xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision 72d25643)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_mocs.h"
36 #include <linux/shmem_fs.h>
37 #include <linux/slab.h>
38 #include <linux/swap.h>
39 #include <linux/pci.h>
40 #include <linux/dma-buf.h>
41 
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44 static void
45 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46 static void
47 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48 
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50 				  enum i915_cache_level level)
51 {
52 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
53 }
54 
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
58 		return false;
59 
60 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
61 		return true;
62 
63 	return obj->pin_display;
64 }
65 
66 static int
67 insert_mappable_node(struct drm_i915_private *i915,
68                      struct drm_mm_node *node, u32 size)
69 {
70 	memset(node, 0, sizeof(*node));
71 	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
72 						   size, 0, 0, 0,
73 						   i915->ggtt.mappable_end,
74 						   DRM_MM_SEARCH_DEFAULT,
75 						   DRM_MM_CREATE_DEFAULT);
76 }
77 
78 static void
79 remove_mappable_node(struct drm_mm_node *node)
80 {
81 	drm_mm_remove_node(node);
82 }
83 
84 /* some bookkeeping */
85 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86 				  size_t size)
87 {
88 	spin_lock(&dev_priv->mm.object_stat_lock);
89 	dev_priv->mm.object_count++;
90 	dev_priv->mm.object_memory += size;
91 	spin_unlock(&dev_priv->mm.object_stat_lock);
92 }
93 
94 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95 				     size_t size)
96 {
97 	spin_lock(&dev_priv->mm.object_stat_lock);
98 	dev_priv->mm.object_count--;
99 	dev_priv->mm.object_memory -= size;
100 	spin_unlock(&dev_priv->mm.object_stat_lock);
101 }
102 
103 static int
104 i915_gem_wait_for_error(struct i915_gpu_error *error)
105 {
106 	int ret;
107 
108 	if (!i915_reset_in_progress(error))
109 		return 0;
110 
111 	/*
112 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
113 	 * userspace. If it takes that long something really bad is going on and
114 	 * we should simply try to bail out and fail as gracefully as possible.
115 	 */
116 	ret = wait_event_interruptible_timeout(error->reset_queue,
117 					       !i915_reset_in_progress(error),
118 					       10*HZ);
119 	if (ret == 0) {
120 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
121 		return -EIO;
122 	} else if (ret < 0) {
123 		return ret;
124 	} else {
125 		return 0;
126 	}
127 }
128 
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131 	struct drm_i915_private *dev_priv = to_i915(dev);
132 	int ret;
133 
134 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 	if (ret)
136 		return ret;
137 
138 	ret = mutex_lock_interruptible(&dev->struct_mutex);
139 	if (ret)
140 		return ret;
141 
142 	WARN_ON(i915_verify_lists(dev));
143 	return 0;
144 }
145 
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148 			    struct drm_file *file)
149 {
150 	struct drm_i915_private *dev_priv = to_i915(dev);
151 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
152 	struct drm_i915_gem_get_aperture *args = data;
153 	struct i915_vma *vma;
154 	size_t pinned;
155 
156 	pinned = 0;
157 	mutex_lock(&dev->struct_mutex);
158 	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
159 		if (vma->pin_count)
160 			pinned += vma->node.size;
161 	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
162 		if (vma->pin_count)
163 			pinned += vma->node.size;
164 	mutex_unlock(&dev->struct_mutex);
165 
166 	args->aper_size = ggtt->base.total;
167 	args->aper_available_size = args->aper_size - pinned;
168 
169 	return 0;
170 }
171 
172 static int
173 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174 {
175 	struct address_space *mapping = obj->base.filp->f_mapping;
176 	char *vaddr = obj->phys_handle->vaddr;
177 	struct sg_table *st;
178 	struct scatterlist *sg;
179 	int i;
180 
181 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
182 		return -EINVAL;
183 
184 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
185 		struct page *page;
186 		char *src;
187 
188 		page = shmem_read_mapping_page(mapping, i);
189 		if (IS_ERR(page))
190 			return PTR_ERR(page);
191 
192 		src = kmap_atomic(page);
193 		memcpy(vaddr, src, PAGE_SIZE);
194 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
195 		kunmap_atomic(src);
196 
197 		put_page(page);
198 		vaddr += PAGE_SIZE;
199 	}
200 
201 	i915_gem_chipset_flush(to_i915(obj->base.dev));
202 
203 	st = kmalloc(sizeof(*st), GFP_KERNEL);
204 	if (st == NULL)
205 		return -ENOMEM;
206 
207 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
208 		kfree(st);
209 		return -ENOMEM;
210 	}
211 
212 	sg = st->sgl;
213 	sg->offset = 0;
214 	sg->length = obj->base.size;
215 
216 	sg_dma_address(sg) = obj->phys_handle->busaddr;
217 	sg_dma_len(sg) = obj->base.size;
218 
219 	obj->pages = st;
220 	return 0;
221 }
222 
223 static void
224 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
225 {
226 	int ret;
227 
228 	BUG_ON(obj->madv == __I915_MADV_PURGED);
229 
230 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
231 	if (WARN_ON(ret)) {
232 		/* In the event of a disaster, abandon all caches and
233 		 * hope for the best.
234 		 */
235 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
236 	}
237 
238 	if (obj->madv == I915_MADV_DONTNEED)
239 		obj->dirty = 0;
240 
241 	if (obj->dirty) {
242 		struct address_space *mapping = obj->base.filp->f_mapping;
243 		char *vaddr = obj->phys_handle->vaddr;
244 		int i;
245 
246 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
247 			struct page *page;
248 			char *dst;
249 
250 			page = shmem_read_mapping_page(mapping, i);
251 			if (IS_ERR(page))
252 				continue;
253 
254 			dst = kmap_atomic(page);
255 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
256 			memcpy(dst, vaddr, PAGE_SIZE);
257 			kunmap_atomic(dst);
258 
259 			set_page_dirty(page);
260 			if (obj->madv == I915_MADV_WILLNEED)
261 				mark_page_accessed(page);
262 			put_page(page);
263 			vaddr += PAGE_SIZE;
264 		}
265 		obj->dirty = 0;
266 	}
267 
268 	sg_free_table(obj->pages);
269 	kfree(obj->pages);
270 }
271 
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275 	drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277 
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 	.get_pages = i915_gem_object_get_pages_phys,
280 	.put_pages = i915_gem_object_put_pages_phys,
281 	.release = i915_gem_object_release_phys,
282 };
283 
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287 	struct i915_vma *vma, *next;
288 	int ret;
289 
290 	drm_gem_object_reference(&obj->base);
291 	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
292 		if (i915_vma_unbind(vma))
293 			break;
294 
295 	ret = i915_gem_object_put_pages(obj);
296 	drm_gem_object_unreference(&obj->base);
297 
298 	return ret;
299 }
300 
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 			    int align)
304 {
305 	drm_dma_handle_t *phys;
306 	int ret;
307 
308 	if (obj->phys_handle) {
309 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 			return -EBUSY;
311 
312 		return 0;
313 	}
314 
315 	if (obj->madv != I915_MADV_WILLNEED)
316 		return -EFAULT;
317 
318 	if (obj->base.filp == NULL)
319 		return -EINVAL;
320 
321 	ret = drop_pages(obj);
322 	if (ret)
323 		return ret;
324 
325 	/* create a new object */
326 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 	if (!phys)
328 		return -ENOMEM;
329 
330 	obj->phys_handle = phys;
331 	obj->ops = &i915_gem_phys_ops;
332 
333 	return i915_gem_object_get_pages(obj);
334 }
335 
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 		     struct drm_i915_gem_pwrite *args,
339 		     struct drm_file *file_priv)
340 {
341 	struct drm_device *dev = obj->base.dev;
342 	void *vaddr = obj->phys_handle->vaddr + args->offset;
343 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
344 	int ret = 0;
345 
346 	/* We manually control the domain here and pretend that it
347 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 	 */
349 	ret = i915_gem_object_wait_rendering(obj, false);
350 	if (ret)
351 		return ret;
352 
353 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 		unsigned long unwritten;
356 
357 		/* The physical object once assigned is fixed for the lifetime
358 		 * of the obj, so we can safely drop the lock and continue
359 		 * to access vaddr.
360 		 */
361 		mutex_unlock(&dev->struct_mutex);
362 		unwritten = copy_from_user(vaddr, user_data, args->size);
363 		mutex_lock(&dev->struct_mutex);
364 		if (unwritten) {
365 			ret = -EFAULT;
366 			goto out;
367 		}
368 	}
369 
370 	drm_clflush_virt_range(vaddr, args->size);
371 	i915_gem_chipset_flush(to_i915(dev));
372 
373 out:
374 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
375 	return ret;
376 }
377 
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380 	struct drm_i915_private *dev_priv = to_i915(dev);
381 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 }
383 
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
387 	kmem_cache_free(dev_priv->objects, obj);
388 }
389 
390 static int
391 i915_gem_create(struct drm_file *file,
392 		struct drm_device *dev,
393 		uint64_t size,
394 		uint32_t *handle_p)
395 {
396 	struct drm_i915_gem_object *obj;
397 	int ret;
398 	u32 handle;
399 
400 	size = roundup(size, PAGE_SIZE);
401 	if (size == 0)
402 		return -EINVAL;
403 
404 	/* Allocate the new object */
405 	obj = i915_gem_object_create(dev, size);
406 	if (IS_ERR(obj))
407 		return PTR_ERR(obj);
408 
409 	ret = drm_gem_handle_create(file, &obj->base, &handle);
410 	/* drop reference from allocate - handle holds it now */
411 	drm_gem_object_unreference_unlocked(&obj->base);
412 	if (ret)
413 		return ret;
414 
415 	*handle_p = handle;
416 	return 0;
417 }
418 
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421 		     struct drm_device *dev,
422 		     struct drm_mode_create_dumb *args)
423 {
424 	/* have to work out size/pitch and return them */
425 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 	args->size = args->pitch * args->height;
427 	return i915_gem_create(file, dev,
428 			       args->size, &args->handle);
429 }
430 
431 /**
432  * Creates a new mm object and returns a handle to it.
433  * @dev: drm device pointer
434  * @data: ioctl data blob
435  * @file: drm file pointer
436  */
437 int
438 i915_gem_create_ioctl(struct drm_device *dev, void *data,
439 		      struct drm_file *file)
440 {
441 	struct drm_i915_gem_create *args = data;
442 
443 	return i915_gem_create(file, dev,
444 			       args->size, &args->handle);
445 }
446 
447 static inline int
448 __copy_to_user_swizzled(char __user *cpu_vaddr,
449 			const char *gpu_vaddr, int gpu_offset,
450 			int length)
451 {
452 	int ret, cpu_offset = 0;
453 
454 	while (length > 0) {
455 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
456 		int this_length = min(cacheline_end - gpu_offset, length);
457 		int swizzled_gpu_offset = gpu_offset ^ 64;
458 
459 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
460 				     gpu_vaddr + swizzled_gpu_offset,
461 				     this_length);
462 		if (ret)
463 			return ret + length;
464 
465 		cpu_offset += this_length;
466 		gpu_offset += this_length;
467 		length -= this_length;
468 	}
469 
470 	return 0;
471 }
472 
473 static inline int
474 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
475 			  const char __user *cpu_vaddr,
476 			  int length)
477 {
478 	int ret, cpu_offset = 0;
479 
480 	while (length > 0) {
481 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
482 		int this_length = min(cacheline_end - gpu_offset, length);
483 		int swizzled_gpu_offset = gpu_offset ^ 64;
484 
485 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
486 				       cpu_vaddr + cpu_offset,
487 				       this_length);
488 		if (ret)
489 			return ret + length;
490 
491 		cpu_offset += this_length;
492 		gpu_offset += this_length;
493 		length -= this_length;
494 	}
495 
496 	return 0;
497 }
498 
499 /*
500  * Pins the specified object's pages and synchronizes the object with
501  * GPU accesses. Sets needs_clflush to non-zero if the caller should
502  * flush the object from the CPU cache.
503  */
504 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
505 				    int *needs_clflush)
506 {
507 	int ret;
508 
509 	*needs_clflush = 0;
510 
511 	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
512 		return -EINVAL;
513 
514 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
515 		/* If we're not in the cpu read domain, set ourself into the gtt
516 		 * read domain and manually flush cachelines (if required). This
517 		 * optimizes for the case when the gpu will dirty the data
518 		 * anyway again before the next pread happens. */
519 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
520 							obj->cache_level);
521 		ret = i915_gem_object_wait_rendering(obj, true);
522 		if (ret)
523 			return ret;
524 	}
525 
526 	ret = i915_gem_object_get_pages(obj);
527 	if (ret)
528 		return ret;
529 
530 	i915_gem_object_pin_pages(obj);
531 
532 	return ret;
533 }
534 
535 /* Per-page copy function for the shmem pread fastpath.
536  * Flushes invalid cachelines before reading the target if
537  * needs_clflush is set. */
538 static int
539 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
540 		 char __user *user_data,
541 		 bool page_do_bit17_swizzling, bool needs_clflush)
542 {
543 	char *vaddr;
544 	int ret;
545 
546 	if (unlikely(page_do_bit17_swizzling))
547 		return -EINVAL;
548 
549 	vaddr = kmap_atomic(page);
550 	if (needs_clflush)
551 		drm_clflush_virt_range(vaddr + shmem_page_offset,
552 				       page_length);
553 	ret = __copy_to_user_inatomic(user_data,
554 				      vaddr + shmem_page_offset,
555 				      page_length);
556 	kunmap_atomic(vaddr);
557 
558 	return ret ? -EFAULT : 0;
559 }
560 
561 static void
562 shmem_clflush_swizzled_range(char *addr, unsigned long length,
563 			     bool swizzled)
564 {
565 	if (unlikely(swizzled)) {
566 		unsigned long start = (unsigned long) addr;
567 		unsigned long end = (unsigned long) addr + length;
568 
569 		/* For swizzling simply ensure that we always flush both
570 		 * channels. Lame, but simple and it works. Swizzled
571 		 * pwrite/pread is far from a hotpath - current userspace
572 		 * doesn't use it at all. */
573 		start = round_down(start, 128);
574 		end = round_up(end, 128);
575 
576 		drm_clflush_virt_range((void *)start, end - start);
577 	} else {
578 		drm_clflush_virt_range(addr, length);
579 	}
580 
581 }
582 
583 /* Only difference to the fast-path function is that this can handle bit17
584  * and uses non-atomic copy and kmap functions. */
585 static int
586 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
587 		 char __user *user_data,
588 		 bool page_do_bit17_swizzling, bool needs_clflush)
589 {
590 	char *vaddr;
591 	int ret;
592 
593 	vaddr = kmap(page);
594 	if (needs_clflush)
595 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
596 					     page_length,
597 					     page_do_bit17_swizzling);
598 
599 	if (page_do_bit17_swizzling)
600 		ret = __copy_to_user_swizzled(user_data,
601 					      vaddr, shmem_page_offset,
602 					      page_length);
603 	else
604 		ret = __copy_to_user(user_data,
605 				     vaddr + shmem_page_offset,
606 				     page_length);
607 	kunmap(page);
608 
609 	return ret ? - EFAULT : 0;
610 }
611 
612 static inline unsigned long
613 slow_user_access(struct io_mapping *mapping,
614 		 uint64_t page_base, int page_offset,
615 		 char __user *user_data,
616 		 unsigned long length, bool pwrite)
617 {
618 	void __iomem *ioaddr;
619 	void *vaddr;
620 	uint64_t unwritten;
621 
622 	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
623 	/* We can use the cpu mem copy function because this is X86. */
624 	vaddr = (void __force *)ioaddr + page_offset;
625 	if (pwrite)
626 		unwritten = __copy_from_user(vaddr, user_data, length);
627 	else
628 		unwritten = __copy_to_user(user_data, vaddr, length);
629 
630 	io_mapping_unmap(ioaddr);
631 	return unwritten;
632 }
633 
634 static int
635 i915_gem_gtt_pread(struct drm_device *dev,
636 		   struct drm_i915_gem_object *obj, uint64_t size,
637 		   uint64_t data_offset, uint64_t data_ptr)
638 {
639 	struct drm_i915_private *dev_priv = to_i915(dev);
640 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
641 	struct drm_mm_node node;
642 	char __user *user_data;
643 	uint64_t remain;
644 	uint64_t offset;
645 	int ret;
646 
647 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
648 	if (ret) {
649 		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
650 		if (ret)
651 			goto out;
652 
653 		ret = i915_gem_object_get_pages(obj);
654 		if (ret) {
655 			remove_mappable_node(&node);
656 			goto out;
657 		}
658 
659 		i915_gem_object_pin_pages(obj);
660 	} else {
661 		node.start = i915_gem_obj_ggtt_offset(obj);
662 		node.allocated = false;
663 		ret = i915_gem_object_put_fence(obj);
664 		if (ret)
665 			goto out_unpin;
666 	}
667 
668 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
669 	if (ret)
670 		goto out_unpin;
671 
672 	user_data = u64_to_user_ptr(data_ptr);
673 	remain = size;
674 	offset = data_offset;
675 
676 	mutex_unlock(&dev->struct_mutex);
677 	if (likely(!i915.prefault_disable)) {
678 		ret = fault_in_multipages_writeable(user_data, remain);
679 		if (ret) {
680 			mutex_lock(&dev->struct_mutex);
681 			goto out_unpin;
682 		}
683 	}
684 
685 	while (remain > 0) {
686 		/* Operation in this page
687 		 *
688 		 * page_base = page offset within aperture
689 		 * page_offset = offset within page
690 		 * page_length = bytes to copy for this page
691 		 */
692 		u32 page_base = node.start;
693 		unsigned page_offset = offset_in_page(offset);
694 		unsigned page_length = PAGE_SIZE - page_offset;
695 		page_length = remain < page_length ? remain : page_length;
696 		if (node.allocated) {
697 			wmb();
698 			ggtt->base.insert_page(&ggtt->base,
699 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
700 					       node.start,
701 					       I915_CACHE_NONE, 0);
702 			wmb();
703 		} else {
704 			page_base += offset & PAGE_MASK;
705 		}
706 		/* This is a slow read/write as it tries to read from
707 		 * and write to user memory which may result into page
708 		 * faults, and so we cannot perform this under struct_mutex.
709 		 */
710 		if (slow_user_access(ggtt->mappable, page_base,
711 				     page_offset, user_data,
712 				     page_length, false)) {
713 			ret = -EFAULT;
714 			break;
715 		}
716 
717 		remain -= page_length;
718 		user_data += page_length;
719 		offset += page_length;
720 	}
721 
722 	mutex_lock(&dev->struct_mutex);
723 	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
724 		/* The user has modified the object whilst we tried
725 		 * reading from it, and we now have no idea what domain
726 		 * the pages should be in. As we have just been touching
727 		 * them directly, flush everything back to the GTT
728 		 * domain.
729 		 */
730 		ret = i915_gem_object_set_to_gtt_domain(obj, false);
731 	}
732 
733 out_unpin:
734 	if (node.allocated) {
735 		wmb();
736 		ggtt->base.clear_range(&ggtt->base,
737 				       node.start, node.size,
738 				       true);
739 		i915_gem_object_unpin_pages(obj);
740 		remove_mappable_node(&node);
741 	} else {
742 		i915_gem_object_ggtt_unpin(obj);
743 	}
744 out:
745 	return ret;
746 }
747 
748 static int
749 i915_gem_shmem_pread(struct drm_device *dev,
750 		     struct drm_i915_gem_object *obj,
751 		     struct drm_i915_gem_pread *args,
752 		     struct drm_file *file)
753 {
754 	char __user *user_data;
755 	ssize_t remain;
756 	loff_t offset;
757 	int shmem_page_offset, page_length, ret = 0;
758 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
759 	int prefaulted = 0;
760 	int needs_clflush = 0;
761 	struct sg_page_iter sg_iter;
762 
763 	if (!i915_gem_object_has_struct_page(obj))
764 		return -ENODEV;
765 
766 	user_data = u64_to_user_ptr(args->data_ptr);
767 	remain = args->size;
768 
769 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
770 
771 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
772 	if (ret)
773 		return ret;
774 
775 	offset = args->offset;
776 
777 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
778 			 offset >> PAGE_SHIFT) {
779 		struct page *page = sg_page_iter_page(&sg_iter);
780 
781 		if (remain <= 0)
782 			break;
783 
784 		/* Operation in this page
785 		 *
786 		 * shmem_page_offset = offset within page in shmem file
787 		 * page_length = bytes to copy for this page
788 		 */
789 		shmem_page_offset = offset_in_page(offset);
790 		page_length = remain;
791 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
792 			page_length = PAGE_SIZE - shmem_page_offset;
793 
794 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
795 			(page_to_phys(page) & (1 << 17)) != 0;
796 
797 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
798 				       user_data, page_do_bit17_swizzling,
799 				       needs_clflush);
800 		if (ret == 0)
801 			goto next_page;
802 
803 		mutex_unlock(&dev->struct_mutex);
804 
805 		if (likely(!i915.prefault_disable) && !prefaulted) {
806 			ret = fault_in_multipages_writeable(user_data, remain);
807 			/* Userspace is tricking us, but we've already clobbered
808 			 * its pages with the prefault and promised to write the
809 			 * data up to the first fault. Hence ignore any errors
810 			 * and just continue. */
811 			(void)ret;
812 			prefaulted = 1;
813 		}
814 
815 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
816 				       user_data, page_do_bit17_swizzling,
817 				       needs_clflush);
818 
819 		mutex_lock(&dev->struct_mutex);
820 
821 		if (ret)
822 			goto out;
823 
824 next_page:
825 		remain -= page_length;
826 		user_data += page_length;
827 		offset += page_length;
828 	}
829 
830 out:
831 	i915_gem_object_unpin_pages(obj);
832 
833 	return ret;
834 }
835 
836 /**
837  * Reads data from the object referenced by handle.
838  * @dev: drm device pointer
839  * @data: ioctl data blob
840  * @file: drm file pointer
841  *
842  * On error, the contents of *data are undefined.
843  */
844 int
845 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
846 		     struct drm_file *file)
847 {
848 	struct drm_i915_gem_pread *args = data;
849 	struct drm_i915_gem_object *obj;
850 	int ret = 0;
851 
852 	if (args->size == 0)
853 		return 0;
854 
855 	if (!access_ok(VERIFY_WRITE,
856 		       u64_to_user_ptr(args->data_ptr),
857 		       args->size))
858 		return -EFAULT;
859 
860 	ret = i915_mutex_lock_interruptible(dev);
861 	if (ret)
862 		return ret;
863 
864 	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
865 	if (&obj->base == NULL) {
866 		ret = -ENOENT;
867 		goto unlock;
868 	}
869 
870 	/* Bounds check source.  */
871 	if (args->offset > obj->base.size ||
872 	    args->size > obj->base.size - args->offset) {
873 		ret = -EINVAL;
874 		goto out;
875 	}
876 
877 	trace_i915_gem_object_pread(obj, args->offset, args->size);
878 
879 	ret = i915_gem_shmem_pread(dev, obj, args, file);
880 
881 	/* pread for non shmem backed objects */
882 	if (ret == -EFAULT || ret == -ENODEV)
883 		ret = i915_gem_gtt_pread(dev, obj, args->size,
884 					args->offset, args->data_ptr);
885 
886 out:
887 	drm_gem_object_unreference(&obj->base);
888 unlock:
889 	mutex_unlock(&dev->struct_mutex);
890 	return ret;
891 }
892 
893 /* This is the fast write path which cannot handle
894  * page faults in the source data
895  */
896 
897 static inline int
898 fast_user_write(struct io_mapping *mapping,
899 		loff_t page_base, int page_offset,
900 		char __user *user_data,
901 		int length)
902 {
903 	void __iomem *vaddr_atomic;
904 	void *vaddr;
905 	unsigned long unwritten;
906 
907 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
908 	/* We can use the cpu mem copy function because this is X86. */
909 	vaddr = (void __force*)vaddr_atomic + page_offset;
910 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
911 						      user_data, length);
912 	io_mapping_unmap_atomic(vaddr_atomic);
913 	return unwritten;
914 }
915 
916 /**
917  * This is the fast pwrite path, where we copy the data directly from the
918  * user into the GTT, uncached.
919  * @dev: drm device pointer
920  * @obj: i915 gem object
921  * @args: pwrite arguments structure
922  * @file: drm file pointer
923  */
924 static int
925 i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
926 			 struct drm_i915_gem_object *obj,
927 			 struct drm_i915_gem_pwrite *args,
928 			 struct drm_file *file)
929 {
930 	struct i915_ggtt *ggtt = &i915->ggtt;
931 	struct drm_device *dev = obj->base.dev;
932 	struct drm_mm_node node;
933 	uint64_t remain, offset;
934 	char __user *user_data;
935 	int ret;
936 	bool hit_slow_path = false;
937 
938 	if (obj->tiling_mode != I915_TILING_NONE)
939 		return -EFAULT;
940 
941 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
942 	if (ret) {
943 		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
944 		if (ret)
945 			goto out;
946 
947 		ret = i915_gem_object_get_pages(obj);
948 		if (ret) {
949 			remove_mappable_node(&node);
950 			goto out;
951 		}
952 
953 		i915_gem_object_pin_pages(obj);
954 	} else {
955 		node.start = i915_gem_obj_ggtt_offset(obj);
956 		node.allocated = false;
957 		ret = i915_gem_object_put_fence(obj);
958 		if (ret)
959 			goto out_unpin;
960 	}
961 
962 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
963 	if (ret)
964 		goto out_unpin;
965 
966 	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
967 	obj->dirty = true;
968 
969 	user_data = u64_to_user_ptr(args->data_ptr);
970 	offset = args->offset;
971 	remain = args->size;
972 	while (remain) {
973 		/* Operation in this page
974 		 *
975 		 * page_base = page offset within aperture
976 		 * page_offset = offset within page
977 		 * page_length = bytes to copy for this page
978 		 */
979 		u32 page_base = node.start;
980 		unsigned page_offset = offset_in_page(offset);
981 		unsigned page_length = PAGE_SIZE - page_offset;
982 		page_length = remain < page_length ? remain : page_length;
983 		if (node.allocated) {
984 			wmb(); /* flush the write before we modify the GGTT */
985 			ggtt->base.insert_page(&ggtt->base,
986 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
987 					       node.start, I915_CACHE_NONE, 0);
988 			wmb(); /* flush modifications to the GGTT (insert_page) */
989 		} else {
990 			page_base += offset & PAGE_MASK;
991 		}
992 		/* If we get a fault while copying data, then (presumably) our
993 		 * source page isn't available.  Return the error and we'll
994 		 * retry in the slow path.
995 		 * If the object is non-shmem backed, we retry again with the
996 		 * path that handles page fault.
997 		 */
998 		if (fast_user_write(ggtt->mappable, page_base,
999 				    page_offset, user_data, page_length)) {
1000 			hit_slow_path = true;
1001 			mutex_unlock(&dev->struct_mutex);
1002 			if (slow_user_access(ggtt->mappable,
1003 					     page_base,
1004 					     page_offset, user_data,
1005 					     page_length, true)) {
1006 				ret = -EFAULT;
1007 				mutex_lock(&dev->struct_mutex);
1008 				goto out_flush;
1009 			}
1010 
1011 			mutex_lock(&dev->struct_mutex);
1012 		}
1013 
1014 		remain -= page_length;
1015 		user_data += page_length;
1016 		offset += page_length;
1017 	}
1018 
1019 out_flush:
1020 	if (hit_slow_path) {
1021 		if (ret == 0 &&
1022 		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1023 			/* The user has modified the object whilst we tried
1024 			 * reading from it, and we now have no idea what domain
1025 			 * the pages should be in. As we have just been touching
1026 			 * them directly, flush everything back to the GTT
1027 			 * domain.
1028 			 */
1029 			ret = i915_gem_object_set_to_gtt_domain(obj, false);
1030 		}
1031 	}
1032 
1033 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
1034 out_unpin:
1035 	if (node.allocated) {
1036 		wmb();
1037 		ggtt->base.clear_range(&ggtt->base,
1038 				       node.start, node.size,
1039 				       true);
1040 		i915_gem_object_unpin_pages(obj);
1041 		remove_mappable_node(&node);
1042 	} else {
1043 		i915_gem_object_ggtt_unpin(obj);
1044 	}
1045 out:
1046 	return ret;
1047 }
1048 
1049 /* Per-page copy function for the shmem pwrite fastpath.
1050  * Flushes invalid cachelines before writing to the target if
1051  * needs_clflush_before is set and flushes out any written cachelines after
1052  * writing if needs_clflush is set. */
1053 static int
1054 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1055 		  char __user *user_data,
1056 		  bool page_do_bit17_swizzling,
1057 		  bool needs_clflush_before,
1058 		  bool needs_clflush_after)
1059 {
1060 	char *vaddr;
1061 	int ret;
1062 
1063 	if (unlikely(page_do_bit17_swizzling))
1064 		return -EINVAL;
1065 
1066 	vaddr = kmap_atomic(page);
1067 	if (needs_clflush_before)
1068 		drm_clflush_virt_range(vaddr + shmem_page_offset,
1069 				       page_length);
1070 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1071 					user_data, page_length);
1072 	if (needs_clflush_after)
1073 		drm_clflush_virt_range(vaddr + shmem_page_offset,
1074 				       page_length);
1075 	kunmap_atomic(vaddr);
1076 
1077 	return ret ? -EFAULT : 0;
1078 }
1079 
1080 /* Only difference to the fast-path function is that this can handle bit17
1081  * and uses non-atomic copy and kmap functions. */
1082 static int
1083 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1084 		  char __user *user_data,
1085 		  bool page_do_bit17_swizzling,
1086 		  bool needs_clflush_before,
1087 		  bool needs_clflush_after)
1088 {
1089 	char *vaddr;
1090 	int ret;
1091 
1092 	vaddr = kmap(page);
1093 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1094 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1095 					     page_length,
1096 					     page_do_bit17_swizzling);
1097 	if (page_do_bit17_swizzling)
1098 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1099 						user_data,
1100 						page_length);
1101 	else
1102 		ret = __copy_from_user(vaddr + shmem_page_offset,
1103 				       user_data,
1104 				       page_length);
1105 	if (needs_clflush_after)
1106 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1107 					     page_length,
1108 					     page_do_bit17_swizzling);
1109 	kunmap(page);
1110 
1111 	return ret ? -EFAULT : 0;
1112 }
1113 
1114 static int
1115 i915_gem_shmem_pwrite(struct drm_device *dev,
1116 		      struct drm_i915_gem_object *obj,
1117 		      struct drm_i915_gem_pwrite *args,
1118 		      struct drm_file *file)
1119 {
1120 	ssize_t remain;
1121 	loff_t offset;
1122 	char __user *user_data;
1123 	int shmem_page_offset, page_length, ret = 0;
1124 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1125 	int hit_slowpath = 0;
1126 	int needs_clflush_after = 0;
1127 	int needs_clflush_before = 0;
1128 	struct sg_page_iter sg_iter;
1129 
1130 	user_data = u64_to_user_ptr(args->data_ptr);
1131 	remain = args->size;
1132 
1133 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1134 
1135 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1136 		/* If we're not in the cpu write domain, set ourself into the gtt
1137 		 * write domain and manually flush cachelines (if required). This
1138 		 * optimizes for the case when the gpu will use the data
1139 		 * right away and we therefore have to clflush anyway. */
1140 		needs_clflush_after = cpu_write_needs_clflush(obj);
1141 		ret = i915_gem_object_wait_rendering(obj, false);
1142 		if (ret)
1143 			return ret;
1144 	}
1145 	/* Same trick applies to invalidate partially written cachelines read
1146 	 * before writing. */
1147 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1148 		needs_clflush_before =
1149 			!cpu_cache_is_coherent(dev, obj->cache_level);
1150 
1151 	ret = i915_gem_object_get_pages(obj);
1152 	if (ret)
1153 		return ret;
1154 
1155 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1156 
1157 	i915_gem_object_pin_pages(obj);
1158 
1159 	offset = args->offset;
1160 	obj->dirty = 1;
1161 
1162 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1163 			 offset >> PAGE_SHIFT) {
1164 		struct page *page = sg_page_iter_page(&sg_iter);
1165 		int partial_cacheline_write;
1166 
1167 		if (remain <= 0)
1168 			break;
1169 
1170 		/* Operation in this page
1171 		 *
1172 		 * shmem_page_offset = offset within page in shmem file
1173 		 * page_length = bytes to copy for this page
1174 		 */
1175 		shmem_page_offset = offset_in_page(offset);
1176 
1177 		page_length = remain;
1178 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
1179 			page_length = PAGE_SIZE - shmem_page_offset;
1180 
1181 		/* If we don't overwrite a cacheline completely we need to be
1182 		 * careful to have up-to-date data by first clflushing. Don't
1183 		 * overcomplicate things and flush the entire patch. */
1184 		partial_cacheline_write = needs_clflush_before &&
1185 			((shmem_page_offset | page_length)
1186 				& (boot_cpu_data.x86_clflush_size - 1));
1187 
1188 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1189 			(page_to_phys(page) & (1 << 17)) != 0;
1190 
1191 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1192 					user_data, page_do_bit17_swizzling,
1193 					partial_cacheline_write,
1194 					needs_clflush_after);
1195 		if (ret == 0)
1196 			goto next_page;
1197 
1198 		hit_slowpath = 1;
1199 		mutex_unlock(&dev->struct_mutex);
1200 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1201 					user_data, page_do_bit17_swizzling,
1202 					partial_cacheline_write,
1203 					needs_clflush_after);
1204 
1205 		mutex_lock(&dev->struct_mutex);
1206 
1207 		if (ret)
1208 			goto out;
1209 
1210 next_page:
1211 		remain -= page_length;
1212 		user_data += page_length;
1213 		offset += page_length;
1214 	}
1215 
1216 out:
1217 	i915_gem_object_unpin_pages(obj);
1218 
1219 	if (hit_slowpath) {
1220 		/*
1221 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
1222 		 * cachelines in-line while writing and the object moved
1223 		 * out of the cpu write domain while we've dropped the lock.
1224 		 */
1225 		if (!needs_clflush_after &&
1226 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1227 			if (i915_gem_clflush_object(obj, obj->pin_display))
1228 				needs_clflush_after = true;
1229 		}
1230 	}
1231 
1232 	if (needs_clflush_after)
1233 		i915_gem_chipset_flush(to_i915(dev));
1234 	else
1235 		obj->cache_dirty = true;
1236 
1237 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1238 	return ret;
1239 }
1240 
1241 /**
1242  * Writes data to the object referenced by handle.
1243  * @dev: drm device
1244  * @data: ioctl data blob
1245  * @file: drm file
1246  *
1247  * On error, the contents of the buffer that were to be modified are undefined.
1248  */
1249 int
1250 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1251 		      struct drm_file *file)
1252 {
1253 	struct drm_i915_private *dev_priv = to_i915(dev);
1254 	struct drm_i915_gem_pwrite *args = data;
1255 	struct drm_i915_gem_object *obj;
1256 	int ret;
1257 
1258 	if (args->size == 0)
1259 		return 0;
1260 
1261 	if (!access_ok(VERIFY_READ,
1262 		       u64_to_user_ptr(args->data_ptr),
1263 		       args->size))
1264 		return -EFAULT;
1265 
1266 	if (likely(!i915.prefault_disable)) {
1267 		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1268 						   args->size);
1269 		if (ret)
1270 			return -EFAULT;
1271 	}
1272 
1273 	intel_runtime_pm_get(dev_priv);
1274 
1275 	ret = i915_mutex_lock_interruptible(dev);
1276 	if (ret)
1277 		goto put_rpm;
1278 
1279 	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1280 	if (&obj->base == NULL) {
1281 		ret = -ENOENT;
1282 		goto unlock;
1283 	}
1284 
1285 	/* Bounds check destination. */
1286 	if (args->offset > obj->base.size ||
1287 	    args->size > obj->base.size - args->offset) {
1288 		ret = -EINVAL;
1289 		goto out;
1290 	}
1291 
1292 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1293 
1294 	ret = -EFAULT;
1295 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1296 	 * it would end up going through the fenced access, and we'll get
1297 	 * different detiling behavior between reading and writing.
1298 	 * pread/pwrite currently are reading and writing from the CPU
1299 	 * perspective, requiring manual detiling by the client.
1300 	 */
1301 	if (!i915_gem_object_has_struct_page(obj) ||
1302 	    cpu_write_needs_clflush(obj)) {
1303 		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
1304 		/* Note that the gtt paths might fail with non-page-backed user
1305 		 * pointers (e.g. gtt mappings when moving data between
1306 		 * textures). Fallback to the shmem path in that case. */
1307 	}
1308 
1309 	if (ret == -EFAULT) {
1310 		if (obj->phys_handle)
1311 			ret = i915_gem_phys_pwrite(obj, args, file);
1312 		else if (i915_gem_object_has_struct_page(obj))
1313 			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1314 		else
1315 			ret = -ENODEV;
1316 	}
1317 
1318 out:
1319 	drm_gem_object_unreference(&obj->base);
1320 unlock:
1321 	mutex_unlock(&dev->struct_mutex);
1322 put_rpm:
1323 	intel_runtime_pm_put(dev_priv);
1324 
1325 	return ret;
1326 }
1327 
1328 static int
1329 i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1330 {
1331 	if (__i915_terminally_wedged(reset_counter))
1332 		return -EIO;
1333 
1334 	if (__i915_reset_in_progress(reset_counter)) {
1335 		/* Non-interruptible callers can't handle -EAGAIN, hence return
1336 		 * -EIO unconditionally for these. */
1337 		if (!interruptible)
1338 			return -EIO;
1339 
1340 		return -EAGAIN;
1341 	}
1342 
1343 	return 0;
1344 }
1345 
1346 static unsigned long local_clock_us(unsigned *cpu)
1347 {
1348 	unsigned long t;
1349 
1350 	/* Cheaply and approximately convert from nanoseconds to microseconds.
1351 	 * The result and subsequent calculations are also defined in the same
1352 	 * approximate microseconds units. The principal source of timing
1353 	 * error here is from the simple truncation.
1354 	 *
1355 	 * Note that local_clock() is only defined wrt to the current CPU;
1356 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1357 	 * blocking preemption for the entire busywait, we can detect the CPU
1358 	 * switch and use that as indicator of system load and a reason to
1359 	 * stop busywaiting, see busywait_stop().
1360 	 */
1361 	*cpu = get_cpu();
1362 	t = local_clock() >> 10;
1363 	put_cpu();
1364 
1365 	return t;
1366 }
1367 
1368 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1369 {
1370 	unsigned this_cpu;
1371 
1372 	if (time_after(local_clock_us(&this_cpu), timeout))
1373 		return true;
1374 
1375 	return this_cpu != cpu;
1376 }
1377 
1378 bool __i915_spin_request(const struct drm_i915_gem_request *req,
1379 			 int state, unsigned long timeout_us)
1380 {
1381 	unsigned cpu;
1382 
1383 	/* When waiting for high frequency requests, e.g. during synchronous
1384 	 * rendering split between the CPU and GPU, the finite amount of time
1385 	 * required to set up the irq and wait upon it limits the response
1386 	 * rate. By busywaiting on the request completion for a short while we
1387 	 * can service the high frequency waits as quick as possible. However,
1388 	 * if it is a slow request, we want to sleep as quickly as possible.
1389 	 * The tradeoff between waiting and sleeping is roughly the time it
1390 	 * takes to sleep on a request, on the order of a microsecond.
1391 	 */
1392 
1393 	timeout_us += local_clock_us(&cpu);
1394 	do {
1395 		if (i915_gem_request_completed(req))
1396 			return true;
1397 
1398 		if (signal_pending_state(state, current))
1399 			break;
1400 
1401 		if (busywait_stop(timeout_us, cpu))
1402 			break;
1403 
1404 		cpu_relax_lowlatency();
1405 	} while (!need_resched());
1406 
1407 	return false;
1408 }
1409 
1410 /**
1411  * __i915_wait_request - wait until execution of request has finished
1412  * @req: duh!
1413  * @interruptible: do an interruptible wait (normally yes)
1414  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1415  * @rps: RPS client
1416  *
1417  * Note: It is of utmost importance that the passed in seqno and reset_counter
1418  * values have been read by the caller in an smp safe manner. Where read-side
1419  * locks are involved, it is sufficient to read the reset_counter before
1420  * unlocking the lock that protects the seqno. For lockless tricks, the
1421  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1422  * inserted.
1423  *
1424  * Returns 0 if the request was found within the alloted time. Else returns the
1425  * errno with remaining time filled in timeout argument.
1426  */
1427 int __i915_wait_request(struct drm_i915_gem_request *req,
1428 			bool interruptible,
1429 			s64 *timeout,
1430 			struct intel_rps_client *rps)
1431 {
1432 	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1433 	DEFINE_WAIT(reset);
1434 	struct intel_wait wait;
1435 	unsigned long timeout_remain;
1436 	s64 before = 0; /* Only to silence a compiler warning. */
1437 	int ret = 0;
1438 
1439 	might_sleep();
1440 
1441 	if (list_empty(&req->list))
1442 		return 0;
1443 
1444 	if (i915_gem_request_completed(req))
1445 		return 0;
1446 
1447 	timeout_remain = MAX_SCHEDULE_TIMEOUT;
1448 	if (timeout) {
1449 		if (WARN_ON(*timeout < 0))
1450 			return -EINVAL;
1451 
1452 		if (*timeout == 0)
1453 			return -ETIME;
1454 
1455 		timeout_remain = nsecs_to_jiffies_timeout(*timeout);
1456 
1457 		/*
1458 		 * Record current time in case interrupted by signal, or wedged.
1459 		 */
1460 		before = ktime_get_raw_ns();
1461 	}
1462 
1463 	trace_i915_gem_request_wait_begin(req);
1464 
1465 	/* This client is about to stall waiting for the GPU. In many cases
1466 	 * this is undesirable and limits the throughput of the system, as
1467 	 * many clients cannot continue processing user input/output whilst
1468 	 * blocked. RPS autotuning may take tens of milliseconds to respond
1469 	 * to the GPU load and thus incurs additional latency for the client.
1470 	 * We can circumvent that by promoting the GPU frequency to maximum
1471 	 * before we wait. This makes the GPU throttle up much more quickly
1472 	 * (good for benchmarks and user experience, e.g. window animations),
1473 	 * but at a cost of spending more power processing the workload
1474 	 * (bad for battery). Not all clients even want their results
1475 	 * immediately and for them we should just let the GPU select its own
1476 	 * frequency to maximise efficiency. To prevent a single client from
1477 	 * forcing the clocks too high for the whole system, we only allow
1478 	 * each client to waitboost once in a busy period.
1479 	 */
1480 	if (INTEL_INFO(req->i915)->gen >= 6)
1481 		gen6_rps_boost(req->i915, rps, req->emitted_jiffies);
1482 
1483 	/* Optimistic spin for the next ~jiffie before touching IRQs */
1484 	if (i915_spin_request(req, state, 5))
1485 		goto complete;
1486 
1487 	set_current_state(state);
1488 	add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1489 
1490 	intel_wait_init(&wait, req->seqno);
1491 	if (intel_engine_add_wait(req->engine, &wait))
1492 		/* In order to check that we haven't missed the interrupt
1493 		 * as we enabled it, we need to kick ourselves to do a
1494 		 * coherent check on the seqno before we sleep.
1495 		 */
1496 		goto wakeup;
1497 
1498 	for (;;) {
1499 		if (signal_pending_state(state, current)) {
1500 			ret = -ERESTARTSYS;
1501 			break;
1502 		}
1503 
1504 		timeout_remain = io_schedule_timeout(timeout_remain);
1505 		if (timeout_remain == 0) {
1506 			ret = -ETIME;
1507 			break;
1508 		}
1509 
1510 		if (intel_wait_complete(&wait))
1511 			break;
1512 
1513 		set_current_state(state);
1514 
1515 wakeup:
1516 		/* Carefully check if the request is complete, giving time
1517 		 * for the seqno to be visible following the interrupt.
1518 		 * We also have to check in case we are kicked by the GPU
1519 		 * reset in order to drop the struct_mutex.
1520 		 */
1521 		if (__i915_request_irq_complete(req))
1522 			break;
1523 
1524 		/* Only spin if we know the GPU is processing this request */
1525 		if (i915_spin_request(req, state, 2))
1526 			break;
1527 	}
1528 	remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1529 
1530 	intel_engine_remove_wait(req->engine, &wait);
1531 	__set_current_state(TASK_RUNNING);
1532 complete:
1533 	trace_i915_gem_request_wait_end(req);
1534 
1535 	if (timeout) {
1536 		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1537 
1538 		*timeout = tres < 0 ? 0 : tres;
1539 
1540 		/*
1541 		 * Apparently ktime isn't accurate enough and occasionally has a
1542 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1543 		 * things up to make the test happy. We allow up to 1 jiffy.
1544 		 *
1545 		 * This is a regrssion from the timespec->ktime conversion.
1546 		 */
1547 		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1548 			*timeout = 0;
1549 	}
1550 
1551 	if (rps && req->seqno == req->engine->last_submitted_seqno) {
1552 		/* The GPU is now idle and this client has stalled.
1553 		 * Since no other client has submitted a request in the
1554 		 * meantime, assume that this client is the only one
1555 		 * supplying work to the GPU but is unable to keep that
1556 		 * work supplied because it is waiting. Since the GPU is
1557 		 * then never kept fully busy, RPS autoclocking will
1558 		 * keep the clocks relatively low, causing further delays.
1559 		 * Compensate by giving the synchronous client credit for
1560 		 * a waitboost next time.
1561 		 */
1562 		spin_lock(&req->i915->rps.client_lock);
1563 		list_del_init(&rps->link);
1564 		spin_unlock(&req->i915->rps.client_lock);
1565 	}
1566 
1567 	return ret;
1568 }
1569 
1570 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1571 				   struct drm_file *file)
1572 {
1573 	struct drm_i915_file_private *file_priv;
1574 
1575 	WARN_ON(!req || !file || req->file_priv);
1576 
1577 	if (!req || !file)
1578 		return -EINVAL;
1579 
1580 	if (req->file_priv)
1581 		return -EINVAL;
1582 
1583 	file_priv = file->driver_priv;
1584 
1585 	spin_lock(&file_priv->mm.lock);
1586 	req->file_priv = file_priv;
1587 	list_add_tail(&req->client_list, &file_priv->mm.request_list);
1588 	spin_unlock(&file_priv->mm.lock);
1589 
1590 	req->pid = get_pid(task_pid(current));
1591 
1592 	return 0;
1593 }
1594 
1595 static inline void
1596 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1597 {
1598 	struct drm_i915_file_private *file_priv = request->file_priv;
1599 
1600 	if (!file_priv)
1601 		return;
1602 
1603 	spin_lock(&file_priv->mm.lock);
1604 	list_del(&request->client_list);
1605 	request->file_priv = NULL;
1606 	spin_unlock(&file_priv->mm.lock);
1607 
1608 	put_pid(request->pid);
1609 	request->pid = NULL;
1610 }
1611 
1612 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1613 {
1614 	trace_i915_gem_request_retire(request);
1615 
1616 	/* We know the GPU must have read the request to have
1617 	 * sent us the seqno + interrupt, so use the position
1618 	 * of tail of the request to update the last known position
1619 	 * of the GPU head.
1620 	 *
1621 	 * Note this requires that we are always called in request
1622 	 * completion order.
1623 	 */
1624 	request->ringbuf->last_retired_head = request->postfix;
1625 
1626 	list_del_init(&request->list);
1627 	i915_gem_request_remove_from_client(request);
1628 
1629 	if (request->previous_context) {
1630 		if (i915.enable_execlists)
1631 			intel_lr_context_unpin(request->previous_context,
1632 					       request->engine);
1633 	}
1634 
1635 	i915_gem_context_unreference(request->ctx);
1636 	i915_gem_request_unreference(request);
1637 }
1638 
1639 static void
1640 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1641 {
1642 	struct intel_engine_cs *engine = req->engine;
1643 	struct drm_i915_gem_request *tmp;
1644 
1645 	lockdep_assert_held(&engine->i915->drm.struct_mutex);
1646 
1647 	if (list_empty(&req->list))
1648 		return;
1649 
1650 	do {
1651 		tmp = list_first_entry(&engine->request_list,
1652 				       typeof(*tmp), list);
1653 
1654 		i915_gem_request_retire(tmp);
1655 	} while (tmp != req);
1656 
1657 	WARN_ON(i915_verify_lists(engine->dev));
1658 }
1659 
1660 /**
1661  * Waits for a request to be signaled, and cleans up the
1662  * request and object lists appropriately for that event.
1663  * @req: request to wait on
1664  */
1665 int
1666 i915_wait_request(struct drm_i915_gem_request *req)
1667 {
1668 	struct drm_i915_private *dev_priv = req->i915;
1669 	bool interruptible;
1670 	int ret;
1671 
1672 	interruptible = dev_priv->mm.interruptible;
1673 
1674 	BUG_ON(!mutex_is_locked(&dev_priv->drm.struct_mutex));
1675 
1676 	ret = __i915_wait_request(req, interruptible, NULL, NULL);
1677 	if (ret)
1678 		return ret;
1679 
1680 	/* If the GPU hung, we want to keep the requests to find the guilty. */
1681 	if (!i915_reset_in_progress(&dev_priv->gpu_error))
1682 		__i915_gem_request_retire__upto(req);
1683 
1684 	return 0;
1685 }
1686 
1687 /**
1688  * Ensures that all rendering to the object has completed and the object is
1689  * safe to unbind from the GTT or access from the CPU.
1690  * @obj: i915 gem object
1691  * @readonly: waiting for read access or write
1692  */
1693 int
1694 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1695 			       bool readonly)
1696 {
1697 	int ret, i;
1698 
1699 	if (!obj->active)
1700 		return 0;
1701 
1702 	if (readonly) {
1703 		if (obj->last_write_req != NULL) {
1704 			ret = i915_wait_request(obj->last_write_req);
1705 			if (ret)
1706 				return ret;
1707 
1708 			i = obj->last_write_req->engine->id;
1709 			if (obj->last_read_req[i] == obj->last_write_req)
1710 				i915_gem_object_retire__read(obj, i);
1711 			else
1712 				i915_gem_object_retire__write(obj);
1713 		}
1714 	} else {
1715 		for (i = 0; i < I915_NUM_ENGINES; i++) {
1716 			if (obj->last_read_req[i] == NULL)
1717 				continue;
1718 
1719 			ret = i915_wait_request(obj->last_read_req[i]);
1720 			if (ret)
1721 				return ret;
1722 
1723 			i915_gem_object_retire__read(obj, i);
1724 		}
1725 		GEM_BUG_ON(obj->active);
1726 	}
1727 
1728 	return 0;
1729 }
1730 
1731 static void
1732 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1733 			       struct drm_i915_gem_request *req)
1734 {
1735 	int ring = req->engine->id;
1736 
1737 	if (obj->last_read_req[ring] == req)
1738 		i915_gem_object_retire__read(obj, ring);
1739 	else if (obj->last_write_req == req)
1740 		i915_gem_object_retire__write(obj);
1741 
1742 	if (!i915_reset_in_progress(&req->i915->gpu_error))
1743 		__i915_gem_request_retire__upto(req);
1744 }
1745 
1746 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1747  * as the object state may change during this call.
1748  */
1749 static __must_check int
1750 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1751 					    struct intel_rps_client *rps,
1752 					    bool readonly)
1753 {
1754 	struct drm_device *dev = obj->base.dev;
1755 	struct drm_i915_private *dev_priv = to_i915(dev);
1756 	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1757 	int ret, i, n = 0;
1758 
1759 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1760 	BUG_ON(!dev_priv->mm.interruptible);
1761 
1762 	if (!obj->active)
1763 		return 0;
1764 
1765 	if (readonly) {
1766 		struct drm_i915_gem_request *req;
1767 
1768 		req = obj->last_write_req;
1769 		if (req == NULL)
1770 			return 0;
1771 
1772 		requests[n++] = i915_gem_request_reference(req);
1773 	} else {
1774 		for (i = 0; i < I915_NUM_ENGINES; i++) {
1775 			struct drm_i915_gem_request *req;
1776 
1777 			req = obj->last_read_req[i];
1778 			if (req == NULL)
1779 				continue;
1780 
1781 			requests[n++] = i915_gem_request_reference(req);
1782 		}
1783 	}
1784 
1785 	mutex_unlock(&dev->struct_mutex);
1786 	ret = 0;
1787 	for (i = 0; ret == 0 && i < n; i++)
1788 		ret = __i915_wait_request(requests[i], true, NULL, rps);
1789 	mutex_lock(&dev->struct_mutex);
1790 
1791 	for (i = 0; i < n; i++) {
1792 		if (ret == 0)
1793 			i915_gem_object_retire_request(obj, requests[i]);
1794 		i915_gem_request_unreference(requests[i]);
1795 	}
1796 
1797 	return ret;
1798 }
1799 
1800 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1801 {
1802 	struct drm_i915_file_private *fpriv = file->driver_priv;
1803 	return &fpriv->rps;
1804 }
1805 
1806 static enum fb_op_origin
1807 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1808 {
1809 	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
1810 	       ORIGIN_GTT : ORIGIN_CPU;
1811 }
1812 
1813 /**
1814  * Called when user space prepares to use an object with the CPU, either
1815  * through the mmap ioctl's mapping or a GTT mapping.
1816  * @dev: drm device
1817  * @data: ioctl data blob
1818  * @file: drm file
1819  */
1820 int
1821 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1822 			  struct drm_file *file)
1823 {
1824 	struct drm_i915_gem_set_domain *args = data;
1825 	struct drm_i915_gem_object *obj;
1826 	uint32_t read_domains = args->read_domains;
1827 	uint32_t write_domain = args->write_domain;
1828 	int ret;
1829 
1830 	/* Only handle setting domains to types used by the CPU. */
1831 	if (write_domain & I915_GEM_GPU_DOMAINS)
1832 		return -EINVAL;
1833 
1834 	if (read_domains & I915_GEM_GPU_DOMAINS)
1835 		return -EINVAL;
1836 
1837 	/* Having something in the write domain implies it's in the read
1838 	 * domain, and only that read domain.  Enforce that in the request.
1839 	 */
1840 	if (write_domain != 0 && read_domains != write_domain)
1841 		return -EINVAL;
1842 
1843 	ret = i915_mutex_lock_interruptible(dev);
1844 	if (ret)
1845 		return ret;
1846 
1847 	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1848 	if (&obj->base == NULL) {
1849 		ret = -ENOENT;
1850 		goto unlock;
1851 	}
1852 
1853 	/* Try to flush the object off the GPU without holding the lock.
1854 	 * We will repeat the flush holding the lock in the normal manner
1855 	 * to catch cases where we are gazumped.
1856 	 */
1857 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1858 							  to_rps_client(file),
1859 							  !write_domain);
1860 	if (ret)
1861 		goto unref;
1862 
1863 	if (read_domains & I915_GEM_DOMAIN_GTT)
1864 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1865 	else
1866 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1867 
1868 	if (write_domain != 0)
1869 		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1870 
1871 unref:
1872 	drm_gem_object_unreference(&obj->base);
1873 unlock:
1874 	mutex_unlock(&dev->struct_mutex);
1875 	return ret;
1876 }
1877 
1878 /**
1879  * Called when user space has done writes to this buffer
1880  * @dev: drm device
1881  * @data: ioctl data blob
1882  * @file: drm file
1883  */
1884 int
1885 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1886 			 struct drm_file *file)
1887 {
1888 	struct drm_i915_gem_sw_finish *args = data;
1889 	struct drm_i915_gem_object *obj;
1890 	int ret = 0;
1891 
1892 	ret = i915_mutex_lock_interruptible(dev);
1893 	if (ret)
1894 		return ret;
1895 
1896 	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1897 	if (&obj->base == NULL) {
1898 		ret = -ENOENT;
1899 		goto unlock;
1900 	}
1901 
1902 	/* Pinned buffers may be scanout, so flush the cache */
1903 	if (obj->pin_display)
1904 		i915_gem_object_flush_cpu_write_domain(obj);
1905 
1906 	drm_gem_object_unreference(&obj->base);
1907 unlock:
1908 	mutex_unlock(&dev->struct_mutex);
1909 	return ret;
1910 }
1911 
1912 /**
1913  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1914  *			 it is mapped to.
1915  * @dev: drm device
1916  * @data: ioctl data blob
1917  * @file: drm file
1918  *
1919  * While the mapping holds a reference on the contents of the object, it doesn't
1920  * imply a ref on the object itself.
1921  *
1922  * IMPORTANT:
1923  *
1924  * DRM driver writers who look a this function as an example for how to do GEM
1925  * mmap support, please don't implement mmap support like here. The modern way
1926  * to implement DRM mmap support is with an mmap offset ioctl (like
1927  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1928  * That way debug tooling like valgrind will understand what's going on, hiding
1929  * the mmap call in a driver private ioctl will break that. The i915 driver only
1930  * does cpu mmaps this way because we didn't know better.
1931  */
1932 int
1933 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1934 		    struct drm_file *file)
1935 {
1936 	struct drm_i915_gem_mmap *args = data;
1937 	struct drm_gem_object *obj;
1938 	unsigned long addr;
1939 
1940 	if (args->flags & ~(I915_MMAP_WC))
1941 		return -EINVAL;
1942 
1943 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1944 		return -ENODEV;
1945 
1946 	obj = drm_gem_object_lookup(file, args->handle);
1947 	if (obj == NULL)
1948 		return -ENOENT;
1949 
1950 	/* prime objects have no backing filp to GEM mmap
1951 	 * pages from.
1952 	 */
1953 	if (!obj->filp) {
1954 		drm_gem_object_unreference_unlocked(obj);
1955 		return -EINVAL;
1956 	}
1957 
1958 	addr = vm_mmap(obj->filp, 0, args->size,
1959 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1960 		       args->offset);
1961 	if (args->flags & I915_MMAP_WC) {
1962 		struct mm_struct *mm = current->mm;
1963 		struct vm_area_struct *vma;
1964 
1965 		if (down_write_killable(&mm->mmap_sem)) {
1966 			drm_gem_object_unreference_unlocked(obj);
1967 			return -EINTR;
1968 		}
1969 		vma = find_vma(mm, addr);
1970 		if (vma)
1971 			vma->vm_page_prot =
1972 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1973 		else
1974 			addr = -ENOMEM;
1975 		up_write(&mm->mmap_sem);
1976 
1977 		/* This may race, but that's ok, it only gets set */
1978 		WRITE_ONCE(to_intel_bo(obj)->has_wc_mmap, true);
1979 	}
1980 	drm_gem_object_unreference_unlocked(obj);
1981 	if (IS_ERR((void *)addr))
1982 		return addr;
1983 
1984 	args->addr_ptr = (uint64_t) addr;
1985 
1986 	return 0;
1987 }
1988 
1989 /**
1990  * i915_gem_fault - fault a page into the GTT
1991  * @vma: VMA in question
1992  * @vmf: fault info
1993  *
1994  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1995  * from userspace.  The fault handler takes care of binding the object to
1996  * the GTT (if needed), allocating and programming a fence register (again,
1997  * only if needed based on whether the old reg is still valid or the object
1998  * is tiled) and inserting a new PTE into the faulting process.
1999  *
2000  * Note that the faulting process may involve evicting existing objects
2001  * from the GTT and/or fence registers to make room.  So performance may
2002  * suffer if the GTT working set is large or there are few fence registers
2003  * left.
2004  */
2005 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2006 {
2007 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
2008 	struct drm_device *dev = obj->base.dev;
2009 	struct drm_i915_private *dev_priv = to_i915(dev);
2010 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2011 	struct i915_ggtt_view view = i915_ggtt_view_normal;
2012 	pgoff_t page_offset;
2013 	unsigned long pfn;
2014 	int ret = 0;
2015 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
2016 
2017 	intel_runtime_pm_get(dev_priv);
2018 
2019 	/* We don't use vmf->pgoff since that has the fake offset */
2020 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
2021 		PAGE_SHIFT;
2022 
2023 	ret = i915_mutex_lock_interruptible(dev);
2024 	if (ret)
2025 		goto out;
2026 
2027 	trace_i915_gem_object_fault(obj, page_offset, true, write);
2028 
2029 	/* Try to flush the object off the GPU first without holding the lock.
2030 	 * Upon reacquiring the lock, we will perform our sanity checks and then
2031 	 * repeat the flush holding the lock in the normal manner to catch cases
2032 	 * where we are gazumped.
2033 	 */
2034 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
2035 	if (ret)
2036 		goto unlock;
2037 
2038 	/* Access to snoopable pages through the GTT is incoherent. */
2039 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
2040 		ret = -EFAULT;
2041 		goto unlock;
2042 	}
2043 
2044 	/* Use a partial view if the object is bigger than the aperture. */
2045 	if (obj->base.size >= ggtt->mappable_end &&
2046 	    obj->tiling_mode == I915_TILING_NONE) {
2047 		static const unsigned int chunk_size = 256; // 1 MiB
2048 
2049 		memset(&view, 0, sizeof(view));
2050 		view.type = I915_GGTT_VIEW_PARTIAL;
2051 		view.params.partial.offset = rounddown(page_offset, chunk_size);
2052 		view.params.partial.size =
2053 			min_t(unsigned int,
2054 			      chunk_size,
2055 			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
2056 			      view.params.partial.offset);
2057 	}
2058 
2059 	/* Now pin it into the GTT if needed */
2060 	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
2061 	if (ret)
2062 		goto unlock;
2063 
2064 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
2065 	if (ret)
2066 		goto unpin;
2067 
2068 	ret = i915_gem_object_get_fence(obj);
2069 	if (ret)
2070 		goto unpin;
2071 
2072 	/* Finally, remap it using the new GTT offset */
2073 	pfn = ggtt->mappable_base +
2074 		i915_gem_obj_ggtt_offset_view(obj, &view);
2075 	pfn >>= PAGE_SHIFT;
2076 
2077 	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
2078 		/* Overriding existing pages in partial view does not cause
2079 		 * us any trouble as TLBs are still valid because the fault
2080 		 * is due to userspace losing part of the mapping or never
2081 		 * having accessed it before (at this partials' range).
2082 		 */
2083 		unsigned long base = vma->vm_start +
2084 				     (view.params.partial.offset << PAGE_SHIFT);
2085 		unsigned int i;
2086 
2087 		for (i = 0; i < view.params.partial.size; i++) {
2088 			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
2089 			if (ret)
2090 				break;
2091 		}
2092 
2093 		obj->fault_mappable = true;
2094 	} else {
2095 		if (!obj->fault_mappable) {
2096 			unsigned long size = min_t(unsigned long,
2097 						   vma->vm_end - vma->vm_start,
2098 						   obj->base.size);
2099 			int i;
2100 
2101 			for (i = 0; i < size >> PAGE_SHIFT; i++) {
2102 				ret = vm_insert_pfn(vma,
2103 						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
2104 						    pfn + i);
2105 				if (ret)
2106 					break;
2107 			}
2108 
2109 			obj->fault_mappable = true;
2110 		} else
2111 			ret = vm_insert_pfn(vma,
2112 					    (unsigned long)vmf->virtual_address,
2113 					    pfn + page_offset);
2114 	}
2115 unpin:
2116 	i915_gem_object_ggtt_unpin_view(obj, &view);
2117 unlock:
2118 	mutex_unlock(&dev->struct_mutex);
2119 out:
2120 	switch (ret) {
2121 	case -EIO:
2122 		/*
2123 		 * We eat errors when the gpu is terminally wedged to avoid
2124 		 * userspace unduly crashing (gl has no provisions for mmaps to
2125 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2126 		 * and so needs to be reported.
2127 		 */
2128 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2129 			ret = VM_FAULT_SIGBUS;
2130 			break;
2131 		}
2132 	case -EAGAIN:
2133 		/*
2134 		 * EAGAIN means the gpu is hung and we'll wait for the error
2135 		 * handler to reset everything when re-faulting in
2136 		 * i915_mutex_lock_interruptible.
2137 		 */
2138 	case 0:
2139 	case -ERESTARTSYS:
2140 	case -EINTR:
2141 	case -EBUSY:
2142 		/*
2143 		 * EBUSY is ok: this just means that another thread
2144 		 * already did the job.
2145 		 */
2146 		ret = VM_FAULT_NOPAGE;
2147 		break;
2148 	case -ENOMEM:
2149 		ret = VM_FAULT_OOM;
2150 		break;
2151 	case -ENOSPC:
2152 	case -EFAULT:
2153 		ret = VM_FAULT_SIGBUS;
2154 		break;
2155 	default:
2156 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2157 		ret = VM_FAULT_SIGBUS;
2158 		break;
2159 	}
2160 
2161 	intel_runtime_pm_put(dev_priv);
2162 	return ret;
2163 }
2164 
2165 /**
2166  * i915_gem_release_mmap - remove physical page mappings
2167  * @obj: obj in question
2168  *
2169  * Preserve the reservation of the mmapping with the DRM core code, but
2170  * relinquish ownership of the pages back to the system.
2171  *
2172  * It is vital that we remove the page mapping if we have mapped a tiled
2173  * object through the GTT and then lose the fence register due to
2174  * resource pressure. Similarly if the object has been moved out of the
2175  * aperture, than pages mapped into userspace must be revoked. Removing the
2176  * mapping will then trigger a page fault on the next user access, allowing
2177  * fixup by i915_gem_fault().
2178  */
2179 void
2180 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2181 {
2182 	/* Serialisation between user GTT access and our code depends upon
2183 	 * revoking the CPU's PTE whilst the mutex is held. The next user
2184 	 * pagefault then has to wait until we release the mutex.
2185 	 */
2186 	lockdep_assert_held(&obj->base.dev->struct_mutex);
2187 
2188 	if (!obj->fault_mappable)
2189 		return;
2190 
2191 	drm_vma_node_unmap(&obj->base.vma_node,
2192 			   obj->base.dev->anon_inode->i_mapping);
2193 
2194 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
2195 	 * memory transactions from userspace before we return. The TLB
2196 	 * flushing implied above by changing the PTE above *should* be
2197 	 * sufficient, an extra barrier here just provides us with a bit
2198 	 * of paranoid documentation about our requirement to serialise
2199 	 * memory writes before touching registers / GSM.
2200 	 */
2201 	wmb();
2202 
2203 	obj->fault_mappable = false;
2204 }
2205 
2206 void
2207 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
2208 {
2209 	struct drm_i915_gem_object *obj;
2210 
2211 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
2212 		i915_gem_release_mmap(obj);
2213 }
2214 
2215 uint32_t
2216 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2217 {
2218 	uint32_t gtt_size;
2219 
2220 	if (INTEL_INFO(dev)->gen >= 4 ||
2221 	    tiling_mode == I915_TILING_NONE)
2222 		return size;
2223 
2224 	/* Previous chips need a power-of-two fence region when tiling */
2225 	if (IS_GEN3(dev))
2226 		gtt_size = 1024*1024;
2227 	else
2228 		gtt_size = 512*1024;
2229 
2230 	while (gtt_size < size)
2231 		gtt_size <<= 1;
2232 
2233 	return gtt_size;
2234 }
2235 
2236 /**
2237  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2238  * @dev: drm device
2239  * @size: object size
2240  * @tiling_mode: tiling mode
2241  * @fenced: is fenced alignemned required or not
2242  *
2243  * Return the required GTT alignment for an object, taking into account
2244  * potential fence register mapping.
2245  */
2246 uint32_t
2247 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2248 			   int tiling_mode, bool fenced)
2249 {
2250 	/*
2251 	 * Minimum alignment is 4k (GTT page size), but might be greater
2252 	 * if a fence register is needed for the object.
2253 	 */
2254 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2255 	    tiling_mode == I915_TILING_NONE)
2256 		return 4096;
2257 
2258 	/*
2259 	 * Previous chips need to be aligned to the size of the smallest
2260 	 * fence register that can contain the object.
2261 	 */
2262 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2263 }
2264 
2265 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2266 {
2267 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2268 	int ret;
2269 
2270 	dev_priv->mm.shrinker_no_lock_stealing = true;
2271 
2272 	ret = drm_gem_create_mmap_offset(&obj->base);
2273 	if (ret != -ENOSPC)
2274 		goto out;
2275 
2276 	/* Badly fragmented mmap space? The only way we can recover
2277 	 * space is by destroying unwanted objects. We can't randomly release
2278 	 * mmap_offsets as userspace expects them to be persistent for the
2279 	 * lifetime of the objects. The closest we can is to release the
2280 	 * offsets on purgeable objects by truncating it and marking it purged,
2281 	 * which prevents userspace from ever using that object again.
2282 	 */
2283 	i915_gem_shrink(dev_priv,
2284 			obj->base.size >> PAGE_SHIFT,
2285 			I915_SHRINK_BOUND |
2286 			I915_SHRINK_UNBOUND |
2287 			I915_SHRINK_PURGEABLE);
2288 	ret = drm_gem_create_mmap_offset(&obj->base);
2289 	if (ret != -ENOSPC)
2290 		goto out;
2291 
2292 	i915_gem_shrink_all(dev_priv);
2293 	ret = drm_gem_create_mmap_offset(&obj->base);
2294 out:
2295 	dev_priv->mm.shrinker_no_lock_stealing = false;
2296 
2297 	return ret;
2298 }
2299 
2300 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2301 {
2302 	drm_gem_free_mmap_offset(&obj->base);
2303 }
2304 
2305 int
2306 i915_gem_mmap_gtt(struct drm_file *file,
2307 		  struct drm_device *dev,
2308 		  uint32_t handle,
2309 		  uint64_t *offset)
2310 {
2311 	struct drm_i915_gem_object *obj;
2312 	int ret;
2313 
2314 	ret = i915_mutex_lock_interruptible(dev);
2315 	if (ret)
2316 		return ret;
2317 
2318 	obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2319 	if (&obj->base == NULL) {
2320 		ret = -ENOENT;
2321 		goto unlock;
2322 	}
2323 
2324 	if (obj->madv != I915_MADV_WILLNEED) {
2325 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2326 		ret = -EFAULT;
2327 		goto out;
2328 	}
2329 
2330 	ret = i915_gem_object_create_mmap_offset(obj);
2331 	if (ret)
2332 		goto out;
2333 
2334 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2335 
2336 out:
2337 	drm_gem_object_unreference(&obj->base);
2338 unlock:
2339 	mutex_unlock(&dev->struct_mutex);
2340 	return ret;
2341 }
2342 
2343 /**
2344  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2345  * @dev: DRM device
2346  * @data: GTT mapping ioctl data
2347  * @file: GEM object info
2348  *
2349  * Simply returns the fake offset to userspace so it can mmap it.
2350  * The mmap call will end up in drm_gem_mmap(), which will set things
2351  * up so we can get faults in the handler above.
2352  *
2353  * The fault handler will take care of binding the object into the GTT
2354  * (since it may have been evicted to make room for something), allocating
2355  * a fence register, and mapping the appropriate aperture address into
2356  * userspace.
2357  */
2358 int
2359 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2360 			struct drm_file *file)
2361 {
2362 	struct drm_i915_gem_mmap_gtt *args = data;
2363 
2364 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2365 }
2366 
2367 /* Immediately discard the backing storage */
2368 static void
2369 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2370 {
2371 	i915_gem_object_free_mmap_offset(obj);
2372 
2373 	if (obj->base.filp == NULL)
2374 		return;
2375 
2376 	/* Our goal here is to return as much of the memory as
2377 	 * is possible back to the system as we are called from OOM.
2378 	 * To do this we must instruct the shmfs to drop all of its
2379 	 * backing pages, *now*.
2380 	 */
2381 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2382 	obj->madv = __I915_MADV_PURGED;
2383 }
2384 
2385 /* Try to discard unwanted pages */
2386 static void
2387 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2388 {
2389 	struct address_space *mapping;
2390 
2391 	switch (obj->madv) {
2392 	case I915_MADV_DONTNEED:
2393 		i915_gem_object_truncate(obj);
2394 	case __I915_MADV_PURGED:
2395 		return;
2396 	}
2397 
2398 	if (obj->base.filp == NULL)
2399 		return;
2400 
2401 	mapping = obj->base.filp->f_mapping,
2402 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2403 }
2404 
2405 static void
2406 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2407 {
2408 	struct sgt_iter sgt_iter;
2409 	struct page *page;
2410 	int ret;
2411 
2412 	BUG_ON(obj->madv == __I915_MADV_PURGED);
2413 
2414 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2415 	if (WARN_ON(ret)) {
2416 		/* In the event of a disaster, abandon all caches and
2417 		 * hope for the best.
2418 		 */
2419 		i915_gem_clflush_object(obj, true);
2420 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2421 	}
2422 
2423 	i915_gem_gtt_finish_object(obj);
2424 
2425 	if (i915_gem_object_needs_bit17_swizzle(obj))
2426 		i915_gem_object_save_bit_17_swizzle(obj);
2427 
2428 	if (obj->madv == I915_MADV_DONTNEED)
2429 		obj->dirty = 0;
2430 
2431 	for_each_sgt_page(page, sgt_iter, obj->pages) {
2432 		if (obj->dirty)
2433 			set_page_dirty(page);
2434 
2435 		if (obj->madv == I915_MADV_WILLNEED)
2436 			mark_page_accessed(page);
2437 
2438 		put_page(page);
2439 	}
2440 	obj->dirty = 0;
2441 
2442 	sg_free_table(obj->pages);
2443 	kfree(obj->pages);
2444 }
2445 
2446 int
2447 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2448 {
2449 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2450 
2451 	if (obj->pages == NULL)
2452 		return 0;
2453 
2454 	if (obj->pages_pin_count)
2455 		return -EBUSY;
2456 
2457 	BUG_ON(i915_gem_obj_bound_any(obj));
2458 
2459 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2460 	 * array, hence protect them from being reaped by removing them from gtt
2461 	 * lists early. */
2462 	list_del(&obj->global_list);
2463 
2464 	if (obj->mapping) {
2465 		if (is_vmalloc_addr(obj->mapping))
2466 			vunmap(obj->mapping);
2467 		else
2468 			kunmap(kmap_to_page(obj->mapping));
2469 		obj->mapping = NULL;
2470 	}
2471 
2472 	ops->put_pages(obj);
2473 	obj->pages = NULL;
2474 
2475 	i915_gem_object_invalidate(obj);
2476 
2477 	return 0;
2478 }
2479 
2480 static int
2481 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2482 {
2483 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2484 	int page_count, i;
2485 	struct address_space *mapping;
2486 	struct sg_table *st;
2487 	struct scatterlist *sg;
2488 	struct sgt_iter sgt_iter;
2489 	struct page *page;
2490 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2491 	int ret;
2492 	gfp_t gfp;
2493 
2494 	/* Assert that the object is not currently in any GPU domain. As it
2495 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2496 	 * a GPU cache
2497 	 */
2498 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2499 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2500 
2501 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2502 	if (st == NULL)
2503 		return -ENOMEM;
2504 
2505 	page_count = obj->base.size / PAGE_SIZE;
2506 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2507 		kfree(st);
2508 		return -ENOMEM;
2509 	}
2510 
2511 	/* Get the list of pages out of our struct file.  They'll be pinned
2512 	 * at this point until we release them.
2513 	 *
2514 	 * Fail silently without starting the shrinker
2515 	 */
2516 	mapping = obj->base.filp->f_mapping;
2517 	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2518 	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2519 	sg = st->sgl;
2520 	st->nents = 0;
2521 	for (i = 0; i < page_count; i++) {
2522 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2523 		if (IS_ERR(page)) {
2524 			i915_gem_shrink(dev_priv,
2525 					page_count,
2526 					I915_SHRINK_BOUND |
2527 					I915_SHRINK_UNBOUND |
2528 					I915_SHRINK_PURGEABLE);
2529 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2530 		}
2531 		if (IS_ERR(page)) {
2532 			/* We've tried hard to allocate the memory by reaping
2533 			 * our own buffer, now let the real VM do its job and
2534 			 * go down in flames if truly OOM.
2535 			 */
2536 			i915_gem_shrink_all(dev_priv);
2537 			page = shmem_read_mapping_page(mapping, i);
2538 			if (IS_ERR(page)) {
2539 				ret = PTR_ERR(page);
2540 				goto err_pages;
2541 			}
2542 		}
2543 #ifdef CONFIG_SWIOTLB
2544 		if (swiotlb_nr_tbl()) {
2545 			st->nents++;
2546 			sg_set_page(sg, page, PAGE_SIZE, 0);
2547 			sg = sg_next(sg);
2548 			continue;
2549 		}
2550 #endif
2551 		if (!i || page_to_pfn(page) != last_pfn + 1) {
2552 			if (i)
2553 				sg = sg_next(sg);
2554 			st->nents++;
2555 			sg_set_page(sg, page, PAGE_SIZE, 0);
2556 		} else {
2557 			sg->length += PAGE_SIZE;
2558 		}
2559 		last_pfn = page_to_pfn(page);
2560 
2561 		/* Check that the i965g/gm workaround works. */
2562 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2563 	}
2564 #ifdef CONFIG_SWIOTLB
2565 	if (!swiotlb_nr_tbl())
2566 #endif
2567 		sg_mark_end(sg);
2568 	obj->pages = st;
2569 
2570 	ret = i915_gem_gtt_prepare_object(obj);
2571 	if (ret)
2572 		goto err_pages;
2573 
2574 	if (i915_gem_object_needs_bit17_swizzle(obj))
2575 		i915_gem_object_do_bit_17_swizzle(obj);
2576 
2577 	if (obj->tiling_mode != I915_TILING_NONE &&
2578 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2579 		i915_gem_object_pin_pages(obj);
2580 
2581 	return 0;
2582 
2583 err_pages:
2584 	sg_mark_end(sg);
2585 	for_each_sgt_page(page, sgt_iter, st)
2586 		put_page(page);
2587 	sg_free_table(st);
2588 	kfree(st);
2589 
2590 	/* shmemfs first checks if there is enough memory to allocate the page
2591 	 * and reports ENOSPC should there be insufficient, along with the usual
2592 	 * ENOMEM for a genuine allocation failure.
2593 	 *
2594 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2595 	 * space and so want to translate the error from shmemfs back to our
2596 	 * usual understanding of ENOMEM.
2597 	 */
2598 	if (ret == -ENOSPC)
2599 		ret = -ENOMEM;
2600 
2601 	return ret;
2602 }
2603 
2604 /* Ensure that the associated pages are gathered from the backing storage
2605  * and pinned into our object. i915_gem_object_get_pages() may be called
2606  * multiple times before they are released by a single call to
2607  * i915_gem_object_put_pages() - once the pages are no longer referenced
2608  * either as a result of memory pressure (reaping pages under the shrinker)
2609  * or as the object is itself released.
2610  */
2611 int
2612 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2613 {
2614 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2615 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2616 	int ret;
2617 
2618 	if (obj->pages)
2619 		return 0;
2620 
2621 	if (obj->madv != I915_MADV_WILLNEED) {
2622 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2623 		return -EFAULT;
2624 	}
2625 
2626 	BUG_ON(obj->pages_pin_count);
2627 
2628 	ret = ops->get_pages(obj);
2629 	if (ret)
2630 		return ret;
2631 
2632 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2633 
2634 	obj->get_page.sg = obj->pages->sgl;
2635 	obj->get_page.last = 0;
2636 
2637 	return 0;
2638 }
2639 
2640 /* The 'mapping' part of i915_gem_object_pin_map() below */
2641 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
2642 {
2643 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2644 	struct sg_table *sgt = obj->pages;
2645 	struct sgt_iter sgt_iter;
2646 	struct page *page;
2647 	struct page *stack_pages[32];
2648 	struct page **pages = stack_pages;
2649 	unsigned long i = 0;
2650 	void *addr;
2651 
2652 	/* A single page can always be kmapped */
2653 	if (n_pages == 1)
2654 		return kmap(sg_page(sgt->sgl));
2655 
2656 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2657 		/* Too big for stack -- allocate temporary array instead */
2658 		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2659 		if (!pages)
2660 			return NULL;
2661 	}
2662 
2663 	for_each_sgt_page(page, sgt_iter, sgt)
2664 		pages[i++] = page;
2665 
2666 	/* Check that we have the expected number of pages */
2667 	GEM_BUG_ON(i != n_pages);
2668 
2669 	addr = vmap(pages, n_pages, 0, PAGE_KERNEL);
2670 
2671 	if (pages != stack_pages)
2672 		drm_free_large(pages);
2673 
2674 	return addr;
2675 }
2676 
2677 /* get, pin, and map the pages of the object into kernel space */
2678 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2679 {
2680 	int ret;
2681 
2682 	lockdep_assert_held(&obj->base.dev->struct_mutex);
2683 
2684 	ret = i915_gem_object_get_pages(obj);
2685 	if (ret)
2686 		return ERR_PTR(ret);
2687 
2688 	i915_gem_object_pin_pages(obj);
2689 
2690 	if (!obj->mapping) {
2691 		obj->mapping = i915_gem_object_map(obj);
2692 		if (!obj->mapping) {
2693 			i915_gem_object_unpin_pages(obj);
2694 			return ERR_PTR(-ENOMEM);
2695 		}
2696 	}
2697 
2698 	return obj->mapping;
2699 }
2700 
2701 void i915_vma_move_to_active(struct i915_vma *vma,
2702 			     struct drm_i915_gem_request *req)
2703 {
2704 	struct drm_i915_gem_object *obj = vma->obj;
2705 	struct intel_engine_cs *engine;
2706 
2707 	engine = i915_gem_request_get_engine(req);
2708 
2709 	/* Add a reference if we're newly entering the active list. */
2710 	if (obj->active == 0)
2711 		drm_gem_object_reference(&obj->base);
2712 	obj->active |= intel_engine_flag(engine);
2713 
2714 	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2715 	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2716 
2717 	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2718 }
2719 
2720 static void
2721 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2722 {
2723 	GEM_BUG_ON(obj->last_write_req == NULL);
2724 	GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2725 
2726 	i915_gem_request_assign(&obj->last_write_req, NULL);
2727 	intel_fb_obj_flush(obj, true, ORIGIN_CS);
2728 }
2729 
2730 static void
2731 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2732 {
2733 	struct i915_vma *vma;
2734 
2735 	GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2736 	GEM_BUG_ON(!(obj->active & (1 << ring)));
2737 
2738 	list_del_init(&obj->engine_list[ring]);
2739 	i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2740 
2741 	if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2742 		i915_gem_object_retire__write(obj);
2743 
2744 	obj->active &= ~(1 << ring);
2745 	if (obj->active)
2746 		return;
2747 
2748 	/* Bump our place on the bound list to keep it roughly in LRU order
2749 	 * so that we don't steal from recently used but inactive objects
2750 	 * (unless we are forced to ofc!)
2751 	 */
2752 	list_move_tail(&obj->global_list,
2753 		       &to_i915(obj->base.dev)->mm.bound_list);
2754 
2755 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
2756 		if (!list_empty(&vma->vm_link))
2757 			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2758 	}
2759 
2760 	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2761 	drm_gem_object_unreference(&obj->base);
2762 }
2763 
2764 static int
2765 i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
2766 {
2767 	struct intel_engine_cs *engine;
2768 	int ret;
2769 
2770 	/* Carefully retire all requests without writing to the rings */
2771 	for_each_engine(engine, dev_priv) {
2772 		ret = intel_engine_idle(engine);
2773 		if (ret)
2774 			return ret;
2775 	}
2776 	i915_gem_retire_requests(dev_priv);
2777 
2778 	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
2779 	if (!i915_seqno_passed(seqno, dev_priv->next_seqno)) {
2780 		while (intel_kick_waiters(dev_priv) ||
2781 		       intel_kick_signalers(dev_priv))
2782 			yield();
2783 	}
2784 
2785 	/* Finally reset hw state */
2786 	for_each_engine(engine, dev_priv)
2787 		intel_ring_init_seqno(engine, seqno);
2788 
2789 	return 0;
2790 }
2791 
2792 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2793 {
2794 	struct drm_i915_private *dev_priv = to_i915(dev);
2795 	int ret;
2796 
2797 	if (seqno == 0)
2798 		return -EINVAL;
2799 
2800 	/* HWS page needs to be set less than what we
2801 	 * will inject to ring
2802 	 */
2803 	ret = i915_gem_init_seqno(dev_priv, seqno - 1);
2804 	if (ret)
2805 		return ret;
2806 
2807 	/* Carefully set the last_seqno value so that wrap
2808 	 * detection still works
2809 	 */
2810 	dev_priv->next_seqno = seqno;
2811 	dev_priv->last_seqno = seqno - 1;
2812 	if (dev_priv->last_seqno == 0)
2813 		dev_priv->last_seqno--;
2814 
2815 	return 0;
2816 }
2817 
2818 int
2819 i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
2820 {
2821 	/* reserve 0 for non-seqno */
2822 	if (dev_priv->next_seqno == 0) {
2823 		int ret = i915_gem_init_seqno(dev_priv, 0);
2824 		if (ret)
2825 			return ret;
2826 
2827 		dev_priv->next_seqno = 1;
2828 	}
2829 
2830 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2831 	return 0;
2832 }
2833 
2834 static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
2835 {
2836 	struct drm_i915_private *dev_priv = engine->i915;
2837 
2838 	dev_priv->gt.active_engines |= intel_engine_flag(engine);
2839 	if (dev_priv->gt.awake)
2840 		return;
2841 
2842 	intel_runtime_pm_get_noresume(dev_priv);
2843 	dev_priv->gt.awake = true;
2844 
2845 	i915_update_gfx_val(dev_priv);
2846 	if (INTEL_GEN(dev_priv) >= 6)
2847 		gen6_rps_busy(dev_priv);
2848 
2849 	queue_delayed_work(dev_priv->wq,
2850 			   &dev_priv->gt.retire_work,
2851 			   round_jiffies_up_relative(HZ));
2852 }
2853 
2854 /*
2855  * NB: This function is not allowed to fail. Doing so would mean the the
2856  * request is not being tracked for completion but the work itself is
2857  * going to happen on the hardware. This would be a Bad Thing(tm).
2858  */
2859 void __i915_add_request(struct drm_i915_gem_request *request,
2860 			struct drm_i915_gem_object *obj,
2861 			bool flush_caches)
2862 {
2863 	struct intel_engine_cs *engine;
2864 	struct intel_ringbuffer *ringbuf;
2865 	u32 request_start;
2866 	u32 reserved_tail;
2867 	int ret;
2868 
2869 	if (WARN_ON(request == NULL))
2870 		return;
2871 
2872 	engine = request->engine;
2873 	ringbuf = request->ringbuf;
2874 
2875 	/*
2876 	 * To ensure that this call will not fail, space for its emissions
2877 	 * should already have been reserved in the ring buffer. Let the ring
2878 	 * know that it is time to use that space up.
2879 	 */
2880 	request_start = intel_ring_get_tail(ringbuf);
2881 	reserved_tail = request->reserved_space;
2882 	request->reserved_space = 0;
2883 
2884 	/*
2885 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2886 	 * after having emitted the batchbuffer command. Hence we need to fix
2887 	 * things up similar to emitting the lazy request. The difference here
2888 	 * is that the flush _must_ happen before the next request, no matter
2889 	 * what.
2890 	 */
2891 	if (flush_caches) {
2892 		if (i915.enable_execlists)
2893 			ret = logical_ring_flush_all_caches(request);
2894 		else
2895 			ret = intel_ring_flush_all_caches(request);
2896 		/* Not allowed to fail! */
2897 		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2898 	}
2899 
2900 	trace_i915_gem_request_add(request);
2901 
2902 	request->head = request_start;
2903 
2904 	/* Whilst this request exists, batch_obj will be on the
2905 	 * active_list, and so will hold the active reference. Only when this
2906 	 * request is retired will the the batch_obj be moved onto the
2907 	 * inactive_list and lose its active reference. Hence we do not need
2908 	 * to explicitly hold another reference here.
2909 	 */
2910 	request->batch_obj = obj;
2911 
2912 	/* Seal the request and mark it as pending execution. Note that
2913 	 * we may inspect this state, without holding any locks, during
2914 	 * hangcheck. Hence we apply the barrier to ensure that we do not
2915 	 * see a more recent value in the hws than we are tracking.
2916 	 */
2917 	request->emitted_jiffies = jiffies;
2918 	request->previous_seqno = engine->last_submitted_seqno;
2919 	smp_store_mb(engine->last_submitted_seqno, request->seqno);
2920 	list_add_tail(&request->list, &engine->request_list);
2921 
2922 	/* Record the position of the start of the request so that
2923 	 * should we detect the updated seqno part-way through the
2924 	 * GPU processing the request, we never over-estimate the
2925 	 * position of the head.
2926 	 */
2927 	request->postfix = intel_ring_get_tail(ringbuf);
2928 
2929 	if (i915.enable_execlists)
2930 		ret = engine->emit_request(request);
2931 	else {
2932 		ret = engine->add_request(request);
2933 
2934 		request->tail = intel_ring_get_tail(ringbuf);
2935 	}
2936 	/* Not allowed to fail! */
2937 	WARN(ret, "emit|add_request failed: %d!\n", ret);
2938 	/* Sanity check that the reserved size was large enough. */
2939 	ret = intel_ring_get_tail(ringbuf) - request_start;
2940 	if (ret < 0)
2941 		ret += ringbuf->size;
2942 	WARN_ONCE(ret > reserved_tail,
2943 		  "Not enough space reserved (%d bytes) "
2944 		  "for adding the request (%d bytes)\n",
2945 		  reserved_tail, ret);
2946 
2947 	i915_gem_mark_busy(engine);
2948 }
2949 
2950 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2951 {
2952 	unsigned long elapsed;
2953 
2954 	if (ctx->hang_stats.banned)
2955 		return true;
2956 
2957 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2958 	if (ctx->hang_stats.ban_period_seconds &&
2959 	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2960 		DRM_DEBUG("context hanging too fast, banning!\n");
2961 		return true;
2962 	}
2963 
2964 	return false;
2965 }
2966 
2967 static void i915_set_reset_status(struct i915_gem_context *ctx,
2968 				  const bool guilty)
2969 {
2970 	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2971 
2972 	if (guilty) {
2973 		hs->banned = i915_context_is_banned(ctx);
2974 		hs->batch_active++;
2975 		hs->guilty_ts = get_seconds();
2976 	} else {
2977 		hs->batch_pending++;
2978 	}
2979 }
2980 
2981 void i915_gem_request_free(struct kref *req_ref)
2982 {
2983 	struct drm_i915_gem_request *req = container_of(req_ref,
2984 						 typeof(*req), ref);
2985 	kmem_cache_free(req->i915->requests, req);
2986 }
2987 
2988 static inline int
2989 __i915_gem_request_alloc(struct intel_engine_cs *engine,
2990 			 struct i915_gem_context *ctx,
2991 			 struct drm_i915_gem_request **req_out)
2992 {
2993 	struct drm_i915_private *dev_priv = engine->i915;
2994 	unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
2995 	struct drm_i915_gem_request *req;
2996 	int ret;
2997 
2998 	if (!req_out)
2999 		return -EINVAL;
3000 
3001 	*req_out = NULL;
3002 
3003 	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
3004 	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
3005 	 * and restart.
3006 	 */
3007 	ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
3008 	if (ret)
3009 		return ret;
3010 
3011 	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
3012 	if (req == NULL)
3013 		return -ENOMEM;
3014 
3015 	ret = i915_gem_get_seqno(engine->i915, &req->seqno);
3016 	if (ret)
3017 		goto err;
3018 
3019 	kref_init(&req->ref);
3020 	req->i915 = dev_priv;
3021 	req->engine = engine;
3022 	req->ctx  = ctx;
3023 	i915_gem_context_reference(req->ctx);
3024 
3025 	/*
3026 	 * Reserve space in the ring buffer for all the commands required to
3027 	 * eventually emit this request. This is to guarantee that the
3028 	 * i915_add_request() call can't fail. Note that the reserve may need
3029 	 * to be redone if the request is not actually submitted straight
3030 	 * away, e.g. because a GPU scheduler has deferred it.
3031 	 */
3032 	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
3033 
3034 	if (i915.enable_execlists)
3035 		ret = intel_logical_ring_alloc_request_extras(req);
3036 	else
3037 		ret = intel_ring_alloc_request_extras(req);
3038 	if (ret)
3039 		goto err_ctx;
3040 
3041 	*req_out = req;
3042 	return 0;
3043 
3044 err_ctx:
3045 	i915_gem_context_unreference(ctx);
3046 err:
3047 	kmem_cache_free(dev_priv->requests, req);
3048 	return ret;
3049 }
3050 
3051 /**
3052  * i915_gem_request_alloc - allocate a request structure
3053  *
3054  * @engine: engine that we wish to issue the request on.
3055  * @ctx: context that the request will be associated with.
3056  *       This can be NULL if the request is not directly related to
3057  *       any specific user context, in which case this function will
3058  *       choose an appropriate context to use.
3059  *
3060  * Returns a pointer to the allocated request if successful,
3061  * or an error code if not.
3062  */
3063 struct drm_i915_gem_request *
3064 i915_gem_request_alloc(struct intel_engine_cs *engine,
3065 		       struct i915_gem_context *ctx)
3066 {
3067 	struct drm_i915_gem_request *req;
3068 	int err;
3069 
3070 	if (ctx == NULL)
3071 		ctx = engine->i915->kernel_context;
3072 	err = __i915_gem_request_alloc(engine, ctx, &req);
3073 	return err ? ERR_PTR(err) : req;
3074 }
3075 
3076 struct drm_i915_gem_request *
3077 i915_gem_find_active_request(struct intel_engine_cs *engine)
3078 {
3079 	struct drm_i915_gem_request *request;
3080 
3081 	/* We are called by the error capture and reset at a random
3082 	 * point in time. In particular, note that neither is crucially
3083 	 * ordered with an interrupt. After a hang, the GPU is dead and we
3084 	 * assume that no more writes can happen (we waited long enough for
3085 	 * all writes that were in transaction to be flushed) - adding an
3086 	 * extra delay for a recent interrupt is pointless. Hence, we do
3087 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
3088 	 */
3089 	list_for_each_entry(request, &engine->request_list, list) {
3090 		if (i915_gem_request_completed(request))
3091 			continue;
3092 
3093 		return request;
3094 	}
3095 
3096 	return NULL;
3097 }
3098 
3099 static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
3100 {
3101 	struct drm_i915_gem_request *request;
3102 	bool ring_hung;
3103 
3104 	request = i915_gem_find_active_request(engine);
3105 	if (request == NULL)
3106 		return;
3107 
3108 	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
3109 
3110 	i915_set_reset_status(request->ctx, ring_hung);
3111 	list_for_each_entry_continue(request, &engine->request_list, list)
3112 		i915_set_reset_status(request->ctx, false);
3113 }
3114 
3115 static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
3116 {
3117 	struct intel_ringbuffer *buffer;
3118 
3119 	while (!list_empty(&engine->active_list)) {
3120 		struct drm_i915_gem_object *obj;
3121 
3122 		obj = list_first_entry(&engine->active_list,
3123 				       struct drm_i915_gem_object,
3124 				       engine_list[engine->id]);
3125 
3126 		i915_gem_object_retire__read(obj, engine->id);
3127 	}
3128 
3129 	/*
3130 	 * Clear the execlists queue up before freeing the requests, as those
3131 	 * are the ones that keep the context and ringbuffer backing objects
3132 	 * pinned in place.
3133 	 */
3134 
3135 	if (i915.enable_execlists) {
3136 		/* Ensure irq handler finishes or is cancelled. */
3137 		tasklet_kill(&engine->irq_tasklet);
3138 
3139 		intel_execlists_cancel_requests(engine);
3140 	}
3141 
3142 	/*
3143 	 * We must free the requests after all the corresponding objects have
3144 	 * been moved off active lists. Which is the same order as the normal
3145 	 * retire_requests function does. This is important if object hold
3146 	 * implicit references on things like e.g. ppgtt address spaces through
3147 	 * the request.
3148 	 */
3149 	while (!list_empty(&engine->request_list)) {
3150 		struct drm_i915_gem_request *request;
3151 
3152 		request = list_first_entry(&engine->request_list,
3153 					   struct drm_i915_gem_request,
3154 					   list);
3155 
3156 		i915_gem_request_retire(request);
3157 	}
3158 
3159 	/* Having flushed all requests from all queues, we know that all
3160 	 * ringbuffers must now be empty. However, since we do not reclaim
3161 	 * all space when retiring the request (to prevent HEADs colliding
3162 	 * with rapid ringbuffer wraparound) the amount of available space
3163 	 * upon reset is less than when we start. Do one more pass over
3164 	 * all the ringbuffers to reset last_retired_head.
3165 	 */
3166 	list_for_each_entry(buffer, &engine->buffers, link) {
3167 		buffer->last_retired_head = buffer->tail;
3168 		intel_ring_update_space(buffer);
3169 	}
3170 
3171 	intel_ring_init_seqno(engine, engine->last_submitted_seqno);
3172 }
3173 
3174 void i915_gem_reset(struct drm_device *dev)
3175 {
3176 	struct drm_i915_private *dev_priv = to_i915(dev);
3177 	struct intel_engine_cs *engine;
3178 
3179 	/*
3180 	 * Before we free the objects from the requests, we need to inspect
3181 	 * them for finding the guilty party. As the requests only borrow
3182 	 * their reference to the objects, the inspection must be done first.
3183 	 */
3184 	for_each_engine(engine, dev_priv)
3185 		i915_gem_reset_engine_status(engine);
3186 
3187 	for_each_engine(engine, dev_priv)
3188 		i915_gem_reset_engine_cleanup(engine);
3189 
3190 	i915_gem_context_reset(dev);
3191 
3192 	i915_gem_restore_fences(dev);
3193 
3194 	WARN_ON(i915_verify_lists(dev));
3195 }
3196 
3197 /**
3198  * This function clears the request list as sequence numbers are passed.
3199  * @engine: engine to retire requests on
3200  */
3201 void
3202 i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
3203 {
3204 	WARN_ON(i915_verify_lists(engine->dev));
3205 
3206 	/* Retire requests first as we use it above for the early return.
3207 	 * If we retire requests last, we may use a later seqno and so clear
3208 	 * the requests lists without clearing the active list, leading to
3209 	 * confusion.
3210 	 */
3211 	while (!list_empty(&engine->request_list)) {
3212 		struct drm_i915_gem_request *request;
3213 
3214 		request = list_first_entry(&engine->request_list,
3215 					   struct drm_i915_gem_request,
3216 					   list);
3217 
3218 		if (!i915_gem_request_completed(request))
3219 			break;
3220 
3221 		i915_gem_request_retire(request);
3222 	}
3223 
3224 	/* Move any buffers on the active list that are no longer referenced
3225 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
3226 	 * before we free the context associated with the requests.
3227 	 */
3228 	while (!list_empty(&engine->active_list)) {
3229 		struct drm_i915_gem_object *obj;
3230 
3231 		obj = list_first_entry(&engine->active_list,
3232 				       struct drm_i915_gem_object,
3233 				       engine_list[engine->id]);
3234 
3235 		if (!list_empty(&obj->last_read_req[engine->id]->list))
3236 			break;
3237 
3238 		i915_gem_object_retire__read(obj, engine->id);
3239 	}
3240 
3241 	WARN_ON(i915_verify_lists(engine->dev));
3242 }
3243 
3244 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
3245 {
3246 	struct intel_engine_cs *engine;
3247 
3248 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3249 
3250 	if (dev_priv->gt.active_engines == 0)
3251 		return;
3252 
3253 	GEM_BUG_ON(!dev_priv->gt.awake);
3254 
3255 	for_each_engine(engine, dev_priv) {
3256 		i915_gem_retire_requests_ring(engine);
3257 		if (list_empty(&engine->request_list))
3258 			dev_priv->gt.active_engines &= ~intel_engine_flag(engine);
3259 	}
3260 
3261 	if (dev_priv->gt.active_engines == 0)
3262 		queue_delayed_work(dev_priv->wq,
3263 				   &dev_priv->gt.idle_work,
3264 				   msecs_to_jiffies(100));
3265 }
3266 
3267 static void
3268 i915_gem_retire_work_handler(struct work_struct *work)
3269 {
3270 	struct drm_i915_private *dev_priv =
3271 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3272 	struct drm_device *dev = &dev_priv->drm;
3273 
3274 	/* Come back later if the device is busy... */
3275 	if (mutex_trylock(&dev->struct_mutex)) {
3276 		i915_gem_retire_requests(dev_priv);
3277 		mutex_unlock(&dev->struct_mutex);
3278 	}
3279 
3280 	/* Keep the retire handler running until we are finally idle.
3281 	 * We do not need to do this test under locking as in the worst-case
3282 	 * we queue the retire worker once too often.
3283 	 */
3284 	if (READ_ONCE(dev_priv->gt.awake))
3285 		queue_delayed_work(dev_priv->wq,
3286 				   &dev_priv->gt.retire_work,
3287 				   round_jiffies_up_relative(HZ));
3288 }
3289 
3290 static void
3291 i915_gem_idle_work_handler(struct work_struct *work)
3292 {
3293 	struct drm_i915_private *dev_priv =
3294 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3295 	struct drm_device *dev = &dev_priv->drm;
3296 	struct intel_engine_cs *engine;
3297 	unsigned int stuck_engines;
3298 	bool rearm_hangcheck;
3299 
3300 	if (!READ_ONCE(dev_priv->gt.awake))
3301 		return;
3302 
3303 	if (READ_ONCE(dev_priv->gt.active_engines))
3304 		return;
3305 
3306 	rearm_hangcheck =
3307 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3308 
3309 	if (!mutex_trylock(&dev->struct_mutex)) {
3310 		/* Currently busy, come back later */
3311 		mod_delayed_work(dev_priv->wq,
3312 				 &dev_priv->gt.idle_work,
3313 				 msecs_to_jiffies(50));
3314 		goto out_rearm;
3315 	}
3316 
3317 	if (dev_priv->gt.active_engines)
3318 		goto out_unlock;
3319 
3320 	for_each_engine(engine, dev_priv)
3321 		i915_gem_batch_pool_fini(&engine->batch_pool);
3322 
3323 	GEM_BUG_ON(!dev_priv->gt.awake);
3324 	dev_priv->gt.awake = false;
3325 	rearm_hangcheck = false;
3326 
3327 	stuck_engines = intel_kick_waiters(dev_priv);
3328 	if (unlikely(stuck_engines)) {
3329 		DRM_DEBUG_DRIVER("kicked stuck waiters...missed irq\n");
3330 		dev_priv->gpu_error.missed_irq_rings |= stuck_engines;
3331 	}
3332 
3333 	if (INTEL_GEN(dev_priv) >= 6)
3334 		gen6_rps_idle(dev_priv);
3335 	intel_runtime_pm_put(dev_priv);
3336 out_unlock:
3337 	mutex_unlock(&dev->struct_mutex);
3338 
3339 out_rearm:
3340 	if (rearm_hangcheck) {
3341 		GEM_BUG_ON(!dev_priv->gt.awake);
3342 		i915_queue_hangcheck(dev_priv);
3343 	}
3344 }
3345 
3346 /**
3347  * Ensures that an object will eventually get non-busy by flushing any required
3348  * write domains, emitting any outstanding lazy request and retiring and
3349  * completed requests.
3350  * @obj: object to flush
3351  */
3352 static int
3353 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3354 {
3355 	int i;
3356 
3357 	if (!obj->active)
3358 		return 0;
3359 
3360 	for (i = 0; i < I915_NUM_ENGINES; i++) {
3361 		struct drm_i915_gem_request *req;
3362 
3363 		req = obj->last_read_req[i];
3364 		if (req == NULL)
3365 			continue;
3366 
3367 		if (i915_gem_request_completed(req))
3368 			i915_gem_object_retire__read(obj, i);
3369 	}
3370 
3371 	return 0;
3372 }
3373 
3374 /**
3375  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3376  * @dev: drm device pointer
3377  * @data: ioctl data blob
3378  * @file: drm file pointer
3379  *
3380  * Returns 0 if successful, else an error is returned with the remaining time in
3381  * the timeout parameter.
3382  *  -ETIME: object is still busy after timeout
3383  *  -ERESTARTSYS: signal interrupted the wait
3384  *  -ENONENT: object doesn't exist
3385  * Also possible, but rare:
3386  *  -EAGAIN: GPU wedged
3387  *  -ENOMEM: damn
3388  *  -ENODEV: Internal IRQ fail
3389  *  -E?: The add request failed
3390  *
3391  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3392  * non-zero timeout parameter the wait ioctl will wait for the given number of
3393  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3394  * without holding struct_mutex the object may become re-busied before this
3395  * function completes. A similar but shorter * race condition exists in the busy
3396  * ioctl
3397  */
3398 int
3399 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3400 {
3401 	struct drm_i915_gem_wait *args = data;
3402 	struct drm_i915_gem_object *obj;
3403 	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3404 	int i, n = 0;
3405 	int ret;
3406 
3407 	if (args->flags != 0)
3408 		return -EINVAL;
3409 
3410 	ret = i915_mutex_lock_interruptible(dev);
3411 	if (ret)
3412 		return ret;
3413 
3414 	obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3415 	if (&obj->base == NULL) {
3416 		mutex_unlock(&dev->struct_mutex);
3417 		return -ENOENT;
3418 	}
3419 
3420 	/* Need to make sure the object gets inactive eventually. */
3421 	ret = i915_gem_object_flush_active(obj);
3422 	if (ret)
3423 		goto out;
3424 
3425 	if (!obj->active)
3426 		goto out;
3427 
3428 	/* Do this after OLR check to make sure we make forward progress polling
3429 	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3430 	 */
3431 	if (args->timeout_ns == 0) {
3432 		ret = -ETIME;
3433 		goto out;
3434 	}
3435 
3436 	drm_gem_object_unreference(&obj->base);
3437 
3438 	for (i = 0; i < I915_NUM_ENGINES; i++) {
3439 		if (obj->last_read_req[i] == NULL)
3440 			continue;
3441 
3442 		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3443 	}
3444 
3445 	mutex_unlock(&dev->struct_mutex);
3446 
3447 	for (i = 0; i < n; i++) {
3448 		if (ret == 0)
3449 			ret = __i915_wait_request(req[i], true,
3450 						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3451 						  to_rps_client(file));
3452 		i915_gem_request_unreference(req[i]);
3453 	}
3454 	return ret;
3455 
3456 out:
3457 	drm_gem_object_unreference(&obj->base);
3458 	mutex_unlock(&dev->struct_mutex);
3459 	return ret;
3460 }
3461 
3462 static int
3463 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3464 		       struct intel_engine_cs *to,
3465 		       struct drm_i915_gem_request *from_req,
3466 		       struct drm_i915_gem_request **to_req)
3467 {
3468 	struct intel_engine_cs *from;
3469 	int ret;
3470 
3471 	from = i915_gem_request_get_engine(from_req);
3472 	if (to == from)
3473 		return 0;
3474 
3475 	if (i915_gem_request_completed(from_req))
3476 		return 0;
3477 
3478 	if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
3479 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3480 		ret = __i915_wait_request(from_req,
3481 					  i915->mm.interruptible,
3482 					  NULL,
3483 					  &i915->rps.semaphores);
3484 		if (ret)
3485 			return ret;
3486 
3487 		i915_gem_object_retire_request(obj, from_req);
3488 	} else {
3489 		int idx = intel_ring_sync_index(from, to);
3490 		u32 seqno = i915_gem_request_get_seqno(from_req);
3491 
3492 		WARN_ON(!to_req);
3493 
3494 		if (seqno <= from->semaphore.sync_seqno[idx])
3495 			return 0;
3496 
3497 		if (*to_req == NULL) {
3498 			struct drm_i915_gem_request *req;
3499 
3500 			req = i915_gem_request_alloc(to, NULL);
3501 			if (IS_ERR(req))
3502 				return PTR_ERR(req);
3503 
3504 			*to_req = req;
3505 		}
3506 
3507 		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3508 		ret = to->semaphore.sync_to(*to_req, from, seqno);
3509 		if (ret)
3510 			return ret;
3511 
3512 		/* We use last_read_req because sync_to()
3513 		 * might have just caused seqno wrap under
3514 		 * the radar.
3515 		 */
3516 		from->semaphore.sync_seqno[idx] =
3517 			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3518 	}
3519 
3520 	return 0;
3521 }
3522 
3523 /**
3524  * i915_gem_object_sync - sync an object to a ring.
3525  *
3526  * @obj: object which may be in use on another ring.
3527  * @to: ring we wish to use the object on. May be NULL.
3528  * @to_req: request we wish to use the object for. See below.
3529  *          This will be allocated and returned if a request is
3530  *          required but not passed in.
3531  *
3532  * This code is meant to abstract object synchronization with the GPU.
3533  * Calling with NULL implies synchronizing the object with the CPU
3534  * rather than a particular GPU ring. Conceptually we serialise writes
3535  * between engines inside the GPU. We only allow one engine to write
3536  * into a buffer at any time, but multiple readers. To ensure each has
3537  * a coherent view of memory, we must:
3538  *
3539  * - If there is an outstanding write request to the object, the new
3540  *   request must wait for it to complete (either CPU or in hw, requests
3541  *   on the same ring will be naturally ordered).
3542  *
3543  * - If we are a write request (pending_write_domain is set), the new
3544  *   request must wait for outstanding read requests to complete.
3545  *
3546  * For CPU synchronisation (NULL to) no request is required. For syncing with
3547  * rings to_req must be non-NULL. However, a request does not have to be
3548  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3549  * request will be allocated automatically and returned through *to_req. Note
3550  * that it is not guaranteed that commands will be emitted (because the system
3551  * might already be idle). Hence there is no need to create a request that
3552  * might never have any work submitted. Note further that if a request is
3553  * returned in *to_req, it is the responsibility of the caller to submit
3554  * that request (after potentially adding more work to it).
3555  *
3556  * Returns 0 if successful, else propagates up the lower layer error.
3557  */
3558 int
3559 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3560 		     struct intel_engine_cs *to,
3561 		     struct drm_i915_gem_request **to_req)
3562 {
3563 	const bool readonly = obj->base.pending_write_domain == 0;
3564 	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3565 	int ret, i, n;
3566 
3567 	if (!obj->active)
3568 		return 0;
3569 
3570 	if (to == NULL)
3571 		return i915_gem_object_wait_rendering(obj, readonly);
3572 
3573 	n = 0;
3574 	if (readonly) {
3575 		if (obj->last_write_req)
3576 			req[n++] = obj->last_write_req;
3577 	} else {
3578 		for (i = 0; i < I915_NUM_ENGINES; i++)
3579 			if (obj->last_read_req[i])
3580 				req[n++] = obj->last_read_req[i];
3581 	}
3582 	for (i = 0; i < n; i++) {
3583 		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3584 		if (ret)
3585 			return ret;
3586 	}
3587 
3588 	return 0;
3589 }
3590 
3591 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3592 {
3593 	u32 old_write_domain, old_read_domains;
3594 
3595 	/* Force a pagefault for domain tracking on next user access */
3596 	i915_gem_release_mmap(obj);
3597 
3598 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3599 		return;
3600 
3601 	old_read_domains = obj->base.read_domains;
3602 	old_write_domain = obj->base.write_domain;
3603 
3604 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3605 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3606 
3607 	trace_i915_gem_object_change_domain(obj,
3608 					    old_read_domains,
3609 					    old_write_domain);
3610 }
3611 
3612 static void __i915_vma_iounmap(struct i915_vma *vma)
3613 {
3614 	GEM_BUG_ON(vma->pin_count);
3615 
3616 	if (vma->iomap == NULL)
3617 		return;
3618 
3619 	io_mapping_unmap(vma->iomap);
3620 	vma->iomap = NULL;
3621 }
3622 
3623 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3624 {
3625 	struct drm_i915_gem_object *obj = vma->obj;
3626 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3627 	int ret;
3628 
3629 	if (list_empty(&vma->obj_link))
3630 		return 0;
3631 
3632 	if (!drm_mm_node_allocated(&vma->node)) {
3633 		i915_gem_vma_destroy(vma);
3634 		return 0;
3635 	}
3636 
3637 	if (vma->pin_count)
3638 		return -EBUSY;
3639 
3640 	BUG_ON(obj->pages == NULL);
3641 
3642 	if (wait) {
3643 		ret = i915_gem_object_wait_rendering(obj, false);
3644 		if (ret)
3645 			return ret;
3646 	}
3647 
3648 	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3649 		i915_gem_object_finish_gtt(obj);
3650 
3651 		/* release the fence reg _after_ flushing */
3652 		ret = i915_gem_object_put_fence(obj);
3653 		if (ret)
3654 			return ret;
3655 
3656 		__i915_vma_iounmap(vma);
3657 	}
3658 
3659 	trace_i915_vma_unbind(vma);
3660 
3661 	vma->vm->unbind_vma(vma);
3662 	vma->bound = 0;
3663 
3664 	list_del_init(&vma->vm_link);
3665 	if (vma->is_ggtt) {
3666 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3667 			obj->map_and_fenceable = false;
3668 		} else if (vma->ggtt_view.pages) {
3669 			sg_free_table(vma->ggtt_view.pages);
3670 			kfree(vma->ggtt_view.pages);
3671 		}
3672 		vma->ggtt_view.pages = NULL;
3673 	}
3674 
3675 	drm_mm_remove_node(&vma->node);
3676 	i915_gem_vma_destroy(vma);
3677 
3678 	/* Since the unbound list is global, only move to that list if
3679 	 * no more VMAs exist. */
3680 	if (list_empty(&obj->vma_list))
3681 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3682 
3683 	/* And finally now the object is completely decoupled from this vma,
3684 	 * we can drop its hold on the backing storage and allow it to be
3685 	 * reaped by the shrinker.
3686 	 */
3687 	i915_gem_object_unpin_pages(obj);
3688 
3689 	return 0;
3690 }
3691 
3692 int i915_vma_unbind(struct i915_vma *vma)
3693 {
3694 	return __i915_vma_unbind(vma, true);
3695 }
3696 
3697 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3698 {
3699 	return __i915_vma_unbind(vma, false);
3700 }
3701 
3702 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
3703 {
3704 	struct intel_engine_cs *engine;
3705 	int ret;
3706 
3707 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3708 
3709 	for_each_engine(engine, dev_priv) {
3710 		if (engine->last_context == NULL)
3711 			continue;
3712 
3713 		ret = intel_engine_idle(engine);
3714 		if (ret)
3715 			return ret;
3716 	}
3717 
3718 	WARN_ON(i915_verify_lists(dev));
3719 	return 0;
3720 }
3721 
3722 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3723 				     unsigned long cache_level)
3724 {
3725 	struct drm_mm_node *gtt_space = &vma->node;
3726 	struct drm_mm_node *other;
3727 
3728 	/*
3729 	 * On some machines we have to be careful when putting differing types
3730 	 * of snoopable memory together to avoid the prefetcher crossing memory
3731 	 * domains and dying. During vm initialisation, we decide whether or not
3732 	 * these constraints apply and set the drm_mm.color_adjust
3733 	 * appropriately.
3734 	 */
3735 	if (vma->vm->mm.color_adjust == NULL)
3736 		return true;
3737 
3738 	if (!drm_mm_node_allocated(gtt_space))
3739 		return true;
3740 
3741 	if (list_empty(&gtt_space->node_list))
3742 		return true;
3743 
3744 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3745 	if (other->allocated && !other->hole_follows && other->color != cache_level)
3746 		return false;
3747 
3748 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3749 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3750 		return false;
3751 
3752 	return true;
3753 }
3754 
3755 /**
3756  * Finds free space in the GTT aperture and binds the object or a view of it
3757  * there.
3758  * @obj: object to bind
3759  * @vm: address space to bind into
3760  * @ggtt_view: global gtt view if applicable
3761  * @alignment: requested alignment
3762  * @flags: mask of PIN_* flags to use
3763  */
3764 static struct i915_vma *
3765 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3766 			   struct i915_address_space *vm,
3767 			   const struct i915_ggtt_view *ggtt_view,
3768 			   unsigned alignment,
3769 			   uint64_t flags)
3770 {
3771 	struct drm_device *dev = obj->base.dev;
3772 	struct drm_i915_private *dev_priv = to_i915(dev);
3773 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3774 	u32 fence_alignment, unfenced_alignment;
3775 	u32 search_flag, alloc_flag;
3776 	u64 start, end;
3777 	u64 size, fence_size;
3778 	struct i915_vma *vma;
3779 	int ret;
3780 
3781 	if (i915_is_ggtt(vm)) {
3782 		u32 view_size;
3783 
3784 		if (WARN_ON(!ggtt_view))
3785 			return ERR_PTR(-EINVAL);
3786 
3787 		view_size = i915_ggtt_view_size(obj, ggtt_view);
3788 
3789 		fence_size = i915_gem_get_gtt_size(dev,
3790 						   view_size,
3791 						   obj->tiling_mode);
3792 		fence_alignment = i915_gem_get_gtt_alignment(dev,
3793 							     view_size,
3794 							     obj->tiling_mode,
3795 							     true);
3796 		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3797 								view_size,
3798 								obj->tiling_mode,
3799 								false);
3800 		size = flags & PIN_MAPPABLE ? fence_size : view_size;
3801 	} else {
3802 		fence_size = i915_gem_get_gtt_size(dev,
3803 						   obj->base.size,
3804 						   obj->tiling_mode);
3805 		fence_alignment = i915_gem_get_gtt_alignment(dev,
3806 							     obj->base.size,
3807 							     obj->tiling_mode,
3808 							     true);
3809 		unfenced_alignment =
3810 			i915_gem_get_gtt_alignment(dev,
3811 						   obj->base.size,
3812 						   obj->tiling_mode,
3813 						   false);
3814 		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3815 	}
3816 
3817 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3818 	end = vm->total;
3819 	if (flags & PIN_MAPPABLE)
3820 		end = min_t(u64, end, ggtt->mappable_end);
3821 	if (flags & PIN_ZONE_4G)
3822 		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3823 
3824 	if (alignment == 0)
3825 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3826 						unfenced_alignment;
3827 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3828 		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3829 			  ggtt_view ? ggtt_view->type : 0,
3830 			  alignment);
3831 		return ERR_PTR(-EINVAL);
3832 	}
3833 
3834 	/* If binding the object/GGTT view requires more space than the entire
3835 	 * aperture has, reject it early before evicting everything in a vain
3836 	 * attempt to find space.
3837 	 */
3838 	if (size > end) {
3839 		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3840 			  ggtt_view ? ggtt_view->type : 0,
3841 			  size,
3842 			  flags & PIN_MAPPABLE ? "mappable" : "total",
3843 			  end);
3844 		return ERR_PTR(-E2BIG);
3845 	}
3846 
3847 	ret = i915_gem_object_get_pages(obj);
3848 	if (ret)
3849 		return ERR_PTR(ret);
3850 
3851 	i915_gem_object_pin_pages(obj);
3852 
3853 	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3854 			  i915_gem_obj_lookup_or_create_vma(obj, vm);
3855 
3856 	if (IS_ERR(vma))
3857 		goto err_unpin;
3858 
3859 	if (flags & PIN_OFFSET_FIXED) {
3860 		uint64_t offset = flags & PIN_OFFSET_MASK;
3861 
3862 		if (offset & (alignment - 1) || offset + size > end) {
3863 			ret = -EINVAL;
3864 			goto err_free_vma;
3865 		}
3866 		vma->node.start = offset;
3867 		vma->node.size = size;
3868 		vma->node.color = obj->cache_level;
3869 		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3870 		if (ret) {
3871 			ret = i915_gem_evict_for_vma(vma);
3872 			if (ret == 0)
3873 				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3874 		}
3875 		if (ret)
3876 			goto err_free_vma;
3877 	} else {
3878 		if (flags & PIN_HIGH) {
3879 			search_flag = DRM_MM_SEARCH_BELOW;
3880 			alloc_flag = DRM_MM_CREATE_TOP;
3881 		} else {
3882 			search_flag = DRM_MM_SEARCH_DEFAULT;
3883 			alloc_flag = DRM_MM_CREATE_DEFAULT;
3884 		}
3885 
3886 search_free:
3887 		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3888 							  size, alignment,
3889 							  obj->cache_level,
3890 							  start, end,
3891 							  search_flag,
3892 							  alloc_flag);
3893 		if (ret) {
3894 			ret = i915_gem_evict_something(dev, vm, size, alignment,
3895 						       obj->cache_level,
3896 						       start, end,
3897 						       flags);
3898 			if (ret == 0)
3899 				goto search_free;
3900 
3901 			goto err_free_vma;
3902 		}
3903 	}
3904 	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3905 		ret = -EINVAL;
3906 		goto err_remove_node;
3907 	}
3908 
3909 	trace_i915_vma_bind(vma, flags);
3910 	ret = i915_vma_bind(vma, obj->cache_level, flags);
3911 	if (ret)
3912 		goto err_remove_node;
3913 
3914 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3915 	list_add_tail(&vma->vm_link, &vm->inactive_list);
3916 
3917 	return vma;
3918 
3919 err_remove_node:
3920 	drm_mm_remove_node(&vma->node);
3921 err_free_vma:
3922 	i915_gem_vma_destroy(vma);
3923 	vma = ERR_PTR(ret);
3924 err_unpin:
3925 	i915_gem_object_unpin_pages(obj);
3926 	return vma;
3927 }
3928 
3929 bool
3930 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3931 			bool force)
3932 {
3933 	/* If we don't have a page list set up, then we're not pinned
3934 	 * to GPU, and we can ignore the cache flush because it'll happen
3935 	 * again at bind time.
3936 	 */
3937 	if (obj->pages == NULL)
3938 		return false;
3939 
3940 	/*
3941 	 * Stolen memory is always coherent with the GPU as it is explicitly
3942 	 * marked as wc by the system, or the system is cache-coherent.
3943 	 */
3944 	if (obj->stolen || obj->phys_handle)
3945 		return false;
3946 
3947 	/* If the GPU is snooping the contents of the CPU cache,
3948 	 * we do not need to manually clear the CPU cache lines.  However,
3949 	 * the caches are only snooped when the render cache is
3950 	 * flushed/invalidated.  As we always have to emit invalidations
3951 	 * and flushes when moving into and out of the RENDER domain, correct
3952 	 * snooping behaviour occurs naturally as the result of our domain
3953 	 * tracking.
3954 	 */
3955 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3956 		obj->cache_dirty = true;
3957 		return false;
3958 	}
3959 
3960 	trace_i915_gem_object_clflush(obj);
3961 	drm_clflush_sg(obj->pages);
3962 	obj->cache_dirty = false;
3963 
3964 	return true;
3965 }
3966 
3967 /** Flushes the GTT write domain for the object if it's dirty. */
3968 static void
3969 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3970 {
3971 	uint32_t old_write_domain;
3972 
3973 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3974 		return;
3975 
3976 	/* No actual flushing is required for the GTT write domain.  Writes
3977 	 * to it immediately go to main memory as far as we know, so there's
3978 	 * no chipset flush.  It also doesn't land in render cache.
3979 	 *
3980 	 * However, we do have to enforce the order so that all writes through
3981 	 * the GTT land before any writes to the device, such as updates to
3982 	 * the GATT itself.
3983 	 */
3984 	wmb();
3985 
3986 	old_write_domain = obj->base.write_domain;
3987 	obj->base.write_domain = 0;
3988 
3989 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3990 
3991 	trace_i915_gem_object_change_domain(obj,
3992 					    obj->base.read_domains,
3993 					    old_write_domain);
3994 }
3995 
3996 /** Flushes the CPU write domain for the object if it's dirty. */
3997 static void
3998 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3999 {
4000 	uint32_t old_write_domain;
4001 
4002 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
4003 		return;
4004 
4005 	if (i915_gem_clflush_object(obj, obj->pin_display))
4006 		i915_gem_chipset_flush(to_i915(obj->base.dev));
4007 
4008 	old_write_domain = obj->base.write_domain;
4009 	obj->base.write_domain = 0;
4010 
4011 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
4012 
4013 	trace_i915_gem_object_change_domain(obj,
4014 					    obj->base.read_domains,
4015 					    old_write_domain);
4016 }
4017 
4018 /**
4019  * Moves a single object to the GTT read, and possibly write domain.
4020  * @obj: object to act on
4021  * @write: ask for write access or read only
4022  *
4023  * This function returns when the move is complete, including waiting on
4024  * flushes to occur.
4025  */
4026 int
4027 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
4028 {
4029 	struct drm_device *dev = obj->base.dev;
4030 	struct drm_i915_private *dev_priv = to_i915(dev);
4031 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
4032 	uint32_t old_write_domain, old_read_domains;
4033 	struct i915_vma *vma;
4034 	int ret;
4035 
4036 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
4037 		return 0;
4038 
4039 	ret = i915_gem_object_wait_rendering(obj, !write);
4040 	if (ret)
4041 		return ret;
4042 
4043 	/* Flush and acquire obj->pages so that we are coherent through
4044 	 * direct access in memory with previous cached writes through
4045 	 * shmemfs and that our cache domain tracking remains valid.
4046 	 * For example, if the obj->filp was moved to swap without us
4047 	 * being notified and releasing the pages, we would mistakenly
4048 	 * continue to assume that the obj remained out of the CPU cached
4049 	 * domain.
4050 	 */
4051 	ret = i915_gem_object_get_pages(obj);
4052 	if (ret)
4053 		return ret;
4054 
4055 	i915_gem_object_flush_cpu_write_domain(obj);
4056 
4057 	/* Serialise direct access to this object with the barriers for
4058 	 * coherent writes from the GPU, by effectively invalidating the
4059 	 * GTT domain upon first access.
4060 	 */
4061 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
4062 		mb();
4063 
4064 	old_write_domain = obj->base.write_domain;
4065 	old_read_domains = obj->base.read_domains;
4066 
4067 	/* It should now be out of any other write domains, and we can update
4068 	 * the domain values for our changes.
4069 	 */
4070 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4071 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4072 	if (write) {
4073 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
4074 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
4075 		obj->dirty = 1;
4076 	}
4077 
4078 	trace_i915_gem_object_change_domain(obj,
4079 					    old_read_domains,
4080 					    old_write_domain);
4081 
4082 	/* And bump the LRU for this access */
4083 	vma = i915_gem_obj_to_ggtt(obj);
4084 	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
4085 		list_move_tail(&vma->vm_link,
4086 			       &ggtt->base.inactive_list);
4087 
4088 	return 0;
4089 }
4090 
4091 /**
4092  * Changes the cache-level of an object across all VMA.
4093  * @obj: object to act on
4094  * @cache_level: new cache level to set for the object
4095  *
4096  * After this function returns, the object will be in the new cache-level
4097  * across all GTT and the contents of the backing storage will be coherent,
4098  * with respect to the new cache-level. In order to keep the backing storage
4099  * coherent for all users, we only allow a single cache level to be set
4100  * globally on the object and prevent it from being changed whilst the
4101  * hardware is reading from the object. That is if the object is currently
4102  * on the scanout it will be set to uncached (or equivalent display
4103  * cache coherency) and all non-MOCS GPU access will also be uncached so
4104  * that all direct access to the scanout remains coherent.
4105  */
4106 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4107 				    enum i915_cache_level cache_level)
4108 {
4109 	struct drm_device *dev = obj->base.dev;
4110 	struct i915_vma *vma, *next;
4111 	bool bound = false;
4112 	int ret = 0;
4113 
4114 	if (obj->cache_level == cache_level)
4115 		goto out;
4116 
4117 	/* Inspect the list of currently bound VMA and unbind any that would
4118 	 * be invalid given the new cache-level. This is principally to
4119 	 * catch the issue of the CS prefetch crossing page boundaries and
4120 	 * reading an invalid PTE on older architectures.
4121 	 */
4122 	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4123 		if (!drm_mm_node_allocated(&vma->node))
4124 			continue;
4125 
4126 		if (vma->pin_count) {
4127 			DRM_DEBUG("can not change the cache level of pinned objects\n");
4128 			return -EBUSY;
4129 		}
4130 
4131 		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4132 			ret = i915_vma_unbind(vma);
4133 			if (ret)
4134 				return ret;
4135 		} else
4136 			bound = true;
4137 	}
4138 
4139 	/* We can reuse the existing drm_mm nodes but need to change the
4140 	 * cache-level on the PTE. We could simply unbind them all and
4141 	 * rebind with the correct cache-level on next use. However since
4142 	 * we already have a valid slot, dma mapping, pages etc, we may as
4143 	 * rewrite the PTE in the belief that doing so tramples upon less
4144 	 * state and so involves less work.
4145 	 */
4146 	if (bound) {
4147 		/* Before we change the PTE, the GPU must not be accessing it.
4148 		 * If we wait upon the object, we know that all the bound
4149 		 * VMA are no longer active.
4150 		 */
4151 		ret = i915_gem_object_wait_rendering(obj, false);
4152 		if (ret)
4153 			return ret;
4154 
4155 		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
4156 			/* Access to snoopable pages through the GTT is
4157 			 * incoherent and on some machines causes a hard
4158 			 * lockup. Relinquish the CPU mmaping to force
4159 			 * userspace to refault in the pages and we can
4160 			 * then double check if the GTT mapping is still
4161 			 * valid for that pointer access.
4162 			 */
4163 			i915_gem_release_mmap(obj);
4164 
4165 			/* As we no longer need a fence for GTT access,
4166 			 * we can relinquish it now (and so prevent having
4167 			 * to steal a fence from someone else on the next
4168 			 * fence request). Note GPU activity would have
4169 			 * dropped the fence as all snoopable access is
4170 			 * supposed to be linear.
4171 			 */
4172 			ret = i915_gem_object_put_fence(obj);
4173 			if (ret)
4174 				return ret;
4175 		} else {
4176 			/* We either have incoherent backing store and
4177 			 * so no GTT access or the architecture is fully
4178 			 * coherent. In such cases, existing GTT mmaps
4179 			 * ignore the cache bit in the PTE and we can
4180 			 * rewrite it without confusing the GPU or having
4181 			 * to force userspace to fault back in its mmaps.
4182 			 */
4183 		}
4184 
4185 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4186 			if (!drm_mm_node_allocated(&vma->node))
4187 				continue;
4188 
4189 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4190 			if (ret)
4191 				return ret;
4192 		}
4193 	}
4194 
4195 	list_for_each_entry(vma, &obj->vma_list, obj_link)
4196 		vma->node.color = cache_level;
4197 	obj->cache_level = cache_level;
4198 
4199 out:
4200 	/* Flush the dirty CPU caches to the backing storage so that the
4201 	 * object is now coherent at its new cache level (with respect
4202 	 * to the access domain).
4203 	 */
4204 	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
4205 		if (i915_gem_clflush_object(obj, true))
4206 			i915_gem_chipset_flush(to_i915(obj->base.dev));
4207 	}
4208 
4209 	return 0;
4210 }
4211 
4212 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4213 			       struct drm_file *file)
4214 {
4215 	struct drm_i915_gem_caching *args = data;
4216 	struct drm_i915_gem_object *obj;
4217 
4218 	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4219 	if (&obj->base == NULL)
4220 		return -ENOENT;
4221 
4222 	switch (obj->cache_level) {
4223 	case I915_CACHE_LLC:
4224 	case I915_CACHE_L3_LLC:
4225 		args->caching = I915_CACHING_CACHED;
4226 		break;
4227 
4228 	case I915_CACHE_WT:
4229 		args->caching = I915_CACHING_DISPLAY;
4230 		break;
4231 
4232 	default:
4233 		args->caching = I915_CACHING_NONE;
4234 		break;
4235 	}
4236 
4237 	drm_gem_object_unreference_unlocked(&obj->base);
4238 	return 0;
4239 }
4240 
4241 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4242 			       struct drm_file *file)
4243 {
4244 	struct drm_i915_private *dev_priv = to_i915(dev);
4245 	struct drm_i915_gem_caching *args = data;
4246 	struct drm_i915_gem_object *obj;
4247 	enum i915_cache_level level;
4248 	int ret;
4249 
4250 	switch (args->caching) {
4251 	case I915_CACHING_NONE:
4252 		level = I915_CACHE_NONE;
4253 		break;
4254 	case I915_CACHING_CACHED:
4255 		/*
4256 		 * Due to a HW issue on BXT A stepping, GPU stores via a
4257 		 * snooped mapping may leave stale data in a corresponding CPU
4258 		 * cacheline, whereas normally such cachelines would get
4259 		 * invalidated.
4260 		 */
4261 		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
4262 			return -ENODEV;
4263 
4264 		level = I915_CACHE_LLC;
4265 		break;
4266 	case I915_CACHING_DISPLAY:
4267 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4268 		break;
4269 	default:
4270 		return -EINVAL;
4271 	}
4272 
4273 	intel_runtime_pm_get(dev_priv);
4274 
4275 	ret = i915_mutex_lock_interruptible(dev);
4276 	if (ret)
4277 		goto rpm_put;
4278 
4279 	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4280 	if (&obj->base == NULL) {
4281 		ret = -ENOENT;
4282 		goto unlock;
4283 	}
4284 
4285 	ret = i915_gem_object_set_cache_level(obj, level);
4286 
4287 	drm_gem_object_unreference(&obj->base);
4288 unlock:
4289 	mutex_unlock(&dev->struct_mutex);
4290 rpm_put:
4291 	intel_runtime_pm_put(dev_priv);
4292 
4293 	return ret;
4294 }
4295 
4296 /*
4297  * Prepare buffer for display plane (scanout, cursors, etc).
4298  * Can be called from an uninterruptible phase (modesetting) and allows
4299  * any flushes to be pipelined (for pageflips).
4300  */
4301 int
4302 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4303 				     u32 alignment,
4304 				     const struct i915_ggtt_view *view)
4305 {
4306 	u32 old_read_domains, old_write_domain;
4307 	int ret;
4308 
4309 	/* Mark the pin_display early so that we account for the
4310 	 * display coherency whilst setting up the cache domains.
4311 	 */
4312 	obj->pin_display++;
4313 
4314 	/* The display engine is not coherent with the LLC cache on gen6.  As
4315 	 * a result, we make sure that the pinning that is about to occur is
4316 	 * done with uncached PTEs. This is lowest common denominator for all
4317 	 * chipsets.
4318 	 *
4319 	 * However for gen6+, we could do better by using the GFDT bit instead
4320 	 * of uncaching, which would allow us to flush all the LLC-cached data
4321 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4322 	 */
4323 	ret = i915_gem_object_set_cache_level(obj,
4324 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4325 	if (ret)
4326 		goto err_unpin_display;
4327 
4328 	/* As the user may map the buffer once pinned in the display plane
4329 	 * (e.g. libkms for the bootup splash), we have to ensure that we
4330 	 * always use map_and_fenceable for all scanout buffers.
4331 	 */
4332 	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4333 				       view->type == I915_GGTT_VIEW_NORMAL ?
4334 				       PIN_MAPPABLE : 0);
4335 	if (ret)
4336 		goto err_unpin_display;
4337 
4338 	i915_gem_object_flush_cpu_write_domain(obj);
4339 
4340 	old_write_domain = obj->base.write_domain;
4341 	old_read_domains = obj->base.read_domains;
4342 
4343 	/* It should now be out of any other write domains, and we can update
4344 	 * the domain values for our changes.
4345 	 */
4346 	obj->base.write_domain = 0;
4347 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4348 
4349 	trace_i915_gem_object_change_domain(obj,
4350 					    old_read_domains,
4351 					    old_write_domain);
4352 
4353 	return 0;
4354 
4355 err_unpin_display:
4356 	obj->pin_display--;
4357 	return ret;
4358 }
4359 
4360 void
4361 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4362 					 const struct i915_ggtt_view *view)
4363 {
4364 	if (WARN_ON(obj->pin_display == 0))
4365 		return;
4366 
4367 	i915_gem_object_ggtt_unpin_view(obj, view);
4368 
4369 	obj->pin_display--;
4370 }
4371 
4372 /**
4373  * Moves a single object to the CPU read, and possibly write domain.
4374  * @obj: object to act on
4375  * @write: requesting write or read-only access
4376  *
4377  * This function returns when the move is complete, including waiting on
4378  * flushes to occur.
4379  */
4380 int
4381 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4382 {
4383 	uint32_t old_write_domain, old_read_domains;
4384 	int ret;
4385 
4386 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4387 		return 0;
4388 
4389 	ret = i915_gem_object_wait_rendering(obj, !write);
4390 	if (ret)
4391 		return ret;
4392 
4393 	i915_gem_object_flush_gtt_write_domain(obj);
4394 
4395 	old_write_domain = obj->base.write_domain;
4396 	old_read_domains = obj->base.read_domains;
4397 
4398 	/* Flush the CPU cache if it's still invalid. */
4399 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4400 		i915_gem_clflush_object(obj, false);
4401 
4402 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4403 	}
4404 
4405 	/* It should now be out of any other write domains, and we can update
4406 	 * the domain values for our changes.
4407 	 */
4408 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4409 
4410 	/* If we're writing through the CPU, then the GPU read domains will
4411 	 * need to be invalidated at next use.
4412 	 */
4413 	if (write) {
4414 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4415 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4416 	}
4417 
4418 	trace_i915_gem_object_change_domain(obj,
4419 					    old_read_domains,
4420 					    old_write_domain);
4421 
4422 	return 0;
4423 }
4424 
4425 /* Throttle our rendering by waiting until the ring has completed our requests
4426  * emitted over 20 msec ago.
4427  *
4428  * Note that if we were to use the current jiffies each time around the loop,
4429  * we wouldn't escape the function with any frames outstanding if the time to
4430  * render a frame was over 20ms.
4431  *
4432  * This should get us reasonable parallelism between CPU and GPU but also
4433  * relatively low latency when blocking on a particular request to finish.
4434  */
4435 static int
4436 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4437 {
4438 	struct drm_i915_private *dev_priv = to_i915(dev);
4439 	struct drm_i915_file_private *file_priv = file->driver_priv;
4440 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4441 	struct drm_i915_gem_request *request, *target = NULL;
4442 	int ret;
4443 
4444 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4445 	if (ret)
4446 		return ret;
4447 
4448 	/* ABI: return -EIO if already wedged */
4449 	if (i915_terminally_wedged(&dev_priv->gpu_error))
4450 		return -EIO;
4451 
4452 	spin_lock(&file_priv->mm.lock);
4453 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4454 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4455 			break;
4456 
4457 		/*
4458 		 * Note that the request might not have been submitted yet.
4459 		 * In which case emitted_jiffies will be zero.
4460 		 */
4461 		if (!request->emitted_jiffies)
4462 			continue;
4463 
4464 		target = request;
4465 	}
4466 	if (target)
4467 		i915_gem_request_reference(target);
4468 	spin_unlock(&file_priv->mm.lock);
4469 
4470 	if (target == NULL)
4471 		return 0;
4472 
4473 	ret = __i915_wait_request(target, true, NULL, NULL);
4474 	i915_gem_request_unreference(target);
4475 
4476 	return ret;
4477 }
4478 
4479 static bool
4480 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4481 {
4482 	struct drm_i915_gem_object *obj = vma->obj;
4483 
4484 	if (alignment &&
4485 	    vma->node.start & (alignment - 1))
4486 		return true;
4487 
4488 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4489 		return true;
4490 
4491 	if (flags & PIN_OFFSET_BIAS &&
4492 	    vma->node.start < (flags & PIN_OFFSET_MASK))
4493 		return true;
4494 
4495 	if (flags & PIN_OFFSET_FIXED &&
4496 	    vma->node.start != (flags & PIN_OFFSET_MASK))
4497 		return true;
4498 
4499 	return false;
4500 }
4501 
4502 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4503 {
4504 	struct drm_i915_gem_object *obj = vma->obj;
4505 	bool mappable, fenceable;
4506 	u32 fence_size, fence_alignment;
4507 
4508 	fence_size = i915_gem_get_gtt_size(obj->base.dev,
4509 					   obj->base.size,
4510 					   obj->tiling_mode);
4511 	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4512 						     obj->base.size,
4513 						     obj->tiling_mode,
4514 						     true);
4515 
4516 	fenceable = (vma->node.size == fence_size &&
4517 		     (vma->node.start & (fence_alignment - 1)) == 0);
4518 
4519 	mappable = (vma->node.start + fence_size <=
4520 		    to_i915(obj->base.dev)->ggtt.mappable_end);
4521 
4522 	obj->map_and_fenceable = mappable && fenceable;
4523 }
4524 
4525 static int
4526 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4527 		       struct i915_address_space *vm,
4528 		       const struct i915_ggtt_view *ggtt_view,
4529 		       uint32_t alignment,
4530 		       uint64_t flags)
4531 {
4532 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4533 	struct i915_vma *vma;
4534 	unsigned bound;
4535 	int ret;
4536 
4537 	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4538 		return -ENODEV;
4539 
4540 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4541 		return -EINVAL;
4542 
4543 	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4544 		return -EINVAL;
4545 
4546 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4547 		return -EINVAL;
4548 
4549 	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4550 			  i915_gem_obj_to_vma(obj, vm);
4551 
4552 	if (vma) {
4553 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4554 			return -EBUSY;
4555 
4556 		if (i915_vma_misplaced(vma, alignment, flags)) {
4557 			WARN(vma->pin_count,
4558 			     "bo is already pinned in %s with incorrect alignment:"
4559 			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4560 			     " obj->map_and_fenceable=%d\n",
4561 			     ggtt_view ? "ggtt" : "ppgtt",
4562 			     upper_32_bits(vma->node.start),
4563 			     lower_32_bits(vma->node.start),
4564 			     alignment,
4565 			     !!(flags & PIN_MAPPABLE),
4566 			     obj->map_and_fenceable);
4567 			ret = i915_vma_unbind(vma);
4568 			if (ret)
4569 				return ret;
4570 
4571 			vma = NULL;
4572 		}
4573 	}
4574 
4575 	bound = vma ? vma->bound : 0;
4576 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4577 		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4578 						 flags);
4579 		if (IS_ERR(vma))
4580 			return PTR_ERR(vma);
4581 	} else {
4582 		ret = i915_vma_bind(vma, obj->cache_level, flags);
4583 		if (ret)
4584 			return ret;
4585 	}
4586 
4587 	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4588 	    (bound ^ vma->bound) & GLOBAL_BIND) {
4589 		__i915_vma_set_map_and_fenceable(vma);
4590 		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4591 	}
4592 
4593 	vma->pin_count++;
4594 	return 0;
4595 }
4596 
4597 int
4598 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4599 		    struct i915_address_space *vm,
4600 		    uint32_t alignment,
4601 		    uint64_t flags)
4602 {
4603 	return i915_gem_object_do_pin(obj, vm,
4604 				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4605 				      alignment, flags);
4606 }
4607 
4608 int
4609 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4610 			 const struct i915_ggtt_view *view,
4611 			 uint32_t alignment,
4612 			 uint64_t flags)
4613 {
4614 	struct drm_device *dev = obj->base.dev;
4615 	struct drm_i915_private *dev_priv = to_i915(dev);
4616 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
4617 
4618 	BUG_ON(!view);
4619 
4620 	return i915_gem_object_do_pin(obj, &ggtt->base, view,
4621 				      alignment, flags | PIN_GLOBAL);
4622 }
4623 
4624 void
4625 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4626 				const struct i915_ggtt_view *view)
4627 {
4628 	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4629 
4630 	WARN_ON(vma->pin_count == 0);
4631 	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4632 
4633 	--vma->pin_count;
4634 }
4635 
4636 int
4637 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4638 		    struct drm_file *file)
4639 {
4640 	struct drm_i915_gem_busy *args = data;
4641 	struct drm_i915_gem_object *obj;
4642 	int ret;
4643 
4644 	ret = i915_mutex_lock_interruptible(dev);
4645 	if (ret)
4646 		return ret;
4647 
4648 	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4649 	if (&obj->base == NULL) {
4650 		ret = -ENOENT;
4651 		goto unlock;
4652 	}
4653 
4654 	/* Count all active objects as busy, even if they are currently not used
4655 	 * by the gpu. Users of this interface expect objects to eventually
4656 	 * become non-busy without any further actions, therefore emit any
4657 	 * necessary flushes here.
4658 	 */
4659 	ret = i915_gem_object_flush_active(obj);
4660 	if (ret)
4661 		goto unref;
4662 
4663 	args->busy = 0;
4664 	if (obj->active) {
4665 		int i;
4666 
4667 		for (i = 0; i < I915_NUM_ENGINES; i++) {
4668 			struct drm_i915_gem_request *req;
4669 
4670 			req = obj->last_read_req[i];
4671 			if (req)
4672 				args->busy |= 1 << (16 + req->engine->exec_id);
4673 		}
4674 		if (obj->last_write_req)
4675 			args->busy |= obj->last_write_req->engine->exec_id;
4676 	}
4677 
4678 unref:
4679 	drm_gem_object_unreference(&obj->base);
4680 unlock:
4681 	mutex_unlock(&dev->struct_mutex);
4682 	return ret;
4683 }
4684 
4685 int
4686 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4687 			struct drm_file *file_priv)
4688 {
4689 	return i915_gem_ring_throttle(dev, file_priv);
4690 }
4691 
4692 int
4693 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4694 		       struct drm_file *file_priv)
4695 {
4696 	struct drm_i915_private *dev_priv = to_i915(dev);
4697 	struct drm_i915_gem_madvise *args = data;
4698 	struct drm_i915_gem_object *obj;
4699 	int ret;
4700 
4701 	switch (args->madv) {
4702 	case I915_MADV_DONTNEED:
4703 	case I915_MADV_WILLNEED:
4704 	    break;
4705 	default:
4706 	    return -EINVAL;
4707 	}
4708 
4709 	ret = i915_mutex_lock_interruptible(dev);
4710 	if (ret)
4711 		return ret;
4712 
4713 	obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4714 	if (&obj->base == NULL) {
4715 		ret = -ENOENT;
4716 		goto unlock;
4717 	}
4718 
4719 	if (i915_gem_obj_is_pinned(obj)) {
4720 		ret = -EINVAL;
4721 		goto out;
4722 	}
4723 
4724 	if (obj->pages &&
4725 	    obj->tiling_mode != I915_TILING_NONE &&
4726 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4727 		if (obj->madv == I915_MADV_WILLNEED)
4728 			i915_gem_object_unpin_pages(obj);
4729 		if (args->madv == I915_MADV_WILLNEED)
4730 			i915_gem_object_pin_pages(obj);
4731 	}
4732 
4733 	if (obj->madv != __I915_MADV_PURGED)
4734 		obj->madv = args->madv;
4735 
4736 	/* if the object is no longer attached, discard its backing storage */
4737 	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4738 		i915_gem_object_truncate(obj);
4739 
4740 	args->retained = obj->madv != __I915_MADV_PURGED;
4741 
4742 out:
4743 	drm_gem_object_unreference(&obj->base);
4744 unlock:
4745 	mutex_unlock(&dev->struct_mutex);
4746 	return ret;
4747 }
4748 
4749 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4750 			  const struct drm_i915_gem_object_ops *ops)
4751 {
4752 	int i;
4753 
4754 	INIT_LIST_HEAD(&obj->global_list);
4755 	for (i = 0; i < I915_NUM_ENGINES; i++)
4756 		INIT_LIST_HEAD(&obj->engine_list[i]);
4757 	INIT_LIST_HEAD(&obj->obj_exec_link);
4758 	INIT_LIST_HEAD(&obj->vma_list);
4759 	INIT_LIST_HEAD(&obj->batch_pool_link);
4760 
4761 	obj->ops = ops;
4762 
4763 	obj->fence_reg = I915_FENCE_REG_NONE;
4764 	obj->madv = I915_MADV_WILLNEED;
4765 
4766 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4767 }
4768 
4769 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4770 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4771 	.get_pages = i915_gem_object_get_pages_gtt,
4772 	.put_pages = i915_gem_object_put_pages_gtt,
4773 };
4774 
4775 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4776 						  size_t size)
4777 {
4778 	struct drm_i915_gem_object *obj;
4779 	struct address_space *mapping;
4780 	gfp_t mask;
4781 	int ret;
4782 
4783 	obj = i915_gem_object_alloc(dev);
4784 	if (obj == NULL)
4785 		return ERR_PTR(-ENOMEM);
4786 
4787 	ret = drm_gem_object_init(dev, &obj->base, size);
4788 	if (ret)
4789 		goto fail;
4790 
4791 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4792 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4793 		/* 965gm cannot relocate objects above 4GiB. */
4794 		mask &= ~__GFP_HIGHMEM;
4795 		mask |= __GFP_DMA32;
4796 	}
4797 
4798 	mapping = obj->base.filp->f_mapping;
4799 	mapping_set_gfp_mask(mapping, mask);
4800 
4801 	i915_gem_object_init(obj, &i915_gem_object_ops);
4802 
4803 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4804 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4805 
4806 	if (HAS_LLC(dev)) {
4807 		/* On some devices, we can have the GPU use the LLC (the CPU
4808 		 * cache) for about a 10% performance improvement
4809 		 * compared to uncached.  Graphics requests other than
4810 		 * display scanout are coherent with the CPU in
4811 		 * accessing this cache.  This means in this mode we
4812 		 * don't need to clflush on the CPU side, and on the
4813 		 * GPU side we only need to flush internal caches to
4814 		 * get data visible to the CPU.
4815 		 *
4816 		 * However, we maintain the display planes as UC, and so
4817 		 * need to rebind when first used as such.
4818 		 */
4819 		obj->cache_level = I915_CACHE_LLC;
4820 	} else
4821 		obj->cache_level = I915_CACHE_NONE;
4822 
4823 	trace_i915_gem_object_create(obj);
4824 
4825 	return obj;
4826 
4827 fail:
4828 	i915_gem_object_free(obj);
4829 
4830 	return ERR_PTR(ret);
4831 }
4832 
4833 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4834 {
4835 	/* If we are the last user of the backing storage (be it shmemfs
4836 	 * pages or stolen etc), we know that the pages are going to be
4837 	 * immediately released. In this case, we can then skip copying
4838 	 * back the contents from the GPU.
4839 	 */
4840 
4841 	if (obj->madv != I915_MADV_WILLNEED)
4842 		return false;
4843 
4844 	if (obj->base.filp == NULL)
4845 		return true;
4846 
4847 	/* At first glance, this looks racy, but then again so would be
4848 	 * userspace racing mmap against close. However, the first external
4849 	 * reference to the filp can only be obtained through the
4850 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4851 	 * acquiring such a reference whilst we are in the middle of
4852 	 * freeing the object.
4853 	 */
4854 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4855 }
4856 
4857 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4858 {
4859 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4860 	struct drm_device *dev = obj->base.dev;
4861 	struct drm_i915_private *dev_priv = to_i915(dev);
4862 	struct i915_vma *vma, *next;
4863 
4864 	intel_runtime_pm_get(dev_priv);
4865 
4866 	trace_i915_gem_object_destroy(obj);
4867 
4868 	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4869 		int ret;
4870 
4871 		vma->pin_count = 0;
4872 		ret = i915_vma_unbind(vma);
4873 		if (WARN_ON(ret == -ERESTARTSYS)) {
4874 			bool was_interruptible;
4875 
4876 			was_interruptible = dev_priv->mm.interruptible;
4877 			dev_priv->mm.interruptible = false;
4878 
4879 			WARN_ON(i915_vma_unbind(vma));
4880 
4881 			dev_priv->mm.interruptible = was_interruptible;
4882 		}
4883 	}
4884 
4885 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4886 	 * before progressing. */
4887 	if (obj->stolen)
4888 		i915_gem_object_unpin_pages(obj);
4889 
4890 	WARN_ON(obj->frontbuffer_bits);
4891 
4892 	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4893 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4894 	    obj->tiling_mode != I915_TILING_NONE)
4895 		i915_gem_object_unpin_pages(obj);
4896 
4897 	if (WARN_ON(obj->pages_pin_count))
4898 		obj->pages_pin_count = 0;
4899 	if (discard_backing_storage(obj))
4900 		obj->madv = I915_MADV_DONTNEED;
4901 	i915_gem_object_put_pages(obj);
4902 	i915_gem_object_free_mmap_offset(obj);
4903 
4904 	BUG_ON(obj->pages);
4905 
4906 	if (obj->base.import_attach)
4907 		drm_prime_gem_destroy(&obj->base, NULL);
4908 
4909 	if (obj->ops->release)
4910 		obj->ops->release(obj);
4911 
4912 	drm_gem_object_release(&obj->base);
4913 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4914 
4915 	kfree(obj->bit_17);
4916 	i915_gem_object_free(obj);
4917 
4918 	intel_runtime_pm_put(dev_priv);
4919 }
4920 
4921 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4922 				     struct i915_address_space *vm)
4923 {
4924 	struct i915_vma *vma;
4925 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4926 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4927 		    vma->vm == vm)
4928 			return vma;
4929 	}
4930 	return NULL;
4931 }
4932 
4933 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4934 					   const struct i915_ggtt_view *view)
4935 {
4936 	struct i915_vma *vma;
4937 
4938 	GEM_BUG_ON(!view);
4939 
4940 	list_for_each_entry(vma, &obj->vma_list, obj_link)
4941 		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4942 			return vma;
4943 	return NULL;
4944 }
4945 
4946 void i915_gem_vma_destroy(struct i915_vma *vma)
4947 {
4948 	WARN_ON(vma->node.allocated);
4949 
4950 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4951 	if (!list_empty(&vma->exec_list))
4952 		return;
4953 
4954 	if (!vma->is_ggtt)
4955 		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4956 
4957 	list_del(&vma->obj_link);
4958 
4959 	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4960 }
4961 
4962 static void
4963 i915_gem_stop_engines(struct drm_device *dev)
4964 {
4965 	struct drm_i915_private *dev_priv = to_i915(dev);
4966 	struct intel_engine_cs *engine;
4967 
4968 	for_each_engine(engine, dev_priv)
4969 		dev_priv->gt.stop_engine(engine);
4970 }
4971 
4972 int
4973 i915_gem_suspend(struct drm_device *dev)
4974 {
4975 	struct drm_i915_private *dev_priv = to_i915(dev);
4976 	int ret = 0;
4977 
4978 	mutex_lock(&dev->struct_mutex);
4979 	ret = i915_gem_wait_for_idle(dev_priv);
4980 	if (ret)
4981 		goto err;
4982 
4983 	i915_gem_retire_requests(dev_priv);
4984 
4985 	i915_gem_stop_engines(dev);
4986 	i915_gem_context_lost(dev_priv);
4987 	mutex_unlock(&dev->struct_mutex);
4988 
4989 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4990 	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4991 	flush_delayed_work(&dev_priv->gt.idle_work);
4992 
4993 	/* Assert that we sucessfully flushed all the work and
4994 	 * reset the GPU back to its idle, low power state.
4995 	 */
4996 	WARN_ON(dev_priv->gt.awake);
4997 
4998 	return 0;
4999 
5000 err:
5001 	mutex_unlock(&dev->struct_mutex);
5002 	return ret;
5003 }
5004 
5005 void i915_gem_init_swizzling(struct drm_device *dev)
5006 {
5007 	struct drm_i915_private *dev_priv = to_i915(dev);
5008 
5009 	if (INTEL_INFO(dev)->gen < 5 ||
5010 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5011 		return;
5012 
5013 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5014 				 DISP_TILE_SURFACE_SWIZZLING);
5015 
5016 	if (IS_GEN5(dev))
5017 		return;
5018 
5019 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5020 	if (IS_GEN6(dev))
5021 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5022 	else if (IS_GEN7(dev))
5023 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5024 	else if (IS_GEN8(dev))
5025 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5026 	else
5027 		BUG();
5028 }
5029 
5030 static void init_unused_ring(struct drm_device *dev, u32 base)
5031 {
5032 	struct drm_i915_private *dev_priv = to_i915(dev);
5033 
5034 	I915_WRITE(RING_CTL(base), 0);
5035 	I915_WRITE(RING_HEAD(base), 0);
5036 	I915_WRITE(RING_TAIL(base), 0);
5037 	I915_WRITE(RING_START(base), 0);
5038 }
5039 
5040 static void init_unused_rings(struct drm_device *dev)
5041 {
5042 	if (IS_I830(dev)) {
5043 		init_unused_ring(dev, PRB1_BASE);
5044 		init_unused_ring(dev, SRB0_BASE);
5045 		init_unused_ring(dev, SRB1_BASE);
5046 		init_unused_ring(dev, SRB2_BASE);
5047 		init_unused_ring(dev, SRB3_BASE);
5048 	} else if (IS_GEN2(dev)) {
5049 		init_unused_ring(dev, SRB0_BASE);
5050 		init_unused_ring(dev, SRB1_BASE);
5051 	} else if (IS_GEN3(dev)) {
5052 		init_unused_ring(dev, PRB1_BASE);
5053 		init_unused_ring(dev, PRB2_BASE);
5054 	}
5055 }
5056 
5057 int i915_gem_init_engines(struct drm_device *dev)
5058 {
5059 	struct drm_i915_private *dev_priv = to_i915(dev);
5060 	int ret;
5061 
5062 	ret = intel_init_render_ring_buffer(dev);
5063 	if (ret)
5064 		return ret;
5065 
5066 	if (HAS_BSD(dev)) {
5067 		ret = intel_init_bsd_ring_buffer(dev);
5068 		if (ret)
5069 			goto cleanup_render_ring;
5070 	}
5071 
5072 	if (HAS_BLT(dev)) {
5073 		ret = intel_init_blt_ring_buffer(dev);
5074 		if (ret)
5075 			goto cleanup_bsd_ring;
5076 	}
5077 
5078 	if (HAS_VEBOX(dev)) {
5079 		ret = intel_init_vebox_ring_buffer(dev);
5080 		if (ret)
5081 			goto cleanup_blt_ring;
5082 	}
5083 
5084 	if (HAS_BSD2(dev)) {
5085 		ret = intel_init_bsd2_ring_buffer(dev);
5086 		if (ret)
5087 			goto cleanup_vebox_ring;
5088 	}
5089 
5090 	return 0;
5091 
5092 cleanup_vebox_ring:
5093 	intel_cleanup_engine(&dev_priv->engine[VECS]);
5094 cleanup_blt_ring:
5095 	intel_cleanup_engine(&dev_priv->engine[BCS]);
5096 cleanup_bsd_ring:
5097 	intel_cleanup_engine(&dev_priv->engine[VCS]);
5098 cleanup_render_ring:
5099 	intel_cleanup_engine(&dev_priv->engine[RCS]);
5100 
5101 	return ret;
5102 }
5103 
5104 int
5105 i915_gem_init_hw(struct drm_device *dev)
5106 {
5107 	struct drm_i915_private *dev_priv = to_i915(dev);
5108 	struct intel_engine_cs *engine;
5109 	int ret;
5110 
5111 	/* Double layer security blanket, see i915_gem_init() */
5112 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5113 
5114 	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
5115 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5116 
5117 	if (IS_HASWELL(dev))
5118 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5119 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5120 
5121 	if (HAS_PCH_NOP(dev)) {
5122 		if (IS_IVYBRIDGE(dev)) {
5123 			u32 temp = I915_READ(GEN7_MSG_CTL);
5124 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5125 			I915_WRITE(GEN7_MSG_CTL, temp);
5126 		} else if (INTEL_INFO(dev)->gen >= 7) {
5127 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5128 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5129 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5130 		}
5131 	}
5132 
5133 	i915_gem_init_swizzling(dev);
5134 
5135 	/*
5136 	 * At least 830 can leave some of the unused rings
5137 	 * "active" (ie. head != tail) after resume which
5138 	 * will prevent c3 entry. Makes sure all unused rings
5139 	 * are totally idle.
5140 	 */
5141 	init_unused_rings(dev);
5142 
5143 	BUG_ON(!dev_priv->kernel_context);
5144 
5145 	ret = i915_ppgtt_init_hw(dev);
5146 	if (ret) {
5147 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5148 		goto out;
5149 	}
5150 
5151 	/* Need to do basic initialisation of all rings first: */
5152 	for_each_engine(engine, dev_priv) {
5153 		ret = engine->init_hw(engine);
5154 		if (ret)
5155 			goto out;
5156 	}
5157 
5158 	intel_mocs_init_l3cc_table(dev);
5159 
5160 	/* We can't enable contexts until all firmware is loaded */
5161 	ret = intel_guc_setup(dev);
5162 	if (ret)
5163 		goto out;
5164 
5165 out:
5166 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5167 	return ret;
5168 }
5169 
5170 int i915_gem_init(struct drm_device *dev)
5171 {
5172 	struct drm_i915_private *dev_priv = to_i915(dev);
5173 	int ret;
5174 
5175 	mutex_lock(&dev->struct_mutex);
5176 
5177 	if (!i915.enable_execlists) {
5178 		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5179 		dev_priv->gt.init_engines = i915_gem_init_engines;
5180 		dev_priv->gt.cleanup_engine = intel_cleanup_engine;
5181 		dev_priv->gt.stop_engine = intel_stop_engine;
5182 	} else {
5183 		dev_priv->gt.execbuf_submit = intel_execlists_submission;
5184 		dev_priv->gt.init_engines = intel_logical_rings_init;
5185 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5186 		dev_priv->gt.stop_engine = intel_logical_ring_stop;
5187 	}
5188 
5189 	/* This is just a security blanket to placate dragons.
5190 	 * On some systems, we very sporadically observe that the first TLBs
5191 	 * used by the CS may be stale, despite us poking the TLB reset. If
5192 	 * we hold the forcewake during initialisation these problems
5193 	 * just magically go away.
5194 	 */
5195 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5196 
5197 	i915_gem_init_userptr(dev_priv);
5198 	i915_gem_init_ggtt(dev);
5199 
5200 	ret = i915_gem_context_init(dev);
5201 	if (ret)
5202 		goto out_unlock;
5203 
5204 	ret = dev_priv->gt.init_engines(dev);
5205 	if (ret)
5206 		goto out_unlock;
5207 
5208 	ret = i915_gem_init_hw(dev);
5209 	if (ret == -EIO) {
5210 		/* Allow ring initialisation to fail by marking the GPU as
5211 		 * wedged. But we only want to do this where the GPU is angry,
5212 		 * for all other failure, such as an allocation failure, bail.
5213 		 */
5214 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5215 		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5216 		ret = 0;
5217 	}
5218 
5219 out_unlock:
5220 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5221 	mutex_unlock(&dev->struct_mutex);
5222 
5223 	return ret;
5224 }
5225 
5226 void
5227 i915_gem_cleanup_engines(struct drm_device *dev)
5228 {
5229 	struct drm_i915_private *dev_priv = to_i915(dev);
5230 	struct intel_engine_cs *engine;
5231 
5232 	for_each_engine(engine, dev_priv)
5233 		dev_priv->gt.cleanup_engine(engine);
5234 }
5235 
5236 static void
5237 init_engine_lists(struct intel_engine_cs *engine)
5238 {
5239 	INIT_LIST_HEAD(&engine->active_list);
5240 	INIT_LIST_HEAD(&engine->request_list);
5241 }
5242 
5243 void
5244 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5245 {
5246 	struct drm_device *dev = &dev_priv->drm;
5247 
5248 	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5249 	    !IS_CHERRYVIEW(dev_priv))
5250 		dev_priv->num_fence_regs = 32;
5251 	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5252 		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
5253 		dev_priv->num_fence_regs = 16;
5254 	else
5255 		dev_priv->num_fence_regs = 8;
5256 
5257 	if (intel_vgpu_active(dev_priv))
5258 		dev_priv->num_fence_regs =
5259 				I915_READ(vgtif_reg(avail_rs.fence_num));
5260 
5261 	/* Initialize fence registers to zero */
5262 	i915_gem_restore_fences(dev);
5263 
5264 	i915_gem_detect_bit_6_swizzle(dev);
5265 }
5266 
5267 void
5268 i915_gem_load_init(struct drm_device *dev)
5269 {
5270 	struct drm_i915_private *dev_priv = to_i915(dev);
5271 	int i;
5272 
5273 	dev_priv->objects =
5274 		kmem_cache_create("i915_gem_object",
5275 				  sizeof(struct drm_i915_gem_object), 0,
5276 				  SLAB_HWCACHE_ALIGN,
5277 				  NULL);
5278 	dev_priv->vmas =
5279 		kmem_cache_create("i915_gem_vma",
5280 				  sizeof(struct i915_vma), 0,
5281 				  SLAB_HWCACHE_ALIGN,
5282 				  NULL);
5283 	dev_priv->requests =
5284 		kmem_cache_create("i915_gem_request",
5285 				  sizeof(struct drm_i915_gem_request), 0,
5286 				  SLAB_HWCACHE_ALIGN,
5287 				  NULL);
5288 
5289 	INIT_LIST_HEAD(&dev_priv->vm_list);
5290 	INIT_LIST_HEAD(&dev_priv->context_list);
5291 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5292 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5293 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5294 	for (i = 0; i < I915_NUM_ENGINES; i++)
5295 		init_engine_lists(&dev_priv->engine[i]);
5296 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5297 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5298 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5299 			  i915_gem_retire_work_handler);
5300 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5301 			  i915_gem_idle_work_handler);
5302 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5303 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5304 
5305 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5306 
5307 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5308 
5309 	init_waitqueue_head(&dev_priv->pending_flip_queue);
5310 
5311 	dev_priv->mm.interruptible = true;
5312 
5313 	mutex_init(&dev_priv->fb_tracking.lock);
5314 }
5315 
5316 void i915_gem_load_cleanup(struct drm_device *dev)
5317 {
5318 	struct drm_i915_private *dev_priv = to_i915(dev);
5319 
5320 	kmem_cache_destroy(dev_priv->requests);
5321 	kmem_cache_destroy(dev_priv->vmas);
5322 	kmem_cache_destroy(dev_priv->objects);
5323 }
5324 
5325 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5326 {
5327 	struct drm_i915_gem_object *obj;
5328 
5329 	/* Called just before we write the hibernation image.
5330 	 *
5331 	 * We need to update the domain tracking to reflect that the CPU
5332 	 * will be accessing all the pages to create and restore from the
5333 	 * hibernation, and so upon restoration those pages will be in the
5334 	 * CPU domain.
5335 	 *
5336 	 * To make sure the hibernation image contains the latest state,
5337 	 * we update that state just before writing out the image.
5338 	 */
5339 
5340 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5341 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5342 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5343 	}
5344 
5345 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5346 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5347 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5348 	}
5349 
5350 	return 0;
5351 }
5352 
5353 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5354 {
5355 	struct drm_i915_file_private *file_priv = file->driver_priv;
5356 
5357 	/* Clean up our request list when the client is going away, so that
5358 	 * later retire_requests won't dereference our soon-to-be-gone
5359 	 * file_priv.
5360 	 */
5361 	spin_lock(&file_priv->mm.lock);
5362 	while (!list_empty(&file_priv->mm.request_list)) {
5363 		struct drm_i915_gem_request *request;
5364 
5365 		request = list_first_entry(&file_priv->mm.request_list,
5366 					   struct drm_i915_gem_request,
5367 					   client_list);
5368 		list_del(&request->client_list);
5369 		request->file_priv = NULL;
5370 	}
5371 	spin_unlock(&file_priv->mm.lock);
5372 
5373 	if (!list_empty(&file_priv->rps.link)) {
5374 		spin_lock(&to_i915(dev)->rps.client_lock);
5375 		list_del(&file_priv->rps.link);
5376 		spin_unlock(&to_i915(dev)->rps.client_lock);
5377 	}
5378 }
5379 
5380 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5381 {
5382 	struct drm_i915_file_private *file_priv;
5383 	int ret;
5384 
5385 	DRM_DEBUG_DRIVER("\n");
5386 
5387 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5388 	if (!file_priv)
5389 		return -ENOMEM;
5390 
5391 	file->driver_priv = file_priv;
5392 	file_priv->dev_priv = to_i915(dev);
5393 	file_priv->file = file;
5394 	INIT_LIST_HEAD(&file_priv->rps.link);
5395 
5396 	spin_lock_init(&file_priv->mm.lock);
5397 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5398 
5399 	file_priv->bsd_ring = -1;
5400 
5401 	ret = i915_gem_context_open(dev, file);
5402 	if (ret)
5403 		kfree(file_priv);
5404 
5405 	return ret;
5406 }
5407 
5408 /**
5409  * i915_gem_track_fb - update frontbuffer tracking
5410  * @old: current GEM buffer for the frontbuffer slots
5411  * @new: new GEM buffer for the frontbuffer slots
5412  * @frontbuffer_bits: bitmask of frontbuffer slots
5413  *
5414  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5415  * from @old and setting them in @new. Both @old and @new can be NULL.
5416  */
5417 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5418 		       struct drm_i915_gem_object *new,
5419 		       unsigned frontbuffer_bits)
5420 {
5421 	if (old) {
5422 		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5423 		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5424 		old->frontbuffer_bits &= ~frontbuffer_bits;
5425 	}
5426 
5427 	if (new) {
5428 		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5429 		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5430 		new->frontbuffer_bits |= frontbuffer_bits;
5431 	}
5432 }
5433 
5434 /* All the new VM stuff */
5435 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5436 			struct i915_address_space *vm)
5437 {
5438 	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5439 	struct i915_vma *vma;
5440 
5441 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5442 
5443 	list_for_each_entry(vma, &o->vma_list, obj_link) {
5444 		if (vma->is_ggtt &&
5445 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5446 			continue;
5447 		if (vma->vm == vm)
5448 			return vma->node.start;
5449 	}
5450 
5451 	WARN(1, "%s vma for this object not found.\n",
5452 	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5453 	return -1;
5454 }
5455 
5456 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5457 				  const struct i915_ggtt_view *view)
5458 {
5459 	struct i915_vma *vma;
5460 
5461 	list_for_each_entry(vma, &o->vma_list, obj_link)
5462 		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5463 			return vma->node.start;
5464 
5465 	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5466 	return -1;
5467 }
5468 
5469 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5470 			struct i915_address_space *vm)
5471 {
5472 	struct i915_vma *vma;
5473 
5474 	list_for_each_entry(vma, &o->vma_list, obj_link) {
5475 		if (vma->is_ggtt &&
5476 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5477 			continue;
5478 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5479 			return true;
5480 	}
5481 
5482 	return false;
5483 }
5484 
5485 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5486 				  const struct i915_ggtt_view *view)
5487 {
5488 	struct i915_vma *vma;
5489 
5490 	list_for_each_entry(vma, &o->vma_list, obj_link)
5491 		if (vma->is_ggtt &&
5492 		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5493 		    drm_mm_node_allocated(&vma->node))
5494 			return true;
5495 
5496 	return false;
5497 }
5498 
5499 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5500 {
5501 	struct i915_vma *vma;
5502 
5503 	list_for_each_entry(vma, &o->vma_list, obj_link)
5504 		if (drm_mm_node_allocated(&vma->node))
5505 			return true;
5506 
5507 	return false;
5508 }
5509 
5510 unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5511 {
5512 	struct i915_vma *vma;
5513 
5514 	GEM_BUG_ON(list_empty(&o->vma_list));
5515 
5516 	list_for_each_entry(vma, &o->vma_list, obj_link) {
5517 		if (vma->is_ggtt &&
5518 		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5519 			return vma->node.size;
5520 	}
5521 
5522 	return 0;
5523 }
5524 
5525 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5526 {
5527 	struct i915_vma *vma;
5528 	list_for_each_entry(vma, &obj->vma_list, obj_link)
5529 		if (vma->pin_count > 0)
5530 			return true;
5531 
5532 	return false;
5533 }
5534 
5535 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5536 struct page *
5537 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5538 {
5539 	struct page *page;
5540 
5541 	/* Only default objects have per-page dirty tracking */
5542 	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
5543 		return NULL;
5544 
5545 	page = i915_gem_object_get_page(obj, n);
5546 	set_page_dirty(page);
5547 	return page;
5548 }
5549 
5550 /* Allocate a new GEM object and fill it with the supplied data */
5551 struct drm_i915_gem_object *
5552 i915_gem_object_create_from_data(struct drm_device *dev,
5553 			         const void *data, size_t size)
5554 {
5555 	struct drm_i915_gem_object *obj;
5556 	struct sg_table *sg;
5557 	size_t bytes;
5558 	int ret;
5559 
5560 	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5561 	if (IS_ERR(obj))
5562 		return obj;
5563 
5564 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
5565 	if (ret)
5566 		goto fail;
5567 
5568 	ret = i915_gem_object_get_pages(obj);
5569 	if (ret)
5570 		goto fail;
5571 
5572 	i915_gem_object_pin_pages(obj);
5573 	sg = obj->pages;
5574 	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5575 	obj->dirty = 1;		/* Backing store is now out of date */
5576 	i915_gem_object_unpin_pages(obj);
5577 
5578 	if (WARN_ON(bytes != size)) {
5579 		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5580 		ret = -EFAULT;
5581 		goto fail;
5582 	}
5583 
5584 	return obj;
5585 
5586 fail:
5587 	drm_gem_object_unreference(&obj->base);
5588 	return ERR_PTR(ret);
5589 }
5590