xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision 867e6d38)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drm_vma_manager.h>
29 #include <linux/dma-fence-array.h>
30 #include <linux/kthread.h>
31 #include <linux/dma-resv.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/slab.h>
34 #include <linux/stop_machine.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38 #include <linux/mman.h>
39 
40 #include "display/intel_display.h"
41 #include "display/intel_frontbuffer.h"
42 
43 #include "gem/i915_gem_clflush.h"
44 #include "gem/i915_gem_context.h"
45 #include "gem/i915_gem_ioctls.h"
46 #include "gem/i915_gem_mman.h"
47 #include "gem/i915_gem_region.h"
48 #include "gt/intel_engine_user.h"
49 #include "gt/intel_gt.h"
50 #include "gt/intel_gt_pm.h"
51 #include "gt/intel_workarounds.h"
52 
53 #include "i915_drv.h"
54 #include "i915_trace.h"
55 #include "i915_vgpu.h"
56 
57 #include "intel_pm.h"
58 
59 static int
60 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
61 {
62 	int err;
63 
64 	err = mutex_lock_interruptible(&ggtt->vm.mutex);
65 	if (err)
66 		return err;
67 
68 	memset(node, 0, sizeof(*node));
69 	err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
70 					  size, 0, I915_COLOR_UNEVICTABLE,
71 					  0, ggtt->mappable_end,
72 					  DRM_MM_INSERT_LOW);
73 
74 	mutex_unlock(&ggtt->vm.mutex);
75 
76 	return err;
77 }
78 
79 static void
80 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
81 {
82 	mutex_lock(&ggtt->vm.mutex);
83 	drm_mm_remove_node(node);
84 	mutex_unlock(&ggtt->vm.mutex);
85 }
86 
87 int
88 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
89 			    struct drm_file *file)
90 {
91 	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
92 	struct drm_i915_gem_get_aperture *args = data;
93 	struct i915_vma *vma;
94 	u64 pinned;
95 
96 	if (mutex_lock_interruptible(&ggtt->vm.mutex))
97 		return -EINTR;
98 
99 	pinned = ggtt->vm.reserved;
100 	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
101 		if (i915_vma_is_pinned(vma))
102 			pinned += vma->node.size;
103 
104 	mutex_unlock(&ggtt->vm.mutex);
105 
106 	args->aper_size = ggtt->vm.total;
107 	args->aper_available_size = args->aper_size - pinned;
108 
109 	return 0;
110 }
111 
112 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
113 			   unsigned long flags)
114 {
115 	struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
116 	LIST_HEAD(still_in_list);
117 	intel_wakeref_t wakeref;
118 	struct i915_vma *vma;
119 	int ret;
120 
121 	if (list_empty(&obj->vma.list))
122 		return 0;
123 
124 	/*
125 	 * As some machines use ACPI to handle runtime-resume callbacks, and
126 	 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
127 	 * as they are required by the shrinker. Ergo, we wake the device up
128 	 * first just in case.
129 	 */
130 	wakeref = intel_runtime_pm_get(rpm);
131 
132 try_again:
133 	ret = 0;
134 	spin_lock(&obj->vma.lock);
135 	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
136 						       struct i915_vma,
137 						       obj_link))) {
138 		struct i915_address_space *vm = vma->vm;
139 
140 		list_move_tail(&vma->obj_link, &still_in_list);
141 		if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
142 			continue;
143 
144 		if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
145 			ret = -EBUSY;
146 			break;
147 		}
148 
149 		ret = -EAGAIN;
150 		if (!i915_vm_tryopen(vm))
151 			break;
152 
153 		/* Prevent vma being freed by i915_vma_parked as we unbind */
154 		vma = __i915_vma_get(vma);
155 		spin_unlock(&obj->vma.lock);
156 
157 		if (vma) {
158 			ret = -EBUSY;
159 			if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
160 			    !i915_vma_is_active(vma))
161 				ret = i915_vma_unbind(vma);
162 
163 			__i915_vma_put(vma);
164 		}
165 
166 		i915_vm_close(vm);
167 		spin_lock(&obj->vma.lock);
168 	}
169 	list_splice_init(&still_in_list, &obj->vma.list);
170 	spin_unlock(&obj->vma.lock);
171 
172 	if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
173 		rcu_barrier(); /* flush the i915_vm_release() */
174 		goto try_again;
175 	}
176 
177 	intel_runtime_pm_put(rpm, wakeref);
178 
179 	return ret;
180 }
181 
182 static int
183 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
184 	    bool needs_clflush)
185 {
186 	char *vaddr;
187 	int ret;
188 
189 	vaddr = kmap(page);
190 
191 	if (needs_clflush)
192 		drm_clflush_virt_range(vaddr + offset, len);
193 
194 	ret = __copy_to_user(user_data, vaddr + offset, len);
195 
196 	kunmap(page);
197 
198 	return ret ? -EFAULT : 0;
199 }
200 
201 static int
202 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
203 		     struct drm_i915_gem_pread *args)
204 {
205 	unsigned int needs_clflush;
206 	unsigned int idx, offset;
207 	char __user *user_data;
208 	u64 remain;
209 	int ret;
210 
211 	ret = i915_gem_object_lock_interruptible(obj, NULL);
212 	if (ret)
213 		return ret;
214 
215 	ret = i915_gem_object_pin_pages(obj);
216 	if (ret)
217 		goto err_unlock;
218 
219 	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
220 	if (ret)
221 		goto err_unpin;
222 
223 	i915_gem_object_finish_access(obj);
224 	i915_gem_object_unlock(obj);
225 
226 	remain = args->size;
227 	user_data = u64_to_user_ptr(args->data_ptr);
228 	offset = offset_in_page(args->offset);
229 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
230 		struct page *page = i915_gem_object_get_page(obj, idx);
231 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
232 
233 		ret = shmem_pread(page, offset, length, user_data,
234 				  needs_clflush);
235 		if (ret)
236 			break;
237 
238 		remain -= length;
239 		user_data += length;
240 		offset = 0;
241 	}
242 
243 	i915_gem_object_unpin_pages(obj);
244 	return ret;
245 
246 err_unpin:
247 	i915_gem_object_unpin_pages(obj);
248 err_unlock:
249 	i915_gem_object_unlock(obj);
250 	return ret;
251 }
252 
253 static inline bool
254 gtt_user_read(struct io_mapping *mapping,
255 	      loff_t base, int offset,
256 	      char __user *user_data, int length)
257 {
258 	void __iomem *vaddr;
259 	unsigned long unwritten;
260 
261 	/* We can use the cpu mem copy function because this is X86. */
262 	vaddr = io_mapping_map_atomic_wc(mapping, base);
263 	unwritten = __copy_to_user_inatomic(user_data,
264 					    (void __force *)vaddr + offset,
265 					    length);
266 	io_mapping_unmap_atomic(vaddr);
267 	if (unwritten) {
268 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
269 		unwritten = copy_to_user(user_data,
270 					 (void __force *)vaddr + offset,
271 					 length);
272 		io_mapping_unmap(vaddr);
273 	}
274 	return unwritten;
275 }
276 
277 static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj,
278 					     struct drm_mm_node *node,
279 					     bool write)
280 {
281 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
282 	struct i915_ggtt *ggtt = &i915->ggtt;
283 	struct i915_vma *vma;
284 	struct i915_gem_ww_ctx ww;
285 	int ret;
286 
287 	i915_gem_ww_ctx_init(&ww, true);
288 retry:
289 	vma = ERR_PTR(-ENODEV);
290 	ret = i915_gem_object_lock(obj, &ww);
291 	if (ret)
292 		goto err_ww;
293 
294 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
295 	if (ret)
296 		goto err_ww;
297 
298 	if (!i915_gem_object_is_tiled(obj))
299 		vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
300 						  PIN_MAPPABLE |
301 						  PIN_NONBLOCK /* NOWARN */ |
302 						  PIN_NOEVICT);
303 	if (vma == ERR_PTR(-EDEADLK)) {
304 		ret = -EDEADLK;
305 		goto err_ww;
306 	} else if (!IS_ERR(vma)) {
307 		node->start = i915_ggtt_offset(vma);
308 		node->flags = 0;
309 	} else {
310 		ret = insert_mappable_node(ggtt, node, PAGE_SIZE);
311 		if (ret)
312 			goto err_ww;
313 		GEM_BUG_ON(!drm_mm_node_allocated(node));
314 		vma = NULL;
315 	}
316 
317 	ret = i915_gem_object_pin_pages(obj);
318 	if (ret) {
319 		if (drm_mm_node_allocated(node)) {
320 			ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
321 			remove_mappable_node(ggtt, node);
322 		} else {
323 			i915_vma_unpin(vma);
324 		}
325 	}
326 
327 err_ww:
328 	if (ret == -EDEADLK) {
329 		ret = i915_gem_ww_ctx_backoff(&ww);
330 		if (!ret)
331 			goto retry;
332 	}
333 	i915_gem_ww_ctx_fini(&ww);
334 
335 	return ret ? ERR_PTR(ret) : vma;
336 }
337 
338 static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj,
339 				 struct drm_mm_node *node,
340 				 struct i915_vma *vma)
341 {
342 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
343 	struct i915_ggtt *ggtt = &i915->ggtt;
344 
345 	i915_gem_object_unpin_pages(obj);
346 	if (drm_mm_node_allocated(node)) {
347 		ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
348 		remove_mappable_node(ggtt, node);
349 	} else {
350 		i915_vma_unpin(vma);
351 	}
352 }
353 
354 static int
355 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
356 		   const struct drm_i915_gem_pread *args)
357 {
358 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
359 	struct i915_ggtt *ggtt = &i915->ggtt;
360 	intel_wakeref_t wakeref;
361 	struct drm_mm_node node;
362 	void __user *user_data;
363 	struct i915_vma *vma;
364 	u64 remain, offset;
365 	int ret = 0;
366 
367 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
368 
369 	vma = i915_gem_gtt_prepare(obj, &node, false);
370 	if (IS_ERR(vma)) {
371 		ret = PTR_ERR(vma);
372 		goto out_rpm;
373 	}
374 
375 	user_data = u64_to_user_ptr(args->data_ptr);
376 	remain = args->size;
377 	offset = args->offset;
378 
379 	while (remain > 0) {
380 		/* Operation in this page
381 		 *
382 		 * page_base = page offset within aperture
383 		 * page_offset = offset within page
384 		 * page_length = bytes to copy for this page
385 		 */
386 		u32 page_base = node.start;
387 		unsigned page_offset = offset_in_page(offset);
388 		unsigned page_length = PAGE_SIZE - page_offset;
389 		page_length = remain < page_length ? remain : page_length;
390 		if (drm_mm_node_allocated(&node)) {
391 			ggtt->vm.insert_page(&ggtt->vm,
392 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
393 					     node.start, I915_CACHE_NONE, 0);
394 		} else {
395 			page_base += offset & PAGE_MASK;
396 		}
397 
398 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
399 				  user_data, page_length)) {
400 			ret = -EFAULT;
401 			break;
402 		}
403 
404 		remain -= page_length;
405 		user_data += page_length;
406 		offset += page_length;
407 	}
408 
409 	i915_gem_gtt_cleanup(obj, &node, vma);
410 out_rpm:
411 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
412 	return ret;
413 }
414 
415 /**
416  * Reads data from the object referenced by handle.
417  * @dev: drm device pointer
418  * @data: ioctl data blob
419  * @file: drm file pointer
420  *
421  * On error, the contents of *data are undefined.
422  */
423 int
424 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
425 		     struct drm_file *file)
426 {
427 	struct drm_i915_private *i915 = to_i915(dev);
428 	struct drm_i915_gem_pread *args = data;
429 	struct drm_i915_gem_object *obj;
430 	int ret;
431 
432 	/* PREAD is disallowed for all platforms after TGL-LP.  This also
433 	 * covers all platforms with local memory.
434 	 */
435 	if (INTEL_GEN(i915) >= 12 && !IS_TIGERLAKE(i915))
436 		return -EOPNOTSUPP;
437 
438 	if (args->size == 0)
439 		return 0;
440 
441 	if (!access_ok(u64_to_user_ptr(args->data_ptr),
442 		       args->size))
443 		return -EFAULT;
444 
445 	obj = i915_gem_object_lookup(file, args->handle);
446 	if (!obj)
447 		return -ENOENT;
448 
449 	/* Bounds check source.  */
450 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
451 		ret = -EINVAL;
452 		goto out;
453 	}
454 
455 	trace_i915_gem_object_pread(obj, args->offset, args->size);
456 	ret = -ENODEV;
457 	if (obj->ops->pread)
458 		ret = obj->ops->pread(obj, args);
459 	if (ret != -ENODEV)
460 		goto out;
461 
462 	ret = -ENODEV;
463 	if (obj->ops->pread)
464 		ret = obj->ops->pread(obj, args);
465 	if (ret != -ENODEV)
466 		goto out;
467 
468 	ret = i915_gem_object_wait(obj,
469 				   I915_WAIT_INTERRUPTIBLE,
470 				   MAX_SCHEDULE_TIMEOUT);
471 	if (ret)
472 		goto out;
473 
474 	ret = i915_gem_shmem_pread(obj, args);
475 	if (ret == -EFAULT || ret == -ENODEV)
476 		ret = i915_gem_gtt_pread(obj, args);
477 
478 out:
479 	i915_gem_object_put(obj);
480 	return ret;
481 }
482 
483 /* This is the fast write path which cannot handle
484  * page faults in the source data
485  */
486 
487 static inline bool
488 ggtt_write(struct io_mapping *mapping,
489 	   loff_t base, int offset,
490 	   char __user *user_data, int length)
491 {
492 	void __iomem *vaddr;
493 	unsigned long unwritten;
494 
495 	/* We can use the cpu mem copy function because this is X86. */
496 	vaddr = io_mapping_map_atomic_wc(mapping, base);
497 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
498 						      user_data, length);
499 	io_mapping_unmap_atomic(vaddr);
500 	if (unwritten) {
501 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
502 		unwritten = copy_from_user((void __force *)vaddr + offset,
503 					   user_data, length);
504 		io_mapping_unmap(vaddr);
505 	}
506 
507 	return unwritten;
508 }
509 
510 /**
511  * This is the fast pwrite path, where we copy the data directly from the
512  * user into the GTT, uncached.
513  * @obj: i915 GEM object
514  * @args: pwrite arguments structure
515  */
516 static int
517 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
518 			 const struct drm_i915_gem_pwrite *args)
519 {
520 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
521 	struct i915_ggtt *ggtt = &i915->ggtt;
522 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
523 	intel_wakeref_t wakeref;
524 	struct drm_mm_node node;
525 	struct i915_vma *vma;
526 	u64 remain, offset;
527 	void __user *user_data;
528 	int ret = 0;
529 
530 	if (i915_gem_object_has_struct_page(obj)) {
531 		/*
532 		 * Avoid waking the device up if we can fallback, as
533 		 * waking/resuming is very slow (worst-case 10-100 ms
534 		 * depending on PCI sleeps and our own resume time).
535 		 * This easily dwarfs any performance advantage from
536 		 * using the cache bypass of indirect GGTT access.
537 		 */
538 		wakeref = intel_runtime_pm_get_if_in_use(rpm);
539 		if (!wakeref)
540 			return -EFAULT;
541 	} else {
542 		/* No backing pages, no fallback, we must force GGTT access */
543 		wakeref = intel_runtime_pm_get(rpm);
544 	}
545 
546 	vma = i915_gem_gtt_prepare(obj, &node, true);
547 	if (IS_ERR(vma)) {
548 		ret = PTR_ERR(vma);
549 		goto out_rpm;
550 	}
551 
552 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
553 
554 	user_data = u64_to_user_ptr(args->data_ptr);
555 	offset = args->offset;
556 	remain = args->size;
557 	while (remain) {
558 		/* Operation in this page
559 		 *
560 		 * page_base = page offset within aperture
561 		 * page_offset = offset within page
562 		 * page_length = bytes to copy for this page
563 		 */
564 		u32 page_base = node.start;
565 		unsigned int page_offset = offset_in_page(offset);
566 		unsigned int page_length = PAGE_SIZE - page_offset;
567 		page_length = remain < page_length ? remain : page_length;
568 		if (drm_mm_node_allocated(&node)) {
569 			/* flush the write before we modify the GGTT */
570 			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
571 			ggtt->vm.insert_page(&ggtt->vm,
572 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
573 					     node.start, I915_CACHE_NONE, 0);
574 			wmb(); /* flush modifications to the GGTT (insert_page) */
575 		} else {
576 			page_base += offset & PAGE_MASK;
577 		}
578 		/* If we get a fault while copying data, then (presumably) our
579 		 * source page isn't available.  Return the error and we'll
580 		 * retry in the slow path.
581 		 * If the object is non-shmem backed, we retry again with the
582 		 * path that handles page fault.
583 		 */
584 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
585 			       user_data, page_length)) {
586 			ret = -EFAULT;
587 			break;
588 		}
589 
590 		remain -= page_length;
591 		user_data += page_length;
592 		offset += page_length;
593 	}
594 
595 	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
596 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
597 
598 	i915_gem_gtt_cleanup(obj, &node, vma);
599 out_rpm:
600 	intel_runtime_pm_put(rpm, wakeref);
601 	return ret;
602 }
603 
604 /* Per-page copy function for the shmem pwrite fastpath.
605  * Flushes invalid cachelines before writing to the target if
606  * needs_clflush_before is set and flushes out any written cachelines after
607  * writing if needs_clflush is set.
608  */
609 static int
610 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
611 	     bool needs_clflush_before,
612 	     bool needs_clflush_after)
613 {
614 	char *vaddr;
615 	int ret;
616 
617 	vaddr = kmap(page);
618 
619 	if (needs_clflush_before)
620 		drm_clflush_virt_range(vaddr + offset, len);
621 
622 	ret = __copy_from_user(vaddr + offset, user_data, len);
623 	if (!ret && needs_clflush_after)
624 		drm_clflush_virt_range(vaddr + offset, len);
625 
626 	kunmap(page);
627 
628 	return ret ? -EFAULT : 0;
629 }
630 
631 static int
632 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
633 		      const struct drm_i915_gem_pwrite *args)
634 {
635 	unsigned int partial_cacheline_write;
636 	unsigned int needs_clflush;
637 	unsigned int offset, idx;
638 	void __user *user_data;
639 	u64 remain;
640 	int ret;
641 
642 	ret = i915_gem_object_lock_interruptible(obj, NULL);
643 	if (ret)
644 		return ret;
645 
646 	ret = i915_gem_object_pin_pages(obj);
647 	if (ret)
648 		goto err_unlock;
649 
650 	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
651 	if (ret)
652 		goto err_unpin;
653 
654 	i915_gem_object_finish_access(obj);
655 	i915_gem_object_unlock(obj);
656 
657 	/* If we don't overwrite a cacheline completely we need to be
658 	 * careful to have up-to-date data by first clflushing. Don't
659 	 * overcomplicate things and flush the entire patch.
660 	 */
661 	partial_cacheline_write = 0;
662 	if (needs_clflush & CLFLUSH_BEFORE)
663 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
664 
665 	user_data = u64_to_user_ptr(args->data_ptr);
666 	remain = args->size;
667 	offset = offset_in_page(args->offset);
668 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
669 		struct page *page = i915_gem_object_get_page(obj, idx);
670 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
671 
672 		ret = shmem_pwrite(page, offset, length, user_data,
673 				   (offset | length) & partial_cacheline_write,
674 				   needs_clflush & CLFLUSH_AFTER);
675 		if (ret)
676 			break;
677 
678 		remain -= length;
679 		user_data += length;
680 		offset = 0;
681 	}
682 
683 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
684 
685 	i915_gem_object_unpin_pages(obj);
686 	return ret;
687 
688 err_unpin:
689 	i915_gem_object_unpin_pages(obj);
690 err_unlock:
691 	i915_gem_object_unlock(obj);
692 	return ret;
693 }
694 
695 /**
696  * Writes data to the object referenced by handle.
697  * @dev: drm device
698  * @data: ioctl data blob
699  * @file: drm file
700  *
701  * On error, the contents of the buffer that were to be modified are undefined.
702  */
703 int
704 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
705 		      struct drm_file *file)
706 {
707 	struct drm_i915_private *i915 = to_i915(dev);
708 	struct drm_i915_gem_pwrite *args = data;
709 	struct drm_i915_gem_object *obj;
710 	int ret;
711 
712 	/* PWRITE is disallowed for all platforms after TGL-LP.  This also
713 	 * covers all platforms with local memory.
714 	 */
715 	if (INTEL_GEN(i915) >= 12 && !IS_TIGERLAKE(i915))
716 		return -EOPNOTSUPP;
717 
718 	if (args->size == 0)
719 		return 0;
720 
721 	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
722 		return -EFAULT;
723 
724 	obj = i915_gem_object_lookup(file, args->handle);
725 	if (!obj)
726 		return -ENOENT;
727 
728 	/* Bounds check destination. */
729 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
730 		ret = -EINVAL;
731 		goto err;
732 	}
733 
734 	/* Writes not allowed into this read-only object */
735 	if (i915_gem_object_is_readonly(obj)) {
736 		ret = -EINVAL;
737 		goto err;
738 	}
739 
740 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
741 
742 	ret = -ENODEV;
743 	if (obj->ops->pwrite)
744 		ret = obj->ops->pwrite(obj, args);
745 	if (ret != -ENODEV)
746 		goto err;
747 
748 	ret = i915_gem_object_wait(obj,
749 				   I915_WAIT_INTERRUPTIBLE |
750 				   I915_WAIT_ALL,
751 				   MAX_SCHEDULE_TIMEOUT);
752 	if (ret)
753 		goto err;
754 
755 	ret = -EFAULT;
756 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
757 	 * it would end up going through the fenced access, and we'll get
758 	 * different detiling behavior between reading and writing.
759 	 * pread/pwrite currently are reading and writing from the CPU
760 	 * perspective, requiring manual detiling by the client.
761 	 */
762 	if (!i915_gem_object_has_struct_page(obj) ||
763 	    cpu_write_needs_clflush(obj))
764 		/* Note that the gtt paths might fail with non-page-backed user
765 		 * pointers (e.g. gtt mappings when moving data between
766 		 * textures). Fallback to the shmem path in that case.
767 		 */
768 		ret = i915_gem_gtt_pwrite_fast(obj, args);
769 
770 	if (ret == -EFAULT || ret == -ENOSPC) {
771 		if (i915_gem_object_has_struct_page(obj))
772 			ret = i915_gem_shmem_pwrite(obj, args);
773 	}
774 
775 err:
776 	i915_gem_object_put(obj);
777 	return ret;
778 }
779 
780 /**
781  * Called when user space has done writes to this buffer
782  * @dev: drm device
783  * @data: ioctl data blob
784  * @file: drm file
785  */
786 int
787 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
788 			 struct drm_file *file)
789 {
790 	struct drm_i915_gem_sw_finish *args = data;
791 	struct drm_i915_gem_object *obj;
792 
793 	obj = i915_gem_object_lookup(file, args->handle);
794 	if (!obj)
795 		return -ENOENT;
796 
797 	/*
798 	 * Proxy objects are barred from CPU access, so there is no
799 	 * need to ban sw_finish as it is a nop.
800 	 */
801 
802 	/* Pinned buffers may be scanout, so flush the cache */
803 	i915_gem_object_flush_if_display(obj);
804 	i915_gem_object_put(obj);
805 
806 	return 0;
807 }
808 
809 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
810 {
811 	struct drm_i915_gem_object *obj, *on;
812 	int i;
813 
814 	/*
815 	 * Only called during RPM suspend. All users of the userfault_list
816 	 * must be holding an RPM wakeref to ensure that this can not
817 	 * run concurrently with themselves (and use the struct_mutex for
818 	 * protection between themselves).
819 	 */
820 
821 	list_for_each_entry_safe(obj, on,
822 				 &i915->ggtt.userfault_list, userfault_link)
823 		__i915_gem_object_release_mmap_gtt(obj);
824 
825 	/*
826 	 * The fence will be lost when the device powers down. If any were
827 	 * in use by hardware (i.e. they are pinned), we should not be powering
828 	 * down! All other fences will be reacquired by the user upon waking.
829 	 */
830 	for (i = 0; i < i915->ggtt.num_fences; i++) {
831 		struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
832 
833 		/*
834 		 * Ideally we want to assert that the fence register is not
835 		 * live at this point (i.e. that no piece of code will be
836 		 * trying to write through fence + GTT, as that both violates
837 		 * our tracking of activity and associated locking/barriers,
838 		 * but also is illegal given that the hw is powered down).
839 		 *
840 		 * Previously we used reg->pin_count as a "liveness" indicator.
841 		 * That is not sufficient, and we need a more fine-grained
842 		 * tool if we want to have a sanity check here.
843 		 */
844 
845 		if (!reg->vma)
846 			continue;
847 
848 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
849 		reg->dirty = true;
850 	}
851 }
852 
853 static void discard_ggtt_vma(struct i915_vma *vma)
854 {
855 	struct drm_i915_gem_object *obj = vma->obj;
856 
857 	spin_lock(&obj->vma.lock);
858 	if (!RB_EMPTY_NODE(&vma->obj_node)) {
859 		rb_erase(&vma->obj_node, &obj->vma.tree);
860 		RB_CLEAR_NODE(&vma->obj_node);
861 	}
862 	spin_unlock(&obj->vma.lock);
863 }
864 
865 struct i915_vma *
866 i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
867 			    struct i915_gem_ww_ctx *ww,
868 			    const struct i915_ggtt_view *view,
869 			    u64 size, u64 alignment, u64 flags)
870 {
871 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
872 	struct i915_ggtt *ggtt = &i915->ggtt;
873 	struct i915_vma *vma;
874 	int ret;
875 
876 	if (flags & PIN_MAPPABLE &&
877 	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
878 		/*
879 		 * If the required space is larger than the available
880 		 * aperture, we will not able to find a slot for the
881 		 * object and unbinding the object now will be in
882 		 * vain. Worse, doing so may cause us to ping-pong
883 		 * the object in and out of the Global GTT and
884 		 * waste a lot of cycles under the mutex.
885 		 */
886 		if (obj->base.size > ggtt->mappable_end)
887 			return ERR_PTR(-E2BIG);
888 
889 		/*
890 		 * If NONBLOCK is set the caller is optimistically
891 		 * trying to cache the full object within the mappable
892 		 * aperture, and *must* have a fallback in place for
893 		 * situations where we cannot bind the object. We
894 		 * can be a little more lax here and use the fallback
895 		 * more often to avoid costly migrations of ourselves
896 		 * and other objects within the aperture.
897 		 *
898 		 * Half-the-aperture is used as a simple heuristic.
899 		 * More interesting would to do search for a free
900 		 * block prior to making the commitment to unbind.
901 		 * That caters for the self-harm case, and with a
902 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
903 		 * we could try to minimise harm to others.
904 		 */
905 		if (flags & PIN_NONBLOCK &&
906 		    obj->base.size > ggtt->mappable_end / 2)
907 			return ERR_PTR(-ENOSPC);
908 	}
909 
910 new_vma:
911 	vma = i915_vma_instance(obj, &ggtt->vm, view);
912 	if (IS_ERR(vma))
913 		return vma;
914 
915 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
916 		if (flags & PIN_NONBLOCK) {
917 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
918 				return ERR_PTR(-ENOSPC);
919 
920 			if (flags & PIN_MAPPABLE &&
921 			    vma->fence_size > ggtt->mappable_end / 2)
922 				return ERR_PTR(-ENOSPC);
923 		}
924 
925 		if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
926 			discard_ggtt_vma(vma);
927 			goto new_vma;
928 		}
929 
930 		ret = i915_vma_unbind(vma);
931 		if (ret)
932 			return ERR_PTR(ret);
933 	}
934 
935 	if (ww)
936 		ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
937 	else
938 		ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
939 
940 	if (ret)
941 		return ERR_PTR(ret);
942 
943 	if (vma->fence && !i915_gem_object_is_tiled(obj)) {
944 		mutex_lock(&ggtt->vm.mutex);
945 		i915_vma_revoke_fence(vma);
946 		mutex_unlock(&ggtt->vm.mutex);
947 	}
948 
949 	ret = i915_vma_wait_for_bind(vma);
950 	if (ret) {
951 		i915_vma_unpin(vma);
952 		return ERR_PTR(ret);
953 	}
954 
955 	return vma;
956 }
957 
958 int
959 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
960 		       struct drm_file *file_priv)
961 {
962 	struct drm_i915_private *i915 = to_i915(dev);
963 	struct drm_i915_gem_madvise *args = data;
964 	struct drm_i915_gem_object *obj;
965 	int err;
966 
967 	switch (args->madv) {
968 	case I915_MADV_DONTNEED:
969 	case I915_MADV_WILLNEED:
970 	    break;
971 	default:
972 	    return -EINVAL;
973 	}
974 
975 	obj = i915_gem_object_lookup(file_priv, args->handle);
976 	if (!obj)
977 		return -ENOENT;
978 
979 	err = i915_gem_object_lock_interruptible(obj, NULL);
980 	if (err)
981 		goto out;
982 
983 	if (i915_gem_object_has_pages(obj) &&
984 	    i915_gem_object_is_tiled(obj) &&
985 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
986 		if (obj->mm.madv == I915_MADV_WILLNEED) {
987 			GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
988 			i915_gem_object_clear_tiling_quirk(obj);
989 			i915_gem_object_make_shrinkable(obj);
990 		}
991 		if (args->madv == I915_MADV_WILLNEED) {
992 			GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
993 			i915_gem_object_make_unshrinkable(obj);
994 			i915_gem_object_set_tiling_quirk(obj);
995 		}
996 	}
997 
998 	if (obj->mm.madv != __I915_MADV_PURGED)
999 		obj->mm.madv = args->madv;
1000 
1001 	if (i915_gem_object_has_pages(obj)) {
1002 		struct list_head *list;
1003 
1004 		if (i915_gem_object_is_shrinkable(obj)) {
1005 			unsigned long flags;
1006 
1007 			spin_lock_irqsave(&i915->mm.obj_lock, flags);
1008 
1009 			if (obj->mm.madv != I915_MADV_WILLNEED)
1010 				list = &i915->mm.purge_list;
1011 			else
1012 				list = &i915->mm.shrink_list;
1013 			list_move_tail(&obj->mm.link, list);
1014 
1015 			spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1016 		}
1017 	}
1018 
1019 	/* if the object is no longer attached, discard its backing storage */
1020 	if (obj->mm.madv == I915_MADV_DONTNEED &&
1021 	    !i915_gem_object_has_pages(obj))
1022 		i915_gem_object_truncate(obj);
1023 
1024 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
1025 
1026 	i915_gem_object_unlock(obj);
1027 out:
1028 	i915_gem_object_put(obj);
1029 	return err;
1030 }
1031 
1032 int i915_gem_init(struct drm_i915_private *dev_priv)
1033 {
1034 	int ret;
1035 
1036 	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
1037 	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1038 		mkwrite_device_info(dev_priv)->page_sizes =
1039 			I915_GTT_PAGE_SIZE_4K;
1040 
1041 	ret = i915_gem_init_userptr(dev_priv);
1042 	if (ret)
1043 		return ret;
1044 
1045 	intel_uc_fetch_firmwares(&dev_priv->gt.uc);
1046 	intel_wopcm_init(&dev_priv->wopcm);
1047 
1048 	ret = i915_init_ggtt(dev_priv);
1049 	if (ret) {
1050 		GEM_BUG_ON(ret == -EIO);
1051 		goto err_unlock;
1052 	}
1053 
1054 	/*
1055 	 * Despite its name intel_init_clock_gating applies both display
1056 	 * clock gating workarounds; GT mmio workarounds and the occasional
1057 	 * GT power context workaround. Worse, sometimes it includes a context
1058 	 * register workaround which we need to apply before we record the
1059 	 * default HW state for all contexts.
1060 	 *
1061 	 * FIXME: break up the workarounds and apply them at the right time!
1062 	 */
1063 	intel_init_clock_gating(dev_priv);
1064 
1065 	ret = intel_gt_init(&dev_priv->gt);
1066 	if (ret)
1067 		goto err_unlock;
1068 
1069 	return 0;
1070 
1071 	/*
1072 	 * Unwinding is complicated by that we want to handle -EIO to mean
1073 	 * disable GPU submission but keep KMS alive. We want to mark the
1074 	 * HW as irrevisibly wedged, but keep enough state around that the
1075 	 * driver doesn't explode during runtime.
1076 	 */
1077 err_unlock:
1078 	i915_gem_drain_workqueue(dev_priv);
1079 
1080 	if (ret != -EIO)
1081 		intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1082 
1083 	if (ret == -EIO) {
1084 		/*
1085 		 * Allow engines or uC initialisation to fail by marking the GPU
1086 		 * as wedged. But we only want to do this when the GPU is angry,
1087 		 * for all other failure, such as an allocation failure, bail.
1088 		 */
1089 		if (!intel_gt_is_wedged(&dev_priv->gt)) {
1090 			i915_probe_error(dev_priv,
1091 					 "Failed to initialize GPU, declaring it wedged!\n");
1092 			intel_gt_set_wedged(&dev_priv->gt);
1093 		}
1094 
1095 		/* Minimal basic recovery for KMS */
1096 		ret = i915_ggtt_enable_hw(dev_priv);
1097 		i915_ggtt_resume(&dev_priv->ggtt);
1098 		intel_init_clock_gating(dev_priv);
1099 	}
1100 
1101 	i915_gem_drain_freed_objects(dev_priv);
1102 	return ret;
1103 }
1104 
1105 void i915_gem_driver_register(struct drm_i915_private *i915)
1106 {
1107 	i915_gem_driver_register__shrinker(i915);
1108 
1109 	intel_engines_driver_register(i915);
1110 }
1111 
1112 void i915_gem_driver_unregister(struct drm_i915_private *i915)
1113 {
1114 	i915_gem_driver_unregister__shrinker(i915);
1115 }
1116 
1117 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1118 {
1119 	intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1120 
1121 	i915_gem_suspend_late(dev_priv);
1122 	intel_gt_driver_remove(&dev_priv->gt);
1123 	dev_priv->uabi_engines = RB_ROOT;
1124 
1125 	/* Flush any outstanding unpin_work. */
1126 	i915_gem_drain_workqueue(dev_priv);
1127 
1128 	i915_gem_drain_freed_objects(dev_priv);
1129 }
1130 
1131 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1132 {
1133 	intel_gt_driver_release(&dev_priv->gt);
1134 
1135 	intel_wa_list_free(&dev_priv->gt_wa_list);
1136 
1137 	intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1138 
1139 	i915_gem_drain_freed_objects(dev_priv);
1140 
1141 	drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1142 }
1143 
1144 static void i915_gem_init__mm(struct drm_i915_private *i915)
1145 {
1146 	spin_lock_init(&i915->mm.obj_lock);
1147 
1148 	init_llist_head(&i915->mm.free_list);
1149 
1150 	INIT_LIST_HEAD(&i915->mm.purge_list);
1151 	INIT_LIST_HEAD(&i915->mm.shrink_list);
1152 
1153 	i915_gem_init__objects(i915);
1154 }
1155 
1156 void i915_gem_init_early(struct drm_i915_private *dev_priv)
1157 {
1158 	i915_gem_init__mm(dev_priv);
1159 	i915_gem_init__contexts(dev_priv);
1160 
1161 	spin_lock_init(&dev_priv->fb_tracking.lock);
1162 }
1163 
1164 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1165 {
1166 	i915_gem_drain_freed_objects(dev_priv);
1167 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1168 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1169 	drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1170 }
1171 
1172 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1173 {
1174 	struct drm_i915_file_private *file_priv;
1175 	int ret;
1176 
1177 	DRM_DEBUG("\n");
1178 
1179 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1180 	if (!file_priv)
1181 		return -ENOMEM;
1182 
1183 	file->driver_priv = file_priv;
1184 	file_priv->dev_priv = i915;
1185 	file_priv->file = file;
1186 
1187 	file_priv->bsd_engine = -1;
1188 	file_priv->hang_timestamp = jiffies;
1189 
1190 	ret = i915_gem_context_open(i915, file);
1191 	if (ret)
1192 		kfree(file_priv);
1193 
1194 	return ret;
1195 }
1196 
1197 void i915_gem_ww_ctx_init(struct i915_gem_ww_ctx *ww, bool intr)
1198 {
1199 	ww_acquire_init(&ww->ctx, &reservation_ww_class);
1200 	INIT_LIST_HEAD(&ww->obj_list);
1201 	ww->intr = intr;
1202 	ww->contended = NULL;
1203 }
1204 
1205 static void i915_gem_ww_ctx_unlock_all(struct i915_gem_ww_ctx *ww)
1206 {
1207 	struct drm_i915_gem_object *obj;
1208 
1209 	while ((obj = list_first_entry_or_null(&ww->obj_list, struct drm_i915_gem_object, obj_link))) {
1210 		list_del(&obj->obj_link);
1211 		i915_gem_object_unlock(obj);
1212 	}
1213 }
1214 
1215 void i915_gem_ww_unlock_single(struct drm_i915_gem_object *obj)
1216 {
1217 	list_del(&obj->obj_link);
1218 	i915_gem_object_unlock(obj);
1219 }
1220 
1221 void i915_gem_ww_ctx_fini(struct i915_gem_ww_ctx *ww)
1222 {
1223 	i915_gem_ww_ctx_unlock_all(ww);
1224 	WARN_ON(ww->contended);
1225 	ww_acquire_fini(&ww->ctx);
1226 }
1227 
1228 int __must_check i915_gem_ww_ctx_backoff(struct i915_gem_ww_ctx *ww)
1229 {
1230 	int ret = 0;
1231 
1232 	if (WARN_ON(!ww->contended))
1233 		return -EINVAL;
1234 
1235 	i915_gem_ww_ctx_unlock_all(ww);
1236 	if (ww->intr)
1237 		ret = dma_resv_lock_slow_interruptible(ww->contended->base.resv, &ww->ctx);
1238 	else
1239 		dma_resv_lock_slow(ww->contended->base.resv, &ww->ctx);
1240 
1241 	if (!ret)
1242 		list_add_tail(&ww->contended->obj_link, &ww->obj_list);
1243 
1244 	ww->contended = NULL;
1245 
1246 	return ret;
1247 }
1248 
1249 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1250 #include "selftests/mock_gem_device.c"
1251 #include "selftests/i915_gem.c"
1252 #endif
1253