1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drmP.h> 29 #include <drm/i915_drm.h> 30 #include "i915_drv.h" 31 #include "i915_trace.h" 32 #include "intel_drv.h" 33 #include <linux/shmem_fs.h> 34 #include <linux/slab.h> 35 #include <linux/swap.h> 36 #include <linux/pci.h> 37 #include <linux/dma-buf.h> 38 39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); 40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj); 41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, 42 unsigned alignment, 43 bool map_and_fenceable, 44 bool nonblocking); 45 static int i915_gem_phys_pwrite(struct drm_device *dev, 46 struct drm_i915_gem_object *obj, 47 struct drm_i915_gem_pwrite *args, 48 struct drm_file *file); 49 50 static void i915_gem_write_fence(struct drm_device *dev, int reg, 51 struct drm_i915_gem_object *obj); 52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 53 struct drm_i915_fence_reg *fence, 54 bool enable); 55 56 static int i915_gem_inactive_shrink(struct shrinker *shrinker, 57 struct shrink_control *sc); 58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target); 59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv); 60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj); 61 62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj) 63 { 64 if (obj->tiling_mode) 65 i915_gem_release_mmap(obj); 66 67 /* As we do not have an associated fence register, we will force 68 * a tiling change if we ever need to acquire one. 69 */ 70 obj->fence_dirty = false; 71 obj->fence_reg = I915_FENCE_REG_NONE; 72 } 73 74 /* some bookkeeping */ 75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, 76 size_t size) 77 { 78 dev_priv->mm.object_count++; 79 dev_priv->mm.object_memory += size; 80 } 81 82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, 83 size_t size) 84 { 85 dev_priv->mm.object_count--; 86 dev_priv->mm.object_memory -= size; 87 } 88 89 static int 90 i915_gem_wait_for_error(struct i915_gpu_error *error) 91 { 92 int ret; 93 94 #define EXIT_COND (!i915_reset_in_progress(error) || \ 95 i915_terminally_wedged(error)) 96 if (EXIT_COND) 97 return 0; 98 99 /* 100 * Only wait 10 seconds for the gpu reset to complete to avoid hanging 101 * userspace. If it takes that long something really bad is going on and 102 * we should simply try to bail out and fail as gracefully as possible. 103 */ 104 ret = wait_event_interruptible_timeout(error->reset_queue, 105 EXIT_COND, 106 10*HZ); 107 if (ret == 0) { 108 DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); 109 return -EIO; 110 } else if (ret < 0) { 111 return ret; 112 } 113 #undef EXIT_COND 114 115 return 0; 116 } 117 118 int i915_mutex_lock_interruptible(struct drm_device *dev) 119 { 120 struct drm_i915_private *dev_priv = dev->dev_private; 121 int ret; 122 123 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 124 if (ret) 125 return ret; 126 127 ret = mutex_lock_interruptible(&dev->struct_mutex); 128 if (ret) 129 return ret; 130 131 WARN_ON(i915_verify_lists(dev)); 132 return 0; 133 } 134 135 static inline bool 136 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj) 137 { 138 return obj->gtt_space && !obj->active; 139 } 140 141 int 142 i915_gem_init_ioctl(struct drm_device *dev, void *data, 143 struct drm_file *file) 144 { 145 struct drm_i915_private *dev_priv = dev->dev_private; 146 struct drm_i915_gem_init *args = data; 147 148 if (drm_core_check_feature(dev, DRIVER_MODESET)) 149 return -ENODEV; 150 151 if (args->gtt_start >= args->gtt_end || 152 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1)) 153 return -EINVAL; 154 155 /* GEM with user mode setting was never supported on ilk and later. */ 156 if (INTEL_INFO(dev)->gen >= 5) 157 return -ENODEV; 158 159 mutex_lock(&dev->struct_mutex); 160 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end, 161 args->gtt_end); 162 dev_priv->gtt.mappable_end = args->gtt_end; 163 mutex_unlock(&dev->struct_mutex); 164 165 return 0; 166 } 167 168 int 169 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 170 struct drm_file *file) 171 { 172 struct drm_i915_private *dev_priv = dev->dev_private; 173 struct drm_i915_gem_get_aperture *args = data; 174 struct drm_i915_gem_object *obj; 175 size_t pinned; 176 177 pinned = 0; 178 mutex_lock(&dev->struct_mutex); 179 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list) 180 if (obj->pin_count) 181 pinned += obj->gtt_space->size; 182 mutex_unlock(&dev->struct_mutex); 183 184 args->aper_size = dev_priv->gtt.total; 185 args->aper_available_size = args->aper_size - pinned; 186 187 return 0; 188 } 189 190 void *i915_gem_object_alloc(struct drm_device *dev) 191 { 192 struct drm_i915_private *dev_priv = dev->dev_private; 193 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO); 194 } 195 196 void i915_gem_object_free(struct drm_i915_gem_object *obj) 197 { 198 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 199 kmem_cache_free(dev_priv->slab, obj); 200 } 201 202 static int 203 i915_gem_create(struct drm_file *file, 204 struct drm_device *dev, 205 uint64_t size, 206 uint32_t *handle_p) 207 { 208 struct drm_i915_gem_object *obj; 209 int ret; 210 u32 handle; 211 212 size = roundup(size, PAGE_SIZE); 213 if (size == 0) 214 return -EINVAL; 215 216 /* Allocate the new object */ 217 obj = i915_gem_alloc_object(dev, size); 218 if (obj == NULL) 219 return -ENOMEM; 220 221 ret = drm_gem_handle_create(file, &obj->base, &handle); 222 if (ret) { 223 drm_gem_object_release(&obj->base); 224 i915_gem_info_remove_obj(dev->dev_private, obj->base.size); 225 i915_gem_object_free(obj); 226 return ret; 227 } 228 229 /* drop reference from allocate - handle holds it now */ 230 drm_gem_object_unreference(&obj->base); 231 trace_i915_gem_object_create(obj); 232 233 *handle_p = handle; 234 return 0; 235 } 236 237 int 238 i915_gem_dumb_create(struct drm_file *file, 239 struct drm_device *dev, 240 struct drm_mode_create_dumb *args) 241 { 242 /* have to work out size/pitch and return them */ 243 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64); 244 args->size = args->pitch * args->height; 245 return i915_gem_create(file, dev, 246 args->size, &args->handle); 247 } 248 249 int i915_gem_dumb_destroy(struct drm_file *file, 250 struct drm_device *dev, 251 uint32_t handle) 252 { 253 return drm_gem_handle_delete(file, handle); 254 } 255 256 /** 257 * Creates a new mm object and returns a handle to it. 258 */ 259 int 260 i915_gem_create_ioctl(struct drm_device *dev, void *data, 261 struct drm_file *file) 262 { 263 struct drm_i915_gem_create *args = data; 264 265 return i915_gem_create(file, dev, 266 args->size, &args->handle); 267 } 268 269 static inline int 270 __copy_to_user_swizzled(char __user *cpu_vaddr, 271 const char *gpu_vaddr, int gpu_offset, 272 int length) 273 { 274 int ret, cpu_offset = 0; 275 276 while (length > 0) { 277 int cacheline_end = ALIGN(gpu_offset + 1, 64); 278 int this_length = min(cacheline_end - gpu_offset, length); 279 int swizzled_gpu_offset = gpu_offset ^ 64; 280 281 ret = __copy_to_user(cpu_vaddr + cpu_offset, 282 gpu_vaddr + swizzled_gpu_offset, 283 this_length); 284 if (ret) 285 return ret + length; 286 287 cpu_offset += this_length; 288 gpu_offset += this_length; 289 length -= this_length; 290 } 291 292 return 0; 293 } 294 295 static inline int 296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, 297 const char __user *cpu_vaddr, 298 int length) 299 { 300 int ret, cpu_offset = 0; 301 302 while (length > 0) { 303 int cacheline_end = ALIGN(gpu_offset + 1, 64); 304 int this_length = min(cacheline_end - gpu_offset, length); 305 int swizzled_gpu_offset = gpu_offset ^ 64; 306 307 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, 308 cpu_vaddr + cpu_offset, 309 this_length); 310 if (ret) 311 return ret + length; 312 313 cpu_offset += this_length; 314 gpu_offset += this_length; 315 length -= this_length; 316 } 317 318 return 0; 319 } 320 321 /* Per-page copy function for the shmem pread fastpath. 322 * Flushes invalid cachelines before reading the target if 323 * needs_clflush is set. */ 324 static int 325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length, 326 char __user *user_data, 327 bool page_do_bit17_swizzling, bool needs_clflush) 328 { 329 char *vaddr; 330 int ret; 331 332 if (unlikely(page_do_bit17_swizzling)) 333 return -EINVAL; 334 335 vaddr = kmap_atomic(page); 336 if (needs_clflush) 337 drm_clflush_virt_range(vaddr + shmem_page_offset, 338 page_length); 339 ret = __copy_to_user_inatomic(user_data, 340 vaddr + shmem_page_offset, 341 page_length); 342 kunmap_atomic(vaddr); 343 344 return ret ? -EFAULT : 0; 345 } 346 347 static void 348 shmem_clflush_swizzled_range(char *addr, unsigned long length, 349 bool swizzled) 350 { 351 if (unlikely(swizzled)) { 352 unsigned long start = (unsigned long) addr; 353 unsigned long end = (unsigned long) addr + length; 354 355 /* For swizzling simply ensure that we always flush both 356 * channels. Lame, but simple and it works. Swizzled 357 * pwrite/pread is far from a hotpath - current userspace 358 * doesn't use it at all. */ 359 start = round_down(start, 128); 360 end = round_up(end, 128); 361 362 drm_clflush_virt_range((void *)start, end - start); 363 } else { 364 drm_clflush_virt_range(addr, length); 365 } 366 367 } 368 369 /* Only difference to the fast-path function is that this can handle bit17 370 * and uses non-atomic copy and kmap functions. */ 371 static int 372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length, 373 char __user *user_data, 374 bool page_do_bit17_swizzling, bool needs_clflush) 375 { 376 char *vaddr; 377 int ret; 378 379 vaddr = kmap(page); 380 if (needs_clflush) 381 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 382 page_length, 383 page_do_bit17_swizzling); 384 385 if (page_do_bit17_swizzling) 386 ret = __copy_to_user_swizzled(user_data, 387 vaddr, shmem_page_offset, 388 page_length); 389 else 390 ret = __copy_to_user(user_data, 391 vaddr + shmem_page_offset, 392 page_length); 393 kunmap(page); 394 395 return ret ? - EFAULT : 0; 396 } 397 398 static int 399 i915_gem_shmem_pread(struct drm_device *dev, 400 struct drm_i915_gem_object *obj, 401 struct drm_i915_gem_pread *args, 402 struct drm_file *file) 403 { 404 char __user *user_data; 405 ssize_t remain; 406 loff_t offset; 407 int shmem_page_offset, page_length, ret = 0; 408 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 409 int prefaulted = 0; 410 int needs_clflush = 0; 411 struct sg_page_iter sg_iter; 412 413 user_data = to_user_ptr(args->data_ptr); 414 remain = args->size; 415 416 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 417 418 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) { 419 /* If we're not in the cpu read domain, set ourself into the gtt 420 * read domain and manually flush cachelines (if required). This 421 * optimizes for the case when the gpu will dirty the data 422 * anyway again before the next pread happens. */ 423 if (obj->cache_level == I915_CACHE_NONE) 424 needs_clflush = 1; 425 if (obj->gtt_space) { 426 ret = i915_gem_object_set_to_gtt_domain(obj, false); 427 if (ret) 428 return ret; 429 } 430 } 431 432 ret = i915_gem_object_get_pages(obj); 433 if (ret) 434 return ret; 435 436 i915_gem_object_pin_pages(obj); 437 438 offset = args->offset; 439 440 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 441 offset >> PAGE_SHIFT) { 442 struct page *page = sg_page_iter_page(&sg_iter); 443 444 if (remain <= 0) 445 break; 446 447 /* Operation in this page 448 * 449 * shmem_page_offset = offset within page in shmem file 450 * page_length = bytes to copy for this page 451 */ 452 shmem_page_offset = offset_in_page(offset); 453 page_length = remain; 454 if ((shmem_page_offset + page_length) > PAGE_SIZE) 455 page_length = PAGE_SIZE - shmem_page_offset; 456 457 page_do_bit17_swizzling = obj_do_bit17_swizzling && 458 (page_to_phys(page) & (1 << 17)) != 0; 459 460 ret = shmem_pread_fast(page, shmem_page_offset, page_length, 461 user_data, page_do_bit17_swizzling, 462 needs_clflush); 463 if (ret == 0) 464 goto next_page; 465 466 mutex_unlock(&dev->struct_mutex); 467 468 if (!prefaulted) { 469 ret = fault_in_multipages_writeable(user_data, remain); 470 /* Userspace is tricking us, but we've already clobbered 471 * its pages with the prefault and promised to write the 472 * data up to the first fault. Hence ignore any errors 473 * and just continue. */ 474 (void)ret; 475 prefaulted = 1; 476 } 477 478 ret = shmem_pread_slow(page, shmem_page_offset, page_length, 479 user_data, page_do_bit17_swizzling, 480 needs_clflush); 481 482 mutex_lock(&dev->struct_mutex); 483 484 next_page: 485 mark_page_accessed(page); 486 487 if (ret) 488 goto out; 489 490 remain -= page_length; 491 user_data += page_length; 492 offset += page_length; 493 } 494 495 out: 496 i915_gem_object_unpin_pages(obj); 497 498 return ret; 499 } 500 501 /** 502 * Reads data from the object referenced by handle. 503 * 504 * On error, the contents of *data are undefined. 505 */ 506 int 507 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 508 struct drm_file *file) 509 { 510 struct drm_i915_gem_pread *args = data; 511 struct drm_i915_gem_object *obj; 512 int ret = 0; 513 514 if (args->size == 0) 515 return 0; 516 517 if (!access_ok(VERIFY_WRITE, 518 to_user_ptr(args->data_ptr), 519 args->size)) 520 return -EFAULT; 521 522 ret = i915_mutex_lock_interruptible(dev); 523 if (ret) 524 return ret; 525 526 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 527 if (&obj->base == NULL) { 528 ret = -ENOENT; 529 goto unlock; 530 } 531 532 /* Bounds check source. */ 533 if (args->offset > obj->base.size || 534 args->size > obj->base.size - args->offset) { 535 ret = -EINVAL; 536 goto out; 537 } 538 539 /* prime objects have no backing filp to GEM pread/pwrite 540 * pages from. 541 */ 542 if (!obj->base.filp) { 543 ret = -EINVAL; 544 goto out; 545 } 546 547 trace_i915_gem_object_pread(obj, args->offset, args->size); 548 549 ret = i915_gem_shmem_pread(dev, obj, args, file); 550 551 out: 552 drm_gem_object_unreference(&obj->base); 553 unlock: 554 mutex_unlock(&dev->struct_mutex); 555 return ret; 556 } 557 558 /* This is the fast write path which cannot handle 559 * page faults in the source data 560 */ 561 562 static inline int 563 fast_user_write(struct io_mapping *mapping, 564 loff_t page_base, int page_offset, 565 char __user *user_data, 566 int length) 567 { 568 void __iomem *vaddr_atomic; 569 void *vaddr; 570 unsigned long unwritten; 571 572 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base); 573 /* We can use the cpu mem copy function because this is X86. */ 574 vaddr = (void __force*)vaddr_atomic + page_offset; 575 unwritten = __copy_from_user_inatomic_nocache(vaddr, 576 user_data, length); 577 io_mapping_unmap_atomic(vaddr_atomic); 578 return unwritten; 579 } 580 581 /** 582 * This is the fast pwrite path, where we copy the data directly from the 583 * user into the GTT, uncached. 584 */ 585 static int 586 i915_gem_gtt_pwrite_fast(struct drm_device *dev, 587 struct drm_i915_gem_object *obj, 588 struct drm_i915_gem_pwrite *args, 589 struct drm_file *file) 590 { 591 drm_i915_private_t *dev_priv = dev->dev_private; 592 ssize_t remain; 593 loff_t offset, page_base; 594 char __user *user_data; 595 int page_offset, page_length, ret; 596 597 ret = i915_gem_object_pin(obj, 0, true, true); 598 if (ret) 599 goto out; 600 601 ret = i915_gem_object_set_to_gtt_domain(obj, true); 602 if (ret) 603 goto out_unpin; 604 605 ret = i915_gem_object_put_fence(obj); 606 if (ret) 607 goto out_unpin; 608 609 user_data = to_user_ptr(args->data_ptr); 610 remain = args->size; 611 612 offset = obj->gtt_offset + args->offset; 613 614 while (remain > 0) { 615 /* Operation in this page 616 * 617 * page_base = page offset within aperture 618 * page_offset = offset within page 619 * page_length = bytes to copy for this page 620 */ 621 page_base = offset & PAGE_MASK; 622 page_offset = offset_in_page(offset); 623 page_length = remain; 624 if ((page_offset + remain) > PAGE_SIZE) 625 page_length = PAGE_SIZE - page_offset; 626 627 /* If we get a fault while copying data, then (presumably) our 628 * source page isn't available. Return the error and we'll 629 * retry in the slow path. 630 */ 631 if (fast_user_write(dev_priv->gtt.mappable, page_base, 632 page_offset, user_data, page_length)) { 633 ret = -EFAULT; 634 goto out_unpin; 635 } 636 637 remain -= page_length; 638 user_data += page_length; 639 offset += page_length; 640 } 641 642 out_unpin: 643 i915_gem_object_unpin(obj); 644 out: 645 return ret; 646 } 647 648 /* Per-page copy function for the shmem pwrite fastpath. 649 * Flushes invalid cachelines before writing to the target if 650 * needs_clflush_before is set and flushes out any written cachelines after 651 * writing if needs_clflush is set. */ 652 static int 653 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length, 654 char __user *user_data, 655 bool page_do_bit17_swizzling, 656 bool needs_clflush_before, 657 bool needs_clflush_after) 658 { 659 char *vaddr; 660 int ret; 661 662 if (unlikely(page_do_bit17_swizzling)) 663 return -EINVAL; 664 665 vaddr = kmap_atomic(page); 666 if (needs_clflush_before) 667 drm_clflush_virt_range(vaddr + shmem_page_offset, 668 page_length); 669 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset, 670 user_data, 671 page_length); 672 if (needs_clflush_after) 673 drm_clflush_virt_range(vaddr + shmem_page_offset, 674 page_length); 675 kunmap_atomic(vaddr); 676 677 return ret ? -EFAULT : 0; 678 } 679 680 /* Only difference to the fast-path function is that this can handle bit17 681 * and uses non-atomic copy and kmap functions. */ 682 static int 683 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length, 684 char __user *user_data, 685 bool page_do_bit17_swizzling, 686 bool needs_clflush_before, 687 bool needs_clflush_after) 688 { 689 char *vaddr; 690 int ret; 691 692 vaddr = kmap(page); 693 if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) 694 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 695 page_length, 696 page_do_bit17_swizzling); 697 if (page_do_bit17_swizzling) 698 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset, 699 user_data, 700 page_length); 701 else 702 ret = __copy_from_user(vaddr + shmem_page_offset, 703 user_data, 704 page_length); 705 if (needs_clflush_after) 706 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 707 page_length, 708 page_do_bit17_swizzling); 709 kunmap(page); 710 711 return ret ? -EFAULT : 0; 712 } 713 714 static int 715 i915_gem_shmem_pwrite(struct drm_device *dev, 716 struct drm_i915_gem_object *obj, 717 struct drm_i915_gem_pwrite *args, 718 struct drm_file *file) 719 { 720 ssize_t remain; 721 loff_t offset; 722 char __user *user_data; 723 int shmem_page_offset, page_length, ret = 0; 724 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 725 int hit_slowpath = 0; 726 int needs_clflush_after = 0; 727 int needs_clflush_before = 0; 728 struct sg_page_iter sg_iter; 729 730 user_data = to_user_ptr(args->data_ptr); 731 remain = args->size; 732 733 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 734 735 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 736 /* If we're not in the cpu write domain, set ourself into the gtt 737 * write domain and manually flush cachelines (if required). This 738 * optimizes for the case when the gpu will use the data 739 * right away and we therefore have to clflush anyway. */ 740 if (obj->cache_level == I915_CACHE_NONE) 741 needs_clflush_after = 1; 742 if (obj->gtt_space) { 743 ret = i915_gem_object_set_to_gtt_domain(obj, true); 744 if (ret) 745 return ret; 746 } 747 } 748 /* Same trick applies for invalidate partially written cachelines before 749 * writing. */ 750 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU) 751 && obj->cache_level == I915_CACHE_NONE) 752 needs_clflush_before = 1; 753 754 ret = i915_gem_object_get_pages(obj); 755 if (ret) 756 return ret; 757 758 i915_gem_object_pin_pages(obj); 759 760 offset = args->offset; 761 obj->dirty = 1; 762 763 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 764 offset >> PAGE_SHIFT) { 765 struct page *page = sg_page_iter_page(&sg_iter); 766 int partial_cacheline_write; 767 768 if (remain <= 0) 769 break; 770 771 /* Operation in this page 772 * 773 * shmem_page_offset = offset within page in shmem file 774 * page_length = bytes to copy for this page 775 */ 776 shmem_page_offset = offset_in_page(offset); 777 778 page_length = remain; 779 if ((shmem_page_offset + page_length) > PAGE_SIZE) 780 page_length = PAGE_SIZE - shmem_page_offset; 781 782 /* If we don't overwrite a cacheline completely we need to be 783 * careful to have up-to-date data by first clflushing. Don't 784 * overcomplicate things and flush the entire patch. */ 785 partial_cacheline_write = needs_clflush_before && 786 ((shmem_page_offset | page_length) 787 & (boot_cpu_data.x86_clflush_size - 1)); 788 789 page_do_bit17_swizzling = obj_do_bit17_swizzling && 790 (page_to_phys(page) & (1 << 17)) != 0; 791 792 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length, 793 user_data, page_do_bit17_swizzling, 794 partial_cacheline_write, 795 needs_clflush_after); 796 if (ret == 0) 797 goto next_page; 798 799 hit_slowpath = 1; 800 mutex_unlock(&dev->struct_mutex); 801 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length, 802 user_data, page_do_bit17_swizzling, 803 partial_cacheline_write, 804 needs_clflush_after); 805 806 mutex_lock(&dev->struct_mutex); 807 808 next_page: 809 set_page_dirty(page); 810 mark_page_accessed(page); 811 812 if (ret) 813 goto out; 814 815 remain -= page_length; 816 user_data += page_length; 817 offset += page_length; 818 } 819 820 out: 821 i915_gem_object_unpin_pages(obj); 822 823 if (hit_slowpath) { 824 /* 825 * Fixup: Flush cpu caches in case we didn't flush the dirty 826 * cachelines in-line while writing and the object moved 827 * out of the cpu write domain while we've dropped the lock. 828 */ 829 if (!needs_clflush_after && 830 obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 831 i915_gem_clflush_object(obj); 832 i915_gem_chipset_flush(dev); 833 } 834 } 835 836 if (needs_clflush_after) 837 i915_gem_chipset_flush(dev); 838 839 return ret; 840 } 841 842 /** 843 * Writes data to the object referenced by handle. 844 * 845 * On error, the contents of the buffer that were to be modified are undefined. 846 */ 847 int 848 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 849 struct drm_file *file) 850 { 851 struct drm_i915_gem_pwrite *args = data; 852 struct drm_i915_gem_object *obj; 853 int ret; 854 855 if (args->size == 0) 856 return 0; 857 858 if (!access_ok(VERIFY_READ, 859 to_user_ptr(args->data_ptr), 860 args->size)) 861 return -EFAULT; 862 863 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr), 864 args->size); 865 if (ret) 866 return -EFAULT; 867 868 ret = i915_mutex_lock_interruptible(dev); 869 if (ret) 870 return ret; 871 872 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 873 if (&obj->base == NULL) { 874 ret = -ENOENT; 875 goto unlock; 876 } 877 878 /* Bounds check destination. */ 879 if (args->offset > obj->base.size || 880 args->size > obj->base.size - args->offset) { 881 ret = -EINVAL; 882 goto out; 883 } 884 885 /* prime objects have no backing filp to GEM pread/pwrite 886 * pages from. 887 */ 888 if (!obj->base.filp) { 889 ret = -EINVAL; 890 goto out; 891 } 892 893 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 894 895 ret = -EFAULT; 896 /* We can only do the GTT pwrite on untiled buffers, as otherwise 897 * it would end up going through the fenced access, and we'll get 898 * different detiling behavior between reading and writing. 899 * pread/pwrite currently are reading and writing from the CPU 900 * perspective, requiring manual detiling by the client. 901 */ 902 if (obj->phys_obj) { 903 ret = i915_gem_phys_pwrite(dev, obj, args, file); 904 goto out; 905 } 906 907 if (obj->cache_level == I915_CACHE_NONE && 908 obj->tiling_mode == I915_TILING_NONE && 909 obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 910 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file); 911 /* Note that the gtt paths might fail with non-page-backed user 912 * pointers (e.g. gtt mappings when moving data between 913 * textures). Fallback to the shmem path in that case. */ 914 } 915 916 if (ret == -EFAULT || ret == -ENOSPC) 917 ret = i915_gem_shmem_pwrite(dev, obj, args, file); 918 919 out: 920 drm_gem_object_unreference(&obj->base); 921 unlock: 922 mutex_unlock(&dev->struct_mutex); 923 return ret; 924 } 925 926 int 927 i915_gem_check_wedge(struct i915_gpu_error *error, 928 bool interruptible) 929 { 930 if (i915_reset_in_progress(error)) { 931 /* Non-interruptible callers can't handle -EAGAIN, hence return 932 * -EIO unconditionally for these. */ 933 if (!interruptible) 934 return -EIO; 935 936 /* Recovery complete, but the reset failed ... */ 937 if (i915_terminally_wedged(error)) 938 return -EIO; 939 940 return -EAGAIN; 941 } 942 943 return 0; 944 } 945 946 /* 947 * Compare seqno against outstanding lazy request. Emit a request if they are 948 * equal. 949 */ 950 static int 951 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno) 952 { 953 int ret; 954 955 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex)); 956 957 ret = 0; 958 if (seqno == ring->outstanding_lazy_request) 959 ret = i915_add_request(ring, NULL, NULL); 960 961 return ret; 962 } 963 964 /** 965 * __wait_seqno - wait until execution of seqno has finished 966 * @ring: the ring expected to report seqno 967 * @seqno: duh! 968 * @reset_counter: reset sequence associated with the given seqno 969 * @interruptible: do an interruptible wait (normally yes) 970 * @timeout: in - how long to wait (NULL forever); out - how much time remaining 971 * 972 * Note: It is of utmost importance that the passed in seqno and reset_counter 973 * values have been read by the caller in an smp safe manner. Where read-side 974 * locks are involved, it is sufficient to read the reset_counter before 975 * unlocking the lock that protects the seqno. For lockless tricks, the 976 * reset_counter _must_ be read before, and an appropriate smp_rmb must be 977 * inserted. 978 * 979 * Returns 0 if the seqno was found within the alloted time. Else returns the 980 * errno with remaining time filled in timeout argument. 981 */ 982 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno, 983 unsigned reset_counter, 984 bool interruptible, struct timespec *timeout) 985 { 986 drm_i915_private_t *dev_priv = ring->dev->dev_private; 987 struct timespec before, now, wait_time={1,0}; 988 unsigned long timeout_jiffies; 989 long end; 990 bool wait_forever = true; 991 int ret; 992 993 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno)) 994 return 0; 995 996 trace_i915_gem_request_wait_begin(ring, seqno); 997 998 if (timeout != NULL) { 999 wait_time = *timeout; 1000 wait_forever = false; 1001 } 1002 1003 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time); 1004 1005 if (WARN_ON(!ring->irq_get(ring))) 1006 return -ENODEV; 1007 1008 /* Record current time in case interrupted by signal, or wedged * */ 1009 getrawmonotonic(&before); 1010 1011 #define EXIT_COND \ 1012 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \ 1013 i915_reset_in_progress(&dev_priv->gpu_error) || \ 1014 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) 1015 do { 1016 if (interruptible) 1017 end = wait_event_interruptible_timeout(ring->irq_queue, 1018 EXIT_COND, 1019 timeout_jiffies); 1020 else 1021 end = wait_event_timeout(ring->irq_queue, EXIT_COND, 1022 timeout_jiffies); 1023 1024 /* We need to check whether any gpu reset happened in between 1025 * the caller grabbing the seqno and now ... */ 1026 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) 1027 end = -EAGAIN; 1028 1029 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely 1030 * gone. */ 1031 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1032 if (ret) 1033 end = ret; 1034 } while (end == 0 && wait_forever); 1035 1036 getrawmonotonic(&now); 1037 1038 ring->irq_put(ring); 1039 trace_i915_gem_request_wait_end(ring, seqno); 1040 #undef EXIT_COND 1041 1042 if (timeout) { 1043 struct timespec sleep_time = timespec_sub(now, before); 1044 *timeout = timespec_sub(*timeout, sleep_time); 1045 if (!timespec_valid(timeout)) /* i.e. negative time remains */ 1046 set_normalized_timespec(timeout, 0, 0); 1047 } 1048 1049 switch (end) { 1050 case -EIO: 1051 case -EAGAIN: /* Wedged */ 1052 case -ERESTARTSYS: /* Signal */ 1053 return (int)end; 1054 case 0: /* Timeout */ 1055 return -ETIME; 1056 default: /* Completed */ 1057 WARN_ON(end < 0); /* We're not aware of other errors */ 1058 return 0; 1059 } 1060 } 1061 1062 /** 1063 * Waits for a sequence number to be signaled, and cleans up the 1064 * request and object lists appropriately for that event. 1065 */ 1066 int 1067 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno) 1068 { 1069 struct drm_device *dev = ring->dev; 1070 struct drm_i915_private *dev_priv = dev->dev_private; 1071 bool interruptible = dev_priv->mm.interruptible; 1072 int ret; 1073 1074 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1075 BUG_ON(seqno == 0); 1076 1077 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1078 if (ret) 1079 return ret; 1080 1081 ret = i915_gem_check_olr(ring, seqno); 1082 if (ret) 1083 return ret; 1084 1085 return __wait_seqno(ring, seqno, 1086 atomic_read(&dev_priv->gpu_error.reset_counter), 1087 interruptible, NULL); 1088 } 1089 1090 /** 1091 * Ensures that all rendering to the object has completed and the object is 1092 * safe to unbind from the GTT or access from the CPU. 1093 */ 1094 static __must_check int 1095 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 1096 bool readonly) 1097 { 1098 struct intel_ring_buffer *ring = obj->ring; 1099 u32 seqno; 1100 int ret; 1101 1102 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1103 if (seqno == 0) 1104 return 0; 1105 1106 ret = i915_wait_seqno(ring, seqno); 1107 if (ret) 1108 return ret; 1109 1110 i915_gem_retire_requests_ring(ring); 1111 1112 /* Manually manage the write flush as we may have not yet 1113 * retired the buffer. 1114 */ 1115 if (obj->last_write_seqno && 1116 i915_seqno_passed(seqno, obj->last_write_seqno)) { 1117 obj->last_write_seqno = 0; 1118 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS; 1119 } 1120 1121 return 0; 1122 } 1123 1124 /* A nonblocking variant of the above wait. This is a highly dangerous routine 1125 * as the object state may change during this call. 1126 */ 1127 static __must_check int 1128 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj, 1129 bool readonly) 1130 { 1131 struct drm_device *dev = obj->base.dev; 1132 struct drm_i915_private *dev_priv = dev->dev_private; 1133 struct intel_ring_buffer *ring = obj->ring; 1134 unsigned reset_counter; 1135 u32 seqno; 1136 int ret; 1137 1138 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1139 BUG_ON(!dev_priv->mm.interruptible); 1140 1141 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1142 if (seqno == 0) 1143 return 0; 1144 1145 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true); 1146 if (ret) 1147 return ret; 1148 1149 ret = i915_gem_check_olr(ring, seqno); 1150 if (ret) 1151 return ret; 1152 1153 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 1154 mutex_unlock(&dev->struct_mutex); 1155 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL); 1156 mutex_lock(&dev->struct_mutex); 1157 1158 i915_gem_retire_requests_ring(ring); 1159 1160 /* Manually manage the write flush as we may have not yet 1161 * retired the buffer. 1162 */ 1163 if (obj->last_write_seqno && 1164 i915_seqno_passed(seqno, obj->last_write_seqno)) { 1165 obj->last_write_seqno = 0; 1166 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS; 1167 } 1168 1169 return ret; 1170 } 1171 1172 /** 1173 * Called when user space prepares to use an object with the CPU, either 1174 * through the mmap ioctl's mapping or a GTT mapping. 1175 */ 1176 int 1177 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 1178 struct drm_file *file) 1179 { 1180 struct drm_i915_gem_set_domain *args = data; 1181 struct drm_i915_gem_object *obj; 1182 uint32_t read_domains = args->read_domains; 1183 uint32_t write_domain = args->write_domain; 1184 int ret; 1185 1186 /* Only handle setting domains to types used by the CPU. */ 1187 if (write_domain & I915_GEM_GPU_DOMAINS) 1188 return -EINVAL; 1189 1190 if (read_domains & I915_GEM_GPU_DOMAINS) 1191 return -EINVAL; 1192 1193 /* Having something in the write domain implies it's in the read 1194 * domain, and only that read domain. Enforce that in the request. 1195 */ 1196 if (write_domain != 0 && read_domains != write_domain) 1197 return -EINVAL; 1198 1199 ret = i915_mutex_lock_interruptible(dev); 1200 if (ret) 1201 return ret; 1202 1203 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1204 if (&obj->base == NULL) { 1205 ret = -ENOENT; 1206 goto unlock; 1207 } 1208 1209 /* Try to flush the object off the GPU without holding the lock. 1210 * We will repeat the flush holding the lock in the normal manner 1211 * to catch cases where we are gazumped. 1212 */ 1213 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain); 1214 if (ret) 1215 goto unref; 1216 1217 if (read_domains & I915_GEM_DOMAIN_GTT) { 1218 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); 1219 1220 /* Silently promote "you're not bound, there was nothing to do" 1221 * to success, since the client was just asking us to 1222 * make sure everything was done. 1223 */ 1224 if (ret == -EINVAL) 1225 ret = 0; 1226 } else { 1227 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); 1228 } 1229 1230 unref: 1231 drm_gem_object_unreference(&obj->base); 1232 unlock: 1233 mutex_unlock(&dev->struct_mutex); 1234 return ret; 1235 } 1236 1237 /** 1238 * Called when user space has done writes to this buffer 1239 */ 1240 int 1241 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1242 struct drm_file *file) 1243 { 1244 struct drm_i915_gem_sw_finish *args = data; 1245 struct drm_i915_gem_object *obj; 1246 int ret = 0; 1247 1248 ret = i915_mutex_lock_interruptible(dev); 1249 if (ret) 1250 return ret; 1251 1252 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1253 if (&obj->base == NULL) { 1254 ret = -ENOENT; 1255 goto unlock; 1256 } 1257 1258 /* Pinned buffers may be scanout, so flush the cache */ 1259 if (obj->pin_count) 1260 i915_gem_object_flush_cpu_write_domain(obj); 1261 1262 drm_gem_object_unreference(&obj->base); 1263 unlock: 1264 mutex_unlock(&dev->struct_mutex); 1265 return ret; 1266 } 1267 1268 /** 1269 * Maps the contents of an object, returning the address it is mapped 1270 * into. 1271 * 1272 * While the mapping holds a reference on the contents of the object, it doesn't 1273 * imply a ref on the object itself. 1274 */ 1275 int 1276 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1277 struct drm_file *file) 1278 { 1279 struct drm_i915_gem_mmap *args = data; 1280 struct drm_gem_object *obj; 1281 unsigned long addr; 1282 1283 obj = drm_gem_object_lookup(dev, file, args->handle); 1284 if (obj == NULL) 1285 return -ENOENT; 1286 1287 /* prime objects have no backing filp to GEM mmap 1288 * pages from. 1289 */ 1290 if (!obj->filp) { 1291 drm_gem_object_unreference_unlocked(obj); 1292 return -EINVAL; 1293 } 1294 1295 addr = vm_mmap(obj->filp, 0, args->size, 1296 PROT_READ | PROT_WRITE, MAP_SHARED, 1297 args->offset); 1298 drm_gem_object_unreference_unlocked(obj); 1299 if (IS_ERR((void *)addr)) 1300 return addr; 1301 1302 args->addr_ptr = (uint64_t) addr; 1303 1304 return 0; 1305 } 1306 1307 /** 1308 * i915_gem_fault - fault a page into the GTT 1309 * vma: VMA in question 1310 * vmf: fault info 1311 * 1312 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1313 * from userspace. The fault handler takes care of binding the object to 1314 * the GTT (if needed), allocating and programming a fence register (again, 1315 * only if needed based on whether the old reg is still valid or the object 1316 * is tiled) and inserting a new PTE into the faulting process. 1317 * 1318 * Note that the faulting process may involve evicting existing objects 1319 * from the GTT and/or fence registers to make room. So performance may 1320 * suffer if the GTT working set is large or there are few fence registers 1321 * left. 1322 */ 1323 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1324 { 1325 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data); 1326 struct drm_device *dev = obj->base.dev; 1327 drm_i915_private_t *dev_priv = dev->dev_private; 1328 pgoff_t page_offset; 1329 unsigned long pfn; 1330 int ret = 0; 1331 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 1332 1333 /* We don't use vmf->pgoff since that has the fake offset */ 1334 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >> 1335 PAGE_SHIFT; 1336 1337 ret = i915_mutex_lock_interruptible(dev); 1338 if (ret) 1339 goto out; 1340 1341 trace_i915_gem_object_fault(obj, page_offset, true, write); 1342 1343 /* Access to snoopable pages through the GTT is incoherent. */ 1344 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) { 1345 ret = -EINVAL; 1346 goto unlock; 1347 } 1348 1349 /* Now bind it into the GTT if needed */ 1350 ret = i915_gem_object_pin(obj, 0, true, false); 1351 if (ret) 1352 goto unlock; 1353 1354 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1355 if (ret) 1356 goto unpin; 1357 1358 ret = i915_gem_object_get_fence(obj); 1359 if (ret) 1360 goto unpin; 1361 1362 obj->fault_mappable = true; 1363 1364 pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) + 1365 page_offset; 1366 1367 /* Finally, remap it using the new GTT offset */ 1368 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn); 1369 unpin: 1370 i915_gem_object_unpin(obj); 1371 unlock: 1372 mutex_unlock(&dev->struct_mutex); 1373 out: 1374 switch (ret) { 1375 case -EIO: 1376 /* If this -EIO is due to a gpu hang, give the reset code a 1377 * chance to clean up the mess. Otherwise return the proper 1378 * SIGBUS. */ 1379 if (i915_terminally_wedged(&dev_priv->gpu_error)) 1380 return VM_FAULT_SIGBUS; 1381 case -EAGAIN: 1382 /* Give the error handler a chance to run and move the 1383 * objects off the GPU active list. Next time we service the 1384 * fault, we should be able to transition the page into the 1385 * GTT without touching the GPU (and so avoid further 1386 * EIO/EGAIN). If the GPU is wedged, then there is no issue 1387 * with coherency, just lost writes. 1388 */ 1389 set_need_resched(); 1390 case 0: 1391 case -ERESTARTSYS: 1392 case -EINTR: 1393 case -EBUSY: 1394 /* 1395 * EBUSY is ok: this just means that another thread 1396 * already did the job. 1397 */ 1398 return VM_FAULT_NOPAGE; 1399 case -ENOMEM: 1400 return VM_FAULT_OOM; 1401 case -ENOSPC: 1402 return VM_FAULT_SIGBUS; 1403 default: 1404 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); 1405 return VM_FAULT_SIGBUS; 1406 } 1407 } 1408 1409 /** 1410 * i915_gem_release_mmap - remove physical page mappings 1411 * @obj: obj in question 1412 * 1413 * Preserve the reservation of the mmapping with the DRM core code, but 1414 * relinquish ownership of the pages back to the system. 1415 * 1416 * It is vital that we remove the page mapping if we have mapped a tiled 1417 * object through the GTT and then lose the fence register due to 1418 * resource pressure. Similarly if the object has been moved out of the 1419 * aperture, than pages mapped into userspace must be revoked. Removing the 1420 * mapping will then trigger a page fault on the next user access, allowing 1421 * fixup by i915_gem_fault(). 1422 */ 1423 void 1424 i915_gem_release_mmap(struct drm_i915_gem_object *obj) 1425 { 1426 if (!obj->fault_mappable) 1427 return; 1428 1429 if (obj->base.dev->dev_mapping) 1430 unmap_mapping_range(obj->base.dev->dev_mapping, 1431 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT, 1432 obj->base.size, 1); 1433 1434 obj->fault_mappable = false; 1435 } 1436 1437 uint32_t 1438 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode) 1439 { 1440 uint32_t gtt_size; 1441 1442 if (INTEL_INFO(dev)->gen >= 4 || 1443 tiling_mode == I915_TILING_NONE) 1444 return size; 1445 1446 /* Previous chips need a power-of-two fence region when tiling */ 1447 if (INTEL_INFO(dev)->gen == 3) 1448 gtt_size = 1024*1024; 1449 else 1450 gtt_size = 512*1024; 1451 1452 while (gtt_size < size) 1453 gtt_size <<= 1; 1454 1455 return gtt_size; 1456 } 1457 1458 /** 1459 * i915_gem_get_gtt_alignment - return required GTT alignment for an object 1460 * @obj: object to check 1461 * 1462 * Return the required GTT alignment for an object, taking into account 1463 * potential fence register mapping. 1464 */ 1465 uint32_t 1466 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size, 1467 int tiling_mode, bool fenced) 1468 { 1469 /* 1470 * Minimum alignment is 4k (GTT page size), but might be greater 1471 * if a fence register is needed for the object. 1472 */ 1473 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) || 1474 tiling_mode == I915_TILING_NONE) 1475 return 4096; 1476 1477 /* 1478 * Previous chips need to be aligned to the size of the smallest 1479 * fence register that can contain the object. 1480 */ 1481 return i915_gem_get_gtt_size(dev, size, tiling_mode); 1482 } 1483 1484 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) 1485 { 1486 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1487 int ret; 1488 1489 if (obj->base.map_list.map) 1490 return 0; 1491 1492 dev_priv->mm.shrinker_no_lock_stealing = true; 1493 1494 ret = drm_gem_create_mmap_offset(&obj->base); 1495 if (ret != -ENOSPC) 1496 goto out; 1497 1498 /* Badly fragmented mmap space? The only way we can recover 1499 * space is by destroying unwanted objects. We can't randomly release 1500 * mmap_offsets as userspace expects them to be persistent for the 1501 * lifetime of the objects. The closest we can is to release the 1502 * offsets on purgeable objects by truncating it and marking it purged, 1503 * which prevents userspace from ever using that object again. 1504 */ 1505 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT); 1506 ret = drm_gem_create_mmap_offset(&obj->base); 1507 if (ret != -ENOSPC) 1508 goto out; 1509 1510 i915_gem_shrink_all(dev_priv); 1511 ret = drm_gem_create_mmap_offset(&obj->base); 1512 out: 1513 dev_priv->mm.shrinker_no_lock_stealing = false; 1514 1515 return ret; 1516 } 1517 1518 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) 1519 { 1520 if (!obj->base.map_list.map) 1521 return; 1522 1523 drm_gem_free_mmap_offset(&obj->base); 1524 } 1525 1526 int 1527 i915_gem_mmap_gtt(struct drm_file *file, 1528 struct drm_device *dev, 1529 uint32_t handle, 1530 uint64_t *offset) 1531 { 1532 struct drm_i915_private *dev_priv = dev->dev_private; 1533 struct drm_i915_gem_object *obj; 1534 int ret; 1535 1536 ret = i915_mutex_lock_interruptible(dev); 1537 if (ret) 1538 return ret; 1539 1540 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle)); 1541 if (&obj->base == NULL) { 1542 ret = -ENOENT; 1543 goto unlock; 1544 } 1545 1546 if (obj->base.size > dev_priv->gtt.mappable_end) { 1547 ret = -E2BIG; 1548 goto out; 1549 } 1550 1551 if (obj->madv != I915_MADV_WILLNEED) { 1552 DRM_ERROR("Attempting to mmap a purgeable buffer\n"); 1553 ret = -EINVAL; 1554 goto out; 1555 } 1556 1557 ret = i915_gem_object_create_mmap_offset(obj); 1558 if (ret) 1559 goto out; 1560 1561 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT; 1562 1563 out: 1564 drm_gem_object_unreference(&obj->base); 1565 unlock: 1566 mutex_unlock(&dev->struct_mutex); 1567 return ret; 1568 } 1569 1570 /** 1571 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 1572 * @dev: DRM device 1573 * @data: GTT mapping ioctl data 1574 * @file: GEM object info 1575 * 1576 * Simply returns the fake offset to userspace so it can mmap it. 1577 * The mmap call will end up in drm_gem_mmap(), which will set things 1578 * up so we can get faults in the handler above. 1579 * 1580 * The fault handler will take care of binding the object into the GTT 1581 * (since it may have been evicted to make room for something), allocating 1582 * a fence register, and mapping the appropriate aperture address into 1583 * userspace. 1584 */ 1585 int 1586 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 1587 struct drm_file *file) 1588 { 1589 struct drm_i915_gem_mmap_gtt *args = data; 1590 1591 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); 1592 } 1593 1594 /* Immediately discard the backing storage */ 1595 static void 1596 i915_gem_object_truncate(struct drm_i915_gem_object *obj) 1597 { 1598 struct inode *inode; 1599 1600 i915_gem_object_free_mmap_offset(obj); 1601 1602 if (obj->base.filp == NULL) 1603 return; 1604 1605 /* Our goal here is to return as much of the memory as 1606 * is possible back to the system as we are called from OOM. 1607 * To do this we must instruct the shmfs to drop all of its 1608 * backing pages, *now*. 1609 */ 1610 inode = file_inode(obj->base.filp); 1611 shmem_truncate_range(inode, 0, (loff_t)-1); 1612 1613 obj->madv = __I915_MADV_PURGED; 1614 } 1615 1616 static inline int 1617 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj) 1618 { 1619 return obj->madv == I915_MADV_DONTNEED; 1620 } 1621 1622 static void 1623 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj) 1624 { 1625 struct sg_page_iter sg_iter; 1626 int ret; 1627 1628 BUG_ON(obj->madv == __I915_MADV_PURGED); 1629 1630 ret = i915_gem_object_set_to_cpu_domain(obj, true); 1631 if (ret) { 1632 /* In the event of a disaster, abandon all caches and 1633 * hope for the best. 1634 */ 1635 WARN_ON(ret != -EIO); 1636 i915_gem_clflush_object(obj); 1637 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; 1638 } 1639 1640 if (i915_gem_object_needs_bit17_swizzle(obj)) 1641 i915_gem_object_save_bit_17_swizzle(obj); 1642 1643 if (obj->madv == I915_MADV_DONTNEED) 1644 obj->dirty = 0; 1645 1646 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) { 1647 struct page *page = sg_page_iter_page(&sg_iter); 1648 1649 if (obj->dirty) 1650 set_page_dirty(page); 1651 1652 if (obj->madv == I915_MADV_WILLNEED) 1653 mark_page_accessed(page); 1654 1655 page_cache_release(page); 1656 } 1657 obj->dirty = 0; 1658 1659 sg_free_table(obj->pages); 1660 kfree(obj->pages); 1661 } 1662 1663 int 1664 i915_gem_object_put_pages(struct drm_i915_gem_object *obj) 1665 { 1666 const struct drm_i915_gem_object_ops *ops = obj->ops; 1667 1668 if (obj->pages == NULL) 1669 return 0; 1670 1671 BUG_ON(obj->gtt_space); 1672 1673 if (obj->pages_pin_count) 1674 return -EBUSY; 1675 1676 /* ->put_pages might need to allocate memory for the bit17 swizzle 1677 * array, hence protect them from being reaped by removing them from gtt 1678 * lists early. */ 1679 list_del(&obj->gtt_list); 1680 1681 ops->put_pages(obj); 1682 obj->pages = NULL; 1683 1684 if (i915_gem_object_is_purgeable(obj)) 1685 i915_gem_object_truncate(obj); 1686 1687 return 0; 1688 } 1689 1690 static long 1691 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target, 1692 bool purgeable_only) 1693 { 1694 struct drm_i915_gem_object *obj, *next; 1695 long count = 0; 1696 1697 list_for_each_entry_safe(obj, next, 1698 &dev_priv->mm.unbound_list, 1699 gtt_list) { 1700 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) && 1701 i915_gem_object_put_pages(obj) == 0) { 1702 count += obj->base.size >> PAGE_SHIFT; 1703 if (count >= target) 1704 return count; 1705 } 1706 } 1707 1708 list_for_each_entry_safe(obj, next, 1709 &dev_priv->mm.inactive_list, 1710 mm_list) { 1711 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) && 1712 i915_gem_object_unbind(obj) == 0 && 1713 i915_gem_object_put_pages(obj) == 0) { 1714 count += obj->base.size >> PAGE_SHIFT; 1715 if (count >= target) 1716 return count; 1717 } 1718 } 1719 1720 return count; 1721 } 1722 1723 static long 1724 i915_gem_purge(struct drm_i915_private *dev_priv, long target) 1725 { 1726 return __i915_gem_shrink(dev_priv, target, true); 1727 } 1728 1729 static void 1730 i915_gem_shrink_all(struct drm_i915_private *dev_priv) 1731 { 1732 struct drm_i915_gem_object *obj, *next; 1733 1734 i915_gem_evict_everything(dev_priv->dev); 1735 1736 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list) 1737 i915_gem_object_put_pages(obj); 1738 } 1739 1740 static int 1741 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) 1742 { 1743 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1744 int page_count, i; 1745 struct address_space *mapping; 1746 struct sg_table *st; 1747 struct scatterlist *sg; 1748 struct sg_page_iter sg_iter; 1749 struct page *page; 1750 unsigned long last_pfn = 0; /* suppress gcc warning */ 1751 gfp_t gfp; 1752 1753 /* Assert that the object is not currently in any GPU domain. As it 1754 * wasn't in the GTT, there shouldn't be any way it could have been in 1755 * a GPU cache 1756 */ 1757 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); 1758 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); 1759 1760 st = kmalloc(sizeof(*st), GFP_KERNEL); 1761 if (st == NULL) 1762 return -ENOMEM; 1763 1764 page_count = obj->base.size / PAGE_SIZE; 1765 if (sg_alloc_table(st, page_count, GFP_KERNEL)) { 1766 sg_free_table(st); 1767 kfree(st); 1768 return -ENOMEM; 1769 } 1770 1771 /* Get the list of pages out of our struct file. They'll be pinned 1772 * at this point until we release them. 1773 * 1774 * Fail silently without starting the shrinker 1775 */ 1776 mapping = file_inode(obj->base.filp)->i_mapping; 1777 gfp = mapping_gfp_mask(mapping); 1778 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD; 1779 gfp &= ~(__GFP_IO | __GFP_WAIT); 1780 sg = st->sgl; 1781 st->nents = 0; 1782 for (i = 0; i < page_count; i++) { 1783 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1784 if (IS_ERR(page)) { 1785 i915_gem_purge(dev_priv, page_count); 1786 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1787 } 1788 if (IS_ERR(page)) { 1789 /* We've tried hard to allocate the memory by reaping 1790 * our own buffer, now let the real VM do its job and 1791 * go down in flames if truly OOM. 1792 */ 1793 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD); 1794 gfp |= __GFP_IO | __GFP_WAIT; 1795 1796 i915_gem_shrink_all(dev_priv); 1797 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1798 if (IS_ERR(page)) 1799 goto err_pages; 1800 1801 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD; 1802 gfp &= ~(__GFP_IO | __GFP_WAIT); 1803 } 1804 #ifdef CONFIG_SWIOTLB 1805 if (swiotlb_nr_tbl()) { 1806 st->nents++; 1807 sg_set_page(sg, page, PAGE_SIZE, 0); 1808 sg = sg_next(sg); 1809 continue; 1810 } 1811 #endif 1812 if (!i || page_to_pfn(page) != last_pfn + 1) { 1813 if (i) 1814 sg = sg_next(sg); 1815 st->nents++; 1816 sg_set_page(sg, page, PAGE_SIZE, 0); 1817 } else { 1818 sg->length += PAGE_SIZE; 1819 } 1820 last_pfn = page_to_pfn(page); 1821 } 1822 #ifdef CONFIG_SWIOTLB 1823 if (!swiotlb_nr_tbl()) 1824 #endif 1825 sg_mark_end(sg); 1826 obj->pages = st; 1827 1828 if (i915_gem_object_needs_bit17_swizzle(obj)) 1829 i915_gem_object_do_bit_17_swizzle(obj); 1830 1831 return 0; 1832 1833 err_pages: 1834 sg_mark_end(sg); 1835 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) 1836 page_cache_release(sg_page_iter_page(&sg_iter)); 1837 sg_free_table(st); 1838 kfree(st); 1839 return PTR_ERR(page); 1840 } 1841 1842 /* Ensure that the associated pages are gathered from the backing storage 1843 * and pinned into our object. i915_gem_object_get_pages() may be called 1844 * multiple times before they are released by a single call to 1845 * i915_gem_object_put_pages() - once the pages are no longer referenced 1846 * either as a result of memory pressure (reaping pages under the shrinker) 1847 * or as the object is itself released. 1848 */ 1849 int 1850 i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 1851 { 1852 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1853 const struct drm_i915_gem_object_ops *ops = obj->ops; 1854 int ret; 1855 1856 if (obj->pages) 1857 return 0; 1858 1859 if (obj->madv != I915_MADV_WILLNEED) { 1860 DRM_ERROR("Attempting to obtain a purgeable object\n"); 1861 return -EINVAL; 1862 } 1863 1864 BUG_ON(obj->pages_pin_count); 1865 1866 ret = ops->get_pages(obj); 1867 if (ret) 1868 return ret; 1869 1870 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list); 1871 return 0; 1872 } 1873 1874 void 1875 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj, 1876 struct intel_ring_buffer *ring) 1877 { 1878 struct drm_device *dev = obj->base.dev; 1879 struct drm_i915_private *dev_priv = dev->dev_private; 1880 u32 seqno = intel_ring_get_seqno(ring); 1881 1882 BUG_ON(ring == NULL); 1883 obj->ring = ring; 1884 1885 /* Add a reference if we're newly entering the active list. */ 1886 if (!obj->active) { 1887 drm_gem_object_reference(&obj->base); 1888 obj->active = 1; 1889 } 1890 1891 /* Move from whatever list we were on to the tail of execution. */ 1892 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list); 1893 list_move_tail(&obj->ring_list, &ring->active_list); 1894 1895 obj->last_read_seqno = seqno; 1896 1897 if (obj->fenced_gpu_access) { 1898 obj->last_fenced_seqno = seqno; 1899 1900 /* Bump MRU to take account of the delayed flush */ 1901 if (obj->fence_reg != I915_FENCE_REG_NONE) { 1902 struct drm_i915_fence_reg *reg; 1903 1904 reg = &dev_priv->fence_regs[obj->fence_reg]; 1905 list_move_tail(®->lru_list, 1906 &dev_priv->mm.fence_list); 1907 } 1908 } 1909 } 1910 1911 static void 1912 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj) 1913 { 1914 struct drm_device *dev = obj->base.dev; 1915 struct drm_i915_private *dev_priv = dev->dev_private; 1916 1917 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS); 1918 BUG_ON(!obj->active); 1919 1920 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 1921 1922 list_del_init(&obj->ring_list); 1923 obj->ring = NULL; 1924 1925 obj->last_read_seqno = 0; 1926 obj->last_write_seqno = 0; 1927 obj->base.write_domain = 0; 1928 1929 obj->last_fenced_seqno = 0; 1930 obj->fenced_gpu_access = false; 1931 1932 obj->active = 0; 1933 drm_gem_object_unreference(&obj->base); 1934 1935 WARN_ON(i915_verify_lists(dev)); 1936 } 1937 1938 static int 1939 i915_gem_init_seqno(struct drm_device *dev, u32 seqno) 1940 { 1941 struct drm_i915_private *dev_priv = dev->dev_private; 1942 struct intel_ring_buffer *ring; 1943 int ret, i, j; 1944 1945 /* Carefully retire all requests without writing to the rings */ 1946 for_each_ring(ring, dev_priv, i) { 1947 ret = intel_ring_idle(ring); 1948 if (ret) 1949 return ret; 1950 } 1951 i915_gem_retire_requests(dev); 1952 1953 /* Finally reset hw state */ 1954 for_each_ring(ring, dev_priv, i) { 1955 intel_ring_init_seqno(ring, seqno); 1956 1957 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++) 1958 ring->sync_seqno[j] = 0; 1959 } 1960 1961 return 0; 1962 } 1963 1964 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno) 1965 { 1966 struct drm_i915_private *dev_priv = dev->dev_private; 1967 int ret; 1968 1969 if (seqno == 0) 1970 return -EINVAL; 1971 1972 /* HWS page needs to be set less than what we 1973 * will inject to ring 1974 */ 1975 ret = i915_gem_init_seqno(dev, seqno - 1); 1976 if (ret) 1977 return ret; 1978 1979 /* Carefully set the last_seqno value so that wrap 1980 * detection still works 1981 */ 1982 dev_priv->next_seqno = seqno; 1983 dev_priv->last_seqno = seqno - 1; 1984 if (dev_priv->last_seqno == 0) 1985 dev_priv->last_seqno--; 1986 1987 return 0; 1988 } 1989 1990 int 1991 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno) 1992 { 1993 struct drm_i915_private *dev_priv = dev->dev_private; 1994 1995 /* reserve 0 for non-seqno */ 1996 if (dev_priv->next_seqno == 0) { 1997 int ret = i915_gem_init_seqno(dev, 0); 1998 if (ret) 1999 return ret; 2000 2001 dev_priv->next_seqno = 1; 2002 } 2003 2004 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++; 2005 return 0; 2006 } 2007 2008 int 2009 i915_add_request(struct intel_ring_buffer *ring, 2010 struct drm_file *file, 2011 u32 *out_seqno) 2012 { 2013 drm_i915_private_t *dev_priv = ring->dev->dev_private; 2014 struct drm_i915_gem_request *request; 2015 u32 request_ring_position; 2016 int was_empty; 2017 int ret; 2018 2019 /* 2020 * Emit any outstanding flushes - execbuf can fail to emit the flush 2021 * after having emitted the batchbuffer command. Hence we need to fix 2022 * things up similar to emitting the lazy request. The difference here 2023 * is that the flush _must_ happen before the next request, no matter 2024 * what. 2025 */ 2026 ret = intel_ring_flush_all_caches(ring); 2027 if (ret) 2028 return ret; 2029 2030 request = kmalloc(sizeof(*request), GFP_KERNEL); 2031 if (request == NULL) 2032 return -ENOMEM; 2033 2034 2035 /* Record the position of the start of the request so that 2036 * should we detect the updated seqno part-way through the 2037 * GPU processing the request, we never over-estimate the 2038 * position of the head. 2039 */ 2040 request_ring_position = intel_ring_get_tail(ring); 2041 2042 ret = ring->add_request(ring); 2043 if (ret) { 2044 kfree(request); 2045 return ret; 2046 } 2047 2048 request->seqno = intel_ring_get_seqno(ring); 2049 request->ring = ring; 2050 request->tail = request_ring_position; 2051 request->emitted_jiffies = jiffies; 2052 was_empty = list_empty(&ring->request_list); 2053 list_add_tail(&request->list, &ring->request_list); 2054 request->file_priv = NULL; 2055 2056 if (file) { 2057 struct drm_i915_file_private *file_priv = file->driver_priv; 2058 2059 spin_lock(&file_priv->mm.lock); 2060 request->file_priv = file_priv; 2061 list_add_tail(&request->client_list, 2062 &file_priv->mm.request_list); 2063 spin_unlock(&file_priv->mm.lock); 2064 } 2065 2066 trace_i915_gem_request_add(ring, request->seqno); 2067 ring->outstanding_lazy_request = 0; 2068 2069 if (!dev_priv->mm.suspended) { 2070 if (i915_enable_hangcheck) { 2071 mod_timer(&dev_priv->gpu_error.hangcheck_timer, 2072 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES)); 2073 } 2074 if (was_empty) { 2075 queue_delayed_work(dev_priv->wq, 2076 &dev_priv->mm.retire_work, 2077 round_jiffies_up_relative(HZ)); 2078 intel_mark_busy(dev_priv->dev); 2079 } 2080 } 2081 2082 if (out_seqno) 2083 *out_seqno = request->seqno; 2084 return 0; 2085 } 2086 2087 static inline void 2088 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request) 2089 { 2090 struct drm_i915_file_private *file_priv = request->file_priv; 2091 2092 if (!file_priv) 2093 return; 2094 2095 spin_lock(&file_priv->mm.lock); 2096 if (request->file_priv) { 2097 list_del(&request->client_list); 2098 request->file_priv = NULL; 2099 } 2100 spin_unlock(&file_priv->mm.lock); 2101 } 2102 2103 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv, 2104 struct intel_ring_buffer *ring) 2105 { 2106 while (!list_empty(&ring->request_list)) { 2107 struct drm_i915_gem_request *request; 2108 2109 request = list_first_entry(&ring->request_list, 2110 struct drm_i915_gem_request, 2111 list); 2112 2113 list_del(&request->list); 2114 i915_gem_request_remove_from_client(request); 2115 kfree(request); 2116 } 2117 2118 while (!list_empty(&ring->active_list)) { 2119 struct drm_i915_gem_object *obj; 2120 2121 obj = list_first_entry(&ring->active_list, 2122 struct drm_i915_gem_object, 2123 ring_list); 2124 2125 i915_gem_object_move_to_inactive(obj); 2126 } 2127 } 2128 2129 void i915_gem_restore_fences(struct drm_device *dev) 2130 { 2131 struct drm_i915_private *dev_priv = dev->dev_private; 2132 int i; 2133 2134 for (i = 0; i < dev_priv->num_fence_regs; i++) { 2135 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; 2136 i915_gem_write_fence(dev, i, reg->obj); 2137 } 2138 } 2139 2140 void i915_gem_reset(struct drm_device *dev) 2141 { 2142 struct drm_i915_private *dev_priv = dev->dev_private; 2143 struct drm_i915_gem_object *obj; 2144 struct intel_ring_buffer *ring; 2145 int i; 2146 2147 for_each_ring(ring, dev_priv, i) 2148 i915_gem_reset_ring_lists(dev_priv, ring); 2149 2150 /* Move everything out of the GPU domains to ensure we do any 2151 * necessary invalidation upon reuse. 2152 */ 2153 list_for_each_entry(obj, 2154 &dev_priv->mm.inactive_list, 2155 mm_list) 2156 { 2157 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; 2158 } 2159 2160 i915_gem_restore_fences(dev); 2161 } 2162 2163 /** 2164 * This function clears the request list as sequence numbers are passed. 2165 */ 2166 void 2167 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring) 2168 { 2169 uint32_t seqno; 2170 2171 if (list_empty(&ring->request_list)) 2172 return; 2173 2174 WARN_ON(i915_verify_lists(ring->dev)); 2175 2176 seqno = ring->get_seqno(ring, true); 2177 2178 while (!list_empty(&ring->request_list)) { 2179 struct drm_i915_gem_request *request; 2180 2181 request = list_first_entry(&ring->request_list, 2182 struct drm_i915_gem_request, 2183 list); 2184 2185 if (!i915_seqno_passed(seqno, request->seqno)) 2186 break; 2187 2188 trace_i915_gem_request_retire(ring, request->seqno); 2189 /* We know the GPU must have read the request to have 2190 * sent us the seqno + interrupt, so use the position 2191 * of tail of the request to update the last known position 2192 * of the GPU head. 2193 */ 2194 ring->last_retired_head = request->tail; 2195 2196 list_del(&request->list); 2197 i915_gem_request_remove_from_client(request); 2198 kfree(request); 2199 } 2200 2201 /* Move any buffers on the active list that are no longer referenced 2202 * by the ringbuffer to the flushing/inactive lists as appropriate. 2203 */ 2204 while (!list_empty(&ring->active_list)) { 2205 struct drm_i915_gem_object *obj; 2206 2207 obj = list_first_entry(&ring->active_list, 2208 struct drm_i915_gem_object, 2209 ring_list); 2210 2211 if (!i915_seqno_passed(seqno, obj->last_read_seqno)) 2212 break; 2213 2214 i915_gem_object_move_to_inactive(obj); 2215 } 2216 2217 if (unlikely(ring->trace_irq_seqno && 2218 i915_seqno_passed(seqno, ring->trace_irq_seqno))) { 2219 ring->irq_put(ring); 2220 ring->trace_irq_seqno = 0; 2221 } 2222 2223 WARN_ON(i915_verify_lists(ring->dev)); 2224 } 2225 2226 void 2227 i915_gem_retire_requests(struct drm_device *dev) 2228 { 2229 drm_i915_private_t *dev_priv = dev->dev_private; 2230 struct intel_ring_buffer *ring; 2231 int i; 2232 2233 for_each_ring(ring, dev_priv, i) 2234 i915_gem_retire_requests_ring(ring); 2235 } 2236 2237 static void 2238 i915_gem_retire_work_handler(struct work_struct *work) 2239 { 2240 drm_i915_private_t *dev_priv; 2241 struct drm_device *dev; 2242 struct intel_ring_buffer *ring; 2243 bool idle; 2244 int i; 2245 2246 dev_priv = container_of(work, drm_i915_private_t, 2247 mm.retire_work.work); 2248 dev = dev_priv->dev; 2249 2250 /* Come back later if the device is busy... */ 2251 if (!mutex_trylock(&dev->struct_mutex)) { 2252 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 2253 round_jiffies_up_relative(HZ)); 2254 return; 2255 } 2256 2257 i915_gem_retire_requests(dev); 2258 2259 /* Send a periodic flush down the ring so we don't hold onto GEM 2260 * objects indefinitely. 2261 */ 2262 idle = true; 2263 for_each_ring(ring, dev_priv, i) { 2264 if (ring->gpu_caches_dirty) 2265 i915_add_request(ring, NULL, NULL); 2266 2267 idle &= list_empty(&ring->request_list); 2268 } 2269 2270 if (!dev_priv->mm.suspended && !idle) 2271 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 2272 round_jiffies_up_relative(HZ)); 2273 if (idle) 2274 intel_mark_idle(dev); 2275 2276 mutex_unlock(&dev->struct_mutex); 2277 } 2278 2279 /** 2280 * Ensures that an object will eventually get non-busy by flushing any required 2281 * write domains, emitting any outstanding lazy request and retiring and 2282 * completed requests. 2283 */ 2284 static int 2285 i915_gem_object_flush_active(struct drm_i915_gem_object *obj) 2286 { 2287 int ret; 2288 2289 if (obj->active) { 2290 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno); 2291 if (ret) 2292 return ret; 2293 2294 i915_gem_retire_requests_ring(obj->ring); 2295 } 2296 2297 return 0; 2298 } 2299 2300 /** 2301 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT 2302 * @DRM_IOCTL_ARGS: standard ioctl arguments 2303 * 2304 * Returns 0 if successful, else an error is returned with the remaining time in 2305 * the timeout parameter. 2306 * -ETIME: object is still busy after timeout 2307 * -ERESTARTSYS: signal interrupted the wait 2308 * -ENONENT: object doesn't exist 2309 * Also possible, but rare: 2310 * -EAGAIN: GPU wedged 2311 * -ENOMEM: damn 2312 * -ENODEV: Internal IRQ fail 2313 * -E?: The add request failed 2314 * 2315 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any 2316 * non-zero timeout parameter the wait ioctl will wait for the given number of 2317 * nanoseconds on an object becoming unbusy. Since the wait itself does so 2318 * without holding struct_mutex the object may become re-busied before this 2319 * function completes. A similar but shorter * race condition exists in the busy 2320 * ioctl 2321 */ 2322 int 2323 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 2324 { 2325 drm_i915_private_t *dev_priv = dev->dev_private; 2326 struct drm_i915_gem_wait *args = data; 2327 struct drm_i915_gem_object *obj; 2328 struct intel_ring_buffer *ring = NULL; 2329 struct timespec timeout_stack, *timeout = NULL; 2330 unsigned reset_counter; 2331 u32 seqno = 0; 2332 int ret = 0; 2333 2334 if (args->timeout_ns >= 0) { 2335 timeout_stack = ns_to_timespec(args->timeout_ns); 2336 timeout = &timeout_stack; 2337 } 2338 2339 ret = i915_mutex_lock_interruptible(dev); 2340 if (ret) 2341 return ret; 2342 2343 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle)); 2344 if (&obj->base == NULL) { 2345 mutex_unlock(&dev->struct_mutex); 2346 return -ENOENT; 2347 } 2348 2349 /* Need to make sure the object gets inactive eventually. */ 2350 ret = i915_gem_object_flush_active(obj); 2351 if (ret) 2352 goto out; 2353 2354 if (obj->active) { 2355 seqno = obj->last_read_seqno; 2356 ring = obj->ring; 2357 } 2358 2359 if (seqno == 0) 2360 goto out; 2361 2362 /* Do this after OLR check to make sure we make forward progress polling 2363 * on this IOCTL with a 0 timeout (like busy ioctl) 2364 */ 2365 if (!args->timeout_ns) { 2366 ret = -ETIME; 2367 goto out; 2368 } 2369 2370 drm_gem_object_unreference(&obj->base); 2371 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 2372 mutex_unlock(&dev->struct_mutex); 2373 2374 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout); 2375 if (timeout) 2376 args->timeout_ns = timespec_to_ns(timeout); 2377 return ret; 2378 2379 out: 2380 drm_gem_object_unreference(&obj->base); 2381 mutex_unlock(&dev->struct_mutex); 2382 return ret; 2383 } 2384 2385 /** 2386 * i915_gem_object_sync - sync an object to a ring. 2387 * 2388 * @obj: object which may be in use on another ring. 2389 * @to: ring we wish to use the object on. May be NULL. 2390 * 2391 * This code is meant to abstract object synchronization with the GPU. 2392 * Calling with NULL implies synchronizing the object with the CPU 2393 * rather than a particular GPU ring. 2394 * 2395 * Returns 0 if successful, else propagates up the lower layer error. 2396 */ 2397 int 2398 i915_gem_object_sync(struct drm_i915_gem_object *obj, 2399 struct intel_ring_buffer *to) 2400 { 2401 struct intel_ring_buffer *from = obj->ring; 2402 u32 seqno; 2403 int ret, idx; 2404 2405 if (from == NULL || to == from) 2406 return 0; 2407 2408 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev)) 2409 return i915_gem_object_wait_rendering(obj, false); 2410 2411 idx = intel_ring_sync_index(from, to); 2412 2413 seqno = obj->last_read_seqno; 2414 if (seqno <= from->sync_seqno[idx]) 2415 return 0; 2416 2417 ret = i915_gem_check_olr(obj->ring, seqno); 2418 if (ret) 2419 return ret; 2420 2421 ret = to->sync_to(to, from, seqno); 2422 if (!ret) 2423 /* We use last_read_seqno because sync_to() 2424 * might have just caused seqno wrap under 2425 * the radar. 2426 */ 2427 from->sync_seqno[idx] = obj->last_read_seqno; 2428 2429 return ret; 2430 } 2431 2432 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj) 2433 { 2434 u32 old_write_domain, old_read_domains; 2435 2436 /* Force a pagefault for domain tracking on next user access */ 2437 i915_gem_release_mmap(obj); 2438 2439 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 2440 return; 2441 2442 /* Wait for any direct GTT access to complete */ 2443 mb(); 2444 2445 old_read_domains = obj->base.read_domains; 2446 old_write_domain = obj->base.write_domain; 2447 2448 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT; 2449 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT; 2450 2451 trace_i915_gem_object_change_domain(obj, 2452 old_read_domains, 2453 old_write_domain); 2454 } 2455 2456 /** 2457 * Unbinds an object from the GTT aperture. 2458 */ 2459 int 2460 i915_gem_object_unbind(struct drm_i915_gem_object *obj) 2461 { 2462 drm_i915_private_t *dev_priv = obj->base.dev->dev_private; 2463 int ret; 2464 2465 if (obj->gtt_space == NULL) 2466 return 0; 2467 2468 if (obj->pin_count) 2469 return -EBUSY; 2470 2471 BUG_ON(obj->pages == NULL); 2472 2473 ret = i915_gem_object_finish_gpu(obj); 2474 if (ret) 2475 return ret; 2476 /* Continue on if we fail due to EIO, the GPU is hung so we 2477 * should be safe and we need to cleanup or else we might 2478 * cause memory corruption through use-after-free. 2479 */ 2480 2481 i915_gem_object_finish_gtt(obj); 2482 2483 /* release the fence reg _after_ flushing */ 2484 ret = i915_gem_object_put_fence(obj); 2485 if (ret) 2486 return ret; 2487 2488 trace_i915_gem_object_unbind(obj); 2489 2490 if (obj->has_global_gtt_mapping) 2491 i915_gem_gtt_unbind_object(obj); 2492 if (obj->has_aliasing_ppgtt_mapping) { 2493 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj); 2494 obj->has_aliasing_ppgtt_mapping = 0; 2495 } 2496 i915_gem_gtt_finish_object(obj); 2497 2498 list_del(&obj->mm_list); 2499 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list); 2500 /* Avoid an unnecessary call to unbind on rebind. */ 2501 obj->map_and_fenceable = true; 2502 2503 drm_mm_put_block(obj->gtt_space); 2504 obj->gtt_space = NULL; 2505 obj->gtt_offset = 0; 2506 2507 return 0; 2508 } 2509 2510 int i915_gpu_idle(struct drm_device *dev) 2511 { 2512 drm_i915_private_t *dev_priv = dev->dev_private; 2513 struct intel_ring_buffer *ring; 2514 int ret, i; 2515 2516 /* Flush everything onto the inactive list. */ 2517 for_each_ring(ring, dev_priv, i) { 2518 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID); 2519 if (ret) 2520 return ret; 2521 2522 ret = intel_ring_idle(ring); 2523 if (ret) 2524 return ret; 2525 } 2526 2527 return 0; 2528 } 2529 2530 static void i965_write_fence_reg(struct drm_device *dev, int reg, 2531 struct drm_i915_gem_object *obj) 2532 { 2533 drm_i915_private_t *dev_priv = dev->dev_private; 2534 int fence_reg; 2535 int fence_pitch_shift; 2536 uint64_t val; 2537 2538 if (INTEL_INFO(dev)->gen >= 6) { 2539 fence_reg = FENCE_REG_SANDYBRIDGE_0; 2540 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT; 2541 } else { 2542 fence_reg = FENCE_REG_965_0; 2543 fence_pitch_shift = I965_FENCE_PITCH_SHIFT; 2544 } 2545 2546 if (obj) { 2547 u32 size = obj->gtt_space->size; 2548 2549 val = (uint64_t)((obj->gtt_offset + size - 4096) & 2550 0xfffff000) << 32; 2551 val |= obj->gtt_offset & 0xfffff000; 2552 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift; 2553 if (obj->tiling_mode == I915_TILING_Y) 2554 val |= 1 << I965_FENCE_TILING_Y_SHIFT; 2555 val |= I965_FENCE_REG_VALID; 2556 } else 2557 val = 0; 2558 2559 fence_reg += reg * 8; 2560 I915_WRITE64(fence_reg, val); 2561 POSTING_READ(fence_reg); 2562 } 2563 2564 static void i915_write_fence_reg(struct drm_device *dev, int reg, 2565 struct drm_i915_gem_object *obj) 2566 { 2567 drm_i915_private_t *dev_priv = dev->dev_private; 2568 u32 val; 2569 2570 if (obj) { 2571 u32 size = obj->gtt_space->size; 2572 int pitch_val; 2573 int tile_width; 2574 2575 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) || 2576 (size & -size) != size || 2577 (obj->gtt_offset & (size - 1)), 2578 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n", 2579 obj->gtt_offset, obj->map_and_fenceable, size); 2580 2581 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)) 2582 tile_width = 128; 2583 else 2584 tile_width = 512; 2585 2586 /* Note: pitch better be a power of two tile widths */ 2587 pitch_val = obj->stride / tile_width; 2588 pitch_val = ffs(pitch_val) - 1; 2589 2590 val = obj->gtt_offset; 2591 if (obj->tiling_mode == I915_TILING_Y) 2592 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 2593 val |= I915_FENCE_SIZE_BITS(size); 2594 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 2595 val |= I830_FENCE_REG_VALID; 2596 } else 2597 val = 0; 2598 2599 if (reg < 8) 2600 reg = FENCE_REG_830_0 + reg * 4; 2601 else 2602 reg = FENCE_REG_945_8 + (reg - 8) * 4; 2603 2604 I915_WRITE(reg, val); 2605 POSTING_READ(reg); 2606 } 2607 2608 static void i830_write_fence_reg(struct drm_device *dev, int reg, 2609 struct drm_i915_gem_object *obj) 2610 { 2611 drm_i915_private_t *dev_priv = dev->dev_private; 2612 uint32_t val; 2613 2614 if (obj) { 2615 u32 size = obj->gtt_space->size; 2616 uint32_t pitch_val; 2617 2618 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) || 2619 (size & -size) != size || 2620 (obj->gtt_offset & (size - 1)), 2621 "object 0x%08x not 512K or pot-size 0x%08x aligned\n", 2622 obj->gtt_offset, size); 2623 2624 pitch_val = obj->stride / 128; 2625 pitch_val = ffs(pitch_val) - 1; 2626 2627 val = obj->gtt_offset; 2628 if (obj->tiling_mode == I915_TILING_Y) 2629 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 2630 val |= I830_FENCE_SIZE_BITS(size); 2631 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 2632 val |= I830_FENCE_REG_VALID; 2633 } else 2634 val = 0; 2635 2636 I915_WRITE(FENCE_REG_830_0 + reg * 4, val); 2637 POSTING_READ(FENCE_REG_830_0 + reg * 4); 2638 } 2639 2640 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj) 2641 { 2642 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT; 2643 } 2644 2645 static void i915_gem_write_fence(struct drm_device *dev, int reg, 2646 struct drm_i915_gem_object *obj) 2647 { 2648 struct drm_i915_private *dev_priv = dev->dev_private; 2649 2650 /* Ensure that all CPU reads are completed before installing a fence 2651 * and all writes before removing the fence. 2652 */ 2653 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj)) 2654 mb(); 2655 2656 switch (INTEL_INFO(dev)->gen) { 2657 case 7: 2658 case 6: 2659 case 5: 2660 case 4: i965_write_fence_reg(dev, reg, obj); break; 2661 case 3: i915_write_fence_reg(dev, reg, obj); break; 2662 case 2: i830_write_fence_reg(dev, reg, obj); break; 2663 default: BUG(); 2664 } 2665 2666 /* And similarly be paranoid that no direct access to this region 2667 * is reordered to before the fence is installed. 2668 */ 2669 if (i915_gem_object_needs_mb(obj)) 2670 mb(); 2671 } 2672 2673 static inline int fence_number(struct drm_i915_private *dev_priv, 2674 struct drm_i915_fence_reg *fence) 2675 { 2676 return fence - dev_priv->fence_regs; 2677 } 2678 2679 static void i915_gem_write_fence__ipi(void *data) 2680 { 2681 wbinvd(); 2682 } 2683 2684 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 2685 struct drm_i915_fence_reg *fence, 2686 bool enable) 2687 { 2688 struct drm_device *dev = obj->base.dev; 2689 struct drm_i915_private *dev_priv = dev->dev_private; 2690 int fence_reg = fence_number(dev_priv, fence); 2691 2692 /* In order to fully serialize access to the fenced region and 2693 * the update to the fence register we need to take extreme 2694 * measures on SNB+. In theory, the write to the fence register 2695 * flushes all memory transactions before, and coupled with the 2696 * mb() placed around the register write we serialise all memory 2697 * operations with respect to the changes in the tiler. Yet, on 2698 * SNB+ we need to take a step further and emit an explicit wbinvd() 2699 * on each processor in order to manually flush all memory 2700 * transactions before updating the fence register. 2701 */ 2702 if (HAS_LLC(obj->base.dev)) 2703 on_each_cpu(i915_gem_write_fence__ipi, NULL, 1); 2704 i915_gem_write_fence(dev, fence_reg, enable ? obj : NULL); 2705 2706 if (enable) { 2707 obj->fence_reg = fence_reg; 2708 fence->obj = obj; 2709 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list); 2710 } else { 2711 obj->fence_reg = I915_FENCE_REG_NONE; 2712 fence->obj = NULL; 2713 list_del_init(&fence->lru_list); 2714 } 2715 } 2716 2717 static int 2718 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj) 2719 { 2720 if (obj->last_fenced_seqno) { 2721 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno); 2722 if (ret) 2723 return ret; 2724 2725 obj->last_fenced_seqno = 0; 2726 } 2727 2728 obj->fenced_gpu_access = false; 2729 return 0; 2730 } 2731 2732 int 2733 i915_gem_object_put_fence(struct drm_i915_gem_object *obj) 2734 { 2735 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2736 struct drm_i915_fence_reg *fence; 2737 int ret; 2738 2739 ret = i915_gem_object_wait_fence(obj); 2740 if (ret) 2741 return ret; 2742 2743 if (obj->fence_reg == I915_FENCE_REG_NONE) 2744 return 0; 2745 2746 fence = &dev_priv->fence_regs[obj->fence_reg]; 2747 2748 i915_gem_object_fence_lost(obj); 2749 i915_gem_object_update_fence(obj, fence, false); 2750 2751 return 0; 2752 } 2753 2754 static struct drm_i915_fence_reg * 2755 i915_find_fence_reg(struct drm_device *dev) 2756 { 2757 struct drm_i915_private *dev_priv = dev->dev_private; 2758 struct drm_i915_fence_reg *reg, *avail; 2759 int i; 2760 2761 /* First try to find a free reg */ 2762 avail = NULL; 2763 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) { 2764 reg = &dev_priv->fence_regs[i]; 2765 if (!reg->obj) 2766 return reg; 2767 2768 if (!reg->pin_count) 2769 avail = reg; 2770 } 2771 2772 if (avail == NULL) 2773 return NULL; 2774 2775 /* None available, try to steal one or wait for a user to finish */ 2776 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) { 2777 if (reg->pin_count) 2778 continue; 2779 2780 return reg; 2781 } 2782 2783 return NULL; 2784 } 2785 2786 /** 2787 * i915_gem_object_get_fence - set up fencing for an object 2788 * @obj: object to map through a fence reg 2789 * 2790 * When mapping objects through the GTT, userspace wants to be able to write 2791 * to them without having to worry about swizzling if the object is tiled. 2792 * This function walks the fence regs looking for a free one for @obj, 2793 * stealing one if it can't find any. 2794 * 2795 * It then sets up the reg based on the object's properties: address, pitch 2796 * and tiling format. 2797 * 2798 * For an untiled surface, this removes any existing fence. 2799 */ 2800 int 2801 i915_gem_object_get_fence(struct drm_i915_gem_object *obj) 2802 { 2803 struct drm_device *dev = obj->base.dev; 2804 struct drm_i915_private *dev_priv = dev->dev_private; 2805 bool enable = obj->tiling_mode != I915_TILING_NONE; 2806 struct drm_i915_fence_reg *reg; 2807 int ret; 2808 2809 /* Have we updated the tiling parameters upon the object and so 2810 * will need to serialise the write to the associated fence register? 2811 */ 2812 if (obj->fence_dirty) { 2813 ret = i915_gem_object_wait_fence(obj); 2814 if (ret) 2815 return ret; 2816 } 2817 2818 /* Just update our place in the LRU if our fence is getting reused. */ 2819 if (obj->fence_reg != I915_FENCE_REG_NONE) { 2820 reg = &dev_priv->fence_regs[obj->fence_reg]; 2821 if (!obj->fence_dirty) { 2822 list_move_tail(®->lru_list, 2823 &dev_priv->mm.fence_list); 2824 return 0; 2825 } 2826 } else if (enable) { 2827 reg = i915_find_fence_reg(dev); 2828 if (reg == NULL) 2829 return -EDEADLK; 2830 2831 if (reg->obj) { 2832 struct drm_i915_gem_object *old = reg->obj; 2833 2834 ret = i915_gem_object_wait_fence(old); 2835 if (ret) 2836 return ret; 2837 2838 i915_gem_object_fence_lost(old); 2839 } 2840 } else 2841 return 0; 2842 2843 i915_gem_object_update_fence(obj, reg, enable); 2844 obj->fence_dirty = false; 2845 2846 return 0; 2847 } 2848 2849 static bool i915_gem_valid_gtt_space(struct drm_device *dev, 2850 struct drm_mm_node *gtt_space, 2851 unsigned long cache_level) 2852 { 2853 struct drm_mm_node *other; 2854 2855 /* On non-LLC machines we have to be careful when putting differing 2856 * types of snoopable memory together to avoid the prefetcher 2857 * crossing memory domains and dying. 2858 */ 2859 if (HAS_LLC(dev)) 2860 return true; 2861 2862 if (gtt_space == NULL) 2863 return true; 2864 2865 if (list_empty(>t_space->node_list)) 2866 return true; 2867 2868 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list); 2869 if (other->allocated && !other->hole_follows && other->color != cache_level) 2870 return false; 2871 2872 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list); 2873 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level) 2874 return false; 2875 2876 return true; 2877 } 2878 2879 static void i915_gem_verify_gtt(struct drm_device *dev) 2880 { 2881 #if WATCH_GTT 2882 struct drm_i915_private *dev_priv = dev->dev_private; 2883 struct drm_i915_gem_object *obj; 2884 int err = 0; 2885 2886 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) { 2887 if (obj->gtt_space == NULL) { 2888 printk(KERN_ERR "object found on GTT list with no space reserved\n"); 2889 err++; 2890 continue; 2891 } 2892 2893 if (obj->cache_level != obj->gtt_space->color) { 2894 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n", 2895 obj->gtt_space->start, 2896 obj->gtt_space->start + obj->gtt_space->size, 2897 obj->cache_level, 2898 obj->gtt_space->color); 2899 err++; 2900 continue; 2901 } 2902 2903 if (!i915_gem_valid_gtt_space(dev, 2904 obj->gtt_space, 2905 obj->cache_level)) { 2906 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n", 2907 obj->gtt_space->start, 2908 obj->gtt_space->start + obj->gtt_space->size, 2909 obj->cache_level); 2910 err++; 2911 continue; 2912 } 2913 } 2914 2915 WARN_ON(err); 2916 #endif 2917 } 2918 2919 /** 2920 * Finds free space in the GTT aperture and binds the object there. 2921 */ 2922 static int 2923 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, 2924 unsigned alignment, 2925 bool map_and_fenceable, 2926 bool nonblocking) 2927 { 2928 struct drm_device *dev = obj->base.dev; 2929 drm_i915_private_t *dev_priv = dev->dev_private; 2930 struct drm_mm_node *node; 2931 u32 size, fence_size, fence_alignment, unfenced_alignment; 2932 bool mappable, fenceable; 2933 int ret; 2934 2935 fence_size = i915_gem_get_gtt_size(dev, 2936 obj->base.size, 2937 obj->tiling_mode); 2938 fence_alignment = i915_gem_get_gtt_alignment(dev, 2939 obj->base.size, 2940 obj->tiling_mode, true); 2941 unfenced_alignment = 2942 i915_gem_get_gtt_alignment(dev, 2943 obj->base.size, 2944 obj->tiling_mode, false); 2945 2946 if (alignment == 0) 2947 alignment = map_and_fenceable ? fence_alignment : 2948 unfenced_alignment; 2949 if (map_and_fenceable && alignment & (fence_alignment - 1)) { 2950 DRM_ERROR("Invalid object alignment requested %u\n", alignment); 2951 return -EINVAL; 2952 } 2953 2954 size = map_and_fenceable ? fence_size : obj->base.size; 2955 2956 /* If the object is bigger than the entire aperture, reject it early 2957 * before evicting everything in a vain attempt to find space. 2958 */ 2959 if (obj->base.size > 2960 (map_and_fenceable ? dev_priv->gtt.mappable_end : dev_priv->gtt.total)) { 2961 DRM_ERROR("Attempting to bind an object larger than the aperture\n"); 2962 return -E2BIG; 2963 } 2964 2965 ret = i915_gem_object_get_pages(obj); 2966 if (ret) 2967 return ret; 2968 2969 i915_gem_object_pin_pages(obj); 2970 2971 node = kzalloc(sizeof(*node), GFP_KERNEL); 2972 if (node == NULL) { 2973 i915_gem_object_unpin_pages(obj); 2974 return -ENOMEM; 2975 } 2976 2977 search_free: 2978 if (map_and_fenceable) 2979 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node, 2980 size, alignment, obj->cache_level, 2981 0, dev_priv->gtt.mappable_end); 2982 else 2983 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node, 2984 size, alignment, obj->cache_level); 2985 if (ret) { 2986 ret = i915_gem_evict_something(dev, size, alignment, 2987 obj->cache_level, 2988 map_and_fenceable, 2989 nonblocking); 2990 if (ret == 0) 2991 goto search_free; 2992 2993 i915_gem_object_unpin_pages(obj); 2994 kfree(node); 2995 return ret; 2996 } 2997 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) { 2998 i915_gem_object_unpin_pages(obj); 2999 drm_mm_put_block(node); 3000 return -EINVAL; 3001 } 3002 3003 ret = i915_gem_gtt_prepare_object(obj); 3004 if (ret) { 3005 i915_gem_object_unpin_pages(obj); 3006 drm_mm_put_block(node); 3007 return ret; 3008 } 3009 3010 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list); 3011 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 3012 3013 obj->gtt_space = node; 3014 obj->gtt_offset = node->start; 3015 3016 fenceable = 3017 node->size == fence_size && 3018 (node->start & (fence_alignment - 1)) == 0; 3019 3020 mappable = 3021 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end; 3022 3023 obj->map_and_fenceable = mappable && fenceable; 3024 3025 i915_gem_object_unpin_pages(obj); 3026 trace_i915_gem_object_bind(obj, map_and_fenceable); 3027 i915_gem_verify_gtt(dev); 3028 return 0; 3029 } 3030 3031 void 3032 i915_gem_clflush_object(struct drm_i915_gem_object *obj) 3033 { 3034 /* If we don't have a page list set up, then we're not pinned 3035 * to GPU, and we can ignore the cache flush because it'll happen 3036 * again at bind time. 3037 */ 3038 if (obj->pages == NULL) 3039 return; 3040 3041 /* 3042 * Stolen memory is always coherent with the GPU as it is explicitly 3043 * marked as wc by the system, or the system is cache-coherent. 3044 */ 3045 if (obj->stolen) 3046 return; 3047 3048 /* If the GPU is snooping the contents of the CPU cache, 3049 * we do not need to manually clear the CPU cache lines. However, 3050 * the caches are only snooped when the render cache is 3051 * flushed/invalidated. As we always have to emit invalidations 3052 * and flushes when moving into and out of the RENDER domain, correct 3053 * snooping behaviour occurs naturally as the result of our domain 3054 * tracking. 3055 */ 3056 if (obj->cache_level != I915_CACHE_NONE) 3057 return; 3058 3059 trace_i915_gem_object_clflush(obj); 3060 3061 drm_clflush_sg(obj->pages); 3062 } 3063 3064 /** Flushes the GTT write domain for the object if it's dirty. */ 3065 static void 3066 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj) 3067 { 3068 uint32_t old_write_domain; 3069 3070 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT) 3071 return; 3072 3073 /* No actual flushing is required for the GTT write domain. Writes 3074 * to it immediately go to main memory as far as we know, so there's 3075 * no chipset flush. It also doesn't land in render cache. 3076 * 3077 * However, we do have to enforce the order so that all writes through 3078 * the GTT land before any writes to the device, such as updates to 3079 * the GATT itself. 3080 */ 3081 wmb(); 3082 3083 old_write_domain = obj->base.write_domain; 3084 obj->base.write_domain = 0; 3085 3086 trace_i915_gem_object_change_domain(obj, 3087 obj->base.read_domains, 3088 old_write_domain); 3089 } 3090 3091 /** Flushes the CPU write domain for the object if it's dirty. */ 3092 static void 3093 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj) 3094 { 3095 uint32_t old_write_domain; 3096 3097 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) 3098 return; 3099 3100 i915_gem_clflush_object(obj); 3101 i915_gem_chipset_flush(obj->base.dev); 3102 old_write_domain = obj->base.write_domain; 3103 obj->base.write_domain = 0; 3104 3105 trace_i915_gem_object_change_domain(obj, 3106 obj->base.read_domains, 3107 old_write_domain); 3108 } 3109 3110 /** 3111 * Moves a single object to the GTT read, and possibly write domain. 3112 * 3113 * This function returns when the move is complete, including waiting on 3114 * flushes to occur. 3115 */ 3116 int 3117 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) 3118 { 3119 drm_i915_private_t *dev_priv = obj->base.dev->dev_private; 3120 uint32_t old_write_domain, old_read_domains; 3121 int ret; 3122 3123 /* Not valid to be called on unbound objects. */ 3124 if (obj->gtt_space == NULL) 3125 return -EINVAL; 3126 3127 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) 3128 return 0; 3129 3130 ret = i915_gem_object_wait_rendering(obj, !write); 3131 if (ret) 3132 return ret; 3133 3134 i915_gem_object_flush_cpu_write_domain(obj); 3135 3136 /* Serialise direct access to this object with the barriers for 3137 * coherent writes from the GPU, by effectively invalidating the 3138 * GTT domain upon first access. 3139 */ 3140 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 3141 mb(); 3142 3143 old_write_domain = obj->base.write_domain; 3144 old_read_domains = obj->base.read_domains; 3145 3146 /* It should now be out of any other write domains, and we can update 3147 * the domain values for our changes. 3148 */ 3149 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 3150 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3151 if (write) { 3152 obj->base.read_domains = I915_GEM_DOMAIN_GTT; 3153 obj->base.write_domain = I915_GEM_DOMAIN_GTT; 3154 obj->dirty = 1; 3155 } 3156 3157 trace_i915_gem_object_change_domain(obj, 3158 old_read_domains, 3159 old_write_domain); 3160 3161 /* And bump the LRU for this access */ 3162 if (i915_gem_object_is_inactive(obj)) 3163 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 3164 3165 return 0; 3166 } 3167 3168 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3169 enum i915_cache_level cache_level) 3170 { 3171 struct drm_device *dev = obj->base.dev; 3172 drm_i915_private_t *dev_priv = dev->dev_private; 3173 int ret; 3174 3175 if (obj->cache_level == cache_level) 3176 return 0; 3177 3178 if (obj->pin_count) { 3179 DRM_DEBUG("can not change the cache level of pinned objects\n"); 3180 return -EBUSY; 3181 } 3182 3183 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) { 3184 ret = i915_gem_object_unbind(obj); 3185 if (ret) 3186 return ret; 3187 } 3188 3189 if (obj->gtt_space) { 3190 ret = i915_gem_object_finish_gpu(obj); 3191 if (ret) 3192 return ret; 3193 3194 i915_gem_object_finish_gtt(obj); 3195 3196 /* Before SandyBridge, you could not use tiling or fence 3197 * registers with snooped memory, so relinquish any fences 3198 * currently pointing to our region in the aperture. 3199 */ 3200 if (INTEL_INFO(dev)->gen < 6) { 3201 ret = i915_gem_object_put_fence(obj); 3202 if (ret) 3203 return ret; 3204 } 3205 3206 if (obj->has_global_gtt_mapping) 3207 i915_gem_gtt_bind_object(obj, cache_level); 3208 if (obj->has_aliasing_ppgtt_mapping) 3209 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt, 3210 obj, cache_level); 3211 3212 obj->gtt_space->color = cache_level; 3213 } 3214 3215 if (cache_level == I915_CACHE_NONE) { 3216 u32 old_read_domains, old_write_domain; 3217 3218 /* If we're coming from LLC cached, then we haven't 3219 * actually been tracking whether the data is in the 3220 * CPU cache or not, since we only allow one bit set 3221 * in obj->write_domain and have been skipping the clflushes. 3222 * Just set it to the CPU cache for now. 3223 */ 3224 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU); 3225 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU); 3226 3227 old_read_domains = obj->base.read_domains; 3228 old_write_domain = obj->base.write_domain; 3229 3230 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3231 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3232 3233 trace_i915_gem_object_change_domain(obj, 3234 old_read_domains, 3235 old_write_domain); 3236 } 3237 3238 obj->cache_level = cache_level; 3239 i915_gem_verify_gtt(dev); 3240 return 0; 3241 } 3242 3243 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3244 struct drm_file *file) 3245 { 3246 struct drm_i915_gem_caching *args = data; 3247 struct drm_i915_gem_object *obj; 3248 int ret; 3249 3250 ret = i915_mutex_lock_interruptible(dev); 3251 if (ret) 3252 return ret; 3253 3254 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3255 if (&obj->base == NULL) { 3256 ret = -ENOENT; 3257 goto unlock; 3258 } 3259 3260 args->caching = obj->cache_level != I915_CACHE_NONE; 3261 3262 drm_gem_object_unreference(&obj->base); 3263 unlock: 3264 mutex_unlock(&dev->struct_mutex); 3265 return ret; 3266 } 3267 3268 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3269 struct drm_file *file) 3270 { 3271 struct drm_i915_gem_caching *args = data; 3272 struct drm_i915_gem_object *obj; 3273 enum i915_cache_level level; 3274 int ret; 3275 3276 switch (args->caching) { 3277 case I915_CACHING_NONE: 3278 level = I915_CACHE_NONE; 3279 break; 3280 case I915_CACHING_CACHED: 3281 level = I915_CACHE_LLC; 3282 break; 3283 default: 3284 return -EINVAL; 3285 } 3286 3287 ret = i915_mutex_lock_interruptible(dev); 3288 if (ret) 3289 return ret; 3290 3291 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3292 if (&obj->base == NULL) { 3293 ret = -ENOENT; 3294 goto unlock; 3295 } 3296 3297 ret = i915_gem_object_set_cache_level(obj, level); 3298 3299 drm_gem_object_unreference(&obj->base); 3300 unlock: 3301 mutex_unlock(&dev->struct_mutex); 3302 return ret; 3303 } 3304 3305 /* 3306 * Prepare buffer for display plane (scanout, cursors, etc). 3307 * Can be called from an uninterruptible phase (modesetting) and allows 3308 * any flushes to be pipelined (for pageflips). 3309 */ 3310 int 3311 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3312 u32 alignment, 3313 struct intel_ring_buffer *pipelined) 3314 { 3315 u32 old_read_domains, old_write_domain; 3316 int ret; 3317 3318 if (pipelined != obj->ring) { 3319 ret = i915_gem_object_sync(obj, pipelined); 3320 if (ret) 3321 return ret; 3322 } 3323 3324 /* The display engine is not coherent with the LLC cache on gen6. As 3325 * a result, we make sure that the pinning that is about to occur is 3326 * done with uncached PTEs. This is lowest common denominator for all 3327 * chipsets. 3328 * 3329 * However for gen6+, we could do better by using the GFDT bit instead 3330 * of uncaching, which would allow us to flush all the LLC-cached data 3331 * with that bit in the PTE to main memory with just one PIPE_CONTROL. 3332 */ 3333 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE); 3334 if (ret) 3335 return ret; 3336 3337 /* As the user may map the buffer once pinned in the display plane 3338 * (e.g. libkms for the bootup splash), we have to ensure that we 3339 * always use map_and_fenceable for all scanout buffers. 3340 */ 3341 ret = i915_gem_object_pin(obj, alignment, true, false); 3342 if (ret) 3343 return ret; 3344 3345 i915_gem_object_flush_cpu_write_domain(obj); 3346 3347 old_write_domain = obj->base.write_domain; 3348 old_read_domains = obj->base.read_domains; 3349 3350 /* It should now be out of any other write domains, and we can update 3351 * the domain values for our changes. 3352 */ 3353 obj->base.write_domain = 0; 3354 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3355 3356 trace_i915_gem_object_change_domain(obj, 3357 old_read_domains, 3358 old_write_domain); 3359 3360 return 0; 3361 } 3362 3363 int 3364 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj) 3365 { 3366 int ret; 3367 3368 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0) 3369 return 0; 3370 3371 ret = i915_gem_object_wait_rendering(obj, false); 3372 if (ret) 3373 return ret; 3374 3375 /* Ensure that we invalidate the GPU's caches and TLBs. */ 3376 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; 3377 return 0; 3378 } 3379 3380 /** 3381 * Moves a single object to the CPU read, and possibly write domain. 3382 * 3383 * This function returns when the move is complete, including waiting on 3384 * flushes to occur. 3385 */ 3386 int 3387 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) 3388 { 3389 uint32_t old_write_domain, old_read_domains; 3390 int ret; 3391 3392 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) 3393 return 0; 3394 3395 ret = i915_gem_object_wait_rendering(obj, !write); 3396 if (ret) 3397 return ret; 3398 3399 i915_gem_object_flush_gtt_write_domain(obj); 3400 3401 old_write_domain = obj->base.write_domain; 3402 old_read_domains = obj->base.read_domains; 3403 3404 /* Flush the CPU cache if it's still invalid. */ 3405 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { 3406 i915_gem_clflush_object(obj); 3407 3408 obj->base.read_domains |= I915_GEM_DOMAIN_CPU; 3409 } 3410 3411 /* It should now be out of any other write domains, and we can update 3412 * the domain values for our changes. 3413 */ 3414 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); 3415 3416 /* If we're writing through the CPU, then the GPU read domains will 3417 * need to be invalidated at next use. 3418 */ 3419 if (write) { 3420 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3421 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3422 } 3423 3424 trace_i915_gem_object_change_domain(obj, 3425 old_read_domains, 3426 old_write_domain); 3427 3428 return 0; 3429 } 3430 3431 /* Throttle our rendering by waiting until the ring has completed our requests 3432 * emitted over 20 msec ago. 3433 * 3434 * Note that if we were to use the current jiffies each time around the loop, 3435 * we wouldn't escape the function with any frames outstanding if the time to 3436 * render a frame was over 20ms. 3437 * 3438 * This should get us reasonable parallelism between CPU and GPU but also 3439 * relatively low latency when blocking on a particular request to finish. 3440 */ 3441 static int 3442 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) 3443 { 3444 struct drm_i915_private *dev_priv = dev->dev_private; 3445 struct drm_i915_file_private *file_priv = file->driver_priv; 3446 unsigned long recent_enough = jiffies - msecs_to_jiffies(20); 3447 struct drm_i915_gem_request *request; 3448 struct intel_ring_buffer *ring = NULL; 3449 unsigned reset_counter; 3450 u32 seqno = 0; 3451 int ret; 3452 3453 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 3454 if (ret) 3455 return ret; 3456 3457 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false); 3458 if (ret) 3459 return ret; 3460 3461 spin_lock(&file_priv->mm.lock); 3462 list_for_each_entry(request, &file_priv->mm.request_list, client_list) { 3463 if (time_after_eq(request->emitted_jiffies, recent_enough)) 3464 break; 3465 3466 ring = request->ring; 3467 seqno = request->seqno; 3468 } 3469 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 3470 spin_unlock(&file_priv->mm.lock); 3471 3472 if (seqno == 0) 3473 return 0; 3474 3475 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL); 3476 if (ret == 0) 3477 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0); 3478 3479 return ret; 3480 } 3481 3482 int 3483 i915_gem_object_pin(struct drm_i915_gem_object *obj, 3484 uint32_t alignment, 3485 bool map_and_fenceable, 3486 bool nonblocking) 3487 { 3488 int ret; 3489 3490 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT)) 3491 return -EBUSY; 3492 3493 if (obj->gtt_space != NULL) { 3494 if ((alignment && obj->gtt_offset & (alignment - 1)) || 3495 (map_and_fenceable && !obj->map_and_fenceable)) { 3496 WARN(obj->pin_count, 3497 "bo is already pinned with incorrect alignment:" 3498 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d," 3499 " obj->map_and_fenceable=%d\n", 3500 obj->gtt_offset, alignment, 3501 map_and_fenceable, 3502 obj->map_and_fenceable); 3503 ret = i915_gem_object_unbind(obj); 3504 if (ret) 3505 return ret; 3506 } 3507 } 3508 3509 if (obj->gtt_space == NULL) { 3510 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3511 3512 ret = i915_gem_object_bind_to_gtt(obj, alignment, 3513 map_and_fenceable, 3514 nonblocking); 3515 if (ret) 3516 return ret; 3517 3518 if (!dev_priv->mm.aliasing_ppgtt) 3519 i915_gem_gtt_bind_object(obj, obj->cache_level); 3520 } 3521 3522 if (!obj->has_global_gtt_mapping && map_and_fenceable) 3523 i915_gem_gtt_bind_object(obj, obj->cache_level); 3524 3525 obj->pin_count++; 3526 obj->pin_mappable |= map_and_fenceable; 3527 3528 return 0; 3529 } 3530 3531 void 3532 i915_gem_object_unpin(struct drm_i915_gem_object *obj) 3533 { 3534 BUG_ON(obj->pin_count == 0); 3535 BUG_ON(obj->gtt_space == NULL); 3536 3537 if (--obj->pin_count == 0) 3538 obj->pin_mappable = false; 3539 } 3540 3541 int 3542 i915_gem_pin_ioctl(struct drm_device *dev, void *data, 3543 struct drm_file *file) 3544 { 3545 struct drm_i915_gem_pin *args = data; 3546 struct drm_i915_gem_object *obj; 3547 int ret; 3548 3549 ret = i915_mutex_lock_interruptible(dev); 3550 if (ret) 3551 return ret; 3552 3553 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3554 if (&obj->base == NULL) { 3555 ret = -ENOENT; 3556 goto unlock; 3557 } 3558 3559 if (obj->madv != I915_MADV_WILLNEED) { 3560 DRM_ERROR("Attempting to pin a purgeable buffer\n"); 3561 ret = -EINVAL; 3562 goto out; 3563 } 3564 3565 if (obj->pin_filp != NULL && obj->pin_filp != file) { 3566 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n", 3567 args->handle); 3568 ret = -EINVAL; 3569 goto out; 3570 } 3571 3572 if (obj->user_pin_count == 0) { 3573 ret = i915_gem_object_pin(obj, args->alignment, true, false); 3574 if (ret) 3575 goto out; 3576 } 3577 3578 obj->user_pin_count++; 3579 obj->pin_filp = file; 3580 3581 /* XXX - flush the CPU caches for pinned objects 3582 * as the X server doesn't manage domains yet 3583 */ 3584 i915_gem_object_flush_cpu_write_domain(obj); 3585 args->offset = obj->gtt_offset; 3586 out: 3587 drm_gem_object_unreference(&obj->base); 3588 unlock: 3589 mutex_unlock(&dev->struct_mutex); 3590 return ret; 3591 } 3592 3593 int 3594 i915_gem_unpin_ioctl(struct drm_device *dev, void *data, 3595 struct drm_file *file) 3596 { 3597 struct drm_i915_gem_pin *args = data; 3598 struct drm_i915_gem_object *obj; 3599 int ret; 3600 3601 ret = i915_mutex_lock_interruptible(dev); 3602 if (ret) 3603 return ret; 3604 3605 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3606 if (&obj->base == NULL) { 3607 ret = -ENOENT; 3608 goto unlock; 3609 } 3610 3611 if (obj->pin_filp != file) { 3612 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n", 3613 args->handle); 3614 ret = -EINVAL; 3615 goto out; 3616 } 3617 obj->user_pin_count--; 3618 if (obj->user_pin_count == 0) { 3619 obj->pin_filp = NULL; 3620 i915_gem_object_unpin(obj); 3621 } 3622 3623 out: 3624 drm_gem_object_unreference(&obj->base); 3625 unlock: 3626 mutex_unlock(&dev->struct_mutex); 3627 return ret; 3628 } 3629 3630 int 3631 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 3632 struct drm_file *file) 3633 { 3634 struct drm_i915_gem_busy *args = data; 3635 struct drm_i915_gem_object *obj; 3636 int ret; 3637 3638 ret = i915_mutex_lock_interruptible(dev); 3639 if (ret) 3640 return ret; 3641 3642 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3643 if (&obj->base == NULL) { 3644 ret = -ENOENT; 3645 goto unlock; 3646 } 3647 3648 /* Count all active objects as busy, even if they are currently not used 3649 * by the gpu. Users of this interface expect objects to eventually 3650 * become non-busy without any further actions, therefore emit any 3651 * necessary flushes here. 3652 */ 3653 ret = i915_gem_object_flush_active(obj); 3654 3655 args->busy = obj->active; 3656 if (obj->ring) { 3657 BUILD_BUG_ON(I915_NUM_RINGS > 16); 3658 args->busy |= intel_ring_flag(obj->ring) << 16; 3659 } 3660 3661 drm_gem_object_unreference(&obj->base); 3662 unlock: 3663 mutex_unlock(&dev->struct_mutex); 3664 return ret; 3665 } 3666 3667 int 3668 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 3669 struct drm_file *file_priv) 3670 { 3671 return i915_gem_ring_throttle(dev, file_priv); 3672 } 3673 3674 int 3675 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 3676 struct drm_file *file_priv) 3677 { 3678 struct drm_i915_gem_madvise *args = data; 3679 struct drm_i915_gem_object *obj; 3680 int ret; 3681 3682 switch (args->madv) { 3683 case I915_MADV_DONTNEED: 3684 case I915_MADV_WILLNEED: 3685 break; 3686 default: 3687 return -EINVAL; 3688 } 3689 3690 ret = i915_mutex_lock_interruptible(dev); 3691 if (ret) 3692 return ret; 3693 3694 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle)); 3695 if (&obj->base == NULL) { 3696 ret = -ENOENT; 3697 goto unlock; 3698 } 3699 3700 if (obj->pin_count) { 3701 ret = -EINVAL; 3702 goto out; 3703 } 3704 3705 if (obj->madv != __I915_MADV_PURGED) 3706 obj->madv = args->madv; 3707 3708 /* if the object is no longer attached, discard its backing storage */ 3709 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL) 3710 i915_gem_object_truncate(obj); 3711 3712 args->retained = obj->madv != __I915_MADV_PURGED; 3713 3714 out: 3715 drm_gem_object_unreference(&obj->base); 3716 unlock: 3717 mutex_unlock(&dev->struct_mutex); 3718 return ret; 3719 } 3720 3721 void i915_gem_object_init(struct drm_i915_gem_object *obj, 3722 const struct drm_i915_gem_object_ops *ops) 3723 { 3724 INIT_LIST_HEAD(&obj->mm_list); 3725 INIT_LIST_HEAD(&obj->gtt_list); 3726 INIT_LIST_HEAD(&obj->ring_list); 3727 INIT_LIST_HEAD(&obj->exec_list); 3728 3729 obj->ops = ops; 3730 3731 obj->fence_reg = I915_FENCE_REG_NONE; 3732 obj->madv = I915_MADV_WILLNEED; 3733 /* Avoid an unnecessary call to unbind on the first bind. */ 3734 obj->map_and_fenceable = true; 3735 3736 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size); 3737 } 3738 3739 static const struct drm_i915_gem_object_ops i915_gem_object_ops = { 3740 .get_pages = i915_gem_object_get_pages_gtt, 3741 .put_pages = i915_gem_object_put_pages_gtt, 3742 }; 3743 3744 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev, 3745 size_t size) 3746 { 3747 struct drm_i915_gem_object *obj; 3748 struct address_space *mapping; 3749 gfp_t mask; 3750 3751 obj = i915_gem_object_alloc(dev); 3752 if (obj == NULL) 3753 return NULL; 3754 3755 if (drm_gem_object_init(dev, &obj->base, size) != 0) { 3756 i915_gem_object_free(obj); 3757 return NULL; 3758 } 3759 3760 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 3761 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) { 3762 /* 965gm cannot relocate objects above 4GiB. */ 3763 mask &= ~__GFP_HIGHMEM; 3764 mask |= __GFP_DMA32; 3765 } 3766 3767 mapping = file_inode(obj->base.filp)->i_mapping; 3768 mapping_set_gfp_mask(mapping, mask); 3769 3770 i915_gem_object_init(obj, &i915_gem_object_ops); 3771 3772 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3773 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3774 3775 if (HAS_LLC(dev)) { 3776 /* On some devices, we can have the GPU use the LLC (the CPU 3777 * cache) for about a 10% performance improvement 3778 * compared to uncached. Graphics requests other than 3779 * display scanout are coherent with the CPU in 3780 * accessing this cache. This means in this mode we 3781 * don't need to clflush on the CPU side, and on the 3782 * GPU side we only need to flush internal caches to 3783 * get data visible to the CPU. 3784 * 3785 * However, we maintain the display planes as UC, and so 3786 * need to rebind when first used as such. 3787 */ 3788 obj->cache_level = I915_CACHE_LLC; 3789 } else 3790 obj->cache_level = I915_CACHE_NONE; 3791 3792 return obj; 3793 } 3794 3795 int i915_gem_init_object(struct drm_gem_object *obj) 3796 { 3797 BUG(); 3798 3799 return 0; 3800 } 3801 3802 void i915_gem_free_object(struct drm_gem_object *gem_obj) 3803 { 3804 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 3805 struct drm_device *dev = obj->base.dev; 3806 drm_i915_private_t *dev_priv = dev->dev_private; 3807 3808 trace_i915_gem_object_destroy(obj); 3809 3810 if (obj->phys_obj) 3811 i915_gem_detach_phys_object(dev, obj); 3812 3813 obj->pin_count = 0; 3814 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) { 3815 bool was_interruptible; 3816 3817 was_interruptible = dev_priv->mm.interruptible; 3818 dev_priv->mm.interruptible = false; 3819 3820 WARN_ON(i915_gem_object_unbind(obj)); 3821 3822 dev_priv->mm.interruptible = was_interruptible; 3823 } 3824 3825 obj->pages_pin_count = 0; 3826 i915_gem_object_put_pages(obj); 3827 i915_gem_object_free_mmap_offset(obj); 3828 i915_gem_object_release_stolen(obj); 3829 3830 BUG_ON(obj->pages); 3831 3832 if (obj->base.import_attach) 3833 drm_prime_gem_destroy(&obj->base, NULL); 3834 3835 drm_gem_object_release(&obj->base); 3836 i915_gem_info_remove_obj(dev_priv, obj->base.size); 3837 3838 kfree(obj->bit_17); 3839 i915_gem_object_free(obj); 3840 } 3841 3842 int 3843 i915_gem_idle(struct drm_device *dev) 3844 { 3845 drm_i915_private_t *dev_priv = dev->dev_private; 3846 int ret; 3847 3848 mutex_lock(&dev->struct_mutex); 3849 3850 if (dev_priv->mm.suspended) { 3851 mutex_unlock(&dev->struct_mutex); 3852 return 0; 3853 } 3854 3855 ret = i915_gpu_idle(dev); 3856 if (ret) { 3857 mutex_unlock(&dev->struct_mutex); 3858 return ret; 3859 } 3860 i915_gem_retire_requests(dev); 3861 3862 /* Under UMS, be paranoid and evict. */ 3863 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 3864 i915_gem_evict_everything(dev); 3865 3866 /* Hack! Don't let anybody do execbuf while we don't control the chip. 3867 * We need to replace this with a semaphore, or something. 3868 * And not confound mm.suspended! 3869 */ 3870 dev_priv->mm.suspended = 1; 3871 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer); 3872 3873 i915_kernel_lost_context(dev); 3874 i915_gem_cleanup_ringbuffer(dev); 3875 3876 mutex_unlock(&dev->struct_mutex); 3877 3878 /* Cancel the retire work handler, which should be idle now. */ 3879 cancel_delayed_work_sync(&dev_priv->mm.retire_work); 3880 3881 return 0; 3882 } 3883 3884 void i915_gem_l3_remap(struct drm_device *dev) 3885 { 3886 drm_i915_private_t *dev_priv = dev->dev_private; 3887 u32 misccpctl; 3888 int i; 3889 3890 if (!HAS_L3_GPU_CACHE(dev)) 3891 return; 3892 3893 if (!dev_priv->l3_parity.remap_info) 3894 return; 3895 3896 misccpctl = I915_READ(GEN7_MISCCPCTL); 3897 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); 3898 POSTING_READ(GEN7_MISCCPCTL); 3899 3900 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) { 3901 u32 remap = I915_READ(GEN7_L3LOG_BASE + i); 3902 if (remap && remap != dev_priv->l3_parity.remap_info[i/4]) 3903 DRM_DEBUG("0x%x was already programmed to %x\n", 3904 GEN7_L3LOG_BASE + i, remap); 3905 if (remap && !dev_priv->l3_parity.remap_info[i/4]) 3906 DRM_DEBUG_DRIVER("Clearing remapped register\n"); 3907 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]); 3908 } 3909 3910 /* Make sure all the writes land before disabling dop clock gating */ 3911 POSTING_READ(GEN7_L3LOG_BASE); 3912 3913 I915_WRITE(GEN7_MISCCPCTL, misccpctl); 3914 } 3915 3916 void i915_gem_init_swizzling(struct drm_device *dev) 3917 { 3918 drm_i915_private_t *dev_priv = dev->dev_private; 3919 3920 if (INTEL_INFO(dev)->gen < 5 || 3921 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 3922 return; 3923 3924 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | 3925 DISP_TILE_SURFACE_SWIZZLING); 3926 3927 if (IS_GEN5(dev)) 3928 return; 3929 3930 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); 3931 if (IS_GEN6(dev)) 3932 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 3933 else if (IS_GEN7(dev)) 3934 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 3935 else 3936 BUG(); 3937 } 3938 3939 static bool 3940 intel_enable_blt(struct drm_device *dev) 3941 { 3942 if (!HAS_BLT(dev)) 3943 return false; 3944 3945 /* The blitter was dysfunctional on early prototypes */ 3946 if (IS_GEN6(dev) && dev->pdev->revision < 8) { 3947 DRM_INFO("BLT not supported on this pre-production hardware;" 3948 " graphics performance will be degraded.\n"); 3949 return false; 3950 } 3951 3952 return true; 3953 } 3954 3955 static int i915_gem_init_rings(struct drm_device *dev) 3956 { 3957 struct drm_i915_private *dev_priv = dev->dev_private; 3958 int ret; 3959 3960 ret = intel_init_render_ring_buffer(dev); 3961 if (ret) 3962 return ret; 3963 3964 if (HAS_BSD(dev)) { 3965 ret = intel_init_bsd_ring_buffer(dev); 3966 if (ret) 3967 goto cleanup_render_ring; 3968 } 3969 3970 if (intel_enable_blt(dev)) { 3971 ret = intel_init_blt_ring_buffer(dev); 3972 if (ret) 3973 goto cleanup_bsd_ring; 3974 } 3975 3976 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000)); 3977 if (ret) 3978 goto cleanup_blt_ring; 3979 3980 return 0; 3981 3982 cleanup_blt_ring: 3983 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]); 3984 cleanup_bsd_ring: 3985 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]); 3986 cleanup_render_ring: 3987 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]); 3988 3989 return ret; 3990 } 3991 3992 int 3993 i915_gem_init_hw(struct drm_device *dev) 3994 { 3995 drm_i915_private_t *dev_priv = dev->dev_private; 3996 int ret; 3997 3998 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt()) 3999 return -EIO; 4000 4001 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1)) 4002 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000); 4003 4004 if (HAS_PCH_NOP(dev)) { 4005 u32 temp = I915_READ(GEN7_MSG_CTL); 4006 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK); 4007 I915_WRITE(GEN7_MSG_CTL, temp); 4008 } 4009 4010 i915_gem_l3_remap(dev); 4011 4012 i915_gem_init_swizzling(dev); 4013 4014 ret = i915_gem_init_rings(dev); 4015 if (ret) 4016 return ret; 4017 4018 /* 4019 * XXX: There was some w/a described somewhere suggesting loading 4020 * contexts before PPGTT. 4021 */ 4022 i915_gem_context_init(dev); 4023 if (dev_priv->mm.aliasing_ppgtt) { 4024 ret = dev_priv->mm.aliasing_ppgtt->enable(dev); 4025 if (ret) { 4026 i915_gem_cleanup_aliasing_ppgtt(dev); 4027 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n"); 4028 } 4029 } 4030 4031 return 0; 4032 } 4033 4034 int i915_gem_init(struct drm_device *dev) 4035 { 4036 struct drm_i915_private *dev_priv = dev->dev_private; 4037 int ret; 4038 4039 mutex_lock(&dev->struct_mutex); 4040 4041 if (IS_VALLEYVIEW(dev)) { 4042 /* VLVA0 (potential hack), BIOS isn't actually waking us */ 4043 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1); 4044 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10)) 4045 DRM_DEBUG_DRIVER("allow wake ack timed out\n"); 4046 } 4047 4048 i915_gem_init_global_gtt(dev); 4049 4050 ret = i915_gem_init_hw(dev); 4051 mutex_unlock(&dev->struct_mutex); 4052 if (ret) { 4053 i915_gem_cleanup_aliasing_ppgtt(dev); 4054 return ret; 4055 } 4056 4057 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */ 4058 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4059 dev_priv->dri1.allow_batchbuffer = 1; 4060 return 0; 4061 } 4062 4063 void 4064 i915_gem_cleanup_ringbuffer(struct drm_device *dev) 4065 { 4066 drm_i915_private_t *dev_priv = dev->dev_private; 4067 struct intel_ring_buffer *ring; 4068 int i; 4069 4070 for_each_ring(ring, dev_priv, i) 4071 intel_cleanup_ring_buffer(ring); 4072 } 4073 4074 int 4075 i915_gem_entervt_ioctl(struct drm_device *dev, void *data, 4076 struct drm_file *file_priv) 4077 { 4078 drm_i915_private_t *dev_priv = dev->dev_private; 4079 int ret; 4080 4081 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4082 return 0; 4083 4084 if (i915_reset_in_progress(&dev_priv->gpu_error)) { 4085 DRM_ERROR("Reenabling wedged hardware, good luck\n"); 4086 atomic_set(&dev_priv->gpu_error.reset_counter, 0); 4087 } 4088 4089 mutex_lock(&dev->struct_mutex); 4090 dev_priv->mm.suspended = 0; 4091 4092 ret = i915_gem_init_hw(dev); 4093 if (ret != 0) { 4094 mutex_unlock(&dev->struct_mutex); 4095 return ret; 4096 } 4097 4098 BUG_ON(!list_empty(&dev_priv->mm.active_list)); 4099 mutex_unlock(&dev->struct_mutex); 4100 4101 ret = drm_irq_install(dev); 4102 if (ret) 4103 goto cleanup_ringbuffer; 4104 4105 return 0; 4106 4107 cleanup_ringbuffer: 4108 mutex_lock(&dev->struct_mutex); 4109 i915_gem_cleanup_ringbuffer(dev); 4110 dev_priv->mm.suspended = 1; 4111 mutex_unlock(&dev->struct_mutex); 4112 4113 return ret; 4114 } 4115 4116 int 4117 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data, 4118 struct drm_file *file_priv) 4119 { 4120 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4121 return 0; 4122 4123 drm_irq_uninstall(dev); 4124 return i915_gem_idle(dev); 4125 } 4126 4127 void 4128 i915_gem_lastclose(struct drm_device *dev) 4129 { 4130 int ret; 4131 4132 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4133 return; 4134 4135 ret = i915_gem_idle(dev); 4136 if (ret) 4137 DRM_ERROR("failed to idle hardware: %d\n", ret); 4138 } 4139 4140 static void 4141 init_ring_lists(struct intel_ring_buffer *ring) 4142 { 4143 INIT_LIST_HEAD(&ring->active_list); 4144 INIT_LIST_HEAD(&ring->request_list); 4145 } 4146 4147 void 4148 i915_gem_load(struct drm_device *dev) 4149 { 4150 drm_i915_private_t *dev_priv = dev->dev_private; 4151 int i; 4152 4153 dev_priv->slab = 4154 kmem_cache_create("i915_gem_object", 4155 sizeof(struct drm_i915_gem_object), 0, 4156 SLAB_HWCACHE_ALIGN, 4157 NULL); 4158 4159 INIT_LIST_HEAD(&dev_priv->mm.active_list); 4160 INIT_LIST_HEAD(&dev_priv->mm.inactive_list); 4161 INIT_LIST_HEAD(&dev_priv->mm.unbound_list); 4162 INIT_LIST_HEAD(&dev_priv->mm.bound_list); 4163 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4164 for (i = 0; i < I915_NUM_RINGS; i++) 4165 init_ring_lists(&dev_priv->ring[i]); 4166 for (i = 0; i < I915_MAX_NUM_FENCES; i++) 4167 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list); 4168 INIT_DELAYED_WORK(&dev_priv->mm.retire_work, 4169 i915_gem_retire_work_handler); 4170 init_waitqueue_head(&dev_priv->gpu_error.reset_queue); 4171 4172 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ 4173 if (IS_GEN3(dev)) { 4174 I915_WRITE(MI_ARB_STATE, 4175 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE)); 4176 } 4177 4178 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL; 4179 4180 /* Old X drivers will take 0-2 for front, back, depth buffers */ 4181 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4182 dev_priv->fence_reg_start = 3; 4183 4184 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev)) 4185 dev_priv->num_fence_regs = 32; 4186 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) 4187 dev_priv->num_fence_regs = 16; 4188 else 4189 dev_priv->num_fence_regs = 8; 4190 4191 /* Initialize fence registers to zero */ 4192 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4193 i915_gem_restore_fences(dev); 4194 4195 i915_gem_detect_bit_6_swizzle(dev); 4196 init_waitqueue_head(&dev_priv->pending_flip_queue); 4197 4198 dev_priv->mm.interruptible = true; 4199 4200 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink; 4201 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS; 4202 register_shrinker(&dev_priv->mm.inactive_shrinker); 4203 } 4204 4205 /* 4206 * Create a physically contiguous memory object for this object 4207 * e.g. for cursor + overlay regs 4208 */ 4209 static int i915_gem_init_phys_object(struct drm_device *dev, 4210 int id, int size, int align) 4211 { 4212 drm_i915_private_t *dev_priv = dev->dev_private; 4213 struct drm_i915_gem_phys_object *phys_obj; 4214 int ret; 4215 4216 if (dev_priv->mm.phys_objs[id - 1] || !size) 4217 return 0; 4218 4219 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL); 4220 if (!phys_obj) 4221 return -ENOMEM; 4222 4223 phys_obj->id = id; 4224 4225 phys_obj->handle = drm_pci_alloc(dev, size, align); 4226 if (!phys_obj->handle) { 4227 ret = -ENOMEM; 4228 goto kfree_obj; 4229 } 4230 #ifdef CONFIG_X86 4231 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); 4232 #endif 4233 4234 dev_priv->mm.phys_objs[id - 1] = phys_obj; 4235 4236 return 0; 4237 kfree_obj: 4238 kfree(phys_obj); 4239 return ret; 4240 } 4241 4242 static void i915_gem_free_phys_object(struct drm_device *dev, int id) 4243 { 4244 drm_i915_private_t *dev_priv = dev->dev_private; 4245 struct drm_i915_gem_phys_object *phys_obj; 4246 4247 if (!dev_priv->mm.phys_objs[id - 1]) 4248 return; 4249 4250 phys_obj = dev_priv->mm.phys_objs[id - 1]; 4251 if (phys_obj->cur_obj) { 4252 i915_gem_detach_phys_object(dev, phys_obj->cur_obj); 4253 } 4254 4255 #ifdef CONFIG_X86 4256 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); 4257 #endif 4258 drm_pci_free(dev, phys_obj->handle); 4259 kfree(phys_obj); 4260 dev_priv->mm.phys_objs[id - 1] = NULL; 4261 } 4262 4263 void i915_gem_free_all_phys_object(struct drm_device *dev) 4264 { 4265 int i; 4266 4267 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++) 4268 i915_gem_free_phys_object(dev, i); 4269 } 4270 4271 void i915_gem_detach_phys_object(struct drm_device *dev, 4272 struct drm_i915_gem_object *obj) 4273 { 4274 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping; 4275 char *vaddr; 4276 int i; 4277 int page_count; 4278 4279 if (!obj->phys_obj) 4280 return; 4281 vaddr = obj->phys_obj->handle->vaddr; 4282 4283 page_count = obj->base.size / PAGE_SIZE; 4284 for (i = 0; i < page_count; i++) { 4285 struct page *page = shmem_read_mapping_page(mapping, i); 4286 if (!IS_ERR(page)) { 4287 char *dst = kmap_atomic(page); 4288 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE); 4289 kunmap_atomic(dst); 4290 4291 drm_clflush_pages(&page, 1); 4292 4293 set_page_dirty(page); 4294 mark_page_accessed(page); 4295 page_cache_release(page); 4296 } 4297 } 4298 i915_gem_chipset_flush(dev); 4299 4300 obj->phys_obj->cur_obj = NULL; 4301 obj->phys_obj = NULL; 4302 } 4303 4304 int 4305 i915_gem_attach_phys_object(struct drm_device *dev, 4306 struct drm_i915_gem_object *obj, 4307 int id, 4308 int align) 4309 { 4310 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping; 4311 drm_i915_private_t *dev_priv = dev->dev_private; 4312 int ret = 0; 4313 int page_count; 4314 int i; 4315 4316 if (id > I915_MAX_PHYS_OBJECT) 4317 return -EINVAL; 4318 4319 if (obj->phys_obj) { 4320 if (obj->phys_obj->id == id) 4321 return 0; 4322 i915_gem_detach_phys_object(dev, obj); 4323 } 4324 4325 /* create a new object */ 4326 if (!dev_priv->mm.phys_objs[id - 1]) { 4327 ret = i915_gem_init_phys_object(dev, id, 4328 obj->base.size, align); 4329 if (ret) { 4330 DRM_ERROR("failed to init phys object %d size: %zu\n", 4331 id, obj->base.size); 4332 return ret; 4333 } 4334 } 4335 4336 /* bind to the object */ 4337 obj->phys_obj = dev_priv->mm.phys_objs[id - 1]; 4338 obj->phys_obj->cur_obj = obj; 4339 4340 page_count = obj->base.size / PAGE_SIZE; 4341 4342 for (i = 0; i < page_count; i++) { 4343 struct page *page; 4344 char *dst, *src; 4345 4346 page = shmem_read_mapping_page(mapping, i); 4347 if (IS_ERR(page)) 4348 return PTR_ERR(page); 4349 4350 src = kmap_atomic(page); 4351 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE); 4352 memcpy(dst, src, PAGE_SIZE); 4353 kunmap_atomic(src); 4354 4355 mark_page_accessed(page); 4356 page_cache_release(page); 4357 } 4358 4359 return 0; 4360 } 4361 4362 static int 4363 i915_gem_phys_pwrite(struct drm_device *dev, 4364 struct drm_i915_gem_object *obj, 4365 struct drm_i915_gem_pwrite *args, 4366 struct drm_file *file_priv) 4367 { 4368 void *vaddr = obj->phys_obj->handle->vaddr + args->offset; 4369 char __user *user_data = to_user_ptr(args->data_ptr); 4370 4371 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) { 4372 unsigned long unwritten; 4373 4374 /* The physical object once assigned is fixed for the lifetime 4375 * of the obj, so we can safely drop the lock and continue 4376 * to access vaddr. 4377 */ 4378 mutex_unlock(&dev->struct_mutex); 4379 unwritten = copy_from_user(vaddr, user_data, args->size); 4380 mutex_lock(&dev->struct_mutex); 4381 if (unwritten) 4382 return -EFAULT; 4383 } 4384 4385 i915_gem_chipset_flush(dev); 4386 return 0; 4387 } 4388 4389 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 4390 { 4391 struct drm_i915_file_private *file_priv = file->driver_priv; 4392 4393 /* Clean up our request list when the client is going away, so that 4394 * later retire_requests won't dereference our soon-to-be-gone 4395 * file_priv. 4396 */ 4397 spin_lock(&file_priv->mm.lock); 4398 while (!list_empty(&file_priv->mm.request_list)) { 4399 struct drm_i915_gem_request *request; 4400 4401 request = list_first_entry(&file_priv->mm.request_list, 4402 struct drm_i915_gem_request, 4403 client_list); 4404 list_del(&request->client_list); 4405 request->file_priv = NULL; 4406 } 4407 spin_unlock(&file_priv->mm.lock); 4408 } 4409 4410 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task) 4411 { 4412 if (!mutex_is_locked(mutex)) 4413 return false; 4414 4415 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES) 4416 return mutex->owner == task; 4417 #else 4418 /* Since UP may be pre-empted, we cannot assume that we own the lock */ 4419 return false; 4420 #endif 4421 } 4422 4423 static int 4424 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc) 4425 { 4426 struct drm_i915_private *dev_priv = 4427 container_of(shrinker, 4428 struct drm_i915_private, 4429 mm.inactive_shrinker); 4430 struct drm_device *dev = dev_priv->dev; 4431 struct drm_i915_gem_object *obj; 4432 int nr_to_scan = sc->nr_to_scan; 4433 bool unlock = true; 4434 int cnt; 4435 4436 if (!mutex_trylock(&dev->struct_mutex)) { 4437 if (!mutex_is_locked_by(&dev->struct_mutex, current)) 4438 return 0; 4439 4440 if (dev_priv->mm.shrinker_no_lock_stealing) 4441 return 0; 4442 4443 unlock = false; 4444 } 4445 4446 if (nr_to_scan) { 4447 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan); 4448 if (nr_to_scan > 0) 4449 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan, 4450 false); 4451 if (nr_to_scan > 0) 4452 i915_gem_shrink_all(dev_priv); 4453 } 4454 4455 cnt = 0; 4456 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list) 4457 if (obj->pages_pin_count == 0) 4458 cnt += obj->base.size >> PAGE_SHIFT; 4459 list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list) 4460 if (obj->pin_count == 0 && obj->pages_pin_count == 0) 4461 cnt += obj->base.size >> PAGE_SHIFT; 4462 4463 if (unlock) 4464 mutex_unlock(&dev->struct_mutex); 4465 return cnt; 4466 } 4467