xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision 8631f940b81bf0da3d375fce166d381fa8c47bb2)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "intel_workarounds.h"
39 #include "i915_gemfs.h"
40 #include <linux/dma-fence-array.h>
41 #include <linux/kthread.h>
42 #include <linux/reservation.h>
43 #include <linux/shmem_fs.h>
44 #include <linux/slab.h>
45 #include <linux/stop_machine.h>
46 #include <linux/swap.h>
47 #include <linux/pci.h>
48 #include <linux/dma-buf.h>
49 
50 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51 
52 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53 {
54 	if (obj->cache_dirty)
55 		return false;
56 
57 	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58 		return true;
59 
60 	return obj->pin_global; /* currently in use by HW, keep flushed */
61 }
62 
63 static int
64 insert_mappable_node(struct i915_ggtt *ggtt,
65                      struct drm_mm_node *node, u32 size)
66 {
67 	memset(node, 0, sizeof(*node));
68 	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
69 					   size, 0, I915_COLOR_UNEVICTABLE,
70 					   0, ggtt->mappable_end,
71 					   DRM_MM_INSERT_LOW);
72 }
73 
74 static void
75 remove_mappable_node(struct drm_mm_node *node)
76 {
77 	drm_mm_remove_node(node);
78 }
79 
80 /* some bookkeeping */
81 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82 				  u64 size)
83 {
84 	spin_lock(&dev_priv->mm.object_stat_lock);
85 	dev_priv->mm.object_count++;
86 	dev_priv->mm.object_memory += size;
87 	spin_unlock(&dev_priv->mm.object_stat_lock);
88 }
89 
90 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91 				     u64 size)
92 {
93 	spin_lock(&dev_priv->mm.object_stat_lock);
94 	dev_priv->mm.object_count--;
95 	dev_priv->mm.object_memory -= size;
96 	spin_unlock(&dev_priv->mm.object_stat_lock);
97 }
98 
99 static int
100 i915_gem_wait_for_error(struct i915_gpu_error *error)
101 {
102 	int ret;
103 
104 	might_sleep();
105 
106 	/*
107 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108 	 * userspace. If it takes that long something really bad is going on and
109 	 * we should simply try to bail out and fail as gracefully as possible.
110 	 */
111 	ret = wait_event_interruptible_timeout(error->reset_queue,
112 					       !i915_reset_backoff(error),
113 					       I915_RESET_TIMEOUT);
114 	if (ret == 0) {
115 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116 		return -EIO;
117 	} else if (ret < 0) {
118 		return ret;
119 	} else {
120 		return 0;
121 	}
122 }
123 
124 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 {
126 	struct drm_i915_private *dev_priv = to_i915(dev);
127 	int ret;
128 
129 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 	if (ret)
131 		return ret;
132 
133 	ret = mutex_lock_interruptible(&dev->struct_mutex);
134 	if (ret)
135 		return ret;
136 
137 	return 0;
138 }
139 
140 static u32 __i915_gem_park(struct drm_i915_private *i915)
141 {
142 	GEM_TRACE("\n");
143 
144 	lockdep_assert_held(&i915->drm.struct_mutex);
145 	GEM_BUG_ON(i915->gt.active_requests);
146 	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
147 
148 	if (!i915->gt.awake)
149 		return I915_EPOCH_INVALID;
150 
151 	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);
152 
153 	/*
154 	 * Be paranoid and flush a concurrent interrupt to make sure
155 	 * we don't reactivate any irq tasklets after parking.
156 	 *
157 	 * FIXME: Note that even though we have waited for execlists to be idle,
158 	 * there may still be an in-flight interrupt even though the CSB
159 	 * is now empty. synchronize_irq() makes sure that a residual interrupt
160 	 * is completed before we continue, but it doesn't prevent the HW from
161 	 * raising a spurious interrupt later. To complete the shield we should
162 	 * coordinate disabling the CS irq with flushing the interrupts.
163 	 */
164 	synchronize_irq(i915->drm.irq);
165 
166 	intel_engines_park(i915);
167 	i915_timelines_park(i915);
168 
169 	i915_pmu_gt_parked(i915);
170 	i915_vma_parked(i915);
171 
172 	i915->gt.awake = false;
173 
174 	if (INTEL_GEN(i915) >= 6)
175 		gen6_rps_idle(i915);
176 
177 	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);
178 
179 	intel_runtime_pm_put(i915);
180 
181 	return i915->gt.epoch;
182 }
183 
184 void i915_gem_park(struct drm_i915_private *i915)
185 {
186 	GEM_TRACE("\n");
187 
188 	lockdep_assert_held(&i915->drm.struct_mutex);
189 	GEM_BUG_ON(i915->gt.active_requests);
190 
191 	if (!i915->gt.awake)
192 		return;
193 
194 	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
195 	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
196 }
197 
198 void i915_gem_unpark(struct drm_i915_private *i915)
199 {
200 	GEM_TRACE("\n");
201 
202 	lockdep_assert_held(&i915->drm.struct_mutex);
203 	GEM_BUG_ON(!i915->gt.active_requests);
204 
205 	if (i915->gt.awake)
206 		return;
207 
208 	intel_runtime_pm_get_noresume(i915);
209 
210 	/*
211 	 * It seems that the DMC likes to transition between the DC states a lot
212 	 * when there are no connected displays (no active power domains) during
213 	 * command submission.
214 	 *
215 	 * This activity has negative impact on the performance of the chip with
216 	 * huge latencies observed in the interrupt handler and elsewhere.
217 	 *
218 	 * Work around it by grabbing a GT IRQ power domain whilst there is any
219 	 * GT activity, preventing any DC state transitions.
220 	 */
221 	intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
222 
223 	i915->gt.awake = true;
224 	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
225 		i915->gt.epoch = 1;
226 
227 	intel_enable_gt_powersave(i915);
228 	i915_update_gfx_val(i915);
229 	if (INTEL_GEN(i915) >= 6)
230 		gen6_rps_busy(i915);
231 	i915_pmu_gt_unparked(i915);
232 
233 	intel_engines_unpark(i915);
234 
235 	i915_queue_hangcheck(i915);
236 
237 	queue_delayed_work(i915->wq,
238 			   &i915->gt.retire_work,
239 			   round_jiffies_up_relative(HZ));
240 }
241 
242 int
243 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
244 			    struct drm_file *file)
245 {
246 	struct drm_i915_private *dev_priv = to_i915(dev);
247 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
248 	struct drm_i915_gem_get_aperture *args = data;
249 	struct i915_vma *vma;
250 	u64 pinned;
251 
252 	pinned = ggtt->vm.reserved;
253 	mutex_lock(&dev->struct_mutex);
254 	list_for_each_entry(vma, &ggtt->vm.active_list, vm_link)
255 		if (i915_vma_is_pinned(vma))
256 			pinned += vma->node.size;
257 	list_for_each_entry(vma, &ggtt->vm.inactive_list, vm_link)
258 		if (i915_vma_is_pinned(vma))
259 			pinned += vma->node.size;
260 	mutex_unlock(&dev->struct_mutex);
261 
262 	args->aper_size = ggtt->vm.total;
263 	args->aper_available_size = args->aper_size - pinned;
264 
265 	return 0;
266 }
267 
268 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
269 {
270 	struct address_space *mapping = obj->base.filp->f_mapping;
271 	drm_dma_handle_t *phys;
272 	struct sg_table *st;
273 	struct scatterlist *sg;
274 	char *vaddr;
275 	int i;
276 	int err;
277 
278 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
279 		return -EINVAL;
280 
281 	/* Always aligning to the object size, allows a single allocation
282 	 * to handle all possible callers, and given typical object sizes,
283 	 * the alignment of the buddy allocation will naturally match.
284 	 */
285 	phys = drm_pci_alloc(obj->base.dev,
286 			     roundup_pow_of_two(obj->base.size),
287 			     roundup_pow_of_two(obj->base.size));
288 	if (!phys)
289 		return -ENOMEM;
290 
291 	vaddr = phys->vaddr;
292 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
293 		struct page *page;
294 		char *src;
295 
296 		page = shmem_read_mapping_page(mapping, i);
297 		if (IS_ERR(page)) {
298 			err = PTR_ERR(page);
299 			goto err_phys;
300 		}
301 
302 		src = kmap_atomic(page);
303 		memcpy(vaddr, src, PAGE_SIZE);
304 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
305 		kunmap_atomic(src);
306 
307 		put_page(page);
308 		vaddr += PAGE_SIZE;
309 	}
310 
311 	i915_gem_chipset_flush(to_i915(obj->base.dev));
312 
313 	st = kmalloc(sizeof(*st), GFP_KERNEL);
314 	if (!st) {
315 		err = -ENOMEM;
316 		goto err_phys;
317 	}
318 
319 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
320 		kfree(st);
321 		err = -ENOMEM;
322 		goto err_phys;
323 	}
324 
325 	sg = st->sgl;
326 	sg->offset = 0;
327 	sg->length = obj->base.size;
328 
329 	sg_dma_address(sg) = phys->busaddr;
330 	sg_dma_len(sg) = obj->base.size;
331 
332 	obj->phys_handle = phys;
333 
334 	__i915_gem_object_set_pages(obj, st, sg->length);
335 
336 	return 0;
337 
338 err_phys:
339 	drm_pci_free(obj->base.dev, phys);
340 
341 	return err;
342 }
343 
344 static void __start_cpu_write(struct drm_i915_gem_object *obj)
345 {
346 	obj->read_domains = I915_GEM_DOMAIN_CPU;
347 	obj->write_domain = I915_GEM_DOMAIN_CPU;
348 	if (cpu_write_needs_clflush(obj))
349 		obj->cache_dirty = true;
350 }
351 
352 static void
353 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
354 				struct sg_table *pages,
355 				bool needs_clflush)
356 {
357 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
358 
359 	if (obj->mm.madv == I915_MADV_DONTNEED)
360 		obj->mm.dirty = false;
361 
362 	if (needs_clflush &&
363 	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
364 	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
365 		drm_clflush_sg(pages);
366 
367 	__start_cpu_write(obj);
368 }
369 
370 static void
371 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
372 			       struct sg_table *pages)
373 {
374 	__i915_gem_object_release_shmem(obj, pages, false);
375 
376 	if (obj->mm.dirty) {
377 		struct address_space *mapping = obj->base.filp->f_mapping;
378 		char *vaddr = obj->phys_handle->vaddr;
379 		int i;
380 
381 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
382 			struct page *page;
383 			char *dst;
384 
385 			page = shmem_read_mapping_page(mapping, i);
386 			if (IS_ERR(page))
387 				continue;
388 
389 			dst = kmap_atomic(page);
390 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
391 			memcpy(dst, vaddr, PAGE_SIZE);
392 			kunmap_atomic(dst);
393 
394 			set_page_dirty(page);
395 			if (obj->mm.madv == I915_MADV_WILLNEED)
396 				mark_page_accessed(page);
397 			put_page(page);
398 			vaddr += PAGE_SIZE;
399 		}
400 		obj->mm.dirty = false;
401 	}
402 
403 	sg_free_table(pages);
404 	kfree(pages);
405 
406 	drm_pci_free(obj->base.dev, obj->phys_handle);
407 }
408 
409 static void
410 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
411 {
412 	i915_gem_object_unpin_pages(obj);
413 }
414 
415 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
416 	.get_pages = i915_gem_object_get_pages_phys,
417 	.put_pages = i915_gem_object_put_pages_phys,
418 	.release = i915_gem_object_release_phys,
419 };
420 
421 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
422 
423 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
424 {
425 	struct i915_vma *vma;
426 	LIST_HEAD(still_in_list);
427 	int ret;
428 
429 	lockdep_assert_held(&obj->base.dev->struct_mutex);
430 
431 	/* Closed vma are removed from the obj->vma_list - but they may
432 	 * still have an active binding on the object. To remove those we
433 	 * must wait for all rendering to complete to the object (as unbinding
434 	 * must anyway), and retire the requests.
435 	 */
436 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
437 	if (ret)
438 		return ret;
439 
440 	while ((vma = list_first_entry_or_null(&obj->vma_list,
441 					       struct i915_vma,
442 					       obj_link))) {
443 		list_move_tail(&vma->obj_link, &still_in_list);
444 		ret = i915_vma_unbind(vma);
445 		if (ret)
446 			break;
447 	}
448 	list_splice(&still_in_list, &obj->vma_list);
449 
450 	return ret;
451 }
452 
453 static long
454 i915_gem_object_wait_fence(struct dma_fence *fence,
455 			   unsigned int flags,
456 			   long timeout,
457 			   struct intel_rps_client *rps_client)
458 {
459 	struct i915_request *rq;
460 
461 	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
462 
463 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
464 		return timeout;
465 
466 	if (!dma_fence_is_i915(fence))
467 		return dma_fence_wait_timeout(fence,
468 					      flags & I915_WAIT_INTERRUPTIBLE,
469 					      timeout);
470 
471 	rq = to_request(fence);
472 	if (i915_request_completed(rq))
473 		goto out;
474 
475 	/*
476 	 * This client is about to stall waiting for the GPU. In many cases
477 	 * this is undesirable and limits the throughput of the system, as
478 	 * many clients cannot continue processing user input/output whilst
479 	 * blocked. RPS autotuning may take tens of milliseconds to respond
480 	 * to the GPU load and thus incurs additional latency for the client.
481 	 * We can circumvent that by promoting the GPU frequency to maximum
482 	 * before we wait. This makes the GPU throttle up much more quickly
483 	 * (good for benchmarks and user experience, e.g. window animations),
484 	 * but at a cost of spending more power processing the workload
485 	 * (bad for battery). Not all clients even want their results
486 	 * immediately and for them we should just let the GPU select its own
487 	 * frequency to maximise efficiency. To prevent a single client from
488 	 * forcing the clocks too high for the whole system, we only allow
489 	 * each client to waitboost once in a busy period.
490 	 */
491 	if (rps_client && !i915_request_started(rq)) {
492 		if (INTEL_GEN(rq->i915) >= 6)
493 			gen6_rps_boost(rq, rps_client);
494 	}
495 
496 	timeout = i915_request_wait(rq, flags, timeout);
497 
498 out:
499 	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
500 		i915_request_retire_upto(rq);
501 
502 	return timeout;
503 }
504 
505 static long
506 i915_gem_object_wait_reservation(struct reservation_object *resv,
507 				 unsigned int flags,
508 				 long timeout,
509 				 struct intel_rps_client *rps_client)
510 {
511 	unsigned int seq = __read_seqcount_begin(&resv->seq);
512 	struct dma_fence *excl;
513 	bool prune_fences = false;
514 
515 	if (flags & I915_WAIT_ALL) {
516 		struct dma_fence **shared;
517 		unsigned int count, i;
518 		int ret;
519 
520 		ret = reservation_object_get_fences_rcu(resv,
521 							&excl, &count, &shared);
522 		if (ret)
523 			return ret;
524 
525 		for (i = 0; i < count; i++) {
526 			timeout = i915_gem_object_wait_fence(shared[i],
527 							     flags, timeout,
528 							     rps_client);
529 			if (timeout < 0)
530 				break;
531 
532 			dma_fence_put(shared[i]);
533 		}
534 
535 		for (; i < count; i++)
536 			dma_fence_put(shared[i]);
537 		kfree(shared);
538 
539 		/*
540 		 * If both shared fences and an exclusive fence exist,
541 		 * then by construction the shared fences must be later
542 		 * than the exclusive fence. If we successfully wait for
543 		 * all the shared fences, we know that the exclusive fence
544 		 * must all be signaled. If all the shared fences are
545 		 * signaled, we can prune the array and recover the
546 		 * floating references on the fences/requests.
547 		 */
548 		prune_fences = count && timeout >= 0;
549 	} else {
550 		excl = reservation_object_get_excl_rcu(resv);
551 	}
552 
553 	if (excl && timeout >= 0)
554 		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
555 						     rps_client);
556 
557 	dma_fence_put(excl);
558 
559 	/*
560 	 * Opportunistically prune the fences iff we know they have *all* been
561 	 * signaled and that the reservation object has not been changed (i.e.
562 	 * no new fences have been added).
563 	 */
564 	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
565 		if (reservation_object_trylock(resv)) {
566 			if (!__read_seqcount_retry(&resv->seq, seq))
567 				reservation_object_add_excl_fence(resv, NULL);
568 			reservation_object_unlock(resv);
569 		}
570 	}
571 
572 	return timeout;
573 }
574 
575 static void __fence_set_priority(struct dma_fence *fence,
576 				 const struct i915_sched_attr *attr)
577 {
578 	struct i915_request *rq;
579 	struct intel_engine_cs *engine;
580 
581 	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
582 		return;
583 
584 	rq = to_request(fence);
585 	engine = rq->engine;
586 
587 	local_bh_disable();
588 	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
589 	if (engine->schedule)
590 		engine->schedule(rq, attr);
591 	rcu_read_unlock();
592 	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
593 }
594 
595 static void fence_set_priority(struct dma_fence *fence,
596 			       const struct i915_sched_attr *attr)
597 {
598 	/* Recurse once into a fence-array */
599 	if (dma_fence_is_array(fence)) {
600 		struct dma_fence_array *array = to_dma_fence_array(fence);
601 		int i;
602 
603 		for (i = 0; i < array->num_fences; i++)
604 			__fence_set_priority(array->fences[i], attr);
605 	} else {
606 		__fence_set_priority(fence, attr);
607 	}
608 }
609 
610 int
611 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
612 			      unsigned int flags,
613 			      const struct i915_sched_attr *attr)
614 {
615 	struct dma_fence *excl;
616 
617 	if (flags & I915_WAIT_ALL) {
618 		struct dma_fence **shared;
619 		unsigned int count, i;
620 		int ret;
621 
622 		ret = reservation_object_get_fences_rcu(obj->resv,
623 							&excl, &count, &shared);
624 		if (ret)
625 			return ret;
626 
627 		for (i = 0; i < count; i++) {
628 			fence_set_priority(shared[i], attr);
629 			dma_fence_put(shared[i]);
630 		}
631 
632 		kfree(shared);
633 	} else {
634 		excl = reservation_object_get_excl_rcu(obj->resv);
635 	}
636 
637 	if (excl) {
638 		fence_set_priority(excl, attr);
639 		dma_fence_put(excl);
640 	}
641 	return 0;
642 }
643 
644 /**
645  * Waits for rendering to the object to be completed
646  * @obj: i915 gem object
647  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
648  * @timeout: how long to wait
649  * @rps_client: client (user process) to charge for any waitboosting
650  */
651 int
652 i915_gem_object_wait(struct drm_i915_gem_object *obj,
653 		     unsigned int flags,
654 		     long timeout,
655 		     struct intel_rps_client *rps_client)
656 {
657 	might_sleep();
658 #if IS_ENABLED(CONFIG_LOCKDEP)
659 	GEM_BUG_ON(debug_locks &&
660 		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
661 		   !!(flags & I915_WAIT_LOCKED));
662 #endif
663 	GEM_BUG_ON(timeout < 0);
664 
665 	timeout = i915_gem_object_wait_reservation(obj->resv,
666 						   flags, timeout,
667 						   rps_client);
668 	return timeout < 0 ? timeout : 0;
669 }
670 
671 static struct intel_rps_client *to_rps_client(struct drm_file *file)
672 {
673 	struct drm_i915_file_private *fpriv = file->driver_priv;
674 
675 	return &fpriv->rps_client;
676 }
677 
678 static int
679 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
680 		     struct drm_i915_gem_pwrite *args,
681 		     struct drm_file *file)
682 {
683 	void *vaddr = obj->phys_handle->vaddr + args->offset;
684 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
685 
686 	/* We manually control the domain here and pretend that it
687 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
688 	 */
689 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
690 	if (copy_from_user(vaddr, user_data, args->size))
691 		return -EFAULT;
692 
693 	drm_clflush_virt_range(vaddr, args->size);
694 	i915_gem_chipset_flush(to_i915(obj->base.dev));
695 
696 	intel_fb_obj_flush(obj, ORIGIN_CPU);
697 	return 0;
698 }
699 
700 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
701 {
702 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
703 }
704 
705 void i915_gem_object_free(struct drm_i915_gem_object *obj)
706 {
707 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
708 	kmem_cache_free(dev_priv->objects, obj);
709 }
710 
711 static int
712 i915_gem_create(struct drm_file *file,
713 		struct drm_i915_private *dev_priv,
714 		uint64_t size,
715 		uint32_t *handle_p)
716 {
717 	struct drm_i915_gem_object *obj;
718 	int ret;
719 	u32 handle;
720 
721 	size = roundup(size, PAGE_SIZE);
722 	if (size == 0)
723 		return -EINVAL;
724 
725 	/* Allocate the new object */
726 	obj = i915_gem_object_create(dev_priv, size);
727 	if (IS_ERR(obj))
728 		return PTR_ERR(obj);
729 
730 	ret = drm_gem_handle_create(file, &obj->base, &handle);
731 	/* drop reference from allocate - handle holds it now */
732 	i915_gem_object_put(obj);
733 	if (ret)
734 		return ret;
735 
736 	*handle_p = handle;
737 	return 0;
738 }
739 
740 int
741 i915_gem_dumb_create(struct drm_file *file,
742 		     struct drm_device *dev,
743 		     struct drm_mode_create_dumb *args)
744 {
745 	/* have to work out size/pitch and return them */
746 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
747 	args->size = args->pitch * args->height;
748 	return i915_gem_create(file, to_i915(dev),
749 			       args->size, &args->handle);
750 }
751 
752 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
753 {
754 	return !(obj->cache_level == I915_CACHE_NONE ||
755 		 obj->cache_level == I915_CACHE_WT);
756 }
757 
758 /**
759  * Creates a new mm object and returns a handle to it.
760  * @dev: drm device pointer
761  * @data: ioctl data blob
762  * @file: drm file pointer
763  */
764 int
765 i915_gem_create_ioctl(struct drm_device *dev, void *data,
766 		      struct drm_file *file)
767 {
768 	struct drm_i915_private *dev_priv = to_i915(dev);
769 	struct drm_i915_gem_create *args = data;
770 
771 	i915_gem_flush_free_objects(dev_priv);
772 
773 	return i915_gem_create(file, dev_priv,
774 			       args->size, &args->handle);
775 }
776 
777 static inline enum fb_op_origin
778 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
779 {
780 	return (domain == I915_GEM_DOMAIN_GTT ?
781 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
782 }
783 
784 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
785 {
786 	/*
787 	 * No actual flushing is required for the GTT write domain for reads
788 	 * from the GTT domain. Writes to it "immediately" go to main memory
789 	 * as far as we know, so there's no chipset flush. It also doesn't
790 	 * land in the GPU render cache.
791 	 *
792 	 * However, we do have to enforce the order so that all writes through
793 	 * the GTT land before any writes to the device, such as updates to
794 	 * the GATT itself.
795 	 *
796 	 * We also have to wait a bit for the writes to land from the GTT.
797 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
798 	 * timing. This issue has only been observed when switching quickly
799 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
800 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
801 	 * system agents we cannot reproduce this behaviour, until Cannonlake
802 	 * that was!).
803 	 */
804 
805 	wmb();
806 
807 	if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
808 		return;
809 
810 	i915_gem_chipset_flush(dev_priv);
811 
812 	intel_runtime_pm_get(dev_priv);
813 	spin_lock_irq(&dev_priv->uncore.lock);
814 
815 	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
816 
817 	spin_unlock_irq(&dev_priv->uncore.lock);
818 	intel_runtime_pm_put(dev_priv);
819 }
820 
821 static void
822 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
823 {
824 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
825 	struct i915_vma *vma;
826 
827 	if (!(obj->write_domain & flush_domains))
828 		return;
829 
830 	switch (obj->write_domain) {
831 	case I915_GEM_DOMAIN_GTT:
832 		i915_gem_flush_ggtt_writes(dev_priv);
833 
834 		intel_fb_obj_flush(obj,
835 				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
836 
837 		for_each_ggtt_vma(vma, obj) {
838 			if (vma->iomap)
839 				continue;
840 
841 			i915_vma_unset_ggtt_write(vma);
842 		}
843 		break;
844 
845 	case I915_GEM_DOMAIN_WC:
846 		wmb();
847 		break;
848 
849 	case I915_GEM_DOMAIN_CPU:
850 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
851 		break;
852 
853 	case I915_GEM_DOMAIN_RENDER:
854 		if (gpu_write_needs_clflush(obj))
855 			obj->cache_dirty = true;
856 		break;
857 	}
858 
859 	obj->write_domain = 0;
860 }
861 
862 static inline int
863 __copy_to_user_swizzled(char __user *cpu_vaddr,
864 			const char *gpu_vaddr, int gpu_offset,
865 			int length)
866 {
867 	int ret, cpu_offset = 0;
868 
869 	while (length > 0) {
870 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
871 		int this_length = min(cacheline_end - gpu_offset, length);
872 		int swizzled_gpu_offset = gpu_offset ^ 64;
873 
874 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
875 				     gpu_vaddr + swizzled_gpu_offset,
876 				     this_length);
877 		if (ret)
878 			return ret + length;
879 
880 		cpu_offset += this_length;
881 		gpu_offset += this_length;
882 		length -= this_length;
883 	}
884 
885 	return 0;
886 }
887 
888 static inline int
889 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
890 			  const char __user *cpu_vaddr,
891 			  int length)
892 {
893 	int ret, cpu_offset = 0;
894 
895 	while (length > 0) {
896 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
897 		int this_length = min(cacheline_end - gpu_offset, length);
898 		int swizzled_gpu_offset = gpu_offset ^ 64;
899 
900 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
901 				       cpu_vaddr + cpu_offset,
902 				       this_length);
903 		if (ret)
904 			return ret + length;
905 
906 		cpu_offset += this_length;
907 		gpu_offset += this_length;
908 		length -= this_length;
909 	}
910 
911 	return 0;
912 }
913 
914 /*
915  * Pins the specified object's pages and synchronizes the object with
916  * GPU accesses. Sets needs_clflush to non-zero if the caller should
917  * flush the object from the CPU cache.
918  */
919 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
920 				    unsigned int *needs_clflush)
921 {
922 	int ret;
923 
924 	lockdep_assert_held(&obj->base.dev->struct_mutex);
925 
926 	*needs_clflush = 0;
927 	if (!i915_gem_object_has_struct_page(obj))
928 		return -ENODEV;
929 
930 	ret = i915_gem_object_wait(obj,
931 				   I915_WAIT_INTERRUPTIBLE |
932 				   I915_WAIT_LOCKED,
933 				   MAX_SCHEDULE_TIMEOUT,
934 				   NULL);
935 	if (ret)
936 		return ret;
937 
938 	ret = i915_gem_object_pin_pages(obj);
939 	if (ret)
940 		return ret;
941 
942 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
943 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
944 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
945 		if (ret)
946 			goto err_unpin;
947 		else
948 			goto out;
949 	}
950 
951 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
952 
953 	/* If we're not in the cpu read domain, set ourself into the gtt
954 	 * read domain and manually flush cachelines (if required). This
955 	 * optimizes for the case when the gpu will dirty the data
956 	 * anyway again before the next pread happens.
957 	 */
958 	if (!obj->cache_dirty &&
959 	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
960 		*needs_clflush = CLFLUSH_BEFORE;
961 
962 out:
963 	/* return with the pages pinned */
964 	return 0;
965 
966 err_unpin:
967 	i915_gem_object_unpin_pages(obj);
968 	return ret;
969 }
970 
971 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
972 				     unsigned int *needs_clflush)
973 {
974 	int ret;
975 
976 	lockdep_assert_held(&obj->base.dev->struct_mutex);
977 
978 	*needs_clflush = 0;
979 	if (!i915_gem_object_has_struct_page(obj))
980 		return -ENODEV;
981 
982 	ret = i915_gem_object_wait(obj,
983 				   I915_WAIT_INTERRUPTIBLE |
984 				   I915_WAIT_LOCKED |
985 				   I915_WAIT_ALL,
986 				   MAX_SCHEDULE_TIMEOUT,
987 				   NULL);
988 	if (ret)
989 		return ret;
990 
991 	ret = i915_gem_object_pin_pages(obj);
992 	if (ret)
993 		return ret;
994 
995 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
996 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
997 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
998 		if (ret)
999 			goto err_unpin;
1000 		else
1001 			goto out;
1002 	}
1003 
1004 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
1005 
1006 	/* If we're not in the cpu write domain, set ourself into the
1007 	 * gtt write domain and manually flush cachelines (as required).
1008 	 * This optimizes for the case when the gpu will use the data
1009 	 * right away and we therefore have to clflush anyway.
1010 	 */
1011 	if (!obj->cache_dirty) {
1012 		*needs_clflush |= CLFLUSH_AFTER;
1013 
1014 		/*
1015 		 * Same trick applies to invalidate partially written
1016 		 * cachelines read before writing.
1017 		 */
1018 		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1019 			*needs_clflush |= CLFLUSH_BEFORE;
1020 	}
1021 
1022 out:
1023 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1024 	obj->mm.dirty = true;
1025 	/* return with the pages pinned */
1026 	return 0;
1027 
1028 err_unpin:
1029 	i915_gem_object_unpin_pages(obj);
1030 	return ret;
1031 }
1032 
1033 static void
1034 shmem_clflush_swizzled_range(char *addr, unsigned long length,
1035 			     bool swizzled)
1036 {
1037 	if (unlikely(swizzled)) {
1038 		unsigned long start = (unsigned long) addr;
1039 		unsigned long end = (unsigned long) addr + length;
1040 
1041 		/* For swizzling simply ensure that we always flush both
1042 		 * channels. Lame, but simple and it works. Swizzled
1043 		 * pwrite/pread is far from a hotpath - current userspace
1044 		 * doesn't use it at all. */
1045 		start = round_down(start, 128);
1046 		end = round_up(end, 128);
1047 
1048 		drm_clflush_virt_range((void *)start, end - start);
1049 	} else {
1050 		drm_clflush_virt_range(addr, length);
1051 	}
1052 
1053 }
1054 
1055 /* Only difference to the fast-path function is that this can handle bit17
1056  * and uses non-atomic copy and kmap functions. */
1057 static int
1058 shmem_pread_slow(struct page *page, int offset, int length,
1059 		 char __user *user_data,
1060 		 bool page_do_bit17_swizzling, bool needs_clflush)
1061 {
1062 	char *vaddr;
1063 	int ret;
1064 
1065 	vaddr = kmap(page);
1066 	if (needs_clflush)
1067 		shmem_clflush_swizzled_range(vaddr + offset, length,
1068 					     page_do_bit17_swizzling);
1069 
1070 	if (page_do_bit17_swizzling)
1071 		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1072 	else
1073 		ret = __copy_to_user(user_data, vaddr + offset, length);
1074 	kunmap(page);
1075 
1076 	return ret ? - EFAULT : 0;
1077 }
1078 
1079 static int
1080 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
1081 	    bool page_do_bit17_swizzling, bool needs_clflush)
1082 {
1083 	int ret;
1084 
1085 	ret = -ENODEV;
1086 	if (!page_do_bit17_swizzling) {
1087 		char *vaddr = kmap_atomic(page);
1088 
1089 		if (needs_clflush)
1090 			drm_clflush_virt_range(vaddr + offset, length);
1091 		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1092 		kunmap_atomic(vaddr);
1093 	}
1094 	if (ret == 0)
1095 		return 0;
1096 
1097 	return shmem_pread_slow(page, offset, length, user_data,
1098 				page_do_bit17_swizzling, needs_clflush);
1099 }
1100 
1101 static int
1102 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
1103 		     struct drm_i915_gem_pread *args)
1104 {
1105 	char __user *user_data;
1106 	u64 remain;
1107 	unsigned int obj_do_bit17_swizzling;
1108 	unsigned int needs_clflush;
1109 	unsigned int idx, offset;
1110 	int ret;
1111 
1112 	obj_do_bit17_swizzling = 0;
1113 	if (i915_gem_object_needs_bit17_swizzle(obj))
1114 		obj_do_bit17_swizzling = BIT(17);
1115 
1116 	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1117 	if (ret)
1118 		return ret;
1119 
1120 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1121 	mutex_unlock(&obj->base.dev->struct_mutex);
1122 	if (ret)
1123 		return ret;
1124 
1125 	remain = args->size;
1126 	user_data = u64_to_user_ptr(args->data_ptr);
1127 	offset = offset_in_page(args->offset);
1128 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1129 		struct page *page = i915_gem_object_get_page(obj, idx);
1130 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1131 
1132 		ret = shmem_pread(page, offset, length, user_data,
1133 				  page_to_phys(page) & obj_do_bit17_swizzling,
1134 				  needs_clflush);
1135 		if (ret)
1136 			break;
1137 
1138 		remain -= length;
1139 		user_data += length;
1140 		offset = 0;
1141 	}
1142 
1143 	i915_gem_obj_finish_shmem_access(obj);
1144 	return ret;
1145 }
1146 
1147 static inline bool
1148 gtt_user_read(struct io_mapping *mapping,
1149 	      loff_t base, int offset,
1150 	      char __user *user_data, int length)
1151 {
1152 	void __iomem *vaddr;
1153 	unsigned long unwritten;
1154 
1155 	/* We can use the cpu mem copy function because this is X86. */
1156 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1157 	unwritten = __copy_to_user_inatomic(user_data,
1158 					    (void __force *)vaddr + offset,
1159 					    length);
1160 	io_mapping_unmap_atomic(vaddr);
1161 	if (unwritten) {
1162 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1163 		unwritten = copy_to_user(user_data,
1164 					 (void __force *)vaddr + offset,
1165 					 length);
1166 		io_mapping_unmap(vaddr);
1167 	}
1168 	return unwritten;
1169 }
1170 
1171 static int
1172 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1173 		   const struct drm_i915_gem_pread *args)
1174 {
1175 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1176 	struct i915_ggtt *ggtt = &i915->ggtt;
1177 	struct drm_mm_node node;
1178 	struct i915_vma *vma;
1179 	void __user *user_data;
1180 	u64 remain, offset;
1181 	int ret;
1182 
1183 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1184 	if (ret)
1185 		return ret;
1186 
1187 	intel_runtime_pm_get(i915);
1188 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1189 				       PIN_MAPPABLE |
1190 				       PIN_NONFAULT |
1191 				       PIN_NONBLOCK);
1192 	if (!IS_ERR(vma)) {
1193 		node.start = i915_ggtt_offset(vma);
1194 		node.allocated = false;
1195 		ret = i915_vma_put_fence(vma);
1196 		if (ret) {
1197 			i915_vma_unpin(vma);
1198 			vma = ERR_PTR(ret);
1199 		}
1200 	}
1201 	if (IS_ERR(vma)) {
1202 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1203 		if (ret)
1204 			goto out_unlock;
1205 		GEM_BUG_ON(!node.allocated);
1206 	}
1207 
1208 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1209 	if (ret)
1210 		goto out_unpin;
1211 
1212 	mutex_unlock(&i915->drm.struct_mutex);
1213 
1214 	user_data = u64_to_user_ptr(args->data_ptr);
1215 	remain = args->size;
1216 	offset = args->offset;
1217 
1218 	while (remain > 0) {
1219 		/* Operation in this page
1220 		 *
1221 		 * page_base = page offset within aperture
1222 		 * page_offset = offset within page
1223 		 * page_length = bytes to copy for this page
1224 		 */
1225 		u32 page_base = node.start;
1226 		unsigned page_offset = offset_in_page(offset);
1227 		unsigned page_length = PAGE_SIZE - page_offset;
1228 		page_length = remain < page_length ? remain : page_length;
1229 		if (node.allocated) {
1230 			wmb();
1231 			ggtt->vm.insert_page(&ggtt->vm,
1232 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1233 					     node.start, I915_CACHE_NONE, 0);
1234 			wmb();
1235 		} else {
1236 			page_base += offset & PAGE_MASK;
1237 		}
1238 
1239 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1240 				  user_data, page_length)) {
1241 			ret = -EFAULT;
1242 			break;
1243 		}
1244 
1245 		remain -= page_length;
1246 		user_data += page_length;
1247 		offset += page_length;
1248 	}
1249 
1250 	mutex_lock(&i915->drm.struct_mutex);
1251 out_unpin:
1252 	if (node.allocated) {
1253 		wmb();
1254 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1255 		remove_mappable_node(&node);
1256 	} else {
1257 		i915_vma_unpin(vma);
1258 	}
1259 out_unlock:
1260 	intel_runtime_pm_put(i915);
1261 	mutex_unlock(&i915->drm.struct_mutex);
1262 
1263 	return ret;
1264 }
1265 
1266 /**
1267  * Reads data from the object referenced by handle.
1268  * @dev: drm device pointer
1269  * @data: ioctl data blob
1270  * @file: drm file pointer
1271  *
1272  * On error, the contents of *data are undefined.
1273  */
1274 int
1275 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1276 		     struct drm_file *file)
1277 {
1278 	struct drm_i915_gem_pread *args = data;
1279 	struct drm_i915_gem_object *obj;
1280 	int ret;
1281 
1282 	if (args->size == 0)
1283 		return 0;
1284 
1285 	if (!access_ok(u64_to_user_ptr(args->data_ptr),
1286 		       args->size))
1287 		return -EFAULT;
1288 
1289 	obj = i915_gem_object_lookup(file, args->handle);
1290 	if (!obj)
1291 		return -ENOENT;
1292 
1293 	/* Bounds check source.  */
1294 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1295 		ret = -EINVAL;
1296 		goto out;
1297 	}
1298 
1299 	trace_i915_gem_object_pread(obj, args->offset, args->size);
1300 
1301 	ret = i915_gem_object_wait(obj,
1302 				   I915_WAIT_INTERRUPTIBLE,
1303 				   MAX_SCHEDULE_TIMEOUT,
1304 				   to_rps_client(file));
1305 	if (ret)
1306 		goto out;
1307 
1308 	ret = i915_gem_object_pin_pages(obj);
1309 	if (ret)
1310 		goto out;
1311 
1312 	ret = i915_gem_shmem_pread(obj, args);
1313 	if (ret == -EFAULT || ret == -ENODEV)
1314 		ret = i915_gem_gtt_pread(obj, args);
1315 
1316 	i915_gem_object_unpin_pages(obj);
1317 out:
1318 	i915_gem_object_put(obj);
1319 	return ret;
1320 }
1321 
1322 /* This is the fast write path which cannot handle
1323  * page faults in the source data
1324  */
1325 
1326 static inline bool
1327 ggtt_write(struct io_mapping *mapping,
1328 	   loff_t base, int offset,
1329 	   char __user *user_data, int length)
1330 {
1331 	void __iomem *vaddr;
1332 	unsigned long unwritten;
1333 
1334 	/* We can use the cpu mem copy function because this is X86. */
1335 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1336 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1337 						      user_data, length);
1338 	io_mapping_unmap_atomic(vaddr);
1339 	if (unwritten) {
1340 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1341 		unwritten = copy_from_user((void __force *)vaddr + offset,
1342 					   user_data, length);
1343 		io_mapping_unmap(vaddr);
1344 	}
1345 
1346 	return unwritten;
1347 }
1348 
1349 /**
1350  * This is the fast pwrite path, where we copy the data directly from the
1351  * user into the GTT, uncached.
1352  * @obj: i915 GEM object
1353  * @args: pwrite arguments structure
1354  */
1355 static int
1356 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1357 			 const struct drm_i915_gem_pwrite *args)
1358 {
1359 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1360 	struct i915_ggtt *ggtt = &i915->ggtt;
1361 	struct drm_mm_node node;
1362 	struct i915_vma *vma;
1363 	u64 remain, offset;
1364 	void __user *user_data;
1365 	int ret;
1366 
1367 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1368 	if (ret)
1369 		return ret;
1370 
1371 	if (i915_gem_object_has_struct_page(obj)) {
1372 		/*
1373 		 * Avoid waking the device up if we can fallback, as
1374 		 * waking/resuming is very slow (worst-case 10-100 ms
1375 		 * depending on PCI sleeps and our own resume time).
1376 		 * This easily dwarfs any performance advantage from
1377 		 * using the cache bypass of indirect GGTT access.
1378 		 */
1379 		if (!intel_runtime_pm_get_if_in_use(i915)) {
1380 			ret = -EFAULT;
1381 			goto out_unlock;
1382 		}
1383 	} else {
1384 		/* No backing pages, no fallback, we must force GGTT access */
1385 		intel_runtime_pm_get(i915);
1386 	}
1387 
1388 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1389 				       PIN_MAPPABLE |
1390 				       PIN_NONFAULT |
1391 				       PIN_NONBLOCK);
1392 	if (!IS_ERR(vma)) {
1393 		node.start = i915_ggtt_offset(vma);
1394 		node.allocated = false;
1395 		ret = i915_vma_put_fence(vma);
1396 		if (ret) {
1397 			i915_vma_unpin(vma);
1398 			vma = ERR_PTR(ret);
1399 		}
1400 	}
1401 	if (IS_ERR(vma)) {
1402 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1403 		if (ret)
1404 			goto out_rpm;
1405 		GEM_BUG_ON(!node.allocated);
1406 	}
1407 
1408 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1409 	if (ret)
1410 		goto out_unpin;
1411 
1412 	mutex_unlock(&i915->drm.struct_mutex);
1413 
1414 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1415 
1416 	user_data = u64_to_user_ptr(args->data_ptr);
1417 	offset = args->offset;
1418 	remain = args->size;
1419 	while (remain) {
1420 		/* Operation in this page
1421 		 *
1422 		 * page_base = page offset within aperture
1423 		 * page_offset = offset within page
1424 		 * page_length = bytes to copy for this page
1425 		 */
1426 		u32 page_base = node.start;
1427 		unsigned int page_offset = offset_in_page(offset);
1428 		unsigned int page_length = PAGE_SIZE - page_offset;
1429 		page_length = remain < page_length ? remain : page_length;
1430 		if (node.allocated) {
1431 			wmb(); /* flush the write before we modify the GGTT */
1432 			ggtt->vm.insert_page(&ggtt->vm,
1433 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1434 					     node.start, I915_CACHE_NONE, 0);
1435 			wmb(); /* flush modifications to the GGTT (insert_page) */
1436 		} else {
1437 			page_base += offset & PAGE_MASK;
1438 		}
1439 		/* If we get a fault while copying data, then (presumably) our
1440 		 * source page isn't available.  Return the error and we'll
1441 		 * retry in the slow path.
1442 		 * If the object is non-shmem backed, we retry again with the
1443 		 * path that handles page fault.
1444 		 */
1445 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1446 			       user_data, page_length)) {
1447 			ret = -EFAULT;
1448 			break;
1449 		}
1450 
1451 		remain -= page_length;
1452 		user_data += page_length;
1453 		offset += page_length;
1454 	}
1455 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1456 
1457 	mutex_lock(&i915->drm.struct_mutex);
1458 out_unpin:
1459 	if (node.allocated) {
1460 		wmb();
1461 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1462 		remove_mappable_node(&node);
1463 	} else {
1464 		i915_vma_unpin(vma);
1465 	}
1466 out_rpm:
1467 	intel_runtime_pm_put(i915);
1468 out_unlock:
1469 	mutex_unlock(&i915->drm.struct_mutex);
1470 	return ret;
1471 }
1472 
1473 static int
1474 shmem_pwrite_slow(struct page *page, int offset, int length,
1475 		  char __user *user_data,
1476 		  bool page_do_bit17_swizzling,
1477 		  bool needs_clflush_before,
1478 		  bool needs_clflush_after)
1479 {
1480 	char *vaddr;
1481 	int ret;
1482 
1483 	vaddr = kmap(page);
1484 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1485 		shmem_clflush_swizzled_range(vaddr + offset, length,
1486 					     page_do_bit17_swizzling);
1487 	if (page_do_bit17_swizzling)
1488 		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1489 						length);
1490 	else
1491 		ret = __copy_from_user(vaddr + offset, user_data, length);
1492 	if (needs_clflush_after)
1493 		shmem_clflush_swizzled_range(vaddr + offset, length,
1494 					     page_do_bit17_swizzling);
1495 	kunmap(page);
1496 
1497 	return ret ? -EFAULT : 0;
1498 }
1499 
1500 /* Per-page copy function for the shmem pwrite fastpath.
1501  * Flushes invalid cachelines before writing to the target if
1502  * needs_clflush_before is set and flushes out any written cachelines after
1503  * writing if needs_clflush is set.
1504  */
1505 static int
1506 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1507 	     bool page_do_bit17_swizzling,
1508 	     bool needs_clflush_before,
1509 	     bool needs_clflush_after)
1510 {
1511 	int ret;
1512 
1513 	ret = -ENODEV;
1514 	if (!page_do_bit17_swizzling) {
1515 		char *vaddr = kmap_atomic(page);
1516 
1517 		if (needs_clflush_before)
1518 			drm_clflush_virt_range(vaddr + offset, len);
1519 		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1520 		if (needs_clflush_after)
1521 			drm_clflush_virt_range(vaddr + offset, len);
1522 
1523 		kunmap_atomic(vaddr);
1524 	}
1525 	if (ret == 0)
1526 		return ret;
1527 
1528 	return shmem_pwrite_slow(page, offset, len, user_data,
1529 				 page_do_bit17_swizzling,
1530 				 needs_clflush_before,
1531 				 needs_clflush_after);
1532 }
1533 
1534 static int
1535 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1536 		      const struct drm_i915_gem_pwrite *args)
1537 {
1538 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1539 	void __user *user_data;
1540 	u64 remain;
1541 	unsigned int obj_do_bit17_swizzling;
1542 	unsigned int partial_cacheline_write;
1543 	unsigned int needs_clflush;
1544 	unsigned int offset, idx;
1545 	int ret;
1546 
1547 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1548 	if (ret)
1549 		return ret;
1550 
1551 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1552 	mutex_unlock(&i915->drm.struct_mutex);
1553 	if (ret)
1554 		return ret;
1555 
1556 	obj_do_bit17_swizzling = 0;
1557 	if (i915_gem_object_needs_bit17_swizzle(obj))
1558 		obj_do_bit17_swizzling = BIT(17);
1559 
1560 	/* If we don't overwrite a cacheline completely we need to be
1561 	 * careful to have up-to-date data by first clflushing. Don't
1562 	 * overcomplicate things and flush the entire patch.
1563 	 */
1564 	partial_cacheline_write = 0;
1565 	if (needs_clflush & CLFLUSH_BEFORE)
1566 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1567 
1568 	user_data = u64_to_user_ptr(args->data_ptr);
1569 	remain = args->size;
1570 	offset = offset_in_page(args->offset);
1571 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1572 		struct page *page = i915_gem_object_get_page(obj, idx);
1573 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1574 
1575 		ret = shmem_pwrite(page, offset, length, user_data,
1576 				   page_to_phys(page) & obj_do_bit17_swizzling,
1577 				   (offset | length) & partial_cacheline_write,
1578 				   needs_clflush & CLFLUSH_AFTER);
1579 		if (ret)
1580 			break;
1581 
1582 		remain -= length;
1583 		user_data += length;
1584 		offset = 0;
1585 	}
1586 
1587 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1588 	i915_gem_obj_finish_shmem_access(obj);
1589 	return ret;
1590 }
1591 
1592 /**
1593  * Writes data to the object referenced by handle.
1594  * @dev: drm device
1595  * @data: ioctl data blob
1596  * @file: drm file
1597  *
1598  * On error, the contents of the buffer that were to be modified are undefined.
1599  */
1600 int
1601 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1602 		      struct drm_file *file)
1603 {
1604 	struct drm_i915_gem_pwrite *args = data;
1605 	struct drm_i915_gem_object *obj;
1606 	int ret;
1607 
1608 	if (args->size == 0)
1609 		return 0;
1610 
1611 	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
1612 		return -EFAULT;
1613 
1614 	obj = i915_gem_object_lookup(file, args->handle);
1615 	if (!obj)
1616 		return -ENOENT;
1617 
1618 	/* Bounds check destination. */
1619 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1620 		ret = -EINVAL;
1621 		goto err;
1622 	}
1623 
1624 	/* Writes not allowed into this read-only object */
1625 	if (i915_gem_object_is_readonly(obj)) {
1626 		ret = -EINVAL;
1627 		goto err;
1628 	}
1629 
1630 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1631 
1632 	ret = -ENODEV;
1633 	if (obj->ops->pwrite)
1634 		ret = obj->ops->pwrite(obj, args);
1635 	if (ret != -ENODEV)
1636 		goto err;
1637 
1638 	ret = i915_gem_object_wait(obj,
1639 				   I915_WAIT_INTERRUPTIBLE |
1640 				   I915_WAIT_ALL,
1641 				   MAX_SCHEDULE_TIMEOUT,
1642 				   to_rps_client(file));
1643 	if (ret)
1644 		goto err;
1645 
1646 	ret = i915_gem_object_pin_pages(obj);
1647 	if (ret)
1648 		goto err;
1649 
1650 	ret = -EFAULT;
1651 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1652 	 * it would end up going through the fenced access, and we'll get
1653 	 * different detiling behavior between reading and writing.
1654 	 * pread/pwrite currently are reading and writing from the CPU
1655 	 * perspective, requiring manual detiling by the client.
1656 	 */
1657 	if (!i915_gem_object_has_struct_page(obj) ||
1658 	    cpu_write_needs_clflush(obj))
1659 		/* Note that the gtt paths might fail with non-page-backed user
1660 		 * pointers (e.g. gtt mappings when moving data between
1661 		 * textures). Fallback to the shmem path in that case.
1662 		 */
1663 		ret = i915_gem_gtt_pwrite_fast(obj, args);
1664 
1665 	if (ret == -EFAULT || ret == -ENOSPC) {
1666 		if (obj->phys_handle)
1667 			ret = i915_gem_phys_pwrite(obj, args, file);
1668 		else
1669 			ret = i915_gem_shmem_pwrite(obj, args);
1670 	}
1671 
1672 	i915_gem_object_unpin_pages(obj);
1673 err:
1674 	i915_gem_object_put(obj);
1675 	return ret;
1676 }
1677 
1678 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1679 {
1680 	struct drm_i915_private *i915;
1681 	struct list_head *list;
1682 	struct i915_vma *vma;
1683 
1684 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1685 
1686 	for_each_ggtt_vma(vma, obj) {
1687 		if (i915_vma_is_active(vma))
1688 			continue;
1689 
1690 		if (!drm_mm_node_allocated(&vma->node))
1691 			continue;
1692 
1693 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1694 	}
1695 
1696 	i915 = to_i915(obj->base.dev);
1697 	spin_lock(&i915->mm.obj_lock);
1698 	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1699 	list_move_tail(&obj->mm.link, list);
1700 	spin_unlock(&i915->mm.obj_lock);
1701 }
1702 
1703 /**
1704  * Called when user space prepares to use an object with the CPU, either
1705  * through the mmap ioctl's mapping or a GTT mapping.
1706  * @dev: drm device
1707  * @data: ioctl data blob
1708  * @file: drm file
1709  */
1710 int
1711 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1712 			  struct drm_file *file)
1713 {
1714 	struct drm_i915_gem_set_domain *args = data;
1715 	struct drm_i915_gem_object *obj;
1716 	uint32_t read_domains = args->read_domains;
1717 	uint32_t write_domain = args->write_domain;
1718 	int err;
1719 
1720 	/* Only handle setting domains to types used by the CPU. */
1721 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1722 		return -EINVAL;
1723 
1724 	/* Having something in the write domain implies it's in the read
1725 	 * domain, and only that read domain.  Enforce that in the request.
1726 	 */
1727 	if (write_domain != 0 && read_domains != write_domain)
1728 		return -EINVAL;
1729 
1730 	obj = i915_gem_object_lookup(file, args->handle);
1731 	if (!obj)
1732 		return -ENOENT;
1733 
1734 	/* Try to flush the object off the GPU without holding the lock.
1735 	 * We will repeat the flush holding the lock in the normal manner
1736 	 * to catch cases where we are gazumped.
1737 	 */
1738 	err = i915_gem_object_wait(obj,
1739 				   I915_WAIT_INTERRUPTIBLE |
1740 				   I915_WAIT_PRIORITY |
1741 				   (write_domain ? I915_WAIT_ALL : 0),
1742 				   MAX_SCHEDULE_TIMEOUT,
1743 				   to_rps_client(file));
1744 	if (err)
1745 		goto out;
1746 
1747 	/*
1748 	 * Proxy objects do not control access to the backing storage, ergo
1749 	 * they cannot be used as a means to manipulate the cache domain
1750 	 * tracking for that backing storage. The proxy object is always
1751 	 * considered to be outside of any cache domain.
1752 	 */
1753 	if (i915_gem_object_is_proxy(obj)) {
1754 		err = -ENXIO;
1755 		goto out;
1756 	}
1757 
1758 	/*
1759 	 * Flush and acquire obj->pages so that we are coherent through
1760 	 * direct access in memory with previous cached writes through
1761 	 * shmemfs and that our cache domain tracking remains valid.
1762 	 * For example, if the obj->filp was moved to swap without us
1763 	 * being notified and releasing the pages, we would mistakenly
1764 	 * continue to assume that the obj remained out of the CPU cached
1765 	 * domain.
1766 	 */
1767 	err = i915_gem_object_pin_pages(obj);
1768 	if (err)
1769 		goto out;
1770 
1771 	err = i915_mutex_lock_interruptible(dev);
1772 	if (err)
1773 		goto out_unpin;
1774 
1775 	if (read_domains & I915_GEM_DOMAIN_WC)
1776 		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1777 	else if (read_domains & I915_GEM_DOMAIN_GTT)
1778 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1779 	else
1780 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1781 
1782 	/* And bump the LRU for this access */
1783 	i915_gem_object_bump_inactive_ggtt(obj);
1784 
1785 	mutex_unlock(&dev->struct_mutex);
1786 
1787 	if (write_domain != 0)
1788 		intel_fb_obj_invalidate(obj,
1789 					fb_write_origin(obj, write_domain));
1790 
1791 out_unpin:
1792 	i915_gem_object_unpin_pages(obj);
1793 out:
1794 	i915_gem_object_put(obj);
1795 	return err;
1796 }
1797 
1798 /**
1799  * Called when user space has done writes to this buffer
1800  * @dev: drm device
1801  * @data: ioctl data blob
1802  * @file: drm file
1803  */
1804 int
1805 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1806 			 struct drm_file *file)
1807 {
1808 	struct drm_i915_gem_sw_finish *args = data;
1809 	struct drm_i915_gem_object *obj;
1810 
1811 	obj = i915_gem_object_lookup(file, args->handle);
1812 	if (!obj)
1813 		return -ENOENT;
1814 
1815 	/*
1816 	 * Proxy objects are barred from CPU access, so there is no
1817 	 * need to ban sw_finish as it is a nop.
1818 	 */
1819 
1820 	/* Pinned buffers may be scanout, so flush the cache */
1821 	i915_gem_object_flush_if_display(obj);
1822 	i915_gem_object_put(obj);
1823 
1824 	return 0;
1825 }
1826 
1827 /**
1828  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1829  *			 it is mapped to.
1830  * @dev: drm device
1831  * @data: ioctl data blob
1832  * @file: drm file
1833  *
1834  * While the mapping holds a reference on the contents of the object, it doesn't
1835  * imply a ref on the object itself.
1836  *
1837  * IMPORTANT:
1838  *
1839  * DRM driver writers who look a this function as an example for how to do GEM
1840  * mmap support, please don't implement mmap support like here. The modern way
1841  * to implement DRM mmap support is with an mmap offset ioctl (like
1842  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1843  * That way debug tooling like valgrind will understand what's going on, hiding
1844  * the mmap call in a driver private ioctl will break that. The i915 driver only
1845  * does cpu mmaps this way because we didn't know better.
1846  */
1847 int
1848 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1849 		    struct drm_file *file)
1850 {
1851 	struct drm_i915_gem_mmap *args = data;
1852 	struct drm_i915_gem_object *obj;
1853 	unsigned long addr;
1854 
1855 	if (args->flags & ~(I915_MMAP_WC))
1856 		return -EINVAL;
1857 
1858 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1859 		return -ENODEV;
1860 
1861 	obj = i915_gem_object_lookup(file, args->handle);
1862 	if (!obj)
1863 		return -ENOENT;
1864 
1865 	/* prime objects have no backing filp to GEM mmap
1866 	 * pages from.
1867 	 */
1868 	if (!obj->base.filp) {
1869 		i915_gem_object_put(obj);
1870 		return -ENXIO;
1871 	}
1872 
1873 	addr = vm_mmap(obj->base.filp, 0, args->size,
1874 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1875 		       args->offset);
1876 	if (args->flags & I915_MMAP_WC) {
1877 		struct mm_struct *mm = current->mm;
1878 		struct vm_area_struct *vma;
1879 
1880 		if (down_write_killable(&mm->mmap_sem)) {
1881 			i915_gem_object_put(obj);
1882 			return -EINTR;
1883 		}
1884 		vma = find_vma(mm, addr);
1885 		if (vma)
1886 			vma->vm_page_prot =
1887 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1888 		else
1889 			addr = -ENOMEM;
1890 		up_write(&mm->mmap_sem);
1891 
1892 		/* This may race, but that's ok, it only gets set */
1893 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1894 	}
1895 	i915_gem_object_put(obj);
1896 	if (IS_ERR((void *)addr))
1897 		return addr;
1898 
1899 	args->addr_ptr = (uint64_t) addr;
1900 
1901 	return 0;
1902 }
1903 
1904 static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
1905 {
1906 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1907 }
1908 
1909 /**
1910  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1911  *
1912  * A history of the GTT mmap interface:
1913  *
1914  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1915  *     aligned and suitable for fencing, and still fit into the available
1916  *     mappable space left by the pinned display objects. A classic problem
1917  *     we called the page-fault-of-doom where we would ping-pong between
1918  *     two objects that could not fit inside the GTT and so the memcpy
1919  *     would page one object in at the expense of the other between every
1920  *     single byte.
1921  *
1922  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1923  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1924  *     object is too large for the available space (or simply too large
1925  *     for the mappable aperture!), a view is created instead and faulted
1926  *     into userspace. (This view is aligned and sized appropriately for
1927  *     fenced access.)
1928  *
1929  * 2 - Recognise WC as a separate cache domain so that we can flush the
1930  *     delayed writes via GTT before performing direct access via WC.
1931  *
1932  * Restrictions:
1933  *
1934  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1935  *    hangs on some architectures, corruption on others. An attempt to service
1936  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1937  *
1938  *  * the object must be able to fit into RAM (physical memory, though no
1939  *    limited to the mappable aperture).
1940  *
1941  *
1942  * Caveats:
1943  *
1944  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1945  *    all data to system memory. Subsequent access will not be synchronized.
1946  *
1947  *  * all mappings are revoked on runtime device suspend.
1948  *
1949  *  * there are only 8, 16 or 32 fence registers to share between all users
1950  *    (older machines require fence register for display and blitter access
1951  *    as well). Contention of the fence registers will cause the previous users
1952  *    to be unmapped and any new access will generate new page faults.
1953  *
1954  *  * running out of memory while servicing a fault may generate a SIGBUS,
1955  *    rather than the expected SIGSEGV.
1956  */
1957 int i915_gem_mmap_gtt_version(void)
1958 {
1959 	return 2;
1960 }
1961 
1962 static inline struct i915_ggtt_view
1963 compute_partial_view(const struct drm_i915_gem_object *obj,
1964 		     pgoff_t page_offset,
1965 		     unsigned int chunk)
1966 {
1967 	struct i915_ggtt_view view;
1968 
1969 	if (i915_gem_object_is_tiled(obj))
1970 		chunk = roundup(chunk, tile_row_pages(obj));
1971 
1972 	view.type = I915_GGTT_VIEW_PARTIAL;
1973 	view.partial.offset = rounddown(page_offset, chunk);
1974 	view.partial.size =
1975 		min_t(unsigned int, chunk,
1976 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1977 
1978 	/* If the partial covers the entire object, just create a normal VMA. */
1979 	if (chunk >= obj->base.size >> PAGE_SHIFT)
1980 		view.type = I915_GGTT_VIEW_NORMAL;
1981 
1982 	return view;
1983 }
1984 
1985 /**
1986  * i915_gem_fault - fault a page into the GTT
1987  * @vmf: fault info
1988  *
1989  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1990  * from userspace.  The fault handler takes care of binding the object to
1991  * the GTT (if needed), allocating and programming a fence register (again,
1992  * only if needed based on whether the old reg is still valid or the object
1993  * is tiled) and inserting a new PTE into the faulting process.
1994  *
1995  * Note that the faulting process may involve evicting existing objects
1996  * from the GTT and/or fence registers to make room.  So performance may
1997  * suffer if the GTT working set is large or there are few fence registers
1998  * left.
1999  *
2000  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
2001  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
2002  */
2003 vm_fault_t i915_gem_fault(struct vm_fault *vmf)
2004 {
2005 #define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
2006 	struct vm_area_struct *area = vmf->vma;
2007 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
2008 	struct drm_device *dev = obj->base.dev;
2009 	struct drm_i915_private *dev_priv = to_i915(dev);
2010 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2011 	bool write = area->vm_flags & VM_WRITE;
2012 	struct i915_vma *vma;
2013 	pgoff_t page_offset;
2014 	int ret;
2015 
2016 	/* Sanity check that we allow writing into this object */
2017 	if (i915_gem_object_is_readonly(obj) && write)
2018 		return VM_FAULT_SIGBUS;
2019 
2020 	/* We don't use vmf->pgoff since that has the fake offset */
2021 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2022 
2023 	trace_i915_gem_object_fault(obj, page_offset, true, write);
2024 
2025 	/* Try to flush the object off the GPU first without holding the lock.
2026 	 * Upon acquiring the lock, we will perform our sanity checks and then
2027 	 * repeat the flush holding the lock in the normal manner to catch cases
2028 	 * where we are gazumped.
2029 	 */
2030 	ret = i915_gem_object_wait(obj,
2031 				   I915_WAIT_INTERRUPTIBLE,
2032 				   MAX_SCHEDULE_TIMEOUT,
2033 				   NULL);
2034 	if (ret)
2035 		goto err;
2036 
2037 	ret = i915_gem_object_pin_pages(obj);
2038 	if (ret)
2039 		goto err;
2040 
2041 	intel_runtime_pm_get(dev_priv);
2042 
2043 	ret = i915_mutex_lock_interruptible(dev);
2044 	if (ret)
2045 		goto err_rpm;
2046 
2047 	/* Access to snoopable pages through the GTT is incoherent. */
2048 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2049 		ret = -EFAULT;
2050 		goto err_unlock;
2051 	}
2052 
2053 
2054 	/* Now pin it into the GTT as needed */
2055 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
2056 				       PIN_MAPPABLE |
2057 				       PIN_NONBLOCK |
2058 				       PIN_NONFAULT);
2059 	if (IS_ERR(vma)) {
2060 		/* Use a partial view if it is bigger than available space */
2061 		struct i915_ggtt_view view =
2062 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2063 		unsigned int flags;
2064 
2065 		flags = PIN_MAPPABLE;
2066 		if (view.type == I915_GGTT_VIEW_NORMAL)
2067 			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */
2068 
2069 		/*
2070 		 * Userspace is now writing through an untracked VMA, abandon
2071 		 * all hope that the hardware is able to track future writes.
2072 		 */
2073 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
2074 
2075 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2076 		if (IS_ERR(vma) && !view.type) {
2077 			flags = PIN_MAPPABLE;
2078 			view.type = I915_GGTT_VIEW_PARTIAL;
2079 			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2080 		}
2081 	}
2082 	if (IS_ERR(vma)) {
2083 		ret = PTR_ERR(vma);
2084 		goto err_unlock;
2085 	}
2086 
2087 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
2088 	if (ret)
2089 		goto err_unpin;
2090 
2091 	ret = i915_vma_pin_fence(vma);
2092 	if (ret)
2093 		goto err_unpin;
2094 
2095 	/* Finally, remap it using the new GTT offset */
2096 	ret = remap_io_mapping(area,
2097 			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2098 			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2099 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
2100 			       &ggtt->iomap);
2101 	if (ret)
2102 		goto err_fence;
2103 
2104 	/* Mark as being mmapped into userspace for later revocation */
2105 	assert_rpm_wakelock_held(dev_priv);
2106 	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
2107 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
2108 	GEM_BUG_ON(!obj->userfault_count);
2109 
2110 	i915_vma_set_ggtt_write(vma);
2111 
2112 err_fence:
2113 	i915_vma_unpin_fence(vma);
2114 err_unpin:
2115 	__i915_vma_unpin(vma);
2116 err_unlock:
2117 	mutex_unlock(&dev->struct_mutex);
2118 err_rpm:
2119 	intel_runtime_pm_put(dev_priv);
2120 	i915_gem_object_unpin_pages(obj);
2121 err:
2122 	switch (ret) {
2123 	case -EIO:
2124 		/*
2125 		 * We eat errors when the gpu is terminally wedged to avoid
2126 		 * userspace unduly crashing (gl has no provisions for mmaps to
2127 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2128 		 * and so needs to be reported.
2129 		 */
2130 		if (!i915_terminally_wedged(&dev_priv->gpu_error))
2131 			return VM_FAULT_SIGBUS;
2132 		/* else: fall through */
2133 	case -EAGAIN:
2134 		/*
2135 		 * EAGAIN means the gpu is hung and we'll wait for the error
2136 		 * handler to reset everything when re-faulting in
2137 		 * i915_mutex_lock_interruptible.
2138 		 */
2139 	case 0:
2140 	case -ERESTARTSYS:
2141 	case -EINTR:
2142 	case -EBUSY:
2143 		/*
2144 		 * EBUSY is ok: this just means that another thread
2145 		 * already did the job.
2146 		 */
2147 		return VM_FAULT_NOPAGE;
2148 	case -ENOMEM:
2149 		return VM_FAULT_OOM;
2150 	case -ENOSPC:
2151 	case -EFAULT:
2152 		return VM_FAULT_SIGBUS;
2153 	default:
2154 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2155 		return VM_FAULT_SIGBUS;
2156 	}
2157 }
2158 
2159 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2160 {
2161 	struct i915_vma *vma;
2162 
2163 	GEM_BUG_ON(!obj->userfault_count);
2164 
2165 	obj->userfault_count = 0;
2166 	list_del(&obj->userfault_link);
2167 	drm_vma_node_unmap(&obj->base.vma_node,
2168 			   obj->base.dev->anon_inode->i_mapping);
2169 
2170 	for_each_ggtt_vma(vma, obj)
2171 		i915_vma_unset_userfault(vma);
2172 }
2173 
2174 /**
2175  * i915_gem_release_mmap - remove physical page mappings
2176  * @obj: obj in question
2177  *
2178  * Preserve the reservation of the mmapping with the DRM core code, but
2179  * relinquish ownership of the pages back to the system.
2180  *
2181  * It is vital that we remove the page mapping if we have mapped a tiled
2182  * object through the GTT and then lose the fence register due to
2183  * resource pressure. Similarly if the object has been moved out of the
2184  * aperture, than pages mapped into userspace must be revoked. Removing the
2185  * mapping will then trigger a page fault on the next user access, allowing
2186  * fixup by i915_gem_fault().
2187  */
2188 void
2189 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2190 {
2191 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2192 
2193 	/* Serialisation between user GTT access and our code depends upon
2194 	 * revoking the CPU's PTE whilst the mutex is held. The next user
2195 	 * pagefault then has to wait until we release the mutex.
2196 	 *
2197 	 * Note that RPM complicates somewhat by adding an additional
2198 	 * requirement that operations to the GGTT be made holding the RPM
2199 	 * wakeref.
2200 	 */
2201 	lockdep_assert_held(&i915->drm.struct_mutex);
2202 	intel_runtime_pm_get(i915);
2203 
2204 	if (!obj->userfault_count)
2205 		goto out;
2206 
2207 	__i915_gem_object_release_mmap(obj);
2208 
2209 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
2210 	 * memory transactions from userspace before we return. The TLB
2211 	 * flushing implied above by changing the PTE above *should* be
2212 	 * sufficient, an extra barrier here just provides us with a bit
2213 	 * of paranoid documentation about our requirement to serialise
2214 	 * memory writes before touching registers / GSM.
2215 	 */
2216 	wmb();
2217 
2218 out:
2219 	intel_runtime_pm_put(i915);
2220 }
2221 
2222 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2223 {
2224 	struct drm_i915_gem_object *obj, *on;
2225 	int i;
2226 
2227 	/*
2228 	 * Only called during RPM suspend. All users of the userfault_list
2229 	 * must be holding an RPM wakeref to ensure that this can not
2230 	 * run concurrently with themselves (and use the struct_mutex for
2231 	 * protection between themselves).
2232 	 */
2233 
2234 	list_for_each_entry_safe(obj, on,
2235 				 &dev_priv->mm.userfault_list, userfault_link)
2236 		__i915_gem_object_release_mmap(obj);
2237 
2238 	/* The fence will be lost when the device powers down. If any were
2239 	 * in use by hardware (i.e. they are pinned), we should not be powering
2240 	 * down! All other fences will be reacquired by the user upon waking.
2241 	 */
2242 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2243 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2244 
2245 		/* Ideally we want to assert that the fence register is not
2246 		 * live at this point (i.e. that no piece of code will be
2247 		 * trying to write through fence + GTT, as that both violates
2248 		 * our tracking of activity and associated locking/barriers,
2249 		 * but also is illegal given that the hw is powered down).
2250 		 *
2251 		 * Previously we used reg->pin_count as a "liveness" indicator.
2252 		 * That is not sufficient, and we need a more fine-grained
2253 		 * tool if we want to have a sanity check here.
2254 		 */
2255 
2256 		if (!reg->vma)
2257 			continue;
2258 
2259 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2260 		reg->dirty = true;
2261 	}
2262 }
2263 
2264 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2265 {
2266 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2267 	int err;
2268 
2269 	err = drm_gem_create_mmap_offset(&obj->base);
2270 	if (likely(!err))
2271 		return 0;
2272 
2273 	/* Attempt to reap some mmap space from dead objects */
2274 	do {
2275 		err = i915_gem_wait_for_idle(dev_priv,
2276 					     I915_WAIT_INTERRUPTIBLE,
2277 					     MAX_SCHEDULE_TIMEOUT);
2278 		if (err)
2279 			break;
2280 
2281 		i915_gem_drain_freed_objects(dev_priv);
2282 		err = drm_gem_create_mmap_offset(&obj->base);
2283 		if (!err)
2284 			break;
2285 
2286 	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2287 
2288 	return err;
2289 }
2290 
2291 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2292 {
2293 	drm_gem_free_mmap_offset(&obj->base);
2294 }
2295 
2296 int
2297 i915_gem_mmap_gtt(struct drm_file *file,
2298 		  struct drm_device *dev,
2299 		  uint32_t handle,
2300 		  uint64_t *offset)
2301 {
2302 	struct drm_i915_gem_object *obj;
2303 	int ret;
2304 
2305 	obj = i915_gem_object_lookup(file, handle);
2306 	if (!obj)
2307 		return -ENOENT;
2308 
2309 	ret = i915_gem_object_create_mmap_offset(obj);
2310 	if (ret == 0)
2311 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2312 
2313 	i915_gem_object_put(obj);
2314 	return ret;
2315 }
2316 
2317 /**
2318  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2319  * @dev: DRM device
2320  * @data: GTT mapping ioctl data
2321  * @file: GEM object info
2322  *
2323  * Simply returns the fake offset to userspace so it can mmap it.
2324  * The mmap call will end up in drm_gem_mmap(), which will set things
2325  * up so we can get faults in the handler above.
2326  *
2327  * The fault handler will take care of binding the object into the GTT
2328  * (since it may have been evicted to make room for something), allocating
2329  * a fence register, and mapping the appropriate aperture address into
2330  * userspace.
2331  */
2332 int
2333 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2334 			struct drm_file *file)
2335 {
2336 	struct drm_i915_gem_mmap_gtt *args = data;
2337 
2338 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2339 }
2340 
2341 /* Immediately discard the backing storage */
2342 static void
2343 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2344 {
2345 	i915_gem_object_free_mmap_offset(obj);
2346 
2347 	if (obj->base.filp == NULL)
2348 		return;
2349 
2350 	/* Our goal here is to return as much of the memory as
2351 	 * is possible back to the system as we are called from OOM.
2352 	 * To do this we must instruct the shmfs to drop all of its
2353 	 * backing pages, *now*.
2354 	 */
2355 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2356 	obj->mm.madv = __I915_MADV_PURGED;
2357 	obj->mm.pages = ERR_PTR(-EFAULT);
2358 }
2359 
2360 /* Try to discard unwanted pages */
2361 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2362 {
2363 	struct address_space *mapping;
2364 
2365 	lockdep_assert_held(&obj->mm.lock);
2366 	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2367 
2368 	switch (obj->mm.madv) {
2369 	case I915_MADV_DONTNEED:
2370 		i915_gem_object_truncate(obj);
2371 	case __I915_MADV_PURGED:
2372 		return;
2373 	}
2374 
2375 	if (obj->base.filp == NULL)
2376 		return;
2377 
2378 	mapping = obj->base.filp->f_mapping,
2379 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2380 }
2381 
2382 /*
2383  * Move pages to appropriate lru and release the pagevec, decrementing the
2384  * ref count of those pages.
2385  */
2386 static void check_release_pagevec(struct pagevec *pvec)
2387 {
2388 	check_move_unevictable_pages(pvec);
2389 	__pagevec_release(pvec);
2390 	cond_resched();
2391 }
2392 
2393 static void
2394 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2395 			      struct sg_table *pages)
2396 {
2397 	struct sgt_iter sgt_iter;
2398 	struct pagevec pvec;
2399 	struct page *page;
2400 
2401 	__i915_gem_object_release_shmem(obj, pages, true);
2402 
2403 	i915_gem_gtt_finish_pages(obj, pages);
2404 
2405 	if (i915_gem_object_needs_bit17_swizzle(obj))
2406 		i915_gem_object_save_bit_17_swizzle(obj, pages);
2407 
2408 	mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping);
2409 
2410 	pagevec_init(&pvec);
2411 	for_each_sgt_page(page, sgt_iter, pages) {
2412 		if (obj->mm.dirty)
2413 			set_page_dirty(page);
2414 
2415 		if (obj->mm.madv == I915_MADV_WILLNEED)
2416 			mark_page_accessed(page);
2417 
2418 		if (!pagevec_add(&pvec, page))
2419 			check_release_pagevec(&pvec);
2420 	}
2421 	if (pagevec_count(&pvec))
2422 		check_release_pagevec(&pvec);
2423 	obj->mm.dirty = false;
2424 
2425 	sg_free_table(pages);
2426 	kfree(pages);
2427 }
2428 
2429 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2430 {
2431 	struct radix_tree_iter iter;
2432 	void __rcu **slot;
2433 
2434 	rcu_read_lock();
2435 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2436 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2437 	rcu_read_unlock();
2438 }
2439 
2440 static struct sg_table *
2441 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2442 {
2443 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2444 	struct sg_table *pages;
2445 
2446 	pages = fetch_and_zero(&obj->mm.pages);
2447 	if (!pages)
2448 		return NULL;
2449 
2450 	spin_lock(&i915->mm.obj_lock);
2451 	list_del(&obj->mm.link);
2452 	spin_unlock(&i915->mm.obj_lock);
2453 
2454 	if (obj->mm.mapping) {
2455 		void *ptr;
2456 
2457 		ptr = page_mask_bits(obj->mm.mapping);
2458 		if (is_vmalloc_addr(ptr))
2459 			vunmap(ptr);
2460 		else
2461 			kunmap(kmap_to_page(ptr));
2462 
2463 		obj->mm.mapping = NULL;
2464 	}
2465 
2466 	__i915_gem_object_reset_page_iter(obj);
2467 	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2468 
2469 	return pages;
2470 }
2471 
2472 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2473 				 enum i915_mm_subclass subclass)
2474 {
2475 	struct sg_table *pages;
2476 
2477 	if (i915_gem_object_has_pinned_pages(obj))
2478 		return;
2479 
2480 	GEM_BUG_ON(obj->bind_count);
2481 	if (!i915_gem_object_has_pages(obj))
2482 		return;
2483 
2484 	/* May be called by shrinker from within get_pages() (on another bo) */
2485 	mutex_lock_nested(&obj->mm.lock, subclass);
2486 	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2487 		goto unlock;
2488 
2489 	/*
2490 	 * ->put_pages might need to allocate memory for the bit17 swizzle
2491 	 * array, hence protect them from being reaped by removing them from gtt
2492 	 * lists early.
2493 	 */
2494 	pages = __i915_gem_object_unset_pages(obj);
2495 	if (!IS_ERR(pages))
2496 		obj->ops->put_pages(obj, pages);
2497 
2498 unlock:
2499 	mutex_unlock(&obj->mm.lock);
2500 }
2501 
2502 bool i915_sg_trim(struct sg_table *orig_st)
2503 {
2504 	struct sg_table new_st;
2505 	struct scatterlist *sg, *new_sg;
2506 	unsigned int i;
2507 
2508 	if (orig_st->nents == orig_st->orig_nents)
2509 		return false;
2510 
2511 	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2512 		return false;
2513 
2514 	new_sg = new_st.sgl;
2515 	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2516 		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2517 		sg_dma_address(new_sg) = sg_dma_address(sg);
2518 		sg_dma_len(new_sg) = sg_dma_len(sg);
2519 
2520 		new_sg = sg_next(new_sg);
2521 	}
2522 	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2523 
2524 	sg_free_table(orig_st);
2525 
2526 	*orig_st = new_st;
2527 	return true;
2528 }
2529 
2530 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2531 {
2532 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2533 	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2534 	unsigned long i;
2535 	struct address_space *mapping;
2536 	struct sg_table *st;
2537 	struct scatterlist *sg;
2538 	struct sgt_iter sgt_iter;
2539 	struct page *page;
2540 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2541 	unsigned int max_segment = i915_sg_segment_size();
2542 	unsigned int sg_page_sizes;
2543 	struct pagevec pvec;
2544 	gfp_t noreclaim;
2545 	int ret;
2546 
2547 	/*
2548 	 * Assert that the object is not currently in any GPU domain. As it
2549 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2550 	 * a GPU cache
2551 	 */
2552 	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2553 	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2554 
2555 	/*
2556 	 * If there's no chance of allocating enough pages for the whole
2557 	 * object, bail early.
2558 	 */
2559 	if (page_count > totalram_pages())
2560 		return -ENOMEM;
2561 
2562 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2563 	if (st == NULL)
2564 		return -ENOMEM;
2565 
2566 rebuild_st:
2567 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2568 		kfree(st);
2569 		return -ENOMEM;
2570 	}
2571 
2572 	/*
2573 	 * Get the list of pages out of our struct file.  They'll be pinned
2574 	 * at this point until we release them.
2575 	 *
2576 	 * Fail silently without starting the shrinker
2577 	 */
2578 	mapping = obj->base.filp->f_mapping;
2579 	mapping_set_unevictable(mapping);
2580 	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2581 	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2582 
2583 	sg = st->sgl;
2584 	st->nents = 0;
2585 	sg_page_sizes = 0;
2586 	for (i = 0; i < page_count; i++) {
2587 		const unsigned int shrink[] = {
2588 			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2589 			0,
2590 		}, *s = shrink;
2591 		gfp_t gfp = noreclaim;
2592 
2593 		do {
2594 			cond_resched();
2595 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2596 			if (likely(!IS_ERR(page)))
2597 				break;
2598 
2599 			if (!*s) {
2600 				ret = PTR_ERR(page);
2601 				goto err_sg;
2602 			}
2603 
2604 			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2605 
2606 			/*
2607 			 * We've tried hard to allocate the memory by reaping
2608 			 * our own buffer, now let the real VM do its job and
2609 			 * go down in flames if truly OOM.
2610 			 *
2611 			 * However, since graphics tend to be disposable,
2612 			 * defer the oom here by reporting the ENOMEM back
2613 			 * to userspace.
2614 			 */
2615 			if (!*s) {
2616 				/* reclaim and warn, but no oom */
2617 				gfp = mapping_gfp_mask(mapping);
2618 
2619 				/*
2620 				 * Our bo are always dirty and so we require
2621 				 * kswapd to reclaim our pages (direct reclaim
2622 				 * does not effectively begin pageout of our
2623 				 * buffers on its own). However, direct reclaim
2624 				 * only waits for kswapd when under allocation
2625 				 * congestion. So as a result __GFP_RECLAIM is
2626 				 * unreliable and fails to actually reclaim our
2627 				 * dirty pages -- unless you try over and over
2628 				 * again with !__GFP_NORETRY. However, we still
2629 				 * want to fail this allocation rather than
2630 				 * trigger the out-of-memory killer and for
2631 				 * this we want __GFP_RETRY_MAYFAIL.
2632 				 */
2633 				gfp |= __GFP_RETRY_MAYFAIL;
2634 			}
2635 		} while (1);
2636 
2637 		if (!i ||
2638 		    sg->length >= max_segment ||
2639 		    page_to_pfn(page) != last_pfn + 1) {
2640 			if (i) {
2641 				sg_page_sizes |= sg->length;
2642 				sg = sg_next(sg);
2643 			}
2644 			st->nents++;
2645 			sg_set_page(sg, page, PAGE_SIZE, 0);
2646 		} else {
2647 			sg->length += PAGE_SIZE;
2648 		}
2649 		last_pfn = page_to_pfn(page);
2650 
2651 		/* Check that the i965g/gm workaround works. */
2652 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2653 	}
2654 	if (sg) { /* loop terminated early; short sg table */
2655 		sg_page_sizes |= sg->length;
2656 		sg_mark_end(sg);
2657 	}
2658 
2659 	/* Trim unused sg entries to avoid wasting memory. */
2660 	i915_sg_trim(st);
2661 
2662 	ret = i915_gem_gtt_prepare_pages(obj, st);
2663 	if (ret) {
2664 		/*
2665 		 * DMA remapping failed? One possible cause is that
2666 		 * it could not reserve enough large entries, asking
2667 		 * for PAGE_SIZE chunks instead may be helpful.
2668 		 */
2669 		if (max_segment > PAGE_SIZE) {
2670 			for_each_sgt_page(page, sgt_iter, st)
2671 				put_page(page);
2672 			sg_free_table(st);
2673 
2674 			max_segment = PAGE_SIZE;
2675 			goto rebuild_st;
2676 		} else {
2677 			dev_warn(&dev_priv->drm.pdev->dev,
2678 				 "Failed to DMA remap %lu pages\n",
2679 				 page_count);
2680 			goto err_pages;
2681 		}
2682 	}
2683 
2684 	if (i915_gem_object_needs_bit17_swizzle(obj))
2685 		i915_gem_object_do_bit_17_swizzle(obj, st);
2686 
2687 	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2688 
2689 	return 0;
2690 
2691 err_sg:
2692 	sg_mark_end(sg);
2693 err_pages:
2694 	mapping_clear_unevictable(mapping);
2695 	pagevec_init(&pvec);
2696 	for_each_sgt_page(page, sgt_iter, st) {
2697 		if (!pagevec_add(&pvec, page))
2698 			check_release_pagevec(&pvec);
2699 	}
2700 	if (pagevec_count(&pvec))
2701 		check_release_pagevec(&pvec);
2702 	sg_free_table(st);
2703 	kfree(st);
2704 
2705 	/*
2706 	 * shmemfs first checks if there is enough memory to allocate the page
2707 	 * and reports ENOSPC should there be insufficient, along with the usual
2708 	 * ENOMEM for a genuine allocation failure.
2709 	 *
2710 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2711 	 * space and so want to translate the error from shmemfs back to our
2712 	 * usual understanding of ENOMEM.
2713 	 */
2714 	if (ret == -ENOSPC)
2715 		ret = -ENOMEM;
2716 
2717 	return ret;
2718 }
2719 
2720 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2721 				 struct sg_table *pages,
2722 				 unsigned int sg_page_sizes)
2723 {
2724 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2725 	unsigned long supported = INTEL_INFO(i915)->page_sizes;
2726 	int i;
2727 
2728 	lockdep_assert_held(&obj->mm.lock);
2729 
2730 	obj->mm.get_page.sg_pos = pages->sgl;
2731 	obj->mm.get_page.sg_idx = 0;
2732 
2733 	obj->mm.pages = pages;
2734 
2735 	if (i915_gem_object_is_tiled(obj) &&
2736 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2737 		GEM_BUG_ON(obj->mm.quirked);
2738 		__i915_gem_object_pin_pages(obj);
2739 		obj->mm.quirked = true;
2740 	}
2741 
2742 	GEM_BUG_ON(!sg_page_sizes);
2743 	obj->mm.page_sizes.phys = sg_page_sizes;
2744 
2745 	/*
2746 	 * Calculate the supported page-sizes which fit into the given
2747 	 * sg_page_sizes. This will give us the page-sizes which we may be able
2748 	 * to use opportunistically when later inserting into the GTT. For
2749 	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2750 	 * 64K or 4K pages, although in practice this will depend on a number of
2751 	 * other factors.
2752 	 */
2753 	obj->mm.page_sizes.sg = 0;
2754 	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2755 		if (obj->mm.page_sizes.phys & ~0u << i)
2756 			obj->mm.page_sizes.sg |= BIT(i);
2757 	}
2758 	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2759 
2760 	spin_lock(&i915->mm.obj_lock);
2761 	list_add(&obj->mm.link, &i915->mm.unbound_list);
2762 	spin_unlock(&i915->mm.obj_lock);
2763 }
2764 
2765 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2766 {
2767 	int err;
2768 
2769 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2770 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2771 		return -EFAULT;
2772 	}
2773 
2774 	err = obj->ops->get_pages(obj);
2775 	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2776 
2777 	return err;
2778 }
2779 
2780 /* Ensure that the associated pages are gathered from the backing storage
2781  * and pinned into our object. i915_gem_object_pin_pages() may be called
2782  * multiple times before they are released by a single call to
2783  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2784  * either as a result of memory pressure (reaping pages under the shrinker)
2785  * or as the object is itself released.
2786  */
2787 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2788 {
2789 	int err;
2790 
2791 	err = mutex_lock_interruptible(&obj->mm.lock);
2792 	if (err)
2793 		return err;
2794 
2795 	if (unlikely(!i915_gem_object_has_pages(obj))) {
2796 		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2797 
2798 		err = ____i915_gem_object_get_pages(obj);
2799 		if (err)
2800 			goto unlock;
2801 
2802 		smp_mb__before_atomic();
2803 	}
2804 	atomic_inc(&obj->mm.pages_pin_count);
2805 
2806 unlock:
2807 	mutex_unlock(&obj->mm.lock);
2808 	return err;
2809 }
2810 
2811 /* The 'mapping' part of i915_gem_object_pin_map() below */
2812 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2813 				 enum i915_map_type type)
2814 {
2815 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2816 	struct sg_table *sgt = obj->mm.pages;
2817 	struct sgt_iter sgt_iter;
2818 	struct page *page;
2819 	struct page *stack_pages[32];
2820 	struct page **pages = stack_pages;
2821 	unsigned long i = 0;
2822 	pgprot_t pgprot;
2823 	void *addr;
2824 
2825 	/* A single page can always be kmapped */
2826 	if (n_pages == 1 && type == I915_MAP_WB)
2827 		return kmap(sg_page(sgt->sgl));
2828 
2829 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2830 		/* Too big for stack -- allocate temporary array instead */
2831 		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2832 		if (!pages)
2833 			return NULL;
2834 	}
2835 
2836 	for_each_sgt_page(page, sgt_iter, sgt)
2837 		pages[i++] = page;
2838 
2839 	/* Check that we have the expected number of pages */
2840 	GEM_BUG_ON(i != n_pages);
2841 
2842 	switch (type) {
2843 	default:
2844 		MISSING_CASE(type);
2845 		/* fallthrough to use PAGE_KERNEL anyway */
2846 	case I915_MAP_WB:
2847 		pgprot = PAGE_KERNEL;
2848 		break;
2849 	case I915_MAP_WC:
2850 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2851 		break;
2852 	}
2853 	addr = vmap(pages, n_pages, 0, pgprot);
2854 
2855 	if (pages != stack_pages)
2856 		kvfree(pages);
2857 
2858 	return addr;
2859 }
2860 
2861 /* get, pin, and map the pages of the object into kernel space */
2862 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2863 			      enum i915_map_type type)
2864 {
2865 	enum i915_map_type has_type;
2866 	bool pinned;
2867 	void *ptr;
2868 	int ret;
2869 
2870 	if (unlikely(!i915_gem_object_has_struct_page(obj)))
2871 		return ERR_PTR(-ENXIO);
2872 
2873 	ret = mutex_lock_interruptible(&obj->mm.lock);
2874 	if (ret)
2875 		return ERR_PTR(ret);
2876 
2877 	pinned = !(type & I915_MAP_OVERRIDE);
2878 	type &= ~I915_MAP_OVERRIDE;
2879 
2880 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2881 		if (unlikely(!i915_gem_object_has_pages(obj))) {
2882 			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2883 
2884 			ret = ____i915_gem_object_get_pages(obj);
2885 			if (ret)
2886 				goto err_unlock;
2887 
2888 			smp_mb__before_atomic();
2889 		}
2890 		atomic_inc(&obj->mm.pages_pin_count);
2891 		pinned = false;
2892 	}
2893 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2894 
2895 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2896 	if (ptr && has_type != type) {
2897 		if (pinned) {
2898 			ret = -EBUSY;
2899 			goto err_unpin;
2900 		}
2901 
2902 		if (is_vmalloc_addr(ptr))
2903 			vunmap(ptr);
2904 		else
2905 			kunmap(kmap_to_page(ptr));
2906 
2907 		ptr = obj->mm.mapping = NULL;
2908 	}
2909 
2910 	if (!ptr) {
2911 		ptr = i915_gem_object_map(obj, type);
2912 		if (!ptr) {
2913 			ret = -ENOMEM;
2914 			goto err_unpin;
2915 		}
2916 
2917 		obj->mm.mapping = page_pack_bits(ptr, type);
2918 	}
2919 
2920 out_unlock:
2921 	mutex_unlock(&obj->mm.lock);
2922 	return ptr;
2923 
2924 err_unpin:
2925 	atomic_dec(&obj->mm.pages_pin_count);
2926 err_unlock:
2927 	ptr = ERR_PTR(ret);
2928 	goto out_unlock;
2929 }
2930 
2931 static int
2932 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2933 			   const struct drm_i915_gem_pwrite *arg)
2934 {
2935 	struct address_space *mapping = obj->base.filp->f_mapping;
2936 	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2937 	u64 remain, offset;
2938 	unsigned int pg;
2939 
2940 	/* Before we instantiate/pin the backing store for our use, we
2941 	 * can prepopulate the shmemfs filp efficiently using a write into
2942 	 * the pagecache. We avoid the penalty of instantiating all the
2943 	 * pages, important if the user is just writing to a few and never
2944 	 * uses the object on the GPU, and using a direct write into shmemfs
2945 	 * allows it to avoid the cost of retrieving a page (either swapin
2946 	 * or clearing-before-use) before it is overwritten.
2947 	 */
2948 	if (i915_gem_object_has_pages(obj))
2949 		return -ENODEV;
2950 
2951 	if (obj->mm.madv != I915_MADV_WILLNEED)
2952 		return -EFAULT;
2953 
2954 	/* Before the pages are instantiated the object is treated as being
2955 	 * in the CPU domain. The pages will be clflushed as required before
2956 	 * use, and we can freely write into the pages directly. If userspace
2957 	 * races pwrite with any other operation; corruption will ensue -
2958 	 * that is userspace's prerogative!
2959 	 */
2960 
2961 	remain = arg->size;
2962 	offset = arg->offset;
2963 	pg = offset_in_page(offset);
2964 
2965 	do {
2966 		unsigned int len, unwritten;
2967 		struct page *page;
2968 		void *data, *vaddr;
2969 		int err;
2970 
2971 		len = PAGE_SIZE - pg;
2972 		if (len > remain)
2973 			len = remain;
2974 
2975 		err = pagecache_write_begin(obj->base.filp, mapping,
2976 					    offset, len, 0,
2977 					    &page, &data);
2978 		if (err < 0)
2979 			return err;
2980 
2981 		vaddr = kmap(page);
2982 		unwritten = copy_from_user(vaddr + pg, user_data, len);
2983 		kunmap(page);
2984 
2985 		err = pagecache_write_end(obj->base.filp, mapping,
2986 					  offset, len, len - unwritten,
2987 					  page, data);
2988 		if (err < 0)
2989 			return err;
2990 
2991 		if (unwritten)
2992 			return -EFAULT;
2993 
2994 		remain -= len;
2995 		user_data += len;
2996 		offset += len;
2997 		pg = 0;
2998 	} while (remain);
2999 
3000 	return 0;
3001 }
3002 
3003 static void i915_gem_client_mark_guilty(struct drm_i915_file_private *file_priv,
3004 					const struct i915_gem_context *ctx)
3005 {
3006 	unsigned int score;
3007 	unsigned long prev_hang;
3008 
3009 	if (i915_gem_context_is_banned(ctx))
3010 		score = I915_CLIENT_SCORE_CONTEXT_BAN;
3011 	else
3012 		score = 0;
3013 
3014 	prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
3015 	if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
3016 		score += I915_CLIENT_SCORE_HANG_FAST;
3017 
3018 	if (score) {
3019 		atomic_add(score, &file_priv->ban_score);
3020 
3021 		DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
3022 				 ctx->name, score,
3023 				 atomic_read(&file_priv->ban_score));
3024 	}
3025 }
3026 
3027 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
3028 {
3029 	unsigned int score;
3030 	bool banned, bannable;
3031 
3032 	atomic_inc(&ctx->guilty_count);
3033 
3034 	bannable = i915_gem_context_is_bannable(ctx);
3035 	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
3036 	banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
3037 
3038 	/* Cool contexts don't accumulate client ban score */
3039 	if (!bannable)
3040 		return;
3041 
3042 	if (banned) {
3043 		DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, banned\n",
3044 				 ctx->name, atomic_read(&ctx->guilty_count),
3045 				 score);
3046 		i915_gem_context_set_banned(ctx);
3047 	}
3048 
3049 	if (!IS_ERR_OR_NULL(ctx->file_priv))
3050 		i915_gem_client_mark_guilty(ctx->file_priv, ctx);
3051 }
3052 
3053 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
3054 {
3055 	atomic_inc(&ctx->active_count);
3056 }
3057 
3058 struct i915_request *
3059 i915_gem_find_active_request(struct intel_engine_cs *engine)
3060 {
3061 	struct i915_request *request, *active = NULL;
3062 	unsigned long flags;
3063 
3064 	/*
3065 	 * We are called by the error capture, reset and to dump engine
3066 	 * state at random points in time. In particular, note that neither is
3067 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
3068 	 * and we assume that no more writes can happen (we waited long enough
3069 	 * for all writes that were in transaction to be flushed) - adding an
3070 	 * extra delay for a recent interrupt is pointless. Hence, we do
3071 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
3072 	 * At all other times, we must assume the GPU is still running, but
3073 	 * we only care about the snapshot of this moment.
3074 	 */
3075 	spin_lock_irqsave(&engine->timeline.lock, flags);
3076 	list_for_each_entry(request, &engine->timeline.requests, link) {
3077 		if (__i915_request_completed(request, request->global_seqno))
3078 			continue;
3079 
3080 		active = request;
3081 		break;
3082 	}
3083 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3084 
3085 	return active;
3086 }
3087 
3088 /*
3089  * Ensure irq handler finishes, and not run again.
3090  * Also return the active request so that we only search for it once.
3091  */
3092 struct i915_request *
3093 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
3094 {
3095 	struct i915_request *request;
3096 
3097 	/*
3098 	 * During the reset sequence, we must prevent the engine from
3099 	 * entering RC6. As the context state is undefined until we restart
3100 	 * the engine, if it does enter RC6 during the reset, the state
3101 	 * written to the powercontext is undefined and so we may lose
3102 	 * GPU state upon resume, i.e. fail to restart after a reset.
3103 	 */
3104 	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
3105 
3106 	request = engine->reset.prepare(engine);
3107 	if (request && request->fence.error == -EIO)
3108 		request = ERR_PTR(-EIO); /* Previous reset failed! */
3109 
3110 	return request;
3111 }
3112 
3113 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3114 {
3115 	struct intel_engine_cs *engine;
3116 	struct i915_request *request;
3117 	enum intel_engine_id id;
3118 	int err = 0;
3119 
3120 	for_each_engine(engine, dev_priv, id) {
3121 		request = i915_gem_reset_prepare_engine(engine);
3122 		if (IS_ERR(request)) {
3123 			err = PTR_ERR(request);
3124 			continue;
3125 		}
3126 
3127 		engine->hangcheck.active_request = request;
3128 	}
3129 
3130 	i915_gem_revoke_fences(dev_priv);
3131 	intel_uc_sanitize(dev_priv);
3132 
3133 	return err;
3134 }
3135 
3136 static void engine_skip_context(struct i915_request *request)
3137 {
3138 	struct intel_engine_cs *engine = request->engine;
3139 	struct i915_gem_context *hung_ctx = request->gem_context;
3140 	struct i915_timeline *timeline = request->timeline;
3141 	unsigned long flags;
3142 
3143 	GEM_BUG_ON(timeline == &engine->timeline);
3144 
3145 	spin_lock_irqsave(&engine->timeline.lock, flags);
3146 	spin_lock(&timeline->lock);
3147 
3148 	list_for_each_entry_continue(request, &engine->timeline.requests, link)
3149 		if (request->gem_context == hung_ctx)
3150 			i915_request_skip(request, -EIO);
3151 
3152 	list_for_each_entry(request, &timeline->requests, link)
3153 		i915_request_skip(request, -EIO);
3154 
3155 	spin_unlock(&timeline->lock);
3156 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3157 }
3158 
3159 /* Returns the request if it was guilty of the hang */
3160 static struct i915_request *
3161 i915_gem_reset_request(struct intel_engine_cs *engine,
3162 		       struct i915_request *request,
3163 		       bool stalled)
3164 {
3165 	/* The guilty request will get skipped on a hung engine.
3166 	 *
3167 	 * Users of client default contexts do not rely on logical
3168 	 * state preserved between batches so it is safe to execute
3169 	 * queued requests following the hang. Non default contexts
3170 	 * rely on preserved state, so skipping a batch loses the
3171 	 * evolution of the state and it needs to be considered corrupted.
3172 	 * Executing more queued batches on top of corrupted state is
3173 	 * risky. But we take the risk by trying to advance through
3174 	 * the queued requests in order to make the client behaviour
3175 	 * more predictable around resets, by not throwing away random
3176 	 * amount of batches it has prepared for execution. Sophisticated
3177 	 * clients can use gem_reset_stats_ioctl and dma fence status
3178 	 * (exported via sync_file info ioctl on explicit fences) to observe
3179 	 * when it loses the context state and should rebuild accordingly.
3180 	 *
3181 	 * The context ban, and ultimately the client ban, mechanism are safety
3182 	 * valves if client submission ends up resulting in nothing more than
3183 	 * subsequent hangs.
3184 	 */
3185 
3186 	if (i915_request_completed(request)) {
3187 		GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
3188 			  engine->name, request->global_seqno,
3189 			  request->fence.context, request->fence.seqno,
3190 			  intel_engine_get_seqno(engine));
3191 		stalled = false;
3192 	}
3193 
3194 	if (stalled) {
3195 		i915_gem_context_mark_guilty(request->gem_context);
3196 		i915_request_skip(request, -EIO);
3197 
3198 		/* If this context is now banned, skip all pending requests. */
3199 		if (i915_gem_context_is_banned(request->gem_context))
3200 			engine_skip_context(request);
3201 	} else {
3202 		/*
3203 		 * Since this is not the hung engine, it may have advanced
3204 		 * since the hang declaration. Double check by refinding
3205 		 * the active request at the time of the reset.
3206 		 */
3207 		request = i915_gem_find_active_request(engine);
3208 		if (request) {
3209 			unsigned long flags;
3210 
3211 			i915_gem_context_mark_innocent(request->gem_context);
3212 			dma_fence_set_error(&request->fence, -EAGAIN);
3213 
3214 			/* Rewind the engine to replay the incomplete rq */
3215 			spin_lock_irqsave(&engine->timeline.lock, flags);
3216 			request = list_prev_entry(request, link);
3217 			if (&request->link == &engine->timeline.requests)
3218 				request = NULL;
3219 			spin_unlock_irqrestore(&engine->timeline.lock, flags);
3220 		}
3221 	}
3222 
3223 	return request;
3224 }
3225 
3226 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3227 			   struct i915_request *request,
3228 			   bool stalled)
3229 {
3230 	/*
3231 	 * Make sure this write is visible before we re-enable the interrupt
3232 	 * handlers on another CPU, as tasklet_enable() resolves to just
3233 	 * a compiler barrier which is insufficient for our purpose here.
3234 	 */
3235 	smp_store_mb(engine->irq_posted, 0);
3236 
3237 	if (request)
3238 		request = i915_gem_reset_request(engine, request, stalled);
3239 
3240 	/* Setup the CS to resume from the breadcrumb of the hung request */
3241 	engine->reset.reset(engine, request);
3242 }
3243 
3244 void i915_gem_reset(struct drm_i915_private *dev_priv,
3245 		    unsigned int stalled_mask)
3246 {
3247 	struct intel_engine_cs *engine;
3248 	enum intel_engine_id id;
3249 
3250 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3251 
3252 	i915_retire_requests(dev_priv);
3253 
3254 	for_each_engine(engine, dev_priv, id) {
3255 		struct intel_context *ce;
3256 
3257 		i915_gem_reset_engine(engine,
3258 				      engine->hangcheck.active_request,
3259 				      stalled_mask & ENGINE_MASK(id));
3260 		ce = fetch_and_zero(&engine->last_retired_context);
3261 		if (ce)
3262 			intel_context_unpin(ce);
3263 
3264 		/*
3265 		 * Ostensibily, we always want a context loaded for powersaving,
3266 		 * so if the engine is idle after the reset, send a request
3267 		 * to load our scratch kernel_context.
3268 		 *
3269 		 * More mysteriously, if we leave the engine idle after a reset,
3270 		 * the next userspace batch may hang, with what appears to be
3271 		 * an incoherent read by the CS (presumably stale TLB). An
3272 		 * empty request appears sufficient to paper over the glitch.
3273 		 */
3274 		if (intel_engine_is_idle(engine)) {
3275 			struct i915_request *rq;
3276 
3277 			rq = i915_request_alloc(engine,
3278 						dev_priv->kernel_context);
3279 			if (!IS_ERR(rq))
3280 				i915_request_add(rq);
3281 		}
3282 	}
3283 
3284 	i915_gem_restore_fences(dev_priv);
3285 }
3286 
3287 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3288 {
3289 	engine->reset.finish(engine);
3290 
3291 	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3292 }
3293 
3294 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3295 {
3296 	struct intel_engine_cs *engine;
3297 	enum intel_engine_id id;
3298 
3299 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3300 
3301 	for_each_engine(engine, dev_priv, id) {
3302 		engine->hangcheck.active_request = NULL;
3303 		i915_gem_reset_finish_engine(engine);
3304 	}
3305 }
3306 
3307 static void nop_submit_request(struct i915_request *request)
3308 {
3309 	unsigned long flags;
3310 
3311 	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3312 		  request->engine->name,
3313 		  request->fence.context, request->fence.seqno);
3314 	dma_fence_set_error(&request->fence, -EIO);
3315 
3316 	spin_lock_irqsave(&request->engine->timeline.lock, flags);
3317 	__i915_request_submit(request);
3318 	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3319 	spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3320 }
3321 
3322 void i915_gem_set_wedged(struct drm_i915_private *i915)
3323 {
3324 	struct intel_engine_cs *engine;
3325 	enum intel_engine_id id;
3326 
3327 	GEM_TRACE("start\n");
3328 
3329 	if (GEM_SHOW_DEBUG()) {
3330 		struct drm_printer p = drm_debug_printer(__func__);
3331 
3332 		for_each_engine(engine, i915, id)
3333 			intel_engine_dump(engine, &p, "%s\n", engine->name);
3334 	}
3335 
3336 	if (test_and_set_bit(I915_WEDGED, &i915->gpu_error.flags))
3337 		goto out;
3338 
3339 	/*
3340 	 * First, stop submission to hw, but do not yet complete requests by
3341 	 * rolling the global seqno forward (since this would complete requests
3342 	 * for which we haven't set the fence error to EIO yet).
3343 	 */
3344 	for_each_engine(engine, i915, id)
3345 		i915_gem_reset_prepare_engine(engine);
3346 
3347 	/* Even if the GPU reset fails, it should still stop the engines */
3348 	if (INTEL_GEN(i915) >= 5)
3349 		intel_gpu_reset(i915, ALL_ENGINES);
3350 
3351 	for_each_engine(engine, i915, id) {
3352 		engine->submit_request = nop_submit_request;
3353 		engine->schedule = NULL;
3354 	}
3355 	i915->caps.scheduler = 0;
3356 
3357 	/*
3358 	 * Make sure no request can slip through without getting completed by
3359 	 * either this call here to intel_engine_init_global_seqno, or the one
3360 	 * in nop_submit_request.
3361 	 */
3362 	synchronize_rcu();
3363 
3364 	/* Mark all executing requests as skipped */
3365 	for_each_engine(engine, i915, id)
3366 		engine->cancel_requests(engine);
3367 
3368 	for_each_engine(engine, i915, id) {
3369 		i915_gem_reset_finish_engine(engine);
3370 		intel_engine_wakeup(engine);
3371 	}
3372 
3373 out:
3374 	GEM_TRACE("end\n");
3375 
3376 	wake_up_all(&i915->gpu_error.reset_queue);
3377 }
3378 
3379 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3380 {
3381 	struct i915_timeline *tl;
3382 
3383 	lockdep_assert_held(&i915->drm.struct_mutex);
3384 	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3385 		return true;
3386 
3387 	GEM_TRACE("start\n");
3388 
3389 	/*
3390 	 * Before unwedging, make sure that all pending operations
3391 	 * are flushed and errored out - we may have requests waiting upon
3392 	 * third party fences. We marked all inflight requests as EIO, and
3393 	 * every execbuf since returned EIO, for consistency we want all
3394 	 * the currently pending requests to also be marked as EIO, which
3395 	 * is done inside our nop_submit_request - and so we must wait.
3396 	 *
3397 	 * No more can be submitted until we reset the wedged bit.
3398 	 */
3399 	list_for_each_entry(tl, &i915->gt.timelines, link) {
3400 		struct i915_request *rq;
3401 
3402 		rq = i915_gem_active_peek(&tl->last_request,
3403 					  &i915->drm.struct_mutex);
3404 		if (!rq)
3405 			continue;
3406 
3407 		/*
3408 		 * We can't use our normal waiter as we want to
3409 		 * avoid recursively trying to handle the current
3410 		 * reset. The basic dma_fence_default_wait() installs
3411 		 * a callback for dma_fence_signal(), which is
3412 		 * triggered by our nop handler (indirectly, the
3413 		 * callback enables the signaler thread which is
3414 		 * woken by the nop_submit_request() advancing the seqno
3415 		 * and when the seqno passes the fence, the signaler
3416 		 * then signals the fence waking us up).
3417 		 */
3418 		if (dma_fence_default_wait(&rq->fence, true,
3419 					   MAX_SCHEDULE_TIMEOUT) < 0)
3420 			return false;
3421 	}
3422 	i915_retire_requests(i915);
3423 	GEM_BUG_ON(i915->gt.active_requests);
3424 
3425 	if (!intel_gpu_reset(i915, ALL_ENGINES))
3426 		intel_engines_sanitize(i915);
3427 
3428 	/*
3429 	 * Undo nop_submit_request. We prevent all new i915 requests from
3430 	 * being queued (by disallowing execbuf whilst wedged) so having
3431 	 * waited for all active requests above, we know the system is idle
3432 	 * and do not have to worry about a thread being inside
3433 	 * engine->submit_request() as we swap over. So unlike installing
3434 	 * the nop_submit_request on reset, we can do this from normal
3435 	 * context and do not require stop_machine().
3436 	 */
3437 	intel_engines_reset_default_submission(i915);
3438 	i915_gem_contexts_lost(i915);
3439 
3440 	GEM_TRACE("end\n");
3441 
3442 	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3443 	clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3444 
3445 	return true;
3446 }
3447 
3448 static void
3449 i915_gem_retire_work_handler(struct work_struct *work)
3450 {
3451 	struct drm_i915_private *dev_priv =
3452 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3453 	struct drm_device *dev = &dev_priv->drm;
3454 
3455 	/* Come back later if the device is busy... */
3456 	if (mutex_trylock(&dev->struct_mutex)) {
3457 		i915_retire_requests(dev_priv);
3458 		mutex_unlock(&dev->struct_mutex);
3459 	}
3460 
3461 	/*
3462 	 * Keep the retire handler running until we are finally idle.
3463 	 * We do not need to do this test under locking as in the worst-case
3464 	 * we queue the retire worker once too often.
3465 	 */
3466 	if (READ_ONCE(dev_priv->gt.awake))
3467 		queue_delayed_work(dev_priv->wq,
3468 				   &dev_priv->gt.retire_work,
3469 				   round_jiffies_up_relative(HZ));
3470 }
3471 
3472 static void shrink_caches(struct drm_i915_private *i915)
3473 {
3474 	/*
3475 	 * kmem_cache_shrink() discards empty slabs and reorders partially
3476 	 * filled slabs to prioritise allocating from the mostly full slabs,
3477 	 * with the aim of reducing fragmentation.
3478 	 */
3479 	kmem_cache_shrink(i915->priorities);
3480 	kmem_cache_shrink(i915->dependencies);
3481 	kmem_cache_shrink(i915->requests);
3482 	kmem_cache_shrink(i915->luts);
3483 	kmem_cache_shrink(i915->vmas);
3484 	kmem_cache_shrink(i915->objects);
3485 }
3486 
3487 struct sleep_rcu_work {
3488 	union {
3489 		struct rcu_head rcu;
3490 		struct work_struct work;
3491 	};
3492 	struct drm_i915_private *i915;
3493 	unsigned int epoch;
3494 };
3495 
3496 static inline bool
3497 same_epoch(struct drm_i915_private *i915, unsigned int epoch)
3498 {
3499 	/*
3500 	 * There is a small chance that the epoch wrapped since we started
3501 	 * sleeping. If we assume that epoch is at least a u32, then it will
3502 	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
3503 	 */
3504 	return epoch == READ_ONCE(i915->gt.epoch);
3505 }
3506 
3507 static void __sleep_work(struct work_struct *work)
3508 {
3509 	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
3510 	struct drm_i915_private *i915 = s->i915;
3511 	unsigned int epoch = s->epoch;
3512 
3513 	kfree(s);
3514 	if (same_epoch(i915, epoch))
3515 		shrink_caches(i915);
3516 }
3517 
3518 static void __sleep_rcu(struct rcu_head *rcu)
3519 {
3520 	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
3521 	struct drm_i915_private *i915 = s->i915;
3522 
3523 	destroy_rcu_head(&s->rcu);
3524 
3525 	if (same_epoch(i915, s->epoch)) {
3526 		INIT_WORK(&s->work, __sleep_work);
3527 		queue_work(i915->wq, &s->work);
3528 	} else {
3529 		kfree(s);
3530 	}
3531 }
3532 
3533 static inline bool
3534 new_requests_since_last_retire(const struct drm_i915_private *i915)
3535 {
3536 	return (READ_ONCE(i915->gt.active_requests) ||
3537 		work_pending(&i915->gt.idle_work.work));
3538 }
3539 
3540 static void assert_kernel_context_is_current(struct drm_i915_private *i915)
3541 {
3542 	struct intel_engine_cs *engine;
3543 	enum intel_engine_id id;
3544 
3545 	if (i915_terminally_wedged(&i915->gpu_error))
3546 		return;
3547 
3548 	GEM_BUG_ON(i915->gt.active_requests);
3549 	for_each_engine(engine, i915, id) {
3550 		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
3551 		GEM_BUG_ON(engine->last_retired_context !=
3552 			   to_intel_context(i915->kernel_context, engine));
3553 	}
3554 }
3555 
3556 static void
3557 i915_gem_idle_work_handler(struct work_struct *work)
3558 {
3559 	struct drm_i915_private *dev_priv =
3560 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3561 	unsigned int epoch = I915_EPOCH_INVALID;
3562 	bool rearm_hangcheck;
3563 
3564 	if (!READ_ONCE(dev_priv->gt.awake))
3565 		return;
3566 
3567 	if (READ_ONCE(dev_priv->gt.active_requests))
3568 		return;
3569 
3570 	/*
3571 	 * Flush out the last user context, leaving only the pinned
3572 	 * kernel context resident. When we are idling on the kernel_context,
3573 	 * no more new requests (with a context switch) are emitted and we
3574 	 * can finally rest. A consequence is that the idle work handler is
3575 	 * always called at least twice before idling (and if the system is
3576 	 * idle that implies a round trip through the retire worker).
3577 	 */
3578 	mutex_lock(&dev_priv->drm.struct_mutex);
3579 	i915_gem_switch_to_kernel_context(dev_priv);
3580 	mutex_unlock(&dev_priv->drm.struct_mutex);
3581 
3582 	GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
3583 		  READ_ONCE(dev_priv->gt.active_requests));
3584 
3585 	/*
3586 	 * Wait for last execlists context complete, but bail out in case a
3587 	 * new request is submitted. As we don't trust the hardware, we
3588 	 * continue on if the wait times out. This is necessary to allow
3589 	 * the machine to suspend even if the hardware dies, and we will
3590 	 * try to recover in resume (after depriving the hardware of power,
3591 	 * it may be in a better mmod).
3592 	 */
3593 	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
3594 		   intel_engines_are_idle(dev_priv),
3595 		   I915_IDLE_ENGINES_TIMEOUT * 1000,
3596 		   10, 500);
3597 
3598 	rearm_hangcheck =
3599 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3600 
3601 	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3602 		/* Currently busy, come back later */
3603 		mod_delayed_work(dev_priv->wq,
3604 				 &dev_priv->gt.idle_work,
3605 				 msecs_to_jiffies(50));
3606 		goto out_rearm;
3607 	}
3608 
3609 	/*
3610 	 * New request retired after this work handler started, extend active
3611 	 * period until next instance of the work.
3612 	 */
3613 	if (new_requests_since_last_retire(dev_priv))
3614 		goto out_unlock;
3615 
3616 	epoch = __i915_gem_park(dev_priv);
3617 
3618 	assert_kernel_context_is_current(dev_priv);
3619 
3620 	rearm_hangcheck = false;
3621 out_unlock:
3622 	mutex_unlock(&dev_priv->drm.struct_mutex);
3623 
3624 out_rearm:
3625 	if (rearm_hangcheck) {
3626 		GEM_BUG_ON(!dev_priv->gt.awake);
3627 		i915_queue_hangcheck(dev_priv);
3628 	}
3629 
3630 	/*
3631 	 * When we are idle, it is an opportune time to reap our caches.
3632 	 * However, we have many objects that utilise RCU and the ordered
3633 	 * i915->wq that this work is executing on. To try and flush any
3634 	 * pending frees now we are idle, we first wait for an RCU grace
3635 	 * period, and then queue a task (that will run last on the wq) to
3636 	 * shrink and re-optimize the caches.
3637 	 */
3638 	if (same_epoch(dev_priv, epoch)) {
3639 		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
3640 		if (s) {
3641 			init_rcu_head(&s->rcu);
3642 			s->i915 = dev_priv;
3643 			s->epoch = epoch;
3644 			call_rcu(&s->rcu, __sleep_rcu);
3645 		}
3646 	}
3647 }
3648 
3649 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3650 {
3651 	struct drm_i915_private *i915 = to_i915(gem->dev);
3652 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
3653 	struct drm_i915_file_private *fpriv = file->driver_priv;
3654 	struct i915_lut_handle *lut, *ln;
3655 
3656 	mutex_lock(&i915->drm.struct_mutex);
3657 
3658 	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3659 		struct i915_gem_context *ctx = lut->ctx;
3660 		struct i915_vma *vma;
3661 
3662 		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3663 		if (ctx->file_priv != fpriv)
3664 			continue;
3665 
3666 		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3667 		GEM_BUG_ON(vma->obj != obj);
3668 
3669 		/* We allow the process to have multiple handles to the same
3670 		 * vma, in the same fd namespace, by virtue of flink/open.
3671 		 */
3672 		GEM_BUG_ON(!vma->open_count);
3673 		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3674 			i915_vma_close(vma);
3675 
3676 		list_del(&lut->obj_link);
3677 		list_del(&lut->ctx_link);
3678 
3679 		kmem_cache_free(i915->luts, lut);
3680 		__i915_gem_object_release_unless_active(obj);
3681 	}
3682 
3683 	mutex_unlock(&i915->drm.struct_mutex);
3684 }
3685 
3686 static unsigned long to_wait_timeout(s64 timeout_ns)
3687 {
3688 	if (timeout_ns < 0)
3689 		return MAX_SCHEDULE_TIMEOUT;
3690 
3691 	if (timeout_ns == 0)
3692 		return 0;
3693 
3694 	return nsecs_to_jiffies_timeout(timeout_ns);
3695 }
3696 
3697 /**
3698  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3699  * @dev: drm device pointer
3700  * @data: ioctl data blob
3701  * @file: drm file pointer
3702  *
3703  * Returns 0 if successful, else an error is returned with the remaining time in
3704  * the timeout parameter.
3705  *  -ETIME: object is still busy after timeout
3706  *  -ERESTARTSYS: signal interrupted the wait
3707  *  -ENONENT: object doesn't exist
3708  * Also possible, but rare:
3709  *  -EAGAIN: incomplete, restart syscall
3710  *  -ENOMEM: damn
3711  *  -ENODEV: Internal IRQ fail
3712  *  -E?: The add request failed
3713  *
3714  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3715  * non-zero timeout parameter the wait ioctl will wait for the given number of
3716  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3717  * without holding struct_mutex the object may become re-busied before this
3718  * function completes. A similar but shorter * race condition exists in the busy
3719  * ioctl
3720  */
3721 int
3722 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3723 {
3724 	struct drm_i915_gem_wait *args = data;
3725 	struct drm_i915_gem_object *obj;
3726 	ktime_t start;
3727 	long ret;
3728 
3729 	if (args->flags != 0)
3730 		return -EINVAL;
3731 
3732 	obj = i915_gem_object_lookup(file, args->bo_handle);
3733 	if (!obj)
3734 		return -ENOENT;
3735 
3736 	start = ktime_get();
3737 
3738 	ret = i915_gem_object_wait(obj,
3739 				   I915_WAIT_INTERRUPTIBLE |
3740 				   I915_WAIT_PRIORITY |
3741 				   I915_WAIT_ALL,
3742 				   to_wait_timeout(args->timeout_ns),
3743 				   to_rps_client(file));
3744 
3745 	if (args->timeout_ns > 0) {
3746 		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3747 		if (args->timeout_ns < 0)
3748 			args->timeout_ns = 0;
3749 
3750 		/*
3751 		 * Apparently ktime isn't accurate enough and occasionally has a
3752 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3753 		 * things up to make the test happy. We allow up to 1 jiffy.
3754 		 *
3755 		 * This is a regression from the timespec->ktime conversion.
3756 		 */
3757 		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3758 			args->timeout_ns = 0;
3759 
3760 		/* Asked to wait beyond the jiffie/scheduler precision? */
3761 		if (ret == -ETIME && args->timeout_ns)
3762 			ret = -EAGAIN;
3763 	}
3764 
3765 	i915_gem_object_put(obj);
3766 	return ret;
3767 }
3768 
3769 static long wait_for_timeline(struct i915_timeline *tl,
3770 			      unsigned int flags, long timeout)
3771 {
3772 	struct i915_request *rq;
3773 
3774 	rq = i915_gem_active_get_unlocked(&tl->last_request);
3775 	if (!rq)
3776 		return timeout;
3777 
3778 	/*
3779 	 * "Race-to-idle".
3780 	 *
3781 	 * Switching to the kernel context is often used a synchronous
3782 	 * step prior to idling, e.g. in suspend for flushing all
3783 	 * current operations to memory before sleeping. These we
3784 	 * want to complete as quickly as possible to avoid prolonged
3785 	 * stalls, so allow the gpu to boost to maximum clocks.
3786 	 */
3787 	if (flags & I915_WAIT_FOR_IDLE_BOOST)
3788 		gen6_rps_boost(rq, NULL);
3789 
3790 	timeout = i915_request_wait(rq, flags, timeout);
3791 	i915_request_put(rq);
3792 
3793 	return timeout;
3794 }
3795 
3796 static int wait_for_engines(struct drm_i915_private *i915)
3797 {
3798 	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3799 		dev_err(i915->drm.dev,
3800 			"Failed to idle engines, declaring wedged!\n");
3801 		GEM_TRACE_DUMP();
3802 		i915_gem_set_wedged(i915);
3803 		return -EIO;
3804 	}
3805 
3806 	return 0;
3807 }
3808 
3809 int i915_gem_wait_for_idle(struct drm_i915_private *i915,
3810 			   unsigned int flags, long timeout)
3811 {
3812 	GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
3813 		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
3814 		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3815 
3816 	/* If the device is asleep, we have no requests outstanding */
3817 	if (!READ_ONCE(i915->gt.awake))
3818 		return 0;
3819 
3820 	if (flags & I915_WAIT_LOCKED) {
3821 		struct i915_timeline *tl;
3822 		int err;
3823 
3824 		lockdep_assert_held(&i915->drm.struct_mutex);
3825 
3826 		list_for_each_entry(tl, &i915->gt.timelines, link) {
3827 			timeout = wait_for_timeline(tl, flags, timeout);
3828 			if (timeout < 0)
3829 				return timeout;
3830 		}
3831 		if (GEM_SHOW_DEBUG() && !timeout) {
3832 			/* Presume that timeout was non-zero to begin with! */
3833 			dev_warn(&i915->drm.pdev->dev,
3834 				 "Missed idle-completion interrupt!\n");
3835 			GEM_TRACE_DUMP();
3836 		}
3837 
3838 		err = wait_for_engines(i915);
3839 		if (err)
3840 			return err;
3841 
3842 		i915_retire_requests(i915);
3843 		GEM_BUG_ON(i915->gt.active_requests);
3844 	} else {
3845 		struct intel_engine_cs *engine;
3846 		enum intel_engine_id id;
3847 
3848 		for_each_engine(engine, i915, id) {
3849 			struct i915_timeline *tl = &engine->timeline;
3850 
3851 			timeout = wait_for_timeline(tl, flags, timeout);
3852 			if (timeout < 0)
3853 				return timeout;
3854 		}
3855 	}
3856 
3857 	return 0;
3858 }
3859 
3860 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3861 {
3862 	/*
3863 	 * We manually flush the CPU domain so that we can override and
3864 	 * force the flush for the display, and perform it asyncrhonously.
3865 	 */
3866 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3867 	if (obj->cache_dirty)
3868 		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3869 	obj->write_domain = 0;
3870 }
3871 
3872 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3873 {
3874 	if (!READ_ONCE(obj->pin_global))
3875 		return;
3876 
3877 	mutex_lock(&obj->base.dev->struct_mutex);
3878 	__i915_gem_object_flush_for_display(obj);
3879 	mutex_unlock(&obj->base.dev->struct_mutex);
3880 }
3881 
3882 /**
3883  * Moves a single object to the WC read, and possibly write domain.
3884  * @obj: object to act on
3885  * @write: ask for write access or read only
3886  *
3887  * This function returns when the move is complete, including waiting on
3888  * flushes to occur.
3889  */
3890 int
3891 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3892 {
3893 	int ret;
3894 
3895 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3896 
3897 	ret = i915_gem_object_wait(obj,
3898 				   I915_WAIT_INTERRUPTIBLE |
3899 				   I915_WAIT_LOCKED |
3900 				   (write ? I915_WAIT_ALL : 0),
3901 				   MAX_SCHEDULE_TIMEOUT,
3902 				   NULL);
3903 	if (ret)
3904 		return ret;
3905 
3906 	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3907 		return 0;
3908 
3909 	/* Flush and acquire obj->pages so that we are coherent through
3910 	 * direct access in memory with previous cached writes through
3911 	 * shmemfs and that our cache domain tracking remains valid.
3912 	 * For example, if the obj->filp was moved to swap without us
3913 	 * being notified and releasing the pages, we would mistakenly
3914 	 * continue to assume that the obj remained out of the CPU cached
3915 	 * domain.
3916 	 */
3917 	ret = i915_gem_object_pin_pages(obj);
3918 	if (ret)
3919 		return ret;
3920 
3921 	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3922 
3923 	/* Serialise direct access to this object with the barriers for
3924 	 * coherent writes from the GPU, by effectively invalidating the
3925 	 * WC domain upon first access.
3926 	 */
3927 	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3928 		mb();
3929 
3930 	/* It should now be out of any other write domains, and we can update
3931 	 * the domain values for our changes.
3932 	 */
3933 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3934 	obj->read_domains |= I915_GEM_DOMAIN_WC;
3935 	if (write) {
3936 		obj->read_domains = I915_GEM_DOMAIN_WC;
3937 		obj->write_domain = I915_GEM_DOMAIN_WC;
3938 		obj->mm.dirty = true;
3939 	}
3940 
3941 	i915_gem_object_unpin_pages(obj);
3942 	return 0;
3943 }
3944 
3945 /**
3946  * Moves a single object to the GTT read, and possibly write domain.
3947  * @obj: object to act on
3948  * @write: ask for write access or read only
3949  *
3950  * This function returns when the move is complete, including waiting on
3951  * flushes to occur.
3952  */
3953 int
3954 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3955 {
3956 	int ret;
3957 
3958 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3959 
3960 	ret = i915_gem_object_wait(obj,
3961 				   I915_WAIT_INTERRUPTIBLE |
3962 				   I915_WAIT_LOCKED |
3963 				   (write ? I915_WAIT_ALL : 0),
3964 				   MAX_SCHEDULE_TIMEOUT,
3965 				   NULL);
3966 	if (ret)
3967 		return ret;
3968 
3969 	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3970 		return 0;
3971 
3972 	/* Flush and acquire obj->pages so that we are coherent through
3973 	 * direct access in memory with previous cached writes through
3974 	 * shmemfs and that our cache domain tracking remains valid.
3975 	 * For example, if the obj->filp was moved to swap without us
3976 	 * being notified and releasing the pages, we would mistakenly
3977 	 * continue to assume that the obj remained out of the CPU cached
3978 	 * domain.
3979 	 */
3980 	ret = i915_gem_object_pin_pages(obj);
3981 	if (ret)
3982 		return ret;
3983 
3984 	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3985 
3986 	/* Serialise direct access to this object with the barriers for
3987 	 * coherent writes from the GPU, by effectively invalidating the
3988 	 * GTT domain upon first access.
3989 	 */
3990 	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3991 		mb();
3992 
3993 	/* It should now be out of any other write domains, and we can update
3994 	 * the domain values for our changes.
3995 	 */
3996 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3997 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3998 	if (write) {
3999 		obj->read_domains = I915_GEM_DOMAIN_GTT;
4000 		obj->write_domain = I915_GEM_DOMAIN_GTT;
4001 		obj->mm.dirty = true;
4002 	}
4003 
4004 	i915_gem_object_unpin_pages(obj);
4005 	return 0;
4006 }
4007 
4008 /**
4009  * Changes the cache-level of an object across all VMA.
4010  * @obj: object to act on
4011  * @cache_level: new cache level to set for the object
4012  *
4013  * After this function returns, the object will be in the new cache-level
4014  * across all GTT and the contents of the backing storage will be coherent,
4015  * with respect to the new cache-level. In order to keep the backing storage
4016  * coherent for all users, we only allow a single cache level to be set
4017  * globally on the object and prevent it from being changed whilst the
4018  * hardware is reading from the object. That is if the object is currently
4019  * on the scanout it will be set to uncached (or equivalent display
4020  * cache coherency) and all non-MOCS GPU access will also be uncached so
4021  * that all direct access to the scanout remains coherent.
4022  */
4023 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4024 				    enum i915_cache_level cache_level)
4025 {
4026 	struct i915_vma *vma;
4027 	int ret;
4028 
4029 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4030 
4031 	if (obj->cache_level == cache_level)
4032 		return 0;
4033 
4034 	/* Inspect the list of currently bound VMA and unbind any that would
4035 	 * be invalid given the new cache-level. This is principally to
4036 	 * catch the issue of the CS prefetch crossing page boundaries and
4037 	 * reading an invalid PTE on older architectures.
4038 	 */
4039 restart:
4040 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4041 		if (!drm_mm_node_allocated(&vma->node))
4042 			continue;
4043 
4044 		if (i915_vma_is_pinned(vma)) {
4045 			DRM_DEBUG("can not change the cache level of pinned objects\n");
4046 			return -EBUSY;
4047 		}
4048 
4049 		if (!i915_vma_is_closed(vma) &&
4050 		    i915_gem_valid_gtt_space(vma, cache_level))
4051 			continue;
4052 
4053 		ret = i915_vma_unbind(vma);
4054 		if (ret)
4055 			return ret;
4056 
4057 		/* As unbinding may affect other elements in the
4058 		 * obj->vma_list (due to side-effects from retiring
4059 		 * an active vma), play safe and restart the iterator.
4060 		 */
4061 		goto restart;
4062 	}
4063 
4064 	/* We can reuse the existing drm_mm nodes but need to change the
4065 	 * cache-level on the PTE. We could simply unbind them all and
4066 	 * rebind with the correct cache-level on next use. However since
4067 	 * we already have a valid slot, dma mapping, pages etc, we may as
4068 	 * rewrite the PTE in the belief that doing so tramples upon less
4069 	 * state and so involves less work.
4070 	 */
4071 	if (obj->bind_count) {
4072 		/* Before we change the PTE, the GPU must not be accessing it.
4073 		 * If we wait upon the object, we know that all the bound
4074 		 * VMA are no longer active.
4075 		 */
4076 		ret = i915_gem_object_wait(obj,
4077 					   I915_WAIT_INTERRUPTIBLE |
4078 					   I915_WAIT_LOCKED |
4079 					   I915_WAIT_ALL,
4080 					   MAX_SCHEDULE_TIMEOUT,
4081 					   NULL);
4082 		if (ret)
4083 			return ret;
4084 
4085 		if (!HAS_LLC(to_i915(obj->base.dev)) &&
4086 		    cache_level != I915_CACHE_NONE) {
4087 			/* Access to snoopable pages through the GTT is
4088 			 * incoherent and on some machines causes a hard
4089 			 * lockup. Relinquish the CPU mmaping to force
4090 			 * userspace to refault in the pages and we can
4091 			 * then double check if the GTT mapping is still
4092 			 * valid for that pointer access.
4093 			 */
4094 			i915_gem_release_mmap(obj);
4095 
4096 			/* As we no longer need a fence for GTT access,
4097 			 * we can relinquish it now (and so prevent having
4098 			 * to steal a fence from someone else on the next
4099 			 * fence request). Note GPU activity would have
4100 			 * dropped the fence as all snoopable access is
4101 			 * supposed to be linear.
4102 			 */
4103 			for_each_ggtt_vma(vma, obj) {
4104 				ret = i915_vma_put_fence(vma);
4105 				if (ret)
4106 					return ret;
4107 			}
4108 		} else {
4109 			/* We either have incoherent backing store and
4110 			 * so no GTT access or the architecture is fully
4111 			 * coherent. In such cases, existing GTT mmaps
4112 			 * ignore the cache bit in the PTE and we can
4113 			 * rewrite it without confusing the GPU or having
4114 			 * to force userspace to fault back in its mmaps.
4115 			 */
4116 		}
4117 
4118 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4119 			if (!drm_mm_node_allocated(&vma->node))
4120 				continue;
4121 
4122 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4123 			if (ret)
4124 				return ret;
4125 		}
4126 	}
4127 
4128 	list_for_each_entry(vma, &obj->vma_list, obj_link)
4129 		vma->node.color = cache_level;
4130 	i915_gem_object_set_cache_coherency(obj, cache_level);
4131 	obj->cache_dirty = true; /* Always invalidate stale cachelines */
4132 
4133 	return 0;
4134 }
4135 
4136 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4137 			       struct drm_file *file)
4138 {
4139 	struct drm_i915_gem_caching *args = data;
4140 	struct drm_i915_gem_object *obj;
4141 	int err = 0;
4142 
4143 	rcu_read_lock();
4144 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4145 	if (!obj) {
4146 		err = -ENOENT;
4147 		goto out;
4148 	}
4149 
4150 	switch (obj->cache_level) {
4151 	case I915_CACHE_LLC:
4152 	case I915_CACHE_L3_LLC:
4153 		args->caching = I915_CACHING_CACHED;
4154 		break;
4155 
4156 	case I915_CACHE_WT:
4157 		args->caching = I915_CACHING_DISPLAY;
4158 		break;
4159 
4160 	default:
4161 		args->caching = I915_CACHING_NONE;
4162 		break;
4163 	}
4164 out:
4165 	rcu_read_unlock();
4166 	return err;
4167 }
4168 
4169 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4170 			       struct drm_file *file)
4171 {
4172 	struct drm_i915_private *i915 = to_i915(dev);
4173 	struct drm_i915_gem_caching *args = data;
4174 	struct drm_i915_gem_object *obj;
4175 	enum i915_cache_level level;
4176 	int ret = 0;
4177 
4178 	switch (args->caching) {
4179 	case I915_CACHING_NONE:
4180 		level = I915_CACHE_NONE;
4181 		break;
4182 	case I915_CACHING_CACHED:
4183 		/*
4184 		 * Due to a HW issue on BXT A stepping, GPU stores via a
4185 		 * snooped mapping may leave stale data in a corresponding CPU
4186 		 * cacheline, whereas normally such cachelines would get
4187 		 * invalidated.
4188 		 */
4189 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4190 			return -ENODEV;
4191 
4192 		level = I915_CACHE_LLC;
4193 		break;
4194 	case I915_CACHING_DISPLAY:
4195 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4196 		break;
4197 	default:
4198 		return -EINVAL;
4199 	}
4200 
4201 	obj = i915_gem_object_lookup(file, args->handle);
4202 	if (!obj)
4203 		return -ENOENT;
4204 
4205 	/*
4206 	 * The caching mode of proxy object is handled by its generator, and
4207 	 * not allowed to be changed by userspace.
4208 	 */
4209 	if (i915_gem_object_is_proxy(obj)) {
4210 		ret = -ENXIO;
4211 		goto out;
4212 	}
4213 
4214 	if (obj->cache_level == level)
4215 		goto out;
4216 
4217 	ret = i915_gem_object_wait(obj,
4218 				   I915_WAIT_INTERRUPTIBLE,
4219 				   MAX_SCHEDULE_TIMEOUT,
4220 				   to_rps_client(file));
4221 	if (ret)
4222 		goto out;
4223 
4224 	ret = i915_mutex_lock_interruptible(dev);
4225 	if (ret)
4226 		goto out;
4227 
4228 	ret = i915_gem_object_set_cache_level(obj, level);
4229 	mutex_unlock(&dev->struct_mutex);
4230 
4231 out:
4232 	i915_gem_object_put(obj);
4233 	return ret;
4234 }
4235 
4236 /*
4237  * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
4238  * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
4239  * (for pageflips). We only flush the caches while preparing the buffer for
4240  * display, the callers are responsible for frontbuffer flush.
4241  */
4242 struct i915_vma *
4243 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4244 				     u32 alignment,
4245 				     const struct i915_ggtt_view *view,
4246 				     unsigned int flags)
4247 {
4248 	struct i915_vma *vma;
4249 	int ret;
4250 
4251 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4252 
4253 	/* Mark the global pin early so that we account for the
4254 	 * display coherency whilst setting up the cache domains.
4255 	 */
4256 	obj->pin_global++;
4257 
4258 	/* The display engine is not coherent with the LLC cache on gen6.  As
4259 	 * a result, we make sure that the pinning that is about to occur is
4260 	 * done with uncached PTEs. This is lowest common denominator for all
4261 	 * chipsets.
4262 	 *
4263 	 * However for gen6+, we could do better by using the GFDT bit instead
4264 	 * of uncaching, which would allow us to flush all the LLC-cached data
4265 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4266 	 */
4267 	ret = i915_gem_object_set_cache_level(obj,
4268 					      HAS_WT(to_i915(obj->base.dev)) ?
4269 					      I915_CACHE_WT : I915_CACHE_NONE);
4270 	if (ret) {
4271 		vma = ERR_PTR(ret);
4272 		goto err_unpin_global;
4273 	}
4274 
4275 	/* As the user may map the buffer once pinned in the display plane
4276 	 * (e.g. libkms for the bootup splash), we have to ensure that we
4277 	 * always use map_and_fenceable for all scanout buffers. However,
4278 	 * it may simply be too big to fit into mappable, in which case
4279 	 * put it anyway and hope that userspace can cope (but always first
4280 	 * try to preserve the existing ABI).
4281 	 */
4282 	vma = ERR_PTR(-ENOSPC);
4283 	if ((flags & PIN_MAPPABLE) == 0 &&
4284 	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4285 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4286 					       flags |
4287 					       PIN_MAPPABLE |
4288 					       PIN_NONBLOCK);
4289 	if (IS_ERR(vma))
4290 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4291 	if (IS_ERR(vma))
4292 		goto err_unpin_global;
4293 
4294 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4295 
4296 	__i915_gem_object_flush_for_display(obj);
4297 
4298 	/* It should now be out of any other write domains, and we can update
4299 	 * the domain values for our changes.
4300 	 */
4301 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4302 
4303 	return vma;
4304 
4305 err_unpin_global:
4306 	obj->pin_global--;
4307 	return vma;
4308 }
4309 
4310 void
4311 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4312 {
4313 	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4314 
4315 	if (WARN_ON(vma->obj->pin_global == 0))
4316 		return;
4317 
4318 	if (--vma->obj->pin_global == 0)
4319 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4320 
4321 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4322 	i915_gem_object_bump_inactive_ggtt(vma->obj);
4323 
4324 	i915_vma_unpin(vma);
4325 }
4326 
4327 /**
4328  * Moves a single object to the CPU read, and possibly write domain.
4329  * @obj: object to act on
4330  * @write: requesting write or read-only access
4331  *
4332  * This function returns when the move is complete, including waiting on
4333  * flushes to occur.
4334  */
4335 int
4336 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4337 {
4338 	int ret;
4339 
4340 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4341 
4342 	ret = i915_gem_object_wait(obj,
4343 				   I915_WAIT_INTERRUPTIBLE |
4344 				   I915_WAIT_LOCKED |
4345 				   (write ? I915_WAIT_ALL : 0),
4346 				   MAX_SCHEDULE_TIMEOUT,
4347 				   NULL);
4348 	if (ret)
4349 		return ret;
4350 
4351 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4352 
4353 	/* Flush the CPU cache if it's still invalid. */
4354 	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4355 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4356 		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4357 	}
4358 
4359 	/* It should now be out of any other write domains, and we can update
4360 	 * the domain values for our changes.
4361 	 */
4362 	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4363 
4364 	/* If we're writing through the CPU, then the GPU read domains will
4365 	 * need to be invalidated at next use.
4366 	 */
4367 	if (write)
4368 		__start_cpu_write(obj);
4369 
4370 	return 0;
4371 }
4372 
4373 /* Throttle our rendering by waiting until the ring has completed our requests
4374  * emitted over 20 msec ago.
4375  *
4376  * Note that if we were to use the current jiffies each time around the loop,
4377  * we wouldn't escape the function with any frames outstanding if the time to
4378  * render a frame was over 20ms.
4379  *
4380  * This should get us reasonable parallelism between CPU and GPU but also
4381  * relatively low latency when blocking on a particular request to finish.
4382  */
4383 static int
4384 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4385 {
4386 	struct drm_i915_private *dev_priv = to_i915(dev);
4387 	struct drm_i915_file_private *file_priv = file->driver_priv;
4388 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4389 	struct i915_request *request, *target = NULL;
4390 	long ret;
4391 
4392 	/* ABI: return -EIO if already wedged */
4393 	if (i915_terminally_wedged(&dev_priv->gpu_error))
4394 		return -EIO;
4395 
4396 	spin_lock(&file_priv->mm.lock);
4397 	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4398 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4399 			break;
4400 
4401 		if (target) {
4402 			list_del(&target->client_link);
4403 			target->file_priv = NULL;
4404 		}
4405 
4406 		target = request;
4407 	}
4408 	if (target)
4409 		i915_request_get(target);
4410 	spin_unlock(&file_priv->mm.lock);
4411 
4412 	if (target == NULL)
4413 		return 0;
4414 
4415 	ret = i915_request_wait(target,
4416 				I915_WAIT_INTERRUPTIBLE,
4417 				MAX_SCHEDULE_TIMEOUT);
4418 	i915_request_put(target);
4419 
4420 	return ret < 0 ? ret : 0;
4421 }
4422 
4423 struct i915_vma *
4424 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4425 			 const struct i915_ggtt_view *view,
4426 			 u64 size,
4427 			 u64 alignment,
4428 			 u64 flags)
4429 {
4430 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4431 	struct i915_address_space *vm = &dev_priv->ggtt.vm;
4432 	struct i915_vma *vma;
4433 	int ret;
4434 
4435 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4436 
4437 	if (flags & PIN_MAPPABLE &&
4438 	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4439 		/* If the required space is larger than the available
4440 		 * aperture, we will not able to find a slot for the
4441 		 * object and unbinding the object now will be in
4442 		 * vain. Worse, doing so may cause us to ping-pong
4443 		 * the object in and out of the Global GTT and
4444 		 * waste a lot of cycles under the mutex.
4445 		 */
4446 		if (obj->base.size > dev_priv->ggtt.mappable_end)
4447 			return ERR_PTR(-E2BIG);
4448 
4449 		/* If NONBLOCK is set the caller is optimistically
4450 		 * trying to cache the full object within the mappable
4451 		 * aperture, and *must* have a fallback in place for
4452 		 * situations where we cannot bind the object. We
4453 		 * can be a little more lax here and use the fallback
4454 		 * more often to avoid costly migrations of ourselves
4455 		 * and other objects within the aperture.
4456 		 *
4457 		 * Half-the-aperture is used as a simple heuristic.
4458 		 * More interesting would to do search for a free
4459 		 * block prior to making the commitment to unbind.
4460 		 * That caters for the self-harm case, and with a
4461 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
4462 		 * we could try to minimise harm to others.
4463 		 */
4464 		if (flags & PIN_NONBLOCK &&
4465 		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
4466 			return ERR_PTR(-ENOSPC);
4467 	}
4468 
4469 	vma = i915_vma_instance(obj, vm, view);
4470 	if (unlikely(IS_ERR(vma)))
4471 		return vma;
4472 
4473 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4474 		if (flags & PIN_NONBLOCK) {
4475 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4476 				return ERR_PTR(-ENOSPC);
4477 
4478 			if (flags & PIN_MAPPABLE &&
4479 			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4480 				return ERR_PTR(-ENOSPC);
4481 		}
4482 
4483 		WARN(i915_vma_is_pinned(vma),
4484 		     "bo is already pinned in ggtt with incorrect alignment:"
4485 		     " offset=%08x, req.alignment=%llx,"
4486 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4487 		     i915_ggtt_offset(vma), alignment,
4488 		     !!(flags & PIN_MAPPABLE),
4489 		     i915_vma_is_map_and_fenceable(vma));
4490 		ret = i915_vma_unbind(vma);
4491 		if (ret)
4492 			return ERR_PTR(ret);
4493 	}
4494 
4495 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4496 	if (ret)
4497 		return ERR_PTR(ret);
4498 
4499 	return vma;
4500 }
4501 
4502 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4503 {
4504 	/* Note that we could alias engines in the execbuf API, but
4505 	 * that would be very unwise as it prevents userspace from
4506 	 * fine control over engine selection. Ahem.
4507 	 *
4508 	 * This should be something like EXEC_MAX_ENGINE instead of
4509 	 * I915_NUM_ENGINES.
4510 	 */
4511 	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4512 	return 0x10000 << id;
4513 }
4514 
4515 static __always_inline unsigned int __busy_write_id(unsigned int id)
4516 {
4517 	/* The uABI guarantees an active writer is also amongst the read
4518 	 * engines. This would be true if we accessed the activity tracking
4519 	 * under the lock, but as we perform the lookup of the object and
4520 	 * its activity locklessly we can not guarantee that the last_write
4521 	 * being active implies that we have set the same engine flag from
4522 	 * last_read - hence we always set both read and write busy for
4523 	 * last_write.
4524 	 */
4525 	return id | __busy_read_flag(id);
4526 }
4527 
4528 static __always_inline unsigned int
4529 __busy_set_if_active(const struct dma_fence *fence,
4530 		     unsigned int (*flag)(unsigned int id))
4531 {
4532 	struct i915_request *rq;
4533 
4534 	/* We have to check the current hw status of the fence as the uABI
4535 	 * guarantees forward progress. We could rely on the idle worker
4536 	 * to eventually flush us, but to minimise latency just ask the
4537 	 * hardware.
4538 	 *
4539 	 * Note we only report on the status of native fences.
4540 	 */
4541 	if (!dma_fence_is_i915(fence))
4542 		return 0;
4543 
4544 	/* opencode to_request() in order to avoid const warnings */
4545 	rq = container_of(fence, struct i915_request, fence);
4546 	if (i915_request_completed(rq))
4547 		return 0;
4548 
4549 	return flag(rq->engine->uabi_id);
4550 }
4551 
4552 static __always_inline unsigned int
4553 busy_check_reader(const struct dma_fence *fence)
4554 {
4555 	return __busy_set_if_active(fence, __busy_read_flag);
4556 }
4557 
4558 static __always_inline unsigned int
4559 busy_check_writer(const struct dma_fence *fence)
4560 {
4561 	if (!fence)
4562 		return 0;
4563 
4564 	return __busy_set_if_active(fence, __busy_write_id);
4565 }
4566 
4567 int
4568 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4569 		    struct drm_file *file)
4570 {
4571 	struct drm_i915_gem_busy *args = data;
4572 	struct drm_i915_gem_object *obj;
4573 	struct reservation_object_list *list;
4574 	unsigned int seq;
4575 	int err;
4576 
4577 	err = -ENOENT;
4578 	rcu_read_lock();
4579 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4580 	if (!obj)
4581 		goto out;
4582 
4583 	/* A discrepancy here is that we do not report the status of
4584 	 * non-i915 fences, i.e. even though we may report the object as idle,
4585 	 * a call to set-domain may still stall waiting for foreign rendering.
4586 	 * This also means that wait-ioctl may report an object as busy,
4587 	 * where busy-ioctl considers it idle.
4588 	 *
4589 	 * We trade the ability to warn of foreign fences to report on which
4590 	 * i915 engines are active for the object.
4591 	 *
4592 	 * Alternatively, we can trade that extra information on read/write
4593 	 * activity with
4594 	 *	args->busy =
4595 	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
4596 	 * to report the overall busyness. This is what the wait-ioctl does.
4597 	 *
4598 	 */
4599 retry:
4600 	seq = raw_read_seqcount(&obj->resv->seq);
4601 
4602 	/* Translate the exclusive fence to the READ *and* WRITE engine */
4603 	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4604 
4605 	/* Translate shared fences to READ set of engines */
4606 	list = rcu_dereference(obj->resv->fence);
4607 	if (list) {
4608 		unsigned int shared_count = list->shared_count, i;
4609 
4610 		for (i = 0; i < shared_count; ++i) {
4611 			struct dma_fence *fence =
4612 				rcu_dereference(list->shared[i]);
4613 
4614 			args->busy |= busy_check_reader(fence);
4615 		}
4616 	}
4617 
4618 	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4619 		goto retry;
4620 
4621 	err = 0;
4622 out:
4623 	rcu_read_unlock();
4624 	return err;
4625 }
4626 
4627 int
4628 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4629 			struct drm_file *file_priv)
4630 {
4631 	return i915_gem_ring_throttle(dev, file_priv);
4632 }
4633 
4634 int
4635 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4636 		       struct drm_file *file_priv)
4637 {
4638 	struct drm_i915_private *dev_priv = to_i915(dev);
4639 	struct drm_i915_gem_madvise *args = data;
4640 	struct drm_i915_gem_object *obj;
4641 	int err;
4642 
4643 	switch (args->madv) {
4644 	case I915_MADV_DONTNEED:
4645 	case I915_MADV_WILLNEED:
4646 	    break;
4647 	default:
4648 	    return -EINVAL;
4649 	}
4650 
4651 	obj = i915_gem_object_lookup(file_priv, args->handle);
4652 	if (!obj)
4653 		return -ENOENT;
4654 
4655 	err = mutex_lock_interruptible(&obj->mm.lock);
4656 	if (err)
4657 		goto out;
4658 
4659 	if (i915_gem_object_has_pages(obj) &&
4660 	    i915_gem_object_is_tiled(obj) &&
4661 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4662 		if (obj->mm.madv == I915_MADV_WILLNEED) {
4663 			GEM_BUG_ON(!obj->mm.quirked);
4664 			__i915_gem_object_unpin_pages(obj);
4665 			obj->mm.quirked = false;
4666 		}
4667 		if (args->madv == I915_MADV_WILLNEED) {
4668 			GEM_BUG_ON(obj->mm.quirked);
4669 			__i915_gem_object_pin_pages(obj);
4670 			obj->mm.quirked = true;
4671 		}
4672 	}
4673 
4674 	if (obj->mm.madv != __I915_MADV_PURGED)
4675 		obj->mm.madv = args->madv;
4676 
4677 	/* if the object is no longer attached, discard its backing storage */
4678 	if (obj->mm.madv == I915_MADV_DONTNEED &&
4679 	    !i915_gem_object_has_pages(obj))
4680 		i915_gem_object_truncate(obj);
4681 
4682 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4683 	mutex_unlock(&obj->mm.lock);
4684 
4685 out:
4686 	i915_gem_object_put(obj);
4687 	return err;
4688 }
4689 
4690 static void
4691 frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4692 {
4693 	struct drm_i915_gem_object *obj =
4694 		container_of(active, typeof(*obj), frontbuffer_write);
4695 
4696 	intel_fb_obj_flush(obj, ORIGIN_CS);
4697 }
4698 
4699 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4700 			  const struct drm_i915_gem_object_ops *ops)
4701 {
4702 	mutex_init(&obj->mm.lock);
4703 
4704 	INIT_LIST_HEAD(&obj->vma_list);
4705 	INIT_LIST_HEAD(&obj->lut_list);
4706 	INIT_LIST_HEAD(&obj->batch_pool_link);
4707 
4708 	init_rcu_head(&obj->rcu);
4709 
4710 	obj->ops = ops;
4711 
4712 	reservation_object_init(&obj->__builtin_resv);
4713 	obj->resv = &obj->__builtin_resv;
4714 
4715 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4716 	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4717 
4718 	obj->mm.madv = I915_MADV_WILLNEED;
4719 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4720 	mutex_init(&obj->mm.get_page.lock);
4721 
4722 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4723 }
4724 
4725 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4726 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4727 		 I915_GEM_OBJECT_IS_SHRINKABLE,
4728 
4729 	.get_pages = i915_gem_object_get_pages_gtt,
4730 	.put_pages = i915_gem_object_put_pages_gtt,
4731 
4732 	.pwrite = i915_gem_object_pwrite_gtt,
4733 };
4734 
4735 static int i915_gem_object_create_shmem(struct drm_device *dev,
4736 					struct drm_gem_object *obj,
4737 					size_t size)
4738 {
4739 	struct drm_i915_private *i915 = to_i915(dev);
4740 	unsigned long flags = VM_NORESERVE;
4741 	struct file *filp;
4742 
4743 	drm_gem_private_object_init(dev, obj, size);
4744 
4745 	if (i915->mm.gemfs)
4746 		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4747 						 flags);
4748 	else
4749 		filp = shmem_file_setup("i915", size, flags);
4750 
4751 	if (IS_ERR(filp))
4752 		return PTR_ERR(filp);
4753 
4754 	obj->filp = filp;
4755 
4756 	return 0;
4757 }
4758 
4759 struct drm_i915_gem_object *
4760 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4761 {
4762 	struct drm_i915_gem_object *obj;
4763 	struct address_space *mapping;
4764 	unsigned int cache_level;
4765 	gfp_t mask;
4766 	int ret;
4767 
4768 	/* There is a prevalence of the assumption that we fit the object's
4769 	 * page count inside a 32bit _signed_ variable. Let's document this and
4770 	 * catch if we ever need to fix it. In the meantime, if you do spot
4771 	 * such a local variable, please consider fixing!
4772 	 */
4773 	if (size >> PAGE_SHIFT > INT_MAX)
4774 		return ERR_PTR(-E2BIG);
4775 
4776 	if (overflows_type(size, obj->base.size))
4777 		return ERR_PTR(-E2BIG);
4778 
4779 	obj = i915_gem_object_alloc(dev_priv);
4780 	if (obj == NULL)
4781 		return ERR_PTR(-ENOMEM);
4782 
4783 	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4784 	if (ret)
4785 		goto fail;
4786 
4787 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4788 	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4789 		/* 965gm cannot relocate objects above 4GiB. */
4790 		mask &= ~__GFP_HIGHMEM;
4791 		mask |= __GFP_DMA32;
4792 	}
4793 
4794 	mapping = obj->base.filp->f_mapping;
4795 	mapping_set_gfp_mask(mapping, mask);
4796 	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4797 
4798 	i915_gem_object_init(obj, &i915_gem_object_ops);
4799 
4800 	obj->write_domain = I915_GEM_DOMAIN_CPU;
4801 	obj->read_domains = I915_GEM_DOMAIN_CPU;
4802 
4803 	if (HAS_LLC(dev_priv))
4804 		/* On some devices, we can have the GPU use the LLC (the CPU
4805 		 * cache) for about a 10% performance improvement
4806 		 * compared to uncached.  Graphics requests other than
4807 		 * display scanout are coherent with the CPU in
4808 		 * accessing this cache.  This means in this mode we
4809 		 * don't need to clflush on the CPU side, and on the
4810 		 * GPU side we only need to flush internal caches to
4811 		 * get data visible to the CPU.
4812 		 *
4813 		 * However, we maintain the display planes as UC, and so
4814 		 * need to rebind when first used as such.
4815 		 */
4816 		cache_level = I915_CACHE_LLC;
4817 	else
4818 		cache_level = I915_CACHE_NONE;
4819 
4820 	i915_gem_object_set_cache_coherency(obj, cache_level);
4821 
4822 	trace_i915_gem_object_create(obj);
4823 
4824 	return obj;
4825 
4826 fail:
4827 	i915_gem_object_free(obj);
4828 	return ERR_PTR(ret);
4829 }
4830 
4831 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4832 {
4833 	/* If we are the last user of the backing storage (be it shmemfs
4834 	 * pages or stolen etc), we know that the pages are going to be
4835 	 * immediately released. In this case, we can then skip copying
4836 	 * back the contents from the GPU.
4837 	 */
4838 
4839 	if (obj->mm.madv != I915_MADV_WILLNEED)
4840 		return false;
4841 
4842 	if (obj->base.filp == NULL)
4843 		return true;
4844 
4845 	/* At first glance, this looks racy, but then again so would be
4846 	 * userspace racing mmap against close. However, the first external
4847 	 * reference to the filp can only be obtained through the
4848 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4849 	 * acquiring such a reference whilst we are in the middle of
4850 	 * freeing the object.
4851 	 */
4852 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4853 }
4854 
4855 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4856 				    struct llist_node *freed)
4857 {
4858 	struct drm_i915_gem_object *obj, *on;
4859 
4860 	intel_runtime_pm_get(i915);
4861 	llist_for_each_entry_safe(obj, on, freed, freed) {
4862 		struct i915_vma *vma, *vn;
4863 
4864 		trace_i915_gem_object_destroy(obj);
4865 
4866 		mutex_lock(&i915->drm.struct_mutex);
4867 
4868 		GEM_BUG_ON(i915_gem_object_is_active(obj));
4869 		list_for_each_entry_safe(vma, vn,
4870 					 &obj->vma_list, obj_link) {
4871 			GEM_BUG_ON(i915_vma_is_active(vma));
4872 			vma->flags &= ~I915_VMA_PIN_MASK;
4873 			i915_vma_destroy(vma);
4874 		}
4875 		GEM_BUG_ON(!list_empty(&obj->vma_list));
4876 		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4877 
4878 		/* This serializes freeing with the shrinker. Since the free
4879 		 * is delayed, first by RCU then by the workqueue, we want the
4880 		 * shrinker to be able to free pages of unreferenced objects,
4881 		 * or else we may oom whilst there are plenty of deferred
4882 		 * freed objects.
4883 		 */
4884 		if (i915_gem_object_has_pages(obj)) {
4885 			spin_lock(&i915->mm.obj_lock);
4886 			list_del_init(&obj->mm.link);
4887 			spin_unlock(&i915->mm.obj_lock);
4888 		}
4889 
4890 		mutex_unlock(&i915->drm.struct_mutex);
4891 
4892 		GEM_BUG_ON(obj->bind_count);
4893 		GEM_BUG_ON(obj->userfault_count);
4894 		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4895 		GEM_BUG_ON(!list_empty(&obj->lut_list));
4896 
4897 		if (obj->ops->release)
4898 			obj->ops->release(obj);
4899 
4900 		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4901 			atomic_set(&obj->mm.pages_pin_count, 0);
4902 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4903 		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4904 
4905 		if (obj->base.import_attach)
4906 			drm_prime_gem_destroy(&obj->base, NULL);
4907 
4908 		reservation_object_fini(&obj->__builtin_resv);
4909 		drm_gem_object_release(&obj->base);
4910 		i915_gem_info_remove_obj(i915, obj->base.size);
4911 
4912 		kfree(obj->bit_17);
4913 		i915_gem_object_free(obj);
4914 
4915 		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
4916 		atomic_dec(&i915->mm.free_count);
4917 
4918 		if (on)
4919 			cond_resched();
4920 	}
4921 	intel_runtime_pm_put(i915);
4922 }
4923 
4924 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4925 {
4926 	struct llist_node *freed;
4927 
4928 	/* Free the oldest, most stale object to keep the free_list short */
4929 	freed = NULL;
4930 	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4931 		/* Only one consumer of llist_del_first() allowed */
4932 		spin_lock(&i915->mm.free_lock);
4933 		freed = llist_del_first(&i915->mm.free_list);
4934 		spin_unlock(&i915->mm.free_lock);
4935 	}
4936 	if (unlikely(freed)) {
4937 		freed->next = NULL;
4938 		__i915_gem_free_objects(i915, freed);
4939 	}
4940 }
4941 
4942 static void __i915_gem_free_work(struct work_struct *work)
4943 {
4944 	struct drm_i915_private *i915 =
4945 		container_of(work, struct drm_i915_private, mm.free_work);
4946 	struct llist_node *freed;
4947 
4948 	/*
4949 	 * All file-owned VMA should have been released by this point through
4950 	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4951 	 * However, the object may also be bound into the global GTT (e.g.
4952 	 * older GPUs without per-process support, or for direct access through
4953 	 * the GTT either for the user or for scanout). Those VMA still need to
4954 	 * unbound now.
4955 	 */
4956 
4957 	spin_lock(&i915->mm.free_lock);
4958 	while ((freed = llist_del_all(&i915->mm.free_list))) {
4959 		spin_unlock(&i915->mm.free_lock);
4960 
4961 		__i915_gem_free_objects(i915, freed);
4962 		if (need_resched())
4963 			return;
4964 
4965 		spin_lock(&i915->mm.free_lock);
4966 	}
4967 	spin_unlock(&i915->mm.free_lock);
4968 }
4969 
4970 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4971 {
4972 	struct drm_i915_gem_object *obj =
4973 		container_of(head, typeof(*obj), rcu);
4974 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4975 
4976 	/*
4977 	 * We reuse obj->rcu for the freed list, so we had better not treat
4978 	 * it like a rcu_head from this point forwards. And we expect all
4979 	 * objects to be freed via this path.
4980 	 */
4981 	destroy_rcu_head(&obj->rcu);
4982 
4983 	/*
4984 	 * Since we require blocking on struct_mutex to unbind the freed
4985 	 * object from the GPU before releasing resources back to the
4986 	 * system, we can not do that directly from the RCU callback (which may
4987 	 * be a softirq context), but must instead then defer that work onto a
4988 	 * kthread. We use the RCU callback rather than move the freed object
4989 	 * directly onto the work queue so that we can mix between using the
4990 	 * worker and performing frees directly from subsequent allocations for
4991 	 * crude but effective memory throttling.
4992 	 */
4993 	if (llist_add(&obj->freed, &i915->mm.free_list))
4994 		queue_work(i915->wq, &i915->mm.free_work);
4995 }
4996 
4997 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4998 {
4999 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
5000 
5001 	if (obj->mm.quirked)
5002 		__i915_gem_object_unpin_pages(obj);
5003 
5004 	if (discard_backing_storage(obj))
5005 		obj->mm.madv = I915_MADV_DONTNEED;
5006 
5007 	/*
5008 	 * Before we free the object, make sure any pure RCU-only
5009 	 * read-side critical sections are complete, e.g.
5010 	 * i915_gem_busy_ioctl(). For the corresponding synchronized
5011 	 * lookup see i915_gem_object_lookup_rcu().
5012 	 */
5013 	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
5014 	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
5015 }
5016 
5017 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
5018 {
5019 	lockdep_assert_held(&obj->base.dev->struct_mutex);
5020 
5021 	if (!i915_gem_object_has_active_reference(obj) &&
5022 	    i915_gem_object_is_active(obj))
5023 		i915_gem_object_set_active_reference(obj);
5024 	else
5025 		i915_gem_object_put(obj);
5026 }
5027 
5028 void i915_gem_sanitize(struct drm_i915_private *i915)
5029 {
5030 	int err;
5031 
5032 	GEM_TRACE("\n");
5033 
5034 	mutex_lock(&i915->drm.struct_mutex);
5035 
5036 	intel_runtime_pm_get(i915);
5037 	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5038 
5039 	/*
5040 	 * As we have just resumed the machine and woken the device up from
5041 	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
5042 	 * back to defaults, recovering from whatever wedged state we left it
5043 	 * in and so worth trying to use the device once more.
5044 	 */
5045 	if (i915_terminally_wedged(&i915->gpu_error))
5046 		i915_gem_unset_wedged(i915);
5047 
5048 	/*
5049 	 * If we inherit context state from the BIOS or earlier occupants
5050 	 * of the GPU, the GPU may be in an inconsistent state when we
5051 	 * try to take over. The only way to remove the earlier state
5052 	 * is by resetting. However, resetting on earlier gen is tricky as
5053 	 * it may impact the display and we are uncertain about the stability
5054 	 * of the reset, so this could be applied to even earlier gen.
5055 	 */
5056 	err = -ENODEV;
5057 	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
5058 		err = WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
5059 	if (!err)
5060 		intel_engines_sanitize(i915);
5061 
5062 	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5063 	intel_runtime_pm_put(i915);
5064 
5065 	i915_gem_contexts_lost(i915);
5066 	mutex_unlock(&i915->drm.struct_mutex);
5067 }
5068 
5069 int i915_gem_suspend(struct drm_i915_private *i915)
5070 {
5071 	int ret;
5072 
5073 	GEM_TRACE("\n");
5074 
5075 	intel_runtime_pm_get(i915);
5076 	intel_suspend_gt_powersave(i915);
5077 
5078 	mutex_lock(&i915->drm.struct_mutex);
5079 
5080 	/*
5081 	 * We have to flush all the executing contexts to main memory so
5082 	 * that they can saved in the hibernation image. To ensure the last
5083 	 * context image is coherent, we have to switch away from it. That
5084 	 * leaves the i915->kernel_context still active when
5085 	 * we actually suspend, and its image in memory may not match the GPU
5086 	 * state. Fortunately, the kernel_context is disposable and we do
5087 	 * not rely on its state.
5088 	 */
5089 	if (!i915_terminally_wedged(&i915->gpu_error)) {
5090 		ret = i915_gem_switch_to_kernel_context(i915);
5091 		if (ret)
5092 			goto err_unlock;
5093 
5094 		ret = i915_gem_wait_for_idle(i915,
5095 					     I915_WAIT_INTERRUPTIBLE |
5096 					     I915_WAIT_LOCKED |
5097 					     I915_WAIT_FOR_IDLE_BOOST,
5098 					     MAX_SCHEDULE_TIMEOUT);
5099 		if (ret && ret != -EIO)
5100 			goto err_unlock;
5101 
5102 		assert_kernel_context_is_current(i915);
5103 	}
5104 	i915_retire_requests(i915); /* ensure we flush after wedging */
5105 
5106 	mutex_unlock(&i915->drm.struct_mutex);
5107 
5108 	intel_uc_suspend(i915);
5109 
5110 	cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
5111 	cancel_delayed_work_sync(&i915->gt.retire_work);
5112 
5113 	/*
5114 	 * As the idle_work is rearming if it detects a race, play safe and
5115 	 * repeat the flush until it is definitely idle.
5116 	 */
5117 	drain_delayed_work(&i915->gt.idle_work);
5118 
5119 	/*
5120 	 * Assert that we successfully flushed all the work and
5121 	 * reset the GPU back to its idle, low power state.
5122 	 */
5123 	WARN_ON(i915->gt.awake);
5124 	if (WARN_ON(!intel_engines_are_idle(i915)))
5125 		i915_gem_set_wedged(i915); /* no hope, discard everything */
5126 
5127 	intel_runtime_pm_put(i915);
5128 	return 0;
5129 
5130 err_unlock:
5131 	mutex_unlock(&i915->drm.struct_mutex);
5132 	intel_runtime_pm_put(i915);
5133 	return ret;
5134 }
5135 
5136 void i915_gem_suspend_late(struct drm_i915_private *i915)
5137 {
5138 	struct drm_i915_gem_object *obj;
5139 	struct list_head *phases[] = {
5140 		&i915->mm.unbound_list,
5141 		&i915->mm.bound_list,
5142 		NULL
5143 	}, **phase;
5144 
5145 	/*
5146 	 * Neither the BIOS, ourselves or any other kernel
5147 	 * expects the system to be in execlists mode on startup,
5148 	 * so we need to reset the GPU back to legacy mode. And the only
5149 	 * known way to disable logical contexts is through a GPU reset.
5150 	 *
5151 	 * So in order to leave the system in a known default configuration,
5152 	 * always reset the GPU upon unload and suspend. Afterwards we then
5153 	 * clean up the GEM state tracking, flushing off the requests and
5154 	 * leaving the system in a known idle state.
5155 	 *
5156 	 * Note that is of the upmost importance that the GPU is idle and
5157 	 * all stray writes are flushed *before* we dismantle the backing
5158 	 * storage for the pinned objects.
5159 	 *
5160 	 * However, since we are uncertain that resetting the GPU on older
5161 	 * machines is a good idea, we don't - just in case it leaves the
5162 	 * machine in an unusable condition.
5163 	 */
5164 
5165 	mutex_lock(&i915->drm.struct_mutex);
5166 	for (phase = phases; *phase; phase++) {
5167 		list_for_each_entry(obj, *phase, mm.link)
5168 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
5169 	}
5170 	mutex_unlock(&i915->drm.struct_mutex);
5171 
5172 	intel_uc_sanitize(i915);
5173 	i915_gem_sanitize(i915);
5174 }
5175 
5176 void i915_gem_resume(struct drm_i915_private *i915)
5177 {
5178 	GEM_TRACE("\n");
5179 
5180 	WARN_ON(i915->gt.awake);
5181 
5182 	mutex_lock(&i915->drm.struct_mutex);
5183 	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5184 
5185 	i915_gem_restore_gtt_mappings(i915);
5186 	i915_gem_restore_fences(i915);
5187 
5188 	/*
5189 	 * As we didn't flush the kernel context before suspend, we cannot
5190 	 * guarantee that the context image is complete. So let's just reset
5191 	 * it and start again.
5192 	 */
5193 	i915->gt.resume(i915);
5194 
5195 	if (i915_gem_init_hw(i915))
5196 		goto err_wedged;
5197 
5198 	intel_uc_resume(i915);
5199 
5200 	/* Always reload a context for powersaving. */
5201 	if (i915_gem_switch_to_kernel_context(i915))
5202 		goto err_wedged;
5203 
5204 out_unlock:
5205 	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5206 	mutex_unlock(&i915->drm.struct_mutex);
5207 	return;
5208 
5209 err_wedged:
5210 	if (!i915_terminally_wedged(&i915->gpu_error)) {
5211 		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
5212 		i915_gem_set_wedged(i915);
5213 	}
5214 	goto out_unlock;
5215 }
5216 
5217 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5218 {
5219 	if (INTEL_GEN(dev_priv) < 5 ||
5220 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5221 		return;
5222 
5223 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5224 				 DISP_TILE_SURFACE_SWIZZLING);
5225 
5226 	if (IS_GEN5(dev_priv))
5227 		return;
5228 
5229 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5230 	if (IS_GEN6(dev_priv))
5231 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5232 	else if (IS_GEN7(dev_priv))
5233 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5234 	else if (IS_GEN8(dev_priv))
5235 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5236 	else
5237 		BUG();
5238 }
5239 
5240 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5241 {
5242 	I915_WRITE(RING_CTL(base), 0);
5243 	I915_WRITE(RING_HEAD(base), 0);
5244 	I915_WRITE(RING_TAIL(base), 0);
5245 	I915_WRITE(RING_START(base), 0);
5246 }
5247 
5248 static void init_unused_rings(struct drm_i915_private *dev_priv)
5249 {
5250 	if (IS_I830(dev_priv)) {
5251 		init_unused_ring(dev_priv, PRB1_BASE);
5252 		init_unused_ring(dev_priv, SRB0_BASE);
5253 		init_unused_ring(dev_priv, SRB1_BASE);
5254 		init_unused_ring(dev_priv, SRB2_BASE);
5255 		init_unused_ring(dev_priv, SRB3_BASE);
5256 	} else if (IS_GEN2(dev_priv)) {
5257 		init_unused_ring(dev_priv, SRB0_BASE);
5258 		init_unused_ring(dev_priv, SRB1_BASE);
5259 	} else if (IS_GEN3(dev_priv)) {
5260 		init_unused_ring(dev_priv, PRB1_BASE);
5261 		init_unused_ring(dev_priv, PRB2_BASE);
5262 	}
5263 }
5264 
5265 static int __i915_gem_restart_engines(void *data)
5266 {
5267 	struct drm_i915_private *i915 = data;
5268 	struct intel_engine_cs *engine;
5269 	enum intel_engine_id id;
5270 	int err;
5271 
5272 	for_each_engine(engine, i915, id) {
5273 		err = engine->init_hw(engine);
5274 		if (err) {
5275 			DRM_ERROR("Failed to restart %s (%d)\n",
5276 				  engine->name, err);
5277 			return err;
5278 		}
5279 	}
5280 
5281 	return 0;
5282 }
5283 
5284 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
5285 {
5286 	int ret;
5287 
5288 	dev_priv->gt.last_init_time = ktime_get();
5289 
5290 	/* Double layer security blanket, see i915_gem_init() */
5291 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5292 
5293 	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5294 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5295 
5296 	if (IS_HASWELL(dev_priv))
5297 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5298 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5299 
5300 	/* Apply the GT workarounds... */
5301 	intel_gt_apply_workarounds(dev_priv);
5302 	/* ...and determine whether they are sticking. */
5303 	intel_gt_verify_workarounds(dev_priv, "init");
5304 
5305 	i915_gem_init_swizzling(dev_priv);
5306 
5307 	/*
5308 	 * At least 830 can leave some of the unused rings
5309 	 * "active" (ie. head != tail) after resume which
5310 	 * will prevent c3 entry. Makes sure all unused rings
5311 	 * are totally idle.
5312 	 */
5313 	init_unused_rings(dev_priv);
5314 
5315 	BUG_ON(!dev_priv->kernel_context);
5316 	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5317 		ret = -EIO;
5318 		goto out;
5319 	}
5320 
5321 	ret = i915_ppgtt_init_hw(dev_priv);
5322 	if (ret) {
5323 		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5324 		goto out;
5325 	}
5326 
5327 	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
5328 	if (ret) {
5329 		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
5330 		goto out;
5331 	}
5332 
5333 	/* We can't enable contexts until all firmware is loaded */
5334 	ret = intel_uc_init_hw(dev_priv);
5335 	if (ret) {
5336 		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5337 		goto out;
5338 	}
5339 
5340 	intel_mocs_init_l3cc_table(dev_priv);
5341 
5342 	/* Only when the HW is re-initialised, can we replay the requests */
5343 	ret = __i915_gem_restart_engines(dev_priv);
5344 	if (ret)
5345 		goto cleanup_uc;
5346 
5347 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5348 
5349 	return 0;
5350 
5351 cleanup_uc:
5352 	intel_uc_fini_hw(dev_priv);
5353 out:
5354 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5355 
5356 	return ret;
5357 }
5358 
5359 static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5360 {
5361 	struct i915_gem_context *ctx;
5362 	struct intel_engine_cs *engine;
5363 	enum intel_engine_id id;
5364 	int err;
5365 
5366 	/*
5367 	 * As we reset the gpu during very early sanitisation, the current
5368 	 * register state on the GPU should reflect its defaults values.
5369 	 * We load a context onto the hw (with restore-inhibit), then switch
5370 	 * over to a second context to save that default register state. We
5371 	 * can then prime every new context with that state so they all start
5372 	 * from the same default HW values.
5373 	 */
5374 
5375 	ctx = i915_gem_context_create_kernel(i915, 0);
5376 	if (IS_ERR(ctx))
5377 		return PTR_ERR(ctx);
5378 
5379 	for_each_engine(engine, i915, id) {
5380 		struct i915_request *rq;
5381 
5382 		rq = i915_request_alloc(engine, ctx);
5383 		if (IS_ERR(rq)) {
5384 			err = PTR_ERR(rq);
5385 			goto out_ctx;
5386 		}
5387 
5388 		err = 0;
5389 		if (engine->init_context)
5390 			err = engine->init_context(rq);
5391 
5392 		i915_request_add(rq);
5393 		if (err)
5394 			goto err_active;
5395 	}
5396 
5397 	err = i915_gem_switch_to_kernel_context(i915);
5398 	if (err)
5399 		goto err_active;
5400 
5401 	if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
5402 		i915_gem_set_wedged(i915);
5403 		err = -EIO; /* Caller will declare us wedged */
5404 		goto err_active;
5405 	}
5406 
5407 	assert_kernel_context_is_current(i915);
5408 
5409 	/*
5410 	 * Immediately park the GPU so that we enable powersaving and
5411 	 * treat it as idle. The next time we issue a request, we will
5412 	 * unpark and start using the engine->pinned_default_state, otherwise
5413 	 * it is in limbo and an early reset may fail.
5414 	 */
5415 	__i915_gem_park(i915);
5416 
5417 	for_each_engine(engine, i915, id) {
5418 		struct i915_vma *state;
5419 		void *vaddr;
5420 
5421 		GEM_BUG_ON(to_intel_context(ctx, engine)->pin_count);
5422 
5423 		state = to_intel_context(ctx, engine)->state;
5424 		if (!state)
5425 			continue;
5426 
5427 		/*
5428 		 * As we will hold a reference to the logical state, it will
5429 		 * not be torn down with the context, and importantly the
5430 		 * object will hold onto its vma (making it possible for a
5431 		 * stray GTT write to corrupt our defaults). Unmap the vma
5432 		 * from the GTT to prevent such accidents and reclaim the
5433 		 * space.
5434 		 */
5435 		err = i915_vma_unbind(state);
5436 		if (err)
5437 			goto err_active;
5438 
5439 		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5440 		if (err)
5441 			goto err_active;
5442 
5443 		engine->default_state = i915_gem_object_get(state->obj);
5444 
5445 		/* Check we can acquire the image of the context state */
5446 		vaddr = i915_gem_object_pin_map(engine->default_state,
5447 						I915_MAP_FORCE_WB);
5448 		if (IS_ERR(vaddr)) {
5449 			err = PTR_ERR(vaddr);
5450 			goto err_active;
5451 		}
5452 
5453 		i915_gem_object_unpin_map(engine->default_state);
5454 	}
5455 
5456 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5457 		unsigned int found = intel_engines_has_context_isolation(i915);
5458 
5459 		/*
5460 		 * Make sure that classes with multiple engine instances all
5461 		 * share the same basic configuration.
5462 		 */
5463 		for_each_engine(engine, i915, id) {
5464 			unsigned int bit = BIT(engine->uabi_class);
5465 			unsigned int expected = engine->default_state ? bit : 0;
5466 
5467 			if ((found & bit) != expected) {
5468 				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5469 					  engine->uabi_class, engine->name);
5470 			}
5471 		}
5472 	}
5473 
5474 out_ctx:
5475 	i915_gem_context_set_closed(ctx);
5476 	i915_gem_context_put(ctx);
5477 	return err;
5478 
5479 err_active:
5480 	/*
5481 	 * If we have to abandon now, we expect the engines to be idle
5482 	 * and ready to be torn-down. First try to flush any remaining
5483 	 * request, ensure we are pointing at the kernel context and
5484 	 * then remove it.
5485 	 */
5486 	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5487 		goto out_ctx;
5488 
5489 	if (WARN_ON(i915_gem_wait_for_idle(i915,
5490 					   I915_WAIT_LOCKED,
5491 					   MAX_SCHEDULE_TIMEOUT)))
5492 		goto out_ctx;
5493 
5494 	i915_gem_contexts_lost(i915);
5495 	goto out_ctx;
5496 }
5497 
5498 static int
5499 i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
5500 {
5501 	struct drm_i915_gem_object *obj;
5502 	struct i915_vma *vma;
5503 	int ret;
5504 
5505 	obj = i915_gem_object_create_stolen(i915, size);
5506 	if (!obj)
5507 		obj = i915_gem_object_create_internal(i915, size);
5508 	if (IS_ERR(obj)) {
5509 		DRM_ERROR("Failed to allocate scratch page\n");
5510 		return PTR_ERR(obj);
5511 	}
5512 
5513 	vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
5514 	if (IS_ERR(vma)) {
5515 		ret = PTR_ERR(vma);
5516 		goto err_unref;
5517 	}
5518 
5519 	ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
5520 	if (ret)
5521 		goto err_unref;
5522 
5523 	i915->gt.scratch = vma;
5524 	return 0;
5525 
5526 err_unref:
5527 	i915_gem_object_put(obj);
5528 	return ret;
5529 }
5530 
5531 static void i915_gem_fini_scratch(struct drm_i915_private *i915)
5532 {
5533 	i915_vma_unpin_and_release(&i915->gt.scratch, 0);
5534 }
5535 
5536 int i915_gem_init(struct drm_i915_private *dev_priv)
5537 {
5538 	int ret;
5539 
5540 	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
5541 	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
5542 		mkwrite_device_info(dev_priv)->page_sizes =
5543 			I915_GTT_PAGE_SIZE_4K;
5544 
5545 	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5546 
5547 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5548 		dev_priv->gt.resume = intel_lr_context_resume;
5549 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5550 	} else {
5551 		dev_priv->gt.resume = intel_legacy_submission_resume;
5552 		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5553 	}
5554 
5555 	ret = i915_gem_init_userptr(dev_priv);
5556 	if (ret)
5557 		return ret;
5558 
5559 	ret = intel_uc_init_misc(dev_priv);
5560 	if (ret)
5561 		return ret;
5562 
5563 	ret = intel_wopcm_init(&dev_priv->wopcm);
5564 	if (ret)
5565 		goto err_uc_misc;
5566 
5567 	/* This is just a security blanket to placate dragons.
5568 	 * On some systems, we very sporadically observe that the first TLBs
5569 	 * used by the CS may be stale, despite us poking the TLB reset. If
5570 	 * we hold the forcewake during initialisation these problems
5571 	 * just magically go away.
5572 	 */
5573 	mutex_lock(&dev_priv->drm.struct_mutex);
5574 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5575 
5576 	ret = i915_gem_init_ggtt(dev_priv);
5577 	if (ret) {
5578 		GEM_BUG_ON(ret == -EIO);
5579 		goto err_unlock;
5580 	}
5581 
5582 	ret = i915_gem_init_scratch(dev_priv,
5583 				    IS_GEN2(dev_priv) ? SZ_256K : PAGE_SIZE);
5584 	if (ret) {
5585 		GEM_BUG_ON(ret == -EIO);
5586 		goto err_ggtt;
5587 	}
5588 
5589 	ret = i915_gem_contexts_init(dev_priv);
5590 	if (ret) {
5591 		GEM_BUG_ON(ret == -EIO);
5592 		goto err_scratch;
5593 	}
5594 
5595 	ret = intel_engines_init(dev_priv);
5596 	if (ret) {
5597 		GEM_BUG_ON(ret == -EIO);
5598 		goto err_context;
5599 	}
5600 
5601 	intel_init_gt_powersave(dev_priv);
5602 
5603 	ret = intel_uc_init(dev_priv);
5604 	if (ret)
5605 		goto err_pm;
5606 
5607 	ret = i915_gem_init_hw(dev_priv);
5608 	if (ret)
5609 		goto err_uc_init;
5610 
5611 	/*
5612 	 * Despite its name intel_init_clock_gating applies both display
5613 	 * clock gating workarounds; GT mmio workarounds and the occasional
5614 	 * GT power context workaround. Worse, sometimes it includes a context
5615 	 * register workaround which we need to apply before we record the
5616 	 * default HW state for all contexts.
5617 	 *
5618 	 * FIXME: break up the workarounds and apply them at the right time!
5619 	 */
5620 	intel_init_clock_gating(dev_priv);
5621 
5622 	ret = __intel_engines_record_defaults(dev_priv);
5623 	if (ret)
5624 		goto err_init_hw;
5625 
5626 	if (i915_inject_load_failure()) {
5627 		ret = -ENODEV;
5628 		goto err_init_hw;
5629 	}
5630 
5631 	if (i915_inject_load_failure()) {
5632 		ret = -EIO;
5633 		goto err_init_hw;
5634 	}
5635 
5636 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5637 	mutex_unlock(&dev_priv->drm.struct_mutex);
5638 
5639 	return 0;
5640 
5641 	/*
5642 	 * Unwinding is complicated by that we want to handle -EIO to mean
5643 	 * disable GPU submission but keep KMS alive. We want to mark the
5644 	 * HW as irrevisibly wedged, but keep enough state around that the
5645 	 * driver doesn't explode during runtime.
5646 	 */
5647 err_init_hw:
5648 	mutex_unlock(&dev_priv->drm.struct_mutex);
5649 
5650 	WARN_ON(i915_gem_suspend(dev_priv));
5651 	i915_gem_suspend_late(dev_priv);
5652 
5653 	i915_gem_drain_workqueue(dev_priv);
5654 
5655 	mutex_lock(&dev_priv->drm.struct_mutex);
5656 	intel_uc_fini_hw(dev_priv);
5657 err_uc_init:
5658 	intel_uc_fini(dev_priv);
5659 err_pm:
5660 	if (ret != -EIO) {
5661 		intel_cleanup_gt_powersave(dev_priv);
5662 		i915_gem_cleanup_engines(dev_priv);
5663 	}
5664 err_context:
5665 	if (ret != -EIO)
5666 		i915_gem_contexts_fini(dev_priv);
5667 err_scratch:
5668 	i915_gem_fini_scratch(dev_priv);
5669 err_ggtt:
5670 err_unlock:
5671 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5672 	mutex_unlock(&dev_priv->drm.struct_mutex);
5673 
5674 err_uc_misc:
5675 	intel_uc_fini_misc(dev_priv);
5676 
5677 	if (ret != -EIO)
5678 		i915_gem_cleanup_userptr(dev_priv);
5679 
5680 	if (ret == -EIO) {
5681 		mutex_lock(&dev_priv->drm.struct_mutex);
5682 
5683 		/*
5684 		 * Allow engine initialisation to fail by marking the GPU as
5685 		 * wedged. But we only want to do this where the GPU is angry,
5686 		 * for all other failure, such as an allocation failure, bail.
5687 		 */
5688 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5689 			i915_load_error(dev_priv,
5690 					"Failed to initialize GPU, declaring it wedged!\n");
5691 			i915_gem_set_wedged(dev_priv);
5692 		}
5693 
5694 		/* Minimal basic recovery for KMS */
5695 		ret = i915_ggtt_enable_hw(dev_priv);
5696 		i915_gem_restore_gtt_mappings(dev_priv);
5697 		i915_gem_restore_fences(dev_priv);
5698 		intel_init_clock_gating(dev_priv);
5699 
5700 		mutex_unlock(&dev_priv->drm.struct_mutex);
5701 	}
5702 
5703 	i915_gem_drain_freed_objects(dev_priv);
5704 	return ret;
5705 }
5706 
5707 void i915_gem_fini(struct drm_i915_private *dev_priv)
5708 {
5709 	i915_gem_suspend_late(dev_priv);
5710 	intel_disable_gt_powersave(dev_priv);
5711 
5712 	/* Flush any outstanding unpin_work. */
5713 	i915_gem_drain_workqueue(dev_priv);
5714 
5715 	mutex_lock(&dev_priv->drm.struct_mutex);
5716 	intel_uc_fini_hw(dev_priv);
5717 	intel_uc_fini(dev_priv);
5718 	i915_gem_cleanup_engines(dev_priv);
5719 	i915_gem_contexts_fini(dev_priv);
5720 	i915_gem_fini_scratch(dev_priv);
5721 	mutex_unlock(&dev_priv->drm.struct_mutex);
5722 
5723 	intel_wa_list_free(&dev_priv->gt_wa_list);
5724 
5725 	intel_cleanup_gt_powersave(dev_priv);
5726 
5727 	intel_uc_fini_misc(dev_priv);
5728 	i915_gem_cleanup_userptr(dev_priv);
5729 
5730 	i915_gem_drain_freed_objects(dev_priv);
5731 
5732 	WARN_ON(!list_empty(&dev_priv->contexts.list));
5733 }
5734 
5735 void i915_gem_init_mmio(struct drm_i915_private *i915)
5736 {
5737 	i915_gem_sanitize(i915);
5738 }
5739 
5740 void
5741 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5742 {
5743 	struct intel_engine_cs *engine;
5744 	enum intel_engine_id id;
5745 
5746 	for_each_engine(engine, dev_priv, id)
5747 		dev_priv->gt.cleanup_engine(engine);
5748 }
5749 
5750 void
5751 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5752 {
5753 	int i;
5754 
5755 	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5756 	    !IS_CHERRYVIEW(dev_priv))
5757 		dev_priv->num_fence_regs = 32;
5758 	else if (INTEL_GEN(dev_priv) >= 4 ||
5759 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5760 		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5761 		dev_priv->num_fence_regs = 16;
5762 	else
5763 		dev_priv->num_fence_regs = 8;
5764 
5765 	if (intel_vgpu_active(dev_priv))
5766 		dev_priv->num_fence_regs =
5767 				I915_READ(vgtif_reg(avail_rs.fence_num));
5768 
5769 	/* Initialize fence registers to zero */
5770 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
5771 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5772 
5773 		fence->i915 = dev_priv;
5774 		fence->id = i;
5775 		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5776 	}
5777 	i915_gem_restore_fences(dev_priv);
5778 
5779 	i915_gem_detect_bit_6_swizzle(dev_priv);
5780 }
5781 
5782 static void i915_gem_init__mm(struct drm_i915_private *i915)
5783 {
5784 	spin_lock_init(&i915->mm.object_stat_lock);
5785 	spin_lock_init(&i915->mm.obj_lock);
5786 	spin_lock_init(&i915->mm.free_lock);
5787 
5788 	init_llist_head(&i915->mm.free_list);
5789 
5790 	INIT_LIST_HEAD(&i915->mm.unbound_list);
5791 	INIT_LIST_HEAD(&i915->mm.bound_list);
5792 	INIT_LIST_HEAD(&i915->mm.fence_list);
5793 	INIT_LIST_HEAD(&i915->mm.userfault_list);
5794 
5795 	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5796 }
5797 
5798 int i915_gem_init_early(struct drm_i915_private *dev_priv)
5799 {
5800 	int err = -ENOMEM;
5801 
5802 	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5803 	if (!dev_priv->objects)
5804 		goto err_out;
5805 
5806 	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5807 	if (!dev_priv->vmas)
5808 		goto err_objects;
5809 
5810 	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5811 	if (!dev_priv->luts)
5812 		goto err_vmas;
5813 
5814 	dev_priv->requests = KMEM_CACHE(i915_request,
5815 					SLAB_HWCACHE_ALIGN |
5816 					SLAB_RECLAIM_ACCOUNT |
5817 					SLAB_TYPESAFE_BY_RCU);
5818 	if (!dev_priv->requests)
5819 		goto err_luts;
5820 
5821 	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5822 					    SLAB_HWCACHE_ALIGN |
5823 					    SLAB_RECLAIM_ACCOUNT);
5824 	if (!dev_priv->dependencies)
5825 		goto err_requests;
5826 
5827 	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5828 	if (!dev_priv->priorities)
5829 		goto err_dependencies;
5830 
5831 	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5832 	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5833 	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5834 
5835 	i915_gem_init__mm(dev_priv);
5836 
5837 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5838 			  i915_gem_retire_work_handler);
5839 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5840 			  i915_gem_idle_work_handler);
5841 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5842 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5843 
5844 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5845 
5846 	spin_lock_init(&dev_priv->fb_tracking.lock);
5847 
5848 	err = i915_gemfs_init(dev_priv);
5849 	if (err)
5850 		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5851 
5852 	return 0;
5853 
5854 err_dependencies:
5855 	kmem_cache_destroy(dev_priv->dependencies);
5856 err_requests:
5857 	kmem_cache_destroy(dev_priv->requests);
5858 err_luts:
5859 	kmem_cache_destroy(dev_priv->luts);
5860 err_vmas:
5861 	kmem_cache_destroy(dev_priv->vmas);
5862 err_objects:
5863 	kmem_cache_destroy(dev_priv->objects);
5864 err_out:
5865 	return err;
5866 }
5867 
5868 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5869 {
5870 	i915_gem_drain_freed_objects(dev_priv);
5871 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
5872 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5873 	WARN_ON(dev_priv->mm.object_count);
5874 	WARN_ON(!list_empty(&dev_priv->gt.timelines));
5875 
5876 	kmem_cache_destroy(dev_priv->priorities);
5877 	kmem_cache_destroy(dev_priv->dependencies);
5878 	kmem_cache_destroy(dev_priv->requests);
5879 	kmem_cache_destroy(dev_priv->luts);
5880 	kmem_cache_destroy(dev_priv->vmas);
5881 	kmem_cache_destroy(dev_priv->objects);
5882 
5883 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5884 	rcu_barrier();
5885 
5886 	i915_gemfs_fini(dev_priv);
5887 }
5888 
5889 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5890 {
5891 	/* Discard all purgeable objects, let userspace recover those as
5892 	 * required after resuming.
5893 	 */
5894 	i915_gem_shrink_all(dev_priv);
5895 
5896 	return 0;
5897 }
5898 
5899 int i915_gem_freeze_late(struct drm_i915_private *i915)
5900 {
5901 	struct drm_i915_gem_object *obj;
5902 	struct list_head *phases[] = {
5903 		&i915->mm.unbound_list,
5904 		&i915->mm.bound_list,
5905 		NULL
5906 	}, **phase;
5907 
5908 	/*
5909 	 * Called just before we write the hibernation image.
5910 	 *
5911 	 * We need to update the domain tracking to reflect that the CPU
5912 	 * will be accessing all the pages to create and restore from the
5913 	 * hibernation, and so upon restoration those pages will be in the
5914 	 * CPU domain.
5915 	 *
5916 	 * To make sure the hibernation image contains the latest state,
5917 	 * we update that state just before writing out the image.
5918 	 *
5919 	 * To try and reduce the hibernation image, we manually shrink
5920 	 * the objects as well, see i915_gem_freeze()
5921 	 */
5922 
5923 	i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
5924 	i915_gem_drain_freed_objects(i915);
5925 
5926 	mutex_lock(&i915->drm.struct_mutex);
5927 	for (phase = phases; *phase; phase++) {
5928 		list_for_each_entry(obj, *phase, mm.link)
5929 			WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5930 	}
5931 	mutex_unlock(&i915->drm.struct_mutex);
5932 
5933 	return 0;
5934 }
5935 
5936 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5937 {
5938 	struct drm_i915_file_private *file_priv = file->driver_priv;
5939 	struct i915_request *request;
5940 
5941 	/* Clean up our request list when the client is going away, so that
5942 	 * later retire_requests won't dereference our soon-to-be-gone
5943 	 * file_priv.
5944 	 */
5945 	spin_lock(&file_priv->mm.lock);
5946 	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5947 		request->file_priv = NULL;
5948 	spin_unlock(&file_priv->mm.lock);
5949 }
5950 
5951 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5952 {
5953 	struct drm_i915_file_private *file_priv;
5954 	int ret;
5955 
5956 	DRM_DEBUG("\n");
5957 
5958 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5959 	if (!file_priv)
5960 		return -ENOMEM;
5961 
5962 	file->driver_priv = file_priv;
5963 	file_priv->dev_priv = i915;
5964 	file_priv->file = file;
5965 
5966 	spin_lock_init(&file_priv->mm.lock);
5967 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5968 
5969 	file_priv->bsd_engine = -1;
5970 	file_priv->hang_timestamp = jiffies;
5971 
5972 	ret = i915_gem_context_open(i915, file);
5973 	if (ret)
5974 		kfree(file_priv);
5975 
5976 	return ret;
5977 }
5978 
5979 /**
5980  * i915_gem_track_fb - update frontbuffer tracking
5981  * @old: current GEM buffer for the frontbuffer slots
5982  * @new: new GEM buffer for the frontbuffer slots
5983  * @frontbuffer_bits: bitmask of frontbuffer slots
5984  *
5985  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5986  * from @old and setting them in @new. Both @old and @new can be NULL.
5987  */
5988 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5989 		       struct drm_i915_gem_object *new,
5990 		       unsigned frontbuffer_bits)
5991 {
5992 	/* Control of individual bits within the mask are guarded by
5993 	 * the owning plane->mutex, i.e. we can never see concurrent
5994 	 * manipulation of individual bits. But since the bitfield as a whole
5995 	 * is updated using RMW, we need to use atomics in order to update
5996 	 * the bits.
5997 	 */
5998 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5999 		     BITS_PER_TYPE(atomic_t));
6000 
6001 	if (old) {
6002 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
6003 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
6004 	}
6005 
6006 	if (new) {
6007 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
6008 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
6009 	}
6010 }
6011 
6012 /* Allocate a new GEM object and fill it with the supplied data */
6013 struct drm_i915_gem_object *
6014 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
6015 			         const void *data, size_t size)
6016 {
6017 	struct drm_i915_gem_object *obj;
6018 	struct file *file;
6019 	size_t offset;
6020 	int err;
6021 
6022 	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
6023 	if (IS_ERR(obj))
6024 		return obj;
6025 
6026 	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
6027 
6028 	file = obj->base.filp;
6029 	offset = 0;
6030 	do {
6031 		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
6032 		struct page *page;
6033 		void *pgdata, *vaddr;
6034 
6035 		err = pagecache_write_begin(file, file->f_mapping,
6036 					    offset, len, 0,
6037 					    &page, &pgdata);
6038 		if (err < 0)
6039 			goto fail;
6040 
6041 		vaddr = kmap(page);
6042 		memcpy(vaddr, data, len);
6043 		kunmap(page);
6044 
6045 		err = pagecache_write_end(file, file->f_mapping,
6046 					  offset, len, len,
6047 					  page, pgdata);
6048 		if (err < 0)
6049 			goto fail;
6050 
6051 		size -= len;
6052 		data += len;
6053 		offset += len;
6054 	} while (size);
6055 
6056 	return obj;
6057 
6058 fail:
6059 	i915_gem_object_put(obj);
6060 	return ERR_PTR(err);
6061 }
6062 
6063 struct scatterlist *
6064 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
6065 		       unsigned int n,
6066 		       unsigned int *offset)
6067 {
6068 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
6069 	struct scatterlist *sg;
6070 	unsigned int idx, count;
6071 
6072 	might_sleep();
6073 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
6074 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
6075 
6076 	/* As we iterate forward through the sg, we record each entry in a
6077 	 * radixtree for quick repeated (backwards) lookups. If we have seen
6078 	 * this index previously, we will have an entry for it.
6079 	 *
6080 	 * Initial lookup is O(N), but this is amortized to O(1) for
6081 	 * sequential page access (where each new request is consecutive
6082 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
6083 	 * i.e. O(1) with a large constant!
6084 	 */
6085 	if (n < READ_ONCE(iter->sg_idx))
6086 		goto lookup;
6087 
6088 	mutex_lock(&iter->lock);
6089 
6090 	/* We prefer to reuse the last sg so that repeated lookup of this
6091 	 * (or the subsequent) sg are fast - comparing against the last
6092 	 * sg is faster than going through the radixtree.
6093 	 */
6094 
6095 	sg = iter->sg_pos;
6096 	idx = iter->sg_idx;
6097 	count = __sg_page_count(sg);
6098 
6099 	while (idx + count <= n) {
6100 		void *entry;
6101 		unsigned long i;
6102 		int ret;
6103 
6104 		/* If we cannot allocate and insert this entry, or the
6105 		 * individual pages from this range, cancel updating the
6106 		 * sg_idx so that on this lookup we are forced to linearly
6107 		 * scan onwards, but on future lookups we will try the
6108 		 * insertion again (in which case we need to be careful of
6109 		 * the error return reporting that we have already inserted
6110 		 * this index).
6111 		 */
6112 		ret = radix_tree_insert(&iter->radix, idx, sg);
6113 		if (ret && ret != -EEXIST)
6114 			goto scan;
6115 
6116 		entry = xa_mk_value(idx);
6117 		for (i = 1; i < count; i++) {
6118 			ret = radix_tree_insert(&iter->radix, idx + i, entry);
6119 			if (ret && ret != -EEXIST)
6120 				goto scan;
6121 		}
6122 
6123 		idx += count;
6124 		sg = ____sg_next(sg);
6125 		count = __sg_page_count(sg);
6126 	}
6127 
6128 scan:
6129 	iter->sg_pos = sg;
6130 	iter->sg_idx = idx;
6131 
6132 	mutex_unlock(&iter->lock);
6133 
6134 	if (unlikely(n < idx)) /* insertion completed by another thread */
6135 		goto lookup;
6136 
6137 	/* In case we failed to insert the entry into the radixtree, we need
6138 	 * to look beyond the current sg.
6139 	 */
6140 	while (idx + count <= n) {
6141 		idx += count;
6142 		sg = ____sg_next(sg);
6143 		count = __sg_page_count(sg);
6144 	}
6145 
6146 	*offset = n - idx;
6147 	return sg;
6148 
6149 lookup:
6150 	rcu_read_lock();
6151 
6152 	sg = radix_tree_lookup(&iter->radix, n);
6153 	GEM_BUG_ON(!sg);
6154 
6155 	/* If this index is in the middle of multi-page sg entry,
6156 	 * the radix tree will contain a value entry that points
6157 	 * to the start of that range. We will return the pointer to
6158 	 * the base page and the offset of this page within the
6159 	 * sg entry's range.
6160 	 */
6161 	*offset = 0;
6162 	if (unlikely(xa_is_value(sg))) {
6163 		unsigned long base = xa_to_value(sg);
6164 
6165 		sg = radix_tree_lookup(&iter->radix, base);
6166 		GEM_BUG_ON(!sg);
6167 
6168 		*offset = n - base;
6169 	}
6170 
6171 	rcu_read_unlock();
6172 
6173 	return sg;
6174 }
6175 
6176 struct page *
6177 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
6178 {
6179 	struct scatterlist *sg;
6180 	unsigned int offset;
6181 
6182 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
6183 
6184 	sg = i915_gem_object_get_sg(obj, n, &offset);
6185 	return nth_page(sg_page(sg), offset);
6186 }
6187 
6188 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
6189 struct page *
6190 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
6191 			       unsigned int n)
6192 {
6193 	struct page *page;
6194 
6195 	page = i915_gem_object_get_page(obj, n);
6196 	if (!obj->mm.dirty)
6197 		set_page_dirty(page);
6198 
6199 	return page;
6200 }
6201 
6202 dma_addr_t
6203 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
6204 				unsigned long n)
6205 {
6206 	struct scatterlist *sg;
6207 	unsigned int offset;
6208 
6209 	sg = i915_gem_object_get_sg(obj, n, &offset);
6210 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
6211 }
6212 
6213 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
6214 {
6215 	struct sg_table *pages;
6216 	int err;
6217 
6218 	if (align > obj->base.size)
6219 		return -EINVAL;
6220 
6221 	if (obj->ops == &i915_gem_phys_ops)
6222 		return 0;
6223 
6224 	if (obj->ops != &i915_gem_object_ops)
6225 		return -EINVAL;
6226 
6227 	err = i915_gem_object_unbind(obj);
6228 	if (err)
6229 		return err;
6230 
6231 	mutex_lock(&obj->mm.lock);
6232 
6233 	if (obj->mm.madv != I915_MADV_WILLNEED) {
6234 		err = -EFAULT;
6235 		goto err_unlock;
6236 	}
6237 
6238 	if (obj->mm.quirked) {
6239 		err = -EFAULT;
6240 		goto err_unlock;
6241 	}
6242 
6243 	if (obj->mm.mapping) {
6244 		err = -EBUSY;
6245 		goto err_unlock;
6246 	}
6247 
6248 	pages = __i915_gem_object_unset_pages(obj);
6249 
6250 	obj->ops = &i915_gem_phys_ops;
6251 
6252 	err = ____i915_gem_object_get_pages(obj);
6253 	if (err)
6254 		goto err_xfer;
6255 
6256 	/* Perma-pin (until release) the physical set of pages */
6257 	__i915_gem_object_pin_pages(obj);
6258 
6259 	if (!IS_ERR_OR_NULL(pages))
6260 		i915_gem_object_ops.put_pages(obj, pages);
6261 	mutex_unlock(&obj->mm.lock);
6262 	return 0;
6263 
6264 err_xfer:
6265 	obj->ops = &i915_gem_object_ops;
6266 	if (!IS_ERR_OR_NULL(pages)) {
6267 		unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);
6268 
6269 		__i915_gem_object_set_pages(obj, pages, sg_page_sizes);
6270 	}
6271 err_unlock:
6272 	mutex_unlock(&obj->mm.lock);
6273 	return err;
6274 }
6275 
6276 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6277 #include "selftests/scatterlist.c"
6278 #include "selftests/mock_gem_device.c"
6279 #include "selftests/huge_gem_object.c"
6280 #include "selftests/huge_pages.c"
6281 #include "selftests/i915_gem_object.c"
6282 #include "selftests/i915_gem_coherency.c"
6283 #include "selftests/i915_gem.c"
6284 #endif
6285