xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision 77d84ff8)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39 
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 						   bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 			       bool readonly);
46 static __must_check int
47 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48 			   struct i915_address_space *vm,
49 			   unsigned alignment,
50 			   bool map_and_fenceable,
51 			   bool nonblocking);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53 				struct drm_i915_gem_object *obj,
54 				struct drm_i915_gem_pwrite *args,
55 				struct drm_file *file);
56 
57 static void i915_gem_write_fence(struct drm_device *dev, int reg,
58 				 struct drm_i915_gem_object *obj);
59 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60 					 struct drm_i915_fence_reg *fence,
61 					 bool enable);
62 
63 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64 					     struct shrink_control *sc);
65 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66 					    struct shrink_control *sc);
67 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
69 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
70 
71 static bool cpu_cache_is_coherent(struct drm_device *dev,
72 				  enum i915_cache_level level)
73 {
74 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
75 }
76 
77 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78 {
79 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80 		return true;
81 
82 	return obj->pin_display;
83 }
84 
85 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86 {
87 	if (obj->tiling_mode)
88 		i915_gem_release_mmap(obj);
89 
90 	/* As we do not have an associated fence register, we will force
91 	 * a tiling change if we ever need to acquire one.
92 	 */
93 	obj->fence_dirty = false;
94 	obj->fence_reg = I915_FENCE_REG_NONE;
95 }
96 
97 /* some bookkeeping */
98 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99 				  size_t size)
100 {
101 	spin_lock(&dev_priv->mm.object_stat_lock);
102 	dev_priv->mm.object_count++;
103 	dev_priv->mm.object_memory += size;
104 	spin_unlock(&dev_priv->mm.object_stat_lock);
105 }
106 
107 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108 				     size_t size)
109 {
110 	spin_lock(&dev_priv->mm.object_stat_lock);
111 	dev_priv->mm.object_count--;
112 	dev_priv->mm.object_memory -= size;
113 	spin_unlock(&dev_priv->mm.object_stat_lock);
114 }
115 
116 static int
117 i915_gem_wait_for_error(struct i915_gpu_error *error)
118 {
119 	int ret;
120 
121 #define EXIT_COND (!i915_reset_in_progress(error) || \
122 		   i915_terminally_wedged(error))
123 	if (EXIT_COND)
124 		return 0;
125 
126 	/*
127 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128 	 * userspace. If it takes that long something really bad is going on and
129 	 * we should simply try to bail out and fail as gracefully as possible.
130 	 */
131 	ret = wait_event_interruptible_timeout(error->reset_queue,
132 					       EXIT_COND,
133 					       10*HZ);
134 	if (ret == 0) {
135 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136 		return -EIO;
137 	} else if (ret < 0) {
138 		return ret;
139 	}
140 #undef EXIT_COND
141 
142 	return 0;
143 }
144 
145 int i915_mutex_lock_interruptible(struct drm_device *dev)
146 {
147 	struct drm_i915_private *dev_priv = dev->dev_private;
148 	int ret;
149 
150 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
151 	if (ret)
152 		return ret;
153 
154 	ret = mutex_lock_interruptible(&dev->struct_mutex);
155 	if (ret)
156 		return ret;
157 
158 	WARN_ON(i915_verify_lists(dev));
159 	return 0;
160 }
161 
162 static inline bool
163 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
164 {
165 	return i915_gem_obj_bound_any(obj) && !obj->active;
166 }
167 
168 int
169 i915_gem_init_ioctl(struct drm_device *dev, void *data,
170 		    struct drm_file *file)
171 {
172 	struct drm_i915_private *dev_priv = dev->dev_private;
173 	struct drm_i915_gem_init *args = data;
174 
175 	if (drm_core_check_feature(dev, DRIVER_MODESET))
176 		return -ENODEV;
177 
178 	if (args->gtt_start >= args->gtt_end ||
179 	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180 		return -EINVAL;
181 
182 	/* GEM with user mode setting was never supported on ilk and later. */
183 	if (INTEL_INFO(dev)->gen >= 5)
184 		return -ENODEV;
185 
186 	mutex_lock(&dev->struct_mutex);
187 	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188 				  args->gtt_end);
189 	dev_priv->gtt.mappable_end = args->gtt_end;
190 	mutex_unlock(&dev->struct_mutex);
191 
192 	return 0;
193 }
194 
195 int
196 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
197 			    struct drm_file *file)
198 {
199 	struct drm_i915_private *dev_priv = dev->dev_private;
200 	struct drm_i915_gem_get_aperture *args = data;
201 	struct drm_i915_gem_object *obj;
202 	size_t pinned;
203 
204 	pinned = 0;
205 	mutex_lock(&dev->struct_mutex);
206 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
207 		if (obj->pin_count)
208 			pinned += i915_gem_obj_ggtt_size(obj);
209 	mutex_unlock(&dev->struct_mutex);
210 
211 	args->aper_size = dev_priv->gtt.base.total;
212 	args->aper_available_size = args->aper_size - pinned;
213 
214 	return 0;
215 }
216 
217 void *i915_gem_object_alloc(struct drm_device *dev)
218 {
219 	struct drm_i915_private *dev_priv = dev->dev_private;
220 	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
221 }
222 
223 void i915_gem_object_free(struct drm_i915_gem_object *obj)
224 {
225 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226 	kmem_cache_free(dev_priv->slab, obj);
227 }
228 
229 static int
230 i915_gem_create(struct drm_file *file,
231 		struct drm_device *dev,
232 		uint64_t size,
233 		uint32_t *handle_p)
234 {
235 	struct drm_i915_gem_object *obj;
236 	int ret;
237 	u32 handle;
238 
239 	size = roundup(size, PAGE_SIZE);
240 	if (size == 0)
241 		return -EINVAL;
242 
243 	/* Allocate the new object */
244 	obj = i915_gem_alloc_object(dev, size);
245 	if (obj == NULL)
246 		return -ENOMEM;
247 
248 	ret = drm_gem_handle_create(file, &obj->base, &handle);
249 	/* drop reference from allocate - handle holds it now */
250 	drm_gem_object_unreference_unlocked(&obj->base);
251 	if (ret)
252 		return ret;
253 
254 	*handle_p = handle;
255 	return 0;
256 }
257 
258 int
259 i915_gem_dumb_create(struct drm_file *file,
260 		     struct drm_device *dev,
261 		     struct drm_mode_create_dumb *args)
262 {
263 	/* have to work out size/pitch and return them */
264 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
265 	args->size = args->pitch * args->height;
266 	return i915_gem_create(file, dev,
267 			       args->size, &args->handle);
268 }
269 
270 /**
271  * Creates a new mm object and returns a handle to it.
272  */
273 int
274 i915_gem_create_ioctl(struct drm_device *dev, void *data,
275 		      struct drm_file *file)
276 {
277 	struct drm_i915_gem_create *args = data;
278 
279 	return i915_gem_create(file, dev,
280 			       args->size, &args->handle);
281 }
282 
283 static inline int
284 __copy_to_user_swizzled(char __user *cpu_vaddr,
285 			const char *gpu_vaddr, int gpu_offset,
286 			int length)
287 {
288 	int ret, cpu_offset = 0;
289 
290 	while (length > 0) {
291 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
292 		int this_length = min(cacheline_end - gpu_offset, length);
293 		int swizzled_gpu_offset = gpu_offset ^ 64;
294 
295 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
296 				     gpu_vaddr + swizzled_gpu_offset,
297 				     this_length);
298 		if (ret)
299 			return ret + length;
300 
301 		cpu_offset += this_length;
302 		gpu_offset += this_length;
303 		length -= this_length;
304 	}
305 
306 	return 0;
307 }
308 
309 static inline int
310 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311 			  const char __user *cpu_vaddr,
312 			  int length)
313 {
314 	int ret, cpu_offset = 0;
315 
316 	while (length > 0) {
317 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
318 		int this_length = min(cacheline_end - gpu_offset, length);
319 		int swizzled_gpu_offset = gpu_offset ^ 64;
320 
321 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322 				       cpu_vaddr + cpu_offset,
323 				       this_length);
324 		if (ret)
325 			return ret + length;
326 
327 		cpu_offset += this_length;
328 		gpu_offset += this_length;
329 		length -= this_length;
330 	}
331 
332 	return 0;
333 }
334 
335 /* Per-page copy function for the shmem pread fastpath.
336  * Flushes invalid cachelines before reading the target if
337  * needs_clflush is set. */
338 static int
339 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340 		 char __user *user_data,
341 		 bool page_do_bit17_swizzling, bool needs_clflush)
342 {
343 	char *vaddr;
344 	int ret;
345 
346 	if (unlikely(page_do_bit17_swizzling))
347 		return -EINVAL;
348 
349 	vaddr = kmap_atomic(page);
350 	if (needs_clflush)
351 		drm_clflush_virt_range(vaddr + shmem_page_offset,
352 				       page_length);
353 	ret = __copy_to_user_inatomic(user_data,
354 				      vaddr + shmem_page_offset,
355 				      page_length);
356 	kunmap_atomic(vaddr);
357 
358 	return ret ? -EFAULT : 0;
359 }
360 
361 static void
362 shmem_clflush_swizzled_range(char *addr, unsigned long length,
363 			     bool swizzled)
364 {
365 	if (unlikely(swizzled)) {
366 		unsigned long start = (unsigned long) addr;
367 		unsigned long end = (unsigned long) addr + length;
368 
369 		/* For swizzling simply ensure that we always flush both
370 		 * channels. Lame, but simple and it works. Swizzled
371 		 * pwrite/pread is far from a hotpath - current userspace
372 		 * doesn't use it at all. */
373 		start = round_down(start, 128);
374 		end = round_up(end, 128);
375 
376 		drm_clflush_virt_range((void *)start, end - start);
377 	} else {
378 		drm_clflush_virt_range(addr, length);
379 	}
380 
381 }
382 
383 /* Only difference to the fast-path function is that this can handle bit17
384  * and uses non-atomic copy and kmap functions. */
385 static int
386 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387 		 char __user *user_data,
388 		 bool page_do_bit17_swizzling, bool needs_clflush)
389 {
390 	char *vaddr;
391 	int ret;
392 
393 	vaddr = kmap(page);
394 	if (needs_clflush)
395 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396 					     page_length,
397 					     page_do_bit17_swizzling);
398 
399 	if (page_do_bit17_swizzling)
400 		ret = __copy_to_user_swizzled(user_data,
401 					      vaddr, shmem_page_offset,
402 					      page_length);
403 	else
404 		ret = __copy_to_user(user_data,
405 				     vaddr + shmem_page_offset,
406 				     page_length);
407 	kunmap(page);
408 
409 	return ret ? - EFAULT : 0;
410 }
411 
412 static int
413 i915_gem_shmem_pread(struct drm_device *dev,
414 		     struct drm_i915_gem_object *obj,
415 		     struct drm_i915_gem_pread *args,
416 		     struct drm_file *file)
417 {
418 	char __user *user_data;
419 	ssize_t remain;
420 	loff_t offset;
421 	int shmem_page_offset, page_length, ret = 0;
422 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
423 	int prefaulted = 0;
424 	int needs_clflush = 0;
425 	struct sg_page_iter sg_iter;
426 
427 	user_data = to_user_ptr(args->data_ptr);
428 	remain = args->size;
429 
430 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
431 
432 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433 		/* If we're not in the cpu read domain, set ourself into the gtt
434 		 * read domain and manually flush cachelines (if required). This
435 		 * optimizes for the case when the gpu will dirty the data
436 		 * anyway again before the next pread happens. */
437 		needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
438 		ret = i915_gem_object_wait_rendering(obj, true);
439 		if (ret)
440 			return ret;
441 	}
442 
443 	ret = i915_gem_object_get_pages(obj);
444 	if (ret)
445 		return ret;
446 
447 	i915_gem_object_pin_pages(obj);
448 
449 	offset = args->offset;
450 
451 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452 			 offset >> PAGE_SHIFT) {
453 		struct page *page = sg_page_iter_page(&sg_iter);
454 
455 		if (remain <= 0)
456 			break;
457 
458 		/* Operation in this page
459 		 *
460 		 * shmem_page_offset = offset within page in shmem file
461 		 * page_length = bytes to copy for this page
462 		 */
463 		shmem_page_offset = offset_in_page(offset);
464 		page_length = remain;
465 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
466 			page_length = PAGE_SIZE - shmem_page_offset;
467 
468 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469 			(page_to_phys(page) & (1 << 17)) != 0;
470 
471 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472 				       user_data, page_do_bit17_swizzling,
473 				       needs_clflush);
474 		if (ret == 0)
475 			goto next_page;
476 
477 		mutex_unlock(&dev->struct_mutex);
478 
479 		if (likely(!i915_prefault_disable) && !prefaulted) {
480 			ret = fault_in_multipages_writeable(user_data, remain);
481 			/* Userspace is tricking us, but we've already clobbered
482 			 * its pages with the prefault and promised to write the
483 			 * data up to the first fault. Hence ignore any errors
484 			 * and just continue. */
485 			(void)ret;
486 			prefaulted = 1;
487 		}
488 
489 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490 				       user_data, page_do_bit17_swizzling,
491 				       needs_clflush);
492 
493 		mutex_lock(&dev->struct_mutex);
494 
495 next_page:
496 		mark_page_accessed(page);
497 
498 		if (ret)
499 			goto out;
500 
501 		remain -= page_length;
502 		user_data += page_length;
503 		offset += page_length;
504 	}
505 
506 out:
507 	i915_gem_object_unpin_pages(obj);
508 
509 	return ret;
510 }
511 
512 /**
513  * Reads data from the object referenced by handle.
514  *
515  * On error, the contents of *data are undefined.
516  */
517 int
518 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
519 		     struct drm_file *file)
520 {
521 	struct drm_i915_gem_pread *args = data;
522 	struct drm_i915_gem_object *obj;
523 	int ret = 0;
524 
525 	if (args->size == 0)
526 		return 0;
527 
528 	if (!access_ok(VERIFY_WRITE,
529 		       to_user_ptr(args->data_ptr),
530 		       args->size))
531 		return -EFAULT;
532 
533 	ret = i915_mutex_lock_interruptible(dev);
534 	if (ret)
535 		return ret;
536 
537 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538 	if (&obj->base == NULL) {
539 		ret = -ENOENT;
540 		goto unlock;
541 	}
542 
543 	/* Bounds check source.  */
544 	if (args->offset > obj->base.size ||
545 	    args->size > obj->base.size - args->offset) {
546 		ret = -EINVAL;
547 		goto out;
548 	}
549 
550 	/* prime objects have no backing filp to GEM pread/pwrite
551 	 * pages from.
552 	 */
553 	if (!obj->base.filp) {
554 		ret = -EINVAL;
555 		goto out;
556 	}
557 
558 	trace_i915_gem_object_pread(obj, args->offset, args->size);
559 
560 	ret = i915_gem_shmem_pread(dev, obj, args, file);
561 
562 out:
563 	drm_gem_object_unreference(&obj->base);
564 unlock:
565 	mutex_unlock(&dev->struct_mutex);
566 	return ret;
567 }
568 
569 /* This is the fast write path which cannot handle
570  * page faults in the source data
571  */
572 
573 static inline int
574 fast_user_write(struct io_mapping *mapping,
575 		loff_t page_base, int page_offset,
576 		char __user *user_data,
577 		int length)
578 {
579 	void __iomem *vaddr_atomic;
580 	void *vaddr;
581 	unsigned long unwritten;
582 
583 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584 	/* We can use the cpu mem copy function because this is X86. */
585 	vaddr = (void __force*)vaddr_atomic + page_offset;
586 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
587 						      user_data, length);
588 	io_mapping_unmap_atomic(vaddr_atomic);
589 	return unwritten;
590 }
591 
592 /**
593  * This is the fast pwrite path, where we copy the data directly from the
594  * user into the GTT, uncached.
595  */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 			 struct drm_i915_gem_object *obj,
599 			 struct drm_i915_gem_pwrite *args,
600 			 struct drm_file *file)
601 {
602 	drm_i915_private_t *dev_priv = dev->dev_private;
603 	ssize_t remain;
604 	loff_t offset, page_base;
605 	char __user *user_data;
606 	int page_offset, page_length, ret;
607 
608 	ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
609 	if (ret)
610 		goto out;
611 
612 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
613 	if (ret)
614 		goto out_unpin;
615 
616 	ret = i915_gem_object_put_fence(obj);
617 	if (ret)
618 		goto out_unpin;
619 
620 	user_data = to_user_ptr(args->data_ptr);
621 	remain = args->size;
622 
623 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
624 
625 	while (remain > 0) {
626 		/* Operation in this page
627 		 *
628 		 * page_base = page offset within aperture
629 		 * page_offset = offset within page
630 		 * page_length = bytes to copy for this page
631 		 */
632 		page_base = offset & PAGE_MASK;
633 		page_offset = offset_in_page(offset);
634 		page_length = remain;
635 		if ((page_offset + remain) > PAGE_SIZE)
636 			page_length = PAGE_SIZE - page_offset;
637 
638 		/* If we get a fault while copying data, then (presumably) our
639 		 * source page isn't available.  Return the error and we'll
640 		 * retry in the slow path.
641 		 */
642 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
643 				    page_offset, user_data, page_length)) {
644 			ret = -EFAULT;
645 			goto out_unpin;
646 		}
647 
648 		remain -= page_length;
649 		user_data += page_length;
650 		offset += page_length;
651 	}
652 
653 out_unpin:
654 	i915_gem_object_unpin(obj);
655 out:
656 	return ret;
657 }
658 
659 /* Per-page copy function for the shmem pwrite fastpath.
660  * Flushes invalid cachelines before writing to the target if
661  * needs_clflush_before is set and flushes out any written cachelines after
662  * writing if needs_clflush is set. */
663 static int
664 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665 		  char __user *user_data,
666 		  bool page_do_bit17_swizzling,
667 		  bool needs_clflush_before,
668 		  bool needs_clflush_after)
669 {
670 	char *vaddr;
671 	int ret;
672 
673 	if (unlikely(page_do_bit17_swizzling))
674 		return -EINVAL;
675 
676 	vaddr = kmap_atomic(page);
677 	if (needs_clflush_before)
678 		drm_clflush_virt_range(vaddr + shmem_page_offset,
679 				       page_length);
680 	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681 						user_data,
682 						page_length);
683 	if (needs_clflush_after)
684 		drm_clflush_virt_range(vaddr + shmem_page_offset,
685 				       page_length);
686 	kunmap_atomic(vaddr);
687 
688 	return ret ? -EFAULT : 0;
689 }
690 
691 /* Only difference to the fast-path function is that this can handle bit17
692  * and uses non-atomic copy and kmap functions. */
693 static int
694 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695 		  char __user *user_data,
696 		  bool page_do_bit17_swizzling,
697 		  bool needs_clflush_before,
698 		  bool needs_clflush_after)
699 {
700 	char *vaddr;
701 	int ret;
702 
703 	vaddr = kmap(page);
704 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
705 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706 					     page_length,
707 					     page_do_bit17_swizzling);
708 	if (page_do_bit17_swizzling)
709 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
710 						user_data,
711 						page_length);
712 	else
713 		ret = __copy_from_user(vaddr + shmem_page_offset,
714 				       user_data,
715 				       page_length);
716 	if (needs_clflush_after)
717 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718 					     page_length,
719 					     page_do_bit17_swizzling);
720 	kunmap(page);
721 
722 	return ret ? -EFAULT : 0;
723 }
724 
725 static int
726 i915_gem_shmem_pwrite(struct drm_device *dev,
727 		      struct drm_i915_gem_object *obj,
728 		      struct drm_i915_gem_pwrite *args,
729 		      struct drm_file *file)
730 {
731 	ssize_t remain;
732 	loff_t offset;
733 	char __user *user_data;
734 	int shmem_page_offset, page_length, ret = 0;
735 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
736 	int hit_slowpath = 0;
737 	int needs_clflush_after = 0;
738 	int needs_clflush_before = 0;
739 	struct sg_page_iter sg_iter;
740 
741 	user_data = to_user_ptr(args->data_ptr);
742 	remain = args->size;
743 
744 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
745 
746 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747 		/* If we're not in the cpu write domain, set ourself into the gtt
748 		 * write domain and manually flush cachelines (if required). This
749 		 * optimizes for the case when the gpu will use the data
750 		 * right away and we therefore have to clflush anyway. */
751 		needs_clflush_after = cpu_write_needs_clflush(obj);
752 		ret = i915_gem_object_wait_rendering(obj, false);
753 		if (ret)
754 			return ret;
755 	}
756 	/* Same trick applies to invalidate partially written cachelines read
757 	 * before writing. */
758 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759 		needs_clflush_before =
760 			!cpu_cache_is_coherent(dev, obj->cache_level);
761 
762 	ret = i915_gem_object_get_pages(obj);
763 	if (ret)
764 		return ret;
765 
766 	i915_gem_object_pin_pages(obj);
767 
768 	offset = args->offset;
769 	obj->dirty = 1;
770 
771 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772 			 offset >> PAGE_SHIFT) {
773 		struct page *page = sg_page_iter_page(&sg_iter);
774 		int partial_cacheline_write;
775 
776 		if (remain <= 0)
777 			break;
778 
779 		/* Operation in this page
780 		 *
781 		 * shmem_page_offset = offset within page in shmem file
782 		 * page_length = bytes to copy for this page
783 		 */
784 		shmem_page_offset = offset_in_page(offset);
785 
786 		page_length = remain;
787 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
788 			page_length = PAGE_SIZE - shmem_page_offset;
789 
790 		/* If we don't overwrite a cacheline completely we need to be
791 		 * careful to have up-to-date data by first clflushing. Don't
792 		 * overcomplicate things and flush the entire patch. */
793 		partial_cacheline_write = needs_clflush_before &&
794 			((shmem_page_offset | page_length)
795 				& (boot_cpu_data.x86_clflush_size - 1));
796 
797 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798 			(page_to_phys(page) & (1 << 17)) != 0;
799 
800 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801 					user_data, page_do_bit17_swizzling,
802 					partial_cacheline_write,
803 					needs_clflush_after);
804 		if (ret == 0)
805 			goto next_page;
806 
807 		hit_slowpath = 1;
808 		mutex_unlock(&dev->struct_mutex);
809 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810 					user_data, page_do_bit17_swizzling,
811 					partial_cacheline_write,
812 					needs_clflush_after);
813 
814 		mutex_lock(&dev->struct_mutex);
815 
816 next_page:
817 		set_page_dirty(page);
818 		mark_page_accessed(page);
819 
820 		if (ret)
821 			goto out;
822 
823 		remain -= page_length;
824 		user_data += page_length;
825 		offset += page_length;
826 	}
827 
828 out:
829 	i915_gem_object_unpin_pages(obj);
830 
831 	if (hit_slowpath) {
832 		/*
833 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
834 		 * cachelines in-line while writing and the object moved
835 		 * out of the cpu write domain while we've dropped the lock.
836 		 */
837 		if (!needs_clflush_after &&
838 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
839 			if (i915_gem_clflush_object(obj, obj->pin_display))
840 				i915_gem_chipset_flush(dev);
841 		}
842 	}
843 
844 	if (needs_clflush_after)
845 		i915_gem_chipset_flush(dev);
846 
847 	return ret;
848 }
849 
850 /**
851  * Writes data to the object referenced by handle.
852  *
853  * On error, the contents of the buffer that were to be modified are undefined.
854  */
855 int
856 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
857 		      struct drm_file *file)
858 {
859 	struct drm_i915_gem_pwrite *args = data;
860 	struct drm_i915_gem_object *obj;
861 	int ret;
862 
863 	if (args->size == 0)
864 		return 0;
865 
866 	if (!access_ok(VERIFY_READ,
867 		       to_user_ptr(args->data_ptr),
868 		       args->size))
869 		return -EFAULT;
870 
871 	if (likely(!i915_prefault_disable)) {
872 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873 						   args->size);
874 		if (ret)
875 			return -EFAULT;
876 	}
877 
878 	ret = i915_mutex_lock_interruptible(dev);
879 	if (ret)
880 		return ret;
881 
882 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
883 	if (&obj->base == NULL) {
884 		ret = -ENOENT;
885 		goto unlock;
886 	}
887 
888 	/* Bounds check destination. */
889 	if (args->offset > obj->base.size ||
890 	    args->size > obj->base.size - args->offset) {
891 		ret = -EINVAL;
892 		goto out;
893 	}
894 
895 	/* prime objects have no backing filp to GEM pread/pwrite
896 	 * pages from.
897 	 */
898 	if (!obj->base.filp) {
899 		ret = -EINVAL;
900 		goto out;
901 	}
902 
903 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904 
905 	ret = -EFAULT;
906 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
907 	 * it would end up going through the fenced access, and we'll get
908 	 * different detiling behavior between reading and writing.
909 	 * pread/pwrite currently are reading and writing from the CPU
910 	 * perspective, requiring manual detiling by the client.
911 	 */
912 	if (obj->phys_obj) {
913 		ret = i915_gem_phys_pwrite(dev, obj, args, file);
914 		goto out;
915 	}
916 
917 	if (obj->tiling_mode == I915_TILING_NONE &&
918 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919 	    cpu_write_needs_clflush(obj)) {
920 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
921 		/* Note that the gtt paths might fail with non-page-backed user
922 		 * pointers (e.g. gtt mappings when moving data between
923 		 * textures). Fallback to the shmem path in that case. */
924 	}
925 
926 	if (ret == -EFAULT || ret == -ENOSPC)
927 		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
928 
929 out:
930 	drm_gem_object_unreference(&obj->base);
931 unlock:
932 	mutex_unlock(&dev->struct_mutex);
933 	return ret;
934 }
935 
936 int
937 i915_gem_check_wedge(struct i915_gpu_error *error,
938 		     bool interruptible)
939 {
940 	if (i915_reset_in_progress(error)) {
941 		/* Non-interruptible callers can't handle -EAGAIN, hence return
942 		 * -EIO unconditionally for these. */
943 		if (!interruptible)
944 			return -EIO;
945 
946 		/* Recovery complete, but the reset failed ... */
947 		if (i915_terminally_wedged(error))
948 			return -EIO;
949 
950 		return -EAGAIN;
951 	}
952 
953 	return 0;
954 }
955 
956 /*
957  * Compare seqno against outstanding lazy request. Emit a request if they are
958  * equal.
959  */
960 static int
961 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962 {
963 	int ret;
964 
965 	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966 
967 	ret = 0;
968 	if (seqno == ring->outstanding_lazy_seqno)
969 		ret = i915_add_request(ring, NULL);
970 
971 	return ret;
972 }
973 
974 static void fake_irq(unsigned long data)
975 {
976 	wake_up_process((struct task_struct *)data);
977 }
978 
979 static bool missed_irq(struct drm_i915_private *dev_priv,
980 		       struct intel_ring_buffer *ring)
981 {
982 	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
983 }
984 
985 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
986 {
987 	if (file_priv == NULL)
988 		return true;
989 
990 	return !atomic_xchg(&file_priv->rps_wait_boost, true);
991 }
992 
993 /**
994  * __wait_seqno - wait until execution of seqno has finished
995  * @ring: the ring expected to report seqno
996  * @seqno: duh!
997  * @reset_counter: reset sequence associated with the given seqno
998  * @interruptible: do an interruptible wait (normally yes)
999  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1000  *
1001  * Note: It is of utmost importance that the passed in seqno and reset_counter
1002  * values have been read by the caller in an smp safe manner. Where read-side
1003  * locks are involved, it is sufficient to read the reset_counter before
1004  * unlocking the lock that protects the seqno. For lockless tricks, the
1005  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1006  * inserted.
1007  *
1008  * Returns 0 if the seqno was found within the alloted time. Else returns the
1009  * errno with remaining time filled in timeout argument.
1010  */
1011 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1012 			unsigned reset_counter,
1013 			bool interruptible,
1014 			struct timespec *timeout,
1015 			struct drm_i915_file_private *file_priv)
1016 {
1017 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1018 	struct timespec before, now;
1019 	DEFINE_WAIT(wait);
1020 	long timeout_jiffies;
1021 	int ret;
1022 
1023 	WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1024 
1025 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1026 		return 0;
1027 
1028 	timeout_jiffies = timeout ? timespec_to_jiffies_timeout(timeout) : 1;
1029 
1030 	if (dev_priv->info->gen >= 6 && can_wait_boost(file_priv)) {
1031 		gen6_rps_boost(dev_priv);
1032 		if (file_priv)
1033 			mod_delayed_work(dev_priv->wq,
1034 					 &file_priv->mm.idle_work,
1035 					 msecs_to_jiffies(100));
1036 	}
1037 
1038 	if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)) &&
1039 	    WARN_ON(!ring->irq_get(ring)))
1040 		return -ENODEV;
1041 
1042 	/* Record current time in case interrupted by signal, or wedged */
1043 	trace_i915_gem_request_wait_begin(ring, seqno);
1044 	getrawmonotonic(&before);
1045 	for (;;) {
1046 		struct timer_list timer;
1047 		unsigned long expire;
1048 
1049 		prepare_to_wait(&ring->irq_queue, &wait,
1050 				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1051 
1052 		/* We need to check whether any gpu reset happened in between
1053 		 * the caller grabbing the seqno and now ... */
1054 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1055 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
1056 			 * is truely gone. */
1057 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1058 			if (ret == 0)
1059 				ret = -EAGAIN;
1060 			break;
1061 		}
1062 
1063 		if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1064 			ret = 0;
1065 			break;
1066 		}
1067 
1068 		if (interruptible && signal_pending(current)) {
1069 			ret = -ERESTARTSYS;
1070 			break;
1071 		}
1072 
1073 		if (timeout_jiffies <= 0) {
1074 			ret = -ETIME;
1075 			break;
1076 		}
1077 
1078 		timer.function = NULL;
1079 		if (timeout || missed_irq(dev_priv, ring)) {
1080 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1081 			expire = jiffies + (missed_irq(dev_priv, ring) ? 1: timeout_jiffies);
1082 			mod_timer(&timer, expire);
1083 		}
1084 
1085 		io_schedule();
1086 
1087 		if (timeout)
1088 			timeout_jiffies = expire - jiffies;
1089 
1090 		if (timer.function) {
1091 			del_singleshot_timer_sync(&timer);
1092 			destroy_timer_on_stack(&timer);
1093 		}
1094 	}
1095 	getrawmonotonic(&now);
1096 	trace_i915_gem_request_wait_end(ring, seqno);
1097 
1098 	ring->irq_put(ring);
1099 
1100 	finish_wait(&ring->irq_queue, &wait);
1101 
1102 	if (timeout) {
1103 		struct timespec sleep_time = timespec_sub(now, before);
1104 		*timeout = timespec_sub(*timeout, sleep_time);
1105 		if (!timespec_valid(timeout)) /* i.e. negative time remains */
1106 			set_normalized_timespec(timeout, 0, 0);
1107 	}
1108 
1109 	return ret;
1110 }
1111 
1112 /**
1113  * Waits for a sequence number to be signaled, and cleans up the
1114  * request and object lists appropriately for that event.
1115  */
1116 int
1117 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1118 {
1119 	struct drm_device *dev = ring->dev;
1120 	struct drm_i915_private *dev_priv = dev->dev_private;
1121 	bool interruptible = dev_priv->mm.interruptible;
1122 	int ret;
1123 
1124 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1125 	BUG_ON(seqno == 0);
1126 
1127 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1128 	if (ret)
1129 		return ret;
1130 
1131 	ret = i915_gem_check_olr(ring, seqno);
1132 	if (ret)
1133 		return ret;
1134 
1135 	return __wait_seqno(ring, seqno,
1136 			    atomic_read(&dev_priv->gpu_error.reset_counter),
1137 			    interruptible, NULL, NULL);
1138 }
1139 
1140 static int
1141 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1142 				     struct intel_ring_buffer *ring)
1143 {
1144 	i915_gem_retire_requests_ring(ring);
1145 
1146 	/* Manually manage the write flush as we may have not yet
1147 	 * retired the buffer.
1148 	 *
1149 	 * Note that the last_write_seqno is always the earlier of
1150 	 * the two (read/write) seqno, so if we haved successfully waited,
1151 	 * we know we have passed the last write.
1152 	 */
1153 	obj->last_write_seqno = 0;
1154 	obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1155 
1156 	return 0;
1157 }
1158 
1159 /**
1160  * Ensures that all rendering to the object has completed and the object is
1161  * safe to unbind from the GTT or access from the CPU.
1162  */
1163 static __must_check int
1164 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1165 			       bool readonly)
1166 {
1167 	struct intel_ring_buffer *ring = obj->ring;
1168 	u32 seqno;
1169 	int ret;
1170 
1171 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1172 	if (seqno == 0)
1173 		return 0;
1174 
1175 	ret = i915_wait_seqno(ring, seqno);
1176 	if (ret)
1177 		return ret;
1178 
1179 	return i915_gem_object_wait_rendering__tail(obj, ring);
1180 }
1181 
1182 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1183  * as the object state may change during this call.
1184  */
1185 static __must_check int
1186 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1187 					    struct drm_file *file,
1188 					    bool readonly)
1189 {
1190 	struct drm_device *dev = obj->base.dev;
1191 	struct drm_i915_private *dev_priv = dev->dev_private;
1192 	struct intel_ring_buffer *ring = obj->ring;
1193 	unsigned reset_counter;
1194 	u32 seqno;
1195 	int ret;
1196 
1197 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1198 	BUG_ON(!dev_priv->mm.interruptible);
1199 
1200 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1201 	if (seqno == 0)
1202 		return 0;
1203 
1204 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1205 	if (ret)
1206 		return ret;
1207 
1208 	ret = i915_gem_check_olr(ring, seqno);
1209 	if (ret)
1210 		return ret;
1211 
1212 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1213 	mutex_unlock(&dev->struct_mutex);
1214 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file->driver_priv);
1215 	mutex_lock(&dev->struct_mutex);
1216 	if (ret)
1217 		return ret;
1218 
1219 	return i915_gem_object_wait_rendering__tail(obj, ring);
1220 }
1221 
1222 /**
1223  * Called when user space prepares to use an object with the CPU, either
1224  * through the mmap ioctl's mapping or a GTT mapping.
1225  */
1226 int
1227 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1228 			  struct drm_file *file)
1229 {
1230 	struct drm_i915_gem_set_domain *args = data;
1231 	struct drm_i915_gem_object *obj;
1232 	uint32_t read_domains = args->read_domains;
1233 	uint32_t write_domain = args->write_domain;
1234 	int ret;
1235 
1236 	/* Only handle setting domains to types used by the CPU. */
1237 	if (write_domain & I915_GEM_GPU_DOMAINS)
1238 		return -EINVAL;
1239 
1240 	if (read_domains & I915_GEM_GPU_DOMAINS)
1241 		return -EINVAL;
1242 
1243 	/* Having something in the write domain implies it's in the read
1244 	 * domain, and only that read domain.  Enforce that in the request.
1245 	 */
1246 	if (write_domain != 0 && read_domains != write_domain)
1247 		return -EINVAL;
1248 
1249 	ret = i915_mutex_lock_interruptible(dev);
1250 	if (ret)
1251 		return ret;
1252 
1253 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254 	if (&obj->base == NULL) {
1255 		ret = -ENOENT;
1256 		goto unlock;
1257 	}
1258 
1259 	/* Try to flush the object off the GPU without holding the lock.
1260 	 * We will repeat the flush holding the lock in the normal manner
1261 	 * to catch cases where we are gazumped.
1262 	 */
1263 	ret = i915_gem_object_wait_rendering__nonblocking(obj, file, !write_domain);
1264 	if (ret)
1265 		goto unref;
1266 
1267 	if (read_domains & I915_GEM_DOMAIN_GTT) {
1268 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1269 
1270 		/* Silently promote "you're not bound, there was nothing to do"
1271 		 * to success, since the client was just asking us to
1272 		 * make sure everything was done.
1273 		 */
1274 		if (ret == -EINVAL)
1275 			ret = 0;
1276 	} else {
1277 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1278 	}
1279 
1280 unref:
1281 	drm_gem_object_unreference(&obj->base);
1282 unlock:
1283 	mutex_unlock(&dev->struct_mutex);
1284 	return ret;
1285 }
1286 
1287 /**
1288  * Called when user space has done writes to this buffer
1289  */
1290 int
1291 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1292 			 struct drm_file *file)
1293 {
1294 	struct drm_i915_gem_sw_finish *args = data;
1295 	struct drm_i915_gem_object *obj;
1296 	int ret = 0;
1297 
1298 	ret = i915_mutex_lock_interruptible(dev);
1299 	if (ret)
1300 		return ret;
1301 
1302 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1303 	if (&obj->base == NULL) {
1304 		ret = -ENOENT;
1305 		goto unlock;
1306 	}
1307 
1308 	/* Pinned buffers may be scanout, so flush the cache */
1309 	if (obj->pin_display)
1310 		i915_gem_object_flush_cpu_write_domain(obj, true);
1311 
1312 	drm_gem_object_unreference(&obj->base);
1313 unlock:
1314 	mutex_unlock(&dev->struct_mutex);
1315 	return ret;
1316 }
1317 
1318 /**
1319  * Maps the contents of an object, returning the address it is mapped
1320  * into.
1321  *
1322  * While the mapping holds a reference on the contents of the object, it doesn't
1323  * imply a ref on the object itself.
1324  */
1325 int
1326 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1327 		    struct drm_file *file)
1328 {
1329 	struct drm_i915_gem_mmap *args = data;
1330 	struct drm_gem_object *obj;
1331 	unsigned long addr;
1332 
1333 	obj = drm_gem_object_lookup(dev, file, args->handle);
1334 	if (obj == NULL)
1335 		return -ENOENT;
1336 
1337 	/* prime objects have no backing filp to GEM mmap
1338 	 * pages from.
1339 	 */
1340 	if (!obj->filp) {
1341 		drm_gem_object_unreference_unlocked(obj);
1342 		return -EINVAL;
1343 	}
1344 
1345 	addr = vm_mmap(obj->filp, 0, args->size,
1346 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1347 		       args->offset);
1348 	drm_gem_object_unreference_unlocked(obj);
1349 	if (IS_ERR((void *)addr))
1350 		return addr;
1351 
1352 	args->addr_ptr = (uint64_t) addr;
1353 
1354 	return 0;
1355 }
1356 
1357 /**
1358  * i915_gem_fault - fault a page into the GTT
1359  * vma: VMA in question
1360  * vmf: fault info
1361  *
1362  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1363  * from userspace.  The fault handler takes care of binding the object to
1364  * the GTT (if needed), allocating and programming a fence register (again,
1365  * only if needed based on whether the old reg is still valid or the object
1366  * is tiled) and inserting a new PTE into the faulting process.
1367  *
1368  * Note that the faulting process may involve evicting existing objects
1369  * from the GTT and/or fence registers to make room.  So performance may
1370  * suffer if the GTT working set is large or there are few fence registers
1371  * left.
1372  */
1373 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1374 {
1375 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1376 	struct drm_device *dev = obj->base.dev;
1377 	drm_i915_private_t *dev_priv = dev->dev_private;
1378 	pgoff_t page_offset;
1379 	unsigned long pfn;
1380 	int ret = 0;
1381 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1382 
1383 	/* We don't use vmf->pgoff since that has the fake offset */
1384 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1385 		PAGE_SHIFT;
1386 
1387 	ret = i915_mutex_lock_interruptible(dev);
1388 	if (ret)
1389 		goto out;
1390 
1391 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1392 
1393 	/* Access to snoopable pages through the GTT is incoherent. */
1394 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1395 		ret = -EINVAL;
1396 		goto unlock;
1397 	}
1398 
1399 	/* Now bind it into the GTT if needed */
1400 	ret = i915_gem_obj_ggtt_pin(obj,  0, true, false);
1401 	if (ret)
1402 		goto unlock;
1403 
1404 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1405 	if (ret)
1406 		goto unpin;
1407 
1408 	ret = i915_gem_object_get_fence(obj);
1409 	if (ret)
1410 		goto unpin;
1411 
1412 	obj->fault_mappable = true;
1413 
1414 	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1415 	pfn >>= PAGE_SHIFT;
1416 	pfn += page_offset;
1417 
1418 	/* Finally, remap it using the new GTT offset */
1419 	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1420 unpin:
1421 	i915_gem_object_unpin(obj);
1422 unlock:
1423 	mutex_unlock(&dev->struct_mutex);
1424 out:
1425 	switch (ret) {
1426 	case -EIO:
1427 		/* If this -EIO is due to a gpu hang, give the reset code a
1428 		 * chance to clean up the mess. Otherwise return the proper
1429 		 * SIGBUS. */
1430 		if (i915_terminally_wedged(&dev_priv->gpu_error))
1431 			return VM_FAULT_SIGBUS;
1432 	case -EAGAIN:
1433 		/*
1434 		 * EAGAIN means the gpu is hung and we'll wait for the error
1435 		 * handler to reset everything when re-faulting in
1436 		 * i915_mutex_lock_interruptible.
1437 		 */
1438 	case 0:
1439 	case -ERESTARTSYS:
1440 	case -EINTR:
1441 	case -EBUSY:
1442 		/*
1443 		 * EBUSY is ok: this just means that another thread
1444 		 * already did the job.
1445 		 */
1446 		return VM_FAULT_NOPAGE;
1447 	case -ENOMEM:
1448 		return VM_FAULT_OOM;
1449 	case -ENOSPC:
1450 		return VM_FAULT_SIGBUS;
1451 	default:
1452 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1453 		return VM_FAULT_SIGBUS;
1454 	}
1455 }
1456 
1457 /**
1458  * i915_gem_release_mmap - remove physical page mappings
1459  * @obj: obj in question
1460  *
1461  * Preserve the reservation of the mmapping with the DRM core code, but
1462  * relinquish ownership of the pages back to the system.
1463  *
1464  * It is vital that we remove the page mapping if we have mapped a tiled
1465  * object through the GTT and then lose the fence register due to
1466  * resource pressure. Similarly if the object has been moved out of the
1467  * aperture, than pages mapped into userspace must be revoked. Removing the
1468  * mapping will then trigger a page fault on the next user access, allowing
1469  * fixup by i915_gem_fault().
1470  */
1471 void
1472 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1473 {
1474 	if (!obj->fault_mappable)
1475 		return;
1476 
1477 	drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
1478 	obj->fault_mappable = false;
1479 }
1480 
1481 uint32_t
1482 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1483 {
1484 	uint32_t gtt_size;
1485 
1486 	if (INTEL_INFO(dev)->gen >= 4 ||
1487 	    tiling_mode == I915_TILING_NONE)
1488 		return size;
1489 
1490 	/* Previous chips need a power-of-two fence region when tiling */
1491 	if (INTEL_INFO(dev)->gen == 3)
1492 		gtt_size = 1024*1024;
1493 	else
1494 		gtt_size = 512*1024;
1495 
1496 	while (gtt_size < size)
1497 		gtt_size <<= 1;
1498 
1499 	return gtt_size;
1500 }
1501 
1502 /**
1503  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1504  * @obj: object to check
1505  *
1506  * Return the required GTT alignment for an object, taking into account
1507  * potential fence register mapping.
1508  */
1509 uint32_t
1510 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1511 			   int tiling_mode, bool fenced)
1512 {
1513 	/*
1514 	 * Minimum alignment is 4k (GTT page size), but might be greater
1515 	 * if a fence register is needed for the object.
1516 	 */
1517 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1518 	    tiling_mode == I915_TILING_NONE)
1519 		return 4096;
1520 
1521 	/*
1522 	 * Previous chips need to be aligned to the size of the smallest
1523 	 * fence register that can contain the object.
1524 	 */
1525 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1526 }
1527 
1528 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1529 {
1530 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1531 	int ret;
1532 
1533 	if (drm_vma_node_has_offset(&obj->base.vma_node))
1534 		return 0;
1535 
1536 	dev_priv->mm.shrinker_no_lock_stealing = true;
1537 
1538 	ret = drm_gem_create_mmap_offset(&obj->base);
1539 	if (ret != -ENOSPC)
1540 		goto out;
1541 
1542 	/* Badly fragmented mmap space? The only way we can recover
1543 	 * space is by destroying unwanted objects. We can't randomly release
1544 	 * mmap_offsets as userspace expects them to be persistent for the
1545 	 * lifetime of the objects. The closest we can is to release the
1546 	 * offsets on purgeable objects by truncating it and marking it purged,
1547 	 * which prevents userspace from ever using that object again.
1548 	 */
1549 	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1550 	ret = drm_gem_create_mmap_offset(&obj->base);
1551 	if (ret != -ENOSPC)
1552 		goto out;
1553 
1554 	i915_gem_shrink_all(dev_priv);
1555 	ret = drm_gem_create_mmap_offset(&obj->base);
1556 out:
1557 	dev_priv->mm.shrinker_no_lock_stealing = false;
1558 
1559 	return ret;
1560 }
1561 
1562 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1563 {
1564 	drm_gem_free_mmap_offset(&obj->base);
1565 }
1566 
1567 int
1568 i915_gem_mmap_gtt(struct drm_file *file,
1569 		  struct drm_device *dev,
1570 		  uint32_t handle,
1571 		  uint64_t *offset)
1572 {
1573 	struct drm_i915_private *dev_priv = dev->dev_private;
1574 	struct drm_i915_gem_object *obj;
1575 	int ret;
1576 
1577 	ret = i915_mutex_lock_interruptible(dev);
1578 	if (ret)
1579 		return ret;
1580 
1581 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1582 	if (&obj->base == NULL) {
1583 		ret = -ENOENT;
1584 		goto unlock;
1585 	}
1586 
1587 	if (obj->base.size > dev_priv->gtt.mappable_end) {
1588 		ret = -E2BIG;
1589 		goto out;
1590 	}
1591 
1592 	if (obj->madv != I915_MADV_WILLNEED) {
1593 		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1594 		ret = -EINVAL;
1595 		goto out;
1596 	}
1597 
1598 	ret = i915_gem_object_create_mmap_offset(obj);
1599 	if (ret)
1600 		goto out;
1601 
1602 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1603 
1604 out:
1605 	drm_gem_object_unreference(&obj->base);
1606 unlock:
1607 	mutex_unlock(&dev->struct_mutex);
1608 	return ret;
1609 }
1610 
1611 /**
1612  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1613  * @dev: DRM device
1614  * @data: GTT mapping ioctl data
1615  * @file: GEM object info
1616  *
1617  * Simply returns the fake offset to userspace so it can mmap it.
1618  * The mmap call will end up in drm_gem_mmap(), which will set things
1619  * up so we can get faults in the handler above.
1620  *
1621  * The fault handler will take care of binding the object into the GTT
1622  * (since it may have been evicted to make room for something), allocating
1623  * a fence register, and mapping the appropriate aperture address into
1624  * userspace.
1625  */
1626 int
1627 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1628 			struct drm_file *file)
1629 {
1630 	struct drm_i915_gem_mmap_gtt *args = data;
1631 
1632 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1633 }
1634 
1635 /* Immediately discard the backing storage */
1636 static void
1637 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1638 {
1639 	struct inode *inode;
1640 
1641 	i915_gem_object_free_mmap_offset(obj);
1642 
1643 	if (obj->base.filp == NULL)
1644 		return;
1645 
1646 	/* Our goal here is to return as much of the memory as
1647 	 * is possible back to the system as we are called from OOM.
1648 	 * To do this we must instruct the shmfs to drop all of its
1649 	 * backing pages, *now*.
1650 	 */
1651 	inode = file_inode(obj->base.filp);
1652 	shmem_truncate_range(inode, 0, (loff_t)-1);
1653 
1654 	obj->madv = __I915_MADV_PURGED;
1655 }
1656 
1657 static inline int
1658 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1659 {
1660 	return obj->madv == I915_MADV_DONTNEED;
1661 }
1662 
1663 static void
1664 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1665 {
1666 	struct sg_page_iter sg_iter;
1667 	int ret;
1668 
1669 	BUG_ON(obj->madv == __I915_MADV_PURGED);
1670 
1671 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1672 	if (ret) {
1673 		/* In the event of a disaster, abandon all caches and
1674 		 * hope for the best.
1675 		 */
1676 		WARN_ON(ret != -EIO);
1677 		i915_gem_clflush_object(obj, true);
1678 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1679 	}
1680 
1681 	if (i915_gem_object_needs_bit17_swizzle(obj))
1682 		i915_gem_object_save_bit_17_swizzle(obj);
1683 
1684 	if (obj->madv == I915_MADV_DONTNEED)
1685 		obj->dirty = 0;
1686 
1687 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1688 		struct page *page = sg_page_iter_page(&sg_iter);
1689 
1690 		if (obj->dirty)
1691 			set_page_dirty(page);
1692 
1693 		if (obj->madv == I915_MADV_WILLNEED)
1694 			mark_page_accessed(page);
1695 
1696 		page_cache_release(page);
1697 	}
1698 	obj->dirty = 0;
1699 
1700 	sg_free_table(obj->pages);
1701 	kfree(obj->pages);
1702 }
1703 
1704 int
1705 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1706 {
1707 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1708 
1709 	if (obj->pages == NULL)
1710 		return 0;
1711 
1712 	if (obj->pages_pin_count)
1713 		return -EBUSY;
1714 
1715 	BUG_ON(i915_gem_obj_bound_any(obj));
1716 
1717 	/* ->put_pages might need to allocate memory for the bit17 swizzle
1718 	 * array, hence protect them from being reaped by removing them from gtt
1719 	 * lists early. */
1720 	list_del(&obj->global_list);
1721 
1722 	ops->put_pages(obj);
1723 	obj->pages = NULL;
1724 
1725 	if (i915_gem_object_is_purgeable(obj))
1726 		i915_gem_object_truncate(obj);
1727 
1728 	return 0;
1729 }
1730 
1731 static unsigned long
1732 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1733 		  bool purgeable_only)
1734 {
1735 	struct list_head still_bound_list;
1736 	struct drm_i915_gem_object *obj, *next;
1737 	unsigned long count = 0;
1738 
1739 	list_for_each_entry_safe(obj, next,
1740 				 &dev_priv->mm.unbound_list,
1741 				 global_list) {
1742 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1743 		    i915_gem_object_put_pages(obj) == 0) {
1744 			count += obj->base.size >> PAGE_SHIFT;
1745 			if (count >= target)
1746 				return count;
1747 		}
1748 	}
1749 
1750 	/*
1751 	 * As we may completely rewrite the bound list whilst unbinding
1752 	 * (due to retiring requests) we have to strictly process only
1753 	 * one element of the list at the time, and recheck the list
1754 	 * on every iteration.
1755 	 */
1756 	INIT_LIST_HEAD(&still_bound_list);
1757 	while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1758 		struct i915_vma *vma, *v;
1759 
1760 		obj = list_first_entry(&dev_priv->mm.bound_list,
1761 				       typeof(*obj), global_list);
1762 		list_move_tail(&obj->global_list, &still_bound_list);
1763 
1764 		if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1765 			continue;
1766 
1767 		/*
1768 		 * Hold a reference whilst we unbind this object, as we may
1769 		 * end up waiting for and retiring requests. This might
1770 		 * release the final reference (held by the active list)
1771 		 * and result in the object being freed from under us.
1772 		 * in this object being freed.
1773 		 *
1774 		 * Note 1: Shrinking the bound list is special since only active
1775 		 * (and hence bound objects) can contain such limbo objects, so
1776 		 * we don't need special tricks for shrinking the unbound list.
1777 		 * The only other place where we have to be careful with active
1778 		 * objects suddenly disappearing due to retiring requests is the
1779 		 * eviction code.
1780 		 *
1781 		 * Note 2: Even though the bound list doesn't hold a reference
1782 		 * to the object we can safely grab one here: The final object
1783 		 * unreferencing and the bound_list are both protected by the
1784 		 * dev->struct_mutex and so we won't ever be able to observe an
1785 		 * object on the bound_list with a reference count equals 0.
1786 		 */
1787 		drm_gem_object_reference(&obj->base);
1788 
1789 		list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1790 			if (i915_vma_unbind(vma))
1791 				break;
1792 
1793 		if (i915_gem_object_put_pages(obj) == 0)
1794 			count += obj->base.size >> PAGE_SHIFT;
1795 
1796 		drm_gem_object_unreference(&obj->base);
1797 	}
1798 	list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1799 
1800 	return count;
1801 }
1802 
1803 static unsigned long
1804 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1805 {
1806 	return __i915_gem_shrink(dev_priv, target, true);
1807 }
1808 
1809 static unsigned long
1810 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1811 {
1812 	struct drm_i915_gem_object *obj, *next;
1813 	long freed = 0;
1814 
1815 	i915_gem_evict_everything(dev_priv->dev);
1816 
1817 	list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1818 				 global_list) {
1819 		if (i915_gem_object_put_pages(obj) == 0)
1820 			freed += obj->base.size >> PAGE_SHIFT;
1821 	}
1822 	return freed;
1823 }
1824 
1825 static int
1826 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1827 {
1828 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1829 	int page_count, i;
1830 	struct address_space *mapping;
1831 	struct sg_table *st;
1832 	struct scatterlist *sg;
1833 	struct sg_page_iter sg_iter;
1834 	struct page *page;
1835 	unsigned long last_pfn = 0;	/* suppress gcc warning */
1836 	gfp_t gfp;
1837 
1838 	/* Assert that the object is not currently in any GPU domain. As it
1839 	 * wasn't in the GTT, there shouldn't be any way it could have been in
1840 	 * a GPU cache
1841 	 */
1842 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1843 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1844 
1845 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1846 	if (st == NULL)
1847 		return -ENOMEM;
1848 
1849 	page_count = obj->base.size / PAGE_SIZE;
1850 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1851 		kfree(st);
1852 		return -ENOMEM;
1853 	}
1854 
1855 	/* Get the list of pages out of our struct file.  They'll be pinned
1856 	 * at this point until we release them.
1857 	 *
1858 	 * Fail silently without starting the shrinker
1859 	 */
1860 	mapping = file_inode(obj->base.filp)->i_mapping;
1861 	gfp = mapping_gfp_mask(mapping);
1862 	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1863 	gfp &= ~(__GFP_IO | __GFP_WAIT);
1864 	sg = st->sgl;
1865 	st->nents = 0;
1866 	for (i = 0; i < page_count; i++) {
1867 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1868 		if (IS_ERR(page)) {
1869 			i915_gem_purge(dev_priv, page_count);
1870 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1871 		}
1872 		if (IS_ERR(page)) {
1873 			/* We've tried hard to allocate the memory by reaping
1874 			 * our own buffer, now let the real VM do its job and
1875 			 * go down in flames if truly OOM.
1876 			 */
1877 			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1878 			gfp |= __GFP_IO | __GFP_WAIT;
1879 
1880 			i915_gem_shrink_all(dev_priv);
1881 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1882 			if (IS_ERR(page))
1883 				goto err_pages;
1884 
1885 			gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1886 			gfp &= ~(__GFP_IO | __GFP_WAIT);
1887 		}
1888 #ifdef CONFIG_SWIOTLB
1889 		if (swiotlb_nr_tbl()) {
1890 			st->nents++;
1891 			sg_set_page(sg, page, PAGE_SIZE, 0);
1892 			sg = sg_next(sg);
1893 			continue;
1894 		}
1895 #endif
1896 		if (!i || page_to_pfn(page) != last_pfn + 1) {
1897 			if (i)
1898 				sg = sg_next(sg);
1899 			st->nents++;
1900 			sg_set_page(sg, page, PAGE_SIZE, 0);
1901 		} else {
1902 			sg->length += PAGE_SIZE;
1903 		}
1904 		last_pfn = page_to_pfn(page);
1905 
1906 		/* Check that the i965g/gm workaround works. */
1907 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
1908 	}
1909 #ifdef CONFIG_SWIOTLB
1910 	if (!swiotlb_nr_tbl())
1911 #endif
1912 		sg_mark_end(sg);
1913 	obj->pages = st;
1914 
1915 	if (i915_gem_object_needs_bit17_swizzle(obj))
1916 		i915_gem_object_do_bit_17_swizzle(obj);
1917 
1918 	return 0;
1919 
1920 err_pages:
1921 	sg_mark_end(sg);
1922 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1923 		page_cache_release(sg_page_iter_page(&sg_iter));
1924 	sg_free_table(st);
1925 	kfree(st);
1926 	return PTR_ERR(page);
1927 }
1928 
1929 /* Ensure that the associated pages are gathered from the backing storage
1930  * and pinned into our object. i915_gem_object_get_pages() may be called
1931  * multiple times before they are released by a single call to
1932  * i915_gem_object_put_pages() - once the pages are no longer referenced
1933  * either as a result of memory pressure (reaping pages under the shrinker)
1934  * or as the object is itself released.
1935  */
1936 int
1937 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1938 {
1939 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1940 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1941 	int ret;
1942 
1943 	if (obj->pages)
1944 		return 0;
1945 
1946 	if (obj->madv != I915_MADV_WILLNEED) {
1947 		DRM_ERROR("Attempting to obtain a purgeable object\n");
1948 		return -EINVAL;
1949 	}
1950 
1951 	BUG_ON(obj->pages_pin_count);
1952 
1953 	ret = ops->get_pages(obj);
1954 	if (ret)
1955 		return ret;
1956 
1957 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1958 	return 0;
1959 }
1960 
1961 static void
1962 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1963 			       struct intel_ring_buffer *ring)
1964 {
1965 	struct drm_device *dev = obj->base.dev;
1966 	struct drm_i915_private *dev_priv = dev->dev_private;
1967 	u32 seqno = intel_ring_get_seqno(ring);
1968 
1969 	BUG_ON(ring == NULL);
1970 	if (obj->ring != ring && obj->last_write_seqno) {
1971 		/* Keep the seqno relative to the current ring */
1972 		obj->last_write_seqno = seqno;
1973 	}
1974 	obj->ring = ring;
1975 
1976 	/* Add a reference if we're newly entering the active list. */
1977 	if (!obj->active) {
1978 		drm_gem_object_reference(&obj->base);
1979 		obj->active = 1;
1980 	}
1981 
1982 	list_move_tail(&obj->ring_list, &ring->active_list);
1983 
1984 	obj->last_read_seqno = seqno;
1985 
1986 	if (obj->fenced_gpu_access) {
1987 		obj->last_fenced_seqno = seqno;
1988 
1989 		/* Bump MRU to take account of the delayed flush */
1990 		if (obj->fence_reg != I915_FENCE_REG_NONE) {
1991 			struct drm_i915_fence_reg *reg;
1992 
1993 			reg = &dev_priv->fence_regs[obj->fence_reg];
1994 			list_move_tail(&reg->lru_list,
1995 				       &dev_priv->mm.fence_list);
1996 		}
1997 	}
1998 }
1999 
2000 void i915_vma_move_to_active(struct i915_vma *vma,
2001 			     struct intel_ring_buffer *ring)
2002 {
2003 	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2004 	return i915_gem_object_move_to_active(vma->obj, ring);
2005 }
2006 
2007 static void
2008 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2009 {
2010 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2011 	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2012 	struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2013 
2014 	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2015 	BUG_ON(!obj->active);
2016 
2017 	list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
2018 
2019 	list_del_init(&obj->ring_list);
2020 	obj->ring = NULL;
2021 
2022 	obj->last_read_seqno = 0;
2023 	obj->last_write_seqno = 0;
2024 	obj->base.write_domain = 0;
2025 
2026 	obj->last_fenced_seqno = 0;
2027 	obj->fenced_gpu_access = false;
2028 
2029 	obj->active = 0;
2030 	drm_gem_object_unreference(&obj->base);
2031 
2032 	WARN_ON(i915_verify_lists(dev));
2033 }
2034 
2035 static int
2036 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2037 {
2038 	struct drm_i915_private *dev_priv = dev->dev_private;
2039 	struct intel_ring_buffer *ring;
2040 	int ret, i, j;
2041 
2042 	/* Carefully retire all requests without writing to the rings */
2043 	for_each_ring(ring, dev_priv, i) {
2044 		ret = intel_ring_idle(ring);
2045 		if (ret)
2046 			return ret;
2047 	}
2048 	i915_gem_retire_requests(dev);
2049 
2050 	/* Finally reset hw state */
2051 	for_each_ring(ring, dev_priv, i) {
2052 		intel_ring_init_seqno(ring, seqno);
2053 
2054 		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2055 			ring->sync_seqno[j] = 0;
2056 	}
2057 
2058 	return 0;
2059 }
2060 
2061 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2062 {
2063 	struct drm_i915_private *dev_priv = dev->dev_private;
2064 	int ret;
2065 
2066 	if (seqno == 0)
2067 		return -EINVAL;
2068 
2069 	/* HWS page needs to be set less than what we
2070 	 * will inject to ring
2071 	 */
2072 	ret = i915_gem_init_seqno(dev, seqno - 1);
2073 	if (ret)
2074 		return ret;
2075 
2076 	/* Carefully set the last_seqno value so that wrap
2077 	 * detection still works
2078 	 */
2079 	dev_priv->next_seqno = seqno;
2080 	dev_priv->last_seqno = seqno - 1;
2081 	if (dev_priv->last_seqno == 0)
2082 		dev_priv->last_seqno--;
2083 
2084 	return 0;
2085 }
2086 
2087 int
2088 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2089 {
2090 	struct drm_i915_private *dev_priv = dev->dev_private;
2091 
2092 	/* reserve 0 for non-seqno */
2093 	if (dev_priv->next_seqno == 0) {
2094 		int ret = i915_gem_init_seqno(dev, 0);
2095 		if (ret)
2096 			return ret;
2097 
2098 		dev_priv->next_seqno = 1;
2099 	}
2100 
2101 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2102 	return 0;
2103 }
2104 
2105 int __i915_add_request(struct intel_ring_buffer *ring,
2106 		       struct drm_file *file,
2107 		       struct drm_i915_gem_object *obj,
2108 		       u32 *out_seqno)
2109 {
2110 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
2111 	struct drm_i915_gem_request *request;
2112 	u32 request_ring_position, request_start;
2113 	int was_empty;
2114 	int ret;
2115 
2116 	request_start = intel_ring_get_tail(ring);
2117 	/*
2118 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2119 	 * after having emitted the batchbuffer command. Hence we need to fix
2120 	 * things up similar to emitting the lazy request. The difference here
2121 	 * is that the flush _must_ happen before the next request, no matter
2122 	 * what.
2123 	 */
2124 	ret = intel_ring_flush_all_caches(ring);
2125 	if (ret)
2126 		return ret;
2127 
2128 	request = ring->preallocated_lazy_request;
2129 	if (WARN_ON(request == NULL))
2130 		return -ENOMEM;
2131 
2132 	/* Record the position of the start of the request so that
2133 	 * should we detect the updated seqno part-way through the
2134 	 * GPU processing the request, we never over-estimate the
2135 	 * position of the head.
2136 	 */
2137 	request_ring_position = intel_ring_get_tail(ring);
2138 
2139 	ret = ring->add_request(ring);
2140 	if (ret)
2141 		return ret;
2142 
2143 	request->seqno = intel_ring_get_seqno(ring);
2144 	request->ring = ring;
2145 	request->head = request_start;
2146 	request->tail = request_ring_position;
2147 
2148 	/* Whilst this request exists, batch_obj will be on the
2149 	 * active_list, and so will hold the active reference. Only when this
2150 	 * request is retired will the the batch_obj be moved onto the
2151 	 * inactive_list and lose its active reference. Hence we do not need
2152 	 * to explicitly hold another reference here.
2153 	 */
2154 	request->batch_obj = obj;
2155 
2156 	/* Hold a reference to the current context so that we can inspect
2157 	 * it later in case a hangcheck error event fires.
2158 	 */
2159 	request->ctx = ring->last_context;
2160 	if (request->ctx)
2161 		i915_gem_context_reference(request->ctx);
2162 
2163 	request->emitted_jiffies = jiffies;
2164 	was_empty = list_empty(&ring->request_list);
2165 	list_add_tail(&request->list, &ring->request_list);
2166 	request->file_priv = NULL;
2167 
2168 	if (file) {
2169 		struct drm_i915_file_private *file_priv = file->driver_priv;
2170 
2171 		spin_lock(&file_priv->mm.lock);
2172 		request->file_priv = file_priv;
2173 		list_add_tail(&request->client_list,
2174 			      &file_priv->mm.request_list);
2175 		spin_unlock(&file_priv->mm.lock);
2176 	}
2177 
2178 	trace_i915_gem_request_add(ring, request->seqno);
2179 	ring->outstanding_lazy_seqno = 0;
2180 	ring->preallocated_lazy_request = NULL;
2181 
2182 	if (!dev_priv->ums.mm_suspended) {
2183 		i915_queue_hangcheck(ring->dev);
2184 
2185 		if (was_empty) {
2186 			cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2187 			queue_delayed_work(dev_priv->wq,
2188 					   &dev_priv->mm.retire_work,
2189 					   round_jiffies_up_relative(HZ));
2190 			intel_mark_busy(dev_priv->dev);
2191 		}
2192 	}
2193 
2194 	if (out_seqno)
2195 		*out_seqno = request->seqno;
2196 	return 0;
2197 }
2198 
2199 static inline void
2200 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2201 {
2202 	struct drm_i915_file_private *file_priv = request->file_priv;
2203 
2204 	if (!file_priv)
2205 		return;
2206 
2207 	spin_lock(&file_priv->mm.lock);
2208 	list_del(&request->client_list);
2209 	request->file_priv = NULL;
2210 	spin_unlock(&file_priv->mm.lock);
2211 }
2212 
2213 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2214 				    struct i915_address_space *vm)
2215 {
2216 	if (acthd >= i915_gem_obj_offset(obj, vm) &&
2217 	    acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2218 		return true;
2219 
2220 	return false;
2221 }
2222 
2223 static bool i915_head_inside_request(const u32 acthd_unmasked,
2224 				     const u32 request_start,
2225 				     const u32 request_end)
2226 {
2227 	const u32 acthd = acthd_unmasked & HEAD_ADDR;
2228 
2229 	if (request_start < request_end) {
2230 		if (acthd >= request_start && acthd < request_end)
2231 			return true;
2232 	} else if (request_start > request_end) {
2233 		if (acthd >= request_start || acthd < request_end)
2234 			return true;
2235 	}
2236 
2237 	return false;
2238 }
2239 
2240 static struct i915_address_space *
2241 request_to_vm(struct drm_i915_gem_request *request)
2242 {
2243 	struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2244 	struct i915_address_space *vm;
2245 
2246 	vm = &dev_priv->gtt.base;
2247 
2248 	return vm;
2249 }
2250 
2251 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2252 				const u32 acthd, bool *inside)
2253 {
2254 	/* There is a possibility that unmasked head address
2255 	 * pointing inside the ring, matches the batch_obj address range.
2256 	 * However this is extremely unlikely.
2257 	 */
2258 	if (request->batch_obj) {
2259 		if (i915_head_inside_object(acthd, request->batch_obj,
2260 					    request_to_vm(request))) {
2261 			*inside = true;
2262 			return true;
2263 		}
2264 	}
2265 
2266 	if (i915_head_inside_request(acthd, request->head, request->tail)) {
2267 		*inside = false;
2268 		return true;
2269 	}
2270 
2271 	return false;
2272 }
2273 
2274 static bool i915_context_is_banned(const struct i915_ctx_hang_stats *hs)
2275 {
2276 	const unsigned long elapsed = get_seconds() - hs->guilty_ts;
2277 
2278 	if (hs->banned)
2279 		return true;
2280 
2281 	if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2282 		DRM_ERROR("context hanging too fast, declaring banned!\n");
2283 		return true;
2284 	}
2285 
2286 	return false;
2287 }
2288 
2289 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2290 				  struct drm_i915_gem_request *request,
2291 				  u32 acthd)
2292 {
2293 	struct i915_ctx_hang_stats *hs = NULL;
2294 	bool inside, guilty;
2295 	unsigned long offset = 0;
2296 
2297 	/* Innocent until proven guilty */
2298 	guilty = false;
2299 
2300 	if (request->batch_obj)
2301 		offset = i915_gem_obj_offset(request->batch_obj,
2302 					     request_to_vm(request));
2303 
2304 	if (ring->hangcheck.action != HANGCHECK_WAIT &&
2305 	    i915_request_guilty(request, acthd, &inside)) {
2306 		DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2307 			  ring->name,
2308 			  inside ? "inside" : "flushing",
2309 			  offset,
2310 			  request->ctx ? request->ctx->id : 0,
2311 			  acthd);
2312 
2313 		guilty = true;
2314 	}
2315 
2316 	/* If contexts are disabled or this is the default context, use
2317 	 * file_priv->reset_state
2318 	 */
2319 	if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2320 		hs = &request->ctx->hang_stats;
2321 	else if (request->file_priv)
2322 		hs = &request->file_priv->hang_stats;
2323 
2324 	if (hs) {
2325 		if (guilty) {
2326 			hs->banned = i915_context_is_banned(hs);
2327 			hs->batch_active++;
2328 			hs->guilty_ts = get_seconds();
2329 		} else {
2330 			hs->batch_pending++;
2331 		}
2332 	}
2333 }
2334 
2335 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2336 {
2337 	list_del(&request->list);
2338 	i915_gem_request_remove_from_client(request);
2339 
2340 	if (request->ctx)
2341 		i915_gem_context_unreference(request->ctx);
2342 
2343 	kfree(request);
2344 }
2345 
2346 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2347 				      struct intel_ring_buffer *ring)
2348 {
2349 	u32 completed_seqno;
2350 	u32 acthd;
2351 
2352 	acthd = intel_ring_get_active_head(ring);
2353 	completed_seqno = ring->get_seqno(ring, false);
2354 
2355 	while (!list_empty(&ring->request_list)) {
2356 		struct drm_i915_gem_request *request;
2357 
2358 		request = list_first_entry(&ring->request_list,
2359 					   struct drm_i915_gem_request,
2360 					   list);
2361 
2362 		if (request->seqno > completed_seqno)
2363 			i915_set_reset_status(ring, request, acthd);
2364 
2365 		i915_gem_free_request(request);
2366 	}
2367 
2368 	while (!list_empty(&ring->active_list)) {
2369 		struct drm_i915_gem_object *obj;
2370 
2371 		obj = list_first_entry(&ring->active_list,
2372 				       struct drm_i915_gem_object,
2373 				       ring_list);
2374 
2375 		i915_gem_object_move_to_inactive(obj);
2376 	}
2377 }
2378 
2379 void i915_gem_restore_fences(struct drm_device *dev)
2380 {
2381 	struct drm_i915_private *dev_priv = dev->dev_private;
2382 	int i;
2383 
2384 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2385 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2386 
2387 		/*
2388 		 * Commit delayed tiling changes if we have an object still
2389 		 * attached to the fence, otherwise just clear the fence.
2390 		 */
2391 		if (reg->obj) {
2392 			i915_gem_object_update_fence(reg->obj, reg,
2393 						     reg->obj->tiling_mode);
2394 		} else {
2395 			i915_gem_write_fence(dev, i, NULL);
2396 		}
2397 	}
2398 }
2399 
2400 void i915_gem_reset(struct drm_device *dev)
2401 {
2402 	struct drm_i915_private *dev_priv = dev->dev_private;
2403 	struct intel_ring_buffer *ring;
2404 	int i;
2405 
2406 	for_each_ring(ring, dev_priv, i)
2407 		i915_gem_reset_ring_lists(dev_priv, ring);
2408 
2409 	i915_gem_cleanup_ringbuffer(dev);
2410 
2411 	i915_gem_restore_fences(dev);
2412 }
2413 
2414 /**
2415  * This function clears the request list as sequence numbers are passed.
2416  */
2417 void
2418 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2419 {
2420 	uint32_t seqno;
2421 
2422 	if (list_empty(&ring->request_list))
2423 		return;
2424 
2425 	WARN_ON(i915_verify_lists(ring->dev));
2426 
2427 	seqno = ring->get_seqno(ring, true);
2428 
2429 	while (!list_empty(&ring->request_list)) {
2430 		struct drm_i915_gem_request *request;
2431 
2432 		request = list_first_entry(&ring->request_list,
2433 					   struct drm_i915_gem_request,
2434 					   list);
2435 
2436 		if (!i915_seqno_passed(seqno, request->seqno))
2437 			break;
2438 
2439 		trace_i915_gem_request_retire(ring, request->seqno);
2440 		/* We know the GPU must have read the request to have
2441 		 * sent us the seqno + interrupt, so use the position
2442 		 * of tail of the request to update the last known position
2443 		 * of the GPU head.
2444 		 */
2445 		ring->last_retired_head = request->tail;
2446 
2447 		i915_gem_free_request(request);
2448 	}
2449 
2450 	/* Move any buffers on the active list that are no longer referenced
2451 	 * by the ringbuffer to the flushing/inactive lists as appropriate.
2452 	 */
2453 	while (!list_empty(&ring->active_list)) {
2454 		struct drm_i915_gem_object *obj;
2455 
2456 		obj = list_first_entry(&ring->active_list,
2457 				      struct drm_i915_gem_object,
2458 				      ring_list);
2459 
2460 		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2461 			break;
2462 
2463 		i915_gem_object_move_to_inactive(obj);
2464 	}
2465 
2466 	if (unlikely(ring->trace_irq_seqno &&
2467 		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2468 		ring->irq_put(ring);
2469 		ring->trace_irq_seqno = 0;
2470 	}
2471 
2472 	WARN_ON(i915_verify_lists(ring->dev));
2473 }
2474 
2475 bool
2476 i915_gem_retire_requests(struct drm_device *dev)
2477 {
2478 	drm_i915_private_t *dev_priv = dev->dev_private;
2479 	struct intel_ring_buffer *ring;
2480 	bool idle = true;
2481 	int i;
2482 
2483 	for_each_ring(ring, dev_priv, i) {
2484 		i915_gem_retire_requests_ring(ring);
2485 		idle &= list_empty(&ring->request_list);
2486 	}
2487 
2488 	if (idle)
2489 		mod_delayed_work(dev_priv->wq,
2490 				   &dev_priv->mm.idle_work,
2491 				   msecs_to_jiffies(100));
2492 
2493 	return idle;
2494 }
2495 
2496 static void
2497 i915_gem_retire_work_handler(struct work_struct *work)
2498 {
2499 	struct drm_i915_private *dev_priv =
2500 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
2501 	struct drm_device *dev = dev_priv->dev;
2502 	bool idle;
2503 
2504 	/* Come back later if the device is busy... */
2505 	idle = false;
2506 	if (mutex_trylock(&dev->struct_mutex)) {
2507 		idle = i915_gem_retire_requests(dev);
2508 		mutex_unlock(&dev->struct_mutex);
2509 	}
2510 	if (!idle)
2511 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2512 				   round_jiffies_up_relative(HZ));
2513 }
2514 
2515 static void
2516 i915_gem_idle_work_handler(struct work_struct *work)
2517 {
2518 	struct drm_i915_private *dev_priv =
2519 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2520 
2521 	intel_mark_idle(dev_priv->dev);
2522 }
2523 
2524 /**
2525  * Ensures that an object will eventually get non-busy by flushing any required
2526  * write domains, emitting any outstanding lazy request and retiring and
2527  * completed requests.
2528  */
2529 static int
2530 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2531 {
2532 	int ret;
2533 
2534 	if (obj->active) {
2535 		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2536 		if (ret)
2537 			return ret;
2538 
2539 		i915_gem_retire_requests_ring(obj->ring);
2540 	}
2541 
2542 	return 0;
2543 }
2544 
2545 /**
2546  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2547  * @DRM_IOCTL_ARGS: standard ioctl arguments
2548  *
2549  * Returns 0 if successful, else an error is returned with the remaining time in
2550  * the timeout parameter.
2551  *  -ETIME: object is still busy after timeout
2552  *  -ERESTARTSYS: signal interrupted the wait
2553  *  -ENONENT: object doesn't exist
2554  * Also possible, but rare:
2555  *  -EAGAIN: GPU wedged
2556  *  -ENOMEM: damn
2557  *  -ENODEV: Internal IRQ fail
2558  *  -E?: The add request failed
2559  *
2560  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2561  * non-zero timeout parameter the wait ioctl will wait for the given number of
2562  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2563  * without holding struct_mutex the object may become re-busied before this
2564  * function completes. A similar but shorter * race condition exists in the busy
2565  * ioctl
2566  */
2567 int
2568 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2569 {
2570 	drm_i915_private_t *dev_priv = dev->dev_private;
2571 	struct drm_i915_gem_wait *args = data;
2572 	struct drm_i915_gem_object *obj;
2573 	struct intel_ring_buffer *ring = NULL;
2574 	struct timespec timeout_stack, *timeout = NULL;
2575 	unsigned reset_counter;
2576 	u32 seqno = 0;
2577 	int ret = 0;
2578 
2579 	if (args->timeout_ns >= 0) {
2580 		timeout_stack = ns_to_timespec(args->timeout_ns);
2581 		timeout = &timeout_stack;
2582 	}
2583 
2584 	ret = i915_mutex_lock_interruptible(dev);
2585 	if (ret)
2586 		return ret;
2587 
2588 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2589 	if (&obj->base == NULL) {
2590 		mutex_unlock(&dev->struct_mutex);
2591 		return -ENOENT;
2592 	}
2593 
2594 	/* Need to make sure the object gets inactive eventually. */
2595 	ret = i915_gem_object_flush_active(obj);
2596 	if (ret)
2597 		goto out;
2598 
2599 	if (obj->active) {
2600 		seqno = obj->last_read_seqno;
2601 		ring = obj->ring;
2602 	}
2603 
2604 	if (seqno == 0)
2605 		 goto out;
2606 
2607 	/* Do this after OLR check to make sure we make forward progress polling
2608 	 * on this IOCTL with a 0 timeout (like busy ioctl)
2609 	 */
2610 	if (!args->timeout_ns) {
2611 		ret = -ETIME;
2612 		goto out;
2613 	}
2614 
2615 	drm_gem_object_unreference(&obj->base);
2616 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2617 	mutex_unlock(&dev->struct_mutex);
2618 
2619 	ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2620 	if (timeout)
2621 		args->timeout_ns = timespec_to_ns(timeout);
2622 	return ret;
2623 
2624 out:
2625 	drm_gem_object_unreference(&obj->base);
2626 	mutex_unlock(&dev->struct_mutex);
2627 	return ret;
2628 }
2629 
2630 /**
2631  * i915_gem_object_sync - sync an object to a ring.
2632  *
2633  * @obj: object which may be in use on another ring.
2634  * @to: ring we wish to use the object on. May be NULL.
2635  *
2636  * This code is meant to abstract object synchronization with the GPU.
2637  * Calling with NULL implies synchronizing the object with the CPU
2638  * rather than a particular GPU ring.
2639  *
2640  * Returns 0 if successful, else propagates up the lower layer error.
2641  */
2642 int
2643 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2644 		     struct intel_ring_buffer *to)
2645 {
2646 	struct intel_ring_buffer *from = obj->ring;
2647 	u32 seqno;
2648 	int ret, idx;
2649 
2650 	if (from == NULL || to == from)
2651 		return 0;
2652 
2653 	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2654 		return i915_gem_object_wait_rendering(obj, false);
2655 
2656 	idx = intel_ring_sync_index(from, to);
2657 
2658 	seqno = obj->last_read_seqno;
2659 	if (seqno <= from->sync_seqno[idx])
2660 		return 0;
2661 
2662 	ret = i915_gem_check_olr(obj->ring, seqno);
2663 	if (ret)
2664 		return ret;
2665 
2666 	trace_i915_gem_ring_sync_to(from, to, seqno);
2667 	ret = to->sync_to(to, from, seqno);
2668 	if (!ret)
2669 		/* We use last_read_seqno because sync_to()
2670 		 * might have just caused seqno wrap under
2671 		 * the radar.
2672 		 */
2673 		from->sync_seqno[idx] = obj->last_read_seqno;
2674 
2675 	return ret;
2676 }
2677 
2678 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2679 {
2680 	u32 old_write_domain, old_read_domains;
2681 
2682 	/* Force a pagefault for domain tracking on next user access */
2683 	i915_gem_release_mmap(obj);
2684 
2685 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2686 		return;
2687 
2688 	/* Wait for any direct GTT access to complete */
2689 	mb();
2690 
2691 	old_read_domains = obj->base.read_domains;
2692 	old_write_domain = obj->base.write_domain;
2693 
2694 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2695 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2696 
2697 	trace_i915_gem_object_change_domain(obj,
2698 					    old_read_domains,
2699 					    old_write_domain);
2700 }
2701 
2702 int i915_vma_unbind(struct i915_vma *vma)
2703 {
2704 	struct drm_i915_gem_object *obj = vma->obj;
2705 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2706 	int ret;
2707 
2708 	/* For now we only ever use 1 vma per object */
2709 	WARN_ON(!list_is_singular(&obj->vma_list));
2710 
2711 	if (list_empty(&vma->vma_link))
2712 		return 0;
2713 
2714 	if (!drm_mm_node_allocated(&vma->node)) {
2715 		i915_gem_vma_destroy(vma);
2716 
2717 		return 0;
2718 	}
2719 
2720 	if (obj->pin_count)
2721 		return -EBUSY;
2722 
2723 	BUG_ON(obj->pages == NULL);
2724 
2725 	ret = i915_gem_object_finish_gpu(obj);
2726 	if (ret)
2727 		return ret;
2728 	/* Continue on if we fail due to EIO, the GPU is hung so we
2729 	 * should be safe and we need to cleanup or else we might
2730 	 * cause memory corruption through use-after-free.
2731 	 */
2732 
2733 	i915_gem_object_finish_gtt(obj);
2734 
2735 	/* release the fence reg _after_ flushing */
2736 	ret = i915_gem_object_put_fence(obj);
2737 	if (ret)
2738 		return ret;
2739 
2740 	trace_i915_vma_unbind(vma);
2741 
2742 	if (obj->has_global_gtt_mapping)
2743 		i915_gem_gtt_unbind_object(obj);
2744 	if (obj->has_aliasing_ppgtt_mapping) {
2745 		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2746 		obj->has_aliasing_ppgtt_mapping = 0;
2747 	}
2748 	i915_gem_gtt_finish_object(obj);
2749 	i915_gem_object_unpin_pages(obj);
2750 
2751 	list_del(&vma->mm_list);
2752 	/* Avoid an unnecessary call to unbind on rebind. */
2753 	if (i915_is_ggtt(vma->vm))
2754 		obj->map_and_fenceable = true;
2755 
2756 	drm_mm_remove_node(&vma->node);
2757 
2758 	i915_gem_vma_destroy(vma);
2759 
2760 	/* Since the unbound list is global, only move to that list if
2761 	 * no more VMAs exist. */
2762 	if (list_empty(&obj->vma_list))
2763 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2764 
2765 	return 0;
2766 }
2767 
2768 /**
2769  * Unbinds an object from the global GTT aperture.
2770  */
2771 int
2772 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2773 {
2774 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2775 	struct i915_address_space *ggtt = &dev_priv->gtt.base;
2776 
2777 	if (!i915_gem_obj_ggtt_bound(obj))
2778 		return 0;
2779 
2780 	if (obj->pin_count)
2781 		return -EBUSY;
2782 
2783 	BUG_ON(obj->pages == NULL);
2784 
2785 	return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2786 }
2787 
2788 int i915_gpu_idle(struct drm_device *dev)
2789 {
2790 	drm_i915_private_t *dev_priv = dev->dev_private;
2791 	struct intel_ring_buffer *ring;
2792 	int ret, i;
2793 
2794 	/* Flush everything onto the inactive list. */
2795 	for_each_ring(ring, dev_priv, i) {
2796 		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2797 		if (ret)
2798 			return ret;
2799 
2800 		ret = intel_ring_idle(ring);
2801 		if (ret)
2802 			return ret;
2803 	}
2804 
2805 	return 0;
2806 }
2807 
2808 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2809 				 struct drm_i915_gem_object *obj)
2810 {
2811 	drm_i915_private_t *dev_priv = dev->dev_private;
2812 	int fence_reg;
2813 	int fence_pitch_shift;
2814 
2815 	if (INTEL_INFO(dev)->gen >= 6) {
2816 		fence_reg = FENCE_REG_SANDYBRIDGE_0;
2817 		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2818 	} else {
2819 		fence_reg = FENCE_REG_965_0;
2820 		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2821 	}
2822 
2823 	fence_reg += reg * 8;
2824 
2825 	/* To w/a incoherency with non-atomic 64-bit register updates,
2826 	 * we split the 64-bit update into two 32-bit writes. In order
2827 	 * for a partial fence not to be evaluated between writes, we
2828 	 * precede the update with write to turn off the fence register,
2829 	 * and only enable the fence as the last step.
2830 	 *
2831 	 * For extra levels of paranoia, we make sure each step lands
2832 	 * before applying the next step.
2833 	 */
2834 	I915_WRITE(fence_reg, 0);
2835 	POSTING_READ(fence_reg);
2836 
2837 	if (obj) {
2838 		u32 size = i915_gem_obj_ggtt_size(obj);
2839 		uint64_t val;
2840 
2841 		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2842 				 0xfffff000) << 32;
2843 		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2844 		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2845 		if (obj->tiling_mode == I915_TILING_Y)
2846 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2847 		val |= I965_FENCE_REG_VALID;
2848 
2849 		I915_WRITE(fence_reg + 4, val >> 32);
2850 		POSTING_READ(fence_reg + 4);
2851 
2852 		I915_WRITE(fence_reg + 0, val);
2853 		POSTING_READ(fence_reg);
2854 	} else {
2855 		I915_WRITE(fence_reg + 4, 0);
2856 		POSTING_READ(fence_reg + 4);
2857 	}
2858 }
2859 
2860 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2861 				 struct drm_i915_gem_object *obj)
2862 {
2863 	drm_i915_private_t *dev_priv = dev->dev_private;
2864 	u32 val;
2865 
2866 	if (obj) {
2867 		u32 size = i915_gem_obj_ggtt_size(obj);
2868 		int pitch_val;
2869 		int tile_width;
2870 
2871 		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2872 		     (size & -size) != size ||
2873 		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2874 		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2875 		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2876 
2877 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2878 			tile_width = 128;
2879 		else
2880 			tile_width = 512;
2881 
2882 		/* Note: pitch better be a power of two tile widths */
2883 		pitch_val = obj->stride / tile_width;
2884 		pitch_val = ffs(pitch_val) - 1;
2885 
2886 		val = i915_gem_obj_ggtt_offset(obj);
2887 		if (obj->tiling_mode == I915_TILING_Y)
2888 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2889 		val |= I915_FENCE_SIZE_BITS(size);
2890 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2891 		val |= I830_FENCE_REG_VALID;
2892 	} else
2893 		val = 0;
2894 
2895 	if (reg < 8)
2896 		reg = FENCE_REG_830_0 + reg * 4;
2897 	else
2898 		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2899 
2900 	I915_WRITE(reg, val);
2901 	POSTING_READ(reg);
2902 }
2903 
2904 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2905 				struct drm_i915_gem_object *obj)
2906 {
2907 	drm_i915_private_t *dev_priv = dev->dev_private;
2908 	uint32_t val;
2909 
2910 	if (obj) {
2911 		u32 size = i915_gem_obj_ggtt_size(obj);
2912 		uint32_t pitch_val;
2913 
2914 		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2915 		     (size & -size) != size ||
2916 		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2917 		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2918 		     i915_gem_obj_ggtt_offset(obj), size);
2919 
2920 		pitch_val = obj->stride / 128;
2921 		pitch_val = ffs(pitch_val) - 1;
2922 
2923 		val = i915_gem_obj_ggtt_offset(obj);
2924 		if (obj->tiling_mode == I915_TILING_Y)
2925 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2926 		val |= I830_FENCE_SIZE_BITS(size);
2927 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2928 		val |= I830_FENCE_REG_VALID;
2929 	} else
2930 		val = 0;
2931 
2932 	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2933 	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2934 }
2935 
2936 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2937 {
2938 	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2939 }
2940 
2941 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2942 				 struct drm_i915_gem_object *obj)
2943 {
2944 	struct drm_i915_private *dev_priv = dev->dev_private;
2945 
2946 	/* Ensure that all CPU reads are completed before installing a fence
2947 	 * and all writes before removing the fence.
2948 	 */
2949 	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2950 		mb();
2951 
2952 	WARN(obj && (!obj->stride || !obj->tiling_mode),
2953 	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2954 	     obj->stride, obj->tiling_mode);
2955 
2956 	switch (INTEL_INFO(dev)->gen) {
2957 	case 8:
2958 	case 7:
2959 	case 6:
2960 	case 5:
2961 	case 4: i965_write_fence_reg(dev, reg, obj); break;
2962 	case 3: i915_write_fence_reg(dev, reg, obj); break;
2963 	case 2: i830_write_fence_reg(dev, reg, obj); break;
2964 	default: BUG();
2965 	}
2966 
2967 	/* And similarly be paranoid that no direct access to this region
2968 	 * is reordered to before the fence is installed.
2969 	 */
2970 	if (i915_gem_object_needs_mb(obj))
2971 		mb();
2972 }
2973 
2974 static inline int fence_number(struct drm_i915_private *dev_priv,
2975 			       struct drm_i915_fence_reg *fence)
2976 {
2977 	return fence - dev_priv->fence_regs;
2978 }
2979 
2980 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2981 					 struct drm_i915_fence_reg *fence,
2982 					 bool enable)
2983 {
2984 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2985 	int reg = fence_number(dev_priv, fence);
2986 
2987 	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2988 
2989 	if (enable) {
2990 		obj->fence_reg = reg;
2991 		fence->obj = obj;
2992 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2993 	} else {
2994 		obj->fence_reg = I915_FENCE_REG_NONE;
2995 		fence->obj = NULL;
2996 		list_del_init(&fence->lru_list);
2997 	}
2998 	obj->fence_dirty = false;
2999 }
3000 
3001 static int
3002 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3003 {
3004 	if (obj->last_fenced_seqno) {
3005 		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3006 		if (ret)
3007 			return ret;
3008 
3009 		obj->last_fenced_seqno = 0;
3010 	}
3011 
3012 	obj->fenced_gpu_access = false;
3013 	return 0;
3014 }
3015 
3016 int
3017 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3018 {
3019 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3020 	struct drm_i915_fence_reg *fence;
3021 	int ret;
3022 
3023 	ret = i915_gem_object_wait_fence(obj);
3024 	if (ret)
3025 		return ret;
3026 
3027 	if (obj->fence_reg == I915_FENCE_REG_NONE)
3028 		return 0;
3029 
3030 	fence = &dev_priv->fence_regs[obj->fence_reg];
3031 
3032 	i915_gem_object_fence_lost(obj);
3033 	i915_gem_object_update_fence(obj, fence, false);
3034 
3035 	return 0;
3036 }
3037 
3038 static struct drm_i915_fence_reg *
3039 i915_find_fence_reg(struct drm_device *dev)
3040 {
3041 	struct drm_i915_private *dev_priv = dev->dev_private;
3042 	struct drm_i915_fence_reg *reg, *avail;
3043 	int i;
3044 
3045 	/* First try to find a free reg */
3046 	avail = NULL;
3047 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3048 		reg = &dev_priv->fence_regs[i];
3049 		if (!reg->obj)
3050 			return reg;
3051 
3052 		if (!reg->pin_count)
3053 			avail = reg;
3054 	}
3055 
3056 	if (avail == NULL)
3057 		return NULL;
3058 
3059 	/* None available, try to steal one or wait for a user to finish */
3060 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3061 		if (reg->pin_count)
3062 			continue;
3063 
3064 		return reg;
3065 	}
3066 
3067 	return NULL;
3068 }
3069 
3070 /**
3071  * i915_gem_object_get_fence - set up fencing for an object
3072  * @obj: object to map through a fence reg
3073  *
3074  * When mapping objects through the GTT, userspace wants to be able to write
3075  * to them without having to worry about swizzling if the object is tiled.
3076  * This function walks the fence regs looking for a free one for @obj,
3077  * stealing one if it can't find any.
3078  *
3079  * It then sets up the reg based on the object's properties: address, pitch
3080  * and tiling format.
3081  *
3082  * For an untiled surface, this removes any existing fence.
3083  */
3084 int
3085 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3086 {
3087 	struct drm_device *dev = obj->base.dev;
3088 	struct drm_i915_private *dev_priv = dev->dev_private;
3089 	bool enable = obj->tiling_mode != I915_TILING_NONE;
3090 	struct drm_i915_fence_reg *reg;
3091 	int ret;
3092 
3093 	/* Have we updated the tiling parameters upon the object and so
3094 	 * will need to serialise the write to the associated fence register?
3095 	 */
3096 	if (obj->fence_dirty) {
3097 		ret = i915_gem_object_wait_fence(obj);
3098 		if (ret)
3099 			return ret;
3100 	}
3101 
3102 	/* Just update our place in the LRU if our fence is getting reused. */
3103 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
3104 		reg = &dev_priv->fence_regs[obj->fence_reg];
3105 		if (!obj->fence_dirty) {
3106 			list_move_tail(&reg->lru_list,
3107 				       &dev_priv->mm.fence_list);
3108 			return 0;
3109 		}
3110 	} else if (enable) {
3111 		reg = i915_find_fence_reg(dev);
3112 		if (reg == NULL)
3113 			return -EDEADLK;
3114 
3115 		if (reg->obj) {
3116 			struct drm_i915_gem_object *old = reg->obj;
3117 
3118 			ret = i915_gem_object_wait_fence(old);
3119 			if (ret)
3120 				return ret;
3121 
3122 			i915_gem_object_fence_lost(old);
3123 		}
3124 	} else
3125 		return 0;
3126 
3127 	i915_gem_object_update_fence(obj, reg, enable);
3128 
3129 	return 0;
3130 }
3131 
3132 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3133 				     struct drm_mm_node *gtt_space,
3134 				     unsigned long cache_level)
3135 {
3136 	struct drm_mm_node *other;
3137 
3138 	/* On non-LLC machines we have to be careful when putting differing
3139 	 * types of snoopable memory together to avoid the prefetcher
3140 	 * crossing memory domains and dying.
3141 	 */
3142 	if (HAS_LLC(dev))
3143 		return true;
3144 
3145 	if (!drm_mm_node_allocated(gtt_space))
3146 		return true;
3147 
3148 	if (list_empty(&gtt_space->node_list))
3149 		return true;
3150 
3151 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3152 	if (other->allocated && !other->hole_follows && other->color != cache_level)
3153 		return false;
3154 
3155 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3156 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3157 		return false;
3158 
3159 	return true;
3160 }
3161 
3162 static void i915_gem_verify_gtt(struct drm_device *dev)
3163 {
3164 #if WATCH_GTT
3165 	struct drm_i915_private *dev_priv = dev->dev_private;
3166 	struct drm_i915_gem_object *obj;
3167 	int err = 0;
3168 
3169 	list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3170 		if (obj->gtt_space == NULL) {
3171 			printk(KERN_ERR "object found on GTT list with no space reserved\n");
3172 			err++;
3173 			continue;
3174 		}
3175 
3176 		if (obj->cache_level != obj->gtt_space->color) {
3177 			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3178 			       i915_gem_obj_ggtt_offset(obj),
3179 			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3180 			       obj->cache_level,
3181 			       obj->gtt_space->color);
3182 			err++;
3183 			continue;
3184 		}
3185 
3186 		if (!i915_gem_valid_gtt_space(dev,
3187 					      obj->gtt_space,
3188 					      obj->cache_level)) {
3189 			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3190 			       i915_gem_obj_ggtt_offset(obj),
3191 			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3192 			       obj->cache_level);
3193 			err++;
3194 			continue;
3195 		}
3196 	}
3197 
3198 	WARN_ON(err);
3199 #endif
3200 }
3201 
3202 /**
3203  * Finds free space in the GTT aperture and binds the object there.
3204  */
3205 static int
3206 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3207 			   struct i915_address_space *vm,
3208 			   unsigned alignment,
3209 			   bool map_and_fenceable,
3210 			   bool nonblocking)
3211 {
3212 	struct drm_device *dev = obj->base.dev;
3213 	drm_i915_private_t *dev_priv = dev->dev_private;
3214 	u32 size, fence_size, fence_alignment, unfenced_alignment;
3215 	size_t gtt_max =
3216 		map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3217 	struct i915_vma *vma;
3218 	int ret;
3219 
3220 	fence_size = i915_gem_get_gtt_size(dev,
3221 					   obj->base.size,
3222 					   obj->tiling_mode);
3223 	fence_alignment = i915_gem_get_gtt_alignment(dev,
3224 						     obj->base.size,
3225 						     obj->tiling_mode, true);
3226 	unfenced_alignment =
3227 		i915_gem_get_gtt_alignment(dev,
3228 						    obj->base.size,
3229 						    obj->tiling_mode, false);
3230 
3231 	if (alignment == 0)
3232 		alignment = map_and_fenceable ? fence_alignment :
3233 						unfenced_alignment;
3234 	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3235 		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3236 		return -EINVAL;
3237 	}
3238 
3239 	size = map_and_fenceable ? fence_size : obj->base.size;
3240 
3241 	/* If the object is bigger than the entire aperture, reject it early
3242 	 * before evicting everything in a vain attempt to find space.
3243 	 */
3244 	if (obj->base.size > gtt_max) {
3245 		DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3246 			  obj->base.size,
3247 			  map_and_fenceable ? "mappable" : "total",
3248 			  gtt_max);
3249 		return -E2BIG;
3250 	}
3251 
3252 	ret = i915_gem_object_get_pages(obj);
3253 	if (ret)
3254 		return ret;
3255 
3256 	i915_gem_object_pin_pages(obj);
3257 
3258 	BUG_ON(!i915_is_ggtt(vm));
3259 
3260 	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3261 	if (IS_ERR(vma)) {
3262 		ret = PTR_ERR(vma);
3263 		goto err_unpin;
3264 	}
3265 
3266 	/* For now we only ever use 1 vma per object */
3267 	WARN_ON(!list_is_singular(&obj->vma_list));
3268 
3269 search_free:
3270 	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3271 						  size, alignment,
3272 						  obj->cache_level, 0, gtt_max,
3273 						  DRM_MM_SEARCH_DEFAULT);
3274 	if (ret) {
3275 		ret = i915_gem_evict_something(dev, vm, size, alignment,
3276 					       obj->cache_level,
3277 					       map_and_fenceable,
3278 					       nonblocking);
3279 		if (ret == 0)
3280 			goto search_free;
3281 
3282 		goto err_free_vma;
3283 	}
3284 	if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3285 					      obj->cache_level))) {
3286 		ret = -EINVAL;
3287 		goto err_remove_node;
3288 	}
3289 
3290 	ret = i915_gem_gtt_prepare_object(obj);
3291 	if (ret)
3292 		goto err_remove_node;
3293 
3294 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3295 	list_add_tail(&vma->mm_list, &vm->inactive_list);
3296 
3297 	if (i915_is_ggtt(vm)) {
3298 		bool mappable, fenceable;
3299 
3300 		fenceable = (vma->node.size == fence_size &&
3301 			     (vma->node.start & (fence_alignment - 1)) == 0);
3302 
3303 		mappable = (vma->node.start + obj->base.size <=
3304 			    dev_priv->gtt.mappable_end);
3305 
3306 		obj->map_and_fenceable = mappable && fenceable;
3307 	}
3308 
3309 	WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3310 
3311 	trace_i915_vma_bind(vma, map_and_fenceable);
3312 	i915_gem_verify_gtt(dev);
3313 	return 0;
3314 
3315 err_remove_node:
3316 	drm_mm_remove_node(&vma->node);
3317 err_free_vma:
3318 	i915_gem_vma_destroy(vma);
3319 err_unpin:
3320 	i915_gem_object_unpin_pages(obj);
3321 	return ret;
3322 }
3323 
3324 bool
3325 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3326 			bool force)
3327 {
3328 	/* If we don't have a page list set up, then we're not pinned
3329 	 * to GPU, and we can ignore the cache flush because it'll happen
3330 	 * again at bind time.
3331 	 */
3332 	if (obj->pages == NULL)
3333 		return false;
3334 
3335 	/*
3336 	 * Stolen memory is always coherent with the GPU as it is explicitly
3337 	 * marked as wc by the system, or the system is cache-coherent.
3338 	 */
3339 	if (obj->stolen)
3340 		return false;
3341 
3342 	/* If the GPU is snooping the contents of the CPU cache,
3343 	 * we do not need to manually clear the CPU cache lines.  However,
3344 	 * the caches are only snooped when the render cache is
3345 	 * flushed/invalidated.  As we always have to emit invalidations
3346 	 * and flushes when moving into and out of the RENDER domain, correct
3347 	 * snooping behaviour occurs naturally as the result of our domain
3348 	 * tracking.
3349 	 */
3350 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3351 		return false;
3352 
3353 	trace_i915_gem_object_clflush(obj);
3354 	drm_clflush_sg(obj->pages);
3355 
3356 	return true;
3357 }
3358 
3359 /** Flushes the GTT write domain for the object if it's dirty. */
3360 static void
3361 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3362 {
3363 	uint32_t old_write_domain;
3364 
3365 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3366 		return;
3367 
3368 	/* No actual flushing is required for the GTT write domain.  Writes
3369 	 * to it immediately go to main memory as far as we know, so there's
3370 	 * no chipset flush.  It also doesn't land in render cache.
3371 	 *
3372 	 * However, we do have to enforce the order so that all writes through
3373 	 * the GTT land before any writes to the device, such as updates to
3374 	 * the GATT itself.
3375 	 */
3376 	wmb();
3377 
3378 	old_write_domain = obj->base.write_domain;
3379 	obj->base.write_domain = 0;
3380 
3381 	trace_i915_gem_object_change_domain(obj,
3382 					    obj->base.read_domains,
3383 					    old_write_domain);
3384 }
3385 
3386 /** Flushes the CPU write domain for the object if it's dirty. */
3387 static void
3388 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3389 				       bool force)
3390 {
3391 	uint32_t old_write_domain;
3392 
3393 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3394 		return;
3395 
3396 	if (i915_gem_clflush_object(obj, force))
3397 		i915_gem_chipset_flush(obj->base.dev);
3398 
3399 	old_write_domain = obj->base.write_domain;
3400 	obj->base.write_domain = 0;
3401 
3402 	trace_i915_gem_object_change_domain(obj,
3403 					    obj->base.read_domains,
3404 					    old_write_domain);
3405 }
3406 
3407 /**
3408  * Moves a single object to the GTT read, and possibly write domain.
3409  *
3410  * This function returns when the move is complete, including waiting on
3411  * flushes to occur.
3412  */
3413 int
3414 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3415 {
3416 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3417 	uint32_t old_write_domain, old_read_domains;
3418 	int ret;
3419 
3420 	/* Not valid to be called on unbound objects. */
3421 	if (!i915_gem_obj_bound_any(obj))
3422 		return -EINVAL;
3423 
3424 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3425 		return 0;
3426 
3427 	ret = i915_gem_object_wait_rendering(obj, !write);
3428 	if (ret)
3429 		return ret;
3430 
3431 	i915_gem_object_flush_cpu_write_domain(obj, false);
3432 
3433 	/* Serialise direct access to this object with the barriers for
3434 	 * coherent writes from the GPU, by effectively invalidating the
3435 	 * GTT domain upon first access.
3436 	 */
3437 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3438 		mb();
3439 
3440 	old_write_domain = obj->base.write_domain;
3441 	old_read_domains = obj->base.read_domains;
3442 
3443 	/* It should now be out of any other write domains, and we can update
3444 	 * the domain values for our changes.
3445 	 */
3446 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3447 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3448 	if (write) {
3449 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3450 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3451 		obj->dirty = 1;
3452 	}
3453 
3454 	trace_i915_gem_object_change_domain(obj,
3455 					    old_read_domains,
3456 					    old_write_domain);
3457 
3458 	/* And bump the LRU for this access */
3459 	if (i915_gem_object_is_inactive(obj)) {
3460 		struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3461 		if (vma)
3462 			list_move_tail(&vma->mm_list,
3463 				       &dev_priv->gtt.base.inactive_list);
3464 
3465 	}
3466 
3467 	return 0;
3468 }
3469 
3470 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3471 				    enum i915_cache_level cache_level)
3472 {
3473 	struct drm_device *dev = obj->base.dev;
3474 	drm_i915_private_t *dev_priv = dev->dev_private;
3475 	struct i915_vma *vma;
3476 	int ret;
3477 
3478 	if (obj->cache_level == cache_level)
3479 		return 0;
3480 
3481 	if (obj->pin_count) {
3482 		DRM_DEBUG("can not change the cache level of pinned objects\n");
3483 		return -EBUSY;
3484 	}
3485 
3486 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
3487 		if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3488 			ret = i915_vma_unbind(vma);
3489 			if (ret)
3490 				return ret;
3491 
3492 			break;
3493 		}
3494 	}
3495 
3496 	if (i915_gem_obj_bound_any(obj)) {
3497 		ret = i915_gem_object_finish_gpu(obj);
3498 		if (ret)
3499 			return ret;
3500 
3501 		i915_gem_object_finish_gtt(obj);
3502 
3503 		/* Before SandyBridge, you could not use tiling or fence
3504 		 * registers with snooped memory, so relinquish any fences
3505 		 * currently pointing to our region in the aperture.
3506 		 */
3507 		if (INTEL_INFO(dev)->gen < 6) {
3508 			ret = i915_gem_object_put_fence(obj);
3509 			if (ret)
3510 				return ret;
3511 		}
3512 
3513 		if (obj->has_global_gtt_mapping)
3514 			i915_gem_gtt_bind_object(obj, cache_level);
3515 		if (obj->has_aliasing_ppgtt_mapping)
3516 			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3517 					       obj, cache_level);
3518 	}
3519 
3520 	list_for_each_entry(vma, &obj->vma_list, vma_link)
3521 		vma->node.color = cache_level;
3522 	obj->cache_level = cache_level;
3523 
3524 	if (cpu_write_needs_clflush(obj)) {
3525 		u32 old_read_domains, old_write_domain;
3526 
3527 		/* If we're coming from LLC cached, then we haven't
3528 		 * actually been tracking whether the data is in the
3529 		 * CPU cache or not, since we only allow one bit set
3530 		 * in obj->write_domain and have been skipping the clflushes.
3531 		 * Just set it to the CPU cache for now.
3532 		 */
3533 		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3534 
3535 		old_read_domains = obj->base.read_domains;
3536 		old_write_domain = obj->base.write_domain;
3537 
3538 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3539 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3540 
3541 		trace_i915_gem_object_change_domain(obj,
3542 						    old_read_domains,
3543 						    old_write_domain);
3544 	}
3545 
3546 	i915_gem_verify_gtt(dev);
3547 	return 0;
3548 }
3549 
3550 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3551 			       struct drm_file *file)
3552 {
3553 	struct drm_i915_gem_caching *args = data;
3554 	struct drm_i915_gem_object *obj;
3555 	int ret;
3556 
3557 	ret = i915_mutex_lock_interruptible(dev);
3558 	if (ret)
3559 		return ret;
3560 
3561 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3562 	if (&obj->base == NULL) {
3563 		ret = -ENOENT;
3564 		goto unlock;
3565 	}
3566 
3567 	switch (obj->cache_level) {
3568 	case I915_CACHE_LLC:
3569 	case I915_CACHE_L3_LLC:
3570 		args->caching = I915_CACHING_CACHED;
3571 		break;
3572 
3573 	case I915_CACHE_WT:
3574 		args->caching = I915_CACHING_DISPLAY;
3575 		break;
3576 
3577 	default:
3578 		args->caching = I915_CACHING_NONE;
3579 		break;
3580 	}
3581 
3582 	drm_gem_object_unreference(&obj->base);
3583 unlock:
3584 	mutex_unlock(&dev->struct_mutex);
3585 	return ret;
3586 }
3587 
3588 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3589 			       struct drm_file *file)
3590 {
3591 	struct drm_i915_gem_caching *args = data;
3592 	struct drm_i915_gem_object *obj;
3593 	enum i915_cache_level level;
3594 	int ret;
3595 
3596 	switch (args->caching) {
3597 	case I915_CACHING_NONE:
3598 		level = I915_CACHE_NONE;
3599 		break;
3600 	case I915_CACHING_CACHED:
3601 		level = I915_CACHE_LLC;
3602 		break;
3603 	case I915_CACHING_DISPLAY:
3604 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3605 		break;
3606 	default:
3607 		return -EINVAL;
3608 	}
3609 
3610 	ret = i915_mutex_lock_interruptible(dev);
3611 	if (ret)
3612 		return ret;
3613 
3614 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3615 	if (&obj->base == NULL) {
3616 		ret = -ENOENT;
3617 		goto unlock;
3618 	}
3619 
3620 	ret = i915_gem_object_set_cache_level(obj, level);
3621 
3622 	drm_gem_object_unreference(&obj->base);
3623 unlock:
3624 	mutex_unlock(&dev->struct_mutex);
3625 	return ret;
3626 }
3627 
3628 static bool is_pin_display(struct drm_i915_gem_object *obj)
3629 {
3630 	/* There are 3 sources that pin objects:
3631 	 *   1. The display engine (scanouts, sprites, cursors);
3632 	 *   2. Reservations for execbuffer;
3633 	 *   3. The user.
3634 	 *
3635 	 * We can ignore reservations as we hold the struct_mutex and
3636 	 * are only called outside of the reservation path.  The user
3637 	 * can only increment pin_count once, and so if after
3638 	 * subtracting the potential reference by the user, any pin_count
3639 	 * remains, it must be due to another use by the display engine.
3640 	 */
3641 	return obj->pin_count - !!obj->user_pin_count;
3642 }
3643 
3644 /*
3645  * Prepare buffer for display plane (scanout, cursors, etc).
3646  * Can be called from an uninterruptible phase (modesetting) and allows
3647  * any flushes to be pipelined (for pageflips).
3648  */
3649 int
3650 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3651 				     u32 alignment,
3652 				     struct intel_ring_buffer *pipelined)
3653 {
3654 	u32 old_read_domains, old_write_domain;
3655 	int ret;
3656 
3657 	if (pipelined != obj->ring) {
3658 		ret = i915_gem_object_sync(obj, pipelined);
3659 		if (ret)
3660 			return ret;
3661 	}
3662 
3663 	/* Mark the pin_display early so that we account for the
3664 	 * display coherency whilst setting up the cache domains.
3665 	 */
3666 	obj->pin_display = true;
3667 
3668 	/* The display engine is not coherent with the LLC cache on gen6.  As
3669 	 * a result, we make sure that the pinning that is about to occur is
3670 	 * done with uncached PTEs. This is lowest common denominator for all
3671 	 * chipsets.
3672 	 *
3673 	 * However for gen6+, we could do better by using the GFDT bit instead
3674 	 * of uncaching, which would allow us to flush all the LLC-cached data
3675 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3676 	 */
3677 	ret = i915_gem_object_set_cache_level(obj,
3678 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3679 	if (ret)
3680 		goto err_unpin_display;
3681 
3682 	/* As the user may map the buffer once pinned in the display plane
3683 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3684 	 * always use map_and_fenceable for all scanout buffers.
3685 	 */
3686 	ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3687 	if (ret)
3688 		goto err_unpin_display;
3689 
3690 	i915_gem_object_flush_cpu_write_domain(obj, true);
3691 
3692 	old_write_domain = obj->base.write_domain;
3693 	old_read_domains = obj->base.read_domains;
3694 
3695 	/* It should now be out of any other write domains, and we can update
3696 	 * the domain values for our changes.
3697 	 */
3698 	obj->base.write_domain = 0;
3699 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3700 
3701 	trace_i915_gem_object_change_domain(obj,
3702 					    old_read_domains,
3703 					    old_write_domain);
3704 
3705 	return 0;
3706 
3707 err_unpin_display:
3708 	obj->pin_display = is_pin_display(obj);
3709 	return ret;
3710 }
3711 
3712 void
3713 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3714 {
3715 	i915_gem_object_unpin(obj);
3716 	obj->pin_display = is_pin_display(obj);
3717 }
3718 
3719 int
3720 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3721 {
3722 	int ret;
3723 
3724 	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3725 		return 0;
3726 
3727 	ret = i915_gem_object_wait_rendering(obj, false);
3728 	if (ret)
3729 		return ret;
3730 
3731 	/* Ensure that we invalidate the GPU's caches and TLBs. */
3732 	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3733 	return 0;
3734 }
3735 
3736 /**
3737  * Moves a single object to the CPU read, and possibly write domain.
3738  *
3739  * This function returns when the move is complete, including waiting on
3740  * flushes to occur.
3741  */
3742 int
3743 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3744 {
3745 	uint32_t old_write_domain, old_read_domains;
3746 	int ret;
3747 
3748 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3749 		return 0;
3750 
3751 	ret = i915_gem_object_wait_rendering(obj, !write);
3752 	if (ret)
3753 		return ret;
3754 
3755 	i915_gem_object_flush_gtt_write_domain(obj);
3756 
3757 	old_write_domain = obj->base.write_domain;
3758 	old_read_domains = obj->base.read_domains;
3759 
3760 	/* Flush the CPU cache if it's still invalid. */
3761 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3762 		i915_gem_clflush_object(obj, false);
3763 
3764 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3765 	}
3766 
3767 	/* It should now be out of any other write domains, and we can update
3768 	 * the domain values for our changes.
3769 	 */
3770 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3771 
3772 	/* If we're writing through the CPU, then the GPU read domains will
3773 	 * need to be invalidated at next use.
3774 	 */
3775 	if (write) {
3776 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3777 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3778 	}
3779 
3780 	trace_i915_gem_object_change_domain(obj,
3781 					    old_read_domains,
3782 					    old_write_domain);
3783 
3784 	return 0;
3785 }
3786 
3787 /* Throttle our rendering by waiting until the ring has completed our requests
3788  * emitted over 20 msec ago.
3789  *
3790  * Note that if we were to use the current jiffies each time around the loop,
3791  * we wouldn't escape the function with any frames outstanding if the time to
3792  * render a frame was over 20ms.
3793  *
3794  * This should get us reasonable parallelism between CPU and GPU but also
3795  * relatively low latency when blocking on a particular request to finish.
3796  */
3797 static int
3798 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3799 {
3800 	struct drm_i915_private *dev_priv = dev->dev_private;
3801 	struct drm_i915_file_private *file_priv = file->driver_priv;
3802 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3803 	struct drm_i915_gem_request *request;
3804 	struct intel_ring_buffer *ring = NULL;
3805 	unsigned reset_counter;
3806 	u32 seqno = 0;
3807 	int ret;
3808 
3809 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3810 	if (ret)
3811 		return ret;
3812 
3813 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3814 	if (ret)
3815 		return ret;
3816 
3817 	spin_lock(&file_priv->mm.lock);
3818 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3819 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3820 			break;
3821 
3822 		ring = request->ring;
3823 		seqno = request->seqno;
3824 	}
3825 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3826 	spin_unlock(&file_priv->mm.lock);
3827 
3828 	if (seqno == 0)
3829 		return 0;
3830 
3831 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3832 	if (ret == 0)
3833 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3834 
3835 	return ret;
3836 }
3837 
3838 int
3839 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3840 		    struct i915_address_space *vm,
3841 		    uint32_t alignment,
3842 		    bool map_and_fenceable,
3843 		    bool nonblocking)
3844 {
3845 	struct i915_vma *vma;
3846 	int ret;
3847 
3848 	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3849 		return -EBUSY;
3850 
3851 	WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3852 
3853 	vma = i915_gem_obj_to_vma(obj, vm);
3854 
3855 	if (vma) {
3856 		if ((alignment &&
3857 		     vma->node.start & (alignment - 1)) ||
3858 		    (map_and_fenceable && !obj->map_and_fenceable)) {
3859 			WARN(obj->pin_count,
3860 			     "bo is already pinned with incorrect alignment:"
3861 			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3862 			     " obj->map_and_fenceable=%d\n",
3863 			     i915_gem_obj_offset(obj, vm), alignment,
3864 			     map_and_fenceable,
3865 			     obj->map_and_fenceable);
3866 			ret = i915_vma_unbind(vma);
3867 			if (ret)
3868 				return ret;
3869 		}
3870 	}
3871 
3872 	if (!i915_gem_obj_bound(obj, vm)) {
3873 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3874 
3875 		ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3876 						 map_and_fenceable,
3877 						 nonblocking);
3878 		if (ret)
3879 			return ret;
3880 
3881 		if (!dev_priv->mm.aliasing_ppgtt)
3882 			i915_gem_gtt_bind_object(obj, obj->cache_level);
3883 	}
3884 
3885 	if (!obj->has_global_gtt_mapping && map_and_fenceable)
3886 		i915_gem_gtt_bind_object(obj, obj->cache_level);
3887 
3888 	obj->pin_count++;
3889 	obj->pin_mappable |= map_and_fenceable;
3890 
3891 	return 0;
3892 }
3893 
3894 void
3895 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3896 {
3897 	BUG_ON(obj->pin_count == 0);
3898 	BUG_ON(!i915_gem_obj_bound_any(obj));
3899 
3900 	if (--obj->pin_count == 0)
3901 		obj->pin_mappable = false;
3902 }
3903 
3904 int
3905 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3906 		   struct drm_file *file)
3907 {
3908 	struct drm_i915_gem_pin *args = data;
3909 	struct drm_i915_gem_object *obj;
3910 	int ret;
3911 
3912 	ret = i915_mutex_lock_interruptible(dev);
3913 	if (ret)
3914 		return ret;
3915 
3916 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3917 	if (&obj->base == NULL) {
3918 		ret = -ENOENT;
3919 		goto unlock;
3920 	}
3921 
3922 	if (obj->madv != I915_MADV_WILLNEED) {
3923 		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3924 		ret = -EINVAL;
3925 		goto out;
3926 	}
3927 
3928 	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3929 		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3930 			  args->handle);
3931 		ret = -EINVAL;
3932 		goto out;
3933 	}
3934 
3935 	if (obj->user_pin_count == ULONG_MAX) {
3936 		ret = -EBUSY;
3937 		goto out;
3938 	}
3939 
3940 	if (obj->user_pin_count == 0) {
3941 		ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3942 		if (ret)
3943 			goto out;
3944 	}
3945 
3946 	obj->user_pin_count++;
3947 	obj->pin_filp = file;
3948 
3949 	args->offset = i915_gem_obj_ggtt_offset(obj);
3950 out:
3951 	drm_gem_object_unreference(&obj->base);
3952 unlock:
3953 	mutex_unlock(&dev->struct_mutex);
3954 	return ret;
3955 }
3956 
3957 int
3958 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3959 		     struct drm_file *file)
3960 {
3961 	struct drm_i915_gem_pin *args = data;
3962 	struct drm_i915_gem_object *obj;
3963 	int ret;
3964 
3965 	ret = i915_mutex_lock_interruptible(dev);
3966 	if (ret)
3967 		return ret;
3968 
3969 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3970 	if (&obj->base == NULL) {
3971 		ret = -ENOENT;
3972 		goto unlock;
3973 	}
3974 
3975 	if (obj->pin_filp != file) {
3976 		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3977 			  args->handle);
3978 		ret = -EINVAL;
3979 		goto out;
3980 	}
3981 	obj->user_pin_count--;
3982 	if (obj->user_pin_count == 0) {
3983 		obj->pin_filp = NULL;
3984 		i915_gem_object_unpin(obj);
3985 	}
3986 
3987 out:
3988 	drm_gem_object_unreference(&obj->base);
3989 unlock:
3990 	mutex_unlock(&dev->struct_mutex);
3991 	return ret;
3992 }
3993 
3994 int
3995 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3996 		    struct drm_file *file)
3997 {
3998 	struct drm_i915_gem_busy *args = data;
3999 	struct drm_i915_gem_object *obj;
4000 	int ret;
4001 
4002 	ret = i915_mutex_lock_interruptible(dev);
4003 	if (ret)
4004 		return ret;
4005 
4006 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4007 	if (&obj->base == NULL) {
4008 		ret = -ENOENT;
4009 		goto unlock;
4010 	}
4011 
4012 	/* Count all active objects as busy, even if they are currently not used
4013 	 * by the gpu. Users of this interface expect objects to eventually
4014 	 * become non-busy without any further actions, therefore emit any
4015 	 * necessary flushes here.
4016 	 */
4017 	ret = i915_gem_object_flush_active(obj);
4018 
4019 	args->busy = obj->active;
4020 	if (obj->ring) {
4021 		BUILD_BUG_ON(I915_NUM_RINGS > 16);
4022 		args->busy |= intel_ring_flag(obj->ring) << 16;
4023 	}
4024 
4025 	drm_gem_object_unreference(&obj->base);
4026 unlock:
4027 	mutex_unlock(&dev->struct_mutex);
4028 	return ret;
4029 }
4030 
4031 int
4032 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4033 			struct drm_file *file_priv)
4034 {
4035 	return i915_gem_ring_throttle(dev, file_priv);
4036 }
4037 
4038 int
4039 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4040 		       struct drm_file *file_priv)
4041 {
4042 	struct drm_i915_gem_madvise *args = data;
4043 	struct drm_i915_gem_object *obj;
4044 	int ret;
4045 
4046 	switch (args->madv) {
4047 	case I915_MADV_DONTNEED:
4048 	case I915_MADV_WILLNEED:
4049 	    break;
4050 	default:
4051 	    return -EINVAL;
4052 	}
4053 
4054 	ret = i915_mutex_lock_interruptible(dev);
4055 	if (ret)
4056 		return ret;
4057 
4058 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4059 	if (&obj->base == NULL) {
4060 		ret = -ENOENT;
4061 		goto unlock;
4062 	}
4063 
4064 	if (obj->pin_count) {
4065 		ret = -EINVAL;
4066 		goto out;
4067 	}
4068 
4069 	if (obj->madv != __I915_MADV_PURGED)
4070 		obj->madv = args->madv;
4071 
4072 	/* if the object is no longer attached, discard its backing storage */
4073 	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4074 		i915_gem_object_truncate(obj);
4075 
4076 	args->retained = obj->madv != __I915_MADV_PURGED;
4077 
4078 out:
4079 	drm_gem_object_unreference(&obj->base);
4080 unlock:
4081 	mutex_unlock(&dev->struct_mutex);
4082 	return ret;
4083 }
4084 
4085 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4086 			  const struct drm_i915_gem_object_ops *ops)
4087 {
4088 	INIT_LIST_HEAD(&obj->global_list);
4089 	INIT_LIST_HEAD(&obj->ring_list);
4090 	INIT_LIST_HEAD(&obj->obj_exec_link);
4091 	INIT_LIST_HEAD(&obj->vma_list);
4092 
4093 	obj->ops = ops;
4094 
4095 	obj->fence_reg = I915_FENCE_REG_NONE;
4096 	obj->madv = I915_MADV_WILLNEED;
4097 	/* Avoid an unnecessary call to unbind on the first bind. */
4098 	obj->map_and_fenceable = true;
4099 
4100 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4101 }
4102 
4103 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4104 	.get_pages = i915_gem_object_get_pages_gtt,
4105 	.put_pages = i915_gem_object_put_pages_gtt,
4106 };
4107 
4108 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4109 						  size_t size)
4110 {
4111 	struct drm_i915_gem_object *obj;
4112 	struct address_space *mapping;
4113 	gfp_t mask;
4114 
4115 	obj = i915_gem_object_alloc(dev);
4116 	if (obj == NULL)
4117 		return NULL;
4118 
4119 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4120 		i915_gem_object_free(obj);
4121 		return NULL;
4122 	}
4123 
4124 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4125 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4126 		/* 965gm cannot relocate objects above 4GiB. */
4127 		mask &= ~__GFP_HIGHMEM;
4128 		mask |= __GFP_DMA32;
4129 	}
4130 
4131 	mapping = file_inode(obj->base.filp)->i_mapping;
4132 	mapping_set_gfp_mask(mapping, mask);
4133 
4134 	i915_gem_object_init(obj, &i915_gem_object_ops);
4135 
4136 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4137 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4138 
4139 	if (HAS_LLC(dev)) {
4140 		/* On some devices, we can have the GPU use the LLC (the CPU
4141 		 * cache) for about a 10% performance improvement
4142 		 * compared to uncached.  Graphics requests other than
4143 		 * display scanout are coherent with the CPU in
4144 		 * accessing this cache.  This means in this mode we
4145 		 * don't need to clflush on the CPU side, and on the
4146 		 * GPU side we only need to flush internal caches to
4147 		 * get data visible to the CPU.
4148 		 *
4149 		 * However, we maintain the display planes as UC, and so
4150 		 * need to rebind when first used as such.
4151 		 */
4152 		obj->cache_level = I915_CACHE_LLC;
4153 	} else
4154 		obj->cache_level = I915_CACHE_NONE;
4155 
4156 	trace_i915_gem_object_create(obj);
4157 
4158 	return obj;
4159 }
4160 
4161 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4162 {
4163 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4164 	struct drm_device *dev = obj->base.dev;
4165 	drm_i915_private_t *dev_priv = dev->dev_private;
4166 	struct i915_vma *vma, *next;
4167 
4168 	trace_i915_gem_object_destroy(obj);
4169 
4170 	if (obj->phys_obj)
4171 		i915_gem_detach_phys_object(dev, obj);
4172 
4173 	obj->pin_count = 0;
4174 	/* NB: 0 or 1 elements */
4175 	WARN_ON(!list_empty(&obj->vma_list) &&
4176 		!list_is_singular(&obj->vma_list));
4177 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4178 		int ret = i915_vma_unbind(vma);
4179 		if (WARN_ON(ret == -ERESTARTSYS)) {
4180 			bool was_interruptible;
4181 
4182 			was_interruptible = dev_priv->mm.interruptible;
4183 			dev_priv->mm.interruptible = false;
4184 
4185 			WARN_ON(i915_vma_unbind(vma));
4186 
4187 			dev_priv->mm.interruptible = was_interruptible;
4188 		}
4189 	}
4190 
4191 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4192 	 * before progressing. */
4193 	if (obj->stolen)
4194 		i915_gem_object_unpin_pages(obj);
4195 
4196 	if (WARN_ON(obj->pages_pin_count))
4197 		obj->pages_pin_count = 0;
4198 	i915_gem_object_put_pages(obj);
4199 	i915_gem_object_free_mmap_offset(obj);
4200 	i915_gem_object_release_stolen(obj);
4201 
4202 	BUG_ON(obj->pages);
4203 
4204 	if (obj->base.import_attach)
4205 		drm_prime_gem_destroy(&obj->base, NULL);
4206 
4207 	drm_gem_object_release(&obj->base);
4208 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4209 
4210 	kfree(obj->bit_17);
4211 	i915_gem_object_free(obj);
4212 }
4213 
4214 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4215 				     struct i915_address_space *vm)
4216 {
4217 	struct i915_vma *vma;
4218 	list_for_each_entry(vma, &obj->vma_list, vma_link)
4219 		if (vma->vm == vm)
4220 			return vma;
4221 
4222 	return NULL;
4223 }
4224 
4225 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
4226 					      struct i915_address_space *vm)
4227 {
4228 	struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4229 	if (vma == NULL)
4230 		return ERR_PTR(-ENOMEM);
4231 
4232 	INIT_LIST_HEAD(&vma->vma_link);
4233 	INIT_LIST_HEAD(&vma->mm_list);
4234 	INIT_LIST_HEAD(&vma->exec_list);
4235 	vma->vm = vm;
4236 	vma->obj = obj;
4237 
4238 	/* Keep GGTT vmas first to make debug easier */
4239 	if (i915_is_ggtt(vm))
4240 		list_add(&vma->vma_link, &obj->vma_list);
4241 	else
4242 		list_add_tail(&vma->vma_link, &obj->vma_list);
4243 
4244 	return vma;
4245 }
4246 
4247 struct i915_vma *
4248 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4249 				  struct i915_address_space *vm)
4250 {
4251 	struct i915_vma *vma;
4252 
4253 	vma = i915_gem_obj_to_vma(obj, vm);
4254 	if (!vma)
4255 		vma = __i915_gem_vma_create(obj, vm);
4256 
4257 	return vma;
4258 }
4259 
4260 void i915_gem_vma_destroy(struct i915_vma *vma)
4261 {
4262 	WARN_ON(vma->node.allocated);
4263 
4264 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4265 	if (!list_empty(&vma->exec_list))
4266 		return;
4267 
4268 	list_del(&vma->vma_link);
4269 
4270 	kfree(vma);
4271 }
4272 
4273 int
4274 i915_gem_suspend(struct drm_device *dev)
4275 {
4276 	drm_i915_private_t *dev_priv = dev->dev_private;
4277 	int ret = 0;
4278 
4279 	mutex_lock(&dev->struct_mutex);
4280 	if (dev_priv->ums.mm_suspended)
4281 		goto err;
4282 
4283 	ret = i915_gpu_idle(dev);
4284 	if (ret)
4285 		goto err;
4286 
4287 	i915_gem_retire_requests(dev);
4288 
4289 	/* Under UMS, be paranoid and evict. */
4290 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4291 		i915_gem_evict_everything(dev);
4292 
4293 	i915_kernel_lost_context(dev);
4294 	i915_gem_cleanup_ringbuffer(dev);
4295 
4296 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
4297 	 * We need to replace this with a semaphore, or something.
4298 	 * And not confound ums.mm_suspended!
4299 	 */
4300 	dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4301 							     DRIVER_MODESET);
4302 	mutex_unlock(&dev->struct_mutex);
4303 
4304 	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4305 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4306 	cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4307 
4308 	return 0;
4309 
4310 err:
4311 	mutex_unlock(&dev->struct_mutex);
4312 	return ret;
4313 }
4314 
4315 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4316 {
4317 	struct drm_device *dev = ring->dev;
4318 	drm_i915_private_t *dev_priv = dev->dev_private;
4319 	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4320 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4321 	int i, ret;
4322 
4323 	if (!HAS_L3_DPF(dev) || !remap_info)
4324 		return 0;
4325 
4326 	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4327 	if (ret)
4328 		return ret;
4329 
4330 	/*
4331 	 * Note: We do not worry about the concurrent register cacheline hang
4332 	 * here because no other code should access these registers other than
4333 	 * at initialization time.
4334 	 */
4335 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4336 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4337 		intel_ring_emit(ring, reg_base + i);
4338 		intel_ring_emit(ring, remap_info[i/4]);
4339 	}
4340 
4341 	intel_ring_advance(ring);
4342 
4343 	return ret;
4344 }
4345 
4346 void i915_gem_init_swizzling(struct drm_device *dev)
4347 {
4348 	drm_i915_private_t *dev_priv = dev->dev_private;
4349 
4350 	if (INTEL_INFO(dev)->gen < 5 ||
4351 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4352 		return;
4353 
4354 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4355 				 DISP_TILE_SURFACE_SWIZZLING);
4356 
4357 	if (IS_GEN5(dev))
4358 		return;
4359 
4360 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4361 	if (IS_GEN6(dev))
4362 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4363 	else if (IS_GEN7(dev))
4364 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4365 	else if (IS_GEN8(dev))
4366 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4367 	else
4368 		BUG();
4369 }
4370 
4371 static bool
4372 intel_enable_blt(struct drm_device *dev)
4373 {
4374 	if (!HAS_BLT(dev))
4375 		return false;
4376 
4377 	/* The blitter was dysfunctional on early prototypes */
4378 	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4379 		DRM_INFO("BLT not supported on this pre-production hardware;"
4380 			 " graphics performance will be degraded.\n");
4381 		return false;
4382 	}
4383 
4384 	return true;
4385 }
4386 
4387 static int i915_gem_init_rings(struct drm_device *dev)
4388 {
4389 	struct drm_i915_private *dev_priv = dev->dev_private;
4390 	int ret;
4391 
4392 	ret = intel_init_render_ring_buffer(dev);
4393 	if (ret)
4394 		return ret;
4395 
4396 	if (HAS_BSD(dev)) {
4397 		ret = intel_init_bsd_ring_buffer(dev);
4398 		if (ret)
4399 			goto cleanup_render_ring;
4400 	}
4401 
4402 	if (intel_enable_blt(dev)) {
4403 		ret = intel_init_blt_ring_buffer(dev);
4404 		if (ret)
4405 			goto cleanup_bsd_ring;
4406 	}
4407 
4408 	if (HAS_VEBOX(dev)) {
4409 		ret = intel_init_vebox_ring_buffer(dev);
4410 		if (ret)
4411 			goto cleanup_blt_ring;
4412 	}
4413 
4414 
4415 	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4416 	if (ret)
4417 		goto cleanup_vebox_ring;
4418 
4419 	return 0;
4420 
4421 cleanup_vebox_ring:
4422 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4423 cleanup_blt_ring:
4424 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4425 cleanup_bsd_ring:
4426 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4427 cleanup_render_ring:
4428 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4429 
4430 	return ret;
4431 }
4432 
4433 int
4434 i915_gem_init_hw(struct drm_device *dev)
4435 {
4436 	drm_i915_private_t *dev_priv = dev->dev_private;
4437 	int ret, i;
4438 
4439 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4440 		return -EIO;
4441 
4442 	if (dev_priv->ellc_size)
4443 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4444 
4445 	if (IS_HASWELL(dev))
4446 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4447 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4448 
4449 	if (HAS_PCH_NOP(dev)) {
4450 		u32 temp = I915_READ(GEN7_MSG_CTL);
4451 		temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4452 		I915_WRITE(GEN7_MSG_CTL, temp);
4453 	}
4454 
4455 	i915_gem_init_swizzling(dev);
4456 
4457 	ret = i915_gem_init_rings(dev);
4458 	if (ret)
4459 		return ret;
4460 
4461 	for (i = 0; i < NUM_L3_SLICES(dev); i++)
4462 		i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4463 
4464 	/*
4465 	 * XXX: There was some w/a described somewhere suggesting loading
4466 	 * contexts before PPGTT.
4467 	 */
4468 	i915_gem_context_init(dev);
4469 	if (dev_priv->mm.aliasing_ppgtt) {
4470 		ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4471 		if (ret) {
4472 			i915_gem_cleanup_aliasing_ppgtt(dev);
4473 			DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4474 		}
4475 	}
4476 
4477 	return 0;
4478 }
4479 
4480 int i915_gem_init(struct drm_device *dev)
4481 {
4482 	struct drm_i915_private *dev_priv = dev->dev_private;
4483 	int ret;
4484 
4485 	mutex_lock(&dev->struct_mutex);
4486 
4487 	if (IS_VALLEYVIEW(dev)) {
4488 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4489 		I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4490 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4491 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4492 	}
4493 
4494 	i915_gem_init_global_gtt(dev);
4495 
4496 	ret = i915_gem_init_hw(dev);
4497 	mutex_unlock(&dev->struct_mutex);
4498 	if (ret) {
4499 		i915_gem_cleanup_aliasing_ppgtt(dev);
4500 		return ret;
4501 	}
4502 
4503 	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4504 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4505 		dev_priv->dri1.allow_batchbuffer = 1;
4506 	return 0;
4507 }
4508 
4509 void
4510 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4511 {
4512 	drm_i915_private_t *dev_priv = dev->dev_private;
4513 	struct intel_ring_buffer *ring;
4514 	int i;
4515 
4516 	for_each_ring(ring, dev_priv, i)
4517 		intel_cleanup_ring_buffer(ring);
4518 }
4519 
4520 int
4521 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4522 		       struct drm_file *file_priv)
4523 {
4524 	struct drm_i915_private *dev_priv = dev->dev_private;
4525 	int ret;
4526 
4527 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4528 		return 0;
4529 
4530 	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4531 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4532 		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4533 	}
4534 
4535 	mutex_lock(&dev->struct_mutex);
4536 	dev_priv->ums.mm_suspended = 0;
4537 
4538 	ret = i915_gem_init_hw(dev);
4539 	if (ret != 0) {
4540 		mutex_unlock(&dev->struct_mutex);
4541 		return ret;
4542 	}
4543 
4544 	BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4545 	mutex_unlock(&dev->struct_mutex);
4546 
4547 	ret = drm_irq_install(dev);
4548 	if (ret)
4549 		goto cleanup_ringbuffer;
4550 
4551 	return 0;
4552 
4553 cleanup_ringbuffer:
4554 	mutex_lock(&dev->struct_mutex);
4555 	i915_gem_cleanup_ringbuffer(dev);
4556 	dev_priv->ums.mm_suspended = 1;
4557 	mutex_unlock(&dev->struct_mutex);
4558 
4559 	return ret;
4560 }
4561 
4562 int
4563 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4564 		       struct drm_file *file_priv)
4565 {
4566 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4567 		return 0;
4568 
4569 	drm_irq_uninstall(dev);
4570 
4571 	return i915_gem_suspend(dev);
4572 }
4573 
4574 void
4575 i915_gem_lastclose(struct drm_device *dev)
4576 {
4577 	int ret;
4578 
4579 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4580 		return;
4581 
4582 	ret = i915_gem_suspend(dev);
4583 	if (ret)
4584 		DRM_ERROR("failed to idle hardware: %d\n", ret);
4585 }
4586 
4587 static void
4588 init_ring_lists(struct intel_ring_buffer *ring)
4589 {
4590 	INIT_LIST_HEAD(&ring->active_list);
4591 	INIT_LIST_HEAD(&ring->request_list);
4592 }
4593 
4594 static void i915_init_vm(struct drm_i915_private *dev_priv,
4595 			 struct i915_address_space *vm)
4596 {
4597 	vm->dev = dev_priv->dev;
4598 	INIT_LIST_HEAD(&vm->active_list);
4599 	INIT_LIST_HEAD(&vm->inactive_list);
4600 	INIT_LIST_HEAD(&vm->global_link);
4601 	list_add(&vm->global_link, &dev_priv->vm_list);
4602 }
4603 
4604 void
4605 i915_gem_load(struct drm_device *dev)
4606 {
4607 	drm_i915_private_t *dev_priv = dev->dev_private;
4608 	int i;
4609 
4610 	dev_priv->slab =
4611 		kmem_cache_create("i915_gem_object",
4612 				  sizeof(struct drm_i915_gem_object), 0,
4613 				  SLAB_HWCACHE_ALIGN,
4614 				  NULL);
4615 
4616 	INIT_LIST_HEAD(&dev_priv->vm_list);
4617 	i915_init_vm(dev_priv, &dev_priv->gtt.base);
4618 
4619 	INIT_LIST_HEAD(&dev_priv->context_list);
4620 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4621 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4622 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4623 	for (i = 0; i < I915_NUM_RINGS; i++)
4624 		init_ring_lists(&dev_priv->ring[i]);
4625 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4626 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4627 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4628 			  i915_gem_retire_work_handler);
4629 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4630 			  i915_gem_idle_work_handler);
4631 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4632 
4633 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4634 	if (IS_GEN3(dev)) {
4635 		I915_WRITE(MI_ARB_STATE,
4636 			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4637 	}
4638 
4639 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4640 
4641 	/* Old X drivers will take 0-2 for front, back, depth buffers */
4642 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4643 		dev_priv->fence_reg_start = 3;
4644 
4645 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4646 		dev_priv->num_fence_regs = 32;
4647 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4648 		dev_priv->num_fence_regs = 16;
4649 	else
4650 		dev_priv->num_fence_regs = 8;
4651 
4652 	/* Initialize fence registers to zero */
4653 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4654 	i915_gem_restore_fences(dev);
4655 
4656 	i915_gem_detect_bit_6_swizzle(dev);
4657 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4658 
4659 	dev_priv->mm.interruptible = true;
4660 
4661 	dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4662 	dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4663 	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4664 	register_shrinker(&dev_priv->mm.inactive_shrinker);
4665 }
4666 
4667 /*
4668  * Create a physically contiguous memory object for this object
4669  * e.g. for cursor + overlay regs
4670  */
4671 static int i915_gem_init_phys_object(struct drm_device *dev,
4672 				     int id, int size, int align)
4673 {
4674 	drm_i915_private_t *dev_priv = dev->dev_private;
4675 	struct drm_i915_gem_phys_object *phys_obj;
4676 	int ret;
4677 
4678 	if (dev_priv->mm.phys_objs[id - 1] || !size)
4679 		return 0;
4680 
4681 	phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4682 	if (!phys_obj)
4683 		return -ENOMEM;
4684 
4685 	phys_obj->id = id;
4686 
4687 	phys_obj->handle = drm_pci_alloc(dev, size, align);
4688 	if (!phys_obj->handle) {
4689 		ret = -ENOMEM;
4690 		goto kfree_obj;
4691 	}
4692 #ifdef CONFIG_X86
4693 	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4694 #endif
4695 
4696 	dev_priv->mm.phys_objs[id - 1] = phys_obj;
4697 
4698 	return 0;
4699 kfree_obj:
4700 	kfree(phys_obj);
4701 	return ret;
4702 }
4703 
4704 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4705 {
4706 	drm_i915_private_t *dev_priv = dev->dev_private;
4707 	struct drm_i915_gem_phys_object *phys_obj;
4708 
4709 	if (!dev_priv->mm.phys_objs[id - 1])
4710 		return;
4711 
4712 	phys_obj = dev_priv->mm.phys_objs[id - 1];
4713 	if (phys_obj->cur_obj) {
4714 		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4715 	}
4716 
4717 #ifdef CONFIG_X86
4718 	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4719 #endif
4720 	drm_pci_free(dev, phys_obj->handle);
4721 	kfree(phys_obj);
4722 	dev_priv->mm.phys_objs[id - 1] = NULL;
4723 }
4724 
4725 void i915_gem_free_all_phys_object(struct drm_device *dev)
4726 {
4727 	int i;
4728 
4729 	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4730 		i915_gem_free_phys_object(dev, i);
4731 }
4732 
4733 void i915_gem_detach_phys_object(struct drm_device *dev,
4734 				 struct drm_i915_gem_object *obj)
4735 {
4736 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4737 	char *vaddr;
4738 	int i;
4739 	int page_count;
4740 
4741 	if (!obj->phys_obj)
4742 		return;
4743 	vaddr = obj->phys_obj->handle->vaddr;
4744 
4745 	page_count = obj->base.size / PAGE_SIZE;
4746 	for (i = 0; i < page_count; i++) {
4747 		struct page *page = shmem_read_mapping_page(mapping, i);
4748 		if (!IS_ERR(page)) {
4749 			char *dst = kmap_atomic(page);
4750 			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4751 			kunmap_atomic(dst);
4752 
4753 			drm_clflush_pages(&page, 1);
4754 
4755 			set_page_dirty(page);
4756 			mark_page_accessed(page);
4757 			page_cache_release(page);
4758 		}
4759 	}
4760 	i915_gem_chipset_flush(dev);
4761 
4762 	obj->phys_obj->cur_obj = NULL;
4763 	obj->phys_obj = NULL;
4764 }
4765 
4766 int
4767 i915_gem_attach_phys_object(struct drm_device *dev,
4768 			    struct drm_i915_gem_object *obj,
4769 			    int id,
4770 			    int align)
4771 {
4772 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4773 	drm_i915_private_t *dev_priv = dev->dev_private;
4774 	int ret = 0;
4775 	int page_count;
4776 	int i;
4777 
4778 	if (id > I915_MAX_PHYS_OBJECT)
4779 		return -EINVAL;
4780 
4781 	if (obj->phys_obj) {
4782 		if (obj->phys_obj->id == id)
4783 			return 0;
4784 		i915_gem_detach_phys_object(dev, obj);
4785 	}
4786 
4787 	/* create a new object */
4788 	if (!dev_priv->mm.phys_objs[id - 1]) {
4789 		ret = i915_gem_init_phys_object(dev, id,
4790 						obj->base.size, align);
4791 		if (ret) {
4792 			DRM_ERROR("failed to init phys object %d size: %zu\n",
4793 				  id, obj->base.size);
4794 			return ret;
4795 		}
4796 	}
4797 
4798 	/* bind to the object */
4799 	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4800 	obj->phys_obj->cur_obj = obj;
4801 
4802 	page_count = obj->base.size / PAGE_SIZE;
4803 
4804 	for (i = 0; i < page_count; i++) {
4805 		struct page *page;
4806 		char *dst, *src;
4807 
4808 		page = shmem_read_mapping_page(mapping, i);
4809 		if (IS_ERR(page))
4810 			return PTR_ERR(page);
4811 
4812 		src = kmap_atomic(page);
4813 		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4814 		memcpy(dst, src, PAGE_SIZE);
4815 		kunmap_atomic(src);
4816 
4817 		mark_page_accessed(page);
4818 		page_cache_release(page);
4819 	}
4820 
4821 	return 0;
4822 }
4823 
4824 static int
4825 i915_gem_phys_pwrite(struct drm_device *dev,
4826 		     struct drm_i915_gem_object *obj,
4827 		     struct drm_i915_gem_pwrite *args,
4828 		     struct drm_file *file_priv)
4829 {
4830 	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4831 	char __user *user_data = to_user_ptr(args->data_ptr);
4832 
4833 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4834 		unsigned long unwritten;
4835 
4836 		/* The physical object once assigned is fixed for the lifetime
4837 		 * of the obj, so we can safely drop the lock and continue
4838 		 * to access vaddr.
4839 		 */
4840 		mutex_unlock(&dev->struct_mutex);
4841 		unwritten = copy_from_user(vaddr, user_data, args->size);
4842 		mutex_lock(&dev->struct_mutex);
4843 		if (unwritten)
4844 			return -EFAULT;
4845 	}
4846 
4847 	i915_gem_chipset_flush(dev);
4848 	return 0;
4849 }
4850 
4851 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4852 {
4853 	struct drm_i915_file_private *file_priv = file->driver_priv;
4854 
4855 	cancel_delayed_work_sync(&file_priv->mm.idle_work);
4856 
4857 	/* Clean up our request list when the client is going away, so that
4858 	 * later retire_requests won't dereference our soon-to-be-gone
4859 	 * file_priv.
4860 	 */
4861 	spin_lock(&file_priv->mm.lock);
4862 	while (!list_empty(&file_priv->mm.request_list)) {
4863 		struct drm_i915_gem_request *request;
4864 
4865 		request = list_first_entry(&file_priv->mm.request_list,
4866 					   struct drm_i915_gem_request,
4867 					   client_list);
4868 		list_del(&request->client_list);
4869 		request->file_priv = NULL;
4870 	}
4871 	spin_unlock(&file_priv->mm.lock);
4872 }
4873 
4874 static void
4875 i915_gem_file_idle_work_handler(struct work_struct *work)
4876 {
4877 	struct drm_i915_file_private *file_priv =
4878 		container_of(work, typeof(*file_priv), mm.idle_work.work);
4879 
4880 	atomic_set(&file_priv->rps_wait_boost, false);
4881 }
4882 
4883 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4884 {
4885 	struct drm_i915_file_private *file_priv;
4886 
4887 	DRM_DEBUG_DRIVER("\n");
4888 
4889 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4890 	if (!file_priv)
4891 		return -ENOMEM;
4892 
4893 	file->driver_priv = file_priv;
4894 	file_priv->dev_priv = dev->dev_private;
4895 
4896 	spin_lock_init(&file_priv->mm.lock);
4897 	INIT_LIST_HEAD(&file_priv->mm.request_list);
4898 	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4899 			  i915_gem_file_idle_work_handler);
4900 
4901 	idr_init(&file_priv->context_idr);
4902 
4903 	return 0;
4904 }
4905 
4906 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4907 {
4908 	if (!mutex_is_locked(mutex))
4909 		return false;
4910 
4911 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4912 	return mutex->owner == task;
4913 #else
4914 	/* Since UP may be pre-empted, we cannot assume that we own the lock */
4915 	return false;
4916 #endif
4917 }
4918 
4919 static unsigned long
4920 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4921 {
4922 	struct drm_i915_private *dev_priv =
4923 		container_of(shrinker,
4924 			     struct drm_i915_private,
4925 			     mm.inactive_shrinker);
4926 	struct drm_device *dev = dev_priv->dev;
4927 	struct drm_i915_gem_object *obj;
4928 	bool unlock = true;
4929 	unsigned long count;
4930 
4931 	if (!mutex_trylock(&dev->struct_mutex)) {
4932 		if (!mutex_is_locked_by(&dev->struct_mutex, current))
4933 			return 0;
4934 
4935 		if (dev_priv->mm.shrinker_no_lock_stealing)
4936 			return 0;
4937 
4938 		unlock = false;
4939 	}
4940 
4941 	count = 0;
4942 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4943 		if (obj->pages_pin_count == 0)
4944 			count += obj->base.size >> PAGE_SHIFT;
4945 
4946 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4947 		if (obj->active)
4948 			continue;
4949 
4950 		if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4951 			count += obj->base.size >> PAGE_SHIFT;
4952 	}
4953 
4954 	if (unlock)
4955 		mutex_unlock(&dev->struct_mutex);
4956 
4957 	return count;
4958 }
4959 
4960 /* All the new VM stuff */
4961 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4962 				  struct i915_address_space *vm)
4963 {
4964 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4965 	struct i915_vma *vma;
4966 
4967 	if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4968 		vm = &dev_priv->gtt.base;
4969 
4970 	BUG_ON(list_empty(&o->vma_list));
4971 	list_for_each_entry(vma, &o->vma_list, vma_link) {
4972 		if (vma->vm == vm)
4973 			return vma->node.start;
4974 
4975 	}
4976 	return -1;
4977 }
4978 
4979 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4980 			struct i915_address_space *vm)
4981 {
4982 	struct i915_vma *vma;
4983 
4984 	list_for_each_entry(vma, &o->vma_list, vma_link)
4985 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4986 			return true;
4987 
4988 	return false;
4989 }
4990 
4991 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4992 {
4993 	struct i915_vma *vma;
4994 
4995 	list_for_each_entry(vma, &o->vma_list, vma_link)
4996 		if (drm_mm_node_allocated(&vma->node))
4997 			return true;
4998 
4999 	return false;
5000 }
5001 
5002 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5003 				struct i915_address_space *vm)
5004 {
5005 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5006 	struct i915_vma *vma;
5007 
5008 	if (vm == &dev_priv->mm.aliasing_ppgtt->base)
5009 		vm = &dev_priv->gtt.base;
5010 
5011 	BUG_ON(list_empty(&o->vma_list));
5012 
5013 	list_for_each_entry(vma, &o->vma_list, vma_link)
5014 		if (vma->vm == vm)
5015 			return vma->node.size;
5016 
5017 	return 0;
5018 }
5019 
5020 static unsigned long
5021 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5022 {
5023 	struct drm_i915_private *dev_priv =
5024 		container_of(shrinker,
5025 			     struct drm_i915_private,
5026 			     mm.inactive_shrinker);
5027 	struct drm_device *dev = dev_priv->dev;
5028 	unsigned long freed;
5029 	bool unlock = true;
5030 
5031 	if (!mutex_trylock(&dev->struct_mutex)) {
5032 		if (!mutex_is_locked_by(&dev->struct_mutex, current))
5033 			return SHRINK_STOP;
5034 
5035 		if (dev_priv->mm.shrinker_no_lock_stealing)
5036 			return SHRINK_STOP;
5037 
5038 		unlock = false;
5039 	}
5040 
5041 	freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5042 	if (freed < sc->nr_to_scan)
5043 		freed += __i915_gem_shrink(dev_priv,
5044 					   sc->nr_to_scan - freed,
5045 					   false);
5046 	if (freed < sc->nr_to_scan)
5047 		freed += i915_gem_shrink_all(dev_priv);
5048 
5049 	if (unlock)
5050 		mutex_unlock(&dev->struct_mutex);
5051 
5052 	return freed;
5053 }
5054 
5055 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5056 {
5057 	struct i915_vma *vma;
5058 
5059 	if (WARN_ON(list_empty(&obj->vma_list)))
5060 		return NULL;
5061 
5062 	vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5063 	if (WARN_ON(vma->vm != obj_to_ggtt(obj)))
5064 		return NULL;
5065 
5066 	return vma;
5067 }
5068