1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include "drmP.h" 29 #include "drm.h" 30 #include "i915_drm.h" 31 #include "i915_drv.h" 32 #include "i915_trace.h" 33 #include "intel_drv.h" 34 #include <linux/shmem_fs.h> 35 #include <linux/slab.h> 36 #include <linux/swap.h> 37 #include <linux/pci.h> 38 #include <linux/dma-buf.h> 39 40 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj); 41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); 42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj); 43 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, 44 unsigned alignment, 45 bool map_and_fenceable); 46 static int i915_gem_phys_pwrite(struct drm_device *dev, 47 struct drm_i915_gem_object *obj, 48 struct drm_i915_gem_pwrite *args, 49 struct drm_file *file); 50 51 static void i915_gem_write_fence(struct drm_device *dev, int reg, 52 struct drm_i915_gem_object *obj); 53 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 54 struct drm_i915_fence_reg *fence, 55 bool enable); 56 57 static int i915_gem_inactive_shrink(struct shrinker *shrinker, 58 struct shrink_control *sc); 59 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj); 60 61 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj) 62 { 63 if (obj->tiling_mode) 64 i915_gem_release_mmap(obj); 65 66 /* As we do not have an associated fence register, we will force 67 * a tiling change if we ever need to acquire one. 68 */ 69 obj->fence_dirty = false; 70 obj->fence_reg = I915_FENCE_REG_NONE; 71 } 72 73 /* some bookkeeping */ 74 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, 75 size_t size) 76 { 77 dev_priv->mm.object_count++; 78 dev_priv->mm.object_memory += size; 79 } 80 81 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, 82 size_t size) 83 { 84 dev_priv->mm.object_count--; 85 dev_priv->mm.object_memory -= size; 86 } 87 88 static int 89 i915_gem_wait_for_error(struct drm_device *dev) 90 { 91 struct drm_i915_private *dev_priv = dev->dev_private; 92 struct completion *x = &dev_priv->error_completion; 93 unsigned long flags; 94 int ret; 95 96 if (!atomic_read(&dev_priv->mm.wedged)) 97 return 0; 98 99 /* 100 * Only wait 10 seconds for the gpu reset to complete to avoid hanging 101 * userspace. If it takes that long something really bad is going on and 102 * we should simply try to bail out and fail as gracefully as possible. 103 */ 104 ret = wait_for_completion_interruptible_timeout(x, 10*HZ); 105 if (ret == 0) { 106 DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); 107 return -EIO; 108 } else if (ret < 0) { 109 return ret; 110 } 111 112 if (atomic_read(&dev_priv->mm.wedged)) { 113 /* GPU is hung, bump the completion count to account for 114 * the token we just consumed so that we never hit zero and 115 * end up waiting upon a subsequent completion event that 116 * will never happen. 117 */ 118 spin_lock_irqsave(&x->wait.lock, flags); 119 x->done++; 120 spin_unlock_irqrestore(&x->wait.lock, flags); 121 } 122 return 0; 123 } 124 125 int i915_mutex_lock_interruptible(struct drm_device *dev) 126 { 127 int ret; 128 129 ret = i915_gem_wait_for_error(dev); 130 if (ret) 131 return ret; 132 133 ret = mutex_lock_interruptible(&dev->struct_mutex); 134 if (ret) 135 return ret; 136 137 WARN_ON(i915_verify_lists(dev)); 138 return 0; 139 } 140 141 static inline bool 142 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj) 143 { 144 return !obj->active; 145 } 146 147 int 148 i915_gem_init_ioctl(struct drm_device *dev, void *data, 149 struct drm_file *file) 150 { 151 struct drm_i915_gem_init *args = data; 152 153 if (drm_core_check_feature(dev, DRIVER_MODESET)) 154 return -ENODEV; 155 156 if (args->gtt_start >= args->gtt_end || 157 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1)) 158 return -EINVAL; 159 160 /* GEM with user mode setting was never supported on ilk and later. */ 161 if (INTEL_INFO(dev)->gen >= 5) 162 return -ENODEV; 163 164 mutex_lock(&dev->struct_mutex); 165 i915_gem_init_global_gtt(dev, args->gtt_start, 166 args->gtt_end, args->gtt_end); 167 mutex_unlock(&dev->struct_mutex); 168 169 return 0; 170 } 171 172 int 173 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 174 struct drm_file *file) 175 { 176 struct drm_i915_private *dev_priv = dev->dev_private; 177 struct drm_i915_gem_get_aperture *args = data; 178 struct drm_i915_gem_object *obj; 179 size_t pinned; 180 181 pinned = 0; 182 mutex_lock(&dev->struct_mutex); 183 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) 184 if (obj->pin_count) 185 pinned += obj->gtt_space->size; 186 mutex_unlock(&dev->struct_mutex); 187 188 args->aper_size = dev_priv->mm.gtt_total; 189 args->aper_available_size = args->aper_size - pinned; 190 191 return 0; 192 } 193 194 static int 195 i915_gem_create(struct drm_file *file, 196 struct drm_device *dev, 197 uint64_t size, 198 uint32_t *handle_p) 199 { 200 struct drm_i915_gem_object *obj; 201 int ret; 202 u32 handle; 203 204 size = roundup(size, PAGE_SIZE); 205 if (size == 0) 206 return -EINVAL; 207 208 /* Allocate the new object */ 209 obj = i915_gem_alloc_object(dev, size); 210 if (obj == NULL) 211 return -ENOMEM; 212 213 ret = drm_gem_handle_create(file, &obj->base, &handle); 214 if (ret) { 215 drm_gem_object_release(&obj->base); 216 i915_gem_info_remove_obj(dev->dev_private, obj->base.size); 217 kfree(obj); 218 return ret; 219 } 220 221 /* drop reference from allocate - handle holds it now */ 222 drm_gem_object_unreference(&obj->base); 223 trace_i915_gem_object_create(obj); 224 225 *handle_p = handle; 226 return 0; 227 } 228 229 int 230 i915_gem_dumb_create(struct drm_file *file, 231 struct drm_device *dev, 232 struct drm_mode_create_dumb *args) 233 { 234 /* have to work out size/pitch and return them */ 235 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64); 236 args->size = args->pitch * args->height; 237 return i915_gem_create(file, dev, 238 args->size, &args->handle); 239 } 240 241 int i915_gem_dumb_destroy(struct drm_file *file, 242 struct drm_device *dev, 243 uint32_t handle) 244 { 245 return drm_gem_handle_delete(file, handle); 246 } 247 248 /** 249 * Creates a new mm object and returns a handle to it. 250 */ 251 int 252 i915_gem_create_ioctl(struct drm_device *dev, void *data, 253 struct drm_file *file) 254 { 255 struct drm_i915_gem_create *args = data; 256 257 return i915_gem_create(file, dev, 258 args->size, &args->handle); 259 } 260 261 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) 262 { 263 drm_i915_private_t *dev_priv = obj->base.dev->dev_private; 264 265 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && 266 obj->tiling_mode != I915_TILING_NONE; 267 } 268 269 static inline int 270 __copy_to_user_swizzled(char __user *cpu_vaddr, 271 const char *gpu_vaddr, int gpu_offset, 272 int length) 273 { 274 int ret, cpu_offset = 0; 275 276 while (length > 0) { 277 int cacheline_end = ALIGN(gpu_offset + 1, 64); 278 int this_length = min(cacheline_end - gpu_offset, length); 279 int swizzled_gpu_offset = gpu_offset ^ 64; 280 281 ret = __copy_to_user(cpu_vaddr + cpu_offset, 282 gpu_vaddr + swizzled_gpu_offset, 283 this_length); 284 if (ret) 285 return ret + length; 286 287 cpu_offset += this_length; 288 gpu_offset += this_length; 289 length -= this_length; 290 } 291 292 return 0; 293 } 294 295 static inline int 296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, 297 const char __user *cpu_vaddr, 298 int length) 299 { 300 int ret, cpu_offset = 0; 301 302 while (length > 0) { 303 int cacheline_end = ALIGN(gpu_offset + 1, 64); 304 int this_length = min(cacheline_end - gpu_offset, length); 305 int swizzled_gpu_offset = gpu_offset ^ 64; 306 307 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, 308 cpu_vaddr + cpu_offset, 309 this_length); 310 if (ret) 311 return ret + length; 312 313 cpu_offset += this_length; 314 gpu_offset += this_length; 315 length -= this_length; 316 } 317 318 return 0; 319 } 320 321 /* Per-page copy function for the shmem pread fastpath. 322 * Flushes invalid cachelines before reading the target if 323 * needs_clflush is set. */ 324 static int 325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length, 326 char __user *user_data, 327 bool page_do_bit17_swizzling, bool needs_clflush) 328 { 329 char *vaddr; 330 int ret; 331 332 if (unlikely(page_do_bit17_swizzling)) 333 return -EINVAL; 334 335 vaddr = kmap_atomic(page); 336 if (needs_clflush) 337 drm_clflush_virt_range(vaddr + shmem_page_offset, 338 page_length); 339 ret = __copy_to_user_inatomic(user_data, 340 vaddr + shmem_page_offset, 341 page_length); 342 kunmap_atomic(vaddr); 343 344 return ret; 345 } 346 347 static void 348 shmem_clflush_swizzled_range(char *addr, unsigned long length, 349 bool swizzled) 350 { 351 if (unlikely(swizzled)) { 352 unsigned long start = (unsigned long) addr; 353 unsigned long end = (unsigned long) addr + length; 354 355 /* For swizzling simply ensure that we always flush both 356 * channels. Lame, but simple and it works. Swizzled 357 * pwrite/pread is far from a hotpath - current userspace 358 * doesn't use it at all. */ 359 start = round_down(start, 128); 360 end = round_up(end, 128); 361 362 drm_clflush_virt_range((void *)start, end - start); 363 } else { 364 drm_clflush_virt_range(addr, length); 365 } 366 367 } 368 369 /* Only difference to the fast-path function is that this can handle bit17 370 * and uses non-atomic copy and kmap functions. */ 371 static int 372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length, 373 char __user *user_data, 374 bool page_do_bit17_swizzling, bool needs_clflush) 375 { 376 char *vaddr; 377 int ret; 378 379 vaddr = kmap(page); 380 if (needs_clflush) 381 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 382 page_length, 383 page_do_bit17_swizzling); 384 385 if (page_do_bit17_swizzling) 386 ret = __copy_to_user_swizzled(user_data, 387 vaddr, shmem_page_offset, 388 page_length); 389 else 390 ret = __copy_to_user(user_data, 391 vaddr + shmem_page_offset, 392 page_length); 393 kunmap(page); 394 395 return ret; 396 } 397 398 static int 399 i915_gem_shmem_pread(struct drm_device *dev, 400 struct drm_i915_gem_object *obj, 401 struct drm_i915_gem_pread *args, 402 struct drm_file *file) 403 { 404 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; 405 char __user *user_data; 406 ssize_t remain; 407 loff_t offset; 408 int shmem_page_offset, page_length, ret = 0; 409 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 410 int hit_slowpath = 0; 411 int prefaulted = 0; 412 int needs_clflush = 0; 413 int release_page; 414 415 user_data = (char __user *) (uintptr_t) args->data_ptr; 416 remain = args->size; 417 418 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 419 420 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) { 421 /* If we're not in the cpu read domain, set ourself into the gtt 422 * read domain and manually flush cachelines (if required). This 423 * optimizes for the case when the gpu will dirty the data 424 * anyway again before the next pread happens. */ 425 if (obj->cache_level == I915_CACHE_NONE) 426 needs_clflush = 1; 427 ret = i915_gem_object_set_to_gtt_domain(obj, false); 428 if (ret) 429 return ret; 430 } 431 432 offset = args->offset; 433 434 while (remain > 0) { 435 struct page *page; 436 437 /* Operation in this page 438 * 439 * shmem_page_offset = offset within page in shmem file 440 * page_length = bytes to copy for this page 441 */ 442 shmem_page_offset = offset_in_page(offset); 443 page_length = remain; 444 if ((shmem_page_offset + page_length) > PAGE_SIZE) 445 page_length = PAGE_SIZE - shmem_page_offset; 446 447 if (obj->pages) { 448 page = obj->pages[offset >> PAGE_SHIFT]; 449 release_page = 0; 450 } else { 451 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); 452 if (IS_ERR(page)) { 453 ret = PTR_ERR(page); 454 goto out; 455 } 456 release_page = 1; 457 } 458 459 page_do_bit17_swizzling = obj_do_bit17_swizzling && 460 (page_to_phys(page) & (1 << 17)) != 0; 461 462 ret = shmem_pread_fast(page, shmem_page_offset, page_length, 463 user_data, page_do_bit17_swizzling, 464 needs_clflush); 465 if (ret == 0) 466 goto next_page; 467 468 hit_slowpath = 1; 469 page_cache_get(page); 470 mutex_unlock(&dev->struct_mutex); 471 472 if (!prefaulted) { 473 ret = fault_in_multipages_writeable(user_data, remain); 474 /* Userspace is tricking us, but we've already clobbered 475 * its pages with the prefault and promised to write the 476 * data up to the first fault. Hence ignore any errors 477 * and just continue. */ 478 (void)ret; 479 prefaulted = 1; 480 } 481 482 ret = shmem_pread_slow(page, shmem_page_offset, page_length, 483 user_data, page_do_bit17_swizzling, 484 needs_clflush); 485 486 mutex_lock(&dev->struct_mutex); 487 page_cache_release(page); 488 next_page: 489 mark_page_accessed(page); 490 if (release_page) 491 page_cache_release(page); 492 493 if (ret) { 494 ret = -EFAULT; 495 goto out; 496 } 497 498 remain -= page_length; 499 user_data += page_length; 500 offset += page_length; 501 } 502 503 out: 504 if (hit_slowpath) { 505 /* Fixup: Kill any reinstated backing storage pages */ 506 if (obj->madv == __I915_MADV_PURGED) 507 i915_gem_object_truncate(obj); 508 } 509 510 return ret; 511 } 512 513 /** 514 * Reads data from the object referenced by handle. 515 * 516 * On error, the contents of *data are undefined. 517 */ 518 int 519 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 520 struct drm_file *file) 521 { 522 struct drm_i915_gem_pread *args = data; 523 struct drm_i915_gem_object *obj; 524 int ret = 0; 525 526 if (args->size == 0) 527 return 0; 528 529 if (!access_ok(VERIFY_WRITE, 530 (char __user *)(uintptr_t)args->data_ptr, 531 args->size)) 532 return -EFAULT; 533 534 ret = i915_mutex_lock_interruptible(dev); 535 if (ret) 536 return ret; 537 538 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 539 if (&obj->base == NULL) { 540 ret = -ENOENT; 541 goto unlock; 542 } 543 544 /* Bounds check source. */ 545 if (args->offset > obj->base.size || 546 args->size > obj->base.size - args->offset) { 547 ret = -EINVAL; 548 goto out; 549 } 550 551 /* prime objects have no backing filp to GEM pread/pwrite 552 * pages from. 553 */ 554 if (!obj->base.filp) { 555 ret = -EINVAL; 556 goto out; 557 } 558 559 trace_i915_gem_object_pread(obj, args->offset, args->size); 560 561 ret = i915_gem_shmem_pread(dev, obj, args, file); 562 563 out: 564 drm_gem_object_unreference(&obj->base); 565 unlock: 566 mutex_unlock(&dev->struct_mutex); 567 return ret; 568 } 569 570 /* This is the fast write path which cannot handle 571 * page faults in the source data 572 */ 573 574 static inline int 575 fast_user_write(struct io_mapping *mapping, 576 loff_t page_base, int page_offset, 577 char __user *user_data, 578 int length) 579 { 580 void __iomem *vaddr_atomic; 581 void *vaddr; 582 unsigned long unwritten; 583 584 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base); 585 /* We can use the cpu mem copy function because this is X86. */ 586 vaddr = (void __force*)vaddr_atomic + page_offset; 587 unwritten = __copy_from_user_inatomic_nocache(vaddr, 588 user_data, length); 589 io_mapping_unmap_atomic(vaddr_atomic); 590 return unwritten; 591 } 592 593 /** 594 * This is the fast pwrite path, where we copy the data directly from the 595 * user into the GTT, uncached. 596 */ 597 static int 598 i915_gem_gtt_pwrite_fast(struct drm_device *dev, 599 struct drm_i915_gem_object *obj, 600 struct drm_i915_gem_pwrite *args, 601 struct drm_file *file) 602 { 603 drm_i915_private_t *dev_priv = dev->dev_private; 604 ssize_t remain; 605 loff_t offset, page_base; 606 char __user *user_data; 607 int page_offset, page_length, ret; 608 609 ret = i915_gem_object_pin(obj, 0, true); 610 if (ret) 611 goto out; 612 613 ret = i915_gem_object_set_to_gtt_domain(obj, true); 614 if (ret) 615 goto out_unpin; 616 617 ret = i915_gem_object_put_fence(obj); 618 if (ret) 619 goto out_unpin; 620 621 user_data = (char __user *) (uintptr_t) args->data_ptr; 622 remain = args->size; 623 624 offset = obj->gtt_offset + args->offset; 625 626 while (remain > 0) { 627 /* Operation in this page 628 * 629 * page_base = page offset within aperture 630 * page_offset = offset within page 631 * page_length = bytes to copy for this page 632 */ 633 page_base = offset & PAGE_MASK; 634 page_offset = offset_in_page(offset); 635 page_length = remain; 636 if ((page_offset + remain) > PAGE_SIZE) 637 page_length = PAGE_SIZE - page_offset; 638 639 /* If we get a fault while copying data, then (presumably) our 640 * source page isn't available. Return the error and we'll 641 * retry in the slow path. 642 */ 643 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base, 644 page_offset, user_data, page_length)) { 645 ret = -EFAULT; 646 goto out_unpin; 647 } 648 649 remain -= page_length; 650 user_data += page_length; 651 offset += page_length; 652 } 653 654 out_unpin: 655 i915_gem_object_unpin(obj); 656 out: 657 return ret; 658 } 659 660 /* Per-page copy function for the shmem pwrite fastpath. 661 * Flushes invalid cachelines before writing to the target if 662 * needs_clflush_before is set and flushes out any written cachelines after 663 * writing if needs_clflush is set. */ 664 static int 665 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length, 666 char __user *user_data, 667 bool page_do_bit17_swizzling, 668 bool needs_clflush_before, 669 bool needs_clflush_after) 670 { 671 char *vaddr; 672 int ret; 673 674 if (unlikely(page_do_bit17_swizzling)) 675 return -EINVAL; 676 677 vaddr = kmap_atomic(page); 678 if (needs_clflush_before) 679 drm_clflush_virt_range(vaddr + shmem_page_offset, 680 page_length); 681 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset, 682 user_data, 683 page_length); 684 if (needs_clflush_after) 685 drm_clflush_virt_range(vaddr + shmem_page_offset, 686 page_length); 687 kunmap_atomic(vaddr); 688 689 return ret; 690 } 691 692 /* Only difference to the fast-path function is that this can handle bit17 693 * and uses non-atomic copy and kmap functions. */ 694 static int 695 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length, 696 char __user *user_data, 697 bool page_do_bit17_swizzling, 698 bool needs_clflush_before, 699 bool needs_clflush_after) 700 { 701 char *vaddr; 702 int ret; 703 704 vaddr = kmap(page); 705 if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) 706 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 707 page_length, 708 page_do_bit17_swizzling); 709 if (page_do_bit17_swizzling) 710 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset, 711 user_data, 712 page_length); 713 else 714 ret = __copy_from_user(vaddr + shmem_page_offset, 715 user_data, 716 page_length); 717 if (needs_clflush_after) 718 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 719 page_length, 720 page_do_bit17_swizzling); 721 kunmap(page); 722 723 return ret; 724 } 725 726 static int 727 i915_gem_shmem_pwrite(struct drm_device *dev, 728 struct drm_i915_gem_object *obj, 729 struct drm_i915_gem_pwrite *args, 730 struct drm_file *file) 731 { 732 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; 733 ssize_t remain; 734 loff_t offset; 735 char __user *user_data; 736 int shmem_page_offset, page_length, ret = 0; 737 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 738 int hit_slowpath = 0; 739 int needs_clflush_after = 0; 740 int needs_clflush_before = 0; 741 int release_page; 742 743 user_data = (char __user *) (uintptr_t) args->data_ptr; 744 remain = args->size; 745 746 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 747 748 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 749 /* If we're not in the cpu write domain, set ourself into the gtt 750 * write domain and manually flush cachelines (if required). This 751 * optimizes for the case when the gpu will use the data 752 * right away and we therefore have to clflush anyway. */ 753 if (obj->cache_level == I915_CACHE_NONE) 754 needs_clflush_after = 1; 755 ret = i915_gem_object_set_to_gtt_domain(obj, true); 756 if (ret) 757 return ret; 758 } 759 /* Same trick applies for invalidate partially written cachelines before 760 * writing. */ 761 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU) 762 && obj->cache_level == I915_CACHE_NONE) 763 needs_clflush_before = 1; 764 765 offset = args->offset; 766 obj->dirty = 1; 767 768 while (remain > 0) { 769 struct page *page; 770 int partial_cacheline_write; 771 772 /* Operation in this page 773 * 774 * shmem_page_offset = offset within page in shmem file 775 * page_length = bytes to copy for this page 776 */ 777 shmem_page_offset = offset_in_page(offset); 778 779 page_length = remain; 780 if ((shmem_page_offset + page_length) > PAGE_SIZE) 781 page_length = PAGE_SIZE - shmem_page_offset; 782 783 /* If we don't overwrite a cacheline completely we need to be 784 * careful to have up-to-date data by first clflushing. Don't 785 * overcomplicate things and flush the entire patch. */ 786 partial_cacheline_write = needs_clflush_before && 787 ((shmem_page_offset | page_length) 788 & (boot_cpu_data.x86_clflush_size - 1)); 789 790 if (obj->pages) { 791 page = obj->pages[offset >> PAGE_SHIFT]; 792 release_page = 0; 793 } else { 794 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); 795 if (IS_ERR(page)) { 796 ret = PTR_ERR(page); 797 goto out; 798 } 799 release_page = 1; 800 } 801 802 page_do_bit17_swizzling = obj_do_bit17_swizzling && 803 (page_to_phys(page) & (1 << 17)) != 0; 804 805 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length, 806 user_data, page_do_bit17_swizzling, 807 partial_cacheline_write, 808 needs_clflush_after); 809 if (ret == 0) 810 goto next_page; 811 812 hit_slowpath = 1; 813 page_cache_get(page); 814 mutex_unlock(&dev->struct_mutex); 815 816 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length, 817 user_data, page_do_bit17_swizzling, 818 partial_cacheline_write, 819 needs_clflush_after); 820 821 mutex_lock(&dev->struct_mutex); 822 page_cache_release(page); 823 next_page: 824 set_page_dirty(page); 825 mark_page_accessed(page); 826 if (release_page) 827 page_cache_release(page); 828 829 if (ret) { 830 ret = -EFAULT; 831 goto out; 832 } 833 834 remain -= page_length; 835 user_data += page_length; 836 offset += page_length; 837 } 838 839 out: 840 if (hit_slowpath) { 841 /* Fixup: Kill any reinstated backing storage pages */ 842 if (obj->madv == __I915_MADV_PURGED) 843 i915_gem_object_truncate(obj); 844 /* and flush dirty cachelines in case the object isn't in the cpu write 845 * domain anymore. */ 846 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 847 i915_gem_clflush_object(obj); 848 intel_gtt_chipset_flush(); 849 } 850 } 851 852 if (needs_clflush_after) 853 intel_gtt_chipset_flush(); 854 855 return ret; 856 } 857 858 /** 859 * Writes data to the object referenced by handle. 860 * 861 * On error, the contents of the buffer that were to be modified are undefined. 862 */ 863 int 864 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 865 struct drm_file *file) 866 { 867 struct drm_i915_gem_pwrite *args = data; 868 struct drm_i915_gem_object *obj; 869 int ret; 870 871 if (args->size == 0) 872 return 0; 873 874 if (!access_ok(VERIFY_READ, 875 (char __user *)(uintptr_t)args->data_ptr, 876 args->size)) 877 return -EFAULT; 878 879 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr, 880 args->size); 881 if (ret) 882 return -EFAULT; 883 884 ret = i915_mutex_lock_interruptible(dev); 885 if (ret) 886 return ret; 887 888 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 889 if (&obj->base == NULL) { 890 ret = -ENOENT; 891 goto unlock; 892 } 893 894 /* Bounds check destination. */ 895 if (args->offset > obj->base.size || 896 args->size > obj->base.size - args->offset) { 897 ret = -EINVAL; 898 goto out; 899 } 900 901 /* prime objects have no backing filp to GEM pread/pwrite 902 * pages from. 903 */ 904 if (!obj->base.filp) { 905 ret = -EINVAL; 906 goto out; 907 } 908 909 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 910 911 ret = -EFAULT; 912 /* We can only do the GTT pwrite on untiled buffers, as otherwise 913 * it would end up going through the fenced access, and we'll get 914 * different detiling behavior between reading and writing. 915 * pread/pwrite currently are reading and writing from the CPU 916 * perspective, requiring manual detiling by the client. 917 */ 918 if (obj->phys_obj) { 919 ret = i915_gem_phys_pwrite(dev, obj, args, file); 920 goto out; 921 } 922 923 if (obj->gtt_space && 924 obj->cache_level == I915_CACHE_NONE && 925 obj->tiling_mode == I915_TILING_NONE && 926 obj->map_and_fenceable && 927 obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 928 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file); 929 /* Note that the gtt paths might fail with non-page-backed user 930 * pointers (e.g. gtt mappings when moving data between 931 * textures). Fallback to the shmem path in that case. */ 932 } 933 934 if (ret == -EFAULT) 935 ret = i915_gem_shmem_pwrite(dev, obj, args, file); 936 937 out: 938 drm_gem_object_unreference(&obj->base); 939 unlock: 940 mutex_unlock(&dev->struct_mutex); 941 return ret; 942 } 943 944 /** 945 * Called when user space prepares to use an object with the CPU, either 946 * through the mmap ioctl's mapping or a GTT mapping. 947 */ 948 int 949 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 950 struct drm_file *file) 951 { 952 struct drm_i915_gem_set_domain *args = data; 953 struct drm_i915_gem_object *obj; 954 uint32_t read_domains = args->read_domains; 955 uint32_t write_domain = args->write_domain; 956 int ret; 957 958 /* Only handle setting domains to types used by the CPU. */ 959 if (write_domain & I915_GEM_GPU_DOMAINS) 960 return -EINVAL; 961 962 if (read_domains & I915_GEM_GPU_DOMAINS) 963 return -EINVAL; 964 965 /* Having something in the write domain implies it's in the read 966 * domain, and only that read domain. Enforce that in the request. 967 */ 968 if (write_domain != 0 && read_domains != write_domain) 969 return -EINVAL; 970 971 ret = i915_mutex_lock_interruptible(dev); 972 if (ret) 973 return ret; 974 975 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 976 if (&obj->base == NULL) { 977 ret = -ENOENT; 978 goto unlock; 979 } 980 981 if (read_domains & I915_GEM_DOMAIN_GTT) { 982 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); 983 984 /* Silently promote "you're not bound, there was nothing to do" 985 * to success, since the client was just asking us to 986 * make sure everything was done. 987 */ 988 if (ret == -EINVAL) 989 ret = 0; 990 } else { 991 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); 992 } 993 994 drm_gem_object_unreference(&obj->base); 995 unlock: 996 mutex_unlock(&dev->struct_mutex); 997 return ret; 998 } 999 1000 /** 1001 * Called when user space has done writes to this buffer 1002 */ 1003 int 1004 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1005 struct drm_file *file) 1006 { 1007 struct drm_i915_gem_sw_finish *args = data; 1008 struct drm_i915_gem_object *obj; 1009 int ret = 0; 1010 1011 ret = i915_mutex_lock_interruptible(dev); 1012 if (ret) 1013 return ret; 1014 1015 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1016 if (&obj->base == NULL) { 1017 ret = -ENOENT; 1018 goto unlock; 1019 } 1020 1021 /* Pinned buffers may be scanout, so flush the cache */ 1022 if (obj->pin_count) 1023 i915_gem_object_flush_cpu_write_domain(obj); 1024 1025 drm_gem_object_unreference(&obj->base); 1026 unlock: 1027 mutex_unlock(&dev->struct_mutex); 1028 return ret; 1029 } 1030 1031 /** 1032 * Maps the contents of an object, returning the address it is mapped 1033 * into. 1034 * 1035 * While the mapping holds a reference on the contents of the object, it doesn't 1036 * imply a ref on the object itself. 1037 */ 1038 int 1039 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1040 struct drm_file *file) 1041 { 1042 struct drm_i915_gem_mmap *args = data; 1043 struct drm_gem_object *obj; 1044 unsigned long addr; 1045 1046 obj = drm_gem_object_lookup(dev, file, args->handle); 1047 if (obj == NULL) 1048 return -ENOENT; 1049 1050 /* prime objects have no backing filp to GEM mmap 1051 * pages from. 1052 */ 1053 if (!obj->filp) { 1054 drm_gem_object_unreference_unlocked(obj); 1055 return -EINVAL; 1056 } 1057 1058 addr = vm_mmap(obj->filp, 0, args->size, 1059 PROT_READ | PROT_WRITE, MAP_SHARED, 1060 args->offset); 1061 drm_gem_object_unreference_unlocked(obj); 1062 if (IS_ERR((void *)addr)) 1063 return addr; 1064 1065 args->addr_ptr = (uint64_t) addr; 1066 1067 return 0; 1068 } 1069 1070 /** 1071 * i915_gem_fault - fault a page into the GTT 1072 * vma: VMA in question 1073 * vmf: fault info 1074 * 1075 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1076 * from userspace. The fault handler takes care of binding the object to 1077 * the GTT (if needed), allocating and programming a fence register (again, 1078 * only if needed based on whether the old reg is still valid or the object 1079 * is tiled) and inserting a new PTE into the faulting process. 1080 * 1081 * Note that the faulting process may involve evicting existing objects 1082 * from the GTT and/or fence registers to make room. So performance may 1083 * suffer if the GTT working set is large or there are few fence registers 1084 * left. 1085 */ 1086 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1087 { 1088 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data); 1089 struct drm_device *dev = obj->base.dev; 1090 drm_i915_private_t *dev_priv = dev->dev_private; 1091 pgoff_t page_offset; 1092 unsigned long pfn; 1093 int ret = 0; 1094 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 1095 1096 /* We don't use vmf->pgoff since that has the fake offset */ 1097 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >> 1098 PAGE_SHIFT; 1099 1100 ret = i915_mutex_lock_interruptible(dev); 1101 if (ret) 1102 goto out; 1103 1104 trace_i915_gem_object_fault(obj, page_offset, true, write); 1105 1106 /* Now bind it into the GTT if needed */ 1107 if (!obj->map_and_fenceable) { 1108 ret = i915_gem_object_unbind(obj); 1109 if (ret) 1110 goto unlock; 1111 } 1112 if (!obj->gtt_space) { 1113 ret = i915_gem_object_bind_to_gtt(obj, 0, true); 1114 if (ret) 1115 goto unlock; 1116 1117 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1118 if (ret) 1119 goto unlock; 1120 } 1121 1122 if (!obj->has_global_gtt_mapping) 1123 i915_gem_gtt_bind_object(obj, obj->cache_level); 1124 1125 ret = i915_gem_object_get_fence(obj); 1126 if (ret) 1127 goto unlock; 1128 1129 if (i915_gem_object_is_inactive(obj)) 1130 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 1131 1132 obj->fault_mappable = true; 1133 1134 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) + 1135 page_offset; 1136 1137 /* Finally, remap it using the new GTT offset */ 1138 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn); 1139 unlock: 1140 mutex_unlock(&dev->struct_mutex); 1141 out: 1142 switch (ret) { 1143 case -EIO: 1144 /* If this -EIO is due to a gpu hang, give the reset code a 1145 * chance to clean up the mess. Otherwise return the proper 1146 * SIGBUS. */ 1147 if (!atomic_read(&dev_priv->mm.wedged)) 1148 return VM_FAULT_SIGBUS; 1149 case -EAGAIN: 1150 /* Give the error handler a chance to run and move the 1151 * objects off the GPU active list. Next time we service the 1152 * fault, we should be able to transition the page into the 1153 * GTT without touching the GPU (and so avoid further 1154 * EIO/EGAIN). If the GPU is wedged, then there is no issue 1155 * with coherency, just lost writes. 1156 */ 1157 set_need_resched(); 1158 case 0: 1159 case -ERESTARTSYS: 1160 case -EINTR: 1161 return VM_FAULT_NOPAGE; 1162 case -ENOMEM: 1163 return VM_FAULT_OOM; 1164 default: 1165 return VM_FAULT_SIGBUS; 1166 } 1167 } 1168 1169 /** 1170 * i915_gem_release_mmap - remove physical page mappings 1171 * @obj: obj in question 1172 * 1173 * Preserve the reservation of the mmapping with the DRM core code, but 1174 * relinquish ownership of the pages back to the system. 1175 * 1176 * It is vital that we remove the page mapping if we have mapped a tiled 1177 * object through the GTT and then lose the fence register due to 1178 * resource pressure. Similarly if the object has been moved out of the 1179 * aperture, than pages mapped into userspace must be revoked. Removing the 1180 * mapping will then trigger a page fault on the next user access, allowing 1181 * fixup by i915_gem_fault(). 1182 */ 1183 void 1184 i915_gem_release_mmap(struct drm_i915_gem_object *obj) 1185 { 1186 if (!obj->fault_mappable) 1187 return; 1188 1189 if (obj->base.dev->dev_mapping) 1190 unmap_mapping_range(obj->base.dev->dev_mapping, 1191 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT, 1192 obj->base.size, 1); 1193 1194 obj->fault_mappable = false; 1195 } 1196 1197 static uint32_t 1198 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode) 1199 { 1200 uint32_t gtt_size; 1201 1202 if (INTEL_INFO(dev)->gen >= 4 || 1203 tiling_mode == I915_TILING_NONE) 1204 return size; 1205 1206 /* Previous chips need a power-of-two fence region when tiling */ 1207 if (INTEL_INFO(dev)->gen == 3) 1208 gtt_size = 1024*1024; 1209 else 1210 gtt_size = 512*1024; 1211 1212 while (gtt_size < size) 1213 gtt_size <<= 1; 1214 1215 return gtt_size; 1216 } 1217 1218 /** 1219 * i915_gem_get_gtt_alignment - return required GTT alignment for an object 1220 * @obj: object to check 1221 * 1222 * Return the required GTT alignment for an object, taking into account 1223 * potential fence register mapping. 1224 */ 1225 static uint32_t 1226 i915_gem_get_gtt_alignment(struct drm_device *dev, 1227 uint32_t size, 1228 int tiling_mode) 1229 { 1230 /* 1231 * Minimum alignment is 4k (GTT page size), but might be greater 1232 * if a fence register is needed for the object. 1233 */ 1234 if (INTEL_INFO(dev)->gen >= 4 || 1235 tiling_mode == I915_TILING_NONE) 1236 return 4096; 1237 1238 /* 1239 * Previous chips need to be aligned to the size of the smallest 1240 * fence register that can contain the object. 1241 */ 1242 return i915_gem_get_gtt_size(dev, size, tiling_mode); 1243 } 1244 1245 /** 1246 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an 1247 * unfenced object 1248 * @dev: the device 1249 * @size: size of the object 1250 * @tiling_mode: tiling mode of the object 1251 * 1252 * Return the required GTT alignment for an object, only taking into account 1253 * unfenced tiled surface requirements. 1254 */ 1255 uint32_t 1256 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev, 1257 uint32_t size, 1258 int tiling_mode) 1259 { 1260 /* 1261 * Minimum alignment is 4k (GTT page size) for sane hw. 1262 */ 1263 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) || 1264 tiling_mode == I915_TILING_NONE) 1265 return 4096; 1266 1267 /* Previous hardware however needs to be aligned to a power-of-two 1268 * tile height. The simplest method for determining this is to reuse 1269 * the power-of-tile object size. 1270 */ 1271 return i915_gem_get_gtt_size(dev, size, tiling_mode); 1272 } 1273 1274 int 1275 i915_gem_mmap_gtt(struct drm_file *file, 1276 struct drm_device *dev, 1277 uint32_t handle, 1278 uint64_t *offset) 1279 { 1280 struct drm_i915_private *dev_priv = dev->dev_private; 1281 struct drm_i915_gem_object *obj; 1282 int ret; 1283 1284 ret = i915_mutex_lock_interruptible(dev); 1285 if (ret) 1286 return ret; 1287 1288 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle)); 1289 if (&obj->base == NULL) { 1290 ret = -ENOENT; 1291 goto unlock; 1292 } 1293 1294 if (obj->base.size > dev_priv->mm.gtt_mappable_end) { 1295 ret = -E2BIG; 1296 goto out; 1297 } 1298 1299 if (obj->madv != I915_MADV_WILLNEED) { 1300 DRM_ERROR("Attempting to mmap a purgeable buffer\n"); 1301 ret = -EINVAL; 1302 goto out; 1303 } 1304 1305 if (!obj->base.map_list.map) { 1306 ret = drm_gem_create_mmap_offset(&obj->base); 1307 if (ret) 1308 goto out; 1309 } 1310 1311 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT; 1312 1313 out: 1314 drm_gem_object_unreference(&obj->base); 1315 unlock: 1316 mutex_unlock(&dev->struct_mutex); 1317 return ret; 1318 } 1319 1320 /** 1321 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 1322 * @dev: DRM device 1323 * @data: GTT mapping ioctl data 1324 * @file: GEM object info 1325 * 1326 * Simply returns the fake offset to userspace so it can mmap it. 1327 * The mmap call will end up in drm_gem_mmap(), which will set things 1328 * up so we can get faults in the handler above. 1329 * 1330 * The fault handler will take care of binding the object into the GTT 1331 * (since it may have been evicted to make room for something), allocating 1332 * a fence register, and mapping the appropriate aperture address into 1333 * userspace. 1334 */ 1335 int 1336 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 1337 struct drm_file *file) 1338 { 1339 struct drm_i915_gem_mmap_gtt *args = data; 1340 1341 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); 1342 } 1343 1344 int 1345 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj, 1346 gfp_t gfpmask) 1347 { 1348 int page_count, i; 1349 struct address_space *mapping; 1350 struct inode *inode; 1351 struct page *page; 1352 1353 if (obj->pages || obj->sg_table) 1354 return 0; 1355 1356 /* Get the list of pages out of our struct file. They'll be pinned 1357 * at this point until we release them. 1358 */ 1359 page_count = obj->base.size / PAGE_SIZE; 1360 BUG_ON(obj->pages != NULL); 1361 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *)); 1362 if (obj->pages == NULL) 1363 return -ENOMEM; 1364 1365 inode = obj->base.filp->f_path.dentry->d_inode; 1366 mapping = inode->i_mapping; 1367 gfpmask |= mapping_gfp_mask(mapping); 1368 1369 for (i = 0; i < page_count; i++) { 1370 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask); 1371 if (IS_ERR(page)) 1372 goto err_pages; 1373 1374 obj->pages[i] = page; 1375 } 1376 1377 if (i915_gem_object_needs_bit17_swizzle(obj)) 1378 i915_gem_object_do_bit_17_swizzle(obj); 1379 1380 return 0; 1381 1382 err_pages: 1383 while (i--) 1384 page_cache_release(obj->pages[i]); 1385 1386 drm_free_large(obj->pages); 1387 obj->pages = NULL; 1388 return PTR_ERR(page); 1389 } 1390 1391 static void 1392 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj) 1393 { 1394 int page_count = obj->base.size / PAGE_SIZE; 1395 int i; 1396 1397 if (!obj->pages) 1398 return; 1399 1400 BUG_ON(obj->madv == __I915_MADV_PURGED); 1401 1402 if (i915_gem_object_needs_bit17_swizzle(obj)) 1403 i915_gem_object_save_bit_17_swizzle(obj); 1404 1405 if (obj->madv == I915_MADV_DONTNEED) 1406 obj->dirty = 0; 1407 1408 for (i = 0; i < page_count; i++) { 1409 if (obj->dirty) 1410 set_page_dirty(obj->pages[i]); 1411 1412 if (obj->madv == I915_MADV_WILLNEED) 1413 mark_page_accessed(obj->pages[i]); 1414 1415 page_cache_release(obj->pages[i]); 1416 } 1417 obj->dirty = 0; 1418 1419 drm_free_large(obj->pages); 1420 obj->pages = NULL; 1421 } 1422 1423 void 1424 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj, 1425 struct intel_ring_buffer *ring, 1426 u32 seqno) 1427 { 1428 struct drm_device *dev = obj->base.dev; 1429 struct drm_i915_private *dev_priv = dev->dev_private; 1430 1431 BUG_ON(ring == NULL); 1432 obj->ring = ring; 1433 1434 /* Add a reference if we're newly entering the active list. */ 1435 if (!obj->active) { 1436 drm_gem_object_reference(&obj->base); 1437 obj->active = 1; 1438 } 1439 1440 /* Move from whatever list we were on to the tail of execution. */ 1441 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list); 1442 list_move_tail(&obj->ring_list, &ring->active_list); 1443 1444 obj->last_rendering_seqno = seqno; 1445 1446 if (obj->fenced_gpu_access) { 1447 obj->last_fenced_seqno = seqno; 1448 1449 /* Bump MRU to take account of the delayed flush */ 1450 if (obj->fence_reg != I915_FENCE_REG_NONE) { 1451 struct drm_i915_fence_reg *reg; 1452 1453 reg = &dev_priv->fence_regs[obj->fence_reg]; 1454 list_move_tail(®->lru_list, 1455 &dev_priv->mm.fence_list); 1456 } 1457 } 1458 } 1459 1460 static void 1461 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj) 1462 { 1463 list_del_init(&obj->ring_list); 1464 obj->last_rendering_seqno = 0; 1465 obj->last_fenced_seqno = 0; 1466 } 1467 1468 static void 1469 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj) 1470 { 1471 struct drm_device *dev = obj->base.dev; 1472 drm_i915_private_t *dev_priv = dev->dev_private; 1473 1474 BUG_ON(!obj->active); 1475 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list); 1476 1477 i915_gem_object_move_off_active(obj); 1478 } 1479 1480 static void 1481 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj) 1482 { 1483 struct drm_device *dev = obj->base.dev; 1484 struct drm_i915_private *dev_priv = dev->dev_private; 1485 1486 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 1487 1488 BUG_ON(!list_empty(&obj->gpu_write_list)); 1489 BUG_ON(!obj->active); 1490 obj->ring = NULL; 1491 1492 i915_gem_object_move_off_active(obj); 1493 obj->fenced_gpu_access = false; 1494 1495 obj->active = 0; 1496 obj->pending_gpu_write = false; 1497 drm_gem_object_unreference(&obj->base); 1498 1499 WARN_ON(i915_verify_lists(dev)); 1500 } 1501 1502 /* Immediately discard the backing storage */ 1503 static void 1504 i915_gem_object_truncate(struct drm_i915_gem_object *obj) 1505 { 1506 struct inode *inode; 1507 1508 /* Our goal here is to return as much of the memory as 1509 * is possible back to the system as we are called from OOM. 1510 * To do this we must instruct the shmfs to drop all of its 1511 * backing pages, *now*. 1512 */ 1513 inode = obj->base.filp->f_path.dentry->d_inode; 1514 shmem_truncate_range(inode, 0, (loff_t)-1); 1515 1516 if (obj->base.map_list.map) 1517 drm_gem_free_mmap_offset(&obj->base); 1518 1519 obj->madv = __I915_MADV_PURGED; 1520 } 1521 1522 static inline int 1523 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj) 1524 { 1525 return obj->madv == I915_MADV_DONTNEED; 1526 } 1527 1528 static void 1529 i915_gem_process_flushing_list(struct intel_ring_buffer *ring, 1530 uint32_t flush_domains) 1531 { 1532 struct drm_i915_gem_object *obj, *next; 1533 1534 list_for_each_entry_safe(obj, next, 1535 &ring->gpu_write_list, 1536 gpu_write_list) { 1537 if (obj->base.write_domain & flush_domains) { 1538 uint32_t old_write_domain = obj->base.write_domain; 1539 1540 obj->base.write_domain = 0; 1541 list_del_init(&obj->gpu_write_list); 1542 i915_gem_object_move_to_active(obj, ring, 1543 i915_gem_next_request_seqno(ring)); 1544 1545 trace_i915_gem_object_change_domain(obj, 1546 obj->base.read_domains, 1547 old_write_domain); 1548 } 1549 } 1550 } 1551 1552 static u32 1553 i915_gem_get_seqno(struct drm_device *dev) 1554 { 1555 drm_i915_private_t *dev_priv = dev->dev_private; 1556 u32 seqno = dev_priv->next_seqno; 1557 1558 /* reserve 0 for non-seqno */ 1559 if (++dev_priv->next_seqno == 0) 1560 dev_priv->next_seqno = 1; 1561 1562 return seqno; 1563 } 1564 1565 u32 1566 i915_gem_next_request_seqno(struct intel_ring_buffer *ring) 1567 { 1568 if (ring->outstanding_lazy_request == 0) 1569 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev); 1570 1571 return ring->outstanding_lazy_request; 1572 } 1573 1574 int 1575 i915_add_request(struct intel_ring_buffer *ring, 1576 struct drm_file *file, 1577 struct drm_i915_gem_request *request) 1578 { 1579 drm_i915_private_t *dev_priv = ring->dev->dev_private; 1580 uint32_t seqno; 1581 u32 request_ring_position; 1582 int was_empty; 1583 int ret; 1584 1585 /* 1586 * Emit any outstanding flushes - execbuf can fail to emit the flush 1587 * after having emitted the batchbuffer command. Hence we need to fix 1588 * things up similar to emitting the lazy request. The difference here 1589 * is that the flush _must_ happen before the next request, no matter 1590 * what. 1591 */ 1592 if (ring->gpu_caches_dirty) { 1593 ret = i915_gem_flush_ring(ring, 0, I915_GEM_GPU_DOMAINS); 1594 if (ret) 1595 return ret; 1596 1597 ring->gpu_caches_dirty = false; 1598 } 1599 1600 BUG_ON(request == NULL); 1601 seqno = i915_gem_next_request_seqno(ring); 1602 1603 /* Record the position of the start of the request so that 1604 * should we detect the updated seqno part-way through the 1605 * GPU processing the request, we never over-estimate the 1606 * position of the head. 1607 */ 1608 request_ring_position = intel_ring_get_tail(ring); 1609 1610 ret = ring->add_request(ring, &seqno); 1611 if (ret) 1612 return ret; 1613 1614 trace_i915_gem_request_add(ring, seqno); 1615 1616 request->seqno = seqno; 1617 request->ring = ring; 1618 request->tail = request_ring_position; 1619 request->emitted_jiffies = jiffies; 1620 was_empty = list_empty(&ring->request_list); 1621 list_add_tail(&request->list, &ring->request_list); 1622 1623 if (file) { 1624 struct drm_i915_file_private *file_priv = file->driver_priv; 1625 1626 spin_lock(&file_priv->mm.lock); 1627 request->file_priv = file_priv; 1628 list_add_tail(&request->client_list, 1629 &file_priv->mm.request_list); 1630 spin_unlock(&file_priv->mm.lock); 1631 } 1632 1633 ring->outstanding_lazy_request = 0; 1634 1635 if (!dev_priv->mm.suspended) { 1636 if (i915_enable_hangcheck) { 1637 mod_timer(&dev_priv->hangcheck_timer, 1638 jiffies + 1639 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)); 1640 } 1641 if (was_empty) 1642 queue_delayed_work(dev_priv->wq, 1643 &dev_priv->mm.retire_work, HZ); 1644 } 1645 1646 WARN_ON(!list_empty(&ring->gpu_write_list)); 1647 1648 return 0; 1649 } 1650 1651 static inline void 1652 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request) 1653 { 1654 struct drm_i915_file_private *file_priv = request->file_priv; 1655 1656 if (!file_priv) 1657 return; 1658 1659 spin_lock(&file_priv->mm.lock); 1660 if (request->file_priv) { 1661 list_del(&request->client_list); 1662 request->file_priv = NULL; 1663 } 1664 spin_unlock(&file_priv->mm.lock); 1665 } 1666 1667 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv, 1668 struct intel_ring_buffer *ring) 1669 { 1670 while (!list_empty(&ring->request_list)) { 1671 struct drm_i915_gem_request *request; 1672 1673 request = list_first_entry(&ring->request_list, 1674 struct drm_i915_gem_request, 1675 list); 1676 1677 list_del(&request->list); 1678 i915_gem_request_remove_from_client(request); 1679 kfree(request); 1680 } 1681 1682 while (!list_empty(&ring->active_list)) { 1683 struct drm_i915_gem_object *obj; 1684 1685 obj = list_first_entry(&ring->active_list, 1686 struct drm_i915_gem_object, 1687 ring_list); 1688 1689 obj->base.write_domain = 0; 1690 list_del_init(&obj->gpu_write_list); 1691 i915_gem_object_move_to_inactive(obj); 1692 } 1693 } 1694 1695 static void i915_gem_reset_fences(struct drm_device *dev) 1696 { 1697 struct drm_i915_private *dev_priv = dev->dev_private; 1698 int i; 1699 1700 for (i = 0; i < dev_priv->num_fence_regs; i++) { 1701 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; 1702 1703 i915_gem_write_fence(dev, i, NULL); 1704 1705 if (reg->obj) 1706 i915_gem_object_fence_lost(reg->obj); 1707 1708 reg->pin_count = 0; 1709 reg->obj = NULL; 1710 INIT_LIST_HEAD(®->lru_list); 1711 } 1712 1713 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 1714 } 1715 1716 void i915_gem_reset(struct drm_device *dev) 1717 { 1718 struct drm_i915_private *dev_priv = dev->dev_private; 1719 struct drm_i915_gem_object *obj; 1720 struct intel_ring_buffer *ring; 1721 int i; 1722 1723 for_each_ring(ring, dev_priv, i) 1724 i915_gem_reset_ring_lists(dev_priv, ring); 1725 1726 /* Remove anything from the flushing lists. The GPU cache is likely 1727 * to be lost on reset along with the data, so simply move the 1728 * lost bo to the inactive list. 1729 */ 1730 while (!list_empty(&dev_priv->mm.flushing_list)) { 1731 obj = list_first_entry(&dev_priv->mm.flushing_list, 1732 struct drm_i915_gem_object, 1733 mm_list); 1734 1735 obj->base.write_domain = 0; 1736 list_del_init(&obj->gpu_write_list); 1737 i915_gem_object_move_to_inactive(obj); 1738 } 1739 1740 /* Move everything out of the GPU domains to ensure we do any 1741 * necessary invalidation upon reuse. 1742 */ 1743 list_for_each_entry(obj, 1744 &dev_priv->mm.inactive_list, 1745 mm_list) 1746 { 1747 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; 1748 } 1749 1750 /* The fence registers are invalidated so clear them out */ 1751 i915_gem_reset_fences(dev); 1752 } 1753 1754 /** 1755 * This function clears the request list as sequence numbers are passed. 1756 */ 1757 void 1758 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring) 1759 { 1760 uint32_t seqno; 1761 int i; 1762 1763 if (list_empty(&ring->request_list)) 1764 return; 1765 1766 WARN_ON(i915_verify_lists(ring->dev)); 1767 1768 seqno = ring->get_seqno(ring); 1769 1770 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) 1771 if (seqno >= ring->sync_seqno[i]) 1772 ring->sync_seqno[i] = 0; 1773 1774 while (!list_empty(&ring->request_list)) { 1775 struct drm_i915_gem_request *request; 1776 1777 request = list_first_entry(&ring->request_list, 1778 struct drm_i915_gem_request, 1779 list); 1780 1781 if (!i915_seqno_passed(seqno, request->seqno)) 1782 break; 1783 1784 trace_i915_gem_request_retire(ring, request->seqno); 1785 /* We know the GPU must have read the request to have 1786 * sent us the seqno + interrupt, so use the position 1787 * of tail of the request to update the last known position 1788 * of the GPU head. 1789 */ 1790 ring->last_retired_head = request->tail; 1791 1792 list_del(&request->list); 1793 i915_gem_request_remove_from_client(request); 1794 kfree(request); 1795 } 1796 1797 /* Move any buffers on the active list that are no longer referenced 1798 * by the ringbuffer to the flushing/inactive lists as appropriate. 1799 */ 1800 while (!list_empty(&ring->active_list)) { 1801 struct drm_i915_gem_object *obj; 1802 1803 obj = list_first_entry(&ring->active_list, 1804 struct drm_i915_gem_object, 1805 ring_list); 1806 1807 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno)) 1808 break; 1809 1810 if (obj->base.write_domain != 0) 1811 i915_gem_object_move_to_flushing(obj); 1812 else 1813 i915_gem_object_move_to_inactive(obj); 1814 } 1815 1816 if (unlikely(ring->trace_irq_seqno && 1817 i915_seqno_passed(seqno, ring->trace_irq_seqno))) { 1818 ring->irq_put(ring); 1819 ring->trace_irq_seqno = 0; 1820 } 1821 1822 WARN_ON(i915_verify_lists(ring->dev)); 1823 } 1824 1825 void 1826 i915_gem_retire_requests(struct drm_device *dev) 1827 { 1828 drm_i915_private_t *dev_priv = dev->dev_private; 1829 struct intel_ring_buffer *ring; 1830 int i; 1831 1832 for_each_ring(ring, dev_priv, i) 1833 i915_gem_retire_requests_ring(ring); 1834 } 1835 1836 static void 1837 i915_gem_retire_work_handler(struct work_struct *work) 1838 { 1839 drm_i915_private_t *dev_priv; 1840 struct drm_device *dev; 1841 struct intel_ring_buffer *ring; 1842 bool idle; 1843 int i; 1844 1845 dev_priv = container_of(work, drm_i915_private_t, 1846 mm.retire_work.work); 1847 dev = dev_priv->dev; 1848 1849 /* Come back later if the device is busy... */ 1850 if (!mutex_trylock(&dev->struct_mutex)) { 1851 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ); 1852 return; 1853 } 1854 1855 i915_gem_retire_requests(dev); 1856 1857 /* Send a periodic flush down the ring so we don't hold onto GEM 1858 * objects indefinitely. 1859 */ 1860 idle = true; 1861 for_each_ring(ring, dev_priv, i) { 1862 if (ring->gpu_caches_dirty) { 1863 struct drm_i915_gem_request *request; 1864 1865 request = kzalloc(sizeof(*request), GFP_KERNEL); 1866 if (request == NULL || 1867 i915_add_request(ring, NULL, request)) 1868 kfree(request); 1869 } 1870 1871 idle &= list_empty(&ring->request_list); 1872 } 1873 1874 if (!dev_priv->mm.suspended && !idle) 1875 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ); 1876 1877 mutex_unlock(&dev->struct_mutex); 1878 } 1879 1880 int 1881 i915_gem_check_wedge(struct drm_i915_private *dev_priv, 1882 bool interruptible) 1883 { 1884 if (atomic_read(&dev_priv->mm.wedged)) { 1885 struct completion *x = &dev_priv->error_completion; 1886 bool recovery_complete; 1887 unsigned long flags; 1888 1889 /* Give the error handler a chance to run. */ 1890 spin_lock_irqsave(&x->wait.lock, flags); 1891 recovery_complete = x->done > 0; 1892 spin_unlock_irqrestore(&x->wait.lock, flags); 1893 1894 /* Non-interruptible callers can't handle -EAGAIN, hence return 1895 * -EIO unconditionally for these. */ 1896 if (!interruptible) 1897 return -EIO; 1898 1899 /* Recovery complete, but still wedged means reset failure. */ 1900 if (recovery_complete) 1901 return -EIO; 1902 1903 return -EAGAIN; 1904 } 1905 1906 return 0; 1907 } 1908 1909 /* 1910 * Compare seqno against outstanding lazy request. Emit a request if they are 1911 * equal. 1912 */ 1913 static int 1914 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno) 1915 { 1916 int ret = 0; 1917 1918 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex)); 1919 1920 if (seqno == ring->outstanding_lazy_request) { 1921 struct drm_i915_gem_request *request; 1922 1923 request = kzalloc(sizeof(*request), GFP_KERNEL); 1924 if (request == NULL) 1925 return -ENOMEM; 1926 1927 ret = i915_add_request(ring, NULL, request); 1928 if (ret) { 1929 kfree(request); 1930 return ret; 1931 } 1932 1933 BUG_ON(seqno != request->seqno); 1934 } 1935 1936 return ret; 1937 } 1938 1939 /** 1940 * __wait_seqno - wait until execution of seqno has finished 1941 * @ring: the ring expected to report seqno 1942 * @seqno: duh! 1943 * @interruptible: do an interruptible wait (normally yes) 1944 * @timeout: in - how long to wait (NULL forever); out - how much time remaining 1945 * 1946 * Returns 0 if the seqno was found within the alloted time. Else returns the 1947 * errno with remaining time filled in timeout argument. 1948 */ 1949 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno, 1950 bool interruptible, struct timespec *timeout) 1951 { 1952 drm_i915_private_t *dev_priv = ring->dev->dev_private; 1953 struct timespec before, now, wait_time={1,0}; 1954 unsigned long timeout_jiffies; 1955 long end; 1956 bool wait_forever = true; 1957 int ret; 1958 1959 if (i915_seqno_passed(ring->get_seqno(ring), seqno)) 1960 return 0; 1961 1962 trace_i915_gem_request_wait_begin(ring, seqno); 1963 1964 if (timeout != NULL) { 1965 wait_time = *timeout; 1966 wait_forever = false; 1967 } 1968 1969 timeout_jiffies = timespec_to_jiffies(&wait_time); 1970 1971 if (WARN_ON(!ring->irq_get(ring))) 1972 return -ENODEV; 1973 1974 /* Record current time in case interrupted by signal, or wedged * */ 1975 getrawmonotonic(&before); 1976 1977 #define EXIT_COND \ 1978 (i915_seqno_passed(ring->get_seqno(ring), seqno) || \ 1979 atomic_read(&dev_priv->mm.wedged)) 1980 do { 1981 if (interruptible) 1982 end = wait_event_interruptible_timeout(ring->irq_queue, 1983 EXIT_COND, 1984 timeout_jiffies); 1985 else 1986 end = wait_event_timeout(ring->irq_queue, EXIT_COND, 1987 timeout_jiffies); 1988 1989 ret = i915_gem_check_wedge(dev_priv, interruptible); 1990 if (ret) 1991 end = ret; 1992 } while (end == 0 && wait_forever); 1993 1994 getrawmonotonic(&now); 1995 1996 ring->irq_put(ring); 1997 trace_i915_gem_request_wait_end(ring, seqno); 1998 #undef EXIT_COND 1999 2000 if (timeout) { 2001 struct timespec sleep_time = timespec_sub(now, before); 2002 *timeout = timespec_sub(*timeout, sleep_time); 2003 } 2004 2005 switch (end) { 2006 case -EIO: 2007 case -EAGAIN: /* Wedged */ 2008 case -ERESTARTSYS: /* Signal */ 2009 return (int)end; 2010 case 0: /* Timeout */ 2011 if (timeout) 2012 set_normalized_timespec(timeout, 0, 0); 2013 return -ETIME; 2014 default: /* Completed */ 2015 WARN_ON(end < 0); /* We're not aware of other errors */ 2016 return 0; 2017 } 2018 } 2019 2020 /** 2021 * Waits for a sequence number to be signaled, and cleans up the 2022 * request and object lists appropriately for that event. 2023 */ 2024 int 2025 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno) 2026 { 2027 drm_i915_private_t *dev_priv = ring->dev->dev_private; 2028 int ret = 0; 2029 2030 BUG_ON(seqno == 0); 2031 2032 ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible); 2033 if (ret) 2034 return ret; 2035 2036 ret = i915_gem_check_olr(ring, seqno); 2037 if (ret) 2038 return ret; 2039 2040 ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL); 2041 2042 return ret; 2043 } 2044 2045 /** 2046 * Ensures that all rendering to the object has completed and the object is 2047 * safe to unbind from the GTT or access from the CPU. 2048 */ 2049 int 2050 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj) 2051 { 2052 int ret; 2053 2054 /* This function only exists to support waiting for existing rendering, 2055 * not for emitting required flushes. 2056 */ 2057 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0); 2058 2059 /* If there is rendering queued on the buffer being evicted, wait for 2060 * it. 2061 */ 2062 if (obj->active) { 2063 ret = i915_wait_seqno(obj->ring, obj->last_rendering_seqno); 2064 if (ret) 2065 return ret; 2066 i915_gem_retire_requests_ring(obj->ring); 2067 } 2068 2069 return 0; 2070 } 2071 2072 /** 2073 * Ensures that an object will eventually get non-busy by flushing any required 2074 * write domains, emitting any outstanding lazy request and retiring and 2075 * completed requests. 2076 */ 2077 static int 2078 i915_gem_object_flush_active(struct drm_i915_gem_object *obj) 2079 { 2080 int ret; 2081 2082 if (obj->active) { 2083 ret = i915_gem_object_flush_gpu_write_domain(obj); 2084 if (ret) 2085 return ret; 2086 2087 ret = i915_gem_check_olr(obj->ring, 2088 obj->last_rendering_seqno); 2089 if (ret) 2090 return ret; 2091 i915_gem_retire_requests_ring(obj->ring); 2092 } 2093 2094 return 0; 2095 } 2096 2097 /** 2098 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT 2099 * @DRM_IOCTL_ARGS: standard ioctl arguments 2100 * 2101 * Returns 0 if successful, else an error is returned with the remaining time in 2102 * the timeout parameter. 2103 * -ETIME: object is still busy after timeout 2104 * -ERESTARTSYS: signal interrupted the wait 2105 * -ENONENT: object doesn't exist 2106 * Also possible, but rare: 2107 * -EAGAIN: GPU wedged 2108 * -ENOMEM: damn 2109 * -ENODEV: Internal IRQ fail 2110 * -E?: The add request failed 2111 * 2112 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any 2113 * non-zero timeout parameter the wait ioctl will wait for the given number of 2114 * nanoseconds on an object becoming unbusy. Since the wait itself does so 2115 * without holding struct_mutex the object may become re-busied before this 2116 * function completes. A similar but shorter * race condition exists in the busy 2117 * ioctl 2118 */ 2119 int 2120 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 2121 { 2122 struct drm_i915_gem_wait *args = data; 2123 struct drm_i915_gem_object *obj; 2124 struct intel_ring_buffer *ring = NULL; 2125 struct timespec timeout_stack, *timeout = NULL; 2126 u32 seqno = 0; 2127 int ret = 0; 2128 2129 if (args->timeout_ns >= 0) { 2130 timeout_stack = ns_to_timespec(args->timeout_ns); 2131 timeout = &timeout_stack; 2132 } 2133 2134 ret = i915_mutex_lock_interruptible(dev); 2135 if (ret) 2136 return ret; 2137 2138 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle)); 2139 if (&obj->base == NULL) { 2140 mutex_unlock(&dev->struct_mutex); 2141 return -ENOENT; 2142 } 2143 2144 /* Need to make sure the object gets inactive eventually. */ 2145 ret = i915_gem_object_flush_active(obj); 2146 if (ret) 2147 goto out; 2148 2149 if (obj->active) { 2150 seqno = obj->last_rendering_seqno; 2151 ring = obj->ring; 2152 } 2153 2154 if (seqno == 0) 2155 goto out; 2156 2157 /* Do this after OLR check to make sure we make forward progress polling 2158 * on this IOCTL with a 0 timeout (like busy ioctl) 2159 */ 2160 if (!args->timeout_ns) { 2161 ret = -ETIME; 2162 goto out; 2163 } 2164 2165 drm_gem_object_unreference(&obj->base); 2166 mutex_unlock(&dev->struct_mutex); 2167 2168 ret = __wait_seqno(ring, seqno, true, timeout); 2169 if (timeout) { 2170 WARN_ON(!timespec_valid(timeout)); 2171 args->timeout_ns = timespec_to_ns(timeout); 2172 } 2173 return ret; 2174 2175 out: 2176 drm_gem_object_unreference(&obj->base); 2177 mutex_unlock(&dev->struct_mutex); 2178 return ret; 2179 } 2180 2181 /** 2182 * i915_gem_object_sync - sync an object to a ring. 2183 * 2184 * @obj: object which may be in use on another ring. 2185 * @to: ring we wish to use the object on. May be NULL. 2186 * 2187 * This code is meant to abstract object synchronization with the GPU. 2188 * Calling with NULL implies synchronizing the object with the CPU 2189 * rather than a particular GPU ring. 2190 * 2191 * Returns 0 if successful, else propagates up the lower layer error. 2192 */ 2193 int 2194 i915_gem_object_sync(struct drm_i915_gem_object *obj, 2195 struct intel_ring_buffer *to) 2196 { 2197 struct intel_ring_buffer *from = obj->ring; 2198 u32 seqno; 2199 int ret, idx; 2200 2201 if (from == NULL || to == from) 2202 return 0; 2203 2204 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev)) 2205 return i915_gem_object_wait_rendering(obj); 2206 2207 idx = intel_ring_sync_index(from, to); 2208 2209 seqno = obj->last_rendering_seqno; 2210 if (seqno <= from->sync_seqno[idx]) 2211 return 0; 2212 2213 ret = i915_gem_check_olr(obj->ring, seqno); 2214 if (ret) 2215 return ret; 2216 2217 ret = to->sync_to(to, from, seqno); 2218 if (!ret) 2219 from->sync_seqno[idx] = seqno; 2220 2221 return ret; 2222 } 2223 2224 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj) 2225 { 2226 u32 old_write_domain, old_read_domains; 2227 2228 /* Act a barrier for all accesses through the GTT */ 2229 mb(); 2230 2231 /* Force a pagefault for domain tracking on next user access */ 2232 i915_gem_release_mmap(obj); 2233 2234 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 2235 return; 2236 2237 old_read_domains = obj->base.read_domains; 2238 old_write_domain = obj->base.write_domain; 2239 2240 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT; 2241 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT; 2242 2243 trace_i915_gem_object_change_domain(obj, 2244 old_read_domains, 2245 old_write_domain); 2246 } 2247 2248 /** 2249 * Unbinds an object from the GTT aperture. 2250 */ 2251 int 2252 i915_gem_object_unbind(struct drm_i915_gem_object *obj) 2253 { 2254 drm_i915_private_t *dev_priv = obj->base.dev->dev_private; 2255 int ret = 0; 2256 2257 if (obj->gtt_space == NULL) 2258 return 0; 2259 2260 if (obj->pin_count) 2261 return -EBUSY; 2262 2263 ret = i915_gem_object_finish_gpu(obj); 2264 if (ret) 2265 return ret; 2266 /* Continue on if we fail due to EIO, the GPU is hung so we 2267 * should be safe and we need to cleanup or else we might 2268 * cause memory corruption through use-after-free. 2269 */ 2270 2271 i915_gem_object_finish_gtt(obj); 2272 2273 /* Move the object to the CPU domain to ensure that 2274 * any possible CPU writes while it's not in the GTT 2275 * are flushed when we go to remap it. 2276 */ 2277 if (ret == 0) 2278 ret = i915_gem_object_set_to_cpu_domain(obj, 1); 2279 if (ret == -ERESTARTSYS) 2280 return ret; 2281 if (ret) { 2282 /* In the event of a disaster, abandon all caches and 2283 * hope for the best. 2284 */ 2285 i915_gem_clflush_object(obj); 2286 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; 2287 } 2288 2289 /* release the fence reg _after_ flushing */ 2290 ret = i915_gem_object_put_fence(obj); 2291 if (ret) 2292 return ret; 2293 2294 trace_i915_gem_object_unbind(obj); 2295 2296 if (obj->has_global_gtt_mapping) 2297 i915_gem_gtt_unbind_object(obj); 2298 if (obj->has_aliasing_ppgtt_mapping) { 2299 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj); 2300 obj->has_aliasing_ppgtt_mapping = 0; 2301 } 2302 i915_gem_gtt_finish_object(obj); 2303 2304 i915_gem_object_put_pages_gtt(obj); 2305 2306 list_del_init(&obj->gtt_list); 2307 list_del_init(&obj->mm_list); 2308 /* Avoid an unnecessary call to unbind on rebind. */ 2309 obj->map_and_fenceable = true; 2310 2311 drm_mm_put_block(obj->gtt_space); 2312 obj->gtt_space = NULL; 2313 obj->gtt_offset = 0; 2314 2315 if (i915_gem_object_is_purgeable(obj)) 2316 i915_gem_object_truncate(obj); 2317 2318 return ret; 2319 } 2320 2321 int 2322 i915_gem_flush_ring(struct intel_ring_buffer *ring, 2323 uint32_t invalidate_domains, 2324 uint32_t flush_domains) 2325 { 2326 int ret; 2327 2328 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0) 2329 return 0; 2330 2331 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains); 2332 2333 ret = ring->flush(ring, invalidate_domains, flush_domains); 2334 if (ret) 2335 return ret; 2336 2337 if (flush_domains & I915_GEM_GPU_DOMAINS) 2338 i915_gem_process_flushing_list(ring, flush_domains); 2339 2340 return 0; 2341 } 2342 2343 static int i915_ring_idle(struct intel_ring_buffer *ring) 2344 { 2345 int ret; 2346 2347 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list)) 2348 return 0; 2349 2350 if (!list_empty(&ring->gpu_write_list)) { 2351 ret = i915_gem_flush_ring(ring, 2352 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS); 2353 if (ret) 2354 return ret; 2355 } 2356 2357 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring)); 2358 } 2359 2360 int i915_gpu_idle(struct drm_device *dev) 2361 { 2362 drm_i915_private_t *dev_priv = dev->dev_private; 2363 struct intel_ring_buffer *ring; 2364 int ret, i; 2365 2366 /* Flush everything onto the inactive list. */ 2367 for_each_ring(ring, dev_priv, i) { 2368 ret = i915_ring_idle(ring); 2369 if (ret) 2370 return ret; 2371 2372 /* Is the device fubar? */ 2373 if (WARN_ON(!list_empty(&ring->gpu_write_list))) 2374 return -EBUSY; 2375 2376 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID); 2377 if (ret) 2378 return ret; 2379 } 2380 2381 return 0; 2382 } 2383 2384 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg, 2385 struct drm_i915_gem_object *obj) 2386 { 2387 drm_i915_private_t *dev_priv = dev->dev_private; 2388 uint64_t val; 2389 2390 if (obj) { 2391 u32 size = obj->gtt_space->size; 2392 2393 val = (uint64_t)((obj->gtt_offset + size - 4096) & 2394 0xfffff000) << 32; 2395 val |= obj->gtt_offset & 0xfffff000; 2396 val |= (uint64_t)((obj->stride / 128) - 1) << 2397 SANDYBRIDGE_FENCE_PITCH_SHIFT; 2398 2399 if (obj->tiling_mode == I915_TILING_Y) 2400 val |= 1 << I965_FENCE_TILING_Y_SHIFT; 2401 val |= I965_FENCE_REG_VALID; 2402 } else 2403 val = 0; 2404 2405 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val); 2406 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8); 2407 } 2408 2409 static void i965_write_fence_reg(struct drm_device *dev, int reg, 2410 struct drm_i915_gem_object *obj) 2411 { 2412 drm_i915_private_t *dev_priv = dev->dev_private; 2413 uint64_t val; 2414 2415 if (obj) { 2416 u32 size = obj->gtt_space->size; 2417 2418 val = (uint64_t)((obj->gtt_offset + size - 4096) & 2419 0xfffff000) << 32; 2420 val |= obj->gtt_offset & 0xfffff000; 2421 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT; 2422 if (obj->tiling_mode == I915_TILING_Y) 2423 val |= 1 << I965_FENCE_TILING_Y_SHIFT; 2424 val |= I965_FENCE_REG_VALID; 2425 } else 2426 val = 0; 2427 2428 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val); 2429 POSTING_READ(FENCE_REG_965_0 + reg * 8); 2430 } 2431 2432 static void i915_write_fence_reg(struct drm_device *dev, int reg, 2433 struct drm_i915_gem_object *obj) 2434 { 2435 drm_i915_private_t *dev_priv = dev->dev_private; 2436 u32 val; 2437 2438 if (obj) { 2439 u32 size = obj->gtt_space->size; 2440 int pitch_val; 2441 int tile_width; 2442 2443 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) || 2444 (size & -size) != size || 2445 (obj->gtt_offset & (size - 1)), 2446 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n", 2447 obj->gtt_offset, obj->map_and_fenceable, size); 2448 2449 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)) 2450 tile_width = 128; 2451 else 2452 tile_width = 512; 2453 2454 /* Note: pitch better be a power of two tile widths */ 2455 pitch_val = obj->stride / tile_width; 2456 pitch_val = ffs(pitch_val) - 1; 2457 2458 val = obj->gtt_offset; 2459 if (obj->tiling_mode == I915_TILING_Y) 2460 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 2461 val |= I915_FENCE_SIZE_BITS(size); 2462 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 2463 val |= I830_FENCE_REG_VALID; 2464 } else 2465 val = 0; 2466 2467 if (reg < 8) 2468 reg = FENCE_REG_830_0 + reg * 4; 2469 else 2470 reg = FENCE_REG_945_8 + (reg - 8) * 4; 2471 2472 I915_WRITE(reg, val); 2473 POSTING_READ(reg); 2474 } 2475 2476 static void i830_write_fence_reg(struct drm_device *dev, int reg, 2477 struct drm_i915_gem_object *obj) 2478 { 2479 drm_i915_private_t *dev_priv = dev->dev_private; 2480 uint32_t val; 2481 2482 if (obj) { 2483 u32 size = obj->gtt_space->size; 2484 uint32_t pitch_val; 2485 2486 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) || 2487 (size & -size) != size || 2488 (obj->gtt_offset & (size - 1)), 2489 "object 0x%08x not 512K or pot-size 0x%08x aligned\n", 2490 obj->gtt_offset, size); 2491 2492 pitch_val = obj->stride / 128; 2493 pitch_val = ffs(pitch_val) - 1; 2494 2495 val = obj->gtt_offset; 2496 if (obj->tiling_mode == I915_TILING_Y) 2497 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 2498 val |= I830_FENCE_SIZE_BITS(size); 2499 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 2500 val |= I830_FENCE_REG_VALID; 2501 } else 2502 val = 0; 2503 2504 I915_WRITE(FENCE_REG_830_0 + reg * 4, val); 2505 POSTING_READ(FENCE_REG_830_0 + reg * 4); 2506 } 2507 2508 static void i915_gem_write_fence(struct drm_device *dev, int reg, 2509 struct drm_i915_gem_object *obj) 2510 { 2511 switch (INTEL_INFO(dev)->gen) { 2512 case 7: 2513 case 6: sandybridge_write_fence_reg(dev, reg, obj); break; 2514 case 5: 2515 case 4: i965_write_fence_reg(dev, reg, obj); break; 2516 case 3: i915_write_fence_reg(dev, reg, obj); break; 2517 case 2: i830_write_fence_reg(dev, reg, obj); break; 2518 default: break; 2519 } 2520 } 2521 2522 static inline int fence_number(struct drm_i915_private *dev_priv, 2523 struct drm_i915_fence_reg *fence) 2524 { 2525 return fence - dev_priv->fence_regs; 2526 } 2527 2528 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 2529 struct drm_i915_fence_reg *fence, 2530 bool enable) 2531 { 2532 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2533 int reg = fence_number(dev_priv, fence); 2534 2535 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL); 2536 2537 if (enable) { 2538 obj->fence_reg = reg; 2539 fence->obj = obj; 2540 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list); 2541 } else { 2542 obj->fence_reg = I915_FENCE_REG_NONE; 2543 fence->obj = NULL; 2544 list_del_init(&fence->lru_list); 2545 } 2546 } 2547 2548 static int 2549 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj) 2550 { 2551 int ret; 2552 2553 if (obj->fenced_gpu_access) { 2554 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) { 2555 ret = i915_gem_flush_ring(obj->ring, 2556 0, obj->base.write_domain); 2557 if (ret) 2558 return ret; 2559 } 2560 2561 obj->fenced_gpu_access = false; 2562 } 2563 2564 if (obj->last_fenced_seqno) { 2565 ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno); 2566 if (ret) 2567 return ret; 2568 2569 obj->last_fenced_seqno = 0; 2570 } 2571 2572 /* Ensure that all CPU reads are completed before installing a fence 2573 * and all writes before removing the fence. 2574 */ 2575 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT) 2576 mb(); 2577 2578 return 0; 2579 } 2580 2581 int 2582 i915_gem_object_put_fence(struct drm_i915_gem_object *obj) 2583 { 2584 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2585 int ret; 2586 2587 ret = i915_gem_object_flush_fence(obj); 2588 if (ret) 2589 return ret; 2590 2591 if (obj->fence_reg == I915_FENCE_REG_NONE) 2592 return 0; 2593 2594 i915_gem_object_update_fence(obj, 2595 &dev_priv->fence_regs[obj->fence_reg], 2596 false); 2597 i915_gem_object_fence_lost(obj); 2598 2599 return 0; 2600 } 2601 2602 static struct drm_i915_fence_reg * 2603 i915_find_fence_reg(struct drm_device *dev) 2604 { 2605 struct drm_i915_private *dev_priv = dev->dev_private; 2606 struct drm_i915_fence_reg *reg, *avail; 2607 int i; 2608 2609 /* First try to find a free reg */ 2610 avail = NULL; 2611 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) { 2612 reg = &dev_priv->fence_regs[i]; 2613 if (!reg->obj) 2614 return reg; 2615 2616 if (!reg->pin_count) 2617 avail = reg; 2618 } 2619 2620 if (avail == NULL) 2621 return NULL; 2622 2623 /* None available, try to steal one or wait for a user to finish */ 2624 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) { 2625 if (reg->pin_count) 2626 continue; 2627 2628 return reg; 2629 } 2630 2631 return NULL; 2632 } 2633 2634 /** 2635 * i915_gem_object_get_fence - set up fencing for an object 2636 * @obj: object to map through a fence reg 2637 * 2638 * When mapping objects through the GTT, userspace wants to be able to write 2639 * to them without having to worry about swizzling if the object is tiled. 2640 * This function walks the fence regs looking for a free one for @obj, 2641 * stealing one if it can't find any. 2642 * 2643 * It then sets up the reg based on the object's properties: address, pitch 2644 * and tiling format. 2645 * 2646 * For an untiled surface, this removes any existing fence. 2647 */ 2648 int 2649 i915_gem_object_get_fence(struct drm_i915_gem_object *obj) 2650 { 2651 struct drm_device *dev = obj->base.dev; 2652 struct drm_i915_private *dev_priv = dev->dev_private; 2653 bool enable = obj->tiling_mode != I915_TILING_NONE; 2654 struct drm_i915_fence_reg *reg; 2655 int ret; 2656 2657 /* Have we updated the tiling parameters upon the object and so 2658 * will need to serialise the write to the associated fence register? 2659 */ 2660 if (obj->fence_dirty) { 2661 ret = i915_gem_object_flush_fence(obj); 2662 if (ret) 2663 return ret; 2664 } 2665 2666 /* Just update our place in the LRU if our fence is getting reused. */ 2667 if (obj->fence_reg != I915_FENCE_REG_NONE) { 2668 reg = &dev_priv->fence_regs[obj->fence_reg]; 2669 if (!obj->fence_dirty) { 2670 list_move_tail(®->lru_list, 2671 &dev_priv->mm.fence_list); 2672 return 0; 2673 } 2674 } else if (enable) { 2675 reg = i915_find_fence_reg(dev); 2676 if (reg == NULL) 2677 return -EDEADLK; 2678 2679 if (reg->obj) { 2680 struct drm_i915_gem_object *old = reg->obj; 2681 2682 ret = i915_gem_object_flush_fence(old); 2683 if (ret) 2684 return ret; 2685 2686 i915_gem_object_fence_lost(old); 2687 } 2688 } else 2689 return 0; 2690 2691 i915_gem_object_update_fence(obj, reg, enable); 2692 obj->fence_dirty = false; 2693 2694 return 0; 2695 } 2696 2697 /** 2698 * Finds free space in the GTT aperture and binds the object there. 2699 */ 2700 static int 2701 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, 2702 unsigned alignment, 2703 bool map_and_fenceable) 2704 { 2705 struct drm_device *dev = obj->base.dev; 2706 drm_i915_private_t *dev_priv = dev->dev_private; 2707 struct drm_mm_node *free_space; 2708 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN; 2709 u32 size, fence_size, fence_alignment, unfenced_alignment; 2710 bool mappable, fenceable; 2711 int ret; 2712 2713 if (obj->madv != I915_MADV_WILLNEED) { 2714 DRM_ERROR("Attempting to bind a purgeable object\n"); 2715 return -EINVAL; 2716 } 2717 2718 fence_size = i915_gem_get_gtt_size(dev, 2719 obj->base.size, 2720 obj->tiling_mode); 2721 fence_alignment = i915_gem_get_gtt_alignment(dev, 2722 obj->base.size, 2723 obj->tiling_mode); 2724 unfenced_alignment = 2725 i915_gem_get_unfenced_gtt_alignment(dev, 2726 obj->base.size, 2727 obj->tiling_mode); 2728 2729 if (alignment == 0) 2730 alignment = map_and_fenceable ? fence_alignment : 2731 unfenced_alignment; 2732 if (map_and_fenceable && alignment & (fence_alignment - 1)) { 2733 DRM_ERROR("Invalid object alignment requested %u\n", alignment); 2734 return -EINVAL; 2735 } 2736 2737 size = map_and_fenceable ? fence_size : obj->base.size; 2738 2739 /* If the object is bigger than the entire aperture, reject it early 2740 * before evicting everything in a vain attempt to find space. 2741 */ 2742 if (obj->base.size > 2743 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) { 2744 DRM_ERROR("Attempting to bind an object larger than the aperture\n"); 2745 return -E2BIG; 2746 } 2747 2748 search_free: 2749 if (map_and_fenceable) 2750 free_space = 2751 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space, 2752 size, alignment, 2753 0, dev_priv->mm.gtt_mappable_end, 2754 0); 2755 else 2756 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space, 2757 size, alignment, 0); 2758 2759 if (free_space != NULL) { 2760 if (map_and_fenceable) 2761 obj->gtt_space = 2762 drm_mm_get_block_range_generic(free_space, 2763 size, alignment, 0, 2764 0, dev_priv->mm.gtt_mappable_end, 2765 0); 2766 else 2767 obj->gtt_space = 2768 drm_mm_get_block(free_space, size, alignment); 2769 } 2770 if (obj->gtt_space == NULL) { 2771 /* If the gtt is empty and we're still having trouble 2772 * fitting our object in, we're out of memory. 2773 */ 2774 ret = i915_gem_evict_something(dev, size, alignment, 2775 map_and_fenceable); 2776 if (ret) 2777 return ret; 2778 2779 goto search_free; 2780 } 2781 2782 ret = i915_gem_object_get_pages_gtt(obj, gfpmask); 2783 if (ret) { 2784 drm_mm_put_block(obj->gtt_space); 2785 obj->gtt_space = NULL; 2786 2787 if (ret == -ENOMEM) { 2788 /* first try to reclaim some memory by clearing the GTT */ 2789 ret = i915_gem_evict_everything(dev, false); 2790 if (ret) { 2791 /* now try to shrink everyone else */ 2792 if (gfpmask) { 2793 gfpmask = 0; 2794 goto search_free; 2795 } 2796 2797 return -ENOMEM; 2798 } 2799 2800 goto search_free; 2801 } 2802 2803 return ret; 2804 } 2805 2806 ret = i915_gem_gtt_prepare_object(obj); 2807 if (ret) { 2808 i915_gem_object_put_pages_gtt(obj); 2809 drm_mm_put_block(obj->gtt_space); 2810 obj->gtt_space = NULL; 2811 2812 if (i915_gem_evict_everything(dev, false)) 2813 return ret; 2814 2815 goto search_free; 2816 } 2817 2818 if (!dev_priv->mm.aliasing_ppgtt) 2819 i915_gem_gtt_bind_object(obj, obj->cache_level); 2820 2821 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list); 2822 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 2823 2824 /* Assert that the object is not currently in any GPU domain. As it 2825 * wasn't in the GTT, there shouldn't be any way it could have been in 2826 * a GPU cache 2827 */ 2828 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); 2829 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); 2830 2831 obj->gtt_offset = obj->gtt_space->start; 2832 2833 fenceable = 2834 obj->gtt_space->size == fence_size && 2835 (obj->gtt_space->start & (fence_alignment - 1)) == 0; 2836 2837 mappable = 2838 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end; 2839 2840 obj->map_and_fenceable = mappable && fenceable; 2841 2842 trace_i915_gem_object_bind(obj, map_and_fenceable); 2843 return 0; 2844 } 2845 2846 void 2847 i915_gem_clflush_object(struct drm_i915_gem_object *obj) 2848 { 2849 /* If we don't have a page list set up, then we're not pinned 2850 * to GPU, and we can ignore the cache flush because it'll happen 2851 * again at bind time. 2852 */ 2853 if (obj->pages == NULL) 2854 return; 2855 2856 /* If the GPU is snooping the contents of the CPU cache, 2857 * we do not need to manually clear the CPU cache lines. However, 2858 * the caches are only snooped when the render cache is 2859 * flushed/invalidated. As we always have to emit invalidations 2860 * and flushes when moving into and out of the RENDER domain, correct 2861 * snooping behaviour occurs naturally as the result of our domain 2862 * tracking. 2863 */ 2864 if (obj->cache_level != I915_CACHE_NONE) 2865 return; 2866 2867 trace_i915_gem_object_clflush(obj); 2868 2869 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE); 2870 } 2871 2872 /** Flushes any GPU write domain for the object if it's dirty. */ 2873 static int 2874 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj) 2875 { 2876 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0) 2877 return 0; 2878 2879 /* Queue the GPU write cache flushing we need. */ 2880 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain); 2881 } 2882 2883 /** Flushes the GTT write domain for the object if it's dirty. */ 2884 static void 2885 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj) 2886 { 2887 uint32_t old_write_domain; 2888 2889 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT) 2890 return; 2891 2892 /* No actual flushing is required for the GTT write domain. Writes 2893 * to it immediately go to main memory as far as we know, so there's 2894 * no chipset flush. It also doesn't land in render cache. 2895 * 2896 * However, we do have to enforce the order so that all writes through 2897 * the GTT land before any writes to the device, such as updates to 2898 * the GATT itself. 2899 */ 2900 wmb(); 2901 2902 old_write_domain = obj->base.write_domain; 2903 obj->base.write_domain = 0; 2904 2905 trace_i915_gem_object_change_domain(obj, 2906 obj->base.read_domains, 2907 old_write_domain); 2908 } 2909 2910 /** Flushes the CPU write domain for the object if it's dirty. */ 2911 static void 2912 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj) 2913 { 2914 uint32_t old_write_domain; 2915 2916 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) 2917 return; 2918 2919 i915_gem_clflush_object(obj); 2920 intel_gtt_chipset_flush(); 2921 old_write_domain = obj->base.write_domain; 2922 obj->base.write_domain = 0; 2923 2924 trace_i915_gem_object_change_domain(obj, 2925 obj->base.read_domains, 2926 old_write_domain); 2927 } 2928 2929 /** 2930 * Moves a single object to the GTT read, and possibly write domain. 2931 * 2932 * This function returns when the move is complete, including waiting on 2933 * flushes to occur. 2934 */ 2935 int 2936 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) 2937 { 2938 drm_i915_private_t *dev_priv = obj->base.dev->dev_private; 2939 uint32_t old_write_domain, old_read_domains; 2940 int ret; 2941 2942 /* Not valid to be called on unbound objects. */ 2943 if (obj->gtt_space == NULL) 2944 return -EINVAL; 2945 2946 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) 2947 return 0; 2948 2949 ret = i915_gem_object_flush_gpu_write_domain(obj); 2950 if (ret) 2951 return ret; 2952 2953 if (obj->pending_gpu_write || write) { 2954 ret = i915_gem_object_wait_rendering(obj); 2955 if (ret) 2956 return ret; 2957 } 2958 2959 i915_gem_object_flush_cpu_write_domain(obj); 2960 2961 old_write_domain = obj->base.write_domain; 2962 old_read_domains = obj->base.read_domains; 2963 2964 /* It should now be out of any other write domains, and we can update 2965 * the domain values for our changes. 2966 */ 2967 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 2968 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 2969 if (write) { 2970 obj->base.read_domains = I915_GEM_DOMAIN_GTT; 2971 obj->base.write_domain = I915_GEM_DOMAIN_GTT; 2972 obj->dirty = 1; 2973 } 2974 2975 trace_i915_gem_object_change_domain(obj, 2976 old_read_domains, 2977 old_write_domain); 2978 2979 /* And bump the LRU for this access */ 2980 if (i915_gem_object_is_inactive(obj)) 2981 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 2982 2983 return 0; 2984 } 2985 2986 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 2987 enum i915_cache_level cache_level) 2988 { 2989 struct drm_device *dev = obj->base.dev; 2990 drm_i915_private_t *dev_priv = dev->dev_private; 2991 int ret; 2992 2993 if (obj->cache_level == cache_level) 2994 return 0; 2995 2996 if (obj->pin_count) { 2997 DRM_DEBUG("can not change the cache level of pinned objects\n"); 2998 return -EBUSY; 2999 } 3000 3001 if (obj->gtt_space) { 3002 ret = i915_gem_object_finish_gpu(obj); 3003 if (ret) 3004 return ret; 3005 3006 i915_gem_object_finish_gtt(obj); 3007 3008 /* Before SandyBridge, you could not use tiling or fence 3009 * registers with snooped memory, so relinquish any fences 3010 * currently pointing to our region in the aperture. 3011 */ 3012 if (INTEL_INFO(obj->base.dev)->gen < 6) { 3013 ret = i915_gem_object_put_fence(obj); 3014 if (ret) 3015 return ret; 3016 } 3017 3018 if (obj->has_global_gtt_mapping) 3019 i915_gem_gtt_bind_object(obj, cache_level); 3020 if (obj->has_aliasing_ppgtt_mapping) 3021 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt, 3022 obj, cache_level); 3023 } 3024 3025 if (cache_level == I915_CACHE_NONE) { 3026 u32 old_read_domains, old_write_domain; 3027 3028 /* If we're coming from LLC cached, then we haven't 3029 * actually been tracking whether the data is in the 3030 * CPU cache or not, since we only allow one bit set 3031 * in obj->write_domain and have been skipping the clflushes. 3032 * Just set it to the CPU cache for now. 3033 */ 3034 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU); 3035 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU); 3036 3037 old_read_domains = obj->base.read_domains; 3038 old_write_domain = obj->base.write_domain; 3039 3040 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3041 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3042 3043 trace_i915_gem_object_change_domain(obj, 3044 old_read_domains, 3045 old_write_domain); 3046 } 3047 3048 obj->cache_level = cache_level; 3049 return 0; 3050 } 3051 3052 /* 3053 * Prepare buffer for display plane (scanout, cursors, etc). 3054 * Can be called from an uninterruptible phase (modesetting) and allows 3055 * any flushes to be pipelined (for pageflips). 3056 */ 3057 int 3058 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3059 u32 alignment, 3060 struct intel_ring_buffer *pipelined) 3061 { 3062 u32 old_read_domains, old_write_domain; 3063 int ret; 3064 3065 ret = i915_gem_object_flush_gpu_write_domain(obj); 3066 if (ret) 3067 return ret; 3068 3069 if (pipelined != obj->ring) { 3070 ret = i915_gem_object_sync(obj, pipelined); 3071 if (ret) 3072 return ret; 3073 } 3074 3075 /* The display engine is not coherent with the LLC cache on gen6. As 3076 * a result, we make sure that the pinning that is about to occur is 3077 * done with uncached PTEs. This is lowest common denominator for all 3078 * chipsets. 3079 * 3080 * However for gen6+, we could do better by using the GFDT bit instead 3081 * of uncaching, which would allow us to flush all the LLC-cached data 3082 * with that bit in the PTE to main memory with just one PIPE_CONTROL. 3083 */ 3084 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE); 3085 if (ret) 3086 return ret; 3087 3088 /* As the user may map the buffer once pinned in the display plane 3089 * (e.g. libkms for the bootup splash), we have to ensure that we 3090 * always use map_and_fenceable for all scanout buffers. 3091 */ 3092 ret = i915_gem_object_pin(obj, alignment, true); 3093 if (ret) 3094 return ret; 3095 3096 i915_gem_object_flush_cpu_write_domain(obj); 3097 3098 old_write_domain = obj->base.write_domain; 3099 old_read_domains = obj->base.read_domains; 3100 3101 /* It should now be out of any other write domains, and we can update 3102 * the domain values for our changes. 3103 */ 3104 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 3105 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3106 3107 trace_i915_gem_object_change_domain(obj, 3108 old_read_domains, 3109 old_write_domain); 3110 3111 return 0; 3112 } 3113 3114 int 3115 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj) 3116 { 3117 int ret; 3118 3119 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0) 3120 return 0; 3121 3122 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) { 3123 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain); 3124 if (ret) 3125 return ret; 3126 } 3127 3128 ret = i915_gem_object_wait_rendering(obj); 3129 if (ret) 3130 return ret; 3131 3132 /* Ensure that we invalidate the GPU's caches and TLBs. */ 3133 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; 3134 return 0; 3135 } 3136 3137 /** 3138 * Moves a single object to the CPU read, and possibly write domain. 3139 * 3140 * This function returns when the move is complete, including waiting on 3141 * flushes to occur. 3142 */ 3143 int 3144 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) 3145 { 3146 uint32_t old_write_domain, old_read_domains; 3147 int ret; 3148 3149 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) 3150 return 0; 3151 3152 ret = i915_gem_object_flush_gpu_write_domain(obj); 3153 if (ret) 3154 return ret; 3155 3156 if (write || obj->pending_gpu_write) { 3157 ret = i915_gem_object_wait_rendering(obj); 3158 if (ret) 3159 return ret; 3160 } 3161 3162 i915_gem_object_flush_gtt_write_domain(obj); 3163 3164 old_write_domain = obj->base.write_domain; 3165 old_read_domains = obj->base.read_domains; 3166 3167 /* Flush the CPU cache if it's still invalid. */ 3168 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { 3169 i915_gem_clflush_object(obj); 3170 3171 obj->base.read_domains |= I915_GEM_DOMAIN_CPU; 3172 } 3173 3174 /* It should now be out of any other write domains, and we can update 3175 * the domain values for our changes. 3176 */ 3177 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); 3178 3179 /* If we're writing through the CPU, then the GPU read domains will 3180 * need to be invalidated at next use. 3181 */ 3182 if (write) { 3183 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3184 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3185 } 3186 3187 trace_i915_gem_object_change_domain(obj, 3188 old_read_domains, 3189 old_write_domain); 3190 3191 return 0; 3192 } 3193 3194 /* Throttle our rendering by waiting until the ring has completed our requests 3195 * emitted over 20 msec ago. 3196 * 3197 * Note that if we were to use the current jiffies each time around the loop, 3198 * we wouldn't escape the function with any frames outstanding if the time to 3199 * render a frame was over 20ms. 3200 * 3201 * This should get us reasonable parallelism between CPU and GPU but also 3202 * relatively low latency when blocking on a particular request to finish. 3203 */ 3204 static int 3205 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) 3206 { 3207 struct drm_i915_private *dev_priv = dev->dev_private; 3208 struct drm_i915_file_private *file_priv = file->driver_priv; 3209 unsigned long recent_enough = jiffies - msecs_to_jiffies(20); 3210 struct drm_i915_gem_request *request; 3211 struct intel_ring_buffer *ring = NULL; 3212 u32 seqno = 0; 3213 int ret; 3214 3215 if (atomic_read(&dev_priv->mm.wedged)) 3216 return -EIO; 3217 3218 spin_lock(&file_priv->mm.lock); 3219 list_for_each_entry(request, &file_priv->mm.request_list, client_list) { 3220 if (time_after_eq(request->emitted_jiffies, recent_enough)) 3221 break; 3222 3223 ring = request->ring; 3224 seqno = request->seqno; 3225 } 3226 spin_unlock(&file_priv->mm.lock); 3227 3228 if (seqno == 0) 3229 return 0; 3230 3231 ret = __wait_seqno(ring, seqno, true, NULL); 3232 if (ret == 0) 3233 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0); 3234 3235 return ret; 3236 } 3237 3238 int 3239 i915_gem_object_pin(struct drm_i915_gem_object *obj, 3240 uint32_t alignment, 3241 bool map_and_fenceable) 3242 { 3243 int ret; 3244 3245 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT); 3246 3247 if (obj->gtt_space != NULL) { 3248 if ((alignment && obj->gtt_offset & (alignment - 1)) || 3249 (map_and_fenceable && !obj->map_and_fenceable)) { 3250 WARN(obj->pin_count, 3251 "bo is already pinned with incorrect alignment:" 3252 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d," 3253 " obj->map_and_fenceable=%d\n", 3254 obj->gtt_offset, alignment, 3255 map_and_fenceable, 3256 obj->map_and_fenceable); 3257 ret = i915_gem_object_unbind(obj); 3258 if (ret) 3259 return ret; 3260 } 3261 } 3262 3263 if (obj->gtt_space == NULL) { 3264 ret = i915_gem_object_bind_to_gtt(obj, alignment, 3265 map_and_fenceable); 3266 if (ret) 3267 return ret; 3268 } 3269 3270 if (!obj->has_global_gtt_mapping && map_and_fenceable) 3271 i915_gem_gtt_bind_object(obj, obj->cache_level); 3272 3273 obj->pin_count++; 3274 obj->pin_mappable |= map_and_fenceable; 3275 3276 return 0; 3277 } 3278 3279 void 3280 i915_gem_object_unpin(struct drm_i915_gem_object *obj) 3281 { 3282 BUG_ON(obj->pin_count == 0); 3283 BUG_ON(obj->gtt_space == NULL); 3284 3285 if (--obj->pin_count == 0) 3286 obj->pin_mappable = false; 3287 } 3288 3289 int 3290 i915_gem_pin_ioctl(struct drm_device *dev, void *data, 3291 struct drm_file *file) 3292 { 3293 struct drm_i915_gem_pin *args = data; 3294 struct drm_i915_gem_object *obj; 3295 int ret; 3296 3297 ret = i915_mutex_lock_interruptible(dev); 3298 if (ret) 3299 return ret; 3300 3301 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3302 if (&obj->base == NULL) { 3303 ret = -ENOENT; 3304 goto unlock; 3305 } 3306 3307 if (obj->madv != I915_MADV_WILLNEED) { 3308 DRM_ERROR("Attempting to pin a purgeable buffer\n"); 3309 ret = -EINVAL; 3310 goto out; 3311 } 3312 3313 if (obj->pin_filp != NULL && obj->pin_filp != file) { 3314 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n", 3315 args->handle); 3316 ret = -EINVAL; 3317 goto out; 3318 } 3319 3320 obj->user_pin_count++; 3321 obj->pin_filp = file; 3322 if (obj->user_pin_count == 1) { 3323 ret = i915_gem_object_pin(obj, args->alignment, true); 3324 if (ret) 3325 goto out; 3326 } 3327 3328 /* XXX - flush the CPU caches for pinned objects 3329 * as the X server doesn't manage domains yet 3330 */ 3331 i915_gem_object_flush_cpu_write_domain(obj); 3332 args->offset = obj->gtt_offset; 3333 out: 3334 drm_gem_object_unreference(&obj->base); 3335 unlock: 3336 mutex_unlock(&dev->struct_mutex); 3337 return ret; 3338 } 3339 3340 int 3341 i915_gem_unpin_ioctl(struct drm_device *dev, void *data, 3342 struct drm_file *file) 3343 { 3344 struct drm_i915_gem_pin *args = data; 3345 struct drm_i915_gem_object *obj; 3346 int ret; 3347 3348 ret = i915_mutex_lock_interruptible(dev); 3349 if (ret) 3350 return ret; 3351 3352 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3353 if (&obj->base == NULL) { 3354 ret = -ENOENT; 3355 goto unlock; 3356 } 3357 3358 if (obj->pin_filp != file) { 3359 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n", 3360 args->handle); 3361 ret = -EINVAL; 3362 goto out; 3363 } 3364 obj->user_pin_count--; 3365 if (obj->user_pin_count == 0) { 3366 obj->pin_filp = NULL; 3367 i915_gem_object_unpin(obj); 3368 } 3369 3370 out: 3371 drm_gem_object_unreference(&obj->base); 3372 unlock: 3373 mutex_unlock(&dev->struct_mutex); 3374 return ret; 3375 } 3376 3377 int 3378 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 3379 struct drm_file *file) 3380 { 3381 struct drm_i915_gem_busy *args = data; 3382 struct drm_i915_gem_object *obj; 3383 int ret; 3384 3385 ret = i915_mutex_lock_interruptible(dev); 3386 if (ret) 3387 return ret; 3388 3389 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3390 if (&obj->base == NULL) { 3391 ret = -ENOENT; 3392 goto unlock; 3393 } 3394 3395 /* Count all active objects as busy, even if they are currently not used 3396 * by the gpu. Users of this interface expect objects to eventually 3397 * become non-busy without any further actions, therefore emit any 3398 * necessary flushes here. 3399 */ 3400 ret = i915_gem_object_flush_active(obj); 3401 3402 args->busy = obj->active; 3403 3404 drm_gem_object_unreference(&obj->base); 3405 unlock: 3406 mutex_unlock(&dev->struct_mutex); 3407 return ret; 3408 } 3409 3410 int 3411 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 3412 struct drm_file *file_priv) 3413 { 3414 return i915_gem_ring_throttle(dev, file_priv); 3415 } 3416 3417 int 3418 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 3419 struct drm_file *file_priv) 3420 { 3421 struct drm_i915_gem_madvise *args = data; 3422 struct drm_i915_gem_object *obj; 3423 int ret; 3424 3425 switch (args->madv) { 3426 case I915_MADV_DONTNEED: 3427 case I915_MADV_WILLNEED: 3428 break; 3429 default: 3430 return -EINVAL; 3431 } 3432 3433 ret = i915_mutex_lock_interruptible(dev); 3434 if (ret) 3435 return ret; 3436 3437 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle)); 3438 if (&obj->base == NULL) { 3439 ret = -ENOENT; 3440 goto unlock; 3441 } 3442 3443 if (obj->pin_count) { 3444 ret = -EINVAL; 3445 goto out; 3446 } 3447 3448 if (obj->madv != __I915_MADV_PURGED) 3449 obj->madv = args->madv; 3450 3451 /* if the object is no longer bound, discard its backing storage */ 3452 if (i915_gem_object_is_purgeable(obj) && 3453 obj->gtt_space == NULL) 3454 i915_gem_object_truncate(obj); 3455 3456 args->retained = obj->madv != __I915_MADV_PURGED; 3457 3458 out: 3459 drm_gem_object_unreference(&obj->base); 3460 unlock: 3461 mutex_unlock(&dev->struct_mutex); 3462 return ret; 3463 } 3464 3465 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev, 3466 size_t size) 3467 { 3468 struct drm_i915_private *dev_priv = dev->dev_private; 3469 struct drm_i915_gem_object *obj; 3470 struct address_space *mapping; 3471 u32 mask; 3472 3473 obj = kzalloc(sizeof(*obj), GFP_KERNEL); 3474 if (obj == NULL) 3475 return NULL; 3476 3477 if (drm_gem_object_init(dev, &obj->base, size) != 0) { 3478 kfree(obj); 3479 return NULL; 3480 } 3481 3482 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 3483 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) { 3484 /* 965gm cannot relocate objects above 4GiB. */ 3485 mask &= ~__GFP_HIGHMEM; 3486 mask |= __GFP_DMA32; 3487 } 3488 3489 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; 3490 mapping_set_gfp_mask(mapping, mask); 3491 3492 i915_gem_info_add_obj(dev_priv, size); 3493 3494 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3495 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3496 3497 if (HAS_LLC(dev)) { 3498 /* On some devices, we can have the GPU use the LLC (the CPU 3499 * cache) for about a 10% performance improvement 3500 * compared to uncached. Graphics requests other than 3501 * display scanout are coherent with the CPU in 3502 * accessing this cache. This means in this mode we 3503 * don't need to clflush on the CPU side, and on the 3504 * GPU side we only need to flush internal caches to 3505 * get data visible to the CPU. 3506 * 3507 * However, we maintain the display planes as UC, and so 3508 * need to rebind when first used as such. 3509 */ 3510 obj->cache_level = I915_CACHE_LLC; 3511 } else 3512 obj->cache_level = I915_CACHE_NONE; 3513 3514 obj->base.driver_private = NULL; 3515 obj->fence_reg = I915_FENCE_REG_NONE; 3516 INIT_LIST_HEAD(&obj->mm_list); 3517 INIT_LIST_HEAD(&obj->gtt_list); 3518 INIT_LIST_HEAD(&obj->ring_list); 3519 INIT_LIST_HEAD(&obj->exec_list); 3520 INIT_LIST_HEAD(&obj->gpu_write_list); 3521 obj->madv = I915_MADV_WILLNEED; 3522 /* Avoid an unnecessary call to unbind on the first bind. */ 3523 obj->map_and_fenceable = true; 3524 3525 return obj; 3526 } 3527 3528 int i915_gem_init_object(struct drm_gem_object *obj) 3529 { 3530 BUG(); 3531 3532 return 0; 3533 } 3534 3535 void i915_gem_free_object(struct drm_gem_object *gem_obj) 3536 { 3537 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 3538 struct drm_device *dev = obj->base.dev; 3539 drm_i915_private_t *dev_priv = dev->dev_private; 3540 3541 trace_i915_gem_object_destroy(obj); 3542 3543 if (gem_obj->import_attach) 3544 drm_prime_gem_destroy(gem_obj, obj->sg_table); 3545 3546 if (obj->phys_obj) 3547 i915_gem_detach_phys_object(dev, obj); 3548 3549 obj->pin_count = 0; 3550 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) { 3551 bool was_interruptible; 3552 3553 was_interruptible = dev_priv->mm.interruptible; 3554 dev_priv->mm.interruptible = false; 3555 3556 WARN_ON(i915_gem_object_unbind(obj)); 3557 3558 dev_priv->mm.interruptible = was_interruptible; 3559 } 3560 3561 if (obj->base.map_list.map) 3562 drm_gem_free_mmap_offset(&obj->base); 3563 3564 drm_gem_object_release(&obj->base); 3565 i915_gem_info_remove_obj(dev_priv, obj->base.size); 3566 3567 kfree(obj->bit_17); 3568 kfree(obj); 3569 } 3570 3571 int 3572 i915_gem_idle(struct drm_device *dev) 3573 { 3574 drm_i915_private_t *dev_priv = dev->dev_private; 3575 int ret; 3576 3577 mutex_lock(&dev->struct_mutex); 3578 3579 if (dev_priv->mm.suspended) { 3580 mutex_unlock(&dev->struct_mutex); 3581 return 0; 3582 } 3583 3584 ret = i915_gpu_idle(dev); 3585 if (ret) { 3586 mutex_unlock(&dev->struct_mutex); 3587 return ret; 3588 } 3589 i915_gem_retire_requests(dev); 3590 3591 /* Under UMS, be paranoid and evict. */ 3592 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 3593 i915_gem_evict_everything(dev, false); 3594 3595 i915_gem_reset_fences(dev); 3596 3597 /* Hack! Don't let anybody do execbuf while we don't control the chip. 3598 * We need to replace this with a semaphore, or something. 3599 * And not confound mm.suspended! 3600 */ 3601 dev_priv->mm.suspended = 1; 3602 del_timer_sync(&dev_priv->hangcheck_timer); 3603 3604 i915_kernel_lost_context(dev); 3605 i915_gem_cleanup_ringbuffer(dev); 3606 3607 mutex_unlock(&dev->struct_mutex); 3608 3609 /* Cancel the retire work handler, which should be idle now. */ 3610 cancel_delayed_work_sync(&dev_priv->mm.retire_work); 3611 3612 return 0; 3613 } 3614 3615 void i915_gem_l3_remap(struct drm_device *dev) 3616 { 3617 drm_i915_private_t *dev_priv = dev->dev_private; 3618 u32 misccpctl; 3619 int i; 3620 3621 if (!IS_IVYBRIDGE(dev)) 3622 return; 3623 3624 if (!dev_priv->mm.l3_remap_info) 3625 return; 3626 3627 misccpctl = I915_READ(GEN7_MISCCPCTL); 3628 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); 3629 POSTING_READ(GEN7_MISCCPCTL); 3630 3631 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) { 3632 u32 remap = I915_READ(GEN7_L3LOG_BASE + i); 3633 if (remap && remap != dev_priv->mm.l3_remap_info[i/4]) 3634 DRM_DEBUG("0x%x was already programmed to %x\n", 3635 GEN7_L3LOG_BASE + i, remap); 3636 if (remap && !dev_priv->mm.l3_remap_info[i/4]) 3637 DRM_DEBUG_DRIVER("Clearing remapped register\n"); 3638 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]); 3639 } 3640 3641 /* Make sure all the writes land before disabling dop clock gating */ 3642 POSTING_READ(GEN7_L3LOG_BASE); 3643 3644 I915_WRITE(GEN7_MISCCPCTL, misccpctl); 3645 } 3646 3647 void i915_gem_init_swizzling(struct drm_device *dev) 3648 { 3649 drm_i915_private_t *dev_priv = dev->dev_private; 3650 3651 if (INTEL_INFO(dev)->gen < 5 || 3652 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 3653 return; 3654 3655 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | 3656 DISP_TILE_SURFACE_SWIZZLING); 3657 3658 if (IS_GEN5(dev)) 3659 return; 3660 3661 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); 3662 if (IS_GEN6(dev)) 3663 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 3664 else 3665 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 3666 } 3667 3668 void i915_gem_init_ppgtt(struct drm_device *dev) 3669 { 3670 drm_i915_private_t *dev_priv = dev->dev_private; 3671 uint32_t pd_offset; 3672 struct intel_ring_buffer *ring; 3673 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; 3674 uint32_t __iomem *pd_addr; 3675 uint32_t pd_entry; 3676 int i; 3677 3678 if (!dev_priv->mm.aliasing_ppgtt) 3679 return; 3680 3681 3682 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t); 3683 for (i = 0; i < ppgtt->num_pd_entries; i++) { 3684 dma_addr_t pt_addr; 3685 3686 if (dev_priv->mm.gtt->needs_dmar) 3687 pt_addr = ppgtt->pt_dma_addr[i]; 3688 else 3689 pt_addr = page_to_phys(ppgtt->pt_pages[i]); 3690 3691 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr); 3692 pd_entry |= GEN6_PDE_VALID; 3693 3694 writel(pd_entry, pd_addr + i); 3695 } 3696 readl(pd_addr); 3697 3698 pd_offset = ppgtt->pd_offset; 3699 pd_offset /= 64; /* in cachelines, */ 3700 pd_offset <<= 16; 3701 3702 if (INTEL_INFO(dev)->gen == 6) { 3703 uint32_t ecochk, gab_ctl, ecobits; 3704 3705 ecobits = I915_READ(GAC_ECO_BITS); 3706 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B); 3707 3708 gab_ctl = I915_READ(GAB_CTL); 3709 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT); 3710 3711 ecochk = I915_READ(GAM_ECOCHK); 3712 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | 3713 ECOCHK_PPGTT_CACHE64B); 3714 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); 3715 } else if (INTEL_INFO(dev)->gen >= 7) { 3716 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B); 3717 /* GFX_MODE is per-ring on gen7+ */ 3718 } 3719 3720 for_each_ring(ring, dev_priv, i) { 3721 if (INTEL_INFO(dev)->gen >= 7) 3722 I915_WRITE(RING_MODE_GEN7(ring), 3723 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); 3724 3725 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G); 3726 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset); 3727 } 3728 } 3729 3730 static bool 3731 intel_enable_blt(struct drm_device *dev) 3732 { 3733 if (!HAS_BLT(dev)) 3734 return false; 3735 3736 /* The blitter was dysfunctional on early prototypes */ 3737 if (IS_GEN6(dev) && dev->pdev->revision < 8) { 3738 DRM_INFO("BLT not supported on this pre-production hardware;" 3739 " graphics performance will be degraded.\n"); 3740 return false; 3741 } 3742 3743 return true; 3744 } 3745 3746 int 3747 i915_gem_init_hw(struct drm_device *dev) 3748 { 3749 drm_i915_private_t *dev_priv = dev->dev_private; 3750 int ret; 3751 3752 if (!intel_enable_gtt()) 3753 return -EIO; 3754 3755 i915_gem_l3_remap(dev); 3756 3757 i915_gem_init_swizzling(dev); 3758 3759 ret = intel_init_render_ring_buffer(dev); 3760 if (ret) 3761 return ret; 3762 3763 if (HAS_BSD(dev)) { 3764 ret = intel_init_bsd_ring_buffer(dev); 3765 if (ret) 3766 goto cleanup_render_ring; 3767 } 3768 3769 if (intel_enable_blt(dev)) { 3770 ret = intel_init_blt_ring_buffer(dev); 3771 if (ret) 3772 goto cleanup_bsd_ring; 3773 } 3774 3775 dev_priv->next_seqno = 1; 3776 3777 /* 3778 * XXX: There was some w/a described somewhere suggesting loading 3779 * contexts before PPGTT. 3780 */ 3781 i915_gem_context_init(dev); 3782 i915_gem_init_ppgtt(dev); 3783 3784 return 0; 3785 3786 cleanup_bsd_ring: 3787 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]); 3788 cleanup_render_ring: 3789 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]); 3790 return ret; 3791 } 3792 3793 static bool 3794 intel_enable_ppgtt(struct drm_device *dev) 3795 { 3796 if (i915_enable_ppgtt >= 0) 3797 return i915_enable_ppgtt; 3798 3799 #ifdef CONFIG_INTEL_IOMMU 3800 /* Disable ppgtt on SNB if VT-d is on. */ 3801 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) 3802 return false; 3803 #endif 3804 3805 return true; 3806 } 3807 3808 int i915_gem_init(struct drm_device *dev) 3809 { 3810 struct drm_i915_private *dev_priv = dev->dev_private; 3811 unsigned long gtt_size, mappable_size; 3812 int ret; 3813 3814 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT; 3815 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT; 3816 3817 mutex_lock(&dev->struct_mutex); 3818 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) { 3819 /* PPGTT pdes are stolen from global gtt ptes, so shrink the 3820 * aperture accordingly when using aliasing ppgtt. */ 3821 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE; 3822 3823 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size); 3824 3825 ret = i915_gem_init_aliasing_ppgtt(dev); 3826 if (ret) { 3827 mutex_unlock(&dev->struct_mutex); 3828 return ret; 3829 } 3830 } else { 3831 /* Let GEM Manage all of the aperture. 3832 * 3833 * However, leave one page at the end still bound to the scratch 3834 * page. There are a number of places where the hardware 3835 * apparently prefetches past the end of the object, and we've 3836 * seen multiple hangs with the GPU head pointer stuck in a 3837 * batchbuffer bound at the last page of the aperture. One page 3838 * should be enough to keep any prefetching inside of the 3839 * aperture. 3840 */ 3841 i915_gem_init_global_gtt(dev, 0, mappable_size, 3842 gtt_size); 3843 } 3844 3845 ret = i915_gem_init_hw(dev); 3846 mutex_unlock(&dev->struct_mutex); 3847 if (ret) { 3848 i915_gem_cleanup_aliasing_ppgtt(dev); 3849 return ret; 3850 } 3851 3852 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */ 3853 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 3854 dev_priv->dri1.allow_batchbuffer = 1; 3855 return 0; 3856 } 3857 3858 void 3859 i915_gem_cleanup_ringbuffer(struct drm_device *dev) 3860 { 3861 drm_i915_private_t *dev_priv = dev->dev_private; 3862 struct intel_ring_buffer *ring; 3863 int i; 3864 3865 for_each_ring(ring, dev_priv, i) 3866 intel_cleanup_ring_buffer(ring); 3867 } 3868 3869 int 3870 i915_gem_entervt_ioctl(struct drm_device *dev, void *data, 3871 struct drm_file *file_priv) 3872 { 3873 drm_i915_private_t *dev_priv = dev->dev_private; 3874 int ret; 3875 3876 if (drm_core_check_feature(dev, DRIVER_MODESET)) 3877 return 0; 3878 3879 if (atomic_read(&dev_priv->mm.wedged)) { 3880 DRM_ERROR("Reenabling wedged hardware, good luck\n"); 3881 atomic_set(&dev_priv->mm.wedged, 0); 3882 } 3883 3884 mutex_lock(&dev->struct_mutex); 3885 dev_priv->mm.suspended = 0; 3886 3887 ret = i915_gem_init_hw(dev); 3888 if (ret != 0) { 3889 mutex_unlock(&dev->struct_mutex); 3890 return ret; 3891 } 3892 3893 BUG_ON(!list_empty(&dev_priv->mm.active_list)); 3894 BUG_ON(!list_empty(&dev_priv->mm.flushing_list)); 3895 BUG_ON(!list_empty(&dev_priv->mm.inactive_list)); 3896 mutex_unlock(&dev->struct_mutex); 3897 3898 ret = drm_irq_install(dev); 3899 if (ret) 3900 goto cleanup_ringbuffer; 3901 3902 return 0; 3903 3904 cleanup_ringbuffer: 3905 mutex_lock(&dev->struct_mutex); 3906 i915_gem_cleanup_ringbuffer(dev); 3907 dev_priv->mm.suspended = 1; 3908 mutex_unlock(&dev->struct_mutex); 3909 3910 return ret; 3911 } 3912 3913 int 3914 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data, 3915 struct drm_file *file_priv) 3916 { 3917 if (drm_core_check_feature(dev, DRIVER_MODESET)) 3918 return 0; 3919 3920 drm_irq_uninstall(dev); 3921 return i915_gem_idle(dev); 3922 } 3923 3924 void 3925 i915_gem_lastclose(struct drm_device *dev) 3926 { 3927 int ret; 3928 3929 if (drm_core_check_feature(dev, DRIVER_MODESET)) 3930 return; 3931 3932 ret = i915_gem_idle(dev); 3933 if (ret) 3934 DRM_ERROR("failed to idle hardware: %d\n", ret); 3935 } 3936 3937 static void 3938 init_ring_lists(struct intel_ring_buffer *ring) 3939 { 3940 INIT_LIST_HEAD(&ring->active_list); 3941 INIT_LIST_HEAD(&ring->request_list); 3942 INIT_LIST_HEAD(&ring->gpu_write_list); 3943 } 3944 3945 void 3946 i915_gem_load(struct drm_device *dev) 3947 { 3948 int i; 3949 drm_i915_private_t *dev_priv = dev->dev_private; 3950 3951 INIT_LIST_HEAD(&dev_priv->mm.active_list); 3952 INIT_LIST_HEAD(&dev_priv->mm.flushing_list); 3953 INIT_LIST_HEAD(&dev_priv->mm.inactive_list); 3954 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 3955 INIT_LIST_HEAD(&dev_priv->mm.gtt_list); 3956 for (i = 0; i < I915_NUM_RINGS; i++) 3957 init_ring_lists(&dev_priv->ring[i]); 3958 for (i = 0; i < I915_MAX_NUM_FENCES; i++) 3959 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list); 3960 INIT_DELAYED_WORK(&dev_priv->mm.retire_work, 3961 i915_gem_retire_work_handler); 3962 init_completion(&dev_priv->error_completion); 3963 3964 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ 3965 if (IS_GEN3(dev)) { 3966 I915_WRITE(MI_ARB_STATE, 3967 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE)); 3968 } 3969 3970 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL; 3971 3972 /* Old X drivers will take 0-2 for front, back, depth buffers */ 3973 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 3974 dev_priv->fence_reg_start = 3; 3975 3976 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) 3977 dev_priv->num_fence_regs = 16; 3978 else 3979 dev_priv->num_fence_regs = 8; 3980 3981 /* Initialize fence registers to zero */ 3982 i915_gem_reset_fences(dev); 3983 3984 i915_gem_detect_bit_6_swizzle(dev); 3985 init_waitqueue_head(&dev_priv->pending_flip_queue); 3986 3987 dev_priv->mm.interruptible = true; 3988 3989 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink; 3990 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS; 3991 register_shrinker(&dev_priv->mm.inactive_shrinker); 3992 } 3993 3994 /* 3995 * Create a physically contiguous memory object for this object 3996 * e.g. for cursor + overlay regs 3997 */ 3998 static int i915_gem_init_phys_object(struct drm_device *dev, 3999 int id, int size, int align) 4000 { 4001 drm_i915_private_t *dev_priv = dev->dev_private; 4002 struct drm_i915_gem_phys_object *phys_obj; 4003 int ret; 4004 4005 if (dev_priv->mm.phys_objs[id - 1] || !size) 4006 return 0; 4007 4008 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL); 4009 if (!phys_obj) 4010 return -ENOMEM; 4011 4012 phys_obj->id = id; 4013 4014 phys_obj->handle = drm_pci_alloc(dev, size, align); 4015 if (!phys_obj->handle) { 4016 ret = -ENOMEM; 4017 goto kfree_obj; 4018 } 4019 #ifdef CONFIG_X86 4020 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); 4021 #endif 4022 4023 dev_priv->mm.phys_objs[id - 1] = phys_obj; 4024 4025 return 0; 4026 kfree_obj: 4027 kfree(phys_obj); 4028 return ret; 4029 } 4030 4031 static void i915_gem_free_phys_object(struct drm_device *dev, int id) 4032 { 4033 drm_i915_private_t *dev_priv = dev->dev_private; 4034 struct drm_i915_gem_phys_object *phys_obj; 4035 4036 if (!dev_priv->mm.phys_objs[id - 1]) 4037 return; 4038 4039 phys_obj = dev_priv->mm.phys_objs[id - 1]; 4040 if (phys_obj->cur_obj) { 4041 i915_gem_detach_phys_object(dev, phys_obj->cur_obj); 4042 } 4043 4044 #ifdef CONFIG_X86 4045 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); 4046 #endif 4047 drm_pci_free(dev, phys_obj->handle); 4048 kfree(phys_obj); 4049 dev_priv->mm.phys_objs[id - 1] = NULL; 4050 } 4051 4052 void i915_gem_free_all_phys_object(struct drm_device *dev) 4053 { 4054 int i; 4055 4056 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++) 4057 i915_gem_free_phys_object(dev, i); 4058 } 4059 4060 void i915_gem_detach_phys_object(struct drm_device *dev, 4061 struct drm_i915_gem_object *obj) 4062 { 4063 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; 4064 char *vaddr; 4065 int i; 4066 int page_count; 4067 4068 if (!obj->phys_obj) 4069 return; 4070 vaddr = obj->phys_obj->handle->vaddr; 4071 4072 page_count = obj->base.size / PAGE_SIZE; 4073 for (i = 0; i < page_count; i++) { 4074 struct page *page = shmem_read_mapping_page(mapping, i); 4075 if (!IS_ERR(page)) { 4076 char *dst = kmap_atomic(page); 4077 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE); 4078 kunmap_atomic(dst); 4079 4080 drm_clflush_pages(&page, 1); 4081 4082 set_page_dirty(page); 4083 mark_page_accessed(page); 4084 page_cache_release(page); 4085 } 4086 } 4087 intel_gtt_chipset_flush(); 4088 4089 obj->phys_obj->cur_obj = NULL; 4090 obj->phys_obj = NULL; 4091 } 4092 4093 int 4094 i915_gem_attach_phys_object(struct drm_device *dev, 4095 struct drm_i915_gem_object *obj, 4096 int id, 4097 int align) 4098 { 4099 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping; 4100 drm_i915_private_t *dev_priv = dev->dev_private; 4101 int ret = 0; 4102 int page_count; 4103 int i; 4104 4105 if (id > I915_MAX_PHYS_OBJECT) 4106 return -EINVAL; 4107 4108 if (obj->phys_obj) { 4109 if (obj->phys_obj->id == id) 4110 return 0; 4111 i915_gem_detach_phys_object(dev, obj); 4112 } 4113 4114 /* create a new object */ 4115 if (!dev_priv->mm.phys_objs[id - 1]) { 4116 ret = i915_gem_init_phys_object(dev, id, 4117 obj->base.size, align); 4118 if (ret) { 4119 DRM_ERROR("failed to init phys object %d size: %zu\n", 4120 id, obj->base.size); 4121 return ret; 4122 } 4123 } 4124 4125 /* bind to the object */ 4126 obj->phys_obj = dev_priv->mm.phys_objs[id - 1]; 4127 obj->phys_obj->cur_obj = obj; 4128 4129 page_count = obj->base.size / PAGE_SIZE; 4130 4131 for (i = 0; i < page_count; i++) { 4132 struct page *page; 4133 char *dst, *src; 4134 4135 page = shmem_read_mapping_page(mapping, i); 4136 if (IS_ERR(page)) 4137 return PTR_ERR(page); 4138 4139 src = kmap_atomic(page); 4140 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE); 4141 memcpy(dst, src, PAGE_SIZE); 4142 kunmap_atomic(src); 4143 4144 mark_page_accessed(page); 4145 page_cache_release(page); 4146 } 4147 4148 return 0; 4149 } 4150 4151 static int 4152 i915_gem_phys_pwrite(struct drm_device *dev, 4153 struct drm_i915_gem_object *obj, 4154 struct drm_i915_gem_pwrite *args, 4155 struct drm_file *file_priv) 4156 { 4157 void *vaddr = obj->phys_obj->handle->vaddr + args->offset; 4158 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr; 4159 4160 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) { 4161 unsigned long unwritten; 4162 4163 /* The physical object once assigned is fixed for the lifetime 4164 * of the obj, so we can safely drop the lock and continue 4165 * to access vaddr. 4166 */ 4167 mutex_unlock(&dev->struct_mutex); 4168 unwritten = copy_from_user(vaddr, user_data, args->size); 4169 mutex_lock(&dev->struct_mutex); 4170 if (unwritten) 4171 return -EFAULT; 4172 } 4173 4174 intel_gtt_chipset_flush(); 4175 return 0; 4176 } 4177 4178 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 4179 { 4180 struct drm_i915_file_private *file_priv = file->driver_priv; 4181 4182 /* Clean up our request list when the client is going away, so that 4183 * later retire_requests won't dereference our soon-to-be-gone 4184 * file_priv. 4185 */ 4186 spin_lock(&file_priv->mm.lock); 4187 while (!list_empty(&file_priv->mm.request_list)) { 4188 struct drm_i915_gem_request *request; 4189 4190 request = list_first_entry(&file_priv->mm.request_list, 4191 struct drm_i915_gem_request, 4192 client_list); 4193 list_del(&request->client_list); 4194 request->file_priv = NULL; 4195 } 4196 spin_unlock(&file_priv->mm.lock); 4197 } 4198 4199 static int 4200 i915_gpu_is_active(struct drm_device *dev) 4201 { 4202 drm_i915_private_t *dev_priv = dev->dev_private; 4203 int lists_empty; 4204 4205 lists_empty = list_empty(&dev_priv->mm.flushing_list) && 4206 list_empty(&dev_priv->mm.active_list); 4207 4208 return !lists_empty; 4209 } 4210 4211 static int 4212 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc) 4213 { 4214 struct drm_i915_private *dev_priv = 4215 container_of(shrinker, 4216 struct drm_i915_private, 4217 mm.inactive_shrinker); 4218 struct drm_device *dev = dev_priv->dev; 4219 struct drm_i915_gem_object *obj, *next; 4220 int nr_to_scan = sc->nr_to_scan; 4221 int cnt; 4222 4223 if (!mutex_trylock(&dev->struct_mutex)) 4224 return 0; 4225 4226 /* "fast-path" to count number of available objects */ 4227 if (nr_to_scan == 0) { 4228 cnt = 0; 4229 list_for_each_entry(obj, 4230 &dev_priv->mm.inactive_list, 4231 mm_list) 4232 cnt++; 4233 mutex_unlock(&dev->struct_mutex); 4234 return cnt / 100 * sysctl_vfs_cache_pressure; 4235 } 4236 4237 rescan: 4238 /* first scan for clean buffers */ 4239 i915_gem_retire_requests(dev); 4240 4241 list_for_each_entry_safe(obj, next, 4242 &dev_priv->mm.inactive_list, 4243 mm_list) { 4244 if (i915_gem_object_is_purgeable(obj)) { 4245 if (i915_gem_object_unbind(obj) == 0 && 4246 --nr_to_scan == 0) 4247 break; 4248 } 4249 } 4250 4251 /* second pass, evict/count anything still on the inactive list */ 4252 cnt = 0; 4253 list_for_each_entry_safe(obj, next, 4254 &dev_priv->mm.inactive_list, 4255 mm_list) { 4256 if (nr_to_scan && 4257 i915_gem_object_unbind(obj) == 0) 4258 nr_to_scan--; 4259 else 4260 cnt++; 4261 } 4262 4263 if (nr_to_scan && i915_gpu_is_active(dev)) { 4264 /* 4265 * We are desperate for pages, so as a last resort, wait 4266 * for the GPU to finish and discard whatever we can. 4267 * This has a dramatic impact to reduce the number of 4268 * OOM-killer events whilst running the GPU aggressively. 4269 */ 4270 if (i915_gpu_idle(dev) == 0) 4271 goto rescan; 4272 } 4273 mutex_unlock(&dev->struct_mutex); 4274 return cnt / 100 * sysctl_vfs_cache_pressure; 4275 } 4276