xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision 8730046c)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_frontbuffer.h"
36 #include "intel_mocs.h"
37 #include <linux/dma-fence-array.h>
38 #include <linux/reservation.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/pci.h>
43 #include <linux/dma-buf.h>
44 
45 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
46 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
47 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
48 
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50 				  enum i915_cache_level level)
51 {
52 	return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
53 }
54 
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
58 		return false;
59 
60 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
61 		return true;
62 
63 	return obj->pin_display;
64 }
65 
66 static int
67 insert_mappable_node(struct i915_ggtt *ggtt,
68                      struct drm_mm_node *node, u32 size)
69 {
70 	memset(node, 0, sizeof(*node));
71 	return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
72 						   size, 0, -1,
73 						   0, ggtt->mappable_end,
74 						   DRM_MM_SEARCH_DEFAULT,
75 						   DRM_MM_CREATE_DEFAULT);
76 }
77 
78 static void
79 remove_mappable_node(struct drm_mm_node *node)
80 {
81 	drm_mm_remove_node(node);
82 }
83 
84 /* some bookkeeping */
85 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86 				  u64 size)
87 {
88 	spin_lock(&dev_priv->mm.object_stat_lock);
89 	dev_priv->mm.object_count++;
90 	dev_priv->mm.object_memory += size;
91 	spin_unlock(&dev_priv->mm.object_stat_lock);
92 }
93 
94 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95 				     u64 size)
96 {
97 	spin_lock(&dev_priv->mm.object_stat_lock);
98 	dev_priv->mm.object_count--;
99 	dev_priv->mm.object_memory -= size;
100 	spin_unlock(&dev_priv->mm.object_stat_lock);
101 }
102 
103 static int
104 i915_gem_wait_for_error(struct i915_gpu_error *error)
105 {
106 	int ret;
107 
108 	might_sleep();
109 
110 	if (!i915_reset_in_progress(error))
111 		return 0;
112 
113 	/*
114 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
115 	 * userspace. If it takes that long something really bad is going on and
116 	 * we should simply try to bail out and fail as gracefully as possible.
117 	 */
118 	ret = wait_event_interruptible_timeout(error->reset_queue,
119 					       !i915_reset_in_progress(error),
120 					       I915_RESET_TIMEOUT);
121 	if (ret == 0) {
122 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
123 		return -EIO;
124 	} else if (ret < 0) {
125 		return ret;
126 	} else {
127 		return 0;
128 	}
129 }
130 
131 int i915_mutex_lock_interruptible(struct drm_device *dev)
132 {
133 	struct drm_i915_private *dev_priv = to_i915(dev);
134 	int ret;
135 
136 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
137 	if (ret)
138 		return ret;
139 
140 	ret = mutex_lock_interruptible(&dev->struct_mutex);
141 	if (ret)
142 		return ret;
143 
144 	return 0;
145 }
146 
147 int
148 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
149 			    struct drm_file *file)
150 {
151 	struct drm_i915_private *dev_priv = to_i915(dev);
152 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
153 	struct drm_i915_gem_get_aperture *args = data;
154 	struct i915_vma *vma;
155 	size_t pinned;
156 
157 	pinned = 0;
158 	mutex_lock(&dev->struct_mutex);
159 	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
160 		if (i915_vma_is_pinned(vma))
161 			pinned += vma->node.size;
162 	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
163 		if (i915_vma_is_pinned(vma))
164 			pinned += vma->node.size;
165 	mutex_unlock(&dev->struct_mutex);
166 
167 	args->aper_size = ggtt->base.total;
168 	args->aper_available_size = args->aper_size - pinned;
169 
170 	return 0;
171 }
172 
173 static struct sg_table *
174 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
175 {
176 	struct address_space *mapping = obj->base.filp->f_mapping;
177 	drm_dma_handle_t *phys;
178 	struct sg_table *st;
179 	struct scatterlist *sg;
180 	char *vaddr;
181 	int i;
182 
183 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
184 		return ERR_PTR(-EINVAL);
185 
186 	/* Always aligning to the object size, allows a single allocation
187 	 * to handle all possible callers, and given typical object sizes,
188 	 * the alignment of the buddy allocation will naturally match.
189 	 */
190 	phys = drm_pci_alloc(obj->base.dev,
191 			     obj->base.size,
192 			     roundup_pow_of_two(obj->base.size));
193 	if (!phys)
194 		return ERR_PTR(-ENOMEM);
195 
196 	vaddr = phys->vaddr;
197 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
198 		struct page *page;
199 		char *src;
200 
201 		page = shmem_read_mapping_page(mapping, i);
202 		if (IS_ERR(page)) {
203 			st = ERR_CAST(page);
204 			goto err_phys;
205 		}
206 
207 		src = kmap_atomic(page);
208 		memcpy(vaddr, src, PAGE_SIZE);
209 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
210 		kunmap_atomic(src);
211 
212 		put_page(page);
213 		vaddr += PAGE_SIZE;
214 	}
215 
216 	i915_gem_chipset_flush(to_i915(obj->base.dev));
217 
218 	st = kmalloc(sizeof(*st), GFP_KERNEL);
219 	if (!st) {
220 		st = ERR_PTR(-ENOMEM);
221 		goto err_phys;
222 	}
223 
224 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
225 		kfree(st);
226 		st = ERR_PTR(-ENOMEM);
227 		goto err_phys;
228 	}
229 
230 	sg = st->sgl;
231 	sg->offset = 0;
232 	sg->length = obj->base.size;
233 
234 	sg_dma_address(sg) = phys->busaddr;
235 	sg_dma_len(sg) = obj->base.size;
236 
237 	obj->phys_handle = phys;
238 	return st;
239 
240 err_phys:
241 	drm_pci_free(obj->base.dev, phys);
242 	return st;
243 }
244 
245 static void
246 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
247 				struct sg_table *pages,
248 				bool needs_clflush)
249 {
250 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
251 
252 	if (obj->mm.madv == I915_MADV_DONTNEED)
253 		obj->mm.dirty = false;
254 
255 	if (needs_clflush &&
256 	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
257 	    !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
258 		drm_clflush_sg(pages);
259 
260 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
261 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
262 }
263 
264 static void
265 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
266 			       struct sg_table *pages)
267 {
268 	__i915_gem_object_release_shmem(obj, pages, false);
269 
270 	if (obj->mm.dirty) {
271 		struct address_space *mapping = obj->base.filp->f_mapping;
272 		char *vaddr = obj->phys_handle->vaddr;
273 		int i;
274 
275 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
276 			struct page *page;
277 			char *dst;
278 
279 			page = shmem_read_mapping_page(mapping, i);
280 			if (IS_ERR(page))
281 				continue;
282 
283 			dst = kmap_atomic(page);
284 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
285 			memcpy(dst, vaddr, PAGE_SIZE);
286 			kunmap_atomic(dst);
287 
288 			set_page_dirty(page);
289 			if (obj->mm.madv == I915_MADV_WILLNEED)
290 				mark_page_accessed(page);
291 			put_page(page);
292 			vaddr += PAGE_SIZE;
293 		}
294 		obj->mm.dirty = false;
295 	}
296 
297 	sg_free_table(pages);
298 	kfree(pages);
299 
300 	drm_pci_free(obj->base.dev, obj->phys_handle);
301 }
302 
303 static void
304 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
305 {
306 	i915_gem_object_unpin_pages(obj);
307 }
308 
309 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
310 	.get_pages = i915_gem_object_get_pages_phys,
311 	.put_pages = i915_gem_object_put_pages_phys,
312 	.release = i915_gem_object_release_phys,
313 };
314 
315 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 {
317 	struct i915_vma *vma;
318 	LIST_HEAD(still_in_list);
319 	int ret;
320 
321 	lockdep_assert_held(&obj->base.dev->struct_mutex);
322 
323 	/* Closed vma are removed from the obj->vma_list - but they may
324 	 * still have an active binding on the object. To remove those we
325 	 * must wait for all rendering to complete to the object (as unbinding
326 	 * must anyway), and retire the requests.
327 	 */
328 	ret = i915_gem_object_wait(obj,
329 				   I915_WAIT_INTERRUPTIBLE |
330 				   I915_WAIT_LOCKED |
331 				   I915_WAIT_ALL,
332 				   MAX_SCHEDULE_TIMEOUT,
333 				   NULL);
334 	if (ret)
335 		return ret;
336 
337 	i915_gem_retire_requests(to_i915(obj->base.dev));
338 
339 	while ((vma = list_first_entry_or_null(&obj->vma_list,
340 					       struct i915_vma,
341 					       obj_link))) {
342 		list_move_tail(&vma->obj_link, &still_in_list);
343 		ret = i915_vma_unbind(vma);
344 		if (ret)
345 			break;
346 	}
347 	list_splice(&still_in_list, &obj->vma_list);
348 
349 	return ret;
350 }
351 
352 static long
353 i915_gem_object_wait_fence(struct dma_fence *fence,
354 			   unsigned int flags,
355 			   long timeout,
356 			   struct intel_rps_client *rps)
357 {
358 	struct drm_i915_gem_request *rq;
359 
360 	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361 
362 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363 		return timeout;
364 
365 	if (!dma_fence_is_i915(fence))
366 		return dma_fence_wait_timeout(fence,
367 					      flags & I915_WAIT_INTERRUPTIBLE,
368 					      timeout);
369 
370 	rq = to_request(fence);
371 	if (i915_gem_request_completed(rq))
372 		goto out;
373 
374 	/* This client is about to stall waiting for the GPU. In many cases
375 	 * this is undesirable and limits the throughput of the system, as
376 	 * many clients cannot continue processing user input/output whilst
377 	 * blocked. RPS autotuning may take tens of milliseconds to respond
378 	 * to the GPU load and thus incurs additional latency for the client.
379 	 * We can circumvent that by promoting the GPU frequency to maximum
380 	 * before we wait. This makes the GPU throttle up much more quickly
381 	 * (good for benchmarks and user experience, e.g. window animations),
382 	 * but at a cost of spending more power processing the workload
383 	 * (bad for battery). Not all clients even want their results
384 	 * immediately and for them we should just let the GPU select its own
385 	 * frequency to maximise efficiency. To prevent a single client from
386 	 * forcing the clocks too high for the whole system, we only allow
387 	 * each client to waitboost once in a busy period.
388 	 */
389 	if (rps) {
390 		if (INTEL_GEN(rq->i915) >= 6)
391 			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
392 		else
393 			rps = NULL;
394 	}
395 
396 	timeout = i915_wait_request(rq, flags, timeout);
397 
398 out:
399 	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400 		i915_gem_request_retire_upto(rq);
401 
402 	if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
403 		/* The GPU is now idle and this client has stalled.
404 		 * Since no other client has submitted a request in the
405 		 * meantime, assume that this client is the only one
406 		 * supplying work to the GPU but is unable to keep that
407 		 * work supplied because it is waiting. Since the GPU is
408 		 * then never kept fully busy, RPS autoclocking will
409 		 * keep the clocks relatively low, causing further delays.
410 		 * Compensate by giving the synchronous client credit for
411 		 * a waitboost next time.
412 		 */
413 		spin_lock(&rq->i915->rps.client_lock);
414 		list_del_init(&rps->link);
415 		spin_unlock(&rq->i915->rps.client_lock);
416 	}
417 
418 	return timeout;
419 }
420 
421 static long
422 i915_gem_object_wait_reservation(struct reservation_object *resv,
423 				 unsigned int flags,
424 				 long timeout,
425 				 struct intel_rps_client *rps)
426 {
427 	struct dma_fence *excl;
428 
429 	if (flags & I915_WAIT_ALL) {
430 		struct dma_fence **shared;
431 		unsigned int count, i;
432 		int ret;
433 
434 		ret = reservation_object_get_fences_rcu(resv,
435 							&excl, &count, &shared);
436 		if (ret)
437 			return ret;
438 
439 		for (i = 0; i < count; i++) {
440 			timeout = i915_gem_object_wait_fence(shared[i],
441 							     flags, timeout,
442 							     rps);
443 			if (timeout <= 0)
444 				break;
445 
446 			dma_fence_put(shared[i]);
447 		}
448 
449 		for (; i < count; i++)
450 			dma_fence_put(shared[i]);
451 		kfree(shared);
452 	} else {
453 		excl = reservation_object_get_excl_rcu(resv);
454 	}
455 
456 	if (excl && timeout > 0)
457 		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
458 
459 	dma_fence_put(excl);
460 
461 	return timeout;
462 }
463 
464 static void __fence_set_priority(struct dma_fence *fence, int prio)
465 {
466 	struct drm_i915_gem_request *rq;
467 	struct intel_engine_cs *engine;
468 
469 	if (!dma_fence_is_i915(fence))
470 		return;
471 
472 	rq = to_request(fence);
473 	engine = rq->engine;
474 	if (!engine->schedule)
475 		return;
476 
477 	engine->schedule(rq, prio);
478 }
479 
480 static void fence_set_priority(struct dma_fence *fence, int prio)
481 {
482 	/* Recurse once into a fence-array */
483 	if (dma_fence_is_array(fence)) {
484 		struct dma_fence_array *array = to_dma_fence_array(fence);
485 		int i;
486 
487 		for (i = 0; i < array->num_fences; i++)
488 			__fence_set_priority(array->fences[i], prio);
489 	} else {
490 		__fence_set_priority(fence, prio);
491 	}
492 }
493 
494 int
495 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
496 			      unsigned int flags,
497 			      int prio)
498 {
499 	struct dma_fence *excl;
500 
501 	if (flags & I915_WAIT_ALL) {
502 		struct dma_fence **shared;
503 		unsigned int count, i;
504 		int ret;
505 
506 		ret = reservation_object_get_fences_rcu(obj->resv,
507 							&excl, &count, &shared);
508 		if (ret)
509 			return ret;
510 
511 		for (i = 0; i < count; i++) {
512 			fence_set_priority(shared[i], prio);
513 			dma_fence_put(shared[i]);
514 		}
515 
516 		kfree(shared);
517 	} else {
518 		excl = reservation_object_get_excl_rcu(obj->resv);
519 	}
520 
521 	if (excl) {
522 		fence_set_priority(excl, prio);
523 		dma_fence_put(excl);
524 	}
525 	return 0;
526 }
527 
528 /**
529  * Waits for rendering to the object to be completed
530  * @obj: i915 gem object
531  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
532  * @timeout: how long to wait
533  * @rps: client (user process) to charge for any waitboosting
534  */
535 int
536 i915_gem_object_wait(struct drm_i915_gem_object *obj,
537 		     unsigned int flags,
538 		     long timeout,
539 		     struct intel_rps_client *rps)
540 {
541 	might_sleep();
542 #if IS_ENABLED(CONFIG_LOCKDEP)
543 	GEM_BUG_ON(debug_locks &&
544 		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
545 		   !!(flags & I915_WAIT_LOCKED));
546 #endif
547 	GEM_BUG_ON(timeout < 0);
548 
549 	timeout = i915_gem_object_wait_reservation(obj->resv,
550 						   flags, timeout,
551 						   rps);
552 	return timeout < 0 ? timeout : 0;
553 }
554 
555 static struct intel_rps_client *to_rps_client(struct drm_file *file)
556 {
557 	struct drm_i915_file_private *fpriv = file->driver_priv;
558 
559 	return &fpriv->rps;
560 }
561 
562 int
563 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
564 			    int align)
565 {
566 	int ret;
567 
568 	if (align > obj->base.size)
569 		return -EINVAL;
570 
571 	if (obj->ops == &i915_gem_phys_ops)
572 		return 0;
573 
574 	if (obj->mm.madv != I915_MADV_WILLNEED)
575 		return -EFAULT;
576 
577 	if (obj->base.filp == NULL)
578 		return -EINVAL;
579 
580 	ret = i915_gem_object_unbind(obj);
581 	if (ret)
582 		return ret;
583 
584 	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
585 	if (obj->mm.pages)
586 		return -EBUSY;
587 
588 	obj->ops = &i915_gem_phys_ops;
589 
590 	return i915_gem_object_pin_pages(obj);
591 }
592 
593 static int
594 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
595 		     struct drm_i915_gem_pwrite *args,
596 		     struct drm_file *file)
597 {
598 	struct drm_device *dev = obj->base.dev;
599 	void *vaddr = obj->phys_handle->vaddr + args->offset;
600 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
601 	int ret;
602 
603 	/* We manually control the domain here and pretend that it
604 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
605 	 */
606 	lockdep_assert_held(&obj->base.dev->struct_mutex);
607 	ret = i915_gem_object_wait(obj,
608 				   I915_WAIT_INTERRUPTIBLE |
609 				   I915_WAIT_LOCKED |
610 				   I915_WAIT_ALL,
611 				   MAX_SCHEDULE_TIMEOUT,
612 				   to_rps_client(file));
613 	if (ret)
614 		return ret;
615 
616 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
617 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
618 		unsigned long unwritten;
619 
620 		/* The physical object once assigned is fixed for the lifetime
621 		 * of the obj, so we can safely drop the lock and continue
622 		 * to access vaddr.
623 		 */
624 		mutex_unlock(&dev->struct_mutex);
625 		unwritten = copy_from_user(vaddr, user_data, args->size);
626 		mutex_lock(&dev->struct_mutex);
627 		if (unwritten) {
628 			ret = -EFAULT;
629 			goto out;
630 		}
631 	}
632 
633 	drm_clflush_virt_range(vaddr, args->size);
634 	i915_gem_chipset_flush(to_i915(dev));
635 
636 out:
637 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
638 	return ret;
639 }
640 
641 void *i915_gem_object_alloc(struct drm_device *dev)
642 {
643 	struct drm_i915_private *dev_priv = to_i915(dev);
644 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
645 }
646 
647 void i915_gem_object_free(struct drm_i915_gem_object *obj)
648 {
649 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
650 	kmem_cache_free(dev_priv->objects, obj);
651 }
652 
653 static int
654 i915_gem_create(struct drm_file *file,
655 		struct drm_device *dev,
656 		uint64_t size,
657 		uint32_t *handle_p)
658 {
659 	struct drm_i915_gem_object *obj;
660 	int ret;
661 	u32 handle;
662 
663 	size = roundup(size, PAGE_SIZE);
664 	if (size == 0)
665 		return -EINVAL;
666 
667 	/* Allocate the new object */
668 	obj = i915_gem_object_create(dev, size);
669 	if (IS_ERR(obj))
670 		return PTR_ERR(obj);
671 
672 	ret = drm_gem_handle_create(file, &obj->base, &handle);
673 	/* drop reference from allocate - handle holds it now */
674 	i915_gem_object_put(obj);
675 	if (ret)
676 		return ret;
677 
678 	*handle_p = handle;
679 	return 0;
680 }
681 
682 int
683 i915_gem_dumb_create(struct drm_file *file,
684 		     struct drm_device *dev,
685 		     struct drm_mode_create_dumb *args)
686 {
687 	/* have to work out size/pitch and return them */
688 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
689 	args->size = args->pitch * args->height;
690 	return i915_gem_create(file, dev,
691 			       args->size, &args->handle);
692 }
693 
694 /**
695  * Creates a new mm object and returns a handle to it.
696  * @dev: drm device pointer
697  * @data: ioctl data blob
698  * @file: drm file pointer
699  */
700 int
701 i915_gem_create_ioctl(struct drm_device *dev, void *data,
702 		      struct drm_file *file)
703 {
704 	struct drm_i915_gem_create *args = data;
705 
706 	i915_gem_flush_free_objects(to_i915(dev));
707 
708 	return i915_gem_create(file, dev,
709 			       args->size, &args->handle);
710 }
711 
712 static inline int
713 __copy_to_user_swizzled(char __user *cpu_vaddr,
714 			const char *gpu_vaddr, int gpu_offset,
715 			int length)
716 {
717 	int ret, cpu_offset = 0;
718 
719 	while (length > 0) {
720 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
721 		int this_length = min(cacheline_end - gpu_offset, length);
722 		int swizzled_gpu_offset = gpu_offset ^ 64;
723 
724 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
725 				     gpu_vaddr + swizzled_gpu_offset,
726 				     this_length);
727 		if (ret)
728 			return ret + length;
729 
730 		cpu_offset += this_length;
731 		gpu_offset += this_length;
732 		length -= this_length;
733 	}
734 
735 	return 0;
736 }
737 
738 static inline int
739 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
740 			  const char __user *cpu_vaddr,
741 			  int length)
742 {
743 	int ret, cpu_offset = 0;
744 
745 	while (length > 0) {
746 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
747 		int this_length = min(cacheline_end - gpu_offset, length);
748 		int swizzled_gpu_offset = gpu_offset ^ 64;
749 
750 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
751 				       cpu_vaddr + cpu_offset,
752 				       this_length);
753 		if (ret)
754 			return ret + length;
755 
756 		cpu_offset += this_length;
757 		gpu_offset += this_length;
758 		length -= this_length;
759 	}
760 
761 	return 0;
762 }
763 
764 /*
765  * Pins the specified object's pages and synchronizes the object with
766  * GPU accesses. Sets needs_clflush to non-zero if the caller should
767  * flush the object from the CPU cache.
768  */
769 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
770 				    unsigned int *needs_clflush)
771 {
772 	int ret;
773 
774 	lockdep_assert_held(&obj->base.dev->struct_mutex);
775 
776 	*needs_clflush = 0;
777 	if (!i915_gem_object_has_struct_page(obj))
778 		return -ENODEV;
779 
780 	ret = i915_gem_object_wait(obj,
781 				   I915_WAIT_INTERRUPTIBLE |
782 				   I915_WAIT_LOCKED,
783 				   MAX_SCHEDULE_TIMEOUT,
784 				   NULL);
785 	if (ret)
786 		return ret;
787 
788 	ret = i915_gem_object_pin_pages(obj);
789 	if (ret)
790 		return ret;
791 
792 	i915_gem_object_flush_gtt_write_domain(obj);
793 
794 	/* If we're not in the cpu read domain, set ourself into the gtt
795 	 * read domain and manually flush cachelines (if required). This
796 	 * optimizes for the case when the gpu will dirty the data
797 	 * anyway again before the next pread happens.
798 	 */
799 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
800 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
801 							obj->cache_level);
802 
803 	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
804 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
805 		if (ret)
806 			goto err_unpin;
807 
808 		*needs_clflush = 0;
809 	}
810 
811 	/* return with the pages pinned */
812 	return 0;
813 
814 err_unpin:
815 	i915_gem_object_unpin_pages(obj);
816 	return ret;
817 }
818 
819 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
820 				     unsigned int *needs_clflush)
821 {
822 	int ret;
823 
824 	lockdep_assert_held(&obj->base.dev->struct_mutex);
825 
826 	*needs_clflush = 0;
827 	if (!i915_gem_object_has_struct_page(obj))
828 		return -ENODEV;
829 
830 	ret = i915_gem_object_wait(obj,
831 				   I915_WAIT_INTERRUPTIBLE |
832 				   I915_WAIT_LOCKED |
833 				   I915_WAIT_ALL,
834 				   MAX_SCHEDULE_TIMEOUT,
835 				   NULL);
836 	if (ret)
837 		return ret;
838 
839 	ret = i915_gem_object_pin_pages(obj);
840 	if (ret)
841 		return ret;
842 
843 	i915_gem_object_flush_gtt_write_domain(obj);
844 
845 	/* If we're not in the cpu write domain, set ourself into the
846 	 * gtt write domain and manually flush cachelines (as required).
847 	 * This optimizes for the case when the gpu will use the data
848 	 * right away and we therefore have to clflush anyway.
849 	 */
850 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
851 		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;
852 
853 	/* Same trick applies to invalidate partially written cachelines read
854 	 * before writing.
855 	 */
856 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
857 		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
858 							 obj->cache_level);
859 
860 	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
861 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
862 		if (ret)
863 			goto err_unpin;
864 
865 		*needs_clflush = 0;
866 	}
867 
868 	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
869 		obj->cache_dirty = true;
870 
871 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
872 	obj->mm.dirty = true;
873 	/* return with the pages pinned */
874 	return 0;
875 
876 err_unpin:
877 	i915_gem_object_unpin_pages(obj);
878 	return ret;
879 }
880 
881 static void
882 shmem_clflush_swizzled_range(char *addr, unsigned long length,
883 			     bool swizzled)
884 {
885 	if (unlikely(swizzled)) {
886 		unsigned long start = (unsigned long) addr;
887 		unsigned long end = (unsigned long) addr + length;
888 
889 		/* For swizzling simply ensure that we always flush both
890 		 * channels. Lame, but simple and it works. Swizzled
891 		 * pwrite/pread is far from a hotpath - current userspace
892 		 * doesn't use it at all. */
893 		start = round_down(start, 128);
894 		end = round_up(end, 128);
895 
896 		drm_clflush_virt_range((void *)start, end - start);
897 	} else {
898 		drm_clflush_virt_range(addr, length);
899 	}
900 
901 }
902 
903 /* Only difference to the fast-path function is that this can handle bit17
904  * and uses non-atomic copy and kmap functions. */
905 static int
906 shmem_pread_slow(struct page *page, int offset, int length,
907 		 char __user *user_data,
908 		 bool page_do_bit17_swizzling, bool needs_clflush)
909 {
910 	char *vaddr;
911 	int ret;
912 
913 	vaddr = kmap(page);
914 	if (needs_clflush)
915 		shmem_clflush_swizzled_range(vaddr + offset, length,
916 					     page_do_bit17_swizzling);
917 
918 	if (page_do_bit17_swizzling)
919 		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
920 	else
921 		ret = __copy_to_user(user_data, vaddr + offset, length);
922 	kunmap(page);
923 
924 	return ret ? - EFAULT : 0;
925 }
926 
927 static int
928 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
929 	    bool page_do_bit17_swizzling, bool needs_clflush)
930 {
931 	int ret;
932 
933 	ret = -ENODEV;
934 	if (!page_do_bit17_swizzling) {
935 		char *vaddr = kmap_atomic(page);
936 
937 		if (needs_clflush)
938 			drm_clflush_virt_range(vaddr + offset, length);
939 		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
940 		kunmap_atomic(vaddr);
941 	}
942 	if (ret == 0)
943 		return 0;
944 
945 	return shmem_pread_slow(page, offset, length, user_data,
946 				page_do_bit17_swizzling, needs_clflush);
947 }
948 
949 static int
950 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
951 		     struct drm_i915_gem_pread *args)
952 {
953 	char __user *user_data;
954 	u64 remain;
955 	unsigned int obj_do_bit17_swizzling;
956 	unsigned int needs_clflush;
957 	unsigned int idx, offset;
958 	int ret;
959 
960 	obj_do_bit17_swizzling = 0;
961 	if (i915_gem_object_needs_bit17_swizzle(obj))
962 		obj_do_bit17_swizzling = BIT(17);
963 
964 	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
965 	if (ret)
966 		return ret;
967 
968 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
969 	mutex_unlock(&obj->base.dev->struct_mutex);
970 	if (ret)
971 		return ret;
972 
973 	remain = args->size;
974 	user_data = u64_to_user_ptr(args->data_ptr);
975 	offset = offset_in_page(args->offset);
976 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
977 		struct page *page = i915_gem_object_get_page(obj, idx);
978 		int length;
979 
980 		length = remain;
981 		if (offset + length > PAGE_SIZE)
982 			length = PAGE_SIZE - offset;
983 
984 		ret = shmem_pread(page, offset, length, user_data,
985 				  page_to_phys(page) & obj_do_bit17_swizzling,
986 				  needs_clflush);
987 		if (ret)
988 			break;
989 
990 		remain -= length;
991 		user_data += length;
992 		offset = 0;
993 	}
994 
995 	i915_gem_obj_finish_shmem_access(obj);
996 	return ret;
997 }
998 
999 static inline bool
1000 gtt_user_read(struct io_mapping *mapping,
1001 	      loff_t base, int offset,
1002 	      char __user *user_data, int length)
1003 {
1004 	void *vaddr;
1005 	unsigned long unwritten;
1006 
1007 	/* We can use the cpu mem copy function because this is X86. */
1008 	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1009 	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1010 	io_mapping_unmap_atomic(vaddr);
1011 	if (unwritten) {
1012 		vaddr = (void __force *)
1013 			io_mapping_map_wc(mapping, base, PAGE_SIZE);
1014 		unwritten = copy_to_user(user_data, vaddr + offset, length);
1015 		io_mapping_unmap(vaddr);
1016 	}
1017 	return unwritten;
1018 }
1019 
1020 static int
1021 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1022 		   const struct drm_i915_gem_pread *args)
1023 {
1024 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1025 	struct i915_ggtt *ggtt = &i915->ggtt;
1026 	struct drm_mm_node node;
1027 	struct i915_vma *vma;
1028 	void __user *user_data;
1029 	u64 remain, offset;
1030 	int ret;
1031 
1032 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1033 	if (ret)
1034 		return ret;
1035 
1036 	intel_runtime_pm_get(i915);
1037 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1038 				       PIN_MAPPABLE | PIN_NONBLOCK);
1039 	if (!IS_ERR(vma)) {
1040 		node.start = i915_ggtt_offset(vma);
1041 		node.allocated = false;
1042 		ret = i915_vma_put_fence(vma);
1043 		if (ret) {
1044 			i915_vma_unpin(vma);
1045 			vma = ERR_PTR(ret);
1046 		}
1047 	}
1048 	if (IS_ERR(vma)) {
1049 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1050 		if (ret)
1051 			goto out_unlock;
1052 		GEM_BUG_ON(!node.allocated);
1053 	}
1054 
1055 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1056 	if (ret)
1057 		goto out_unpin;
1058 
1059 	mutex_unlock(&i915->drm.struct_mutex);
1060 
1061 	user_data = u64_to_user_ptr(args->data_ptr);
1062 	remain = args->size;
1063 	offset = args->offset;
1064 
1065 	while (remain > 0) {
1066 		/* Operation in this page
1067 		 *
1068 		 * page_base = page offset within aperture
1069 		 * page_offset = offset within page
1070 		 * page_length = bytes to copy for this page
1071 		 */
1072 		u32 page_base = node.start;
1073 		unsigned page_offset = offset_in_page(offset);
1074 		unsigned page_length = PAGE_SIZE - page_offset;
1075 		page_length = remain < page_length ? remain : page_length;
1076 		if (node.allocated) {
1077 			wmb();
1078 			ggtt->base.insert_page(&ggtt->base,
1079 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1080 					       node.start, I915_CACHE_NONE, 0);
1081 			wmb();
1082 		} else {
1083 			page_base += offset & PAGE_MASK;
1084 		}
1085 
1086 		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1087 				  user_data, page_length)) {
1088 			ret = -EFAULT;
1089 			break;
1090 		}
1091 
1092 		remain -= page_length;
1093 		user_data += page_length;
1094 		offset += page_length;
1095 	}
1096 
1097 	mutex_lock(&i915->drm.struct_mutex);
1098 out_unpin:
1099 	if (node.allocated) {
1100 		wmb();
1101 		ggtt->base.clear_range(&ggtt->base,
1102 				       node.start, node.size);
1103 		remove_mappable_node(&node);
1104 	} else {
1105 		i915_vma_unpin(vma);
1106 	}
1107 out_unlock:
1108 	intel_runtime_pm_put(i915);
1109 	mutex_unlock(&i915->drm.struct_mutex);
1110 
1111 	return ret;
1112 }
1113 
1114 /**
1115  * Reads data from the object referenced by handle.
1116  * @dev: drm device pointer
1117  * @data: ioctl data blob
1118  * @file: drm file pointer
1119  *
1120  * On error, the contents of *data are undefined.
1121  */
1122 int
1123 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1124 		     struct drm_file *file)
1125 {
1126 	struct drm_i915_gem_pread *args = data;
1127 	struct drm_i915_gem_object *obj;
1128 	int ret;
1129 
1130 	if (args->size == 0)
1131 		return 0;
1132 
1133 	if (!access_ok(VERIFY_WRITE,
1134 		       u64_to_user_ptr(args->data_ptr),
1135 		       args->size))
1136 		return -EFAULT;
1137 
1138 	obj = i915_gem_object_lookup(file, args->handle);
1139 	if (!obj)
1140 		return -ENOENT;
1141 
1142 	/* Bounds check source.  */
1143 	if (args->offset > obj->base.size ||
1144 	    args->size > obj->base.size - args->offset) {
1145 		ret = -EINVAL;
1146 		goto out;
1147 	}
1148 
1149 	trace_i915_gem_object_pread(obj, args->offset, args->size);
1150 
1151 	ret = i915_gem_object_wait(obj,
1152 				   I915_WAIT_INTERRUPTIBLE,
1153 				   MAX_SCHEDULE_TIMEOUT,
1154 				   to_rps_client(file));
1155 	if (ret)
1156 		goto out;
1157 
1158 	ret = i915_gem_object_pin_pages(obj);
1159 	if (ret)
1160 		goto out;
1161 
1162 	ret = i915_gem_shmem_pread(obj, args);
1163 	if (ret == -EFAULT || ret == -ENODEV)
1164 		ret = i915_gem_gtt_pread(obj, args);
1165 
1166 	i915_gem_object_unpin_pages(obj);
1167 out:
1168 	i915_gem_object_put(obj);
1169 	return ret;
1170 }
1171 
1172 /* This is the fast write path which cannot handle
1173  * page faults in the source data
1174  */
1175 
1176 static inline bool
1177 ggtt_write(struct io_mapping *mapping,
1178 	   loff_t base, int offset,
1179 	   char __user *user_data, int length)
1180 {
1181 	void *vaddr;
1182 	unsigned long unwritten;
1183 
1184 	/* We can use the cpu mem copy function because this is X86. */
1185 	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1186 	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1187 						      user_data, length);
1188 	io_mapping_unmap_atomic(vaddr);
1189 	if (unwritten) {
1190 		vaddr = (void __force *)
1191 			io_mapping_map_wc(mapping, base, PAGE_SIZE);
1192 		unwritten = copy_from_user(vaddr + offset, user_data, length);
1193 		io_mapping_unmap(vaddr);
1194 	}
1195 
1196 	return unwritten;
1197 }
1198 
1199 /**
1200  * This is the fast pwrite path, where we copy the data directly from the
1201  * user into the GTT, uncached.
1202  * @obj: i915 GEM object
1203  * @args: pwrite arguments structure
1204  */
1205 static int
1206 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1207 			 const struct drm_i915_gem_pwrite *args)
1208 {
1209 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1210 	struct i915_ggtt *ggtt = &i915->ggtt;
1211 	struct drm_mm_node node;
1212 	struct i915_vma *vma;
1213 	u64 remain, offset;
1214 	void __user *user_data;
1215 	int ret;
1216 
1217 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1218 	if (ret)
1219 		return ret;
1220 
1221 	intel_runtime_pm_get(i915);
1222 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1223 				       PIN_MAPPABLE | PIN_NONBLOCK);
1224 	if (!IS_ERR(vma)) {
1225 		node.start = i915_ggtt_offset(vma);
1226 		node.allocated = false;
1227 		ret = i915_vma_put_fence(vma);
1228 		if (ret) {
1229 			i915_vma_unpin(vma);
1230 			vma = ERR_PTR(ret);
1231 		}
1232 	}
1233 	if (IS_ERR(vma)) {
1234 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1235 		if (ret)
1236 			goto out_unlock;
1237 		GEM_BUG_ON(!node.allocated);
1238 	}
1239 
1240 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1241 	if (ret)
1242 		goto out_unpin;
1243 
1244 	mutex_unlock(&i915->drm.struct_mutex);
1245 
1246 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1247 
1248 	user_data = u64_to_user_ptr(args->data_ptr);
1249 	offset = args->offset;
1250 	remain = args->size;
1251 	while (remain) {
1252 		/* Operation in this page
1253 		 *
1254 		 * page_base = page offset within aperture
1255 		 * page_offset = offset within page
1256 		 * page_length = bytes to copy for this page
1257 		 */
1258 		u32 page_base = node.start;
1259 		unsigned int page_offset = offset_in_page(offset);
1260 		unsigned int page_length = PAGE_SIZE - page_offset;
1261 		page_length = remain < page_length ? remain : page_length;
1262 		if (node.allocated) {
1263 			wmb(); /* flush the write before we modify the GGTT */
1264 			ggtt->base.insert_page(&ggtt->base,
1265 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1266 					       node.start, I915_CACHE_NONE, 0);
1267 			wmb(); /* flush modifications to the GGTT (insert_page) */
1268 		} else {
1269 			page_base += offset & PAGE_MASK;
1270 		}
1271 		/* If we get a fault while copying data, then (presumably) our
1272 		 * source page isn't available.  Return the error and we'll
1273 		 * retry in the slow path.
1274 		 * If the object is non-shmem backed, we retry again with the
1275 		 * path that handles page fault.
1276 		 */
1277 		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1278 			       user_data, page_length)) {
1279 			ret = -EFAULT;
1280 			break;
1281 		}
1282 
1283 		remain -= page_length;
1284 		user_data += page_length;
1285 		offset += page_length;
1286 	}
1287 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1288 
1289 	mutex_lock(&i915->drm.struct_mutex);
1290 out_unpin:
1291 	if (node.allocated) {
1292 		wmb();
1293 		ggtt->base.clear_range(&ggtt->base,
1294 				       node.start, node.size);
1295 		remove_mappable_node(&node);
1296 	} else {
1297 		i915_vma_unpin(vma);
1298 	}
1299 out_unlock:
1300 	intel_runtime_pm_put(i915);
1301 	mutex_unlock(&i915->drm.struct_mutex);
1302 	return ret;
1303 }
1304 
1305 static int
1306 shmem_pwrite_slow(struct page *page, int offset, int length,
1307 		  char __user *user_data,
1308 		  bool page_do_bit17_swizzling,
1309 		  bool needs_clflush_before,
1310 		  bool needs_clflush_after)
1311 {
1312 	char *vaddr;
1313 	int ret;
1314 
1315 	vaddr = kmap(page);
1316 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1317 		shmem_clflush_swizzled_range(vaddr + offset, length,
1318 					     page_do_bit17_swizzling);
1319 	if (page_do_bit17_swizzling)
1320 		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1321 						length);
1322 	else
1323 		ret = __copy_from_user(vaddr + offset, user_data, length);
1324 	if (needs_clflush_after)
1325 		shmem_clflush_swizzled_range(vaddr + offset, length,
1326 					     page_do_bit17_swizzling);
1327 	kunmap(page);
1328 
1329 	return ret ? -EFAULT : 0;
1330 }
1331 
1332 /* Per-page copy function for the shmem pwrite fastpath.
1333  * Flushes invalid cachelines before writing to the target if
1334  * needs_clflush_before is set and flushes out any written cachelines after
1335  * writing if needs_clflush is set.
1336  */
1337 static int
1338 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1339 	     bool page_do_bit17_swizzling,
1340 	     bool needs_clflush_before,
1341 	     bool needs_clflush_after)
1342 {
1343 	int ret;
1344 
1345 	ret = -ENODEV;
1346 	if (!page_do_bit17_swizzling) {
1347 		char *vaddr = kmap_atomic(page);
1348 
1349 		if (needs_clflush_before)
1350 			drm_clflush_virt_range(vaddr + offset, len);
1351 		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1352 		if (needs_clflush_after)
1353 			drm_clflush_virt_range(vaddr + offset, len);
1354 
1355 		kunmap_atomic(vaddr);
1356 	}
1357 	if (ret == 0)
1358 		return ret;
1359 
1360 	return shmem_pwrite_slow(page, offset, len, user_data,
1361 				 page_do_bit17_swizzling,
1362 				 needs_clflush_before,
1363 				 needs_clflush_after);
1364 }
1365 
1366 static int
1367 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1368 		      const struct drm_i915_gem_pwrite *args)
1369 {
1370 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1371 	void __user *user_data;
1372 	u64 remain;
1373 	unsigned int obj_do_bit17_swizzling;
1374 	unsigned int partial_cacheline_write;
1375 	unsigned int needs_clflush;
1376 	unsigned int offset, idx;
1377 	int ret;
1378 
1379 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1380 	if (ret)
1381 		return ret;
1382 
1383 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1384 	mutex_unlock(&i915->drm.struct_mutex);
1385 	if (ret)
1386 		return ret;
1387 
1388 	obj_do_bit17_swizzling = 0;
1389 	if (i915_gem_object_needs_bit17_swizzle(obj))
1390 		obj_do_bit17_swizzling = BIT(17);
1391 
1392 	/* If we don't overwrite a cacheline completely we need to be
1393 	 * careful to have up-to-date data by first clflushing. Don't
1394 	 * overcomplicate things and flush the entire patch.
1395 	 */
1396 	partial_cacheline_write = 0;
1397 	if (needs_clflush & CLFLUSH_BEFORE)
1398 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1399 
1400 	user_data = u64_to_user_ptr(args->data_ptr);
1401 	remain = args->size;
1402 	offset = offset_in_page(args->offset);
1403 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1404 		struct page *page = i915_gem_object_get_page(obj, idx);
1405 		int length;
1406 
1407 		length = remain;
1408 		if (offset + length > PAGE_SIZE)
1409 			length = PAGE_SIZE - offset;
1410 
1411 		ret = shmem_pwrite(page, offset, length, user_data,
1412 				   page_to_phys(page) & obj_do_bit17_swizzling,
1413 				   (offset | length) & partial_cacheline_write,
1414 				   needs_clflush & CLFLUSH_AFTER);
1415 		if (ret)
1416 			break;
1417 
1418 		remain -= length;
1419 		user_data += length;
1420 		offset = 0;
1421 	}
1422 
1423 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1424 	i915_gem_obj_finish_shmem_access(obj);
1425 	return ret;
1426 }
1427 
1428 /**
1429  * Writes data to the object referenced by handle.
1430  * @dev: drm device
1431  * @data: ioctl data blob
1432  * @file: drm file
1433  *
1434  * On error, the contents of the buffer that were to be modified are undefined.
1435  */
1436 int
1437 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1438 		      struct drm_file *file)
1439 {
1440 	struct drm_i915_gem_pwrite *args = data;
1441 	struct drm_i915_gem_object *obj;
1442 	int ret;
1443 
1444 	if (args->size == 0)
1445 		return 0;
1446 
1447 	if (!access_ok(VERIFY_READ,
1448 		       u64_to_user_ptr(args->data_ptr),
1449 		       args->size))
1450 		return -EFAULT;
1451 
1452 	obj = i915_gem_object_lookup(file, args->handle);
1453 	if (!obj)
1454 		return -ENOENT;
1455 
1456 	/* Bounds check destination. */
1457 	if (args->offset > obj->base.size ||
1458 	    args->size > obj->base.size - args->offset) {
1459 		ret = -EINVAL;
1460 		goto err;
1461 	}
1462 
1463 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1464 
1465 	ret = i915_gem_object_wait(obj,
1466 				   I915_WAIT_INTERRUPTIBLE |
1467 				   I915_WAIT_ALL,
1468 				   MAX_SCHEDULE_TIMEOUT,
1469 				   to_rps_client(file));
1470 	if (ret)
1471 		goto err;
1472 
1473 	ret = i915_gem_object_pin_pages(obj);
1474 	if (ret)
1475 		goto err;
1476 
1477 	ret = -EFAULT;
1478 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1479 	 * it would end up going through the fenced access, and we'll get
1480 	 * different detiling behavior between reading and writing.
1481 	 * pread/pwrite currently are reading and writing from the CPU
1482 	 * perspective, requiring manual detiling by the client.
1483 	 */
1484 	if (!i915_gem_object_has_struct_page(obj) ||
1485 	    cpu_write_needs_clflush(obj))
1486 		/* Note that the gtt paths might fail with non-page-backed user
1487 		 * pointers (e.g. gtt mappings when moving data between
1488 		 * textures). Fallback to the shmem path in that case.
1489 		 */
1490 		ret = i915_gem_gtt_pwrite_fast(obj, args);
1491 
1492 	if (ret == -EFAULT || ret == -ENOSPC) {
1493 		if (obj->phys_handle)
1494 			ret = i915_gem_phys_pwrite(obj, args, file);
1495 		else
1496 			ret = i915_gem_shmem_pwrite(obj, args);
1497 	}
1498 
1499 	i915_gem_object_unpin_pages(obj);
1500 err:
1501 	i915_gem_object_put(obj);
1502 	return ret;
1503 }
1504 
1505 static inline enum fb_op_origin
1506 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1507 {
1508 	return (domain == I915_GEM_DOMAIN_GTT ?
1509 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1510 }
1511 
1512 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1513 {
1514 	struct drm_i915_private *i915;
1515 	struct list_head *list;
1516 	struct i915_vma *vma;
1517 
1518 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
1519 		if (!i915_vma_is_ggtt(vma))
1520 			continue;
1521 
1522 		if (i915_vma_is_active(vma))
1523 			continue;
1524 
1525 		if (!drm_mm_node_allocated(&vma->node))
1526 			continue;
1527 
1528 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1529 	}
1530 
1531 	i915 = to_i915(obj->base.dev);
1532 	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1533 	list_move_tail(&obj->global_link, list);
1534 }
1535 
1536 /**
1537  * Called when user space prepares to use an object with the CPU, either
1538  * through the mmap ioctl's mapping or a GTT mapping.
1539  * @dev: drm device
1540  * @data: ioctl data blob
1541  * @file: drm file
1542  */
1543 int
1544 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1545 			  struct drm_file *file)
1546 {
1547 	struct drm_i915_gem_set_domain *args = data;
1548 	struct drm_i915_gem_object *obj;
1549 	uint32_t read_domains = args->read_domains;
1550 	uint32_t write_domain = args->write_domain;
1551 	int err;
1552 
1553 	/* Only handle setting domains to types used by the CPU. */
1554 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1555 		return -EINVAL;
1556 
1557 	/* Having something in the write domain implies it's in the read
1558 	 * domain, and only that read domain.  Enforce that in the request.
1559 	 */
1560 	if (write_domain != 0 && read_domains != write_domain)
1561 		return -EINVAL;
1562 
1563 	obj = i915_gem_object_lookup(file, args->handle);
1564 	if (!obj)
1565 		return -ENOENT;
1566 
1567 	/* Try to flush the object off the GPU without holding the lock.
1568 	 * We will repeat the flush holding the lock in the normal manner
1569 	 * to catch cases where we are gazumped.
1570 	 */
1571 	err = i915_gem_object_wait(obj,
1572 				   I915_WAIT_INTERRUPTIBLE |
1573 				   (write_domain ? I915_WAIT_ALL : 0),
1574 				   MAX_SCHEDULE_TIMEOUT,
1575 				   to_rps_client(file));
1576 	if (err)
1577 		goto out;
1578 
1579 	/* Flush and acquire obj->pages so that we are coherent through
1580 	 * direct access in memory with previous cached writes through
1581 	 * shmemfs and that our cache domain tracking remains valid.
1582 	 * For example, if the obj->filp was moved to swap without us
1583 	 * being notified and releasing the pages, we would mistakenly
1584 	 * continue to assume that the obj remained out of the CPU cached
1585 	 * domain.
1586 	 */
1587 	err = i915_gem_object_pin_pages(obj);
1588 	if (err)
1589 		goto out;
1590 
1591 	err = i915_mutex_lock_interruptible(dev);
1592 	if (err)
1593 		goto out_unpin;
1594 
1595 	if (read_domains & I915_GEM_DOMAIN_GTT)
1596 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1597 	else
1598 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1599 
1600 	/* And bump the LRU for this access */
1601 	i915_gem_object_bump_inactive_ggtt(obj);
1602 
1603 	mutex_unlock(&dev->struct_mutex);
1604 
1605 	if (write_domain != 0)
1606 		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1607 
1608 out_unpin:
1609 	i915_gem_object_unpin_pages(obj);
1610 out:
1611 	i915_gem_object_put(obj);
1612 	return err;
1613 }
1614 
1615 /**
1616  * Called when user space has done writes to this buffer
1617  * @dev: drm device
1618  * @data: ioctl data blob
1619  * @file: drm file
1620  */
1621 int
1622 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1623 			 struct drm_file *file)
1624 {
1625 	struct drm_i915_gem_sw_finish *args = data;
1626 	struct drm_i915_gem_object *obj;
1627 	int err = 0;
1628 
1629 	obj = i915_gem_object_lookup(file, args->handle);
1630 	if (!obj)
1631 		return -ENOENT;
1632 
1633 	/* Pinned buffers may be scanout, so flush the cache */
1634 	if (READ_ONCE(obj->pin_display)) {
1635 		err = i915_mutex_lock_interruptible(dev);
1636 		if (!err) {
1637 			i915_gem_object_flush_cpu_write_domain(obj);
1638 			mutex_unlock(&dev->struct_mutex);
1639 		}
1640 	}
1641 
1642 	i915_gem_object_put(obj);
1643 	return err;
1644 }
1645 
1646 /**
1647  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1648  *			 it is mapped to.
1649  * @dev: drm device
1650  * @data: ioctl data blob
1651  * @file: drm file
1652  *
1653  * While the mapping holds a reference on the contents of the object, it doesn't
1654  * imply a ref on the object itself.
1655  *
1656  * IMPORTANT:
1657  *
1658  * DRM driver writers who look a this function as an example for how to do GEM
1659  * mmap support, please don't implement mmap support like here. The modern way
1660  * to implement DRM mmap support is with an mmap offset ioctl (like
1661  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1662  * That way debug tooling like valgrind will understand what's going on, hiding
1663  * the mmap call in a driver private ioctl will break that. The i915 driver only
1664  * does cpu mmaps this way because we didn't know better.
1665  */
1666 int
1667 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1668 		    struct drm_file *file)
1669 {
1670 	struct drm_i915_gem_mmap *args = data;
1671 	struct drm_i915_gem_object *obj;
1672 	unsigned long addr;
1673 
1674 	if (args->flags & ~(I915_MMAP_WC))
1675 		return -EINVAL;
1676 
1677 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1678 		return -ENODEV;
1679 
1680 	obj = i915_gem_object_lookup(file, args->handle);
1681 	if (!obj)
1682 		return -ENOENT;
1683 
1684 	/* prime objects have no backing filp to GEM mmap
1685 	 * pages from.
1686 	 */
1687 	if (!obj->base.filp) {
1688 		i915_gem_object_put(obj);
1689 		return -EINVAL;
1690 	}
1691 
1692 	addr = vm_mmap(obj->base.filp, 0, args->size,
1693 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1694 		       args->offset);
1695 	if (args->flags & I915_MMAP_WC) {
1696 		struct mm_struct *mm = current->mm;
1697 		struct vm_area_struct *vma;
1698 
1699 		if (down_write_killable(&mm->mmap_sem)) {
1700 			i915_gem_object_put(obj);
1701 			return -EINTR;
1702 		}
1703 		vma = find_vma(mm, addr);
1704 		if (vma)
1705 			vma->vm_page_prot =
1706 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1707 		else
1708 			addr = -ENOMEM;
1709 		up_write(&mm->mmap_sem);
1710 
1711 		/* This may race, but that's ok, it only gets set */
1712 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1713 	}
1714 	i915_gem_object_put(obj);
1715 	if (IS_ERR((void *)addr))
1716 		return addr;
1717 
1718 	args->addr_ptr = (uint64_t) addr;
1719 
1720 	return 0;
1721 }
1722 
1723 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1724 {
1725 	u64 size;
1726 
1727 	size = i915_gem_object_get_stride(obj);
1728 	size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1729 
1730 	return size >> PAGE_SHIFT;
1731 }
1732 
1733 /**
1734  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1735  *
1736  * A history of the GTT mmap interface:
1737  *
1738  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1739  *     aligned and suitable for fencing, and still fit into the available
1740  *     mappable space left by the pinned display objects. A classic problem
1741  *     we called the page-fault-of-doom where we would ping-pong between
1742  *     two objects that could not fit inside the GTT and so the memcpy
1743  *     would page one object in at the expense of the other between every
1744  *     single byte.
1745  *
1746  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1747  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1748  *     object is too large for the available space (or simply too large
1749  *     for the mappable aperture!), a view is created instead and faulted
1750  *     into userspace. (This view is aligned and sized appropriately for
1751  *     fenced access.)
1752  *
1753  * Restrictions:
1754  *
1755  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1756  *    hangs on some architectures, corruption on others. An attempt to service
1757  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1758  *
1759  *  * the object must be able to fit into RAM (physical memory, though no
1760  *    limited to the mappable aperture).
1761  *
1762  *
1763  * Caveats:
1764  *
1765  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1766  *    all data to system memory. Subsequent access will not be synchronized.
1767  *
1768  *  * all mappings are revoked on runtime device suspend.
1769  *
1770  *  * there are only 8, 16 or 32 fence registers to share between all users
1771  *    (older machines require fence register for display and blitter access
1772  *    as well). Contention of the fence registers will cause the previous users
1773  *    to be unmapped and any new access will generate new page faults.
1774  *
1775  *  * running out of memory while servicing a fault may generate a SIGBUS,
1776  *    rather than the expected SIGSEGV.
1777  */
1778 int i915_gem_mmap_gtt_version(void)
1779 {
1780 	return 1;
1781 }
1782 
1783 /**
1784  * i915_gem_fault - fault a page into the GTT
1785  * @area: CPU VMA in question
1786  * @vmf: fault info
1787  *
1788  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1789  * from userspace.  The fault handler takes care of binding the object to
1790  * the GTT (if needed), allocating and programming a fence register (again,
1791  * only if needed based on whether the old reg is still valid or the object
1792  * is tiled) and inserting a new PTE into the faulting process.
1793  *
1794  * Note that the faulting process may involve evicting existing objects
1795  * from the GTT and/or fence registers to make room.  So performance may
1796  * suffer if the GTT working set is large or there are few fence registers
1797  * left.
1798  *
1799  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1800  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1801  */
1802 int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1803 {
1804 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1805 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1806 	struct drm_device *dev = obj->base.dev;
1807 	struct drm_i915_private *dev_priv = to_i915(dev);
1808 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1809 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1810 	struct i915_vma *vma;
1811 	pgoff_t page_offset;
1812 	unsigned int flags;
1813 	int ret;
1814 
1815 	/* We don't use vmf->pgoff since that has the fake offset */
1816 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1817 
1818 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1819 
1820 	/* Try to flush the object off the GPU first without holding the lock.
1821 	 * Upon acquiring the lock, we will perform our sanity checks and then
1822 	 * repeat the flush holding the lock in the normal manner to catch cases
1823 	 * where we are gazumped.
1824 	 */
1825 	ret = i915_gem_object_wait(obj,
1826 				   I915_WAIT_INTERRUPTIBLE,
1827 				   MAX_SCHEDULE_TIMEOUT,
1828 				   NULL);
1829 	if (ret)
1830 		goto err;
1831 
1832 	ret = i915_gem_object_pin_pages(obj);
1833 	if (ret)
1834 		goto err;
1835 
1836 	intel_runtime_pm_get(dev_priv);
1837 
1838 	ret = i915_mutex_lock_interruptible(dev);
1839 	if (ret)
1840 		goto err_rpm;
1841 
1842 	/* Access to snoopable pages through the GTT is incoherent. */
1843 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1844 		ret = -EFAULT;
1845 		goto err_unlock;
1846 	}
1847 
1848 	/* If the object is smaller than a couple of partial vma, it is
1849 	 * not worth only creating a single partial vma - we may as well
1850 	 * clear enough space for the full object.
1851 	 */
1852 	flags = PIN_MAPPABLE;
1853 	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1854 		flags |= PIN_NONBLOCK | PIN_NONFAULT;
1855 
1856 	/* Now pin it into the GTT as needed */
1857 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1858 	if (IS_ERR(vma)) {
1859 		struct i915_ggtt_view view;
1860 		unsigned int chunk_size;
1861 
1862 		/* Use a partial view if it is bigger than available space */
1863 		chunk_size = MIN_CHUNK_PAGES;
1864 		if (i915_gem_object_is_tiled(obj))
1865 			chunk_size = roundup(chunk_size, tile_row_pages(obj));
1866 
1867 		memset(&view, 0, sizeof(view));
1868 		view.type = I915_GGTT_VIEW_PARTIAL;
1869 		view.params.partial.offset = rounddown(page_offset, chunk_size);
1870 		view.params.partial.size =
1871 			min_t(unsigned int, chunk_size,
1872 			      vma_pages(area) - view.params.partial.offset);
1873 
1874 		/* If the partial covers the entire object, just create a
1875 		 * normal VMA.
1876 		 */
1877 		if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1878 			view.type = I915_GGTT_VIEW_NORMAL;
1879 
1880 		/* Userspace is now writing through an untracked VMA, abandon
1881 		 * all hope that the hardware is able to track future writes.
1882 		 */
1883 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1884 
1885 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1886 	}
1887 	if (IS_ERR(vma)) {
1888 		ret = PTR_ERR(vma);
1889 		goto err_unlock;
1890 	}
1891 
1892 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1893 	if (ret)
1894 		goto err_unpin;
1895 
1896 	ret = i915_vma_get_fence(vma);
1897 	if (ret)
1898 		goto err_unpin;
1899 
1900 	/* Mark as being mmapped into userspace for later revocation */
1901 	assert_rpm_wakelock_held(dev_priv);
1902 	if (list_empty(&obj->userfault_link))
1903 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1904 
1905 	/* Finally, remap it using the new GTT offset */
1906 	ret = remap_io_mapping(area,
1907 			       area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1908 			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1909 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1910 			       &ggtt->mappable);
1911 
1912 err_unpin:
1913 	__i915_vma_unpin(vma);
1914 err_unlock:
1915 	mutex_unlock(&dev->struct_mutex);
1916 err_rpm:
1917 	intel_runtime_pm_put(dev_priv);
1918 	i915_gem_object_unpin_pages(obj);
1919 err:
1920 	switch (ret) {
1921 	case -EIO:
1922 		/*
1923 		 * We eat errors when the gpu is terminally wedged to avoid
1924 		 * userspace unduly crashing (gl has no provisions for mmaps to
1925 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1926 		 * and so needs to be reported.
1927 		 */
1928 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1929 			ret = VM_FAULT_SIGBUS;
1930 			break;
1931 		}
1932 	case -EAGAIN:
1933 		/*
1934 		 * EAGAIN means the gpu is hung and we'll wait for the error
1935 		 * handler to reset everything when re-faulting in
1936 		 * i915_mutex_lock_interruptible.
1937 		 */
1938 	case 0:
1939 	case -ERESTARTSYS:
1940 	case -EINTR:
1941 	case -EBUSY:
1942 		/*
1943 		 * EBUSY is ok: this just means that another thread
1944 		 * already did the job.
1945 		 */
1946 		ret = VM_FAULT_NOPAGE;
1947 		break;
1948 	case -ENOMEM:
1949 		ret = VM_FAULT_OOM;
1950 		break;
1951 	case -ENOSPC:
1952 	case -EFAULT:
1953 		ret = VM_FAULT_SIGBUS;
1954 		break;
1955 	default:
1956 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1957 		ret = VM_FAULT_SIGBUS;
1958 		break;
1959 	}
1960 	return ret;
1961 }
1962 
1963 /**
1964  * i915_gem_release_mmap - remove physical page mappings
1965  * @obj: obj in question
1966  *
1967  * Preserve the reservation of the mmapping with the DRM core code, but
1968  * relinquish ownership of the pages back to the system.
1969  *
1970  * It is vital that we remove the page mapping if we have mapped a tiled
1971  * object through the GTT and then lose the fence register due to
1972  * resource pressure. Similarly if the object has been moved out of the
1973  * aperture, than pages mapped into userspace must be revoked. Removing the
1974  * mapping will then trigger a page fault on the next user access, allowing
1975  * fixup by i915_gem_fault().
1976  */
1977 void
1978 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1979 {
1980 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1981 
1982 	/* Serialisation between user GTT access and our code depends upon
1983 	 * revoking the CPU's PTE whilst the mutex is held. The next user
1984 	 * pagefault then has to wait until we release the mutex.
1985 	 *
1986 	 * Note that RPM complicates somewhat by adding an additional
1987 	 * requirement that operations to the GGTT be made holding the RPM
1988 	 * wakeref.
1989 	 */
1990 	lockdep_assert_held(&i915->drm.struct_mutex);
1991 	intel_runtime_pm_get(i915);
1992 
1993 	if (list_empty(&obj->userfault_link))
1994 		goto out;
1995 
1996 	list_del_init(&obj->userfault_link);
1997 	drm_vma_node_unmap(&obj->base.vma_node,
1998 			   obj->base.dev->anon_inode->i_mapping);
1999 
2000 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
2001 	 * memory transactions from userspace before we return. The TLB
2002 	 * flushing implied above by changing the PTE above *should* be
2003 	 * sufficient, an extra barrier here just provides us with a bit
2004 	 * of paranoid documentation about our requirement to serialise
2005 	 * memory writes before touching registers / GSM.
2006 	 */
2007 	wmb();
2008 
2009 out:
2010 	intel_runtime_pm_put(i915);
2011 }
2012 
2013 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2014 {
2015 	struct drm_i915_gem_object *obj, *on;
2016 	int i;
2017 
2018 	/*
2019 	 * Only called during RPM suspend. All users of the userfault_list
2020 	 * must be holding an RPM wakeref to ensure that this can not
2021 	 * run concurrently with themselves (and use the struct_mutex for
2022 	 * protection between themselves).
2023 	 */
2024 
2025 	list_for_each_entry_safe(obj, on,
2026 				 &dev_priv->mm.userfault_list, userfault_link) {
2027 		list_del_init(&obj->userfault_link);
2028 		drm_vma_node_unmap(&obj->base.vma_node,
2029 				   obj->base.dev->anon_inode->i_mapping);
2030 	}
2031 
2032 	/* The fence will be lost when the device powers down. If any were
2033 	 * in use by hardware (i.e. they are pinned), we should not be powering
2034 	 * down! All other fences will be reacquired by the user upon waking.
2035 	 */
2036 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2037 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2038 
2039 		if (WARN_ON(reg->pin_count))
2040 			continue;
2041 
2042 		if (!reg->vma)
2043 			continue;
2044 
2045 		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2046 		reg->dirty = true;
2047 	}
2048 }
2049 
2050 /**
2051  * i915_gem_get_ggtt_size - return required global GTT size for an object
2052  * @dev_priv: i915 device
2053  * @size: object size
2054  * @tiling_mode: tiling mode
2055  *
2056  * Return the required global GTT size for an object, taking into account
2057  * potential fence register mapping.
2058  */
2059 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
2060 			   u64 size, int tiling_mode)
2061 {
2062 	u64 ggtt_size;
2063 
2064 	GEM_BUG_ON(size == 0);
2065 
2066 	if (INTEL_GEN(dev_priv) >= 4 ||
2067 	    tiling_mode == I915_TILING_NONE)
2068 		return size;
2069 
2070 	/* Previous chips need a power-of-two fence region when tiling */
2071 	if (IS_GEN3(dev_priv))
2072 		ggtt_size = 1024*1024;
2073 	else
2074 		ggtt_size = 512*1024;
2075 
2076 	while (ggtt_size < size)
2077 		ggtt_size <<= 1;
2078 
2079 	return ggtt_size;
2080 }
2081 
2082 /**
2083  * i915_gem_get_ggtt_alignment - return required global GTT alignment
2084  * @dev_priv: i915 device
2085  * @size: object size
2086  * @tiling_mode: tiling mode
2087  * @fenced: is fenced alignment required or not
2088  *
2089  * Return the required global GTT alignment for an object, taking into account
2090  * potential fence register mapping.
2091  */
2092 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2093 				int tiling_mode, bool fenced)
2094 {
2095 	GEM_BUG_ON(size == 0);
2096 
2097 	/*
2098 	 * Minimum alignment is 4k (GTT page size), but might be greater
2099 	 * if a fence register is needed for the object.
2100 	 */
2101 	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2102 	    tiling_mode == I915_TILING_NONE)
2103 		return 4096;
2104 
2105 	/*
2106 	 * Previous chips need to be aligned to the size of the smallest
2107 	 * fence register that can contain the object.
2108 	 */
2109 	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2110 }
2111 
2112 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2113 {
2114 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2115 	int err;
2116 
2117 	err = drm_gem_create_mmap_offset(&obj->base);
2118 	if (!err)
2119 		return 0;
2120 
2121 	/* We can idle the GPU locklessly to flush stale objects, but in order
2122 	 * to claim that space for ourselves, we need to take the big
2123 	 * struct_mutex to free the requests+objects and allocate our slot.
2124 	 */
2125 	err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2126 	if (err)
2127 		return err;
2128 
2129 	err = i915_mutex_lock_interruptible(&dev_priv->drm);
2130 	if (!err) {
2131 		i915_gem_retire_requests(dev_priv);
2132 		err = drm_gem_create_mmap_offset(&obj->base);
2133 		mutex_unlock(&dev_priv->drm.struct_mutex);
2134 	}
2135 
2136 	return err;
2137 }
2138 
2139 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2140 {
2141 	drm_gem_free_mmap_offset(&obj->base);
2142 }
2143 
2144 int
2145 i915_gem_mmap_gtt(struct drm_file *file,
2146 		  struct drm_device *dev,
2147 		  uint32_t handle,
2148 		  uint64_t *offset)
2149 {
2150 	struct drm_i915_gem_object *obj;
2151 	int ret;
2152 
2153 	obj = i915_gem_object_lookup(file, handle);
2154 	if (!obj)
2155 		return -ENOENT;
2156 
2157 	ret = i915_gem_object_create_mmap_offset(obj);
2158 	if (ret == 0)
2159 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2160 
2161 	i915_gem_object_put(obj);
2162 	return ret;
2163 }
2164 
2165 /**
2166  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2167  * @dev: DRM device
2168  * @data: GTT mapping ioctl data
2169  * @file: GEM object info
2170  *
2171  * Simply returns the fake offset to userspace so it can mmap it.
2172  * The mmap call will end up in drm_gem_mmap(), which will set things
2173  * up so we can get faults in the handler above.
2174  *
2175  * The fault handler will take care of binding the object into the GTT
2176  * (since it may have been evicted to make room for something), allocating
2177  * a fence register, and mapping the appropriate aperture address into
2178  * userspace.
2179  */
2180 int
2181 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2182 			struct drm_file *file)
2183 {
2184 	struct drm_i915_gem_mmap_gtt *args = data;
2185 
2186 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2187 }
2188 
2189 /* Immediately discard the backing storage */
2190 static void
2191 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2192 {
2193 	i915_gem_object_free_mmap_offset(obj);
2194 
2195 	if (obj->base.filp == NULL)
2196 		return;
2197 
2198 	/* Our goal here is to return as much of the memory as
2199 	 * is possible back to the system as we are called from OOM.
2200 	 * To do this we must instruct the shmfs to drop all of its
2201 	 * backing pages, *now*.
2202 	 */
2203 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2204 	obj->mm.madv = __I915_MADV_PURGED;
2205 }
2206 
2207 /* Try to discard unwanted pages */
2208 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2209 {
2210 	struct address_space *mapping;
2211 
2212 	lockdep_assert_held(&obj->mm.lock);
2213 	GEM_BUG_ON(obj->mm.pages);
2214 
2215 	switch (obj->mm.madv) {
2216 	case I915_MADV_DONTNEED:
2217 		i915_gem_object_truncate(obj);
2218 	case __I915_MADV_PURGED:
2219 		return;
2220 	}
2221 
2222 	if (obj->base.filp == NULL)
2223 		return;
2224 
2225 	mapping = obj->base.filp->f_mapping,
2226 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2227 }
2228 
2229 static void
2230 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2231 			      struct sg_table *pages)
2232 {
2233 	struct sgt_iter sgt_iter;
2234 	struct page *page;
2235 
2236 	__i915_gem_object_release_shmem(obj, pages, true);
2237 
2238 	i915_gem_gtt_finish_pages(obj, pages);
2239 
2240 	if (i915_gem_object_needs_bit17_swizzle(obj))
2241 		i915_gem_object_save_bit_17_swizzle(obj, pages);
2242 
2243 	for_each_sgt_page(page, sgt_iter, pages) {
2244 		if (obj->mm.dirty)
2245 			set_page_dirty(page);
2246 
2247 		if (obj->mm.madv == I915_MADV_WILLNEED)
2248 			mark_page_accessed(page);
2249 
2250 		put_page(page);
2251 	}
2252 	obj->mm.dirty = false;
2253 
2254 	sg_free_table(pages);
2255 	kfree(pages);
2256 }
2257 
2258 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2259 {
2260 	struct radix_tree_iter iter;
2261 	void **slot;
2262 
2263 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2264 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2265 }
2266 
2267 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2268 				 enum i915_mm_subclass subclass)
2269 {
2270 	struct sg_table *pages;
2271 
2272 	if (i915_gem_object_has_pinned_pages(obj))
2273 		return;
2274 
2275 	GEM_BUG_ON(obj->bind_count);
2276 	if (!READ_ONCE(obj->mm.pages))
2277 		return;
2278 
2279 	/* May be called by shrinker from within get_pages() (on another bo) */
2280 	mutex_lock_nested(&obj->mm.lock, subclass);
2281 	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2282 		goto unlock;
2283 
2284 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2285 	 * array, hence protect them from being reaped by removing them from gtt
2286 	 * lists early. */
2287 	pages = fetch_and_zero(&obj->mm.pages);
2288 	GEM_BUG_ON(!pages);
2289 
2290 	if (obj->mm.mapping) {
2291 		void *ptr;
2292 
2293 		ptr = ptr_mask_bits(obj->mm.mapping);
2294 		if (is_vmalloc_addr(ptr))
2295 			vunmap(ptr);
2296 		else
2297 			kunmap(kmap_to_page(ptr));
2298 
2299 		obj->mm.mapping = NULL;
2300 	}
2301 
2302 	__i915_gem_object_reset_page_iter(obj);
2303 
2304 	obj->ops->put_pages(obj, pages);
2305 unlock:
2306 	mutex_unlock(&obj->mm.lock);
2307 }
2308 
2309 static void i915_sg_trim(struct sg_table *orig_st)
2310 {
2311 	struct sg_table new_st;
2312 	struct scatterlist *sg, *new_sg;
2313 	unsigned int i;
2314 
2315 	if (orig_st->nents == orig_st->orig_nents)
2316 		return;
2317 
2318 	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2319 		return;
2320 
2321 	new_sg = new_st.sgl;
2322 	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2323 		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2324 		/* called before being DMA mapped, no need to copy sg->dma_* */
2325 		new_sg = sg_next(new_sg);
2326 	}
2327 
2328 	sg_free_table(orig_st);
2329 
2330 	*orig_st = new_st;
2331 }
2332 
2333 static struct sg_table *
2334 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2335 {
2336 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2337 	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2338 	unsigned long i;
2339 	struct address_space *mapping;
2340 	struct sg_table *st;
2341 	struct scatterlist *sg;
2342 	struct sgt_iter sgt_iter;
2343 	struct page *page;
2344 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2345 	unsigned int max_segment;
2346 	int ret;
2347 	gfp_t gfp;
2348 
2349 	/* Assert that the object is not currently in any GPU domain. As it
2350 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2351 	 * a GPU cache
2352 	 */
2353 	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2354 	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2355 
2356 	max_segment = swiotlb_max_segment();
2357 	if (!max_segment)
2358 		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2359 
2360 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2361 	if (st == NULL)
2362 		return ERR_PTR(-ENOMEM);
2363 
2364 rebuild_st:
2365 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2366 		kfree(st);
2367 		return ERR_PTR(-ENOMEM);
2368 	}
2369 
2370 	/* Get the list of pages out of our struct file.  They'll be pinned
2371 	 * at this point until we release them.
2372 	 *
2373 	 * Fail silently without starting the shrinker
2374 	 */
2375 	mapping = obj->base.filp->f_mapping;
2376 	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2377 	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2378 	sg = st->sgl;
2379 	st->nents = 0;
2380 	for (i = 0; i < page_count; i++) {
2381 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2382 		if (IS_ERR(page)) {
2383 			i915_gem_shrink(dev_priv,
2384 					page_count,
2385 					I915_SHRINK_BOUND |
2386 					I915_SHRINK_UNBOUND |
2387 					I915_SHRINK_PURGEABLE);
2388 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2389 		}
2390 		if (IS_ERR(page)) {
2391 			/* We've tried hard to allocate the memory by reaping
2392 			 * our own buffer, now let the real VM do its job and
2393 			 * go down in flames if truly OOM.
2394 			 */
2395 			page = shmem_read_mapping_page(mapping, i);
2396 			if (IS_ERR(page)) {
2397 				ret = PTR_ERR(page);
2398 				goto err_sg;
2399 			}
2400 		}
2401 		if (!i ||
2402 		    sg->length >= max_segment ||
2403 		    page_to_pfn(page) != last_pfn + 1) {
2404 			if (i)
2405 				sg = sg_next(sg);
2406 			st->nents++;
2407 			sg_set_page(sg, page, PAGE_SIZE, 0);
2408 		} else {
2409 			sg->length += PAGE_SIZE;
2410 		}
2411 		last_pfn = page_to_pfn(page);
2412 
2413 		/* Check that the i965g/gm workaround works. */
2414 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2415 	}
2416 	if (sg) /* loop terminated early; short sg table */
2417 		sg_mark_end(sg);
2418 
2419 	/* Trim unused sg entries to avoid wasting memory. */
2420 	i915_sg_trim(st);
2421 
2422 	ret = i915_gem_gtt_prepare_pages(obj, st);
2423 	if (ret) {
2424 		/* DMA remapping failed? One possible cause is that
2425 		 * it could not reserve enough large entries, asking
2426 		 * for PAGE_SIZE chunks instead may be helpful.
2427 		 */
2428 		if (max_segment > PAGE_SIZE) {
2429 			for_each_sgt_page(page, sgt_iter, st)
2430 				put_page(page);
2431 			sg_free_table(st);
2432 
2433 			max_segment = PAGE_SIZE;
2434 			goto rebuild_st;
2435 		} else {
2436 			dev_warn(&dev_priv->drm.pdev->dev,
2437 				 "Failed to DMA remap %lu pages\n",
2438 				 page_count);
2439 			goto err_pages;
2440 		}
2441 	}
2442 
2443 	if (i915_gem_object_needs_bit17_swizzle(obj))
2444 		i915_gem_object_do_bit_17_swizzle(obj, st);
2445 
2446 	return st;
2447 
2448 err_sg:
2449 	sg_mark_end(sg);
2450 err_pages:
2451 	for_each_sgt_page(page, sgt_iter, st)
2452 		put_page(page);
2453 	sg_free_table(st);
2454 	kfree(st);
2455 
2456 	/* shmemfs first checks if there is enough memory to allocate the page
2457 	 * and reports ENOSPC should there be insufficient, along with the usual
2458 	 * ENOMEM for a genuine allocation failure.
2459 	 *
2460 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2461 	 * space and so want to translate the error from shmemfs back to our
2462 	 * usual understanding of ENOMEM.
2463 	 */
2464 	if (ret == -ENOSPC)
2465 		ret = -ENOMEM;
2466 
2467 	return ERR_PTR(ret);
2468 }
2469 
2470 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2471 				 struct sg_table *pages)
2472 {
2473 	lockdep_assert_held(&obj->mm.lock);
2474 
2475 	obj->mm.get_page.sg_pos = pages->sgl;
2476 	obj->mm.get_page.sg_idx = 0;
2477 
2478 	obj->mm.pages = pages;
2479 
2480 	if (i915_gem_object_is_tiled(obj) &&
2481 	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2482 		GEM_BUG_ON(obj->mm.quirked);
2483 		__i915_gem_object_pin_pages(obj);
2484 		obj->mm.quirked = true;
2485 	}
2486 }
2487 
2488 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2489 {
2490 	struct sg_table *pages;
2491 
2492 	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2493 
2494 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2495 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2496 		return -EFAULT;
2497 	}
2498 
2499 	pages = obj->ops->get_pages(obj);
2500 	if (unlikely(IS_ERR(pages)))
2501 		return PTR_ERR(pages);
2502 
2503 	__i915_gem_object_set_pages(obj, pages);
2504 	return 0;
2505 }
2506 
2507 /* Ensure that the associated pages are gathered from the backing storage
2508  * and pinned into our object. i915_gem_object_pin_pages() may be called
2509  * multiple times before they are released by a single call to
2510  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2511  * either as a result of memory pressure (reaping pages under the shrinker)
2512  * or as the object is itself released.
2513  */
2514 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2515 {
2516 	int err;
2517 
2518 	err = mutex_lock_interruptible(&obj->mm.lock);
2519 	if (err)
2520 		return err;
2521 
2522 	if (unlikely(!obj->mm.pages)) {
2523 		err = ____i915_gem_object_get_pages(obj);
2524 		if (err)
2525 			goto unlock;
2526 
2527 		smp_mb__before_atomic();
2528 	}
2529 	atomic_inc(&obj->mm.pages_pin_count);
2530 
2531 unlock:
2532 	mutex_unlock(&obj->mm.lock);
2533 	return err;
2534 }
2535 
2536 /* The 'mapping' part of i915_gem_object_pin_map() below */
2537 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2538 				 enum i915_map_type type)
2539 {
2540 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2541 	struct sg_table *sgt = obj->mm.pages;
2542 	struct sgt_iter sgt_iter;
2543 	struct page *page;
2544 	struct page *stack_pages[32];
2545 	struct page **pages = stack_pages;
2546 	unsigned long i = 0;
2547 	pgprot_t pgprot;
2548 	void *addr;
2549 
2550 	/* A single page can always be kmapped */
2551 	if (n_pages == 1 && type == I915_MAP_WB)
2552 		return kmap(sg_page(sgt->sgl));
2553 
2554 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2555 		/* Too big for stack -- allocate temporary array instead */
2556 		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2557 		if (!pages)
2558 			return NULL;
2559 	}
2560 
2561 	for_each_sgt_page(page, sgt_iter, sgt)
2562 		pages[i++] = page;
2563 
2564 	/* Check that we have the expected number of pages */
2565 	GEM_BUG_ON(i != n_pages);
2566 
2567 	switch (type) {
2568 	case I915_MAP_WB:
2569 		pgprot = PAGE_KERNEL;
2570 		break;
2571 	case I915_MAP_WC:
2572 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2573 		break;
2574 	}
2575 	addr = vmap(pages, n_pages, 0, pgprot);
2576 
2577 	if (pages != stack_pages)
2578 		drm_free_large(pages);
2579 
2580 	return addr;
2581 }
2582 
2583 /* get, pin, and map the pages of the object into kernel space */
2584 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2585 			      enum i915_map_type type)
2586 {
2587 	enum i915_map_type has_type;
2588 	bool pinned;
2589 	void *ptr;
2590 	int ret;
2591 
2592 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2593 
2594 	ret = mutex_lock_interruptible(&obj->mm.lock);
2595 	if (ret)
2596 		return ERR_PTR(ret);
2597 
2598 	pinned = true;
2599 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2600 		if (unlikely(!obj->mm.pages)) {
2601 			ret = ____i915_gem_object_get_pages(obj);
2602 			if (ret)
2603 				goto err_unlock;
2604 
2605 			smp_mb__before_atomic();
2606 		}
2607 		atomic_inc(&obj->mm.pages_pin_count);
2608 		pinned = false;
2609 	}
2610 	GEM_BUG_ON(!obj->mm.pages);
2611 
2612 	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2613 	if (ptr && has_type != type) {
2614 		if (pinned) {
2615 			ret = -EBUSY;
2616 			goto err_unpin;
2617 		}
2618 
2619 		if (is_vmalloc_addr(ptr))
2620 			vunmap(ptr);
2621 		else
2622 			kunmap(kmap_to_page(ptr));
2623 
2624 		ptr = obj->mm.mapping = NULL;
2625 	}
2626 
2627 	if (!ptr) {
2628 		ptr = i915_gem_object_map(obj, type);
2629 		if (!ptr) {
2630 			ret = -ENOMEM;
2631 			goto err_unpin;
2632 		}
2633 
2634 		obj->mm.mapping = ptr_pack_bits(ptr, type);
2635 	}
2636 
2637 out_unlock:
2638 	mutex_unlock(&obj->mm.lock);
2639 	return ptr;
2640 
2641 err_unpin:
2642 	atomic_dec(&obj->mm.pages_pin_count);
2643 err_unlock:
2644 	ptr = ERR_PTR(ret);
2645 	goto out_unlock;
2646 }
2647 
2648 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2649 {
2650 	unsigned long elapsed;
2651 
2652 	if (ctx->hang_stats.banned)
2653 		return true;
2654 
2655 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2656 	if (ctx->hang_stats.ban_period_seconds &&
2657 	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2658 		DRM_DEBUG("context hanging too fast, banning!\n");
2659 		return true;
2660 	}
2661 
2662 	return false;
2663 }
2664 
2665 static void i915_set_reset_status(struct i915_gem_context *ctx,
2666 				  const bool guilty)
2667 {
2668 	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2669 
2670 	if (guilty) {
2671 		hs->banned = i915_context_is_banned(ctx);
2672 		hs->batch_active++;
2673 		hs->guilty_ts = get_seconds();
2674 	} else {
2675 		hs->batch_pending++;
2676 	}
2677 }
2678 
2679 struct drm_i915_gem_request *
2680 i915_gem_find_active_request(struct intel_engine_cs *engine)
2681 {
2682 	struct drm_i915_gem_request *request;
2683 
2684 	/* We are called by the error capture and reset at a random
2685 	 * point in time. In particular, note that neither is crucially
2686 	 * ordered with an interrupt. After a hang, the GPU is dead and we
2687 	 * assume that no more writes can happen (we waited long enough for
2688 	 * all writes that were in transaction to be flushed) - adding an
2689 	 * extra delay for a recent interrupt is pointless. Hence, we do
2690 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2691 	 */
2692 	list_for_each_entry(request, &engine->timeline->requests, link) {
2693 		if (__i915_gem_request_completed(request))
2694 			continue;
2695 
2696 		return request;
2697 	}
2698 
2699 	return NULL;
2700 }
2701 
2702 static void reset_request(struct drm_i915_gem_request *request)
2703 {
2704 	void *vaddr = request->ring->vaddr;
2705 	u32 head;
2706 
2707 	/* As this request likely depends on state from the lost
2708 	 * context, clear out all the user operations leaving the
2709 	 * breadcrumb at the end (so we get the fence notifications).
2710 	 */
2711 	head = request->head;
2712 	if (request->postfix < head) {
2713 		memset(vaddr + head, 0, request->ring->size - head);
2714 		head = 0;
2715 	}
2716 	memset(vaddr + head, 0, request->postfix - head);
2717 }
2718 
2719 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2720 {
2721 	struct drm_i915_gem_request *request;
2722 	struct i915_gem_context *incomplete_ctx;
2723 	struct intel_timeline *timeline;
2724 	unsigned long flags;
2725 	bool ring_hung;
2726 
2727 	if (engine->irq_seqno_barrier)
2728 		engine->irq_seqno_barrier(engine);
2729 
2730 	request = i915_gem_find_active_request(engine);
2731 	if (!request)
2732 		return;
2733 
2734 	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2735 	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
2736 		ring_hung = false;
2737 
2738 	i915_set_reset_status(request->ctx, ring_hung);
2739 	if (!ring_hung)
2740 		return;
2741 
2742 	DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2743 			 engine->name, request->global_seqno);
2744 
2745 	/* Setup the CS to resume from the breadcrumb of the hung request */
2746 	engine->reset_hw(engine, request);
2747 
2748 	/* Users of the default context do not rely on logical state
2749 	 * preserved between batches. They have to emit full state on
2750 	 * every batch and so it is safe to execute queued requests following
2751 	 * the hang.
2752 	 *
2753 	 * Other contexts preserve state, now corrupt. We want to skip all
2754 	 * queued requests that reference the corrupt context.
2755 	 */
2756 	incomplete_ctx = request->ctx;
2757 	if (i915_gem_context_is_default(incomplete_ctx))
2758 		return;
2759 
2760 	timeline = i915_gem_context_lookup_timeline(incomplete_ctx, engine);
2761 
2762 	spin_lock_irqsave(&engine->timeline->lock, flags);
2763 	spin_lock(&timeline->lock);
2764 
2765 	list_for_each_entry_continue(request, &engine->timeline->requests, link)
2766 		if (request->ctx == incomplete_ctx)
2767 			reset_request(request);
2768 
2769 	list_for_each_entry(request, &timeline->requests, link)
2770 		reset_request(request);
2771 
2772 	spin_unlock(&timeline->lock);
2773 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2774 }
2775 
2776 void i915_gem_reset(struct drm_i915_private *dev_priv)
2777 {
2778 	struct intel_engine_cs *engine;
2779 	enum intel_engine_id id;
2780 
2781 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2782 
2783 	i915_gem_retire_requests(dev_priv);
2784 
2785 	for_each_engine(engine, dev_priv, id)
2786 		i915_gem_reset_engine(engine);
2787 
2788 	i915_gem_restore_fences(dev_priv);
2789 
2790 	if (dev_priv->gt.awake) {
2791 		intel_sanitize_gt_powersave(dev_priv);
2792 		intel_enable_gt_powersave(dev_priv);
2793 		if (INTEL_GEN(dev_priv) >= 6)
2794 			gen6_rps_busy(dev_priv);
2795 	}
2796 }
2797 
2798 static void nop_submit_request(struct drm_i915_gem_request *request)
2799 {
2800 	i915_gem_request_submit(request);
2801 	intel_engine_init_global_seqno(request->engine, request->global_seqno);
2802 }
2803 
2804 static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2805 {
2806 	engine->submit_request = nop_submit_request;
2807 
2808 	/* Mark all pending requests as complete so that any concurrent
2809 	 * (lockless) lookup doesn't try and wait upon the request as we
2810 	 * reset it.
2811 	 */
2812 	intel_engine_init_global_seqno(engine,
2813 				       intel_engine_last_submit(engine));
2814 
2815 	/*
2816 	 * Clear the execlists queue up before freeing the requests, as those
2817 	 * are the ones that keep the context and ringbuffer backing objects
2818 	 * pinned in place.
2819 	 */
2820 
2821 	if (i915.enable_execlists) {
2822 		unsigned long flags;
2823 
2824 		spin_lock_irqsave(&engine->timeline->lock, flags);
2825 
2826 		i915_gem_request_put(engine->execlist_port[0].request);
2827 		i915_gem_request_put(engine->execlist_port[1].request);
2828 		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2829 		engine->execlist_queue = RB_ROOT;
2830 		engine->execlist_first = NULL;
2831 
2832 		spin_unlock_irqrestore(&engine->timeline->lock, flags);
2833 	}
2834 }
2835 
2836 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2837 {
2838 	struct intel_engine_cs *engine;
2839 	enum intel_engine_id id;
2840 
2841 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2842 	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2843 
2844 	i915_gem_context_lost(dev_priv);
2845 	for_each_engine(engine, dev_priv, id)
2846 		i915_gem_cleanup_engine(engine);
2847 	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2848 
2849 	i915_gem_retire_requests(dev_priv);
2850 }
2851 
2852 static void
2853 i915_gem_retire_work_handler(struct work_struct *work)
2854 {
2855 	struct drm_i915_private *dev_priv =
2856 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2857 	struct drm_device *dev = &dev_priv->drm;
2858 
2859 	/* Come back later if the device is busy... */
2860 	if (mutex_trylock(&dev->struct_mutex)) {
2861 		i915_gem_retire_requests(dev_priv);
2862 		mutex_unlock(&dev->struct_mutex);
2863 	}
2864 
2865 	/* Keep the retire handler running until we are finally idle.
2866 	 * We do not need to do this test under locking as in the worst-case
2867 	 * we queue the retire worker once too often.
2868 	 */
2869 	if (READ_ONCE(dev_priv->gt.awake)) {
2870 		i915_queue_hangcheck(dev_priv);
2871 		queue_delayed_work(dev_priv->wq,
2872 				   &dev_priv->gt.retire_work,
2873 				   round_jiffies_up_relative(HZ));
2874 	}
2875 }
2876 
2877 static void
2878 i915_gem_idle_work_handler(struct work_struct *work)
2879 {
2880 	struct drm_i915_private *dev_priv =
2881 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2882 	struct drm_device *dev = &dev_priv->drm;
2883 	struct intel_engine_cs *engine;
2884 	enum intel_engine_id id;
2885 	bool rearm_hangcheck;
2886 
2887 	if (!READ_ONCE(dev_priv->gt.awake))
2888 		return;
2889 
2890 	/*
2891 	 * Wait for last execlists context complete, but bail out in case a
2892 	 * new request is submitted.
2893 	 */
2894 	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
2895 		 intel_execlists_idle(dev_priv), 10);
2896 
2897 	if (READ_ONCE(dev_priv->gt.active_requests))
2898 		return;
2899 
2900 	rearm_hangcheck =
2901 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2902 
2903 	if (!mutex_trylock(&dev->struct_mutex)) {
2904 		/* Currently busy, come back later */
2905 		mod_delayed_work(dev_priv->wq,
2906 				 &dev_priv->gt.idle_work,
2907 				 msecs_to_jiffies(50));
2908 		goto out_rearm;
2909 	}
2910 
2911 	/*
2912 	 * New request retired after this work handler started, extend active
2913 	 * period until next instance of the work.
2914 	 */
2915 	if (work_pending(work))
2916 		goto out_unlock;
2917 
2918 	if (dev_priv->gt.active_requests)
2919 		goto out_unlock;
2920 
2921 	if (wait_for(intel_execlists_idle(dev_priv), 10))
2922 		DRM_ERROR("Timeout waiting for engines to idle\n");
2923 
2924 	for_each_engine(engine, dev_priv, id)
2925 		i915_gem_batch_pool_fini(&engine->batch_pool);
2926 
2927 	GEM_BUG_ON(!dev_priv->gt.awake);
2928 	dev_priv->gt.awake = false;
2929 	rearm_hangcheck = false;
2930 
2931 	if (INTEL_GEN(dev_priv) >= 6)
2932 		gen6_rps_idle(dev_priv);
2933 	intel_runtime_pm_put(dev_priv);
2934 out_unlock:
2935 	mutex_unlock(&dev->struct_mutex);
2936 
2937 out_rearm:
2938 	if (rearm_hangcheck) {
2939 		GEM_BUG_ON(!dev_priv->gt.awake);
2940 		i915_queue_hangcheck(dev_priv);
2941 	}
2942 }
2943 
2944 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2945 {
2946 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
2947 	struct drm_i915_file_private *fpriv = file->driver_priv;
2948 	struct i915_vma *vma, *vn;
2949 
2950 	mutex_lock(&obj->base.dev->struct_mutex);
2951 	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2952 		if (vma->vm->file == fpriv)
2953 			i915_vma_close(vma);
2954 
2955 	if (i915_gem_object_is_active(obj) &&
2956 	    !i915_gem_object_has_active_reference(obj)) {
2957 		i915_gem_object_set_active_reference(obj);
2958 		i915_gem_object_get(obj);
2959 	}
2960 	mutex_unlock(&obj->base.dev->struct_mutex);
2961 }
2962 
2963 static unsigned long to_wait_timeout(s64 timeout_ns)
2964 {
2965 	if (timeout_ns < 0)
2966 		return MAX_SCHEDULE_TIMEOUT;
2967 
2968 	if (timeout_ns == 0)
2969 		return 0;
2970 
2971 	return nsecs_to_jiffies_timeout(timeout_ns);
2972 }
2973 
2974 /**
2975  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2976  * @dev: drm device pointer
2977  * @data: ioctl data blob
2978  * @file: drm file pointer
2979  *
2980  * Returns 0 if successful, else an error is returned with the remaining time in
2981  * the timeout parameter.
2982  *  -ETIME: object is still busy after timeout
2983  *  -ERESTARTSYS: signal interrupted the wait
2984  *  -ENONENT: object doesn't exist
2985  * Also possible, but rare:
2986  *  -EAGAIN: GPU wedged
2987  *  -ENOMEM: damn
2988  *  -ENODEV: Internal IRQ fail
2989  *  -E?: The add request failed
2990  *
2991  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2992  * non-zero timeout parameter the wait ioctl will wait for the given number of
2993  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2994  * without holding struct_mutex the object may become re-busied before this
2995  * function completes. A similar but shorter * race condition exists in the busy
2996  * ioctl
2997  */
2998 int
2999 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3000 {
3001 	struct drm_i915_gem_wait *args = data;
3002 	struct drm_i915_gem_object *obj;
3003 	ktime_t start;
3004 	long ret;
3005 
3006 	if (args->flags != 0)
3007 		return -EINVAL;
3008 
3009 	obj = i915_gem_object_lookup(file, args->bo_handle);
3010 	if (!obj)
3011 		return -ENOENT;
3012 
3013 	start = ktime_get();
3014 
3015 	ret = i915_gem_object_wait(obj,
3016 				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3017 				   to_wait_timeout(args->timeout_ns),
3018 				   to_rps_client(file));
3019 
3020 	if (args->timeout_ns > 0) {
3021 		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3022 		if (args->timeout_ns < 0)
3023 			args->timeout_ns = 0;
3024 	}
3025 
3026 	i915_gem_object_put(obj);
3027 	return ret;
3028 }
3029 
3030 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3031 {
3032 	int ret, i;
3033 
3034 	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3035 		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3036 		if (ret)
3037 			return ret;
3038 	}
3039 
3040 	return 0;
3041 }
3042 
3043 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3044 {
3045 	int ret;
3046 
3047 	if (flags & I915_WAIT_LOCKED) {
3048 		struct i915_gem_timeline *tl;
3049 
3050 		lockdep_assert_held(&i915->drm.struct_mutex);
3051 
3052 		list_for_each_entry(tl, &i915->gt.timelines, link) {
3053 			ret = wait_for_timeline(tl, flags);
3054 			if (ret)
3055 				return ret;
3056 		}
3057 	} else {
3058 		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3059 		if (ret)
3060 			return ret;
3061 	}
3062 
3063 	return 0;
3064 }
3065 
3066 void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3067 			     bool force)
3068 {
3069 	/* If we don't have a page list set up, then we're not pinned
3070 	 * to GPU, and we can ignore the cache flush because it'll happen
3071 	 * again at bind time.
3072 	 */
3073 	if (!obj->mm.pages)
3074 		return;
3075 
3076 	/*
3077 	 * Stolen memory is always coherent with the GPU as it is explicitly
3078 	 * marked as wc by the system, or the system is cache-coherent.
3079 	 */
3080 	if (obj->stolen || obj->phys_handle)
3081 		return;
3082 
3083 	/* If the GPU is snooping the contents of the CPU cache,
3084 	 * we do not need to manually clear the CPU cache lines.  However,
3085 	 * the caches are only snooped when the render cache is
3086 	 * flushed/invalidated.  As we always have to emit invalidations
3087 	 * and flushes when moving into and out of the RENDER domain, correct
3088 	 * snooping behaviour occurs naturally as the result of our domain
3089 	 * tracking.
3090 	 */
3091 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3092 		obj->cache_dirty = true;
3093 		return;
3094 	}
3095 
3096 	trace_i915_gem_object_clflush(obj);
3097 	drm_clflush_sg(obj->mm.pages);
3098 	obj->cache_dirty = false;
3099 }
3100 
3101 /** Flushes the GTT write domain for the object if it's dirty. */
3102 static void
3103 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3104 {
3105 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3106 
3107 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3108 		return;
3109 
3110 	/* No actual flushing is required for the GTT write domain.  Writes
3111 	 * to it "immediately" go to main memory as far as we know, so there's
3112 	 * no chipset flush.  It also doesn't land in render cache.
3113 	 *
3114 	 * However, we do have to enforce the order so that all writes through
3115 	 * the GTT land before any writes to the device, such as updates to
3116 	 * the GATT itself.
3117 	 *
3118 	 * We also have to wait a bit for the writes to land from the GTT.
3119 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3120 	 * timing. This issue has only been observed when switching quickly
3121 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
3122 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3123 	 * system agents we cannot reproduce this behaviour).
3124 	 */
3125 	wmb();
3126 	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3127 		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3128 
3129 	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3130 
3131 	obj->base.write_domain = 0;
3132 	trace_i915_gem_object_change_domain(obj,
3133 					    obj->base.read_domains,
3134 					    I915_GEM_DOMAIN_GTT);
3135 }
3136 
3137 /** Flushes the CPU write domain for the object if it's dirty. */
3138 static void
3139 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3140 {
3141 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3142 		return;
3143 
3144 	i915_gem_clflush_object(obj, obj->pin_display);
3145 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3146 
3147 	obj->base.write_domain = 0;
3148 	trace_i915_gem_object_change_domain(obj,
3149 					    obj->base.read_domains,
3150 					    I915_GEM_DOMAIN_CPU);
3151 }
3152 
3153 /**
3154  * Moves a single object to the GTT read, and possibly write domain.
3155  * @obj: object to act on
3156  * @write: ask for write access or read only
3157  *
3158  * This function returns when the move is complete, including waiting on
3159  * flushes to occur.
3160  */
3161 int
3162 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3163 {
3164 	uint32_t old_write_domain, old_read_domains;
3165 	int ret;
3166 
3167 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3168 
3169 	ret = i915_gem_object_wait(obj,
3170 				   I915_WAIT_INTERRUPTIBLE |
3171 				   I915_WAIT_LOCKED |
3172 				   (write ? I915_WAIT_ALL : 0),
3173 				   MAX_SCHEDULE_TIMEOUT,
3174 				   NULL);
3175 	if (ret)
3176 		return ret;
3177 
3178 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3179 		return 0;
3180 
3181 	/* Flush and acquire obj->pages so that we are coherent through
3182 	 * direct access in memory with previous cached writes through
3183 	 * shmemfs and that our cache domain tracking remains valid.
3184 	 * For example, if the obj->filp was moved to swap without us
3185 	 * being notified and releasing the pages, we would mistakenly
3186 	 * continue to assume that the obj remained out of the CPU cached
3187 	 * domain.
3188 	 */
3189 	ret = i915_gem_object_pin_pages(obj);
3190 	if (ret)
3191 		return ret;
3192 
3193 	i915_gem_object_flush_cpu_write_domain(obj);
3194 
3195 	/* Serialise direct access to this object with the barriers for
3196 	 * coherent writes from the GPU, by effectively invalidating the
3197 	 * GTT domain upon first access.
3198 	 */
3199 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3200 		mb();
3201 
3202 	old_write_domain = obj->base.write_domain;
3203 	old_read_domains = obj->base.read_domains;
3204 
3205 	/* It should now be out of any other write domains, and we can update
3206 	 * the domain values for our changes.
3207 	 */
3208 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3209 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3210 	if (write) {
3211 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3212 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3213 		obj->mm.dirty = true;
3214 	}
3215 
3216 	trace_i915_gem_object_change_domain(obj,
3217 					    old_read_domains,
3218 					    old_write_domain);
3219 
3220 	i915_gem_object_unpin_pages(obj);
3221 	return 0;
3222 }
3223 
3224 /**
3225  * Changes the cache-level of an object across all VMA.
3226  * @obj: object to act on
3227  * @cache_level: new cache level to set for the object
3228  *
3229  * After this function returns, the object will be in the new cache-level
3230  * across all GTT and the contents of the backing storage will be coherent,
3231  * with respect to the new cache-level. In order to keep the backing storage
3232  * coherent for all users, we only allow a single cache level to be set
3233  * globally on the object and prevent it from being changed whilst the
3234  * hardware is reading from the object. That is if the object is currently
3235  * on the scanout it will be set to uncached (or equivalent display
3236  * cache coherency) and all non-MOCS GPU access will also be uncached so
3237  * that all direct access to the scanout remains coherent.
3238  */
3239 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3240 				    enum i915_cache_level cache_level)
3241 {
3242 	struct i915_vma *vma;
3243 	int ret;
3244 
3245 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3246 
3247 	if (obj->cache_level == cache_level)
3248 		return 0;
3249 
3250 	/* Inspect the list of currently bound VMA and unbind any that would
3251 	 * be invalid given the new cache-level. This is principally to
3252 	 * catch the issue of the CS prefetch crossing page boundaries and
3253 	 * reading an invalid PTE on older architectures.
3254 	 */
3255 restart:
3256 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3257 		if (!drm_mm_node_allocated(&vma->node))
3258 			continue;
3259 
3260 		if (i915_vma_is_pinned(vma)) {
3261 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3262 			return -EBUSY;
3263 		}
3264 
3265 		if (i915_gem_valid_gtt_space(vma, cache_level))
3266 			continue;
3267 
3268 		ret = i915_vma_unbind(vma);
3269 		if (ret)
3270 			return ret;
3271 
3272 		/* As unbinding may affect other elements in the
3273 		 * obj->vma_list (due to side-effects from retiring
3274 		 * an active vma), play safe and restart the iterator.
3275 		 */
3276 		goto restart;
3277 	}
3278 
3279 	/* We can reuse the existing drm_mm nodes but need to change the
3280 	 * cache-level on the PTE. We could simply unbind them all and
3281 	 * rebind with the correct cache-level on next use. However since
3282 	 * we already have a valid slot, dma mapping, pages etc, we may as
3283 	 * rewrite the PTE in the belief that doing so tramples upon less
3284 	 * state and so involves less work.
3285 	 */
3286 	if (obj->bind_count) {
3287 		/* Before we change the PTE, the GPU must not be accessing it.
3288 		 * If we wait upon the object, we know that all the bound
3289 		 * VMA are no longer active.
3290 		 */
3291 		ret = i915_gem_object_wait(obj,
3292 					   I915_WAIT_INTERRUPTIBLE |
3293 					   I915_WAIT_LOCKED |
3294 					   I915_WAIT_ALL,
3295 					   MAX_SCHEDULE_TIMEOUT,
3296 					   NULL);
3297 		if (ret)
3298 			return ret;
3299 
3300 		if (!HAS_LLC(to_i915(obj->base.dev)) &&
3301 		    cache_level != I915_CACHE_NONE) {
3302 			/* Access to snoopable pages through the GTT is
3303 			 * incoherent and on some machines causes a hard
3304 			 * lockup. Relinquish the CPU mmaping to force
3305 			 * userspace to refault in the pages and we can
3306 			 * then double check if the GTT mapping is still
3307 			 * valid for that pointer access.
3308 			 */
3309 			i915_gem_release_mmap(obj);
3310 
3311 			/* As we no longer need a fence for GTT access,
3312 			 * we can relinquish it now (and so prevent having
3313 			 * to steal a fence from someone else on the next
3314 			 * fence request). Note GPU activity would have
3315 			 * dropped the fence as all snoopable access is
3316 			 * supposed to be linear.
3317 			 */
3318 			list_for_each_entry(vma, &obj->vma_list, obj_link) {
3319 				ret = i915_vma_put_fence(vma);
3320 				if (ret)
3321 					return ret;
3322 			}
3323 		} else {
3324 			/* We either have incoherent backing store and
3325 			 * so no GTT access or the architecture is fully
3326 			 * coherent. In such cases, existing GTT mmaps
3327 			 * ignore the cache bit in the PTE and we can
3328 			 * rewrite it without confusing the GPU or having
3329 			 * to force userspace to fault back in its mmaps.
3330 			 */
3331 		}
3332 
3333 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3334 			if (!drm_mm_node_allocated(&vma->node))
3335 				continue;
3336 
3337 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3338 			if (ret)
3339 				return ret;
3340 		}
3341 	}
3342 
3343 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3344 	    cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3345 		obj->cache_dirty = true;
3346 
3347 	list_for_each_entry(vma, &obj->vma_list, obj_link)
3348 		vma->node.color = cache_level;
3349 	obj->cache_level = cache_level;
3350 
3351 	return 0;
3352 }
3353 
3354 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3355 			       struct drm_file *file)
3356 {
3357 	struct drm_i915_gem_caching *args = data;
3358 	struct drm_i915_gem_object *obj;
3359 	int err = 0;
3360 
3361 	rcu_read_lock();
3362 	obj = i915_gem_object_lookup_rcu(file, args->handle);
3363 	if (!obj) {
3364 		err = -ENOENT;
3365 		goto out;
3366 	}
3367 
3368 	switch (obj->cache_level) {
3369 	case I915_CACHE_LLC:
3370 	case I915_CACHE_L3_LLC:
3371 		args->caching = I915_CACHING_CACHED;
3372 		break;
3373 
3374 	case I915_CACHE_WT:
3375 		args->caching = I915_CACHING_DISPLAY;
3376 		break;
3377 
3378 	default:
3379 		args->caching = I915_CACHING_NONE;
3380 		break;
3381 	}
3382 out:
3383 	rcu_read_unlock();
3384 	return err;
3385 }
3386 
3387 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3388 			       struct drm_file *file)
3389 {
3390 	struct drm_i915_private *i915 = to_i915(dev);
3391 	struct drm_i915_gem_caching *args = data;
3392 	struct drm_i915_gem_object *obj;
3393 	enum i915_cache_level level;
3394 	int ret;
3395 
3396 	switch (args->caching) {
3397 	case I915_CACHING_NONE:
3398 		level = I915_CACHE_NONE;
3399 		break;
3400 	case I915_CACHING_CACHED:
3401 		/*
3402 		 * Due to a HW issue on BXT A stepping, GPU stores via a
3403 		 * snooped mapping may leave stale data in a corresponding CPU
3404 		 * cacheline, whereas normally such cachelines would get
3405 		 * invalidated.
3406 		 */
3407 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3408 			return -ENODEV;
3409 
3410 		level = I915_CACHE_LLC;
3411 		break;
3412 	case I915_CACHING_DISPLAY:
3413 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3414 		break;
3415 	default:
3416 		return -EINVAL;
3417 	}
3418 
3419 	ret = i915_mutex_lock_interruptible(dev);
3420 	if (ret)
3421 		return ret;
3422 
3423 	obj = i915_gem_object_lookup(file, args->handle);
3424 	if (!obj) {
3425 		ret = -ENOENT;
3426 		goto unlock;
3427 	}
3428 
3429 	ret = i915_gem_object_set_cache_level(obj, level);
3430 	i915_gem_object_put(obj);
3431 unlock:
3432 	mutex_unlock(&dev->struct_mutex);
3433 	return ret;
3434 }
3435 
3436 /*
3437  * Prepare buffer for display plane (scanout, cursors, etc).
3438  * Can be called from an uninterruptible phase (modesetting) and allows
3439  * any flushes to be pipelined (for pageflips).
3440  */
3441 struct i915_vma *
3442 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3443 				     u32 alignment,
3444 				     const struct i915_ggtt_view *view)
3445 {
3446 	struct i915_vma *vma;
3447 	u32 old_read_domains, old_write_domain;
3448 	int ret;
3449 
3450 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3451 
3452 	/* Mark the pin_display early so that we account for the
3453 	 * display coherency whilst setting up the cache domains.
3454 	 */
3455 	obj->pin_display++;
3456 
3457 	/* The display engine is not coherent with the LLC cache on gen6.  As
3458 	 * a result, we make sure that the pinning that is about to occur is
3459 	 * done with uncached PTEs. This is lowest common denominator for all
3460 	 * chipsets.
3461 	 *
3462 	 * However for gen6+, we could do better by using the GFDT bit instead
3463 	 * of uncaching, which would allow us to flush all the LLC-cached data
3464 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3465 	 */
3466 	ret = i915_gem_object_set_cache_level(obj,
3467 					      HAS_WT(to_i915(obj->base.dev)) ?
3468 					      I915_CACHE_WT : I915_CACHE_NONE);
3469 	if (ret) {
3470 		vma = ERR_PTR(ret);
3471 		goto err_unpin_display;
3472 	}
3473 
3474 	/* As the user may map the buffer once pinned in the display plane
3475 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3476 	 * always use map_and_fenceable for all scanout buffers. However,
3477 	 * it may simply be too big to fit into mappable, in which case
3478 	 * put it anyway and hope that userspace can cope (but always first
3479 	 * try to preserve the existing ABI).
3480 	 */
3481 	vma = ERR_PTR(-ENOSPC);
3482 	if (view->type == I915_GGTT_VIEW_NORMAL)
3483 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3484 					       PIN_MAPPABLE | PIN_NONBLOCK);
3485 	if (IS_ERR(vma)) {
3486 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3487 		unsigned int flags;
3488 
3489 		/* Valleyview is definitely limited to scanning out the first
3490 		 * 512MiB. Lets presume this behaviour was inherited from the
3491 		 * g4x display engine and that all earlier gen are similarly
3492 		 * limited. Testing suggests that it is a little more
3493 		 * complicated than this. For example, Cherryview appears quite
3494 		 * happy to scanout from anywhere within its global aperture.
3495 		 */
3496 		flags = 0;
3497 		if (HAS_GMCH_DISPLAY(i915))
3498 			flags = PIN_MAPPABLE;
3499 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3500 	}
3501 	if (IS_ERR(vma))
3502 		goto err_unpin_display;
3503 
3504 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3505 
3506 	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3507 	if (obj->cache_dirty) {
3508 		i915_gem_clflush_object(obj, true);
3509 		intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
3510 	}
3511 
3512 	old_write_domain = obj->base.write_domain;
3513 	old_read_domains = obj->base.read_domains;
3514 
3515 	/* It should now be out of any other write domains, and we can update
3516 	 * the domain values for our changes.
3517 	 */
3518 	obj->base.write_domain = 0;
3519 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3520 
3521 	trace_i915_gem_object_change_domain(obj,
3522 					    old_read_domains,
3523 					    old_write_domain);
3524 
3525 	return vma;
3526 
3527 err_unpin_display:
3528 	obj->pin_display--;
3529 	return vma;
3530 }
3531 
3532 void
3533 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3534 {
3535 	lockdep_assert_held(&vma->vm->dev->struct_mutex);
3536 
3537 	if (WARN_ON(vma->obj->pin_display == 0))
3538 		return;
3539 
3540 	if (--vma->obj->pin_display == 0)
3541 		vma->display_alignment = 0;
3542 
3543 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3544 	if (!i915_vma_is_active(vma))
3545 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3546 
3547 	i915_vma_unpin(vma);
3548 }
3549 
3550 /**
3551  * Moves a single object to the CPU read, and possibly write domain.
3552  * @obj: object to act on
3553  * @write: requesting write or read-only access
3554  *
3555  * This function returns when the move is complete, including waiting on
3556  * flushes to occur.
3557  */
3558 int
3559 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3560 {
3561 	uint32_t old_write_domain, old_read_domains;
3562 	int ret;
3563 
3564 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3565 
3566 	ret = i915_gem_object_wait(obj,
3567 				   I915_WAIT_INTERRUPTIBLE |
3568 				   I915_WAIT_LOCKED |
3569 				   (write ? I915_WAIT_ALL : 0),
3570 				   MAX_SCHEDULE_TIMEOUT,
3571 				   NULL);
3572 	if (ret)
3573 		return ret;
3574 
3575 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3576 		return 0;
3577 
3578 	i915_gem_object_flush_gtt_write_domain(obj);
3579 
3580 	old_write_domain = obj->base.write_domain;
3581 	old_read_domains = obj->base.read_domains;
3582 
3583 	/* Flush the CPU cache if it's still invalid. */
3584 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3585 		i915_gem_clflush_object(obj, false);
3586 
3587 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3588 	}
3589 
3590 	/* It should now be out of any other write domains, and we can update
3591 	 * the domain values for our changes.
3592 	 */
3593 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3594 
3595 	/* If we're writing through the CPU, then the GPU read domains will
3596 	 * need to be invalidated at next use.
3597 	 */
3598 	if (write) {
3599 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3600 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3601 	}
3602 
3603 	trace_i915_gem_object_change_domain(obj,
3604 					    old_read_domains,
3605 					    old_write_domain);
3606 
3607 	return 0;
3608 }
3609 
3610 /* Throttle our rendering by waiting until the ring has completed our requests
3611  * emitted over 20 msec ago.
3612  *
3613  * Note that if we were to use the current jiffies each time around the loop,
3614  * we wouldn't escape the function with any frames outstanding if the time to
3615  * render a frame was over 20ms.
3616  *
3617  * This should get us reasonable parallelism between CPU and GPU but also
3618  * relatively low latency when blocking on a particular request to finish.
3619  */
3620 static int
3621 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3622 {
3623 	struct drm_i915_private *dev_priv = to_i915(dev);
3624 	struct drm_i915_file_private *file_priv = file->driver_priv;
3625 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3626 	struct drm_i915_gem_request *request, *target = NULL;
3627 	long ret;
3628 
3629 	/* ABI: return -EIO if already wedged */
3630 	if (i915_terminally_wedged(&dev_priv->gpu_error))
3631 		return -EIO;
3632 
3633 	spin_lock(&file_priv->mm.lock);
3634 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3635 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3636 			break;
3637 
3638 		/*
3639 		 * Note that the request might not have been submitted yet.
3640 		 * In which case emitted_jiffies will be zero.
3641 		 */
3642 		if (!request->emitted_jiffies)
3643 			continue;
3644 
3645 		target = request;
3646 	}
3647 	if (target)
3648 		i915_gem_request_get(target);
3649 	spin_unlock(&file_priv->mm.lock);
3650 
3651 	if (target == NULL)
3652 		return 0;
3653 
3654 	ret = i915_wait_request(target,
3655 				I915_WAIT_INTERRUPTIBLE,
3656 				MAX_SCHEDULE_TIMEOUT);
3657 	i915_gem_request_put(target);
3658 
3659 	return ret < 0 ? ret : 0;
3660 }
3661 
3662 struct i915_vma *
3663 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3664 			 const struct i915_ggtt_view *view,
3665 			 u64 size,
3666 			 u64 alignment,
3667 			 u64 flags)
3668 {
3669 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3670 	struct i915_address_space *vm = &dev_priv->ggtt.base;
3671 	struct i915_vma *vma;
3672 	int ret;
3673 
3674 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3675 
3676 	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3677 	if (IS_ERR(vma))
3678 		return vma;
3679 
3680 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
3681 		if (flags & PIN_NONBLOCK &&
3682 		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3683 			return ERR_PTR(-ENOSPC);
3684 
3685 		if (flags & PIN_MAPPABLE) {
3686 			u32 fence_size;
3687 
3688 			fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
3689 							    i915_gem_object_get_tiling(obj));
3690 			/* If the required space is larger than the available
3691 			 * aperture, we will not able to find a slot for the
3692 			 * object and unbinding the object now will be in
3693 			 * vain. Worse, doing so may cause us to ping-pong
3694 			 * the object in and out of the Global GTT and
3695 			 * waste a lot of cycles under the mutex.
3696 			 */
3697 			if (fence_size > dev_priv->ggtt.mappable_end)
3698 				return ERR_PTR(-E2BIG);
3699 
3700 			/* If NONBLOCK is set the caller is optimistically
3701 			 * trying to cache the full object within the mappable
3702 			 * aperture, and *must* have a fallback in place for
3703 			 * situations where we cannot bind the object. We
3704 			 * can be a little more lax here and use the fallback
3705 			 * more often to avoid costly migrations of ourselves
3706 			 * and other objects within the aperture.
3707 			 *
3708 			 * Half-the-aperture is used as a simple heuristic.
3709 			 * More interesting would to do search for a free
3710 			 * block prior to making the commitment to unbind.
3711 			 * That caters for the self-harm case, and with a
3712 			 * little more heuristics (e.g. NOFAULT, NOEVICT)
3713 			 * we could try to minimise harm to others.
3714 			 */
3715 			if (flags & PIN_NONBLOCK &&
3716 			    fence_size > dev_priv->ggtt.mappable_end / 2)
3717 				return ERR_PTR(-ENOSPC);
3718 		}
3719 
3720 		WARN(i915_vma_is_pinned(vma),
3721 		     "bo is already pinned in ggtt with incorrect alignment:"
3722 		     " offset=%08x, req.alignment=%llx,"
3723 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3724 		     i915_ggtt_offset(vma), alignment,
3725 		     !!(flags & PIN_MAPPABLE),
3726 		     i915_vma_is_map_and_fenceable(vma));
3727 		ret = i915_vma_unbind(vma);
3728 		if (ret)
3729 			return ERR_PTR(ret);
3730 	}
3731 
3732 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3733 	if (ret)
3734 		return ERR_PTR(ret);
3735 
3736 	return vma;
3737 }
3738 
3739 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3740 {
3741 	/* Note that we could alias engines in the execbuf API, but
3742 	 * that would be very unwise as it prevents userspace from
3743 	 * fine control over engine selection. Ahem.
3744 	 *
3745 	 * This should be something like EXEC_MAX_ENGINE instead of
3746 	 * I915_NUM_ENGINES.
3747 	 */
3748 	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3749 	return 0x10000 << id;
3750 }
3751 
3752 static __always_inline unsigned int __busy_write_id(unsigned int id)
3753 {
3754 	/* The uABI guarantees an active writer is also amongst the read
3755 	 * engines. This would be true if we accessed the activity tracking
3756 	 * under the lock, but as we perform the lookup of the object and
3757 	 * its activity locklessly we can not guarantee that the last_write
3758 	 * being active implies that we have set the same engine flag from
3759 	 * last_read - hence we always set both read and write busy for
3760 	 * last_write.
3761 	 */
3762 	return id | __busy_read_flag(id);
3763 }
3764 
3765 static __always_inline unsigned int
3766 __busy_set_if_active(const struct dma_fence *fence,
3767 		     unsigned int (*flag)(unsigned int id))
3768 {
3769 	struct drm_i915_gem_request *rq;
3770 
3771 	/* We have to check the current hw status of the fence as the uABI
3772 	 * guarantees forward progress. We could rely on the idle worker
3773 	 * to eventually flush us, but to minimise latency just ask the
3774 	 * hardware.
3775 	 *
3776 	 * Note we only report on the status of native fences.
3777 	 */
3778 	if (!dma_fence_is_i915(fence))
3779 		return 0;
3780 
3781 	/* opencode to_request() in order to avoid const warnings */
3782 	rq = container_of(fence, struct drm_i915_gem_request, fence);
3783 	if (i915_gem_request_completed(rq))
3784 		return 0;
3785 
3786 	return flag(rq->engine->exec_id);
3787 }
3788 
3789 static __always_inline unsigned int
3790 busy_check_reader(const struct dma_fence *fence)
3791 {
3792 	return __busy_set_if_active(fence, __busy_read_flag);
3793 }
3794 
3795 static __always_inline unsigned int
3796 busy_check_writer(const struct dma_fence *fence)
3797 {
3798 	if (!fence)
3799 		return 0;
3800 
3801 	return __busy_set_if_active(fence, __busy_write_id);
3802 }
3803 
3804 int
3805 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3806 		    struct drm_file *file)
3807 {
3808 	struct drm_i915_gem_busy *args = data;
3809 	struct drm_i915_gem_object *obj;
3810 	struct reservation_object_list *list;
3811 	unsigned int seq;
3812 	int err;
3813 
3814 	err = -ENOENT;
3815 	rcu_read_lock();
3816 	obj = i915_gem_object_lookup_rcu(file, args->handle);
3817 	if (!obj)
3818 		goto out;
3819 
3820 	/* A discrepancy here is that we do not report the status of
3821 	 * non-i915 fences, i.e. even though we may report the object as idle,
3822 	 * a call to set-domain may still stall waiting for foreign rendering.
3823 	 * This also means that wait-ioctl may report an object as busy,
3824 	 * where busy-ioctl considers it idle.
3825 	 *
3826 	 * We trade the ability to warn of foreign fences to report on which
3827 	 * i915 engines are active for the object.
3828 	 *
3829 	 * Alternatively, we can trade that extra information on read/write
3830 	 * activity with
3831 	 *	args->busy =
3832 	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
3833 	 * to report the overall busyness. This is what the wait-ioctl does.
3834 	 *
3835 	 */
3836 retry:
3837 	seq = raw_read_seqcount(&obj->resv->seq);
3838 
3839 	/* Translate the exclusive fence to the READ *and* WRITE engine */
3840 	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3841 
3842 	/* Translate shared fences to READ set of engines */
3843 	list = rcu_dereference(obj->resv->fence);
3844 	if (list) {
3845 		unsigned int shared_count = list->shared_count, i;
3846 
3847 		for (i = 0; i < shared_count; ++i) {
3848 			struct dma_fence *fence =
3849 				rcu_dereference(list->shared[i]);
3850 
3851 			args->busy |= busy_check_reader(fence);
3852 		}
3853 	}
3854 
3855 	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3856 		goto retry;
3857 
3858 	err = 0;
3859 out:
3860 	rcu_read_unlock();
3861 	return err;
3862 }
3863 
3864 int
3865 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3866 			struct drm_file *file_priv)
3867 {
3868 	return i915_gem_ring_throttle(dev, file_priv);
3869 }
3870 
3871 int
3872 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3873 		       struct drm_file *file_priv)
3874 {
3875 	struct drm_i915_private *dev_priv = to_i915(dev);
3876 	struct drm_i915_gem_madvise *args = data;
3877 	struct drm_i915_gem_object *obj;
3878 	int err;
3879 
3880 	switch (args->madv) {
3881 	case I915_MADV_DONTNEED:
3882 	case I915_MADV_WILLNEED:
3883 	    break;
3884 	default:
3885 	    return -EINVAL;
3886 	}
3887 
3888 	obj = i915_gem_object_lookup(file_priv, args->handle);
3889 	if (!obj)
3890 		return -ENOENT;
3891 
3892 	err = mutex_lock_interruptible(&obj->mm.lock);
3893 	if (err)
3894 		goto out;
3895 
3896 	if (obj->mm.pages &&
3897 	    i915_gem_object_is_tiled(obj) &&
3898 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3899 		if (obj->mm.madv == I915_MADV_WILLNEED) {
3900 			GEM_BUG_ON(!obj->mm.quirked);
3901 			__i915_gem_object_unpin_pages(obj);
3902 			obj->mm.quirked = false;
3903 		}
3904 		if (args->madv == I915_MADV_WILLNEED) {
3905 			GEM_BUG_ON(obj->mm.quirked);
3906 			__i915_gem_object_pin_pages(obj);
3907 			obj->mm.quirked = true;
3908 		}
3909 	}
3910 
3911 	if (obj->mm.madv != __I915_MADV_PURGED)
3912 		obj->mm.madv = args->madv;
3913 
3914 	/* if the object is no longer attached, discard its backing storage */
3915 	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3916 		i915_gem_object_truncate(obj);
3917 
3918 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
3919 	mutex_unlock(&obj->mm.lock);
3920 
3921 out:
3922 	i915_gem_object_put(obj);
3923 	return err;
3924 }
3925 
3926 static void
3927 frontbuffer_retire(struct i915_gem_active *active,
3928 		   struct drm_i915_gem_request *request)
3929 {
3930 	struct drm_i915_gem_object *obj =
3931 		container_of(active, typeof(*obj), frontbuffer_write);
3932 
3933 	intel_fb_obj_flush(obj, true, ORIGIN_CS);
3934 }
3935 
3936 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3937 			  const struct drm_i915_gem_object_ops *ops)
3938 {
3939 	mutex_init(&obj->mm.lock);
3940 
3941 	INIT_LIST_HEAD(&obj->global_link);
3942 	INIT_LIST_HEAD(&obj->userfault_link);
3943 	INIT_LIST_HEAD(&obj->obj_exec_link);
3944 	INIT_LIST_HEAD(&obj->vma_list);
3945 	INIT_LIST_HEAD(&obj->batch_pool_link);
3946 
3947 	obj->ops = ops;
3948 
3949 	reservation_object_init(&obj->__builtin_resv);
3950 	obj->resv = &obj->__builtin_resv;
3951 
3952 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3953 	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
3954 
3955 	obj->mm.madv = I915_MADV_WILLNEED;
3956 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
3957 	mutex_init(&obj->mm.get_page.lock);
3958 
3959 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3960 }
3961 
3962 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3963 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
3964 		 I915_GEM_OBJECT_IS_SHRINKABLE,
3965 	.get_pages = i915_gem_object_get_pages_gtt,
3966 	.put_pages = i915_gem_object_put_pages_gtt,
3967 };
3968 
3969 /* Note we don't consider signbits :| */
3970 #define overflows_type(x, T) \
3971 	(sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))
3972 
3973 struct drm_i915_gem_object *
3974 i915_gem_object_create(struct drm_device *dev, u64 size)
3975 {
3976 	struct drm_i915_private *dev_priv = to_i915(dev);
3977 	struct drm_i915_gem_object *obj;
3978 	struct address_space *mapping;
3979 	gfp_t mask;
3980 	int ret;
3981 
3982 	/* There is a prevalence of the assumption that we fit the object's
3983 	 * page count inside a 32bit _signed_ variable. Let's document this and
3984 	 * catch if we ever need to fix it. In the meantime, if you do spot
3985 	 * such a local variable, please consider fixing!
3986 	 */
3987 	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
3988 		return ERR_PTR(-E2BIG);
3989 
3990 	if (overflows_type(size, obj->base.size))
3991 		return ERR_PTR(-E2BIG);
3992 
3993 	obj = i915_gem_object_alloc(dev);
3994 	if (obj == NULL)
3995 		return ERR_PTR(-ENOMEM);
3996 
3997 	ret = drm_gem_object_init(dev, &obj->base, size);
3998 	if (ret)
3999 		goto fail;
4000 
4001 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4002 	if (IS_CRESTLINE(dev_priv) || IS_BROADWATER(dev_priv)) {
4003 		/* 965gm cannot relocate objects above 4GiB. */
4004 		mask &= ~__GFP_HIGHMEM;
4005 		mask |= __GFP_DMA32;
4006 	}
4007 
4008 	mapping = obj->base.filp->f_mapping;
4009 	mapping_set_gfp_mask(mapping, mask);
4010 
4011 	i915_gem_object_init(obj, &i915_gem_object_ops);
4012 
4013 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4014 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4015 
4016 	if (HAS_LLC(dev_priv)) {
4017 		/* On some devices, we can have the GPU use the LLC (the CPU
4018 		 * cache) for about a 10% performance improvement
4019 		 * compared to uncached.  Graphics requests other than
4020 		 * display scanout are coherent with the CPU in
4021 		 * accessing this cache.  This means in this mode we
4022 		 * don't need to clflush on the CPU side, and on the
4023 		 * GPU side we only need to flush internal caches to
4024 		 * get data visible to the CPU.
4025 		 *
4026 		 * However, we maintain the display planes as UC, and so
4027 		 * need to rebind when first used as such.
4028 		 */
4029 		obj->cache_level = I915_CACHE_LLC;
4030 	} else
4031 		obj->cache_level = I915_CACHE_NONE;
4032 
4033 	trace_i915_gem_object_create(obj);
4034 
4035 	return obj;
4036 
4037 fail:
4038 	i915_gem_object_free(obj);
4039 	return ERR_PTR(ret);
4040 }
4041 
4042 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4043 {
4044 	/* If we are the last user of the backing storage (be it shmemfs
4045 	 * pages or stolen etc), we know that the pages are going to be
4046 	 * immediately released. In this case, we can then skip copying
4047 	 * back the contents from the GPU.
4048 	 */
4049 
4050 	if (obj->mm.madv != I915_MADV_WILLNEED)
4051 		return false;
4052 
4053 	if (obj->base.filp == NULL)
4054 		return true;
4055 
4056 	/* At first glance, this looks racy, but then again so would be
4057 	 * userspace racing mmap against close. However, the first external
4058 	 * reference to the filp can only be obtained through the
4059 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4060 	 * acquiring such a reference whilst we are in the middle of
4061 	 * freeing the object.
4062 	 */
4063 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4064 }
4065 
4066 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4067 				    struct llist_node *freed)
4068 {
4069 	struct drm_i915_gem_object *obj, *on;
4070 
4071 	mutex_lock(&i915->drm.struct_mutex);
4072 	intel_runtime_pm_get(i915);
4073 	llist_for_each_entry(obj, freed, freed) {
4074 		struct i915_vma *vma, *vn;
4075 
4076 		trace_i915_gem_object_destroy(obj);
4077 
4078 		GEM_BUG_ON(i915_gem_object_is_active(obj));
4079 		list_for_each_entry_safe(vma, vn,
4080 					 &obj->vma_list, obj_link) {
4081 			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4082 			GEM_BUG_ON(i915_vma_is_active(vma));
4083 			vma->flags &= ~I915_VMA_PIN_MASK;
4084 			i915_vma_close(vma);
4085 		}
4086 		GEM_BUG_ON(!list_empty(&obj->vma_list));
4087 		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4088 
4089 		list_del(&obj->global_link);
4090 	}
4091 	intel_runtime_pm_put(i915);
4092 	mutex_unlock(&i915->drm.struct_mutex);
4093 
4094 	llist_for_each_entry_safe(obj, on, freed, freed) {
4095 		GEM_BUG_ON(obj->bind_count);
4096 		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4097 
4098 		if (obj->ops->release)
4099 			obj->ops->release(obj);
4100 
4101 		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4102 			atomic_set(&obj->mm.pages_pin_count, 0);
4103 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4104 		GEM_BUG_ON(obj->mm.pages);
4105 
4106 		if (obj->base.import_attach)
4107 			drm_prime_gem_destroy(&obj->base, NULL);
4108 
4109 		reservation_object_fini(&obj->__builtin_resv);
4110 		drm_gem_object_release(&obj->base);
4111 		i915_gem_info_remove_obj(i915, obj->base.size);
4112 
4113 		kfree(obj->bit_17);
4114 		i915_gem_object_free(obj);
4115 	}
4116 }
4117 
4118 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4119 {
4120 	struct llist_node *freed;
4121 
4122 	freed = llist_del_all(&i915->mm.free_list);
4123 	if (unlikely(freed))
4124 		__i915_gem_free_objects(i915, freed);
4125 }
4126 
4127 static void __i915_gem_free_work(struct work_struct *work)
4128 {
4129 	struct drm_i915_private *i915 =
4130 		container_of(work, struct drm_i915_private, mm.free_work);
4131 	struct llist_node *freed;
4132 
4133 	/* All file-owned VMA should have been released by this point through
4134 	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4135 	 * However, the object may also be bound into the global GTT (e.g.
4136 	 * older GPUs without per-process support, or for direct access through
4137 	 * the GTT either for the user or for scanout). Those VMA still need to
4138 	 * unbound now.
4139 	 */
4140 
4141 	while ((freed = llist_del_all(&i915->mm.free_list)))
4142 		__i915_gem_free_objects(i915, freed);
4143 }
4144 
4145 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4146 {
4147 	struct drm_i915_gem_object *obj =
4148 		container_of(head, typeof(*obj), rcu);
4149 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4150 
4151 	/* We can't simply use call_rcu() from i915_gem_free_object()
4152 	 * as we need to block whilst unbinding, and the call_rcu
4153 	 * task may be called from softirq context. So we take a
4154 	 * detour through a worker.
4155 	 */
4156 	if (llist_add(&obj->freed, &i915->mm.free_list))
4157 		schedule_work(&i915->mm.free_work);
4158 }
4159 
4160 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4161 {
4162 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4163 
4164 	if (obj->mm.quirked)
4165 		__i915_gem_object_unpin_pages(obj);
4166 
4167 	if (discard_backing_storage(obj))
4168 		obj->mm.madv = I915_MADV_DONTNEED;
4169 
4170 	/* Before we free the object, make sure any pure RCU-only
4171 	 * read-side critical sections are complete, e.g.
4172 	 * i915_gem_busy_ioctl(). For the corresponding synchronized
4173 	 * lookup see i915_gem_object_lookup_rcu().
4174 	 */
4175 	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4176 }
4177 
4178 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4179 {
4180 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4181 
4182 	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4183 	if (i915_gem_object_is_active(obj))
4184 		i915_gem_object_set_active_reference(obj);
4185 	else
4186 		i915_gem_object_put(obj);
4187 }
4188 
4189 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4190 {
4191 	struct intel_engine_cs *engine;
4192 	enum intel_engine_id id;
4193 
4194 	for_each_engine(engine, dev_priv, id)
4195 		GEM_BUG_ON(engine->last_context != dev_priv->kernel_context);
4196 }
4197 
4198 int i915_gem_suspend(struct drm_device *dev)
4199 {
4200 	struct drm_i915_private *dev_priv = to_i915(dev);
4201 	int ret;
4202 
4203 	intel_suspend_gt_powersave(dev_priv);
4204 
4205 	mutex_lock(&dev->struct_mutex);
4206 
4207 	/* We have to flush all the executing contexts to main memory so
4208 	 * that they can saved in the hibernation image. To ensure the last
4209 	 * context image is coherent, we have to switch away from it. That
4210 	 * leaves the dev_priv->kernel_context still active when
4211 	 * we actually suspend, and its image in memory may not match the GPU
4212 	 * state. Fortunately, the kernel_context is disposable and we do
4213 	 * not rely on its state.
4214 	 */
4215 	ret = i915_gem_switch_to_kernel_context(dev_priv);
4216 	if (ret)
4217 		goto err;
4218 
4219 	ret = i915_gem_wait_for_idle(dev_priv,
4220 				     I915_WAIT_INTERRUPTIBLE |
4221 				     I915_WAIT_LOCKED);
4222 	if (ret)
4223 		goto err;
4224 
4225 	i915_gem_retire_requests(dev_priv);
4226 	GEM_BUG_ON(dev_priv->gt.active_requests);
4227 
4228 	assert_kernel_context_is_current(dev_priv);
4229 	i915_gem_context_lost(dev_priv);
4230 	mutex_unlock(&dev->struct_mutex);
4231 
4232 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4233 	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4234 	flush_delayed_work(&dev_priv->gt.idle_work);
4235 	flush_work(&dev_priv->mm.free_work);
4236 
4237 	/* Assert that we sucessfully flushed all the work and
4238 	 * reset the GPU back to its idle, low power state.
4239 	 */
4240 	WARN_ON(dev_priv->gt.awake);
4241 	WARN_ON(!intel_execlists_idle(dev_priv));
4242 
4243 	/*
4244 	 * Neither the BIOS, ourselves or any other kernel
4245 	 * expects the system to be in execlists mode on startup,
4246 	 * so we need to reset the GPU back to legacy mode. And the only
4247 	 * known way to disable logical contexts is through a GPU reset.
4248 	 *
4249 	 * So in order to leave the system in a known default configuration,
4250 	 * always reset the GPU upon unload and suspend. Afterwards we then
4251 	 * clean up the GEM state tracking, flushing off the requests and
4252 	 * leaving the system in a known idle state.
4253 	 *
4254 	 * Note that is of the upmost importance that the GPU is idle and
4255 	 * all stray writes are flushed *before* we dismantle the backing
4256 	 * storage for the pinned objects.
4257 	 *
4258 	 * However, since we are uncertain that resetting the GPU on older
4259 	 * machines is a good idea, we don't - just in case it leaves the
4260 	 * machine in an unusable condition.
4261 	 */
4262 	if (HAS_HW_CONTEXTS(dev_priv)) {
4263 		int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4264 		WARN_ON(reset && reset != -ENODEV);
4265 	}
4266 
4267 	return 0;
4268 
4269 err:
4270 	mutex_unlock(&dev->struct_mutex);
4271 	return ret;
4272 }
4273 
4274 void i915_gem_resume(struct drm_device *dev)
4275 {
4276 	struct drm_i915_private *dev_priv = to_i915(dev);
4277 
4278 	WARN_ON(dev_priv->gt.awake);
4279 
4280 	mutex_lock(&dev->struct_mutex);
4281 	i915_gem_restore_gtt_mappings(dev_priv);
4282 
4283 	/* As we didn't flush the kernel context before suspend, we cannot
4284 	 * guarantee that the context image is complete. So let's just reset
4285 	 * it and start again.
4286 	 */
4287 	dev_priv->gt.resume(dev_priv);
4288 
4289 	mutex_unlock(&dev->struct_mutex);
4290 }
4291 
4292 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4293 {
4294 	if (INTEL_GEN(dev_priv) < 5 ||
4295 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4296 		return;
4297 
4298 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4299 				 DISP_TILE_SURFACE_SWIZZLING);
4300 
4301 	if (IS_GEN5(dev_priv))
4302 		return;
4303 
4304 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4305 	if (IS_GEN6(dev_priv))
4306 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4307 	else if (IS_GEN7(dev_priv))
4308 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4309 	else if (IS_GEN8(dev_priv))
4310 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4311 	else
4312 		BUG();
4313 }
4314 
4315 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4316 {
4317 	I915_WRITE(RING_CTL(base), 0);
4318 	I915_WRITE(RING_HEAD(base), 0);
4319 	I915_WRITE(RING_TAIL(base), 0);
4320 	I915_WRITE(RING_START(base), 0);
4321 }
4322 
4323 static void init_unused_rings(struct drm_i915_private *dev_priv)
4324 {
4325 	if (IS_I830(dev_priv)) {
4326 		init_unused_ring(dev_priv, PRB1_BASE);
4327 		init_unused_ring(dev_priv, SRB0_BASE);
4328 		init_unused_ring(dev_priv, SRB1_BASE);
4329 		init_unused_ring(dev_priv, SRB2_BASE);
4330 		init_unused_ring(dev_priv, SRB3_BASE);
4331 	} else if (IS_GEN2(dev_priv)) {
4332 		init_unused_ring(dev_priv, SRB0_BASE);
4333 		init_unused_ring(dev_priv, SRB1_BASE);
4334 	} else if (IS_GEN3(dev_priv)) {
4335 		init_unused_ring(dev_priv, PRB1_BASE);
4336 		init_unused_ring(dev_priv, PRB2_BASE);
4337 	}
4338 }
4339 
4340 int
4341 i915_gem_init_hw(struct drm_device *dev)
4342 {
4343 	struct drm_i915_private *dev_priv = to_i915(dev);
4344 	struct intel_engine_cs *engine;
4345 	enum intel_engine_id id;
4346 	int ret;
4347 
4348 	dev_priv->gt.last_init_time = ktime_get();
4349 
4350 	/* Double layer security blanket, see i915_gem_init() */
4351 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4352 
4353 	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4354 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4355 
4356 	if (IS_HASWELL(dev_priv))
4357 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4358 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4359 
4360 	if (HAS_PCH_NOP(dev_priv)) {
4361 		if (IS_IVYBRIDGE(dev_priv)) {
4362 			u32 temp = I915_READ(GEN7_MSG_CTL);
4363 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4364 			I915_WRITE(GEN7_MSG_CTL, temp);
4365 		} else if (INTEL_GEN(dev_priv) >= 7) {
4366 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4367 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4368 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4369 		}
4370 	}
4371 
4372 	i915_gem_init_swizzling(dev_priv);
4373 
4374 	/*
4375 	 * At least 830 can leave some of the unused rings
4376 	 * "active" (ie. head != tail) after resume which
4377 	 * will prevent c3 entry. Makes sure all unused rings
4378 	 * are totally idle.
4379 	 */
4380 	init_unused_rings(dev_priv);
4381 
4382 	BUG_ON(!dev_priv->kernel_context);
4383 
4384 	ret = i915_ppgtt_init_hw(dev_priv);
4385 	if (ret) {
4386 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4387 		goto out;
4388 	}
4389 
4390 	/* Need to do basic initialisation of all rings first: */
4391 	for_each_engine(engine, dev_priv, id) {
4392 		ret = engine->init_hw(engine);
4393 		if (ret)
4394 			goto out;
4395 	}
4396 
4397 	intel_mocs_init_l3cc_table(dev);
4398 
4399 	/* We can't enable contexts until all firmware is loaded */
4400 	ret = intel_guc_setup(dev);
4401 	if (ret)
4402 		goto out;
4403 
4404 out:
4405 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4406 	return ret;
4407 }
4408 
4409 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4410 {
4411 	if (INTEL_INFO(dev_priv)->gen < 6)
4412 		return false;
4413 
4414 	/* TODO: make semaphores and Execlists play nicely together */
4415 	if (i915.enable_execlists)
4416 		return false;
4417 
4418 	if (value >= 0)
4419 		return value;
4420 
4421 #ifdef CONFIG_INTEL_IOMMU
4422 	/* Enable semaphores on SNB when IO remapping is off */
4423 	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4424 		return false;
4425 #endif
4426 
4427 	return true;
4428 }
4429 
4430 int i915_gem_init(struct drm_device *dev)
4431 {
4432 	struct drm_i915_private *dev_priv = to_i915(dev);
4433 	int ret;
4434 
4435 	mutex_lock(&dev->struct_mutex);
4436 
4437 	if (!i915.enable_execlists) {
4438 		dev_priv->gt.resume = intel_legacy_submission_resume;
4439 		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4440 	} else {
4441 		dev_priv->gt.resume = intel_lr_context_resume;
4442 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4443 	}
4444 
4445 	/* This is just a security blanket to placate dragons.
4446 	 * On some systems, we very sporadically observe that the first TLBs
4447 	 * used by the CS may be stale, despite us poking the TLB reset. If
4448 	 * we hold the forcewake during initialisation these problems
4449 	 * just magically go away.
4450 	 */
4451 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4452 
4453 	i915_gem_init_userptr(dev_priv);
4454 
4455 	ret = i915_gem_init_ggtt(dev_priv);
4456 	if (ret)
4457 		goto out_unlock;
4458 
4459 	ret = i915_gem_context_init(dev);
4460 	if (ret)
4461 		goto out_unlock;
4462 
4463 	ret = intel_engines_init(dev);
4464 	if (ret)
4465 		goto out_unlock;
4466 
4467 	ret = i915_gem_init_hw(dev);
4468 	if (ret == -EIO) {
4469 		/* Allow engine initialisation to fail by marking the GPU as
4470 		 * wedged. But we only want to do this where the GPU is angry,
4471 		 * for all other failure, such as an allocation failure, bail.
4472 		 */
4473 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4474 		i915_gem_set_wedged(dev_priv);
4475 		ret = 0;
4476 	}
4477 
4478 out_unlock:
4479 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4480 	mutex_unlock(&dev->struct_mutex);
4481 
4482 	return ret;
4483 }
4484 
4485 void
4486 i915_gem_cleanup_engines(struct drm_device *dev)
4487 {
4488 	struct drm_i915_private *dev_priv = to_i915(dev);
4489 	struct intel_engine_cs *engine;
4490 	enum intel_engine_id id;
4491 
4492 	for_each_engine(engine, dev_priv, id)
4493 		dev_priv->gt.cleanup_engine(engine);
4494 }
4495 
4496 void
4497 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4498 {
4499 	int i;
4500 
4501 	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4502 	    !IS_CHERRYVIEW(dev_priv))
4503 		dev_priv->num_fence_regs = 32;
4504 	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4505 		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4506 		dev_priv->num_fence_regs = 16;
4507 	else
4508 		dev_priv->num_fence_regs = 8;
4509 
4510 	if (intel_vgpu_active(dev_priv))
4511 		dev_priv->num_fence_regs =
4512 				I915_READ(vgtif_reg(avail_rs.fence_num));
4513 
4514 	/* Initialize fence registers to zero */
4515 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
4516 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4517 
4518 		fence->i915 = dev_priv;
4519 		fence->id = i;
4520 		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4521 	}
4522 	i915_gem_restore_fences(dev_priv);
4523 
4524 	i915_gem_detect_bit_6_swizzle(dev_priv);
4525 }
4526 
4527 int
4528 i915_gem_load_init(struct drm_device *dev)
4529 {
4530 	struct drm_i915_private *dev_priv = to_i915(dev);
4531 	int err = -ENOMEM;
4532 
4533 	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4534 	if (!dev_priv->objects)
4535 		goto err_out;
4536 
4537 	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4538 	if (!dev_priv->vmas)
4539 		goto err_objects;
4540 
4541 	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4542 					SLAB_HWCACHE_ALIGN |
4543 					SLAB_RECLAIM_ACCOUNT |
4544 					SLAB_DESTROY_BY_RCU);
4545 	if (!dev_priv->requests)
4546 		goto err_vmas;
4547 
4548 	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4549 					    SLAB_HWCACHE_ALIGN |
4550 					    SLAB_RECLAIM_ACCOUNT);
4551 	if (!dev_priv->dependencies)
4552 		goto err_requests;
4553 
4554 	mutex_lock(&dev_priv->drm.struct_mutex);
4555 	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4556 	err = i915_gem_timeline_init__global(dev_priv);
4557 	mutex_unlock(&dev_priv->drm.struct_mutex);
4558 	if (err)
4559 		goto err_dependencies;
4560 
4561 	INIT_LIST_HEAD(&dev_priv->context_list);
4562 	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4563 	init_llist_head(&dev_priv->mm.free_list);
4564 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4565 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4566 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4567 	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4568 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4569 			  i915_gem_retire_work_handler);
4570 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4571 			  i915_gem_idle_work_handler);
4572 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4573 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4574 
4575 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4576 
4577 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4578 
4579 	dev_priv->mm.interruptible = true;
4580 
4581 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4582 
4583 	spin_lock_init(&dev_priv->fb_tracking.lock);
4584 
4585 	return 0;
4586 
4587 err_dependencies:
4588 	kmem_cache_destroy(dev_priv->dependencies);
4589 err_requests:
4590 	kmem_cache_destroy(dev_priv->requests);
4591 err_vmas:
4592 	kmem_cache_destroy(dev_priv->vmas);
4593 err_objects:
4594 	kmem_cache_destroy(dev_priv->objects);
4595 err_out:
4596 	return err;
4597 }
4598 
4599 void i915_gem_load_cleanup(struct drm_device *dev)
4600 {
4601 	struct drm_i915_private *dev_priv = to_i915(dev);
4602 
4603 	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4604 
4605 	mutex_lock(&dev_priv->drm.struct_mutex);
4606 	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4607 	WARN_ON(!list_empty(&dev_priv->gt.timelines));
4608 	mutex_unlock(&dev_priv->drm.struct_mutex);
4609 
4610 	kmem_cache_destroy(dev_priv->dependencies);
4611 	kmem_cache_destroy(dev_priv->requests);
4612 	kmem_cache_destroy(dev_priv->vmas);
4613 	kmem_cache_destroy(dev_priv->objects);
4614 
4615 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4616 	rcu_barrier();
4617 }
4618 
4619 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4620 {
4621 	intel_runtime_pm_get(dev_priv);
4622 
4623 	mutex_lock(&dev_priv->drm.struct_mutex);
4624 	i915_gem_shrink_all(dev_priv);
4625 	mutex_unlock(&dev_priv->drm.struct_mutex);
4626 
4627 	intel_runtime_pm_put(dev_priv);
4628 
4629 	return 0;
4630 }
4631 
4632 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4633 {
4634 	struct drm_i915_gem_object *obj;
4635 	struct list_head *phases[] = {
4636 		&dev_priv->mm.unbound_list,
4637 		&dev_priv->mm.bound_list,
4638 		NULL
4639 	}, **p;
4640 
4641 	/* Called just before we write the hibernation image.
4642 	 *
4643 	 * We need to update the domain tracking to reflect that the CPU
4644 	 * will be accessing all the pages to create and restore from the
4645 	 * hibernation, and so upon restoration those pages will be in the
4646 	 * CPU domain.
4647 	 *
4648 	 * To make sure the hibernation image contains the latest state,
4649 	 * we update that state just before writing out the image.
4650 	 *
4651 	 * To try and reduce the hibernation image, we manually shrink
4652 	 * the objects as well.
4653 	 */
4654 
4655 	mutex_lock(&dev_priv->drm.struct_mutex);
4656 	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4657 
4658 	for (p = phases; *p; p++) {
4659 		list_for_each_entry(obj, *p, global_link) {
4660 			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4661 			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4662 		}
4663 	}
4664 	mutex_unlock(&dev_priv->drm.struct_mutex);
4665 
4666 	return 0;
4667 }
4668 
4669 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4670 {
4671 	struct drm_i915_file_private *file_priv = file->driver_priv;
4672 	struct drm_i915_gem_request *request;
4673 
4674 	/* Clean up our request list when the client is going away, so that
4675 	 * later retire_requests won't dereference our soon-to-be-gone
4676 	 * file_priv.
4677 	 */
4678 	spin_lock(&file_priv->mm.lock);
4679 	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4680 		request->file_priv = NULL;
4681 	spin_unlock(&file_priv->mm.lock);
4682 
4683 	if (!list_empty(&file_priv->rps.link)) {
4684 		spin_lock(&to_i915(dev)->rps.client_lock);
4685 		list_del(&file_priv->rps.link);
4686 		spin_unlock(&to_i915(dev)->rps.client_lock);
4687 	}
4688 }
4689 
4690 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4691 {
4692 	struct drm_i915_file_private *file_priv;
4693 	int ret;
4694 
4695 	DRM_DEBUG("\n");
4696 
4697 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4698 	if (!file_priv)
4699 		return -ENOMEM;
4700 
4701 	file->driver_priv = file_priv;
4702 	file_priv->dev_priv = to_i915(dev);
4703 	file_priv->file = file;
4704 	INIT_LIST_HEAD(&file_priv->rps.link);
4705 
4706 	spin_lock_init(&file_priv->mm.lock);
4707 	INIT_LIST_HEAD(&file_priv->mm.request_list);
4708 
4709 	file_priv->bsd_engine = -1;
4710 
4711 	ret = i915_gem_context_open(dev, file);
4712 	if (ret)
4713 		kfree(file_priv);
4714 
4715 	return ret;
4716 }
4717 
4718 /**
4719  * i915_gem_track_fb - update frontbuffer tracking
4720  * @old: current GEM buffer for the frontbuffer slots
4721  * @new: new GEM buffer for the frontbuffer slots
4722  * @frontbuffer_bits: bitmask of frontbuffer slots
4723  *
4724  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4725  * from @old and setting them in @new. Both @old and @new can be NULL.
4726  */
4727 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4728 		       struct drm_i915_gem_object *new,
4729 		       unsigned frontbuffer_bits)
4730 {
4731 	/* Control of individual bits within the mask are guarded by
4732 	 * the owning plane->mutex, i.e. we can never see concurrent
4733 	 * manipulation of individual bits. But since the bitfield as a whole
4734 	 * is updated using RMW, we need to use atomics in order to update
4735 	 * the bits.
4736 	 */
4737 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4738 		     sizeof(atomic_t) * BITS_PER_BYTE);
4739 
4740 	if (old) {
4741 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4742 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4743 	}
4744 
4745 	if (new) {
4746 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4747 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4748 	}
4749 }
4750 
4751 /* Allocate a new GEM object and fill it with the supplied data */
4752 struct drm_i915_gem_object *
4753 i915_gem_object_create_from_data(struct drm_device *dev,
4754 			         const void *data, size_t size)
4755 {
4756 	struct drm_i915_gem_object *obj;
4757 	struct sg_table *sg;
4758 	size_t bytes;
4759 	int ret;
4760 
4761 	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4762 	if (IS_ERR(obj))
4763 		return obj;
4764 
4765 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
4766 	if (ret)
4767 		goto fail;
4768 
4769 	ret = i915_gem_object_pin_pages(obj);
4770 	if (ret)
4771 		goto fail;
4772 
4773 	sg = obj->mm.pages;
4774 	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4775 	obj->mm.dirty = true; /* Backing store is now out of date */
4776 	i915_gem_object_unpin_pages(obj);
4777 
4778 	if (WARN_ON(bytes != size)) {
4779 		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4780 		ret = -EFAULT;
4781 		goto fail;
4782 	}
4783 
4784 	return obj;
4785 
4786 fail:
4787 	i915_gem_object_put(obj);
4788 	return ERR_PTR(ret);
4789 }
4790 
4791 struct scatterlist *
4792 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4793 		       unsigned int n,
4794 		       unsigned int *offset)
4795 {
4796 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4797 	struct scatterlist *sg;
4798 	unsigned int idx, count;
4799 
4800 	might_sleep();
4801 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
4802 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4803 
4804 	/* As we iterate forward through the sg, we record each entry in a
4805 	 * radixtree for quick repeated (backwards) lookups. If we have seen
4806 	 * this index previously, we will have an entry for it.
4807 	 *
4808 	 * Initial lookup is O(N), but this is amortized to O(1) for
4809 	 * sequential page access (where each new request is consecutive
4810 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4811 	 * i.e. O(1) with a large constant!
4812 	 */
4813 	if (n < READ_ONCE(iter->sg_idx))
4814 		goto lookup;
4815 
4816 	mutex_lock(&iter->lock);
4817 
4818 	/* We prefer to reuse the last sg so that repeated lookup of this
4819 	 * (or the subsequent) sg are fast - comparing against the last
4820 	 * sg is faster than going through the radixtree.
4821 	 */
4822 
4823 	sg = iter->sg_pos;
4824 	idx = iter->sg_idx;
4825 	count = __sg_page_count(sg);
4826 
4827 	while (idx + count <= n) {
4828 		unsigned long exception, i;
4829 		int ret;
4830 
4831 		/* If we cannot allocate and insert this entry, or the
4832 		 * individual pages from this range, cancel updating the
4833 		 * sg_idx so that on this lookup we are forced to linearly
4834 		 * scan onwards, but on future lookups we will try the
4835 		 * insertion again (in which case we need to be careful of
4836 		 * the error return reporting that we have already inserted
4837 		 * this index).
4838 		 */
4839 		ret = radix_tree_insert(&iter->radix, idx, sg);
4840 		if (ret && ret != -EEXIST)
4841 			goto scan;
4842 
4843 		exception =
4844 			RADIX_TREE_EXCEPTIONAL_ENTRY |
4845 			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4846 		for (i = 1; i < count; i++) {
4847 			ret = radix_tree_insert(&iter->radix, idx + i,
4848 						(void *)exception);
4849 			if (ret && ret != -EEXIST)
4850 				goto scan;
4851 		}
4852 
4853 		idx += count;
4854 		sg = ____sg_next(sg);
4855 		count = __sg_page_count(sg);
4856 	}
4857 
4858 scan:
4859 	iter->sg_pos = sg;
4860 	iter->sg_idx = idx;
4861 
4862 	mutex_unlock(&iter->lock);
4863 
4864 	if (unlikely(n < idx)) /* insertion completed by another thread */
4865 		goto lookup;
4866 
4867 	/* In case we failed to insert the entry into the radixtree, we need
4868 	 * to look beyond the current sg.
4869 	 */
4870 	while (idx + count <= n) {
4871 		idx += count;
4872 		sg = ____sg_next(sg);
4873 		count = __sg_page_count(sg);
4874 	}
4875 
4876 	*offset = n - idx;
4877 	return sg;
4878 
4879 lookup:
4880 	rcu_read_lock();
4881 
4882 	sg = radix_tree_lookup(&iter->radix, n);
4883 	GEM_BUG_ON(!sg);
4884 
4885 	/* If this index is in the middle of multi-page sg entry,
4886 	 * the radixtree will contain an exceptional entry that points
4887 	 * to the start of that range. We will return the pointer to
4888 	 * the base page and the offset of this page within the
4889 	 * sg entry's range.
4890 	 */
4891 	*offset = 0;
4892 	if (unlikely(radix_tree_exception(sg))) {
4893 		unsigned long base =
4894 			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
4895 
4896 		sg = radix_tree_lookup(&iter->radix, base);
4897 		GEM_BUG_ON(!sg);
4898 
4899 		*offset = n - base;
4900 	}
4901 
4902 	rcu_read_unlock();
4903 
4904 	return sg;
4905 }
4906 
4907 struct page *
4908 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
4909 {
4910 	struct scatterlist *sg;
4911 	unsigned int offset;
4912 
4913 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
4914 
4915 	sg = i915_gem_object_get_sg(obj, n, &offset);
4916 	return nth_page(sg_page(sg), offset);
4917 }
4918 
4919 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
4920 struct page *
4921 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
4922 			       unsigned int n)
4923 {
4924 	struct page *page;
4925 
4926 	page = i915_gem_object_get_page(obj, n);
4927 	if (!obj->mm.dirty)
4928 		set_page_dirty(page);
4929 
4930 	return page;
4931 }
4932 
4933 dma_addr_t
4934 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
4935 				unsigned long n)
4936 {
4937 	struct scatterlist *sg;
4938 	unsigned int offset;
4939 
4940 	sg = i915_gem_object_get_sg(obj, n, &offset);
4941 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
4942 }
4943