xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision 6774def6)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40 
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 						   bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 			       bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49 
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 				 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 					 struct drm_i915_fence_reg *fence,
54 					 bool enable);
55 
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57 					     struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59 					    struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 				 unsigned long event,
62 				 void *ptr);
63 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64 
65 static bool cpu_cache_is_coherent(struct drm_device *dev,
66 				  enum i915_cache_level level)
67 {
68 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
69 }
70 
71 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72 {
73 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 		return true;
75 
76 	return obj->pin_display;
77 }
78 
79 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80 {
81 	if (obj->tiling_mode)
82 		i915_gem_release_mmap(obj);
83 
84 	/* As we do not have an associated fence register, we will force
85 	 * a tiling change if we ever need to acquire one.
86 	 */
87 	obj->fence_dirty = false;
88 	obj->fence_reg = I915_FENCE_REG_NONE;
89 }
90 
91 /* some bookkeeping */
92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 				  size_t size)
94 {
95 	spin_lock(&dev_priv->mm.object_stat_lock);
96 	dev_priv->mm.object_count++;
97 	dev_priv->mm.object_memory += size;
98 	spin_unlock(&dev_priv->mm.object_stat_lock);
99 }
100 
101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 				     size_t size)
103 {
104 	spin_lock(&dev_priv->mm.object_stat_lock);
105 	dev_priv->mm.object_count--;
106 	dev_priv->mm.object_memory -= size;
107 	spin_unlock(&dev_priv->mm.object_stat_lock);
108 }
109 
110 static int
111 i915_gem_wait_for_error(struct i915_gpu_error *error)
112 {
113 	int ret;
114 
115 #define EXIT_COND (!i915_reset_in_progress(error) || \
116 		   i915_terminally_wedged(error))
117 	if (EXIT_COND)
118 		return 0;
119 
120 	/*
121 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 	 * userspace. If it takes that long something really bad is going on and
123 	 * we should simply try to bail out and fail as gracefully as possible.
124 	 */
125 	ret = wait_event_interruptible_timeout(error->reset_queue,
126 					       EXIT_COND,
127 					       10*HZ);
128 	if (ret == 0) {
129 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 		return -EIO;
131 	} else if (ret < 0) {
132 		return ret;
133 	}
134 #undef EXIT_COND
135 
136 	return 0;
137 }
138 
139 int i915_mutex_lock_interruptible(struct drm_device *dev)
140 {
141 	struct drm_i915_private *dev_priv = dev->dev_private;
142 	int ret;
143 
144 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145 	if (ret)
146 		return ret;
147 
148 	ret = mutex_lock_interruptible(&dev->struct_mutex);
149 	if (ret)
150 		return ret;
151 
152 	WARN_ON(i915_verify_lists(dev));
153 	return 0;
154 }
155 
156 static inline bool
157 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
158 {
159 	return i915_gem_obj_bound_any(obj) && !obj->active;
160 }
161 
162 int
163 i915_gem_init_ioctl(struct drm_device *dev, void *data,
164 		    struct drm_file *file)
165 {
166 	struct drm_i915_private *dev_priv = dev->dev_private;
167 	struct drm_i915_gem_init *args = data;
168 
169 	if (drm_core_check_feature(dev, DRIVER_MODESET))
170 		return -ENODEV;
171 
172 	if (args->gtt_start >= args->gtt_end ||
173 	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
174 		return -EINVAL;
175 
176 	/* GEM with user mode setting was never supported on ilk and later. */
177 	if (INTEL_INFO(dev)->gen >= 5)
178 		return -ENODEV;
179 
180 	mutex_lock(&dev->struct_mutex);
181 	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
182 				  args->gtt_end);
183 	dev_priv->gtt.mappable_end = args->gtt_end;
184 	mutex_unlock(&dev->struct_mutex);
185 
186 	return 0;
187 }
188 
189 int
190 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
191 			    struct drm_file *file)
192 {
193 	struct drm_i915_private *dev_priv = dev->dev_private;
194 	struct drm_i915_gem_get_aperture *args = data;
195 	struct drm_i915_gem_object *obj;
196 	size_t pinned;
197 
198 	pinned = 0;
199 	mutex_lock(&dev->struct_mutex);
200 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
201 		if (i915_gem_obj_is_pinned(obj))
202 			pinned += i915_gem_obj_ggtt_size(obj);
203 	mutex_unlock(&dev->struct_mutex);
204 
205 	args->aper_size = dev_priv->gtt.base.total;
206 	args->aper_available_size = args->aper_size - pinned;
207 
208 	return 0;
209 }
210 
211 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
212 {
213 	drm_dma_handle_t *phys = obj->phys_handle;
214 
215 	if (!phys)
216 		return;
217 
218 	if (obj->madv == I915_MADV_WILLNEED) {
219 		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
220 		char *vaddr = phys->vaddr;
221 		int i;
222 
223 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
224 			struct page *page = shmem_read_mapping_page(mapping, i);
225 			if (!IS_ERR(page)) {
226 				char *dst = kmap_atomic(page);
227 				memcpy(dst, vaddr, PAGE_SIZE);
228 				drm_clflush_virt_range(dst, PAGE_SIZE);
229 				kunmap_atomic(dst);
230 
231 				set_page_dirty(page);
232 				mark_page_accessed(page);
233 				page_cache_release(page);
234 			}
235 			vaddr += PAGE_SIZE;
236 		}
237 		i915_gem_chipset_flush(obj->base.dev);
238 	}
239 
240 #ifdef CONFIG_X86
241 	set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
242 #endif
243 	drm_pci_free(obj->base.dev, phys);
244 	obj->phys_handle = NULL;
245 }
246 
247 int
248 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
249 			    int align)
250 {
251 	drm_dma_handle_t *phys;
252 	struct address_space *mapping;
253 	char *vaddr;
254 	int i;
255 
256 	if (obj->phys_handle) {
257 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
258 			return -EBUSY;
259 
260 		return 0;
261 	}
262 
263 	if (obj->madv != I915_MADV_WILLNEED)
264 		return -EFAULT;
265 
266 	if (obj->base.filp == NULL)
267 		return -EINVAL;
268 
269 	/* create a new object */
270 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
271 	if (!phys)
272 		return -ENOMEM;
273 
274 	vaddr = phys->vaddr;
275 #ifdef CONFIG_X86
276 	set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
277 #endif
278 	mapping = file_inode(obj->base.filp)->i_mapping;
279 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
280 		struct page *page;
281 		char *src;
282 
283 		page = shmem_read_mapping_page(mapping, i);
284 		if (IS_ERR(page)) {
285 #ifdef CONFIG_X86
286 			set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
287 #endif
288 			drm_pci_free(obj->base.dev, phys);
289 			return PTR_ERR(page);
290 		}
291 
292 		src = kmap_atomic(page);
293 		memcpy(vaddr, src, PAGE_SIZE);
294 		kunmap_atomic(src);
295 
296 		mark_page_accessed(page);
297 		page_cache_release(page);
298 
299 		vaddr += PAGE_SIZE;
300 	}
301 
302 	obj->phys_handle = phys;
303 	return 0;
304 }
305 
306 static int
307 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
308 		     struct drm_i915_gem_pwrite *args,
309 		     struct drm_file *file_priv)
310 {
311 	struct drm_device *dev = obj->base.dev;
312 	void *vaddr = obj->phys_handle->vaddr + args->offset;
313 	char __user *user_data = to_user_ptr(args->data_ptr);
314 
315 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
316 		unsigned long unwritten;
317 
318 		/* The physical object once assigned is fixed for the lifetime
319 		 * of the obj, so we can safely drop the lock and continue
320 		 * to access vaddr.
321 		 */
322 		mutex_unlock(&dev->struct_mutex);
323 		unwritten = copy_from_user(vaddr, user_data, args->size);
324 		mutex_lock(&dev->struct_mutex);
325 		if (unwritten)
326 			return -EFAULT;
327 	}
328 
329 	i915_gem_chipset_flush(dev);
330 	return 0;
331 }
332 
333 void *i915_gem_object_alloc(struct drm_device *dev)
334 {
335 	struct drm_i915_private *dev_priv = dev->dev_private;
336 	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
337 }
338 
339 void i915_gem_object_free(struct drm_i915_gem_object *obj)
340 {
341 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
342 	kmem_cache_free(dev_priv->slab, obj);
343 }
344 
345 static int
346 i915_gem_create(struct drm_file *file,
347 		struct drm_device *dev,
348 		uint64_t size,
349 		uint32_t *handle_p)
350 {
351 	struct drm_i915_gem_object *obj;
352 	int ret;
353 	u32 handle;
354 
355 	size = roundup(size, PAGE_SIZE);
356 	if (size == 0)
357 		return -EINVAL;
358 
359 	/* Allocate the new object */
360 	obj = i915_gem_alloc_object(dev, size);
361 	if (obj == NULL)
362 		return -ENOMEM;
363 
364 	ret = drm_gem_handle_create(file, &obj->base, &handle);
365 	/* drop reference from allocate - handle holds it now */
366 	drm_gem_object_unreference_unlocked(&obj->base);
367 	if (ret)
368 		return ret;
369 
370 	*handle_p = handle;
371 	return 0;
372 }
373 
374 int
375 i915_gem_dumb_create(struct drm_file *file,
376 		     struct drm_device *dev,
377 		     struct drm_mode_create_dumb *args)
378 {
379 	/* have to work out size/pitch and return them */
380 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
381 	args->size = args->pitch * args->height;
382 	return i915_gem_create(file, dev,
383 			       args->size, &args->handle);
384 }
385 
386 /**
387  * Creates a new mm object and returns a handle to it.
388  */
389 int
390 i915_gem_create_ioctl(struct drm_device *dev, void *data,
391 		      struct drm_file *file)
392 {
393 	struct drm_i915_gem_create *args = data;
394 
395 	return i915_gem_create(file, dev,
396 			       args->size, &args->handle);
397 }
398 
399 static inline int
400 __copy_to_user_swizzled(char __user *cpu_vaddr,
401 			const char *gpu_vaddr, int gpu_offset,
402 			int length)
403 {
404 	int ret, cpu_offset = 0;
405 
406 	while (length > 0) {
407 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
408 		int this_length = min(cacheline_end - gpu_offset, length);
409 		int swizzled_gpu_offset = gpu_offset ^ 64;
410 
411 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
412 				     gpu_vaddr + swizzled_gpu_offset,
413 				     this_length);
414 		if (ret)
415 			return ret + length;
416 
417 		cpu_offset += this_length;
418 		gpu_offset += this_length;
419 		length -= this_length;
420 	}
421 
422 	return 0;
423 }
424 
425 static inline int
426 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
427 			  const char __user *cpu_vaddr,
428 			  int length)
429 {
430 	int ret, cpu_offset = 0;
431 
432 	while (length > 0) {
433 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
434 		int this_length = min(cacheline_end - gpu_offset, length);
435 		int swizzled_gpu_offset = gpu_offset ^ 64;
436 
437 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
438 				       cpu_vaddr + cpu_offset,
439 				       this_length);
440 		if (ret)
441 			return ret + length;
442 
443 		cpu_offset += this_length;
444 		gpu_offset += this_length;
445 		length -= this_length;
446 	}
447 
448 	return 0;
449 }
450 
451 /*
452  * Pins the specified object's pages and synchronizes the object with
453  * GPU accesses. Sets needs_clflush to non-zero if the caller should
454  * flush the object from the CPU cache.
455  */
456 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
457 				    int *needs_clflush)
458 {
459 	int ret;
460 
461 	*needs_clflush = 0;
462 
463 	if (!obj->base.filp)
464 		return -EINVAL;
465 
466 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
467 		/* If we're not in the cpu read domain, set ourself into the gtt
468 		 * read domain and manually flush cachelines (if required). This
469 		 * optimizes for the case when the gpu will dirty the data
470 		 * anyway again before the next pread happens. */
471 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
472 							obj->cache_level);
473 		ret = i915_gem_object_wait_rendering(obj, true);
474 		if (ret)
475 			return ret;
476 
477 		i915_gem_object_retire(obj);
478 	}
479 
480 	ret = i915_gem_object_get_pages(obj);
481 	if (ret)
482 		return ret;
483 
484 	i915_gem_object_pin_pages(obj);
485 
486 	return ret;
487 }
488 
489 /* Per-page copy function for the shmem pread fastpath.
490  * Flushes invalid cachelines before reading the target if
491  * needs_clflush is set. */
492 static int
493 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
494 		 char __user *user_data,
495 		 bool page_do_bit17_swizzling, bool needs_clflush)
496 {
497 	char *vaddr;
498 	int ret;
499 
500 	if (unlikely(page_do_bit17_swizzling))
501 		return -EINVAL;
502 
503 	vaddr = kmap_atomic(page);
504 	if (needs_clflush)
505 		drm_clflush_virt_range(vaddr + shmem_page_offset,
506 				       page_length);
507 	ret = __copy_to_user_inatomic(user_data,
508 				      vaddr + shmem_page_offset,
509 				      page_length);
510 	kunmap_atomic(vaddr);
511 
512 	return ret ? -EFAULT : 0;
513 }
514 
515 static void
516 shmem_clflush_swizzled_range(char *addr, unsigned long length,
517 			     bool swizzled)
518 {
519 	if (unlikely(swizzled)) {
520 		unsigned long start = (unsigned long) addr;
521 		unsigned long end = (unsigned long) addr + length;
522 
523 		/* For swizzling simply ensure that we always flush both
524 		 * channels. Lame, but simple and it works. Swizzled
525 		 * pwrite/pread is far from a hotpath - current userspace
526 		 * doesn't use it at all. */
527 		start = round_down(start, 128);
528 		end = round_up(end, 128);
529 
530 		drm_clflush_virt_range((void *)start, end - start);
531 	} else {
532 		drm_clflush_virt_range(addr, length);
533 	}
534 
535 }
536 
537 /* Only difference to the fast-path function is that this can handle bit17
538  * and uses non-atomic copy and kmap functions. */
539 static int
540 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
541 		 char __user *user_data,
542 		 bool page_do_bit17_swizzling, bool needs_clflush)
543 {
544 	char *vaddr;
545 	int ret;
546 
547 	vaddr = kmap(page);
548 	if (needs_clflush)
549 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
550 					     page_length,
551 					     page_do_bit17_swizzling);
552 
553 	if (page_do_bit17_swizzling)
554 		ret = __copy_to_user_swizzled(user_data,
555 					      vaddr, shmem_page_offset,
556 					      page_length);
557 	else
558 		ret = __copy_to_user(user_data,
559 				     vaddr + shmem_page_offset,
560 				     page_length);
561 	kunmap(page);
562 
563 	return ret ? - EFAULT : 0;
564 }
565 
566 static int
567 i915_gem_shmem_pread(struct drm_device *dev,
568 		     struct drm_i915_gem_object *obj,
569 		     struct drm_i915_gem_pread *args,
570 		     struct drm_file *file)
571 {
572 	char __user *user_data;
573 	ssize_t remain;
574 	loff_t offset;
575 	int shmem_page_offset, page_length, ret = 0;
576 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
577 	int prefaulted = 0;
578 	int needs_clflush = 0;
579 	struct sg_page_iter sg_iter;
580 
581 	user_data = to_user_ptr(args->data_ptr);
582 	remain = args->size;
583 
584 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
585 
586 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
587 	if (ret)
588 		return ret;
589 
590 	offset = args->offset;
591 
592 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
593 			 offset >> PAGE_SHIFT) {
594 		struct page *page = sg_page_iter_page(&sg_iter);
595 
596 		if (remain <= 0)
597 			break;
598 
599 		/* Operation in this page
600 		 *
601 		 * shmem_page_offset = offset within page in shmem file
602 		 * page_length = bytes to copy for this page
603 		 */
604 		shmem_page_offset = offset_in_page(offset);
605 		page_length = remain;
606 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
607 			page_length = PAGE_SIZE - shmem_page_offset;
608 
609 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
610 			(page_to_phys(page) & (1 << 17)) != 0;
611 
612 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
613 				       user_data, page_do_bit17_swizzling,
614 				       needs_clflush);
615 		if (ret == 0)
616 			goto next_page;
617 
618 		mutex_unlock(&dev->struct_mutex);
619 
620 		if (likely(!i915.prefault_disable) && !prefaulted) {
621 			ret = fault_in_multipages_writeable(user_data, remain);
622 			/* Userspace is tricking us, but we've already clobbered
623 			 * its pages with the prefault and promised to write the
624 			 * data up to the first fault. Hence ignore any errors
625 			 * and just continue. */
626 			(void)ret;
627 			prefaulted = 1;
628 		}
629 
630 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
631 				       user_data, page_do_bit17_swizzling,
632 				       needs_clflush);
633 
634 		mutex_lock(&dev->struct_mutex);
635 
636 		if (ret)
637 			goto out;
638 
639 next_page:
640 		remain -= page_length;
641 		user_data += page_length;
642 		offset += page_length;
643 	}
644 
645 out:
646 	i915_gem_object_unpin_pages(obj);
647 
648 	return ret;
649 }
650 
651 /**
652  * Reads data from the object referenced by handle.
653  *
654  * On error, the contents of *data are undefined.
655  */
656 int
657 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
658 		     struct drm_file *file)
659 {
660 	struct drm_i915_gem_pread *args = data;
661 	struct drm_i915_gem_object *obj;
662 	int ret = 0;
663 
664 	if (args->size == 0)
665 		return 0;
666 
667 	if (!access_ok(VERIFY_WRITE,
668 		       to_user_ptr(args->data_ptr),
669 		       args->size))
670 		return -EFAULT;
671 
672 	ret = i915_mutex_lock_interruptible(dev);
673 	if (ret)
674 		return ret;
675 
676 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
677 	if (&obj->base == NULL) {
678 		ret = -ENOENT;
679 		goto unlock;
680 	}
681 
682 	/* Bounds check source.  */
683 	if (args->offset > obj->base.size ||
684 	    args->size > obj->base.size - args->offset) {
685 		ret = -EINVAL;
686 		goto out;
687 	}
688 
689 	/* prime objects have no backing filp to GEM pread/pwrite
690 	 * pages from.
691 	 */
692 	if (!obj->base.filp) {
693 		ret = -EINVAL;
694 		goto out;
695 	}
696 
697 	trace_i915_gem_object_pread(obj, args->offset, args->size);
698 
699 	ret = i915_gem_shmem_pread(dev, obj, args, file);
700 
701 out:
702 	drm_gem_object_unreference(&obj->base);
703 unlock:
704 	mutex_unlock(&dev->struct_mutex);
705 	return ret;
706 }
707 
708 /* This is the fast write path which cannot handle
709  * page faults in the source data
710  */
711 
712 static inline int
713 fast_user_write(struct io_mapping *mapping,
714 		loff_t page_base, int page_offset,
715 		char __user *user_data,
716 		int length)
717 {
718 	void __iomem *vaddr_atomic;
719 	void *vaddr;
720 	unsigned long unwritten;
721 
722 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
723 	/* We can use the cpu mem copy function because this is X86. */
724 	vaddr = (void __force*)vaddr_atomic + page_offset;
725 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
726 						      user_data, length);
727 	io_mapping_unmap_atomic(vaddr_atomic);
728 	return unwritten;
729 }
730 
731 /**
732  * This is the fast pwrite path, where we copy the data directly from the
733  * user into the GTT, uncached.
734  */
735 static int
736 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
737 			 struct drm_i915_gem_object *obj,
738 			 struct drm_i915_gem_pwrite *args,
739 			 struct drm_file *file)
740 {
741 	struct drm_i915_private *dev_priv = dev->dev_private;
742 	ssize_t remain;
743 	loff_t offset, page_base;
744 	char __user *user_data;
745 	int page_offset, page_length, ret;
746 
747 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
748 	if (ret)
749 		goto out;
750 
751 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
752 	if (ret)
753 		goto out_unpin;
754 
755 	ret = i915_gem_object_put_fence(obj);
756 	if (ret)
757 		goto out_unpin;
758 
759 	user_data = to_user_ptr(args->data_ptr);
760 	remain = args->size;
761 
762 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
763 
764 	while (remain > 0) {
765 		/* Operation in this page
766 		 *
767 		 * page_base = page offset within aperture
768 		 * page_offset = offset within page
769 		 * page_length = bytes to copy for this page
770 		 */
771 		page_base = offset & PAGE_MASK;
772 		page_offset = offset_in_page(offset);
773 		page_length = remain;
774 		if ((page_offset + remain) > PAGE_SIZE)
775 			page_length = PAGE_SIZE - page_offset;
776 
777 		/* If we get a fault while copying data, then (presumably) our
778 		 * source page isn't available.  Return the error and we'll
779 		 * retry in the slow path.
780 		 */
781 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
782 				    page_offset, user_data, page_length)) {
783 			ret = -EFAULT;
784 			goto out_unpin;
785 		}
786 
787 		remain -= page_length;
788 		user_data += page_length;
789 		offset += page_length;
790 	}
791 
792 out_unpin:
793 	i915_gem_object_ggtt_unpin(obj);
794 out:
795 	return ret;
796 }
797 
798 /* Per-page copy function for the shmem pwrite fastpath.
799  * Flushes invalid cachelines before writing to the target if
800  * needs_clflush_before is set and flushes out any written cachelines after
801  * writing if needs_clflush is set. */
802 static int
803 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
804 		  char __user *user_data,
805 		  bool page_do_bit17_swizzling,
806 		  bool needs_clflush_before,
807 		  bool needs_clflush_after)
808 {
809 	char *vaddr;
810 	int ret;
811 
812 	if (unlikely(page_do_bit17_swizzling))
813 		return -EINVAL;
814 
815 	vaddr = kmap_atomic(page);
816 	if (needs_clflush_before)
817 		drm_clflush_virt_range(vaddr + shmem_page_offset,
818 				       page_length);
819 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
820 					user_data, page_length);
821 	if (needs_clflush_after)
822 		drm_clflush_virt_range(vaddr + shmem_page_offset,
823 				       page_length);
824 	kunmap_atomic(vaddr);
825 
826 	return ret ? -EFAULT : 0;
827 }
828 
829 /* Only difference to the fast-path function is that this can handle bit17
830  * and uses non-atomic copy and kmap functions. */
831 static int
832 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
833 		  char __user *user_data,
834 		  bool page_do_bit17_swizzling,
835 		  bool needs_clflush_before,
836 		  bool needs_clflush_after)
837 {
838 	char *vaddr;
839 	int ret;
840 
841 	vaddr = kmap(page);
842 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
843 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
844 					     page_length,
845 					     page_do_bit17_swizzling);
846 	if (page_do_bit17_swizzling)
847 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
848 						user_data,
849 						page_length);
850 	else
851 		ret = __copy_from_user(vaddr + shmem_page_offset,
852 				       user_data,
853 				       page_length);
854 	if (needs_clflush_after)
855 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
856 					     page_length,
857 					     page_do_bit17_swizzling);
858 	kunmap(page);
859 
860 	return ret ? -EFAULT : 0;
861 }
862 
863 static int
864 i915_gem_shmem_pwrite(struct drm_device *dev,
865 		      struct drm_i915_gem_object *obj,
866 		      struct drm_i915_gem_pwrite *args,
867 		      struct drm_file *file)
868 {
869 	ssize_t remain;
870 	loff_t offset;
871 	char __user *user_data;
872 	int shmem_page_offset, page_length, ret = 0;
873 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
874 	int hit_slowpath = 0;
875 	int needs_clflush_after = 0;
876 	int needs_clflush_before = 0;
877 	struct sg_page_iter sg_iter;
878 
879 	user_data = to_user_ptr(args->data_ptr);
880 	remain = args->size;
881 
882 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
883 
884 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
885 		/* If we're not in the cpu write domain, set ourself into the gtt
886 		 * write domain and manually flush cachelines (if required). This
887 		 * optimizes for the case when the gpu will use the data
888 		 * right away and we therefore have to clflush anyway. */
889 		needs_clflush_after = cpu_write_needs_clflush(obj);
890 		ret = i915_gem_object_wait_rendering(obj, false);
891 		if (ret)
892 			return ret;
893 
894 		i915_gem_object_retire(obj);
895 	}
896 	/* Same trick applies to invalidate partially written cachelines read
897 	 * before writing. */
898 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
899 		needs_clflush_before =
900 			!cpu_cache_is_coherent(dev, obj->cache_level);
901 
902 	ret = i915_gem_object_get_pages(obj);
903 	if (ret)
904 		return ret;
905 
906 	i915_gem_object_pin_pages(obj);
907 
908 	offset = args->offset;
909 	obj->dirty = 1;
910 
911 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
912 			 offset >> PAGE_SHIFT) {
913 		struct page *page = sg_page_iter_page(&sg_iter);
914 		int partial_cacheline_write;
915 
916 		if (remain <= 0)
917 			break;
918 
919 		/* Operation in this page
920 		 *
921 		 * shmem_page_offset = offset within page in shmem file
922 		 * page_length = bytes to copy for this page
923 		 */
924 		shmem_page_offset = offset_in_page(offset);
925 
926 		page_length = remain;
927 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
928 			page_length = PAGE_SIZE - shmem_page_offset;
929 
930 		/* If we don't overwrite a cacheline completely we need to be
931 		 * careful to have up-to-date data by first clflushing. Don't
932 		 * overcomplicate things and flush the entire patch. */
933 		partial_cacheline_write = needs_clflush_before &&
934 			((shmem_page_offset | page_length)
935 				& (boot_cpu_data.x86_clflush_size - 1));
936 
937 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
938 			(page_to_phys(page) & (1 << 17)) != 0;
939 
940 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
941 					user_data, page_do_bit17_swizzling,
942 					partial_cacheline_write,
943 					needs_clflush_after);
944 		if (ret == 0)
945 			goto next_page;
946 
947 		hit_slowpath = 1;
948 		mutex_unlock(&dev->struct_mutex);
949 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
950 					user_data, page_do_bit17_swizzling,
951 					partial_cacheline_write,
952 					needs_clflush_after);
953 
954 		mutex_lock(&dev->struct_mutex);
955 
956 		if (ret)
957 			goto out;
958 
959 next_page:
960 		remain -= page_length;
961 		user_data += page_length;
962 		offset += page_length;
963 	}
964 
965 out:
966 	i915_gem_object_unpin_pages(obj);
967 
968 	if (hit_slowpath) {
969 		/*
970 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
971 		 * cachelines in-line while writing and the object moved
972 		 * out of the cpu write domain while we've dropped the lock.
973 		 */
974 		if (!needs_clflush_after &&
975 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
976 			if (i915_gem_clflush_object(obj, obj->pin_display))
977 				i915_gem_chipset_flush(dev);
978 		}
979 	}
980 
981 	if (needs_clflush_after)
982 		i915_gem_chipset_flush(dev);
983 
984 	return ret;
985 }
986 
987 /**
988  * Writes data to the object referenced by handle.
989  *
990  * On error, the contents of the buffer that were to be modified are undefined.
991  */
992 int
993 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
994 		      struct drm_file *file)
995 {
996 	struct drm_i915_gem_pwrite *args = data;
997 	struct drm_i915_gem_object *obj;
998 	int ret;
999 
1000 	if (args->size == 0)
1001 		return 0;
1002 
1003 	if (!access_ok(VERIFY_READ,
1004 		       to_user_ptr(args->data_ptr),
1005 		       args->size))
1006 		return -EFAULT;
1007 
1008 	if (likely(!i915.prefault_disable)) {
1009 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1010 						   args->size);
1011 		if (ret)
1012 			return -EFAULT;
1013 	}
1014 
1015 	ret = i915_mutex_lock_interruptible(dev);
1016 	if (ret)
1017 		return ret;
1018 
1019 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1020 	if (&obj->base == NULL) {
1021 		ret = -ENOENT;
1022 		goto unlock;
1023 	}
1024 
1025 	/* Bounds check destination. */
1026 	if (args->offset > obj->base.size ||
1027 	    args->size > obj->base.size - args->offset) {
1028 		ret = -EINVAL;
1029 		goto out;
1030 	}
1031 
1032 	/* prime objects have no backing filp to GEM pread/pwrite
1033 	 * pages from.
1034 	 */
1035 	if (!obj->base.filp) {
1036 		ret = -EINVAL;
1037 		goto out;
1038 	}
1039 
1040 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1041 
1042 	ret = -EFAULT;
1043 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1044 	 * it would end up going through the fenced access, and we'll get
1045 	 * different detiling behavior between reading and writing.
1046 	 * pread/pwrite currently are reading and writing from the CPU
1047 	 * perspective, requiring manual detiling by the client.
1048 	 */
1049 	if (obj->phys_handle) {
1050 		ret = i915_gem_phys_pwrite(obj, args, file);
1051 		goto out;
1052 	}
1053 
1054 	if (obj->tiling_mode == I915_TILING_NONE &&
1055 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1056 	    cpu_write_needs_clflush(obj)) {
1057 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1058 		/* Note that the gtt paths might fail with non-page-backed user
1059 		 * pointers (e.g. gtt mappings when moving data between
1060 		 * textures). Fallback to the shmem path in that case. */
1061 	}
1062 
1063 	if (ret == -EFAULT || ret == -ENOSPC)
1064 		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1065 
1066 out:
1067 	drm_gem_object_unreference(&obj->base);
1068 unlock:
1069 	mutex_unlock(&dev->struct_mutex);
1070 	return ret;
1071 }
1072 
1073 int
1074 i915_gem_check_wedge(struct i915_gpu_error *error,
1075 		     bool interruptible)
1076 {
1077 	if (i915_reset_in_progress(error)) {
1078 		/* Non-interruptible callers can't handle -EAGAIN, hence return
1079 		 * -EIO unconditionally for these. */
1080 		if (!interruptible)
1081 			return -EIO;
1082 
1083 		/* Recovery complete, but the reset failed ... */
1084 		if (i915_terminally_wedged(error))
1085 			return -EIO;
1086 
1087 		/*
1088 		 * Check if GPU Reset is in progress - we need intel_ring_begin
1089 		 * to work properly to reinit the hw state while the gpu is
1090 		 * still marked as reset-in-progress. Handle this with a flag.
1091 		 */
1092 		if (!error->reload_in_reset)
1093 			return -EAGAIN;
1094 	}
1095 
1096 	return 0;
1097 }
1098 
1099 /*
1100  * Compare seqno against outstanding lazy request. Emit a request if they are
1101  * equal.
1102  */
1103 int
1104 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1105 {
1106 	int ret;
1107 
1108 	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1109 
1110 	ret = 0;
1111 	if (seqno == ring->outstanding_lazy_seqno)
1112 		ret = i915_add_request(ring, NULL);
1113 
1114 	return ret;
1115 }
1116 
1117 static void fake_irq(unsigned long data)
1118 {
1119 	wake_up_process((struct task_struct *)data);
1120 }
1121 
1122 static bool missed_irq(struct drm_i915_private *dev_priv,
1123 		       struct intel_engine_cs *ring)
1124 {
1125 	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1126 }
1127 
1128 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1129 {
1130 	if (file_priv == NULL)
1131 		return true;
1132 
1133 	return !atomic_xchg(&file_priv->rps_wait_boost, true);
1134 }
1135 
1136 /**
1137  * __wait_seqno - wait until execution of seqno has finished
1138  * @ring: the ring expected to report seqno
1139  * @seqno: duh!
1140  * @reset_counter: reset sequence associated with the given seqno
1141  * @interruptible: do an interruptible wait (normally yes)
1142  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1143  *
1144  * Note: It is of utmost importance that the passed in seqno and reset_counter
1145  * values have been read by the caller in an smp safe manner. Where read-side
1146  * locks are involved, it is sufficient to read the reset_counter before
1147  * unlocking the lock that protects the seqno. For lockless tricks, the
1148  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1149  * inserted.
1150  *
1151  * Returns 0 if the seqno was found within the alloted time. Else returns the
1152  * errno with remaining time filled in timeout argument.
1153  */
1154 static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1155 			unsigned reset_counter,
1156 			bool interruptible,
1157 			s64 *timeout,
1158 			struct drm_i915_file_private *file_priv)
1159 {
1160 	struct drm_device *dev = ring->dev;
1161 	struct drm_i915_private *dev_priv = dev->dev_private;
1162 	const bool irq_test_in_progress =
1163 		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1164 	DEFINE_WAIT(wait);
1165 	unsigned long timeout_expire;
1166 	s64 before, now;
1167 	int ret;
1168 
1169 	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1170 
1171 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1172 		return 0;
1173 
1174 	timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
1175 
1176 	if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1177 		gen6_rps_boost(dev_priv);
1178 		if (file_priv)
1179 			mod_delayed_work(dev_priv->wq,
1180 					 &file_priv->mm.idle_work,
1181 					 msecs_to_jiffies(100));
1182 	}
1183 
1184 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1185 		return -ENODEV;
1186 
1187 	/* Record current time in case interrupted by signal, or wedged */
1188 	trace_i915_gem_request_wait_begin(ring, seqno);
1189 	before = ktime_get_raw_ns();
1190 	for (;;) {
1191 		struct timer_list timer;
1192 
1193 		prepare_to_wait(&ring->irq_queue, &wait,
1194 				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1195 
1196 		/* We need to check whether any gpu reset happened in between
1197 		 * the caller grabbing the seqno and now ... */
1198 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1199 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
1200 			 * is truely gone. */
1201 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1202 			if (ret == 0)
1203 				ret = -EAGAIN;
1204 			break;
1205 		}
1206 
1207 		if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1208 			ret = 0;
1209 			break;
1210 		}
1211 
1212 		if (interruptible && signal_pending(current)) {
1213 			ret = -ERESTARTSYS;
1214 			break;
1215 		}
1216 
1217 		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1218 			ret = -ETIME;
1219 			break;
1220 		}
1221 
1222 		timer.function = NULL;
1223 		if (timeout || missed_irq(dev_priv, ring)) {
1224 			unsigned long expire;
1225 
1226 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1227 			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1228 			mod_timer(&timer, expire);
1229 		}
1230 
1231 		io_schedule();
1232 
1233 		if (timer.function) {
1234 			del_singleshot_timer_sync(&timer);
1235 			destroy_timer_on_stack(&timer);
1236 		}
1237 	}
1238 	now = ktime_get_raw_ns();
1239 	trace_i915_gem_request_wait_end(ring, seqno);
1240 
1241 	if (!irq_test_in_progress)
1242 		ring->irq_put(ring);
1243 
1244 	finish_wait(&ring->irq_queue, &wait);
1245 
1246 	if (timeout) {
1247 		s64 tres = *timeout - (now - before);
1248 
1249 		*timeout = tres < 0 ? 0 : tres;
1250 	}
1251 
1252 	return ret;
1253 }
1254 
1255 /**
1256  * Waits for a sequence number to be signaled, and cleans up the
1257  * request and object lists appropriately for that event.
1258  */
1259 int
1260 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1261 {
1262 	struct drm_device *dev = ring->dev;
1263 	struct drm_i915_private *dev_priv = dev->dev_private;
1264 	bool interruptible = dev_priv->mm.interruptible;
1265 	int ret;
1266 
1267 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1268 	BUG_ON(seqno == 0);
1269 
1270 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1271 	if (ret)
1272 		return ret;
1273 
1274 	ret = i915_gem_check_olr(ring, seqno);
1275 	if (ret)
1276 		return ret;
1277 
1278 	return __wait_seqno(ring, seqno,
1279 			    atomic_read(&dev_priv->gpu_error.reset_counter),
1280 			    interruptible, NULL, NULL);
1281 }
1282 
1283 static int
1284 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1285 				     struct intel_engine_cs *ring)
1286 {
1287 	if (!obj->active)
1288 		return 0;
1289 
1290 	/* Manually manage the write flush as we may have not yet
1291 	 * retired the buffer.
1292 	 *
1293 	 * Note that the last_write_seqno is always the earlier of
1294 	 * the two (read/write) seqno, so if we haved successfully waited,
1295 	 * we know we have passed the last write.
1296 	 */
1297 	obj->last_write_seqno = 0;
1298 
1299 	return 0;
1300 }
1301 
1302 /**
1303  * Ensures that all rendering to the object has completed and the object is
1304  * safe to unbind from the GTT or access from the CPU.
1305  */
1306 static __must_check int
1307 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1308 			       bool readonly)
1309 {
1310 	struct intel_engine_cs *ring = obj->ring;
1311 	u32 seqno;
1312 	int ret;
1313 
1314 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1315 	if (seqno == 0)
1316 		return 0;
1317 
1318 	ret = i915_wait_seqno(ring, seqno);
1319 	if (ret)
1320 		return ret;
1321 
1322 	return i915_gem_object_wait_rendering__tail(obj, ring);
1323 }
1324 
1325 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1326  * as the object state may change during this call.
1327  */
1328 static __must_check int
1329 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1330 					    struct drm_i915_file_private *file_priv,
1331 					    bool readonly)
1332 {
1333 	struct drm_device *dev = obj->base.dev;
1334 	struct drm_i915_private *dev_priv = dev->dev_private;
1335 	struct intel_engine_cs *ring = obj->ring;
1336 	unsigned reset_counter;
1337 	u32 seqno;
1338 	int ret;
1339 
1340 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1341 	BUG_ON(!dev_priv->mm.interruptible);
1342 
1343 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1344 	if (seqno == 0)
1345 		return 0;
1346 
1347 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1348 	if (ret)
1349 		return ret;
1350 
1351 	ret = i915_gem_check_olr(ring, seqno);
1352 	if (ret)
1353 		return ret;
1354 
1355 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1356 	mutex_unlock(&dev->struct_mutex);
1357 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1358 	mutex_lock(&dev->struct_mutex);
1359 	if (ret)
1360 		return ret;
1361 
1362 	return i915_gem_object_wait_rendering__tail(obj, ring);
1363 }
1364 
1365 /**
1366  * Called when user space prepares to use an object with the CPU, either
1367  * through the mmap ioctl's mapping or a GTT mapping.
1368  */
1369 int
1370 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1371 			  struct drm_file *file)
1372 {
1373 	struct drm_i915_gem_set_domain *args = data;
1374 	struct drm_i915_gem_object *obj;
1375 	uint32_t read_domains = args->read_domains;
1376 	uint32_t write_domain = args->write_domain;
1377 	int ret;
1378 
1379 	/* Only handle setting domains to types used by the CPU. */
1380 	if (write_domain & I915_GEM_GPU_DOMAINS)
1381 		return -EINVAL;
1382 
1383 	if (read_domains & I915_GEM_GPU_DOMAINS)
1384 		return -EINVAL;
1385 
1386 	/* Having something in the write domain implies it's in the read
1387 	 * domain, and only that read domain.  Enforce that in the request.
1388 	 */
1389 	if (write_domain != 0 && read_domains != write_domain)
1390 		return -EINVAL;
1391 
1392 	ret = i915_mutex_lock_interruptible(dev);
1393 	if (ret)
1394 		return ret;
1395 
1396 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1397 	if (&obj->base == NULL) {
1398 		ret = -ENOENT;
1399 		goto unlock;
1400 	}
1401 
1402 	/* Try to flush the object off the GPU without holding the lock.
1403 	 * We will repeat the flush holding the lock in the normal manner
1404 	 * to catch cases where we are gazumped.
1405 	 */
1406 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1407 							  file->driver_priv,
1408 							  !write_domain);
1409 	if (ret)
1410 		goto unref;
1411 
1412 	if (read_domains & I915_GEM_DOMAIN_GTT) {
1413 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1414 
1415 		/* Silently promote "you're not bound, there was nothing to do"
1416 		 * to success, since the client was just asking us to
1417 		 * make sure everything was done.
1418 		 */
1419 		if (ret == -EINVAL)
1420 			ret = 0;
1421 	} else {
1422 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1423 	}
1424 
1425 unref:
1426 	drm_gem_object_unreference(&obj->base);
1427 unlock:
1428 	mutex_unlock(&dev->struct_mutex);
1429 	return ret;
1430 }
1431 
1432 /**
1433  * Called when user space has done writes to this buffer
1434  */
1435 int
1436 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1437 			 struct drm_file *file)
1438 {
1439 	struct drm_i915_gem_sw_finish *args = data;
1440 	struct drm_i915_gem_object *obj;
1441 	int ret = 0;
1442 
1443 	ret = i915_mutex_lock_interruptible(dev);
1444 	if (ret)
1445 		return ret;
1446 
1447 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1448 	if (&obj->base == NULL) {
1449 		ret = -ENOENT;
1450 		goto unlock;
1451 	}
1452 
1453 	/* Pinned buffers may be scanout, so flush the cache */
1454 	if (obj->pin_display)
1455 		i915_gem_object_flush_cpu_write_domain(obj, true);
1456 
1457 	drm_gem_object_unreference(&obj->base);
1458 unlock:
1459 	mutex_unlock(&dev->struct_mutex);
1460 	return ret;
1461 }
1462 
1463 /**
1464  * Maps the contents of an object, returning the address it is mapped
1465  * into.
1466  *
1467  * While the mapping holds a reference on the contents of the object, it doesn't
1468  * imply a ref on the object itself.
1469  */
1470 int
1471 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1472 		    struct drm_file *file)
1473 {
1474 	struct drm_i915_gem_mmap *args = data;
1475 	struct drm_gem_object *obj;
1476 	unsigned long addr;
1477 
1478 	obj = drm_gem_object_lookup(dev, file, args->handle);
1479 	if (obj == NULL)
1480 		return -ENOENT;
1481 
1482 	/* prime objects have no backing filp to GEM mmap
1483 	 * pages from.
1484 	 */
1485 	if (!obj->filp) {
1486 		drm_gem_object_unreference_unlocked(obj);
1487 		return -EINVAL;
1488 	}
1489 
1490 	addr = vm_mmap(obj->filp, 0, args->size,
1491 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1492 		       args->offset);
1493 	drm_gem_object_unreference_unlocked(obj);
1494 	if (IS_ERR((void *)addr))
1495 		return addr;
1496 
1497 	args->addr_ptr = (uint64_t) addr;
1498 
1499 	return 0;
1500 }
1501 
1502 /**
1503  * i915_gem_fault - fault a page into the GTT
1504  * vma: VMA in question
1505  * vmf: fault info
1506  *
1507  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1508  * from userspace.  The fault handler takes care of binding the object to
1509  * the GTT (if needed), allocating and programming a fence register (again,
1510  * only if needed based on whether the old reg is still valid or the object
1511  * is tiled) and inserting a new PTE into the faulting process.
1512  *
1513  * Note that the faulting process may involve evicting existing objects
1514  * from the GTT and/or fence registers to make room.  So performance may
1515  * suffer if the GTT working set is large or there are few fence registers
1516  * left.
1517  */
1518 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1519 {
1520 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1521 	struct drm_device *dev = obj->base.dev;
1522 	struct drm_i915_private *dev_priv = dev->dev_private;
1523 	pgoff_t page_offset;
1524 	unsigned long pfn;
1525 	int ret = 0;
1526 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1527 
1528 	intel_runtime_pm_get(dev_priv);
1529 
1530 	/* We don't use vmf->pgoff since that has the fake offset */
1531 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1532 		PAGE_SHIFT;
1533 
1534 	ret = i915_mutex_lock_interruptible(dev);
1535 	if (ret)
1536 		goto out;
1537 
1538 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1539 
1540 	/* Try to flush the object off the GPU first without holding the lock.
1541 	 * Upon reacquiring the lock, we will perform our sanity checks and then
1542 	 * repeat the flush holding the lock in the normal manner to catch cases
1543 	 * where we are gazumped.
1544 	 */
1545 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1546 	if (ret)
1547 		goto unlock;
1548 
1549 	/* Access to snoopable pages through the GTT is incoherent. */
1550 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1551 		ret = -EFAULT;
1552 		goto unlock;
1553 	}
1554 
1555 	/* Now bind it into the GTT if needed */
1556 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1557 	if (ret)
1558 		goto unlock;
1559 
1560 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1561 	if (ret)
1562 		goto unpin;
1563 
1564 	ret = i915_gem_object_get_fence(obj);
1565 	if (ret)
1566 		goto unpin;
1567 
1568 	/* Finally, remap it using the new GTT offset */
1569 	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1570 	pfn >>= PAGE_SHIFT;
1571 
1572 	if (!obj->fault_mappable) {
1573 		unsigned long size = min_t(unsigned long,
1574 					   vma->vm_end - vma->vm_start,
1575 					   obj->base.size);
1576 		int i;
1577 
1578 		for (i = 0; i < size >> PAGE_SHIFT; i++) {
1579 			ret = vm_insert_pfn(vma,
1580 					    (unsigned long)vma->vm_start + i * PAGE_SIZE,
1581 					    pfn + i);
1582 			if (ret)
1583 				break;
1584 		}
1585 
1586 		obj->fault_mappable = true;
1587 	} else
1588 		ret = vm_insert_pfn(vma,
1589 				    (unsigned long)vmf->virtual_address,
1590 				    pfn + page_offset);
1591 unpin:
1592 	i915_gem_object_ggtt_unpin(obj);
1593 unlock:
1594 	mutex_unlock(&dev->struct_mutex);
1595 out:
1596 	switch (ret) {
1597 	case -EIO:
1598 		/*
1599 		 * We eat errors when the gpu is terminally wedged to avoid
1600 		 * userspace unduly crashing (gl has no provisions for mmaps to
1601 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1602 		 * and so needs to be reported.
1603 		 */
1604 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1605 			ret = VM_FAULT_SIGBUS;
1606 			break;
1607 		}
1608 	case -EAGAIN:
1609 		/*
1610 		 * EAGAIN means the gpu is hung and we'll wait for the error
1611 		 * handler to reset everything when re-faulting in
1612 		 * i915_mutex_lock_interruptible.
1613 		 */
1614 	case 0:
1615 	case -ERESTARTSYS:
1616 	case -EINTR:
1617 	case -EBUSY:
1618 		/*
1619 		 * EBUSY is ok: this just means that another thread
1620 		 * already did the job.
1621 		 */
1622 		ret = VM_FAULT_NOPAGE;
1623 		break;
1624 	case -ENOMEM:
1625 		ret = VM_FAULT_OOM;
1626 		break;
1627 	case -ENOSPC:
1628 	case -EFAULT:
1629 		ret = VM_FAULT_SIGBUS;
1630 		break;
1631 	default:
1632 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1633 		ret = VM_FAULT_SIGBUS;
1634 		break;
1635 	}
1636 
1637 	intel_runtime_pm_put(dev_priv);
1638 	return ret;
1639 }
1640 
1641 /**
1642  * i915_gem_release_mmap - remove physical page mappings
1643  * @obj: obj in question
1644  *
1645  * Preserve the reservation of the mmapping with the DRM core code, but
1646  * relinquish ownership of the pages back to the system.
1647  *
1648  * It is vital that we remove the page mapping if we have mapped a tiled
1649  * object through the GTT and then lose the fence register due to
1650  * resource pressure. Similarly if the object has been moved out of the
1651  * aperture, than pages mapped into userspace must be revoked. Removing the
1652  * mapping will then trigger a page fault on the next user access, allowing
1653  * fixup by i915_gem_fault().
1654  */
1655 void
1656 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1657 {
1658 	if (!obj->fault_mappable)
1659 		return;
1660 
1661 	drm_vma_node_unmap(&obj->base.vma_node,
1662 			   obj->base.dev->anon_inode->i_mapping);
1663 	obj->fault_mappable = false;
1664 }
1665 
1666 void
1667 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1668 {
1669 	struct drm_i915_gem_object *obj;
1670 
1671 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1672 		i915_gem_release_mmap(obj);
1673 }
1674 
1675 uint32_t
1676 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1677 {
1678 	uint32_t gtt_size;
1679 
1680 	if (INTEL_INFO(dev)->gen >= 4 ||
1681 	    tiling_mode == I915_TILING_NONE)
1682 		return size;
1683 
1684 	/* Previous chips need a power-of-two fence region when tiling */
1685 	if (INTEL_INFO(dev)->gen == 3)
1686 		gtt_size = 1024*1024;
1687 	else
1688 		gtt_size = 512*1024;
1689 
1690 	while (gtt_size < size)
1691 		gtt_size <<= 1;
1692 
1693 	return gtt_size;
1694 }
1695 
1696 /**
1697  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1698  * @obj: object to check
1699  *
1700  * Return the required GTT alignment for an object, taking into account
1701  * potential fence register mapping.
1702  */
1703 uint32_t
1704 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1705 			   int tiling_mode, bool fenced)
1706 {
1707 	/*
1708 	 * Minimum alignment is 4k (GTT page size), but might be greater
1709 	 * if a fence register is needed for the object.
1710 	 */
1711 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1712 	    tiling_mode == I915_TILING_NONE)
1713 		return 4096;
1714 
1715 	/*
1716 	 * Previous chips need to be aligned to the size of the smallest
1717 	 * fence register that can contain the object.
1718 	 */
1719 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1720 }
1721 
1722 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1723 {
1724 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1725 	int ret;
1726 
1727 	if (drm_vma_node_has_offset(&obj->base.vma_node))
1728 		return 0;
1729 
1730 	dev_priv->mm.shrinker_no_lock_stealing = true;
1731 
1732 	ret = drm_gem_create_mmap_offset(&obj->base);
1733 	if (ret != -ENOSPC)
1734 		goto out;
1735 
1736 	/* Badly fragmented mmap space? The only way we can recover
1737 	 * space is by destroying unwanted objects. We can't randomly release
1738 	 * mmap_offsets as userspace expects them to be persistent for the
1739 	 * lifetime of the objects. The closest we can is to release the
1740 	 * offsets on purgeable objects by truncating it and marking it purged,
1741 	 * which prevents userspace from ever using that object again.
1742 	 */
1743 	i915_gem_shrink(dev_priv,
1744 			obj->base.size >> PAGE_SHIFT,
1745 			I915_SHRINK_BOUND |
1746 			I915_SHRINK_UNBOUND |
1747 			I915_SHRINK_PURGEABLE);
1748 	ret = drm_gem_create_mmap_offset(&obj->base);
1749 	if (ret != -ENOSPC)
1750 		goto out;
1751 
1752 	i915_gem_shrink_all(dev_priv);
1753 	ret = drm_gem_create_mmap_offset(&obj->base);
1754 out:
1755 	dev_priv->mm.shrinker_no_lock_stealing = false;
1756 
1757 	return ret;
1758 }
1759 
1760 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1761 {
1762 	drm_gem_free_mmap_offset(&obj->base);
1763 }
1764 
1765 int
1766 i915_gem_mmap_gtt(struct drm_file *file,
1767 		  struct drm_device *dev,
1768 		  uint32_t handle,
1769 		  uint64_t *offset)
1770 {
1771 	struct drm_i915_private *dev_priv = dev->dev_private;
1772 	struct drm_i915_gem_object *obj;
1773 	int ret;
1774 
1775 	ret = i915_mutex_lock_interruptible(dev);
1776 	if (ret)
1777 		return ret;
1778 
1779 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1780 	if (&obj->base == NULL) {
1781 		ret = -ENOENT;
1782 		goto unlock;
1783 	}
1784 
1785 	if (obj->base.size > dev_priv->gtt.mappable_end) {
1786 		ret = -E2BIG;
1787 		goto out;
1788 	}
1789 
1790 	if (obj->madv != I915_MADV_WILLNEED) {
1791 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1792 		ret = -EFAULT;
1793 		goto out;
1794 	}
1795 
1796 	ret = i915_gem_object_create_mmap_offset(obj);
1797 	if (ret)
1798 		goto out;
1799 
1800 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1801 
1802 out:
1803 	drm_gem_object_unreference(&obj->base);
1804 unlock:
1805 	mutex_unlock(&dev->struct_mutex);
1806 	return ret;
1807 }
1808 
1809 /**
1810  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1811  * @dev: DRM device
1812  * @data: GTT mapping ioctl data
1813  * @file: GEM object info
1814  *
1815  * Simply returns the fake offset to userspace so it can mmap it.
1816  * The mmap call will end up in drm_gem_mmap(), which will set things
1817  * up so we can get faults in the handler above.
1818  *
1819  * The fault handler will take care of binding the object into the GTT
1820  * (since it may have been evicted to make room for something), allocating
1821  * a fence register, and mapping the appropriate aperture address into
1822  * userspace.
1823  */
1824 int
1825 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1826 			struct drm_file *file)
1827 {
1828 	struct drm_i915_gem_mmap_gtt *args = data;
1829 
1830 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1831 }
1832 
1833 static inline int
1834 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1835 {
1836 	return obj->madv == I915_MADV_DONTNEED;
1837 }
1838 
1839 /* Immediately discard the backing storage */
1840 static void
1841 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1842 {
1843 	i915_gem_object_free_mmap_offset(obj);
1844 
1845 	if (obj->base.filp == NULL)
1846 		return;
1847 
1848 	/* Our goal here is to return as much of the memory as
1849 	 * is possible back to the system as we are called from OOM.
1850 	 * To do this we must instruct the shmfs to drop all of its
1851 	 * backing pages, *now*.
1852 	 */
1853 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1854 	obj->madv = __I915_MADV_PURGED;
1855 }
1856 
1857 /* Try to discard unwanted pages */
1858 static void
1859 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1860 {
1861 	struct address_space *mapping;
1862 
1863 	switch (obj->madv) {
1864 	case I915_MADV_DONTNEED:
1865 		i915_gem_object_truncate(obj);
1866 	case __I915_MADV_PURGED:
1867 		return;
1868 	}
1869 
1870 	if (obj->base.filp == NULL)
1871 		return;
1872 
1873 	mapping = file_inode(obj->base.filp)->i_mapping,
1874 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1875 }
1876 
1877 static void
1878 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1879 {
1880 	struct sg_page_iter sg_iter;
1881 	int ret;
1882 
1883 	BUG_ON(obj->madv == __I915_MADV_PURGED);
1884 
1885 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1886 	if (ret) {
1887 		/* In the event of a disaster, abandon all caches and
1888 		 * hope for the best.
1889 		 */
1890 		WARN_ON(ret != -EIO);
1891 		i915_gem_clflush_object(obj, true);
1892 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1893 	}
1894 
1895 	if (i915_gem_object_needs_bit17_swizzle(obj))
1896 		i915_gem_object_save_bit_17_swizzle(obj);
1897 
1898 	if (obj->madv == I915_MADV_DONTNEED)
1899 		obj->dirty = 0;
1900 
1901 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1902 		struct page *page = sg_page_iter_page(&sg_iter);
1903 
1904 		if (obj->dirty)
1905 			set_page_dirty(page);
1906 
1907 		if (obj->madv == I915_MADV_WILLNEED)
1908 			mark_page_accessed(page);
1909 
1910 		page_cache_release(page);
1911 	}
1912 	obj->dirty = 0;
1913 
1914 	sg_free_table(obj->pages);
1915 	kfree(obj->pages);
1916 }
1917 
1918 int
1919 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1920 {
1921 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1922 
1923 	if (obj->pages == NULL)
1924 		return 0;
1925 
1926 	if (obj->pages_pin_count)
1927 		return -EBUSY;
1928 
1929 	BUG_ON(i915_gem_obj_bound_any(obj));
1930 
1931 	/* ->put_pages might need to allocate memory for the bit17 swizzle
1932 	 * array, hence protect them from being reaped by removing them from gtt
1933 	 * lists early. */
1934 	list_del(&obj->global_list);
1935 
1936 	ops->put_pages(obj);
1937 	obj->pages = NULL;
1938 
1939 	i915_gem_object_invalidate(obj);
1940 
1941 	return 0;
1942 }
1943 
1944 unsigned long
1945 i915_gem_shrink(struct drm_i915_private *dev_priv,
1946 		long target, unsigned flags)
1947 {
1948 	const bool purgeable_only = flags & I915_SHRINK_PURGEABLE;
1949 	unsigned long count = 0;
1950 
1951 	/*
1952 	 * As we may completely rewrite the (un)bound list whilst unbinding
1953 	 * (due to retiring requests) we have to strictly process only
1954 	 * one element of the list at the time, and recheck the list
1955 	 * on every iteration.
1956 	 *
1957 	 * In particular, we must hold a reference whilst removing the
1958 	 * object as we may end up waiting for and/or retiring the objects.
1959 	 * This might release the final reference (held by the active list)
1960 	 * and result in the object being freed from under us. This is
1961 	 * similar to the precautions the eviction code must take whilst
1962 	 * removing objects.
1963 	 *
1964 	 * Also note that although these lists do not hold a reference to
1965 	 * the object we can safely grab one here: The final object
1966 	 * unreferencing and the bound_list are both protected by the
1967 	 * dev->struct_mutex and so we won't ever be able to observe an
1968 	 * object on the bound_list with a reference count equals 0.
1969 	 */
1970 	if (flags & I915_SHRINK_UNBOUND) {
1971 		struct list_head still_in_list;
1972 
1973 		INIT_LIST_HEAD(&still_in_list);
1974 		while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1975 			struct drm_i915_gem_object *obj;
1976 
1977 			obj = list_first_entry(&dev_priv->mm.unbound_list,
1978 					       typeof(*obj), global_list);
1979 			list_move_tail(&obj->global_list, &still_in_list);
1980 
1981 			if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1982 				continue;
1983 
1984 			drm_gem_object_reference(&obj->base);
1985 
1986 			if (i915_gem_object_put_pages(obj) == 0)
1987 				count += obj->base.size >> PAGE_SHIFT;
1988 
1989 			drm_gem_object_unreference(&obj->base);
1990 		}
1991 		list_splice(&still_in_list, &dev_priv->mm.unbound_list);
1992 	}
1993 
1994 	if (flags & I915_SHRINK_BOUND) {
1995 		struct list_head still_in_list;
1996 
1997 		INIT_LIST_HEAD(&still_in_list);
1998 		while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1999 			struct drm_i915_gem_object *obj;
2000 			struct i915_vma *vma, *v;
2001 
2002 			obj = list_first_entry(&dev_priv->mm.bound_list,
2003 					       typeof(*obj), global_list);
2004 			list_move_tail(&obj->global_list, &still_in_list);
2005 
2006 			if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
2007 				continue;
2008 
2009 			drm_gem_object_reference(&obj->base);
2010 
2011 			list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
2012 				if (i915_vma_unbind(vma))
2013 					break;
2014 
2015 			if (i915_gem_object_put_pages(obj) == 0)
2016 				count += obj->base.size >> PAGE_SHIFT;
2017 
2018 			drm_gem_object_unreference(&obj->base);
2019 		}
2020 		list_splice(&still_in_list, &dev_priv->mm.bound_list);
2021 	}
2022 
2023 	return count;
2024 }
2025 
2026 static unsigned long
2027 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2028 {
2029 	i915_gem_evict_everything(dev_priv->dev);
2030 	return i915_gem_shrink(dev_priv, LONG_MAX,
2031 			       I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2032 }
2033 
2034 static int
2035 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2036 {
2037 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2038 	int page_count, i;
2039 	struct address_space *mapping;
2040 	struct sg_table *st;
2041 	struct scatterlist *sg;
2042 	struct sg_page_iter sg_iter;
2043 	struct page *page;
2044 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2045 	gfp_t gfp;
2046 
2047 	/* Assert that the object is not currently in any GPU domain. As it
2048 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2049 	 * a GPU cache
2050 	 */
2051 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2052 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2053 
2054 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2055 	if (st == NULL)
2056 		return -ENOMEM;
2057 
2058 	page_count = obj->base.size / PAGE_SIZE;
2059 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2060 		kfree(st);
2061 		return -ENOMEM;
2062 	}
2063 
2064 	/* Get the list of pages out of our struct file.  They'll be pinned
2065 	 * at this point until we release them.
2066 	 *
2067 	 * Fail silently without starting the shrinker
2068 	 */
2069 	mapping = file_inode(obj->base.filp)->i_mapping;
2070 	gfp = mapping_gfp_mask(mapping);
2071 	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2072 	gfp &= ~(__GFP_IO | __GFP_WAIT);
2073 	sg = st->sgl;
2074 	st->nents = 0;
2075 	for (i = 0; i < page_count; i++) {
2076 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2077 		if (IS_ERR(page)) {
2078 			i915_gem_shrink(dev_priv,
2079 					page_count,
2080 					I915_SHRINK_BOUND |
2081 					I915_SHRINK_UNBOUND |
2082 					I915_SHRINK_PURGEABLE);
2083 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2084 		}
2085 		if (IS_ERR(page)) {
2086 			/* We've tried hard to allocate the memory by reaping
2087 			 * our own buffer, now let the real VM do its job and
2088 			 * go down in flames if truly OOM.
2089 			 */
2090 			i915_gem_shrink_all(dev_priv);
2091 			page = shmem_read_mapping_page(mapping, i);
2092 			if (IS_ERR(page))
2093 				goto err_pages;
2094 		}
2095 #ifdef CONFIG_SWIOTLB
2096 		if (swiotlb_nr_tbl()) {
2097 			st->nents++;
2098 			sg_set_page(sg, page, PAGE_SIZE, 0);
2099 			sg = sg_next(sg);
2100 			continue;
2101 		}
2102 #endif
2103 		if (!i || page_to_pfn(page) != last_pfn + 1) {
2104 			if (i)
2105 				sg = sg_next(sg);
2106 			st->nents++;
2107 			sg_set_page(sg, page, PAGE_SIZE, 0);
2108 		} else {
2109 			sg->length += PAGE_SIZE;
2110 		}
2111 		last_pfn = page_to_pfn(page);
2112 
2113 		/* Check that the i965g/gm workaround works. */
2114 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2115 	}
2116 #ifdef CONFIG_SWIOTLB
2117 	if (!swiotlb_nr_tbl())
2118 #endif
2119 		sg_mark_end(sg);
2120 	obj->pages = st;
2121 
2122 	if (i915_gem_object_needs_bit17_swizzle(obj))
2123 		i915_gem_object_do_bit_17_swizzle(obj);
2124 
2125 	return 0;
2126 
2127 err_pages:
2128 	sg_mark_end(sg);
2129 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2130 		page_cache_release(sg_page_iter_page(&sg_iter));
2131 	sg_free_table(st);
2132 	kfree(st);
2133 
2134 	/* shmemfs first checks if there is enough memory to allocate the page
2135 	 * and reports ENOSPC should there be insufficient, along with the usual
2136 	 * ENOMEM for a genuine allocation failure.
2137 	 *
2138 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2139 	 * space and so want to translate the error from shmemfs back to our
2140 	 * usual understanding of ENOMEM.
2141 	 */
2142 	if (PTR_ERR(page) == -ENOSPC)
2143 		return -ENOMEM;
2144 	else
2145 		return PTR_ERR(page);
2146 }
2147 
2148 /* Ensure that the associated pages are gathered from the backing storage
2149  * and pinned into our object. i915_gem_object_get_pages() may be called
2150  * multiple times before they are released by a single call to
2151  * i915_gem_object_put_pages() - once the pages are no longer referenced
2152  * either as a result of memory pressure (reaping pages under the shrinker)
2153  * or as the object is itself released.
2154  */
2155 int
2156 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2157 {
2158 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2159 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2160 	int ret;
2161 
2162 	if (obj->pages)
2163 		return 0;
2164 
2165 	if (obj->madv != I915_MADV_WILLNEED) {
2166 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2167 		return -EFAULT;
2168 	}
2169 
2170 	BUG_ON(obj->pages_pin_count);
2171 
2172 	ret = ops->get_pages(obj);
2173 	if (ret)
2174 		return ret;
2175 
2176 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2177 	return 0;
2178 }
2179 
2180 static void
2181 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2182 			       struct intel_engine_cs *ring)
2183 {
2184 	u32 seqno = intel_ring_get_seqno(ring);
2185 
2186 	BUG_ON(ring == NULL);
2187 	if (obj->ring != ring && obj->last_write_seqno) {
2188 		/* Keep the seqno relative to the current ring */
2189 		obj->last_write_seqno = seqno;
2190 	}
2191 	obj->ring = ring;
2192 
2193 	/* Add a reference if we're newly entering the active list. */
2194 	if (!obj->active) {
2195 		drm_gem_object_reference(&obj->base);
2196 		obj->active = 1;
2197 	}
2198 
2199 	list_move_tail(&obj->ring_list, &ring->active_list);
2200 
2201 	obj->last_read_seqno = seqno;
2202 }
2203 
2204 void i915_vma_move_to_active(struct i915_vma *vma,
2205 			     struct intel_engine_cs *ring)
2206 {
2207 	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2208 	return i915_gem_object_move_to_active(vma->obj, ring);
2209 }
2210 
2211 static void
2212 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2213 {
2214 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2215 	struct i915_address_space *vm;
2216 	struct i915_vma *vma;
2217 
2218 	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2219 	BUG_ON(!obj->active);
2220 
2221 	list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2222 		vma = i915_gem_obj_to_vma(obj, vm);
2223 		if (vma && !list_empty(&vma->mm_list))
2224 			list_move_tail(&vma->mm_list, &vm->inactive_list);
2225 	}
2226 
2227 	intel_fb_obj_flush(obj, true);
2228 
2229 	list_del_init(&obj->ring_list);
2230 	obj->ring = NULL;
2231 
2232 	obj->last_read_seqno = 0;
2233 	obj->last_write_seqno = 0;
2234 	obj->base.write_domain = 0;
2235 
2236 	obj->last_fenced_seqno = 0;
2237 
2238 	obj->active = 0;
2239 	drm_gem_object_unreference(&obj->base);
2240 
2241 	WARN_ON(i915_verify_lists(dev));
2242 }
2243 
2244 static void
2245 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2246 {
2247 	struct intel_engine_cs *ring = obj->ring;
2248 
2249 	if (ring == NULL)
2250 		return;
2251 
2252 	if (i915_seqno_passed(ring->get_seqno(ring, true),
2253 			      obj->last_read_seqno))
2254 		i915_gem_object_move_to_inactive(obj);
2255 }
2256 
2257 static int
2258 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2259 {
2260 	struct drm_i915_private *dev_priv = dev->dev_private;
2261 	struct intel_engine_cs *ring;
2262 	int ret, i, j;
2263 
2264 	/* Carefully retire all requests without writing to the rings */
2265 	for_each_ring(ring, dev_priv, i) {
2266 		ret = intel_ring_idle(ring);
2267 		if (ret)
2268 			return ret;
2269 	}
2270 	i915_gem_retire_requests(dev);
2271 
2272 	/* Finally reset hw state */
2273 	for_each_ring(ring, dev_priv, i) {
2274 		intel_ring_init_seqno(ring, seqno);
2275 
2276 		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2277 			ring->semaphore.sync_seqno[j] = 0;
2278 	}
2279 
2280 	return 0;
2281 }
2282 
2283 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2284 {
2285 	struct drm_i915_private *dev_priv = dev->dev_private;
2286 	int ret;
2287 
2288 	if (seqno == 0)
2289 		return -EINVAL;
2290 
2291 	/* HWS page needs to be set less than what we
2292 	 * will inject to ring
2293 	 */
2294 	ret = i915_gem_init_seqno(dev, seqno - 1);
2295 	if (ret)
2296 		return ret;
2297 
2298 	/* Carefully set the last_seqno value so that wrap
2299 	 * detection still works
2300 	 */
2301 	dev_priv->next_seqno = seqno;
2302 	dev_priv->last_seqno = seqno - 1;
2303 	if (dev_priv->last_seqno == 0)
2304 		dev_priv->last_seqno--;
2305 
2306 	return 0;
2307 }
2308 
2309 int
2310 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2311 {
2312 	struct drm_i915_private *dev_priv = dev->dev_private;
2313 
2314 	/* reserve 0 for non-seqno */
2315 	if (dev_priv->next_seqno == 0) {
2316 		int ret = i915_gem_init_seqno(dev, 0);
2317 		if (ret)
2318 			return ret;
2319 
2320 		dev_priv->next_seqno = 1;
2321 	}
2322 
2323 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2324 	return 0;
2325 }
2326 
2327 int __i915_add_request(struct intel_engine_cs *ring,
2328 		       struct drm_file *file,
2329 		       struct drm_i915_gem_object *obj,
2330 		       u32 *out_seqno)
2331 {
2332 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2333 	struct drm_i915_gem_request *request;
2334 	struct intel_ringbuffer *ringbuf;
2335 	u32 request_ring_position, request_start;
2336 	int ret;
2337 
2338 	request = ring->preallocated_lazy_request;
2339 	if (WARN_ON(request == NULL))
2340 		return -ENOMEM;
2341 
2342 	if (i915.enable_execlists) {
2343 		struct intel_context *ctx = request->ctx;
2344 		ringbuf = ctx->engine[ring->id].ringbuf;
2345 	} else
2346 		ringbuf = ring->buffer;
2347 
2348 	request_start = intel_ring_get_tail(ringbuf);
2349 	/*
2350 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2351 	 * after having emitted the batchbuffer command. Hence we need to fix
2352 	 * things up similar to emitting the lazy request. The difference here
2353 	 * is that the flush _must_ happen before the next request, no matter
2354 	 * what.
2355 	 */
2356 	if (i915.enable_execlists) {
2357 		ret = logical_ring_flush_all_caches(ringbuf);
2358 		if (ret)
2359 			return ret;
2360 	} else {
2361 		ret = intel_ring_flush_all_caches(ring);
2362 		if (ret)
2363 			return ret;
2364 	}
2365 
2366 	/* Record the position of the start of the request so that
2367 	 * should we detect the updated seqno part-way through the
2368 	 * GPU processing the request, we never over-estimate the
2369 	 * position of the head.
2370 	 */
2371 	request_ring_position = intel_ring_get_tail(ringbuf);
2372 
2373 	if (i915.enable_execlists) {
2374 		ret = ring->emit_request(ringbuf);
2375 		if (ret)
2376 			return ret;
2377 	} else {
2378 		ret = ring->add_request(ring);
2379 		if (ret)
2380 			return ret;
2381 	}
2382 
2383 	request->seqno = intel_ring_get_seqno(ring);
2384 	request->ring = ring;
2385 	request->head = request_start;
2386 	request->tail = request_ring_position;
2387 
2388 	/* Whilst this request exists, batch_obj will be on the
2389 	 * active_list, and so will hold the active reference. Only when this
2390 	 * request is retired will the the batch_obj be moved onto the
2391 	 * inactive_list and lose its active reference. Hence we do not need
2392 	 * to explicitly hold another reference here.
2393 	 */
2394 	request->batch_obj = obj;
2395 
2396 	if (!i915.enable_execlists) {
2397 		/* Hold a reference to the current context so that we can inspect
2398 		 * it later in case a hangcheck error event fires.
2399 		 */
2400 		request->ctx = ring->last_context;
2401 		if (request->ctx)
2402 			i915_gem_context_reference(request->ctx);
2403 	}
2404 
2405 	request->emitted_jiffies = jiffies;
2406 	list_add_tail(&request->list, &ring->request_list);
2407 	request->file_priv = NULL;
2408 
2409 	if (file) {
2410 		struct drm_i915_file_private *file_priv = file->driver_priv;
2411 
2412 		spin_lock(&file_priv->mm.lock);
2413 		request->file_priv = file_priv;
2414 		list_add_tail(&request->client_list,
2415 			      &file_priv->mm.request_list);
2416 		spin_unlock(&file_priv->mm.lock);
2417 	}
2418 
2419 	trace_i915_gem_request_add(ring, request->seqno);
2420 	ring->outstanding_lazy_seqno = 0;
2421 	ring->preallocated_lazy_request = NULL;
2422 
2423 	if (!dev_priv->ums.mm_suspended) {
2424 		i915_queue_hangcheck(ring->dev);
2425 
2426 		cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2427 		queue_delayed_work(dev_priv->wq,
2428 				   &dev_priv->mm.retire_work,
2429 				   round_jiffies_up_relative(HZ));
2430 		intel_mark_busy(dev_priv->dev);
2431 	}
2432 
2433 	if (out_seqno)
2434 		*out_seqno = request->seqno;
2435 	return 0;
2436 }
2437 
2438 static inline void
2439 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2440 {
2441 	struct drm_i915_file_private *file_priv = request->file_priv;
2442 
2443 	if (!file_priv)
2444 		return;
2445 
2446 	spin_lock(&file_priv->mm.lock);
2447 	list_del(&request->client_list);
2448 	request->file_priv = NULL;
2449 	spin_unlock(&file_priv->mm.lock);
2450 }
2451 
2452 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2453 				   const struct intel_context *ctx)
2454 {
2455 	unsigned long elapsed;
2456 
2457 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2458 
2459 	if (ctx->hang_stats.banned)
2460 		return true;
2461 
2462 	if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2463 		if (!i915_gem_context_is_default(ctx)) {
2464 			DRM_DEBUG("context hanging too fast, banning!\n");
2465 			return true;
2466 		} else if (i915_stop_ring_allow_ban(dev_priv)) {
2467 			if (i915_stop_ring_allow_warn(dev_priv))
2468 				DRM_ERROR("gpu hanging too fast, banning!\n");
2469 			return true;
2470 		}
2471 	}
2472 
2473 	return false;
2474 }
2475 
2476 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2477 				  struct intel_context *ctx,
2478 				  const bool guilty)
2479 {
2480 	struct i915_ctx_hang_stats *hs;
2481 
2482 	if (WARN_ON(!ctx))
2483 		return;
2484 
2485 	hs = &ctx->hang_stats;
2486 
2487 	if (guilty) {
2488 		hs->banned = i915_context_is_banned(dev_priv, ctx);
2489 		hs->batch_active++;
2490 		hs->guilty_ts = get_seconds();
2491 	} else {
2492 		hs->batch_pending++;
2493 	}
2494 }
2495 
2496 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2497 {
2498 	list_del(&request->list);
2499 	i915_gem_request_remove_from_client(request);
2500 
2501 	if (request->ctx)
2502 		i915_gem_context_unreference(request->ctx);
2503 
2504 	kfree(request);
2505 }
2506 
2507 struct drm_i915_gem_request *
2508 i915_gem_find_active_request(struct intel_engine_cs *ring)
2509 {
2510 	struct drm_i915_gem_request *request;
2511 	u32 completed_seqno;
2512 
2513 	completed_seqno = ring->get_seqno(ring, false);
2514 
2515 	list_for_each_entry(request, &ring->request_list, list) {
2516 		if (i915_seqno_passed(completed_seqno, request->seqno))
2517 			continue;
2518 
2519 		return request;
2520 	}
2521 
2522 	return NULL;
2523 }
2524 
2525 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2526 				       struct intel_engine_cs *ring)
2527 {
2528 	struct drm_i915_gem_request *request;
2529 	bool ring_hung;
2530 
2531 	request = i915_gem_find_active_request(ring);
2532 
2533 	if (request == NULL)
2534 		return;
2535 
2536 	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2537 
2538 	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2539 
2540 	list_for_each_entry_continue(request, &ring->request_list, list)
2541 		i915_set_reset_status(dev_priv, request->ctx, false);
2542 }
2543 
2544 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2545 					struct intel_engine_cs *ring)
2546 {
2547 	while (!list_empty(&ring->active_list)) {
2548 		struct drm_i915_gem_object *obj;
2549 
2550 		obj = list_first_entry(&ring->active_list,
2551 				       struct drm_i915_gem_object,
2552 				       ring_list);
2553 
2554 		i915_gem_object_move_to_inactive(obj);
2555 	}
2556 
2557 	/*
2558 	 * We must free the requests after all the corresponding objects have
2559 	 * been moved off active lists. Which is the same order as the normal
2560 	 * retire_requests function does. This is important if object hold
2561 	 * implicit references on things like e.g. ppgtt address spaces through
2562 	 * the request.
2563 	 */
2564 	while (!list_empty(&ring->request_list)) {
2565 		struct drm_i915_gem_request *request;
2566 
2567 		request = list_first_entry(&ring->request_list,
2568 					   struct drm_i915_gem_request,
2569 					   list);
2570 
2571 		i915_gem_free_request(request);
2572 	}
2573 
2574 	while (!list_empty(&ring->execlist_queue)) {
2575 		struct intel_ctx_submit_request *submit_req;
2576 
2577 		submit_req = list_first_entry(&ring->execlist_queue,
2578 				struct intel_ctx_submit_request,
2579 				execlist_link);
2580 		list_del(&submit_req->execlist_link);
2581 		intel_runtime_pm_put(dev_priv);
2582 		i915_gem_context_unreference(submit_req->ctx);
2583 		kfree(submit_req);
2584 	}
2585 
2586 	/* These may not have been flush before the reset, do so now */
2587 	kfree(ring->preallocated_lazy_request);
2588 	ring->preallocated_lazy_request = NULL;
2589 	ring->outstanding_lazy_seqno = 0;
2590 }
2591 
2592 void i915_gem_restore_fences(struct drm_device *dev)
2593 {
2594 	struct drm_i915_private *dev_priv = dev->dev_private;
2595 	int i;
2596 
2597 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2598 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2599 
2600 		/*
2601 		 * Commit delayed tiling changes if we have an object still
2602 		 * attached to the fence, otherwise just clear the fence.
2603 		 */
2604 		if (reg->obj) {
2605 			i915_gem_object_update_fence(reg->obj, reg,
2606 						     reg->obj->tiling_mode);
2607 		} else {
2608 			i915_gem_write_fence(dev, i, NULL);
2609 		}
2610 	}
2611 }
2612 
2613 void i915_gem_reset(struct drm_device *dev)
2614 {
2615 	struct drm_i915_private *dev_priv = dev->dev_private;
2616 	struct intel_engine_cs *ring;
2617 	int i;
2618 
2619 	/*
2620 	 * Before we free the objects from the requests, we need to inspect
2621 	 * them for finding the guilty party. As the requests only borrow
2622 	 * their reference to the objects, the inspection must be done first.
2623 	 */
2624 	for_each_ring(ring, dev_priv, i)
2625 		i915_gem_reset_ring_status(dev_priv, ring);
2626 
2627 	for_each_ring(ring, dev_priv, i)
2628 		i915_gem_reset_ring_cleanup(dev_priv, ring);
2629 
2630 	i915_gem_context_reset(dev);
2631 
2632 	i915_gem_restore_fences(dev);
2633 }
2634 
2635 /**
2636  * This function clears the request list as sequence numbers are passed.
2637  */
2638 void
2639 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2640 {
2641 	uint32_t seqno;
2642 
2643 	if (list_empty(&ring->request_list))
2644 		return;
2645 
2646 	WARN_ON(i915_verify_lists(ring->dev));
2647 
2648 	seqno = ring->get_seqno(ring, true);
2649 
2650 	/* Move any buffers on the active list that are no longer referenced
2651 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
2652 	 * before we free the context associated with the requests.
2653 	 */
2654 	while (!list_empty(&ring->active_list)) {
2655 		struct drm_i915_gem_object *obj;
2656 
2657 		obj = list_first_entry(&ring->active_list,
2658 				      struct drm_i915_gem_object,
2659 				      ring_list);
2660 
2661 		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2662 			break;
2663 
2664 		i915_gem_object_move_to_inactive(obj);
2665 	}
2666 
2667 
2668 	while (!list_empty(&ring->request_list)) {
2669 		struct drm_i915_gem_request *request;
2670 		struct intel_ringbuffer *ringbuf;
2671 
2672 		request = list_first_entry(&ring->request_list,
2673 					   struct drm_i915_gem_request,
2674 					   list);
2675 
2676 		if (!i915_seqno_passed(seqno, request->seqno))
2677 			break;
2678 
2679 		trace_i915_gem_request_retire(ring, request->seqno);
2680 
2681 		/* This is one of the few common intersection points
2682 		 * between legacy ringbuffer submission and execlists:
2683 		 * we need to tell them apart in order to find the correct
2684 		 * ringbuffer to which the request belongs to.
2685 		 */
2686 		if (i915.enable_execlists) {
2687 			struct intel_context *ctx = request->ctx;
2688 			ringbuf = ctx->engine[ring->id].ringbuf;
2689 		} else
2690 			ringbuf = ring->buffer;
2691 
2692 		/* We know the GPU must have read the request to have
2693 		 * sent us the seqno + interrupt, so use the position
2694 		 * of tail of the request to update the last known position
2695 		 * of the GPU head.
2696 		 */
2697 		ringbuf->last_retired_head = request->tail;
2698 
2699 		i915_gem_free_request(request);
2700 	}
2701 
2702 	if (unlikely(ring->trace_irq_seqno &&
2703 		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2704 		ring->irq_put(ring);
2705 		ring->trace_irq_seqno = 0;
2706 	}
2707 
2708 	WARN_ON(i915_verify_lists(ring->dev));
2709 }
2710 
2711 bool
2712 i915_gem_retire_requests(struct drm_device *dev)
2713 {
2714 	struct drm_i915_private *dev_priv = dev->dev_private;
2715 	struct intel_engine_cs *ring;
2716 	bool idle = true;
2717 	int i;
2718 
2719 	for_each_ring(ring, dev_priv, i) {
2720 		i915_gem_retire_requests_ring(ring);
2721 		idle &= list_empty(&ring->request_list);
2722 	}
2723 
2724 	if (idle)
2725 		mod_delayed_work(dev_priv->wq,
2726 				   &dev_priv->mm.idle_work,
2727 				   msecs_to_jiffies(100));
2728 
2729 	return idle;
2730 }
2731 
2732 static void
2733 i915_gem_retire_work_handler(struct work_struct *work)
2734 {
2735 	struct drm_i915_private *dev_priv =
2736 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
2737 	struct drm_device *dev = dev_priv->dev;
2738 	bool idle;
2739 
2740 	/* Come back later if the device is busy... */
2741 	idle = false;
2742 	if (mutex_trylock(&dev->struct_mutex)) {
2743 		idle = i915_gem_retire_requests(dev);
2744 		mutex_unlock(&dev->struct_mutex);
2745 	}
2746 	if (!idle)
2747 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2748 				   round_jiffies_up_relative(HZ));
2749 }
2750 
2751 static void
2752 i915_gem_idle_work_handler(struct work_struct *work)
2753 {
2754 	struct drm_i915_private *dev_priv =
2755 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2756 
2757 	intel_mark_idle(dev_priv->dev);
2758 }
2759 
2760 /**
2761  * Ensures that an object will eventually get non-busy by flushing any required
2762  * write domains, emitting any outstanding lazy request and retiring and
2763  * completed requests.
2764  */
2765 static int
2766 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2767 {
2768 	int ret;
2769 
2770 	if (obj->active) {
2771 		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2772 		if (ret)
2773 			return ret;
2774 
2775 		i915_gem_retire_requests_ring(obj->ring);
2776 	}
2777 
2778 	return 0;
2779 }
2780 
2781 /**
2782  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2783  * @DRM_IOCTL_ARGS: standard ioctl arguments
2784  *
2785  * Returns 0 if successful, else an error is returned with the remaining time in
2786  * the timeout parameter.
2787  *  -ETIME: object is still busy after timeout
2788  *  -ERESTARTSYS: signal interrupted the wait
2789  *  -ENONENT: object doesn't exist
2790  * Also possible, but rare:
2791  *  -EAGAIN: GPU wedged
2792  *  -ENOMEM: damn
2793  *  -ENODEV: Internal IRQ fail
2794  *  -E?: The add request failed
2795  *
2796  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2797  * non-zero timeout parameter the wait ioctl will wait for the given number of
2798  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2799  * without holding struct_mutex the object may become re-busied before this
2800  * function completes. A similar but shorter * race condition exists in the busy
2801  * ioctl
2802  */
2803 int
2804 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2805 {
2806 	struct drm_i915_private *dev_priv = dev->dev_private;
2807 	struct drm_i915_gem_wait *args = data;
2808 	struct drm_i915_gem_object *obj;
2809 	struct intel_engine_cs *ring = NULL;
2810 	unsigned reset_counter;
2811 	u32 seqno = 0;
2812 	int ret = 0;
2813 
2814 	ret = i915_mutex_lock_interruptible(dev);
2815 	if (ret)
2816 		return ret;
2817 
2818 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2819 	if (&obj->base == NULL) {
2820 		mutex_unlock(&dev->struct_mutex);
2821 		return -ENOENT;
2822 	}
2823 
2824 	/* Need to make sure the object gets inactive eventually. */
2825 	ret = i915_gem_object_flush_active(obj);
2826 	if (ret)
2827 		goto out;
2828 
2829 	if (obj->active) {
2830 		seqno = obj->last_read_seqno;
2831 		ring = obj->ring;
2832 	}
2833 
2834 	if (seqno == 0)
2835 		 goto out;
2836 
2837 	/* Do this after OLR check to make sure we make forward progress polling
2838 	 * on this IOCTL with a timeout <=0 (like busy ioctl)
2839 	 */
2840 	if (args->timeout_ns <= 0) {
2841 		ret = -ETIME;
2842 		goto out;
2843 	}
2844 
2845 	drm_gem_object_unreference(&obj->base);
2846 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2847 	mutex_unlock(&dev->struct_mutex);
2848 
2849 	return __wait_seqno(ring, seqno, reset_counter, true, &args->timeout_ns,
2850 			    file->driver_priv);
2851 
2852 out:
2853 	drm_gem_object_unreference(&obj->base);
2854 	mutex_unlock(&dev->struct_mutex);
2855 	return ret;
2856 }
2857 
2858 /**
2859  * i915_gem_object_sync - sync an object to a ring.
2860  *
2861  * @obj: object which may be in use on another ring.
2862  * @to: ring we wish to use the object on. May be NULL.
2863  *
2864  * This code is meant to abstract object synchronization with the GPU.
2865  * Calling with NULL implies synchronizing the object with the CPU
2866  * rather than a particular GPU ring.
2867  *
2868  * Returns 0 if successful, else propagates up the lower layer error.
2869  */
2870 int
2871 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2872 		     struct intel_engine_cs *to)
2873 {
2874 	struct intel_engine_cs *from = obj->ring;
2875 	u32 seqno;
2876 	int ret, idx;
2877 
2878 	if (from == NULL || to == from)
2879 		return 0;
2880 
2881 	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2882 		return i915_gem_object_wait_rendering(obj, false);
2883 
2884 	idx = intel_ring_sync_index(from, to);
2885 
2886 	seqno = obj->last_read_seqno;
2887 	/* Optimization: Avoid semaphore sync when we are sure we already
2888 	 * waited for an object with higher seqno */
2889 	if (seqno <= from->semaphore.sync_seqno[idx])
2890 		return 0;
2891 
2892 	ret = i915_gem_check_olr(obj->ring, seqno);
2893 	if (ret)
2894 		return ret;
2895 
2896 	trace_i915_gem_ring_sync_to(from, to, seqno);
2897 	ret = to->semaphore.sync_to(to, from, seqno);
2898 	if (!ret)
2899 		/* We use last_read_seqno because sync_to()
2900 		 * might have just caused seqno wrap under
2901 		 * the radar.
2902 		 */
2903 		from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2904 
2905 	return ret;
2906 }
2907 
2908 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2909 {
2910 	u32 old_write_domain, old_read_domains;
2911 
2912 	/* Force a pagefault for domain tracking on next user access */
2913 	i915_gem_release_mmap(obj);
2914 
2915 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2916 		return;
2917 
2918 	/* Wait for any direct GTT access to complete */
2919 	mb();
2920 
2921 	old_read_domains = obj->base.read_domains;
2922 	old_write_domain = obj->base.write_domain;
2923 
2924 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2925 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2926 
2927 	trace_i915_gem_object_change_domain(obj,
2928 					    old_read_domains,
2929 					    old_write_domain);
2930 }
2931 
2932 int i915_vma_unbind(struct i915_vma *vma)
2933 {
2934 	struct drm_i915_gem_object *obj = vma->obj;
2935 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2936 	int ret;
2937 
2938 	if (list_empty(&vma->vma_link))
2939 		return 0;
2940 
2941 	if (!drm_mm_node_allocated(&vma->node)) {
2942 		i915_gem_vma_destroy(vma);
2943 		return 0;
2944 	}
2945 
2946 	if (vma->pin_count)
2947 		return -EBUSY;
2948 
2949 	BUG_ON(obj->pages == NULL);
2950 
2951 	ret = i915_gem_object_finish_gpu(obj);
2952 	if (ret)
2953 		return ret;
2954 	/* Continue on if we fail due to EIO, the GPU is hung so we
2955 	 * should be safe and we need to cleanup or else we might
2956 	 * cause memory corruption through use-after-free.
2957 	 */
2958 
2959 	/* Throw away the active reference before moving to the unbound list */
2960 	i915_gem_object_retire(obj);
2961 
2962 	if (i915_is_ggtt(vma->vm)) {
2963 		i915_gem_object_finish_gtt(obj);
2964 
2965 		/* release the fence reg _after_ flushing */
2966 		ret = i915_gem_object_put_fence(obj);
2967 		if (ret)
2968 			return ret;
2969 	}
2970 
2971 	trace_i915_vma_unbind(vma);
2972 
2973 	vma->unbind_vma(vma);
2974 
2975 	list_del_init(&vma->mm_list);
2976 	if (i915_is_ggtt(vma->vm))
2977 		obj->map_and_fenceable = false;
2978 
2979 	drm_mm_remove_node(&vma->node);
2980 	i915_gem_vma_destroy(vma);
2981 
2982 	/* Since the unbound list is global, only move to that list if
2983 	 * no more VMAs exist. */
2984 	if (list_empty(&obj->vma_list)) {
2985 		i915_gem_gtt_finish_object(obj);
2986 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2987 	}
2988 
2989 	/* And finally now the object is completely decoupled from this vma,
2990 	 * we can drop its hold on the backing storage and allow it to be
2991 	 * reaped by the shrinker.
2992 	 */
2993 	i915_gem_object_unpin_pages(obj);
2994 
2995 	return 0;
2996 }
2997 
2998 int i915_gpu_idle(struct drm_device *dev)
2999 {
3000 	struct drm_i915_private *dev_priv = dev->dev_private;
3001 	struct intel_engine_cs *ring;
3002 	int ret, i;
3003 
3004 	/* Flush everything onto the inactive list. */
3005 	for_each_ring(ring, dev_priv, i) {
3006 		if (!i915.enable_execlists) {
3007 			ret = i915_switch_context(ring, ring->default_context);
3008 			if (ret)
3009 				return ret;
3010 		}
3011 
3012 		ret = intel_ring_idle(ring);
3013 		if (ret)
3014 			return ret;
3015 	}
3016 
3017 	return 0;
3018 }
3019 
3020 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3021 				 struct drm_i915_gem_object *obj)
3022 {
3023 	struct drm_i915_private *dev_priv = dev->dev_private;
3024 	int fence_reg;
3025 	int fence_pitch_shift;
3026 
3027 	if (INTEL_INFO(dev)->gen >= 6) {
3028 		fence_reg = FENCE_REG_SANDYBRIDGE_0;
3029 		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3030 	} else {
3031 		fence_reg = FENCE_REG_965_0;
3032 		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3033 	}
3034 
3035 	fence_reg += reg * 8;
3036 
3037 	/* To w/a incoherency with non-atomic 64-bit register updates,
3038 	 * we split the 64-bit update into two 32-bit writes. In order
3039 	 * for a partial fence not to be evaluated between writes, we
3040 	 * precede the update with write to turn off the fence register,
3041 	 * and only enable the fence as the last step.
3042 	 *
3043 	 * For extra levels of paranoia, we make sure each step lands
3044 	 * before applying the next step.
3045 	 */
3046 	I915_WRITE(fence_reg, 0);
3047 	POSTING_READ(fence_reg);
3048 
3049 	if (obj) {
3050 		u32 size = i915_gem_obj_ggtt_size(obj);
3051 		uint64_t val;
3052 
3053 		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3054 				 0xfffff000) << 32;
3055 		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3056 		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3057 		if (obj->tiling_mode == I915_TILING_Y)
3058 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3059 		val |= I965_FENCE_REG_VALID;
3060 
3061 		I915_WRITE(fence_reg + 4, val >> 32);
3062 		POSTING_READ(fence_reg + 4);
3063 
3064 		I915_WRITE(fence_reg + 0, val);
3065 		POSTING_READ(fence_reg);
3066 	} else {
3067 		I915_WRITE(fence_reg + 4, 0);
3068 		POSTING_READ(fence_reg + 4);
3069 	}
3070 }
3071 
3072 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3073 				 struct drm_i915_gem_object *obj)
3074 {
3075 	struct drm_i915_private *dev_priv = dev->dev_private;
3076 	u32 val;
3077 
3078 	if (obj) {
3079 		u32 size = i915_gem_obj_ggtt_size(obj);
3080 		int pitch_val;
3081 		int tile_width;
3082 
3083 		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3084 		     (size & -size) != size ||
3085 		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3086 		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3087 		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3088 
3089 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3090 			tile_width = 128;
3091 		else
3092 			tile_width = 512;
3093 
3094 		/* Note: pitch better be a power of two tile widths */
3095 		pitch_val = obj->stride / tile_width;
3096 		pitch_val = ffs(pitch_val) - 1;
3097 
3098 		val = i915_gem_obj_ggtt_offset(obj);
3099 		if (obj->tiling_mode == I915_TILING_Y)
3100 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3101 		val |= I915_FENCE_SIZE_BITS(size);
3102 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3103 		val |= I830_FENCE_REG_VALID;
3104 	} else
3105 		val = 0;
3106 
3107 	if (reg < 8)
3108 		reg = FENCE_REG_830_0 + reg * 4;
3109 	else
3110 		reg = FENCE_REG_945_8 + (reg - 8) * 4;
3111 
3112 	I915_WRITE(reg, val);
3113 	POSTING_READ(reg);
3114 }
3115 
3116 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3117 				struct drm_i915_gem_object *obj)
3118 {
3119 	struct drm_i915_private *dev_priv = dev->dev_private;
3120 	uint32_t val;
3121 
3122 	if (obj) {
3123 		u32 size = i915_gem_obj_ggtt_size(obj);
3124 		uint32_t pitch_val;
3125 
3126 		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3127 		     (size & -size) != size ||
3128 		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3129 		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3130 		     i915_gem_obj_ggtt_offset(obj), size);
3131 
3132 		pitch_val = obj->stride / 128;
3133 		pitch_val = ffs(pitch_val) - 1;
3134 
3135 		val = i915_gem_obj_ggtt_offset(obj);
3136 		if (obj->tiling_mode == I915_TILING_Y)
3137 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3138 		val |= I830_FENCE_SIZE_BITS(size);
3139 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3140 		val |= I830_FENCE_REG_VALID;
3141 	} else
3142 		val = 0;
3143 
3144 	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3145 	POSTING_READ(FENCE_REG_830_0 + reg * 4);
3146 }
3147 
3148 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3149 {
3150 	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3151 }
3152 
3153 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3154 				 struct drm_i915_gem_object *obj)
3155 {
3156 	struct drm_i915_private *dev_priv = dev->dev_private;
3157 
3158 	/* Ensure that all CPU reads are completed before installing a fence
3159 	 * and all writes before removing the fence.
3160 	 */
3161 	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3162 		mb();
3163 
3164 	WARN(obj && (!obj->stride || !obj->tiling_mode),
3165 	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3166 	     obj->stride, obj->tiling_mode);
3167 
3168 	switch (INTEL_INFO(dev)->gen) {
3169 	case 8:
3170 	case 7:
3171 	case 6:
3172 	case 5:
3173 	case 4: i965_write_fence_reg(dev, reg, obj); break;
3174 	case 3: i915_write_fence_reg(dev, reg, obj); break;
3175 	case 2: i830_write_fence_reg(dev, reg, obj); break;
3176 	default: BUG();
3177 	}
3178 
3179 	/* And similarly be paranoid that no direct access to this region
3180 	 * is reordered to before the fence is installed.
3181 	 */
3182 	if (i915_gem_object_needs_mb(obj))
3183 		mb();
3184 }
3185 
3186 static inline int fence_number(struct drm_i915_private *dev_priv,
3187 			       struct drm_i915_fence_reg *fence)
3188 {
3189 	return fence - dev_priv->fence_regs;
3190 }
3191 
3192 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3193 					 struct drm_i915_fence_reg *fence,
3194 					 bool enable)
3195 {
3196 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3197 	int reg = fence_number(dev_priv, fence);
3198 
3199 	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3200 
3201 	if (enable) {
3202 		obj->fence_reg = reg;
3203 		fence->obj = obj;
3204 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3205 	} else {
3206 		obj->fence_reg = I915_FENCE_REG_NONE;
3207 		fence->obj = NULL;
3208 		list_del_init(&fence->lru_list);
3209 	}
3210 	obj->fence_dirty = false;
3211 }
3212 
3213 static int
3214 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3215 {
3216 	if (obj->last_fenced_seqno) {
3217 		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3218 		if (ret)
3219 			return ret;
3220 
3221 		obj->last_fenced_seqno = 0;
3222 	}
3223 
3224 	return 0;
3225 }
3226 
3227 int
3228 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3229 {
3230 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3231 	struct drm_i915_fence_reg *fence;
3232 	int ret;
3233 
3234 	ret = i915_gem_object_wait_fence(obj);
3235 	if (ret)
3236 		return ret;
3237 
3238 	if (obj->fence_reg == I915_FENCE_REG_NONE)
3239 		return 0;
3240 
3241 	fence = &dev_priv->fence_regs[obj->fence_reg];
3242 
3243 	if (WARN_ON(fence->pin_count))
3244 		return -EBUSY;
3245 
3246 	i915_gem_object_fence_lost(obj);
3247 	i915_gem_object_update_fence(obj, fence, false);
3248 
3249 	return 0;
3250 }
3251 
3252 static struct drm_i915_fence_reg *
3253 i915_find_fence_reg(struct drm_device *dev)
3254 {
3255 	struct drm_i915_private *dev_priv = dev->dev_private;
3256 	struct drm_i915_fence_reg *reg, *avail;
3257 	int i;
3258 
3259 	/* First try to find a free reg */
3260 	avail = NULL;
3261 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3262 		reg = &dev_priv->fence_regs[i];
3263 		if (!reg->obj)
3264 			return reg;
3265 
3266 		if (!reg->pin_count)
3267 			avail = reg;
3268 	}
3269 
3270 	if (avail == NULL)
3271 		goto deadlock;
3272 
3273 	/* None available, try to steal one or wait for a user to finish */
3274 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3275 		if (reg->pin_count)
3276 			continue;
3277 
3278 		return reg;
3279 	}
3280 
3281 deadlock:
3282 	/* Wait for completion of pending flips which consume fences */
3283 	if (intel_has_pending_fb_unpin(dev))
3284 		return ERR_PTR(-EAGAIN);
3285 
3286 	return ERR_PTR(-EDEADLK);
3287 }
3288 
3289 /**
3290  * i915_gem_object_get_fence - set up fencing for an object
3291  * @obj: object to map through a fence reg
3292  *
3293  * When mapping objects through the GTT, userspace wants to be able to write
3294  * to them without having to worry about swizzling if the object is tiled.
3295  * This function walks the fence regs looking for a free one for @obj,
3296  * stealing one if it can't find any.
3297  *
3298  * It then sets up the reg based on the object's properties: address, pitch
3299  * and tiling format.
3300  *
3301  * For an untiled surface, this removes any existing fence.
3302  */
3303 int
3304 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3305 {
3306 	struct drm_device *dev = obj->base.dev;
3307 	struct drm_i915_private *dev_priv = dev->dev_private;
3308 	bool enable = obj->tiling_mode != I915_TILING_NONE;
3309 	struct drm_i915_fence_reg *reg;
3310 	int ret;
3311 
3312 	/* Have we updated the tiling parameters upon the object and so
3313 	 * will need to serialise the write to the associated fence register?
3314 	 */
3315 	if (obj->fence_dirty) {
3316 		ret = i915_gem_object_wait_fence(obj);
3317 		if (ret)
3318 			return ret;
3319 	}
3320 
3321 	/* Just update our place in the LRU if our fence is getting reused. */
3322 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
3323 		reg = &dev_priv->fence_regs[obj->fence_reg];
3324 		if (!obj->fence_dirty) {
3325 			list_move_tail(&reg->lru_list,
3326 				       &dev_priv->mm.fence_list);
3327 			return 0;
3328 		}
3329 	} else if (enable) {
3330 		if (WARN_ON(!obj->map_and_fenceable))
3331 			return -EINVAL;
3332 
3333 		reg = i915_find_fence_reg(dev);
3334 		if (IS_ERR(reg))
3335 			return PTR_ERR(reg);
3336 
3337 		if (reg->obj) {
3338 			struct drm_i915_gem_object *old = reg->obj;
3339 
3340 			ret = i915_gem_object_wait_fence(old);
3341 			if (ret)
3342 				return ret;
3343 
3344 			i915_gem_object_fence_lost(old);
3345 		}
3346 	} else
3347 		return 0;
3348 
3349 	i915_gem_object_update_fence(obj, reg, enable);
3350 
3351 	return 0;
3352 }
3353 
3354 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3355 				     unsigned long cache_level)
3356 {
3357 	struct drm_mm_node *gtt_space = &vma->node;
3358 	struct drm_mm_node *other;
3359 
3360 	/*
3361 	 * On some machines we have to be careful when putting differing types
3362 	 * of snoopable memory together to avoid the prefetcher crossing memory
3363 	 * domains and dying. During vm initialisation, we decide whether or not
3364 	 * these constraints apply and set the drm_mm.color_adjust
3365 	 * appropriately.
3366 	 */
3367 	if (vma->vm->mm.color_adjust == NULL)
3368 		return true;
3369 
3370 	if (!drm_mm_node_allocated(gtt_space))
3371 		return true;
3372 
3373 	if (list_empty(&gtt_space->node_list))
3374 		return true;
3375 
3376 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3377 	if (other->allocated && !other->hole_follows && other->color != cache_level)
3378 		return false;
3379 
3380 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3381 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3382 		return false;
3383 
3384 	return true;
3385 }
3386 
3387 static void i915_gem_verify_gtt(struct drm_device *dev)
3388 {
3389 #if WATCH_GTT
3390 	struct drm_i915_private *dev_priv = dev->dev_private;
3391 	struct drm_i915_gem_object *obj;
3392 	int err = 0;
3393 
3394 	list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3395 		if (obj->gtt_space == NULL) {
3396 			printk(KERN_ERR "object found on GTT list with no space reserved\n");
3397 			err++;
3398 			continue;
3399 		}
3400 
3401 		if (obj->cache_level != obj->gtt_space->color) {
3402 			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3403 			       i915_gem_obj_ggtt_offset(obj),
3404 			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3405 			       obj->cache_level,
3406 			       obj->gtt_space->color);
3407 			err++;
3408 			continue;
3409 		}
3410 
3411 		if (!i915_gem_valid_gtt_space(dev,
3412 					      obj->gtt_space,
3413 					      obj->cache_level)) {
3414 			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3415 			       i915_gem_obj_ggtt_offset(obj),
3416 			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3417 			       obj->cache_level);
3418 			err++;
3419 			continue;
3420 		}
3421 	}
3422 
3423 	WARN_ON(err);
3424 #endif
3425 }
3426 
3427 /**
3428  * Finds free space in the GTT aperture and binds the object there.
3429  */
3430 static struct i915_vma *
3431 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3432 			   struct i915_address_space *vm,
3433 			   unsigned alignment,
3434 			   uint64_t flags)
3435 {
3436 	struct drm_device *dev = obj->base.dev;
3437 	struct drm_i915_private *dev_priv = dev->dev_private;
3438 	u32 size, fence_size, fence_alignment, unfenced_alignment;
3439 	unsigned long start =
3440 		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3441 	unsigned long end =
3442 		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3443 	struct i915_vma *vma;
3444 	int ret;
3445 
3446 	fence_size = i915_gem_get_gtt_size(dev,
3447 					   obj->base.size,
3448 					   obj->tiling_mode);
3449 	fence_alignment = i915_gem_get_gtt_alignment(dev,
3450 						     obj->base.size,
3451 						     obj->tiling_mode, true);
3452 	unfenced_alignment =
3453 		i915_gem_get_gtt_alignment(dev,
3454 					   obj->base.size,
3455 					   obj->tiling_mode, false);
3456 
3457 	if (alignment == 0)
3458 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3459 						unfenced_alignment;
3460 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3461 		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3462 		return ERR_PTR(-EINVAL);
3463 	}
3464 
3465 	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3466 
3467 	/* If the object is bigger than the entire aperture, reject it early
3468 	 * before evicting everything in a vain attempt to find space.
3469 	 */
3470 	if (obj->base.size > end) {
3471 		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3472 			  obj->base.size,
3473 			  flags & PIN_MAPPABLE ? "mappable" : "total",
3474 			  end);
3475 		return ERR_PTR(-E2BIG);
3476 	}
3477 
3478 	ret = i915_gem_object_get_pages(obj);
3479 	if (ret)
3480 		return ERR_PTR(ret);
3481 
3482 	i915_gem_object_pin_pages(obj);
3483 
3484 	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3485 	if (IS_ERR(vma))
3486 		goto err_unpin;
3487 
3488 search_free:
3489 	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3490 						  size, alignment,
3491 						  obj->cache_level,
3492 						  start, end,
3493 						  DRM_MM_SEARCH_DEFAULT,
3494 						  DRM_MM_CREATE_DEFAULT);
3495 	if (ret) {
3496 		ret = i915_gem_evict_something(dev, vm, size, alignment,
3497 					       obj->cache_level,
3498 					       start, end,
3499 					       flags);
3500 		if (ret == 0)
3501 			goto search_free;
3502 
3503 		goto err_free_vma;
3504 	}
3505 	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3506 		ret = -EINVAL;
3507 		goto err_remove_node;
3508 	}
3509 
3510 	ret = i915_gem_gtt_prepare_object(obj);
3511 	if (ret)
3512 		goto err_remove_node;
3513 
3514 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3515 	list_add_tail(&vma->mm_list, &vm->inactive_list);
3516 
3517 	if (i915_is_ggtt(vm)) {
3518 		bool mappable, fenceable;
3519 
3520 		fenceable = (vma->node.size == fence_size &&
3521 			     (vma->node.start & (fence_alignment - 1)) == 0);
3522 
3523 		mappable = (vma->node.start + obj->base.size <=
3524 			    dev_priv->gtt.mappable_end);
3525 
3526 		obj->map_and_fenceable = mappable && fenceable;
3527 	}
3528 
3529 	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3530 
3531 	trace_i915_vma_bind(vma, flags);
3532 	vma->bind_vma(vma, obj->cache_level,
3533 		      flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3534 
3535 	i915_gem_verify_gtt(dev);
3536 	return vma;
3537 
3538 err_remove_node:
3539 	drm_mm_remove_node(&vma->node);
3540 err_free_vma:
3541 	i915_gem_vma_destroy(vma);
3542 	vma = ERR_PTR(ret);
3543 err_unpin:
3544 	i915_gem_object_unpin_pages(obj);
3545 	return vma;
3546 }
3547 
3548 bool
3549 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3550 			bool force)
3551 {
3552 	/* If we don't have a page list set up, then we're not pinned
3553 	 * to GPU, and we can ignore the cache flush because it'll happen
3554 	 * again at bind time.
3555 	 */
3556 	if (obj->pages == NULL)
3557 		return false;
3558 
3559 	/*
3560 	 * Stolen memory is always coherent with the GPU as it is explicitly
3561 	 * marked as wc by the system, or the system is cache-coherent.
3562 	 */
3563 	if (obj->stolen)
3564 		return false;
3565 
3566 	/* If the GPU is snooping the contents of the CPU cache,
3567 	 * we do not need to manually clear the CPU cache lines.  However,
3568 	 * the caches are only snooped when the render cache is
3569 	 * flushed/invalidated.  As we always have to emit invalidations
3570 	 * and flushes when moving into and out of the RENDER domain, correct
3571 	 * snooping behaviour occurs naturally as the result of our domain
3572 	 * tracking.
3573 	 */
3574 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3575 		return false;
3576 
3577 	trace_i915_gem_object_clflush(obj);
3578 	drm_clflush_sg(obj->pages);
3579 
3580 	return true;
3581 }
3582 
3583 /** Flushes the GTT write domain for the object if it's dirty. */
3584 static void
3585 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3586 {
3587 	uint32_t old_write_domain;
3588 
3589 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3590 		return;
3591 
3592 	/* No actual flushing is required for the GTT write domain.  Writes
3593 	 * to it immediately go to main memory as far as we know, so there's
3594 	 * no chipset flush.  It also doesn't land in render cache.
3595 	 *
3596 	 * However, we do have to enforce the order so that all writes through
3597 	 * the GTT land before any writes to the device, such as updates to
3598 	 * the GATT itself.
3599 	 */
3600 	wmb();
3601 
3602 	old_write_domain = obj->base.write_domain;
3603 	obj->base.write_domain = 0;
3604 
3605 	intel_fb_obj_flush(obj, false);
3606 
3607 	trace_i915_gem_object_change_domain(obj,
3608 					    obj->base.read_domains,
3609 					    old_write_domain);
3610 }
3611 
3612 /** Flushes the CPU write domain for the object if it's dirty. */
3613 static void
3614 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3615 				       bool force)
3616 {
3617 	uint32_t old_write_domain;
3618 
3619 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3620 		return;
3621 
3622 	if (i915_gem_clflush_object(obj, force))
3623 		i915_gem_chipset_flush(obj->base.dev);
3624 
3625 	old_write_domain = obj->base.write_domain;
3626 	obj->base.write_domain = 0;
3627 
3628 	intel_fb_obj_flush(obj, false);
3629 
3630 	trace_i915_gem_object_change_domain(obj,
3631 					    obj->base.read_domains,
3632 					    old_write_domain);
3633 }
3634 
3635 /**
3636  * Moves a single object to the GTT read, and possibly write domain.
3637  *
3638  * This function returns when the move is complete, including waiting on
3639  * flushes to occur.
3640  */
3641 int
3642 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3643 {
3644 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3645 	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3646 	uint32_t old_write_domain, old_read_domains;
3647 	int ret;
3648 
3649 	/* Not valid to be called on unbound objects. */
3650 	if (vma == NULL)
3651 		return -EINVAL;
3652 
3653 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3654 		return 0;
3655 
3656 	ret = i915_gem_object_wait_rendering(obj, !write);
3657 	if (ret)
3658 		return ret;
3659 
3660 	i915_gem_object_retire(obj);
3661 	i915_gem_object_flush_cpu_write_domain(obj, false);
3662 
3663 	/* Serialise direct access to this object with the barriers for
3664 	 * coherent writes from the GPU, by effectively invalidating the
3665 	 * GTT domain upon first access.
3666 	 */
3667 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3668 		mb();
3669 
3670 	old_write_domain = obj->base.write_domain;
3671 	old_read_domains = obj->base.read_domains;
3672 
3673 	/* It should now be out of any other write domains, and we can update
3674 	 * the domain values for our changes.
3675 	 */
3676 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3677 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3678 	if (write) {
3679 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3680 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3681 		obj->dirty = 1;
3682 	}
3683 
3684 	if (write)
3685 		intel_fb_obj_invalidate(obj, NULL);
3686 
3687 	trace_i915_gem_object_change_domain(obj,
3688 					    old_read_domains,
3689 					    old_write_domain);
3690 
3691 	/* And bump the LRU for this access */
3692 	if (i915_gem_object_is_inactive(obj))
3693 		list_move_tail(&vma->mm_list,
3694 			       &dev_priv->gtt.base.inactive_list);
3695 
3696 	return 0;
3697 }
3698 
3699 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3700 				    enum i915_cache_level cache_level)
3701 {
3702 	struct drm_device *dev = obj->base.dev;
3703 	struct i915_vma *vma, *next;
3704 	int ret;
3705 
3706 	if (obj->cache_level == cache_level)
3707 		return 0;
3708 
3709 	if (i915_gem_obj_is_pinned(obj)) {
3710 		DRM_DEBUG("can not change the cache level of pinned objects\n");
3711 		return -EBUSY;
3712 	}
3713 
3714 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3715 		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3716 			ret = i915_vma_unbind(vma);
3717 			if (ret)
3718 				return ret;
3719 		}
3720 	}
3721 
3722 	if (i915_gem_obj_bound_any(obj)) {
3723 		ret = i915_gem_object_finish_gpu(obj);
3724 		if (ret)
3725 			return ret;
3726 
3727 		i915_gem_object_finish_gtt(obj);
3728 
3729 		/* Before SandyBridge, you could not use tiling or fence
3730 		 * registers with snooped memory, so relinquish any fences
3731 		 * currently pointing to our region in the aperture.
3732 		 */
3733 		if (INTEL_INFO(dev)->gen < 6) {
3734 			ret = i915_gem_object_put_fence(obj);
3735 			if (ret)
3736 				return ret;
3737 		}
3738 
3739 		list_for_each_entry(vma, &obj->vma_list, vma_link)
3740 			if (drm_mm_node_allocated(&vma->node))
3741 				vma->bind_vma(vma, cache_level,
3742 					      obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3743 	}
3744 
3745 	list_for_each_entry(vma, &obj->vma_list, vma_link)
3746 		vma->node.color = cache_level;
3747 	obj->cache_level = cache_level;
3748 
3749 	if (cpu_write_needs_clflush(obj)) {
3750 		u32 old_read_domains, old_write_domain;
3751 
3752 		/* If we're coming from LLC cached, then we haven't
3753 		 * actually been tracking whether the data is in the
3754 		 * CPU cache or not, since we only allow one bit set
3755 		 * in obj->write_domain and have been skipping the clflushes.
3756 		 * Just set it to the CPU cache for now.
3757 		 */
3758 		i915_gem_object_retire(obj);
3759 		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3760 
3761 		old_read_domains = obj->base.read_domains;
3762 		old_write_domain = obj->base.write_domain;
3763 
3764 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3765 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3766 
3767 		trace_i915_gem_object_change_domain(obj,
3768 						    old_read_domains,
3769 						    old_write_domain);
3770 	}
3771 
3772 	i915_gem_verify_gtt(dev);
3773 	return 0;
3774 }
3775 
3776 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3777 			       struct drm_file *file)
3778 {
3779 	struct drm_i915_gem_caching *args = data;
3780 	struct drm_i915_gem_object *obj;
3781 	int ret;
3782 
3783 	ret = i915_mutex_lock_interruptible(dev);
3784 	if (ret)
3785 		return ret;
3786 
3787 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3788 	if (&obj->base == NULL) {
3789 		ret = -ENOENT;
3790 		goto unlock;
3791 	}
3792 
3793 	switch (obj->cache_level) {
3794 	case I915_CACHE_LLC:
3795 	case I915_CACHE_L3_LLC:
3796 		args->caching = I915_CACHING_CACHED;
3797 		break;
3798 
3799 	case I915_CACHE_WT:
3800 		args->caching = I915_CACHING_DISPLAY;
3801 		break;
3802 
3803 	default:
3804 		args->caching = I915_CACHING_NONE;
3805 		break;
3806 	}
3807 
3808 	drm_gem_object_unreference(&obj->base);
3809 unlock:
3810 	mutex_unlock(&dev->struct_mutex);
3811 	return ret;
3812 }
3813 
3814 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3815 			       struct drm_file *file)
3816 {
3817 	struct drm_i915_gem_caching *args = data;
3818 	struct drm_i915_gem_object *obj;
3819 	enum i915_cache_level level;
3820 	int ret;
3821 
3822 	switch (args->caching) {
3823 	case I915_CACHING_NONE:
3824 		level = I915_CACHE_NONE;
3825 		break;
3826 	case I915_CACHING_CACHED:
3827 		level = I915_CACHE_LLC;
3828 		break;
3829 	case I915_CACHING_DISPLAY:
3830 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3831 		break;
3832 	default:
3833 		return -EINVAL;
3834 	}
3835 
3836 	ret = i915_mutex_lock_interruptible(dev);
3837 	if (ret)
3838 		return ret;
3839 
3840 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3841 	if (&obj->base == NULL) {
3842 		ret = -ENOENT;
3843 		goto unlock;
3844 	}
3845 
3846 	ret = i915_gem_object_set_cache_level(obj, level);
3847 
3848 	drm_gem_object_unreference(&obj->base);
3849 unlock:
3850 	mutex_unlock(&dev->struct_mutex);
3851 	return ret;
3852 }
3853 
3854 static bool is_pin_display(struct drm_i915_gem_object *obj)
3855 {
3856 	struct i915_vma *vma;
3857 
3858 	vma = i915_gem_obj_to_ggtt(obj);
3859 	if (!vma)
3860 		return false;
3861 
3862 	/* There are 3 sources that pin objects:
3863 	 *   1. The display engine (scanouts, sprites, cursors);
3864 	 *   2. Reservations for execbuffer;
3865 	 *   3. The user.
3866 	 *
3867 	 * We can ignore reservations as we hold the struct_mutex and
3868 	 * are only called outside of the reservation path.  The user
3869 	 * can only increment pin_count once, and so if after
3870 	 * subtracting the potential reference by the user, any pin_count
3871 	 * remains, it must be due to another use by the display engine.
3872 	 */
3873 	return vma->pin_count - !!obj->user_pin_count;
3874 }
3875 
3876 /*
3877  * Prepare buffer for display plane (scanout, cursors, etc).
3878  * Can be called from an uninterruptible phase (modesetting) and allows
3879  * any flushes to be pipelined (for pageflips).
3880  */
3881 int
3882 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3883 				     u32 alignment,
3884 				     struct intel_engine_cs *pipelined)
3885 {
3886 	u32 old_read_domains, old_write_domain;
3887 	bool was_pin_display;
3888 	int ret;
3889 
3890 	if (pipelined != obj->ring) {
3891 		ret = i915_gem_object_sync(obj, pipelined);
3892 		if (ret)
3893 			return ret;
3894 	}
3895 
3896 	/* Mark the pin_display early so that we account for the
3897 	 * display coherency whilst setting up the cache domains.
3898 	 */
3899 	was_pin_display = obj->pin_display;
3900 	obj->pin_display = true;
3901 
3902 	/* The display engine is not coherent with the LLC cache on gen6.  As
3903 	 * a result, we make sure that the pinning that is about to occur is
3904 	 * done with uncached PTEs. This is lowest common denominator for all
3905 	 * chipsets.
3906 	 *
3907 	 * However for gen6+, we could do better by using the GFDT bit instead
3908 	 * of uncaching, which would allow us to flush all the LLC-cached data
3909 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3910 	 */
3911 	ret = i915_gem_object_set_cache_level(obj,
3912 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3913 	if (ret)
3914 		goto err_unpin_display;
3915 
3916 	/* As the user may map the buffer once pinned in the display plane
3917 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3918 	 * always use map_and_fenceable for all scanout buffers.
3919 	 */
3920 	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3921 	if (ret)
3922 		goto err_unpin_display;
3923 
3924 	i915_gem_object_flush_cpu_write_domain(obj, true);
3925 
3926 	old_write_domain = obj->base.write_domain;
3927 	old_read_domains = obj->base.read_domains;
3928 
3929 	/* It should now be out of any other write domains, and we can update
3930 	 * the domain values for our changes.
3931 	 */
3932 	obj->base.write_domain = 0;
3933 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3934 
3935 	trace_i915_gem_object_change_domain(obj,
3936 					    old_read_domains,
3937 					    old_write_domain);
3938 
3939 	return 0;
3940 
3941 err_unpin_display:
3942 	WARN_ON(was_pin_display != is_pin_display(obj));
3943 	obj->pin_display = was_pin_display;
3944 	return ret;
3945 }
3946 
3947 void
3948 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3949 {
3950 	i915_gem_object_ggtt_unpin(obj);
3951 	obj->pin_display = is_pin_display(obj);
3952 }
3953 
3954 int
3955 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3956 {
3957 	int ret;
3958 
3959 	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3960 		return 0;
3961 
3962 	ret = i915_gem_object_wait_rendering(obj, false);
3963 	if (ret)
3964 		return ret;
3965 
3966 	/* Ensure that we invalidate the GPU's caches and TLBs. */
3967 	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3968 	return 0;
3969 }
3970 
3971 /**
3972  * Moves a single object to the CPU read, and possibly write domain.
3973  *
3974  * This function returns when the move is complete, including waiting on
3975  * flushes to occur.
3976  */
3977 int
3978 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3979 {
3980 	uint32_t old_write_domain, old_read_domains;
3981 	int ret;
3982 
3983 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3984 		return 0;
3985 
3986 	ret = i915_gem_object_wait_rendering(obj, !write);
3987 	if (ret)
3988 		return ret;
3989 
3990 	i915_gem_object_retire(obj);
3991 	i915_gem_object_flush_gtt_write_domain(obj);
3992 
3993 	old_write_domain = obj->base.write_domain;
3994 	old_read_domains = obj->base.read_domains;
3995 
3996 	/* Flush the CPU cache if it's still invalid. */
3997 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3998 		i915_gem_clflush_object(obj, false);
3999 
4000 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4001 	}
4002 
4003 	/* It should now be out of any other write domains, and we can update
4004 	 * the domain values for our changes.
4005 	 */
4006 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4007 
4008 	/* If we're writing through the CPU, then the GPU read domains will
4009 	 * need to be invalidated at next use.
4010 	 */
4011 	if (write) {
4012 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4013 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4014 	}
4015 
4016 	if (write)
4017 		intel_fb_obj_invalidate(obj, NULL);
4018 
4019 	trace_i915_gem_object_change_domain(obj,
4020 					    old_read_domains,
4021 					    old_write_domain);
4022 
4023 	return 0;
4024 }
4025 
4026 /* Throttle our rendering by waiting until the ring has completed our requests
4027  * emitted over 20 msec ago.
4028  *
4029  * Note that if we were to use the current jiffies each time around the loop,
4030  * we wouldn't escape the function with any frames outstanding if the time to
4031  * render a frame was over 20ms.
4032  *
4033  * This should get us reasonable parallelism between CPU and GPU but also
4034  * relatively low latency when blocking on a particular request to finish.
4035  */
4036 static int
4037 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4038 {
4039 	struct drm_i915_private *dev_priv = dev->dev_private;
4040 	struct drm_i915_file_private *file_priv = file->driver_priv;
4041 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4042 	struct drm_i915_gem_request *request;
4043 	struct intel_engine_cs *ring = NULL;
4044 	unsigned reset_counter;
4045 	u32 seqno = 0;
4046 	int ret;
4047 
4048 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4049 	if (ret)
4050 		return ret;
4051 
4052 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4053 	if (ret)
4054 		return ret;
4055 
4056 	spin_lock(&file_priv->mm.lock);
4057 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4058 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4059 			break;
4060 
4061 		ring = request->ring;
4062 		seqno = request->seqno;
4063 	}
4064 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4065 	spin_unlock(&file_priv->mm.lock);
4066 
4067 	if (seqno == 0)
4068 		return 0;
4069 
4070 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4071 	if (ret == 0)
4072 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4073 
4074 	return ret;
4075 }
4076 
4077 static bool
4078 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4079 {
4080 	struct drm_i915_gem_object *obj = vma->obj;
4081 
4082 	if (alignment &&
4083 	    vma->node.start & (alignment - 1))
4084 		return true;
4085 
4086 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4087 		return true;
4088 
4089 	if (flags & PIN_OFFSET_BIAS &&
4090 	    vma->node.start < (flags & PIN_OFFSET_MASK))
4091 		return true;
4092 
4093 	return false;
4094 }
4095 
4096 int
4097 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4098 		    struct i915_address_space *vm,
4099 		    uint32_t alignment,
4100 		    uint64_t flags)
4101 {
4102 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4103 	struct i915_vma *vma;
4104 	int ret;
4105 
4106 	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4107 		return -ENODEV;
4108 
4109 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4110 		return -EINVAL;
4111 
4112 	vma = i915_gem_obj_to_vma(obj, vm);
4113 	if (vma) {
4114 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4115 			return -EBUSY;
4116 
4117 		if (i915_vma_misplaced(vma, alignment, flags)) {
4118 			WARN(vma->pin_count,
4119 			     "bo is already pinned with incorrect alignment:"
4120 			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4121 			     " obj->map_and_fenceable=%d\n",
4122 			     i915_gem_obj_offset(obj, vm), alignment,
4123 			     !!(flags & PIN_MAPPABLE),
4124 			     obj->map_and_fenceable);
4125 			ret = i915_vma_unbind(vma);
4126 			if (ret)
4127 				return ret;
4128 
4129 			vma = NULL;
4130 		}
4131 	}
4132 
4133 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4134 		vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4135 		if (IS_ERR(vma))
4136 			return PTR_ERR(vma);
4137 	}
4138 
4139 	if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4140 		vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4141 
4142 	vma->pin_count++;
4143 	if (flags & PIN_MAPPABLE)
4144 		obj->pin_mappable |= true;
4145 
4146 	return 0;
4147 }
4148 
4149 void
4150 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4151 {
4152 	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4153 
4154 	BUG_ON(!vma);
4155 	BUG_ON(vma->pin_count == 0);
4156 	BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4157 
4158 	if (--vma->pin_count == 0)
4159 		obj->pin_mappable = false;
4160 }
4161 
4162 bool
4163 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4164 {
4165 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
4166 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4167 		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4168 
4169 		WARN_ON(!ggtt_vma ||
4170 			dev_priv->fence_regs[obj->fence_reg].pin_count >
4171 			ggtt_vma->pin_count);
4172 		dev_priv->fence_regs[obj->fence_reg].pin_count++;
4173 		return true;
4174 	} else
4175 		return false;
4176 }
4177 
4178 void
4179 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4180 {
4181 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
4182 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4183 		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4184 		dev_priv->fence_regs[obj->fence_reg].pin_count--;
4185 	}
4186 }
4187 
4188 int
4189 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4190 		   struct drm_file *file)
4191 {
4192 	struct drm_i915_gem_pin *args = data;
4193 	struct drm_i915_gem_object *obj;
4194 	int ret;
4195 
4196 	if (INTEL_INFO(dev)->gen >= 6)
4197 		return -ENODEV;
4198 
4199 	ret = i915_mutex_lock_interruptible(dev);
4200 	if (ret)
4201 		return ret;
4202 
4203 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4204 	if (&obj->base == NULL) {
4205 		ret = -ENOENT;
4206 		goto unlock;
4207 	}
4208 
4209 	if (obj->madv != I915_MADV_WILLNEED) {
4210 		DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4211 		ret = -EFAULT;
4212 		goto out;
4213 	}
4214 
4215 	if (obj->pin_filp != NULL && obj->pin_filp != file) {
4216 		DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4217 			  args->handle);
4218 		ret = -EINVAL;
4219 		goto out;
4220 	}
4221 
4222 	if (obj->user_pin_count == ULONG_MAX) {
4223 		ret = -EBUSY;
4224 		goto out;
4225 	}
4226 
4227 	if (obj->user_pin_count == 0) {
4228 		ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4229 		if (ret)
4230 			goto out;
4231 	}
4232 
4233 	obj->user_pin_count++;
4234 	obj->pin_filp = file;
4235 
4236 	args->offset = i915_gem_obj_ggtt_offset(obj);
4237 out:
4238 	drm_gem_object_unreference(&obj->base);
4239 unlock:
4240 	mutex_unlock(&dev->struct_mutex);
4241 	return ret;
4242 }
4243 
4244 int
4245 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4246 		     struct drm_file *file)
4247 {
4248 	struct drm_i915_gem_pin *args = data;
4249 	struct drm_i915_gem_object *obj;
4250 	int ret;
4251 
4252 	ret = i915_mutex_lock_interruptible(dev);
4253 	if (ret)
4254 		return ret;
4255 
4256 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4257 	if (&obj->base == NULL) {
4258 		ret = -ENOENT;
4259 		goto unlock;
4260 	}
4261 
4262 	if (obj->pin_filp != file) {
4263 		DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4264 			  args->handle);
4265 		ret = -EINVAL;
4266 		goto out;
4267 	}
4268 	obj->user_pin_count--;
4269 	if (obj->user_pin_count == 0) {
4270 		obj->pin_filp = NULL;
4271 		i915_gem_object_ggtt_unpin(obj);
4272 	}
4273 
4274 out:
4275 	drm_gem_object_unreference(&obj->base);
4276 unlock:
4277 	mutex_unlock(&dev->struct_mutex);
4278 	return ret;
4279 }
4280 
4281 int
4282 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4283 		    struct drm_file *file)
4284 {
4285 	struct drm_i915_gem_busy *args = data;
4286 	struct drm_i915_gem_object *obj;
4287 	int ret;
4288 
4289 	ret = i915_mutex_lock_interruptible(dev);
4290 	if (ret)
4291 		return ret;
4292 
4293 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4294 	if (&obj->base == NULL) {
4295 		ret = -ENOENT;
4296 		goto unlock;
4297 	}
4298 
4299 	/* Count all active objects as busy, even if they are currently not used
4300 	 * by the gpu. Users of this interface expect objects to eventually
4301 	 * become non-busy without any further actions, therefore emit any
4302 	 * necessary flushes here.
4303 	 */
4304 	ret = i915_gem_object_flush_active(obj);
4305 
4306 	args->busy = obj->active;
4307 	if (obj->ring) {
4308 		BUILD_BUG_ON(I915_NUM_RINGS > 16);
4309 		args->busy |= intel_ring_flag(obj->ring) << 16;
4310 	}
4311 
4312 	drm_gem_object_unreference(&obj->base);
4313 unlock:
4314 	mutex_unlock(&dev->struct_mutex);
4315 	return ret;
4316 }
4317 
4318 int
4319 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4320 			struct drm_file *file_priv)
4321 {
4322 	return i915_gem_ring_throttle(dev, file_priv);
4323 }
4324 
4325 int
4326 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4327 		       struct drm_file *file_priv)
4328 {
4329 	struct drm_i915_gem_madvise *args = data;
4330 	struct drm_i915_gem_object *obj;
4331 	int ret;
4332 
4333 	switch (args->madv) {
4334 	case I915_MADV_DONTNEED:
4335 	case I915_MADV_WILLNEED:
4336 	    break;
4337 	default:
4338 	    return -EINVAL;
4339 	}
4340 
4341 	ret = i915_mutex_lock_interruptible(dev);
4342 	if (ret)
4343 		return ret;
4344 
4345 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4346 	if (&obj->base == NULL) {
4347 		ret = -ENOENT;
4348 		goto unlock;
4349 	}
4350 
4351 	if (i915_gem_obj_is_pinned(obj)) {
4352 		ret = -EINVAL;
4353 		goto out;
4354 	}
4355 
4356 	if (obj->madv != __I915_MADV_PURGED)
4357 		obj->madv = args->madv;
4358 
4359 	/* if the object is no longer attached, discard its backing storage */
4360 	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4361 		i915_gem_object_truncate(obj);
4362 
4363 	args->retained = obj->madv != __I915_MADV_PURGED;
4364 
4365 out:
4366 	drm_gem_object_unreference(&obj->base);
4367 unlock:
4368 	mutex_unlock(&dev->struct_mutex);
4369 	return ret;
4370 }
4371 
4372 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4373 			  const struct drm_i915_gem_object_ops *ops)
4374 {
4375 	INIT_LIST_HEAD(&obj->global_list);
4376 	INIT_LIST_HEAD(&obj->ring_list);
4377 	INIT_LIST_HEAD(&obj->obj_exec_link);
4378 	INIT_LIST_HEAD(&obj->vma_list);
4379 
4380 	obj->ops = ops;
4381 
4382 	obj->fence_reg = I915_FENCE_REG_NONE;
4383 	obj->madv = I915_MADV_WILLNEED;
4384 
4385 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4386 }
4387 
4388 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4389 	.get_pages = i915_gem_object_get_pages_gtt,
4390 	.put_pages = i915_gem_object_put_pages_gtt,
4391 };
4392 
4393 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4394 						  size_t size)
4395 {
4396 	struct drm_i915_gem_object *obj;
4397 	struct address_space *mapping;
4398 	gfp_t mask;
4399 
4400 	obj = i915_gem_object_alloc(dev);
4401 	if (obj == NULL)
4402 		return NULL;
4403 
4404 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4405 		i915_gem_object_free(obj);
4406 		return NULL;
4407 	}
4408 
4409 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4410 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4411 		/* 965gm cannot relocate objects above 4GiB. */
4412 		mask &= ~__GFP_HIGHMEM;
4413 		mask |= __GFP_DMA32;
4414 	}
4415 
4416 	mapping = file_inode(obj->base.filp)->i_mapping;
4417 	mapping_set_gfp_mask(mapping, mask);
4418 
4419 	i915_gem_object_init(obj, &i915_gem_object_ops);
4420 
4421 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4422 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4423 
4424 	if (HAS_LLC(dev)) {
4425 		/* On some devices, we can have the GPU use the LLC (the CPU
4426 		 * cache) for about a 10% performance improvement
4427 		 * compared to uncached.  Graphics requests other than
4428 		 * display scanout are coherent with the CPU in
4429 		 * accessing this cache.  This means in this mode we
4430 		 * don't need to clflush on the CPU side, and on the
4431 		 * GPU side we only need to flush internal caches to
4432 		 * get data visible to the CPU.
4433 		 *
4434 		 * However, we maintain the display planes as UC, and so
4435 		 * need to rebind when first used as such.
4436 		 */
4437 		obj->cache_level = I915_CACHE_LLC;
4438 	} else
4439 		obj->cache_level = I915_CACHE_NONE;
4440 
4441 	trace_i915_gem_object_create(obj);
4442 
4443 	return obj;
4444 }
4445 
4446 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4447 {
4448 	/* If we are the last user of the backing storage (be it shmemfs
4449 	 * pages or stolen etc), we know that the pages are going to be
4450 	 * immediately released. In this case, we can then skip copying
4451 	 * back the contents from the GPU.
4452 	 */
4453 
4454 	if (obj->madv != I915_MADV_WILLNEED)
4455 		return false;
4456 
4457 	if (obj->base.filp == NULL)
4458 		return true;
4459 
4460 	/* At first glance, this looks racy, but then again so would be
4461 	 * userspace racing mmap against close. However, the first external
4462 	 * reference to the filp can only be obtained through the
4463 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4464 	 * acquiring such a reference whilst we are in the middle of
4465 	 * freeing the object.
4466 	 */
4467 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4468 }
4469 
4470 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4471 {
4472 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4473 	struct drm_device *dev = obj->base.dev;
4474 	struct drm_i915_private *dev_priv = dev->dev_private;
4475 	struct i915_vma *vma, *next;
4476 
4477 	intel_runtime_pm_get(dev_priv);
4478 
4479 	trace_i915_gem_object_destroy(obj);
4480 
4481 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4482 		int ret;
4483 
4484 		vma->pin_count = 0;
4485 		ret = i915_vma_unbind(vma);
4486 		if (WARN_ON(ret == -ERESTARTSYS)) {
4487 			bool was_interruptible;
4488 
4489 			was_interruptible = dev_priv->mm.interruptible;
4490 			dev_priv->mm.interruptible = false;
4491 
4492 			WARN_ON(i915_vma_unbind(vma));
4493 
4494 			dev_priv->mm.interruptible = was_interruptible;
4495 		}
4496 	}
4497 
4498 	i915_gem_object_detach_phys(obj);
4499 
4500 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4501 	 * before progressing. */
4502 	if (obj->stolen)
4503 		i915_gem_object_unpin_pages(obj);
4504 
4505 	WARN_ON(obj->frontbuffer_bits);
4506 
4507 	if (WARN_ON(obj->pages_pin_count))
4508 		obj->pages_pin_count = 0;
4509 	if (discard_backing_storage(obj))
4510 		obj->madv = I915_MADV_DONTNEED;
4511 	i915_gem_object_put_pages(obj);
4512 	i915_gem_object_free_mmap_offset(obj);
4513 
4514 	BUG_ON(obj->pages);
4515 
4516 	if (obj->base.import_attach)
4517 		drm_prime_gem_destroy(&obj->base, NULL);
4518 
4519 	if (obj->ops->release)
4520 		obj->ops->release(obj);
4521 
4522 	drm_gem_object_release(&obj->base);
4523 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4524 
4525 	kfree(obj->bit_17);
4526 	i915_gem_object_free(obj);
4527 
4528 	intel_runtime_pm_put(dev_priv);
4529 }
4530 
4531 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4532 				     struct i915_address_space *vm)
4533 {
4534 	struct i915_vma *vma;
4535 	list_for_each_entry(vma, &obj->vma_list, vma_link)
4536 		if (vma->vm == vm)
4537 			return vma;
4538 
4539 	return NULL;
4540 }
4541 
4542 void i915_gem_vma_destroy(struct i915_vma *vma)
4543 {
4544 	struct i915_address_space *vm = NULL;
4545 	WARN_ON(vma->node.allocated);
4546 
4547 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4548 	if (!list_empty(&vma->exec_list))
4549 		return;
4550 
4551 	vm = vma->vm;
4552 
4553 	if (!i915_is_ggtt(vm))
4554 		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4555 
4556 	list_del(&vma->vma_link);
4557 
4558 	kfree(vma);
4559 }
4560 
4561 static void
4562 i915_gem_stop_ringbuffers(struct drm_device *dev)
4563 {
4564 	struct drm_i915_private *dev_priv = dev->dev_private;
4565 	struct intel_engine_cs *ring;
4566 	int i;
4567 
4568 	for_each_ring(ring, dev_priv, i)
4569 		dev_priv->gt.stop_ring(ring);
4570 }
4571 
4572 int
4573 i915_gem_suspend(struct drm_device *dev)
4574 {
4575 	struct drm_i915_private *dev_priv = dev->dev_private;
4576 	int ret = 0;
4577 
4578 	mutex_lock(&dev->struct_mutex);
4579 	if (dev_priv->ums.mm_suspended)
4580 		goto err;
4581 
4582 	ret = i915_gpu_idle(dev);
4583 	if (ret)
4584 		goto err;
4585 
4586 	i915_gem_retire_requests(dev);
4587 
4588 	/* Under UMS, be paranoid and evict. */
4589 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4590 		i915_gem_evict_everything(dev);
4591 
4592 	i915_kernel_lost_context(dev);
4593 	i915_gem_stop_ringbuffers(dev);
4594 
4595 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
4596 	 * We need to replace this with a semaphore, or something.
4597 	 * And not confound ums.mm_suspended!
4598 	 */
4599 	dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4600 							     DRIVER_MODESET);
4601 	mutex_unlock(&dev->struct_mutex);
4602 
4603 	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4604 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4605 	flush_delayed_work(&dev_priv->mm.idle_work);
4606 
4607 	return 0;
4608 
4609 err:
4610 	mutex_unlock(&dev->struct_mutex);
4611 	return ret;
4612 }
4613 
4614 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4615 {
4616 	struct drm_device *dev = ring->dev;
4617 	struct drm_i915_private *dev_priv = dev->dev_private;
4618 	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4619 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4620 	int i, ret;
4621 
4622 	if (!HAS_L3_DPF(dev) || !remap_info)
4623 		return 0;
4624 
4625 	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4626 	if (ret)
4627 		return ret;
4628 
4629 	/*
4630 	 * Note: We do not worry about the concurrent register cacheline hang
4631 	 * here because no other code should access these registers other than
4632 	 * at initialization time.
4633 	 */
4634 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4635 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4636 		intel_ring_emit(ring, reg_base + i);
4637 		intel_ring_emit(ring, remap_info[i/4]);
4638 	}
4639 
4640 	intel_ring_advance(ring);
4641 
4642 	return ret;
4643 }
4644 
4645 void i915_gem_init_swizzling(struct drm_device *dev)
4646 {
4647 	struct drm_i915_private *dev_priv = dev->dev_private;
4648 
4649 	if (INTEL_INFO(dev)->gen < 5 ||
4650 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4651 		return;
4652 
4653 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4654 				 DISP_TILE_SURFACE_SWIZZLING);
4655 
4656 	if (IS_GEN5(dev))
4657 		return;
4658 
4659 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4660 	if (IS_GEN6(dev))
4661 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4662 	else if (IS_GEN7(dev))
4663 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4664 	else if (IS_GEN8(dev))
4665 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4666 	else
4667 		BUG();
4668 }
4669 
4670 static bool
4671 intel_enable_blt(struct drm_device *dev)
4672 {
4673 	if (!HAS_BLT(dev))
4674 		return false;
4675 
4676 	/* The blitter was dysfunctional on early prototypes */
4677 	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4678 		DRM_INFO("BLT not supported on this pre-production hardware;"
4679 			 " graphics performance will be degraded.\n");
4680 		return false;
4681 	}
4682 
4683 	return true;
4684 }
4685 
4686 static void init_unused_ring(struct drm_device *dev, u32 base)
4687 {
4688 	struct drm_i915_private *dev_priv = dev->dev_private;
4689 
4690 	I915_WRITE(RING_CTL(base), 0);
4691 	I915_WRITE(RING_HEAD(base), 0);
4692 	I915_WRITE(RING_TAIL(base), 0);
4693 	I915_WRITE(RING_START(base), 0);
4694 }
4695 
4696 static void init_unused_rings(struct drm_device *dev)
4697 {
4698 	if (IS_I830(dev)) {
4699 		init_unused_ring(dev, PRB1_BASE);
4700 		init_unused_ring(dev, SRB0_BASE);
4701 		init_unused_ring(dev, SRB1_BASE);
4702 		init_unused_ring(dev, SRB2_BASE);
4703 		init_unused_ring(dev, SRB3_BASE);
4704 	} else if (IS_GEN2(dev)) {
4705 		init_unused_ring(dev, SRB0_BASE);
4706 		init_unused_ring(dev, SRB1_BASE);
4707 	} else if (IS_GEN3(dev)) {
4708 		init_unused_ring(dev, PRB1_BASE);
4709 		init_unused_ring(dev, PRB2_BASE);
4710 	}
4711 }
4712 
4713 int i915_gem_init_rings(struct drm_device *dev)
4714 {
4715 	struct drm_i915_private *dev_priv = dev->dev_private;
4716 	int ret;
4717 
4718 	/*
4719 	 * At least 830 can leave some of the unused rings
4720 	 * "active" (ie. head != tail) after resume which
4721 	 * will prevent c3 entry. Makes sure all unused rings
4722 	 * are totally idle.
4723 	 */
4724 	init_unused_rings(dev);
4725 
4726 	ret = intel_init_render_ring_buffer(dev);
4727 	if (ret)
4728 		return ret;
4729 
4730 	if (HAS_BSD(dev)) {
4731 		ret = intel_init_bsd_ring_buffer(dev);
4732 		if (ret)
4733 			goto cleanup_render_ring;
4734 	}
4735 
4736 	if (intel_enable_blt(dev)) {
4737 		ret = intel_init_blt_ring_buffer(dev);
4738 		if (ret)
4739 			goto cleanup_bsd_ring;
4740 	}
4741 
4742 	if (HAS_VEBOX(dev)) {
4743 		ret = intel_init_vebox_ring_buffer(dev);
4744 		if (ret)
4745 			goto cleanup_blt_ring;
4746 	}
4747 
4748 	if (HAS_BSD2(dev)) {
4749 		ret = intel_init_bsd2_ring_buffer(dev);
4750 		if (ret)
4751 			goto cleanup_vebox_ring;
4752 	}
4753 
4754 	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4755 	if (ret)
4756 		goto cleanup_bsd2_ring;
4757 
4758 	return 0;
4759 
4760 cleanup_bsd2_ring:
4761 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4762 cleanup_vebox_ring:
4763 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4764 cleanup_blt_ring:
4765 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4766 cleanup_bsd_ring:
4767 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4768 cleanup_render_ring:
4769 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4770 
4771 	return ret;
4772 }
4773 
4774 int
4775 i915_gem_init_hw(struct drm_device *dev)
4776 {
4777 	struct drm_i915_private *dev_priv = dev->dev_private;
4778 	int ret, i;
4779 
4780 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4781 		return -EIO;
4782 
4783 	if (dev_priv->ellc_size)
4784 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4785 
4786 	if (IS_HASWELL(dev))
4787 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4788 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4789 
4790 	if (HAS_PCH_NOP(dev)) {
4791 		if (IS_IVYBRIDGE(dev)) {
4792 			u32 temp = I915_READ(GEN7_MSG_CTL);
4793 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4794 			I915_WRITE(GEN7_MSG_CTL, temp);
4795 		} else if (INTEL_INFO(dev)->gen >= 7) {
4796 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4797 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4798 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4799 		}
4800 	}
4801 
4802 	i915_gem_init_swizzling(dev);
4803 
4804 	ret = dev_priv->gt.init_rings(dev);
4805 	if (ret)
4806 		return ret;
4807 
4808 	for (i = 0; i < NUM_L3_SLICES(dev); i++)
4809 		i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4810 
4811 	/*
4812 	 * XXX: Contexts should only be initialized once. Doing a switch to the
4813 	 * default context switch however is something we'd like to do after
4814 	 * reset or thaw (the latter may not actually be necessary for HW, but
4815 	 * goes with our code better). Context switching requires rings (for
4816 	 * the do_switch), but before enabling PPGTT. So don't move this.
4817 	 */
4818 	ret = i915_gem_context_enable(dev_priv);
4819 	if (ret && ret != -EIO) {
4820 		DRM_ERROR("Context enable failed %d\n", ret);
4821 		i915_gem_cleanup_ringbuffer(dev);
4822 
4823 		return ret;
4824 	}
4825 
4826 	ret = i915_ppgtt_init_hw(dev);
4827 	if (ret && ret != -EIO) {
4828 		DRM_ERROR("PPGTT enable failed %d\n", ret);
4829 		i915_gem_cleanup_ringbuffer(dev);
4830 	}
4831 
4832 	return ret;
4833 }
4834 
4835 int i915_gem_init(struct drm_device *dev)
4836 {
4837 	struct drm_i915_private *dev_priv = dev->dev_private;
4838 	int ret;
4839 
4840 	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4841 			i915.enable_execlists);
4842 
4843 	mutex_lock(&dev->struct_mutex);
4844 
4845 	if (IS_VALLEYVIEW(dev)) {
4846 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4847 		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4848 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4849 			      VLV_GTLC_ALLOWWAKEACK), 10))
4850 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4851 	}
4852 
4853 	if (!i915.enable_execlists) {
4854 		dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4855 		dev_priv->gt.init_rings = i915_gem_init_rings;
4856 		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4857 		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4858 	} else {
4859 		dev_priv->gt.do_execbuf = intel_execlists_submission;
4860 		dev_priv->gt.init_rings = intel_logical_rings_init;
4861 		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4862 		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4863 	}
4864 
4865 	ret = i915_gem_init_userptr(dev);
4866 	if (ret) {
4867 		mutex_unlock(&dev->struct_mutex);
4868 		return ret;
4869 	}
4870 
4871 	i915_gem_init_global_gtt(dev);
4872 
4873 	ret = i915_gem_context_init(dev);
4874 	if (ret) {
4875 		mutex_unlock(&dev->struct_mutex);
4876 		return ret;
4877 	}
4878 
4879 	ret = i915_gem_init_hw(dev);
4880 	if (ret == -EIO) {
4881 		/* Allow ring initialisation to fail by marking the GPU as
4882 		 * wedged. But we only want to do this where the GPU is angry,
4883 		 * for all other failure, such as an allocation failure, bail.
4884 		 */
4885 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4886 		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4887 		ret = 0;
4888 	}
4889 	mutex_unlock(&dev->struct_mutex);
4890 
4891 	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4892 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4893 		dev_priv->dri1.allow_batchbuffer = 1;
4894 	return ret;
4895 }
4896 
4897 void
4898 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4899 {
4900 	struct drm_i915_private *dev_priv = dev->dev_private;
4901 	struct intel_engine_cs *ring;
4902 	int i;
4903 
4904 	for_each_ring(ring, dev_priv, i)
4905 		dev_priv->gt.cleanup_ring(ring);
4906 }
4907 
4908 int
4909 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4910 		       struct drm_file *file_priv)
4911 {
4912 	struct drm_i915_private *dev_priv = dev->dev_private;
4913 	int ret;
4914 
4915 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4916 		return 0;
4917 
4918 	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4919 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4920 		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4921 	}
4922 
4923 	mutex_lock(&dev->struct_mutex);
4924 	dev_priv->ums.mm_suspended = 0;
4925 
4926 	ret = i915_gem_init_hw(dev);
4927 	if (ret != 0) {
4928 		mutex_unlock(&dev->struct_mutex);
4929 		return ret;
4930 	}
4931 
4932 	BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4933 
4934 	ret = drm_irq_install(dev, dev->pdev->irq);
4935 	if (ret)
4936 		goto cleanup_ringbuffer;
4937 	mutex_unlock(&dev->struct_mutex);
4938 
4939 	return 0;
4940 
4941 cleanup_ringbuffer:
4942 	i915_gem_cleanup_ringbuffer(dev);
4943 	dev_priv->ums.mm_suspended = 1;
4944 	mutex_unlock(&dev->struct_mutex);
4945 
4946 	return ret;
4947 }
4948 
4949 int
4950 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4951 		       struct drm_file *file_priv)
4952 {
4953 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4954 		return 0;
4955 
4956 	mutex_lock(&dev->struct_mutex);
4957 	drm_irq_uninstall(dev);
4958 	mutex_unlock(&dev->struct_mutex);
4959 
4960 	return i915_gem_suspend(dev);
4961 }
4962 
4963 void
4964 i915_gem_lastclose(struct drm_device *dev)
4965 {
4966 	int ret;
4967 
4968 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4969 		return;
4970 
4971 	ret = i915_gem_suspend(dev);
4972 	if (ret)
4973 		DRM_ERROR("failed to idle hardware: %d\n", ret);
4974 }
4975 
4976 static void
4977 init_ring_lists(struct intel_engine_cs *ring)
4978 {
4979 	INIT_LIST_HEAD(&ring->active_list);
4980 	INIT_LIST_HEAD(&ring->request_list);
4981 }
4982 
4983 void i915_init_vm(struct drm_i915_private *dev_priv,
4984 		  struct i915_address_space *vm)
4985 {
4986 	if (!i915_is_ggtt(vm))
4987 		drm_mm_init(&vm->mm, vm->start, vm->total);
4988 	vm->dev = dev_priv->dev;
4989 	INIT_LIST_HEAD(&vm->active_list);
4990 	INIT_LIST_HEAD(&vm->inactive_list);
4991 	INIT_LIST_HEAD(&vm->global_link);
4992 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
4993 }
4994 
4995 void
4996 i915_gem_load(struct drm_device *dev)
4997 {
4998 	struct drm_i915_private *dev_priv = dev->dev_private;
4999 	int i;
5000 
5001 	dev_priv->slab =
5002 		kmem_cache_create("i915_gem_object",
5003 				  sizeof(struct drm_i915_gem_object), 0,
5004 				  SLAB_HWCACHE_ALIGN,
5005 				  NULL);
5006 
5007 	INIT_LIST_HEAD(&dev_priv->vm_list);
5008 	i915_init_vm(dev_priv, &dev_priv->gtt.base);
5009 
5010 	INIT_LIST_HEAD(&dev_priv->context_list);
5011 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5012 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5013 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5014 	for (i = 0; i < I915_NUM_RINGS; i++)
5015 		init_ring_lists(&dev_priv->ring[i]);
5016 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5017 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5018 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5019 			  i915_gem_retire_work_handler);
5020 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5021 			  i915_gem_idle_work_handler);
5022 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5023 
5024 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5025 	if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
5026 		I915_WRITE(MI_ARB_STATE,
5027 			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5028 	}
5029 
5030 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5031 
5032 	/* Old X drivers will take 0-2 for front, back, depth buffers */
5033 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
5034 		dev_priv->fence_reg_start = 3;
5035 
5036 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5037 		dev_priv->num_fence_regs = 32;
5038 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5039 		dev_priv->num_fence_regs = 16;
5040 	else
5041 		dev_priv->num_fence_regs = 8;
5042 
5043 	/* Initialize fence registers to zero */
5044 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5045 	i915_gem_restore_fences(dev);
5046 
5047 	i915_gem_detect_bit_6_swizzle(dev);
5048 	init_waitqueue_head(&dev_priv->pending_flip_queue);
5049 
5050 	dev_priv->mm.interruptible = true;
5051 
5052 	dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5053 	dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5054 	dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5055 	register_shrinker(&dev_priv->mm.shrinker);
5056 
5057 	dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5058 	register_oom_notifier(&dev_priv->mm.oom_notifier);
5059 
5060 	mutex_init(&dev_priv->fb_tracking.lock);
5061 }
5062 
5063 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5064 {
5065 	struct drm_i915_file_private *file_priv = file->driver_priv;
5066 
5067 	cancel_delayed_work_sync(&file_priv->mm.idle_work);
5068 
5069 	/* Clean up our request list when the client is going away, so that
5070 	 * later retire_requests won't dereference our soon-to-be-gone
5071 	 * file_priv.
5072 	 */
5073 	spin_lock(&file_priv->mm.lock);
5074 	while (!list_empty(&file_priv->mm.request_list)) {
5075 		struct drm_i915_gem_request *request;
5076 
5077 		request = list_first_entry(&file_priv->mm.request_list,
5078 					   struct drm_i915_gem_request,
5079 					   client_list);
5080 		list_del(&request->client_list);
5081 		request->file_priv = NULL;
5082 	}
5083 	spin_unlock(&file_priv->mm.lock);
5084 }
5085 
5086 static void
5087 i915_gem_file_idle_work_handler(struct work_struct *work)
5088 {
5089 	struct drm_i915_file_private *file_priv =
5090 		container_of(work, typeof(*file_priv), mm.idle_work.work);
5091 
5092 	atomic_set(&file_priv->rps_wait_boost, false);
5093 }
5094 
5095 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5096 {
5097 	struct drm_i915_file_private *file_priv;
5098 	int ret;
5099 
5100 	DRM_DEBUG_DRIVER("\n");
5101 
5102 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5103 	if (!file_priv)
5104 		return -ENOMEM;
5105 
5106 	file->driver_priv = file_priv;
5107 	file_priv->dev_priv = dev->dev_private;
5108 	file_priv->file = file;
5109 
5110 	spin_lock_init(&file_priv->mm.lock);
5111 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5112 	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5113 			  i915_gem_file_idle_work_handler);
5114 
5115 	ret = i915_gem_context_open(dev, file);
5116 	if (ret)
5117 		kfree(file_priv);
5118 
5119 	return ret;
5120 }
5121 
5122 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5123 		       struct drm_i915_gem_object *new,
5124 		       unsigned frontbuffer_bits)
5125 {
5126 	if (old) {
5127 		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5128 		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5129 		old->frontbuffer_bits &= ~frontbuffer_bits;
5130 	}
5131 
5132 	if (new) {
5133 		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5134 		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5135 		new->frontbuffer_bits |= frontbuffer_bits;
5136 	}
5137 }
5138 
5139 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5140 {
5141 	if (!mutex_is_locked(mutex))
5142 		return false;
5143 
5144 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5145 	return mutex->owner == task;
5146 #else
5147 	/* Since UP may be pre-empted, we cannot assume that we own the lock */
5148 	return false;
5149 #endif
5150 }
5151 
5152 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5153 {
5154 	if (!mutex_trylock(&dev->struct_mutex)) {
5155 		if (!mutex_is_locked_by(&dev->struct_mutex, current))
5156 			return false;
5157 
5158 		if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5159 			return false;
5160 
5161 		*unlock = false;
5162 	} else
5163 		*unlock = true;
5164 
5165 	return true;
5166 }
5167 
5168 static int num_vma_bound(struct drm_i915_gem_object *obj)
5169 {
5170 	struct i915_vma *vma;
5171 	int count = 0;
5172 
5173 	list_for_each_entry(vma, &obj->vma_list, vma_link)
5174 		if (drm_mm_node_allocated(&vma->node))
5175 			count++;
5176 
5177 	return count;
5178 }
5179 
5180 static unsigned long
5181 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5182 {
5183 	struct drm_i915_private *dev_priv =
5184 		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5185 	struct drm_device *dev = dev_priv->dev;
5186 	struct drm_i915_gem_object *obj;
5187 	unsigned long count;
5188 	bool unlock;
5189 
5190 	if (!i915_gem_shrinker_lock(dev, &unlock))
5191 		return 0;
5192 
5193 	count = 0;
5194 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5195 		if (obj->pages_pin_count == 0)
5196 			count += obj->base.size >> PAGE_SHIFT;
5197 
5198 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5199 		if (!i915_gem_obj_is_pinned(obj) &&
5200 		    obj->pages_pin_count == num_vma_bound(obj))
5201 			count += obj->base.size >> PAGE_SHIFT;
5202 	}
5203 
5204 	if (unlock)
5205 		mutex_unlock(&dev->struct_mutex);
5206 
5207 	return count;
5208 }
5209 
5210 /* All the new VM stuff */
5211 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5212 				  struct i915_address_space *vm)
5213 {
5214 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5215 	struct i915_vma *vma;
5216 
5217 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5218 
5219 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5220 		if (vma->vm == vm)
5221 			return vma->node.start;
5222 
5223 	}
5224 	WARN(1, "%s vma for this object not found.\n",
5225 	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5226 	return -1;
5227 }
5228 
5229 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5230 			struct i915_address_space *vm)
5231 {
5232 	struct i915_vma *vma;
5233 
5234 	list_for_each_entry(vma, &o->vma_list, vma_link)
5235 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5236 			return true;
5237 
5238 	return false;
5239 }
5240 
5241 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5242 {
5243 	struct i915_vma *vma;
5244 
5245 	list_for_each_entry(vma, &o->vma_list, vma_link)
5246 		if (drm_mm_node_allocated(&vma->node))
5247 			return true;
5248 
5249 	return false;
5250 }
5251 
5252 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5253 				struct i915_address_space *vm)
5254 {
5255 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5256 	struct i915_vma *vma;
5257 
5258 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5259 
5260 	BUG_ON(list_empty(&o->vma_list));
5261 
5262 	list_for_each_entry(vma, &o->vma_list, vma_link)
5263 		if (vma->vm == vm)
5264 			return vma->node.size;
5265 
5266 	return 0;
5267 }
5268 
5269 static unsigned long
5270 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5271 {
5272 	struct drm_i915_private *dev_priv =
5273 		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5274 	struct drm_device *dev = dev_priv->dev;
5275 	unsigned long freed;
5276 	bool unlock;
5277 
5278 	if (!i915_gem_shrinker_lock(dev, &unlock))
5279 		return SHRINK_STOP;
5280 
5281 	freed = i915_gem_shrink(dev_priv,
5282 				sc->nr_to_scan,
5283 				I915_SHRINK_BOUND |
5284 				I915_SHRINK_UNBOUND |
5285 				I915_SHRINK_PURGEABLE);
5286 	if (freed < sc->nr_to_scan)
5287 		freed += i915_gem_shrink(dev_priv,
5288 					 sc->nr_to_scan - freed,
5289 					 I915_SHRINK_BOUND |
5290 					 I915_SHRINK_UNBOUND);
5291 	if (unlock)
5292 		mutex_unlock(&dev->struct_mutex);
5293 
5294 	return freed;
5295 }
5296 
5297 static int
5298 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5299 {
5300 	struct drm_i915_private *dev_priv =
5301 		container_of(nb, struct drm_i915_private, mm.oom_notifier);
5302 	struct drm_device *dev = dev_priv->dev;
5303 	struct drm_i915_gem_object *obj;
5304 	unsigned long timeout = msecs_to_jiffies(5000) + 1;
5305 	unsigned long pinned, bound, unbound, freed;
5306 	bool was_interruptible;
5307 	bool unlock;
5308 
5309 	while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5310 		schedule_timeout_killable(1);
5311 		if (fatal_signal_pending(current))
5312 			return NOTIFY_DONE;
5313 	}
5314 	if (timeout == 0) {
5315 		pr_err("Unable to purge GPU memory due lock contention.\n");
5316 		return NOTIFY_DONE;
5317 	}
5318 
5319 	was_interruptible = dev_priv->mm.interruptible;
5320 	dev_priv->mm.interruptible = false;
5321 
5322 	freed = i915_gem_shrink_all(dev_priv);
5323 
5324 	dev_priv->mm.interruptible = was_interruptible;
5325 
5326 	/* Because we may be allocating inside our own driver, we cannot
5327 	 * assert that there are no objects with pinned pages that are not
5328 	 * being pointed to by hardware.
5329 	 */
5330 	unbound = bound = pinned = 0;
5331 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5332 		if (!obj->base.filp) /* not backed by a freeable object */
5333 			continue;
5334 
5335 		if (obj->pages_pin_count)
5336 			pinned += obj->base.size;
5337 		else
5338 			unbound += obj->base.size;
5339 	}
5340 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5341 		if (!obj->base.filp)
5342 			continue;
5343 
5344 		if (obj->pages_pin_count)
5345 			pinned += obj->base.size;
5346 		else
5347 			bound += obj->base.size;
5348 	}
5349 
5350 	if (unlock)
5351 		mutex_unlock(&dev->struct_mutex);
5352 
5353 	pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5354 		freed, pinned);
5355 	if (unbound || bound)
5356 		pr_err("%lu and %lu bytes still available in the "
5357 		       "bound and unbound GPU page lists.\n",
5358 		       bound, unbound);
5359 
5360 	*(unsigned long *)ptr += freed;
5361 	return NOTIFY_DONE;
5362 }
5363 
5364 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5365 {
5366 	struct i915_vma *vma;
5367 
5368 	vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5369 	if (vma->vm != i915_obj_to_ggtt(obj))
5370 		return NULL;
5371 
5372 	return vma;
5373 }
5374