xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision 78560d41)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drm_vma_manager.h>
29 #include <drm/i915_drm.h>
30 #include <linux/dma-fence-array.h>
31 #include <linux/kthread.h>
32 #include <linux/dma-resv.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/stop_machine.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39 #include <linux/mman.h>
40 
41 #include "display/intel_display.h"
42 #include "display/intel_frontbuffer.h"
43 
44 #include "gem/i915_gem_clflush.h"
45 #include "gem/i915_gem_context.h"
46 #include "gem/i915_gem_ioctls.h"
47 #include "gem/i915_gem_mman.h"
48 #include "gem/i915_gem_region.h"
49 #include "gt/intel_engine_user.h"
50 #include "gt/intel_gt.h"
51 #include "gt/intel_gt_pm.h"
52 #include "gt/intel_workarounds.h"
53 
54 #include "i915_drv.h"
55 #include "i915_trace.h"
56 #include "i915_vgpu.h"
57 
58 #include "intel_pm.h"
59 
60 static int
61 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
62 {
63 	int err;
64 
65 	err = mutex_lock_interruptible(&ggtt->vm.mutex);
66 	if (err)
67 		return err;
68 
69 	memset(node, 0, sizeof(*node));
70 	err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
71 					  size, 0, I915_COLOR_UNEVICTABLE,
72 					  0, ggtt->mappable_end,
73 					  DRM_MM_INSERT_LOW);
74 
75 	mutex_unlock(&ggtt->vm.mutex);
76 
77 	return err;
78 }
79 
80 static void
81 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
82 {
83 	mutex_lock(&ggtt->vm.mutex);
84 	drm_mm_remove_node(node);
85 	mutex_unlock(&ggtt->vm.mutex);
86 }
87 
88 int
89 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
90 			    struct drm_file *file)
91 {
92 	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
93 	struct drm_i915_gem_get_aperture *args = data;
94 	struct i915_vma *vma;
95 	u64 pinned;
96 
97 	if (mutex_lock_interruptible(&ggtt->vm.mutex))
98 		return -EINTR;
99 
100 	pinned = ggtt->vm.reserved;
101 	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
102 		if (i915_vma_is_pinned(vma))
103 			pinned += vma->node.size;
104 
105 	mutex_unlock(&ggtt->vm.mutex);
106 
107 	args->aper_size = ggtt->vm.total;
108 	args->aper_available_size = args->aper_size - pinned;
109 
110 	return 0;
111 }
112 
113 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
114 			   unsigned long flags)
115 {
116 	struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
117 	LIST_HEAD(still_in_list);
118 	intel_wakeref_t wakeref;
119 	struct i915_vma *vma;
120 	int ret;
121 
122 	if (!atomic_read(&obj->bind_count))
123 		return 0;
124 
125 	/*
126 	 * As some machines use ACPI to handle runtime-resume callbacks, and
127 	 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
128 	 * as they are required by the shrinker. Ergo, we wake the device up
129 	 * first just in case.
130 	 */
131 	wakeref = intel_runtime_pm_get(rpm);
132 
133 try_again:
134 	ret = 0;
135 	spin_lock(&obj->vma.lock);
136 	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
137 						       struct i915_vma,
138 						       obj_link))) {
139 		struct i915_address_space *vm = vma->vm;
140 
141 		list_move_tail(&vma->obj_link, &still_in_list);
142 		if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
143 			continue;
144 
145 		ret = -EAGAIN;
146 		if (!i915_vm_tryopen(vm))
147 			break;
148 
149 		/* Prevent vma being freed by i915_vma_parked as we unbind */
150 		vma = __i915_vma_get(vma);
151 		spin_unlock(&obj->vma.lock);
152 
153 		if (vma) {
154 			ret = -EBUSY;
155 			if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
156 			    !i915_vma_is_active(vma))
157 				ret = i915_vma_unbind(vma);
158 
159 			__i915_vma_put(vma);
160 		}
161 
162 		i915_vm_close(vm);
163 		spin_lock(&obj->vma.lock);
164 	}
165 	list_splice_init(&still_in_list, &obj->vma.list);
166 	spin_unlock(&obj->vma.lock);
167 
168 	if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
169 		rcu_barrier(); /* flush the i915_vm_release() */
170 		goto try_again;
171 	}
172 
173 	intel_runtime_pm_put(rpm, wakeref);
174 
175 	return ret;
176 }
177 
178 static int
179 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
180 		     struct drm_i915_gem_pwrite *args,
181 		     struct drm_file *file)
182 {
183 	void *vaddr = obj->phys_handle->vaddr + args->offset;
184 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
185 
186 	/*
187 	 * We manually control the domain here and pretend that it
188 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
189 	 */
190 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
191 
192 	if (copy_from_user(vaddr, user_data, args->size))
193 		return -EFAULT;
194 
195 	drm_clflush_virt_range(vaddr, args->size);
196 	intel_gt_chipset_flush(&to_i915(obj->base.dev)->gt);
197 
198 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
199 	return 0;
200 }
201 
202 static int
203 i915_gem_create(struct drm_file *file,
204 		struct intel_memory_region *mr,
205 		u64 *size_p,
206 		u32 *handle_p)
207 {
208 	struct drm_i915_gem_object *obj;
209 	u32 handle;
210 	u64 size;
211 	int ret;
212 
213 	GEM_BUG_ON(!is_power_of_2(mr->min_page_size));
214 	size = round_up(*size_p, mr->min_page_size);
215 	if (size == 0)
216 		return -EINVAL;
217 
218 	/* For most of the ABI (e.g. mmap) we think in system pages */
219 	GEM_BUG_ON(!IS_ALIGNED(size, PAGE_SIZE));
220 
221 	/* Allocate the new object */
222 	obj = i915_gem_object_create_region(mr, size, 0);
223 	if (IS_ERR(obj))
224 		return PTR_ERR(obj);
225 
226 	ret = drm_gem_handle_create(file, &obj->base, &handle);
227 	/* drop reference from allocate - handle holds it now */
228 	i915_gem_object_put(obj);
229 	if (ret)
230 		return ret;
231 
232 	*handle_p = handle;
233 	*size_p = size;
234 	return 0;
235 }
236 
237 int
238 i915_gem_dumb_create(struct drm_file *file,
239 		     struct drm_device *dev,
240 		     struct drm_mode_create_dumb *args)
241 {
242 	enum intel_memory_type mem_type;
243 	int cpp = DIV_ROUND_UP(args->bpp, 8);
244 	u32 format;
245 
246 	switch (cpp) {
247 	case 1:
248 		format = DRM_FORMAT_C8;
249 		break;
250 	case 2:
251 		format = DRM_FORMAT_RGB565;
252 		break;
253 	case 4:
254 		format = DRM_FORMAT_XRGB8888;
255 		break;
256 	default:
257 		return -EINVAL;
258 	}
259 
260 	/* have to work out size/pitch and return them */
261 	args->pitch = ALIGN(args->width * cpp, 64);
262 
263 	/* align stride to page size so that we can remap */
264 	if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
265 						    DRM_FORMAT_MOD_LINEAR))
266 		args->pitch = ALIGN(args->pitch, 4096);
267 
268 	if (args->pitch < args->width)
269 		return -EINVAL;
270 
271 	args->size = mul_u32_u32(args->pitch, args->height);
272 
273 	mem_type = INTEL_MEMORY_SYSTEM;
274 	if (HAS_LMEM(to_i915(dev)))
275 		mem_type = INTEL_MEMORY_LOCAL;
276 
277 	return i915_gem_create(file,
278 			       intel_memory_region_by_type(to_i915(dev),
279 							   mem_type),
280 			       &args->size, &args->handle);
281 }
282 
283 /**
284  * Creates a new mm object and returns a handle to it.
285  * @dev: drm device pointer
286  * @data: ioctl data blob
287  * @file: drm file pointer
288  */
289 int
290 i915_gem_create_ioctl(struct drm_device *dev, void *data,
291 		      struct drm_file *file)
292 {
293 	struct drm_i915_private *i915 = to_i915(dev);
294 	struct drm_i915_gem_create *args = data;
295 
296 	i915_gem_flush_free_objects(i915);
297 
298 	return i915_gem_create(file,
299 			       intel_memory_region_by_type(i915,
300 							   INTEL_MEMORY_SYSTEM),
301 			       &args->size, &args->handle);
302 }
303 
304 static int
305 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
306 	    bool needs_clflush)
307 {
308 	char *vaddr;
309 	int ret;
310 
311 	vaddr = kmap(page);
312 
313 	if (needs_clflush)
314 		drm_clflush_virt_range(vaddr + offset, len);
315 
316 	ret = __copy_to_user(user_data, vaddr + offset, len);
317 
318 	kunmap(page);
319 
320 	return ret ? -EFAULT : 0;
321 }
322 
323 static int
324 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
325 		     struct drm_i915_gem_pread *args)
326 {
327 	unsigned int needs_clflush;
328 	unsigned int idx, offset;
329 	struct dma_fence *fence;
330 	char __user *user_data;
331 	u64 remain;
332 	int ret;
333 
334 	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
335 	if (ret)
336 		return ret;
337 
338 	fence = i915_gem_object_lock_fence(obj);
339 	i915_gem_object_finish_access(obj);
340 	if (!fence)
341 		return -ENOMEM;
342 
343 	remain = args->size;
344 	user_data = u64_to_user_ptr(args->data_ptr);
345 	offset = offset_in_page(args->offset);
346 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
347 		struct page *page = i915_gem_object_get_page(obj, idx);
348 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
349 
350 		ret = shmem_pread(page, offset, length, user_data,
351 				  needs_clflush);
352 		if (ret)
353 			break;
354 
355 		remain -= length;
356 		user_data += length;
357 		offset = 0;
358 	}
359 
360 	i915_gem_object_unlock_fence(obj, fence);
361 	return ret;
362 }
363 
364 static inline bool
365 gtt_user_read(struct io_mapping *mapping,
366 	      loff_t base, int offset,
367 	      char __user *user_data, int length)
368 {
369 	void __iomem *vaddr;
370 	unsigned long unwritten;
371 
372 	/* We can use the cpu mem copy function because this is X86. */
373 	vaddr = io_mapping_map_atomic_wc(mapping, base);
374 	unwritten = __copy_to_user_inatomic(user_data,
375 					    (void __force *)vaddr + offset,
376 					    length);
377 	io_mapping_unmap_atomic(vaddr);
378 	if (unwritten) {
379 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
380 		unwritten = copy_to_user(user_data,
381 					 (void __force *)vaddr + offset,
382 					 length);
383 		io_mapping_unmap(vaddr);
384 	}
385 	return unwritten;
386 }
387 
388 static int
389 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
390 		   const struct drm_i915_gem_pread *args)
391 {
392 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
393 	struct i915_ggtt *ggtt = &i915->ggtt;
394 	intel_wakeref_t wakeref;
395 	struct drm_mm_node node;
396 	struct dma_fence *fence;
397 	void __user *user_data;
398 	struct i915_vma *vma;
399 	u64 remain, offset;
400 	int ret;
401 
402 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
403 	vma = ERR_PTR(-ENODEV);
404 	if (!i915_gem_object_is_tiled(obj))
405 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
406 					       PIN_MAPPABLE |
407 					       PIN_NONBLOCK /* NOWARN */ |
408 					       PIN_NOEVICT);
409 	if (!IS_ERR(vma)) {
410 		node.start = i915_ggtt_offset(vma);
411 		node.flags = 0;
412 	} else {
413 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
414 		if (ret)
415 			goto out_rpm;
416 		GEM_BUG_ON(!drm_mm_node_allocated(&node));
417 	}
418 
419 	ret = i915_gem_object_lock_interruptible(obj);
420 	if (ret)
421 		goto out_unpin;
422 
423 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
424 	if (ret) {
425 		i915_gem_object_unlock(obj);
426 		goto out_unpin;
427 	}
428 
429 	fence = i915_gem_object_lock_fence(obj);
430 	i915_gem_object_unlock(obj);
431 	if (!fence) {
432 		ret = -ENOMEM;
433 		goto out_unpin;
434 	}
435 
436 	user_data = u64_to_user_ptr(args->data_ptr);
437 	remain = args->size;
438 	offset = args->offset;
439 
440 	while (remain > 0) {
441 		/* Operation in this page
442 		 *
443 		 * page_base = page offset within aperture
444 		 * page_offset = offset within page
445 		 * page_length = bytes to copy for this page
446 		 */
447 		u32 page_base = node.start;
448 		unsigned page_offset = offset_in_page(offset);
449 		unsigned page_length = PAGE_SIZE - page_offset;
450 		page_length = remain < page_length ? remain : page_length;
451 		if (drm_mm_node_allocated(&node)) {
452 			ggtt->vm.insert_page(&ggtt->vm,
453 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
454 					     node.start, I915_CACHE_NONE, 0);
455 		} else {
456 			page_base += offset & PAGE_MASK;
457 		}
458 
459 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
460 				  user_data, page_length)) {
461 			ret = -EFAULT;
462 			break;
463 		}
464 
465 		remain -= page_length;
466 		user_data += page_length;
467 		offset += page_length;
468 	}
469 
470 	i915_gem_object_unlock_fence(obj, fence);
471 out_unpin:
472 	if (drm_mm_node_allocated(&node)) {
473 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
474 		remove_mappable_node(ggtt, &node);
475 	} else {
476 		i915_vma_unpin(vma);
477 	}
478 out_rpm:
479 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
480 	return ret;
481 }
482 
483 /**
484  * Reads data from the object referenced by handle.
485  * @dev: drm device pointer
486  * @data: ioctl data blob
487  * @file: drm file pointer
488  *
489  * On error, the contents of *data are undefined.
490  */
491 int
492 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
493 		     struct drm_file *file)
494 {
495 	struct drm_i915_gem_pread *args = data;
496 	struct drm_i915_gem_object *obj;
497 	int ret;
498 
499 	if (args->size == 0)
500 		return 0;
501 
502 	if (!access_ok(u64_to_user_ptr(args->data_ptr),
503 		       args->size))
504 		return -EFAULT;
505 
506 	obj = i915_gem_object_lookup(file, args->handle);
507 	if (!obj)
508 		return -ENOENT;
509 
510 	/* Bounds check source.  */
511 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
512 		ret = -EINVAL;
513 		goto out;
514 	}
515 
516 	trace_i915_gem_object_pread(obj, args->offset, args->size);
517 
518 	ret = i915_gem_object_wait(obj,
519 				   I915_WAIT_INTERRUPTIBLE,
520 				   MAX_SCHEDULE_TIMEOUT);
521 	if (ret)
522 		goto out;
523 
524 	ret = i915_gem_object_pin_pages(obj);
525 	if (ret)
526 		goto out;
527 
528 	ret = i915_gem_shmem_pread(obj, args);
529 	if (ret == -EFAULT || ret == -ENODEV)
530 		ret = i915_gem_gtt_pread(obj, args);
531 
532 	i915_gem_object_unpin_pages(obj);
533 out:
534 	i915_gem_object_put(obj);
535 	return ret;
536 }
537 
538 /* This is the fast write path which cannot handle
539  * page faults in the source data
540  */
541 
542 static inline bool
543 ggtt_write(struct io_mapping *mapping,
544 	   loff_t base, int offset,
545 	   char __user *user_data, int length)
546 {
547 	void __iomem *vaddr;
548 	unsigned long unwritten;
549 
550 	/* We can use the cpu mem copy function because this is X86. */
551 	vaddr = io_mapping_map_atomic_wc(mapping, base);
552 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
553 						      user_data, length);
554 	io_mapping_unmap_atomic(vaddr);
555 	if (unwritten) {
556 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
557 		unwritten = copy_from_user((void __force *)vaddr + offset,
558 					   user_data, length);
559 		io_mapping_unmap(vaddr);
560 	}
561 
562 	return unwritten;
563 }
564 
565 /**
566  * This is the fast pwrite path, where we copy the data directly from the
567  * user into the GTT, uncached.
568  * @obj: i915 GEM object
569  * @args: pwrite arguments structure
570  */
571 static int
572 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
573 			 const struct drm_i915_gem_pwrite *args)
574 {
575 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
576 	struct i915_ggtt *ggtt = &i915->ggtt;
577 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
578 	intel_wakeref_t wakeref;
579 	struct drm_mm_node node;
580 	struct dma_fence *fence;
581 	struct i915_vma *vma;
582 	u64 remain, offset;
583 	void __user *user_data;
584 	int ret;
585 
586 	if (i915_gem_object_has_struct_page(obj)) {
587 		/*
588 		 * Avoid waking the device up if we can fallback, as
589 		 * waking/resuming is very slow (worst-case 10-100 ms
590 		 * depending on PCI sleeps and our own resume time).
591 		 * This easily dwarfs any performance advantage from
592 		 * using the cache bypass of indirect GGTT access.
593 		 */
594 		wakeref = intel_runtime_pm_get_if_in_use(rpm);
595 		if (!wakeref)
596 			return -EFAULT;
597 	} else {
598 		/* No backing pages, no fallback, we must force GGTT access */
599 		wakeref = intel_runtime_pm_get(rpm);
600 	}
601 
602 	vma = ERR_PTR(-ENODEV);
603 	if (!i915_gem_object_is_tiled(obj))
604 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
605 					       PIN_MAPPABLE |
606 					       PIN_NONBLOCK /* NOWARN */ |
607 					       PIN_NOEVICT);
608 	if (!IS_ERR(vma)) {
609 		node.start = i915_ggtt_offset(vma);
610 		node.flags = 0;
611 	} else {
612 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
613 		if (ret)
614 			goto out_rpm;
615 		GEM_BUG_ON(!drm_mm_node_allocated(&node));
616 	}
617 
618 	ret = i915_gem_object_lock_interruptible(obj);
619 	if (ret)
620 		goto out_unpin;
621 
622 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
623 	if (ret) {
624 		i915_gem_object_unlock(obj);
625 		goto out_unpin;
626 	}
627 
628 	fence = i915_gem_object_lock_fence(obj);
629 	i915_gem_object_unlock(obj);
630 	if (!fence) {
631 		ret = -ENOMEM;
632 		goto out_unpin;
633 	}
634 
635 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
636 
637 	user_data = u64_to_user_ptr(args->data_ptr);
638 	offset = args->offset;
639 	remain = args->size;
640 	while (remain) {
641 		/* Operation in this page
642 		 *
643 		 * page_base = page offset within aperture
644 		 * page_offset = offset within page
645 		 * page_length = bytes to copy for this page
646 		 */
647 		u32 page_base = node.start;
648 		unsigned int page_offset = offset_in_page(offset);
649 		unsigned int page_length = PAGE_SIZE - page_offset;
650 		page_length = remain < page_length ? remain : page_length;
651 		if (drm_mm_node_allocated(&node)) {
652 			/* flush the write before we modify the GGTT */
653 			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
654 			ggtt->vm.insert_page(&ggtt->vm,
655 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
656 					     node.start, I915_CACHE_NONE, 0);
657 			wmb(); /* flush modifications to the GGTT (insert_page) */
658 		} else {
659 			page_base += offset & PAGE_MASK;
660 		}
661 		/* If we get a fault while copying data, then (presumably) our
662 		 * source page isn't available.  Return the error and we'll
663 		 * retry in the slow path.
664 		 * If the object is non-shmem backed, we retry again with the
665 		 * path that handles page fault.
666 		 */
667 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
668 			       user_data, page_length)) {
669 			ret = -EFAULT;
670 			break;
671 		}
672 
673 		remain -= page_length;
674 		user_data += page_length;
675 		offset += page_length;
676 	}
677 
678 	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
679 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
680 
681 	i915_gem_object_unlock_fence(obj, fence);
682 out_unpin:
683 	if (drm_mm_node_allocated(&node)) {
684 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
685 		remove_mappable_node(ggtt, &node);
686 	} else {
687 		i915_vma_unpin(vma);
688 	}
689 out_rpm:
690 	intel_runtime_pm_put(rpm, wakeref);
691 	return ret;
692 }
693 
694 /* Per-page copy function for the shmem pwrite fastpath.
695  * Flushes invalid cachelines before writing to the target if
696  * needs_clflush_before is set and flushes out any written cachelines after
697  * writing if needs_clflush is set.
698  */
699 static int
700 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
701 	     bool needs_clflush_before,
702 	     bool needs_clflush_after)
703 {
704 	char *vaddr;
705 	int ret;
706 
707 	vaddr = kmap(page);
708 
709 	if (needs_clflush_before)
710 		drm_clflush_virt_range(vaddr + offset, len);
711 
712 	ret = __copy_from_user(vaddr + offset, user_data, len);
713 	if (!ret && needs_clflush_after)
714 		drm_clflush_virt_range(vaddr + offset, len);
715 
716 	kunmap(page);
717 
718 	return ret ? -EFAULT : 0;
719 }
720 
721 static int
722 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
723 		      const struct drm_i915_gem_pwrite *args)
724 {
725 	unsigned int partial_cacheline_write;
726 	unsigned int needs_clflush;
727 	unsigned int offset, idx;
728 	struct dma_fence *fence;
729 	void __user *user_data;
730 	u64 remain;
731 	int ret;
732 
733 	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
734 	if (ret)
735 		return ret;
736 
737 	fence = i915_gem_object_lock_fence(obj);
738 	i915_gem_object_finish_access(obj);
739 	if (!fence)
740 		return -ENOMEM;
741 
742 	/* If we don't overwrite a cacheline completely we need to be
743 	 * careful to have up-to-date data by first clflushing. Don't
744 	 * overcomplicate things and flush the entire patch.
745 	 */
746 	partial_cacheline_write = 0;
747 	if (needs_clflush & CLFLUSH_BEFORE)
748 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
749 
750 	user_data = u64_to_user_ptr(args->data_ptr);
751 	remain = args->size;
752 	offset = offset_in_page(args->offset);
753 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
754 		struct page *page = i915_gem_object_get_page(obj, idx);
755 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
756 
757 		ret = shmem_pwrite(page, offset, length, user_data,
758 				   (offset | length) & partial_cacheline_write,
759 				   needs_clflush & CLFLUSH_AFTER);
760 		if (ret)
761 			break;
762 
763 		remain -= length;
764 		user_data += length;
765 		offset = 0;
766 	}
767 
768 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
769 	i915_gem_object_unlock_fence(obj, fence);
770 
771 	return ret;
772 }
773 
774 /**
775  * Writes data to the object referenced by handle.
776  * @dev: drm device
777  * @data: ioctl data blob
778  * @file: drm file
779  *
780  * On error, the contents of the buffer that were to be modified are undefined.
781  */
782 int
783 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
784 		      struct drm_file *file)
785 {
786 	struct drm_i915_gem_pwrite *args = data;
787 	struct drm_i915_gem_object *obj;
788 	int ret;
789 
790 	if (args->size == 0)
791 		return 0;
792 
793 	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
794 		return -EFAULT;
795 
796 	obj = i915_gem_object_lookup(file, args->handle);
797 	if (!obj)
798 		return -ENOENT;
799 
800 	/* Bounds check destination. */
801 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
802 		ret = -EINVAL;
803 		goto err;
804 	}
805 
806 	/* Writes not allowed into this read-only object */
807 	if (i915_gem_object_is_readonly(obj)) {
808 		ret = -EINVAL;
809 		goto err;
810 	}
811 
812 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
813 
814 	ret = -ENODEV;
815 	if (obj->ops->pwrite)
816 		ret = obj->ops->pwrite(obj, args);
817 	if (ret != -ENODEV)
818 		goto err;
819 
820 	ret = i915_gem_object_wait(obj,
821 				   I915_WAIT_INTERRUPTIBLE |
822 				   I915_WAIT_ALL,
823 				   MAX_SCHEDULE_TIMEOUT);
824 	if (ret)
825 		goto err;
826 
827 	ret = i915_gem_object_pin_pages(obj);
828 	if (ret)
829 		goto err;
830 
831 	ret = -EFAULT;
832 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
833 	 * it would end up going through the fenced access, and we'll get
834 	 * different detiling behavior between reading and writing.
835 	 * pread/pwrite currently are reading and writing from the CPU
836 	 * perspective, requiring manual detiling by the client.
837 	 */
838 	if (!i915_gem_object_has_struct_page(obj) ||
839 	    cpu_write_needs_clflush(obj))
840 		/* Note that the gtt paths might fail with non-page-backed user
841 		 * pointers (e.g. gtt mappings when moving data between
842 		 * textures). Fallback to the shmem path in that case.
843 		 */
844 		ret = i915_gem_gtt_pwrite_fast(obj, args);
845 
846 	if (ret == -EFAULT || ret == -ENOSPC) {
847 		if (obj->phys_handle)
848 			ret = i915_gem_phys_pwrite(obj, args, file);
849 		else
850 			ret = i915_gem_shmem_pwrite(obj, args);
851 	}
852 
853 	i915_gem_object_unpin_pages(obj);
854 err:
855 	i915_gem_object_put(obj);
856 	return ret;
857 }
858 
859 /**
860  * Called when user space has done writes to this buffer
861  * @dev: drm device
862  * @data: ioctl data blob
863  * @file: drm file
864  */
865 int
866 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
867 			 struct drm_file *file)
868 {
869 	struct drm_i915_gem_sw_finish *args = data;
870 	struct drm_i915_gem_object *obj;
871 
872 	obj = i915_gem_object_lookup(file, args->handle);
873 	if (!obj)
874 		return -ENOENT;
875 
876 	/*
877 	 * Proxy objects are barred from CPU access, so there is no
878 	 * need to ban sw_finish as it is a nop.
879 	 */
880 
881 	/* Pinned buffers may be scanout, so flush the cache */
882 	i915_gem_object_flush_if_display(obj);
883 	i915_gem_object_put(obj);
884 
885 	return 0;
886 }
887 
888 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
889 {
890 	struct drm_i915_gem_object *obj, *on;
891 	int i;
892 
893 	/*
894 	 * Only called during RPM suspend. All users of the userfault_list
895 	 * must be holding an RPM wakeref to ensure that this can not
896 	 * run concurrently with themselves (and use the struct_mutex for
897 	 * protection between themselves).
898 	 */
899 
900 	list_for_each_entry_safe(obj, on,
901 				 &i915->ggtt.userfault_list, userfault_link)
902 		__i915_gem_object_release_mmap_gtt(obj);
903 
904 	/*
905 	 * The fence will be lost when the device powers down. If any were
906 	 * in use by hardware (i.e. they are pinned), we should not be powering
907 	 * down! All other fences will be reacquired by the user upon waking.
908 	 */
909 	for (i = 0; i < i915->ggtt.num_fences; i++) {
910 		struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
911 
912 		/*
913 		 * Ideally we want to assert that the fence register is not
914 		 * live at this point (i.e. that no piece of code will be
915 		 * trying to write through fence + GTT, as that both violates
916 		 * our tracking of activity and associated locking/barriers,
917 		 * but also is illegal given that the hw is powered down).
918 		 *
919 		 * Previously we used reg->pin_count as a "liveness" indicator.
920 		 * That is not sufficient, and we need a more fine-grained
921 		 * tool if we want to have a sanity check here.
922 		 */
923 
924 		if (!reg->vma)
925 			continue;
926 
927 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
928 		reg->dirty = true;
929 	}
930 }
931 
932 struct i915_vma *
933 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
934 			 const struct i915_ggtt_view *view,
935 			 u64 size,
936 			 u64 alignment,
937 			 u64 flags)
938 {
939 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
940 	struct i915_ggtt *ggtt = &i915->ggtt;
941 	struct i915_vma *vma;
942 	int ret;
943 
944 	if (i915_gem_object_never_bind_ggtt(obj))
945 		return ERR_PTR(-ENODEV);
946 
947 	if (flags & PIN_MAPPABLE &&
948 	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
949 		/*
950 		 * If the required space is larger than the available
951 		 * aperture, we will not able to find a slot for the
952 		 * object and unbinding the object now will be in
953 		 * vain. Worse, doing so may cause us to ping-pong
954 		 * the object in and out of the Global GTT and
955 		 * waste a lot of cycles under the mutex.
956 		 */
957 		if (obj->base.size > ggtt->mappable_end)
958 			return ERR_PTR(-E2BIG);
959 
960 		/*
961 		 * If NONBLOCK is set the caller is optimistically
962 		 * trying to cache the full object within the mappable
963 		 * aperture, and *must* have a fallback in place for
964 		 * situations where we cannot bind the object. We
965 		 * can be a little more lax here and use the fallback
966 		 * more often to avoid costly migrations of ourselves
967 		 * and other objects within the aperture.
968 		 *
969 		 * Half-the-aperture is used as a simple heuristic.
970 		 * More interesting would to do search for a free
971 		 * block prior to making the commitment to unbind.
972 		 * That caters for the self-harm case, and with a
973 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
974 		 * we could try to minimise harm to others.
975 		 */
976 		if (flags & PIN_NONBLOCK &&
977 		    obj->base.size > ggtt->mappable_end / 2)
978 			return ERR_PTR(-ENOSPC);
979 	}
980 
981 	vma = i915_vma_instance(obj, &ggtt->vm, view);
982 	if (IS_ERR(vma))
983 		return vma;
984 
985 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
986 		if (flags & PIN_NONBLOCK) {
987 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
988 				return ERR_PTR(-ENOSPC);
989 
990 			if (flags & PIN_MAPPABLE &&
991 			    vma->fence_size > ggtt->mappable_end / 2)
992 				return ERR_PTR(-ENOSPC);
993 		}
994 
995 		ret = i915_vma_unbind(vma);
996 		if (ret)
997 			return ERR_PTR(ret);
998 	}
999 
1000 	if (vma->fence && !i915_gem_object_is_tiled(obj)) {
1001 		mutex_lock(&ggtt->vm.mutex);
1002 		ret = i915_vma_revoke_fence(vma);
1003 		mutex_unlock(&ggtt->vm.mutex);
1004 		if (ret)
1005 			return ERR_PTR(ret);
1006 	}
1007 
1008 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
1009 	if (ret)
1010 		return ERR_PTR(ret);
1011 
1012 	return vma;
1013 }
1014 
1015 int
1016 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1017 		       struct drm_file *file_priv)
1018 {
1019 	struct drm_i915_private *i915 = to_i915(dev);
1020 	struct drm_i915_gem_madvise *args = data;
1021 	struct drm_i915_gem_object *obj;
1022 	int err;
1023 
1024 	switch (args->madv) {
1025 	case I915_MADV_DONTNEED:
1026 	case I915_MADV_WILLNEED:
1027 	    break;
1028 	default:
1029 	    return -EINVAL;
1030 	}
1031 
1032 	obj = i915_gem_object_lookup(file_priv, args->handle);
1033 	if (!obj)
1034 		return -ENOENT;
1035 
1036 	err = mutex_lock_interruptible(&obj->mm.lock);
1037 	if (err)
1038 		goto out;
1039 
1040 	if (i915_gem_object_has_pages(obj) &&
1041 	    i915_gem_object_is_tiled(obj) &&
1042 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
1043 		if (obj->mm.madv == I915_MADV_WILLNEED) {
1044 			GEM_BUG_ON(!obj->mm.quirked);
1045 			__i915_gem_object_unpin_pages(obj);
1046 			obj->mm.quirked = false;
1047 		}
1048 		if (args->madv == I915_MADV_WILLNEED) {
1049 			GEM_BUG_ON(obj->mm.quirked);
1050 			__i915_gem_object_pin_pages(obj);
1051 			obj->mm.quirked = true;
1052 		}
1053 	}
1054 
1055 	if (obj->mm.madv != __I915_MADV_PURGED)
1056 		obj->mm.madv = args->madv;
1057 
1058 	if (i915_gem_object_has_pages(obj)) {
1059 		struct list_head *list;
1060 
1061 		if (i915_gem_object_is_shrinkable(obj)) {
1062 			unsigned long flags;
1063 
1064 			spin_lock_irqsave(&i915->mm.obj_lock, flags);
1065 
1066 			if (obj->mm.madv != I915_MADV_WILLNEED)
1067 				list = &i915->mm.purge_list;
1068 			else
1069 				list = &i915->mm.shrink_list;
1070 			list_move_tail(&obj->mm.link, list);
1071 
1072 			spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1073 		}
1074 	}
1075 
1076 	/* if the object is no longer attached, discard its backing storage */
1077 	if (obj->mm.madv == I915_MADV_DONTNEED &&
1078 	    !i915_gem_object_has_pages(obj))
1079 		i915_gem_object_truncate(obj);
1080 
1081 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
1082 	mutex_unlock(&obj->mm.lock);
1083 
1084 out:
1085 	i915_gem_object_put(obj);
1086 	return err;
1087 }
1088 
1089 int i915_gem_init(struct drm_i915_private *dev_priv)
1090 {
1091 	int ret;
1092 
1093 	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
1094 	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1095 		mkwrite_device_info(dev_priv)->page_sizes =
1096 			I915_GTT_PAGE_SIZE_4K;
1097 
1098 	ret = i915_gem_init_userptr(dev_priv);
1099 	if (ret)
1100 		return ret;
1101 
1102 	intel_uc_fetch_firmwares(&dev_priv->gt.uc);
1103 	intel_wopcm_init(&dev_priv->wopcm);
1104 
1105 	ret = i915_init_ggtt(dev_priv);
1106 	if (ret) {
1107 		GEM_BUG_ON(ret == -EIO);
1108 		goto err_unlock;
1109 	}
1110 
1111 	/*
1112 	 * Despite its name intel_init_clock_gating applies both display
1113 	 * clock gating workarounds; GT mmio workarounds and the occasional
1114 	 * GT power context workaround. Worse, sometimes it includes a context
1115 	 * register workaround which we need to apply before we record the
1116 	 * default HW state for all contexts.
1117 	 *
1118 	 * FIXME: break up the workarounds and apply them at the right time!
1119 	 */
1120 	intel_init_clock_gating(dev_priv);
1121 
1122 	ret = intel_gt_init(&dev_priv->gt);
1123 	if (ret)
1124 		goto err_unlock;
1125 
1126 	return 0;
1127 
1128 	/*
1129 	 * Unwinding is complicated by that we want to handle -EIO to mean
1130 	 * disable GPU submission but keep KMS alive. We want to mark the
1131 	 * HW as irrevisibly wedged, but keep enough state around that the
1132 	 * driver doesn't explode during runtime.
1133 	 */
1134 err_unlock:
1135 	i915_gem_drain_workqueue(dev_priv);
1136 
1137 	if (ret != -EIO) {
1138 		intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1139 		i915_gem_cleanup_userptr(dev_priv);
1140 	}
1141 
1142 	if (ret == -EIO) {
1143 		/*
1144 		 * Allow engines or uC initialisation to fail by marking the GPU
1145 		 * as wedged. But we only want to do this when the GPU is angry,
1146 		 * for all other failure, such as an allocation failure, bail.
1147 		 */
1148 		if (!intel_gt_is_wedged(&dev_priv->gt)) {
1149 			i915_probe_error(dev_priv,
1150 					 "Failed to initialize GPU, declaring it wedged!\n");
1151 			intel_gt_set_wedged(&dev_priv->gt);
1152 		}
1153 
1154 		/* Minimal basic recovery for KMS */
1155 		ret = i915_ggtt_enable_hw(dev_priv);
1156 		i915_gem_restore_gtt_mappings(dev_priv);
1157 		i915_gem_restore_fences(&dev_priv->ggtt);
1158 		intel_init_clock_gating(dev_priv);
1159 	}
1160 
1161 	i915_gem_drain_freed_objects(dev_priv);
1162 	return ret;
1163 }
1164 
1165 void i915_gem_driver_register(struct drm_i915_private *i915)
1166 {
1167 	i915_gem_driver_register__shrinker(i915);
1168 
1169 	intel_engines_driver_register(i915);
1170 }
1171 
1172 void i915_gem_driver_unregister(struct drm_i915_private *i915)
1173 {
1174 	i915_gem_driver_unregister__shrinker(i915);
1175 }
1176 
1177 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1178 {
1179 	intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1180 
1181 	i915_gem_suspend_late(dev_priv);
1182 	intel_gt_driver_remove(&dev_priv->gt);
1183 	dev_priv->uabi_engines = RB_ROOT;
1184 
1185 	/* Flush any outstanding unpin_work. */
1186 	i915_gem_drain_workqueue(dev_priv);
1187 
1188 	i915_gem_drain_freed_objects(dev_priv);
1189 }
1190 
1191 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1192 {
1193 	i915_gem_driver_release__contexts(dev_priv);
1194 
1195 	intel_gt_driver_release(&dev_priv->gt);
1196 
1197 	intel_wa_list_free(&dev_priv->gt_wa_list);
1198 
1199 	intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1200 	i915_gem_cleanup_userptr(dev_priv);
1201 
1202 	i915_gem_drain_freed_objects(dev_priv);
1203 
1204 	WARN_ON(!list_empty(&dev_priv->gem.contexts.list));
1205 }
1206 
1207 static void i915_gem_init__mm(struct drm_i915_private *i915)
1208 {
1209 	spin_lock_init(&i915->mm.obj_lock);
1210 
1211 	init_llist_head(&i915->mm.free_list);
1212 
1213 	INIT_LIST_HEAD(&i915->mm.purge_list);
1214 	INIT_LIST_HEAD(&i915->mm.shrink_list);
1215 
1216 	i915_gem_init__objects(i915);
1217 }
1218 
1219 void i915_gem_init_early(struct drm_i915_private *dev_priv)
1220 {
1221 	i915_gem_init__mm(dev_priv);
1222 	i915_gem_init__contexts(dev_priv);
1223 
1224 	spin_lock_init(&dev_priv->fb_tracking.lock);
1225 }
1226 
1227 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1228 {
1229 	i915_gem_drain_freed_objects(dev_priv);
1230 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1231 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1232 	WARN_ON(dev_priv->mm.shrink_count);
1233 }
1234 
1235 int i915_gem_freeze(struct drm_i915_private *dev_priv)
1236 {
1237 	/* Discard all purgeable objects, let userspace recover those as
1238 	 * required after resuming.
1239 	 */
1240 	i915_gem_shrink_all(dev_priv);
1241 
1242 	return 0;
1243 }
1244 
1245 int i915_gem_freeze_late(struct drm_i915_private *i915)
1246 {
1247 	struct drm_i915_gem_object *obj;
1248 	intel_wakeref_t wakeref;
1249 
1250 	/*
1251 	 * Called just before we write the hibernation image.
1252 	 *
1253 	 * We need to update the domain tracking to reflect that the CPU
1254 	 * will be accessing all the pages to create and restore from the
1255 	 * hibernation, and so upon restoration those pages will be in the
1256 	 * CPU domain.
1257 	 *
1258 	 * To make sure the hibernation image contains the latest state,
1259 	 * we update that state just before writing out the image.
1260 	 *
1261 	 * To try and reduce the hibernation image, we manually shrink
1262 	 * the objects as well, see i915_gem_freeze()
1263 	 */
1264 
1265 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1266 
1267 	i915_gem_shrink(i915, -1UL, NULL, ~0);
1268 	i915_gem_drain_freed_objects(i915);
1269 
1270 	list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
1271 		i915_gem_object_lock(obj);
1272 		WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
1273 		i915_gem_object_unlock(obj);
1274 	}
1275 
1276 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1277 
1278 	return 0;
1279 }
1280 
1281 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
1282 {
1283 	struct drm_i915_file_private *file_priv = file->driver_priv;
1284 	struct i915_request *request;
1285 
1286 	/* Clean up our request list when the client is going away, so that
1287 	 * later retire_requests won't dereference our soon-to-be-gone
1288 	 * file_priv.
1289 	 */
1290 	spin_lock(&file_priv->mm.lock);
1291 	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
1292 		request->file_priv = NULL;
1293 	spin_unlock(&file_priv->mm.lock);
1294 }
1295 
1296 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1297 {
1298 	struct drm_i915_file_private *file_priv;
1299 	int ret;
1300 
1301 	DRM_DEBUG("\n");
1302 
1303 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1304 	if (!file_priv)
1305 		return -ENOMEM;
1306 
1307 	file->driver_priv = file_priv;
1308 	file_priv->dev_priv = i915;
1309 	file_priv->file = file;
1310 
1311 	spin_lock_init(&file_priv->mm.lock);
1312 	INIT_LIST_HEAD(&file_priv->mm.request_list);
1313 
1314 	file_priv->bsd_engine = -1;
1315 	file_priv->hang_timestamp = jiffies;
1316 
1317 	ret = i915_gem_context_open(i915, file);
1318 	if (ret)
1319 		kfree(file_priv);
1320 
1321 	return ret;
1322 }
1323 
1324 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1325 #include "selftests/mock_gem_device.c"
1326 #include "selftests/i915_gem.c"
1327 #endif
1328