1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drmP.h> 29 #include <drm/drm_vma_manager.h> 30 #include <drm/i915_drm.h> 31 #include "i915_drv.h" 32 #include "i915_trace.h" 33 #include "intel_drv.h" 34 #include <linux/oom.h> 35 #include <linux/shmem_fs.h> 36 #include <linux/slab.h> 37 #include <linux/swap.h> 38 #include <linux/pci.h> 39 #include <linux/dma-buf.h> 40 41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); 42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj, 43 bool force); 44 static __must_check int 45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 46 bool readonly); 47 static void 48 i915_gem_object_retire(struct drm_i915_gem_object *obj); 49 50 static void i915_gem_write_fence(struct drm_device *dev, int reg, 51 struct drm_i915_gem_object *obj); 52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 53 struct drm_i915_fence_reg *fence, 54 bool enable); 55 56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker, 57 struct shrink_control *sc); 58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker, 59 struct shrink_control *sc); 60 static int i915_gem_shrinker_oom(struct notifier_block *nb, 61 unsigned long event, 62 void *ptr); 63 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv); 64 65 static bool cpu_cache_is_coherent(struct drm_device *dev, 66 enum i915_cache_level level) 67 { 68 return HAS_LLC(dev) || level != I915_CACHE_NONE; 69 } 70 71 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj) 72 { 73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) 74 return true; 75 76 return obj->pin_display; 77 } 78 79 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj) 80 { 81 if (obj->tiling_mode) 82 i915_gem_release_mmap(obj); 83 84 /* As we do not have an associated fence register, we will force 85 * a tiling change if we ever need to acquire one. 86 */ 87 obj->fence_dirty = false; 88 obj->fence_reg = I915_FENCE_REG_NONE; 89 } 90 91 /* some bookkeeping */ 92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, 93 size_t size) 94 { 95 spin_lock(&dev_priv->mm.object_stat_lock); 96 dev_priv->mm.object_count++; 97 dev_priv->mm.object_memory += size; 98 spin_unlock(&dev_priv->mm.object_stat_lock); 99 } 100 101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, 102 size_t size) 103 { 104 spin_lock(&dev_priv->mm.object_stat_lock); 105 dev_priv->mm.object_count--; 106 dev_priv->mm.object_memory -= size; 107 spin_unlock(&dev_priv->mm.object_stat_lock); 108 } 109 110 static int 111 i915_gem_wait_for_error(struct i915_gpu_error *error) 112 { 113 int ret; 114 115 #define EXIT_COND (!i915_reset_in_progress(error) || \ 116 i915_terminally_wedged(error)) 117 if (EXIT_COND) 118 return 0; 119 120 /* 121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging 122 * userspace. If it takes that long something really bad is going on and 123 * we should simply try to bail out and fail as gracefully as possible. 124 */ 125 ret = wait_event_interruptible_timeout(error->reset_queue, 126 EXIT_COND, 127 10*HZ); 128 if (ret == 0) { 129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); 130 return -EIO; 131 } else if (ret < 0) { 132 return ret; 133 } 134 #undef EXIT_COND 135 136 return 0; 137 } 138 139 int i915_mutex_lock_interruptible(struct drm_device *dev) 140 { 141 struct drm_i915_private *dev_priv = dev->dev_private; 142 int ret; 143 144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 145 if (ret) 146 return ret; 147 148 ret = mutex_lock_interruptible(&dev->struct_mutex); 149 if (ret) 150 return ret; 151 152 WARN_ON(i915_verify_lists(dev)); 153 return 0; 154 } 155 156 static inline bool 157 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj) 158 { 159 return i915_gem_obj_bound_any(obj) && !obj->active; 160 } 161 162 int 163 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 164 struct drm_file *file) 165 { 166 struct drm_i915_private *dev_priv = dev->dev_private; 167 struct drm_i915_gem_get_aperture *args = data; 168 struct drm_i915_gem_object *obj; 169 size_t pinned; 170 171 pinned = 0; 172 mutex_lock(&dev->struct_mutex); 173 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) 174 if (i915_gem_obj_is_pinned(obj)) 175 pinned += i915_gem_obj_ggtt_size(obj); 176 mutex_unlock(&dev->struct_mutex); 177 178 args->aper_size = dev_priv->gtt.base.total; 179 args->aper_available_size = args->aper_size - pinned; 180 181 return 0; 182 } 183 184 static int 185 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj) 186 { 187 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping; 188 char *vaddr = obj->phys_handle->vaddr; 189 struct sg_table *st; 190 struct scatterlist *sg; 191 int i; 192 193 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj))) 194 return -EINVAL; 195 196 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 197 struct page *page; 198 char *src; 199 200 page = shmem_read_mapping_page(mapping, i); 201 if (IS_ERR(page)) 202 return PTR_ERR(page); 203 204 src = kmap_atomic(page); 205 memcpy(vaddr, src, PAGE_SIZE); 206 drm_clflush_virt_range(vaddr, PAGE_SIZE); 207 kunmap_atomic(src); 208 209 page_cache_release(page); 210 vaddr += PAGE_SIZE; 211 } 212 213 i915_gem_chipset_flush(obj->base.dev); 214 215 st = kmalloc(sizeof(*st), GFP_KERNEL); 216 if (st == NULL) 217 return -ENOMEM; 218 219 if (sg_alloc_table(st, 1, GFP_KERNEL)) { 220 kfree(st); 221 return -ENOMEM; 222 } 223 224 sg = st->sgl; 225 sg->offset = 0; 226 sg->length = obj->base.size; 227 228 sg_dma_address(sg) = obj->phys_handle->busaddr; 229 sg_dma_len(sg) = obj->base.size; 230 231 obj->pages = st; 232 obj->has_dma_mapping = true; 233 return 0; 234 } 235 236 static void 237 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj) 238 { 239 int ret; 240 241 BUG_ON(obj->madv == __I915_MADV_PURGED); 242 243 ret = i915_gem_object_set_to_cpu_domain(obj, true); 244 if (ret) { 245 /* In the event of a disaster, abandon all caches and 246 * hope for the best. 247 */ 248 WARN_ON(ret != -EIO); 249 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; 250 } 251 252 if (obj->madv == I915_MADV_DONTNEED) 253 obj->dirty = 0; 254 255 if (obj->dirty) { 256 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping; 257 char *vaddr = obj->phys_handle->vaddr; 258 int i; 259 260 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 261 struct page *page; 262 char *dst; 263 264 page = shmem_read_mapping_page(mapping, i); 265 if (IS_ERR(page)) 266 continue; 267 268 dst = kmap_atomic(page); 269 drm_clflush_virt_range(vaddr, PAGE_SIZE); 270 memcpy(dst, vaddr, PAGE_SIZE); 271 kunmap_atomic(dst); 272 273 set_page_dirty(page); 274 if (obj->madv == I915_MADV_WILLNEED) 275 mark_page_accessed(page); 276 page_cache_release(page); 277 vaddr += PAGE_SIZE; 278 } 279 obj->dirty = 0; 280 } 281 282 sg_free_table(obj->pages); 283 kfree(obj->pages); 284 285 obj->has_dma_mapping = false; 286 } 287 288 static void 289 i915_gem_object_release_phys(struct drm_i915_gem_object *obj) 290 { 291 drm_pci_free(obj->base.dev, obj->phys_handle); 292 } 293 294 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = { 295 .get_pages = i915_gem_object_get_pages_phys, 296 .put_pages = i915_gem_object_put_pages_phys, 297 .release = i915_gem_object_release_phys, 298 }; 299 300 static int 301 drop_pages(struct drm_i915_gem_object *obj) 302 { 303 struct i915_vma *vma, *next; 304 int ret; 305 306 drm_gem_object_reference(&obj->base); 307 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) 308 if (i915_vma_unbind(vma)) 309 break; 310 311 ret = i915_gem_object_put_pages(obj); 312 drm_gem_object_unreference(&obj->base); 313 314 return ret; 315 } 316 317 int 318 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 319 int align) 320 { 321 drm_dma_handle_t *phys; 322 int ret; 323 324 if (obj->phys_handle) { 325 if ((unsigned long)obj->phys_handle->vaddr & (align -1)) 326 return -EBUSY; 327 328 return 0; 329 } 330 331 if (obj->madv != I915_MADV_WILLNEED) 332 return -EFAULT; 333 334 if (obj->base.filp == NULL) 335 return -EINVAL; 336 337 ret = drop_pages(obj); 338 if (ret) 339 return ret; 340 341 /* create a new object */ 342 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align); 343 if (!phys) 344 return -ENOMEM; 345 346 obj->phys_handle = phys; 347 obj->ops = &i915_gem_phys_ops; 348 349 return i915_gem_object_get_pages(obj); 350 } 351 352 static int 353 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj, 354 struct drm_i915_gem_pwrite *args, 355 struct drm_file *file_priv) 356 { 357 struct drm_device *dev = obj->base.dev; 358 void *vaddr = obj->phys_handle->vaddr + args->offset; 359 char __user *user_data = to_user_ptr(args->data_ptr); 360 int ret; 361 362 /* We manually control the domain here and pretend that it 363 * remains coherent i.e. in the GTT domain, like shmem_pwrite. 364 */ 365 ret = i915_gem_object_wait_rendering(obj, false); 366 if (ret) 367 return ret; 368 369 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) { 370 unsigned long unwritten; 371 372 /* The physical object once assigned is fixed for the lifetime 373 * of the obj, so we can safely drop the lock and continue 374 * to access vaddr. 375 */ 376 mutex_unlock(&dev->struct_mutex); 377 unwritten = copy_from_user(vaddr, user_data, args->size); 378 mutex_lock(&dev->struct_mutex); 379 if (unwritten) 380 return -EFAULT; 381 } 382 383 drm_clflush_virt_range(vaddr, args->size); 384 i915_gem_chipset_flush(dev); 385 return 0; 386 } 387 388 void *i915_gem_object_alloc(struct drm_device *dev) 389 { 390 struct drm_i915_private *dev_priv = dev->dev_private; 391 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL); 392 } 393 394 void i915_gem_object_free(struct drm_i915_gem_object *obj) 395 { 396 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 397 kmem_cache_free(dev_priv->slab, obj); 398 } 399 400 static int 401 i915_gem_create(struct drm_file *file, 402 struct drm_device *dev, 403 uint64_t size, 404 uint32_t *handle_p) 405 { 406 struct drm_i915_gem_object *obj; 407 int ret; 408 u32 handle; 409 410 size = roundup(size, PAGE_SIZE); 411 if (size == 0) 412 return -EINVAL; 413 414 /* Allocate the new object */ 415 obj = i915_gem_alloc_object(dev, size); 416 if (obj == NULL) 417 return -ENOMEM; 418 419 ret = drm_gem_handle_create(file, &obj->base, &handle); 420 /* drop reference from allocate - handle holds it now */ 421 drm_gem_object_unreference_unlocked(&obj->base); 422 if (ret) 423 return ret; 424 425 *handle_p = handle; 426 return 0; 427 } 428 429 int 430 i915_gem_dumb_create(struct drm_file *file, 431 struct drm_device *dev, 432 struct drm_mode_create_dumb *args) 433 { 434 /* have to work out size/pitch and return them */ 435 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64); 436 args->size = args->pitch * args->height; 437 return i915_gem_create(file, dev, 438 args->size, &args->handle); 439 } 440 441 /** 442 * Creates a new mm object and returns a handle to it. 443 */ 444 int 445 i915_gem_create_ioctl(struct drm_device *dev, void *data, 446 struct drm_file *file) 447 { 448 struct drm_i915_gem_create *args = data; 449 450 return i915_gem_create(file, dev, 451 args->size, &args->handle); 452 } 453 454 static inline int 455 __copy_to_user_swizzled(char __user *cpu_vaddr, 456 const char *gpu_vaddr, int gpu_offset, 457 int length) 458 { 459 int ret, cpu_offset = 0; 460 461 while (length > 0) { 462 int cacheline_end = ALIGN(gpu_offset + 1, 64); 463 int this_length = min(cacheline_end - gpu_offset, length); 464 int swizzled_gpu_offset = gpu_offset ^ 64; 465 466 ret = __copy_to_user(cpu_vaddr + cpu_offset, 467 gpu_vaddr + swizzled_gpu_offset, 468 this_length); 469 if (ret) 470 return ret + length; 471 472 cpu_offset += this_length; 473 gpu_offset += this_length; 474 length -= this_length; 475 } 476 477 return 0; 478 } 479 480 static inline int 481 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, 482 const char __user *cpu_vaddr, 483 int length) 484 { 485 int ret, cpu_offset = 0; 486 487 while (length > 0) { 488 int cacheline_end = ALIGN(gpu_offset + 1, 64); 489 int this_length = min(cacheline_end - gpu_offset, length); 490 int swizzled_gpu_offset = gpu_offset ^ 64; 491 492 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, 493 cpu_vaddr + cpu_offset, 494 this_length); 495 if (ret) 496 return ret + length; 497 498 cpu_offset += this_length; 499 gpu_offset += this_length; 500 length -= this_length; 501 } 502 503 return 0; 504 } 505 506 /* 507 * Pins the specified object's pages and synchronizes the object with 508 * GPU accesses. Sets needs_clflush to non-zero if the caller should 509 * flush the object from the CPU cache. 510 */ 511 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 512 int *needs_clflush) 513 { 514 int ret; 515 516 *needs_clflush = 0; 517 518 if (!obj->base.filp) 519 return -EINVAL; 520 521 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) { 522 /* If we're not in the cpu read domain, set ourself into the gtt 523 * read domain and manually flush cachelines (if required). This 524 * optimizes for the case when the gpu will dirty the data 525 * anyway again before the next pread happens. */ 526 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev, 527 obj->cache_level); 528 ret = i915_gem_object_wait_rendering(obj, true); 529 if (ret) 530 return ret; 531 532 i915_gem_object_retire(obj); 533 } 534 535 ret = i915_gem_object_get_pages(obj); 536 if (ret) 537 return ret; 538 539 i915_gem_object_pin_pages(obj); 540 541 return ret; 542 } 543 544 /* Per-page copy function for the shmem pread fastpath. 545 * Flushes invalid cachelines before reading the target if 546 * needs_clflush is set. */ 547 static int 548 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length, 549 char __user *user_data, 550 bool page_do_bit17_swizzling, bool needs_clflush) 551 { 552 char *vaddr; 553 int ret; 554 555 if (unlikely(page_do_bit17_swizzling)) 556 return -EINVAL; 557 558 vaddr = kmap_atomic(page); 559 if (needs_clflush) 560 drm_clflush_virt_range(vaddr + shmem_page_offset, 561 page_length); 562 ret = __copy_to_user_inatomic(user_data, 563 vaddr + shmem_page_offset, 564 page_length); 565 kunmap_atomic(vaddr); 566 567 return ret ? -EFAULT : 0; 568 } 569 570 static void 571 shmem_clflush_swizzled_range(char *addr, unsigned long length, 572 bool swizzled) 573 { 574 if (unlikely(swizzled)) { 575 unsigned long start = (unsigned long) addr; 576 unsigned long end = (unsigned long) addr + length; 577 578 /* For swizzling simply ensure that we always flush both 579 * channels. Lame, but simple and it works. Swizzled 580 * pwrite/pread is far from a hotpath - current userspace 581 * doesn't use it at all. */ 582 start = round_down(start, 128); 583 end = round_up(end, 128); 584 585 drm_clflush_virt_range((void *)start, end - start); 586 } else { 587 drm_clflush_virt_range(addr, length); 588 } 589 590 } 591 592 /* Only difference to the fast-path function is that this can handle bit17 593 * and uses non-atomic copy and kmap functions. */ 594 static int 595 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length, 596 char __user *user_data, 597 bool page_do_bit17_swizzling, bool needs_clflush) 598 { 599 char *vaddr; 600 int ret; 601 602 vaddr = kmap(page); 603 if (needs_clflush) 604 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 605 page_length, 606 page_do_bit17_swizzling); 607 608 if (page_do_bit17_swizzling) 609 ret = __copy_to_user_swizzled(user_data, 610 vaddr, shmem_page_offset, 611 page_length); 612 else 613 ret = __copy_to_user(user_data, 614 vaddr + shmem_page_offset, 615 page_length); 616 kunmap(page); 617 618 return ret ? - EFAULT : 0; 619 } 620 621 static int 622 i915_gem_shmem_pread(struct drm_device *dev, 623 struct drm_i915_gem_object *obj, 624 struct drm_i915_gem_pread *args, 625 struct drm_file *file) 626 { 627 char __user *user_data; 628 ssize_t remain; 629 loff_t offset; 630 int shmem_page_offset, page_length, ret = 0; 631 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 632 int prefaulted = 0; 633 int needs_clflush = 0; 634 struct sg_page_iter sg_iter; 635 636 user_data = to_user_ptr(args->data_ptr); 637 remain = args->size; 638 639 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 640 641 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush); 642 if (ret) 643 return ret; 644 645 offset = args->offset; 646 647 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 648 offset >> PAGE_SHIFT) { 649 struct page *page = sg_page_iter_page(&sg_iter); 650 651 if (remain <= 0) 652 break; 653 654 /* Operation in this page 655 * 656 * shmem_page_offset = offset within page in shmem file 657 * page_length = bytes to copy for this page 658 */ 659 shmem_page_offset = offset_in_page(offset); 660 page_length = remain; 661 if ((shmem_page_offset + page_length) > PAGE_SIZE) 662 page_length = PAGE_SIZE - shmem_page_offset; 663 664 page_do_bit17_swizzling = obj_do_bit17_swizzling && 665 (page_to_phys(page) & (1 << 17)) != 0; 666 667 ret = shmem_pread_fast(page, shmem_page_offset, page_length, 668 user_data, page_do_bit17_swizzling, 669 needs_clflush); 670 if (ret == 0) 671 goto next_page; 672 673 mutex_unlock(&dev->struct_mutex); 674 675 if (likely(!i915.prefault_disable) && !prefaulted) { 676 ret = fault_in_multipages_writeable(user_data, remain); 677 /* Userspace is tricking us, but we've already clobbered 678 * its pages with the prefault and promised to write the 679 * data up to the first fault. Hence ignore any errors 680 * and just continue. */ 681 (void)ret; 682 prefaulted = 1; 683 } 684 685 ret = shmem_pread_slow(page, shmem_page_offset, page_length, 686 user_data, page_do_bit17_swizzling, 687 needs_clflush); 688 689 mutex_lock(&dev->struct_mutex); 690 691 if (ret) 692 goto out; 693 694 next_page: 695 remain -= page_length; 696 user_data += page_length; 697 offset += page_length; 698 } 699 700 out: 701 i915_gem_object_unpin_pages(obj); 702 703 return ret; 704 } 705 706 /** 707 * Reads data from the object referenced by handle. 708 * 709 * On error, the contents of *data are undefined. 710 */ 711 int 712 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 713 struct drm_file *file) 714 { 715 struct drm_i915_gem_pread *args = data; 716 struct drm_i915_gem_object *obj; 717 int ret = 0; 718 719 if (args->size == 0) 720 return 0; 721 722 if (!access_ok(VERIFY_WRITE, 723 to_user_ptr(args->data_ptr), 724 args->size)) 725 return -EFAULT; 726 727 ret = i915_mutex_lock_interruptible(dev); 728 if (ret) 729 return ret; 730 731 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 732 if (&obj->base == NULL) { 733 ret = -ENOENT; 734 goto unlock; 735 } 736 737 /* Bounds check source. */ 738 if (args->offset > obj->base.size || 739 args->size > obj->base.size - args->offset) { 740 ret = -EINVAL; 741 goto out; 742 } 743 744 /* prime objects have no backing filp to GEM pread/pwrite 745 * pages from. 746 */ 747 if (!obj->base.filp) { 748 ret = -EINVAL; 749 goto out; 750 } 751 752 trace_i915_gem_object_pread(obj, args->offset, args->size); 753 754 ret = i915_gem_shmem_pread(dev, obj, args, file); 755 756 out: 757 drm_gem_object_unreference(&obj->base); 758 unlock: 759 mutex_unlock(&dev->struct_mutex); 760 return ret; 761 } 762 763 /* This is the fast write path which cannot handle 764 * page faults in the source data 765 */ 766 767 static inline int 768 fast_user_write(struct io_mapping *mapping, 769 loff_t page_base, int page_offset, 770 char __user *user_data, 771 int length) 772 { 773 void __iomem *vaddr_atomic; 774 void *vaddr; 775 unsigned long unwritten; 776 777 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base); 778 /* We can use the cpu mem copy function because this is X86. */ 779 vaddr = (void __force*)vaddr_atomic + page_offset; 780 unwritten = __copy_from_user_inatomic_nocache(vaddr, 781 user_data, length); 782 io_mapping_unmap_atomic(vaddr_atomic); 783 return unwritten; 784 } 785 786 /** 787 * This is the fast pwrite path, where we copy the data directly from the 788 * user into the GTT, uncached. 789 */ 790 static int 791 i915_gem_gtt_pwrite_fast(struct drm_device *dev, 792 struct drm_i915_gem_object *obj, 793 struct drm_i915_gem_pwrite *args, 794 struct drm_file *file) 795 { 796 struct drm_i915_private *dev_priv = dev->dev_private; 797 ssize_t remain; 798 loff_t offset, page_base; 799 char __user *user_data; 800 int page_offset, page_length, ret; 801 802 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK); 803 if (ret) 804 goto out; 805 806 ret = i915_gem_object_set_to_gtt_domain(obj, true); 807 if (ret) 808 goto out_unpin; 809 810 ret = i915_gem_object_put_fence(obj); 811 if (ret) 812 goto out_unpin; 813 814 user_data = to_user_ptr(args->data_ptr); 815 remain = args->size; 816 817 offset = i915_gem_obj_ggtt_offset(obj) + args->offset; 818 819 while (remain > 0) { 820 /* Operation in this page 821 * 822 * page_base = page offset within aperture 823 * page_offset = offset within page 824 * page_length = bytes to copy for this page 825 */ 826 page_base = offset & PAGE_MASK; 827 page_offset = offset_in_page(offset); 828 page_length = remain; 829 if ((page_offset + remain) > PAGE_SIZE) 830 page_length = PAGE_SIZE - page_offset; 831 832 /* If we get a fault while copying data, then (presumably) our 833 * source page isn't available. Return the error and we'll 834 * retry in the slow path. 835 */ 836 if (fast_user_write(dev_priv->gtt.mappable, page_base, 837 page_offset, user_data, page_length)) { 838 ret = -EFAULT; 839 goto out_unpin; 840 } 841 842 remain -= page_length; 843 user_data += page_length; 844 offset += page_length; 845 } 846 847 out_unpin: 848 i915_gem_object_ggtt_unpin(obj); 849 out: 850 return ret; 851 } 852 853 /* Per-page copy function for the shmem pwrite fastpath. 854 * Flushes invalid cachelines before writing to the target if 855 * needs_clflush_before is set and flushes out any written cachelines after 856 * writing if needs_clflush is set. */ 857 static int 858 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length, 859 char __user *user_data, 860 bool page_do_bit17_swizzling, 861 bool needs_clflush_before, 862 bool needs_clflush_after) 863 { 864 char *vaddr; 865 int ret; 866 867 if (unlikely(page_do_bit17_swizzling)) 868 return -EINVAL; 869 870 vaddr = kmap_atomic(page); 871 if (needs_clflush_before) 872 drm_clflush_virt_range(vaddr + shmem_page_offset, 873 page_length); 874 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset, 875 user_data, page_length); 876 if (needs_clflush_after) 877 drm_clflush_virt_range(vaddr + shmem_page_offset, 878 page_length); 879 kunmap_atomic(vaddr); 880 881 return ret ? -EFAULT : 0; 882 } 883 884 /* Only difference to the fast-path function is that this can handle bit17 885 * and uses non-atomic copy and kmap functions. */ 886 static int 887 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length, 888 char __user *user_data, 889 bool page_do_bit17_swizzling, 890 bool needs_clflush_before, 891 bool needs_clflush_after) 892 { 893 char *vaddr; 894 int ret; 895 896 vaddr = kmap(page); 897 if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) 898 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 899 page_length, 900 page_do_bit17_swizzling); 901 if (page_do_bit17_swizzling) 902 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset, 903 user_data, 904 page_length); 905 else 906 ret = __copy_from_user(vaddr + shmem_page_offset, 907 user_data, 908 page_length); 909 if (needs_clflush_after) 910 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 911 page_length, 912 page_do_bit17_swizzling); 913 kunmap(page); 914 915 return ret ? -EFAULT : 0; 916 } 917 918 static int 919 i915_gem_shmem_pwrite(struct drm_device *dev, 920 struct drm_i915_gem_object *obj, 921 struct drm_i915_gem_pwrite *args, 922 struct drm_file *file) 923 { 924 ssize_t remain; 925 loff_t offset; 926 char __user *user_data; 927 int shmem_page_offset, page_length, ret = 0; 928 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 929 int hit_slowpath = 0; 930 int needs_clflush_after = 0; 931 int needs_clflush_before = 0; 932 struct sg_page_iter sg_iter; 933 934 user_data = to_user_ptr(args->data_ptr); 935 remain = args->size; 936 937 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 938 939 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 940 /* If we're not in the cpu write domain, set ourself into the gtt 941 * write domain and manually flush cachelines (if required). This 942 * optimizes for the case when the gpu will use the data 943 * right away and we therefore have to clflush anyway. */ 944 needs_clflush_after = cpu_write_needs_clflush(obj); 945 ret = i915_gem_object_wait_rendering(obj, false); 946 if (ret) 947 return ret; 948 949 i915_gem_object_retire(obj); 950 } 951 /* Same trick applies to invalidate partially written cachelines read 952 * before writing. */ 953 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) 954 needs_clflush_before = 955 !cpu_cache_is_coherent(dev, obj->cache_level); 956 957 ret = i915_gem_object_get_pages(obj); 958 if (ret) 959 return ret; 960 961 i915_gem_object_pin_pages(obj); 962 963 offset = args->offset; 964 obj->dirty = 1; 965 966 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 967 offset >> PAGE_SHIFT) { 968 struct page *page = sg_page_iter_page(&sg_iter); 969 int partial_cacheline_write; 970 971 if (remain <= 0) 972 break; 973 974 /* Operation in this page 975 * 976 * shmem_page_offset = offset within page in shmem file 977 * page_length = bytes to copy for this page 978 */ 979 shmem_page_offset = offset_in_page(offset); 980 981 page_length = remain; 982 if ((shmem_page_offset + page_length) > PAGE_SIZE) 983 page_length = PAGE_SIZE - shmem_page_offset; 984 985 /* If we don't overwrite a cacheline completely we need to be 986 * careful to have up-to-date data by first clflushing. Don't 987 * overcomplicate things and flush the entire patch. */ 988 partial_cacheline_write = needs_clflush_before && 989 ((shmem_page_offset | page_length) 990 & (boot_cpu_data.x86_clflush_size - 1)); 991 992 page_do_bit17_swizzling = obj_do_bit17_swizzling && 993 (page_to_phys(page) & (1 << 17)) != 0; 994 995 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length, 996 user_data, page_do_bit17_swizzling, 997 partial_cacheline_write, 998 needs_clflush_after); 999 if (ret == 0) 1000 goto next_page; 1001 1002 hit_slowpath = 1; 1003 mutex_unlock(&dev->struct_mutex); 1004 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length, 1005 user_data, page_do_bit17_swizzling, 1006 partial_cacheline_write, 1007 needs_clflush_after); 1008 1009 mutex_lock(&dev->struct_mutex); 1010 1011 if (ret) 1012 goto out; 1013 1014 next_page: 1015 remain -= page_length; 1016 user_data += page_length; 1017 offset += page_length; 1018 } 1019 1020 out: 1021 i915_gem_object_unpin_pages(obj); 1022 1023 if (hit_slowpath) { 1024 /* 1025 * Fixup: Flush cpu caches in case we didn't flush the dirty 1026 * cachelines in-line while writing and the object moved 1027 * out of the cpu write domain while we've dropped the lock. 1028 */ 1029 if (!needs_clflush_after && 1030 obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 1031 if (i915_gem_clflush_object(obj, obj->pin_display)) 1032 i915_gem_chipset_flush(dev); 1033 } 1034 } 1035 1036 if (needs_clflush_after) 1037 i915_gem_chipset_flush(dev); 1038 1039 return ret; 1040 } 1041 1042 /** 1043 * Writes data to the object referenced by handle. 1044 * 1045 * On error, the contents of the buffer that were to be modified are undefined. 1046 */ 1047 int 1048 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 1049 struct drm_file *file) 1050 { 1051 struct drm_i915_private *dev_priv = dev->dev_private; 1052 struct drm_i915_gem_pwrite *args = data; 1053 struct drm_i915_gem_object *obj; 1054 int ret; 1055 1056 if (args->size == 0) 1057 return 0; 1058 1059 if (!access_ok(VERIFY_READ, 1060 to_user_ptr(args->data_ptr), 1061 args->size)) 1062 return -EFAULT; 1063 1064 if (likely(!i915.prefault_disable)) { 1065 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr), 1066 args->size); 1067 if (ret) 1068 return -EFAULT; 1069 } 1070 1071 intel_runtime_pm_get(dev_priv); 1072 1073 ret = i915_mutex_lock_interruptible(dev); 1074 if (ret) 1075 goto put_rpm; 1076 1077 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1078 if (&obj->base == NULL) { 1079 ret = -ENOENT; 1080 goto unlock; 1081 } 1082 1083 /* Bounds check destination. */ 1084 if (args->offset > obj->base.size || 1085 args->size > obj->base.size - args->offset) { 1086 ret = -EINVAL; 1087 goto out; 1088 } 1089 1090 /* prime objects have no backing filp to GEM pread/pwrite 1091 * pages from. 1092 */ 1093 if (!obj->base.filp) { 1094 ret = -EINVAL; 1095 goto out; 1096 } 1097 1098 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 1099 1100 ret = -EFAULT; 1101 /* We can only do the GTT pwrite on untiled buffers, as otherwise 1102 * it would end up going through the fenced access, and we'll get 1103 * different detiling behavior between reading and writing. 1104 * pread/pwrite currently are reading and writing from the CPU 1105 * perspective, requiring manual detiling by the client. 1106 */ 1107 if (obj->tiling_mode == I915_TILING_NONE && 1108 obj->base.write_domain != I915_GEM_DOMAIN_CPU && 1109 cpu_write_needs_clflush(obj)) { 1110 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file); 1111 /* Note that the gtt paths might fail with non-page-backed user 1112 * pointers (e.g. gtt mappings when moving data between 1113 * textures). Fallback to the shmem path in that case. */ 1114 } 1115 1116 if (ret == -EFAULT || ret == -ENOSPC) { 1117 if (obj->phys_handle) 1118 ret = i915_gem_phys_pwrite(obj, args, file); 1119 else 1120 ret = i915_gem_shmem_pwrite(dev, obj, args, file); 1121 } 1122 1123 out: 1124 drm_gem_object_unreference(&obj->base); 1125 unlock: 1126 mutex_unlock(&dev->struct_mutex); 1127 put_rpm: 1128 intel_runtime_pm_put(dev_priv); 1129 1130 return ret; 1131 } 1132 1133 int 1134 i915_gem_check_wedge(struct i915_gpu_error *error, 1135 bool interruptible) 1136 { 1137 if (i915_reset_in_progress(error)) { 1138 /* Non-interruptible callers can't handle -EAGAIN, hence return 1139 * -EIO unconditionally for these. */ 1140 if (!interruptible) 1141 return -EIO; 1142 1143 /* Recovery complete, but the reset failed ... */ 1144 if (i915_terminally_wedged(error)) 1145 return -EIO; 1146 1147 /* 1148 * Check if GPU Reset is in progress - we need intel_ring_begin 1149 * to work properly to reinit the hw state while the gpu is 1150 * still marked as reset-in-progress. Handle this with a flag. 1151 */ 1152 if (!error->reload_in_reset) 1153 return -EAGAIN; 1154 } 1155 1156 return 0; 1157 } 1158 1159 /* 1160 * Compare seqno against outstanding lazy request. Emit a request if they are 1161 * equal. 1162 */ 1163 int 1164 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno) 1165 { 1166 int ret; 1167 1168 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex)); 1169 1170 ret = 0; 1171 if (seqno == ring->outstanding_lazy_seqno) 1172 ret = i915_add_request(ring, NULL); 1173 1174 return ret; 1175 } 1176 1177 static void fake_irq(unsigned long data) 1178 { 1179 wake_up_process((struct task_struct *)data); 1180 } 1181 1182 static bool missed_irq(struct drm_i915_private *dev_priv, 1183 struct intel_engine_cs *ring) 1184 { 1185 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings); 1186 } 1187 1188 static bool can_wait_boost(struct drm_i915_file_private *file_priv) 1189 { 1190 if (file_priv == NULL) 1191 return true; 1192 1193 return !atomic_xchg(&file_priv->rps_wait_boost, true); 1194 } 1195 1196 /** 1197 * __i915_wait_seqno - wait until execution of seqno has finished 1198 * @ring: the ring expected to report seqno 1199 * @seqno: duh! 1200 * @reset_counter: reset sequence associated with the given seqno 1201 * @interruptible: do an interruptible wait (normally yes) 1202 * @timeout: in - how long to wait (NULL forever); out - how much time remaining 1203 * 1204 * Note: It is of utmost importance that the passed in seqno and reset_counter 1205 * values have been read by the caller in an smp safe manner. Where read-side 1206 * locks are involved, it is sufficient to read the reset_counter before 1207 * unlocking the lock that protects the seqno. For lockless tricks, the 1208 * reset_counter _must_ be read before, and an appropriate smp_rmb must be 1209 * inserted. 1210 * 1211 * Returns 0 if the seqno was found within the alloted time. Else returns the 1212 * errno with remaining time filled in timeout argument. 1213 */ 1214 int __i915_wait_seqno(struct intel_engine_cs *ring, u32 seqno, 1215 unsigned reset_counter, 1216 bool interruptible, 1217 s64 *timeout, 1218 struct drm_i915_file_private *file_priv) 1219 { 1220 struct drm_device *dev = ring->dev; 1221 struct drm_i915_private *dev_priv = dev->dev_private; 1222 const bool irq_test_in_progress = 1223 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring); 1224 DEFINE_WAIT(wait); 1225 unsigned long timeout_expire; 1226 s64 before, now; 1227 int ret; 1228 1229 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled"); 1230 1231 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno)) 1232 return 0; 1233 1234 timeout_expire = timeout ? 1235 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0; 1236 1237 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) { 1238 gen6_rps_boost(dev_priv); 1239 if (file_priv) 1240 mod_delayed_work(dev_priv->wq, 1241 &file_priv->mm.idle_work, 1242 msecs_to_jiffies(100)); 1243 } 1244 1245 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) 1246 return -ENODEV; 1247 1248 /* Record current time in case interrupted by signal, or wedged */ 1249 trace_i915_gem_request_wait_begin(ring, seqno); 1250 before = ktime_get_raw_ns(); 1251 for (;;) { 1252 struct timer_list timer; 1253 1254 prepare_to_wait(&ring->irq_queue, &wait, 1255 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE); 1256 1257 /* We need to check whether any gpu reset happened in between 1258 * the caller grabbing the seqno and now ... */ 1259 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) { 1260 /* ... but upgrade the -EAGAIN to an -EIO if the gpu 1261 * is truely gone. */ 1262 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1263 if (ret == 0) 1264 ret = -EAGAIN; 1265 break; 1266 } 1267 1268 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) { 1269 ret = 0; 1270 break; 1271 } 1272 1273 if (interruptible && signal_pending(current)) { 1274 ret = -ERESTARTSYS; 1275 break; 1276 } 1277 1278 if (timeout && time_after_eq(jiffies, timeout_expire)) { 1279 ret = -ETIME; 1280 break; 1281 } 1282 1283 timer.function = NULL; 1284 if (timeout || missed_irq(dev_priv, ring)) { 1285 unsigned long expire; 1286 1287 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current); 1288 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire; 1289 mod_timer(&timer, expire); 1290 } 1291 1292 io_schedule(); 1293 1294 if (timer.function) { 1295 del_singleshot_timer_sync(&timer); 1296 destroy_timer_on_stack(&timer); 1297 } 1298 } 1299 now = ktime_get_raw_ns(); 1300 trace_i915_gem_request_wait_end(ring, seqno); 1301 1302 if (!irq_test_in_progress) 1303 ring->irq_put(ring); 1304 1305 finish_wait(&ring->irq_queue, &wait); 1306 1307 if (timeout) { 1308 s64 tres = *timeout - (now - before); 1309 1310 *timeout = tres < 0 ? 0 : tres; 1311 1312 /* 1313 * Apparently ktime isn't accurate enough and occasionally has a 1314 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch 1315 * things up to make the test happy. We allow up to 1 jiffy. 1316 * 1317 * This is a regrssion from the timespec->ktime conversion. 1318 */ 1319 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000) 1320 *timeout = 0; 1321 } 1322 1323 return ret; 1324 } 1325 1326 /** 1327 * Waits for a sequence number to be signaled, and cleans up the 1328 * request and object lists appropriately for that event. 1329 */ 1330 int 1331 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno) 1332 { 1333 struct drm_device *dev = ring->dev; 1334 struct drm_i915_private *dev_priv = dev->dev_private; 1335 bool interruptible = dev_priv->mm.interruptible; 1336 unsigned reset_counter; 1337 int ret; 1338 1339 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1340 BUG_ON(seqno == 0); 1341 1342 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1343 if (ret) 1344 return ret; 1345 1346 ret = i915_gem_check_olr(ring, seqno); 1347 if (ret) 1348 return ret; 1349 1350 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 1351 return __i915_wait_seqno(ring, seqno, reset_counter, interruptible, 1352 NULL, NULL); 1353 } 1354 1355 static int 1356 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj) 1357 { 1358 if (!obj->active) 1359 return 0; 1360 1361 /* Manually manage the write flush as we may have not yet 1362 * retired the buffer. 1363 * 1364 * Note that the last_write_seqno is always the earlier of 1365 * the two (read/write) seqno, so if we haved successfully waited, 1366 * we know we have passed the last write. 1367 */ 1368 obj->last_write_seqno = 0; 1369 1370 return 0; 1371 } 1372 1373 /** 1374 * Ensures that all rendering to the object has completed and the object is 1375 * safe to unbind from the GTT or access from the CPU. 1376 */ 1377 static __must_check int 1378 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 1379 bool readonly) 1380 { 1381 struct intel_engine_cs *ring = obj->ring; 1382 u32 seqno; 1383 int ret; 1384 1385 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1386 if (seqno == 0) 1387 return 0; 1388 1389 ret = i915_wait_seqno(ring, seqno); 1390 if (ret) 1391 return ret; 1392 1393 return i915_gem_object_wait_rendering__tail(obj); 1394 } 1395 1396 /* A nonblocking variant of the above wait. This is a highly dangerous routine 1397 * as the object state may change during this call. 1398 */ 1399 static __must_check int 1400 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj, 1401 struct drm_i915_file_private *file_priv, 1402 bool readonly) 1403 { 1404 struct drm_device *dev = obj->base.dev; 1405 struct drm_i915_private *dev_priv = dev->dev_private; 1406 struct intel_engine_cs *ring = obj->ring; 1407 unsigned reset_counter; 1408 u32 seqno; 1409 int ret; 1410 1411 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1412 BUG_ON(!dev_priv->mm.interruptible); 1413 1414 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1415 if (seqno == 0) 1416 return 0; 1417 1418 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true); 1419 if (ret) 1420 return ret; 1421 1422 ret = i915_gem_check_olr(ring, seqno); 1423 if (ret) 1424 return ret; 1425 1426 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 1427 mutex_unlock(&dev->struct_mutex); 1428 ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL, 1429 file_priv); 1430 mutex_lock(&dev->struct_mutex); 1431 if (ret) 1432 return ret; 1433 1434 return i915_gem_object_wait_rendering__tail(obj); 1435 } 1436 1437 /** 1438 * Called when user space prepares to use an object with the CPU, either 1439 * through the mmap ioctl's mapping or a GTT mapping. 1440 */ 1441 int 1442 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 1443 struct drm_file *file) 1444 { 1445 struct drm_i915_gem_set_domain *args = data; 1446 struct drm_i915_gem_object *obj; 1447 uint32_t read_domains = args->read_domains; 1448 uint32_t write_domain = args->write_domain; 1449 int ret; 1450 1451 /* Only handle setting domains to types used by the CPU. */ 1452 if (write_domain & I915_GEM_GPU_DOMAINS) 1453 return -EINVAL; 1454 1455 if (read_domains & I915_GEM_GPU_DOMAINS) 1456 return -EINVAL; 1457 1458 /* Having something in the write domain implies it's in the read 1459 * domain, and only that read domain. Enforce that in the request. 1460 */ 1461 if (write_domain != 0 && read_domains != write_domain) 1462 return -EINVAL; 1463 1464 ret = i915_mutex_lock_interruptible(dev); 1465 if (ret) 1466 return ret; 1467 1468 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1469 if (&obj->base == NULL) { 1470 ret = -ENOENT; 1471 goto unlock; 1472 } 1473 1474 /* Try to flush the object off the GPU without holding the lock. 1475 * We will repeat the flush holding the lock in the normal manner 1476 * to catch cases where we are gazumped. 1477 */ 1478 ret = i915_gem_object_wait_rendering__nonblocking(obj, 1479 file->driver_priv, 1480 !write_domain); 1481 if (ret) 1482 goto unref; 1483 1484 if (read_domains & I915_GEM_DOMAIN_GTT) { 1485 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); 1486 1487 /* Silently promote "you're not bound, there was nothing to do" 1488 * to success, since the client was just asking us to 1489 * make sure everything was done. 1490 */ 1491 if (ret == -EINVAL) 1492 ret = 0; 1493 } else { 1494 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); 1495 } 1496 1497 unref: 1498 drm_gem_object_unreference(&obj->base); 1499 unlock: 1500 mutex_unlock(&dev->struct_mutex); 1501 return ret; 1502 } 1503 1504 /** 1505 * Called when user space has done writes to this buffer 1506 */ 1507 int 1508 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1509 struct drm_file *file) 1510 { 1511 struct drm_i915_gem_sw_finish *args = data; 1512 struct drm_i915_gem_object *obj; 1513 int ret = 0; 1514 1515 ret = i915_mutex_lock_interruptible(dev); 1516 if (ret) 1517 return ret; 1518 1519 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1520 if (&obj->base == NULL) { 1521 ret = -ENOENT; 1522 goto unlock; 1523 } 1524 1525 /* Pinned buffers may be scanout, so flush the cache */ 1526 if (obj->pin_display) 1527 i915_gem_object_flush_cpu_write_domain(obj, true); 1528 1529 drm_gem_object_unreference(&obj->base); 1530 unlock: 1531 mutex_unlock(&dev->struct_mutex); 1532 return ret; 1533 } 1534 1535 /** 1536 * Maps the contents of an object, returning the address it is mapped 1537 * into. 1538 * 1539 * While the mapping holds a reference on the contents of the object, it doesn't 1540 * imply a ref on the object itself. 1541 * 1542 * IMPORTANT: 1543 * 1544 * DRM driver writers who look a this function as an example for how to do GEM 1545 * mmap support, please don't implement mmap support like here. The modern way 1546 * to implement DRM mmap support is with an mmap offset ioctl (like 1547 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly. 1548 * That way debug tooling like valgrind will understand what's going on, hiding 1549 * the mmap call in a driver private ioctl will break that. The i915 driver only 1550 * does cpu mmaps this way because we didn't know better. 1551 */ 1552 int 1553 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1554 struct drm_file *file) 1555 { 1556 struct drm_i915_gem_mmap *args = data; 1557 struct drm_gem_object *obj; 1558 unsigned long addr; 1559 1560 obj = drm_gem_object_lookup(dev, file, args->handle); 1561 if (obj == NULL) 1562 return -ENOENT; 1563 1564 /* prime objects have no backing filp to GEM mmap 1565 * pages from. 1566 */ 1567 if (!obj->filp) { 1568 drm_gem_object_unreference_unlocked(obj); 1569 return -EINVAL; 1570 } 1571 1572 addr = vm_mmap(obj->filp, 0, args->size, 1573 PROT_READ | PROT_WRITE, MAP_SHARED, 1574 args->offset); 1575 drm_gem_object_unreference_unlocked(obj); 1576 if (IS_ERR((void *)addr)) 1577 return addr; 1578 1579 args->addr_ptr = (uint64_t) addr; 1580 1581 return 0; 1582 } 1583 1584 /** 1585 * i915_gem_fault - fault a page into the GTT 1586 * vma: VMA in question 1587 * vmf: fault info 1588 * 1589 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1590 * from userspace. The fault handler takes care of binding the object to 1591 * the GTT (if needed), allocating and programming a fence register (again, 1592 * only if needed based on whether the old reg is still valid or the object 1593 * is tiled) and inserting a new PTE into the faulting process. 1594 * 1595 * Note that the faulting process may involve evicting existing objects 1596 * from the GTT and/or fence registers to make room. So performance may 1597 * suffer if the GTT working set is large or there are few fence registers 1598 * left. 1599 */ 1600 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1601 { 1602 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data); 1603 struct drm_device *dev = obj->base.dev; 1604 struct drm_i915_private *dev_priv = dev->dev_private; 1605 pgoff_t page_offset; 1606 unsigned long pfn; 1607 int ret = 0; 1608 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 1609 1610 intel_runtime_pm_get(dev_priv); 1611 1612 /* We don't use vmf->pgoff since that has the fake offset */ 1613 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >> 1614 PAGE_SHIFT; 1615 1616 ret = i915_mutex_lock_interruptible(dev); 1617 if (ret) 1618 goto out; 1619 1620 trace_i915_gem_object_fault(obj, page_offset, true, write); 1621 1622 /* Try to flush the object off the GPU first without holding the lock. 1623 * Upon reacquiring the lock, we will perform our sanity checks and then 1624 * repeat the flush holding the lock in the normal manner to catch cases 1625 * where we are gazumped. 1626 */ 1627 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write); 1628 if (ret) 1629 goto unlock; 1630 1631 /* Access to snoopable pages through the GTT is incoherent. */ 1632 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) { 1633 ret = -EFAULT; 1634 goto unlock; 1635 } 1636 1637 /* Now bind it into the GTT if needed */ 1638 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE); 1639 if (ret) 1640 goto unlock; 1641 1642 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1643 if (ret) 1644 goto unpin; 1645 1646 ret = i915_gem_object_get_fence(obj); 1647 if (ret) 1648 goto unpin; 1649 1650 /* Finally, remap it using the new GTT offset */ 1651 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj); 1652 pfn >>= PAGE_SHIFT; 1653 1654 if (!obj->fault_mappable) { 1655 unsigned long size = min_t(unsigned long, 1656 vma->vm_end - vma->vm_start, 1657 obj->base.size); 1658 int i; 1659 1660 for (i = 0; i < size >> PAGE_SHIFT; i++) { 1661 ret = vm_insert_pfn(vma, 1662 (unsigned long)vma->vm_start + i * PAGE_SIZE, 1663 pfn + i); 1664 if (ret) 1665 break; 1666 } 1667 1668 obj->fault_mappable = true; 1669 } else 1670 ret = vm_insert_pfn(vma, 1671 (unsigned long)vmf->virtual_address, 1672 pfn + page_offset); 1673 unpin: 1674 i915_gem_object_ggtt_unpin(obj); 1675 unlock: 1676 mutex_unlock(&dev->struct_mutex); 1677 out: 1678 switch (ret) { 1679 case -EIO: 1680 /* 1681 * We eat errors when the gpu is terminally wedged to avoid 1682 * userspace unduly crashing (gl has no provisions for mmaps to 1683 * fail). But any other -EIO isn't ours (e.g. swap in failure) 1684 * and so needs to be reported. 1685 */ 1686 if (!i915_terminally_wedged(&dev_priv->gpu_error)) { 1687 ret = VM_FAULT_SIGBUS; 1688 break; 1689 } 1690 case -EAGAIN: 1691 /* 1692 * EAGAIN means the gpu is hung and we'll wait for the error 1693 * handler to reset everything when re-faulting in 1694 * i915_mutex_lock_interruptible. 1695 */ 1696 case 0: 1697 case -ERESTARTSYS: 1698 case -EINTR: 1699 case -EBUSY: 1700 /* 1701 * EBUSY is ok: this just means that another thread 1702 * already did the job. 1703 */ 1704 ret = VM_FAULT_NOPAGE; 1705 break; 1706 case -ENOMEM: 1707 ret = VM_FAULT_OOM; 1708 break; 1709 case -ENOSPC: 1710 case -EFAULT: 1711 ret = VM_FAULT_SIGBUS; 1712 break; 1713 default: 1714 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); 1715 ret = VM_FAULT_SIGBUS; 1716 break; 1717 } 1718 1719 intel_runtime_pm_put(dev_priv); 1720 return ret; 1721 } 1722 1723 /** 1724 * i915_gem_release_mmap - remove physical page mappings 1725 * @obj: obj in question 1726 * 1727 * Preserve the reservation of the mmapping with the DRM core code, but 1728 * relinquish ownership of the pages back to the system. 1729 * 1730 * It is vital that we remove the page mapping if we have mapped a tiled 1731 * object through the GTT and then lose the fence register due to 1732 * resource pressure. Similarly if the object has been moved out of the 1733 * aperture, than pages mapped into userspace must be revoked. Removing the 1734 * mapping will then trigger a page fault on the next user access, allowing 1735 * fixup by i915_gem_fault(). 1736 */ 1737 void 1738 i915_gem_release_mmap(struct drm_i915_gem_object *obj) 1739 { 1740 if (!obj->fault_mappable) 1741 return; 1742 1743 drm_vma_node_unmap(&obj->base.vma_node, 1744 obj->base.dev->anon_inode->i_mapping); 1745 obj->fault_mappable = false; 1746 } 1747 1748 void 1749 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv) 1750 { 1751 struct drm_i915_gem_object *obj; 1752 1753 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) 1754 i915_gem_release_mmap(obj); 1755 } 1756 1757 uint32_t 1758 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode) 1759 { 1760 uint32_t gtt_size; 1761 1762 if (INTEL_INFO(dev)->gen >= 4 || 1763 tiling_mode == I915_TILING_NONE) 1764 return size; 1765 1766 /* Previous chips need a power-of-two fence region when tiling */ 1767 if (INTEL_INFO(dev)->gen == 3) 1768 gtt_size = 1024*1024; 1769 else 1770 gtt_size = 512*1024; 1771 1772 while (gtt_size < size) 1773 gtt_size <<= 1; 1774 1775 return gtt_size; 1776 } 1777 1778 /** 1779 * i915_gem_get_gtt_alignment - return required GTT alignment for an object 1780 * @obj: object to check 1781 * 1782 * Return the required GTT alignment for an object, taking into account 1783 * potential fence register mapping. 1784 */ 1785 uint32_t 1786 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size, 1787 int tiling_mode, bool fenced) 1788 { 1789 /* 1790 * Minimum alignment is 4k (GTT page size), but might be greater 1791 * if a fence register is needed for the object. 1792 */ 1793 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) || 1794 tiling_mode == I915_TILING_NONE) 1795 return 4096; 1796 1797 /* 1798 * Previous chips need to be aligned to the size of the smallest 1799 * fence register that can contain the object. 1800 */ 1801 return i915_gem_get_gtt_size(dev, size, tiling_mode); 1802 } 1803 1804 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) 1805 { 1806 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1807 int ret; 1808 1809 if (drm_vma_node_has_offset(&obj->base.vma_node)) 1810 return 0; 1811 1812 dev_priv->mm.shrinker_no_lock_stealing = true; 1813 1814 ret = drm_gem_create_mmap_offset(&obj->base); 1815 if (ret != -ENOSPC) 1816 goto out; 1817 1818 /* Badly fragmented mmap space? The only way we can recover 1819 * space is by destroying unwanted objects. We can't randomly release 1820 * mmap_offsets as userspace expects them to be persistent for the 1821 * lifetime of the objects. The closest we can is to release the 1822 * offsets on purgeable objects by truncating it and marking it purged, 1823 * which prevents userspace from ever using that object again. 1824 */ 1825 i915_gem_shrink(dev_priv, 1826 obj->base.size >> PAGE_SHIFT, 1827 I915_SHRINK_BOUND | 1828 I915_SHRINK_UNBOUND | 1829 I915_SHRINK_PURGEABLE); 1830 ret = drm_gem_create_mmap_offset(&obj->base); 1831 if (ret != -ENOSPC) 1832 goto out; 1833 1834 i915_gem_shrink_all(dev_priv); 1835 ret = drm_gem_create_mmap_offset(&obj->base); 1836 out: 1837 dev_priv->mm.shrinker_no_lock_stealing = false; 1838 1839 return ret; 1840 } 1841 1842 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) 1843 { 1844 drm_gem_free_mmap_offset(&obj->base); 1845 } 1846 1847 int 1848 i915_gem_mmap_gtt(struct drm_file *file, 1849 struct drm_device *dev, 1850 uint32_t handle, 1851 uint64_t *offset) 1852 { 1853 struct drm_i915_private *dev_priv = dev->dev_private; 1854 struct drm_i915_gem_object *obj; 1855 int ret; 1856 1857 ret = i915_mutex_lock_interruptible(dev); 1858 if (ret) 1859 return ret; 1860 1861 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle)); 1862 if (&obj->base == NULL) { 1863 ret = -ENOENT; 1864 goto unlock; 1865 } 1866 1867 if (obj->base.size > dev_priv->gtt.mappable_end) { 1868 ret = -E2BIG; 1869 goto out; 1870 } 1871 1872 if (obj->madv != I915_MADV_WILLNEED) { 1873 DRM_DEBUG("Attempting to mmap a purgeable buffer\n"); 1874 ret = -EFAULT; 1875 goto out; 1876 } 1877 1878 ret = i915_gem_object_create_mmap_offset(obj); 1879 if (ret) 1880 goto out; 1881 1882 *offset = drm_vma_node_offset_addr(&obj->base.vma_node); 1883 1884 out: 1885 drm_gem_object_unreference(&obj->base); 1886 unlock: 1887 mutex_unlock(&dev->struct_mutex); 1888 return ret; 1889 } 1890 1891 /** 1892 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 1893 * @dev: DRM device 1894 * @data: GTT mapping ioctl data 1895 * @file: GEM object info 1896 * 1897 * Simply returns the fake offset to userspace so it can mmap it. 1898 * The mmap call will end up in drm_gem_mmap(), which will set things 1899 * up so we can get faults in the handler above. 1900 * 1901 * The fault handler will take care of binding the object into the GTT 1902 * (since it may have been evicted to make room for something), allocating 1903 * a fence register, and mapping the appropriate aperture address into 1904 * userspace. 1905 */ 1906 int 1907 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 1908 struct drm_file *file) 1909 { 1910 struct drm_i915_gem_mmap_gtt *args = data; 1911 1912 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); 1913 } 1914 1915 static inline int 1916 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj) 1917 { 1918 return obj->madv == I915_MADV_DONTNEED; 1919 } 1920 1921 /* Immediately discard the backing storage */ 1922 static void 1923 i915_gem_object_truncate(struct drm_i915_gem_object *obj) 1924 { 1925 i915_gem_object_free_mmap_offset(obj); 1926 1927 if (obj->base.filp == NULL) 1928 return; 1929 1930 /* Our goal here is to return as much of the memory as 1931 * is possible back to the system as we are called from OOM. 1932 * To do this we must instruct the shmfs to drop all of its 1933 * backing pages, *now*. 1934 */ 1935 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1); 1936 obj->madv = __I915_MADV_PURGED; 1937 } 1938 1939 /* Try to discard unwanted pages */ 1940 static void 1941 i915_gem_object_invalidate(struct drm_i915_gem_object *obj) 1942 { 1943 struct address_space *mapping; 1944 1945 switch (obj->madv) { 1946 case I915_MADV_DONTNEED: 1947 i915_gem_object_truncate(obj); 1948 case __I915_MADV_PURGED: 1949 return; 1950 } 1951 1952 if (obj->base.filp == NULL) 1953 return; 1954 1955 mapping = file_inode(obj->base.filp)->i_mapping, 1956 invalidate_mapping_pages(mapping, 0, (loff_t)-1); 1957 } 1958 1959 static void 1960 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj) 1961 { 1962 struct sg_page_iter sg_iter; 1963 int ret; 1964 1965 BUG_ON(obj->madv == __I915_MADV_PURGED); 1966 1967 ret = i915_gem_object_set_to_cpu_domain(obj, true); 1968 if (ret) { 1969 /* In the event of a disaster, abandon all caches and 1970 * hope for the best. 1971 */ 1972 WARN_ON(ret != -EIO); 1973 i915_gem_clflush_object(obj, true); 1974 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; 1975 } 1976 1977 if (i915_gem_object_needs_bit17_swizzle(obj)) 1978 i915_gem_object_save_bit_17_swizzle(obj); 1979 1980 if (obj->madv == I915_MADV_DONTNEED) 1981 obj->dirty = 0; 1982 1983 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) { 1984 struct page *page = sg_page_iter_page(&sg_iter); 1985 1986 if (obj->dirty) 1987 set_page_dirty(page); 1988 1989 if (obj->madv == I915_MADV_WILLNEED) 1990 mark_page_accessed(page); 1991 1992 page_cache_release(page); 1993 } 1994 obj->dirty = 0; 1995 1996 sg_free_table(obj->pages); 1997 kfree(obj->pages); 1998 } 1999 2000 int 2001 i915_gem_object_put_pages(struct drm_i915_gem_object *obj) 2002 { 2003 const struct drm_i915_gem_object_ops *ops = obj->ops; 2004 2005 if (obj->pages == NULL) 2006 return 0; 2007 2008 if (obj->pages_pin_count) 2009 return -EBUSY; 2010 2011 BUG_ON(i915_gem_obj_bound_any(obj)); 2012 2013 /* ->put_pages might need to allocate memory for the bit17 swizzle 2014 * array, hence protect them from being reaped by removing them from gtt 2015 * lists early. */ 2016 list_del(&obj->global_list); 2017 2018 ops->put_pages(obj); 2019 obj->pages = NULL; 2020 2021 i915_gem_object_invalidate(obj); 2022 2023 return 0; 2024 } 2025 2026 unsigned long 2027 i915_gem_shrink(struct drm_i915_private *dev_priv, 2028 long target, unsigned flags) 2029 { 2030 const struct { 2031 struct list_head *list; 2032 unsigned int bit; 2033 } phases[] = { 2034 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND }, 2035 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND }, 2036 { NULL, 0 }, 2037 }, *phase; 2038 unsigned long count = 0; 2039 2040 /* 2041 * As we may completely rewrite the (un)bound list whilst unbinding 2042 * (due to retiring requests) we have to strictly process only 2043 * one element of the list at the time, and recheck the list 2044 * on every iteration. 2045 * 2046 * In particular, we must hold a reference whilst removing the 2047 * object as we may end up waiting for and/or retiring the objects. 2048 * This might release the final reference (held by the active list) 2049 * and result in the object being freed from under us. This is 2050 * similar to the precautions the eviction code must take whilst 2051 * removing objects. 2052 * 2053 * Also note that although these lists do not hold a reference to 2054 * the object we can safely grab one here: The final object 2055 * unreferencing and the bound_list are both protected by the 2056 * dev->struct_mutex and so we won't ever be able to observe an 2057 * object on the bound_list with a reference count equals 0. 2058 */ 2059 for (phase = phases; phase->list; phase++) { 2060 struct list_head still_in_list; 2061 2062 if ((flags & phase->bit) == 0) 2063 continue; 2064 2065 INIT_LIST_HEAD(&still_in_list); 2066 while (count < target && !list_empty(phase->list)) { 2067 struct drm_i915_gem_object *obj; 2068 struct i915_vma *vma, *v; 2069 2070 obj = list_first_entry(phase->list, 2071 typeof(*obj), global_list); 2072 list_move_tail(&obj->global_list, &still_in_list); 2073 2074 if (flags & I915_SHRINK_PURGEABLE && 2075 !i915_gem_object_is_purgeable(obj)) 2076 continue; 2077 2078 drm_gem_object_reference(&obj->base); 2079 2080 /* For the unbound phase, this should be a no-op! */ 2081 list_for_each_entry_safe(vma, v, 2082 &obj->vma_list, vma_link) 2083 if (i915_vma_unbind(vma)) 2084 break; 2085 2086 if (i915_gem_object_put_pages(obj) == 0) 2087 count += obj->base.size >> PAGE_SHIFT; 2088 2089 drm_gem_object_unreference(&obj->base); 2090 } 2091 list_splice(&still_in_list, phase->list); 2092 } 2093 2094 return count; 2095 } 2096 2097 static unsigned long 2098 i915_gem_shrink_all(struct drm_i915_private *dev_priv) 2099 { 2100 i915_gem_evict_everything(dev_priv->dev); 2101 return i915_gem_shrink(dev_priv, LONG_MAX, 2102 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND); 2103 } 2104 2105 static int 2106 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) 2107 { 2108 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2109 int page_count, i; 2110 struct address_space *mapping; 2111 struct sg_table *st; 2112 struct scatterlist *sg; 2113 struct sg_page_iter sg_iter; 2114 struct page *page; 2115 unsigned long last_pfn = 0; /* suppress gcc warning */ 2116 gfp_t gfp; 2117 2118 /* Assert that the object is not currently in any GPU domain. As it 2119 * wasn't in the GTT, there shouldn't be any way it could have been in 2120 * a GPU cache 2121 */ 2122 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); 2123 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); 2124 2125 st = kmalloc(sizeof(*st), GFP_KERNEL); 2126 if (st == NULL) 2127 return -ENOMEM; 2128 2129 page_count = obj->base.size / PAGE_SIZE; 2130 if (sg_alloc_table(st, page_count, GFP_KERNEL)) { 2131 kfree(st); 2132 return -ENOMEM; 2133 } 2134 2135 /* Get the list of pages out of our struct file. They'll be pinned 2136 * at this point until we release them. 2137 * 2138 * Fail silently without starting the shrinker 2139 */ 2140 mapping = file_inode(obj->base.filp)->i_mapping; 2141 gfp = mapping_gfp_mask(mapping); 2142 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD; 2143 gfp &= ~(__GFP_IO | __GFP_WAIT); 2144 sg = st->sgl; 2145 st->nents = 0; 2146 for (i = 0; i < page_count; i++) { 2147 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 2148 if (IS_ERR(page)) { 2149 i915_gem_shrink(dev_priv, 2150 page_count, 2151 I915_SHRINK_BOUND | 2152 I915_SHRINK_UNBOUND | 2153 I915_SHRINK_PURGEABLE); 2154 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 2155 } 2156 if (IS_ERR(page)) { 2157 /* We've tried hard to allocate the memory by reaping 2158 * our own buffer, now let the real VM do its job and 2159 * go down in flames if truly OOM. 2160 */ 2161 i915_gem_shrink_all(dev_priv); 2162 page = shmem_read_mapping_page(mapping, i); 2163 if (IS_ERR(page)) 2164 goto err_pages; 2165 } 2166 #ifdef CONFIG_SWIOTLB 2167 if (swiotlb_nr_tbl()) { 2168 st->nents++; 2169 sg_set_page(sg, page, PAGE_SIZE, 0); 2170 sg = sg_next(sg); 2171 continue; 2172 } 2173 #endif 2174 if (!i || page_to_pfn(page) != last_pfn + 1) { 2175 if (i) 2176 sg = sg_next(sg); 2177 st->nents++; 2178 sg_set_page(sg, page, PAGE_SIZE, 0); 2179 } else { 2180 sg->length += PAGE_SIZE; 2181 } 2182 last_pfn = page_to_pfn(page); 2183 2184 /* Check that the i965g/gm workaround works. */ 2185 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL)); 2186 } 2187 #ifdef CONFIG_SWIOTLB 2188 if (!swiotlb_nr_tbl()) 2189 #endif 2190 sg_mark_end(sg); 2191 obj->pages = st; 2192 2193 if (i915_gem_object_needs_bit17_swizzle(obj)) 2194 i915_gem_object_do_bit_17_swizzle(obj); 2195 2196 if (obj->tiling_mode != I915_TILING_NONE && 2197 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) 2198 i915_gem_object_pin_pages(obj); 2199 2200 return 0; 2201 2202 err_pages: 2203 sg_mark_end(sg); 2204 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) 2205 page_cache_release(sg_page_iter_page(&sg_iter)); 2206 sg_free_table(st); 2207 kfree(st); 2208 2209 /* shmemfs first checks if there is enough memory to allocate the page 2210 * and reports ENOSPC should there be insufficient, along with the usual 2211 * ENOMEM for a genuine allocation failure. 2212 * 2213 * We use ENOSPC in our driver to mean that we have run out of aperture 2214 * space and so want to translate the error from shmemfs back to our 2215 * usual understanding of ENOMEM. 2216 */ 2217 if (PTR_ERR(page) == -ENOSPC) 2218 return -ENOMEM; 2219 else 2220 return PTR_ERR(page); 2221 } 2222 2223 /* Ensure that the associated pages are gathered from the backing storage 2224 * and pinned into our object. i915_gem_object_get_pages() may be called 2225 * multiple times before they are released by a single call to 2226 * i915_gem_object_put_pages() - once the pages are no longer referenced 2227 * either as a result of memory pressure (reaping pages under the shrinker) 2228 * or as the object is itself released. 2229 */ 2230 int 2231 i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 2232 { 2233 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2234 const struct drm_i915_gem_object_ops *ops = obj->ops; 2235 int ret; 2236 2237 if (obj->pages) 2238 return 0; 2239 2240 if (obj->madv != I915_MADV_WILLNEED) { 2241 DRM_DEBUG("Attempting to obtain a purgeable object\n"); 2242 return -EFAULT; 2243 } 2244 2245 BUG_ON(obj->pages_pin_count); 2246 2247 ret = ops->get_pages(obj); 2248 if (ret) 2249 return ret; 2250 2251 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list); 2252 return 0; 2253 } 2254 2255 static void 2256 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj, 2257 struct intel_engine_cs *ring) 2258 { 2259 u32 seqno = intel_ring_get_seqno(ring); 2260 2261 BUG_ON(ring == NULL); 2262 if (obj->ring != ring && obj->last_write_seqno) { 2263 /* Keep the seqno relative to the current ring */ 2264 obj->last_write_seqno = seqno; 2265 } 2266 obj->ring = ring; 2267 2268 /* Add a reference if we're newly entering the active list. */ 2269 if (!obj->active) { 2270 drm_gem_object_reference(&obj->base); 2271 obj->active = 1; 2272 } 2273 2274 list_move_tail(&obj->ring_list, &ring->active_list); 2275 2276 obj->last_read_seqno = seqno; 2277 } 2278 2279 void i915_vma_move_to_active(struct i915_vma *vma, 2280 struct intel_engine_cs *ring) 2281 { 2282 list_move_tail(&vma->mm_list, &vma->vm->active_list); 2283 return i915_gem_object_move_to_active(vma->obj, ring); 2284 } 2285 2286 static void 2287 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj) 2288 { 2289 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2290 struct i915_address_space *vm; 2291 struct i915_vma *vma; 2292 2293 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS); 2294 BUG_ON(!obj->active); 2295 2296 list_for_each_entry(vm, &dev_priv->vm_list, global_link) { 2297 vma = i915_gem_obj_to_vma(obj, vm); 2298 if (vma && !list_empty(&vma->mm_list)) 2299 list_move_tail(&vma->mm_list, &vm->inactive_list); 2300 } 2301 2302 intel_fb_obj_flush(obj, true); 2303 2304 list_del_init(&obj->ring_list); 2305 obj->ring = NULL; 2306 2307 obj->last_read_seqno = 0; 2308 obj->last_write_seqno = 0; 2309 obj->base.write_domain = 0; 2310 2311 obj->last_fenced_seqno = 0; 2312 2313 obj->active = 0; 2314 drm_gem_object_unreference(&obj->base); 2315 2316 WARN_ON(i915_verify_lists(dev)); 2317 } 2318 2319 static void 2320 i915_gem_object_retire(struct drm_i915_gem_object *obj) 2321 { 2322 struct intel_engine_cs *ring = obj->ring; 2323 2324 if (ring == NULL) 2325 return; 2326 2327 if (i915_seqno_passed(ring->get_seqno(ring, true), 2328 obj->last_read_seqno)) 2329 i915_gem_object_move_to_inactive(obj); 2330 } 2331 2332 static int 2333 i915_gem_init_seqno(struct drm_device *dev, u32 seqno) 2334 { 2335 struct drm_i915_private *dev_priv = dev->dev_private; 2336 struct intel_engine_cs *ring; 2337 int ret, i, j; 2338 2339 /* Carefully retire all requests without writing to the rings */ 2340 for_each_ring(ring, dev_priv, i) { 2341 ret = intel_ring_idle(ring); 2342 if (ret) 2343 return ret; 2344 } 2345 i915_gem_retire_requests(dev); 2346 2347 /* Finally reset hw state */ 2348 for_each_ring(ring, dev_priv, i) { 2349 intel_ring_init_seqno(ring, seqno); 2350 2351 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++) 2352 ring->semaphore.sync_seqno[j] = 0; 2353 } 2354 2355 return 0; 2356 } 2357 2358 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno) 2359 { 2360 struct drm_i915_private *dev_priv = dev->dev_private; 2361 int ret; 2362 2363 if (seqno == 0) 2364 return -EINVAL; 2365 2366 /* HWS page needs to be set less than what we 2367 * will inject to ring 2368 */ 2369 ret = i915_gem_init_seqno(dev, seqno - 1); 2370 if (ret) 2371 return ret; 2372 2373 /* Carefully set the last_seqno value so that wrap 2374 * detection still works 2375 */ 2376 dev_priv->next_seqno = seqno; 2377 dev_priv->last_seqno = seqno - 1; 2378 if (dev_priv->last_seqno == 0) 2379 dev_priv->last_seqno--; 2380 2381 return 0; 2382 } 2383 2384 int 2385 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno) 2386 { 2387 struct drm_i915_private *dev_priv = dev->dev_private; 2388 2389 /* reserve 0 for non-seqno */ 2390 if (dev_priv->next_seqno == 0) { 2391 int ret = i915_gem_init_seqno(dev, 0); 2392 if (ret) 2393 return ret; 2394 2395 dev_priv->next_seqno = 1; 2396 } 2397 2398 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++; 2399 return 0; 2400 } 2401 2402 int __i915_add_request(struct intel_engine_cs *ring, 2403 struct drm_file *file, 2404 struct drm_i915_gem_object *obj, 2405 u32 *out_seqno) 2406 { 2407 struct drm_i915_private *dev_priv = ring->dev->dev_private; 2408 struct drm_i915_gem_request *request; 2409 struct intel_ringbuffer *ringbuf; 2410 u32 request_ring_position, request_start; 2411 int ret; 2412 2413 request = ring->preallocated_lazy_request; 2414 if (WARN_ON(request == NULL)) 2415 return -ENOMEM; 2416 2417 if (i915.enable_execlists) { 2418 struct intel_context *ctx = request->ctx; 2419 ringbuf = ctx->engine[ring->id].ringbuf; 2420 } else 2421 ringbuf = ring->buffer; 2422 2423 request_start = intel_ring_get_tail(ringbuf); 2424 /* 2425 * Emit any outstanding flushes - execbuf can fail to emit the flush 2426 * after having emitted the batchbuffer command. Hence we need to fix 2427 * things up similar to emitting the lazy request. The difference here 2428 * is that the flush _must_ happen before the next request, no matter 2429 * what. 2430 */ 2431 if (i915.enable_execlists) { 2432 ret = logical_ring_flush_all_caches(ringbuf); 2433 if (ret) 2434 return ret; 2435 } else { 2436 ret = intel_ring_flush_all_caches(ring); 2437 if (ret) 2438 return ret; 2439 } 2440 2441 /* Record the position of the start of the request so that 2442 * should we detect the updated seqno part-way through the 2443 * GPU processing the request, we never over-estimate the 2444 * position of the head. 2445 */ 2446 request_ring_position = intel_ring_get_tail(ringbuf); 2447 2448 if (i915.enable_execlists) { 2449 ret = ring->emit_request(ringbuf); 2450 if (ret) 2451 return ret; 2452 } else { 2453 ret = ring->add_request(ring); 2454 if (ret) 2455 return ret; 2456 } 2457 2458 request->seqno = intel_ring_get_seqno(ring); 2459 request->ring = ring; 2460 request->head = request_start; 2461 request->tail = request_ring_position; 2462 2463 /* Whilst this request exists, batch_obj will be on the 2464 * active_list, and so will hold the active reference. Only when this 2465 * request is retired will the the batch_obj be moved onto the 2466 * inactive_list and lose its active reference. Hence we do not need 2467 * to explicitly hold another reference here. 2468 */ 2469 request->batch_obj = obj; 2470 2471 if (!i915.enable_execlists) { 2472 /* Hold a reference to the current context so that we can inspect 2473 * it later in case a hangcheck error event fires. 2474 */ 2475 request->ctx = ring->last_context; 2476 if (request->ctx) 2477 i915_gem_context_reference(request->ctx); 2478 } 2479 2480 request->emitted_jiffies = jiffies; 2481 list_add_tail(&request->list, &ring->request_list); 2482 request->file_priv = NULL; 2483 2484 if (file) { 2485 struct drm_i915_file_private *file_priv = file->driver_priv; 2486 2487 spin_lock(&file_priv->mm.lock); 2488 request->file_priv = file_priv; 2489 list_add_tail(&request->client_list, 2490 &file_priv->mm.request_list); 2491 spin_unlock(&file_priv->mm.lock); 2492 } 2493 2494 trace_i915_gem_request_add(ring, request->seqno); 2495 ring->outstanding_lazy_seqno = 0; 2496 ring->preallocated_lazy_request = NULL; 2497 2498 i915_queue_hangcheck(ring->dev); 2499 2500 cancel_delayed_work_sync(&dev_priv->mm.idle_work); 2501 queue_delayed_work(dev_priv->wq, 2502 &dev_priv->mm.retire_work, 2503 round_jiffies_up_relative(HZ)); 2504 intel_mark_busy(dev_priv->dev); 2505 2506 if (out_seqno) 2507 *out_seqno = request->seqno; 2508 return 0; 2509 } 2510 2511 static inline void 2512 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request) 2513 { 2514 struct drm_i915_file_private *file_priv = request->file_priv; 2515 2516 if (!file_priv) 2517 return; 2518 2519 spin_lock(&file_priv->mm.lock); 2520 list_del(&request->client_list); 2521 request->file_priv = NULL; 2522 spin_unlock(&file_priv->mm.lock); 2523 } 2524 2525 static bool i915_context_is_banned(struct drm_i915_private *dev_priv, 2526 const struct intel_context *ctx) 2527 { 2528 unsigned long elapsed; 2529 2530 elapsed = get_seconds() - ctx->hang_stats.guilty_ts; 2531 2532 if (ctx->hang_stats.banned) 2533 return true; 2534 2535 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) { 2536 if (!i915_gem_context_is_default(ctx)) { 2537 DRM_DEBUG("context hanging too fast, banning!\n"); 2538 return true; 2539 } else if (i915_stop_ring_allow_ban(dev_priv)) { 2540 if (i915_stop_ring_allow_warn(dev_priv)) 2541 DRM_ERROR("gpu hanging too fast, banning!\n"); 2542 return true; 2543 } 2544 } 2545 2546 return false; 2547 } 2548 2549 static void i915_set_reset_status(struct drm_i915_private *dev_priv, 2550 struct intel_context *ctx, 2551 const bool guilty) 2552 { 2553 struct i915_ctx_hang_stats *hs; 2554 2555 if (WARN_ON(!ctx)) 2556 return; 2557 2558 hs = &ctx->hang_stats; 2559 2560 if (guilty) { 2561 hs->banned = i915_context_is_banned(dev_priv, ctx); 2562 hs->batch_active++; 2563 hs->guilty_ts = get_seconds(); 2564 } else { 2565 hs->batch_pending++; 2566 } 2567 } 2568 2569 static void i915_gem_free_request(struct drm_i915_gem_request *request) 2570 { 2571 struct intel_context *ctx = request->ctx; 2572 2573 list_del(&request->list); 2574 i915_gem_request_remove_from_client(request); 2575 2576 if (ctx) { 2577 if (i915.enable_execlists) { 2578 struct intel_engine_cs *ring = request->ring; 2579 2580 if (ctx != ring->default_context) 2581 intel_lr_context_unpin(ring, ctx); 2582 } 2583 i915_gem_context_unreference(ctx); 2584 } 2585 kfree(request); 2586 } 2587 2588 struct drm_i915_gem_request * 2589 i915_gem_find_active_request(struct intel_engine_cs *ring) 2590 { 2591 struct drm_i915_gem_request *request; 2592 u32 completed_seqno; 2593 2594 completed_seqno = ring->get_seqno(ring, false); 2595 2596 list_for_each_entry(request, &ring->request_list, list) { 2597 if (i915_seqno_passed(completed_seqno, request->seqno)) 2598 continue; 2599 2600 return request; 2601 } 2602 2603 return NULL; 2604 } 2605 2606 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv, 2607 struct intel_engine_cs *ring) 2608 { 2609 struct drm_i915_gem_request *request; 2610 bool ring_hung; 2611 2612 request = i915_gem_find_active_request(ring); 2613 2614 if (request == NULL) 2615 return; 2616 2617 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG; 2618 2619 i915_set_reset_status(dev_priv, request->ctx, ring_hung); 2620 2621 list_for_each_entry_continue(request, &ring->request_list, list) 2622 i915_set_reset_status(dev_priv, request->ctx, false); 2623 } 2624 2625 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv, 2626 struct intel_engine_cs *ring) 2627 { 2628 while (!list_empty(&ring->active_list)) { 2629 struct drm_i915_gem_object *obj; 2630 2631 obj = list_first_entry(&ring->active_list, 2632 struct drm_i915_gem_object, 2633 ring_list); 2634 2635 i915_gem_object_move_to_inactive(obj); 2636 } 2637 2638 /* 2639 * Clear the execlists queue up before freeing the requests, as those 2640 * are the ones that keep the context and ringbuffer backing objects 2641 * pinned in place. 2642 */ 2643 while (!list_empty(&ring->execlist_queue)) { 2644 struct intel_ctx_submit_request *submit_req; 2645 2646 submit_req = list_first_entry(&ring->execlist_queue, 2647 struct intel_ctx_submit_request, 2648 execlist_link); 2649 list_del(&submit_req->execlist_link); 2650 intel_runtime_pm_put(dev_priv); 2651 i915_gem_context_unreference(submit_req->ctx); 2652 kfree(submit_req); 2653 } 2654 2655 /* 2656 * We must free the requests after all the corresponding objects have 2657 * been moved off active lists. Which is the same order as the normal 2658 * retire_requests function does. This is important if object hold 2659 * implicit references on things like e.g. ppgtt address spaces through 2660 * the request. 2661 */ 2662 while (!list_empty(&ring->request_list)) { 2663 struct drm_i915_gem_request *request; 2664 2665 request = list_first_entry(&ring->request_list, 2666 struct drm_i915_gem_request, 2667 list); 2668 2669 i915_gem_free_request(request); 2670 } 2671 2672 /* These may not have been flush before the reset, do so now */ 2673 kfree(ring->preallocated_lazy_request); 2674 ring->preallocated_lazy_request = NULL; 2675 ring->outstanding_lazy_seqno = 0; 2676 } 2677 2678 void i915_gem_restore_fences(struct drm_device *dev) 2679 { 2680 struct drm_i915_private *dev_priv = dev->dev_private; 2681 int i; 2682 2683 for (i = 0; i < dev_priv->num_fence_regs; i++) { 2684 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; 2685 2686 /* 2687 * Commit delayed tiling changes if we have an object still 2688 * attached to the fence, otherwise just clear the fence. 2689 */ 2690 if (reg->obj) { 2691 i915_gem_object_update_fence(reg->obj, reg, 2692 reg->obj->tiling_mode); 2693 } else { 2694 i915_gem_write_fence(dev, i, NULL); 2695 } 2696 } 2697 } 2698 2699 void i915_gem_reset(struct drm_device *dev) 2700 { 2701 struct drm_i915_private *dev_priv = dev->dev_private; 2702 struct intel_engine_cs *ring; 2703 int i; 2704 2705 /* 2706 * Before we free the objects from the requests, we need to inspect 2707 * them for finding the guilty party. As the requests only borrow 2708 * their reference to the objects, the inspection must be done first. 2709 */ 2710 for_each_ring(ring, dev_priv, i) 2711 i915_gem_reset_ring_status(dev_priv, ring); 2712 2713 for_each_ring(ring, dev_priv, i) 2714 i915_gem_reset_ring_cleanup(dev_priv, ring); 2715 2716 i915_gem_context_reset(dev); 2717 2718 i915_gem_restore_fences(dev); 2719 } 2720 2721 /** 2722 * This function clears the request list as sequence numbers are passed. 2723 */ 2724 void 2725 i915_gem_retire_requests_ring(struct intel_engine_cs *ring) 2726 { 2727 uint32_t seqno; 2728 2729 if (list_empty(&ring->request_list)) 2730 return; 2731 2732 WARN_ON(i915_verify_lists(ring->dev)); 2733 2734 seqno = ring->get_seqno(ring, true); 2735 2736 /* Move any buffers on the active list that are no longer referenced 2737 * by the ringbuffer to the flushing/inactive lists as appropriate, 2738 * before we free the context associated with the requests. 2739 */ 2740 while (!list_empty(&ring->active_list)) { 2741 struct drm_i915_gem_object *obj; 2742 2743 obj = list_first_entry(&ring->active_list, 2744 struct drm_i915_gem_object, 2745 ring_list); 2746 2747 if (!i915_seqno_passed(seqno, obj->last_read_seqno)) 2748 break; 2749 2750 i915_gem_object_move_to_inactive(obj); 2751 } 2752 2753 2754 while (!list_empty(&ring->request_list)) { 2755 struct drm_i915_gem_request *request; 2756 struct intel_ringbuffer *ringbuf; 2757 2758 request = list_first_entry(&ring->request_list, 2759 struct drm_i915_gem_request, 2760 list); 2761 2762 if (!i915_seqno_passed(seqno, request->seqno)) 2763 break; 2764 2765 trace_i915_gem_request_retire(ring, request->seqno); 2766 2767 /* This is one of the few common intersection points 2768 * between legacy ringbuffer submission and execlists: 2769 * we need to tell them apart in order to find the correct 2770 * ringbuffer to which the request belongs to. 2771 */ 2772 if (i915.enable_execlists) { 2773 struct intel_context *ctx = request->ctx; 2774 ringbuf = ctx->engine[ring->id].ringbuf; 2775 } else 2776 ringbuf = ring->buffer; 2777 2778 /* We know the GPU must have read the request to have 2779 * sent us the seqno + interrupt, so use the position 2780 * of tail of the request to update the last known position 2781 * of the GPU head. 2782 */ 2783 ringbuf->last_retired_head = request->tail; 2784 2785 i915_gem_free_request(request); 2786 } 2787 2788 if (unlikely(ring->trace_irq_seqno && 2789 i915_seqno_passed(seqno, ring->trace_irq_seqno))) { 2790 ring->irq_put(ring); 2791 ring->trace_irq_seqno = 0; 2792 } 2793 2794 WARN_ON(i915_verify_lists(ring->dev)); 2795 } 2796 2797 bool 2798 i915_gem_retire_requests(struct drm_device *dev) 2799 { 2800 struct drm_i915_private *dev_priv = dev->dev_private; 2801 struct intel_engine_cs *ring; 2802 bool idle = true; 2803 int i; 2804 2805 for_each_ring(ring, dev_priv, i) { 2806 i915_gem_retire_requests_ring(ring); 2807 idle &= list_empty(&ring->request_list); 2808 if (i915.enable_execlists) { 2809 unsigned long flags; 2810 2811 spin_lock_irqsave(&ring->execlist_lock, flags); 2812 idle &= list_empty(&ring->execlist_queue); 2813 spin_unlock_irqrestore(&ring->execlist_lock, flags); 2814 2815 intel_execlists_retire_requests(ring); 2816 } 2817 } 2818 2819 if (idle) 2820 mod_delayed_work(dev_priv->wq, 2821 &dev_priv->mm.idle_work, 2822 msecs_to_jiffies(100)); 2823 2824 return idle; 2825 } 2826 2827 static void 2828 i915_gem_retire_work_handler(struct work_struct *work) 2829 { 2830 struct drm_i915_private *dev_priv = 2831 container_of(work, typeof(*dev_priv), mm.retire_work.work); 2832 struct drm_device *dev = dev_priv->dev; 2833 bool idle; 2834 2835 /* Come back later if the device is busy... */ 2836 idle = false; 2837 if (mutex_trylock(&dev->struct_mutex)) { 2838 idle = i915_gem_retire_requests(dev); 2839 mutex_unlock(&dev->struct_mutex); 2840 } 2841 if (!idle) 2842 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 2843 round_jiffies_up_relative(HZ)); 2844 } 2845 2846 static void 2847 i915_gem_idle_work_handler(struct work_struct *work) 2848 { 2849 struct drm_i915_private *dev_priv = 2850 container_of(work, typeof(*dev_priv), mm.idle_work.work); 2851 2852 intel_mark_idle(dev_priv->dev); 2853 } 2854 2855 /** 2856 * Ensures that an object will eventually get non-busy by flushing any required 2857 * write domains, emitting any outstanding lazy request and retiring and 2858 * completed requests. 2859 */ 2860 static int 2861 i915_gem_object_flush_active(struct drm_i915_gem_object *obj) 2862 { 2863 int ret; 2864 2865 if (obj->active) { 2866 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno); 2867 if (ret) 2868 return ret; 2869 2870 i915_gem_retire_requests_ring(obj->ring); 2871 } 2872 2873 return 0; 2874 } 2875 2876 /** 2877 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT 2878 * @DRM_IOCTL_ARGS: standard ioctl arguments 2879 * 2880 * Returns 0 if successful, else an error is returned with the remaining time in 2881 * the timeout parameter. 2882 * -ETIME: object is still busy after timeout 2883 * -ERESTARTSYS: signal interrupted the wait 2884 * -ENONENT: object doesn't exist 2885 * Also possible, but rare: 2886 * -EAGAIN: GPU wedged 2887 * -ENOMEM: damn 2888 * -ENODEV: Internal IRQ fail 2889 * -E?: The add request failed 2890 * 2891 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any 2892 * non-zero timeout parameter the wait ioctl will wait for the given number of 2893 * nanoseconds on an object becoming unbusy. Since the wait itself does so 2894 * without holding struct_mutex the object may become re-busied before this 2895 * function completes. A similar but shorter * race condition exists in the busy 2896 * ioctl 2897 */ 2898 int 2899 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 2900 { 2901 struct drm_i915_private *dev_priv = dev->dev_private; 2902 struct drm_i915_gem_wait *args = data; 2903 struct drm_i915_gem_object *obj; 2904 struct intel_engine_cs *ring = NULL; 2905 unsigned reset_counter; 2906 u32 seqno = 0; 2907 int ret = 0; 2908 2909 if (args->flags != 0) 2910 return -EINVAL; 2911 2912 ret = i915_mutex_lock_interruptible(dev); 2913 if (ret) 2914 return ret; 2915 2916 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle)); 2917 if (&obj->base == NULL) { 2918 mutex_unlock(&dev->struct_mutex); 2919 return -ENOENT; 2920 } 2921 2922 /* Need to make sure the object gets inactive eventually. */ 2923 ret = i915_gem_object_flush_active(obj); 2924 if (ret) 2925 goto out; 2926 2927 if (obj->active) { 2928 seqno = obj->last_read_seqno; 2929 ring = obj->ring; 2930 } 2931 2932 if (seqno == 0) 2933 goto out; 2934 2935 /* Do this after OLR check to make sure we make forward progress polling 2936 * on this IOCTL with a timeout <=0 (like busy ioctl) 2937 */ 2938 if (args->timeout_ns <= 0) { 2939 ret = -ETIME; 2940 goto out; 2941 } 2942 2943 drm_gem_object_unreference(&obj->base); 2944 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 2945 mutex_unlock(&dev->struct_mutex); 2946 2947 return __i915_wait_seqno(ring, seqno, reset_counter, true, 2948 &args->timeout_ns, file->driver_priv); 2949 2950 out: 2951 drm_gem_object_unreference(&obj->base); 2952 mutex_unlock(&dev->struct_mutex); 2953 return ret; 2954 } 2955 2956 /** 2957 * i915_gem_object_sync - sync an object to a ring. 2958 * 2959 * @obj: object which may be in use on another ring. 2960 * @to: ring we wish to use the object on. May be NULL. 2961 * 2962 * This code is meant to abstract object synchronization with the GPU. 2963 * Calling with NULL implies synchronizing the object with the CPU 2964 * rather than a particular GPU ring. 2965 * 2966 * Returns 0 if successful, else propagates up the lower layer error. 2967 */ 2968 int 2969 i915_gem_object_sync(struct drm_i915_gem_object *obj, 2970 struct intel_engine_cs *to) 2971 { 2972 struct intel_engine_cs *from = obj->ring; 2973 u32 seqno; 2974 int ret, idx; 2975 2976 if (from == NULL || to == from) 2977 return 0; 2978 2979 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev)) 2980 return i915_gem_object_wait_rendering(obj, false); 2981 2982 idx = intel_ring_sync_index(from, to); 2983 2984 seqno = obj->last_read_seqno; 2985 /* Optimization: Avoid semaphore sync when we are sure we already 2986 * waited for an object with higher seqno */ 2987 if (seqno <= from->semaphore.sync_seqno[idx]) 2988 return 0; 2989 2990 ret = i915_gem_check_olr(obj->ring, seqno); 2991 if (ret) 2992 return ret; 2993 2994 trace_i915_gem_ring_sync_to(from, to, seqno); 2995 ret = to->semaphore.sync_to(to, from, seqno); 2996 if (!ret) 2997 /* We use last_read_seqno because sync_to() 2998 * might have just caused seqno wrap under 2999 * the radar. 3000 */ 3001 from->semaphore.sync_seqno[idx] = obj->last_read_seqno; 3002 3003 return ret; 3004 } 3005 3006 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj) 3007 { 3008 u32 old_write_domain, old_read_domains; 3009 3010 /* Force a pagefault for domain tracking on next user access */ 3011 i915_gem_release_mmap(obj); 3012 3013 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 3014 return; 3015 3016 /* Wait for any direct GTT access to complete */ 3017 mb(); 3018 3019 old_read_domains = obj->base.read_domains; 3020 old_write_domain = obj->base.write_domain; 3021 3022 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT; 3023 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT; 3024 3025 trace_i915_gem_object_change_domain(obj, 3026 old_read_domains, 3027 old_write_domain); 3028 } 3029 3030 int i915_vma_unbind(struct i915_vma *vma) 3031 { 3032 struct drm_i915_gem_object *obj = vma->obj; 3033 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3034 int ret; 3035 3036 if (list_empty(&vma->vma_link)) 3037 return 0; 3038 3039 if (!drm_mm_node_allocated(&vma->node)) { 3040 i915_gem_vma_destroy(vma); 3041 return 0; 3042 } 3043 3044 if (vma->pin_count) 3045 return -EBUSY; 3046 3047 BUG_ON(obj->pages == NULL); 3048 3049 ret = i915_gem_object_finish_gpu(obj); 3050 if (ret) 3051 return ret; 3052 /* Continue on if we fail due to EIO, the GPU is hung so we 3053 * should be safe and we need to cleanup or else we might 3054 * cause memory corruption through use-after-free. 3055 */ 3056 3057 /* Throw away the active reference before moving to the unbound list */ 3058 i915_gem_object_retire(obj); 3059 3060 if (i915_is_ggtt(vma->vm)) { 3061 i915_gem_object_finish_gtt(obj); 3062 3063 /* release the fence reg _after_ flushing */ 3064 ret = i915_gem_object_put_fence(obj); 3065 if (ret) 3066 return ret; 3067 } 3068 3069 trace_i915_vma_unbind(vma); 3070 3071 vma->unbind_vma(vma); 3072 3073 list_del_init(&vma->mm_list); 3074 if (i915_is_ggtt(vma->vm)) 3075 obj->map_and_fenceable = false; 3076 3077 drm_mm_remove_node(&vma->node); 3078 i915_gem_vma_destroy(vma); 3079 3080 /* Since the unbound list is global, only move to that list if 3081 * no more VMAs exist. */ 3082 if (list_empty(&obj->vma_list)) { 3083 i915_gem_gtt_finish_object(obj); 3084 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list); 3085 } 3086 3087 /* And finally now the object is completely decoupled from this vma, 3088 * we can drop its hold on the backing storage and allow it to be 3089 * reaped by the shrinker. 3090 */ 3091 i915_gem_object_unpin_pages(obj); 3092 3093 return 0; 3094 } 3095 3096 int i915_gpu_idle(struct drm_device *dev) 3097 { 3098 struct drm_i915_private *dev_priv = dev->dev_private; 3099 struct intel_engine_cs *ring; 3100 int ret, i; 3101 3102 /* Flush everything onto the inactive list. */ 3103 for_each_ring(ring, dev_priv, i) { 3104 if (!i915.enable_execlists) { 3105 ret = i915_switch_context(ring, ring->default_context); 3106 if (ret) 3107 return ret; 3108 } 3109 3110 ret = intel_ring_idle(ring); 3111 if (ret) 3112 return ret; 3113 } 3114 3115 return 0; 3116 } 3117 3118 static void i965_write_fence_reg(struct drm_device *dev, int reg, 3119 struct drm_i915_gem_object *obj) 3120 { 3121 struct drm_i915_private *dev_priv = dev->dev_private; 3122 int fence_reg; 3123 int fence_pitch_shift; 3124 3125 if (INTEL_INFO(dev)->gen >= 6) { 3126 fence_reg = FENCE_REG_SANDYBRIDGE_0; 3127 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT; 3128 } else { 3129 fence_reg = FENCE_REG_965_0; 3130 fence_pitch_shift = I965_FENCE_PITCH_SHIFT; 3131 } 3132 3133 fence_reg += reg * 8; 3134 3135 /* To w/a incoherency with non-atomic 64-bit register updates, 3136 * we split the 64-bit update into two 32-bit writes. In order 3137 * for a partial fence not to be evaluated between writes, we 3138 * precede the update with write to turn off the fence register, 3139 * and only enable the fence as the last step. 3140 * 3141 * For extra levels of paranoia, we make sure each step lands 3142 * before applying the next step. 3143 */ 3144 I915_WRITE(fence_reg, 0); 3145 POSTING_READ(fence_reg); 3146 3147 if (obj) { 3148 u32 size = i915_gem_obj_ggtt_size(obj); 3149 uint64_t val; 3150 3151 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) & 3152 0xfffff000) << 32; 3153 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000; 3154 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift; 3155 if (obj->tiling_mode == I915_TILING_Y) 3156 val |= 1 << I965_FENCE_TILING_Y_SHIFT; 3157 val |= I965_FENCE_REG_VALID; 3158 3159 I915_WRITE(fence_reg + 4, val >> 32); 3160 POSTING_READ(fence_reg + 4); 3161 3162 I915_WRITE(fence_reg + 0, val); 3163 POSTING_READ(fence_reg); 3164 } else { 3165 I915_WRITE(fence_reg + 4, 0); 3166 POSTING_READ(fence_reg + 4); 3167 } 3168 } 3169 3170 static void i915_write_fence_reg(struct drm_device *dev, int reg, 3171 struct drm_i915_gem_object *obj) 3172 { 3173 struct drm_i915_private *dev_priv = dev->dev_private; 3174 u32 val; 3175 3176 if (obj) { 3177 u32 size = i915_gem_obj_ggtt_size(obj); 3178 int pitch_val; 3179 int tile_width; 3180 3181 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) || 3182 (size & -size) != size || 3183 (i915_gem_obj_ggtt_offset(obj) & (size - 1)), 3184 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n", 3185 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size); 3186 3187 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)) 3188 tile_width = 128; 3189 else 3190 tile_width = 512; 3191 3192 /* Note: pitch better be a power of two tile widths */ 3193 pitch_val = obj->stride / tile_width; 3194 pitch_val = ffs(pitch_val) - 1; 3195 3196 val = i915_gem_obj_ggtt_offset(obj); 3197 if (obj->tiling_mode == I915_TILING_Y) 3198 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 3199 val |= I915_FENCE_SIZE_BITS(size); 3200 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 3201 val |= I830_FENCE_REG_VALID; 3202 } else 3203 val = 0; 3204 3205 if (reg < 8) 3206 reg = FENCE_REG_830_0 + reg * 4; 3207 else 3208 reg = FENCE_REG_945_8 + (reg - 8) * 4; 3209 3210 I915_WRITE(reg, val); 3211 POSTING_READ(reg); 3212 } 3213 3214 static void i830_write_fence_reg(struct drm_device *dev, int reg, 3215 struct drm_i915_gem_object *obj) 3216 { 3217 struct drm_i915_private *dev_priv = dev->dev_private; 3218 uint32_t val; 3219 3220 if (obj) { 3221 u32 size = i915_gem_obj_ggtt_size(obj); 3222 uint32_t pitch_val; 3223 3224 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) || 3225 (size & -size) != size || 3226 (i915_gem_obj_ggtt_offset(obj) & (size - 1)), 3227 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n", 3228 i915_gem_obj_ggtt_offset(obj), size); 3229 3230 pitch_val = obj->stride / 128; 3231 pitch_val = ffs(pitch_val) - 1; 3232 3233 val = i915_gem_obj_ggtt_offset(obj); 3234 if (obj->tiling_mode == I915_TILING_Y) 3235 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 3236 val |= I830_FENCE_SIZE_BITS(size); 3237 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 3238 val |= I830_FENCE_REG_VALID; 3239 } else 3240 val = 0; 3241 3242 I915_WRITE(FENCE_REG_830_0 + reg * 4, val); 3243 POSTING_READ(FENCE_REG_830_0 + reg * 4); 3244 } 3245 3246 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj) 3247 { 3248 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT; 3249 } 3250 3251 static void i915_gem_write_fence(struct drm_device *dev, int reg, 3252 struct drm_i915_gem_object *obj) 3253 { 3254 struct drm_i915_private *dev_priv = dev->dev_private; 3255 3256 /* Ensure that all CPU reads are completed before installing a fence 3257 * and all writes before removing the fence. 3258 */ 3259 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj)) 3260 mb(); 3261 3262 WARN(obj && (!obj->stride || !obj->tiling_mode), 3263 "bogus fence setup with stride: 0x%x, tiling mode: %i\n", 3264 obj->stride, obj->tiling_mode); 3265 3266 switch (INTEL_INFO(dev)->gen) { 3267 case 9: 3268 case 8: 3269 case 7: 3270 case 6: 3271 case 5: 3272 case 4: i965_write_fence_reg(dev, reg, obj); break; 3273 case 3: i915_write_fence_reg(dev, reg, obj); break; 3274 case 2: i830_write_fence_reg(dev, reg, obj); break; 3275 default: BUG(); 3276 } 3277 3278 /* And similarly be paranoid that no direct access to this region 3279 * is reordered to before the fence is installed. 3280 */ 3281 if (i915_gem_object_needs_mb(obj)) 3282 mb(); 3283 } 3284 3285 static inline int fence_number(struct drm_i915_private *dev_priv, 3286 struct drm_i915_fence_reg *fence) 3287 { 3288 return fence - dev_priv->fence_regs; 3289 } 3290 3291 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 3292 struct drm_i915_fence_reg *fence, 3293 bool enable) 3294 { 3295 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3296 int reg = fence_number(dev_priv, fence); 3297 3298 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL); 3299 3300 if (enable) { 3301 obj->fence_reg = reg; 3302 fence->obj = obj; 3303 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list); 3304 } else { 3305 obj->fence_reg = I915_FENCE_REG_NONE; 3306 fence->obj = NULL; 3307 list_del_init(&fence->lru_list); 3308 } 3309 obj->fence_dirty = false; 3310 } 3311 3312 static int 3313 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj) 3314 { 3315 if (obj->last_fenced_seqno) { 3316 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno); 3317 if (ret) 3318 return ret; 3319 3320 obj->last_fenced_seqno = 0; 3321 } 3322 3323 return 0; 3324 } 3325 3326 int 3327 i915_gem_object_put_fence(struct drm_i915_gem_object *obj) 3328 { 3329 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3330 struct drm_i915_fence_reg *fence; 3331 int ret; 3332 3333 ret = i915_gem_object_wait_fence(obj); 3334 if (ret) 3335 return ret; 3336 3337 if (obj->fence_reg == I915_FENCE_REG_NONE) 3338 return 0; 3339 3340 fence = &dev_priv->fence_regs[obj->fence_reg]; 3341 3342 if (WARN_ON(fence->pin_count)) 3343 return -EBUSY; 3344 3345 i915_gem_object_fence_lost(obj); 3346 i915_gem_object_update_fence(obj, fence, false); 3347 3348 return 0; 3349 } 3350 3351 static struct drm_i915_fence_reg * 3352 i915_find_fence_reg(struct drm_device *dev) 3353 { 3354 struct drm_i915_private *dev_priv = dev->dev_private; 3355 struct drm_i915_fence_reg *reg, *avail; 3356 int i; 3357 3358 /* First try to find a free reg */ 3359 avail = NULL; 3360 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) { 3361 reg = &dev_priv->fence_regs[i]; 3362 if (!reg->obj) 3363 return reg; 3364 3365 if (!reg->pin_count) 3366 avail = reg; 3367 } 3368 3369 if (avail == NULL) 3370 goto deadlock; 3371 3372 /* None available, try to steal one or wait for a user to finish */ 3373 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) { 3374 if (reg->pin_count) 3375 continue; 3376 3377 return reg; 3378 } 3379 3380 deadlock: 3381 /* Wait for completion of pending flips which consume fences */ 3382 if (intel_has_pending_fb_unpin(dev)) 3383 return ERR_PTR(-EAGAIN); 3384 3385 return ERR_PTR(-EDEADLK); 3386 } 3387 3388 /** 3389 * i915_gem_object_get_fence - set up fencing for an object 3390 * @obj: object to map through a fence reg 3391 * 3392 * When mapping objects through the GTT, userspace wants to be able to write 3393 * to them without having to worry about swizzling if the object is tiled. 3394 * This function walks the fence regs looking for a free one for @obj, 3395 * stealing one if it can't find any. 3396 * 3397 * It then sets up the reg based on the object's properties: address, pitch 3398 * and tiling format. 3399 * 3400 * For an untiled surface, this removes any existing fence. 3401 */ 3402 int 3403 i915_gem_object_get_fence(struct drm_i915_gem_object *obj) 3404 { 3405 struct drm_device *dev = obj->base.dev; 3406 struct drm_i915_private *dev_priv = dev->dev_private; 3407 bool enable = obj->tiling_mode != I915_TILING_NONE; 3408 struct drm_i915_fence_reg *reg; 3409 int ret; 3410 3411 /* Have we updated the tiling parameters upon the object and so 3412 * will need to serialise the write to the associated fence register? 3413 */ 3414 if (obj->fence_dirty) { 3415 ret = i915_gem_object_wait_fence(obj); 3416 if (ret) 3417 return ret; 3418 } 3419 3420 /* Just update our place in the LRU if our fence is getting reused. */ 3421 if (obj->fence_reg != I915_FENCE_REG_NONE) { 3422 reg = &dev_priv->fence_regs[obj->fence_reg]; 3423 if (!obj->fence_dirty) { 3424 list_move_tail(®->lru_list, 3425 &dev_priv->mm.fence_list); 3426 return 0; 3427 } 3428 } else if (enable) { 3429 if (WARN_ON(!obj->map_and_fenceable)) 3430 return -EINVAL; 3431 3432 reg = i915_find_fence_reg(dev); 3433 if (IS_ERR(reg)) 3434 return PTR_ERR(reg); 3435 3436 if (reg->obj) { 3437 struct drm_i915_gem_object *old = reg->obj; 3438 3439 ret = i915_gem_object_wait_fence(old); 3440 if (ret) 3441 return ret; 3442 3443 i915_gem_object_fence_lost(old); 3444 } 3445 } else 3446 return 0; 3447 3448 i915_gem_object_update_fence(obj, reg, enable); 3449 3450 return 0; 3451 } 3452 3453 static bool i915_gem_valid_gtt_space(struct i915_vma *vma, 3454 unsigned long cache_level) 3455 { 3456 struct drm_mm_node *gtt_space = &vma->node; 3457 struct drm_mm_node *other; 3458 3459 /* 3460 * On some machines we have to be careful when putting differing types 3461 * of snoopable memory together to avoid the prefetcher crossing memory 3462 * domains and dying. During vm initialisation, we decide whether or not 3463 * these constraints apply and set the drm_mm.color_adjust 3464 * appropriately. 3465 */ 3466 if (vma->vm->mm.color_adjust == NULL) 3467 return true; 3468 3469 if (!drm_mm_node_allocated(gtt_space)) 3470 return true; 3471 3472 if (list_empty(>t_space->node_list)) 3473 return true; 3474 3475 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list); 3476 if (other->allocated && !other->hole_follows && other->color != cache_level) 3477 return false; 3478 3479 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list); 3480 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level) 3481 return false; 3482 3483 return true; 3484 } 3485 3486 /** 3487 * Finds free space in the GTT aperture and binds the object there. 3488 */ 3489 static struct i915_vma * 3490 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj, 3491 struct i915_address_space *vm, 3492 unsigned alignment, 3493 uint64_t flags) 3494 { 3495 struct drm_device *dev = obj->base.dev; 3496 struct drm_i915_private *dev_priv = dev->dev_private; 3497 u32 size, fence_size, fence_alignment, unfenced_alignment; 3498 unsigned long start = 3499 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0; 3500 unsigned long end = 3501 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total; 3502 struct i915_vma *vma; 3503 int ret; 3504 3505 fence_size = i915_gem_get_gtt_size(dev, 3506 obj->base.size, 3507 obj->tiling_mode); 3508 fence_alignment = i915_gem_get_gtt_alignment(dev, 3509 obj->base.size, 3510 obj->tiling_mode, true); 3511 unfenced_alignment = 3512 i915_gem_get_gtt_alignment(dev, 3513 obj->base.size, 3514 obj->tiling_mode, false); 3515 3516 if (alignment == 0) 3517 alignment = flags & PIN_MAPPABLE ? fence_alignment : 3518 unfenced_alignment; 3519 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) { 3520 DRM_DEBUG("Invalid object alignment requested %u\n", alignment); 3521 return ERR_PTR(-EINVAL); 3522 } 3523 3524 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size; 3525 3526 /* If the object is bigger than the entire aperture, reject it early 3527 * before evicting everything in a vain attempt to find space. 3528 */ 3529 if (obj->base.size > end) { 3530 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n", 3531 obj->base.size, 3532 flags & PIN_MAPPABLE ? "mappable" : "total", 3533 end); 3534 return ERR_PTR(-E2BIG); 3535 } 3536 3537 ret = i915_gem_object_get_pages(obj); 3538 if (ret) 3539 return ERR_PTR(ret); 3540 3541 i915_gem_object_pin_pages(obj); 3542 3543 vma = i915_gem_obj_lookup_or_create_vma(obj, vm); 3544 if (IS_ERR(vma)) 3545 goto err_unpin; 3546 3547 search_free: 3548 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node, 3549 size, alignment, 3550 obj->cache_level, 3551 start, end, 3552 DRM_MM_SEARCH_DEFAULT, 3553 DRM_MM_CREATE_DEFAULT); 3554 if (ret) { 3555 ret = i915_gem_evict_something(dev, vm, size, alignment, 3556 obj->cache_level, 3557 start, end, 3558 flags); 3559 if (ret == 0) 3560 goto search_free; 3561 3562 goto err_free_vma; 3563 } 3564 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) { 3565 ret = -EINVAL; 3566 goto err_remove_node; 3567 } 3568 3569 ret = i915_gem_gtt_prepare_object(obj); 3570 if (ret) 3571 goto err_remove_node; 3572 3573 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list); 3574 list_add_tail(&vma->mm_list, &vm->inactive_list); 3575 3576 trace_i915_vma_bind(vma, flags); 3577 vma->bind_vma(vma, obj->cache_level, 3578 flags & PIN_GLOBAL ? GLOBAL_BIND : 0); 3579 3580 return vma; 3581 3582 err_remove_node: 3583 drm_mm_remove_node(&vma->node); 3584 err_free_vma: 3585 i915_gem_vma_destroy(vma); 3586 vma = ERR_PTR(ret); 3587 err_unpin: 3588 i915_gem_object_unpin_pages(obj); 3589 return vma; 3590 } 3591 3592 bool 3593 i915_gem_clflush_object(struct drm_i915_gem_object *obj, 3594 bool force) 3595 { 3596 /* If we don't have a page list set up, then we're not pinned 3597 * to GPU, and we can ignore the cache flush because it'll happen 3598 * again at bind time. 3599 */ 3600 if (obj->pages == NULL) 3601 return false; 3602 3603 /* 3604 * Stolen memory is always coherent with the GPU as it is explicitly 3605 * marked as wc by the system, or the system is cache-coherent. 3606 */ 3607 if (obj->stolen || obj->phys_handle) 3608 return false; 3609 3610 /* If the GPU is snooping the contents of the CPU cache, 3611 * we do not need to manually clear the CPU cache lines. However, 3612 * the caches are only snooped when the render cache is 3613 * flushed/invalidated. As we always have to emit invalidations 3614 * and flushes when moving into and out of the RENDER domain, correct 3615 * snooping behaviour occurs naturally as the result of our domain 3616 * tracking. 3617 */ 3618 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) 3619 return false; 3620 3621 trace_i915_gem_object_clflush(obj); 3622 drm_clflush_sg(obj->pages); 3623 3624 return true; 3625 } 3626 3627 /** Flushes the GTT write domain for the object if it's dirty. */ 3628 static void 3629 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj) 3630 { 3631 uint32_t old_write_domain; 3632 3633 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT) 3634 return; 3635 3636 /* No actual flushing is required for the GTT write domain. Writes 3637 * to it immediately go to main memory as far as we know, so there's 3638 * no chipset flush. It also doesn't land in render cache. 3639 * 3640 * However, we do have to enforce the order so that all writes through 3641 * the GTT land before any writes to the device, such as updates to 3642 * the GATT itself. 3643 */ 3644 wmb(); 3645 3646 old_write_domain = obj->base.write_domain; 3647 obj->base.write_domain = 0; 3648 3649 intel_fb_obj_flush(obj, false); 3650 3651 trace_i915_gem_object_change_domain(obj, 3652 obj->base.read_domains, 3653 old_write_domain); 3654 } 3655 3656 /** Flushes the CPU write domain for the object if it's dirty. */ 3657 static void 3658 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj, 3659 bool force) 3660 { 3661 uint32_t old_write_domain; 3662 3663 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) 3664 return; 3665 3666 if (i915_gem_clflush_object(obj, force)) 3667 i915_gem_chipset_flush(obj->base.dev); 3668 3669 old_write_domain = obj->base.write_domain; 3670 obj->base.write_domain = 0; 3671 3672 intel_fb_obj_flush(obj, false); 3673 3674 trace_i915_gem_object_change_domain(obj, 3675 obj->base.read_domains, 3676 old_write_domain); 3677 } 3678 3679 /** 3680 * Moves a single object to the GTT read, and possibly write domain. 3681 * 3682 * This function returns when the move is complete, including waiting on 3683 * flushes to occur. 3684 */ 3685 int 3686 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) 3687 { 3688 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3689 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj); 3690 uint32_t old_write_domain, old_read_domains; 3691 int ret; 3692 3693 /* Not valid to be called on unbound objects. */ 3694 if (vma == NULL) 3695 return -EINVAL; 3696 3697 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) 3698 return 0; 3699 3700 ret = i915_gem_object_wait_rendering(obj, !write); 3701 if (ret) 3702 return ret; 3703 3704 i915_gem_object_retire(obj); 3705 i915_gem_object_flush_cpu_write_domain(obj, false); 3706 3707 /* Serialise direct access to this object with the barriers for 3708 * coherent writes from the GPU, by effectively invalidating the 3709 * GTT domain upon first access. 3710 */ 3711 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 3712 mb(); 3713 3714 old_write_domain = obj->base.write_domain; 3715 old_read_domains = obj->base.read_domains; 3716 3717 /* It should now be out of any other write domains, and we can update 3718 * the domain values for our changes. 3719 */ 3720 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 3721 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3722 if (write) { 3723 obj->base.read_domains = I915_GEM_DOMAIN_GTT; 3724 obj->base.write_domain = I915_GEM_DOMAIN_GTT; 3725 obj->dirty = 1; 3726 } 3727 3728 if (write) 3729 intel_fb_obj_invalidate(obj, NULL); 3730 3731 trace_i915_gem_object_change_domain(obj, 3732 old_read_domains, 3733 old_write_domain); 3734 3735 /* And bump the LRU for this access */ 3736 if (i915_gem_object_is_inactive(obj)) 3737 list_move_tail(&vma->mm_list, 3738 &dev_priv->gtt.base.inactive_list); 3739 3740 return 0; 3741 } 3742 3743 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3744 enum i915_cache_level cache_level) 3745 { 3746 struct drm_device *dev = obj->base.dev; 3747 struct i915_vma *vma, *next; 3748 int ret; 3749 3750 if (obj->cache_level == cache_level) 3751 return 0; 3752 3753 if (i915_gem_obj_is_pinned(obj)) { 3754 DRM_DEBUG("can not change the cache level of pinned objects\n"); 3755 return -EBUSY; 3756 } 3757 3758 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) { 3759 if (!i915_gem_valid_gtt_space(vma, cache_level)) { 3760 ret = i915_vma_unbind(vma); 3761 if (ret) 3762 return ret; 3763 } 3764 } 3765 3766 if (i915_gem_obj_bound_any(obj)) { 3767 ret = i915_gem_object_finish_gpu(obj); 3768 if (ret) 3769 return ret; 3770 3771 i915_gem_object_finish_gtt(obj); 3772 3773 /* Before SandyBridge, you could not use tiling or fence 3774 * registers with snooped memory, so relinquish any fences 3775 * currently pointing to our region in the aperture. 3776 */ 3777 if (INTEL_INFO(dev)->gen < 6) { 3778 ret = i915_gem_object_put_fence(obj); 3779 if (ret) 3780 return ret; 3781 } 3782 3783 list_for_each_entry(vma, &obj->vma_list, vma_link) 3784 if (drm_mm_node_allocated(&vma->node)) 3785 vma->bind_vma(vma, cache_level, 3786 vma->bound & GLOBAL_BIND); 3787 } 3788 3789 list_for_each_entry(vma, &obj->vma_list, vma_link) 3790 vma->node.color = cache_level; 3791 obj->cache_level = cache_level; 3792 3793 if (cpu_write_needs_clflush(obj)) { 3794 u32 old_read_domains, old_write_domain; 3795 3796 /* If we're coming from LLC cached, then we haven't 3797 * actually been tracking whether the data is in the 3798 * CPU cache or not, since we only allow one bit set 3799 * in obj->write_domain and have been skipping the clflushes. 3800 * Just set it to the CPU cache for now. 3801 */ 3802 i915_gem_object_retire(obj); 3803 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU); 3804 3805 old_read_domains = obj->base.read_domains; 3806 old_write_domain = obj->base.write_domain; 3807 3808 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3809 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3810 3811 trace_i915_gem_object_change_domain(obj, 3812 old_read_domains, 3813 old_write_domain); 3814 } 3815 3816 return 0; 3817 } 3818 3819 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3820 struct drm_file *file) 3821 { 3822 struct drm_i915_gem_caching *args = data; 3823 struct drm_i915_gem_object *obj; 3824 int ret; 3825 3826 ret = i915_mutex_lock_interruptible(dev); 3827 if (ret) 3828 return ret; 3829 3830 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3831 if (&obj->base == NULL) { 3832 ret = -ENOENT; 3833 goto unlock; 3834 } 3835 3836 switch (obj->cache_level) { 3837 case I915_CACHE_LLC: 3838 case I915_CACHE_L3_LLC: 3839 args->caching = I915_CACHING_CACHED; 3840 break; 3841 3842 case I915_CACHE_WT: 3843 args->caching = I915_CACHING_DISPLAY; 3844 break; 3845 3846 default: 3847 args->caching = I915_CACHING_NONE; 3848 break; 3849 } 3850 3851 drm_gem_object_unreference(&obj->base); 3852 unlock: 3853 mutex_unlock(&dev->struct_mutex); 3854 return ret; 3855 } 3856 3857 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3858 struct drm_file *file) 3859 { 3860 struct drm_i915_gem_caching *args = data; 3861 struct drm_i915_gem_object *obj; 3862 enum i915_cache_level level; 3863 int ret; 3864 3865 switch (args->caching) { 3866 case I915_CACHING_NONE: 3867 level = I915_CACHE_NONE; 3868 break; 3869 case I915_CACHING_CACHED: 3870 level = I915_CACHE_LLC; 3871 break; 3872 case I915_CACHING_DISPLAY: 3873 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE; 3874 break; 3875 default: 3876 return -EINVAL; 3877 } 3878 3879 ret = i915_mutex_lock_interruptible(dev); 3880 if (ret) 3881 return ret; 3882 3883 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3884 if (&obj->base == NULL) { 3885 ret = -ENOENT; 3886 goto unlock; 3887 } 3888 3889 ret = i915_gem_object_set_cache_level(obj, level); 3890 3891 drm_gem_object_unreference(&obj->base); 3892 unlock: 3893 mutex_unlock(&dev->struct_mutex); 3894 return ret; 3895 } 3896 3897 static bool is_pin_display(struct drm_i915_gem_object *obj) 3898 { 3899 struct i915_vma *vma; 3900 3901 vma = i915_gem_obj_to_ggtt(obj); 3902 if (!vma) 3903 return false; 3904 3905 /* There are 3 sources that pin objects: 3906 * 1. The display engine (scanouts, sprites, cursors); 3907 * 2. Reservations for execbuffer; 3908 * 3. The user. 3909 * 3910 * We can ignore reservations as we hold the struct_mutex and 3911 * are only called outside of the reservation path. The user 3912 * can only increment pin_count once, and so if after 3913 * subtracting the potential reference by the user, any pin_count 3914 * remains, it must be due to another use by the display engine. 3915 */ 3916 return vma->pin_count - !!obj->user_pin_count; 3917 } 3918 3919 /* 3920 * Prepare buffer for display plane (scanout, cursors, etc). 3921 * Can be called from an uninterruptible phase (modesetting) and allows 3922 * any flushes to be pipelined (for pageflips). 3923 */ 3924 int 3925 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3926 u32 alignment, 3927 struct intel_engine_cs *pipelined) 3928 { 3929 u32 old_read_domains, old_write_domain; 3930 bool was_pin_display; 3931 int ret; 3932 3933 if (pipelined != obj->ring) { 3934 ret = i915_gem_object_sync(obj, pipelined); 3935 if (ret) 3936 return ret; 3937 } 3938 3939 /* Mark the pin_display early so that we account for the 3940 * display coherency whilst setting up the cache domains. 3941 */ 3942 was_pin_display = obj->pin_display; 3943 obj->pin_display = true; 3944 3945 /* The display engine is not coherent with the LLC cache on gen6. As 3946 * a result, we make sure that the pinning that is about to occur is 3947 * done with uncached PTEs. This is lowest common denominator for all 3948 * chipsets. 3949 * 3950 * However for gen6+, we could do better by using the GFDT bit instead 3951 * of uncaching, which would allow us to flush all the LLC-cached data 3952 * with that bit in the PTE to main memory with just one PIPE_CONTROL. 3953 */ 3954 ret = i915_gem_object_set_cache_level(obj, 3955 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE); 3956 if (ret) 3957 goto err_unpin_display; 3958 3959 /* As the user may map the buffer once pinned in the display plane 3960 * (e.g. libkms for the bootup splash), we have to ensure that we 3961 * always use map_and_fenceable for all scanout buffers. 3962 */ 3963 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE); 3964 if (ret) 3965 goto err_unpin_display; 3966 3967 i915_gem_object_flush_cpu_write_domain(obj, true); 3968 3969 old_write_domain = obj->base.write_domain; 3970 old_read_domains = obj->base.read_domains; 3971 3972 /* It should now be out of any other write domains, and we can update 3973 * the domain values for our changes. 3974 */ 3975 obj->base.write_domain = 0; 3976 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3977 3978 trace_i915_gem_object_change_domain(obj, 3979 old_read_domains, 3980 old_write_domain); 3981 3982 return 0; 3983 3984 err_unpin_display: 3985 WARN_ON(was_pin_display != is_pin_display(obj)); 3986 obj->pin_display = was_pin_display; 3987 return ret; 3988 } 3989 3990 void 3991 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj) 3992 { 3993 i915_gem_object_ggtt_unpin(obj); 3994 obj->pin_display = is_pin_display(obj); 3995 } 3996 3997 int 3998 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj) 3999 { 4000 int ret; 4001 4002 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0) 4003 return 0; 4004 4005 ret = i915_gem_object_wait_rendering(obj, false); 4006 if (ret) 4007 return ret; 4008 4009 /* Ensure that we invalidate the GPU's caches and TLBs. */ 4010 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; 4011 return 0; 4012 } 4013 4014 /** 4015 * Moves a single object to the CPU read, and possibly write domain. 4016 * 4017 * This function returns when the move is complete, including waiting on 4018 * flushes to occur. 4019 */ 4020 int 4021 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) 4022 { 4023 uint32_t old_write_domain, old_read_domains; 4024 int ret; 4025 4026 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) 4027 return 0; 4028 4029 ret = i915_gem_object_wait_rendering(obj, !write); 4030 if (ret) 4031 return ret; 4032 4033 i915_gem_object_retire(obj); 4034 i915_gem_object_flush_gtt_write_domain(obj); 4035 4036 old_write_domain = obj->base.write_domain; 4037 old_read_domains = obj->base.read_domains; 4038 4039 /* Flush the CPU cache if it's still invalid. */ 4040 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { 4041 i915_gem_clflush_object(obj, false); 4042 4043 obj->base.read_domains |= I915_GEM_DOMAIN_CPU; 4044 } 4045 4046 /* It should now be out of any other write domains, and we can update 4047 * the domain values for our changes. 4048 */ 4049 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); 4050 4051 /* If we're writing through the CPU, then the GPU read domains will 4052 * need to be invalidated at next use. 4053 */ 4054 if (write) { 4055 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 4056 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 4057 } 4058 4059 if (write) 4060 intel_fb_obj_invalidate(obj, NULL); 4061 4062 trace_i915_gem_object_change_domain(obj, 4063 old_read_domains, 4064 old_write_domain); 4065 4066 return 0; 4067 } 4068 4069 /* Throttle our rendering by waiting until the ring has completed our requests 4070 * emitted over 20 msec ago. 4071 * 4072 * Note that if we were to use the current jiffies each time around the loop, 4073 * we wouldn't escape the function with any frames outstanding if the time to 4074 * render a frame was over 20ms. 4075 * 4076 * This should get us reasonable parallelism between CPU and GPU but also 4077 * relatively low latency when blocking on a particular request to finish. 4078 */ 4079 static int 4080 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) 4081 { 4082 struct drm_i915_private *dev_priv = dev->dev_private; 4083 struct drm_i915_file_private *file_priv = file->driver_priv; 4084 unsigned long recent_enough = jiffies - msecs_to_jiffies(20); 4085 struct drm_i915_gem_request *request; 4086 struct intel_engine_cs *ring = NULL; 4087 unsigned reset_counter; 4088 u32 seqno = 0; 4089 int ret; 4090 4091 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 4092 if (ret) 4093 return ret; 4094 4095 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false); 4096 if (ret) 4097 return ret; 4098 4099 spin_lock(&file_priv->mm.lock); 4100 list_for_each_entry(request, &file_priv->mm.request_list, client_list) { 4101 if (time_after_eq(request->emitted_jiffies, recent_enough)) 4102 break; 4103 4104 ring = request->ring; 4105 seqno = request->seqno; 4106 } 4107 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 4108 spin_unlock(&file_priv->mm.lock); 4109 4110 if (seqno == 0) 4111 return 0; 4112 4113 ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL, NULL); 4114 if (ret == 0) 4115 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0); 4116 4117 return ret; 4118 } 4119 4120 static bool 4121 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags) 4122 { 4123 struct drm_i915_gem_object *obj = vma->obj; 4124 4125 if (alignment && 4126 vma->node.start & (alignment - 1)) 4127 return true; 4128 4129 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable) 4130 return true; 4131 4132 if (flags & PIN_OFFSET_BIAS && 4133 vma->node.start < (flags & PIN_OFFSET_MASK)) 4134 return true; 4135 4136 return false; 4137 } 4138 4139 int 4140 i915_gem_object_pin(struct drm_i915_gem_object *obj, 4141 struct i915_address_space *vm, 4142 uint32_t alignment, 4143 uint64_t flags) 4144 { 4145 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 4146 struct i915_vma *vma; 4147 unsigned bound; 4148 int ret; 4149 4150 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base)) 4151 return -ENODEV; 4152 4153 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm))) 4154 return -EINVAL; 4155 4156 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE)) 4157 return -EINVAL; 4158 4159 vma = i915_gem_obj_to_vma(obj, vm); 4160 if (vma) { 4161 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT)) 4162 return -EBUSY; 4163 4164 if (i915_vma_misplaced(vma, alignment, flags)) { 4165 WARN(vma->pin_count, 4166 "bo is already pinned with incorrect alignment:" 4167 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d," 4168 " obj->map_and_fenceable=%d\n", 4169 i915_gem_obj_offset(obj, vm), alignment, 4170 !!(flags & PIN_MAPPABLE), 4171 obj->map_and_fenceable); 4172 ret = i915_vma_unbind(vma); 4173 if (ret) 4174 return ret; 4175 4176 vma = NULL; 4177 } 4178 } 4179 4180 bound = vma ? vma->bound : 0; 4181 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) { 4182 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags); 4183 if (IS_ERR(vma)) 4184 return PTR_ERR(vma); 4185 } 4186 4187 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) 4188 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND); 4189 4190 if ((bound ^ vma->bound) & GLOBAL_BIND) { 4191 bool mappable, fenceable; 4192 u32 fence_size, fence_alignment; 4193 4194 fence_size = i915_gem_get_gtt_size(obj->base.dev, 4195 obj->base.size, 4196 obj->tiling_mode); 4197 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev, 4198 obj->base.size, 4199 obj->tiling_mode, 4200 true); 4201 4202 fenceable = (vma->node.size == fence_size && 4203 (vma->node.start & (fence_alignment - 1)) == 0); 4204 4205 mappable = (vma->node.start + obj->base.size <= 4206 dev_priv->gtt.mappable_end); 4207 4208 obj->map_and_fenceable = mappable && fenceable; 4209 } 4210 4211 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable); 4212 4213 vma->pin_count++; 4214 if (flags & PIN_MAPPABLE) 4215 obj->pin_mappable |= true; 4216 4217 return 0; 4218 } 4219 4220 void 4221 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj) 4222 { 4223 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj); 4224 4225 BUG_ON(!vma); 4226 BUG_ON(vma->pin_count == 0); 4227 BUG_ON(!i915_gem_obj_ggtt_bound(obj)); 4228 4229 if (--vma->pin_count == 0) 4230 obj->pin_mappable = false; 4231 } 4232 4233 bool 4234 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj) 4235 { 4236 if (obj->fence_reg != I915_FENCE_REG_NONE) { 4237 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 4238 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj); 4239 4240 WARN_ON(!ggtt_vma || 4241 dev_priv->fence_regs[obj->fence_reg].pin_count > 4242 ggtt_vma->pin_count); 4243 dev_priv->fence_regs[obj->fence_reg].pin_count++; 4244 return true; 4245 } else 4246 return false; 4247 } 4248 4249 void 4250 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj) 4251 { 4252 if (obj->fence_reg != I915_FENCE_REG_NONE) { 4253 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 4254 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0); 4255 dev_priv->fence_regs[obj->fence_reg].pin_count--; 4256 } 4257 } 4258 4259 int 4260 i915_gem_pin_ioctl(struct drm_device *dev, void *data, 4261 struct drm_file *file) 4262 { 4263 struct drm_i915_gem_pin *args = data; 4264 struct drm_i915_gem_object *obj; 4265 int ret; 4266 4267 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4268 return -ENODEV; 4269 4270 ret = i915_mutex_lock_interruptible(dev); 4271 if (ret) 4272 return ret; 4273 4274 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 4275 if (&obj->base == NULL) { 4276 ret = -ENOENT; 4277 goto unlock; 4278 } 4279 4280 if (obj->madv != I915_MADV_WILLNEED) { 4281 DRM_DEBUG("Attempting to pin a purgeable buffer\n"); 4282 ret = -EFAULT; 4283 goto out; 4284 } 4285 4286 if (obj->pin_filp != NULL && obj->pin_filp != file) { 4287 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n", 4288 args->handle); 4289 ret = -EINVAL; 4290 goto out; 4291 } 4292 4293 if (obj->user_pin_count == ULONG_MAX) { 4294 ret = -EBUSY; 4295 goto out; 4296 } 4297 4298 if (obj->user_pin_count == 0) { 4299 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE); 4300 if (ret) 4301 goto out; 4302 } 4303 4304 obj->user_pin_count++; 4305 obj->pin_filp = file; 4306 4307 args->offset = i915_gem_obj_ggtt_offset(obj); 4308 out: 4309 drm_gem_object_unreference(&obj->base); 4310 unlock: 4311 mutex_unlock(&dev->struct_mutex); 4312 return ret; 4313 } 4314 4315 int 4316 i915_gem_unpin_ioctl(struct drm_device *dev, void *data, 4317 struct drm_file *file) 4318 { 4319 struct drm_i915_gem_pin *args = data; 4320 struct drm_i915_gem_object *obj; 4321 int ret; 4322 4323 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4324 return -ENODEV; 4325 4326 ret = i915_mutex_lock_interruptible(dev); 4327 if (ret) 4328 return ret; 4329 4330 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 4331 if (&obj->base == NULL) { 4332 ret = -ENOENT; 4333 goto unlock; 4334 } 4335 4336 if (obj->pin_filp != file) { 4337 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n", 4338 args->handle); 4339 ret = -EINVAL; 4340 goto out; 4341 } 4342 obj->user_pin_count--; 4343 if (obj->user_pin_count == 0) { 4344 obj->pin_filp = NULL; 4345 i915_gem_object_ggtt_unpin(obj); 4346 } 4347 4348 out: 4349 drm_gem_object_unreference(&obj->base); 4350 unlock: 4351 mutex_unlock(&dev->struct_mutex); 4352 return ret; 4353 } 4354 4355 int 4356 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 4357 struct drm_file *file) 4358 { 4359 struct drm_i915_gem_busy *args = data; 4360 struct drm_i915_gem_object *obj; 4361 int ret; 4362 4363 ret = i915_mutex_lock_interruptible(dev); 4364 if (ret) 4365 return ret; 4366 4367 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 4368 if (&obj->base == NULL) { 4369 ret = -ENOENT; 4370 goto unlock; 4371 } 4372 4373 /* Count all active objects as busy, even if they are currently not used 4374 * by the gpu. Users of this interface expect objects to eventually 4375 * become non-busy without any further actions, therefore emit any 4376 * necessary flushes here. 4377 */ 4378 ret = i915_gem_object_flush_active(obj); 4379 4380 args->busy = obj->active; 4381 if (obj->ring) { 4382 BUILD_BUG_ON(I915_NUM_RINGS > 16); 4383 args->busy |= intel_ring_flag(obj->ring) << 16; 4384 } 4385 4386 drm_gem_object_unreference(&obj->base); 4387 unlock: 4388 mutex_unlock(&dev->struct_mutex); 4389 return ret; 4390 } 4391 4392 int 4393 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 4394 struct drm_file *file_priv) 4395 { 4396 return i915_gem_ring_throttle(dev, file_priv); 4397 } 4398 4399 int 4400 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 4401 struct drm_file *file_priv) 4402 { 4403 struct drm_i915_private *dev_priv = dev->dev_private; 4404 struct drm_i915_gem_madvise *args = data; 4405 struct drm_i915_gem_object *obj; 4406 int ret; 4407 4408 switch (args->madv) { 4409 case I915_MADV_DONTNEED: 4410 case I915_MADV_WILLNEED: 4411 break; 4412 default: 4413 return -EINVAL; 4414 } 4415 4416 ret = i915_mutex_lock_interruptible(dev); 4417 if (ret) 4418 return ret; 4419 4420 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle)); 4421 if (&obj->base == NULL) { 4422 ret = -ENOENT; 4423 goto unlock; 4424 } 4425 4426 if (i915_gem_obj_is_pinned(obj)) { 4427 ret = -EINVAL; 4428 goto out; 4429 } 4430 4431 if (obj->pages && 4432 obj->tiling_mode != I915_TILING_NONE && 4433 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) { 4434 if (obj->madv == I915_MADV_WILLNEED) 4435 i915_gem_object_unpin_pages(obj); 4436 if (args->madv == I915_MADV_WILLNEED) 4437 i915_gem_object_pin_pages(obj); 4438 } 4439 4440 if (obj->madv != __I915_MADV_PURGED) 4441 obj->madv = args->madv; 4442 4443 /* if the object is no longer attached, discard its backing storage */ 4444 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL) 4445 i915_gem_object_truncate(obj); 4446 4447 args->retained = obj->madv != __I915_MADV_PURGED; 4448 4449 out: 4450 drm_gem_object_unreference(&obj->base); 4451 unlock: 4452 mutex_unlock(&dev->struct_mutex); 4453 return ret; 4454 } 4455 4456 void i915_gem_object_init(struct drm_i915_gem_object *obj, 4457 const struct drm_i915_gem_object_ops *ops) 4458 { 4459 INIT_LIST_HEAD(&obj->global_list); 4460 INIT_LIST_HEAD(&obj->ring_list); 4461 INIT_LIST_HEAD(&obj->obj_exec_link); 4462 INIT_LIST_HEAD(&obj->vma_list); 4463 4464 obj->ops = ops; 4465 4466 obj->fence_reg = I915_FENCE_REG_NONE; 4467 obj->madv = I915_MADV_WILLNEED; 4468 4469 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size); 4470 } 4471 4472 static const struct drm_i915_gem_object_ops i915_gem_object_ops = { 4473 .get_pages = i915_gem_object_get_pages_gtt, 4474 .put_pages = i915_gem_object_put_pages_gtt, 4475 }; 4476 4477 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev, 4478 size_t size) 4479 { 4480 struct drm_i915_gem_object *obj; 4481 struct address_space *mapping; 4482 gfp_t mask; 4483 4484 obj = i915_gem_object_alloc(dev); 4485 if (obj == NULL) 4486 return NULL; 4487 4488 if (drm_gem_object_init(dev, &obj->base, size) != 0) { 4489 i915_gem_object_free(obj); 4490 return NULL; 4491 } 4492 4493 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 4494 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) { 4495 /* 965gm cannot relocate objects above 4GiB. */ 4496 mask &= ~__GFP_HIGHMEM; 4497 mask |= __GFP_DMA32; 4498 } 4499 4500 mapping = file_inode(obj->base.filp)->i_mapping; 4501 mapping_set_gfp_mask(mapping, mask); 4502 4503 i915_gem_object_init(obj, &i915_gem_object_ops); 4504 4505 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 4506 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 4507 4508 if (HAS_LLC(dev)) { 4509 /* On some devices, we can have the GPU use the LLC (the CPU 4510 * cache) for about a 10% performance improvement 4511 * compared to uncached. Graphics requests other than 4512 * display scanout are coherent with the CPU in 4513 * accessing this cache. This means in this mode we 4514 * don't need to clflush on the CPU side, and on the 4515 * GPU side we only need to flush internal caches to 4516 * get data visible to the CPU. 4517 * 4518 * However, we maintain the display planes as UC, and so 4519 * need to rebind when first used as such. 4520 */ 4521 obj->cache_level = I915_CACHE_LLC; 4522 } else 4523 obj->cache_level = I915_CACHE_NONE; 4524 4525 trace_i915_gem_object_create(obj); 4526 4527 return obj; 4528 } 4529 4530 static bool discard_backing_storage(struct drm_i915_gem_object *obj) 4531 { 4532 /* If we are the last user of the backing storage (be it shmemfs 4533 * pages or stolen etc), we know that the pages are going to be 4534 * immediately released. In this case, we can then skip copying 4535 * back the contents from the GPU. 4536 */ 4537 4538 if (obj->madv != I915_MADV_WILLNEED) 4539 return false; 4540 4541 if (obj->base.filp == NULL) 4542 return true; 4543 4544 /* At first glance, this looks racy, but then again so would be 4545 * userspace racing mmap against close. However, the first external 4546 * reference to the filp can only be obtained through the 4547 * i915_gem_mmap_ioctl() which safeguards us against the user 4548 * acquiring such a reference whilst we are in the middle of 4549 * freeing the object. 4550 */ 4551 return atomic_long_read(&obj->base.filp->f_count) == 1; 4552 } 4553 4554 void i915_gem_free_object(struct drm_gem_object *gem_obj) 4555 { 4556 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 4557 struct drm_device *dev = obj->base.dev; 4558 struct drm_i915_private *dev_priv = dev->dev_private; 4559 struct i915_vma *vma, *next; 4560 4561 intel_runtime_pm_get(dev_priv); 4562 4563 trace_i915_gem_object_destroy(obj); 4564 4565 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) { 4566 int ret; 4567 4568 vma->pin_count = 0; 4569 ret = i915_vma_unbind(vma); 4570 if (WARN_ON(ret == -ERESTARTSYS)) { 4571 bool was_interruptible; 4572 4573 was_interruptible = dev_priv->mm.interruptible; 4574 dev_priv->mm.interruptible = false; 4575 4576 WARN_ON(i915_vma_unbind(vma)); 4577 4578 dev_priv->mm.interruptible = was_interruptible; 4579 } 4580 } 4581 4582 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up 4583 * before progressing. */ 4584 if (obj->stolen) 4585 i915_gem_object_unpin_pages(obj); 4586 4587 WARN_ON(obj->frontbuffer_bits); 4588 4589 if (obj->pages && obj->madv == I915_MADV_WILLNEED && 4590 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES && 4591 obj->tiling_mode != I915_TILING_NONE) 4592 i915_gem_object_unpin_pages(obj); 4593 4594 if (WARN_ON(obj->pages_pin_count)) 4595 obj->pages_pin_count = 0; 4596 if (discard_backing_storage(obj)) 4597 obj->madv = I915_MADV_DONTNEED; 4598 i915_gem_object_put_pages(obj); 4599 i915_gem_object_free_mmap_offset(obj); 4600 4601 BUG_ON(obj->pages); 4602 4603 if (obj->base.import_attach) 4604 drm_prime_gem_destroy(&obj->base, NULL); 4605 4606 if (obj->ops->release) 4607 obj->ops->release(obj); 4608 4609 drm_gem_object_release(&obj->base); 4610 i915_gem_info_remove_obj(dev_priv, obj->base.size); 4611 4612 kfree(obj->bit_17); 4613 i915_gem_object_free(obj); 4614 4615 intel_runtime_pm_put(dev_priv); 4616 } 4617 4618 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj, 4619 struct i915_address_space *vm) 4620 { 4621 struct i915_vma *vma; 4622 list_for_each_entry(vma, &obj->vma_list, vma_link) 4623 if (vma->vm == vm) 4624 return vma; 4625 4626 return NULL; 4627 } 4628 4629 void i915_gem_vma_destroy(struct i915_vma *vma) 4630 { 4631 struct i915_address_space *vm = NULL; 4632 WARN_ON(vma->node.allocated); 4633 4634 /* Keep the vma as a placeholder in the execbuffer reservation lists */ 4635 if (!list_empty(&vma->exec_list)) 4636 return; 4637 4638 vm = vma->vm; 4639 4640 if (!i915_is_ggtt(vm)) 4641 i915_ppgtt_put(i915_vm_to_ppgtt(vm)); 4642 4643 list_del(&vma->vma_link); 4644 4645 kfree(vma); 4646 } 4647 4648 static void 4649 i915_gem_stop_ringbuffers(struct drm_device *dev) 4650 { 4651 struct drm_i915_private *dev_priv = dev->dev_private; 4652 struct intel_engine_cs *ring; 4653 int i; 4654 4655 for_each_ring(ring, dev_priv, i) 4656 dev_priv->gt.stop_ring(ring); 4657 } 4658 4659 int 4660 i915_gem_suspend(struct drm_device *dev) 4661 { 4662 struct drm_i915_private *dev_priv = dev->dev_private; 4663 int ret = 0; 4664 4665 mutex_lock(&dev->struct_mutex); 4666 ret = i915_gpu_idle(dev); 4667 if (ret) 4668 goto err; 4669 4670 i915_gem_retire_requests(dev); 4671 4672 /* Under UMS, be paranoid and evict. */ 4673 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4674 i915_gem_evict_everything(dev); 4675 4676 i915_gem_stop_ringbuffers(dev); 4677 mutex_unlock(&dev->struct_mutex); 4678 4679 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer); 4680 cancel_delayed_work_sync(&dev_priv->mm.retire_work); 4681 flush_delayed_work(&dev_priv->mm.idle_work); 4682 4683 return 0; 4684 4685 err: 4686 mutex_unlock(&dev->struct_mutex); 4687 return ret; 4688 } 4689 4690 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice) 4691 { 4692 struct drm_device *dev = ring->dev; 4693 struct drm_i915_private *dev_priv = dev->dev_private; 4694 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200); 4695 u32 *remap_info = dev_priv->l3_parity.remap_info[slice]; 4696 int i, ret; 4697 4698 if (!HAS_L3_DPF(dev) || !remap_info) 4699 return 0; 4700 4701 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3); 4702 if (ret) 4703 return ret; 4704 4705 /* 4706 * Note: We do not worry about the concurrent register cacheline hang 4707 * here because no other code should access these registers other than 4708 * at initialization time. 4709 */ 4710 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) { 4711 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); 4712 intel_ring_emit(ring, reg_base + i); 4713 intel_ring_emit(ring, remap_info[i/4]); 4714 } 4715 4716 intel_ring_advance(ring); 4717 4718 return ret; 4719 } 4720 4721 void i915_gem_init_swizzling(struct drm_device *dev) 4722 { 4723 struct drm_i915_private *dev_priv = dev->dev_private; 4724 4725 if (INTEL_INFO(dev)->gen < 5 || 4726 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 4727 return; 4728 4729 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | 4730 DISP_TILE_SURFACE_SWIZZLING); 4731 4732 if (IS_GEN5(dev)) 4733 return; 4734 4735 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); 4736 if (IS_GEN6(dev)) 4737 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 4738 else if (IS_GEN7(dev)) 4739 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 4740 else if (IS_GEN8(dev)) 4741 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW)); 4742 else 4743 BUG(); 4744 } 4745 4746 static bool 4747 intel_enable_blt(struct drm_device *dev) 4748 { 4749 if (!HAS_BLT(dev)) 4750 return false; 4751 4752 /* The blitter was dysfunctional on early prototypes */ 4753 if (IS_GEN6(dev) && dev->pdev->revision < 8) { 4754 DRM_INFO("BLT not supported on this pre-production hardware;" 4755 " graphics performance will be degraded.\n"); 4756 return false; 4757 } 4758 4759 return true; 4760 } 4761 4762 static void init_unused_ring(struct drm_device *dev, u32 base) 4763 { 4764 struct drm_i915_private *dev_priv = dev->dev_private; 4765 4766 I915_WRITE(RING_CTL(base), 0); 4767 I915_WRITE(RING_HEAD(base), 0); 4768 I915_WRITE(RING_TAIL(base), 0); 4769 I915_WRITE(RING_START(base), 0); 4770 } 4771 4772 static void init_unused_rings(struct drm_device *dev) 4773 { 4774 if (IS_I830(dev)) { 4775 init_unused_ring(dev, PRB1_BASE); 4776 init_unused_ring(dev, SRB0_BASE); 4777 init_unused_ring(dev, SRB1_BASE); 4778 init_unused_ring(dev, SRB2_BASE); 4779 init_unused_ring(dev, SRB3_BASE); 4780 } else if (IS_GEN2(dev)) { 4781 init_unused_ring(dev, SRB0_BASE); 4782 init_unused_ring(dev, SRB1_BASE); 4783 } else if (IS_GEN3(dev)) { 4784 init_unused_ring(dev, PRB1_BASE); 4785 init_unused_ring(dev, PRB2_BASE); 4786 } 4787 } 4788 4789 int i915_gem_init_rings(struct drm_device *dev) 4790 { 4791 struct drm_i915_private *dev_priv = dev->dev_private; 4792 int ret; 4793 4794 /* 4795 * At least 830 can leave some of the unused rings 4796 * "active" (ie. head != tail) after resume which 4797 * will prevent c3 entry. Makes sure all unused rings 4798 * are totally idle. 4799 */ 4800 init_unused_rings(dev); 4801 4802 ret = intel_init_render_ring_buffer(dev); 4803 if (ret) 4804 return ret; 4805 4806 if (HAS_BSD(dev)) { 4807 ret = intel_init_bsd_ring_buffer(dev); 4808 if (ret) 4809 goto cleanup_render_ring; 4810 } 4811 4812 if (intel_enable_blt(dev)) { 4813 ret = intel_init_blt_ring_buffer(dev); 4814 if (ret) 4815 goto cleanup_bsd_ring; 4816 } 4817 4818 if (HAS_VEBOX(dev)) { 4819 ret = intel_init_vebox_ring_buffer(dev); 4820 if (ret) 4821 goto cleanup_blt_ring; 4822 } 4823 4824 if (HAS_BSD2(dev)) { 4825 ret = intel_init_bsd2_ring_buffer(dev); 4826 if (ret) 4827 goto cleanup_vebox_ring; 4828 } 4829 4830 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000)); 4831 if (ret) 4832 goto cleanup_bsd2_ring; 4833 4834 return 0; 4835 4836 cleanup_bsd2_ring: 4837 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]); 4838 cleanup_vebox_ring: 4839 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]); 4840 cleanup_blt_ring: 4841 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]); 4842 cleanup_bsd_ring: 4843 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]); 4844 cleanup_render_ring: 4845 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]); 4846 4847 return ret; 4848 } 4849 4850 int 4851 i915_gem_init_hw(struct drm_device *dev) 4852 { 4853 struct drm_i915_private *dev_priv = dev->dev_private; 4854 int ret, i; 4855 4856 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt()) 4857 return -EIO; 4858 4859 if (dev_priv->ellc_size) 4860 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf)); 4861 4862 if (IS_HASWELL(dev)) 4863 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ? 4864 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 4865 4866 if (HAS_PCH_NOP(dev)) { 4867 if (IS_IVYBRIDGE(dev)) { 4868 u32 temp = I915_READ(GEN7_MSG_CTL); 4869 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK); 4870 I915_WRITE(GEN7_MSG_CTL, temp); 4871 } else if (INTEL_INFO(dev)->gen >= 7) { 4872 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT); 4873 temp &= ~RESET_PCH_HANDSHAKE_ENABLE; 4874 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp); 4875 } 4876 } 4877 4878 i915_gem_init_swizzling(dev); 4879 4880 ret = dev_priv->gt.init_rings(dev); 4881 if (ret) 4882 return ret; 4883 4884 for (i = 0; i < NUM_L3_SLICES(dev); i++) 4885 i915_gem_l3_remap(&dev_priv->ring[RCS], i); 4886 4887 /* 4888 * XXX: Contexts should only be initialized once. Doing a switch to the 4889 * default context switch however is something we'd like to do after 4890 * reset or thaw (the latter may not actually be necessary for HW, but 4891 * goes with our code better). Context switching requires rings (for 4892 * the do_switch), but before enabling PPGTT. So don't move this. 4893 */ 4894 ret = i915_gem_context_enable(dev_priv); 4895 if (ret && ret != -EIO) { 4896 DRM_ERROR("Context enable failed %d\n", ret); 4897 i915_gem_cleanup_ringbuffer(dev); 4898 4899 return ret; 4900 } 4901 4902 ret = i915_ppgtt_init_hw(dev); 4903 if (ret && ret != -EIO) { 4904 DRM_ERROR("PPGTT enable failed %d\n", ret); 4905 i915_gem_cleanup_ringbuffer(dev); 4906 } 4907 4908 return ret; 4909 } 4910 4911 int i915_gem_init(struct drm_device *dev) 4912 { 4913 struct drm_i915_private *dev_priv = dev->dev_private; 4914 int ret; 4915 4916 i915.enable_execlists = intel_sanitize_enable_execlists(dev, 4917 i915.enable_execlists); 4918 4919 mutex_lock(&dev->struct_mutex); 4920 4921 if (IS_VALLEYVIEW(dev)) { 4922 /* VLVA0 (potential hack), BIOS isn't actually waking us */ 4923 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ); 4924 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 4925 VLV_GTLC_ALLOWWAKEACK), 10)) 4926 DRM_DEBUG_DRIVER("allow wake ack timed out\n"); 4927 } 4928 4929 if (!i915.enable_execlists) { 4930 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission; 4931 dev_priv->gt.init_rings = i915_gem_init_rings; 4932 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer; 4933 dev_priv->gt.stop_ring = intel_stop_ring_buffer; 4934 } else { 4935 dev_priv->gt.do_execbuf = intel_execlists_submission; 4936 dev_priv->gt.init_rings = intel_logical_rings_init; 4937 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup; 4938 dev_priv->gt.stop_ring = intel_logical_ring_stop; 4939 } 4940 4941 ret = i915_gem_init_userptr(dev); 4942 if (ret) { 4943 mutex_unlock(&dev->struct_mutex); 4944 return ret; 4945 } 4946 4947 i915_gem_init_global_gtt(dev); 4948 4949 ret = i915_gem_context_init(dev); 4950 if (ret) { 4951 mutex_unlock(&dev->struct_mutex); 4952 return ret; 4953 } 4954 4955 ret = i915_gem_init_hw(dev); 4956 if (ret == -EIO) { 4957 /* Allow ring initialisation to fail by marking the GPU as 4958 * wedged. But we only want to do this where the GPU is angry, 4959 * for all other failure, such as an allocation failure, bail. 4960 */ 4961 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n"); 4962 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter); 4963 ret = 0; 4964 } 4965 mutex_unlock(&dev->struct_mutex); 4966 4967 return ret; 4968 } 4969 4970 void 4971 i915_gem_cleanup_ringbuffer(struct drm_device *dev) 4972 { 4973 struct drm_i915_private *dev_priv = dev->dev_private; 4974 struct intel_engine_cs *ring; 4975 int i; 4976 4977 for_each_ring(ring, dev_priv, i) 4978 dev_priv->gt.cleanup_ring(ring); 4979 } 4980 4981 static void 4982 init_ring_lists(struct intel_engine_cs *ring) 4983 { 4984 INIT_LIST_HEAD(&ring->active_list); 4985 INIT_LIST_HEAD(&ring->request_list); 4986 } 4987 4988 void i915_init_vm(struct drm_i915_private *dev_priv, 4989 struct i915_address_space *vm) 4990 { 4991 if (!i915_is_ggtt(vm)) 4992 drm_mm_init(&vm->mm, vm->start, vm->total); 4993 vm->dev = dev_priv->dev; 4994 INIT_LIST_HEAD(&vm->active_list); 4995 INIT_LIST_HEAD(&vm->inactive_list); 4996 INIT_LIST_HEAD(&vm->global_link); 4997 list_add_tail(&vm->global_link, &dev_priv->vm_list); 4998 } 4999 5000 void 5001 i915_gem_load(struct drm_device *dev) 5002 { 5003 struct drm_i915_private *dev_priv = dev->dev_private; 5004 int i; 5005 5006 dev_priv->slab = 5007 kmem_cache_create("i915_gem_object", 5008 sizeof(struct drm_i915_gem_object), 0, 5009 SLAB_HWCACHE_ALIGN, 5010 NULL); 5011 5012 INIT_LIST_HEAD(&dev_priv->vm_list); 5013 i915_init_vm(dev_priv, &dev_priv->gtt.base); 5014 5015 INIT_LIST_HEAD(&dev_priv->context_list); 5016 INIT_LIST_HEAD(&dev_priv->mm.unbound_list); 5017 INIT_LIST_HEAD(&dev_priv->mm.bound_list); 5018 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 5019 for (i = 0; i < I915_NUM_RINGS; i++) 5020 init_ring_lists(&dev_priv->ring[i]); 5021 for (i = 0; i < I915_MAX_NUM_FENCES; i++) 5022 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list); 5023 INIT_DELAYED_WORK(&dev_priv->mm.retire_work, 5024 i915_gem_retire_work_handler); 5025 INIT_DELAYED_WORK(&dev_priv->mm.idle_work, 5026 i915_gem_idle_work_handler); 5027 init_waitqueue_head(&dev_priv->gpu_error.reset_queue); 5028 5029 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ 5030 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) { 5031 I915_WRITE(MI_ARB_STATE, 5032 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE)); 5033 } 5034 5035 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL; 5036 5037 /* Old X drivers will take 0-2 for front, back, depth buffers */ 5038 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 5039 dev_priv->fence_reg_start = 3; 5040 5041 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev)) 5042 dev_priv->num_fence_regs = 32; 5043 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) 5044 dev_priv->num_fence_regs = 16; 5045 else 5046 dev_priv->num_fence_regs = 8; 5047 5048 /* Initialize fence registers to zero */ 5049 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 5050 i915_gem_restore_fences(dev); 5051 5052 i915_gem_detect_bit_6_swizzle(dev); 5053 init_waitqueue_head(&dev_priv->pending_flip_queue); 5054 5055 dev_priv->mm.interruptible = true; 5056 5057 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan; 5058 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count; 5059 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS; 5060 register_shrinker(&dev_priv->mm.shrinker); 5061 5062 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom; 5063 register_oom_notifier(&dev_priv->mm.oom_notifier); 5064 5065 mutex_init(&dev_priv->fb_tracking.lock); 5066 } 5067 5068 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 5069 { 5070 struct drm_i915_file_private *file_priv = file->driver_priv; 5071 5072 cancel_delayed_work_sync(&file_priv->mm.idle_work); 5073 5074 /* Clean up our request list when the client is going away, so that 5075 * later retire_requests won't dereference our soon-to-be-gone 5076 * file_priv. 5077 */ 5078 spin_lock(&file_priv->mm.lock); 5079 while (!list_empty(&file_priv->mm.request_list)) { 5080 struct drm_i915_gem_request *request; 5081 5082 request = list_first_entry(&file_priv->mm.request_list, 5083 struct drm_i915_gem_request, 5084 client_list); 5085 list_del(&request->client_list); 5086 request->file_priv = NULL; 5087 } 5088 spin_unlock(&file_priv->mm.lock); 5089 } 5090 5091 static void 5092 i915_gem_file_idle_work_handler(struct work_struct *work) 5093 { 5094 struct drm_i915_file_private *file_priv = 5095 container_of(work, typeof(*file_priv), mm.idle_work.work); 5096 5097 atomic_set(&file_priv->rps_wait_boost, false); 5098 } 5099 5100 int i915_gem_open(struct drm_device *dev, struct drm_file *file) 5101 { 5102 struct drm_i915_file_private *file_priv; 5103 int ret; 5104 5105 DRM_DEBUG_DRIVER("\n"); 5106 5107 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); 5108 if (!file_priv) 5109 return -ENOMEM; 5110 5111 file->driver_priv = file_priv; 5112 file_priv->dev_priv = dev->dev_private; 5113 file_priv->file = file; 5114 5115 spin_lock_init(&file_priv->mm.lock); 5116 INIT_LIST_HEAD(&file_priv->mm.request_list); 5117 INIT_DELAYED_WORK(&file_priv->mm.idle_work, 5118 i915_gem_file_idle_work_handler); 5119 5120 ret = i915_gem_context_open(dev, file); 5121 if (ret) 5122 kfree(file_priv); 5123 5124 return ret; 5125 } 5126 5127 /** 5128 * i915_gem_track_fb - update frontbuffer tracking 5129 * old: current GEM buffer for the frontbuffer slots 5130 * new: new GEM buffer for the frontbuffer slots 5131 * frontbuffer_bits: bitmask of frontbuffer slots 5132 * 5133 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them 5134 * from @old and setting them in @new. Both @old and @new can be NULL. 5135 */ 5136 void i915_gem_track_fb(struct drm_i915_gem_object *old, 5137 struct drm_i915_gem_object *new, 5138 unsigned frontbuffer_bits) 5139 { 5140 if (old) { 5141 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex)); 5142 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits)); 5143 old->frontbuffer_bits &= ~frontbuffer_bits; 5144 } 5145 5146 if (new) { 5147 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex)); 5148 WARN_ON(new->frontbuffer_bits & frontbuffer_bits); 5149 new->frontbuffer_bits |= frontbuffer_bits; 5150 } 5151 } 5152 5153 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task) 5154 { 5155 if (!mutex_is_locked(mutex)) 5156 return false; 5157 5158 #if defined(CONFIG_SMP) && !defined(CONFIG_DEBUG_MUTEXES) 5159 return mutex->owner == task; 5160 #else 5161 /* Since UP may be pre-empted, we cannot assume that we own the lock */ 5162 return false; 5163 #endif 5164 } 5165 5166 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock) 5167 { 5168 if (!mutex_trylock(&dev->struct_mutex)) { 5169 if (!mutex_is_locked_by(&dev->struct_mutex, current)) 5170 return false; 5171 5172 if (to_i915(dev)->mm.shrinker_no_lock_stealing) 5173 return false; 5174 5175 *unlock = false; 5176 } else 5177 *unlock = true; 5178 5179 return true; 5180 } 5181 5182 static int num_vma_bound(struct drm_i915_gem_object *obj) 5183 { 5184 struct i915_vma *vma; 5185 int count = 0; 5186 5187 list_for_each_entry(vma, &obj->vma_list, vma_link) 5188 if (drm_mm_node_allocated(&vma->node)) 5189 count++; 5190 5191 return count; 5192 } 5193 5194 static unsigned long 5195 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc) 5196 { 5197 struct drm_i915_private *dev_priv = 5198 container_of(shrinker, struct drm_i915_private, mm.shrinker); 5199 struct drm_device *dev = dev_priv->dev; 5200 struct drm_i915_gem_object *obj; 5201 unsigned long count; 5202 bool unlock; 5203 5204 if (!i915_gem_shrinker_lock(dev, &unlock)) 5205 return 0; 5206 5207 count = 0; 5208 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) 5209 if (obj->pages_pin_count == 0) 5210 count += obj->base.size >> PAGE_SHIFT; 5211 5212 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { 5213 if (!i915_gem_obj_is_pinned(obj) && 5214 obj->pages_pin_count == num_vma_bound(obj)) 5215 count += obj->base.size >> PAGE_SHIFT; 5216 } 5217 5218 if (unlock) 5219 mutex_unlock(&dev->struct_mutex); 5220 5221 return count; 5222 } 5223 5224 /* All the new VM stuff */ 5225 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o, 5226 struct i915_address_space *vm) 5227 { 5228 struct drm_i915_private *dev_priv = o->base.dev->dev_private; 5229 struct i915_vma *vma; 5230 5231 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base); 5232 5233 list_for_each_entry(vma, &o->vma_list, vma_link) { 5234 if (vma->vm == vm) 5235 return vma->node.start; 5236 5237 } 5238 WARN(1, "%s vma for this object not found.\n", 5239 i915_is_ggtt(vm) ? "global" : "ppgtt"); 5240 return -1; 5241 } 5242 5243 bool i915_gem_obj_bound(struct drm_i915_gem_object *o, 5244 struct i915_address_space *vm) 5245 { 5246 struct i915_vma *vma; 5247 5248 list_for_each_entry(vma, &o->vma_list, vma_link) 5249 if (vma->vm == vm && drm_mm_node_allocated(&vma->node)) 5250 return true; 5251 5252 return false; 5253 } 5254 5255 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o) 5256 { 5257 struct i915_vma *vma; 5258 5259 list_for_each_entry(vma, &o->vma_list, vma_link) 5260 if (drm_mm_node_allocated(&vma->node)) 5261 return true; 5262 5263 return false; 5264 } 5265 5266 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o, 5267 struct i915_address_space *vm) 5268 { 5269 struct drm_i915_private *dev_priv = o->base.dev->dev_private; 5270 struct i915_vma *vma; 5271 5272 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base); 5273 5274 BUG_ON(list_empty(&o->vma_list)); 5275 5276 list_for_each_entry(vma, &o->vma_list, vma_link) 5277 if (vma->vm == vm) 5278 return vma->node.size; 5279 5280 return 0; 5281 } 5282 5283 static unsigned long 5284 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc) 5285 { 5286 struct drm_i915_private *dev_priv = 5287 container_of(shrinker, struct drm_i915_private, mm.shrinker); 5288 struct drm_device *dev = dev_priv->dev; 5289 unsigned long freed; 5290 bool unlock; 5291 5292 if (!i915_gem_shrinker_lock(dev, &unlock)) 5293 return SHRINK_STOP; 5294 5295 freed = i915_gem_shrink(dev_priv, 5296 sc->nr_to_scan, 5297 I915_SHRINK_BOUND | 5298 I915_SHRINK_UNBOUND | 5299 I915_SHRINK_PURGEABLE); 5300 if (freed < sc->nr_to_scan) 5301 freed += i915_gem_shrink(dev_priv, 5302 sc->nr_to_scan - freed, 5303 I915_SHRINK_BOUND | 5304 I915_SHRINK_UNBOUND); 5305 if (unlock) 5306 mutex_unlock(&dev->struct_mutex); 5307 5308 return freed; 5309 } 5310 5311 static int 5312 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr) 5313 { 5314 struct drm_i915_private *dev_priv = 5315 container_of(nb, struct drm_i915_private, mm.oom_notifier); 5316 struct drm_device *dev = dev_priv->dev; 5317 struct drm_i915_gem_object *obj; 5318 unsigned long timeout = msecs_to_jiffies(5000) + 1; 5319 unsigned long pinned, bound, unbound, freed_pages; 5320 bool was_interruptible; 5321 bool unlock; 5322 5323 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) { 5324 schedule_timeout_killable(1); 5325 if (fatal_signal_pending(current)) 5326 return NOTIFY_DONE; 5327 } 5328 if (timeout == 0) { 5329 pr_err("Unable to purge GPU memory due lock contention.\n"); 5330 return NOTIFY_DONE; 5331 } 5332 5333 was_interruptible = dev_priv->mm.interruptible; 5334 dev_priv->mm.interruptible = false; 5335 5336 freed_pages = i915_gem_shrink_all(dev_priv); 5337 5338 dev_priv->mm.interruptible = was_interruptible; 5339 5340 /* Because we may be allocating inside our own driver, we cannot 5341 * assert that there are no objects with pinned pages that are not 5342 * being pointed to by hardware. 5343 */ 5344 unbound = bound = pinned = 0; 5345 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) { 5346 if (!obj->base.filp) /* not backed by a freeable object */ 5347 continue; 5348 5349 if (obj->pages_pin_count) 5350 pinned += obj->base.size; 5351 else 5352 unbound += obj->base.size; 5353 } 5354 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { 5355 if (!obj->base.filp) 5356 continue; 5357 5358 if (obj->pages_pin_count) 5359 pinned += obj->base.size; 5360 else 5361 bound += obj->base.size; 5362 } 5363 5364 if (unlock) 5365 mutex_unlock(&dev->struct_mutex); 5366 5367 if (freed_pages || unbound || bound) 5368 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n", 5369 freed_pages << PAGE_SHIFT, pinned); 5370 if (unbound || bound) 5371 pr_err("%lu and %lu bytes still available in the " 5372 "bound and unbound GPU page lists.\n", 5373 bound, unbound); 5374 5375 *(unsigned long *)ptr += freed_pages; 5376 return NOTIFY_DONE; 5377 } 5378 5379 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj) 5380 { 5381 struct i915_vma *vma; 5382 5383 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link); 5384 if (vma->vm != i915_obj_to_ggtt(obj)) 5385 return NULL; 5386 5387 return vma; 5388 } 5389