change_domain(obj, 3743 old_read_domains, 3744 old_write_domain); 3745 3746 /* And bump the LRU for this access */ 3747 vma = i915_gem_obj_to_ggtt(obj); 3748 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active) 3749 list_move_tail(&vma->mm_list, 3750 &to_i915(obj->base.dev)->gtt.base.inactive_list); 3751 3752 return 0; 3753 } 3754 3755 /** 3756 * Changes the cache-level of an object across all VMA. 3757 * 3758 * After this function returns, the object will be in the new cache-level 3759 * across all GTT and the contents of the backing storage will be coherent, 3760 * with respect to the new cache-level. In order to keep the backing storage 3761 * coherent for all users, we only allow a single cache level to be set 3762 * globally on the object and prevent it from being changed whilst the 3763 * hardware is reading from the object. That is if the object is currently 3764 * on the scanout it will be set to uncached (or equivalent display 3765 * cache coherency) and all non-MOCS GPU access will also be uncached so 3766 * that all direct access to the scanout remains coherent. 3767 */ 3768 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3769 enum i915_cache_level cache_level) 3770 { 3771 struct drm_device *dev = obj->base.dev; 3772 struct i915_vma *vma, *next; 3773 bool bound = false; 3774 int ret = 0; 3775 3776 if (obj->cache_level == cache_level) 3777 goto out; 3778 3779 /* Inspect the list of currently bound VMA and unbind any that would 3780 * be invalid given the new cache-level. This is principally to 3781 * catch the issue of the CS prefetch crossing page boundaries and 3782 * reading an invalid PTE on older architectures. 3783 */ 3784 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) { 3785 if (!drm_mm_node_allocated(&vma->node)) 3786 continue; 3787 3788 if (vma->pin_count) { 3789 DRM_DEBUG("can not change the cache level of pinned objects\n"); 3790 return -EBUSY; 3791 } 3792 3793 if (!i915_gem_valid_gtt_space(vma, cache_level)) { 3794 ret = i915_vma_unbind(vma); 3795 if (ret) 3796 return ret; 3797 } else 3798 bound = true; 3799 } 3800 3801 /* We can reuse the existing drm_mm nodes but need to change the 3802 * cache-level on the PTE. We could simply unbind them all and 3803 * rebind with the correct cache-level on next use. However since 3804 * we already have a valid slot, dma mapping, pages etc, we may as 3805 * rewrite the PTE in the belief that doing so tramples upon less 3806 * state and so involves less work. 3807 */ 3808 if (bound) { 3809 /* Before we change the PTE, the GPU must not be accessing it. 3810 * If we wait upon the object, we know that all the bound 3811 * VMA are no longer active. 3812 */ 3813 ret = i915_gem_object_wait_rendering(obj, false); 3814 if (ret) 3815 return ret; 3816 3817 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) { 3818 /* Access to snoopable pages through the GTT is 3819 * incoherent and on some machines causes a hard 3820 * lockup. Relinquish the CPU mmaping to force 3821 * userspace to refault in the pages and we can 3822 * then double check if the GTT mapping is still 3823 * valid for that pointer access. 3824 */ 3825 i915_gem_release_mmap(obj); 3826 3827 /* As we no longer need a fence for GTT access, 3828 * we can relinquish it now (and so prevent having 3829 * to steal a fence from someone else on the next 3830 * fence request). Note GPU activity would have 3831 * dropped the fence as all snoopable access is 3832 * supposed to be linear. 3833 */ 3834 ret = i915_gem_object_put_fence(obj); 3835 if (ret) 3836 return ret; 3837 } else { 3838 /* We either have incoherent backing store and 3839 * so no GTT access or the architecture is fully 3840 * coherent. In such cases, existing GTT mmaps 3841 * ignore the cache bit in the PTE and we can 3842 * rewrite it without confusing the GPU or having 3843 * to force userspace to fault back in its mmaps. 3844 */ 3845 } 3846 3847 list_for_each_entry(vma, &obj->vma_list, vma_link) { 3848 if (!drm_mm_node_allocated(&vma->node)) 3849 continue; 3850 3851 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE); 3852 if (ret) 3853 return ret; 3854 } 3855 } 3856 3857 list_for_each_entry(vma, &obj->vma_list, vma_link) 3858 vma->node.color = cache_level; 3859 obj->cache_level = cache_level; 3860 3861 out: 3862 /* Flush the dirty CPU caches to the backing storage so that the 3863 * object is now coherent at its new cache level (with respect 3864 * to the access domain). 3865 */ 3866 if (obj->cache_dirty && 3867 obj->base.write_domain != I915_GEM_DOMAIN_CPU && 3868 cpu_write_needs_clflush(obj)) { 3869 if (i915_gem_clflush_object(obj, true)) 3870 i915_gem_chipset_flush(obj->base.dev); 3871 } 3872 3873 return 0; 3874 } 3875 3876 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3877 struct drm_file *file) 3878 { 3879 struct drm_i915_gem_caching *args = data; 3880 struct drm_i915_gem_object *obj; 3881 3882 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3883 if (&obj->base == NULL) 3884 return -ENOENT; 3885 3886 switch (obj->cache_level) { 3887 case I915_CACHE_LLC: 3888 case I915_CACHE_L3_LLC: 3889 args->caching = I915_CACHING_CACHED; 3890 break; 3891 3892 case I915_CACHE_WT: 3893 args->caching = I915_CACHING_DISPLAY; 3894 break; 3895 3896 default: 3897 args->caching = I915_CACHING_NONE; 3898 break; 3899 } 3900 3901 drm_gem_object_unreference_unlocked(&obj->base); 3902 return 0; 3903 } 3904 3905 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3906 struct drm_file *file) 3907 { 3908 struct drm_i915_private *dev_priv = dev->dev_private; 3909 struct drm_i915_gem_caching *args = data; 3910 struct drm_i915_gem_object *obj; 3911 enum i915_cache_level level; 3912 int ret; 3913 3914 switch (args->caching) { 3915 case I915_CACHING_NONE: 3916 level = I915_CACHE_NONE; 3917 break; 3918 case I915_CACHING_CACHED: 3919 /* 3920 * Due to a HW issue on BXT A stepping, GPU stores via a 3921 * snooped mapping may leave stale data in a corresponding CPU 3922 * cacheline, whereas normally such cachelines would get 3923 * invalidated. 3924 */ 3925 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) 3926 return -ENODEV; 3927 3928 level = I915_CACHE_LLC; 3929 break; 3930 case I915_CACHING_DISPLAY: 3931 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE; 3932 break; 3933 default: 3934 return -EINVAL; 3935 } 3936 3937 intel_runtime_pm_get(dev_priv); 3938 3939 ret = i915_mutex_lock_interruptible(dev); 3940 if (ret) 3941 goto rpm_put; 3942 3943 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3944 if (&obj->base == NULL) { 3945 ret = -ENOENT; 3946 goto unlock; 3947 } 3948 3949 ret = i915_gem_object_set_cache_level(obj, level); 3950 3951 drm_gem_object_unreference(&obj->base); 3952 unlock: 3953 mutex_unlock(&dev->struct_mutex); 3954 rpm_put: 3955 intel_runtime_pm_put(dev_priv); 3956 3957 return ret; 3958 } 3959 3960 /* 3961 * Prepare buffer for display plane (scanout, cursors, etc). 3962 * Can be called from an uninterruptible phase (modesetting) and allows 3963 * any flushes to be pipelined (for pageflips). 3964 */ 3965 int 3966 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3967 u32 alignment, 3968 const struct i915_ggtt_view *view) 3969 { 3970 u32 old_read_domains, old_write_domain; 3971 int ret; 3972 3973 /* Mark the pin_display early so that we account for the 3974 * display coherency whilst setting up the cache domains. 3975 */ 3976 obj->pin_display++; 3977 3978 /* The display engine is not coherent with the LLC cache on gen6. As 3979 * a result, we make sure that the pinning that is about to occur is 3980 * done with uncached PTEs. This is lowest common denominator for all 3981 * chipsets. 3982 * 3983 * However for gen6+, we could do better by using the GFDT bit instead 3984 * of uncaching, which would allow us to flush all the LLC-cached data 3985 * with that bit in the PTE to main memory with just one PIPE_CONTROL. 3986 */ 3987 ret = i915_gem_object_set_cache_level(obj, 3988 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE); 3989 if (ret) 3990 goto err_unpin_display; 3991 3992 /* As the user may map the buffer once pinned in the display plane 3993 * (e.g. libkms for the bootup splash), we have to ensure that we 3994 * always use map_and_fenceable for all scanout buffers. 3995 */ 3996 ret = i915_gem_object_ggtt_pin(obj, view, alignment, 3997 view->type == I915_GGTT_VIEW_NORMAL ? 3998 PIN_MAPPABLE : 0); 3999 if (ret) 4000 goto err_unpin_display; 4001 4002 i915_gem_object_flush_cpu_write_domain(obj); 4003 4004 old_write_domain = obj->base.write_domain; 4005 old_read_domains = obj->base.read_domains; 4006 4007 /* It should now be out of any other write domains, and we can update 4008 * the domain values for our changes. 4009 */ 4010 obj->base.write_domain = 0; 4011 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 4012 4013 trace_i915_gem_object_change_domain(obj, 4014 old_read_domains, 4015 old_write_domain); 4016 4017 return 0; 4018 4019 err_unpin_display: 4020 obj->pin_display--; 4021 return ret; 4022 } 4023 4024 void 4025 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj, 4026 const struct i915_ggtt_view *view) 4027 { 4028 if (WARN_ON(obj->pin_display == 0)) 4029 return; 4030 4031 i915_gem_object_ggtt_unpin_view(obj, view); 4032 4033 obj->pin_display--; 4034 } 4035 4036 /** 4037 * Moves a single object to the CPU read, and possibly write domain. 4038 * 4039 * This function returns when the move is complete, including waiting on 4040 * flushes to occur. 4041 */ 4042 int 4043 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) 4044 { 4045 uint32_t old_write_domain, old_read_domains; 4046 int ret; 4047 4048 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) 4049 return 0; 4050 4051 ret = i915_gem_object_wait_rendering(obj, !write); 4052 if (ret) 4053 return ret; 4054 4055 i915_gem_object_flush_gtt_write_domain(obj); 4056 4057 old_write_domain = obj->base.write_domain; 4058 old_read_domains = obj->base.read_domains; 4059 4060 /* Flush the CPU cache if it's still invalid. */ 4061 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { 4062 i915_gem_clflush_object(obj, false); 4063 4064 obj->base.read_domains |= I915_GEM_DOMAIN_CPU; 4065 } 4066 4067 /* It should now be out of any other write domains, and we can update 4068 * the domain values for our changes. 4069 */ 4070 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); 4071 4072 /* If we're writing through the CPU, then the GPU read domains will 4073 * need to be invalidated at next use. 4074 */ 4075 if (write) { 4076 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 4077 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 4078 } 4079 4080 trace_i915_gem_object_change_domain(obj, 4081 old_read_domains, 4082 old_write_domain); 4083 4084 return 0; 4085 } 4086 4087 /* Throttle our rendering by waiting until the ring has completed our requests 4088 * emitted over 20 msec ago. 4089 * 4090 * Note that if we were to use the current jiffies each time around the loop, 4091 * we wouldn't escape the function with any frames outstanding if the time to 4092 * render a frame was over 20ms. 4093 * 4094 * This should get us reasonable parallelism between CPU and GPU but also 4095 * relatively low latency when blocking on a particular request to finish. 4096 */ 4097 static int 4098 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) 4099 { 4100 struct drm_i915_private *dev_priv = dev->dev_private; 4101 struct drm_i915_file_private *file_priv = file->driver_priv; 4102 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES; 4103 struct drm_i915_gem_request *request, *target = NULL; 4104 unsigned reset_counter; 4105 int ret; 4106 4107 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 4108 if (ret) 4109 return ret; 4110 4111 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false); 4112 if (ret) 4113 return ret; 4114 4115 spin_lock(&file_priv->mm.lock); 4116 list_for_each_entry(request, &file_priv->mm.request_list, client_list) { 4117 if (time_after_eq(request->emitted_jiffies, recent_enough)) 4118 break; 4119 4120 /* 4121 * Note that the request might not have been submitted yet. 4122 * In which case emitted_jiffies will be zero. 4123 */ 4124 if (!request->emitted_jiffies) 4125 continue; 4126 4127 target = request; 4128 } 4129 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 4130 if (target) 4131 i915_gem_request_reference(target); 4132 spin_unlock(&file_priv->mm.lock); 4133 4134 if (target == NULL) 4135 return 0; 4136 4137 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL); 4138 if (ret == 0) 4139 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0); 4140 4141 i915_gem_request_unreference__unlocked(target); 4142 4143 return ret; 4144 } 4145 4146 static bool 4147 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags) 4148 { 4149 struct drm_i915_gem_object *obj = vma->obj; 4150 4151 if (alignment && 4152 vma->node.start & (alignment - 1)) 4153 return true; 4154 4155 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable) 4156 return true; 4157 4158 if (flags & PIN_OFFSET_BIAS && 4159 vma->node.start < (flags & PIN_OFFSET_MASK)) 4160 return true; 4161 4162 if (flags & PIN_OFFSET_FIXED && 4163 vma->node.start != (flags & PIN_OFFSET_MASK)) 4164 return true; 4165 4166 return false; 4167 } 4168 4169 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma) 4170 { 4171 struct drm_i915_gem_object *obj = vma->obj; 4172 bool mappable, fenceable; 4173 u32 fence_size, fence_alignment; 4174 4175 fence_size = i915_gem_get_gtt_size(obj->base.dev, 4176 obj->base.size, 4177 obj->tiling_mode); 4178 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev, 4179 obj->base.size, 4180 obj->tiling_mode, 4181 true); 4182 4183 fenceable = (vma->node.size == fence_size && 4184 (vma->node.start & (fence_alignment - 1)) == 0); 4185 4186 mappable = (vma->node.start + fence_size <= 4187 to_i915(obj->base.dev)->gtt.mappable_end); 4188 4189 obj->map_and_fenceable = mappable && fenceable; 4190 } 4191 4192 static int 4193 i915_gem_object_do_pin(struct drm_i915_gem_object *obj, 4194 struct i915_address_space *vm, 4195 const struct i915_ggtt_view *ggtt_view, 4196 uint32_t alignment, 4197 uint64_t flags) 4198 { 4199 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 4200 struct i915_vma *vma; 4201 unsigned bound; 4202 int ret; 4203 4204 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base)) 4205 return -ENODEV; 4206 4207 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm))) 4208 return -EINVAL; 4209 4210 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE)) 4211 return -EINVAL; 4212 4213 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view)) 4214 return -EINVAL; 4215 4216 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) : 4217 i915_gem_obj_to_vma(obj, vm); 4218 4219 if (IS_ERR(vma)) 4220 return PTR_ERR(vma); 4221 4222 if (vma) { 4223 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT)) 4224 return -EBUSY; 4225 4226 if (i915_vma_misplaced(vma, alignment, flags)) { 4227 WARN(vma->pin_count, 4228 "bo is already pinned in %s with incorrect alignment:" 4229 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d," 4230 " obj->map_and_fenceable=%d\n", 4231 ggtt_view ? "ggtt" : "ppgtt", 4232 upper_32_bits(vma->node.start), 4233 lower_32_bits(vma->node.start), 4234 alignment, 4235 !!(flags & PIN_MAPPABLE), 4236 obj->map_and_fenceable); 4237 ret = i915_vma_unbind(vma); 4238 if (ret) 4239 return ret; 4240 4241 vma = NULL; 4242 } 4243 } 4244 4245 bound = vma ? vma->bound : 0; 4246 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) { 4247 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment, 4248 flags); 4249 if (IS_ERR(vma)) 4250 return PTR_ERR(vma); 4251 } else { 4252 ret = i915_vma_bind(vma, obj->cache_level, flags); 4253 if (ret) 4254 return ret; 4255 } 4256 4257 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL && 4258 (bound ^ vma->bound) & GLOBAL_BIND) { 4259 __i915_vma_set_map_and_fenceable(vma); 4260 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable); 4261 } 4262 4263 vma->pin_count++; 4264 return 0; 4265 } 4266 4267 int 4268 i915_gem_object_pin(struct drm_i915_gem_object *obj, 4269 struct i915_address_space *vm, 4270 uint32_t alignment, 4271 uint64_t flags) 4272 { 4273 return i915_gem_object_do_pin(obj, vm, 4274 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL, 4275 alignment, flags); 4276 } 4277 4278 int 4279 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 4280 const struct i915_ggtt_view *view, 4281 uint32_t alignment, 4282 uint64_t flags) 4283 { 4284 if (WARN_ONCE(!view, "no view specified")) 4285 return -EINVAL; 4286 4287 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view, 4288 alignment, flags | PIN_GLOBAL); 4289 } 4290 4291 void 4292 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj, 4293 const struct i915_ggtt_view *view) 4294 { 4295 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view); 4296 4297 BUG_ON(!vma); 4298 WARN_ON(vma->pin_count == 0); 4299 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view)); 4300 4301 --vma->pin_count; 4302 } 4303 4304 int 4305 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 4306 struct drm_file *file) 4307 { 4308 struct drm_i915_gem_busy *args = data; 4309 struct drm_i915_gem_object *obj; 4310 int ret; 4311 4312 ret = i915_mutex_lock_interruptible(dev); 4313 if (ret) 4314 return ret; 4315 4316 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 4317 if (&obj->base == NULL) { 4318 ret = -ENOENT; 4319 goto unlock; 4320 } 4321 4322 /* Count all active objects as busy, even if they are currently not used 4323 * by the gpu. Users of this interface expect objects to eventually 4324 * become non-busy without any further actions, therefore emit any 4325 * necessary flushes here. 4326 */ 4327 ret = i915_gem_object_flush_active(obj); 4328 if (ret) 4329 goto unref; 4330 4331 BUILD_BUG_ON(I915_NUM_RINGS > 16); 4332 args->busy = obj->active << 16; 4333 if (obj->last_write_req) 4334 args->busy |= obj->last_write_req->ring->id; 4335 4336 unref: 4337 drm_gem_object_unreference(&obj->base); 4338 unlock: 4339 mutex_unlock(&dev->struct_mutex); 4340 return ret; 4341 } 4342 4343 int 4344 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 4345 struct drm_file *file_priv) 4346 { 4347 return i915_gem_ring_throttle(dev, file_priv); 4348 } 4349 4350 int 4351 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 4352 struct drm_file *file_priv) 4353 { 4354 struct drm_i915_private *dev_priv = dev->dev_private; 4355 struct drm_i915_gem_madvise *args = data; 4356 struct drm_i915_gem_object *obj; 4357 int ret; 4358 4359 switch (args->madv) { 4360 case I915_MADV_DONTNEED: 4361 case I915_MADV_WILLNEED: 4362 break; 4363 default: 4364 return -EINVAL; 4365 } 4366 4367 ret = i915_mutex_lock_interruptible(dev); 4368 if (ret) 4369 return ret; 4370 4371 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle)); 4372 if (&obj->base == NULL) { 4373 ret = -ENOENT; 4374 goto unlock; 4375 } 4376 4377 if (i915_gem_obj_is_pinned(obj)) { 4378 ret = -EINVAL; 4379 goto out; 4380 } 4381 4382 if (obj->pages && 4383 obj->tiling_mode != I915_TILING_NONE && 4384 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) { 4385 if (obj->madv == I915_MADV_WILLNEED) 4386 i915_gem_object_unpin_pages(obj); 4387 if (args->madv == I915_MADV_WILLNEED) 4388 i915_gem_object_pin_pages(obj); 4389 } 4390 4391 if (obj->madv != __I915_MADV_PURGED) 4392 obj->madv = args->madv; 4393 4394 /* if the object is no longer attached, discard its backing storage */ 4395 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL) 4396 i915_gem_object_truncate(obj); 4397 4398 args->retained = obj->madv != __I915_MADV_PURGED; 4399 4400 out: 4401 drm_gem_object_unreference(&obj->base); 4402 unlock: 4403 mutex_unlock(&dev->struct_mutex); 4404 return ret; 4405 } 4406 4407 void i915_gem_object_init(struct drm_i915_gem_object *obj, 4408 const struct drm_i915_gem_object_ops *ops) 4409 { 4410 int i; 4411 4412 INIT_LIST_HEAD(&obj->global_list); 4413 for (i = 0; i < I915_NUM_RINGS; i++) 4414 INIT_LIST_HEAD(&obj->ring_list[i]); 4415 INIT_LIST_HEAD(&obj->obj_exec_link); 4416 INIT_LIST_HEAD(&obj->vma_list); 4417 INIT_LIST_HEAD(&obj->batch_pool_link); 4418 4419 obj->ops = ops; 4420 4421 obj->fence_reg = I915_FENCE_REG_NONE; 4422 obj->madv = I915_MADV_WILLNEED; 4423 4424 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size); 4425 } 4426 4427 static const struct drm_i915_gem_object_ops i915_gem_object_ops = { 4428 .get_pages = i915_gem_object_get_pages_gtt, 4429 .put_pages = i915_gem_object_put_pages_gtt, 4430 }; 4431 4432 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev, 4433 size_t size) 4434 { 4435 struct drm_i915_gem_object *obj; 4436 struct address_space *mapping; 4437 gfp_t mask; 4438 4439 obj = i915_gem_object_alloc(dev); 4440 if (obj == NULL) 4441 return NULL; 4442 4443 if (drm_gem_object_init(dev, &obj->base, size) != 0) { 4444 i915_gem_object_free(obj); 4445 return NULL; 4446 } 4447 4448 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 4449 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) { 4450 /* 965gm cannot relocate objects above 4GiB. */ 4451 mask &= ~__GFP_HIGHMEM; 4452 mask |= __GFP_DMA32; 4453 } 4454 4455 mapping = file_inode(obj->base.filp)->i_mapping; 4456 mapping_set_gfp_mask(mapping, mask); 4457 4458 i915_gem_object_init(obj, &i915_gem_object_ops); 4459 4460 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 4461 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 4462 4463 if (HAS_LLC(dev)) { 4464 /* On some devices, we can have the GPU use the LLC (the CPU 4465 * cache) for about a 10% performance improvement 4466 * compared to uncached. Graphics requests other than 4467 * display scanout are coherent with the CPU in 4468 * accessing this cache. This means in this mode we 4469 * don't need to clflush on the CPU side, and on the 4470 * GPU side we only need to flush internal caches to 4471 * get data visible to the CPU. 4472 * 4473 * However, we maintain the display planes as UC, and so 4474 * need to rebind when first used as such. 4475 */ 4476 obj->cache_level = I915_CACHE_LLC; 4477 } else 4478 obj->cache_level = I915_CACHE_NONE; 4479 4480 trace_i915_gem_object_create(obj); 4481 4482 return obj; 4483 } 4484 4485 static bool discard_backing_storage(struct drm_i915_gem_object *obj) 4486 { 4487 /* If we are the last user of the backing storage (be it shmemfs 4488 * pages or stolen etc), we know that the pages are going to be 4489 * immediately released. In this case, we can then skip copying 4490 * back the contents from the GPU. 4491 */ 4492 4493 if (obj->madv != I915_MADV_WILLNEED) 4494 return false; 4495 4496 if (obj->base.filp == NULL) 4497 return true; 4498 4499 /* At first glance, this looks racy, but then again so would be 4500 * userspace racing mmap against close. However, the first external 4501 * reference to the filp can only be obtained through the 4502 * i915_gem_mmap_ioctl() which safeguards us against the user 4503 * acquiring such a reference whilst we are in the middle of 4504 * freeing the object. 4505 */ 4506 return atomic_long_read(&obj->base.filp->f_count) == 1; 4507 } 4508 4509 void i915_gem_free_object(struct drm_gem_object *gem_obj) 4510 { 4511 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 4512 struct drm_device *dev = obj->base.dev; 4513 struct drm_i915_private *dev_priv = dev->dev_private; 4514 struct i915_vma *vma, *next; 4515 4516 intel_runtime_pm_get(dev_priv); 4517 4518 trace_i915_gem_object_destroy(obj); 4519 4520 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) { 4521 int ret; 4522 4523 vma->pin_count = 0; 4524 ret = i915_vma_unbind(vma); 4525 if (WARN_ON(ret == -ERESTARTSYS)) { 4526 bool was_interruptible; 4527 4528 was_interruptible = dev_priv->mm.interruptible; 4529 dev_priv->mm.interruptible = false; 4530 4531 WARN_ON(i915_vma_unbind(vma)); 4532 4533 dev_priv->mm.interruptible = was_interruptible; 4534 } 4535 } 4536 4537 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up 4538 * before progressing. */ 4539 if (obj->stolen) 4540 i915_gem_object_unpin_pages(obj); 4541 4542 WARN_ON(obj->frontbuffer_bits); 4543 4544 if (obj->pages && obj->madv == I915_MADV_WILLNEED && 4545 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES && 4546 obj->tiling_mode != I915_TILING_NONE) 4547 i915_gem_object_unpin_pages(obj); 4548 4549 if (WARN_ON(obj->pages_pin_count)) 4550 obj->pages_pin_count = 0; 4551 if (discard_backing_storage(obj)) 4552 obj->madv = I915_MADV_DONTNEED; 4553 i915_gem_object_put_pages(obj); 4554 i915_gem_object_free_mmap_offset(obj); 4555 4556 BUG_ON(obj->pages); 4557 4558 if (obj->base.import_attach) 4559 drm_prime_gem_destroy(&obj->base, NULL); 4560 4561 if (obj->ops->release) 4562 obj->ops->release(obj); 4563 4564 drm_gem_object_release(&obj->base); 4565 i915_gem_info_remove_obj(dev_priv, obj->base.size); 4566 4567 kfree(obj->bit_17); 4568 i915_gem_object_free(obj); 4569 4570 intel_runtime_pm_put(dev_priv); 4571 } 4572 4573 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj, 4574 struct i915_address_space *vm) 4575 { 4576 struct i915_vma *vma; 4577 list_for_each_entry(vma, &obj->vma_list, vma_link) { 4578 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL && 4579 vma->vm == vm) 4580 return vma; 4581 } 4582 return NULL; 4583 } 4584 4585 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj, 4586 const struct i915_ggtt_view *view) 4587 { 4588 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj); 4589 struct i915_vma *vma; 4590 4591 if (WARN_ONCE(!view, "no view specified")) 4592 return ERR_PTR(-EINVAL); 4593 4594 list_for_each_entry(vma, &obj->vma_list, vma_link) 4595 if (vma->vm == ggtt && 4596 i915_ggtt_view_equal(&vma->ggtt_view, view)) 4597 return vma; 4598 return NULL; 4599 } 4600 4601 void i915_gem_vma_destroy(struct i915_vma *vma) 4602 { 4603 struct i915_address_space *vm = NULL; 4604 WARN_ON(vma->node.allocated); 4605 4606 /* Keep the vma as a placeholder in the execbuffer reservation lists */ 4607 if (!list_empty(&vma->exec_list)) 4608 return; 4609 4610 vm = vma->vm; 4611 4612 if (!i915_is_ggtt(vm)) 4613 i915_ppgtt_put(i915_vm_to_ppgtt(vm)); 4614 4615 list_del(&vma->vma_link); 4616 4617 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma); 4618 } 4619 4620 static void 4621 i915_gem_stop_ringbuffers(struct drm_device *dev) 4622 { 4623 struct drm_i915_private *dev_priv = dev->dev_private; 4624 struct intel_engine_cs *ring; 4625 int i; 4626 4627 for_each_ring(ring, dev_priv, i) 4628 dev_priv->gt.stop_ring(ring); 4629 } 4630 4631 int 4632 i915_gem_suspend(struct drm_device *dev) 4633 { 4634 struct drm_i915_private *dev_priv = dev->dev_private; 4635 int ret = 0; 4636 4637 mutex_lock(&dev->struct_mutex); 4638 ret = i915_gpu_idle(dev); 4639 if (ret) 4640 goto err; 4641 4642 i915_gem_retire_requests(dev); 4643 4644 i915_gem_stop_ringbuffers(dev); 4645 mutex_unlock(&dev->struct_mutex); 4646 4647 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); 4648 cancel_delayed_work_sync(&dev_priv->mm.retire_work); 4649 flush_delayed_work(&dev_priv->mm.idle_work); 4650 4651 /* Assert that we sucessfully flushed all the work and 4652 * reset the GPU back to its idle, low power state. 4653 */ 4654 WARN_ON(dev_priv->mm.busy); 4655 4656 return 0; 4657 4658 err: 4659 mutex_unlock(&dev->struct_mutex); 4660 return ret; 4661 } 4662 4663 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice) 4664 { 4665 struct intel_engine_cs *ring = req->ring; 4666 struct drm_device *dev = ring->dev; 4667 struct drm_i915_private *dev_priv = dev->dev_private; 4668 u32 *remap_info = dev_priv->l3_parity.remap_info[slice]; 4669 int i, ret; 4670 4671 if (!HAS_L3_DPF(dev) || !remap_info) 4672 return 0; 4673 4674 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3); 4675 if (ret) 4676 return ret; 4677 4678 /* 4679 * Note: We do not worry about the concurrent register cacheline hang 4680 * here because no other code should access these registers other than 4681 * at initialization time. 4682 */ 4683 for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) { 4684 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); 4685 intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i)); 4686 intel_ring_emit(ring, remap_info[i]); 4687 } 4688 4689 intel_ring_advance(ring); 4690 4691 return ret; 4692 } 4693 4694 void i915_gem_init_swizzling(struct drm_device *dev) 4695 { 4696 struct drm_i915_private *dev_priv = dev->dev_private; 4697 4698 if (INTEL_INFO(dev)->gen < 5 || 4699 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 4700 return; 4701 4702 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | 4703 DISP_TILE_SURFACE_SWIZZLING); 4704 4705 if (IS_GEN5(dev)) 4706 return; 4707 4708 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); 4709 if (IS_GEN6(dev)) 4710 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 4711 else if (IS_GEN7(dev)) 4712 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 4713 else if (IS_GEN8(dev)) 4714 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW)); 4715 else 4716 BUG(); 4717 } 4718 4719 static void init_unused_ring(struct drm_device *dev, u32 base) 4720 { 4721 struct drm_i915_private *dev_priv = dev->dev_private; 4722 4723 I915_WRITE(RING_CTL(base), 0); 4724 I915_WRITE(RING_HEAD(base), 0); 4725 I915_WRITE(RING_TAIL(base), 0); 4726 I915_WRITE(RING_START(base), 0); 4727 } 4728 4729 static void init_unused_rings(struct drm_device *dev) 4730 { 4731 if (IS_I830(dev)) { 4732 init_unused_ring(dev, PRB1_BASE); 4733 init_unused_ring(dev, SRB0_BASE); 4734 init_unused_ring(dev, SRB1_BASE); 4735 init_unused_ring(dev, SRB2_BASE); 4736 init_unused_ring(dev, SRB3_BASE); 4737 } else if (IS_GEN2(dev)) { 4738 init_unused_ring(dev, SRB0_BASE); 4739 init_unused_ring(dev, SRB1_BASE); 4740 } else if (IS_GEN3(dev)) { 4741 init_unused_ring(dev, PRB1_BASE); 4742 init_unused_ring(dev, PRB2_BASE); 4743 } 4744 } 4745 4746 int i915_gem_init_rings(struct drm_device *dev) 4747 { 4748 struct drm_i915_private *dev_priv = dev->dev_private; 4749 int ret; 4750 4751 ret = intel_init_render_ring_buffer(dev); 4752 if (ret) 4753 return ret; 4754 4755 if (HAS_BSD(dev)) { 4756 ret = intel_init_bsd_ring_buffer(dev); 4757 if (ret) 4758 goto cleanup_render_ring; 4759 } 4760 4761 if (HAS_BLT(dev)) { 4762 ret = intel_init_blt_ring_buffer(dev); 4763 if (ret) 4764 goto cleanup_bsd_ring; 4765 } 4766 4767 if (HAS_VEBOX(dev)) { 4768 ret = intel_init_vebox_ring_buffer(dev); 4769 if (ret) 4770 goto cleanup_blt_ring; 4771 } 4772 4773 if (HAS_BSD2(dev)) { 4774 ret = intel_init_bsd2_ring_buffer(dev); 4775 if (ret) 4776 goto cleanup_vebox_ring; 4777 } 4778 4779 return 0; 4780 4781 cleanup_vebox_ring: 4782 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]); 4783 cleanup_blt_ring: 4784 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]); 4785 cleanup_bsd_ring: 4786 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]); 4787 cleanup_render_ring: 4788 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]); 4789 4790 return ret; 4791 } 4792 4793 int 4794 i915_gem_init_hw(struct drm_device *dev) 4795 { 4796 struct drm_i915_private *dev_priv = dev->dev_private; 4797 struct intel_engine_cs *ring; 4798 int ret, i, j; 4799 4800 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt()) 4801 return -EIO; 4802 4803 /* Double layer security blanket, see i915_gem_init() */ 4804 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 4805 4806 if (dev_priv->ellc_size) 4807 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf)); 4808 4809 if (IS_HASWELL(dev)) 4810 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ? 4811 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 4812 4813 if (HAS_PCH_NOP(dev)) { 4814 if (IS_IVYBRIDGE(dev)) { 4815 u32 temp = I915_READ(GEN7_MSG_CTL); 4816 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK); 4817 I915_WRITE(GEN7_MSG_CTL, temp); 4818 } else if (INTEL_INFO(dev)->gen >= 7) { 4819 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT); 4820 temp &= ~RESET_PCH_HANDSHAKE_ENABLE; 4821 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp); 4822 } 4823 } 4824 4825 i915_gem_init_swizzling(dev); 4826 4827 /* 4828 * At least 830 can leave some of the unused rings 4829 * "active" (ie. head != tail) after resume which 4830 * will prevent c3 entry. Makes sure all unused rings 4831 * are totally idle. 4832 */ 4833 init_unused_rings(dev); 4834 4835 BUG_ON(!dev_priv->ring[RCS].default_context); 4836 4837 ret = i915_ppgtt_init_hw(dev); 4838 if (ret) { 4839 DRM_ERROR("PPGTT enable HW failed %d\n", ret); 4840 goto out; 4841 } 4842 4843 /* Need to do basic initialisation of all rings first: */ 4844 for_each_ring(ring, dev_priv, i) { 4845 ret = ring->init_hw(ring); 4846 if (ret) 4847 goto out; 4848 } 4849 4850 /* We can't enable contexts until all firmware is loaded */ 4851 if (HAS_GUC_UCODE(dev)) { 4852 ret = intel_guc_ucode_load(dev); 4853 if (ret) { 4854 DRM_ERROR("Failed to initialize GuC, error %d\n", ret); 4855 ret = -EIO; 4856 goto out; 4857 } 4858 } 4859 4860 /* 4861 * Increment the next seqno by 0x100 so we have a visible break 4862 * on re-initialisation 4863 */ 4864 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100); 4865 if (ret) 4866 goto out; 4867 4868 /* Now it is safe to go back round and do everything else: */ 4869 for_each_ring(ring, dev_priv, i) { 4870 struct drm_i915_gem_request *req; 4871 4872 WARN_ON(!ring->default_context); 4873 4874 ret = i915_gem_request_alloc(ring, ring->default_context, &req); 4875 if (ret) { 4876 i915_gem_cleanup_ringbuffer(dev); 4877 goto out; 4878 } 4879 4880 if (ring->id == RCS) { 4881 for (j = 0; j < NUM_L3_SLICES(dev); j++) 4882 i915_gem_l3_remap(req, j); 4883 } 4884 4885 ret = i915_ppgtt_init_ring(req); 4886 if (ret && ret != -EIO) { 4887 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret); 4888 i915_gem_request_cancel(req); 4889 i915_gem_cleanup_ringbuffer(dev); 4890 goto out; 4891 } 4892 4893 ret = i915_gem_context_enable(req); 4894 if (ret && ret != -EIO) { 4895 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret); 4896 i915_gem_request_cancel(req); 4897 i915_gem_cleanup_ringbuffer(dev); 4898 goto out; 4899 } 4900 4901 i915_add_request_no_flush(req); 4902 } 4903 4904 out: 4905 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 4906 return ret; 4907 } 4908 4909 int i915_gem_init(struct drm_device *dev) 4910 { 4911 struct drm_i915_private *dev_priv = dev->dev_private; 4912 int ret; 4913 4914 i915.enable_execlists = intel_sanitize_enable_execlists(dev, 4915 i915.enable_execlists); 4916 4917 mutex_lock(&dev->struct_mutex); 4918 4919 if (!i915.enable_execlists) { 4920 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission; 4921 dev_priv->gt.init_rings = i915_gem_init_rings; 4922 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer; 4923 dev_priv->gt.stop_ring = intel_stop_ring_buffer; 4924 } else { 4925 dev_priv->gt.execbuf_submit = intel_execlists_submission; 4926 dev_priv->gt.init_rings = intel_logical_rings_init; 4927 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup; 4928 dev_priv->gt.stop_ring = intel_logical_ring_stop; 4929 } 4930 4931 /* This is just a security blanket to placate dragons. 4932 * On some systems, we very sporadically observe that the first TLBs 4933 * used by the CS may be stale, despite us poking the TLB reset. If 4934 * we hold the forcewake during initialisation these problems 4935 * just magically go away. 4936 */ 4937 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 4938 4939 ret = i915_gem_init_userptr(dev); 4940 if (ret) 4941 goto out_unlock; 4942 4943 i915_gem_init_global_gtt(dev); 4944 4945 ret = i915_gem_context_init(dev); 4946 if (ret) 4947 goto out_unlock; 4948 4949 ret = dev_priv->gt.init_rings(dev); 4950 if (ret) 4951 goto out_unlock; 4952 4953 ret = i915_gem_init_hw(dev); 4954 if (ret == -EIO) { 4955 /* Allow ring initialisation to fail by marking the GPU as 4956 * wedged. But we only want to do this where the GPU is angry, 4957 * for all other failure, such as an allocation failure, bail. 4958 */ 4959 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n"); 4960 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter); 4961 ret = 0; 4962 } 4963 4964 out_unlock: 4965 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 4966 mutex_unlock(&dev->struct_mutex); 4967 4968 return ret; 4969 } 4970 4971 void 4972 i915_gem_cleanup_ringbuffer(struct drm_device *dev) 4973 { 4974 struct drm_i915_private *dev_priv = dev->dev_private; 4975 struct intel_engine_cs *ring; 4976 int i; 4977 4978 for_each_ring(ring, dev_priv, i) 4979 dev_priv->gt.cleanup_ring(ring); 4980 4981 if (i915.enable_execlists) 4982 /* 4983 * Neither the BIOS, ourselves or any other kernel 4984 * expects the system to be in execlists mode on startup, 4985 * so we need to reset the GPU back to legacy mode. 4986 */ 4987 intel_gpu_reset(dev); 4988 } 4989 4990 static void 4991 init_ring_lists(struct intel_engine_cs *ring) 4992 { 4993 INIT_LIST_HEAD(&ring->active_list); 4994 INIT_LIST_HEAD(&ring->request_list); 4995 } 4996 4997 void 4998 i915_gem_load(struct drm_device *dev) 4999 { 5000 struct drm_i915_private *dev_priv = dev->dev_private; 5001 int i; 5002 5003 dev_priv->objects = 5004 kmem_cache_create("i915_gem_object", 5005 sizeof(struct drm_i915_gem_object), 0, 5006 SLAB_HWCACHE_ALIGN, 5007 NULL); 5008 dev_priv->vmas = 5009 kmem_cache_create("i915_gem_vma", 5010 sizeof(struct i915_vma), 0, 5011 SLAB_HWCACHE_ALIGN, 5012 NULL); 5013 dev_priv->requests = 5014 kmem_cache_create("i915_gem_request", 5015 sizeof(struct drm_i915_gem_request), 0, 5016 SLAB_HWCACHE_ALIGN, 5017 NULL); 5018 5019 INIT_LIST_HEAD(&dev_priv->vm_list); 5020 INIT_LIST_HEAD(&dev_priv->context_list); 5021 INIT_LIST_HEAD(&dev_priv->mm.unbound_list); 5022 INIT_LIST_HEAD(&dev_priv->mm.bound_list); 5023 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 5024 for (i = 0; i < I915_NUM_RINGS; i++) 5025 init_ring_lists(&dev_priv->ring[i]); 5026 for (i = 0; i < I915_MAX_NUM_FENCES; i++) 5027 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list); 5028 INIT_DELAYED_WORK(&dev_priv->mm.retire_work, 5029 i915_gem_retire_work_handler); 5030 INIT_DELAYED_WORK(&dev_priv->mm.idle_work, 5031 i915_gem_idle_work_handler); 5032 init_waitqueue_head(&dev_priv->gpu_error.reset_queue); 5033 5034 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL; 5035 5036 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) 5037 dev_priv->num_fence_regs = 32; 5038 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) 5039 dev_priv->num_fence_regs = 16; 5040 else 5041 dev_priv->num_fence_regs = 8; 5042 5043 if (intel_vgpu_active(dev)) 5044 dev_priv->num_fence_regs = 5045 I915_READ(vgtif_reg(avail_rs.fence_num)); 5046 5047 /* 5048 * Set initial sequence number for requests. 5049 * Using this number allows the wraparound to happen early, 5050 * catching any obvious problems. 5051 */ 5052 dev_priv->next_seqno = ((u32)~0 - 0x1100); 5053 dev_priv->last_seqno = ((u32)~0 - 0x1101); 5054 5055 /* Initialize fence registers to zero */ 5056 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 5057 i915_gem_restore_fences(dev); 5058 5059 i915_gem_detect_bit_6_swizzle(dev); 5060 init_waitqueue_head(&dev_priv->pending_flip_queue); 5061 5062 dev_priv->mm.interruptible = true; 5063 5064 i915_gem_shrinker_init(dev_priv); 5065 5066 mutex_init(&dev_priv->fb_tracking.lock); 5067 } 5068 5069 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 5070 { 5071 struct drm_i915_file_private *file_priv = file->driver_priv; 5072 5073 /* Clean up our request list when the client is going away, so that 5074 * later retire_requests won't dereference our soon-to-be-gone 5075 * file_priv. 5076 */ 5077 spin_lock(&file_priv->mm.lock); 5078 while (!list_empty(&file_priv->mm.request_list)) { 5079 struct drm_i915_gem_request *request; 5080 5081 request = list_first_entry(&file_priv->mm.request_list, 5082 struct drm_i915_gem_request, 5083 client_list); 5084 list_del(&request->client_list); 5085 request->file_priv = NULL; 5086 } 5087 spin_unlock(&file_priv->mm.lock); 5088 5089 if (!list_empty(&file_priv->rps.link)) { 5090 spin_lock(&to_i915(dev)->rps.client_lock); 5091 list_del(&file_priv->rps.link); 5092 spin_unlock(&to_i915(dev)->rps.client_lock); 5093 } 5094 } 5095 5096 int i915_gem_open(struct drm_device *dev, struct drm_file *file) 5097 { 5098 struct drm_i915_file_private *file_priv; 5099 int ret; 5100 5101 DRM_DEBUG_DRIVER("\n"); 5102 5103 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); 5104 if (!file_priv) 5105 return -ENOMEM; 5106 5107 file->driver_priv = file_priv; 5108 file_priv->dev_priv = dev->dev_private; 5109 file_priv->file = file; 5110 INIT_LIST_HEAD(&file_priv->rps.link); 5111 5112 spin_lock_init(&file_priv->mm.lock); 5113 INIT_LIST_HEAD(&file_priv->mm.request_list); 5114 5115 ret = i915_gem_context_open(dev, file); 5116 if (ret) 5117 kfree(file_priv); 5118 5119 return ret; 5120 } 5121 5122 /** 5123 * i915_gem_track_fb - update frontbuffer tracking 5124 * @old: current GEM buffer for the frontbuffer slots 5125 * @new: new GEM buffer for the frontbuffer slots 5126 * @frontbuffer_bits: bitmask of frontbuffer slots 5127 * 5128 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them 5129 * from @old and setting them in @new. Both @old and @new can be NULL. 5130 */ 5131 void i915_gem_track_fb(struct drm_i915_gem_object *old, 5132 struct drm_i915_gem_object *new, 5133 unsigned frontbuffer_bits) 5134 { 5135 if (old) { 5136 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex)); 5137 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits)); 5138 old->frontbuffer_bits &= ~frontbuffer_bits; 5139 } 5140 5141 if (new) { 5142 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex)); 5143 WARN_ON(new->frontbuffer_bits & frontbuffer_bits); 5144 new->frontbuffer_bits |= frontbuffer_bits; 5145 } 5146 } 5147 5148 /* All the new VM stuff */ 5149 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o, 5150 struct i915_address_space *vm) 5151 { 5152 struct drm_i915_private *dev_priv = o->base.dev->dev_private; 5153 struct i915_vma *vma; 5154 5155 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base); 5156 5157 list_for_each_entry(vma, &o->vma_list, vma_link) { 5158 if (i915_is_ggtt(vma->vm) && 5159 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL) 5160 continue; 5161 if (vma->vm == vm) 5162 return vma->node.start; 5163 } 5164 5165 WARN(1, "%s vma for this object not found.\n", 5166 i915_is_ggtt(vm) ? "global" : "ppgtt"); 5167 return -1; 5168 } 5169 5170 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o, 5171 const struct i915_ggtt_view *view) 5172 { 5173 struct i915_address_space *ggtt = i915_obj_to_ggtt(o); 5174 struct i915_vma *vma; 5175 5176 list_for_each_entry(vma, &o->vma_list, vma_link) 5177 if (vma->vm == ggtt && 5178 i915_ggtt_view_equal(&vma->ggtt_view, view)) 5179 return vma->node.start; 5180 5181 WARN(1, "global vma for this object not found. (view=%u)\n", view->type); 5182 return -1; 5183 } 5184 5185 bool i915_gem_obj_bound(struct drm_i915_gem_object *o, 5186 struct i915_address_space *vm) 5187 { 5188 struct i915_vma *vma; 5189 5190 list_for_each_entry(vma, &o->vma_list, vma_link) { 5191 if (i915_is_ggtt(vma->vm) && 5192 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL) 5193 continue; 5194 if (vma->vm == vm && drm_mm_node_allocated(&vma->node)) 5195 return true; 5196 } 5197 5198 return false; 5199 } 5200 5201 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o, 5202 const struct i915_ggtt_view *view) 5203 { 5204 struct i915_address_space *ggtt = i915_obj_to_ggtt(o); 5205 struct i915_vma *vma; 5206 5207 list_for_each_entry(vma, &o->vma_list, vma_link) 5208 if (vma->vm == ggtt && 5209 i915_ggtt_view_equal(&vma->ggtt_view, view) && 5210 drm_mm_node_allocated(&vma->node)) 5211 return true; 5212 5213 return false; 5214 } 5215 5216 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o) 5217 { 5218 struct i915_vma *vma; 5219 5220 list_for_each_entry(vma, &o->vma_list, vma_link) 5221 if (drm_mm_node_allocated(&vma->node)) 5222 return true; 5223 5224 return false; 5225 } 5226 5227 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o, 5228 struct i915_address_space *vm) 5229 { 5230 struct drm_i915_private *dev_priv = o->base.dev->dev_private; 5231 struct i915_vma *vma; 5232 5233 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base); 5234 5235 BUG_ON(list_empty(&o->vma_list)); 5236 5237 list_for_each_entry(vma, &o->vma_list, vma_link) { 5238 if (i915_is_ggtt(vma->vm) && 5239 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL) 5240 continue; 5241 if (vma->vm == vm) 5242 return vma->node.size; 5243 } 5244 return 0; 5245 } 5246 5247 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj) 5248 { 5249 struct i915_vma *vma; 5250 list_for_each_entry(vma, &obj->vma_list, vma_link) 5251 if (vma->pin_count > 0) 5252 return true; 5253 5254 return false; 5255 } 5256 5257 /* Like i915_gem_object_get_page(), but mark the returned page dirty */ 5258 struct page * 5259 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n) 5260 { 5261 struct page *page; 5262 5263 /* Only default objects have per-page dirty tracking */ 5264 if (WARN_ON(obj->ops != &i915_gem_object_ops)) 5265 return NULL; 5266 5267 page = i915_gem_object_get_page(obj, n); 5268 set_page_dirty(page); 5269 return page; 5270 } 5271 5272 /* Allocate a new GEM object and fill it with the supplied data */ 5273 struct drm_i915_gem_object * 5274 i915_gem_object_create_from_data(struct drm_device *dev, 5275 const void *data, size_t size) 5276 { 5277 struct drm_i915_gem_object *obj; 5278 struct sg_table *sg; 5279 size_t bytes; 5280 int ret; 5281 5282 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE)); 5283 if (IS_ERR_OR_NULL(obj)) 5284 return obj; 5285 5286 ret = i915_gem_object_set_to_cpu_domain(obj, true); 5287 if (ret) 5288 goto fail; 5289 5290 ret = i915_gem_object_get_pages(obj); 5291 if (ret) 5292 goto fail; 5293 5294 i915_gem_object_pin_pages(obj); 5295 sg = obj->pages; 5296 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size); 5297 obj->dirty = 1; /* Backing store is now out of date */ 5298 i915_gem_object_unpin_pages(obj); 5299 5300 if (WARN_ON(bytes != size)) { 5301 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size); 5302 ret = -EFAULT; 5303 goto fail; 5304 } 5305 5306 return obj; 5307 5308 fail: 5309 drm_gem_object_unreference(&obj->base); 5310 return ERR_PTR(ret); 5311 } 5312