xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision 7bcae826)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_frontbuffer.h"
36 #include "intel_mocs.h"
37 #include <linux/dma-fence-array.h>
38 #include <linux/reservation.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/slab.h>
41 #include <linux/stop_machine.h>
42 #include <linux/swap.h>
43 #include <linux/pci.h>
44 #include <linux/dma-buf.h>
45 
46 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
47 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
48 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
49 
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51 				  enum i915_cache_level level)
52 {
53 	return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
54 }
55 
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
59 		return false;
60 
61 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
62 		return true;
63 
64 	return obj->pin_display;
65 }
66 
67 static int
68 insert_mappable_node(struct i915_ggtt *ggtt,
69                      struct drm_mm_node *node, u32 size)
70 {
71 	memset(node, 0, sizeof(*node));
72 	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
73 					   size, 0, I915_COLOR_UNEVICTABLE,
74 					   0, ggtt->mappable_end,
75 					   DRM_MM_INSERT_LOW);
76 }
77 
78 static void
79 remove_mappable_node(struct drm_mm_node *node)
80 {
81 	drm_mm_remove_node(node);
82 }
83 
84 /* some bookkeeping */
85 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86 				  u64 size)
87 {
88 	spin_lock(&dev_priv->mm.object_stat_lock);
89 	dev_priv->mm.object_count++;
90 	dev_priv->mm.object_memory += size;
91 	spin_unlock(&dev_priv->mm.object_stat_lock);
92 }
93 
94 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95 				     u64 size)
96 {
97 	spin_lock(&dev_priv->mm.object_stat_lock);
98 	dev_priv->mm.object_count--;
99 	dev_priv->mm.object_memory -= size;
100 	spin_unlock(&dev_priv->mm.object_stat_lock);
101 }
102 
103 static int
104 i915_gem_wait_for_error(struct i915_gpu_error *error)
105 {
106 	int ret;
107 
108 	might_sleep();
109 
110 	if (!i915_reset_in_progress(error))
111 		return 0;
112 
113 	/*
114 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
115 	 * userspace. If it takes that long something really bad is going on and
116 	 * we should simply try to bail out and fail as gracefully as possible.
117 	 */
118 	ret = wait_event_interruptible_timeout(error->reset_queue,
119 					       !i915_reset_in_progress(error),
120 					       I915_RESET_TIMEOUT);
121 	if (ret == 0) {
122 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
123 		return -EIO;
124 	} else if (ret < 0) {
125 		return ret;
126 	} else {
127 		return 0;
128 	}
129 }
130 
131 int i915_mutex_lock_interruptible(struct drm_device *dev)
132 {
133 	struct drm_i915_private *dev_priv = to_i915(dev);
134 	int ret;
135 
136 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
137 	if (ret)
138 		return ret;
139 
140 	ret = mutex_lock_interruptible(&dev->struct_mutex);
141 	if (ret)
142 		return ret;
143 
144 	return 0;
145 }
146 
147 int
148 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
149 			    struct drm_file *file)
150 {
151 	struct drm_i915_private *dev_priv = to_i915(dev);
152 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
153 	struct drm_i915_gem_get_aperture *args = data;
154 	struct i915_vma *vma;
155 	size_t pinned;
156 
157 	pinned = 0;
158 	mutex_lock(&dev->struct_mutex);
159 	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
160 		if (i915_vma_is_pinned(vma))
161 			pinned += vma->node.size;
162 	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
163 		if (i915_vma_is_pinned(vma))
164 			pinned += vma->node.size;
165 	mutex_unlock(&dev->struct_mutex);
166 
167 	args->aper_size = ggtt->base.total;
168 	args->aper_available_size = args->aper_size - pinned;
169 
170 	return 0;
171 }
172 
173 static struct sg_table *
174 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
175 {
176 	struct address_space *mapping = obj->base.filp->f_mapping;
177 	drm_dma_handle_t *phys;
178 	struct sg_table *st;
179 	struct scatterlist *sg;
180 	char *vaddr;
181 	int i;
182 
183 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
184 		return ERR_PTR(-EINVAL);
185 
186 	/* Always aligning to the object size, allows a single allocation
187 	 * to handle all possible callers, and given typical object sizes,
188 	 * the alignment of the buddy allocation will naturally match.
189 	 */
190 	phys = drm_pci_alloc(obj->base.dev,
191 			     obj->base.size,
192 			     roundup_pow_of_two(obj->base.size));
193 	if (!phys)
194 		return ERR_PTR(-ENOMEM);
195 
196 	vaddr = phys->vaddr;
197 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
198 		struct page *page;
199 		char *src;
200 
201 		page = shmem_read_mapping_page(mapping, i);
202 		if (IS_ERR(page)) {
203 			st = ERR_CAST(page);
204 			goto err_phys;
205 		}
206 
207 		src = kmap_atomic(page);
208 		memcpy(vaddr, src, PAGE_SIZE);
209 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
210 		kunmap_atomic(src);
211 
212 		put_page(page);
213 		vaddr += PAGE_SIZE;
214 	}
215 
216 	i915_gem_chipset_flush(to_i915(obj->base.dev));
217 
218 	st = kmalloc(sizeof(*st), GFP_KERNEL);
219 	if (!st) {
220 		st = ERR_PTR(-ENOMEM);
221 		goto err_phys;
222 	}
223 
224 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
225 		kfree(st);
226 		st = ERR_PTR(-ENOMEM);
227 		goto err_phys;
228 	}
229 
230 	sg = st->sgl;
231 	sg->offset = 0;
232 	sg->length = obj->base.size;
233 
234 	sg_dma_address(sg) = phys->busaddr;
235 	sg_dma_len(sg) = obj->base.size;
236 
237 	obj->phys_handle = phys;
238 	return st;
239 
240 err_phys:
241 	drm_pci_free(obj->base.dev, phys);
242 	return st;
243 }
244 
245 static void
246 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
247 				struct sg_table *pages,
248 				bool needs_clflush)
249 {
250 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
251 
252 	if (obj->mm.madv == I915_MADV_DONTNEED)
253 		obj->mm.dirty = false;
254 
255 	if (needs_clflush &&
256 	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
257 	    !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
258 		drm_clflush_sg(pages);
259 
260 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
261 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
262 }
263 
264 static void
265 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
266 			       struct sg_table *pages)
267 {
268 	__i915_gem_object_release_shmem(obj, pages, false);
269 
270 	if (obj->mm.dirty) {
271 		struct address_space *mapping = obj->base.filp->f_mapping;
272 		char *vaddr = obj->phys_handle->vaddr;
273 		int i;
274 
275 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
276 			struct page *page;
277 			char *dst;
278 
279 			page = shmem_read_mapping_page(mapping, i);
280 			if (IS_ERR(page))
281 				continue;
282 
283 			dst = kmap_atomic(page);
284 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
285 			memcpy(dst, vaddr, PAGE_SIZE);
286 			kunmap_atomic(dst);
287 
288 			set_page_dirty(page);
289 			if (obj->mm.madv == I915_MADV_WILLNEED)
290 				mark_page_accessed(page);
291 			put_page(page);
292 			vaddr += PAGE_SIZE;
293 		}
294 		obj->mm.dirty = false;
295 	}
296 
297 	sg_free_table(pages);
298 	kfree(pages);
299 
300 	drm_pci_free(obj->base.dev, obj->phys_handle);
301 }
302 
303 static void
304 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
305 {
306 	i915_gem_object_unpin_pages(obj);
307 }
308 
309 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
310 	.get_pages = i915_gem_object_get_pages_phys,
311 	.put_pages = i915_gem_object_put_pages_phys,
312 	.release = i915_gem_object_release_phys,
313 };
314 
315 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 {
317 	struct i915_vma *vma;
318 	LIST_HEAD(still_in_list);
319 	int ret;
320 
321 	lockdep_assert_held(&obj->base.dev->struct_mutex);
322 
323 	/* Closed vma are removed from the obj->vma_list - but they may
324 	 * still have an active binding on the object. To remove those we
325 	 * must wait for all rendering to complete to the object (as unbinding
326 	 * must anyway), and retire the requests.
327 	 */
328 	ret = i915_gem_object_wait(obj,
329 				   I915_WAIT_INTERRUPTIBLE |
330 				   I915_WAIT_LOCKED |
331 				   I915_WAIT_ALL,
332 				   MAX_SCHEDULE_TIMEOUT,
333 				   NULL);
334 	if (ret)
335 		return ret;
336 
337 	i915_gem_retire_requests(to_i915(obj->base.dev));
338 
339 	while ((vma = list_first_entry_or_null(&obj->vma_list,
340 					       struct i915_vma,
341 					       obj_link))) {
342 		list_move_tail(&vma->obj_link, &still_in_list);
343 		ret = i915_vma_unbind(vma);
344 		if (ret)
345 			break;
346 	}
347 	list_splice(&still_in_list, &obj->vma_list);
348 
349 	return ret;
350 }
351 
352 static long
353 i915_gem_object_wait_fence(struct dma_fence *fence,
354 			   unsigned int flags,
355 			   long timeout,
356 			   struct intel_rps_client *rps)
357 {
358 	struct drm_i915_gem_request *rq;
359 
360 	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361 
362 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363 		return timeout;
364 
365 	if (!dma_fence_is_i915(fence))
366 		return dma_fence_wait_timeout(fence,
367 					      flags & I915_WAIT_INTERRUPTIBLE,
368 					      timeout);
369 
370 	rq = to_request(fence);
371 	if (i915_gem_request_completed(rq))
372 		goto out;
373 
374 	/* This client is about to stall waiting for the GPU. In many cases
375 	 * this is undesirable and limits the throughput of the system, as
376 	 * many clients cannot continue processing user input/output whilst
377 	 * blocked. RPS autotuning may take tens of milliseconds to respond
378 	 * to the GPU load and thus incurs additional latency for the client.
379 	 * We can circumvent that by promoting the GPU frequency to maximum
380 	 * before we wait. This makes the GPU throttle up much more quickly
381 	 * (good for benchmarks and user experience, e.g. window animations),
382 	 * but at a cost of spending more power processing the workload
383 	 * (bad for battery). Not all clients even want their results
384 	 * immediately and for them we should just let the GPU select its own
385 	 * frequency to maximise efficiency. To prevent a single client from
386 	 * forcing the clocks too high for the whole system, we only allow
387 	 * each client to waitboost once in a busy period.
388 	 */
389 	if (rps) {
390 		if (INTEL_GEN(rq->i915) >= 6)
391 			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
392 		else
393 			rps = NULL;
394 	}
395 
396 	timeout = i915_wait_request(rq, flags, timeout);
397 
398 out:
399 	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400 		i915_gem_request_retire_upto(rq);
401 
402 	if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
403 		/* The GPU is now idle and this client has stalled.
404 		 * Since no other client has submitted a request in the
405 		 * meantime, assume that this client is the only one
406 		 * supplying work to the GPU but is unable to keep that
407 		 * work supplied because it is waiting. Since the GPU is
408 		 * then never kept fully busy, RPS autoclocking will
409 		 * keep the clocks relatively low, causing further delays.
410 		 * Compensate by giving the synchronous client credit for
411 		 * a waitboost next time.
412 		 */
413 		spin_lock(&rq->i915->rps.client_lock);
414 		list_del_init(&rps->link);
415 		spin_unlock(&rq->i915->rps.client_lock);
416 	}
417 
418 	return timeout;
419 }
420 
421 static long
422 i915_gem_object_wait_reservation(struct reservation_object *resv,
423 				 unsigned int flags,
424 				 long timeout,
425 				 struct intel_rps_client *rps)
426 {
427 	struct dma_fence *excl;
428 
429 	if (flags & I915_WAIT_ALL) {
430 		struct dma_fence **shared;
431 		unsigned int count, i;
432 		int ret;
433 
434 		ret = reservation_object_get_fences_rcu(resv,
435 							&excl, &count, &shared);
436 		if (ret)
437 			return ret;
438 
439 		for (i = 0; i < count; i++) {
440 			timeout = i915_gem_object_wait_fence(shared[i],
441 							     flags, timeout,
442 							     rps);
443 			if (timeout < 0)
444 				break;
445 
446 			dma_fence_put(shared[i]);
447 		}
448 
449 		for (; i < count; i++)
450 			dma_fence_put(shared[i]);
451 		kfree(shared);
452 	} else {
453 		excl = reservation_object_get_excl_rcu(resv);
454 	}
455 
456 	if (excl && timeout >= 0)
457 		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
458 
459 	dma_fence_put(excl);
460 
461 	return timeout;
462 }
463 
464 static void __fence_set_priority(struct dma_fence *fence, int prio)
465 {
466 	struct drm_i915_gem_request *rq;
467 	struct intel_engine_cs *engine;
468 
469 	if (!dma_fence_is_i915(fence))
470 		return;
471 
472 	rq = to_request(fence);
473 	engine = rq->engine;
474 	if (!engine->schedule)
475 		return;
476 
477 	engine->schedule(rq, prio);
478 }
479 
480 static void fence_set_priority(struct dma_fence *fence, int prio)
481 {
482 	/* Recurse once into a fence-array */
483 	if (dma_fence_is_array(fence)) {
484 		struct dma_fence_array *array = to_dma_fence_array(fence);
485 		int i;
486 
487 		for (i = 0; i < array->num_fences; i++)
488 			__fence_set_priority(array->fences[i], prio);
489 	} else {
490 		__fence_set_priority(fence, prio);
491 	}
492 }
493 
494 int
495 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
496 			      unsigned int flags,
497 			      int prio)
498 {
499 	struct dma_fence *excl;
500 
501 	if (flags & I915_WAIT_ALL) {
502 		struct dma_fence **shared;
503 		unsigned int count, i;
504 		int ret;
505 
506 		ret = reservation_object_get_fences_rcu(obj->resv,
507 							&excl, &count, &shared);
508 		if (ret)
509 			return ret;
510 
511 		for (i = 0; i < count; i++) {
512 			fence_set_priority(shared[i], prio);
513 			dma_fence_put(shared[i]);
514 		}
515 
516 		kfree(shared);
517 	} else {
518 		excl = reservation_object_get_excl_rcu(obj->resv);
519 	}
520 
521 	if (excl) {
522 		fence_set_priority(excl, prio);
523 		dma_fence_put(excl);
524 	}
525 	return 0;
526 }
527 
528 /**
529  * Waits for rendering to the object to be completed
530  * @obj: i915 gem object
531  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
532  * @timeout: how long to wait
533  * @rps: client (user process) to charge for any waitboosting
534  */
535 int
536 i915_gem_object_wait(struct drm_i915_gem_object *obj,
537 		     unsigned int flags,
538 		     long timeout,
539 		     struct intel_rps_client *rps)
540 {
541 	might_sleep();
542 #if IS_ENABLED(CONFIG_LOCKDEP)
543 	GEM_BUG_ON(debug_locks &&
544 		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
545 		   !!(flags & I915_WAIT_LOCKED));
546 #endif
547 	GEM_BUG_ON(timeout < 0);
548 
549 	timeout = i915_gem_object_wait_reservation(obj->resv,
550 						   flags, timeout,
551 						   rps);
552 	return timeout < 0 ? timeout : 0;
553 }
554 
555 static struct intel_rps_client *to_rps_client(struct drm_file *file)
556 {
557 	struct drm_i915_file_private *fpriv = file->driver_priv;
558 
559 	return &fpriv->rps;
560 }
561 
562 int
563 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
564 			    int align)
565 {
566 	int ret;
567 
568 	if (align > obj->base.size)
569 		return -EINVAL;
570 
571 	if (obj->ops == &i915_gem_phys_ops)
572 		return 0;
573 
574 	if (obj->mm.madv != I915_MADV_WILLNEED)
575 		return -EFAULT;
576 
577 	if (obj->base.filp == NULL)
578 		return -EINVAL;
579 
580 	ret = i915_gem_object_unbind(obj);
581 	if (ret)
582 		return ret;
583 
584 	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
585 	if (obj->mm.pages)
586 		return -EBUSY;
587 
588 	obj->ops = &i915_gem_phys_ops;
589 
590 	return i915_gem_object_pin_pages(obj);
591 }
592 
593 static int
594 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
595 		     struct drm_i915_gem_pwrite *args,
596 		     struct drm_file *file)
597 {
598 	void *vaddr = obj->phys_handle->vaddr + args->offset;
599 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
600 
601 	/* We manually control the domain here and pretend that it
602 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
603 	 */
604 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
605 	if (copy_from_user(vaddr, user_data, args->size))
606 		return -EFAULT;
607 
608 	drm_clflush_virt_range(vaddr, args->size);
609 	i915_gem_chipset_flush(to_i915(obj->base.dev));
610 
611 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
612 	return 0;
613 }
614 
615 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
616 {
617 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
618 }
619 
620 void i915_gem_object_free(struct drm_i915_gem_object *obj)
621 {
622 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
623 	kmem_cache_free(dev_priv->objects, obj);
624 }
625 
626 static int
627 i915_gem_create(struct drm_file *file,
628 		struct drm_i915_private *dev_priv,
629 		uint64_t size,
630 		uint32_t *handle_p)
631 {
632 	struct drm_i915_gem_object *obj;
633 	int ret;
634 	u32 handle;
635 
636 	size = roundup(size, PAGE_SIZE);
637 	if (size == 0)
638 		return -EINVAL;
639 
640 	/* Allocate the new object */
641 	obj = i915_gem_object_create(dev_priv, size);
642 	if (IS_ERR(obj))
643 		return PTR_ERR(obj);
644 
645 	ret = drm_gem_handle_create(file, &obj->base, &handle);
646 	/* drop reference from allocate - handle holds it now */
647 	i915_gem_object_put(obj);
648 	if (ret)
649 		return ret;
650 
651 	*handle_p = handle;
652 	return 0;
653 }
654 
655 int
656 i915_gem_dumb_create(struct drm_file *file,
657 		     struct drm_device *dev,
658 		     struct drm_mode_create_dumb *args)
659 {
660 	/* have to work out size/pitch and return them */
661 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
662 	args->size = args->pitch * args->height;
663 	return i915_gem_create(file, to_i915(dev),
664 			       args->size, &args->handle);
665 }
666 
667 /**
668  * Creates a new mm object and returns a handle to it.
669  * @dev: drm device pointer
670  * @data: ioctl data blob
671  * @file: drm file pointer
672  */
673 int
674 i915_gem_create_ioctl(struct drm_device *dev, void *data,
675 		      struct drm_file *file)
676 {
677 	struct drm_i915_private *dev_priv = to_i915(dev);
678 	struct drm_i915_gem_create *args = data;
679 
680 	i915_gem_flush_free_objects(dev_priv);
681 
682 	return i915_gem_create(file, dev_priv,
683 			       args->size, &args->handle);
684 }
685 
686 static inline int
687 __copy_to_user_swizzled(char __user *cpu_vaddr,
688 			const char *gpu_vaddr, int gpu_offset,
689 			int length)
690 {
691 	int ret, cpu_offset = 0;
692 
693 	while (length > 0) {
694 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
695 		int this_length = min(cacheline_end - gpu_offset, length);
696 		int swizzled_gpu_offset = gpu_offset ^ 64;
697 
698 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
699 				     gpu_vaddr + swizzled_gpu_offset,
700 				     this_length);
701 		if (ret)
702 			return ret + length;
703 
704 		cpu_offset += this_length;
705 		gpu_offset += this_length;
706 		length -= this_length;
707 	}
708 
709 	return 0;
710 }
711 
712 static inline int
713 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
714 			  const char __user *cpu_vaddr,
715 			  int length)
716 {
717 	int ret, cpu_offset = 0;
718 
719 	while (length > 0) {
720 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
721 		int this_length = min(cacheline_end - gpu_offset, length);
722 		int swizzled_gpu_offset = gpu_offset ^ 64;
723 
724 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
725 				       cpu_vaddr + cpu_offset,
726 				       this_length);
727 		if (ret)
728 			return ret + length;
729 
730 		cpu_offset += this_length;
731 		gpu_offset += this_length;
732 		length -= this_length;
733 	}
734 
735 	return 0;
736 }
737 
738 /*
739  * Pins the specified object's pages and synchronizes the object with
740  * GPU accesses. Sets needs_clflush to non-zero if the caller should
741  * flush the object from the CPU cache.
742  */
743 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
744 				    unsigned int *needs_clflush)
745 {
746 	int ret;
747 
748 	lockdep_assert_held(&obj->base.dev->struct_mutex);
749 
750 	*needs_clflush = 0;
751 	if (!i915_gem_object_has_struct_page(obj))
752 		return -ENODEV;
753 
754 	ret = i915_gem_object_wait(obj,
755 				   I915_WAIT_INTERRUPTIBLE |
756 				   I915_WAIT_LOCKED,
757 				   MAX_SCHEDULE_TIMEOUT,
758 				   NULL);
759 	if (ret)
760 		return ret;
761 
762 	ret = i915_gem_object_pin_pages(obj);
763 	if (ret)
764 		return ret;
765 
766 	i915_gem_object_flush_gtt_write_domain(obj);
767 
768 	/* If we're not in the cpu read domain, set ourself into the gtt
769 	 * read domain and manually flush cachelines (if required). This
770 	 * optimizes for the case when the gpu will dirty the data
771 	 * anyway again before the next pread happens.
772 	 */
773 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
774 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
775 							obj->cache_level);
776 
777 	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
778 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
779 		if (ret)
780 			goto err_unpin;
781 
782 		*needs_clflush = 0;
783 	}
784 
785 	/* return with the pages pinned */
786 	return 0;
787 
788 err_unpin:
789 	i915_gem_object_unpin_pages(obj);
790 	return ret;
791 }
792 
793 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
794 				     unsigned int *needs_clflush)
795 {
796 	int ret;
797 
798 	lockdep_assert_held(&obj->base.dev->struct_mutex);
799 
800 	*needs_clflush = 0;
801 	if (!i915_gem_object_has_struct_page(obj))
802 		return -ENODEV;
803 
804 	ret = i915_gem_object_wait(obj,
805 				   I915_WAIT_INTERRUPTIBLE |
806 				   I915_WAIT_LOCKED |
807 				   I915_WAIT_ALL,
808 				   MAX_SCHEDULE_TIMEOUT,
809 				   NULL);
810 	if (ret)
811 		return ret;
812 
813 	ret = i915_gem_object_pin_pages(obj);
814 	if (ret)
815 		return ret;
816 
817 	i915_gem_object_flush_gtt_write_domain(obj);
818 
819 	/* If we're not in the cpu write domain, set ourself into the
820 	 * gtt write domain and manually flush cachelines (as required).
821 	 * This optimizes for the case when the gpu will use the data
822 	 * right away and we therefore have to clflush anyway.
823 	 */
824 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
825 		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;
826 
827 	/* Same trick applies to invalidate partially written cachelines read
828 	 * before writing.
829 	 */
830 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
831 		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
832 							 obj->cache_level);
833 
834 	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
835 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
836 		if (ret)
837 			goto err_unpin;
838 
839 		*needs_clflush = 0;
840 	}
841 
842 	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
843 		obj->cache_dirty = true;
844 
845 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
846 	obj->mm.dirty = true;
847 	/* return with the pages pinned */
848 	return 0;
849 
850 err_unpin:
851 	i915_gem_object_unpin_pages(obj);
852 	return ret;
853 }
854 
855 static void
856 shmem_clflush_swizzled_range(char *addr, unsigned long length,
857 			     bool swizzled)
858 {
859 	if (unlikely(swizzled)) {
860 		unsigned long start = (unsigned long) addr;
861 		unsigned long end = (unsigned long) addr + length;
862 
863 		/* For swizzling simply ensure that we always flush both
864 		 * channels. Lame, but simple and it works. Swizzled
865 		 * pwrite/pread is far from a hotpath - current userspace
866 		 * doesn't use it at all. */
867 		start = round_down(start, 128);
868 		end = round_up(end, 128);
869 
870 		drm_clflush_virt_range((void *)start, end - start);
871 	} else {
872 		drm_clflush_virt_range(addr, length);
873 	}
874 
875 }
876 
877 /* Only difference to the fast-path function is that this can handle bit17
878  * and uses non-atomic copy and kmap functions. */
879 static int
880 shmem_pread_slow(struct page *page, int offset, int length,
881 		 char __user *user_data,
882 		 bool page_do_bit17_swizzling, bool needs_clflush)
883 {
884 	char *vaddr;
885 	int ret;
886 
887 	vaddr = kmap(page);
888 	if (needs_clflush)
889 		shmem_clflush_swizzled_range(vaddr + offset, length,
890 					     page_do_bit17_swizzling);
891 
892 	if (page_do_bit17_swizzling)
893 		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
894 	else
895 		ret = __copy_to_user(user_data, vaddr + offset, length);
896 	kunmap(page);
897 
898 	return ret ? - EFAULT : 0;
899 }
900 
901 static int
902 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
903 	    bool page_do_bit17_swizzling, bool needs_clflush)
904 {
905 	int ret;
906 
907 	ret = -ENODEV;
908 	if (!page_do_bit17_swizzling) {
909 		char *vaddr = kmap_atomic(page);
910 
911 		if (needs_clflush)
912 			drm_clflush_virt_range(vaddr + offset, length);
913 		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
914 		kunmap_atomic(vaddr);
915 	}
916 	if (ret == 0)
917 		return 0;
918 
919 	return shmem_pread_slow(page, offset, length, user_data,
920 				page_do_bit17_swizzling, needs_clflush);
921 }
922 
923 static int
924 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
925 		     struct drm_i915_gem_pread *args)
926 {
927 	char __user *user_data;
928 	u64 remain;
929 	unsigned int obj_do_bit17_swizzling;
930 	unsigned int needs_clflush;
931 	unsigned int idx, offset;
932 	int ret;
933 
934 	obj_do_bit17_swizzling = 0;
935 	if (i915_gem_object_needs_bit17_swizzle(obj))
936 		obj_do_bit17_swizzling = BIT(17);
937 
938 	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
939 	if (ret)
940 		return ret;
941 
942 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
943 	mutex_unlock(&obj->base.dev->struct_mutex);
944 	if (ret)
945 		return ret;
946 
947 	remain = args->size;
948 	user_data = u64_to_user_ptr(args->data_ptr);
949 	offset = offset_in_page(args->offset);
950 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
951 		struct page *page = i915_gem_object_get_page(obj, idx);
952 		int length;
953 
954 		length = remain;
955 		if (offset + length > PAGE_SIZE)
956 			length = PAGE_SIZE - offset;
957 
958 		ret = shmem_pread(page, offset, length, user_data,
959 				  page_to_phys(page) & obj_do_bit17_swizzling,
960 				  needs_clflush);
961 		if (ret)
962 			break;
963 
964 		remain -= length;
965 		user_data += length;
966 		offset = 0;
967 	}
968 
969 	i915_gem_obj_finish_shmem_access(obj);
970 	return ret;
971 }
972 
973 static inline bool
974 gtt_user_read(struct io_mapping *mapping,
975 	      loff_t base, int offset,
976 	      char __user *user_data, int length)
977 {
978 	void *vaddr;
979 	unsigned long unwritten;
980 
981 	/* We can use the cpu mem copy function because this is X86. */
982 	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
983 	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
984 	io_mapping_unmap_atomic(vaddr);
985 	if (unwritten) {
986 		vaddr = (void __force *)
987 			io_mapping_map_wc(mapping, base, PAGE_SIZE);
988 		unwritten = copy_to_user(user_data, vaddr + offset, length);
989 		io_mapping_unmap(vaddr);
990 	}
991 	return unwritten;
992 }
993 
994 static int
995 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
996 		   const struct drm_i915_gem_pread *args)
997 {
998 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
999 	struct i915_ggtt *ggtt = &i915->ggtt;
1000 	struct drm_mm_node node;
1001 	struct i915_vma *vma;
1002 	void __user *user_data;
1003 	u64 remain, offset;
1004 	int ret;
1005 
1006 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1007 	if (ret)
1008 		return ret;
1009 
1010 	intel_runtime_pm_get(i915);
1011 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1012 				       PIN_MAPPABLE | PIN_NONBLOCK);
1013 	if (!IS_ERR(vma)) {
1014 		node.start = i915_ggtt_offset(vma);
1015 		node.allocated = false;
1016 		ret = i915_vma_put_fence(vma);
1017 		if (ret) {
1018 			i915_vma_unpin(vma);
1019 			vma = ERR_PTR(ret);
1020 		}
1021 	}
1022 	if (IS_ERR(vma)) {
1023 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1024 		if (ret)
1025 			goto out_unlock;
1026 		GEM_BUG_ON(!node.allocated);
1027 	}
1028 
1029 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1030 	if (ret)
1031 		goto out_unpin;
1032 
1033 	mutex_unlock(&i915->drm.struct_mutex);
1034 
1035 	user_data = u64_to_user_ptr(args->data_ptr);
1036 	remain = args->size;
1037 	offset = args->offset;
1038 
1039 	while (remain > 0) {
1040 		/* Operation in this page
1041 		 *
1042 		 * page_base = page offset within aperture
1043 		 * page_offset = offset within page
1044 		 * page_length = bytes to copy for this page
1045 		 */
1046 		u32 page_base = node.start;
1047 		unsigned page_offset = offset_in_page(offset);
1048 		unsigned page_length = PAGE_SIZE - page_offset;
1049 		page_length = remain < page_length ? remain : page_length;
1050 		if (node.allocated) {
1051 			wmb();
1052 			ggtt->base.insert_page(&ggtt->base,
1053 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1054 					       node.start, I915_CACHE_NONE, 0);
1055 			wmb();
1056 		} else {
1057 			page_base += offset & PAGE_MASK;
1058 		}
1059 
1060 		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1061 				  user_data, page_length)) {
1062 			ret = -EFAULT;
1063 			break;
1064 		}
1065 
1066 		remain -= page_length;
1067 		user_data += page_length;
1068 		offset += page_length;
1069 	}
1070 
1071 	mutex_lock(&i915->drm.struct_mutex);
1072 out_unpin:
1073 	if (node.allocated) {
1074 		wmb();
1075 		ggtt->base.clear_range(&ggtt->base,
1076 				       node.start, node.size);
1077 		remove_mappable_node(&node);
1078 	} else {
1079 		i915_vma_unpin(vma);
1080 	}
1081 out_unlock:
1082 	intel_runtime_pm_put(i915);
1083 	mutex_unlock(&i915->drm.struct_mutex);
1084 
1085 	return ret;
1086 }
1087 
1088 /**
1089  * Reads data from the object referenced by handle.
1090  * @dev: drm device pointer
1091  * @data: ioctl data blob
1092  * @file: drm file pointer
1093  *
1094  * On error, the contents of *data are undefined.
1095  */
1096 int
1097 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1098 		     struct drm_file *file)
1099 {
1100 	struct drm_i915_gem_pread *args = data;
1101 	struct drm_i915_gem_object *obj;
1102 	int ret;
1103 
1104 	if (args->size == 0)
1105 		return 0;
1106 
1107 	if (!access_ok(VERIFY_WRITE,
1108 		       u64_to_user_ptr(args->data_ptr),
1109 		       args->size))
1110 		return -EFAULT;
1111 
1112 	obj = i915_gem_object_lookup(file, args->handle);
1113 	if (!obj)
1114 		return -ENOENT;
1115 
1116 	/* Bounds check source.  */
1117 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1118 		ret = -EINVAL;
1119 		goto out;
1120 	}
1121 
1122 	trace_i915_gem_object_pread(obj, args->offset, args->size);
1123 
1124 	ret = i915_gem_object_wait(obj,
1125 				   I915_WAIT_INTERRUPTIBLE,
1126 				   MAX_SCHEDULE_TIMEOUT,
1127 				   to_rps_client(file));
1128 	if (ret)
1129 		goto out;
1130 
1131 	ret = i915_gem_object_pin_pages(obj);
1132 	if (ret)
1133 		goto out;
1134 
1135 	ret = i915_gem_shmem_pread(obj, args);
1136 	if (ret == -EFAULT || ret == -ENODEV)
1137 		ret = i915_gem_gtt_pread(obj, args);
1138 
1139 	i915_gem_object_unpin_pages(obj);
1140 out:
1141 	i915_gem_object_put(obj);
1142 	return ret;
1143 }
1144 
1145 /* This is the fast write path which cannot handle
1146  * page faults in the source data
1147  */
1148 
1149 static inline bool
1150 ggtt_write(struct io_mapping *mapping,
1151 	   loff_t base, int offset,
1152 	   char __user *user_data, int length)
1153 {
1154 	void *vaddr;
1155 	unsigned long unwritten;
1156 
1157 	/* We can use the cpu mem copy function because this is X86. */
1158 	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1159 	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1160 						      user_data, length);
1161 	io_mapping_unmap_atomic(vaddr);
1162 	if (unwritten) {
1163 		vaddr = (void __force *)
1164 			io_mapping_map_wc(mapping, base, PAGE_SIZE);
1165 		unwritten = copy_from_user(vaddr + offset, user_data, length);
1166 		io_mapping_unmap(vaddr);
1167 	}
1168 
1169 	return unwritten;
1170 }
1171 
1172 /**
1173  * This is the fast pwrite path, where we copy the data directly from the
1174  * user into the GTT, uncached.
1175  * @obj: i915 GEM object
1176  * @args: pwrite arguments structure
1177  */
1178 static int
1179 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1180 			 const struct drm_i915_gem_pwrite *args)
1181 {
1182 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1183 	struct i915_ggtt *ggtt = &i915->ggtt;
1184 	struct drm_mm_node node;
1185 	struct i915_vma *vma;
1186 	u64 remain, offset;
1187 	void __user *user_data;
1188 	int ret;
1189 
1190 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1191 	if (ret)
1192 		return ret;
1193 
1194 	intel_runtime_pm_get(i915);
1195 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1196 				       PIN_MAPPABLE | PIN_NONBLOCK);
1197 	if (!IS_ERR(vma)) {
1198 		node.start = i915_ggtt_offset(vma);
1199 		node.allocated = false;
1200 		ret = i915_vma_put_fence(vma);
1201 		if (ret) {
1202 			i915_vma_unpin(vma);
1203 			vma = ERR_PTR(ret);
1204 		}
1205 	}
1206 	if (IS_ERR(vma)) {
1207 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1208 		if (ret)
1209 			goto out_unlock;
1210 		GEM_BUG_ON(!node.allocated);
1211 	}
1212 
1213 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1214 	if (ret)
1215 		goto out_unpin;
1216 
1217 	mutex_unlock(&i915->drm.struct_mutex);
1218 
1219 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1220 
1221 	user_data = u64_to_user_ptr(args->data_ptr);
1222 	offset = args->offset;
1223 	remain = args->size;
1224 	while (remain) {
1225 		/* Operation in this page
1226 		 *
1227 		 * page_base = page offset within aperture
1228 		 * page_offset = offset within page
1229 		 * page_length = bytes to copy for this page
1230 		 */
1231 		u32 page_base = node.start;
1232 		unsigned int page_offset = offset_in_page(offset);
1233 		unsigned int page_length = PAGE_SIZE - page_offset;
1234 		page_length = remain < page_length ? remain : page_length;
1235 		if (node.allocated) {
1236 			wmb(); /* flush the write before we modify the GGTT */
1237 			ggtt->base.insert_page(&ggtt->base,
1238 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1239 					       node.start, I915_CACHE_NONE, 0);
1240 			wmb(); /* flush modifications to the GGTT (insert_page) */
1241 		} else {
1242 			page_base += offset & PAGE_MASK;
1243 		}
1244 		/* If we get a fault while copying data, then (presumably) our
1245 		 * source page isn't available.  Return the error and we'll
1246 		 * retry in the slow path.
1247 		 * If the object is non-shmem backed, we retry again with the
1248 		 * path that handles page fault.
1249 		 */
1250 		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1251 			       user_data, page_length)) {
1252 			ret = -EFAULT;
1253 			break;
1254 		}
1255 
1256 		remain -= page_length;
1257 		user_data += page_length;
1258 		offset += page_length;
1259 	}
1260 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1261 
1262 	mutex_lock(&i915->drm.struct_mutex);
1263 out_unpin:
1264 	if (node.allocated) {
1265 		wmb();
1266 		ggtt->base.clear_range(&ggtt->base,
1267 				       node.start, node.size);
1268 		remove_mappable_node(&node);
1269 	} else {
1270 		i915_vma_unpin(vma);
1271 	}
1272 out_unlock:
1273 	intel_runtime_pm_put(i915);
1274 	mutex_unlock(&i915->drm.struct_mutex);
1275 	return ret;
1276 }
1277 
1278 static int
1279 shmem_pwrite_slow(struct page *page, int offset, int length,
1280 		  char __user *user_data,
1281 		  bool page_do_bit17_swizzling,
1282 		  bool needs_clflush_before,
1283 		  bool needs_clflush_after)
1284 {
1285 	char *vaddr;
1286 	int ret;
1287 
1288 	vaddr = kmap(page);
1289 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1290 		shmem_clflush_swizzled_range(vaddr + offset, length,
1291 					     page_do_bit17_swizzling);
1292 	if (page_do_bit17_swizzling)
1293 		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1294 						length);
1295 	else
1296 		ret = __copy_from_user(vaddr + offset, user_data, length);
1297 	if (needs_clflush_after)
1298 		shmem_clflush_swizzled_range(vaddr + offset, length,
1299 					     page_do_bit17_swizzling);
1300 	kunmap(page);
1301 
1302 	return ret ? -EFAULT : 0;
1303 }
1304 
1305 /* Per-page copy function for the shmem pwrite fastpath.
1306  * Flushes invalid cachelines before writing to the target if
1307  * needs_clflush_before is set and flushes out any written cachelines after
1308  * writing if needs_clflush is set.
1309  */
1310 static int
1311 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1312 	     bool page_do_bit17_swizzling,
1313 	     bool needs_clflush_before,
1314 	     bool needs_clflush_after)
1315 {
1316 	int ret;
1317 
1318 	ret = -ENODEV;
1319 	if (!page_do_bit17_swizzling) {
1320 		char *vaddr = kmap_atomic(page);
1321 
1322 		if (needs_clflush_before)
1323 			drm_clflush_virt_range(vaddr + offset, len);
1324 		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1325 		if (needs_clflush_after)
1326 			drm_clflush_virt_range(vaddr + offset, len);
1327 
1328 		kunmap_atomic(vaddr);
1329 	}
1330 	if (ret == 0)
1331 		return ret;
1332 
1333 	return shmem_pwrite_slow(page, offset, len, user_data,
1334 				 page_do_bit17_swizzling,
1335 				 needs_clflush_before,
1336 				 needs_clflush_after);
1337 }
1338 
1339 static int
1340 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1341 		      const struct drm_i915_gem_pwrite *args)
1342 {
1343 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1344 	void __user *user_data;
1345 	u64 remain;
1346 	unsigned int obj_do_bit17_swizzling;
1347 	unsigned int partial_cacheline_write;
1348 	unsigned int needs_clflush;
1349 	unsigned int offset, idx;
1350 	int ret;
1351 
1352 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1353 	if (ret)
1354 		return ret;
1355 
1356 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1357 	mutex_unlock(&i915->drm.struct_mutex);
1358 	if (ret)
1359 		return ret;
1360 
1361 	obj_do_bit17_swizzling = 0;
1362 	if (i915_gem_object_needs_bit17_swizzle(obj))
1363 		obj_do_bit17_swizzling = BIT(17);
1364 
1365 	/* If we don't overwrite a cacheline completely we need to be
1366 	 * careful to have up-to-date data by first clflushing. Don't
1367 	 * overcomplicate things and flush the entire patch.
1368 	 */
1369 	partial_cacheline_write = 0;
1370 	if (needs_clflush & CLFLUSH_BEFORE)
1371 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1372 
1373 	user_data = u64_to_user_ptr(args->data_ptr);
1374 	remain = args->size;
1375 	offset = offset_in_page(args->offset);
1376 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1377 		struct page *page = i915_gem_object_get_page(obj, idx);
1378 		int length;
1379 
1380 		length = remain;
1381 		if (offset + length > PAGE_SIZE)
1382 			length = PAGE_SIZE - offset;
1383 
1384 		ret = shmem_pwrite(page, offset, length, user_data,
1385 				   page_to_phys(page) & obj_do_bit17_swizzling,
1386 				   (offset | length) & partial_cacheline_write,
1387 				   needs_clflush & CLFLUSH_AFTER);
1388 		if (ret)
1389 			break;
1390 
1391 		remain -= length;
1392 		user_data += length;
1393 		offset = 0;
1394 	}
1395 
1396 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1397 	i915_gem_obj_finish_shmem_access(obj);
1398 	return ret;
1399 }
1400 
1401 /**
1402  * Writes data to the object referenced by handle.
1403  * @dev: drm device
1404  * @data: ioctl data blob
1405  * @file: drm file
1406  *
1407  * On error, the contents of the buffer that were to be modified are undefined.
1408  */
1409 int
1410 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1411 		      struct drm_file *file)
1412 {
1413 	struct drm_i915_gem_pwrite *args = data;
1414 	struct drm_i915_gem_object *obj;
1415 	int ret;
1416 
1417 	if (args->size == 0)
1418 		return 0;
1419 
1420 	if (!access_ok(VERIFY_READ,
1421 		       u64_to_user_ptr(args->data_ptr),
1422 		       args->size))
1423 		return -EFAULT;
1424 
1425 	obj = i915_gem_object_lookup(file, args->handle);
1426 	if (!obj)
1427 		return -ENOENT;
1428 
1429 	/* Bounds check destination. */
1430 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1431 		ret = -EINVAL;
1432 		goto err;
1433 	}
1434 
1435 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1436 
1437 	ret = i915_gem_object_wait(obj,
1438 				   I915_WAIT_INTERRUPTIBLE |
1439 				   I915_WAIT_ALL,
1440 				   MAX_SCHEDULE_TIMEOUT,
1441 				   to_rps_client(file));
1442 	if (ret)
1443 		goto err;
1444 
1445 	ret = i915_gem_object_pin_pages(obj);
1446 	if (ret)
1447 		goto err;
1448 
1449 	ret = -EFAULT;
1450 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1451 	 * it would end up going through the fenced access, and we'll get
1452 	 * different detiling behavior between reading and writing.
1453 	 * pread/pwrite currently are reading and writing from the CPU
1454 	 * perspective, requiring manual detiling by the client.
1455 	 */
1456 	if (!i915_gem_object_has_struct_page(obj) ||
1457 	    cpu_write_needs_clflush(obj))
1458 		/* Note that the gtt paths might fail with non-page-backed user
1459 		 * pointers (e.g. gtt mappings when moving data between
1460 		 * textures). Fallback to the shmem path in that case.
1461 		 */
1462 		ret = i915_gem_gtt_pwrite_fast(obj, args);
1463 
1464 	if (ret == -EFAULT || ret == -ENOSPC) {
1465 		if (obj->phys_handle)
1466 			ret = i915_gem_phys_pwrite(obj, args, file);
1467 		else
1468 			ret = i915_gem_shmem_pwrite(obj, args);
1469 	}
1470 
1471 	i915_gem_object_unpin_pages(obj);
1472 err:
1473 	i915_gem_object_put(obj);
1474 	return ret;
1475 }
1476 
1477 static inline enum fb_op_origin
1478 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1479 {
1480 	return (domain == I915_GEM_DOMAIN_GTT ?
1481 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1482 }
1483 
1484 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1485 {
1486 	struct drm_i915_private *i915;
1487 	struct list_head *list;
1488 	struct i915_vma *vma;
1489 
1490 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
1491 		if (!i915_vma_is_ggtt(vma))
1492 			break;
1493 
1494 		if (i915_vma_is_active(vma))
1495 			continue;
1496 
1497 		if (!drm_mm_node_allocated(&vma->node))
1498 			continue;
1499 
1500 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1501 	}
1502 
1503 	i915 = to_i915(obj->base.dev);
1504 	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1505 	list_move_tail(&obj->global_link, list);
1506 }
1507 
1508 /**
1509  * Called when user space prepares to use an object with the CPU, either
1510  * through the mmap ioctl's mapping or a GTT mapping.
1511  * @dev: drm device
1512  * @data: ioctl data blob
1513  * @file: drm file
1514  */
1515 int
1516 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1517 			  struct drm_file *file)
1518 {
1519 	struct drm_i915_gem_set_domain *args = data;
1520 	struct drm_i915_gem_object *obj;
1521 	uint32_t read_domains = args->read_domains;
1522 	uint32_t write_domain = args->write_domain;
1523 	int err;
1524 
1525 	/* Only handle setting domains to types used by the CPU. */
1526 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1527 		return -EINVAL;
1528 
1529 	/* Having something in the write domain implies it's in the read
1530 	 * domain, and only that read domain.  Enforce that in the request.
1531 	 */
1532 	if (write_domain != 0 && read_domains != write_domain)
1533 		return -EINVAL;
1534 
1535 	obj = i915_gem_object_lookup(file, args->handle);
1536 	if (!obj)
1537 		return -ENOENT;
1538 
1539 	/* Try to flush the object off the GPU without holding the lock.
1540 	 * We will repeat the flush holding the lock in the normal manner
1541 	 * to catch cases where we are gazumped.
1542 	 */
1543 	err = i915_gem_object_wait(obj,
1544 				   I915_WAIT_INTERRUPTIBLE |
1545 				   (write_domain ? I915_WAIT_ALL : 0),
1546 				   MAX_SCHEDULE_TIMEOUT,
1547 				   to_rps_client(file));
1548 	if (err)
1549 		goto out;
1550 
1551 	/* Flush and acquire obj->pages so that we are coherent through
1552 	 * direct access in memory with previous cached writes through
1553 	 * shmemfs and that our cache domain tracking remains valid.
1554 	 * For example, if the obj->filp was moved to swap without us
1555 	 * being notified and releasing the pages, we would mistakenly
1556 	 * continue to assume that the obj remained out of the CPU cached
1557 	 * domain.
1558 	 */
1559 	err = i915_gem_object_pin_pages(obj);
1560 	if (err)
1561 		goto out;
1562 
1563 	err = i915_mutex_lock_interruptible(dev);
1564 	if (err)
1565 		goto out_unpin;
1566 
1567 	if (read_domains & I915_GEM_DOMAIN_GTT)
1568 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1569 	else
1570 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1571 
1572 	/* And bump the LRU for this access */
1573 	i915_gem_object_bump_inactive_ggtt(obj);
1574 
1575 	mutex_unlock(&dev->struct_mutex);
1576 
1577 	if (write_domain != 0)
1578 		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1579 
1580 out_unpin:
1581 	i915_gem_object_unpin_pages(obj);
1582 out:
1583 	i915_gem_object_put(obj);
1584 	return err;
1585 }
1586 
1587 /**
1588  * Called when user space has done writes to this buffer
1589  * @dev: drm device
1590  * @data: ioctl data blob
1591  * @file: drm file
1592  */
1593 int
1594 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1595 			 struct drm_file *file)
1596 {
1597 	struct drm_i915_gem_sw_finish *args = data;
1598 	struct drm_i915_gem_object *obj;
1599 	int err = 0;
1600 
1601 	obj = i915_gem_object_lookup(file, args->handle);
1602 	if (!obj)
1603 		return -ENOENT;
1604 
1605 	/* Pinned buffers may be scanout, so flush the cache */
1606 	if (READ_ONCE(obj->pin_display)) {
1607 		err = i915_mutex_lock_interruptible(dev);
1608 		if (!err) {
1609 			i915_gem_object_flush_cpu_write_domain(obj);
1610 			mutex_unlock(&dev->struct_mutex);
1611 		}
1612 	}
1613 
1614 	i915_gem_object_put(obj);
1615 	return err;
1616 }
1617 
1618 /**
1619  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1620  *			 it is mapped to.
1621  * @dev: drm device
1622  * @data: ioctl data blob
1623  * @file: drm file
1624  *
1625  * While the mapping holds a reference on the contents of the object, it doesn't
1626  * imply a ref on the object itself.
1627  *
1628  * IMPORTANT:
1629  *
1630  * DRM driver writers who look a this function as an example for how to do GEM
1631  * mmap support, please don't implement mmap support like here. The modern way
1632  * to implement DRM mmap support is with an mmap offset ioctl (like
1633  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1634  * That way debug tooling like valgrind will understand what's going on, hiding
1635  * the mmap call in a driver private ioctl will break that. The i915 driver only
1636  * does cpu mmaps this way because we didn't know better.
1637  */
1638 int
1639 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1640 		    struct drm_file *file)
1641 {
1642 	struct drm_i915_gem_mmap *args = data;
1643 	struct drm_i915_gem_object *obj;
1644 	unsigned long addr;
1645 
1646 	if (args->flags & ~(I915_MMAP_WC))
1647 		return -EINVAL;
1648 
1649 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1650 		return -ENODEV;
1651 
1652 	obj = i915_gem_object_lookup(file, args->handle);
1653 	if (!obj)
1654 		return -ENOENT;
1655 
1656 	/* prime objects have no backing filp to GEM mmap
1657 	 * pages from.
1658 	 */
1659 	if (!obj->base.filp) {
1660 		i915_gem_object_put(obj);
1661 		return -EINVAL;
1662 	}
1663 
1664 	addr = vm_mmap(obj->base.filp, 0, args->size,
1665 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1666 		       args->offset);
1667 	if (args->flags & I915_MMAP_WC) {
1668 		struct mm_struct *mm = current->mm;
1669 		struct vm_area_struct *vma;
1670 
1671 		if (down_write_killable(&mm->mmap_sem)) {
1672 			i915_gem_object_put(obj);
1673 			return -EINTR;
1674 		}
1675 		vma = find_vma(mm, addr);
1676 		if (vma)
1677 			vma->vm_page_prot =
1678 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1679 		else
1680 			addr = -ENOMEM;
1681 		up_write(&mm->mmap_sem);
1682 
1683 		/* This may race, but that's ok, it only gets set */
1684 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1685 	}
1686 	i915_gem_object_put(obj);
1687 	if (IS_ERR((void *)addr))
1688 		return addr;
1689 
1690 	args->addr_ptr = (uint64_t) addr;
1691 
1692 	return 0;
1693 }
1694 
1695 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1696 {
1697 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1698 }
1699 
1700 /**
1701  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1702  *
1703  * A history of the GTT mmap interface:
1704  *
1705  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1706  *     aligned and suitable for fencing, and still fit into the available
1707  *     mappable space left by the pinned display objects. A classic problem
1708  *     we called the page-fault-of-doom where we would ping-pong between
1709  *     two objects that could not fit inside the GTT and so the memcpy
1710  *     would page one object in at the expense of the other between every
1711  *     single byte.
1712  *
1713  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1714  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1715  *     object is too large for the available space (or simply too large
1716  *     for the mappable aperture!), a view is created instead and faulted
1717  *     into userspace. (This view is aligned and sized appropriately for
1718  *     fenced access.)
1719  *
1720  * Restrictions:
1721  *
1722  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1723  *    hangs on some architectures, corruption on others. An attempt to service
1724  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1725  *
1726  *  * the object must be able to fit into RAM (physical memory, though no
1727  *    limited to the mappable aperture).
1728  *
1729  *
1730  * Caveats:
1731  *
1732  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1733  *    all data to system memory. Subsequent access will not be synchronized.
1734  *
1735  *  * all mappings are revoked on runtime device suspend.
1736  *
1737  *  * there are only 8, 16 or 32 fence registers to share between all users
1738  *    (older machines require fence register for display and blitter access
1739  *    as well). Contention of the fence registers will cause the previous users
1740  *    to be unmapped and any new access will generate new page faults.
1741  *
1742  *  * running out of memory while servicing a fault may generate a SIGBUS,
1743  *    rather than the expected SIGSEGV.
1744  */
1745 int i915_gem_mmap_gtt_version(void)
1746 {
1747 	return 1;
1748 }
1749 
1750 static inline struct i915_ggtt_view
1751 compute_partial_view(struct drm_i915_gem_object *obj,
1752 		     pgoff_t page_offset,
1753 		     unsigned int chunk)
1754 {
1755 	struct i915_ggtt_view view;
1756 
1757 	if (i915_gem_object_is_tiled(obj))
1758 		chunk = roundup(chunk, tile_row_pages(obj));
1759 
1760 	view.type = I915_GGTT_VIEW_PARTIAL;
1761 	view.partial.offset = rounddown(page_offset, chunk);
1762 	view.partial.size =
1763 		min_t(unsigned int, chunk,
1764 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1765 
1766 	/* If the partial covers the entire object, just create a normal VMA. */
1767 	if (chunk >= obj->base.size >> PAGE_SHIFT)
1768 		view.type = I915_GGTT_VIEW_NORMAL;
1769 
1770 	return view;
1771 }
1772 
1773 /**
1774  * i915_gem_fault - fault a page into the GTT
1775  * @vmf: fault info
1776  *
1777  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1778  * from userspace.  The fault handler takes care of binding the object to
1779  * the GTT (if needed), allocating and programming a fence register (again,
1780  * only if needed based on whether the old reg is still valid or the object
1781  * is tiled) and inserting a new PTE into the faulting process.
1782  *
1783  * Note that the faulting process may involve evicting existing objects
1784  * from the GTT and/or fence registers to make room.  So performance may
1785  * suffer if the GTT working set is large or there are few fence registers
1786  * left.
1787  *
1788  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1789  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1790  */
1791 int i915_gem_fault(struct vm_fault *vmf)
1792 {
1793 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1794 	struct vm_area_struct *area = vmf->vma;
1795 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1796 	struct drm_device *dev = obj->base.dev;
1797 	struct drm_i915_private *dev_priv = to_i915(dev);
1798 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1799 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1800 	struct i915_vma *vma;
1801 	pgoff_t page_offset;
1802 	unsigned int flags;
1803 	int ret;
1804 
1805 	/* We don't use vmf->pgoff since that has the fake offset */
1806 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1807 
1808 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1809 
1810 	/* Try to flush the object off the GPU first without holding the lock.
1811 	 * Upon acquiring the lock, we will perform our sanity checks and then
1812 	 * repeat the flush holding the lock in the normal manner to catch cases
1813 	 * where we are gazumped.
1814 	 */
1815 	ret = i915_gem_object_wait(obj,
1816 				   I915_WAIT_INTERRUPTIBLE,
1817 				   MAX_SCHEDULE_TIMEOUT,
1818 				   NULL);
1819 	if (ret)
1820 		goto err;
1821 
1822 	ret = i915_gem_object_pin_pages(obj);
1823 	if (ret)
1824 		goto err;
1825 
1826 	intel_runtime_pm_get(dev_priv);
1827 
1828 	ret = i915_mutex_lock_interruptible(dev);
1829 	if (ret)
1830 		goto err_rpm;
1831 
1832 	/* Access to snoopable pages through the GTT is incoherent. */
1833 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1834 		ret = -EFAULT;
1835 		goto err_unlock;
1836 	}
1837 
1838 	/* If the object is smaller than a couple of partial vma, it is
1839 	 * not worth only creating a single partial vma - we may as well
1840 	 * clear enough space for the full object.
1841 	 */
1842 	flags = PIN_MAPPABLE;
1843 	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1844 		flags |= PIN_NONBLOCK | PIN_NONFAULT;
1845 
1846 	/* Now pin it into the GTT as needed */
1847 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1848 	if (IS_ERR(vma)) {
1849 		/* Use a partial view if it is bigger than available space */
1850 		struct i915_ggtt_view view =
1851 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1852 
1853 		/* Userspace is now writing through an untracked VMA, abandon
1854 		 * all hope that the hardware is able to track future writes.
1855 		 */
1856 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1857 
1858 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1859 	}
1860 	if (IS_ERR(vma)) {
1861 		ret = PTR_ERR(vma);
1862 		goto err_unlock;
1863 	}
1864 
1865 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1866 	if (ret)
1867 		goto err_unpin;
1868 
1869 	ret = i915_vma_get_fence(vma);
1870 	if (ret)
1871 		goto err_unpin;
1872 
1873 	/* Mark as being mmapped into userspace for later revocation */
1874 	assert_rpm_wakelock_held(dev_priv);
1875 	if (list_empty(&obj->userfault_link))
1876 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1877 
1878 	/* Finally, remap it using the new GTT offset */
1879 	ret = remap_io_mapping(area,
1880 			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1881 			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1882 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1883 			       &ggtt->mappable);
1884 
1885 err_unpin:
1886 	__i915_vma_unpin(vma);
1887 err_unlock:
1888 	mutex_unlock(&dev->struct_mutex);
1889 err_rpm:
1890 	intel_runtime_pm_put(dev_priv);
1891 	i915_gem_object_unpin_pages(obj);
1892 err:
1893 	switch (ret) {
1894 	case -EIO:
1895 		/*
1896 		 * We eat errors when the gpu is terminally wedged to avoid
1897 		 * userspace unduly crashing (gl has no provisions for mmaps to
1898 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1899 		 * and so needs to be reported.
1900 		 */
1901 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1902 			ret = VM_FAULT_SIGBUS;
1903 			break;
1904 		}
1905 	case -EAGAIN:
1906 		/*
1907 		 * EAGAIN means the gpu is hung and we'll wait for the error
1908 		 * handler to reset everything when re-faulting in
1909 		 * i915_mutex_lock_interruptible.
1910 		 */
1911 	case 0:
1912 	case -ERESTARTSYS:
1913 	case -EINTR:
1914 	case -EBUSY:
1915 		/*
1916 		 * EBUSY is ok: this just means that another thread
1917 		 * already did the job.
1918 		 */
1919 		ret = VM_FAULT_NOPAGE;
1920 		break;
1921 	case -ENOMEM:
1922 		ret = VM_FAULT_OOM;
1923 		break;
1924 	case -ENOSPC:
1925 	case -EFAULT:
1926 		ret = VM_FAULT_SIGBUS;
1927 		break;
1928 	default:
1929 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1930 		ret = VM_FAULT_SIGBUS;
1931 		break;
1932 	}
1933 	return ret;
1934 }
1935 
1936 /**
1937  * i915_gem_release_mmap - remove physical page mappings
1938  * @obj: obj in question
1939  *
1940  * Preserve the reservation of the mmapping with the DRM core code, but
1941  * relinquish ownership of the pages back to the system.
1942  *
1943  * It is vital that we remove the page mapping if we have mapped a tiled
1944  * object through the GTT and then lose the fence register due to
1945  * resource pressure. Similarly if the object has been moved out of the
1946  * aperture, than pages mapped into userspace must be revoked. Removing the
1947  * mapping will then trigger a page fault on the next user access, allowing
1948  * fixup by i915_gem_fault().
1949  */
1950 void
1951 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1952 {
1953 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1954 
1955 	/* Serialisation between user GTT access and our code depends upon
1956 	 * revoking the CPU's PTE whilst the mutex is held. The next user
1957 	 * pagefault then has to wait until we release the mutex.
1958 	 *
1959 	 * Note that RPM complicates somewhat by adding an additional
1960 	 * requirement that operations to the GGTT be made holding the RPM
1961 	 * wakeref.
1962 	 */
1963 	lockdep_assert_held(&i915->drm.struct_mutex);
1964 	intel_runtime_pm_get(i915);
1965 
1966 	if (list_empty(&obj->userfault_link))
1967 		goto out;
1968 
1969 	list_del_init(&obj->userfault_link);
1970 	drm_vma_node_unmap(&obj->base.vma_node,
1971 			   obj->base.dev->anon_inode->i_mapping);
1972 
1973 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
1974 	 * memory transactions from userspace before we return. The TLB
1975 	 * flushing implied above by changing the PTE above *should* be
1976 	 * sufficient, an extra barrier here just provides us with a bit
1977 	 * of paranoid documentation about our requirement to serialise
1978 	 * memory writes before touching registers / GSM.
1979 	 */
1980 	wmb();
1981 
1982 out:
1983 	intel_runtime_pm_put(i915);
1984 }
1985 
1986 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1987 {
1988 	struct drm_i915_gem_object *obj, *on;
1989 	int i;
1990 
1991 	/*
1992 	 * Only called during RPM suspend. All users of the userfault_list
1993 	 * must be holding an RPM wakeref to ensure that this can not
1994 	 * run concurrently with themselves (and use the struct_mutex for
1995 	 * protection between themselves).
1996 	 */
1997 
1998 	list_for_each_entry_safe(obj, on,
1999 				 &dev_priv->mm.userfault_list, userfault_link) {
2000 		list_del_init(&obj->userfault_link);
2001 		drm_vma_node_unmap(&obj->base.vma_node,
2002 				   obj->base.dev->anon_inode->i_mapping);
2003 	}
2004 
2005 	/* The fence will be lost when the device powers down. If any were
2006 	 * in use by hardware (i.e. they are pinned), we should not be powering
2007 	 * down! All other fences will be reacquired by the user upon waking.
2008 	 */
2009 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2010 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2011 
2012 		/* Ideally we want to assert that the fence register is not
2013 		 * live at this point (i.e. that no piece of code will be
2014 		 * trying to write through fence + GTT, as that both violates
2015 		 * our tracking of activity and associated locking/barriers,
2016 		 * but also is illegal given that the hw is powered down).
2017 		 *
2018 		 * Previously we used reg->pin_count as a "liveness" indicator.
2019 		 * That is not sufficient, and we need a more fine-grained
2020 		 * tool if we want to have a sanity check here.
2021 		 */
2022 
2023 		if (!reg->vma)
2024 			continue;
2025 
2026 		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2027 		reg->dirty = true;
2028 	}
2029 }
2030 
2031 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2032 {
2033 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2034 	int err;
2035 
2036 	err = drm_gem_create_mmap_offset(&obj->base);
2037 	if (likely(!err))
2038 		return 0;
2039 
2040 	/* Attempt to reap some mmap space from dead objects */
2041 	do {
2042 		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2043 		if (err)
2044 			break;
2045 
2046 		i915_gem_drain_freed_objects(dev_priv);
2047 		err = drm_gem_create_mmap_offset(&obj->base);
2048 		if (!err)
2049 			break;
2050 
2051 	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2052 
2053 	return err;
2054 }
2055 
2056 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2057 {
2058 	drm_gem_free_mmap_offset(&obj->base);
2059 }
2060 
2061 int
2062 i915_gem_mmap_gtt(struct drm_file *file,
2063 		  struct drm_device *dev,
2064 		  uint32_t handle,
2065 		  uint64_t *offset)
2066 {
2067 	struct drm_i915_gem_object *obj;
2068 	int ret;
2069 
2070 	obj = i915_gem_object_lookup(file, handle);
2071 	if (!obj)
2072 		return -ENOENT;
2073 
2074 	ret = i915_gem_object_create_mmap_offset(obj);
2075 	if (ret == 0)
2076 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2077 
2078 	i915_gem_object_put(obj);
2079 	return ret;
2080 }
2081 
2082 /**
2083  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2084  * @dev: DRM device
2085  * @data: GTT mapping ioctl data
2086  * @file: GEM object info
2087  *
2088  * Simply returns the fake offset to userspace so it can mmap it.
2089  * The mmap call will end up in drm_gem_mmap(), which will set things
2090  * up so we can get faults in the handler above.
2091  *
2092  * The fault handler will take care of binding the object into the GTT
2093  * (since it may have been evicted to make room for something), allocating
2094  * a fence register, and mapping the appropriate aperture address into
2095  * userspace.
2096  */
2097 int
2098 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2099 			struct drm_file *file)
2100 {
2101 	struct drm_i915_gem_mmap_gtt *args = data;
2102 
2103 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2104 }
2105 
2106 /* Immediately discard the backing storage */
2107 static void
2108 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2109 {
2110 	i915_gem_object_free_mmap_offset(obj);
2111 
2112 	if (obj->base.filp == NULL)
2113 		return;
2114 
2115 	/* Our goal here is to return as much of the memory as
2116 	 * is possible back to the system as we are called from OOM.
2117 	 * To do this we must instruct the shmfs to drop all of its
2118 	 * backing pages, *now*.
2119 	 */
2120 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2121 	obj->mm.madv = __I915_MADV_PURGED;
2122 }
2123 
2124 /* Try to discard unwanted pages */
2125 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2126 {
2127 	struct address_space *mapping;
2128 
2129 	lockdep_assert_held(&obj->mm.lock);
2130 	GEM_BUG_ON(obj->mm.pages);
2131 
2132 	switch (obj->mm.madv) {
2133 	case I915_MADV_DONTNEED:
2134 		i915_gem_object_truncate(obj);
2135 	case __I915_MADV_PURGED:
2136 		return;
2137 	}
2138 
2139 	if (obj->base.filp == NULL)
2140 		return;
2141 
2142 	mapping = obj->base.filp->f_mapping,
2143 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2144 }
2145 
2146 static void
2147 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2148 			      struct sg_table *pages)
2149 {
2150 	struct sgt_iter sgt_iter;
2151 	struct page *page;
2152 
2153 	__i915_gem_object_release_shmem(obj, pages, true);
2154 
2155 	i915_gem_gtt_finish_pages(obj, pages);
2156 
2157 	if (i915_gem_object_needs_bit17_swizzle(obj))
2158 		i915_gem_object_save_bit_17_swizzle(obj, pages);
2159 
2160 	for_each_sgt_page(page, sgt_iter, pages) {
2161 		if (obj->mm.dirty)
2162 			set_page_dirty(page);
2163 
2164 		if (obj->mm.madv == I915_MADV_WILLNEED)
2165 			mark_page_accessed(page);
2166 
2167 		put_page(page);
2168 	}
2169 	obj->mm.dirty = false;
2170 
2171 	sg_free_table(pages);
2172 	kfree(pages);
2173 }
2174 
2175 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2176 {
2177 	struct radix_tree_iter iter;
2178 	void **slot;
2179 
2180 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2181 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2182 }
2183 
2184 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2185 				 enum i915_mm_subclass subclass)
2186 {
2187 	struct sg_table *pages;
2188 
2189 	if (i915_gem_object_has_pinned_pages(obj))
2190 		return;
2191 
2192 	GEM_BUG_ON(obj->bind_count);
2193 	if (!READ_ONCE(obj->mm.pages))
2194 		return;
2195 
2196 	/* May be called by shrinker from within get_pages() (on another bo) */
2197 	mutex_lock_nested(&obj->mm.lock, subclass);
2198 	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2199 		goto unlock;
2200 
2201 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2202 	 * array, hence protect them from being reaped by removing them from gtt
2203 	 * lists early. */
2204 	pages = fetch_and_zero(&obj->mm.pages);
2205 	GEM_BUG_ON(!pages);
2206 
2207 	if (obj->mm.mapping) {
2208 		void *ptr;
2209 
2210 		ptr = ptr_mask_bits(obj->mm.mapping);
2211 		if (is_vmalloc_addr(ptr))
2212 			vunmap(ptr);
2213 		else
2214 			kunmap(kmap_to_page(ptr));
2215 
2216 		obj->mm.mapping = NULL;
2217 	}
2218 
2219 	__i915_gem_object_reset_page_iter(obj);
2220 
2221 	obj->ops->put_pages(obj, pages);
2222 unlock:
2223 	mutex_unlock(&obj->mm.lock);
2224 }
2225 
2226 static void i915_sg_trim(struct sg_table *orig_st)
2227 {
2228 	struct sg_table new_st;
2229 	struct scatterlist *sg, *new_sg;
2230 	unsigned int i;
2231 
2232 	if (orig_st->nents == orig_st->orig_nents)
2233 		return;
2234 
2235 	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2236 		return;
2237 
2238 	new_sg = new_st.sgl;
2239 	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2240 		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2241 		/* called before being DMA mapped, no need to copy sg->dma_* */
2242 		new_sg = sg_next(new_sg);
2243 	}
2244 	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2245 
2246 	sg_free_table(orig_st);
2247 
2248 	*orig_st = new_st;
2249 }
2250 
2251 static struct sg_table *
2252 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2253 {
2254 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2255 	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2256 	unsigned long i;
2257 	struct address_space *mapping;
2258 	struct sg_table *st;
2259 	struct scatterlist *sg;
2260 	struct sgt_iter sgt_iter;
2261 	struct page *page;
2262 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2263 	unsigned int max_segment;
2264 	int ret;
2265 	gfp_t gfp;
2266 
2267 	/* Assert that the object is not currently in any GPU domain. As it
2268 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2269 	 * a GPU cache
2270 	 */
2271 	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2272 	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2273 
2274 	max_segment = swiotlb_max_segment();
2275 	if (!max_segment)
2276 		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2277 
2278 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2279 	if (st == NULL)
2280 		return ERR_PTR(-ENOMEM);
2281 
2282 rebuild_st:
2283 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2284 		kfree(st);
2285 		return ERR_PTR(-ENOMEM);
2286 	}
2287 
2288 	/* Get the list of pages out of our struct file.  They'll be pinned
2289 	 * at this point until we release them.
2290 	 *
2291 	 * Fail silently without starting the shrinker
2292 	 */
2293 	mapping = obj->base.filp->f_mapping;
2294 	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2295 	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2296 	sg = st->sgl;
2297 	st->nents = 0;
2298 	for (i = 0; i < page_count; i++) {
2299 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2300 		if (IS_ERR(page)) {
2301 			i915_gem_shrink(dev_priv,
2302 					page_count,
2303 					I915_SHRINK_BOUND |
2304 					I915_SHRINK_UNBOUND |
2305 					I915_SHRINK_PURGEABLE);
2306 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2307 		}
2308 		if (IS_ERR(page)) {
2309 			/* We've tried hard to allocate the memory by reaping
2310 			 * our own buffer, now let the real VM do its job and
2311 			 * go down in flames if truly OOM.
2312 			 */
2313 			page = shmem_read_mapping_page(mapping, i);
2314 			if (IS_ERR(page)) {
2315 				ret = PTR_ERR(page);
2316 				goto err_sg;
2317 			}
2318 		}
2319 		if (!i ||
2320 		    sg->length >= max_segment ||
2321 		    page_to_pfn(page) != last_pfn + 1) {
2322 			if (i)
2323 				sg = sg_next(sg);
2324 			st->nents++;
2325 			sg_set_page(sg, page, PAGE_SIZE, 0);
2326 		} else {
2327 			sg->length += PAGE_SIZE;
2328 		}
2329 		last_pfn = page_to_pfn(page);
2330 
2331 		/* Check that the i965g/gm workaround works. */
2332 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2333 	}
2334 	if (sg) /* loop terminated early; short sg table */
2335 		sg_mark_end(sg);
2336 
2337 	/* Trim unused sg entries to avoid wasting memory. */
2338 	i915_sg_trim(st);
2339 
2340 	ret = i915_gem_gtt_prepare_pages(obj, st);
2341 	if (ret) {
2342 		/* DMA remapping failed? One possible cause is that
2343 		 * it could not reserve enough large entries, asking
2344 		 * for PAGE_SIZE chunks instead may be helpful.
2345 		 */
2346 		if (max_segment > PAGE_SIZE) {
2347 			for_each_sgt_page(page, sgt_iter, st)
2348 				put_page(page);
2349 			sg_free_table(st);
2350 
2351 			max_segment = PAGE_SIZE;
2352 			goto rebuild_st;
2353 		} else {
2354 			dev_warn(&dev_priv->drm.pdev->dev,
2355 				 "Failed to DMA remap %lu pages\n",
2356 				 page_count);
2357 			goto err_pages;
2358 		}
2359 	}
2360 
2361 	if (i915_gem_object_needs_bit17_swizzle(obj))
2362 		i915_gem_object_do_bit_17_swizzle(obj, st);
2363 
2364 	return st;
2365 
2366 err_sg:
2367 	sg_mark_end(sg);
2368 err_pages:
2369 	for_each_sgt_page(page, sgt_iter, st)
2370 		put_page(page);
2371 	sg_free_table(st);
2372 	kfree(st);
2373 
2374 	/* shmemfs first checks if there is enough memory to allocate the page
2375 	 * and reports ENOSPC should there be insufficient, along with the usual
2376 	 * ENOMEM for a genuine allocation failure.
2377 	 *
2378 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2379 	 * space and so want to translate the error from shmemfs back to our
2380 	 * usual understanding of ENOMEM.
2381 	 */
2382 	if (ret == -ENOSPC)
2383 		ret = -ENOMEM;
2384 
2385 	return ERR_PTR(ret);
2386 }
2387 
2388 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2389 				 struct sg_table *pages)
2390 {
2391 	lockdep_assert_held(&obj->mm.lock);
2392 
2393 	obj->mm.get_page.sg_pos = pages->sgl;
2394 	obj->mm.get_page.sg_idx = 0;
2395 
2396 	obj->mm.pages = pages;
2397 
2398 	if (i915_gem_object_is_tiled(obj) &&
2399 	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2400 		GEM_BUG_ON(obj->mm.quirked);
2401 		__i915_gem_object_pin_pages(obj);
2402 		obj->mm.quirked = true;
2403 	}
2404 }
2405 
2406 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2407 {
2408 	struct sg_table *pages;
2409 
2410 	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2411 
2412 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2413 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2414 		return -EFAULT;
2415 	}
2416 
2417 	pages = obj->ops->get_pages(obj);
2418 	if (unlikely(IS_ERR(pages)))
2419 		return PTR_ERR(pages);
2420 
2421 	__i915_gem_object_set_pages(obj, pages);
2422 	return 0;
2423 }
2424 
2425 /* Ensure that the associated pages are gathered from the backing storage
2426  * and pinned into our object. i915_gem_object_pin_pages() may be called
2427  * multiple times before they are released by a single call to
2428  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2429  * either as a result of memory pressure (reaping pages under the shrinker)
2430  * or as the object is itself released.
2431  */
2432 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2433 {
2434 	int err;
2435 
2436 	err = mutex_lock_interruptible(&obj->mm.lock);
2437 	if (err)
2438 		return err;
2439 
2440 	if (unlikely(!obj->mm.pages)) {
2441 		err = ____i915_gem_object_get_pages(obj);
2442 		if (err)
2443 			goto unlock;
2444 
2445 		smp_mb__before_atomic();
2446 	}
2447 	atomic_inc(&obj->mm.pages_pin_count);
2448 
2449 unlock:
2450 	mutex_unlock(&obj->mm.lock);
2451 	return err;
2452 }
2453 
2454 /* The 'mapping' part of i915_gem_object_pin_map() below */
2455 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2456 				 enum i915_map_type type)
2457 {
2458 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2459 	struct sg_table *sgt = obj->mm.pages;
2460 	struct sgt_iter sgt_iter;
2461 	struct page *page;
2462 	struct page *stack_pages[32];
2463 	struct page **pages = stack_pages;
2464 	unsigned long i = 0;
2465 	pgprot_t pgprot;
2466 	void *addr;
2467 
2468 	/* A single page can always be kmapped */
2469 	if (n_pages == 1 && type == I915_MAP_WB)
2470 		return kmap(sg_page(sgt->sgl));
2471 
2472 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2473 		/* Too big for stack -- allocate temporary array instead */
2474 		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2475 		if (!pages)
2476 			return NULL;
2477 	}
2478 
2479 	for_each_sgt_page(page, sgt_iter, sgt)
2480 		pages[i++] = page;
2481 
2482 	/* Check that we have the expected number of pages */
2483 	GEM_BUG_ON(i != n_pages);
2484 
2485 	switch (type) {
2486 	case I915_MAP_WB:
2487 		pgprot = PAGE_KERNEL;
2488 		break;
2489 	case I915_MAP_WC:
2490 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2491 		break;
2492 	}
2493 	addr = vmap(pages, n_pages, 0, pgprot);
2494 
2495 	if (pages != stack_pages)
2496 		drm_free_large(pages);
2497 
2498 	return addr;
2499 }
2500 
2501 /* get, pin, and map the pages of the object into kernel space */
2502 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2503 			      enum i915_map_type type)
2504 {
2505 	enum i915_map_type has_type;
2506 	bool pinned;
2507 	void *ptr;
2508 	int ret;
2509 
2510 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2511 
2512 	ret = mutex_lock_interruptible(&obj->mm.lock);
2513 	if (ret)
2514 		return ERR_PTR(ret);
2515 
2516 	pinned = true;
2517 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2518 		if (unlikely(!obj->mm.pages)) {
2519 			ret = ____i915_gem_object_get_pages(obj);
2520 			if (ret)
2521 				goto err_unlock;
2522 
2523 			smp_mb__before_atomic();
2524 		}
2525 		atomic_inc(&obj->mm.pages_pin_count);
2526 		pinned = false;
2527 	}
2528 	GEM_BUG_ON(!obj->mm.pages);
2529 
2530 	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2531 	if (ptr && has_type != type) {
2532 		if (pinned) {
2533 			ret = -EBUSY;
2534 			goto err_unpin;
2535 		}
2536 
2537 		if (is_vmalloc_addr(ptr))
2538 			vunmap(ptr);
2539 		else
2540 			kunmap(kmap_to_page(ptr));
2541 
2542 		ptr = obj->mm.mapping = NULL;
2543 	}
2544 
2545 	if (!ptr) {
2546 		ptr = i915_gem_object_map(obj, type);
2547 		if (!ptr) {
2548 			ret = -ENOMEM;
2549 			goto err_unpin;
2550 		}
2551 
2552 		obj->mm.mapping = ptr_pack_bits(ptr, type);
2553 	}
2554 
2555 out_unlock:
2556 	mutex_unlock(&obj->mm.lock);
2557 	return ptr;
2558 
2559 err_unpin:
2560 	atomic_dec(&obj->mm.pages_pin_count);
2561 err_unlock:
2562 	ptr = ERR_PTR(ret);
2563 	goto out_unlock;
2564 }
2565 
2566 static bool ban_context(const struct i915_gem_context *ctx)
2567 {
2568 	return (i915_gem_context_is_bannable(ctx) &&
2569 		ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2570 }
2571 
2572 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2573 {
2574 	ctx->guilty_count++;
2575 	ctx->ban_score += CONTEXT_SCORE_GUILTY;
2576 	if (ban_context(ctx))
2577 		i915_gem_context_set_banned(ctx);
2578 
2579 	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2580 			 ctx->name, ctx->ban_score,
2581 			 yesno(i915_gem_context_is_banned(ctx)));
2582 
2583 	if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2584 		return;
2585 
2586 	ctx->file_priv->context_bans++;
2587 	DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2588 			 ctx->name, ctx->file_priv->context_bans);
2589 }
2590 
2591 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2592 {
2593 	ctx->active_count++;
2594 }
2595 
2596 struct drm_i915_gem_request *
2597 i915_gem_find_active_request(struct intel_engine_cs *engine)
2598 {
2599 	struct drm_i915_gem_request *request;
2600 
2601 	/* We are called by the error capture and reset at a random
2602 	 * point in time. In particular, note that neither is crucially
2603 	 * ordered with an interrupt. After a hang, the GPU is dead and we
2604 	 * assume that no more writes can happen (we waited long enough for
2605 	 * all writes that were in transaction to be flushed) - adding an
2606 	 * extra delay for a recent interrupt is pointless. Hence, we do
2607 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2608 	 */
2609 	list_for_each_entry(request, &engine->timeline->requests, link) {
2610 		if (__i915_gem_request_completed(request))
2611 			continue;
2612 
2613 		GEM_BUG_ON(request->engine != engine);
2614 		return request;
2615 	}
2616 
2617 	return NULL;
2618 }
2619 
2620 static bool engine_stalled(struct intel_engine_cs *engine)
2621 {
2622 	if (!engine->hangcheck.stalled)
2623 		return false;
2624 
2625 	/* Check for possible seqno movement after hang declaration */
2626 	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2627 		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2628 		return false;
2629 	}
2630 
2631 	return true;
2632 }
2633 
2634 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2635 {
2636 	struct intel_engine_cs *engine;
2637 	enum intel_engine_id id;
2638 	int err = 0;
2639 
2640 	/* Ensure irq handler finishes, and not run again. */
2641 	for_each_engine(engine, dev_priv, id) {
2642 		struct drm_i915_gem_request *request;
2643 
2644 		tasklet_kill(&engine->irq_tasklet);
2645 
2646 		if (engine_stalled(engine)) {
2647 			request = i915_gem_find_active_request(engine);
2648 			if (request && request->fence.error == -EIO)
2649 				err = -EIO; /* Previous reset failed! */
2650 		}
2651 	}
2652 
2653 	i915_gem_revoke_fences(dev_priv);
2654 
2655 	return err;
2656 }
2657 
2658 static void skip_request(struct drm_i915_gem_request *request)
2659 {
2660 	void *vaddr = request->ring->vaddr;
2661 	u32 head;
2662 
2663 	/* As this request likely depends on state from the lost
2664 	 * context, clear out all the user operations leaving the
2665 	 * breadcrumb at the end (so we get the fence notifications).
2666 	 */
2667 	head = request->head;
2668 	if (request->postfix < head) {
2669 		memset(vaddr + head, 0, request->ring->size - head);
2670 		head = 0;
2671 	}
2672 	memset(vaddr + head, 0, request->postfix - head);
2673 
2674 	dma_fence_set_error(&request->fence, -EIO);
2675 }
2676 
2677 static void engine_skip_context(struct drm_i915_gem_request *request)
2678 {
2679 	struct intel_engine_cs *engine = request->engine;
2680 	struct i915_gem_context *hung_ctx = request->ctx;
2681 	struct intel_timeline *timeline;
2682 	unsigned long flags;
2683 
2684 	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2685 
2686 	spin_lock_irqsave(&engine->timeline->lock, flags);
2687 	spin_lock(&timeline->lock);
2688 
2689 	list_for_each_entry_continue(request, &engine->timeline->requests, link)
2690 		if (request->ctx == hung_ctx)
2691 			skip_request(request);
2692 
2693 	list_for_each_entry(request, &timeline->requests, link)
2694 		skip_request(request);
2695 
2696 	spin_unlock(&timeline->lock);
2697 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2698 }
2699 
2700 /* Returns true if the request was guilty of hang */
2701 static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
2702 {
2703 	/* Read once and return the resolution */
2704 	const bool guilty = engine_stalled(request->engine);
2705 
2706 	/* The guilty request will get skipped on a hung engine.
2707 	 *
2708 	 * Users of client default contexts do not rely on logical
2709 	 * state preserved between batches so it is safe to execute
2710 	 * queued requests following the hang. Non default contexts
2711 	 * rely on preserved state, so skipping a batch loses the
2712 	 * evolution of the state and it needs to be considered corrupted.
2713 	 * Executing more queued batches on top of corrupted state is
2714 	 * risky. But we take the risk by trying to advance through
2715 	 * the queued requests in order to make the client behaviour
2716 	 * more predictable around resets, by not throwing away random
2717 	 * amount of batches it has prepared for execution. Sophisticated
2718 	 * clients can use gem_reset_stats_ioctl and dma fence status
2719 	 * (exported via sync_file info ioctl on explicit fences) to observe
2720 	 * when it loses the context state and should rebuild accordingly.
2721 	 *
2722 	 * The context ban, and ultimately the client ban, mechanism are safety
2723 	 * valves if client submission ends up resulting in nothing more than
2724 	 * subsequent hangs.
2725 	 */
2726 
2727 	if (guilty) {
2728 		i915_gem_context_mark_guilty(request->ctx);
2729 		skip_request(request);
2730 	} else {
2731 		i915_gem_context_mark_innocent(request->ctx);
2732 		dma_fence_set_error(&request->fence, -EAGAIN);
2733 	}
2734 
2735 	return guilty;
2736 }
2737 
2738 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2739 {
2740 	struct drm_i915_gem_request *request;
2741 
2742 	if (engine->irq_seqno_barrier)
2743 		engine->irq_seqno_barrier(engine);
2744 
2745 	request = i915_gem_find_active_request(engine);
2746 	if (request && i915_gem_reset_request(request)) {
2747 		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2748 				 engine->name, request->global_seqno);
2749 
2750 		/* If this context is now banned, skip all pending requests. */
2751 		if (i915_gem_context_is_banned(request->ctx))
2752 			engine_skip_context(request);
2753 	}
2754 
2755 	/* Setup the CS to resume from the breadcrumb of the hung request */
2756 	engine->reset_hw(engine, request);
2757 }
2758 
2759 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2760 {
2761 	struct intel_engine_cs *engine;
2762 	enum intel_engine_id id;
2763 
2764 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2765 
2766 	i915_gem_retire_requests(dev_priv);
2767 
2768 	for_each_engine(engine, dev_priv, id)
2769 		i915_gem_reset_engine(engine);
2770 
2771 	i915_gem_restore_fences(dev_priv);
2772 
2773 	if (dev_priv->gt.awake) {
2774 		intel_sanitize_gt_powersave(dev_priv);
2775 		intel_enable_gt_powersave(dev_priv);
2776 		if (INTEL_GEN(dev_priv) >= 6)
2777 			gen6_rps_busy(dev_priv);
2778 	}
2779 }
2780 
2781 static void nop_submit_request(struct drm_i915_gem_request *request)
2782 {
2783 	dma_fence_set_error(&request->fence, -EIO);
2784 	i915_gem_request_submit(request);
2785 	intel_engine_init_global_seqno(request->engine, request->global_seqno);
2786 }
2787 
2788 static void engine_set_wedged(struct intel_engine_cs *engine)
2789 {
2790 	struct drm_i915_gem_request *request;
2791 	unsigned long flags;
2792 
2793 	/* We need to be sure that no thread is running the old callback as
2794 	 * we install the nop handler (otherwise we would submit a request
2795 	 * to hardware that will never complete). In order to prevent this
2796 	 * race, we wait until the machine is idle before making the swap
2797 	 * (using stop_machine()).
2798 	 */
2799 	engine->submit_request = nop_submit_request;
2800 
2801 	/* Mark all executing requests as skipped */
2802 	spin_lock_irqsave(&engine->timeline->lock, flags);
2803 	list_for_each_entry(request, &engine->timeline->requests, link)
2804 		dma_fence_set_error(&request->fence, -EIO);
2805 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2806 
2807 	/* Mark all pending requests as complete so that any concurrent
2808 	 * (lockless) lookup doesn't try and wait upon the request as we
2809 	 * reset it.
2810 	 */
2811 	intel_engine_init_global_seqno(engine,
2812 				       intel_engine_last_submit(engine));
2813 
2814 	/*
2815 	 * Clear the execlists queue up before freeing the requests, as those
2816 	 * are the ones that keep the context and ringbuffer backing objects
2817 	 * pinned in place.
2818 	 */
2819 
2820 	if (i915.enable_execlists) {
2821 		unsigned long flags;
2822 
2823 		spin_lock_irqsave(&engine->timeline->lock, flags);
2824 
2825 		i915_gem_request_put(engine->execlist_port[0].request);
2826 		i915_gem_request_put(engine->execlist_port[1].request);
2827 		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2828 		engine->execlist_queue = RB_ROOT;
2829 		engine->execlist_first = NULL;
2830 
2831 		spin_unlock_irqrestore(&engine->timeline->lock, flags);
2832 	}
2833 }
2834 
2835 static int __i915_gem_set_wedged_BKL(void *data)
2836 {
2837 	struct drm_i915_private *i915 = data;
2838 	struct intel_engine_cs *engine;
2839 	enum intel_engine_id id;
2840 
2841 	for_each_engine(engine, i915, id)
2842 		engine_set_wedged(engine);
2843 
2844 	return 0;
2845 }
2846 
2847 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2848 {
2849 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2850 	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2851 
2852 	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2853 
2854 	i915_gem_context_lost(dev_priv);
2855 	i915_gem_retire_requests(dev_priv);
2856 
2857 	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2858 }
2859 
2860 static void
2861 i915_gem_retire_work_handler(struct work_struct *work)
2862 {
2863 	struct drm_i915_private *dev_priv =
2864 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2865 	struct drm_device *dev = &dev_priv->drm;
2866 
2867 	/* Come back later if the device is busy... */
2868 	if (mutex_trylock(&dev->struct_mutex)) {
2869 		i915_gem_retire_requests(dev_priv);
2870 		mutex_unlock(&dev->struct_mutex);
2871 	}
2872 
2873 	/* Keep the retire handler running until we are finally idle.
2874 	 * We do not need to do this test under locking as in the worst-case
2875 	 * we queue the retire worker once too often.
2876 	 */
2877 	if (READ_ONCE(dev_priv->gt.awake)) {
2878 		i915_queue_hangcheck(dev_priv);
2879 		queue_delayed_work(dev_priv->wq,
2880 				   &dev_priv->gt.retire_work,
2881 				   round_jiffies_up_relative(HZ));
2882 	}
2883 }
2884 
2885 static void
2886 i915_gem_idle_work_handler(struct work_struct *work)
2887 {
2888 	struct drm_i915_private *dev_priv =
2889 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2890 	struct drm_device *dev = &dev_priv->drm;
2891 	struct intel_engine_cs *engine;
2892 	enum intel_engine_id id;
2893 	bool rearm_hangcheck;
2894 
2895 	if (!READ_ONCE(dev_priv->gt.awake))
2896 		return;
2897 
2898 	/*
2899 	 * Wait for last execlists context complete, but bail out in case a
2900 	 * new request is submitted.
2901 	 */
2902 	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
2903 		 intel_execlists_idle(dev_priv), 10);
2904 
2905 	if (READ_ONCE(dev_priv->gt.active_requests))
2906 		return;
2907 
2908 	rearm_hangcheck =
2909 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2910 
2911 	if (!mutex_trylock(&dev->struct_mutex)) {
2912 		/* Currently busy, come back later */
2913 		mod_delayed_work(dev_priv->wq,
2914 				 &dev_priv->gt.idle_work,
2915 				 msecs_to_jiffies(50));
2916 		goto out_rearm;
2917 	}
2918 
2919 	/*
2920 	 * New request retired after this work handler started, extend active
2921 	 * period until next instance of the work.
2922 	 */
2923 	if (work_pending(work))
2924 		goto out_unlock;
2925 
2926 	if (dev_priv->gt.active_requests)
2927 		goto out_unlock;
2928 
2929 	if (wait_for(intel_execlists_idle(dev_priv), 10))
2930 		DRM_ERROR("Timeout waiting for engines to idle\n");
2931 
2932 	for_each_engine(engine, dev_priv, id)
2933 		i915_gem_batch_pool_fini(&engine->batch_pool);
2934 
2935 	GEM_BUG_ON(!dev_priv->gt.awake);
2936 	dev_priv->gt.awake = false;
2937 	rearm_hangcheck = false;
2938 
2939 	if (INTEL_GEN(dev_priv) >= 6)
2940 		gen6_rps_idle(dev_priv);
2941 	intel_runtime_pm_put(dev_priv);
2942 out_unlock:
2943 	mutex_unlock(&dev->struct_mutex);
2944 
2945 out_rearm:
2946 	if (rearm_hangcheck) {
2947 		GEM_BUG_ON(!dev_priv->gt.awake);
2948 		i915_queue_hangcheck(dev_priv);
2949 	}
2950 }
2951 
2952 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2953 {
2954 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
2955 	struct drm_i915_file_private *fpriv = file->driver_priv;
2956 	struct i915_vma *vma, *vn;
2957 
2958 	mutex_lock(&obj->base.dev->struct_mutex);
2959 	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2960 		if (vma->vm->file == fpriv)
2961 			i915_vma_close(vma);
2962 
2963 	if (i915_gem_object_is_active(obj) &&
2964 	    !i915_gem_object_has_active_reference(obj)) {
2965 		i915_gem_object_set_active_reference(obj);
2966 		i915_gem_object_get(obj);
2967 	}
2968 	mutex_unlock(&obj->base.dev->struct_mutex);
2969 }
2970 
2971 static unsigned long to_wait_timeout(s64 timeout_ns)
2972 {
2973 	if (timeout_ns < 0)
2974 		return MAX_SCHEDULE_TIMEOUT;
2975 
2976 	if (timeout_ns == 0)
2977 		return 0;
2978 
2979 	return nsecs_to_jiffies_timeout(timeout_ns);
2980 }
2981 
2982 /**
2983  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2984  * @dev: drm device pointer
2985  * @data: ioctl data blob
2986  * @file: drm file pointer
2987  *
2988  * Returns 0 if successful, else an error is returned with the remaining time in
2989  * the timeout parameter.
2990  *  -ETIME: object is still busy after timeout
2991  *  -ERESTARTSYS: signal interrupted the wait
2992  *  -ENONENT: object doesn't exist
2993  * Also possible, but rare:
2994  *  -EAGAIN: GPU wedged
2995  *  -ENOMEM: damn
2996  *  -ENODEV: Internal IRQ fail
2997  *  -E?: The add request failed
2998  *
2999  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3000  * non-zero timeout parameter the wait ioctl will wait for the given number of
3001  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3002  * without holding struct_mutex the object may become re-busied before this
3003  * function completes. A similar but shorter * race condition exists in the busy
3004  * ioctl
3005  */
3006 int
3007 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3008 {
3009 	struct drm_i915_gem_wait *args = data;
3010 	struct drm_i915_gem_object *obj;
3011 	ktime_t start;
3012 	long ret;
3013 
3014 	if (args->flags != 0)
3015 		return -EINVAL;
3016 
3017 	obj = i915_gem_object_lookup(file, args->bo_handle);
3018 	if (!obj)
3019 		return -ENOENT;
3020 
3021 	start = ktime_get();
3022 
3023 	ret = i915_gem_object_wait(obj,
3024 				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3025 				   to_wait_timeout(args->timeout_ns),
3026 				   to_rps_client(file));
3027 
3028 	if (args->timeout_ns > 0) {
3029 		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3030 		if (args->timeout_ns < 0)
3031 			args->timeout_ns = 0;
3032 	}
3033 
3034 	i915_gem_object_put(obj);
3035 	return ret;
3036 }
3037 
3038 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3039 {
3040 	int ret, i;
3041 
3042 	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3043 		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3044 		if (ret)
3045 			return ret;
3046 	}
3047 
3048 	return 0;
3049 }
3050 
3051 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3052 {
3053 	int ret;
3054 
3055 	if (flags & I915_WAIT_LOCKED) {
3056 		struct i915_gem_timeline *tl;
3057 
3058 		lockdep_assert_held(&i915->drm.struct_mutex);
3059 
3060 		list_for_each_entry(tl, &i915->gt.timelines, link) {
3061 			ret = wait_for_timeline(tl, flags);
3062 			if (ret)
3063 				return ret;
3064 		}
3065 	} else {
3066 		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3067 		if (ret)
3068 			return ret;
3069 	}
3070 
3071 	return 0;
3072 }
3073 
3074 void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3075 			     bool force)
3076 {
3077 	/* If we don't have a page list set up, then we're not pinned
3078 	 * to GPU, and we can ignore the cache flush because it'll happen
3079 	 * again at bind time.
3080 	 */
3081 	if (!obj->mm.pages)
3082 		return;
3083 
3084 	/*
3085 	 * Stolen memory is always coherent with the GPU as it is explicitly
3086 	 * marked as wc by the system, or the system is cache-coherent.
3087 	 */
3088 	if (obj->stolen || obj->phys_handle)
3089 		return;
3090 
3091 	/* If the GPU is snooping the contents of the CPU cache,
3092 	 * we do not need to manually clear the CPU cache lines.  However,
3093 	 * the caches are only snooped when the render cache is
3094 	 * flushed/invalidated.  As we always have to emit invalidations
3095 	 * and flushes when moving into and out of the RENDER domain, correct
3096 	 * snooping behaviour occurs naturally as the result of our domain
3097 	 * tracking.
3098 	 */
3099 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3100 		obj->cache_dirty = true;
3101 		return;
3102 	}
3103 
3104 	trace_i915_gem_object_clflush(obj);
3105 	drm_clflush_sg(obj->mm.pages);
3106 	obj->cache_dirty = false;
3107 }
3108 
3109 /** Flushes the GTT write domain for the object if it's dirty. */
3110 static void
3111 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3112 {
3113 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3114 
3115 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3116 		return;
3117 
3118 	/* No actual flushing is required for the GTT write domain.  Writes
3119 	 * to it "immediately" go to main memory as far as we know, so there's
3120 	 * no chipset flush.  It also doesn't land in render cache.
3121 	 *
3122 	 * However, we do have to enforce the order so that all writes through
3123 	 * the GTT land before any writes to the device, such as updates to
3124 	 * the GATT itself.
3125 	 *
3126 	 * We also have to wait a bit for the writes to land from the GTT.
3127 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3128 	 * timing. This issue has only been observed when switching quickly
3129 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
3130 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3131 	 * system agents we cannot reproduce this behaviour).
3132 	 */
3133 	wmb();
3134 	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3135 		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3136 
3137 	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3138 
3139 	obj->base.write_domain = 0;
3140 	trace_i915_gem_object_change_domain(obj,
3141 					    obj->base.read_domains,
3142 					    I915_GEM_DOMAIN_GTT);
3143 }
3144 
3145 /** Flushes the CPU write domain for the object if it's dirty. */
3146 static void
3147 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3148 {
3149 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3150 		return;
3151 
3152 	i915_gem_clflush_object(obj, obj->pin_display);
3153 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3154 
3155 	obj->base.write_domain = 0;
3156 	trace_i915_gem_object_change_domain(obj,
3157 					    obj->base.read_domains,
3158 					    I915_GEM_DOMAIN_CPU);
3159 }
3160 
3161 /**
3162  * Moves a single object to the GTT read, and possibly write domain.
3163  * @obj: object to act on
3164  * @write: ask for write access or read only
3165  *
3166  * This function returns when the move is complete, including waiting on
3167  * flushes to occur.
3168  */
3169 int
3170 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3171 {
3172 	uint32_t old_write_domain, old_read_domains;
3173 	int ret;
3174 
3175 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3176 
3177 	ret = i915_gem_object_wait(obj,
3178 				   I915_WAIT_INTERRUPTIBLE |
3179 				   I915_WAIT_LOCKED |
3180 				   (write ? I915_WAIT_ALL : 0),
3181 				   MAX_SCHEDULE_TIMEOUT,
3182 				   NULL);
3183 	if (ret)
3184 		return ret;
3185 
3186 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3187 		return 0;
3188 
3189 	/* Flush and acquire obj->pages so that we are coherent through
3190 	 * direct access in memory with previous cached writes through
3191 	 * shmemfs and that our cache domain tracking remains valid.
3192 	 * For example, if the obj->filp was moved to swap without us
3193 	 * being notified and releasing the pages, we would mistakenly
3194 	 * continue to assume that the obj remained out of the CPU cached
3195 	 * domain.
3196 	 */
3197 	ret = i915_gem_object_pin_pages(obj);
3198 	if (ret)
3199 		return ret;
3200 
3201 	i915_gem_object_flush_cpu_write_domain(obj);
3202 
3203 	/* Serialise direct access to this object with the barriers for
3204 	 * coherent writes from the GPU, by effectively invalidating the
3205 	 * GTT domain upon first access.
3206 	 */
3207 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3208 		mb();
3209 
3210 	old_write_domain = obj->base.write_domain;
3211 	old_read_domains = obj->base.read_domains;
3212 
3213 	/* It should now be out of any other write domains, and we can update
3214 	 * the domain values for our changes.
3215 	 */
3216 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3217 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3218 	if (write) {
3219 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3220 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3221 		obj->mm.dirty = true;
3222 	}
3223 
3224 	trace_i915_gem_object_change_domain(obj,
3225 					    old_read_domains,
3226 					    old_write_domain);
3227 
3228 	i915_gem_object_unpin_pages(obj);
3229 	return 0;
3230 }
3231 
3232 /**
3233  * Changes the cache-level of an object across all VMA.
3234  * @obj: object to act on
3235  * @cache_level: new cache level to set for the object
3236  *
3237  * After this function returns, the object will be in the new cache-level
3238  * across all GTT and the contents of the backing storage will be coherent,
3239  * with respect to the new cache-level. In order to keep the backing storage
3240  * coherent for all users, we only allow a single cache level to be set
3241  * globally on the object and prevent it from being changed whilst the
3242  * hardware is reading from the object. That is if the object is currently
3243  * on the scanout it will be set to uncached (or equivalent display
3244  * cache coherency) and all non-MOCS GPU access will also be uncached so
3245  * that all direct access to the scanout remains coherent.
3246  */
3247 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3248 				    enum i915_cache_level cache_level)
3249 {
3250 	struct i915_vma *vma;
3251 	int ret;
3252 
3253 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3254 
3255 	if (obj->cache_level == cache_level)
3256 		return 0;
3257 
3258 	/* Inspect the list of currently bound VMA and unbind any that would
3259 	 * be invalid given the new cache-level. This is principally to
3260 	 * catch the issue of the CS prefetch crossing page boundaries and
3261 	 * reading an invalid PTE on older architectures.
3262 	 */
3263 restart:
3264 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3265 		if (!drm_mm_node_allocated(&vma->node))
3266 			continue;
3267 
3268 		if (i915_vma_is_pinned(vma)) {
3269 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3270 			return -EBUSY;
3271 		}
3272 
3273 		if (i915_gem_valid_gtt_space(vma, cache_level))
3274 			continue;
3275 
3276 		ret = i915_vma_unbind(vma);
3277 		if (ret)
3278 			return ret;
3279 
3280 		/* As unbinding may affect other elements in the
3281 		 * obj->vma_list (due to side-effects from retiring
3282 		 * an active vma), play safe and restart the iterator.
3283 		 */
3284 		goto restart;
3285 	}
3286 
3287 	/* We can reuse the existing drm_mm nodes but need to change the
3288 	 * cache-level on the PTE. We could simply unbind them all and
3289 	 * rebind with the correct cache-level on next use. However since
3290 	 * we already have a valid slot, dma mapping, pages etc, we may as
3291 	 * rewrite the PTE in the belief that doing so tramples upon less
3292 	 * state and so involves less work.
3293 	 */
3294 	if (obj->bind_count) {
3295 		/* Before we change the PTE, the GPU must not be accessing it.
3296 		 * If we wait upon the object, we know that all the bound
3297 		 * VMA are no longer active.
3298 		 */
3299 		ret = i915_gem_object_wait(obj,
3300 					   I915_WAIT_INTERRUPTIBLE |
3301 					   I915_WAIT_LOCKED |
3302 					   I915_WAIT_ALL,
3303 					   MAX_SCHEDULE_TIMEOUT,
3304 					   NULL);
3305 		if (ret)
3306 			return ret;
3307 
3308 		if (!HAS_LLC(to_i915(obj->base.dev)) &&
3309 		    cache_level != I915_CACHE_NONE) {
3310 			/* Access to snoopable pages through the GTT is
3311 			 * incoherent and on some machines causes a hard
3312 			 * lockup. Relinquish the CPU mmaping to force
3313 			 * userspace to refault in the pages and we can
3314 			 * then double check if the GTT mapping is still
3315 			 * valid for that pointer access.
3316 			 */
3317 			i915_gem_release_mmap(obj);
3318 
3319 			/* As we no longer need a fence for GTT access,
3320 			 * we can relinquish it now (and so prevent having
3321 			 * to steal a fence from someone else on the next
3322 			 * fence request). Note GPU activity would have
3323 			 * dropped the fence as all snoopable access is
3324 			 * supposed to be linear.
3325 			 */
3326 			list_for_each_entry(vma, &obj->vma_list, obj_link) {
3327 				ret = i915_vma_put_fence(vma);
3328 				if (ret)
3329 					return ret;
3330 			}
3331 		} else {
3332 			/* We either have incoherent backing store and
3333 			 * so no GTT access or the architecture is fully
3334 			 * coherent. In such cases, existing GTT mmaps
3335 			 * ignore the cache bit in the PTE and we can
3336 			 * rewrite it without confusing the GPU or having
3337 			 * to force userspace to fault back in its mmaps.
3338 			 */
3339 		}
3340 
3341 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3342 			if (!drm_mm_node_allocated(&vma->node))
3343 				continue;
3344 
3345 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3346 			if (ret)
3347 				return ret;
3348 		}
3349 	}
3350 
3351 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3352 	    cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3353 		obj->cache_dirty = true;
3354 
3355 	list_for_each_entry(vma, &obj->vma_list, obj_link)
3356 		vma->node.color = cache_level;
3357 	obj->cache_level = cache_level;
3358 
3359 	return 0;
3360 }
3361 
3362 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3363 			       struct drm_file *file)
3364 {
3365 	struct drm_i915_gem_caching *args = data;
3366 	struct drm_i915_gem_object *obj;
3367 	int err = 0;
3368 
3369 	rcu_read_lock();
3370 	obj = i915_gem_object_lookup_rcu(file, args->handle);
3371 	if (!obj) {
3372 		err = -ENOENT;
3373 		goto out;
3374 	}
3375 
3376 	switch (obj->cache_level) {
3377 	case I915_CACHE_LLC:
3378 	case I915_CACHE_L3_LLC:
3379 		args->caching = I915_CACHING_CACHED;
3380 		break;
3381 
3382 	case I915_CACHE_WT:
3383 		args->caching = I915_CACHING_DISPLAY;
3384 		break;
3385 
3386 	default:
3387 		args->caching = I915_CACHING_NONE;
3388 		break;
3389 	}
3390 out:
3391 	rcu_read_unlock();
3392 	return err;
3393 }
3394 
3395 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3396 			       struct drm_file *file)
3397 {
3398 	struct drm_i915_private *i915 = to_i915(dev);
3399 	struct drm_i915_gem_caching *args = data;
3400 	struct drm_i915_gem_object *obj;
3401 	enum i915_cache_level level;
3402 	int ret = 0;
3403 
3404 	switch (args->caching) {
3405 	case I915_CACHING_NONE:
3406 		level = I915_CACHE_NONE;
3407 		break;
3408 	case I915_CACHING_CACHED:
3409 		/*
3410 		 * Due to a HW issue on BXT A stepping, GPU stores via a
3411 		 * snooped mapping may leave stale data in a corresponding CPU
3412 		 * cacheline, whereas normally such cachelines would get
3413 		 * invalidated.
3414 		 */
3415 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3416 			return -ENODEV;
3417 
3418 		level = I915_CACHE_LLC;
3419 		break;
3420 	case I915_CACHING_DISPLAY:
3421 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3422 		break;
3423 	default:
3424 		return -EINVAL;
3425 	}
3426 
3427 	obj = i915_gem_object_lookup(file, args->handle);
3428 	if (!obj)
3429 		return -ENOENT;
3430 
3431 	if (obj->cache_level == level)
3432 		goto out;
3433 
3434 	ret = i915_gem_object_wait(obj,
3435 				   I915_WAIT_INTERRUPTIBLE,
3436 				   MAX_SCHEDULE_TIMEOUT,
3437 				   to_rps_client(file));
3438 	if (ret)
3439 		goto out;
3440 
3441 	ret = i915_mutex_lock_interruptible(dev);
3442 	if (ret)
3443 		goto out;
3444 
3445 	ret = i915_gem_object_set_cache_level(obj, level);
3446 	mutex_unlock(&dev->struct_mutex);
3447 
3448 out:
3449 	i915_gem_object_put(obj);
3450 	return ret;
3451 }
3452 
3453 /*
3454  * Prepare buffer for display plane (scanout, cursors, etc).
3455  * Can be called from an uninterruptible phase (modesetting) and allows
3456  * any flushes to be pipelined (for pageflips).
3457  */
3458 struct i915_vma *
3459 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3460 				     u32 alignment,
3461 				     const struct i915_ggtt_view *view)
3462 {
3463 	struct i915_vma *vma;
3464 	u32 old_read_domains, old_write_domain;
3465 	int ret;
3466 
3467 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3468 
3469 	/* Mark the pin_display early so that we account for the
3470 	 * display coherency whilst setting up the cache domains.
3471 	 */
3472 	obj->pin_display++;
3473 
3474 	/* The display engine is not coherent with the LLC cache on gen6.  As
3475 	 * a result, we make sure that the pinning that is about to occur is
3476 	 * done with uncached PTEs. This is lowest common denominator for all
3477 	 * chipsets.
3478 	 *
3479 	 * However for gen6+, we could do better by using the GFDT bit instead
3480 	 * of uncaching, which would allow us to flush all the LLC-cached data
3481 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3482 	 */
3483 	ret = i915_gem_object_set_cache_level(obj,
3484 					      HAS_WT(to_i915(obj->base.dev)) ?
3485 					      I915_CACHE_WT : I915_CACHE_NONE);
3486 	if (ret) {
3487 		vma = ERR_PTR(ret);
3488 		goto err_unpin_display;
3489 	}
3490 
3491 	/* As the user may map the buffer once pinned in the display plane
3492 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3493 	 * always use map_and_fenceable for all scanout buffers. However,
3494 	 * it may simply be too big to fit into mappable, in which case
3495 	 * put it anyway and hope that userspace can cope (but always first
3496 	 * try to preserve the existing ABI).
3497 	 */
3498 	vma = ERR_PTR(-ENOSPC);
3499 	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3500 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3501 					       PIN_MAPPABLE | PIN_NONBLOCK);
3502 	if (IS_ERR(vma)) {
3503 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3504 		unsigned int flags;
3505 
3506 		/* Valleyview is definitely limited to scanning out the first
3507 		 * 512MiB. Lets presume this behaviour was inherited from the
3508 		 * g4x display engine and that all earlier gen are similarly
3509 		 * limited. Testing suggests that it is a little more
3510 		 * complicated than this. For example, Cherryview appears quite
3511 		 * happy to scanout from anywhere within its global aperture.
3512 		 */
3513 		flags = 0;
3514 		if (HAS_GMCH_DISPLAY(i915))
3515 			flags = PIN_MAPPABLE;
3516 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3517 	}
3518 	if (IS_ERR(vma))
3519 		goto err_unpin_display;
3520 
3521 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3522 
3523 	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3524 	if (obj->cache_dirty || obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3525 		i915_gem_clflush_object(obj, true);
3526 		intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
3527 	}
3528 
3529 	old_write_domain = obj->base.write_domain;
3530 	old_read_domains = obj->base.read_domains;
3531 
3532 	/* It should now be out of any other write domains, and we can update
3533 	 * the domain values for our changes.
3534 	 */
3535 	obj->base.write_domain = 0;
3536 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3537 
3538 	trace_i915_gem_object_change_domain(obj,
3539 					    old_read_domains,
3540 					    old_write_domain);
3541 
3542 	return vma;
3543 
3544 err_unpin_display:
3545 	obj->pin_display--;
3546 	return vma;
3547 }
3548 
3549 void
3550 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3551 {
3552 	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3553 
3554 	if (WARN_ON(vma->obj->pin_display == 0))
3555 		return;
3556 
3557 	if (--vma->obj->pin_display == 0)
3558 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3559 
3560 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3561 	i915_gem_object_bump_inactive_ggtt(vma->obj);
3562 
3563 	i915_vma_unpin(vma);
3564 }
3565 
3566 /**
3567  * Moves a single object to the CPU read, and possibly write domain.
3568  * @obj: object to act on
3569  * @write: requesting write or read-only access
3570  *
3571  * This function returns when the move is complete, including waiting on
3572  * flushes to occur.
3573  */
3574 int
3575 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3576 {
3577 	uint32_t old_write_domain, old_read_domains;
3578 	int ret;
3579 
3580 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3581 
3582 	ret = i915_gem_object_wait(obj,
3583 				   I915_WAIT_INTERRUPTIBLE |
3584 				   I915_WAIT_LOCKED |
3585 				   (write ? I915_WAIT_ALL : 0),
3586 				   MAX_SCHEDULE_TIMEOUT,
3587 				   NULL);
3588 	if (ret)
3589 		return ret;
3590 
3591 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3592 		return 0;
3593 
3594 	i915_gem_object_flush_gtt_write_domain(obj);
3595 
3596 	old_write_domain = obj->base.write_domain;
3597 	old_read_domains = obj->base.read_domains;
3598 
3599 	/* Flush the CPU cache if it's still invalid. */
3600 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3601 		i915_gem_clflush_object(obj, false);
3602 
3603 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3604 	}
3605 
3606 	/* It should now be out of any other write domains, and we can update
3607 	 * the domain values for our changes.
3608 	 */
3609 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3610 
3611 	/* If we're writing through the CPU, then the GPU read domains will
3612 	 * need to be invalidated at next use.
3613 	 */
3614 	if (write) {
3615 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3616 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3617 	}
3618 
3619 	trace_i915_gem_object_change_domain(obj,
3620 					    old_read_domains,
3621 					    old_write_domain);
3622 
3623 	return 0;
3624 }
3625 
3626 /* Throttle our rendering by waiting until the ring has completed our requests
3627  * emitted over 20 msec ago.
3628  *
3629  * Note that if we were to use the current jiffies each time around the loop,
3630  * we wouldn't escape the function with any frames outstanding if the time to
3631  * render a frame was over 20ms.
3632  *
3633  * This should get us reasonable parallelism between CPU and GPU but also
3634  * relatively low latency when blocking on a particular request to finish.
3635  */
3636 static int
3637 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3638 {
3639 	struct drm_i915_private *dev_priv = to_i915(dev);
3640 	struct drm_i915_file_private *file_priv = file->driver_priv;
3641 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3642 	struct drm_i915_gem_request *request, *target = NULL;
3643 	long ret;
3644 
3645 	/* ABI: return -EIO if already wedged */
3646 	if (i915_terminally_wedged(&dev_priv->gpu_error))
3647 		return -EIO;
3648 
3649 	spin_lock(&file_priv->mm.lock);
3650 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3651 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3652 			break;
3653 
3654 		/*
3655 		 * Note that the request might not have been submitted yet.
3656 		 * In which case emitted_jiffies will be zero.
3657 		 */
3658 		if (!request->emitted_jiffies)
3659 			continue;
3660 
3661 		target = request;
3662 	}
3663 	if (target)
3664 		i915_gem_request_get(target);
3665 	spin_unlock(&file_priv->mm.lock);
3666 
3667 	if (target == NULL)
3668 		return 0;
3669 
3670 	ret = i915_wait_request(target,
3671 				I915_WAIT_INTERRUPTIBLE,
3672 				MAX_SCHEDULE_TIMEOUT);
3673 	i915_gem_request_put(target);
3674 
3675 	return ret < 0 ? ret : 0;
3676 }
3677 
3678 struct i915_vma *
3679 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3680 			 const struct i915_ggtt_view *view,
3681 			 u64 size,
3682 			 u64 alignment,
3683 			 u64 flags)
3684 {
3685 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3686 	struct i915_address_space *vm = &dev_priv->ggtt.base;
3687 	struct i915_vma *vma;
3688 	int ret;
3689 
3690 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3691 
3692 	vma = i915_vma_instance(obj, vm, view);
3693 	if (unlikely(IS_ERR(vma)))
3694 		return vma;
3695 
3696 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
3697 		if (flags & PIN_NONBLOCK &&
3698 		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3699 			return ERR_PTR(-ENOSPC);
3700 
3701 		if (flags & PIN_MAPPABLE) {
3702 			/* If the required space is larger than the available
3703 			 * aperture, we will not able to find a slot for the
3704 			 * object and unbinding the object now will be in
3705 			 * vain. Worse, doing so may cause us to ping-pong
3706 			 * the object in and out of the Global GTT and
3707 			 * waste a lot of cycles under the mutex.
3708 			 */
3709 			if (vma->fence_size > dev_priv->ggtt.mappable_end)
3710 				return ERR_PTR(-E2BIG);
3711 
3712 			/* If NONBLOCK is set the caller is optimistically
3713 			 * trying to cache the full object within the mappable
3714 			 * aperture, and *must* have a fallback in place for
3715 			 * situations where we cannot bind the object. We
3716 			 * can be a little more lax here and use the fallback
3717 			 * more often to avoid costly migrations of ourselves
3718 			 * and other objects within the aperture.
3719 			 *
3720 			 * Half-the-aperture is used as a simple heuristic.
3721 			 * More interesting would to do search for a free
3722 			 * block prior to making the commitment to unbind.
3723 			 * That caters for the self-harm case, and with a
3724 			 * little more heuristics (e.g. NOFAULT, NOEVICT)
3725 			 * we could try to minimise harm to others.
3726 			 */
3727 			if (flags & PIN_NONBLOCK &&
3728 			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3729 				return ERR_PTR(-ENOSPC);
3730 		}
3731 
3732 		WARN(i915_vma_is_pinned(vma),
3733 		     "bo is already pinned in ggtt with incorrect alignment:"
3734 		     " offset=%08x, req.alignment=%llx,"
3735 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3736 		     i915_ggtt_offset(vma), alignment,
3737 		     !!(flags & PIN_MAPPABLE),
3738 		     i915_vma_is_map_and_fenceable(vma));
3739 		ret = i915_vma_unbind(vma);
3740 		if (ret)
3741 			return ERR_PTR(ret);
3742 	}
3743 
3744 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3745 	if (ret)
3746 		return ERR_PTR(ret);
3747 
3748 	return vma;
3749 }
3750 
3751 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3752 {
3753 	/* Note that we could alias engines in the execbuf API, but
3754 	 * that would be very unwise as it prevents userspace from
3755 	 * fine control over engine selection. Ahem.
3756 	 *
3757 	 * This should be something like EXEC_MAX_ENGINE instead of
3758 	 * I915_NUM_ENGINES.
3759 	 */
3760 	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3761 	return 0x10000 << id;
3762 }
3763 
3764 static __always_inline unsigned int __busy_write_id(unsigned int id)
3765 {
3766 	/* The uABI guarantees an active writer is also amongst the read
3767 	 * engines. This would be true if we accessed the activity tracking
3768 	 * under the lock, but as we perform the lookup of the object and
3769 	 * its activity locklessly we can not guarantee that the last_write
3770 	 * being active implies that we have set the same engine flag from
3771 	 * last_read - hence we always set both read and write busy for
3772 	 * last_write.
3773 	 */
3774 	return id | __busy_read_flag(id);
3775 }
3776 
3777 static __always_inline unsigned int
3778 __busy_set_if_active(const struct dma_fence *fence,
3779 		     unsigned int (*flag)(unsigned int id))
3780 {
3781 	struct drm_i915_gem_request *rq;
3782 
3783 	/* We have to check the current hw status of the fence as the uABI
3784 	 * guarantees forward progress. We could rely on the idle worker
3785 	 * to eventually flush us, but to minimise latency just ask the
3786 	 * hardware.
3787 	 *
3788 	 * Note we only report on the status of native fences.
3789 	 */
3790 	if (!dma_fence_is_i915(fence))
3791 		return 0;
3792 
3793 	/* opencode to_request() in order to avoid const warnings */
3794 	rq = container_of(fence, struct drm_i915_gem_request, fence);
3795 	if (i915_gem_request_completed(rq))
3796 		return 0;
3797 
3798 	return flag(rq->engine->exec_id);
3799 }
3800 
3801 static __always_inline unsigned int
3802 busy_check_reader(const struct dma_fence *fence)
3803 {
3804 	return __busy_set_if_active(fence, __busy_read_flag);
3805 }
3806 
3807 static __always_inline unsigned int
3808 busy_check_writer(const struct dma_fence *fence)
3809 {
3810 	if (!fence)
3811 		return 0;
3812 
3813 	return __busy_set_if_active(fence, __busy_write_id);
3814 }
3815 
3816 int
3817 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3818 		    struct drm_file *file)
3819 {
3820 	struct drm_i915_gem_busy *args = data;
3821 	struct drm_i915_gem_object *obj;
3822 	struct reservation_object_list *list;
3823 	unsigned int seq;
3824 	int err;
3825 
3826 	err = -ENOENT;
3827 	rcu_read_lock();
3828 	obj = i915_gem_object_lookup_rcu(file, args->handle);
3829 	if (!obj)
3830 		goto out;
3831 
3832 	/* A discrepancy here is that we do not report the status of
3833 	 * non-i915 fences, i.e. even though we may report the object as idle,
3834 	 * a call to set-domain may still stall waiting for foreign rendering.
3835 	 * This also means that wait-ioctl may report an object as busy,
3836 	 * where busy-ioctl considers it idle.
3837 	 *
3838 	 * We trade the ability to warn of foreign fences to report on which
3839 	 * i915 engines are active for the object.
3840 	 *
3841 	 * Alternatively, we can trade that extra information on read/write
3842 	 * activity with
3843 	 *	args->busy =
3844 	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
3845 	 * to report the overall busyness. This is what the wait-ioctl does.
3846 	 *
3847 	 */
3848 retry:
3849 	seq = raw_read_seqcount(&obj->resv->seq);
3850 
3851 	/* Translate the exclusive fence to the READ *and* WRITE engine */
3852 	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3853 
3854 	/* Translate shared fences to READ set of engines */
3855 	list = rcu_dereference(obj->resv->fence);
3856 	if (list) {
3857 		unsigned int shared_count = list->shared_count, i;
3858 
3859 		for (i = 0; i < shared_count; ++i) {
3860 			struct dma_fence *fence =
3861 				rcu_dereference(list->shared[i]);
3862 
3863 			args->busy |= busy_check_reader(fence);
3864 		}
3865 	}
3866 
3867 	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3868 		goto retry;
3869 
3870 	err = 0;
3871 out:
3872 	rcu_read_unlock();
3873 	return err;
3874 }
3875 
3876 int
3877 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3878 			struct drm_file *file_priv)
3879 {
3880 	return i915_gem_ring_throttle(dev, file_priv);
3881 }
3882 
3883 int
3884 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3885 		       struct drm_file *file_priv)
3886 {
3887 	struct drm_i915_private *dev_priv = to_i915(dev);
3888 	struct drm_i915_gem_madvise *args = data;
3889 	struct drm_i915_gem_object *obj;
3890 	int err;
3891 
3892 	switch (args->madv) {
3893 	case I915_MADV_DONTNEED:
3894 	case I915_MADV_WILLNEED:
3895 	    break;
3896 	default:
3897 	    return -EINVAL;
3898 	}
3899 
3900 	obj = i915_gem_object_lookup(file_priv, args->handle);
3901 	if (!obj)
3902 		return -ENOENT;
3903 
3904 	err = mutex_lock_interruptible(&obj->mm.lock);
3905 	if (err)
3906 		goto out;
3907 
3908 	if (obj->mm.pages &&
3909 	    i915_gem_object_is_tiled(obj) &&
3910 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3911 		if (obj->mm.madv == I915_MADV_WILLNEED) {
3912 			GEM_BUG_ON(!obj->mm.quirked);
3913 			__i915_gem_object_unpin_pages(obj);
3914 			obj->mm.quirked = false;
3915 		}
3916 		if (args->madv == I915_MADV_WILLNEED) {
3917 			GEM_BUG_ON(obj->mm.quirked);
3918 			__i915_gem_object_pin_pages(obj);
3919 			obj->mm.quirked = true;
3920 		}
3921 	}
3922 
3923 	if (obj->mm.madv != __I915_MADV_PURGED)
3924 		obj->mm.madv = args->madv;
3925 
3926 	/* if the object is no longer attached, discard its backing storage */
3927 	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3928 		i915_gem_object_truncate(obj);
3929 
3930 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
3931 	mutex_unlock(&obj->mm.lock);
3932 
3933 out:
3934 	i915_gem_object_put(obj);
3935 	return err;
3936 }
3937 
3938 static void
3939 frontbuffer_retire(struct i915_gem_active *active,
3940 		   struct drm_i915_gem_request *request)
3941 {
3942 	struct drm_i915_gem_object *obj =
3943 		container_of(active, typeof(*obj), frontbuffer_write);
3944 
3945 	intel_fb_obj_flush(obj, true, ORIGIN_CS);
3946 }
3947 
3948 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3949 			  const struct drm_i915_gem_object_ops *ops)
3950 {
3951 	mutex_init(&obj->mm.lock);
3952 
3953 	INIT_LIST_HEAD(&obj->global_link);
3954 	INIT_LIST_HEAD(&obj->userfault_link);
3955 	INIT_LIST_HEAD(&obj->obj_exec_link);
3956 	INIT_LIST_HEAD(&obj->vma_list);
3957 	INIT_LIST_HEAD(&obj->batch_pool_link);
3958 
3959 	obj->ops = ops;
3960 
3961 	reservation_object_init(&obj->__builtin_resv);
3962 	obj->resv = &obj->__builtin_resv;
3963 
3964 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3965 	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
3966 
3967 	obj->mm.madv = I915_MADV_WILLNEED;
3968 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
3969 	mutex_init(&obj->mm.get_page.lock);
3970 
3971 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3972 }
3973 
3974 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3975 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
3976 		 I915_GEM_OBJECT_IS_SHRINKABLE,
3977 	.get_pages = i915_gem_object_get_pages_gtt,
3978 	.put_pages = i915_gem_object_put_pages_gtt,
3979 };
3980 
3981 struct drm_i915_gem_object *
3982 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
3983 {
3984 	struct drm_i915_gem_object *obj;
3985 	struct address_space *mapping;
3986 	gfp_t mask;
3987 	int ret;
3988 
3989 	/* There is a prevalence of the assumption that we fit the object's
3990 	 * page count inside a 32bit _signed_ variable. Let's document this and
3991 	 * catch if we ever need to fix it. In the meantime, if you do spot
3992 	 * such a local variable, please consider fixing!
3993 	 */
3994 	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
3995 		return ERR_PTR(-E2BIG);
3996 
3997 	if (overflows_type(size, obj->base.size))
3998 		return ERR_PTR(-E2BIG);
3999 
4000 	obj = i915_gem_object_alloc(dev_priv);
4001 	if (obj == NULL)
4002 		return ERR_PTR(-ENOMEM);
4003 
4004 	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4005 	if (ret)
4006 		goto fail;
4007 
4008 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4009 	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4010 		/* 965gm cannot relocate objects above 4GiB. */
4011 		mask &= ~__GFP_HIGHMEM;
4012 		mask |= __GFP_DMA32;
4013 	}
4014 
4015 	mapping = obj->base.filp->f_mapping;
4016 	mapping_set_gfp_mask(mapping, mask);
4017 
4018 	i915_gem_object_init(obj, &i915_gem_object_ops);
4019 
4020 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4021 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4022 
4023 	if (HAS_LLC(dev_priv)) {
4024 		/* On some devices, we can have the GPU use the LLC (the CPU
4025 		 * cache) for about a 10% performance improvement
4026 		 * compared to uncached.  Graphics requests other than
4027 		 * display scanout are coherent with the CPU in
4028 		 * accessing this cache.  This means in this mode we
4029 		 * don't need to clflush on the CPU side, and on the
4030 		 * GPU side we only need to flush internal caches to
4031 		 * get data visible to the CPU.
4032 		 *
4033 		 * However, we maintain the display planes as UC, and so
4034 		 * need to rebind when first used as such.
4035 		 */
4036 		obj->cache_level = I915_CACHE_LLC;
4037 	} else
4038 		obj->cache_level = I915_CACHE_NONE;
4039 
4040 	trace_i915_gem_object_create(obj);
4041 
4042 	return obj;
4043 
4044 fail:
4045 	i915_gem_object_free(obj);
4046 	return ERR_PTR(ret);
4047 }
4048 
4049 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4050 {
4051 	/* If we are the last user of the backing storage (be it shmemfs
4052 	 * pages or stolen etc), we know that the pages are going to be
4053 	 * immediately released. In this case, we can then skip copying
4054 	 * back the contents from the GPU.
4055 	 */
4056 
4057 	if (obj->mm.madv != I915_MADV_WILLNEED)
4058 		return false;
4059 
4060 	if (obj->base.filp == NULL)
4061 		return true;
4062 
4063 	/* At first glance, this looks racy, but then again so would be
4064 	 * userspace racing mmap against close. However, the first external
4065 	 * reference to the filp can only be obtained through the
4066 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4067 	 * acquiring such a reference whilst we are in the middle of
4068 	 * freeing the object.
4069 	 */
4070 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4071 }
4072 
4073 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4074 				    struct llist_node *freed)
4075 {
4076 	struct drm_i915_gem_object *obj, *on;
4077 
4078 	mutex_lock(&i915->drm.struct_mutex);
4079 	intel_runtime_pm_get(i915);
4080 	llist_for_each_entry(obj, freed, freed) {
4081 		struct i915_vma *vma, *vn;
4082 
4083 		trace_i915_gem_object_destroy(obj);
4084 
4085 		GEM_BUG_ON(i915_gem_object_is_active(obj));
4086 		list_for_each_entry_safe(vma, vn,
4087 					 &obj->vma_list, obj_link) {
4088 			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4089 			GEM_BUG_ON(i915_vma_is_active(vma));
4090 			vma->flags &= ~I915_VMA_PIN_MASK;
4091 			i915_vma_close(vma);
4092 		}
4093 		GEM_BUG_ON(!list_empty(&obj->vma_list));
4094 		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4095 
4096 		list_del(&obj->global_link);
4097 	}
4098 	intel_runtime_pm_put(i915);
4099 	mutex_unlock(&i915->drm.struct_mutex);
4100 
4101 	llist_for_each_entry_safe(obj, on, freed, freed) {
4102 		GEM_BUG_ON(obj->bind_count);
4103 		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4104 
4105 		if (obj->ops->release)
4106 			obj->ops->release(obj);
4107 
4108 		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4109 			atomic_set(&obj->mm.pages_pin_count, 0);
4110 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4111 		GEM_BUG_ON(obj->mm.pages);
4112 
4113 		if (obj->base.import_attach)
4114 			drm_prime_gem_destroy(&obj->base, NULL);
4115 
4116 		reservation_object_fini(&obj->__builtin_resv);
4117 		drm_gem_object_release(&obj->base);
4118 		i915_gem_info_remove_obj(i915, obj->base.size);
4119 
4120 		kfree(obj->bit_17);
4121 		i915_gem_object_free(obj);
4122 	}
4123 }
4124 
4125 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4126 {
4127 	struct llist_node *freed;
4128 
4129 	freed = llist_del_all(&i915->mm.free_list);
4130 	if (unlikely(freed))
4131 		__i915_gem_free_objects(i915, freed);
4132 }
4133 
4134 static void __i915_gem_free_work(struct work_struct *work)
4135 {
4136 	struct drm_i915_private *i915 =
4137 		container_of(work, struct drm_i915_private, mm.free_work);
4138 	struct llist_node *freed;
4139 
4140 	/* All file-owned VMA should have been released by this point through
4141 	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4142 	 * However, the object may also be bound into the global GTT (e.g.
4143 	 * older GPUs without per-process support, or for direct access through
4144 	 * the GTT either for the user or for scanout). Those VMA still need to
4145 	 * unbound now.
4146 	 */
4147 
4148 	while ((freed = llist_del_all(&i915->mm.free_list)))
4149 		__i915_gem_free_objects(i915, freed);
4150 }
4151 
4152 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4153 {
4154 	struct drm_i915_gem_object *obj =
4155 		container_of(head, typeof(*obj), rcu);
4156 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4157 
4158 	/* We can't simply use call_rcu() from i915_gem_free_object()
4159 	 * as we need to block whilst unbinding, and the call_rcu
4160 	 * task may be called from softirq context. So we take a
4161 	 * detour through a worker.
4162 	 */
4163 	if (llist_add(&obj->freed, &i915->mm.free_list))
4164 		schedule_work(&i915->mm.free_work);
4165 }
4166 
4167 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4168 {
4169 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4170 
4171 	if (obj->mm.quirked)
4172 		__i915_gem_object_unpin_pages(obj);
4173 
4174 	if (discard_backing_storage(obj))
4175 		obj->mm.madv = I915_MADV_DONTNEED;
4176 
4177 	/* Before we free the object, make sure any pure RCU-only
4178 	 * read-side critical sections are complete, e.g.
4179 	 * i915_gem_busy_ioctl(). For the corresponding synchronized
4180 	 * lookup see i915_gem_object_lookup_rcu().
4181 	 */
4182 	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4183 }
4184 
4185 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4186 {
4187 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4188 
4189 	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4190 	if (i915_gem_object_is_active(obj))
4191 		i915_gem_object_set_active_reference(obj);
4192 	else
4193 		i915_gem_object_put(obj);
4194 }
4195 
4196 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4197 {
4198 	struct intel_engine_cs *engine;
4199 	enum intel_engine_id id;
4200 
4201 	for_each_engine(engine, dev_priv, id)
4202 		GEM_BUG_ON(engine->last_retired_context &&
4203 			   !i915_gem_context_is_kernel(engine->last_retired_context));
4204 }
4205 
4206 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4207 {
4208 	struct drm_device *dev = &dev_priv->drm;
4209 	int ret;
4210 
4211 	intel_suspend_gt_powersave(dev_priv);
4212 
4213 	mutex_lock(&dev->struct_mutex);
4214 
4215 	/* We have to flush all the executing contexts to main memory so
4216 	 * that they can saved in the hibernation image. To ensure the last
4217 	 * context image is coherent, we have to switch away from it. That
4218 	 * leaves the dev_priv->kernel_context still active when
4219 	 * we actually suspend, and its image in memory may not match the GPU
4220 	 * state. Fortunately, the kernel_context is disposable and we do
4221 	 * not rely on its state.
4222 	 */
4223 	ret = i915_gem_switch_to_kernel_context(dev_priv);
4224 	if (ret)
4225 		goto err;
4226 
4227 	ret = i915_gem_wait_for_idle(dev_priv,
4228 				     I915_WAIT_INTERRUPTIBLE |
4229 				     I915_WAIT_LOCKED);
4230 	if (ret)
4231 		goto err;
4232 
4233 	i915_gem_retire_requests(dev_priv);
4234 	GEM_BUG_ON(dev_priv->gt.active_requests);
4235 
4236 	assert_kernel_context_is_current(dev_priv);
4237 	i915_gem_context_lost(dev_priv);
4238 	mutex_unlock(&dev->struct_mutex);
4239 
4240 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4241 	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4242 
4243 	/* As the idle_work is rearming if it detects a race, play safe and
4244 	 * repeat the flush until it is definitely idle.
4245 	 */
4246 	while (flush_delayed_work(&dev_priv->gt.idle_work))
4247 		;
4248 
4249 	i915_gem_drain_freed_objects(dev_priv);
4250 
4251 	/* Assert that we sucessfully flushed all the work and
4252 	 * reset the GPU back to its idle, low power state.
4253 	 */
4254 	WARN_ON(dev_priv->gt.awake);
4255 	WARN_ON(!intel_execlists_idle(dev_priv));
4256 
4257 	/*
4258 	 * Neither the BIOS, ourselves or any other kernel
4259 	 * expects the system to be in execlists mode on startup,
4260 	 * so we need to reset the GPU back to legacy mode. And the only
4261 	 * known way to disable logical contexts is through a GPU reset.
4262 	 *
4263 	 * So in order to leave the system in a known default configuration,
4264 	 * always reset the GPU upon unload and suspend. Afterwards we then
4265 	 * clean up the GEM state tracking, flushing off the requests and
4266 	 * leaving the system in a known idle state.
4267 	 *
4268 	 * Note that is of the upmost importance that the GPU is idle and
4269 	 * all stray writes are flushed *before* we dismantle the backing
4270 	 * storage for the pinned objects.
4271 	 *
4272 	 * However, since we are uncertain that resetting the GPU on older
4273 	 * machines is a good idea, we don't - just in case it leaves the
4274 	 * machine in an unusable condition.
4275 	 */
4276 	if (HAS_HW_CONTEXTS(dev_priv)) {
4277 		int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4278 		WARN_ON(reset && reset != -ENODEV);
4279 	}
4280 
4281 	return 0;
4282 
4283 err:
4284 	mutex_unlock(&dev->struct_mutex);
4285 	return ret;
4286 }
4287 
4288 void i915_gem_resume(struct drm_i915_private *dev_priv)
4289 {
4290 	struct drm_device *dev = &dev_priv->drm;
4291 
4292 	WARN_ON(dev_priv->gt.awake);
4293 
4294 	mutex_lock(&dev->struct_mutex);
4295 	i915_gem_restore_gtt_mappings(dev_priv);
4296 
4297 	/* As we didn't flush the kernel context before suspend, we cannot
4298 	 * guarantee that the context image is complete. So let's just reset
4299 	 * it and start again.
4300 	 */
4301 	dev_priv->gt.resume(dev_priv);
4302 
4303 	mutex_unlock(&dev->struct_mutex);
4304 }
4305 
4306 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4307 {
4308 	if (INTEL_GEN(dev_priv) < 5 ||
4309 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4310 		return;
4311 
4312 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4313 				 DISP_TILE_SURFACE_SWIZZLING);
4314 
4315 	if (IS_GEN5(dev_priv))
4316 		return;
4317 
4318 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4319 	if (IS_GEN6(dev_priv))
4320 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4321 	else if (IS_GEN7(dev_priv))
4322 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4323 	else if (IS_GEN8(dev_priv))
4324 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4325 	else
4326 		BUG();
4327 }
4328 
4329 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4330 {
4331 	I915_WRITE(RING_CTL(base), 0);
4332 	I915_WRITE(RING_HEAD(base), 0);
4333 	I915_WRITE(RING_TAIL(base), 0);
4334 	I915_WRITE(RING_START(base), 0);
4335 }
4336 
4337 static void init_unused_rings(struct drm_i915_private *dev_priv)
4338 {
4339 	if (IS_I830(dev_priv)) {
4340 		init_unused_ring(dev_priv, PRB1_BASE);
4341 		init_unused_ring(dev_priv, SRB0_BASE);
4342 		init_unused_ring(dev_priv, SRB1_BASE);
4343 		init_unused_ring(dev_priv, SRB2_BASE);
4344 		init_unused_ring(dev_priv, SRB3_BASE);
4345 	} else if (IS_GEN2(dev_priv)) {
4346 		init_unused_ring(dev_priv, SRB0_BASE);
4347 		init_unused_ring(dev_priv, SRB1_BASE);
4348 	} else if (IS_GEN3(dev_priv)) {
4349 		init_unused_ring(dev_priv, PRB1_BASE);
4350 		init_unused_ring(dev_priv, PRB2_BASE);
4351 	}
4352 }
4353 
4354 int
4355 i915_gem_init_hw(struct drm_i915_private *dev_priv)
4356 {
4357 	struct intel_engine_cs *engine;
4358 	enum intel_engine_id id;
4359 	int ret;
4360 
4361 	dev_priv->gt.last_init_time = ktime_get();
4362 
4363 	/* Double layer security blanket, see i915_gem_init() */
4364 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4365 
4366 	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4367 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4368 
4369 	if (IS_HASWELL(dev_priv))
4370 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4371 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4372 
4373 	if (HAS_PCH_NOP(dev_priv)) {
4374 		if (IS_IVYBRIDGE(dev_priv)) {
4375 			u32 temp = I915_READ(GEN7_MSG_CTL);
4376 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4377 			I915_WRITE(GEN7_MSG_CTL, temp);
4378 		} else if (INTEL_GEN(dev_priv) >= 7) {
4379 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4380 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4381 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4382 		}
4383 	}
4384 
4385 	i915_gem_init_swizzling(dev_priv);
4386 
4387 	/*
4388 	 * At least 830 can leave some of the unused rings
4389 	 * "active" (ie. head != tail) after resume which
4390 	 * will prevent c3 entry. Makes sure all unused rings
4391 	 * are totally idle.
4392 	 */
4393 	init_unused_rings(dev_priv);
4394 
4395 	BUG_ON(!dev_priv->kernel_context);
4396 
4397 	ret = i915_ppgtt_init_hw(dev_priv);
4398 	if (ret) {
4399 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4400 		goto out;
4401 	}
4402 
4403 	/* Need to do basic initialisation of all rings first: */
4404 	for_each_engine(engine, dev_priv, id) {
4405 		ret = engine->init_hw(engine);
4406 		if (ret)
4407 			goto out;
4408 	}
4409 
4410 	intel_mocs_init_l3cc_table(dev_priv);
4411 
4412 	/* We can't enable contexts until all firmware is loaded */
4413 	ret = intel_guc_setup(dev_priv);
4414 	if (ret)
4415 		goto out;
4416 
4417 out:
4418 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4419 	return ret;
4420 }
4421 
4422 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4423 {
4424 	if (INTEL_INFO(dev_priv)->gen < 6)
4425 		return false;
4426 
4427 	/* TODO: make semaphores and Execlists play nicely together */
4428 	if (i915.enable_execlists)
4429 		return false;
4430 
4431 	if (value >= 0)
4432 		return value;
4433 
4434 #ifdef CONFIG_INTEL_IOMMU
4435 	/* Enable semaphores on SNB when IO remapping is off */
4436 	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4437 		return false;
4438 #endif
4439 
4440 	return true;
4441 }
4442 
4443 int i915_gem_init(struct drm_i915_private *dev_priv)
4444 {
4445 	int ret;
4446 
4447 	mutex_lock(&dev_priv->drm.struct_mutex);
4448 
4449 	if (!i915.enable_execlists) {
4450 		dev_priv->gt.resume = intel_legacy_submission_resume;
4451 		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4452 	} else {
4453 		dev_priv->gt.resume = intel_lr_context_resume;
4454 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4455 	}
4456 
4457 	/* This is just a security blanket to placate dragons.
4458 	 * On some systems, we very sporadically observe that the first TLBs
4459 	 * used by the CS may be stale, despite us poking the TLB reset. If
4460 	 * we hold the forcewake during initialisation these problems
4461 	 * just magically go away.
4462 	 */
4463 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4464 
4465 	i915_gem_init_userptr(dev_priv);
4466 
4467 	ret = i915_gem_init_ggtt(dev_priv);
4468 	if (ret)
4469 		goto out_unlock;
4470 
4471 	ret = i915_gem_context_init(dev_priv);
4472 	if (ret)
4473 		goto out_unlock;
4474 
4475 	ret = intel_engines_init(dev_priv);
4476 	if (ret)
4477 		goto out_unlock;
4478 
4479 	ret = i915_gem_init_hw(dev_priv);
4480 	if (ret == -EIO) {
4481 		/* Allow engine initialisation to fail by marking the GPU as
4482 		 * wedged. But we only want to do this where the GPU is angry,
4483 		 * for all other failure, such as an allocation failure, bail.
4484 		 */
4485 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4486 		i915_gem_set_wedged(dev_priv);
4487 		ret = 0;
4488 	}
4489 
4490 out_unlock:
4491 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4492 	mutex_unlock(&dev_priv->drm.struct_mutex);
4493 
4494 	return ret;
4495 }
4496 
4497 void
4498 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4499 {
4500 	struct intel_engine_cs *engine;
4501 	enum intel_engine_id id;
4502 
4503 	for_each_engine(engine, dev_priv, id)
4504 		dev_priv->gt.cleanup_engine(engine);
4505 }
4506 
4507 void
4508 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4509 {
4510 	int i;
4511 
4512 	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4513 	    !IS_CHERRYVIEW(dev_priv))
4514 		dev_priv->num_fence_regs = 32;
4515 	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4516 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4517 		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4518 		dev_priv->num_fence_regs = 16;
4519 	else
4520 		dev_priv->num_fence_regs = 8;
4521 
4522 	if (intel_vgpu_active(dev_priv))
4523 		dev_priv->num_fence_regs =
4524 				I915_READ(vgtif_reg(avail_rs.fence_num));
4525 
4526 	/* Initialize fence registers to zero */
4527 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
4528 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4529 
4530 		fence->i915 = dev_priv;
4531 		fence->id = i;
4532 		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4533 	}
4534 	i915_gem_restore_fences(dev_priv);
4535 
4536 	i915_gem_detect_bit_6_swizzle(dev_priv);
4537 }
4538 
4539 int
4540 i915_gem_load_init(struct drm_i915_private *dev_priv)
4541 {
4542 	int err = -ENOMEM;
4543 
4544 	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4545 	if (!dev_priv->objects)
4546 		goto err_out;
4547 
4548 	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4549 	if (!dev_priv->vmas)
4550 		goto err_objects;
4551 
4552 	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4553 					SLAB_HWCACHE_ALIGN |
4554 					SLAB_RECLAIM_ACCOUNT |
4555 					SLAB_DESTROY_BY_RCU);
4556 	if (!dev_priv->requests)
4557 		goto err_vmas;
4558 
4559 	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4560 					    SLAB_HWCACHE_ALIGN |
4561 					    SLAB_RECLAIM_ACCOUNT);
4562 	if (!dev_priv->dependencies)
4563 		goto err_requests;
4564 
4565 	mutex_lock(&dev_priv->drm.struct_mutex);
4566 	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4567 	err = i915_gem_timeline_init__global(dev_priv);
4568 	mutex_unlock(&dev_priv->drm.struct_mutex);
4569 	if (err)
4570 		goto err_dependencies;
4571 
4572 	INIT_LIST_HEAD(&dev_priv->context_list);
4573 	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4574 	init_llist_head(&dev_priv->mm.free_list);
4575 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4576 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4577 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4578 	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4579 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4580 			  i915_gem_retire_work_handler);
4581 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4582 			  i915_gem_idle_work_handler);
4583 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4584 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4585 
4586 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4587 
4588 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4589 
4590 	dev_priv->mm.interruptible = true;
4591 
4592 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4593 
4594 	spin_lock_init(&dev_priv->fb_tracking.lock);
4595 
4596 	return 0;
4597 
4598 err_dependencies:
4599 	kmem_cache_destroy(dev_priv->dependencies);
4600 err_requests:
4601 	kmem_cache_destroy(dev_priv->requests);
4602 err_vmas:
4603 	kmem_cache_destroy(dev_priv->vmas);
4604 err_objects:
4605 	kmem_cache_destroy(dev_priv->objects);
4606 err_out:
4607 	return err;
4608 }
4609 
4610 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4611 {
4612 	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4613 
4614 	mutex_lock(&dev_priv->drm.struct_mutex);
4615 	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4616 	WARN_ON(!list_empty(&dev_priv->gt.timelines));
4617 	mutex_unlock(&dev_priv->drm.struct_mutex);
4618 
4619 	kmem_cache_destroy(dev_priv->dependencies);
4620 	kmem_cache_destroy(dev_priv->requests);
4621 	kmem_cache_destroy(dev_priv->vmas);
4622 	kmem_cache_destroy(dev_priv->objects);
4623 
4624 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4625 	rcu_barrier();
4626 }
4627 
4628 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4629 {
4630 	intel_runtime_pm_get(dev_priv);
4631 
4632 	mutex_lock(&dev_priv->drm.struct_mutex);
4633 	i915_gem_shrink_all(dev_priv);
4634 	mutex_unlock(&dev_priv->drm.struct_mutex);
4635 
4636 	intel_runtime_pm_put(dev_priv);
4637 
4638 	return 0;
4639 }
4640 
4641 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4642 {
4643 	struct drm_i915_gem_object *obj;
4644 	struct list_head *phases[] = {
4645 		&dev_priv->mm.unbound_list,
4646 		&dev_priv->mm.bound_list,
4647 		NULL
4648 	}, **p;
4649 
4650 	/* Called just before we write the hibernation image.
4651 	 *
4652 	 * We need to update the domain tracking to reflect that the CPU
4653 	 * will be accessing all the pages to create and restore from the
4654 	 * hibernation, and so upon restoration those pages will be in the
4655 	 * CPU domain.
4656 	 *
4657 	 * To make sure the hibernation image contains the latest state,
4658 	 * we update that state just before writing out the image.
4659 	 *
4660 	 * To try and reduce the hibernation image, we manually shrink
4661 	 * the objects as well.
4662 	 */
4663 
4664 	mutex_lock(&dev_priv->drm.struct_mutex);
4665 	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4666 
4667 	for (p = phases; *p; p++) {
4668 		list_for_each_entry(obj, *p, global_link) {
4669 			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4670 			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4671 		}
4672 	}
4673 	mutex_unlock(&dev_priv->drm.struct_mutex);
4674 
4675 	return 0;
4676 }
4677 
4678 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4679 {
4680 	struct drm_i915_file_private *file_priv = file->driver_priv;
4681 	struct drm_i915_gem_request *request;
4682 
4683 	/* Clean up our request list when the client is going away, so that
4684 	 * later retire_requests won't dereference our soon-to-be-gone
4685 	 * file_priv.
4686 	 */
4687 	spin_lock(&file_priv->mm.lock);
4688 	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4689 		request->file_priv = NULL;
4690 	spin_unlock(&file_priv->mm.lock);
4691 
4692 	if (!list_empty(&file_priv->rps.link)) {
4693 		spin_lock(&to_i915(dev)->rps.client_lock);
4694 		list_del(&file_priv->rps.link);
4695 		spin_unlock(&to_i915(dev)->rps.client_lock);
4696 	}
4697 }
4698 
4699 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4700 {
4701 	struct drm_i915_file_private *file_priv;
4702 	int ret;
4703 
4704 	DRM_DEBUG("\n");
4705 
4706 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4707 	if (!file_priv)
4708 		return -ENOMEM;
4709 
4710 	file->driver_priv = file_priv;
4711 	file_priv->dev_priv = to_i915(dev);
4712 	file_priv->file = file;
4713 	INIT_LIST_HEAD(&file_priv->rps.link);
4714 
4715 	spin_lock_init(&file_priv->mm.lock);
4716 	INIT_LIST_HEAD(&file_priv->mm.request_list);
4717 
4718 	file_priv->bsd_engine = -1;
4719 
4720 	ret = i915_gem_context_open(dev, file);
4721 	if (ret)
4722 		kfree(file_priv);
4723 
4724 	return ret;
4725 }
4726 
4727 /**
4728  * i915_gem_track_fb - update frontbuffer tracking
4729  * @old: current GEM buffer for the frontbuffer slots
4730  * @new: new GEM buffer for the frontbuffer slots
4731  * @frontbuffer_bits: bitmask of frontbuffer slots
4732  *
4733  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4734  * from @old and setting them in @new. Both @old and @new can be NULL.
4735  */
4736 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4737 		       struct drm_i915_gem_object *new,
4738 		       unsigned frontbuffer_bits)
4739 {
4740 	/* Control of individual bits within the mask are guarded by
4741 	 * the owning plane->mutex, i.e. we can never see concurrent
4742 	 * manipulation of individual bits. But since the bitfield as a whole
4743 	 * is updated using RMW, we need to use atomics in order to update
4744 	 * the bits.
4745 	 */
4746 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4747 		     sizeof(atomic_t) * BITS_PER_BYTE);
4748 
4749 	if (old) {
4750 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4751 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4752 	}
4753 
4754 	if (new) {
4755 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4756 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4757 	}
4758 }
4759 
4760 /* Allocate a new GEM object and fill it with the supplied data */
4761 struct drm_i915_gem_object *
4762 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4763 			         const void *data, size_t size)
4764 {
4765 	struct drm_i915_gem_object *obj;
4766 	struct sg_table *sg;
4767 	size_t bytes;
4768 	int ret;
4769 
4770 	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4771 	if (IS_ERR(obj))
4772 		return obj;
4773 
4774 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
4775 	if (ret)
4776 		goto fail;
4777 
4778 	ret = i915_gem_object_pin_pages(obj);
4779 	if (ret)
4780 		goto fail;
4781 
4782 	sg = obj->mm.pages;
4783 	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4784 	obj->mm.dirty = true; /* Backing store is now out of date */
4785 	i915_gem_object_unpin_pages(obj);
4786 
4787 	if (WARN_ON(bytes != size)) {
4788 		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4789 		ret = -EFAULT;
4790 		goto fail;
4791 	}
4792 
4793 	return obj;
4794 
4795 fail:
4796 	i915_gem_object_put(obj);
4797 	return ERR_PTR(ret);
4798 }
4799 
4800 struct scatterlist *
4801 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4802 		       unsigned int n,
4803 		       unsigned int *offset)
4804 {
4805 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4806 	struct scatterlist *sg;
4807 	unsigned int idx, count;
4808 
4809 	might_sleep();
4810 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
4811 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4812 
4813 	/* As we iterate forward through the sg, we record each entry in a
4814 	 * radixtree for quick repeated (backwards) lookups. If we have seen
4815 	 * this index previously, we will have an entry for it.
4816 	 *
4817 	 * Initial lookup is O(N), but this is amortized to O(1) for
4818 	 * sequential page access (where each new request is consecutive
4819 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4820 	 * i.e. O(1) with a large constant!
4821 	 */
4822 	if (n < READ_ONCE(iter->sg_idx))
4823 		goto lookup;
4824 
4825 	mutex_lock(&iter->lock);
4826 
4827 	/* We prefer to reuse the last sg so that repeated lookup of this
4828 	 * (or the subsequent) sg are fast - comparing against the last
4829 	 * sg is faster than going through the radixtree.
4830 	 */
4831 
4832 	sg = iter->sg_pos;
4833 	idx = iter->sg_idx;
4834 	count = __sg_page_count(sg);
4835 
4836 	while (idx + count <= n) {
4837 		unsigned long exception, i;
4838 		int ret;
4839 
4840 		/* If we cannot allocate and insert this entry, or the
4841 		 * individual pages from this range, cancel updating the
4842 		 * sg_idx so that on this lookup we are forced to linearly
4843 		 * scan onwards, but on future lookups we will try the
4844 		 * insertion again (in which case we need to be careful of
4845 		 * the error return reporting that we have already inserted
4846 		 * this index).
4847 		 */
4848 		ret = radix_tree_insert(&iter->radix, idx, sg);
4849 		if (ret && ret != -EEXIST)
4850 			goto scan;
4851 
4852 		exception =
4853 			RADIX_TREE_EXCEPTIONAL_ENTRY |
4854 			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4855 		for (i = 1; i < count; i++) {
4856 			ret = radix_tree_insert(&iter->radix, idx + i,
4857 						(void *)exception);
4858 			if (ret && ret != -EEXIST)
4859 				goto scan;
4860 		}
4861 
4862 		idx += count;
4863 		sg = ____sg_next(sg);
4864 		count = __sg_page_count(sg);
4865 	}
4866 
4867 scan:
4868 	iter->sg_pos = sg;
4869 	iter->sg_idx = idx;
4870 
4871 	mutex_unlock(&iter->lock);
4872 
4873 	if (unlikely(n < idx)) /* insertion completed by another thread */
4874 		goto lookup;
4875 
4876 	/* In case we failed to insert the entry into the radixtree, we need
4877 	 * to look beyond the current sg.
4878 	 */
4879 	while (idx + count <= n) {
4880 		idx += count;
4881 		sg = ____sg_next(sg);
4882 		count = __sg_page_count(sg);
4883 	}
4884 
4885 	*offset = n - idx;
4886 	return sg;
4887 
4888 lookup:
4889 	rcu_read_lock();
4890 
4891 	sg = radix_tree_lookup(&iter->radix, n);
4892 	GEM_BUG_ON(!sg);
4893 
4894 	/* If this index is in the middle of multi-page sg entry,
4895 	 * the radixtree will contain an exceptional entry that points
4896 	 * to the start of that range. We will return the pointer to
4897 	 * the base page and the offset of this page within the
4898 	 * sg entry's range.
4899 	 */
4900 	*offset = 0;
4901 	if (unlikely(radix_tree_exception(sg))) {
4902 		unsigned long base =
4903 			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
4904 
4905 		sg = radix_tree_lookup(&iter->radix, base);
4906 		GEM_BUG_ON(!sg);
4907 
4908 		*offset = n - base;
4909 	}
4910 
4911 	rcu_read_unlock();
4912 
4913 	return sg;
4914 }
4915 
4916 struct page *
4917 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
4918 {
4919 	struct scatterlist *sg;
4920 	unsigned int offset;
4921 
4922 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
4923 
4924 	sg = i915_gem_object_get_sg(obj, n, &offset);
4925 	return nth_page(sg_page(sg), offset);
4926 }
4927 
4928 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
4929 struct page *
4930 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
4931 			       unsigned int n)
4932 {
4933 	struct page *page;
4934 
4935 	page = i915_gem_object_get_page(obj, n);
4936 	if (!obj->mm.dirty)
4937 		set_page_dirty(page);
4938 
4939 	return page;
4940 }
4941 
4942 dma_addr_t
4943 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
4944 				unsigned long n)
4945 {
4946 	struct scatterlist *sg;
4947 	unsigned int offset;
4948 
4949 	sg = i915_gem_object_get_sg(obj, n, &offset);
4950 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
4951 }
4952