1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drmP.h> 29 #include <drm/i915_drm.h> 30 #include "i915_drv.h" 31 #include "i915_trace.h" 32 #include "intel_drv.h" 33 #include <linux/shmem_fs.h> 34 #include <linux/slab.h> 35 #include <linux/swap.h> 36 #include <linux/pci.h> 37 #include <linux/dma-buf.h> 38 39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); 40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj); 41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, 42 unsigned alignment, 43 bool map_and_fenceable, 44 bool nonblocking); 45 static int i915_gem_phys_pwrite(struct drm_device *dev, 46 struct drm_i915_gem_object *obj, 47 struct drm_i915_gem_pwrite *args, 48 struct drm_file *file); 49 50 static void i915_gem_write_fence(struct drm_device *dev, int reg, 51 struct drm_i915_gem_object *obj); 52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 53 struct drm_i915_fence_reg *fence, 54 bool enable); 55 56 static int i915_gem_inactive_shrink(struct shrinker *shrinker, 57 struct shrink_control *sc); 58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target); 59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv); 60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj); 61 62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj) 63 { 64 if (obj->tiling_mode) 65 i915_gem_release_mmap(obj); 66 67 /* As we do not have an associated fence register, we will force 68 * a tiling change if we ever need to acquire one. 69 */ 70 obj->fence_dirty = false; 71 obj->fence_reg = I915_FENCE_REG_NONE; 72 } 73 74 /* some bookkeeping */ 75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, 76 size_t size) 77 { 78 dev_priv->mm.object_count++; 79 dev_priv->mm.object_memory += size; 80 } 81 82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, 83 size_t size) 84 { 85 dev_priv->mm.object_count--; 86 dev_priv->mm.object_memory -= size; 87 } 88 89 static int 90 i915_gem_wait_for_error(struct i915_gpu_error *error) 91 { 92 int ret; 93 94 #define EXIT_COND (!i915_reset_in_progress(error) || \ 95 i915_terminally_wedged(error)) 96 if (EXIT_COND) 97 return 0; 98 99 /* 100 * Only wait 10 seconds for the gpu reset to complete to avoid hanging 101 * userspace. If it takes that long something really bad is going on and 102 * we should simply try to bail out and fail as gracefully as possible. 103 */ 104 ret = wait_event_interruptible_timeout(error->reset_queue, 105 EXIT_COND, 106 10*HZ); 107 if (ret == 0) { 108 DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); 109 return -EIO; 110 } else if (ret < 0) { 111 return ret; 112 } 113 #undef EXIT_COND 114 115 return 0; 116 } 117 118 int i915_mutex_lock_interruptible(struct drm_device *dev) 119 { 120 struct drm_i915_private *dev_priv = dev->dev_private; 121 int ret; 122 123 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 124 if (ret) 125 return ret; 126 127 ret = mutex_lock_interruptible(&dev->struct_mutex); 128 if (ret) 129 return ret; 130 131 WARN_ON(i915_verify_lists(dev)); 132 return 0; 133 } 134 135 static inline bool 136 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj) 137 { 138 return obj->gtt_space && !obj->active; 139 } 140 141 int 142 i915_gem_init_ioctl(struct drm_device *dev, void *data, 143 struct drm_file *file) 144 { 145 struct drm_i915_private *dev_priv = dev->dev_private; 146 struct drm_i915_gem_init *args = data; 147 148 if (drm_core_check_feature(dev, DRIVER_MODESET)) 149 return -ENODEV; 150 151 if (args->gtt_start >= args->gtt_end || 152 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1)) 153 return -EINVAL; 154 155 /* GEM with user mode setting was never supported on ilk and later. */ 156 if (INTEL_INFO(dev)->gen >= 5) 157 return -ENODEV; 158 159 mutex_lock(&dev->struct_mutex); 160 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end, 161 args->gtt_end); 162 dev_priv->gtt.mappable_end = args->gtt_end; 163 mutex_unlock(&dev->struct_mutex); 164 165 return 0; 166 } 167 168 int 169 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 170 struct drm_file *file) 171 { 172 struct drm_i915_private *dev_priv = dev->dev_private; 173 struct drm_i915_gem_get_aperture *args = data; 174 struct drm_i915_gem_object *obj; 175 size_t pinned; 176 177 pinned = 0; 178 mutex_lock(&dev->struct_mutex); 179 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) 180 if (obj->pin_count) 181 pinned += obj->gtt_space->size; 182 mutex_unlock(&dev->struct_mutex); 183 184 args->aper_size = dev_priv->gtt.total; 185 args->aper_available_size = args->aper_size - pinned; 186 187 return 0; 188 } 189 190 void *i915_gem_object_alloc(struct drm_device *dev) 191 { 192 struct drm_i915_private *dev_priv = dev->dev_private; 193 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO); 194 } 195 196 void i915_gem_object_free(struct drm_i915_gem_object *obj) 197 { 198 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 199 kmem_cache_free(dev_priv->slab, obj); 200 } 201 202 static int 203 i915_gem_create(struct drm_file *file, 204 struct drm_device *dev, 205 uint64_t size, 206 uint32_t *handle_p) 207 { 208 struct drm_i915_gem_object *obj; 209 int ret; 210 u32 handle; 211 212 size = roundup(size, PAGE_SIZE); 213 if (size == 0) 214 return -EINVAL; 215 216 /* Allocate the new object */ 217 obj = i915_gem_alloc_object(dev, size); 218 if (obj == NULL) 219 return -ENOMEM; 220 221 ret = drm_gem_handle_create(file, &obj->base, &handle); 222 if (ret) { 223 drm_gem_object_release(&obj->base); 224 i915_gem_info_remove_obj(dev->dev_private, obj->base.size); 225 i915_gem_object_free(obj); 226 return ret; 227 } 228 229 /* drop reference from allocate - handle holds it now */ 230 drm_gem_object_unreference(&obj->base); 231 trace_i915_gem_object_create(obj); 232 233 *handle_p = handle; 234 return 0; 235 } 236 237 int 238 i915_gem_dumb_create(struct drm_file *file, 239 struct drm_device *dev, 240 struct drm_mode_create_dumb *args) 241 { 242 /* have to work out size/pitch and return them */ 243 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64); 244 args->size = args->pitch * args->height; 245 return i915_gem_create(file, dev, 246 args->size, &args->handle); 247 } 248 249 int i915_gem_dumb_destroy(struct drm_file *file, 250 struct drm_device *dev, 251 uint32_t handle) 252 { 253 return drm_gem_handle_delete(file, handle); 254 } 255 256 /** 257 * Creates a new mm object and returns a handle to it. 258 */ 259 int 260 i915_gem_create_ioctl(struct drm_device *dev, void *data, 261 struct drm_file *file) 262 { 263 struct drm_i915_gem_create *args = data; 264 265 return i915_gem_create(file, dev, 266 args->size, &args->handle); 267 } 268 269 static inline int 270 __copy_to_user_swizzled(char __user *cpu_vaddr, 271 const char *gpu_vaddr, int gpu_offset, 272 int length) 273 { 274 int ret, cpu_offset = 0; 275 276 while (length > 0) { 277 int cacheline_end = ALIGN(gpu_offset + 1, 64); 278 int this_length = min(cacheline_end - gpu_offset, length); 279 int swizzled_gpu_offset = gpu_offset ^ 64; 280 281 ret = __copy_to_user(cpu_vaddr + cpu_offset, 282 gpu_vaddr + swizzled_gpu_offset, 283 this_length); 284 if (ret) 285 return ret + length; 286 287 cpu_offset += this_length; 288 gpu_offset += this_length; 289 length -= this_length; 290 } 291 292 return 0; 293 } 294 295 static inline int 296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, 297 const char __user *cpu_vaddr, 298 int length) 299 { 300 int ret, cpu_offset = 0; 301 302 while (length > 0) { 303 int cacheline_end = ALIGN(gpu_offset + 1, 64); 304 int this_length = min(cacheline_end - gpu_offset, length); 305 int swizzled_gpu_offset = gpu_offset ^ 64; 306 307 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, 308 cpu_vaddr + cpu_offset, 309 this_length); 310 if (ret) 311 return ret + length; 312 313 cpu_offset += this_length; 314 gpu_offset += this_length; 315 length -= this_length; 316 } 317 318 return 0; 319 } 320 321 /* Per-page copy function for the shmem pread fastpath. 322 * Flushes invalid cachelines before reading the target if 323 * needs_clflush is set. */ 324 static int 325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length, 326 char __user *user_data, 327 bool page_do_bit17_swizzling, bool needs_clflush) 328 { 329 char *vaddr; 330 int ret; 331 332 if (unlikely(page_do_bit17_swizzling)) 333 return -EINVAL; 334 335 vaddr = kmap_atomic(page); 336 if (needs_clflush) 337 drm_clflush_virt_range(vaddr + shmem_page_offset, 338 page_length); 339 ret = __copy_to_user_inatomic(user_data, 340 vaddr + shmem_page_offset, 341 page_length); 342 kunmap_atomic(vaddr); 343 344 return ret ? -EFAULT : 0; 345 } 346 347 static void 348 shmem_clflush_swizzled_range(char *addr, unsigned long length, 349 bool swizzled) 350 { 351 if (unlikely(swizzled)) { 352 unsigned long start = (unsigned long) addr; 353 unsigned long end = (unsigned long) addr + length; 354 355 /* For swizzling simply ensure that we always flush both 356 * channels. Lame, but simple and it works. Swizzled 357 * pwrite/pread is far from a hotpath - current userspace 358 * doesn't use it at all. */ 359 start = round_down(start, 128); 360 end = round_up(end, 128); 361 362 drm_clflush_virt_range((void *)start, end - start); 363 } else { 364 drm_clflush_virt_range(addr, length); 365 } 366 367 } 368 369 /* Only difference to the fast-path function is that this can handle bit17 370 * and uses non-atomic copy and kmap functions. */ 371 static int 372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length, 373 char __user *user_data, 374 bool page_do_bit17_swizzling, bool needs_clflush) 375 { 376 char *vaddr; 377 int ret; 378 379 vaddr = kmap(page); 380 if (needs_clflush) 381 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 382 page_length, 383 page_do_bit17_swizzling); 384 385 if (page_do_bit17_swizzling) 386 ret = __copy_to_user_swizzled(user_data, 387 vaddr, shmem_page_offset, 388 page_length); 389 else 390 ret = __copy_to_user(user_data, 391 vaddr + shmem_page_offset, 392 page_length); 393 kunmap(page); 394 395 return ret ? - EFAULT : 0; 396 } 397 398 static int 399 i915_gem_shmem_pread(struct drm_device *dev, 400 struct drm_i915_gem_object *obj, 401 struct drm_i915_gem_pread *args, 402 struct drm_file *file) 403 { 404 char __user *user_data; 405 ssize_t remain; 406 loff_t offset; 407 int shmem_page_offset, page_length, ret = 0; 408 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 409 int prefaulted = 0; 410 int needs_clflush = 0; 411 struct sg_page_iter sg_iter; 412 413 user_data = to_user_ptr(args->data_ptr); 414 remain = args->size; 415 416 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 417 418 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) { 419 /* If we're not in the cpu read domain, set ourself into the gtt 420 * read domain and manually flush cachelines (if required). This 421 * optimizes for the case when the gpu will dirty the data 422 * anyway again before the next pread happens. */ 423 if (obj->cache_level == I915_CACHE_NONE) 424 needs_clflush = 1; 425 if (obj->gtt_space) { 426 ret = i915_gem_object_set_to_gtt_domain(obj, false); 427 if (ret) 428 return ret; 429 } 430 } 431 432 ret = i915_gem_object_get_pages(obj); 433 if (ret) 434 return ret; 435 436 i915_gem_object_pin_pages(obj); 437 438 offset = args->offset; 439 440 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 441 offset >> PAGE_SHIFT) { 442 struct page *page = sg_page_iter_page(&sg_iter); 443 444 if (remain <= 0) 445 break; 446 447 /* Operation in this page 448 * 449 * shmem_page_offset = offset within page in shmem file 450 * page_length = bytes to copy for this page 451 */ 452 shmem_page_offset = offset_in_page(offset); 453 page_length = remain; 454 if ((shmem_page_offset + page_length) > PAGE_SIZE) 455 page_length = PAGE_SIZE - shmem_page_offset; 456 457 page_do_bit17_swizzling = obj_do_bit17_swizzling && 458 (page_to_phys(page) & (1 << 17)) != 0; 459 460 ret = shmem_pread_fast(page, shmem_page_offset, page_length, 461 user_data, page_do_bit17_swizzling, 462 needs_clflush); 463 if (ret == 0) 464 goto next_page; 465 466 mutex_unlock(&dev->struct_mutex); 467 468 if (!prefaulted) { 469 ret = fault_in_multipages_writeable(user_data, remain); 470 /* Userspace is tricking us, but we've already clobbered 471 * its pages with the prefault and promised to write the 472 * data up to the first fault. Hence ignore any errors 473 * and just continue. */ 474 (void)ret; 475 prefaulted = 1; 476 } 477 478 ret = shmem_pread_slow(page, shmem_page_offset, page_length, 479 user_data, page_do_bit17_swizzling, 480 needs_clflush); 481 482 mutex_lock(&dev->struct_mutex); 483 484 next_page: 485 mark_page_accessed(page); 486 487 if (ret) 488 goto out; 489 490 remain -= page_length; 491 user_data += page_length; 492 offset += page_length; 493 } 494 495 out: 496 i915_gem_object_unpin_pages(obj); 497 498 return ret; 499 } 500 501 /** 502 * Reads data from the object referenced by handle. 503 * 504 * On error, the contents of *data are undefined. 505 */ 506 int 507 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 508 struct drm_file *file) 509 { 510 struct drm_i915_gem_pread *args = data; 511 struct drm_i915_gem_object *obj; 512 int ret = 0; 513 514 if (args->size == 0) 515 return 0; 516 517 if (!access_ok(VERIFY_WRITE, 518 to_user_ptr(args->data_ptr), 519 args->size)) 520 return -EFAULT; 521 522 ret = i915_mutex_lock_interruptible(dev); 523 if (ret) 524 return ret; 525 526 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 527 if (&obj->base == NULL) { 528 ret = -ENOENT; 529 goto unlock; 530 } 531 532 /* Bounds check source. */ 533 if (args->offset > obj->base.size || 534 args->size > obj->base.size - args->offset) { 535 ret = -EINVAL; 536 goto out; 537 } 538 539 /* prime objects have no backing filp to GEM pread/pwrite 540 * pages from. 541 */ 542 if (!obj->base.filp) { 543 ret = -EINVAL; 544 goto out; 545 } 546 547 trace_i915_gem_object_pread(obj, args->offset, args->size); 548 549 ret = i915_gem_shmem_pread(dev, obj, args, file); 550 551 out: 552 drm_gem_object_unreference(&obj->base); 553 unlock: 554 mutex_unlock(&dev->struct_mutex); 555 return ret; 556 } 557 558 /* This is the fast write path which cannot handle 559 * page faults in the source data 560 */ 561 562 static inline int 563 fast_user_write(struct io_mapping *mapping, 564 loff_t page_base, int page_offset, 565 char __user *user_data, 566 int length) 567 { 568 void __iomem *vaddr_atomic; 569 void *vaddr; 570 unsigned long unwritten; 571 572 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base); 573 /* We can use the cpu mem copy function because this is X86. */ 574 vaddr = (void __force*)vaddr_atomic + page_offset; 575 unwritten = __copy_from_user_inatomic_nocache(vaddr, 576 user_data, length); 577 io_mapping_unmap_atomic(vaddr_atomic); 578 return unwritten; 579 } 580 581 /** 582 * This is the fast pwrite path, where we copy the data directly from the 583 * user into the GTT, uncached. 584 */ 585 static int 586 i915_gem_gtt_pwrite_fast(struct drm_device *dev, 587 struct drm_i915_gem_object *obj, 588 struct drm_i915_gem_pwrite *args, 589 struct drm_file *file) 590 { 591 drm_i915_private_t *dev_priv = dev->dev_private; 592 ssize_t remain; 593 loff_t offset, page_base; 594 char __user *user_data; 595 int page_offset, page_length, ret; 596 597 ret = i915_gem_object_pin(obj, 0, true, true); 598 if (ret) 599 goto out; 600 601 ret = i915_gem_object_set_to_gtt_domain(obj, true); 602 if (ret) 603 goto out_unpin; 604 605 ret = i915_gem_object_put_fence(obj); 606 if (ret) 607 goto out_unpin; 608 609 user_data = to_user_ptr(args->data_ptr); 610 remain = args->size; 611 612 offset = obj->gtt_offset + args->offset; 613 614 while (remain > 0) { 615 /* Operation in this page 616 * 617 * page_base = page offset within aperture 618 * page_offset = offset within page 619 * page_length = bytes to copy for this page 620 */ 621 page_base = offset & PAGE_MASK; 622 page_offset = offset_in_page(offset); 623 page_length = remain; 624 if ((page_offset + remain) > PAGE_SIZE) 625 page_length = PAGE_SIZE - page_offset; 626 627 /* If we get a fault while copying data, then (presumably) our 628 * source page isn't available. Return the error and we'll 629 * retry in the slow path. 630 */ 631 if (fast_user_write(dev_priv->gtt.mappable, page_base, 632 page_offset, user_data, page_length)) { 633 ret = -EFAULT; 634 goto out_unpin; 635 } 636 637 remain -= page_length; 638 user_data += page_length; 639 offset += page_length; 640 } 641 642 out_unpin: 643 i915_gem_object_unpin(obj); 644 out: 645 return ret; 646 } 647 648 /* Per-page copy function for the shmem pwrite fastpath. 649 * Flushes invalid cachelines before writing to the target if 650 * needs_clflush_before is set and flushes out any written cachelines after 651 * writing if needs_clflush is set. */ 652 static int 653 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length, 654 char __user *user_data, 655 bool page_do_bit17_swizzling, 656 bool needs_clflush_before, 657 bool needs_clflush_after) 658 { 659 char *vaddr; 660 int ret; 661 662 if (unlikely(page_do_bit17_swizzling)) 663 return -EINVAL; 664 665 vaddr = kmap_atomic(page); 666 if (needs_clflush_before) 667 drm_clflush_virt_range(vaddr + shmem_page_offset, 668 page_length); 669 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset, 670 user_data, 671 page_length); 672 if (needs_clflush_after) 673 drm_clflush_virt_range(vaddr + shmem_page_offset, 674 page_length); 675 kunmap_atomic(vaddr); 676 677 return ret ? -EFAULT : 0; 678 } 679 680 /* Only difference to the fast-path function is that this can handle bit17 681 * and uses non-atomic copy and kmap functions. */ 682 static int 683 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length, 684 char __user *user_data, 685 bool page_do_bit17_swizzling, 686 bool needs_clflush_before, 687 bool needs_clflush_after) 688 { 689 char *vaddr; 690 int ret; 691 692 vaddr = kmap(page); 693 if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) 694 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 695 page_length, 696 page_do_bit17_swizzling); 697 if (page_do_bit17_swizzling) 698 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset, 699 user_data, 700 page_length); 701 else 702 ret = __copy_from_user(vaddr + shmem_page_offset, 703 user_data, 704 page_length); 705 if (needs_clflush_after) 706 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 707 page_length, 708 page_do_bit17_swizzling); 709 kunmap(page); 710 711 return ret ? -EFAULT : 0; 712 } 713 714 static int 715 i915_gem_shmem_pwrite(struct drm_device *dev, 716 struct drm_i915_gem_object *obj, 717 struct drm_i915_gem_pwrite *args, 718 struct drm_file *file) 719 { 720 ssize_t remain; 721 loff_t offset; 722 char __user *user_data; 723 int shmem_page_offset, page_length, ret = 0; 724 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 725 int hit_slowpath = 0; 726 int needs_clflush_after = 0; 727 int needs_clflush_before = 0; 728 struct sg_page_iter sg_iter; 729 730 user_data = to_user_ptr(args->data_ptr); 731 remain = args->size; 732 733 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 734 735 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 736 /* If we're not in the cpu write domain, set ourself into the gtt 737 * write domain and manually flush cachelines (if required). This 738 * optimizes for the case when the gpu will use the data 739 * right away and we therefore have to clflush anyway. */ 740 if (obj->cache_level == I915_CACHE_NONE) 741 needs_clflush_after = 1; 742 if (obj->gtt_space) { 743 ret = i915_gem_object_set_to_gtt_domain(obj, true); 744 if (ret) 745 return ret; 746 } 747 } 748 /* Same trick applies for invalidate partially written cachelines before 749 * writing. */ 750 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU) 751 && obj->cache_level == I915_CACHE_NONE) 752 needs_clflush_before = 1; 753 754 ret = i915_gem_object_get_pages(obj); 755 if (ret) 756 return ret; 757 758 i915_gem_object_pin_pages(obj); 759 760 offset = args->offset; 761 obj->dirty = 1; 762 763 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 764 offset >> PAGE_SHIFT) { 765 struct page *page = sg_page_iter_page(&sg_iter); 766 int partial_cacheline_write; 767 768 if (remain <= 0) 769 break; 770 771 /* Operation in this page 772 * 773 * shmem_page_offset = offset within page in shmem file 774 * page_length = bytes to copy for this page 775 */ 776 shmem_page_offset = offset_in_page(offset); 777 778 page_length = remain; 779 if ((shmem_page_offset + page_length) > PAGE_SIZE) 780 page_length = PAGE_SIZE - shmem_page_offset; 781 782 /* If we don't overwrite a cacheline completely we need to be 783 * careful to have up-to-date data by first clflushing. Don't 784 * overcomplicate things and flush the entire patch. */ 785 partial_cacheline_write = needs_clflush_before && 786 ((shmem_page_offset | page_length) 787 & (boot_cpu_data.x86_clflush_size - 1)); 788 789 page_do_bit17_swizzling = obj_do_bit17_swizzling && 790 (page_to_phys(page) & (1 << 17)) != 0; 791 792 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length, 793 user_data, page_do_bit17_swizzling, 794 partial_cacheline_write, 795 needs_clflush_after); 796 if (ret == 0) 797 goto next_page; 798 799 hit_slowpath = 1; 800 mutex_unlock(&dev->struct_mutex); 801 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length, 802 user_data, page_do_bit17_swizzling, 803 partial_cacheline_write, 804 needs_clflush_after); 805 806 mutex_lock(&dev->struct_mutex); 807 808 next_page: 809 set_page_dirty(page); 810 mark_page_accessed(page); 811 812 if (ret) 813 goto out; 814 815 remain -= page_length; 816 user_data += page_length; 817 offset += page_length; 818 } 819 820 out: 821 i915_gem_object_unpin_pages(obj); 822 823 if (hit_slowpath) { 824 /* 825 * Fixup: Flush cpu caches in case we didn't flush the dirty 826 * cachelines in-line while writing and the object moved 827 * out of the cpu write domain while we've dropped the lock. 828 */ 829 if (!needs_clflush_after && 830 obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 831 i915_gem_clflush_object(obj); 832 i915_gem_chipset_flush(dev); 833 } 834 } 835 836 if (needs_clflush_after) 837 i915_gem_chipset_flush(dev); 838 839 return ret; 840 } 841 842 /** 843 * Writes data to the object referenced by handle. 844 * 845 * On error, the contents of the buffer that were to be modified are undefined. 846 */ 847 int 848 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 849 struct drm_file *file) 850 { 851 struct drm_i915_gem_pwrite *args = data; 852 struct drm_i915_gem_object *obj; 853 int ret; 854 855 if (args->size == 0) 856 return 0; 857 858 if (!access_ok(VERIFY_READ, 859 to_user_ptr(args->data_ptr), 860 args->size)) 861 return -EFAULT; 862 863 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr), 864 args->size); 865 if (ret) 866 return -EFAULT; 867 868 ret = i915_mutex_lock_interruptible(dev); 869 if (ret) 870 return ret; 871 872 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 873 if (&obj->base == NULL) { 874 ret = -ENOENT; 875 goto unlock; 876 } 877 878 /* Bounds check destination. */ 879 if (args->offset > obj->base.size || 880 args->size > obj->base.size - args->offset) { 881 ret = -EINVAL; 882 goto out; 883 } 884 885 /* prime objects have no backing filp to GEM pread/pwrite 886 * pages from. 887 */ 888 if (!obj->base.filp) { 889 ret = -EINVAL; 890 goto out; 891 } 892 893 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 894 895 ret = -EFAULT; 896 /* We can only do the GTT pwrite on untiled buffers, as otherwise 897 * it would end up going through the fenced access, and we'll get 898 * different detiling behavior between reading and writing. 899 * pread/pwrite currently are reading and writing from the CPU 900 * perspective, requiring manual detiling by the client. 901 */ 902 if (obj->phys_obj) { 903 ret = i915_gem_phys_pwrite(dev, obj, args, file); 904 goto out; 905 } 906 907 if (obj->cache_level == I915_CACHE_NONE && 908 obj->tiling_mode == I915_TILING_NONE && 909 obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 910 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file); 911 /* Note that the gtt paths might fail with non-page-backed user 912 * pointers (e.g. gtt mappings when moving data between 913 * textures). Fallback to the shmem path in that case. */ 914 } 915 916 if (ret == -EFAULT || ret == -ENOSPC) 917 ret = i915_gem_shmem_pwrite(dev, obj, args, file); 918 919 out: 920 drm_gem_object_unreference(&obj->base); 921 unlock: 922 mutex_unlock(&dev->struct_mutex); 923 return ret; 924 } 925 926 int 927 i915_gem_check_wedge(struct i915_gpu_error *error, 928 bool interruptible) 929 { 930 if (i915_reset_in_progress(error)) { 931 /* Non-interruptible callers can't handle -EAGAIN, hence return 932 * -EIO unconditionally for these. */ 933 if (!interruptible) 934 return -EIO; 935 936 /* Recovery complete, but the reset failed ... */ 937 if (i915_terminally_wedged(error)) 938 return -EIO; 939 940 return -EAGAIN; 941 } 942 943 return 0; 944 } 945 946 /* 947 * Compare seqno against outstanding lazy request. Emit a request if they are 948 * equal. 949 */ 950 static int 951 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno) 952 { 953 int ret; 954 955 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex)); 956 957 ret = 0; 958 if (seqno == ring->outstanding_lazy_request) 959 ret = i915_add_request(ring, NULL); 960 961 return ret; 962 } 963 964 /** 965 * __wait_seqno - wait until execution of seqno has finished 966 * @ring: the ring expected to report seqno 967 * @seqno: duh! 968 * @reset_counter: reset sequence associated with the given seqno 969 * @interruptible: do an interruptible wait (normally yes) 970 * @timeout: in - how long to wait (NULL forever); out - how much time remaining 971 * 972 * Note: It is of utmost importance that the passed in seqno and reset_counter 973 * values have been read by the caller in an smp safe manner. Where read-side 974 * locks are involved, it is sufficient to read the reset_counter before 975 * unlocking the lock that protects the seqno. For lockless tricks, the 976 * reset_counter _must_ be read before, and an appropriate smp_rmb must be 977 * inserted. 978 * 979 * Returns 0 if the seqno was found within the alloted time. Else returns the 980 * errno with remaining time filled in timeout argument. 981 */ 982 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno, 983 unsigned reset_counter, 984 bool interruptible, struct timespec *timeout) 985 { 986 drm_i915_private_t *dev_priv = ring->dev->dev_private; 987 struct timespec before, now, wait_time={1,0}; 988 unsigned long timeout_jiffies; 989 long end; 990 bool wait_forever = true; 991 int ret; 992 993 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno)) 994 return 0; 995 996 trace_i915_gem_request_wait_begin(ring, seqno); 997 998 if (timeout != NULL) { 999 wait_time = *timeout; 1000 wait_forever = false; 1001 } 1002 1003 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time); 1004 1005 if (WARN_ON(!ring->irq_get(ring))) 1006 return -ENODEV; 1007 1008 /* Record current time in case interrupted by signal, or wedged * */ 1009 getrawmonotonic(&before); 1010 1011 #define EXIT_COND \ 1012 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \ 1013 i915_reset_in_progress(&dev_priv->gpu_error) || \ 1014 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) 1015 do { 1016 if (interruptible) 1017 end = wait_event_interruptible_timeout(ring->irq_queue, 1018 EXIT_COND, 1019 timeout_jiffies); 1020 else 1021 end = wait_event_timeout(ring->irq_queue, EXIT_COND, 1022 timeout_jiffies); 1023 1024 /* We need to check whether any gpu reset happened in between 1025 * the caller grabbing the seqno and now ... */ 1026 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) 1027 end = -EAGAIN; 1028 1029 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely 1030 * gone. */ 1031 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1032 if (ret) 1033 end = ret; 1034 } while (end == 0 && wait_forever); 1035 1036 getrawmonotonic(&now); 1037 1038 ring->irq_put(ring); 1039 trace_i915_gem_request_wait_end(ring, seqno); 1040 #undef EXIT_COND 1041 1042 if (timeout) { 1043 struct timespec sleep_time = timespec_sub(now, before); 1044 *timeout = timespec_sub(*timeout, sleep_time); 1045 if (!timespec_valid(timeout)) /* i.e. negative time remains */ 1046 set_normalized_timespec(timeout, 0, 0); 1047 } 1048 1049 switch (end) { 1050 case -EIO: 1051 case -EAGAIN: /* Wedged */ 1052 case -ERESTARTSYS: /* Signal */ 1053 return (int)end; 1054 case 0: /* Timeout */ 1055 return -ETIME; 1056 default: /* Completed */ 1057 WARN_ON(end < 0); /* We're not aware of other errors */ 1058 return 0; 1059 } 1060 } 1061 1062 /** 1063 * Waits for a sequence number to be signaled, and cleans up the 1064 * request and object lists appropriately for that event. 1065 */ 1066 int 1067 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno) 1068 { 1069 struct drm_device *dev = ring->dev; 1070 struct drm_i915_private *dev_priv = dev->dev_private; 1071 bool interruptible = dev_priv->mm.interruptible; 1072 int ret; 1073 1074 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1075 BUG_ON(seqno == 0); 1076 1077 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1078 if (ret) 1079 return ret; 1080 1081 ret = i915_gem_check_olr(ring, seqno); 1082 if (ret) 1083 return ret; 1084 1085 return __wait_seqno(ring, seqno, 1086 atomic_read(&dev_priv->gpu_error.reset_counter), 1087 interruptible, NULL); 1088 } 1089 1090 static int 1091 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj, 1092 struct intel_ring_buffer *ring) 1093 { 1094 i915_gem_retire_requests_ring(ring); 1095 1096 /* Manually manage the write flush as we may have not yet 1097 * retired the buffer. 1098 * 1099 * Note that the last_write_seqno is always the earlier of 1100 * the two (read/write) seqno, so if we haved successfully waited, 1101 * we know we have passed the last write. 1102 */ 1103 obj->last_write_seqno = 0; 1104 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS; 1105 1106 return 0; 1107 } 1108 1109 /** 1110 * Ensures that all rendering to the object has completed and the object is 1111 * safe to unbind from the GTT or access from the CPU. 1112 */ 1113 static __must_check int 1114 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 1115 bool readonly) 1116 { 1117 struct intel_ring_buffer *ring = obj->ring; 1118 u32 seqno; 1119 int ret; 1120 1121 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1122 if (seqno == 0) 1123 return 0; 1124 1125 ret = i915_wait_seqno(ring, seqno); 1126 if (ret) 1127 return ret; 1128 1129 return i915_gem_object_wait_rendering__tail(obj, ring); 1130 } 1131 1132 /* A nonblocking variant of the above wait. This is a highly dangerous routine 1133 * as the object state may change during this call. 1134 */ 1135 static __must_check int 1136 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj, 1137 bool readonly) 1138 { 1139 struct drm_device *dev = obj->base.dev; 1140 struct drm_i915_private *dev_priv = dev->dev_private; 1141 struct intel_ring_buffer *ring = obj->ring; 1142 unsigned reset_counter; 1143 u32 seqno; 1144 int ret; 1145 1146 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1147 BUG_ON(!dev_priv->mm.interruptible); 1148 1149 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1150 if (seqno == 0) 1151 return 0; 1152 1153 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true); 1154 if (ret) 1155 return ret; 1156 1157 ret = i915_gem_check_olr(ring, seqno); 1158 if (ret) 1159 return ret; 1160 1161 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 1162 mutex_unlock(&dev->struct_mutex); 1163 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL); 1164 mutex_lock(&dev->struct_mutex); 1165 if (ret) 1166 return ret; 1167 1168 return i915_gem_object_wait_rendering__tail(obj, ring); 1169 } 1170 1171 /** 1172 * Called when user space prepares to use an object with the CPU, either 1173 * through the mmap ioctl's mapping or a GTT mapping. 1174 */ 1175 int 1176 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 1177 struct drm_file *file) 1178 { 1179 struct drm_i915_gem_set_domain *args = data; 1180 struct drm_i915_gem_object *obj; 1181 uint32_t read_domains = args->read_domains; 1182 uint32_t write_domain = args->write_domain; 1183 int ret; 1184 1185 /* Only handle setting domains to types used by the CPU. */ 1186 if (write_domain & I915_GEM_GPU_DOMAINS) 1187 return -EINVAL; 1188 1189 if (read_domains & I915_GEM_GPU_DOMAINS) 1190 return -EINVAL; 1191 1192 /* Having something in the write domain implies it's in the read 1193 * domain, and only that read domain. Enforce that in the request. 1194 */ 1195 if (write_domain != 0 && read_domains != write_domain) 1196 return -EINVAL; 1197 1198 ret = i915_mutex_lock_interruptible(dev); 1199 if (ret) 1200 return ret; 1201 1202 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1203 if (&obj->base == NULL) { 1204 ret = -ENOENT; 1205 goto unlock; 1206 } 1207 1208 /* Try to flush the object off the GPU without holding the lock. 1209 * We will repeat the flush holding the lock in the normal manner 1210 * to catch cases where we are gazumped. 1211 */ 1212 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain); 1213 if (ret) 1214 goto unref; 1215 1216 if (read_domains & I915_GEM_DOMAIN_GTT) { 1217 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); 1218 1219 /* Silently promote "you're not bound, there was nothing to do" 1220 * to success, since the client was just asking us to 1221 * make sure everything was done. 1222 */ 1223 if (ret == -EINVAL) 1224 ret = 0; 1225 } else { 1226 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); 1227 } 1228 1229 unref: 1230 drm_gem_object_unreference(&obj->base); 1231 unlock: 1232 mutex_unlock(&dev->struct_mutex); 1233 return ret; 1234 } 1235 1236 /** 1237 * Called when user space has done writes to this buffer 1238 */ 1239 int 1240 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1241 struct drm_file *file) 1242 { 1243 struct drm_i915_gem_sw_finish *args = data; 1244 struct drm_i915_gem_object *obj; 1245 int ret = 0; 1246 1247 ret = i915_mutex_lock_interruptible(dev); 1248 if (ret) 1249 return ret; 1250 1251 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1252 if (&obj->base == NULL) { 1253 ret = -ENOENT; 1254 goto unlock; 1255 } 1256 1257 /* Pinned buffers may be scanout, so flush the cache */ 1258 if (obj->pin_count) 1259 i915_gem_object_flush_cpu_write_domain(obj); 1260 1261 drm_gem_object_unreference(&obj->base); 1262 unlock: 1263 mutex_unlock(&dev->struct_mutex); 1264 return ret; 1265 } 1266 1267 /** 1268 * Maps the contents of an object, returning the address it is mapped 1269 * into. 1270 * 1271 * While the mapping holds a reference on the contents of the object, it doesn't 1272 * imply a ref on the object itself. 1273 */ 1274 int 1275 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1276 struct drm_file *file) 1277 { 1278 struct drm_i915_gem_mmap *args = data; 1279 struct drm_gem_object *obj; 1280 unsigned long addr; 1281 1282 obj = drm_gem_object_lookup(dev, file, args->handle); 1283 if (obj == NULL) 1284 return -ENOENT; 1285 1286 /* prime objects have no backing filp to GEM mmap 1287 * pages from. 1288 */ 1289 if (!obj->filp) { 1290 drm_gem_object_unreference_unlocked(obj); 1291 return -EINVAL; 1292 } 1293 1294 addr = vm_mmap(obj->filp, 0, args->size, 1295 PROT_READ | PROT_WRITE, MAP_SHARED, 1296 args->offset); 1297 drm_gem_object_unreference_unlocked(obj); 1298 if (IS_ERR((void *)addr)) 1299 return addr; 1300 1301 args->addr_ptr = (uint64_t) addr; 1302 1303 return 0; 1304 } 1305 1306 /** 1307 * i915_gem_fault - fault a page into the GTT 1308 * vma: VMA in question 1309 * vmf: fault info 1310 * 1311 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1312 * from userspace. The fault handler takes care of binding the object to 1313 * the GTT (if needed), allocating and programming a fence register (again, 1314 * only if needed based on whether the old reg is still valid or the object 1315 * is tiled) and inserting a new PTE into the faulting process. 1316 * 1317 * Note that the faulting process may involve evicting existing objects 1318 * from the GTT and/or fence registers to make room. So performance may 1319 * suffer if the GTT working set is large or there are few fence registers 1320 * left. 1321 */ 1322 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1323 { 1324 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data); 1325 struct drm_device *dev = obj->base.dev; 1326 drm_i915_private_t *dev_priv = dev->dev_private; 1327 pgoff_t page_offset; 1328 unsigned long pfn; 1329 int ret = 0; 1330 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 1331 1332 /* We don't use vmf->pgoff since that has the fake offset */ 1333 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >> 1334 PAGE_SHIFT; 1335 1336 ret = i915_mutex_lock_interruptible(dev); 1337 if (ret) 1338 goto out; 1339 1340 trace_i915_gem_object_fault(obj, page_offset, true, write); 1341 1342 /* Access to snoopable pages through the GTT is incoherent. */ 1343 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) { 1344 ret = -EINVAL; 1345 goto unlock; 1346 } 1347 1348 /* Now bind it into the GTT if needed */ 1349 ret = i915_gem_object_pin(obj, 0, true, false); 1350 if (ret) 1351 goto unlock; 1352 1353 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1354 if (ret) 1355 goto unpin; 1356 1357 ret = i915_gem_object_get_fence(obj); 1358 if (ret) 1359 goto unpin; 1360 1361 obj->fault_mappable = true; 1362 1363 pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) + 1364 page_offset; 1365 1366 /* Finally, remap it using the new GTT offset */ 1367 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn); 1368 unpin: 1369 i915_gem_object_unpin(obj); 1370 unlock: 1371 mutex_unlock(&dev->struct_mutex); 1372 out: 1373 switch (ret) { 1374 case -EIO: 1375 /* If this -EIO is due to a gpu hang, give the reset code a 1376 * chance to clean up the mess. Otherwise return the proper 1377 * SIGBUS. */ 1378 if (i915_terminally_wedged(&dev_priv->gpu_error)) 1379 return VM_FAULT_SIGBUS; 1380 case -EAGAIN: 1381 /* Give the error handler a chance to run and move the 1382 * objects off the GPU active list. Next time we service the 1383 * fault, we should be able to transition the page into the 1384 * GTT without touching the GPU (and so avoid further 1385 * EIO/EGAIN). If the GPU is wedged, then there is no issue 1386 * with coherency, just lost writes. 1387 */ 1388 set_need_resched(); 1389 case 0: 1390 case -ERESTARTSYS: 1391 case -EINTR: 1392 case -EBUSY: 1393 /* 1394 * EBUSY is ok: this just means that another thread 1395 * already did the job. 1396 */ 1397 return VM_FAULT_NOPAGE; 1398 case -ENOMEM: 1399 return VM_FAULT_OOM; 1400 case -ENOSPC: 1401 return VM_FAULT_SIGBUS; 1402 default: 1403 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); 1404 return VM_FAULT_SIGBUS; 1405 } 1406 } 1407 1408 /** 1409 * i915_gem_release_mmap - remove physical page mappings 1410 * @obj: obj in question 1411 * 1412 * Preserve the reservation of the mmapping with the DRM core code, but 1413 * relinquish ownership of the pages back to the system. 1414 * 1415 * It is vital that we remove the page mapping if we have mapped a tiled 1416 * object through the GTT and then lose the fence register due to 1417 * resource pressure. Similarly if the object has been moved out of the 1418 * aperture, than pages mapped into userspace must be revoked. Removing the 1419 * mapping will then trigger a page fault on the next user access, allowing 1420 * fixup by i915_gem_fault(). 1421 */ 1422 void 1423 i915_gem_release_mmap(struct drm_i915_gem_object *obj) 1424 { 1425 if (!obj->fault_mappable) 1426 return; 1427 1428 if (obj->base.dev->dev_mapping) 1429 unmap_mapping_range(obj->base.dev->dev_mapping, 1430 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT, 1431 obj->base.size, 1); 1432 1433 obj->fault_mappable = false; 1434 } 1435 1436 uint32_t 1437 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode) 1438 { 1439 uint32_t gtt_size; 1440 1441 if (INTEL_INFO(dev)->gen >= 4 || 1442 tiling_mode == I915_TILING_NONE) 1443 return size; 1444 1445 /* Previous chips need a power-of-two fence region when tiling */ 1446 if (INTEL_INFO(dev)->gen == 3) 1447 gtt_size = 1024*1024; 1448 else 1449 gtt_size = 512*1024; 1450 1451 while (gtt_size < size) 1452 gtt_size <<= 1; 1453 1454 return gtt_size; 1455 } 1456 1457 /** 1458 * i915_gem_get_gtt_alignment - return required GTT alignment for an object 1459 * @obj: object to check 1460 * 1461 * Return the required GTT alignment for an object, taking into account 1462 * potential fence register mapping. 1463 */ 1464 uint32_t 1465 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size, 1466 int tiling_mode, bool fenced) 1467 { 1468 /* 1469 * Minimum alignment is 4k (GTT page size), but might be greater 1470 * if a fence register is needed for the object. 1471 */ 1472 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) || 1473 tiling_mode == I915_TILING_NONE) 1474 return 4096; 1475 1476 /* 1477 * Previous chips need to be aligned to the size of the smallest 1478 * fence register that can contain the object. 1479 */ 1480 return i915_gem_get_gtt_size(dev, size, tiling_mode); 1481 } 1482 1483 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) 1484 { 1485 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1486 int ret; 1487 1488 if (obj->base.map_list.map) 1489 return 0; 1490 1491 dev_priv->mm.shrinker_no_lock_stealing = true; 1492 1493 ret = drm_gem_create_mmap_offset(&obj->base); 1494 if (ret != -ENOSPC) 1495 goto out; 1496 1497 /* Badly fragmented mmap space? The only way we can recover 1498 * space is by destroying unwanted objects. We can't randomly release 1499 * mmap_offsets as userspace expects them to be persistent for the 1500 * lifetime of the objects. The closest we can is to release the 1501 * offsets on purgeable objects by truncating it and marking it purged, 1502 * which prevents userspace from ever using that object again. 1503 */ 1504 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT); 1505 ret = drm_gem_create_mmap_offset(&obj->base); 1506 if (ret != -ENOSPC) 1507 goto out; 1508 1509 i915_gem_shrink_all(dev_priv); 1510 ret = drm_gem_create_mmap_offset(&obj->base); 1511 out: 1512 dev_priv->mm.shrinker_no_lock_stealing = false; 1513 1514 return ret; 1515 } 1516 1517 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) 1518 { 1519 if (!obj->base.map_list.map) 1520 return; 1521 1522 drm_gem_free_mmap_offset(&obj->base); 1523 } 1524 1525 int 1526 i915_gem_mmap_gtt(struct drm_file *file, 1527 struct drm_device *dev, 1528 uint32_t handle, 1529 uint64_t *offset) 1530 { 1531 struct drm_i915_private *dev_priv = dev->dev_private; 1532 struct drm_i915_gem_object *obj; 1533 int ret; 1534 1535 ret = i915_mutex_lock_interruptible(dev); 1536 if (ret) 1537 return ret; 1538 1539 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle)); 1540 if (&obj->base == NULL) { 1541 ret = -ENOENT; 1542 goto unlock; 1543 } 1544 1545 if (obj->base.size > dev_priv->gtt.mappable_end) { 1546 ret = -E2BIG; 1547 goto out; 1548 } 1549 1550 if (obj->madv != I915_MADV_WILLNEED) { 1551 DRM_ERROR("Attempting to mmap a purgeable buffer\n"); 1552 ret = -EINVAL; 1553 goto out; 1554 } 1555 1556 ret = i915_gem_object_create_mmap_offset(obj); 1557 if (ret) 1558 goto out; 1559 1560 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT; 1561 1562 out: 1563 drm_gem_object_unreference(&obj->base); 1564 unlock: 1565 mutex_unlock(&dev->struct_mutex); 1566 return ret; 1567 } 1568 1569 /** 1570 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 1571 * @dev: DRM device 1572 * @data: GTT mapping ioctl data 1573 * @file: GEM object info 1574 * 1575 * Simply returns the fake offset to userspace so it can mmap it. 1576 * The mmap call will end up in drm_gem_mmap(), which will set things 1577 * up so we can get faults in the handler above. 1578 * 1579 * The fault handler will take care of binding the object into the GTT 1580 * (since it may have been evicted to make room for something), allocating 1581 * a fence register, and mapping the appropriate aperture address into 1582 * userspace. 1583 */ 1584 int 1585 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 1586 struct drm_file *file) 1587 { 1588 struct drm_i915_gem_mmap_gtt *args = data; 1589 1590 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); 1591 } 1592 1593 /* Immediately discard the backing storage */ 1594 static void 1595 i915_gem_object_truncate(struct drm_i915_gem_object *obj) 1596 { 1597 struct inode *inode; 1598 1599 i915_gem_object_free_mmap_offset(obj); 1600 1601 if (obj->base.filp == NULL) 1602 return; 1603 1604 /* Our goal here is to return as much of the memory as 1605 * is possible back to the system as we are called from OOM. 1606 * To do this we must instruct the shmfs to drop all of its 1607 * backing pages, *now*. 1608 */ 1609 inode = file_inode(obj->base.filp); 1610 shmem_truncate_range(inode, 0, (loff_t)-1); 1611 1612 obj->madv = __I915_MADV_PURGED; 1613 } 1614 1615 static inline int 1616 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj) 1617 { 1618 return obj->madv == I915_MADV_DONTNEED; 1619 } 1620 1621 static void 1622 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj) 1623 { 1624 struct sg_page_iter sg_iter; 1625 int ret; 1626 1627 BUG_ON(obj->madv == __I915_MADV_PURGED); 1628 1629 ret = i915_gem_object_set_to_cpu_domain(obj, true); 1630 if (ret) { 1631 /* In the event of a disaster, abandon all caches and 1632 * hope for the best. 1633 */ 1634 WARN_ON(ret != -EIO); 1635 i915_gem_clflush_object(obj); 1636 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; 1637 } 1638 1639 if (i915_gem_object_needs_bit17_swizzle(obj)) 1640 i915_gem_object_save_bit_17_swizzle(obj); 1641 1642 if (obj->madv == I915_MADV_DONTNEED) 1643 obj->dirty = 0; 1644 1645 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) { 1646 struct page *page = sg_page_iter_page(&sg_iter); 1647 1648 if (obj->dirty) 1649 set_page_dirty(page); 1650 1651 if (obj->madv == I915_MADV_WILLNEED) 1652 mark_page_accessed(page); 1653 1654 page_cache_release(page); 1655 } 1656 obj->dirty = 0; 1657 1658 sg_free_table(obj->pages); 1659 kfree(obj->pages); 1660 } 1661 1662 int 1663 i915_gem_object_put_pages(struct drm_i915_gem_object *obj) 1664 { 1665 const struct drm_i915_gem_object_ops *ops = obj->ops; 1666 1667 if (obj->pages == NULL) 1668 return 0; 1669 1670 BUG_ON(obj->gtt_space); 1671 1672 if (obj->pages_pin_count) 1673 return -EBUSY; 1674 1675 /* ->put_pages might need to allocate memory for the bit17 swizzle 1676 * array, hence protect them from being reaped by removing them from gtt 1677 * lists early. */ 1678 list_del(&obj->global_list); 1679 1680 ops->put_pages(obj); 1681 obj->pages = NULL; 1682 1683 if (i915_gem_object_is_purgeable(obj)) 1684 i915_gem_object_truncate(obj); 1685 1686 return 0; 1687 } 1688 1689 static long 1690 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target, 1691 bool purgeable_only) 1692 { 1693 struct drm_i915_gem_object *obj, *next; 1694 long count = 0; 1695 1696 list_for_each_entry_safe(obj, next, 1697 &dev_priv->mm.unbound_list, 1698 global_list) { 1699 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) && 1700 i915_gem_object_put_pages(obj) == 0) { 1701 count += obj->base.size >> PAGE_SHIFT; 1702 if (count >= target) 1703 return count; 1704 } 1705 } 1706 1707 list_for_each_entry_safe(obj, next, 1708 &dev_priv->mm.inactive_list, 1709 mm_list) { 1710 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) && 1711 i915_gem_object_unbind(obj) == 0 && 1712 i915_gem_object_put_pages(obj) == 0) { 1713 count += obj->base.size >> PAGE_SHIFT; 1714 if (count >= target) 1715 return count; 1716 } 1717 } 1718 1719 return count; 1720 } 1721 1722 static long 1723 i915_gem_purge(struct drm_i915_private *dev_priv, long target) 1724 { 1725 return __i915_gem_shrink(dev_priv, target, true); 1726 } 1727 1728 static void 1729 i915_gem_shrink_all(struct drm_i915_private *dev_priv) 1730 { 1731 struct drm_i915_gem_object *obj, *next; 1732 1733 i915_gem_evict_everything(dev_priv->dev); 1734 1735 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, 1736 global_list) 1737 i915_gem_object_put_pages(obj); 1738 } 1739 1740 static int 1741 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) 1742 { 1743 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1744 int page_count, i; 1745 struct address_space *mapping; 1746 struct sg_table *st; 1747 struct scatterlist *sg; 1748 struct sg_page_iter sg_iter; 1749 struct page *page; 1750 unsigned long last_pfn = 0; /* suppress gcc warning */ 1751 gfp_t gfp; 1752 1753 /* Assert that the object is not currently in any GPU domain. As it 1754 * wasn't in the GTT, there shouldn't be any way it could have been in 1755 * a GPU cache 1756 */ 1757 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); 1758 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); 1759 1760 st = kmalloc(sizeof(*st), GFP_KERNEL); 1761 if (st == NULL) 1762 return -ENOMEM; 1763 1764 page_count = obj->base.size / PAGE_SIZE; 1765 if (sg_alloc_table(st, page_count, GFP_KERNEL)) { 1766 sg_free_table(st); 1767 kfree(st); 1768 return -ENOMEM; 1769 } 1770 1771 /* Get the list of pages out of our struct file. They'll be pinned 1772 * at this point until we release them. 1773 * 1774 * Fail silently without starting the shrinker 1775 */ 1776 mapping = file_inode(obj->base.filp)->i_mapping; 1777 gfp = mapping_gfp_mask(mapping); 1778 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD; 1779 gfp &= ~(__GFP_IO | __GFP_WAIT); 1780 sg = st->sgl; 1781 st->nents = 0; 1782 for (i = 0; i < page_count; i++) { 1783 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1784 if (IS_ERR(page)) { 1785 i915_gem_purge(dev_priv, page_count); 1786 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1787 } 1788 if (IS_ERR(page)) { 1789 /* We've tried hard to allocate the memory by reaping 1790 * our own buffer, now let the real VM do its job and 1791 * go down in flames if truly OOM. 1792 */ 1793 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD); 1794 gfp |= __GFP_IO | __GFP_WAIT; 1795 1796 i915_gem_shrink_all(dev_priv); 1797 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1798 if (IS_ERR(page)) 1799 goto err_pages; 1800 1801 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD; 1802 gfp &= ~(__GFP_IO | __GFP_WAIT); 1803 } 1804 #ifdef CONFIG_SWIOTLB 1805 if (swiotlb_nr_tbl()) { 1806 st->nents++; 1807 sg_set_page(sg, page, PAGE_SIZE, 0); 1808 sg = sg_next(sg); 1809 continue; 1810 } 1811 #endif 1812 if (!i || page_to_pfn(page) != last_pfn + 1) { 1813 if (i) 1814 sg = sg_next(sg); 1815 st->nents++; 1816 sg_set_page(sg, page, PAGE_SIZE, 0); 1817 } else { 1818 sg->length += PAGE_SIZE; 1819 } 1820 last_pfn = page_to_pfn(page); 1821 } 1822 #ifdef CONFIG_SWIOTLB 1823 if (!swiotlb_nr_tbl()) 1824 #endif 1825 sg_mark_end(sg); 1826 obj->pages = st; 1827 1828 if (i915_gem_object_needs_bit17_swizzle(obj)) 1829 i915_gem_object_do_bit_17_swizzle(obj); 1830 1831 return 0; 1832 1833 err_pages: 1834 sg_mark_end(sg); 1835 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) 1836 page_cache_release(sg_page_iter_page(&sg_iter)); 1837 sg_free_table(st); 1838 kfree(st); 1839 return PTR_ERR(page); 1840 } 1841 1842 /* Ensure that the associated pages are gathered from the backing storage 1843 * and pinned into our object. i915_gem_object_get_pages() may be called 1844 * multiple times before they are released by a single call to 1845 * i915_gem_object_put_pages() - once the pages are no longer referenced 1846 * either as a result of memory pressure (reaping pages under the shrinker) 1847 * or as the object is itself released. 1848 */ 1849 int 1850 i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 1851 { 1852 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1853 const struct drm_i915_gem_object_ops *ops = obj->ops; 1854 int ret; 1855 1856 if (obj->pages) 1857 return 0; 1858 1859 if (obj->madv != I915_MADV_WILLNEED) { 1860 DRM_ERROR("Attempting to obtain a purgeable object\n"); 1861 return -EINVAL; 1862 } 1863 1864 BUG_ON(obj->pages_pin_count); 1865 1866 ret = ops->get_pages(obj); 1867 if (ret) 1868 return ret; 1869 1870 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list); 1871 return 0; 1872 } 1873 1874 void 1875 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj, 1876 struct intel_ring_buffer *ring) 1877 { 1878 struct drm_device *dev = obj->base.dev; 1879 struct drm_i915_private *dev_priv = dev->dev_private; 1880 u32 seqno = intel_ring_get_seqno(ring); 1881 1882 BUG_ON(ring == NULL); 1883 if (obj->ring != ring && obj->last_write_seqno) { 1884 /* Keep the seqno relative to the current ring */ 1885 obj->last_write_seqno = seqno; 1886 } 1887 obj->ring = ring; 1888 1889 /* Add a reference if we're newly entering the active list. */ 1890 if (!obj->active) { 1891 drm_gem_object_reference(&obj->base); 1892 obj->active = 1; 1893 } 1894 1895 /* Move from whatever list we were on to the tail of execution. */ 1896 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list); 1897 list_move_tail(&obj->ring_list, &ring->active_list); 1898 1899 obj->last_read_seqno = seqno; 1900 1901 if (obj->fenced_gpu_access) { 1902 obj->last_fenced_seqno = seqno; 1903 1904 /* Bump MRU to take account of the delayed flush */ 1905 if (obj->fence_reg != I915_FENCE_REG_NONE) { 1906 struct drm_i915_fence_reg *reg; 1907 1908 reg = &dev_priv->fence_regs[obj->fence_reg]; 1909 list_move_tail(®->lru_list, 1910 &dev_priv->mm.fence_list); 1911 } 1912 } 1913 } 1914 1915 static void 1916 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj) 1917 { 1918 struct drm_device *dev = obj->base.dev; 1919 struct drm_i915_private *dev_priv = dev->dev_private; 1920 1921 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS); 1922 BUG_ON(!obj->active); 1923 1924 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 1925 1926 list_del_init(&obj->ring_list); 1927 obj->ring = NULL; 1928 1929 obj->last_read_seqno = 0; 1930 obj->last_write_seqno = 0; 1931 obj->base.write_domain = 0; 1932 1933 obj->last_fenced_seqno = 0; 1934 obj->fenced_gpu_access = false; 1935 1936 obj->active = 0; 1937 drm_gem_object_unreference(&obj->base); 1938 1939 WARN_ON(i915_verify_lists(dev)); 1940 } 1941 1942 static int 1943 i915_gem_init_seqno(struct drm_device *dev, u32 seqno) 1944 { 1945 struct drm_i915_private *dev_priv = dev->dev_private; 1946 struct intel_ring_buffer *ring; 1947 int ret, i, j; 1948 1949 /* Carefully retire all requests without writing to the rings */ 1950 for_each_ring(ring, dev_priv, i) { 1951 ret = intel_ring_idle(ring); 1952 if (ret) 1953 return ret; 1954 } 1955 i915_gem_retire_requests(dev); 1956 1957 /* Finally reset hw state */ 1958 for_each_ring(ring, dev_priv, i) { 1959 intel_ring_init_seqno(ring, seqno); 1960 1961 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++) 1962 ring->sync_seqno[j] = 0; 1963 } 1964 1965 return 0; 1966 } 1967 1968 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno) 1969 { 1970 struct drm_i915_private *dev_priv = dev->dev_private; 1971 int ret; 1972 1973 if (seqno == 0) 1974 return -EINVAL; 1975 1976 /* HWS page needs to be set less than what we 1977 * will inject to ring 1978 */ 1979 ret = i915_gem_init_seqno(dev, seqno - 1); 1980 if (ret) 1981 return ret; 1982 1983 /* Carefully set the last_seqno value so that wrap 1984 * detection still works 1985 */ 1986 dev_priv->next_seqno = seqno; 1987 dev_priv->last_seqno = seqno - 1; 1988 if (dev_priv->last_seqno == 0) 1989 dev_priv->last_seqno--; 1990 1991 return 0; 1992 } 1993 1994 int 1995 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno) 1996 { 1997 struct drm_i915_private *dev_priv = dev->dev_private; 1998 1999 /* reserve 0 for non-seqno */ 2000 if (dev_priv->next_seqno == 0) { 2001 int ret = i915_gem_init_seqno(dev, 0); 2002 if (ret) 2003 return ret; 2004 2005 dev_priv->next_seqno = 1; 2006 } 2007 2008 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++; 2009 return 0; 2010 } 2011 2012 int __i915_add_request(struct intel_ring_buffer *ring, 2013 struct drm_file *file, 2014 struct drm_i915_gem_object *obj, 2015 u32 *out_seqno) 2016 { 2017 drm_i915_private_t *dev_priv = ring->dev->dev_private; 2018 struct drm_i915_gem_request *request; 2019 u32 request_ring_position, request_start; 2020 int was_empty; 2021 int ret; 2022 2023 request_start = intel_ring_get_tail(ring); 2024 /* 2025 * Emit any outstanding flushes - execbuf can fail to emit the flush 2026 * after having emitted the batchbuffer command. Hence we need to fix 2027 * things up similar to emitting the lazy request. The difference here 2028 * is that the flush _must_ happen before the next request, no matter 2029 * what. 2030 */ 2031 ret = intel_ring_flush_all_caches(ring); 2032 if (ret) 2033 return ret; 2034 2035 request = kmalloc(sizeof(*request), GFP_KERNEL); 2036 if (request == NULL) 2037 return -ENOMEM; 2038 2039 2040 /* Record the position of the start of the request so that 2041 * should we detect the updated seqno part-way through the 2042 * GPU processing the request, we never over-estimate the 2043 * position of the head. 2044 */ 2045 request_ring_position = intel_ring_get_tail(ring); 2046 2047 ret = ring->add_request(ring); 2048 if (ret) { 2049 kfree(request); 2050 return ret; 2051 } 2052 2053 request->seqno = intel_ring_get_seqno(ring); 2054 request->ring = ring; 2055 request->head = request_start; 2056 request->tail = request_ring_position; 2057 request->ctx = ring->last_context; 2058 request->batch_obj = obj; 2059 2060 /* Whilst this request exists, batch_obj will be on the 2061 * active_list, and so will hold the active reference. Only when this 2062 * request is retired will the the batch_obj be moved onto the 2063 * inactive_list and lose its active reference. Hence we do not need 2064 * to explicitly hold another reference here. 2065 */ 2066 2067 if (request->ctx) 2068 i915_gem_context_reference(request->ctx); 2069 2070 request->emitted_jiffies = jiffies; 2071 was_empty = list_empty(&ring->request_list); 2072 list_add_tail(&request->list, &ring->request_list); 2073 request->file_priv = NULL; 2074 2075 if (file) { 2076 struct drm_i915_file_private *file_priv = file->driver_priv; 2077 2078 spin_lock(&file_priv->mm.lock); 2079 request->file_priv = file_priv; 2080 list_add_tail(&request->client_list, 2081 &file_priv->mm.request_list); 2082 spin_unlock(&file_priv->mm.lock); 2083 } 2084 2085 trace_i915_gem_request_add(ring, request->seqno); 2086 ring->outstanding_lazy_request = 0; 2087 2088 if (!dev_priv->mm.suspended) { 2089 if (i915_enable_hangcheck) { 2090 mod_timer(&dev_priv->gpu_error.hangcheck_timer, 2091 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES)); 2092 } 2093 if (was_empty) { 2094 queue_delayed_work(dev_priv->wq, 2095 &dev_priv->mm.retire_work, 2096 round_jiffies_up_relative(HZ)); 2097 intel_mark_busy(dev_priv->dev); 2098 } 2099 } 2100 2101 if (out_seqno) 2102 *out_seqno = request->seqno; 2103 return 0; 2104 } 2105 2106 static inline void 2107 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request) 2108 { 2109 struct drm_i915_file_private *file_priv = request->file_priv; 2110 2111 if (!file_priv) 2112 return; 2113 2114 spin_lock(&file_priv->mm.lock); 2115 if (request->file_priv) { 2116 list_del(&request->client_list); 2117 request->file_priv = NULL; 2118 } 2119 spin_unlock(&file_priv->mm.lock); 2120 } 2121 2122 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj) 2123 { 2124 if (acthd >= obj->gtt_offset && 2125 acthd < obj->gtt_offset + obj->base.size) 2126 return true; 2127 2128 return false; 2129 } 2130 2131 static bool i915_head_inside_request(const u32 acthd_unmasked, 2132 const u32 request_start, 2133 const u32 request_end) 2134 { 2135 const u32 acthd = acthd_unmasked & HEAD_ADDR; 2136 2137 if (request_start < request_end) { 2138 if (acthd >= request_start && acthd < request_end) 2139 return true; 2140 } else if (request_start > request_end) { 2141 if (acthd >= request_start || acthd < request_end) 2142 return true; 2143 } 2144 2145 return false; 2146 } 2147 2148 static bool i915_request_guilty(struct drm_i915_gem_request *request, 2149 const u32 acthd, bool *inside) 2150 { 2151 /* There is a possibility that unmasked head address 2152 * pointing inside the ring, matches the batch_obj address range. 2153 * However this is extremely unlikely. 2154 */ 2155 2156 if (request->batch_obj) { 2157 if (i915_head_inside_object(acthd, request->batch_obj)) { 2158 *inside = true; 2159 return true; 2160 } 2161 } 2162 2163 if (i915_head_inside_request(acthd, request->head, request->tail)) { 2164 *inside = false; 2165 return true; 2166 } 2167 2168 return false; 2169 } 2170 2171 static void i915_set_reset_status(struct intel_ring_buffer *ring, 2172 struct drm_i915_gem_request *request, 2173 u32 acthd) 2174 { 2175 struct i915_ctx_hang_stats *hs = NULL; 2176 bool inside, guilty; 2177 2178 /* Innocent until proven guilty */ 2179 guilty = false; 2180 2181 if (ring->hangcheck.action != wait && 2182 i915_request_guilty(request, acthd, &inside)) { 2183 DRM_ERROR("%s hung %s bo (0x%x ctx %d) at 0x%x\n", 2184 ring->name, 2185 inside ? "inside" : "flushing", 2186 request->batch_obj ? 2187 request->batch_obj->gtt_offset : 0, 2188 request->ctx ? request->ctx->id : 0, 2189 acthd); 2190 2191 guilty = true; 2192 } 2193 2194 /* If contexts are disabled or this is the default context, use 2195 * file_priv->reset_state 2196 */ 2197 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID) 2198 hs = &request->ctx->hang_stats; 2199 else if (request->file_priv) 2200 hs = &request->file_priv->hang_stats; 2201 2202 if (hs) { 2203 if (guilty) 2204 hs->batch_active++; 2205 else 2206 hs->batch_pending++; 2207 } 2208 } 2209 2210 static void i915_gem_free_request(struct drm_i915_gem_request *request) 2211 { 2212 list_del(&request->list); 2213 i915_gem_request_remove_from_client(request); 2214 2215 if (request->ctx) 2216 i915_gem_context_unreference(request->ctx); 2217 2218 kfree(request); 2219 } 2220 2221 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv, 2222 struct intel_ring_buffer *ring) 2223 { 2224 u32 completed_seqno; 2225 u32 acthd; 2226 2227 acthd = intel_ring_get_active_head(ring); 2228 completed_seqno = ring->get_seqno(ring, false); 2229 2230 while (!list_empty(&ring->request_list)) { 2231 struct drm_i915_gem_request *request; 2232 2233 request = list_first_entry(&ring->request_list, 2234 struct drm_i915_gem_request, 2235 list); 2236 2237 if (request->seqno > completed_seqno) 2238 i915_set_reset_status(ring, request, acthd); 2239 2240 i915_gem_free_request(request); 2241 } 2242 2243 while (!list_empty(&ring->active_list)) { 2244 struct drm_i915_gem_object *obj; 2245 2246 obj = list_first_entry(&ring->active_list, 2247 struct drm_i915_gem_object, 2248 ring_list); 2249 2250 i915_gem_object_move_to_inactive(obj); 2251 } 2252 } 2253 2254 void i915_gem_restore_fences(struct drm_device *dev) 2255 { 2256 struct drm_i915_private *dev_priv = dev->dev_private; 2257 int i; 2258 2259 for (i = 0; i < dev_priv->num_fence_regs; i++) { 2260 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; 2261 2262 /* 2263 * Commit delayed tiling changes if we have an object still 2264 * attached to the fence, otherwise just clear the fence. 2265 */ 2266 if (reg->obj) { 2267 i915_gem_object_update_fence(reg->obj, reg, 2268 reg->obj->tiling_mode); 2269 } else { 2270 i915_gem_write_fence(dev, i, NULL); 2271 } 2272 } 2273 } 2274 2275 void i915_gem_reset(struct drm_device *dev) 2276 { 2277 struct drm_i915_private *dev_priv = dev->dev_private; 2278 struct drm_i915_gem_object *obj; 2279 struct intel_ring_buffer *ring; 2280 int i; 2281 2282 for_each_ring(ring, dev_priv, i) 2283 i915_gem_reset_ring_lists(dev_priv, ring); 2284 2285 /* Move everything out of the GPU domains to ensure we do any 2286 * necessary invalidation upon reuse. 2287 */ 2288 list_for_each_entry(obj, 2289 &dev_priv->mm.inactive_list, 2290 mm_list) 2291 { 2292 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; 2293 } 2294 2295 i915_gem_restore_fences(dev); 2296 } 2297 2298 /** 2299 * This function clears the request list as sequence numbers are passed. 2300 */ 2301 void 2302 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring) 2303 { 2304 uint32_t seqno; 2305 2306 if (list_empty(&ring->request_list)) 2307 return; 2308 2309 WARN_ON(i915_verify_lists(ring->dev)); 2310 2311 seqno = ring->get_seqno(ring, true); 2312 2313 while (!list_empty(&ring->request_list)) { 2314 struct drm_i915_gem_request *request; 2315 2316 request = list_first_entry(&ring->request_list, 2317 struct drm_i915_gem_request, 2318 list); 2319 2320 if (!i915_seqno_passed(seqno, request->seqno)) 2321 break; 2322 2323 trace_i915_gem_request_retire(ring, request->seqno); 2324 /* We know the GPU must have read the request to have 2325 * sent us the seqno + interrupt, so use the position 2326 * of tail of the request to update the last known position 2327 * of the GPU head. 2328 */ 2329 ring->last_retired_head = request->tail; 2330 2331 i915_gem_free_request(request); 2332 } 2333 2334 /* Move any buffers on the active list that are no longer referenced 2335 * by the ringbuffer to the flushing/inactive lists as appropriate. 2336 */ 2337 while (!list_empty(&ring->active_list)) { 2338 struct drm_i915_gem_object *obj; 2339 2340 obj = list_first_entry(&ring->active_list, 2341 struct drm_i915_gem_object, 2342 ring_list); 2343 2344 if (!i915_seqno_passed(seqno, obj->last_read_seqno)) 2345 break; 2346 2347 i915_gem_object_move_to_inactive(obj); 2348 } 2349 2350 if (unlikely(ring->trace_irq_seqno && 2351 i915_seqno_passed(seqno, ring->trace_irq_seqno))) { 2352 ring->irq_put(ring); 2353 ring->trace_irq_seqno = 0; 2354 } 2355 2356 WARN_ON(i915_verify_lists(ring->dev)); 2357 } 2358 2359 void 2360 i915_gem_retire_requests(struct drm_device *dev) 2361 { 2362 drm_i915_private_t *dev_priv = dev->dev_private; 2363 struct intel_ring_buffer *ring; 2364 int i; 2365 2366 for_each_ring(ring, dev_priv, i) 2367 i915_gem_retire_requests_ring(ring); 2368 } 2369 2370 static void 2371 i915_gem_retire_work_handler(struct work_struct *work) 2372 { 2373 drm_i915_private_t *dev_priv; 2374 struct drm_device *dev; 2375 struct intel_ring_buffer *ring; 2376 bool idle; 2377 int i; 2378 2379 dev_priv = container_of(work, drm_i915_private_t, 2380 mm.retire_work.work); 2381 dev = dev_priv->dev; 2382 2383 /* Come back later if the device is busy... */ 2384 if (!mutex_trylock(&dev->struct_mutex)) { 2385 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 2386 round_jiffies_up_relative(HZ)); 2387 return; 2388 } 2389 2390 i915_gem_retire_requests(dev); 2391 2392 /* Send a periodic flush down the ring so we don't hold onto GEM 2393 * objects indefinitely. 2394 */ 2395 idle = true; 2396 for_each_ring(ring, dev_priv, i) { 2397 if (ring->gpu_caches_dirty) 2398 i915_add_request(ring, NULL); 2399 2400 idle &= list_empty(&ring->request_list); 2401 } 2402 2403 if (!dev_priv->mm.suspended && !idle) 2404 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 2405 round_jiffies_up_relative(HZ)); 2406 if (idle) 2407 intel_mark_idle(dev); 2408 2409 mutex_unlock(&dev->struct_mutex); 2410 } 2411 2412 /** 2413 * Ensures that an object will eventually get non-busy by flushing any required 2414 * write domains, emitting any outstanding lazy request and retiring and 2415 * completed requests. 2416 */ 2417 static int 2418 i915_gem_object_flush_active(struct drm_i915_gem_object *obj) 2419 { 2420 int ret; 2421 2422 if (obj->active) { 2423 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno); 2424 if (ret) 2425 return ret; 2426 2427 i915_gem_retire_requests_ring(obj->ring); 2428 } 2429 2430 return 0; 2431 } 2432 2433 /** 2434 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT 2435 * @DRM_IOCTL_ARGS: standard ioctl arguments 2436 * 2437 * Returns 0 if successful, else an error is returned with the remaining time in 2438 * the timeout parameter. 2439 * -ETIME: object is still busy after timeout 2440 * -ERESTARTSYS: signal interrupted the wait 2441 * -ENONENT: object doesn't exist 2442 * Also possible, but rare: 2443 * -EAGAIN: GPU wedged 2444 * -ENOMEM: damn 2445 * -ENODEV: Internal IRQ fail 2446 * -E?: The add request failed 2447 * 2448 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any 2449 * non-zero timeout parameter the wait ioctl will wait for the given number of 2450 * nanoseconds on an object becoming unbusy. Since the wait itself does so 2451 * without holding struct_mutex the object may become re-busied before this 2452 * function completes. A similar but shorter * race condition exists in the busy 2453 * ioctl 2454 */ 2455 int 2456 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 2457 { 2458 drm_i915_private_t *dev_priv = dev->dev_private; 2459 struct drm_i915_gem_wait *args = data; 2460 struct drm_i915_gem_object *obj; 2461 struct intel_ring_buffer *ring = NULL; 2462 struct timespec timeout_stack, *timeout = NULL; 2463 unsigned reset_counter; 2464 u32 seqno = 0; 2465 int ret = 0; 2466 2467 if (args->timeout_ns >= 0) { 2468 timeout_stack = ns_to_timespec(args->timeout_ns); 2469 timeout = &timeout_stack; 2470 } 2471 2472 ret = i915_mutex_lock_interruptible(dev); 2473 if (ret) 2474 return ret; 2475 2476 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle)); 2477 if (&obj->base == NULL) { 2478 mutex_unlock(&dev->struct_mutex); 2479 return -ENOENT; 2480 } 2481 2482 /* Need to make sure the object gets inactive eventually. */ 2483 ret = i915_gem_object_flush_active(obj); 2484 if (ret) 2485 goto out; 2486 2487 if (obj->active) { 2488 seqno = obj->last_read_seqno; 2489 ring = obj->ring; 2490 } 2491 2492 if (seqno == 0) 2493 goto out; 2494 2495 /* Do this after OLR check to make sure we make forward progress polling 2496 * on this IOCTL with a 0 timeout (like busy ioctl) 2497 */ 2498 if (!args->timeout_ns) { 2499 ret = -ETIME; 2500 goto out; 2501 } 2502 2503 drm_gem_object_unreference(&obj->base); 2504 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 2505 mutex_unlock(&dev->struct_mutex); 2506 2507 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout); 2508 if (timeout) 2509 args->timeout_ns = timespec_to_ns(timeout); 2510 return ret; 2511 2512 out: 2513 drm_gem_object_unreference(&obj->base); 2514 mutex_unlock(&dev->struct_mutex); 2515 return ret; 2516 } 2517 2518 /** 2519 * i915_gem_object_sync - sync an object to a ring. 2520 * 2521 * @obj: object which may be in use on another ring. 2522 * @to: ring we wish to use the object on. May be NULL. 2523 * 2524 * This code is meant to abstract object synchronization with the GPU. 2525 * Calling with NULL implies synchronizing the object with the CPU 2526 * rather than a particular GPU ring. 2527 * 2528 * Returns 0 if successful, else propagates up the lower layer error. 2529 */ 2530 int 2531 i915_gem_object_sync(struct drm_i915_gem_object *obj, 2532 struct intel_ring_buffer *to) 2533 { 2534 struct intel_ring_buffer *from = obj->ring; 2535 u32 seqno; 2536 int ret, idx; 2537 2538 if (from == NULL || to == from) 2539 return 0; 2540 2541 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev)) 2542 return i915_gem_object_wait_rendering(obj, false); 2543 2544 idx = intel_ring_sync_index(from, to); 2545 2546 seqno = obj->last_read_seqno; 2547 if (seqno <= from->sync_seqno[idx]) 2548 return 0; 2549 2550 ret = i915_gem_check_olr(obj->ring, seqno); 2551 if (ret) 2552 return ret; 2553 2554 ret = to->sync_to(to, from, seqno); 2555 if (!ret) 2556 /* We use last_read_seqno because sync_to() 2557 * might have just caused seqno wrap under 2558 * the radar. 2559 */ 2560 from->sync_seqno[idx] = obj->last_read_seqno; 2561 2562 return ret; 2563 } 2564 2565 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj) 2566 { 2567 u32 old_write_domain, old_read_domains; 2568 2569 /* Force a pagefault for domain tracking on next user access */ 2570 i915_gem_release_mmap(obj); 2571 2572 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 2573 return; 2574 2575 /* Wait for any direct GTT access to complete */ 2576 mb(); 2577 2578 old_read_domains = obj->base.read_domains; 2579 old_write_domain = obj->base.write_domain; 2580 2581 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT; 2582 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT; 2583 2584 trace_i915_gem_object_change_domain(obj, 2585 old_read_domains, 2586 old_write_domain); 2587 } 2588 2589 /** 2590 * Unbinds an object from the GTT aperture. 2591 */ 2592 int 2593 i915_gem_object_unbind(struct drm_i915_gem_object *obj) 2594 { 2595 drm_i915_private_t *dev_priv = obj->base.dev->dev_private; 2596 int ret; 2597 2598 if (obj->gtt_space == NULL) 2599 return 0; 2600 2601 if (obj->pin_count) 2602 return -EBUSY; 2603 2604 BUG_ON(obj->pages == NULL); 2605 2606 ret = i915_gem_object_finish_gpu(obj); 2607 if (ret) 2608 return ret; 2609 /* Continue on if we fail due to EIO, the GPU is hung so we 2610 * should be safe and we need to cleanup or else we might 2611 * cause memory corruption through use-after-free. 2612 */ 2613 2614 i915_gem_object_finish_gtt(obj); 2615 2616 /* release the fence reg _after_ flushing */ 2617 ret = i915_gem_object_put_fence(obj); 2618 if (ret) 2619 return ret; 2620 2621 trace_i915_gem_object_unbind(obj); 2622 2623 if (obj->has_global_gtt_mapping) 2624 i915_gem_gtt_unbind_object(obj); 2625 if (obj->has_aliasing_ppgtt_mapping) { 2626 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj); 2627 obj->has_aliasing_ppgtt_mapping = 0; 2628 } 2629 i915_gem_gtt_finish_object(obj); 2630 i915_gem_object_unpin_pages(obj); 2631 2632 list_del(&obj->mm_list); 2633 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list); 2634 /* Avoid an unnecessary call to unbind on rebind. */ 2635 obj->map_and_fenceable = true; 2636 2637 drm_mm_put_block(obj->gtt_space); 2638 obj->gtt_space = NULL; 2639 obj->gtt_offset = 0; 2640 2641 return 0; 2642 } 2643 2644 int i915_gpu_idle(struct drm_device *dev) 2645 { 2646 drm_i915_private_t *dev_priv = dev->dev_private; 2647 struct intel_ring_buffer *ring; 2648 int ret, i; 2649 2650 /* Flush everything onto the inactive list. */ 2651 for_each_ring(ring, dev_priv, i) { 2652 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID); 2653 if (ret) 2654 return ret; 2655 2656 ret = intel_ring_idle(ring); 2657 if (ret) 2658 return ret; 2659 } 2660 2661 return 0; 2662 } 2663 2664 static void i965_write_fence_reg(struct drm_device *dev, int reg, 2665 struct drm_i915_gem_object *obj) 2666 { 2667 drm_i915_private_t *dev_priv = dev->dev_private; 2668 int fence_reg; 2669 int fence_pitch_shift; 2670 2671 if (INTEL_INFO(dev)->gen >= 6) { 2672 fence_reg = FENCE_REG_SANDYBRIDGE_0; 2673 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT; 2674 } else { 2675 fence_reg = FENCE_REG_965_0; 2676 fence_pitch_shift = I965_FENCE_PITCH_SHIFT; 2677 } 2678 2679 fence_reg += reg * 8; 2680 2681 /* To w/a incoherency with non-atomic 64-bit register updates, 2682 * we split the 64-bit update into two 32-bit writes. In order 2683 * for a partial fence not to be evaluated between writes, we 2684 * precede the update with write to turn off the fence register, 2685 * and only enable the fence as the last step. 2686 * 2687 * For extra levels of paranoia, we make sure each step lands 2688 * before applying the next step. 2689 */ 2690 I915_WRITE(fence_reg, 0); 2691 POSTING_READ(fence_reg); 2692 2693 if (obj) { 2694 u32 size = obj->gtt_space->size; 2695 uint64_t val; 2696 2697 val = (uint64_t)((obj->gtt_offset + size - 4096) & 2698 0xfffff000) << 32; 2699 val |= obj->gtt_offset & 0xfffff000; 2700 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift; 2701 if (obj->tiling_mode == I915_TILING_Y) 2702 val |= 1 << I965_FENCE_TILING_Y_SHIFT; 2703 val |= I965_FENCE_REG_VALID; 2704 2705 I915_WRITE(fence_reg + 4, val >> 32); 2706 POSTING_READ(fence_reg + 4); 2707 2708 I915_WRITE(fence_reg + 0, val); 2709 POSTING_READ(fence_reg); 2710 } else { 2711 I915_WRITE(fence_reg + 4, 0); 2712 POSTING_READ(fence_reg + 4); 2713 } 2714 } 2715 2716 static void i915_write_fence_reg(struct drm_device *dev, int reg, 2717 struct drm_i915_gem_object *obj) 2718 { 2719 drm_i915_private_t *dev_priv = dev->dev_private; 2720 u32 val; 2721 2722 if (obj) { 2723 u32 size = obj->gtt_space->size; 2724 int pitch_val; 2725 int tile_width; 2726 2727 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) || 2728 (size & -size) != size || 2729 (obj->gtt_offset & (size - 1)), 2730 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n", 2731 obj->gtt_offset, obj->map_and_fenceable, size); 2732 2733 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)) 2734 tile_width = 128; 2735 else 2736 tile_width = 512; 2737 2738 /* Note: pitch better be a power of two tile widths */ 2739 pitch_val = obj->stride / tile_width; 2740 pitch_val = ffs(pitch_val) - 1; 2741 2742 val = obj->gtt_offset; 2743 if (obj->tiling_mode == I915_TILING_Y) 2744 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 2745 val |= I915_FENCE_SIZE_BITS(size); 2746 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 2747 val |= I830_FENCE_REG_VALID; 2748 } else 2749 val = 0; 2750 2751 if (reg < 8) 2752 reg = FENCE_REG_830_0 + reg * 4; 2753 else 2754 reg = FENCE_REG_945_8 + (reg - 8) * 4; 2755 2756 I915_WRITE(reg, val); 2757 POSTING_READ(reg); 2758 } 2759 2760 static void i830_write_fence_reg(struct drm_device *dev, int reg, 2761 struct drm_i915_gem_object *obj) 2762 { 2763 drm_i915_private_t *dev_priv = dev->dev_private; 2764 uint32_t val; 2765 2766 if (obj) { 2767 u32 size = obj->gtt_space->size; 2768 uint32_t pitch_val; 2769 2770 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) || 2771 (size & -size) != size || 2772 (obj->gtt_offset & (size - 1)), 2773 "object 0x%08x not 512K or pot-size 0x%08x aligned\n", 2774 obj->gtt_offset, size); 2775 2776 pitch_val = obj->stride / 128; 2777 pitch_val = ffs(pitch_val) - 1; 2778 2779 val = obj->gtt_offset; 2780 if (obj->tiling_mode == I915_TILING_Y) 2781 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 2782 val |= I830_FENCE_SIZE_BITS(size); 2783 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 2784 val |= I830_FENCE_REG_VALID; 2785 } else 2786 val = 0; 2787 2788 I915_WRITE(FENCE_REG_830_0 + reg * 4, val); 2789 POSTING_READ(FENCE_REG_830_0 + reg * 4); 2790 } 2791 2792 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj) 2793 { 2794 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT; 2795 } 2796 2797 static void i915_gem_write_fence(struct drm_device *dev, int reg, 2798 struct drm_i915_gem_object *obj) 2799 { 2800 struct drm_i915_private *dev_priv = dev->dev_private; 2801 2802 /* Ensure that all CPU reads are completed before installing a fence 2803 * and all writes before removing the fence. 2804 */ 2805 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj)) 2806 mb(); 2807 2808 WARN(obj && (!obj->stride || !obj->tiling_mode), 2809 "bogus fence setup with stride: 0x%x, tiling mode: %i\n", 2810 obj->stride, obj->tiling_mode); 2811 2812 switch (INTEL_INFO(dev)->gen) { 2813 case 7: 2814 case 6: 2815 case 5: 2816 case 4: i965_write_fence_reg(dev, reg, obj); break; 2817 case 3: i915_write_fence_reg(dev, reg, obj); break; 2818 case 2: i830_write_fence_reg(dev, reg, obj); break; 2819 default: BUG(); 2820 } 2821 2822 /* And similarly be paranoid that no direct access to this region 2823 * is reordered to before the fence is installed. 2824 */ 2825 if (i915_gem_object_needs_mb(obj)) 2826 mb(); 2827 } 2828 2829 static inline int fence_number(struct drm_i915_private *dev_priv, 2830 struct drm_i915_fence_reg *fence) 2831 { 2832 return fence - dev_priv->fence_regs; 2833 } 2834 2835 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 2836 struct drm_i915_fence_reg *fence, 2837 bool enable) 2838 { 2839 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2840 int reg = fence_number(dev_priv, fence); 2841 2842 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL); 2843 2844 if (enable) { 2845 obj->fence_reg = reg; 2846 fence->obj = obj; 2847 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list); 2848 } else { 2849 obj->fence_reg = I915_FENCE_REG_NONE; 2850 fence->obj = NULL; 2851 list_del_init(&fence->lru_list); 2852 } 2853 obj->fence_dirty = false; 2854 } 2855 2856 static int 2857 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj) 2858 { 2859 if (obj->last_fenced_seqno) { 2860 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno); 2861 if (ret) 2862 return ret; 2863 2864 obj->last_fenced_seqno = 0; 2865 } 2866 2867 obj->fenced_gpu_access = false; 2868 return 0; 2869 } 2870 2871 int 2872 i915_gem_object_put_fence(struct drm_i915_gem_object *obj) 2873 { 2874 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2875 struct drm_i915_fence_reg *fence; 2876 int ret; 2877 2878 ret = i915_gem_object_wait_fence(obj); 2879 if (ret) 2880 return ret; 2881 2882 if (obj->fence_reg == I915_FENCE_REG_NONE) 2883 return 0; 2884 2885 fence = &dev_priv->fence_regs[obj->fence_reg]; 2886 2887 i915_gem_object_fence_lost(obj); 2888 i915_gem_object_update_fence(obj, fence, false); 2889 2890 return 0; 2891 } 2892 2893 static struct drm_i915_fence_reg * 2894 i915_find_fence_reg(struct drm_device *dev) 2895 { 2896 struct drm_i915_private *dev_priv = dev->dev_private; 2897 struct drm_i915_fence_reg *reg, *avail; 2898 int i; 2899 2900 /* First try to find a free reg */ 2901 avail = NULL; 2902 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) { 2903 reg = &dev_priv->fence_regs[i]; 2904 if (!reg->obj) 2905 return reg; 2906 2907 if (!reg->pin_count) 2908 avail = reg; 2909 } 2910 2911 if (avail == NULL) 2912 return NULL; 2913 2914 /* None available, try to steal one or wait for a user to finish */ 2915 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) { 2916 if (reg->pin_count) 2917 continue; 2918 2919 return reg; 2920 } 2921 2922 return NULL; 2923 } 2924 2925 /** 2926 * i915_gem_object_get_fence - set up fencing for an object 2927 * @obj: object to map through a fence reg 2928 * 2929 * When mapping objects through the GTT, userspace wants to be able to write 2930 * to them without having to worry about swizzling if the object is tiled. 2931 * This function walks the fence regs looking for a free one for @obj, 2932 * stealing one if it can't find any. 2933 * 2934 * It then sets up the reg based on the object's properties: address, pitch 2935 * and tiling format. 2936 * 2937 * For an untiled surface, this removes any existing fence. 2938 */ 2939 int 2940 i915_gem_object_get_fence(struct drm_i915_gem_object *obj) 2941 { 2942 struct drm_device *dev = obj->base.dev; 2943 struct drm_i915_private *dev_priv = dev->dev_private; 2944 bool enable = obj->tiling_mode != I915_TILING_NONE; 2945 struct drm_i915_fence_reg *reg; 2946 int ret; 2947 2948 /* Have we updated the tiling parameters upon the object and so 2949 * will need to serialise the write to the associated fence register? 2950 */ 2951 if (obj->fence_dirty) { 2952 ret = i915_gem_object_wait_fence(obj); 2953 if (ret) 2954 return ret; 2955 } 2956 2957 /* Just update our place in the LRU if our fence is getting reused. */ 2958 if (obj->fence_reg != I915_FENCE_REG_NONE) { 2959 reg = &dev_priv->fence_regs[obj->fence_reg]; 2960 if (!obj->fence_dirty) { 2961 list_move_tail(®->lru_list, 2962 &dev_priv->mm.fence_list); 2963 return 0; 2964 } 2965 } else if (enable) { 2966 reg = i915_find_fence_reg(dev); 2967 if (reg == NULL) 2968 return -EDEADLK; 2969 2970 if (reg->obj) { 2971 struct drm_i915_gem_object *old = reg->obj; 2972 2973 ret = i915_gem_object_wait_fence(old); 2974 if (ret) 2975 return ret; 2976 2977 i915_gem_object_fence_lost(old); 2978 } 2979 } else 2980 return 0; 2981 2982 i915_gem_object_update_fence(obj, reg, enable); 2983 2984 return 0; 2985 } 2986 2987 static bool i915_gem_valid_gtt_space(struct drm_device *dev, 2988 struct drm_mm_node *gtt_space, 2989 unsigned long cache_level) 2990 { 2991 struct drm_mm_node *other; 2992 2993 /* On non-LLC machines we have to be careful when putting differing 2994 * types of snoopable memory together to avoid the prefetcher 2995 * crossing memory domains and dying. 2996 */ 2997 if (HAS_LLC(dev)) 2998 return true; 2999 3000 if (gtt_space == NULL) 3001 return true; 3002 3003 if (list_empty(>t_space->node_list)) 3004 return true; 3005 3006 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list); 3007 if (other->allocated && !other->hole_follows && other->color != cache_level) 3008 return false; 3009 3010 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list); 3011 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level) 3012 return false; 3013 3014 return true; 3015 } 3016 3017 static void i915_gem_verify_gtt(struct drm_device *dev) 3018 { 3019 #if WATCH_GTT 3020 struct drm_i915_private *dev_priv = dev->dev_private; 3021 struct drm_i915_gem_object *obj; 3022 int err = 0; 3023 3024 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) { 3025 if (obj->gtt_space == NULL) { 3026 printk(KERN_ERR "object found on GTT list with no space reserved\n"); 3027 err++; 3028 continue; 3029 } 3030 3031 if (obj->cache_level != obj->gtt_space->color) { 3032 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n", 3033 obj->gtt_space->start, 3034 obj->gtt_space->start + obj->gtt_space->size, 3035 obj->cache_level, 3036 obj->gtt_space->color); 3037 err++; 3038 continue; 3039 } 3040 3041 if (!i915_gem_valid_gtt_space(dev, 3042 obj->gtt_space, 3043 obj->cache_level)) { 3044 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n", 3045 obj->gtt_space->start, 3046 obj->gtt_space->start + obj->gtt_space->size, 3047 obj->cache_level); 3048 err++; 3049 continue; 3050 } 3051 } 3052 3053 WARN_ON(err); 3054 #endif 3055 } 3056 3057 /** 3058 * Finds free space in the GTT aperture and binds the object there. 3059 */ 3060 static int 3061 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, 3062 unsigned alignment, 3063 bool map_and_fenceable, 3064 bool nonblocking) 3065 { 3066 struct drm_device *dev = obj->base.dev; 3067 drm_i915_private_t *dev_priv = dev->dev_private; 3068 struct drm_mm_node *node; 3069 u32 size, fence_size, fence_alignment, unfenced_alignment; 3070 bool mappable, fenceable; 3071 size_t gtt_max = map_and_fenceable ? 3072 dev_priv->gtt.mappable_end : dev_priv->gtt.total; 3073 int ret; 3074 3075 fence_size = i915_gem_get_gtt_size(dev, 3076 obj->base.size, 3077 obj->tiling_mode); 3078 fence_alignment = i915_gem_get_gtt_alignment(dev, 3079 obj->base.size, 3080 obj->tiling_mode, true); 3081 unfenced_alignment = 3082 i915_gem_get_gtt_alignment(dev, 3083 obj->base.size, 3084 obj->tiling_mode, false); 3085 3086 if (alignment == 0) 3087 alignment = map_and_fenceable ? fence_alignment : 3088 unfenced_alignment; 3089 if (map_and_fenceable && alignment & (fence_alignment - 1)) { 3090 DRM_ERROR("Invalid object alignment requested %u\n", alignment); 3091 return -EINVAL; 3092 } 3093 3094 size = map_and_fenceable ? fence_size : obj->base.size; 3095 3096 /* If the object is bigger than the entire aperture, reject it early 3097 * before evicting everything in a vain attempt to find space. 3098 */ 3099 if (obj->base.size > gtt_max) { 3100 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n", 3101 obj->base.size, 3102 map_and_fenceable ? "mappable" : "total", 3103 gtt_max); 3104 return -E2BIG; 3105 } 3106 3107 ret = i915_gem_object_get_pages(obj); 3108 if (ret) 3109 return ret; 3110 3111 i915_gem_object_pin_pages(obj); 3112 3113 node = kzalloc(sizeof(*node), GFP_KERNEL); 3114 if (node == NULL) { 3115 i915_gem_object_unpin_pages(obj); 3116 return -ENOMEM; 3117 } 3118 3119 search_free: 3120 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node, 3121 size, alignment, 3122 obj->cache_level, 0, gtt_max); 3123 if (ret) { 3124 ret = i915_gem_evict_something(dev, size, alignment, 3125 obj->cache_level, 3126 map_and_fenceable, 3127 nonblocking); 3128 if (ret == 0) 3129 goto search_free; 3130 3131 i915_gem_object_unpin_pages(obj); 3132 kfree(node); 3133 return ret; 3134 } 3135 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) { 3136 i915_gem_object_unpin_pages(obj); 3137 drm_mm_put_block(node); 3138 return -EINVAL; 3139 } 3140 3141 ret = i915_gem_gtt_prepare_object(obj); 3142 if (ret) { 3143 i915_gem_object_unpin_pages(obj); 3144 drm_mm_put_block(node); 3145 return ret; 3146 } 3147 3148 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list); 3149 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 3150 3151 obj->gtt_space = node; 3152 obj->gtt_offset = node->start; 3153 3154 fenceable = 3155 node->size == fence_size && 3156 (node->start & (fence_alignment - 1)) == 0; 3157 3158 mappable = 3159 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end; 3160 3161 obj->map_and_fenceable = mappable && fenceable; 3162 3163 trace_i915_gem_object_bind(obj, map_and_fenceable); 3164 i915_gem_verify_gtt(dev); 3165 return 0; 3166 } 3167 3168 void 3169 i915_gem_clflush_object(struct drm_i915_gem_object *obj) 3170 { 3171 /* If we don't have a page list set up, then we're not pinned 3172 * to GPU, and we can ignore the cache flush because it'll happen 3173 * again at bind time. 3174 */ 3175 if (obj->pages == NULL) 3176 return; 3177 3178 /* 3179 * Stolen memory is always coherent with the GPU as it is explicitly 3180 * marked as wc by the system, or the system is cache-coherent. 3181 */ 3182 if (obj->stolen) 3183 return; 3184 3185 /* If the GPU is snooping the contents of the CPU cache, 3186 * we do not need to manually clear the CPU cache lines. However, 3187 * the caches are only snooped when the render cache is 3188 * flushed/invalidated. As we always have to emit invalidations 3189 * and flushes when moving into and out of the RENDER domain, correct 3190 * snooping behaviour occurs naturally as the result of our domain 3191 * tracking. 3192 */ 3193 if (obj->cache_level != I915_CACHE_NONE) 3194 return; 3195 3196 trace_i915_gem_object_clflush(obj); 3197 3198 drm_clflush_sg(obj->pages); 3199 } 3200 3201 /** Flushes the GTT write domain for the object if it's dirty. */ 3202 static void 3203 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj) 3204 { 3205 uint32_t old_write_domain; 3206 3207 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT) 3208 return; 3209 3210 /* No actual flushing is required for the GTT write domain. Writes 3211 * to it immediately go to main memory as far as we know, so there's 3212 * no chipset flush. It also doesn't land in render cache. 3213 * 3214 * However, we do have to enforce the order so that all writes through 3215 * the GTT land before any writes to the device, such as updates to 3216 * the GATT itself. 3217 */ 3218 wmb(); 3219 3220 old_write_domain = obj->base.write_domain; 3221 obj->base.write_domain = 0; 3222 3223 trace_i915_gem_object_change_domain(obj, 3224 obj->base.read_domains, 3225 old_write_domain); 3226 } 3227 3228 /** Flushes the CPU write domain for the object if it's dirty. */ 3229 static void 3230 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj) 3231 { 3232 uint32_t old_write_domain; 3233 3234 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) 3235 return; 3236 3237 i915_gem_clflush_object(obj); 3238 i915_gem_chipset_flush(obj->base.dev); 3239 old_write_domain = obj->base.write_domain; 3240 obj->base.write_domain = 0; 3241 3242 trace_i915_gem_object_change_domain(obj, 3243 obj->base.read_domains, 3244 old_write_domain); 3245 } 3246 3247 /** 3248 * Moves a single object to the GTT read, and possibly write domain. 3249 * 3250 * This function returns when the move is complete, including waiting on 3251 * flushes to occur. 3252 */ 3253 int 3254 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) 3255 { 3256 drm_i915_private_t *dev_priv = obj->base.dev->dev_private; 3257 uint32_t old_write_domain, old_read_domains; 3258 int ret; 3259 3260 /* Not valid to be called on unbound objects. */ 3261 if (obj->gtt_space == NULL) 3262 return -EINVAL; 3263 3264 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) 3265 return 0; 3266 3267 ret = i915_gem_object_wait_rendering(obj, !write); 3268 if (ret) 3269 return ret; 3270 3271 i915_gem_object_flush_cpu_write_domain(obj); 3272 3273 /* Serialise direct access to this object with the barriers for 3274 * coherent writes from the GPU, by effectively invalidating the 3275 * GTT domain upon first access. 3276 */ 3277 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 3278 mb(); 3279 3280 old_write_domain = obj->base.write_domain; 3281 old_read_domains = obj->base.read_domains; 3282 3283 /* It should now be out of any other write domains, and we can update 3284 * the domain values for our changes. 3285 */ 3286 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 3287 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3288 if (write) { 3289 obj->base.read_domains = I915_GEM_DOMAIN_GTT; 3290 obj->base.write_domain = I915_GEM_DOMAIN_GTT; 3291 obj->dirty = 1; 3292 } 3293 3294 trace_i915_gem_object_change_domain(obj, 3295 old_read_domains, 3296 old_write_domain); 3297 3298 /* And bump the LRU for this access */ 3299 if (i915_gem_object_is_inactive(obj)) 3300 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 3301 3302 return 0; 3303 } 3304 3305 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3306 enum i915_cache_level cache_level) 3307 { 3308 struct drm_device *dev = obj->base.dev; 3309 drm_i915_private_t *dev_priv = dev->dev_private; 3310 int ret; 3311 3312 if (obj->cache_level == cache_level) 3313 return 0; 3314 3315 if (obj->pin_count) { 3316 DRM_DEBUG("can not change the cache level of pinned objects\n"); 3317 return -EBUSY; 3318 } 3319 3320 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) { 3321 ret = i915_gem_object_unbind(obj); 3322 if (ret) 3323 return ret; 3324 } 3325 3326 if (obj->gtt_space) { 3327 ret = i915_gem_object_finish_gpu(obj); 3328 if (ret) 3329 return ret; 3330 3331 i915_gem_object_finish_gtt(obj); 3332 3333 /* Before SandyBridge, you could not use tiling or fence 3334 * registers with snooped memory, so relinquish any fences 3335 * currently pointing to our region in the aperture. 3336 */ 3337 if (INTEL_INFO(dev)->gen < 6) { 3338 ret = i915_gem_object_put_fence(obj); 3339 if (ret) 3340 return ret; 3341 } 3342 3343 if (obj->has_global_gtt_mapping) 3344 i915_gem_gtt_bind_object(obj, cache_level); 3345 if (obj->has_aliasing_ppgtt_mapping) 3346 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt, 3347 obj, cache_level); 3348 3349 obj->gtt_space->color = cache_level; 3350 } 3351 3352 if (cache_level == I915_CACHE_NONE) { 3353 u32 old_read_domains, old_write_domain; 3354 3355 /* If we're coming from LLC cached, then we haven't 3356 * actually been tracking whether the data is in the 3357 * CPU cache or not, since we only allow one bit set 3358 * in obj->write_domain and have been skipping the clflushes. 3359 * Just set it to the CPU cache for now. 3360 */ 3361 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU); 3362 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU); 3363 3364 old_read_domains = obj->base.read_domains; 3365 old_write_domain = obj->base.write_domain; 3366 3367 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3368 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3369 3370 trace_i915_gem_object_change_domain(obj, 3371 old_read_domains, 3372 old_write_domain); 3373 } 3374 3375 obj->cache_level = cache_level; 3376 i915_gem_verify_gtt(dev); 3377 return 0; 3378 } 3379 3380 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3381 struct drm_file *file) 3382 { 3383 struct drm_i915_gem_caching *args = data; 3384 struct drm_i915_gem_object *obj; 3385 int ret; 3386 3387 ret = i915_mutex_lock_interruptible(dev); 3388 if (ret) 3389 return ret; 3390 3391 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3392 if (&obj->base == NULL) { 3393 ret = -ENOENT; 3394 goto unlock; 3395 } 3396 3397 args->caching = obj->cache_level != I915_CACHE_NONE; 3398 3399 drm_gem_object_unreference(&obj->base); 3400 unlock: 3401 mutex_unlock(&dev->struct_mutex); 3402 return ret; 3403 } 3404 3405 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3406 struct drm_file *file) 3407 { 3408 struct drm_i915_gem_caching *args = data; 3409 struct drm_i915_gem_object *obj; 3410 enum i915_cache_level level; 3411 int ret; 3412 3413 switch (args->caching) { 3414 case I915_CACHING_NONE: 3415 level = I915_CACHE_NONE; 3416 break; 3417 case I915_CACHING_CACHED: 3418 level = I915_CACHE_LLC; 3419 break; 3420 default: 3421 return -EINVAL; 3422 } 3423 3424 ret = i915_mutex_lock_interruptible(dev); 3425 if (ret) 3426 return ret; 3427 3428 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3429 if (&obj->base == NULL) { 3430 ret = -ENOENT; 3431 goto unlock; 3432 } 3433 3434 ret = i915_gem_object_set_cache_level(obj, level); 3435 3436 drm_gem_object_unreference(&obj->base); 3437 unlock: 3438 mutex_unlock(&dev->struct_mutex); 3439 return ret; 3440 } 3441 3442 /* 3443 * Prepare buffer for display plane (scanout, cursors, etc). 3444 * Can be called from an uninterruptible phase (modesetting) and allows 3445 * any flushes to be pipelined (for pageflips). 3446 */ 3447 int 3448 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3449 u32 alignment, 3450 struct intel_ring_buffer *pipelined) 3451 { 3452 u32 old_read_domains, old_write_domain; 3453 int ret; 3454 3455 if (pipelined != obj->ring) { 3456 ret = i915_gem_object_sync(obj, pipelined); 3457 if (ret) 3458 return ret; 3459 } 3460 3461 /* The display engine is not coherent with the LLC cache on gen6. As 3462 * a result, we make sure that the pinning that is about to occur is 3463 * done with uncached PTEs. This is lowest common denominator for all 3464 * chipsets. 3465 * 3466 * However for gen6+, we could do better by using the GFDT bit instead 3467 * of uncaching, which would allow us to flush all the LLC-cached data 3468 * with that bit in the PTE to main memory with just one PIPE_CONTROL. 3469 */ 3470 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE); 3471 if (ret) 3472 return ret; 3473 3474 /* As the user may map the buffer once pinned in the display plane 3475 * (e.g. libkms for the bootup splash), we have to ensure that we 3476 * always use map_and_fenceable for all scanout buffers. 3477 */ 3478 ret = i915_gem_object_pin(obj, alignment, true, false); 3479 if (ret) 3480 return ret; 3481 3482 i915_gem_object_flush_cpu_write_domain(obj); 3483 3484 old_write_domain = obj->base.write_domain; 3485 old_read_domains = obj->base.read_domains; 3486 3487 /* It should now be out of any other write domains, and we can update 3488 * the domain values for our changes. 3489 */ 3490 obj->base.write_domain = 0; 3491 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3492 3493 trace_i915_gem_object_change_domain(obj, 3494 old_read_domains, 3495 old_write_domain); 3496 3497 return 0; 3498 } 3499 3500 int 3501 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj) 3502 { 3503 int ret; 3504 3505 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0) 3506 return 0; 3507 3508 ret = i915_gem_object_wait_rendering(obj, false); 3509 if (ret) 3510 return ret; 3511 3512 /* Ensure that we invalidate the GPU's caches and TLBs. */ 3513 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; 3514 return 0; 3515 } 3516 3517 /** 3518 * Moves a single object to the CPU read, and possibly write domain. 3519 * 3520 * This function returns when the move is complete, including waiting on 3521 * flushes to occur. 3522 */ 3523 int 3524 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) 3525 { 3526 uint32_t old_write_domain, old_read_domains; 3527 int ret; 3528 3529 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) 3530 return 0; 3531 3532 ret = i915_gem_object_wait_rendering(obj, !write); 3533 if (ret) 3534 return ret; 3535 3536 i915_gem_object_flush_gtt_write_domain(obj); 3537 3538 old_write_domain = obj->base.write_domain; 3539 old_read_domains = obj->base.read_domains; 3540 3541 /* Flush the CPU cache if it's still invalid. */ 3542 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { 3543 i915_gem_clflush_object(obj); 3544 3545 obj->base.read_domains |= I915_GEM_DOMAIN_CPU; 3546 } 3547 3548 /* It should now be out of any other write domains, and we can update 3549 * the domain values for our changes. 3550 */ 3551 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); 3552 3553 /* If we're writing through the CPU, then the GPU read domains will 3554 * need to be invalidated at next use. 3555 */ 3556 if (write) { 3557 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3558 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3559 } 3560 3561 trace_i915_gem_object_change_domain(obj, 3562 old_read_domains, 3563 old_write_domain); 3564 3565 return 0; 3566 } 3567 3568 /* Throttle our rendering by waiting until the ring has completed our requests 3569 * emitted over 20 msec ago. 3570 * 3571 * Note that if we were to use the current jiffies each time around the loop, 3572 * we wouldn't escape the function with any frames outstanding if the time to 3573 * render a frame was over 20ms. 3574 * 3575 * This should get us reasonable parallelism between CPU and GPU but also 3576 * relatively low latency when blocking on a particular request to finish. 3577 */ 3578 static int 3579 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) 3580 { 3581 struct drm_i915_private *dev_priv = dev->dev_private; 3582 struct drm_i915_file_private *file_priv = file->driver_priv; 3583 unsigned long recent_enough = jiffies - msecs_to_jiffies(20); 3584 struct drm_i915_gem_request *request; 3585 struct intel_ring_buffer *ring = NULL; 3586 unsigned reset_counter; 3587 u32 seqno = 0; 3588 int ret; 3589 3590 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 3591 if (ret) 3592 return ret; 3593 3594 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false); 3595 if (ret) 3596 return ret; 3597 3598 spin_lock(&file_priv->mm.lock); 3599 list_for_each_entry(request, &file_priv->mm.request_list, client_list) { 3600 if (time_after_eq(request->emitted_jiffies, recent_enough)) 3601 break; 3602 3603 ring = request->ring; 3604 seqno = request->seqno; 3605 } 3606 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 3607 spin_unlock(&file_priv->mm.lock); 3608 3609 if (seqno == 0) 3610 return 0; 3611 3612 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL); 3613 if (ret == 0) 3614 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0); 3615 3616 return ret; 3617 } 3618 3619 int 3620 i915_gem_object_pin(struct drm_i915_gem_object *obj, 3621 uint32_t alignment, 3622 bool map_and_fenceable, 3623 bool nonblocking) 3624 { 3625 int ret; 3626 3627 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT)) 3628 return -EBUSY; 3629 3630 if (obj->gtt_space != NULL) { 3631 if ((alignment && obj->gtt_offset & (alignment - 1)) || 3632 (map_and_fenceable && !obj->map_and_fenceable)) { 3633 WARN(obj->pin_count, 3634 "bo is already pinned with incorrect alignment:" 3635 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d," 3636 " obj->map_and_fenceable=%d\n", 3637 obj->gtt_offset, alignment, 3638 map_and_fenceable, 3639 obj->map_and_fenceable); 3640 ret = i915_gem_object_unbind(obj); 3641 if (ret) 3642 return ret; 3643 } 3644 } 3645 3646 if (obj->gtt_space == NULL) { 3647 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3648 3649 ret = i915_gem_object_bind_to_gtt(obj, alignment, 3650 map_and_fenceable, 3651 nonblocking); 3652 if (ret) 3653 return ret; 3654 3655 if (!dev_priv->mm.aliasing_ppgtt) 3656 i915_gem_gtt_bind_object(obj, obj->cache_level); 3657 } 3658 3659 if (!obj->has_global_gtt_mapping && map_and_fenceable) 3660 i915_gem_gtt_bind_object(obj, obj->cache_level); 3661 3662 obj->pin_count++; 3663 obj->pin_mappable |= map_and_fenceable; 3664 3665 return 0; 3666 } 3667 3668 void 3669 i915_gem_object_unpin(struct drm_i915_gem_object *obj) 3670 { 3671 BUG_ON(obj->pin_count == 0); 3672 BUG_ON(obj->gtt_space == NULL); 3673 3674 if (--obj->pin_count == 0) 3675 obj->pin_mappable = false; 3676 } 3677 3678 int 3679 i915_gem_pin_ioctl(struct drm_device *dev, void *data, 3680 struct drm_file *file) 3681 { 3682 struct drm_i915_gem_pin *args = data; 3683 struct drm_i915_gem_object *obj; 3684 int ret; 3685 3686 ret = i915_mutex_lock_interruptible(dev); 3687 if (ret) 3688 return ret; 3689 3690 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3691 if (&obj->base == NULL) { 3692 ret = -ENOENT; 3693 goto unlock; 3694 } 3695 3696 if (obj->madv != I915_MADV_WILLNEED) { 3697 DRM_ERROR("Attempting to pin a purgeable buffer\n"); 3698 ret = -EINVAL; 3699 goto out; 3700 } 3701 3702 if (obj->pin_filp != NULL && obj->pin_filp != file) { 3703 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n", 3704 args->handle); 3705 ret = -EINVAL; 3706 goto out; 3707 } 3708 3709 if (obj->user_pin_count == 0) { 3710 ret = i915_gem_object_pin(obj, args->alignment, true, false); 3711 if (ret) 3712 goto out; 3713 } 3714 3715 obj->user_pin_count++; 3716 obj->pin_filp = file; 3717 3718 /* XXX - flush the CPU caches for pinned objects 3719 * as the X server doesn't manage domains yet 3720 */ 3721 i915_gem_object_flush_cpu_write_domain(obj); 3722 args->offset = obj->gtt_offset; 3723 out: 3724 drm_gem_object_unreference(&obj->base); 3725 unlock: 3726 mutex_unlock(&dev->struct_mutex); 3727 return ret; 3728 } 3729 3730 int 3731 i915_gem_unpin_ioctl(struct drm_device *dev, void *data, 3732 struct drm_file *file) 3733 { 3734 struct drm_i915_gem_pin *args = data; 3735 struct drm_i915_gem_object *obj; 3736 int ret; 3737 3738 ret = i915_mutex_lock_interruptible(dev); 3739 if (ret) 3740 return ret; 3741 3742 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3743 if (&obj->base == NULL) { 3744 ret = -ENOENT; 3745 goto unlock; 3746 } 3747 3748 if (obj->pin_filp != file) { 3749 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n", 3750 args->handle); 3751 ret = -EINVAL; 3752 goto out; 3753 } 3754 obj->user_pin_count--; 3755 if (obj->user_pin_count == 0) { 3756 obj->pin_filp = NULL; 3757 i915_gem_object_unpin(obj); 3758 } 3759 3760 out: 3761 drm_gem_object_unreference(&obj->base); 3762 unlock: 3763 mutex_unlock(&dev->struct_mutex); 3764 return ret; 3765 } 3766 3767 int 3768 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 3769 struct drm_file *file) 3770 { 3771 struct drm_i915_gem_busy *args = data; 3772 struct drm_i915_gem_object *obj; 3773 int ret; 3774 3775 ret = i915_mutex_lock_interruptible(dev); 3776 if (ret) 3777 return ret; 3778 3779 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3780 if (&obj->base == NULL) { 3781 ret = -ENOENT; 3782 goto unlock; 3783 } 3784 3785 /* Count all active objects as busy, even if they are currently not used 3786 * by the gpu. Users of this interface expect objects to eventually 3787 * become non-busy without any further actions, therefore emit any 3788 * necessary flushes here. 3789 */ 3790 ret = i915_gem_object_flush_active(obj); 3791 3792 args->busy = obj->active; 3793 if (obj->ring) { 3794 BUILD_BUG_ON(I915_NUM_RINGS > 16); 3795 args->busy |= intel_ring_flag(obj->ring) << 16; 3796 } 3797 3798 drm_gem_object_unreference(&obj->base); 3799 unlock: 3800 mutex_unlock(&dev->struct_mutex); 3801 return ret; 3802 } 3803 3804 int 3805 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 3806 struct drm_file *file_priv) 3807 { 3808 return i915_gem_ring_throttle(dev, file_priv); 3809 } 3810 3811 int 3812 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 3813 struct drm_file *file_priv) 3814 { 3815 struct drm_i915_gem_madvise *args = data; 3816 struct drm_i915_gem_object *obj; 3817 int ret; 3818 3819 switch (args->madv) { 3820 case I915_MADV_DONTNEED: 3821 case I915_MADV_WILLNEED: 3822 break; 3823 default: 3824 return -EINVAL; 3825 } 3826 3827 ret = i915_mutex_lock_interruptible(dev); 3828 if (ret) 3829 return ret; 3830 3831 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle)); 3832 if (&obj->base == NULL) { 3833 ret = -ENOENT; 3834 goto unlock; 3835 } 3836 3837 if (obj->pin_count) { 3838 ret = -EINVAL; 3839 goto out; 3840 } 3841 3842 if (obj->madv != __I915_MADV_PURGED) 3843 obj->madv = args->madv; 3844 3845 /* if the object is no longer attached, discard its backing storage */ 3846 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL) 3847 i915_gem_object_truncate(obj); 3848 3849 args->retained = obj->madv != __I915_MADV_PURGED; 3850 3851 out: 3852 drm_gem_object_unreference(&obj->base); 3853 unlock: 3854 mutex_unlock(&dev->struct_mutex); 3855 return ret; 3856 } 3857 3858 void i915_gem_object_init(struct drm_i915_gem_object *obj, 3859 const struct drm_i915_gem_object_ops *ops) 3860 { 3861 INIT_LIST_HEAD(&obj->mm_list); 3862 INIT_LIST_HEAD(&obj->global_list); 3863 INIT_LIST_HEAD(&obj->ring_list); 3864 INIT_LIST_HEAD(&obj->exec_list); 3865 3866 obj->ops = ops; 3867 3868 obj->fence_reg = I915_FENCE_REG_NONE; 3869 obj->madv = I915_MADV_WILLNEED; 3870 /* Avoid an unnecessary call to unbind on the first bind. */ 3871 obj->map_and_fenceable = true; 3872 3873 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size); 3874 } 3875 3876 static const struct drm_i915_gem_object_ops i915_gem_object_ops = { 3877 .get_pages = i915_gem_object_get_pages_gtt, 3878 .put_pages = i915_gem_object_put_pages_gtt, 3879 }; 3880 3881 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev, 3882 size_t size) 3883 { 3884 struct drm_i915_gem_object *obj; 3885 struct address_space *mapping; 3886 gfp_t mask; 3887 3888 obj = i915_gem_object_alloc(dev); 3889 if (obj == NULL) 3890 return NULL; 3891 3892 if (drm_gem_object_init(dev, &obj->base, size) != 0) { 3893 i915_gem_object_free(obj); 3894 return NULL; 3895 } 3896 3897 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 3898 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) { 3899 /* 965gm cannot relocate objects above 4GiB. */ 3900 mask &= ~__GFP_HIGHMEM; 3901 mask |= __GFP_DMA32; 3902 } 3903 3904 mapping = file_inode(obj->base.filp)->i_mapping; 3905 mapping_set_gfp_mask(mapping, mask); 3906 3907 i915_gem_object_init(obj, &i915_gem_object_ops); 3908 3909 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3910 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3911 3912 if (HAS_LLC(dev)) { 3913 /* On some devices, we can have the GPU use the LLC (the CPU 3914 * cache) for about a 10% performance improvement 3915 * compared to uncached. Graphics requests other than 3916 * display scanout are coherent with the CPU in 3917 * accessing this cache. This means in this mode we 3918 * don't need to clflush on the CPU side, and on the 3919 * GPU side we only need to flush internal caches to 3920 * get data visible to the CPU. 3921 * 3922 * However, we maintain the display planes as UC, and so 3923 * need to rebind when first used as such. 3924 */ 3925 obj->cache_level = I915_CACHE_LLC; 3926 } else 3927 obj->cache_level = I915_CACHE_NONE; 3928 3929 return obj; 3930 } 3931 3932 int i915_gem_init_object(struct drm_gem_object *obj) 3933 { 3934 BUG(); 3935 3936 return 0; 3937 } 3938 3939 void i915_gem_free_object(struct drm_gem_object *gem_obj) 3940 { 3941 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 3942 struct drm_device *dev = obj->base.dev; 3943 drm_i915_private_t *dev_priv = dev->dev_private; 3944 3945 trace_i915_gem_object_destroy(obj); 3946 3947 if (obj->phys_obj) 3948 i915_gem_detach_phys_object(dev, obj); 3949 3950 obj->pin_count = 0; 3951 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) { 3952 bool was_interruptible; 3953 3954 was_interruptible = dev_priv->mm.interruptible; 3955 dev_priv->mm.interruptible = false; 3956 3957 WARN_ON(i915_gem_object_unbind(obj)); 3958 3959 dev_priv->mm.interruptible = was_interruptible; 3960 } 3961 3962 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up 3963 * before progressing. */ 3964 if (obj->stolen) 3965 i915_gem_object_unpin_pages(obj); 3966 3967 if (WARN_ON(obj->pages_pin_count)) 3968 obj->pages_pin_count = 0; 3969 i915_gem_object_put_pages(obj); 3970 i915_gem_object_free_mmap_offset(obj); 3971 i915_gem_object_release_stolen(obj); 3972 3973 BUG_ON(obj->pages); 3974 3975 if (obj->base.import_attach) 3976 drm_prime_gem_destroy(&obj->base, NULL); 3977 3978 drm_gem_object_release(&obj->base); 3979 i915_gem_info_remove_obj(dev_priv, obj->base.size); 3980 3981 kfree(obj->bit_17); 3982 i915_gem_object_free(obj); 3983 } 3984 3985 int 3986 i915_gem_idle(struct drm_device *dev) 3987 { 3988 drm_i915_private_t *dev_priv = dev->dev_private; 3989 int ret; 3990 3991 mutex_lock(&dev->struct_mutex); 3992 3993 if (dev_priv->mm.suspended) { 3994 mutex_unlock(&dev->struct_mutex); 3995 return 0; 3996 } 3997 3998 ret = i915_gpu_idle(dev); 3999 if (ret) { 4000 mutex_unlock(&dev->struct_mutex); 4001 return ret; 4002 } 4003 i915_gem_retire_requests(dev); 4004 4005 /* Under UMS, be paranoid and evict. */ 4006 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4007 i915_gem_evict_everything(dev); 4008 4009 /* Hack! Don't let anybody do execbuf while we don't control the chip. 4010 * We need to replace this with a semaphore, or something. 4011 * And not confound mm.suspended! 4012 */ 4013 dev_priv->mm.suspended = 1; 4014 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer); 4015 4016 i915_kernel_lost_context(dev); 4017 i915_gem_cleanup_ringbuffer(dev); 4018 4019 mutex_unlock(&dev->struct_mutex); 4020 4021 /* Cancel the retire work handler, which should be idle now. */ 4022 cancel_delayed_work_sync(&dev_priv->mm.retire_work); 4023 4024 return 0; 4025 } 4026 4027 void i915_gem_l3_remap(struct drm_device *dev) 4028 { 4029 drm_i915_private_t *dev_priv = dev->dev_private; 4030 u32 misccpctl; 4031 int i; 4032 4033 if (!HAS_L3_GPU_CACHE(dev)) 4034 return; 4035 4036 if (!dev_priv->l3_parity.remap_info) 4037 return; 4038 4039 misccpctl = I915_READ(GEN7_MISCCPCTL); 4040 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); 4041 POSTING_READ(GEN7_MISCCPCTL); 4042 4043 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) { 4044 u32 remap = I915_READ(GEN7_L3LOG_BASE + i); 4045 if (remap && remap != dev_priv->l3_parity.remap_info[i/4]) 4046 DRM_DEBUG("0x%x was already programmed to %x\n", 4047 GEN7_L3LOG_BASE + i, remap); 4048 if (remap && !dev_priv->l3_parity.remap_info[i/4]) 4049 DRM_DEBUG_DRIVER("Clearing remapped register\n"); 4050 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]); 4051 } 4052 4053 /* Make sure all the writes land before disabling dop clock gating */ 4054 POSTING_READ(GEN7_L3LOG_BASE); 4055 4056 I915_WRITE(GEN7_MISCCPCTL, misccpctl); 4057 } 4058 4059 void i915_gem_init_swizzling(struct drm_device *dev) 4060 { 4061 drm_i915_private_t *dev_priv = dev->dev_private; 4062 4063 if (INTEL_INFO(dev)->gen < 5 || 4064 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 4065 return; 4066 4067 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | 4068 DISP_TILE_SURFACE_SWIZZLING); 4069 4070 if (IS_GEN5(dev)) 4071 return; 4072 4073 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); 4074 if (IS_GEN6(dev)) 4075 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 4076 else if (IS_GEN7(dev)) 4077 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 4078 else 4079 BUG(); 4080 } 4081 4082 static bool 4083 intel_enable_blt(struct drm_device *dev) 4084 { 4085 if (!HAS_BLT(dev)) 4086 return false; 4087 4088 /* The blitter was dysfunctional on early prototypes */ 4089 if (IS_GEN6(dev) && dev->pdev->revision < 8) { 4090 DRM_INFO("BLT not supported on this pre-production hardware;" 4091 " graphics performance will be degraded.\n"); 4092 return false; 4093 } 4094 4095 return true; 4096 } 4097 4098 static int i915_gem_init_rings(struct drm_device *dev) 4099 { 4100 struct drm_i915_private *dev_priv = dev->dev_private; 4101 int ret; 4102 4103 ret = intel_init_render_ring_buffer(dev); 4104 if (ret) 4105 return ret; 4106 4107 if (HAS_BSD(dev)) { 4108 ret = intel_init_bsd_ring_buffer(dev); 4109 if (ret) 4110 goto cleanup_render_ring; 4111 } 4112 4113 if (intel_enable_blt(dev)) { 4114 ret = intel_init_blt_ring_buffer(dev); 4115 if (ret) 4116 goto cleanup_bsd_ring; 4117 } 4118 4119 if (HAS_VEBOX(dev)) { 4120 ret = intel_init_vebox_ring_buffer(dev); 4121 if (ret) 4122 goto cleanup_blt_ring; 4123 } 4124 4125 4126 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000)); 4127 if (ret) 4128 goto cleanup_vebox_ring; 4129 4130 return 0; 4131 4132 cleanup_vebox_ring: 4133 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]); 4134 cleanup_blt_ring: 4135 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]); 4136 cleanup_bsd_ring: 4137 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]); 4138 cleanup_render_ring: 4139 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]); 4140 4141 return ret; 4142 } 4143 4144 int 4145 i915_gem_init_hw(struct drm_device *dev) 4146 { 4147 drm_i915_private_t *dev_priv = dev->dev_private; 4148 int ret; 4149 4150 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt()) 4151 return -EIO; 4152 4153 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1)) 4154 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000); 4155 4156 if (HAS_PCH_NOP(dev)) { 4157 u32 temp = I915_READ(GEN7_MSG_CTL); 4158 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK); 4159 I915_WRITE(GEN7_MSG_CTL, temp); 4160 } 4161 4162 i915_gem_l3_remap(dev); 4163 4164 i915_gem_init_swizzling(dev); 4165 4166 ret = i915_gem_init_rings(dev); 4167 if (ret) 4168 return ret; 4169 4170 /* 4171 * XXX: There was some w/a described somewhere suggesting loading 4172 * contexts before PPGTT. 4173 */ 4174 i915_gem_context_init(dev); 4175 if (dev_priv->mm.aliasing_ppgtt) { 4176 ret = dev_priv->mm.aliasing_ppgtt->enable(dev); 4177 if (ret) { 4178 i915_gem_cleanup_aliasing_ppgtt(dev); 4179 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n"); 4180 } 4181 } 4182 4183 return 0; 4184 } 4185 4186 int i915_gem_init(struct drm_device *dev) 4187 { 4188 struct drm_i915_private *dev_priv = dev->dev_private; 4189 int ret; 4190 4191 mutex_lock(&dev->struct_mutex); 4192 4193 if (IS_VALLEYVIEW(dev)) { 4194 /* VLVA0 (potential hack), BIOS isn't actually waking us */ 4195 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1); 4196 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10)) 4197 DRM_DEBUG_DRIVER("allow wake ack timed out\n"); 4198 } 4199 4200 i915_gem_init_global_gtt(dev); 4201 4202 ret = i915_gem_init_hw(dev); 4203 mutex_unlock(&dev->struct_mutex); 4204 if (ret) { 4205 i915_gem_cleanup_aliasing_ppgtt(dev); 4206 return ret; 4207 } 4208 4209 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */ 4210 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4211 dev_priv->dri1.allow_batchbuffer = 1; 4212 return 0; 4213 } 4214 4215 void 4216 i915_gem_cleanup_ringbuffer(struct drm_device *dev) 4217 { 4218 drm_i915_private_t *dev_priv = dev->dev_private; 4219 struct intel_ring_buffer *ring; 4220 int i; 4221 4222 for_each_ring(ring, dev_priv, i) 4223 intel_cleanup_ring_buffer(ring); 4224 } 4225 4226 int 4227 i915_gem_entervt_ioctl(struct drm_device *dev, void *data, 4228 struct drm_file *file_priv) 4229 { 4230 drm_i915_private_t *dev_priv = dev->dev_private; 4231 int ret; 4232 4233 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4234 return 0; 4235 4236 if (i915_reset_in_progress(&dev_priv->gpu_error)) { 4237 DRM_ERROR("Reenabling wedged hardware, good luck\n"); 4238 atomic_set(&dev_priv->gpu_error.reset_counter, 0); 4239 } 4240 4241 mutex_lock(&dev->struct_mutex); 4242 dev_priv->mm.suspended = 0; 4243 4244 ret = i915_gem_init_hw(dev); 4245 if (ret != 0) { 4246 mutex_unlock(&dev->struct_mutex); 4247 return ret; 4248 } 4249 4250 BUG_ON(!list_empty(&dev_priv->mm.active_list)); 4251 mutex_unlock(&dev->struct_mutex); 4252 4253 ret = drm_irq_install(dev); 4254 if (ret) 4255 goto cleanup_ringbuffer; 4256 4257 return 0; 4258 4259 cleanup_ringbuffer: 4260 mutex_lock(&dev->struct_mutex); 4261 i915_gem_cleanup_ringbuffer(dev); 4262 dev_priv->mm.suspended = 1; 4263 mutex_unlock(&dev->struct_mutex); 4264 4265 return ret; 4266 } 4267 4268 int 4269 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data, 4270 struct drm_file *file_priv) 4271 { 4272 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4273 return 0; 4274 4275 drm_irq_uninstall(dev); 4276 return i915_gem_idle(dev); 4277 } 4278 4279 void 4280 i915_gem_lastclose(struct drm_device *dev) 4281 { 4282 int ret; 4283 4284 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4285 return; 4286 4287 ret = i915_gem_idle(dev); 4288 if (ret) 4289 DRM_ERROR("failed to idle hardware: %d\n", ret); 4290 } 4291 4292 static void 4293 init_ring_lists(struct intel_ring_buffer *ring) 4294 { 4295 INIT_LIST_HEAD(&ring->active_list); 4296 INIT_LIST_HEAD(&ring->request_list); 4297 } 4298 4299 void 4300 i915_gem_load(struct drm_device *dev) 4301 { 4302 drm_i915_private_t *dev_priv = dev->dev_private; 4303 int i; 4304 4305 dev_priv->slab = 4306 kmem_cache_create("i915_gem_object", 4307 sizeof(struct drm_i915_gem_object), 0, 4308 SLAB_HWCACHE_ALIGN, 4309 NULL); 4310 4311 INIT_LIST_HEAD(&dev_priv->mm.active_list); 4312 INIT_LIST_HEAD(&dev_priv->mm.inactive_list); 4313 INIT_LIST_HEAD(&dev_priv->mm.unbound_list); 4314 INIT_LIST_HEAD(&dev_priv->mm.bound_list); 4315 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4316 for (i = 0; i < I915_NUM_RINGS; i++) 4317 init_ring_lists(&dev_priv->ring[i]); 4318 for (i = 0; i < I915_MAX_NUM_FENCES; i++) 4319 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list); 4320 INIT_DELAYED_WORK(&dev_priv->mm.retire_work, 4321 i915_gem_retire_work_handler); 4322 init_waitqueue_head(&dev_priv->gpu_error.reset_queue); 4323 4324 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ 4325 if (IS_GEN3(dev)) { 4326 I915_WRITE(MI_ARB_STATE, 4327 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE)); 4328 } 4329 4330 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL; 4331 4332 /* Old X drivers will take 0-2 for front, back, depth buffers */ 4333 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4334 dev_priv->fence_reg_start = 3; 4335 4336 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev)) 4337 dev_priv->num_fence_regs = 32; 4338 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) 4339 dev_priv->num_fence_regs = 16; 4340 else 4341 dev_priv->num_fence_regs = 8; 4342 4343 /* Initialize fence registers to zero */ 4344 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4345 i915_gem_restore_fences(dev); 4346 4347 i915_gem_detect_bit_6_swizzle(dev); 4348 init_waitqueue_head(&dev_priv->pending_flip_queue); 4349 4350 dev_priv->mm.interruptible = true; 4351 4352 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink; 4353 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS; 4354 register_shrinker(&dev_priv->mm.inactive_shrinker); 4355 } 4356 4357 /* 4358 * Create a physically contiguous memory object for this object 4359 * e.g. for cursor + overlay regs 4360 */ 4361 static int i915_gem_init_phys_object(struct drm_device *dev, 4362 int id, int size, int align) 4363 { 4364 drm_i915_private_t *dev_priv = dev->dev_private; 4365 struct drm_i915_gem_phys_object *phys_obj; 4366 int ret; 4367 4368 if (dev_priv->mm.phys_objs[id - 1] || !size) 4369 return 0; 4370 4371 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL); 4372 if (!phys_obj) 4373 return -ENOMEM; 4374 4375 phys_obj->id = id; 4376 4377 phys_obj->handle = drm_pci_alloc(dev, size, align); 4378 if (!phys_obj->handle) { 4379 ret = -ENOMEM; 4380 goto kfree_obj; 4381 } 4382 #ifdef CONFIG_X86 4383 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); 4384 #endif 4385 4386 dev_priv->mm.phys_objs[id - 1] = phys_obj; 4387 4388 return 0; 4389 kfree_obj: 4390 kfree(phys_obj); 4391 return ret; 4392 } 4393 4394 static void i915_gem_free_phys_object(struct drm_device *dev, int id) 4395 { 4396 drm_i915_private_t *dev_priv = dev->dev_private; 4397 struct drm_i915_gem_phys_object *phys_obj; 4398 4399 if (!dev_priv->mm.phys_objs[id - 1]) 4400 return; 4401 4402 phys_obj = dev_priv->mm.phys_objs[id - 1]; 4403 if (phys_obj->cur_obj) { 4404 i915_gem_detach_phys_object(dev, phys_obj->cur_obj); 4405 } 4406 4407 #ifdef CONFIG_X86 4408 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); 4409 #endif 4410 drm_pci_free(dev, phys_obj->handle); 4411 kfree(phys_obj); 4412 dev_priv->mm.phys_objs[id - 1] = NULL; 4413 } 4414 4415 void i915_gem_free_all_phys_object(struct drm_device *dev) 4416 { 4417 int i; 4418 4419 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++) 4420 i915_gem_free_phys_object(dev, i); 4421 } 4422 4423 void i915_gem_detach_phys_object(struct drm_device *dev, 4424 struct drm_i915_gem_object *obj) 4425 { 4426 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping; 4427 char *vaddr; 4428 int i; 4429 int page_count; 4430 4431 if (!obj->phys_obj) 4432 return; 4433 vaddr = obj->phys_obj->handle->vaddr; 4434 4435 page_count = obj->base.size / PAGE_SIZE; 4436 for (i = 0; i < page_count; i++) { 4437 struct page *page = shmem_read_mapping_page(mapping, i); 4438 if (!IS_ERR(page)) { 4439 char *dst = kmap_atomic(page); 4440 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE); 4441 kunmap_atomic(dst); 4442 4443 drm_clflush_pages(&page, 1); 4444 4445 set_page_dirty(page); 4446 mark_page_accessed(page); 4447 page_cache_release(page); 4448 } 4449 } 4450 i915_gem_chipset_flush(dev); 4451 4452 obj->phys_obj->cur_obj = NULL; 4453 obj->phys_obj = NULL; 4454 } 4455 4456 int 4457 i915_gem_attach_phys_object(struct drm_device *dev, 4458 struct drm_i915_gem_object *obj, 4459 int id, 4460 int align) 4461 { 4462 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping; 4463 drm_i915_private_t *dev_priv = dev->dev_private; 4464 int ret = 0; 4465 int page_count; 4466 int i; 4467 4468 if (id > I915_MAX_PHYS_OBJECT) 4469 return -EINVAL; 4470 4471 if (obj->phys_obj) { 4472 if (obj->phys_obj->id == id) 4473 return 0; 4474 i915_gem_detach_phys_object(dev, obj); 4475 } 4476 4477 /* create a new object */ 4478 if (!dev_priv->mm.phys_objs[id - 1]) { 4479 ret = i915_gem_init_phys_object(dev, id, 4480 obj->base.size, align); 4481 if (ret) { 4482 DRM_ERROR("failed to init phys object %d size: %zu\n", 4483 id, obj->base.size); 4484 return ret; 4485 } 4486 } 4487 4488 /* bind to the object */ 4489 obj->phys_obj = dev_priv->mm.phys_objs[id - 1]; 4490 obj->phys_obj->cur_obj = obj; 4491 4492 page_count = obj->base.size / PAGE_SIZE; 4493 4494 for (i = 0; i < page_count; i++) { 4495 struct page *page; 4496 char *dst, *src; 4497 4498 page = shmem_read_mapping_page(mapping, i); 4499 if (IS_ERR(page)) 4500 return PTR_ERR(page); 4501 4502 src = kmap_atomic(page); 4503 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE); 4504 memcpy(dst, src, PAGE_SIZE); 4505 kunmap_atomic(src); 4506 4507 mark_page_accessed(page); 4508 page_cache_release(page); 4509 } 4510 4511 return 0; 4512 } 4513 4514 static int 4515 i915_gem_phys_pwrite(struct drm_device *dev, 4516 struct drm_i915_gem_object *obj, 4517 struct drm_i915_gem_pwrite *args, 4518 struct drm_file *file_priv) 4519 { 4520 void *vaddr = obj->phys_obj->handle->vaddr + args->offset; 4521 char __user *user_data = to_user_ptr(args->data_ptr); 4522 4523 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) { 4524 unsigned long unwritten; 4525 4526 /* The physical object once assigned is fixed for the lifetime 4527 * of the obj, so we can safely drop the lock and continue 4528 * to access vaddr. 4529 */ 4530 mutex_unlock(&dev->struct_mutex); 4531 unwritten = copy_from_user(vaddr, user_data, args->size); 4532 mutex_lock(&dev->struct_mutex); 4533 if (unwritten) 4534 return -EFAULT; 4535 } 4536 4537 i915_gem_chipset_flush(dev); 4538 return 0; 4539 } 4540 4541 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 4542 { 4543 struct drm_i915_file_private *file_priv = file->driver_priv; 4544 4545 /* Clean up our request list when the client is going away, so that 4546 * later retire_requests won't dereference our soon-to-be-gone 4547 * file_priv. 4548 */ 4549 spin_lock(&file_priv->mm.lock); 4550 while (!list_empty(&file_priv->mm.request_list)) { 4551 struct drm_i915_gem_request *request; 4552 4553 request = list_first_entry(&file_priv->mm.request_list, 4554 struct drm_i915_gem_request, 4555 client_list); 4556 list_del(&request->client_list); 4557 request->file_priv = NULL; 4558 } 4559 spin_unlock(&file_priv->mm.lock); 4560 } 4561 4562 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task) 4563 { 4564 if (!mutex_is_locked(mutex)) 4565 return false; 4566 4567 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES) 4568 return mutex->owner == task; 4569 #else 4570 /* Since UP may be pre-empted, we cannot assume that we own the lock */ 4571 return false; 4572 #endif 4573 } 4574 4575 static int 4576 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc) 4577 { 4578 struct drm_i915_private *dev_priv = 4579 container_of(shrinker, 4580 struct drm_i915_private, 4581 mm.inactive_shrinker); 4582 struct drm_device *dev = dev_priv->dev; 4583 struct drm_i915_gem_object *obj; 4584 int nr_to_scan = sc->nr_to_scan; 4585 bool unlock = true; 4586 int cnt; 4587 4588 if (!mutex_trylock(&dev->struct_mutex)) { 4589 if (!mutex_is_locked_by(&dev->struct_mutex, current)) 4590 return 0; 4591 4592 if (dev_priv->mm.shrinker_no_lock_stealing) 4593 return 0; 4594 4595 unlock = false; 4596 } 4597 4598 if (nr_to_scan) { 4599 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan); 4600 if (nr_to_scan > 0) 4601 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan, 4602 false); 4603 if (nr_to_scan > 0) 4604 i915_gem_shrink_all(dev_priv); 4605 } 4606 4607 cnt = 0; 4608 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) 4609 if (obj->pages_pin_count == 0) 4610 cnt += obj->base.size >> PAGE_SHIFT; 4611 list_for_each_entry(obj, &dev_priv->mm.inactive_list, mm_list) 4612 if (obj->pin_count == 0 && obj->pages_pin_count == 0) 4613 cnt += obj->base.size >> PAGE_SHIFT; 4614 4615 if (unlock) 4616 mutex_unlock(&dev->struct_mutex); 4617 return cnt; 4618 } 4619