1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drmP.h> 29 #include <drm/drm_vma_manager.h> 30 #include <drm/i915_drm.h> 31 #include "i915_drv.h" 32 #include "i915_gem_clflush.h" 33 #include "i915_vgpu.h" 34 #include "i915_trace.h" 35 #include "intel_drv.h" 36 #include "intel_frontbuffer.h" 37 #include "intel_mocs.h" 38 #include <linux/dma-fence-array.h> 39 #include <linux/kthread.h> 40 #include <linux/reservation.h> 41 #include <linux/shmem_fs.h> 42 #include <linux/slab.h> 43 #include <linux/stop_machine.h> 44 #include <linux/swap.h> 45 #include <linux/pci.h> 46 #include <linux/dma-buf.h> 47 48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915); 49 50 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj) 51 { 52 if (obj->cache_dirty) 53 return false; 54 55 if (!obj->cache_coherent) 56 return true; 57 58 return obj->pin_display; 59 } 60 61 static int 62 insert_mappable_node(struct i915_ggtt *ggtt, 63 struct drm_mm_node *node, u32 size) 64 { 65 memset(node, 0, sizeof(*node)); 66 return drm_mm_insert_node_in_range(&ggtt->base.mm, node, 67 size, 0, I915_COLOR_UNEVICTABLE, 68 0, ggtt->mappable_end, 69 DRM_MM_INSERT_LOW); 70 } 71 72 static void 73 remove_mappable_node(struct drm_mm_node *node) 74 { 75 drm_mm_remove_node(node); 76 } 77 78 /* some bookkeeping */ 79 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, 80 u64 size) 81 { 82 spin_lock(&dev_priv->mm.object_stat_lock); 83 dev_priv->mm.object_count++; 84 dev_priv->mm.object_memory += size; 85 spin_unlock(&dev_priv->mm.object_stat_lock); 86 } 87 88 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, 89 u64 size) 90 { 91 spin_lock(&dev_priv->mm.object_stat_lock); 92 dev_priv->mm.object_count--; 93 dev_priv->mm.object_memory -= size; 94 spin_unlock(&dev_priv->mm.object_stat_lock); 95 } 96 97 static int 98 i915_gem_wait_for_error(struct i915_gpu_error *error) 99 { 100 int ret; 101 102 might_sleep(); 103 104 /* 105 * Only wait 10 seconds for the gpu reset to complete to avoid hanging 106 * userspace. If it takes that long something really bad is going on and 107 * we should simply try to bail out and fail as gracefully as possible. 108 */ 109 ret = wait_event_interruptible_timeout(error->reset_queue, 110 !i915_reset_backoff(error), 111 I915_RESET_TIMEOUT); 112 if (ret == 0) { 113 DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); 114 return -EIO; 115 } else if (ret < 0) { 116 return ret; 117 } else { 118 return 0; 119 } 120 } 121 122 int i915_mutex_lock_interruptible(struct drm_device *dev) 123 { 124 struct drm_i915_private *dev_priv = to_i915(dev); 125 int ret; 126 127 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 128 if (ret) 129 return ret; 130 131 ret = mutex_lock_interruptible(&dev->struct_mutex); 132 if (ret) 133 return ret; 134 135 return 0; 136 } 137 138 int 139 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 140 struct drm_file *file) 141 { 142 struct drm_i915_private *dev_priv = to_i915(dev); 143 struct i915_ggtt *ggtt = &dev_priv->ggtt; 144 struct drm_i915_gem_get_aperture *args = data; 145 struct i915_vma *vma; 146 u64 pinned; 147 148 pinned = ggtt->base.reserved; 149 mutex_lock(&dev->struct_mutex); 150 list_for_each_entry(vma, &ggtt->base.active_list, vm_link) 151 if (i915_vma_is_pinned(vma)) 152 pinned += vma->node.size; 153 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link) 154 if (i915_vma_is_pinned(vma)) 155 pinned += vma->node.size; 156 mutex_unlock(&dev->struct_mutex); 157 158 args->aper_size = ggtt->base.total; 159 args->aper_available_size = args->aper_size - pinned; 160 161 return 0; 162 } 163 164 static struct sg_table * 165 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj) 166 { 167 struct address_space *mapping = obj->base.filp->f_mapping; 168 drm_dma_handle_t *phys; 169 struct sg_table *st; 170 struct scatterlist *sg; 171 char *vaddr; 172 int i; 173 174 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj))) 175 return ERR_PTR(-EINVAL); 176 177 /* Always aligning to the object size, allows a single allocation 178 * to handle all possible callers, and given typical object sizes, 179 * the alignment of the buddy allocation will naturally match. 180 */ 181 phys = drm_pci_alloc(obj->base.dev, 182 obj->base.size, 183 roundup_pow_of_two(obj->base.size)); 184 if (!phys) 185 return ERR_PTR(-ENOMEM); 186 187 vaddr = phys->vaddr; 188 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 189 struct page *page; 190 char *src; 191 192 page = shmem_read_mapping_page(mapping, i); 193 if (IS_ERR(page)) { 194 st = ERR_CAST(page); 195 goto err_phys; 196 } 197 198 src = kmap_atomic(page); 199 memcpy(vaddr, src, PAGE_SIZE); 200 drm_clflush_virt_range(vaddr, PAGE_SIZE); 201 kunmap_atomic(src); 202 203 put_page(page); 204 vaddr += PAGE_SIZE; 205 } 206 207 i915_gem_chipset_flush(to_i915(obj->base.dev)); 208 209 st = kmalloc(sizeof(*st), GFP_KERNEL); 210 if (!st) { 211 st = ERR_PTR(-ENOMEM); 212 goto err_phys; 213 } 214 215 if (sg_alloc_table(st, 1, GFP_KERNEL)) { 216 kfree(st); 217 st = ERR_PTR(-ENOMEM); 218 goto err_phys; 219 } 220 221 sg = st->sgl; 222 sg->offset = 0; 223 sg->length = obj->base.size; 224 225 sg_dma_address(sg) = phys->busaddr; 226 sg_dma_len(sg) = obj->base.size; 227 228 obj->phys_handle = phys; 229 return st; 230 231 err_phys: 232 drm_pci_free(obj->base.dev, phys); 233 return st; 234 } 235 236 static void __start_cpu_write(struct drm_i915_gem_object *obj) 237 { 238 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 239 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 240 if (cpu_write_needs_clflush(obj)) 241 obj->cache_dirty = true; 242 } 243 244 static void 245 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj, 246 struct sg_table *pages, 247 bool needs_clflush) 248 { 249 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED); 250 251 if (obj->mm.madv == I915_MADV_DONTNEED) 252 obj->mm.dirty = false; 253 254 if (needs_clflush && 255 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 && 256 !obj->cache_coherent) 257 drm_clflush_sg(pages); 258 259 __start_cpu_write(obj); 260 } 261 262 static void 263 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj, 264 struct sg_table *pages) 265 { 266 __i915_gem_object_release_shmem(obj, pages, false); 267 268 if (obj->mm.dirty) { 269 struct address_space *mapping = obj->base.filp->f_mapping; 270 char *vaddr = obj->phys_handle->vaddr; 271 int i; 272 273 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 274 struct page *page; 275 char *dst; 276 277 page = shmem_read_mapping_page(mapping, i); 278 if (IS_ERR(page)) 279 continue; 280 281 dst = kmap_atomic(page); 282 drm_clflush_virt_range(vaddr, PAGE_SIZE); 283 memcpy(dst, vaddr, PAGE_SIZE); 284 kunmap_atomic(dst); 285 286 set_page_dirty(page); 287 if (obj->mm.madv == I915_MADV_WILLNEED) 288 mark_page_accessed(page); 289 put_page(page); 290 vaddr += PAGE_SIZE; 291 } 292 obj->mm.dirty = false; 293 } 294 295 sg_free_table(pages); 296 kfree(pages); 297 298 drm_pci_free(obj->base.dev, obj->phys_handle); 299 } 300 301 static void 302 i915_gem_object_release_phys(struct drm_i915_gem_object *obj) 303 { 304 i915_gem_object_unpin_pages(obj); 305 } 306 307 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = { 308 .get_pages = i915_gem_object_get_pages_phys, 309 .put_pages = i915_gem_object_put_pages_phys, 310 .release = i915_gem_object_release_phys, 311 }; 312 313 static const struct drm_i915_gem_object_ops i915_gem_object_ops; 314 315 int i915_gem_object_unbind(struct drm_i915_gem_object *obj) 316 { 317 struct i915_vma *vma; 318 LIST_HEAD(still_in_list); 319 int ret; 320 321 lockdep_assert_held(&obj->base.dev->struct_mutex); 322 323 /* Closed vma are removed from the obj->vma_list - but they may 324 * still have an active binding on the object. To remove those we 325 * must wait for all rendering to complete to the object (as unbinding 326 * must anyway), and retire the requests. 327 */ 328 ret = i915_gem_object_wait(obj, 329 I915_WAIT_INTERRUPTIBLE | 330 I915_WAIT_LOCKED | 331 I915_WAIT_ALL, 332 MAX_SCHEDULE_TIMEOUT, 333 NULL); 334 if (ret) 335 return ret; 336 337 i915_gem_retire_requests(to_i915(obj->base.dev)); 338 339 while ((vma = list_first_entry_or_null(&obj->vma_list, 340 struct i915_vma, 341 obj_link))) { 342 list_move_tail(&vma->obj_link, &still_in_list); 343 ret = i915_vma_unbind(vma); 344 if (ret) 345 break; 346 } 347 list_splice(&still_in_list, &obj->vma_list); 348 349 return ret; 350 } 351 352 static long 353 i915_gem_object_wait_fence(struct dma_fence *fence, 354 unsigned int flags, 355 long timeout, 356 struct intel_rps_client *rps) 357 { 358 struct drm_i915_gem_request *rq; 359 360 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1); 361 362 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 363 return timeout; 364 365 if (!dma_fence_is_i915(fence)) 366 return dma_fence_wait_timeout(fence, 367 flags & I915_WAIT_INTERRUPTIBLE, 368 timeout); 369 370 rq = to_request(fence); 371 if (i915_gem_request_completed(rq)) 372 goto out; 373 374 /* This client is about to stall waiting for the GPU. In many cases 375 * this is undesirable and limits the throughput of the system, as 376 * many clients cannot continue processing user input/output whilst 377 * blocked. RPS autotuning may take tens of milliseconds to respond 378 * to the GPU load and thus incurs additional latency for the client. 379 * We can circumvent that by promoting the GPU frequency to maximum 380 * before we wait. This makes the GPU throttle up much more quickly 381 * (good for benchmarks and user experience, e.g. window animations), 382 * but at a cost of spending more power processing the workload 383 * (bad for battery). Not all clients even want their results 384 * immediately and for them we should just let the GPU select its own 385 * frequency to maximise efficiency. To prevent a single client from 386 * forcing the clocks too high for the whole system, we only allow 387 * each client to waitboost once in a busy period. 388 */ 389 if (rps) { 390 if (INTEL_GEN(rq->i915) >= 6) 391 gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies); 392 else 393 rps = NULL; 394 } 395 396 timeout = i915_wait_request(rq, flags, timeout); 397 398 out: 399 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq)) 400 i915_gem_request_retire_upto(rq); 401 402 if (rps && i915_gem_request_global_seqno(rq) == intel_engine_last_submit(rq->engine)) { 403 /* The GPU is now idle and this client has stalled. 404 * Since no other client has submitted a request in the 405 * meantime, assume that this client is the only one 406 * supplying work to the GPU but is unable to keep that 407 * work supplied because it is waiting. Since the GPU is 408 * then never kept fully busy, RPS autoclocking will 409 * keep the clocks relatively low, causing further delays. 410 * Compensate by giving the synchronous client credit for 411 * a waitboost next time. 412 */ 413 spin_lock(&rq->i915->rps.client_lock); 414 list_del_init(&rps->link); 415 spin_unlock(&rq->i915->rps.client_lock); 416 } 417 418 return timeout; 419 } 420 421 static long 422 i915_gem_object_wait_reservation(struct reservation_object *resv, 423 unsigned int flags, 424 long timeout, 425 struct intel_rps_client *rps) 426 { 427 unsigned int seq = __read_seqcount_begin(&resv->seq); 428 struct dma_fence *excl; 429 bool prune_fences = false; 430 431 if (flags & I915_WAIT_ALL) { 432 struct dma_fence **shared; 433 unsigned int count, i; 434 int ret; 435 436 ret = reservation_object_get_fences_rcu(resv, 437 &excl, &count, &shared); 438 if (ret) 439 return ret; 440 441 for (i = 0; i < count; i++) { 442 timeout = i915_gem_object_wait_fence(shared[i], 443 flags, timeout, 444 rps); 445 if (timeout < 0) 446 break; 447 448 dma_fence_put(shared[i]); 449 } 450 451 for (; i < count; i++) 452 dma_fence_put(shared[i]); 453 kfree(shared); 454 455 prune_fences = count && timeout >= 0; 456 } else { 457 excl = reservation_object_get_excl_rcu(resv); 458 } 459 460 if (excl && timeout >= 0) { 461 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps); 462 prune_fences = timeout >= 0; 463 } 464 465 dma_fence_put(excl); 466 467 /* Oportunistically prune the fences iff we know they have *all* been 468 * signaled and that the reservation object has not been changed (i.e. 469 * no new fences have been added). 470 */ 471 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) { 472 if (reservation_object_trylock(resv)) { 473 if (!__read_seqcount_retry(&resv->seq, seq)) 474 reservation_object_add_excl_fence(resv, NULL); 475 reservation_object_unlock(resv); 476 } 477 } 478 479 return timeout; 480 } 481 482 static void __fence_set_priority(struct dma_fence *fence, int prio) 483 { 484 struct drm_i915_gem_request *rq; 485 struct intel_engine_cs *engine; 486 487 if (!dma_fence_is_i915(fence)) 488 return; 489 490 rq = to_request(fence); 491 engine = rq->engine; 492 if (!engine->schedule) 493 return; 494 495 engine->schedule(rq, prio); 496 } 497 498 static void fence_set_priority(struct dma_fence *fence, int prio) 499 { 500 /* Recurse once into a fence-array */ 501 if (dma_fence_is_array(fence)) { 502 struct dma_fence_array *array = to_dma_fence_array(fence); 503 int i; 504 505 for (i = 0; i < array->num_fences; i++) 506 __fence_set_priority(array->fences[i], prio); 507 } else { 508 __fence_set_priority(fence, prio); 509 } 510 } 511 512 int 513 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj, 514 unsigned int flags, 515 int prio) 516 { 517 struct dma_fence *excl; 518 519 if (flags & I915_WAIT_ALL) { 520 struct dma_fence **shared; 521 unsigned int count, i; 522 int ret; 523 524 ret = reservation_object_get_fences_rcu(obj->resv, 525 &excl, &count, &shared); 526 if (ret) 527 return ret; 528 529 for (i = 0; i < count; i++) { 530 fence_set_priority(shared[i], prio); 531 dma_fence_put(shared[i]); 532 } 533 534 kfree(shared); 535 } else { 536 excl = reservation_object_get_excl_rcu(obj->resv); 537 } 538 539 if (excl) { 540 fence_set_priority(excl, prio); 541 dma_fence_put(excl); 542 } 543 return 0; 544 } 545 546 /** 547 * Waits for rendering to the object to be completed 548 * @obj: i915 gem object 549 * @flags: how to wait (under a lock, for all rendering or just for writes etc) 550 * @timeout: how long to wait 551 * @rps: client (user process) to charge for any waitboosting 552 */ 553 int 554 i915_gem_object_wait(struct drm_i915_gem_object *obj, 555 unsigned int flags, 556 long timeout, 557 struct intel_rps_client *rps) 558 { 559 might_sleep(); 560 #if IS_ENABLED(CONFIG_LOCKDEP) 561 GEM_BUG_ON(debug_locks && 562 !!lockdep_is_held(&obj->base.dev->struct_mutex) != 563 !!(flags & I915_WAIT_LOCKED)); 564 #endif 565 GEM_BUG_ON(timeout < 0); 566 567 timeout = i915_gem_object_wait_reservation(obj->resv, 568 flags, timeout, 569 rps); 570 return timeout < 0 ? timeout : 0; 571 } 572 573 static struct intel_rps_client *to_rps_client(struct drm_file *file) 574 { 575 struct drm_i915_file_private *fpriv = file->driver_priv; 576 577 return &fpriv->rps; 578 } 579 580 int 581 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 582 int align) 583 { 584 int ret; 585 586 if (align > obj->base.size) 587 return -EINVAL; 588 589 if (obj->ops == &i915_gem_phys_ops) 590 return 0; 591 592 if (obj->mm.madv != I915_MADV_WILLNEED) 593 return -EFAULT; 594 595 if (obj->base.filp == NULL) 596 return -EINVAL; 597 598 ret = i915_gem_object_unbind(obj); 599 if (ret) 600 return ret; 601 602 __i915_gem_object_put_pages(obj, I915_MM_NORMAL); 603 if (obj->mm.pages) 604 return -EBUSY; 605 606 GEM_BUG_ON(obj->ops != &i915_gem_object_ops); 607 obj->ops = &i915_gem_phys_ops; 608 609 ret = i915_gem_object_pin_pages(obj); 610 if (ret) 611 goto err_xfer; 612 613 return 0; 614 615 err_xfer: 616 obj->ops = &i915_gem_object_ops; 617 return ret; 618 } 619 620 static int 621 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj, 622 struct drm_i915_gem_pwrite *args, 623 struct drm_file *file) 624 { 625 void *vaddr = obj->phys_handle->vaddr + args->offset; 626 char __user *user_data = u64_to_user_ptr(args->data_ptr); 627 628 /* We manually control the domain here and pretend that it 629 * remains coherent i.e. in the GTT domain, like shmem_pwrite. 630 */ 631 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 632 if (copy_from_user(vaddr, user_data, args->size)) 633 return -EFAULT; 634 635 drm_clflush_virt_range(vaddr, args->size); 636 i915_gem_chipset_flush(to_i915(obj->base.dev)); 637 638 intel_fb_obj_flush(obj, ORIGIN_CPU); 639 return 0; 640 } 641 642 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv) 643 { 644 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL); 645 } 646 647 void i915_gem_object_free(struct drm_i915_gem_object *obj) 648 { 649 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 650 kmem_cache_free(dev_priv->objects, obj); 651 } 652 653 static int 654 i915_gem_create(struct drm_file *file, 655 struct drm_i915_private *dev_priv, 656 uint64_t size, 657 uint32_t *handle_p) 658 { 659 struct drm_i915_gem_object *obj; 660 int ret; 661 u32 handle; 662 663 size = roundup(size, PAGE_SIZE); 664 if (size == 0) 665 return -EINVAL; 666 667 /* Allocate the new object */ 668 obj = i915_gem_object_create(dev_priv, size); 669 if (IS_ERR(obj)) 670 return PTR_ERR(obj); 671 672 ret = drm_gem_handle_create(file, &obj->base, &handle); 673 /* drop reference from allocate - handle holds it now */ 674 i915_gem_object_put(obj); 675 if (ret) 676 return ret; 677 678 *handle_p = handle; 679 return 0; 680 } 681 682 int 683 i915_gem_dumb_create(struct drm_file *file, 684 struct drm_device *dev, 685 struct drm_mode_create_dumb *args) 686 { 687 /* have to work out size/pitch and return them */ 688 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64); 689 args->size = args->pitch * args->height; 690 return i915_gem_create(file, to_i915(dev), 691 args->size, &args->handle); 692 } 693 694 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj) 695 { 696 return !(obj->cache_level == I915_CACHE_NONE || 697 obj->cache_level == I915_CACHE_WT); 698 } 699 700 /** 701 * Creates a new mm object and returns a handle to it. 702 * @dev: drm device pointer 703 * @data: ioctl data blob 704 * @file: drm file pointer 705 */ 706 int 707 i915_gem_create_ioctl(struct drm_device *dev, void *data, 708 struct drm_file *file) 709 { 710 struct drm_i915_private *dev_priv = to_i915(dev); 711 struct drm_i915_gem_create *args = data; 712 713 i915_gem_flush_free_objects(dev_priv); 714 715 return i915_gem_create(file, dev_priv, 716 args->size, &args->handle); 717 } 718 719 static inline enum fb_op_origin 720 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain) 721 { 722 return (domain == I915_GEM_DOMAIN_GTT ? 723 obj->frontbuffer_ggtt_origin : ORIGIN_CPU); 724 } 725 726 static void 727 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains) 728 { 729 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 730 731 if (!(obj->base.write_domain & flush_domains)) 732 return; 733 734 /* No actual flushing is required for the GTT write domain. Writes 735 * to it "immediately" go to main memory as far as we know, so there's 736 * no chipset flush. It also doesn't land in render cache. 737 * 738 * However, we do have to enforce the order so that all writes through 739 * the GTT land before any writes to the device, such as updates to 740 * the GATT itself. 741 * 742 * We also have to wait a bit for the writes to land from the GTT. 743 * An uncached read (i.e. mmio) seems to be ideal for the round-trip 744 * timing. This issue has only been observed when switching quickly 745 * between GTT writes and CPU reads from inside the kernel on recent hw, 746 * and it appears to only affect discrete GTT blocks (i.e. on LLC 747 * system agents we cannot reproduce this behaviour). 748 */ 749 wmb(); 750 751 switch (obj->base.write_domain) { 752 case I915_GEM_DOMAIN_GTT: 753 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) { 754 if (intel_runtime_pm_get_if_in_use(dev_priv)) { 755 spin_lock_irq(&dev_priv->uncore.lock); 756 POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base)); 757 spin_unlock_irq(&dev_priv->uncore.lock); 758 intel_runtime_pm_put(dev_priv); 759 } 760 } 761 762 intel_fb_obj_flush(obj, 763 fb_write_origin(obj, I915_GEM_DOMAIN_GTT)); 764 break; 765 766 case I915_GEM_DOMAIN_CPU: 767 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC); 768 break; 769 770 case I915_GEM_DOMAIN_RENDER: 771 if (gpu_write_needs_clflush(obj)) 772 obj->cache_dirty = true; 773 break; 774 } 775 776 obj->base.write_domain = 0; 777 } 778 779 static inline int 780 __copy_to_user_swizzled(char __user *cpu_vaddr, 781 const char *gpu_vaddr, int gpu_offset, 782 int length) 783 { 784 int ret, cpu_offset = 0; 785 786 while (length > 0) { 787 int cacheline_end = ALIGN(gpu_offset + 1, 64); 788 int this_length = min(cacheline_end - gpu_offset, length); 789 int swizzled_gpu_offset = gpu_offset ^ 64; 790 791 ret = __copy_to_user(cpu_vaddr + cpu_offset, 792 gpu_vaddr + swizzled_gpu_offset, 793 this_length); 794 if (ret) 795 return ret + length; 796 797 cpu_offset += this_length; 798 gpu_offset += this_length; 799 length -= this_length; 800 } 801 802 return 0; 803 } 804 805 static inline int 806 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, 807 const char __user *cpu_vaddr, 808 int length) 809 { 810 int ret, cpu_offset = 0; 811 812 while (length > 0) { 813 int cacheline_end = ALIGN(gpu_offset + 1, 64); 814 int this_length = min(cacheline_end - gpu_offset, length); 815 int swizzled_gpu_offset = gpu_offset ^ 64; 816 817 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, 818 cpu_vaddr + cpu_offset, 819 this_length); 820 if (ret) 821 return ret + length; 822 823 cpu_offset += this_length; 824 gpu_offset += this_length; 825 length -= this_length; 826 } 827 828 return 0; 829 } 830 831 /* 832 * Pins the specified object's pages and synchronizes the object with 833 * GPU accesses. Sets needs_clflush to non-zero if the caller should 834 * flush the object from the CPU cache. 835 */ 836 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 837 unsigned int *needs_clflush) 838 { 839 int ret; 840 841 lockdep_assert_held(&obj->base.dev->struct_mutex); 842 843 *needs_clflush = 0; 844 if (!i915_gem_object_has_struct_page(obj)) 845 return -ENODEV; 846 847 ret = i915_gem_object_wait(obj, 848 I915_WAIT_INTERRUPTIBLE | 849 I915_WAIT_LOCKED, 850 MAX_SCHEDULE_TIMEOUT, 851 NULL); 852 if (ret) 853 return ret; 854 855 ret = i915_gem_object_pin_pages(obj); 856 if (ret) 857 return ret; 858 859 if (obj->cache_coherent || !static_cpu_has(X86_FEATURE_CLFLUSH)) { 860 ret = i915_gem_object_set_to_cpu_domain(obj, false); 861 if (ret) 862 goto err_unpin; 863 else 864 goto out; 865 } 866 867 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); 868 869 /* If we're not in the cpu read domain, set ourself into the gtt 870 * read domain and manually flush cachelines (if required). This 871 * optimizes for the case when the gpu will dirty the data 872 * anyway again before the next pread happens. 873 */ 874 if (!obj->cache_dirty && 875 !(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) 876 *needs_clflush = CLFLUSH_BEFORE; 877 878 out: 879 /* return with the pages pinned */ 880 return 0; 881 882 err_unpin: 883 i915_gem_object_unpin_pages(obj); 884 return ret; 885 } 886 887 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, 888 unsigned int *needs_clflush) 889 { 890 int ret; 891 892 lockdep_assert_held(&obj->base.dev->struct_mutex); 893 894 *needs_clflush = 0; 895 if (!i915_gem_object_has_struct_page(obj)) 896 return -ENODEV; 897 898 ret = i915_gem_object_wait(obj, 899 I915_WAIT_INTERRUPTIBLE | 900 I915_WAIT_LOCKED | 901 I915_WAIT_ALL, 902 MAX_SCHEDULE_TIMEOUT, 903 NULL); 904 if (ret) 905 return ret; 906 907 ret = i915_gem_object_pin_pages(obj); 908 if (ret) 909 return ret; 910 911 if (obj->cache_coherent || !static_cpu_has(X86_FEATURE_CLFLUSH)) { 912 ret = i915_gem_object_set_to_cpu_domain(obj, true); 913 if (ret) 914 goto err_unpin; 915 else 916 goto out; 917 } 918 919 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); 920 921 /* If we're not in the cpu write domain, set ourself into the 922 * gtt write domain and manually flush cachelines (as required). 923 * This optimizes for the case when the gpu will use the data 924 * right away and we therefore have to clflush anyway. 925 */ 926 if (!obj->cache_dirty) { 927 *needs_clflush |= CLFLUSH_AFTER; 928 929 /* 930 * Same trick applies to invalidate partially written 931 * cachelines read before writing. 932 */ 933 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) 934 *needs_clflush |= CLFLUSH_BEFORE; 935 } 936 937 out: 938 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 939 obj->mm.dirty = true; 940 /* return with the pages pinned */ 941 return 0; 942 943 err_unpin: 944 i915_gem_object_unpin_pages(obj); 945 return ret; 946 } 947 948 static void 949 shmem_clflush_swizzled_range(char *addr, unsigned long length, 950 bool swizzled) 951 { 952 if (unlikely(swizzled)) { 953 unsigned long start = (unsigned long) addr; 954 unsigned long end = (unsigned long) addr + length; 955 956 /* For swizzling simply ensure that we always flush both 957 * channels. Lame, but simple and it works. Swizzled 958 * pwrite/pread is far from a hotpath - current userspace 959 * doesn't use it at all. */ 960 start = round_down(start, 128); 961 end = round_up(end, 128); 962 963 drm_clflush_virt_range((void *)start, end - start); 964 } else { 965 drm_clflush_virt_range(addr, length); 966 } 967 968 } 969 970 /* Only difference to the fast-path function is that this can handle bit17 971 * and uses non-atomic copy and kmap functions. */ 972 static int 973 shmem_pread_slow(struct page *page, int offset, int length, 974 char __user *user_data, 975 bool page_do_bit17_swizzling, bool needs_clflush) 976 { 977 char *vaddr; 978 int ret; 979 980 vaddr = kmap(page); 981 if (needs_clflush) 982 shmem_clflush_swizzled_range(vaddr + offset, length, 983 page_do_bit17_swizzling); 984 985 if (page_do_bit17_swizzling) 986 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length); 987 else 988 ret = __copy_to_user(user_data, vaddr + offset, length); 989 kunmap(page); 990 991 return ret ? - EFAULT : 0; 992 } 993 994 static int 995 shmem_pread(struct page *page, int offset, int length, char __user *user_data, 996 bool page_do_bit17_swizzling, bool needs_clflush) 997 { 998 int ret; 999 1000 ret = -ENODEV; 1001 if (!page_do_bit17_swizzling) { 1002 char *vaddr = kmap_atomic(page); 1003 1004 if (needs_clflush) 1005 drm_clflush_virt_range(vaddr + offset, length); 1006 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length); 1007 kunmap_atomic(vaddr); 1008 } 1009 if (ret == 0) 1010 return 0; 1011 1012 return shmem_pread_slow(page, offset, length, user_data, 1013 page_do_bit17_swizzling, needs_clflush); 1014 } 1015 1016 static int 1017 i915_gem_shmem_pread(struct drm_i915_gem_object *obj, 1018 struct drm_i915_gem_pread *args) 1019 { 1020 char __user *user_data; 1021 u64 remain; 1022 unsigned int obj_do_bit17_swizzling; 1023 unsigned int needs_clflush; 1024 unsigned int idx, offset; 1025 int ret; 1026 1027 obj_do_bit17_swizzling = 0; 1028 if (i915_gem_object_needs_bit17_swizzle(obj)) 1029 obj_do_bit17_swizzling = BIT(17); 1030 1031 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex); 1032 if (ret) 1033 return ret; 1034 1035 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush); 1036 mutex_unlock(&obj->base.dev->struct_mutex); 1037 if (ret) 1038 return ret; 1039 1040 remain = args->size; 1041 user_data = u64_to_user_ptr(args->data_ptr); 1042 offset = offset_in_page(args->offset); 1043 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { 1044 struct page *page = i915_gem_object_get_page(obj, idx); 1045 int length; 1046 1047 length = remain; 1048 if (offset + length > PAGE_SIZE) 1049 length = PAGE_SIZE - offset; 1050 1051 ret = shmem_pread(page, offset, length, user_data, 1052 page_to_phys(page) & obj_do_bit17_swizzling, 1053 needs_clflush); 1054 if (ret) 1055 break; 1056 1057 remain -= length; 1058 user_data += length; 1059 offset = 0; 1060 } 1061 1062 i915_gem_obj_finish_shmem_access(obj); 1063 return ret; 1064 } 1065 1066 static inline bool 1067 gtt_user_read(struct io_mapping *mapping, 1068 loff_t base, int offset, 1069 char __user *user_data, int length) 1070 { 1071 void *vaddr; 1072 unsigned long unwritten; 1073 1074 /* We can use the cpu mem copy function because this is X86. */ 1075 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base); 1076 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length); 1077 io_mapping_unmap_atomic(vaddr); 1078 if (unwritten) { 1079 vaddr = (void __force *) 1080 io_mapping_map_wc(mapping, base, PAGE_SIZE); 1081 unwritten = copy_to_user(user_data, vaddr + offset, length); 1082 io_mapping_unmap(vaddr); 1083 } 1084 return unwritten; 1085 } 1086 1087 static int 1088 i915_gem_gtt_pread(struct drm_i915_gem_object *obj, 1089 const struct drm_i915_gem_pread *args) 1090 { 1091 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1092 struct i915_ggtt *ggtt = &i915->ggtt; 1093 struct drm_mm_node node; 1094 struct i915_vma *vma; 1095 void __user *user_data; 1096 u64 remain, offset; 1097 int ret; 1098 1099 ret = mutex_lock_interruptible(&i915->drm.struct_mutex); 1100 if (ret) 1101 return ret; 1102 1103 intel_runtime_pm_get(i915); 1104 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 1105 PIN_MAPPABLE | PIN_NONBLOCK); 1106 if (!IS_ERR(vma)) { 1107 node.start = i915_ggtt_offset(vma); 1108 node.allocated = false; 1109 ret = i915_vma_put_fence(vma); 1110 if (ret) { 1111 i915_vma_unpin(vma); 1112 vma = ERR_PTR(ret); 1113 } 1114 } 1115 if (IS_ERR(vma)) { 1116 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); 1117 if (ret) 1118 goto out_unlock; 1119 GEM_BUG_ON(!node.allocated); 1120 } 1121 1122 ret = i915_gem_object_set_to_gtt_domain(obj, false); 1123 if (ret) 1124 goto out_unpin; 1125 1126 mutex_unlock(&i915->drm.struct_mutex); 1127 1128 user_data = u64_to_user_ptr(args->data_ptr); 1129 remain = args->size; 1130 offset = args->offset; 1131 1132 while (remain > 0) { 1133 /* Operation in this page 1134 * 1135 * page_base = page offset within aperture 1136 * page_offset = offset within page 1137 * page_length = bytes to copy for this page 1138 */ 1139 u32 page_base = node.start; 1140 unsigned page_offset = offset_in_page(offset); 1141 unsigned page_length = PAGE_SIZE - page_offset; 1142 page_length = remain < page_length ? remain : page_length; 1143 if (node.allocated) { 1144 wmb(); 1145 ggtt->base.insert_page(&ggtt->base, 1146 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), 1147 node.start, I915_CACHE_NONE, 0); 1148 wmb(); 1149 } else { 1150 page_base += offset & PAGE_MASK; 1151 } 1152 1153 if (gtt_user_read(&ggtt->mappable, page_base, page_offset, 1154 user_data, page_length)) { 1155 ret = -EFAULT; 1156 break; 1157 } 1158 1159 remain -= page_length; 1160 user_data += page_length; 1161 offset += page_length; 1162 } 1163 1164 mutex_lock(&i915->drm.struct_mutex); 1165 out_unpin: 1166 if (node.allocated) { 1167 wmb(); 1168 ggtt->base.clear_range(&ggtt->base, 1169 node.start, node.size); 1170 remove_mappable_node(&node); 1171 } else { 1172 i915_vma_unpin(vma); 1173 } 1174 out_unlock: 1175 intel_runtime_pm_put(i915); 1176 mutex_unlock(&i915->drm.struct_mutex); 1177 1178 return ret; 1179 } 1180 1181 /** 1182 * Reads data from the object referenced by handle. 1183 * @dev: drm device pointer 1184 * @data: ioctl data blob 1185 * @file: drm file pointer 1186 * 1187 * On error, the contents of *data are undefined. 1188 */ 1189 int 1190 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 1191 struct drm_file *file) 1192 { 1193 struct drm_i915_gem_pread *args = data; 1194 struct drm_i915_gem_object *obj; 1195 int ret; 1196 1197 if (args->size == 0) 1198 return 0; 1199 1200 if (!access_ok(VERIFY_WRITE, 1201 u64_to_user_ptr(args->data_ptr), 1202 args->size)) 1203 return -EFAULT; 1204 1205 obj = i915_gem_object_lookup(file, args->handle); 1206 if (!obj) 1207 return -ENOENT; 1208 1209 /* Bounds check source. */ 1210 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { 1211 ret = -EINVAL; 1212 goto out; 1213 } 1214 1215 trace_i915_gem_object_pread(obj, args->offset, args->size); 1216 1217 ret = i915_gem_object_wait(obj, 1218 I915_WAIT_INTERRUPTIBLE, 1219 MAX_SCHEDULE_TIMEOUT, 1220 to_rps_client(file)); 1221 if (ret) 1222 goto out; 1223 1224 ret = i915_gem_object_pin_pages(obj); 1225 if (ret) 1226 goto out; 1227 1228 ret = i915_gem_shmem_pread(obj, args); 1229 if (ret == -EFAULT || ret == -ENODEV) 1230 ret = i915_gem_gtt_pread(obj, args); 1231 1232 i915_gem_object_unpin_pages(obj); 1233 out: 1234 i915_gem_object_put(obj); 1235 return ret; 1236 } 1237 1238 /* This is the fast write path which cannot handle 1239 * page faults in the source data 1240 */ 1241 1242 static inline bool 1243 ggtt_write(struct io_mapping *mapping, 1244 loff_t base, int offset, 1245 char __user *user_data, int length) 1246 { 1247 void *vaddr; 1248 unsigned long unwritten; 1249 1250 /* We can use the cpu mem copy function because this is X86. */ 1251 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base); 1252 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset, 1253 user_data, length); 1254 io_mapping_unmap_atomic(vaddr); 1255 if (unwritten) { 1256 vaddr = (void __force *) 1257 io_mapping_map_wc(mapping, base, PAGE_SIZE); 1258 unwritten = copy_from_user(vaddr + offset, user_data, length); 1259 io_mapping_unmap(vaddr); 1260 } 1261 1262 return unwritten; 1263 } 1264 1265 /** 1266 * This is the fast pwrite path, where we copy the data directly from the 1267 * user into the GTT, uncached. 1268 * @obj: i915 GEM object 1269 * @args: pwrite arguments structure 1270 */ 1271 static int 1272 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj, 1273 const struct drm_i915_gem_pwrite *args) 1274 { 1275 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1276 struct i915_ggtt *ggtt = &i915->ggtt; 1277 struct drm_mm_node node; 1278 struct i915_vma *vma; 1279 u64 remain, offset; 1280 void __user *user_data; 1281 int ret; 1282 1283 ret = mutex_lock_interruptible(&i915->drm.struct_mutex); 1284 if (ret) 1285 return ret; 1286 1287 intel_runtime_pm_get(i915); 1288 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 1289 PIN_MAPPABLE | PIN_NONBLOCK); 1290 if (!IS_ERR(vma)) { 1291 node.start = i915_ggtt_offset(vma); 1292 node.allocated = false; 1293 ret = i915_vma_put_fence(vma); 1294 if (ret) { 1295 i915_vma_unpin(vma); 1296 vma = ERR_PTR(ret); 1297 } 1298 } 1299 if (IS_ERR(vma)) { 1300 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); 1301 if (ret) 1302 goto out_unlock; 1303 GEM_BUG_ON(!node.allocated); 1304 } 1305 1306 ret = i915_gem_object_set_to_gtt_domain(obj, true); 1307 if (ret) 1308 goto out_unpin; 1309 1310 mutex_unlock(&i915->drm.struct_mutex); 1311 1312 intel_fb_obj_invalidate(obj, ORIGIN_CPU); 1313 1314 user_data = u64_to_user_ptr(args->data_ptr); 1315 offset = args->offset; 1316 remain = args->size; 1317 while (remain) { 1318 /* Operation in this page 1319 * 1320 * page_base = page offset within aperture 1321 * page_offset = offset within page 1322 * page_length = bytes to copy for this page 1323 */ 1324 u32 page_base = node.start; 1325 unsigned int page_offset = offset_in_page(offset); 1326 unsigned int page_length = PAGE_SIZE - page_offset; 1327 page_length = remain < page_length ? remain : page_length; 1328 if (node.allocated) { 1329 wmb(); /* flush the write before we modify the GGTT */ 1330 ggtt->base.insert_page(&ggtt->base, 1331 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), 1332 node.start, I915_CACHE_NONE, 0); 1333 wmb(); /* flush modifications to the GGTT (insert_page) */ 1334 } else { 1335 page_base += offset & PAGE_MASK; 1336 } 1337 /* If we get a fault while copying data, then (presumably) our 1338 * source page isn't available. Return the error and we'll 1339 * retry in the slow path. 1340 * If the object is non-shmem backed, we retry again with the 1341 * path that handles page fault. 1342 */ 1343 if (ggtt_write(&ggtt->mappable, page_base, page_offset, 1344 user_data, page_length)) { 1345 ret = -EFAULT; 1346 break; 1347 } 1348 1349 remain -= page_length; 1350 user_data += page_length; 1351 offset += page_length; 1352 } 1353 intel_fb_obj_flush(obj, ORIGIN_CPU); 1354 1355 mutex_lock(&i915->drm.struct_mutex); 1356 out_unpin: 1357 if (node.allocated) { 1358 wmb(); 1359 ggtt->base.clear_range(&ggtt->base, 1360 node.start, node.size); 1361 remove_mappable_node(&node); 1362 } else { 1363 i915_vma_unpin(vma); 1364 } 1365 out_unlock: 1366 intel_runtime_pm_put(i915); 1367 mutex_unlock(&i915->drm.struct_mutex); 1368 return ret; 1369 } 1370 1371 static int 1372 shmem_pwrite_slow(struct page *page, int offset, int length, 1373 char __user *user_data, 1374 bool page_do_bit17_swizzling, 1375 bool needs_clflush_before, 1376 bool needs_clflush_after) 1377 { 1378 char *vaddr; 1379 int ret; 1380 1381 vaddr = kmap(page); 1382 if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) 1383 shmem_clflush_swizzled_range(vaddr + offset, length, 1384 page_do_bit17_swizzling); 1385 if (page_do_bit17_swizzling) 1386 ret = __copy_from_user_swizzled(vaddr, offset, user_data, 1387 length); 1388 else 1389 ret = __copy_from_user(vaddr + offset, user_data, length); 1390 if (needs_clflush_after) 1391 shmem_clflush_swizzled_range(vaddr + offset, length, 1392 page_do_bit17_swizzling); 1393 kunmap(page); 1394 1395 return ret ? -EFAULT : 0; 1396 } 1397 1398 /* Per-page copy function for the shmem pwrite fastpath. 1399 * Flushes invalid cachelines before writing to the target if 1400 * needs_clflush_before is set and flushes out any written cachelines after 1401 * writing if needs_clflush is set. 1402 */ 1403 static int 1404 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data, 1405 bool page_do_bit17_swizzling, 1406 bool needs_clflush_before, 1407 bool needs_clflush_after) 1408 { 1409 int ret; 1410 1411 ret = -ENODEV; 1412 if (!page_do_bit17_swizzling) { 1413 char *vaddr = kmap_atomic(page); 1414 1415 if (needs_clflush_before) 1416 drm_clflush_virt_range(vaddr + offset, len); 1417 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len); 1418 if (needs_clflush_after) 1419 drm_clflush_virt_range(vaddr + offset, len); 1420 1421 kunmap_atomic(vaddr); 1422 } 1423 if (ret == 0) 1424 return ret; 1425 1426 return shmem_pwrite_slow(page, offset, len, user_data, 1427 page_do_bit17_swizzling, 1428 needs_clflush_before, 1429 needs_clflush_after); 1430 } 1431 1432 static int 1433 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj, 1434 const struct drm_i915_gem_pwrite *args) 1435 { 1436 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1437 void __user *user_data; 1438 u64 remain; 1439 unsigned int obj_do_bit17_swizzling; 1440 unsigned int partial_cacheline_write; 1441 unsigned int needs_clflush; 1442 unsigned int offset, idx; 1443 int ret; 1444 1445 ret = mutex_lock_interruptible(&i915->drm.struct_mutex); 1446 if (ret) 1447 return ret; 1448 1449 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush); 1450 mutex_unlock(&i915->drm.struct_mutex); 1451 if (ret) 1452 return ret; 1453 1454 obj_do_bit17_swizzling = 0; 1455 if (i915_gem_object_needs_bit17_swizzle(obj)) 1456 obj_do_bit17_swizzling = BIT(17); 1457 1458 /* If we don't overwrite a cacheline completely we need to be 1459 * careful to have up-to-date data by first clflushing. Don't 1460 * overcomplicate things and flush the entire patch. 1461 */ 1462 partial_cacheline_write = 0; 1463 if (needs_clflush & CLFLUSH_BEFORE) 1464 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1; 1465 1466 user_data = u64_to_user_ptr(args->data_ptr); 1467 remain = args->size; 1468 offset = offset_in_page(args->offset); 1469 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { 1470 struct page *page = i915_gem_object_get_page(obj, idx); 1471 int length; 1472 1473 length = remain; 1474 if (offset + length > PAGE_SIZE) 1475 length = PAGE_SIZE - offset; 1476 1477 ret = shmem_pwrite(page, offset, length, user_data, 1478 page_to_phys(page) & obj_do_bit17_swizzling, 1479 (offset | length) & partial_cacheline_write, 1480 needs_clflush & CLFLUSH_AFTER); 1481 if (ret) 1482 break; 1483 1484 remain -= length; 1485 user_data += length; 1486 offset = 0; 1487 } 1488 1489 intel_fb_obj_flush(obj, ORIGIN_CPU); 1490 i915_gem_obj_finish_shmem_access(obj); 1491 return ret; 1492 } 1493 1494 /** 1495 * Writes data to the object referenced by handle. 1496 * @dev: drm device 1497 * @data: ioctl data blob 1498 * @file: drm file 1499 * 1500 * On error, the contents of the buffer that were to be modified are undefined. 1501 */ 1502 int 1503 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 1504 struct drm_file *file) 1505 { 1506 struct drm_i915_gem_pwrite *args = data; 1507 struct drm_i915_gem_object *obj; 1508 int ret; 1509 1510 if (args->size == 0) 1511 return 0; 1512 1513 if (!access_ok(VERIFY_READ, 1514 u64_to_user_ptr(args->data_ptr), 1515 args->size)) 1516 return -EFAULT; 1517 1518 obj = i915_gem_object_lookup(file, args->handle); 1519 if (!obj) 1520 return -ENOENT; 1521 1522 /* Bounds check destination. */ 1523 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { 1524 ret = -EINVAL; 1525 goto err; 1526 } 1527 1528 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 1529 1530 ret = -ENODEV; 1531 if (obj->ops->pwrite) 1532 ret = obj->ops->pwrite(obj, args); 1533 if (ret != -ENODEV) 1534 goto err; 1535 1536 ret = i915_gem_object_wait(obj, 1537 I915_WAIT_INTERRUPTIBLE | 1538 I915_WAIT_ALL, 1539 MAX_SCHEDULE_TIMEOUT, 1540 to_rps_client(file)); 1541 if (ret) 1542 goto err; 1543 1544 ret = i915_gem_object_pin_pages(obj); 1545 if (ret) 1546 goto err; 1547 1548 ret = -EFAULT; 1549 /* We can only do the GTT pwrite on untiled buffers, as otherwise 1550 * it would end up going through the fenced access, and we'll get 1551 * different detiling behavior between reading and writing. 1552 * pread/pwrite currently are reading and writing from the CPU 1553 * perspective, requiring manual detiling by the client. 1554 */ 1555 if (!i915_gem_object_has_struct_page(obj) || 1556 cpu_write_needs_clflush(obj)) 1557 /* Note that the gtt paths might fail with non-page-backed user 1558 * pointers (e.g. gtt mappings when moving data between 1559 * textures). Fallback to the shmem path in that case. 1560 */ 1561 ret = i915_gem_gtt_pwrite_fast(obj, args); 1562 1563 if (ret == -EFAULT || ret == -ENOSPC) { 1564 if (obj->phys_handle) 1565 ret = i915_gem_phys_pwrite(obj, args, file); 1566 else 1567 ret = i915_gem_shmem_pwrite(obj, args); 1568 } 1569 1570 i915_gem_object_unpin_pages(obj); 1571 err: 1572 i915_gem_object_put(obj); 1573 return ret; 1574 } 1575 1576 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj) 1577 { 1578 struct drm_i915_private *i915; 1579 struct list_head *list; 1580 struct i915_vma *vma; 1581 1582 list_for_each_entry(vma, &obj->vma_list, obj_link) { 1583 if (!i915_vma_is_ggtt(vma)) 1584 break; 1585 1586 if (i915_vma_is_active(vma)) 1587 continue; 1588 1589 if (!drm_mm_node_allocated(&vma->node)) 1590 continue; 1591 1592 list_move_tail(&vma->vm_link, &vma->vm->inactive_list); 1593 } 1594 1595 i915 = to_i915(obj->base.dev); 1596 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list; 1597 list_move_tail(&obj->global_link, list); 1598 } 1599 1600 /** 1601 * Called when user space prepares to use an object with the CPU, either 1602 * through the mmap ioctl's mapping or a GTT mapping. 1603 * @dev: drm device 1604 * @data: ioctl data blob 1605 * @file: drm file 1606 */ 1607 int 1608 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 1609 struct drm_file *file) 1610 { 1611 struct drm_i915_gem_set_domain *args = data; 1612 struct drm_i915_gem_object *obj; 1613 uint32_t read_domains = args->read_domains; 1614 uint32_t write_domain = args->write_domain; 1615 int err; 1616 1617 /* Only handle setting domains to types used by the CPU. */ 1618 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS) 1619 return -EINVAL; 1620 1621 /* Having something in the write domain implies it's in the read 1622 * domain, and only that read domain. Enforce that in the request. 1623 */ 1624 if (write_domain != 0 && read_domains != write_domain) 1625 return -EINVAL; 1626 1627 obj = i915_gem_object_lookup(file, args->handle); 1628 if (!obj) 1629 return -ENOENT; 1630 1631 /* Try to flush the object off the GPU without holding the lock. 1632 * We will repeat the flush holding the lock in the normal manner 1633 * to catch cases where we are gazumped. 1634 */ 1635 err = i915_gem_object_wait(obj, 1636 I915_WAIT_INTERRUPTIBLE | 1637 (write_domain ? I915_WAIT_ALL : 0), 1638 MAX_SCHEDULE_TIMEOUT, 1639 to_rps_client(file)); 1640 if (err) 1641 goto out; 1642 1643 /* Flush and acquire obj->pages so that we are coherent through 1644 * direct access in memory with previous cached writes through 1645 * shmemfs and that our cache domain tracking remains valid. 1646 * For example, if the obj->filp was moved to swap without us 1647 * being notified and releasing the pages, we would mistakenly 1648 * continue to assume that the obj remained out of the CPU cached 1649 * domain. 1650 */ 1651 err = i915_gem_object_pin_pages(obj); 1652 if (err) 1653 goto out; 1654 1655 err = i915_mutex_lock_interruptible(dev); 1656 if (err) 1657 goto out_unpin; 1658 1659 if (read_domains & I915_GEM_DOMAIN_WC) 1660 err = i915_gem_object_set_to_wc_domain(obj, write_domain); 1661 else if (read_domains & I915_GEM_DOMAIN_GTT) 1662 err = i915_gem_object_set_to_gtt_domain(obj, write_domain); 1663 else 1664 err = i915_gem_object_set_to_cpu_domain(obj, write_domain); 1665 1666 /* And bump the LRU for this access */ 1667 i915_gem_object_bump_inactive_ggtt(obj); 1668 1669 mutex_unlock(&dev->struct_mutex); 1670 1671 if (write_domain != 0) 1672 intel_fb_obj_invalidate(obj, 1673 fb_write_origin(obj, write_domain)); 1674 1675 out_unpin: 1676 i915_gem_object_unpin_pages(obj); 1677 out: 1678 i915_gem_object_put(obj); 1679 return err; 1680 } 1681 1682 /** 1683 * Called when user space has done writes to this buffer 1684 * @dev: drm device 1685 * @data: ioctl data blob 1686 * @file: drm file 1687 */ 1688 int 1689 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1690 struct drm_file *file) 1691 { 1692 struct drm_i915_gem_sw_finish *args = data; 1693 struct drm_i915_gem_object *obj; 1694 1695 obj = i915_gem_object_lookup(file, args->handle); 1696 if (!obj) 1697 return -ENOENT; 1698 1699 /* Pinned buffers may be scanout, so flush the cache */ 1700 i915_gem_object_flush_if_display(obj); 1701 i915_gem_object_put(obj); 1702 1703 return 0; 1704 } 1705 1706 /** 1707 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address 1708 * it is mapped to. 1709 * @dev: drm device 1710 * @data: ioctl data blob 1711 * @file: drm file 1712 * 1713 * While the mapping holds a reference on the contents of the object, it doesn't 1714 * imply a ref on the object itself. 1715 * 1716 * IMPORTANT: 1717 * 1718 * DRM driver writers who look a this function as an example for how to do GEM 1719 * mmap support, please don't implement mmap support like here. The modern way 1720 * to implement DRM mmap support is with an mmap offset ioctl (like 1721 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly. 1722 * That way debug tooling like valgrind will understand what's going on, hiding 1723 * the mmap call in a driver private ioctl will break that. The i915 driver only 1724 * does cpu mmaps this way because we didn't know better. 1725 */ 1726 int 1727 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1728 struct drm_file *file) 1729 { 1730 struct drm_i915_gem_mmap *args = data; 1731 struct drm_i915_gem_object *obj; 1732 unsigned long addr; 1733 1734 if (args->flags & ~(I915_MMAP_WC)) 1735 return -EINVAL; 1736 1737 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT)) 1738 return -ENODEV; 1739 1740 obj = i915_gem_object_lookup(file, args->handle); 1741 if (!obj) 1742 return -ENOENT; 1743 1744 /* prime objects have no backing filp to GEM mmap 1745 * pages from. 1746 */ 1747 if (!obj->base.filp) { 1748 i915_gem_object_put(obj); 1749 return -EINVAL; 1750 } 1751 1752 addr = vm_mmap(obj->base.filp, 0, args->size, 1753 PROT_READ | PROT_WRITE, MAP_SHARED, 1754 args->offset); 1755 if (args->flags & I915_MMAP_WC) { 1756 struct mm_struct *mm = current->mm; 1757 struct vm_area_struct *vma; 1758 1759 if (down_write_killable(&mm->mmap_sem)) { 1760 i915_gem_object_put(obj); 1761 return -EINTR; 1762 } 1763 vma = find_vma(mm, addr); 1764 if (vma) 1765 vma->vm_page_prot = 1766 pgprot_writecombine(vm_get_page_prot(vma->vm_flags)); 1767 else 1768 addr = -ENOMEM; 1769 up_write(&mm->mmap_sem); 1770 1771 /* This may race, but that's ok, it only gets set */ 1772 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU); 1773 } 1774 i915_gem_object_put(obj); 1775 if (IS_ERR((void *)addr)) 1776 return addr; 1777 1778 args->addr_ptr = (uint64_t) addr; 1779 1780 return 0; 1781 } 1782 1783 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj) 1784 { 1785 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT; 1786 } 1787 1788 /** 1789 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps 1790 * 1791 * A history of the GTT mmap interface: 1792 * 1793 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to 1794 * aligned and suitable for fencing, and still fit into the available 1795 * mappable space left by the pinned display objects. A classic problem 1796 * we called the page-fault-of-doom where we would ping-pong between 1797 * two objects that could not fit inside the GTT and so the memcpy 1798 * would page one object in at the expense of the other between every 1799 * single byte. 1800 * 1801 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none 1802 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the 1803 * object is too large for the available space (or simply too large 1804 * for the mappable aperture!), a view is created instead and faulted 1805 * into userspace. (This view is aligned and sized appropriately for 1806 * fenced access.) 1807 * 1808 * 2 - Recognise WC as a separate cache domain so that we can flush the 1809 * delayed writes via GTT before performing direct access via WC. 1810 * 1811 * Restrictions: 1812 * 1813 * * snoopable objects cannot be accessed via the GTT. It can cause machine 1814 * hangs on some architectures, corruption on others. An attempt to service 1815 * a GTT page fault from a snoopable object will generate a SIGBUS. 1816 * 1817 * * the object must be able to fit into RAM (physical memory, though no 1818 * limited to the mappable aperture). 1819 * 1820 * 1821 * Caveats: 1822 * 1823 * * a new GTT page fault will synchronize rendering from the GPU and flush 1824 * all data to system memory. Subsequent access will not be synchronized. 1825 * 1826 * * all mappings are revoked on runtime device suspend. 1827 * 1828 * * there are only 8, 16 or 32 fence registers to share between all users 1829 * (older machines require fence register for display and blitter access 1830 * as well). Contention of the fence registers will cause the previous users 1831 * to be unmapped and any new access will generate new page faults. 1832 * 1833 * * running out of memory while servicing a fault may generate a SIGBUS, 1834 * rather than the expected SIGSEGV. 1835 */ 1836 int i915_gem_mmap_gtt_version(void) 1837 { 1838 return 2; 1839 } 1840 1841 static inline struct i915_ggtt_view 1842 compute_partial_view(struct drm_i915_gem_object *obj, 1843 pgoff_t page_offset, 1844 unsigned int chunk) 1845 { 1846 struct i915_ggtt_view view; 1847 1848 if (i915_gem_object_is_tiled(obj)) 1849 chunk = roundup(chunk, tile_row_pages(obj)); 1850 1851 view.type = I915_GGTT_VIEW_PARTIAL; 1852 view.partial.offset = rounddown(page_offset, chunk); 1853 view.partial.size = 1854 min_t(unsigned int, chunk, 1855 (obj->base.size >> PAGE_SHIFT) - view.partial.offset); 1856 1857 /* If the partial covers the entire object, just create a normal VMA. */ 1858 if (chunk >= obj->base.size >> PAGE_SHIFT) 1859 view.type = I915_GGTT_VIEW_NORMAL; 1860 1861 return view; 1862 } 1863 1864 /** 1865 * i915_gem_fault - fault a page into the GTT 1866 * @vmf: fault info 1867 * 1868 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1869 * from userspace. The fault handler takes care of binding the object to 1870 * the GTT (if needed), allocating and programming a fence register (again, 1871 * only if needed based on whether the old reg is still valid or the object 1872 * is tiled) and inserting a new PTE into the faulting process. 1873 * 1874 * Note that the faulting process may involve evicting existing objects 1875 * from the GTT and/or fence registers to make room. So performance may 1876 * suffer if the GTT working set is large or there are few fence registers 1877 * left. 1878 * 1879 * The current feature set supported by i915_gem_fault() and thus GTT mmaps 1880 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version). 1881 */ 1882 int i915_gem_fault(struct vm_fault *vmf) 1883 { 1884 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */ 1885 struct vm_area_struct *area = vmf->vma; 1886 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data); 1887 struct drm_device *dev = obj->base.dev; 1888 struct drm_i915_private *dev_priv = to_i915(dev); 1889 struct i915_ggtt *ggtt = &dev_priv->ggtt; 1890 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 1891 struct i915_vma *vma; 1892 pgoff_t page_offset; 1893 unsigned int flags; 1894 int ret; 1895 1896 /* We don't use vmf->pgoff since that has the fake offset */ 1897 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT; 1898 1899 trace_i915_gem_object_fault(obj, page_offset, true, write); 1900 1901 /* Try to flush the object off the GPU first without holding the lock. 1902 * Upon acquiring the lock, we will perform our sanity checks and then 1903 * repeat the flush holding the lock in the normal manner to catch cases 1904 * where we are gazumped. 1905 */ 1906 ret = i915_gem_object_wait(obj, 1907 I915_WAIT_INTERRUPTIBLE, 1908 MAX_SCHEDULE_TIMEOUT, 1909 NULL); 1910 if (ret) 1911 goto err; 1912 1913 ret = i915_gem_object_pin_pages(obj); 1914 if (ret) 1915 goto err; 1916 1917 intel_runtime_pm_get(dev_priv); 1918 1919 ret = i915_mutex_lock_interruptible(dev); 1920 if (ret) 1921 goto err_rpm; 1922 1923 /* Access to snoopable pages through the GTT is incoherent. */ 1924 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) { 1925 ret = -EFAULT; 1926 goto err_unlock; 1927 } 1928 1929 /* If the object is smaller than a couple of partial vma, it is 1930 * not worth only creating a single partial vma - we may as well 1931 * clear enough space for the full object. 1932 */ 1933 flags = PIN_MAPPABLE; 1934 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT) 1935 flags |= PIN_NONBLOCK | PIN_NONFAULT; 1936 1937 /* Now pin it into the GTT as needed */ 1938 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags); 1939 if (IS_ERR(vma)) { 1940 /* Use a partial view if it is bigger than available space */ 1941 struct i915_ggtt_view view = 1942 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES); 1943 1944 /* Userspace is now writing through an untracked VMA, abandon 1945 * all hope that the hardware is able to track future writes. 1946 */ 1947 obj->frontbuffer_ggtt_origin = ORIGIN_CPU; 1948 1949 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE); 1950 } 1951 if (IS_ERR(vma)) { 1952 ret = PTR_ERR(vma); 1953 goto err_unlock; 1954 } 1955 1956 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1957 if (ret) 1958 goto err_unpin; 1959 1960 ret = i915_vma_get_fence(vma); 1961 if (ret) 1962 goto err_unpin; 1963 1964 /* Mark as being mmapped into userspace for later revocation */ 1965 assert_rpm_wakelock_held(dev_priv); 1966 if (list_empty(&obj->userfault_link)) 1967 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list); 1968 1969 /* Finally, remap it using the new GTT offset */ 1970 ret = remap_io_mapping(area, 1971 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT), 1972 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT, 1973 min_t(u64, vma->size, area->vm_end - area->vm_start), 1974 &ggtt->mappable); 1975 1976 err_unpin: 1977 __i915_vma_unpin(vma); 1978 err_unlock: 1979 mutex_unlock(&dev->struct_mutex); 1980 err_rpm: 1981 intel_runtime_pm_put(dev_priv); 1982 i915_gem_object_unpin_pages(obj); 1983 err: 1984 switch (ret) { 1985 case -EIO: 1986 /* 1987 * We eat errors when the gpu is terminally wedged to avoid 1988 * userspace unduly crashing (gl has no provisions for mmaps to 1989 * fail). But any other -EIO isn't ours (e.g. swap in failure) 1990 * and so needs to be reported. 1991 */ 1992 if (!i915_terminally_wedged(&dev_priv->gpu_error)) { 1993 ret = VM_FAULT_SIGBUS; 1994 break; 1995 } 1996 case -EAGAIN: 1997 /* 1998 * EAGAIN means the gpu is hung and we'll wait for the error 1999 * handler to reset everything when re-faulting in 2000 * i915_mutex_lock_interruptible. 2001 */ 2002 case 0: 2003 case -ERESTARTSYS: 2004 case -EINTR: 2005 case -EBUSY: 2006 /* 2007 * EBUSY is ok: this just means that another thread 2008 * already did the job. 2009 */ 2010 ret = VM_FAULT_NOPAGE; 2011 break; 2012 case -ENOMEM: 2013 ret = VM_FAULT_OOM; 2014 break; 2015 case -ENOSPC: 2016 case -EFAULT: 2017 ret = VM_FAULT_SIGBUS; 2018 break; 2019 default: 2020 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); 2021 ret = VM_FAULT_SIGBUS; 2022 break; 2023 } 2024 return ret; 2025 } 2026 2027 /** 2028 * i915_gem_release_mmap - remove physical page mappings 2029 * @obj: obj in question 2030 * 2031 * Preserve the reservation of the mmapping with the DRM core code, but 2032 * relinquish ownership of the pages back to the system. 2033 * 2034 * It is vital that we remove the page mapping if we have mapped a tiled 2035 * object through the GTT and then lose the fence register due to 2036 * resource pressure. Similarly if the object has been moved out of the 2037 * aperture, than pages mapped into userspace must be revoked. Removing the 2038 * mapping will then trigger a page fault on the next user access, allowing 2039 * fixup by i915_gem_fault(). 2040 */ 2041 void 2042 i915_gem_release_mmap(struct drm_i915_gem_object *obj) 2043 { 2044 struct drm_i915_private *i915 = to_i915(obj->base.dev); 2045 2046 /* Serialisation between user GTT access and our code depends upon 2047 * revoking the CPU's PTE whilst the mutex is held. The next user 2048 * pagefault then has to wait until we release the mutex. 2049 * 2050 * Note that RPM complicates somewhat by adding an additional 2051 * requirement that operations to the GGTT be made holding the RPM 2052 * wakeref. 2053 */ 2054 lockdep_assert_held(&i915->drm.struct_mutex); 2055 intel_runtime_pm_get(i915); 2056 2057 if (list_empty(&obj->userfault_link)) 2058 goto out; 2059 2060 list_del_init(&obj->userfault_link); 2061 drm_vma_node_unmap(&obj->base.vma_node, 2062 obj->base.dev->anon_inode->i_mapping); 2063 2064 /* Ensure that the CPU's PTE are revoked and there are not outstanding 2065 * memory transactions from userspace before we return. The TLB 2066 * flushing implied above by changing the PTE above *should* be 2067 * sufficient, an extra barrier here just provides us with a bit 2068 * of paranoid documentation about our requirement to serialise 2069 * memory writes before touching registers / GSM. 2070 */ 2071 wmb(); 2072 2073 out: 2074 intel_runtime_pm_put(i915); 2075 } 2076 2077 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv) 2078 { 2079 struct drm_i915_gem_object *obj, *on; 2080 int i; 2081 2082 /* 2083 * Only called during RPM suspend. All users of the userfault_list 2084 * must be holding an RPM wakeref to ensure that this can not 2085 * run concurrently with themselves (and use the struct_mutex for 2086 * protection between themselves). 2087 */ 2088 2089 list_for_each_entry_safe(obj, on, 2090 &dev_priv->mm.userfault_list, userfault_link) { 2091 list_del_init(&obj->userfault_link); 2092 drm_vma_node_unmap(&obj->base.vma_node, 2093 obj->base.dev->anon_inode->i_mapping); 2094 } 2095 2096 /* The fence will be lost when the device powers down. If any were 2097 * in use by hardware (i.e. they are pinned), we should not be powering 2098 * down! All other fences will be reacquired by the user upon waking. 2099 */ 2100 for (i = 0; i < dev_priv->num_fence_regs; i++) { 2101 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; 2102 2103 /* Ideally we want to assert that the fence register is not 2104 * live at this point (i.e. that no piece of code will be 2105 * trying to write through fence + GTT, as that both violates 2106 * our tracking of activity and associated locking/barriers, 2107 * but also is illegal given that the hw is powered down). 2108 * 2109 * Previously we used reg->pin_count as a "liveness" indicator. 2110 * That is not sufficient, and we need a more fine-grained 2111 * tool if we want to have a sanity check here. 2112 */ 2113 2114 if (!reg->vma) 2115 continue; 2116 2117 GEM_BUG_ON(!list_empty(®->vma->obj->userfault_link)); 2118 reg->dirty = true; 2119 } 2120 } 2121 2122 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) 2123 { 2124 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 2125 int err; 2126 2127 err = drm_gem_create_mmap_offset(&obj->base); 2128 if (likely(!err)) 2129 return 0; 2130 2131 /* Attempt to reap some mmap space from dead objects */ 2132 do { 2133 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE); 2134 if (err) 2135 break; 2136 2137 i915_gem_drain_freed_objects(dev_priv); 2138 err = drm_gem_create_mmap_offset(&obj->base); 2139 if (!err) 2140 break; 2141 2142 } while (flush_delayed_work(&dev_priv->gt.retire_work)); 2143 2144 return err; 2145 } 2146 2147 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) 2148 { 2149 drm_gem_free_mmap_offset(&obj->base); 2150 } 2151 2152 int 2153 i915_gem_mmap_gtt(struct drm_file *file, 2154 struct drm_device *dev, 2155 uint32_t handle, 2156 uint64_t *offset) 2157 { 2158 struct drm_i915_gem_object *obj; 2159 int ret; 2160 2161 obj = i915_gem_object_lookup(file, handle); 2162 if (!obj) 2163 return -ENOENT; 2164 2165 ret = i915_gem_object_create_mmap_offset(obj); 2166 if (ret == 0) 2167 *offset = drm_vma_node_offset_addr(&obj->base.vma_node); 2168 2169 i915_gem_object_put(obj); 2170 return ret; 2171 } 2172 2173 /** 2174 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 2175 * @dev: DRM device 2176 * @data: GTT mapping ioctl data 2177 * @file: GEM object info 2178 * 2179 * Simply returns the fake offset to userspace so it can mmap it. 2180 * The mmap call will end up in drm_gem_mmap(), which will set things 2181 * up so we can get faults in the handler above. 2182 * 2183 * The fault handler will take care of binding the object into the GTT 2184 * (since it may have been evicted to make room for something), allocating 2185 * a fence register, and mapping the appropriate aperture address into 2186 * userspace. 2187 */ 2188 int 2189 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 2190 struct drm_file *file) 2191 { 2192 struct drm_i915_gem_mmap_gtt *args = data; 2193 2194 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); 2195 } 2196 2197 /* Immediately discard the backing storage */ 2198 static void 2199 i915_gem_object_truncate(struct drm_i915_gem_object *obj) 2200 { 2201 i915_gem_object_free_mmap_offset(obj); 2202 2203 if (obj->base.filp == NULL) 2204 return; 2205 2206 /* Our goal here is to return as much of the memory as 2207 * is possible back to the system as we are called from OOM. 2208 * To do this we must instruct the shmfs to drop all of its 2209 * backing pages, *now*. 2210 */ 2211 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1); 2212 obj->mm.madv = __I915_MADV_PURGED; 2213 obj->mm.pages = ERR_PTR(-EFAULT); 2214 } 2215 2216 /* Try to discard unwanted pages */ 2217 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj) 2218 { 2219 struct address_space *mapping; 2220 2221 lockdep_assert_held(&obj->mm.lock); 2222 GEM_BUG_ON(obj->mm.pages); 2223 2224 switch (obj->mm.madv) { 2225 case I915_MADV_DONTNEED: 2226 i915_gem_object_truncate(obj); 2227 case __I915_MADV_PURGED: 2228 return; 2229 } 2230 2231 if (obj->base.filp == NULL) 2232 return; 2233 2234 mapping = obj->base.filp->f_mapping, 2235 invalidate_mapping_pages(mapping, 0, (loff_t)-1); 2236 } 2237 2238 static void 2239 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj, 2240 struct sg_table *pages) 2241 { 2242 struct sgt_iter sgt_iter; 2243 struct page *page; 2244 2245 __i915_gem_object_release_shmem(obj, pages, true); 2246 2247 i915_gem_gtt_finish_pages(obj, pages); 2248 2249 if (i915_gem_object_needs_bit17_swizzle(obj)) 2250 i915_gem_object_save_bit_17_swizzle(obj, pages); 2251 2252 for_each_sgt_page(page, sgt_iter, pages) { 2253 if (obj->mm.dirty) 2254 set_page_dirty(page); 2255 2256 if (obj->mm.madv == I915_MADV_WILLNEED) 2257 mark_page_accessed(page); 2258 2259 put_page(page); 2260 } 2261 obj->mm.dirty = false; 2262 2263 sg_free_table(pages); 2264 kfree(pages); 2265 } 2266 2267 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj) 2268 { 2269 struct radix_tree_iter iter; 2270 void **slot; 2271 2272 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0) 2273 radix_tree_delete(&obj->mm.get_page.radix, iter.index); 2274 } 2275 2276 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj, 2277 enum i915_mm_subclass subclass) 2278 { 2279 struct sg_table *pages; 2280 2281 if (i915_gem_object_has_pinned_pages(obj)) 2282 return; 2283 2284 GEM_BUG_ON(obj->bind_count); 2285 if (!READ_ONCE(obj->mm.pages)) 2286 return; 2287 2288 /* May be called by shrinker from within get_pages() (on another bo) */ 2289 mutex_lock_nested(&obj->mm.lock, subclass); 2290 if (unlikely(atomic_read(&obj->mm.pages_pin_count))) 2291 goto unlock; 2292 2293 /* ->put_pages might need to allocate memory for the bit17 swizzle 2294 * array, hence protect them from being reaped by removing them from gtt 2295 * lists early. */ 2296 pages = fetch_and_zero(&obj->mm.pages); 2297 GEM_BUG_ON(!pages); 2298 2299 if (obj->mm.mapping) { 2300 void *ptr; 2301 2302 ptr = page_mask_bits(obj->mm.mapping); 2303 if (is_vmalloc_addr(ptr)) 2304 vunmap(ptr); 2305 else 2306 kunmap(kmap_to_page(ptr)); 2307 2308 obj->mm.mapping = NULL; 2309 } 2310 2311 __i915_gem_object_reset_page_iter(obj); 2312 2313 if (!IS_ERR(pages)) 2314 obj->ops->put_pages(obj, pages); 2315 2316 unlock: 2317 mutex_unlock(&obj->mm.lock); 2318 } 2319 2320 static bool i915_sg_trim(struct sg_table *orig_st) 2321 { 2322 struct sg_table new_st; 2323 struct scatterlist *sg, *new_sg; 2324 unsigned int i; 2325 2326 if (orig_st->nents == orig_st->orig_nents) 2327 return false; 2328 2329 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN)) 2330 return false; 2331 2332 new_sg = new_st.sgl; 2333 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) { 2334 sg_set_page(new_sg, sg_page(sg), sg->length, 0); 2335 /* called before being DMA mapped, no need to copy sg->dma_* */ 2336 new_sg = sg_next(new_sg); 2337 } 2338 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */ 2339 2340 sg_free_table(orig_st); 2341 2342 *orig_st = new_st; 2343 return true; 2344 } 2345 2346 static struct sg_table * 2347 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) 2348 { 2349 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 2350 const unsigned long page_count = obj->base.size / PAGE_SIZE; 2351 unsigned long i; 2352 struct address_space *mapping; 2353 struct sg_table *st; 2354 struct scatterlist *sg; 2355 struct sgt_iter sgt_iter; 2356 struct page *page; 2357 unsigned long last_pfn = 0; /* suppress gcc warning */ 2358 unsigned int max_segment; 2359 gfp_t noreclaim; 2360 int ret; 2361 2362 /* Assert that the object is not currently in any GPU domain. As it 2363 * wasn't in the GTT, there shouldn't be any way it could have been in 2364 * a GPU cache 2365 */ 2366 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); 2367 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); 2368 2369 max_segment = swiotlb_max_segment(); 2370 if (!max_segment) 2371 max_segment = rounddown(UINT_MAX, PAGE_SIZE); 2372 2373 st = kmalloc(sizeof(*st), GFP_KERNEL); 2374 if (st == NULL) 2375 return ERR_PTR(-ENOMEM); 2376 2377 rebuild_st: 2378 if (sg_alloc_table(st, page_count, GFP_KERNEL)) { 2379 kfree(st); 2380 return ERR_PTR(-ENOMEM); 2381 } 2382 2383 /* Get the list of pages out of our struct file. They'll be pinned 2384 * at this point until we release them. 2385 * 2386 * Fail silently without starting the shrinker 2387 */ 2388 mapping = obj->base.filp->f_mapping; 2389 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM); 2390 noreclaim |= __GFP_NORETRY | __GFP_NOWARN; 2391 2392 sg = st->sgl; 2393 st->nents = 0; 2394 for (i = 0; i < page_count; i++) { 2395 const unsigned int shrink[] = { 2396 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE, 2397 0, 2398 }, *s = shrink; 2399 gfp_t gfp = noreclaim; 2400 2401 do { 2402 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 2403 if (likely(!IS_ERR(page))) 2404 break; 2405 2406 if (!*s) { 2407 ret = PTR_ERR(page); 2408 goto err_sg; 2409 } 2410 2411 i915_gem_shrink(dev_priv, 2 * page_count, *s++); 2412 cond_resched(); 2413 2414 /* We've tried hard to allocate the memory by reaping 2415 * our own buffer, now let the real VM do its job and 2416 * go down in flames if truly OOM. 2417 * 2418 * However, since graphics tend to be disposable, 2419 * defer the oom here by reporting the ENOMEM back 2420 * to userspace. 2421 */ 2422 if (!*s) { 2423 /* reclaim and warn, but no oom */ 2424 gfp = mapping_gfp_mask(mapping); 2425 2426 /* Our bo are always dirty and so we require 2427 * kswapd to reclaim our pages (direct reclaim 2428 * does not effectively begin pageout of our 2429 * buffers on its own). However, direct reclaim 2430 * only waits for kswapd when under allocation 2431 * congestion. So as a result __GFP_RECLAIM is 2432 * unreliable and fails to actually reclaim our 2433 * dirty pages -- unless you try over and over 2434 * again with !__GFP_NORETRY. However, we still 2435 * want to fail this allocation rather than 2436 * trigger the out-of-memory killer and for 2437 * this we want __GFP_RETRY_MAYFAIL. 2438 */ 2439 gfp |= __GFP_RETRY_MAYFAIL; 2440 } 2441 } while (1); 2442 2443 if (!i || 2444 sg->length >= max_segment || 2445 page_to_pfn(page) != last_pfn + 1) { 2446 if (i) 2447 sg = sg_next(sg); 2448 st->nents++; 2449 sg_set_page(sg, page, PAGE_SIZE, 0); 2450 } else { 2451 sg->length += PAGE_SIZE; 2452 } 2453 last_pfn = page_to_pfn(page); 2454 2455 /* Check that the i965g/gm workaround works. */ 2456 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL)); 2457 } 2458 if (sg) /* loop terminated early; short sg table */ 2459 sg_mark_end(sg); 2460 2461 /* Trim unused sg entries to avoid wasting memory. */ 2462 i915_sg_trim(st); 2463 2464 ret = i915_gem_gtt_prepare_pages(obj, st); 2465 if (ret) { 2466 /* DMA remapping failed? One possible cause is that 2467 * it could not reserve enough large entries, asking 2468 * for PAGE_SIZE chunks instead may be helpful. 2469 */ 2470 if (max_segment > PAGE_SIZE) { 2471 for_each_sgt_page(page, sgt_iter, st) 2472 put_page(page); 2473 sg_free_table(st); 2474 2475 max_segment = PAGE_SIZE; 2476 goto rebuild_st; 2477 } else { 2478 dev_warn(&dev_priv->drm.pdev->dev, 2479 "Failed to DMA remap %lu pages\n", 2480 page_count); 2481 goto err_pages; 2482 } 2483 } 2484 2485 if (i915_gem_object_needs_bit17_swizzle(obj)) 2486 i915_gem_object_do_bit_17_swizzle(obj, st); 2487 2488 return st; 2489 2490 err_sg: 2491 sg_mark_end(sg); 2492 err_pages: 2493 for_each_sgt_page(page, sgt_iter, st) 2494 put_page(page); 2495 sg_free_table(st); 2496 kfree(st); 2497 2498 /* shmemfs first checks if there is enough memory to allocate the page 2499 * and reports ENOSPC should there be insufficient, along with the usual 2500 * ENOMEM for a genuine allocation failure. 2501 * 2502 * We use ENOSPC in our driver to mean that we have run out of aperture 2503 * space and so want to translate the error from shmemfs back to our 2504 * usual understanding of ENOMEM. 2505 */ 2506 if (ret == -ENOSPC) 2507 ret = -ENOMEM; 2508 2509 return ERR_PTR(ret); 2510 } 2511 2512 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, 2513 struct sg_table *pages) 2514 { 2515 lockdep_assert_held(&obj->mm.lock); 2516 2517 obj->mm.get_page.sg_pos = pages->sgl; 2518 obj->mm.get_page.sg_idx = 0; 2519 2520 obj->mm.pages = pages; 2521 2522 if (i915_gem_object_is_tiled(obj) && 2523 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) { 2524 GEM_BUG_ON(obj->mm.quirked); 2525 __i915_gem_object_pin_pages(obj); 2526 obj->mm.quirked = true; 2527 } 2528 } 2529 2530 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 2531 { 2532 struct sg_table *pages; 2533 2534 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); 2535 2536 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) { 2537 DRM_DEBUG("Attempting to obtain a purgeable object\n"); 2538 return -EFAULT; 2539 } 2540 2541 pages = obj->ops->get_pages(obj); 2542 if (unlikely(IS_ERR(pages))) 2543 return PTR_ERR(pages); 2544 2545 __i915_gem_object_set_pages(obj, pages); 2546 return 0; 2547 } 2548 2549 /* Ensure that the associated pages are gathered from the backing storage 2550 * and pinned into our object. i915_gem_object_pin_pages() may be called 2551 * multiple times before they are released by a single call to 2552 * i915_gem_object_unpin_pages() - once the pages are no longer referenced 2553 * either as a result of memory pressure (reaping pages under the shrinker) 2554 * or as the object is itself released. 2555 */ 2556 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 2557 { 2558 int err; 2559 2560 err = mutex_lock_interruptible(&obj->mm.lock); 2561 if (err) 2562 return err; 2563 2564 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) { 2565 err = ____i915_gem_object_get_pages(obj); 2566 if (err) 2567 goto unlock; 2568 2569 smp_mb__before_atomic(); 2570 } 2571 atomic_inc(&obj->mm.pages_pin_count); 2572 2573 unlock: 2574 mutex_unlock(&obj->mm.lock); 2575 return err; 2576 } 2577 2578 /* The 'mapping' part of i915_gem_object_pin_map() below */ 2579 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj, 2580 enum i915_map_type type) 2581 { 2582 unsigned long n_pages = obj->base.size >> PAGE_SHIFT; 2583 struct sg_table *sgt = obj->mm.pages; 2584 struct sgt_iter sgt_iter; 2585 struct page *page; 2586 struct page *stack_pages[32]; 2587 struct page **pages = stack_pages; 2588 unsigned long i = 0; 2589 pgprot_t pgprot; 2590 void *addr; 2591 2592 /* A single page can always be kmapped */ 2593 if (n_pages == 1 && type == I915_MAP_WB) 2594 return kmap(sg_page(sgt->sgl)); 2595 2596 if (n_pages > ARRAY_SIZE(stack_pages)) { 2597 /* Too big for stack -- allocate temporary array instead */ 2598 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_TEMPORARY); 2599 if (!pages) 2600 return NULL; 2601 } 2602 2603 for_each_sgt_page(page, sgt_iter, sgt) 2604 pages[i++] = page; 2605 2606 /* Check that we have the expected number of pages */ 2607 GEM_BUG_ON(i != n_pages); 2608 2609 switch (type) { 2610 case I915_MAP_WB: 2611 pgprot = PAGE_KERNEL; 2612 break; 2613 case I915_MAP_WC: 2614 pgprot = pgprot_writecombine(PAGE_KERNEL_IO); 2615 break; 2616 } 2617 addr = vmap(pages, n_pages, 0, pgprot); 2618 2619 if (pages != stack_pages) 2620 kvfree(pages); 2621 2622 return addr; 2623 } 2624 2625 /* get, pin, and map the pages of the object into kernel space */ 2626 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj, 2627 enum i915_map_type type) 2628 { 2629 enum i915_map_type has_type; 2630 bool pinned; 2631 void *ptr; 2632 int ret; 2633 2634 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj)); 2635 2636 ret = mutex_lock_interruptible(&obj->mm.lock); 2637 if (ret) 2638 return ERR_PTR(ret); 2639 2640 pinned = true; 2641 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) { 2642 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) { 2643 ret = ____i915_gem_object_get_pages(obj); 2644 if (ret) 2645 goto err_unlock; 2646 2647 smp_mb__before_atomic(); 2648 } 2649 atomic_inc(&obj->mm.pages_pin_count); 2650 pinned = false; 2651 } 2652 GEM_BUG_ON(!obj->mm.pages); 2653 2654 ptr = page_unpack_bits(obj->mm.mapping, &has_type); 2655 if (ptr && has_type != type) { 2656 if (pinned) { 2657 ret = -EBUSY; 2658 goto err_unpin; 2659 } 2660 2661 if (is_vmalloc_addr(ptr)) 2662 vunmap(ptr); 2663 else 2664 kunmap(kmap_to_page(ptr)); 2665 2666 ptr = obj->mm.mapping = NULL; 2667 } 2668 2669 if (!ptr) { 2670 ptr = i915_gem_object_map(obj, type); 2671 if (!ptr) { 2672 ret = -ENOMEM; 2673 goto err_unpin; 2674 } 2675 2676 obj->mm.mapping = page_pack_bits(ptr, type); 2677 } 2678 2679 out_unlock: 2680 mutex_unlock(&obj->mm.lock); 2681 return ptr; 2682 2683 err_unpin: 2684 atomic_dec(&obj->mm.pages_pin_count); 2685 err_unlock: 2686 ptr = ERR_PTR(ret); 2687 goto out_unlock; 2688 } 2689 2690 static int 2691 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj, 2692 const struct drm_i915_gem_pwrite *arg) 2693 { 2694 struct address_space *mapping = obj->base.filp->f_mapping; 2695 char __user *user_data = u64_to_user_ptr(arg->data_ptr); 2696 u64 remain, offset; 2697 unsigned int pg; 2698 2699 /* Before we instantiate/pin the backing store for our use, we 2700 * can prepopulate the shmemfs filp efficiently using a write into 2701 * the pagecache. We avoid the penalty of instantiating all the 2702 * pages, important if the user is just writing to a few and never 2703 * uses the object on the GPU, and using a direct write into shmemfs 2704 * allows it to avoid the cost of retrieving a page (either swapin 2705 * or clearing-before-use) before it is overwritten. 2706 */ 2707 if (READ_ONCE(obj->mm.pages)) 2708 return -ENODEV; 2709 2710 /* Before the pages are instantiated the object is treated as being 2711 * in the CPU domain. The pages will be clflushed as required before 2712 * use, and we can freely write into the pages directly. If userspace 2713 * races pwrite with any other operation; corruption will ensue - 2714 * that is userspace's prerogative! 2715 */ 2716 2717 remain = arg->size; 2718 offset = arg->offset; 2719 pg = offset_in_page(offset); 2720 2721 do { 2722 unsigned int len, unwritten; 2723 struct page *page; 2724 void *data, *vaddr; 2725 int err; 2726 2727 len = PAGE_SIZE - pg; 2728 if (len > remain) 2729 len = remain; 2730 2731 err = pagecache_write_begin(obj->base.filp, mapping, 2732 offset, len, 0, 2733 &page, &data); 2734 if (err < 0) 2735 return err; 2736 2737 vaddr = kmap(page); 2738 unwritten = copy_from_user(vaddr + pg, user_data, len); 2739 kunmap(page); 2740 2741 err = pagecache_write_end(obj->base.filp, mapping, 2742 offset, len, len - unwritten, 2743 page, data); 2744 if (err < 0) 2745 return err; 2746 2747 if (unwritten) 2748 return -EFAULT; 2749 2750 remain -= len; 2751 user_data += len; 2752 offset += len; 2753 pg = 0; 2754 } while (remain); 2755 2756 return 0; 2757 } 2758 2759 static bool ban_context(const struct i915_gem_context *ctx) 2760 { 2761 return (i915_gem_context_is_bannable(ctx) && 2762 ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD); 2763 } 2764 2765 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx) 2766 { 2767 ctx->guilty_count++; 2768 ctx->ban_score += CONTEXT_SCORE_GUILTY; 2769 if (ban_context(ctx)) 2770 i915_gem_context_set_banned(ctx); 2771 2772 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n", 2773 ctx->name, ctx->ban_score, 2774 yesno(i915_gem_context_is_banned(ctx))); 2775 2776 if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv)) 2777 return; 2778 2779 ctx->file_priv->context_bans++; 2780 DRM_DEBUG_DRIVER("client %s has had %d context banned\n", 2781 ctx->name, ctx->file_priv->context_bans); 2782 } 2783 2784 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx) 2785 { 2786 ctx->active_count++; 2787 } 2788 2789 struct drm_i915_gem_request * 2790 i915_gem_find_active_request(struct intel_engine_cs *engine) 2791 { 2792 struct drm_i915_gem_request *request, *active = NULL; 2793 unsigned long flags; 2794 2795 /* We are called by the error capture and reset at a random 2796 * point in time. In particular, note that neither is crucially 2797 * ordered with an interrupt. After a hang, the GPU is dead and we 2798 * assume that no more writes can happen (we waited long enough for 2799 * all writes that were in transaction to be flushed) - adding an 2800 * extra delay for a recent interrupt is pointless. Hence, we do 2801 * not need an engine->irq_seqno_barrier() before the seqno reads. 2802 */ 2803 spin_lock_irqsave(&engine->timeline->lock, flags); 2804 list_for_each_entry(request, &engine->timeline->requests, link) { 2805 if (__i915_gem_request_completed(request, 2806 request->global_seqno)) 2807 continue; 2808 2809 GEM_BUG_ON(request->engine != engine); 2810 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, 2811 &request->fence.flags)); 2812 2813 active = request; 2814 break; 2815 } 2816 spin_unlock_irqrestore(&engine->timeline->lock, flags); 2817 2818 return active; 2819 } 2820 2821 static bool engine_stalled(struct intel_engine_cs *engine) 2822 { 2823 if (!engine->hangcheck.stalled) 2824 return false; 2825 2826 /* Check for possible seqno movement after hang declaration */ 2827 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) { 2828 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name); 2829 return false; 2830 } 2831 2832 return true; 2833 } 2834 2835 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv) 2836 { 2837 struct intel_engine_cs *engine; 2838 enum intel_engine_id id; 2839 int err = 0; 2840 2841 /* Ensure irq handler finishes, and not run again. */ 2842 for_each_engine(engine, dev_priv, id) { 2843 struct drm_i915_gem_request *request; 2844 2845 /* Prevent the signaler thread from updating the request 2846 * state (by calling dma_fence_signal) as we are processing 2847 * the reset. The write from the GPU of the seqno is 2848 * asynchronous and the signaler thread may see a different 2849 * value to us and declare the request complete, even though 2850 * the reset routine have picked that request as the active 2851 * (incomplete) request. This conflict is not handled 2852 * gracefully! 2853 */ 2854 kthread_park(engine->breadcrumbs.signaler); 2855 2856 /* Prevent request submission to the hardware until we have 2857 * completed the reset in i915_gem_reset_finish(). If a request 2858 * is completed by one engine, it may then queue a request 2859 * to a second via its engine->irq_tasklet *just* as we are 2860 * calling engine->init_hw() and also writing the ELSP. 2861 * Turning off the engine->irq_tasklet until the reset is over 2862 * prevents the race. 2863 */ 2864 tasklet_kill(&engine->irq_tasklet); 2865 tasklet_disable(&engine->irq_tasklet); 2866 2867 if (engine->irq_seqno_barrier) 2868 engine->irq_seqno_barrier(engine); 2869 2870 if (engine_stalled(engine)) { 2871 request = i915_gem_find_active_request(engine); 2872 if (request && request->fence.error == -EIO) 2873 err = -EIO; /* Previous reset failed! */ 2874 } 2875 } 2876 2877 i915_gem_revoke_fences(dev_priv); 2878 2879 return err; 2880 } 2881 2882 static void skip_request(struct drm_i915_gem_request *request) 2883 { 2884 void *vaddr = request->ring->vaddr; 2885 u32 head; 2886 2887 /* As this request likely depends on state from the lost 2888 * context, clear out all the user operations leaving the 2889 * breadcrumb at the end (so we get the fence notifications). 2890 */ 2891 head = request->head; 2892 if (request->postfix < head) { 2893 memset(vaddr + head, 0, request->ring->size - head); 2894 head = 0; 2895 } 2896 memset(vaddr + head, 0, request->postfix - head); 2897 2898 dma_fence_set_error(&request->fence, -EIO); 2899 } 2900 2901 static void engine_skip_context(struct drm_i915_gem_request *request) 2902 { 2903 struct intel_engine_cs *engine = request->engine; 2904 struct i915_gem_context *hung_ctx = request->ctx; 2905 struct intel_timeline *timeline; 2906 unsigned long flags; 2907 2908 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine); 2909 2910 spin_lock_irqsave(&engine->timeline->lock, flags); 2911 spin_lock(&timeline->lock); 2912 2913 list_for_each_entry_continue(request, &engine->timeline->requests, link) 2914 if (request->ctx == hung_ctx) 2915 skip_request(request); 2916 2917 list_for_each_entry(request, &timeline->requests, link) 2918 skip_request(request); 2919 2920 spin_unlock(&timeline->lock); 2921 spin_unlock_irqrestore(&engine->timeline->lock, flags); 2922 } 2923 2924 /* Returns true if the request was guilty of hang */ 2925 static bool i915_gem_reset_request(struct drm_i915_gem_request *request) 2926 { 2927 /* Read once and return the resolution */ 2928 const bool guilty = engine_stalled(request->engine); 2929 2930 /* The guilty request will get skipped on a hung engine. 2931 * 2932 * Users of client default contexts do not rely on logical 2933 * state preserved between batches so it is safe to execute 2934 * queued requests following the hang. Non default contexts 2935 * rely on preserved state, so skipping a batch loses the 2936 * evolution of the state and it needs to be considered corrupted. 2937 * Executing more queued batches on top of corrupted state is 2938 * risky. But we take the risk by trying to advance through 2939 * the queued requests in order to make the client behaviour 2940 * more predictable around resets, by not throwing away random 2941 * amount of batches it has prepared for execution. Sophisticated 2942 * clients can use gem_reset_stats_ioctl and dma fence status 2943 * (exported via sync_file info ioctl on explicit fences) to observe 2944 * when it loses the context state and should rebuild accordingly. 2945 * 2946 * The context ban, and ultimately the client ban, mechanism are safety 2947 * valves if client submission ends up resulting in nothing more than 2948 * subsequent hangs. 2949 */ 2950 2951 if (guilty) { 2952 i915_gem_context_mark_guilty(request->ctx); 2953 skip_request(request); 2954 } else { 2955 i915_gem_context_mark_innocent(request->ctx); 2956 dma_fence_set_error(&request->fence, -EAGAIN); 2957 } 2958 2959 return guilty; 2960 } 2961 2962 static void i915_gem_reset_engine(struct intel_engine_cs *engine) 2963 { 2964 struct drm_i915_gem_request *request; 2965 2966 request = i915_gem_find_active_request(engine); 2967 if (request && i915_gem_reset_request(request)) { 2968 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n", 2969 engine->name, request->global_seqno); 2970 2971 /* If this context is now banned, skip all pending requests. */ 2972 if (i915_gem_context_is_banned(request->ctx)) 2973 engine_skip_context(request); 2974 } 2975 2976 /* Setup the CS to resume from the breadcrumb of the hung request */ 2977 engine->reset_hw(engine, request); 2978 } 2979 2980 void i915_gem_reset(struct drm_i915_private *dev_priv) 2981 { 2982 struct intel_engine_cs *engine; 2983 enum intel_engine_id id; 2984 2985 lockdep_assert_held(&dev_priv->drm.struct_mutex); 2986 2987 i915_gem_retire_requests(dev_priv); 2988 2989 for_each_engine(engine, dev_priv, id) { 2990 struct i915_gem_context *ctx; 2991 2992 i915_gem_reset_engine(engine); 2993 ctx = fetch_and_zero(&engine->last_retired_context); 2994 if (ctx) 2995 engine->context_unpin(engine, ctx); 2996 } 2997 2998 i915_gem_restore_fences(dev_priv); 2999 3000 if (dev_priv->gt.awake) { 3001 intel_sanitize_gt_powersave(dev_priv); 3002 intel_enable_gt_powersave(dev_priv); 3003 if (INTEL_GEN(dev_priv) >= 6) 3004 gen6_rps_busy(dev_priv); 3005 } 3006 } 3007 3008 void i915_gem_reset_finish(struct drm_i915_private *dev_priv) 3009 { 3010 struct intel_engine_cs *engine; 3011 enum intel_engine_id id; 3012 3013 lockdep_assert_held(&dev_priv->drm.struct_mutex); 3014 3015 for_each_engine(engine, dev_priv, id) { 3016 tasklet_enable(&engine->irq_tasklet); 3017 kthread_unpark(engine->breadcrumbs.signaler); 3018 } 3019 } 3020 3021 static void nop_submit_request(struct drm_i915_gem_request *request) 3022 { 3023 dma_fence_set_error(&request->fence, -EIO); 3024 i915_gem_request_submit(request); 3025 intel_engine_init_global_seqno(request->engine, request->global_seqno); 3026 } 3027 3028 static void engine_set_wedged(struct intel_engine_cs *engine) 3029 { 3030 struct drm_i915_gem_request *request; 3031 unsigned long flags; 3032 3033 /* We need to be sure that no thread is running the old callback as 3034 * we install the nop handler (otherwise we would submit a request 3035 * to hardware that will never complete). In order to prevent this 3036 * race, we wait until the machine is idle before making the swap 3037 * (using stop_machine()). 3038 */ 3039 engine->submit_request = nop_submit_request; 3040 3041 /* Mark all executing requests as skipped */ 3042 spin_lock_irqsave(&engine->timeline->lock, flags); 3043 list_for_each_entry(request, &engine->timeline->requests, link) 3044 dma_fence_set_error(&request->fence, -EIO); 3045 spin_unlock_irqrestore(&engine->timeline->lock, flags); 3046 3047 /* Mark all pending requests as complete so that any concurrent 3048 * (lockless) lookup doesn't try and wait upon the request as we 3049 * reset it. 3050 */ 3051 intel_engine_init_global_seqno(engine, 3052 intel_engine_last_submit(engine)); 3053 3054 /* 3055 * Clear the execlists queue up before freeing the requests, as those 3056 * are the ones that keep the context and ringbuffer backing objects 3057 * pinned in place. 3058 */ 3059 3060 if (i915.enable_execlists) { 3061 struct execlist_port *port = engine->execlist_port; 3062 unsigned long flags; 3063 unsigned int n; 3064 3065 spin_lock_irqsave(&engine->timeline->lock, flags); 3066 3067 for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++) 3068 i915_gem_request_put(port_request(&port[n])); 3069 memset(engine->execlist_port, 0, sizeof(engine->execlist_port)); 3070 engine->execlist_queue = RB_ROOT; 3071 engine->execlist_first = NULL; 3072 3073 spin_unlock_irqrestore(&engine->timeline->lock, flags); 3074 } 3075 } 3076 3077 static int __i915_gem_set_wedged_BKL(void *data) 3078 { 3079 struct drm_i915_private *i915 = data; 3080 struct intel_engine_cs *engine; 3081 enum intel_engine_id id; 3082 3083 for_each_engine(engine, i915, id) 3084 engine_set_wedged(engine); 3085 3086 return 0; 3087 } 3088 3089 void i915_gem_set_wedged(struct drm_i915_private *dev_priv) 3090 { 3091 lockdep_assert_held(&dev_priv->drm.struct_mutex); 3092 set_bit(I915_WEDGED, &dev_priv->gpu_error.flags); 3093 3094 /* Retire completed requests first so the list of inflight/incomplete 3095 * requests is accurate and we don't try and mark successful requests 3096 * as in error during __i915_gem_set_wedged_BKL(). 3097 */ 3098 i915_gem_retire_requests(dev_priv); 3099 3100 stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL); 3101 3102 i915_gem_context_lost(dev_priv); 3103 3104 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0); 3105 } 3106 3107 bool i915_gem_unset_wedged(struct drm_i915_private *i915) 3108 { 3109 struct i915_gem_timeline *tl; 3110 int i; 3111 3112 lockdep_assert_held(&i915->drm.struct_mutex); 3113 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags)) 3114 return true; 3115 3116 /* Before unwedging, make sure that all pending operations 3117 * are flushed and errored out - we may have requests waiting upon 3118 * third party fences. We marked all inflight requests as EIO, and 3119 * every execbuf since returned EIO, for consistency we want all 3120 * the currently pending requests to also be marked as EIO, which 3121 * is done inside our nop_submit_request - and so we must wait. 3122 * 3123 * No more can be submitted until we reset the wedged bit. 3124 */ 3125 list_for_each_entry(tl, &i915->gt.timelines, link) { 3126 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) { 3127 struct drm_i915_gem_request *rq; 3128 3129 rq = i915_gem_active_peek(&tl->engine[i].last_request, 3130 &i915->drm.struct_mutex); 3131 if (!rq) 3132 continue; 3133 3134 /* We can't use our normal waiter as we want to 3135 * avoid recursively trying to handle the current 3136 * reset. The basic dma_fence_default_wait() installs 3137 * a callback for dma_fence_signal(), which is 3138 * triggered by our nop handler (indirectly, the 3139 * callback enables the signaler thread which is 3140 * woken by the nop_submit_request() advancing the seqno 3141 * and when the seqno passes the fence, the signaler 3142 * then signals the fence waking us up). 3143 */ 3144 if (dma_fence_default_wait(&rq->fence, true, 3145 MAX_SCHEDULE_TIMEOUT) < 0) 3146 return false; 3147 } 3148 } 3149 3150 /* Undo nop_submit_request. We prevent all new i915 requests from 3151 * being queued (by disallowing execbuf whilst wedged) so having 3152 * waited for all active requests above, we know the system is idle 3153 * and do not have to worry about a thread being inside 3154 * engine->submit_request() as we swap over. So unlike installing 3155 * the nop_submit_request on reset, we can do this from normal 3156 * context and do not require stop_machine(). 3157 */ 3158 intel_engines_reset_default_submission(i915); 3159 3160 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */ 3161 clear_bit(I915_WEDGED, &i915->gpu_error.flags); 3162 3163 return true; 3164 } 3165 3166 static void 3167 i915_gem_retire_work_handler(struct work_struct *work) 3168 { 3169 struct drm_i915_private *dev_priv = 3170 container_of(work, typeof(*dev_priv), gt.retire_work.work); 3171 struct drm_device *dev = &dev_priv->drm; 3172 3173 /* Come back later if the device is busy... */ 3174 if (mutex_trylock(&dev->struct_mutex)) { 3175 i915_gem_retire_requests(dev_priv); 3176 mutex_unlock(&dev->struct_mutex); 3177 } 3178 3179 /* Keep the retire handler running until we are finally idle. 3180 * We do not need to do this test under locking as in the worst-case 3181 * we queue the retire worker once too often. 3182 */ 3183 if (READ_ONCE(dev_priv->gt.awake)) { 3184 i915_queue_hangcheck(dev_priv); 3185 queue_delayed_work(dev_priv->wq, 3186 &dev_priv->gt.retire_work, 3187 round_jiffies_up_relative(HZ)); 3188 } 3189 } 3190 3191 static void 3192 i915_gem_idle_work_handler(struct work_struct *work) 3193 { 3194 struct drm_i915_private *dev_priv = 3195 container_of(work, typeof(*dev_priv), gt.idle_work.work); 3196 struct drm_device *dev = &dev_priv->drm; 3197 bool rearm_hangcheck; 3198 3199 if (!READ_ONCE(dev_priv->gt.awake)) 3200 return; 3201 3202 /* 3203 * Wait for last execlists context complete, but bail out in case a 3204 * new request is submitted. 3205 */ 3206 wait_for(intel_engines_are_idle(dev_priv), 10); 3207 if (READ_ONCE(dev_priv->gt.active_requests)) 3208 return; 3209 3210 rearm_hangcheck = 3211 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); 3212 3213 if (!mutex_trylock(&dev->struct_mutex)) { 3214 /* Currently busy, come back later */ 3215 mod_delayed_work(dev_priv->wq, 3216 &dev_priv->gt.idle_work, 3217 msecs_to_jiffies(50)); 3218 goto out_rearm; 3219 } 3220 3221 /* 3222 * New request retired after this work handler started, extend active 3223 * period until next instance of the work. 3224 */ 3225 if (work_pending(work)) 3226 goto out_unlock; 3227 3228 if (dev_priv->gt.active_requests) 3229 goto out_unlock; 3230 3231 if (wait_for(intel_engines_are_idle(dev_priv), 10)) 3232 DRM_ERROR("Timeout waiting for engines to idle\n"); 3233 3234 intel_engines_mark_idle(dev_priv); 3235 i915_gem_timelines_mark_idle(dev_priv); 3236 3237 GEM_BUG_ON(!dev_priv->gt.awake); 3238 dev_priv->gt.awake = false; 3239 rearm_hangcheck = false; 3240 3241 if (INTEL_GEN(dev_priv) >= 6) 3242 gen6_rps_idle(dev_priv); 3243 intel_runtime_pm_put(dev_priv); 3244 out_unlock: 3245 mutex_unlock(&dev->struct_mutex); 3246 3247 out_rearm: 3248 if (rearm_hangcheck) { 3249 GEM_BUG_ON(!dev_priv->gt.awake); 3250 i915_queue_hangcheck(dev_priv); 3251 } 3252 } 3253 3254 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file) 3255 { 3256 struct drm_i915_gem_object *obj = to_intel_bo(gem); 3257 struct drm_i915_file_private *fpriv = file->driver_priv; 3258 struct i915_vma *vma, *vn; 3259 3260 mutex_lock(&obj->base.dev->struct_mutex); 3261 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link) 3262 if (vma->vm->file == fpriv) 3263 i915_vma_close(vma); 3264 3265 vma = obj->vma_hashed; 3266 if (vma && vma->ctx->file_priv == fpriv) 3267 i915_vma_unlink_ctx(vma); 3268 3269 if (i915_gem_object_is_active(obj) && 3270 !i915_gem_object_has_active_reference(obj)) { 3271 i915_gem_object_set_active_reference(obj); 3272 i915_gem_object_get(obj); 3273 } 3274 mutex_unlock(&obj->base.dev->struct_mutex); 3275 } 3276 3277 static unsigned long to_wait_timeout(s64 timeout_ns) 3278 { 3279 if (timeout_ns < 0) 3280 return MAX_SCHEDULE_TIMEOUT; 3281 3282 if (timeout_ns == 0) 3283 return 0; 3284 3285 return nsecs_to_jiffies_timeout(timeout_ns); 3286 } 3287 3288 /** 3289 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT 3290 * @dev: drm device pointer 3291 * @data: ioctl data blob 3292 * @file: drm file pointer 3293 * 3294 * Returns 0 if successful, else an error is returned with the remaining time in 3295 * the timeout parameter. 3296 * -ETIME: object is still busy after timeout 3297 * -ERESTARTSYS: signal interrupted the wait 3298 * -ENONENT: object doesn't exist 3299 * Also possible, but rare: 3300 * -EAGAIN: GPU wedged 3301 * -ENOMEM: damn 3302 * -ENODEV: Internal IRQ fail 3303 * -E?: The add request failed 3304 * 3305 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any 3306 * non-zero timeout parameter the wait ioctl will wait for the given number of 3307 * nanoseconds on an object becoming unbusy. Since the wait itself does so 3308 * without holding struct_mutex the object may become re-busied before this 3309 * function completes. A similar but shorter * race condition exists in the busy 3310 * ioctl 3311 */ 3312 int 3313 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 3314 { 3315 struct drm_i915_gem_wait *args = data; 3316 struct drm_i915_gem_object *obj; 3317 ktime_t start; 3318 long ret; 3319 3320 if (args->flags != 0) 3321 return -EINVAL; 3322 3323 obj = i915_gem_object_lookup(file, args->bo_handle); 3324 if (!obj) 3325 return -ENOENT; 3326 3327 start = ktime_get(); 3328 3329 ret = i915_gem_object_wait(obj, 3330 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL, 3331 to_wait_timeout(args->timeout_ns), 3332 to_rps_client(file)); 3333 3334 if (args->timeout_ns > 0) { 3335 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start)); 3336 if (args->timeout_ns < 0) 3337 args->timeout_ns = 0; 3338 3339 /* 3340 * Apparently ktime isn't accurate enough and occasionally has a 3341 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch 3342 * things up to make the test happy. We allow up to 1 jiffy. 3343 * 3344 * This is a regression from the timespec->ktime conversion. 3345 */ 3346 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns)) 3347 args->timeout_ns = 0; 3348 } 3349 3350 i915_gem_object_put(obj); 3351 return ret; 3352 } 3353 3354 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags) 3355 { 3356 int ret, i; 3357 3358 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) { 3359 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags); 3360 if (ret) 3361 return ret; 3362 } 3363 3364 return 0; 3365 } 3366 3367 static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms) 3368 { 3369 return wait_for(intel_engine_is_idle(engine), timeout_ms); 3370 } 3371 3372 static int wait_for_engines(struct drm_i915_private *i915) 3373 { 3374 struct intel_engine_cs *engine; 3375 enum intel_engine_id id; 3376 3377 for_each_engine(engine, i915, id) { 3378 if (GEM_WARN_ON(wait_for_engine(engine, 50))) { 3379 i915_gem_set_wedged(i915); 3380 return -EIO; 3381 } 3382 3383 GEM_BUG_ON(intel_engine_get_seqno(engine) != 3384 intel_engine_last_submit(engine)); 3385 } 3386 3387 return 0; 3388 } 3389 3390 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags) 3391 { 3392 int ret; 3393 3394 /* If the device is asleep, we have no requests outstanding */ 3395 if (!READ_ONCE(i915->gt.awake)) 3396 return 0; 3397 3398 if (flags & I915_WAIT_LOCKED) { 3399 struct i915_gem_timeline *tl; 3400 3401 lockdep_assert_held(&i915->drm.struct_mutex); 3402 3403 list_for_each_entry(tl, &i915->gt.timelines, link) { 3404 ret = wait_for_timeline(tl, flags); 3405 if (ret) 3406 return ret; 3407 } 3408 3409 i915_gem_retire_requests(i915); 3410 GEM_BUG_ON(i915->gt.active_requests); 3411 3412 ret = wait_for_engines(i915); 3413 } else { 3414 ret = wait_for_timeline(&i915->gt.global_timeline, flags); 3415 } 3416 3417 return ret; 3418 } 3419 3420 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj) 3421 { 3422 /* 3423 * We manually flush the CPU domain so that we can override and 3424 * force the flush for the display, and perform it asyncrhonously. 3425 */ 3426 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); 3427 if (obj->cache_dirty) 3428 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE); 3429 obj->base.write_domain = 0; 3430 } 3431 3432 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj) 3433 { 3434 if (!READ_ONCE(obj->pin_display)) 3435 return; 3436 3437 mutex_lock(&obj->base.dev->struct_mutex); 3438 __i915_gem_object_flush_for_display(obj); 3439 mutex_unlock(&obj->base.dev->struct_mutex); 3440 } 3441 3442 /** 3443 * Moves a single object to the WC read, and possibly write domain. 3444 * @obj: object to act on 3445 * @write: ask for write access or read only 3446 * 3447 * This function returns when the move is complete, including waiting on 3448 * flushes to occur. 3449 */ 3450 int 3451 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write) 3452 { 3453 int ret; 3454 3455 lockdep_assert_held(&obj->base.dev->struct_mutex); 3456 3457 ret = i915_gem_object_wait(obj, 3458 I915_WAIT_INTERRUPTIBLE | 3459 I915_WAIT_LOCKED | 3460 (write ? I915_WAIT_ALL : 0), 3461 MAX_SCHEDULE_TIMEOUT, 3462 NULL); 3463 if (ret) 3464 return ret; 3465 3466 if (obj->base.write_domain == I915_GEM_DOMAIN_WC) 3467 return 0; 3468 3469 /* Flush and acquire obj->pages so that we are coherent through 3470 * direct access in memory with previous cached writes through 3471 * shmemfs and that our cache domain tracking remains valid. 3472 * For example, if the obj->filp was moved to swap without us 3473 * being notified and releasing the pages, we would mistakenly 3474 * continue to assume that the obj remained out of the CPU cached 3475 * domain. 3476 */ 3477 ret = i915_gem_object_pin_pages(obj); 3478 if (ret) 3479 return ret; 3480 3481 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC); 3482 3483 /* Serialise direct access to this object with the barriers for 3484 * coherent writes from the GPU, by effectively invalidating the 3485 * WC domain upon first access. 3486 */ 3487 if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0) 3488 mb(); 3489 3490 /* It should now be out of any other write domains, and we can update 3491 * the domain values for our changes. 3492 */ 3493 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0); 3494 obj->base.read_domains |= I915_GEM_DOMAIN_WC; 3495 if (write) { 3496 obj->base.read_domains = I915_GEM_DOMAIN_WC; 3497 obj->base.write_domain = I915_GEM_DOMAIN_WC; 3498 obj->mm.dirty = true; 3499 } 3500 3501 i915_gem_object_unpin_pages(obj); 3502 return 0; 3503 } 3504 3505 /** 3506 * Moves a single object to the GTT read, and possibly write domain. 3507 * @obj: object to act on 3508 * @write: ask for write access or read only 3509 * 3510 * This function returns when the move is complete, including waiting on 3511 * flushes to occur. 3512 */ 3513 int 3514 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) 3515 { 3516 int ret; 3517 3518 lockdep_assert_held(&obj->base.dev->struct_mutex); 3519 3520 ret = i915_gem_object_wait(obj, 3521 I915_WAIT_INTERRUPTIBLE | 3522 I915_WAIT_LOCKED | 3523 (write ? I915_WAIT_ALL : 0), 3524 MAX_SCHEDULE_TIMEOUT, 3525 NULL); 3526 if (ret) 3527 return ret; 3528 3529 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) 3530 return 0; 3531 3532 /* Flush and acquire obj->pages so that we are coherent through 3533 * direct access in memory with previous cached writes through 3534 * shmemfs and that our cache domain tracking remains valid. 3535 * For example, if the obj->filp was moved to swap without us 3536 * being notified and releasing the pages, we would mistakenly 3537 * continue to assume that the obj remained out of the CPU cached 3538 * domain. 3539 */ 3540 ret = i915_gem_object_pin_pages(obj); 3541 if (ret) 3542 return ret; 3543 3544 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT); 3545 3546 /* Serialise direct access to this object with the barriers for 3547 * coherent writes from the GPU, by effectively invalidating the 3548 * GTT domain upon first access. 3549 */ 3550 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 3551 mb(); 3552 3553 /* It should now be out of any other write domains, and we can update 3554 * the domain values for our changes. 3555 */ 3556 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 3557 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3558 if (write) { 3559 obj->base.read_domains = I915_GEM_DOMAIN_GTT; 3560 obj->base.write_domain = I915_GEM_DOMAIN_GTT; 3561 obj->mm.dirty = true; 3562 } 3563 3564 i915_gem_object_unpin_pages(obj); 3565 return 0; 3566 } 3567 3568 /** 3569 * Changes the cache-level of an object across all VMA. 3570 * @obj: object to act on 3571 * @cache_level: new cache level to set for the object 3572 * 3573 * After this function returns, the object will be in the new cache-level 3574 * across all GTT and the contents of the backing storage will be coherent, 3575 * with respect to the new cache-level. In order to keep the backing storage 3576 * coherent for all users, we only allow a single cache level to be set 3577 * globally on the object and prevent it from being changed whilst the 3578 * hardware is reading from the object. That is if the object is currently 3579 * on the scanout it will be set to uncached (or equivalent display 3580 * cache coherency) and all non-MOCS GPU access will also be uncached so 3581 * that all direct access to the scanout remains coherent. 3582 */ 3583 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3584 enum i915_cache_level cache_level) 3585 { 3586 struct i915_vma *vma; 3587 int ret; 3588 3589 lockdep_assert_held(&obj->base.dev->struct_mutex); 3590 3591 if (obj->cache_level == cache_level) 3592 return 0; 3593 3594 /* Inspect the list of currently bound VMA and unbind any that would 3595 * be invalid given the new cache-level. This is principally to 3596 * catch the issue of the CS prefetch crossing page boundaries and 3597 * reading an invalid PTE on older architectures. 3598 */ 3599 restart: 3600 list_for_each_entry(vma, &obj->vma_list, obj_link) { 3601 if (!drm_mm_node_allocated(&vma->node)) 3602 continue; 3603 3604 if (i915_vma_is_pinned(vma)) { 3605 DRM_DEBUG("can not change the cache level of pinned objects\n"); 3606 return -EBUSY; 3607 } 3608 3609 if (i915_gem_valid_gtt_space(vma, cache_level)) 3610 continue; 3611 3612 ret = i915_vma_unbind(vma); 3613 if (ret) 3614 return ret; 3615 3616 /* As unbinding may affect other elements in the 3617 * obj->vma_list (due to side-effects from retiring 3618 * an active vma), play safe and restart the iterator. 3619 */ 3620 goto restart; 3621 } 3622 3623 /* We can reuse the existing drm_mm nodes but need to change the 3624 * cache-level on the PTE. We could simply unbind them all and 3625 * rebind with the correct cache-level on next use. However since 3626 * we already have a valid slot, dma mapping, pages etc, we may as 3627 * rewrite the PTE in the belief that doing so tramples upon less 3628 * state and so involves less work. 3629 */ 3630 if (obj->bind_count) { 3631 /* Before we change the PTE, the GPU must not be accessing it. 3632 * If we wait upon the object, we know that all the bound 3633 * VMA are no longer active. 3634 */ 3635 ret = i915_gem_object_wait(obj, 3636 I915_WAIT_INTERRUPTIBLE | 3637 I915_WAIT_LOCKED | 3638 I915_WAIT_ALL, 3639 MAX_SCHEDULE_TIMEOUT, 3640 NULL); 3641 if (ret) 3642 return ret; 3643 3644 if (!HAS_LLC(to_i915(obj->base.dev)) && 3645 cache_level != I915_CACHE_NONE) { 3646 /* Access to snoopable pages through the GTT is 3647 * incoherent and on some machines causes a hard 3648 * lockup. Relinquish the CPU mmaping to force 3649 * userspace to refault in the pages and we can 3650 * then double check if the GTT mapping is still 3651 * valid for that pointer access. 3652 */ 3653 i915_gem_release_mmap(obj); 3654 3655 /* As we no longer need a fence for GTT access, 3656 * we can relinquish it now (and so prevent having 3657 * to steal a fence from someone else on the next 3658 * fence request). Note GPU activity would have 3659 * dropped the fence as all snoopable access is 3660 * supposed to be linear. 3661 */ 3662 list_for_each_entry(vma, &obj->vma_list, obj_link) { 3663 ret = i915_vma_put_fence(vma); 3664 if (ret) 3665 return ret; 3666 } 3667 } else { 3668 /* We either have incoherent backing store and 3669 * so no GTT access or the architecture is fully 3670 * coherent. In such cases, existing GTT mmaps 3671 * ignore the cache bit in the PTE and we can 3672 * rewrite it without confusing the GPU or having 3673 * to force userspace to fault back in its mmaps. 3674 */ 3675 } 3676 3677 list_for_each_entry(vma, &obj->vma_list, obj_link) { 3678 if (!drm_mm_node_allocated(&vma->node)) 3679 continue; 3680 3681 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE); 3682 if (ret) 3683 return ret; 3684 } 3685 } 3686 3687 list_for_each_entry(vma, &obj->vma_list, obj_link) 3688 vma->node.color = cache_level; 3689 obj->cache_level = cache_level; 3690 obj->cache_coherent = i915_gem_object_is_coherent(obj); 3691 obj->cache_dirty = true; /* Always invalidate stale cachelines */ 3692 3693 return 0; 3694 } 3695 3696 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3697 struct drm_file *file) 3698 { 3699 struct drm_i915_gem_caching *args = data; 3700 struct drm_i915_gem_object *obj; 3701 int err = 0; 3702 3703 rcu_read_lock(); 3704 obj = i915_gem_object_lookup_rcu(file, args->handle); 3705 if (!obj) { 3706 err = -ENOENT; 3707 goto out; 3708 } 3709 3710 switch (obj->cache_level) { 3711 case I915_CACHE_LLC: 3712 case I915_CACHE_L3_LLC: 3713 args->caching = I915_CACHING_CACHED; 3714 break; 3715 3716 case I915_CACHE_WT: 3717 args->caching = I915_CACHING_DISPLAY; 3718 break; 3719 3720 default: 3721 args->caching = I915_CACHING_NONE; 3722 break; 3723 } 3724 out: 3725 rcu_read_unlock(); 3726 return err; 3727 } 3728 3729 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3730 struct drm_file *file) 3731 { 3732 struct drm_i915_private *i915 = to_i915(dev); 3733 struct drm_i915_gem_caching *args = data; 3734 struct drm_i915_gem_object *obj; 3735 enum i915_cache_level level; 3736 int ret = 0; 3737 3738 switch (args->caching) { 3739 case I915_CACHING_NONE: 3740 level = I915_CACHE_NONE; 3741 break; 3742 case I915_CACHING_CACHED: 3743 /* 3744 * Due to a HW issue on BXT A stepping, GPU stores via a 3745 * snooped mapping may leave stale data in a corresponding CPU 3746 * cacheline, whereas normally such cachelines would get 3747 * invalidated. 3748 */ 3749 if (!HAS_LLC(i915) && !HAS_SNOOP(i915)) 3750 return -ENODEV; 3751 3752 level = I915_CACHE_LLC; 3753 break; 3754 case I915_CACHING_DISPLAY: 3755 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE; 3756 break; 3757 default: 3758 return -EINVAL; 3759 } 3760 3761 obj = i915_gem_object_lookup(file, args->handle); 3762 if (!obj) 3763 return -ENOENT; 3764 3765 if (obj->cache_level == level) 3766 goto out; 3767 3768 ret = i915_gem_object_wait(obj, 3769 I915_WAIT_INTERRUPTIBLE, 3770 MAX_SCHEDULE_TIMEOUT, 3771 to_rps_client(file)); 3772 if (ret) 3773 goto out; 3774 3775 ret = i915_mutex_lock_interruptible(dev); 3776 if (ret) 3777 goto out; 3778 3779 ret = i915_gem_object_set_cache_level(obj, level); 3780 mutex_unlock(&dev->struct_mutex); 3781 3782 out: 3783 i915_gem_object_put(obj); 3784 return ret; 3785 } 3786 3787 /* 3788 * Prepare buffer for display plane (scanout, cursors, etc). 3789 * Can be called from an uninterruptible phase (modesetting) and allows 3790 * any flushes to be pipelined (for pageflips). 3791 */ 3792 struct i915_vma * 3793 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3794 u32 alignment, 3795 const struct i915_ggtt_view *view) 3796 { 3797 struct i915_vma *vma; 3798 int ret; 3799 3800 lockdep_assert_held(&obj->base.dev->struct_mutex); 3801 3802 /* Mark the pin_display early so that we account for the 3803 * display coherency whilst setting up the cache domains. 3804 */ 3805 obj->pin_display++; 3806 3807 /* The display engine is not coherent with the LLC cache on gen6. As 3808 * a result, we make sure that the pinning that is about to occur is 3809 * done with uncached PTEs. This is lowest common denominator for all 3810 * chipsets. 3811 * 3812 * However for gen6+, we could do better by using the GFDT bit instead 3813 * of uncaching, which would allow us to flush all the LLC-cached data 3814 * with that bit in the PTE to main memory with just one PIPE_CONTROL. 3815 */ 3816 ret = i915_gem_object_set_cache_level(obj, 3817 HAS_WT(to_i915(obj->base.dev)) ? 3818 I915_CACHE_WT : I915_CACHE_NONE); 3819 if (ret) { 3820 vma = ERR_PTR(ret); 3821 goto err_unpin_display; 3822 } 3823 3824 /* As the user may map the buffer once pinned in the display plane 3825 * (e.g. libkms for the bootup splash), we have to ensure that we 3826 * always use map_and_fenceable for all scanout buffers. However, 3827 * it may simply be too big to fit into mappable, in which case 3828 * put it anyway and hope that userspace can cope (but always first 3829 * try to preserve the existing ABI). 3830 */ 3831 vma = ERR_PTR(-ENOSPC); 3832 if (!view || view->type == I915_GGTT_VIEW_NORMAL) 3833 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 3834 PIN_MAPPABLE | PIN_NONBLOCK); 3835 if (IS_ERR(vma)) { 3836 struct drm_i915_private *i915 = to_i915(obj->base.dev); 3837 unsigned int flags; 3838 3839 /* Valleyview is definitely limited to scanning out the first 3840 * 512MiB. Lets presume this behaviour was inherited from the 3841 * g4x display engine and that all earlier gen are similarly 3842 * limited. Testing suggests that it is a little more 3843 * complicated than this. For example, Cherryview appears quite 3844 * happy to scanout from anywhere within its global aperture. 3845 */ 3846 flags = 0; 3847 if (HAS_GMCH_DISPLAY(i915)) 3848 flags = PIN_MAPPABLE; 3849 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags); 3850 } 3851 if (IS_ERR(vma)) 3852 goto err_unpin_display; 3853 3854 vma->display_alignment = max_t(u64, vma->display_alignment, alignment); 3855 3856 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */ 3857 __i915_gem_object_flush_for_display(obj); 3858 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB); 3859 3860 /* It should now be out of any other write domains, and we can update 3861 * the domain values for our changes. 3862 */ 3863 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3864 3865 return vma; 3866 3867 err_unpin_display: 3868 obj->pin_display--; 3869 return vma; 3870 } 3871 3872 void 3873 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma) 3874 { 3875 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex); 3876 3877 if (WARN_ON(vma->obj->pin_display == 0)) 3878 return; 3879 3880 if (--vma->obj->pin_display == 0) 3881 vma->display_alignment = I915_GTT_MIN_ALIGNMENT; 3882 3883 /* Bump the LRU to try and avoid premature eviction whilst flipping */ 3884 i915_gem_object_bump_inactive_ggtt(vma->obj); 3885 3886 i915_vma_unpin(vma); 3887 } 3888 3889 /** 3890 * Moves a single object to the CPU read, and possibly write domain. 3891 * @obj: object to act on 3892 * @write: requesting write or read-only access 3893 * 3894 * This function returns when the move is complete, including waiting on 3895 * flushes to occur. 3896 */ 3897 int 3898 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) 3899 { 3900 int ret; 3901 3902 lockdep_assert_held(&obj->base.dev->struct_mutex); 3903 3904 ret = i915_gem_object_wait(obj, 3905 I915_WAIT_INTERRUPTIBLE | 3906 I915_WAIT_LOCKED | 3907 (write ? I915_WAIT_ALL : 0), 3908 MAX_SCHEDULE_TIMEOUT, 3909 NULL); 3910 if (ret) 3911 return ret; 3912 3913 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU); 3914 3915 /* Flush the CPU cache if it's still invalid. */ 3916 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { 3917 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC); 3918 obj->base.read_domains |= I915_GEM_DOMAIN_CPU; 3919 } 3920 3921 /* It should now be out of any other write domains, and we can update 3922 * the domain values for our changes. 3923 */ 3924 GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU); 3925 3926 /* If we're writing through the CPU, then the GPU read domains will 3927 * need to be invalidated at next use. 3928 */ 3929 if (write) 3930 __start_cpu_write(obj); 3931 3932 return 0; 3933 } 3934 3935 /* Throttle our rendering by waiting until the ring has completed our requests 3936 * emitted over 20 msec ago. 3937 * 3938 * Note that if we were to use the current jiffies each time around the loop, 3939 * we wouldn't escape the function with any frames outstanding if the time to 3940 * render a frame was over 20ms. 3941 * 3942 * This should get us reasonable parallelism between CPU and GPU but also 3943 * relatively low latency when blocking on a particular request to finish. 3944 */ 3945 static int 3946 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) 3947 { 3948 struct drm_i915_private *dev_priv = to_i915(dev); 3949 struct drm_i915_file_private *file_priv = file->driver_priv; 3950 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES; 3951 struct drm_i915_gem_request *request, *target = NULL; 3952 long ret; 3953 3954 /* ABI: return -EIO if already wedged */ 3955 if (i915_terminally_wedged(&dev_priv->gpu_error)) 3956 return -EIO; 3957 3958 spin_lock(&file_priv->mm.lock); 3959 list_for_each_entry(request, &file_priv->mm.request_list, client_link) { 3960 if (time_after_eq(request->emitted_jiffies, recent_enough)) 3961 break; 3962 3963 if (target) { 3964 list_del(&target->client_link); 3965 target->file_priv = NULL; 3966 } 3967 3968 target = request; 3969 } 3970 if (target) 3971 i915_gem_request_get(target); 3972 spin_unlock(&file_priv->mm.lock); 3973 3974 if (target == NULL) 3975 return 0; 3976 3977 ret = i915_wait_request(target, 3978 I915_WAIT_INTERRUPTIBLE, 3979 MAX_SCHEDULE_TIMEOUT); 3980 i915_gem_request_put(target); 3981 3982 return ret < 0 ? ret : 0; 3983 } 3984 3985 struct i915_vma * 3986 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 3987 const struct i915_ggtt_view *view, 3988 u64 size, 3989 u64 alignment, 3990 u64 flags) 3991 { 3992 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 3993 struct i915_address_space *vm = &dev_priv->ggtt.base; 3994 struct i915_vma *vma; 3995 int ret; 3996 3997 lockdep_assert_held(&obj->base.dev->struct_mutex); 3998 3999 vma = i915_vma_instance(obj, vm, view); 4000 if (unlikely(IS_ERR(vma))) 4001 return vma; 4002 4003 if (i915_vma_misplaced(vma, size, alignment, flags)) { 4004 if (flags & PIN_NONBLOCK && 4005 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))) 4006 return ERR_PTR(-ENOSPC); 4007 4008 if (flags & PIN_MAPPABLE) { 4009 /* If the required space is larger than the available 4010 * aperture, we will not able to find a slot for the 4011 * object and unbinding the object now will be in 4012 * vain. Worse, doing so may cause us to ping-pong 4013 * the object in and out of the Global GTT and 4014 * waste a lot of cycles under the mutex. 4015 */ 4016 if (vma->fence_size > dev_priv->ggtt.mappable_end) 4017 return ERR_PTR(-E2BIG); 4018 4019 /* If NONBLOCK is set the caller is optimistically 4020 * trying to cache the full object within the mappable 4021 * aperture, and *must* have a fallback in place for 4022 * situations where we cannot bind the object. We 4023 * can be a little more lax here and use the fallback 4024 * more often to avoid costly migrations of ourselves 4025 * and other objects within the aperture. 4026 * 4027 * Half-the-aperture is used as a simple heuristic. 4028 * More interesting would to do search for a free 4029 * block prior to making the commitment to unbind. 4030 * That caters for the self-harm case, and with a 4031 * little more heuristics (e.g. NOFAULT, NOEVICT) 4032 * we could try to minimise harm to others. 4033 */ 4034 if (flags & PIN_NONBLOCK && 4035 vma->fence_size > dev_priv->ggtt.mappable_end / 2) 4036 return ERR_PTR(-ENOSPC); 4037 } 4038 4039 WARN(i915_vma_is_pinned(vma), 4040 "bo is already pinned in ggtt with incorrect alignment:" 4041 " offset=%08x, req.alignment=%llx," 4042 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n", 4043 i915_ggtt_offset(vma), alignment, 4044 !!(flags & PIN_MAPPABLE), 4045 i915_vma_is_map_and_fenceable(vma)); 4046 ret = i915_vma_unbind(vma); 4047 if (ret) 4048 return ERR_PTR(ret); 4049 } 4050 4051 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL); 4052 if (ret) 4053 return ERR_PTR(ret); 4054 4055 return vma; 4056 } 4057 4058 static __always_inline unsigned int __busy_read_flag(unsigned int id) 4059 { 4060 /* Note that we could alias engines in the execbuf API, but 4061 * that would be very unwise as it prevents userspace from 4062 * fine control over engine selection. Ahem. 4063 * 4064 * This should be something like EXEC_MAX_ENGINE instead of 4065 * I915_NUM_ENGINES. 4066 */ 4067 BUILD_BUG_ON(I915_NUM_ENGINES > 16); 4068 return 0x10000 << id; 4069 } 4070 4071 static __always_inline unsigned int __busy_write_id(unsigned int id) 4072 { 4073 /* The uABI guarantees an active writer is also amongst the read 4074 * engines. This would be true if we accessed the activity tracking 4075 * under the lock, but as we perform the lookup of the object and 4076 * its activity locklessly we can not guarantee that the last_write 4077 * being active implies that we have set the same engine flag from 4078 * last_read - hence we always set both read and write busy for 4079 * last_write. 4080 */ 4081 return id | __busy_read_flag(id); 4082 } 4083 4084 static __always_inline unsigned int 4085 __busy_set_if_active(const struct dma_fence *fence, 4086 unsigned int (*flag)(unsigned int id)) 4087 { 4088 struct drm_i915_gem_request *rq; 4089 4090 /* We have to check the current hw status of the fence as the uABI 4091 * guarantees forward progress. We could rely on the idle worker 4092 * to eventually flush us, but to minimise latency just ask the 4093 * hardware. 4094 * 4095 * Note we only report on the status of native fences. 4096 */ 4097 if (!dma_fence_is_i915(fence)) 4098 return 0; 4099 4100 /* opencode to_request() in order to avoid const warnings */ 4101 rq = container_of(fence, struct drm_i915_gem_request, fence); 4102 if (i915_gem_request_completed(rq)) 4103 return 0; 4104 4105 return flag(rq->engine->uabi_id); 4106 } 4107 4108 static __always_inline unsigned int 4109 busy_check_reader(const struct dma_fence *fence) 4110 { 4111 return __busy_set_if_active(fence, __busy_read_flag); 4112 } 4113 4114 static __always_inline unsigned int 4115 busy_check_writer(const struct dma_fence *fence) 4116 { 4117 if (!fence) 4118 return 0; 4119 4120 return __busy_set_if_active(fence, __busy_write_id); 4121 } 4122 4123 int 4124 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 4125 struct drm_file *file) 4126 { 4127 struct drm_i915_gem_busy *args = data; 4128 struct drm_i915_gem_object *obj; 4129 struct reservation_object_list *list; 4130 unsigned int seq; 4131 int err; 4132 4133 err = -ENOENT; 4134 rcu_read_lock(); 4135 obj = i915_gem_object_lookup_rcu(file, args->handle); 4136 if (!obj) 4137 goto out; 4138 4139 /* A discrepancy here is that we do not report the status of 4140 * non-i915 fences, i.e. even though we may report the object as idle, 4141 * a call to set-domain may still stall waiting for foreign rendering. 4142 * This also means that wait-ioctl may report an object as busy, 4143 * where busy-ioctl considers it idle. 4144 * 4145 * We trade the ability to warn of foreign fences to report on which 4146 * i915 engines are active for the object. 4147 * 4148 * Alternatively, we can trade that extra information on read/write 4149 * activity with 4150 * args->busy = 4151 * !reservation_object_test_signaled_rcu(obj->resv, true); 4152 * to report the overall busyness. This is what the wait-ioctl does. 4153 * 4154 */ 4155 retry: 4156 seq = raw_read_seqcount(&obj->resv->seq); 4157 4158 /* Translate the exclusive fence to the READ *and* WRITE engine */ 4159 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl)); 4160 4161 /* Translate shared fences to READ set of engines */ 4162 list = rcu_dereference(obj->resv->fence); 4163 if (list) { 4164 unsigned int shared_count = list->shared_count, i; 4165 4166 for (i = 0; i < shared_count; ++i) { 4167 struct dma_fence *fence = 4168 rcu_dereference(list->shared[i]); 4169 4170 args->busy |= busy_check_reader(fence); 4171 } 4172 } 4173 4174 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq)) 4175 goto retry; 4176 4177 err = 0; 4178 out: 4179 rcu_read_unlock(); 4180 return err; 4181 } 4182 4183 int 4184 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 4185 struct drm_file *file_priv) 4186 { 4187 return i915_gem_ring_throttle(dev, file_priv); 4188 } 4189 4190 int 4191 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 4192 struct drm_file *file_priv) 4193 { 4194 struct drm_i915_private *dev_priv = to_i915(dev); 4195 struct drm_i915_gem_madvise *args = data; 4196 struct drm_i915_gem_object *obj; 4197 int err; 4198 4199 switch (args->madv) { 4200 case I915_MADV_DONTNEED: 4201 case I915_MADV_WILLNEED: 4202 break; 4203 default: 4204 return -EINVAL; 4205 } 4206 4207 obj = i915_gem_object_lookup(file_priv, args->handle); 4208 if (!obj) 4209 return -ENOENT; 4210 4211 err = mutex_lock_interruptible(&obj->mm.lock); 4212 if (err) 4213 goto out; 4214 4215 if (obj->mm.pages && 4216 i915_gem_object_is_tiled(obj) && 4217 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) { 4218 if (obj->mm.madv == I915_MADV_WILLNEED) { 4219 GEM_BUG_ON(!obj->mm.quirked); 4220 __i915_gem_object_unpin_pages(obj); 4221 obj->mm.quirked = false; 4222 } 4223 if (args->madv == I915_MADV_WILLNEED) { 4224 GEM_BUG_ON(obj->mm.quirked); 4225 __i915_gem_object_pin_pages(obj); 4226 obj->mm.quirked = true; 4227 } 4228 } 4229 4230 if (obj->mm.madv != __I915_MADV_PURGED) 4231 obj->mm.madv = args->madv; 4232 4233 /* if the object is no longer attached, discard its backing storage */ 4234 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages) 4235 i915_gem_object_truncate(obj); 4236 4237 args->retained = obj->mm.madv != __I915_MADV_PURGED; 4238 mutex_unlock(&obj->mm.lock); 4239 4240 out: 4241 i915_gem_object_put(obj); 4242 return err; 4243 } 4244 4245 static void 4246 frontbuffer_retire(struct i915_gem_active *active, 4247 struct drm_i915_gem_request *request) 4248 { 4249 struct drm_i915_gem_object *obj = 4250 container_of(active, typeof(*obj), frontbuffer_write); 4251 4252 intel_fb_obj_flush(obj, ORIGIN_CS); 4253 } 4254 4255 void i915_gem_object_init(struct drm_i915_gem_object *obj, 4256 const struct drm_i915_gem_object_ops *ops) 4257 { 4258 mutex_init(&obj->mm.lock); 4259 4260 INIT_LIST_HEAD(&obj->global_link); 4261 INIT_LIST_HEAD(&obj->userfault_link); 4262 INIT_LIST_HEAD(&obj->vma_list); 4263 INIT_LIST_HEAD(&obj->batch_pool_link); 4264 4265 obj->ops = ops; 4266 4267 reservation_object_init(&obj->__builtin_resv); 4268 obj->resv = &obj->__builtin_resv; 4269 4270 obj->frontbuffer_ggtt_origin = ORIGIN_GTT; 4271 init_request_active(&obj->frontbuffer_write, frontbuffer_retire); 4272 4273 obj->mm.madv = I915_MADV_WILLNEED; 4274 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN); 4275 mutex_init(&obj->mm.get_page.lock); 4276 4277 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size); 4278 } 4279 4280 static const struct drm_i915_gem_object_ops i915_gem_object_ops = { 4281 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE | 4282 I915_GEM_OBJECT_IS_SHRINKABLE, 4283 4284 .get_pages = i915_gem_object_get_pages_gtt, 4285 .put_pages = i915_gem_object_put_pages_gtt, 4286 4287 .pwrite = i915_gem_object_pwrite_gtt, 4288 }; 4289 4290 struct drm_i915_gem_object * 4291 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size) 4292 { 4293 struct drm_i915_gem_object *obj; 4294 struct address_space *mapping; 4295 gfp_t mask; 4296 int ret; 4297 4298 /* There is a prevalence of the assumption that we fit the object's 4299 * page count inside a 32bit _signed_ variable. Let's document this and 4300 * catch if we ever need to fix it. In the meantime, if you do spot 4301 * such a local variable, please consider fixing! 4302 */ 4303 if (size >> PAGE_SHIFT > INT_MAX) 4304 return ERR_PTR(-E2BIG); 4305 4306 if (overflows_type(size, obj->base.size)) 4307 return ERR_PTR(-E2BIG); 4308 4309 obj = i915_gem_object_alloc(dev_priv); 4310 if (obj == NULL) 4311 return ERR_PTR(-ENOMEM); 4312 4313 ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size); 4314 if (ret) 4315 goto fail; 4316 4317 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 4318 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) { 4319 /* 965gm cannot relocate objects above 4GiB. */ 4320 mask &= ~__GFP_HIGHMEM; 4321 mask |= __GFP_DMA32; 4322 } 4323 4324 mapping = obj->base.filp->f_mapping; 4325 mapping_set_gfp_mask(mapping, mask); 4326 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM)); 4327 4328 i915_gem_object_init(obj, &i915_gem_object_ops); 4329 4330 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 4331 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 4332 4333 if (HAS_LLC(dev_priv)) { 4334 /* On some devices, we can have the GPU use the LLC (the CPU 4335 * cache) for about a 10% performance improvement 4336 * compared to uncached. Graphics requests other than 4337 * display scanout are coherent with the CPU in 4338 * accessing this cache. This means in this mode we 4339 * don't need to clflush on the CPU side, and on the 4340 * GPU side we only need to flush internal caches to 4341 * get data visible to the CPU. 4342 * 4343 * However, we maintain the display planes as UC, and so 4344 * need to rebind when first used as such. 4345 */ 4346 obj->cache_level = I915_CACHE_LLC; 4347 } else 4348 obj->cache_level = I915_CACHE_NONE; 4349 4350 obj->cache_coherent = i915_gem_object_is_coherent(obj); 4351 obj->cache_dirty = !obj->cache_coherent; 4352 4353 trace_i915_gem_object_create(obj); 4354 4355 return obj; 4356 4357 fail: 4358 i915_gem_object_free(obj); 4359 return ERR_PTR(ret); 4360 } 4361 4362 static bool discard_backing_storage(struct drm_i915_gem_object *obj) 4363 { 4364 /* If we are the last user of the backing storage (be it shmemfs 4365 * pages or stolen etc), we know that the pages are going to be 4366 * immediately released. In this case, we can then skip copying 4367 * back the contents from the GPU. 4368 */ 4369 4370 if (obj->mm.madv != I915_MADV_WILLNEED) 4371 return false; 4372 4373 if (obj->base.filp == NULL) 4374 return true; 4375 4376 /* At first glance, this looks racy, but then again so would be 4377 * userspace racing mmap against close. However, the first external 4378 * reference to the filp can only be obtained through the 4379 * i915_gem_mmap_ioctl() which safeguards us against the user 4380 * acquiring such a reference whilst we are in the middle of 4381 * freeing the object. 4382 */ 4383 return atomic_long_read(&obj->base.filp->f_count) == 1; 4384 } 4385 4386 static void __i915_gem_free_objects(struct drm_i915_private *i915, 4387 struct llist_node *freed) 4388 { 4389 struct drm_i915_gem_object *obj, *on; 4390 4391 mutex_lock(&i915->drm.struct_mutex); 4392 intel_runtime_pm_get(i915); 4393 llist_for_each_entry(obj, freed, freed) { 4394 struct i915_vma *vma, *vn; 4395 4396 trace_i915_gem_object_destroy(obj); 4397 4398 GEM_BUG_ON(i915_gem_object_is_active(obj)); 4399 list_for_each_entry_safe(vma, vn, 4400 &obj->vma_list, obj_link) { 4401 GEM_BUG_ON(i915_vma_is_active(vma)); 4402 vma->flags &= ~I915_VMA_PIN_MASK; 4403 i915_vma_close(vma); 4404 } 4405 GEM_BUG_ON(!list_empty(&obj->vma_list)); 4406 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree)); 4407 4408 list_del(&obj->global_link); 4409 } 4410 intel_runtime_pm_put(i915); 4411 mutex_unlock(&i915->drm.struct_mutex); 4412 4413 cond_resched(); 4414 4415 llist_for_each_entry_safe(obj, on, freed, freed) { 4416 GEM_BUG_ON(obj->bind_count); 4417 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits)); 4418 4419 if (obj->ops->release) 4420 obj->ops->release(obj); 4421 4422 if (WARN_ON(i915_gem_object_has_pinned_pages(obj))) 4423 atomic_set(&obj->mm.pages_pin_count, 0); 4424 __i915_gem_object_put_pages(obj, I915_MM_NORMAL); 4425 GEM_BUG_ON(obj->mm.pages); 4426 4427 if (obj->base.import_attach) 4428 drm_prime_gem_destroy(&obj->base, NULL); 4429 4430 reservation_object_fini(&obj->__builtin_resv); 4431 drm_gem_object_release(&obj->base); 4432 i915_gem_info_remove_obj(i915, obj->base.size); 4433 4434 kfree(obj->bit_17); 4435 i915_gem_object_free(obj); 4436 } 4437 } 4438 4439 static void i915_gem_flush_free_objects(struct drm_i915_private *i915) 4440 { 4441 struct llist_node *freed; 4442 4443 freed = llist_del_all(&i915->mm.free_list); 4444 if (unlikely(freed)) 4445 __i915_gem_free_objects(i915, freed); 4446 } 4447 4448 static void __i915_gem_free_work(struct work_struct *work) 4449 { 4450 struct drm_i915_private *i915 = 4451 container_of(work, struct drm_i915_private, mm.free_work); 4452 struct llist_node *freed; 4453 4454 /* All file-owned VMA should have been released by this point through 4455 * i915_gem_close_object(), or earlier by i915_gem_context_close(). 4456 * However, the object may also be bound into the global GTT (e.g. 4457 * older GPUs without per-process support, or for direct access through 4458 * the GTT either for the user or for scanout). Those VMA still need to 4459 * unbound now. 4460 */ 4461 4462 while ((freed = llist_del_all(&i915->mm.free_list))) { 4463 __i915_gem_free_objects(i915, freed); 4464 if (need_resched()) 4465 break; 4466 } 4467 } 4468 4469 static void __i915_gem_free_object_rcu(struct rcu_head *head) 4470 { 4471 struct drm_i915_gem_object *obj = 4472 container_of(head, typeof(*obj), rcu); 4473 struct drm_i915_private *i915 = to_i915(obj->base.dev); 4474 4475 /* We can't simply use call_rcu() from i915_gem_free_object() 4476 * as we need to block whilst unbinding, and the call_rcu 4477 * task may be called from softirq context. So we take a 4478 * detour through a worker. 4479 */ 4480 if (llist_add(&obj->freed, &i915->mm.free_list)) 4481 schedule_work(&i915->mm.free_work); 4482 } 4483 4484 void i915_gem_free_object(struct drm_gem_object *gem_obj) 4485 { 4486 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 4487 4488 if (obj->mm.quirked) 4489 __i915_gem_object_unpin_pages(obj); 4490 4491 if (discard_backing_storage(obj)) 4492 obj->mm.madv = I915_MADV_DONTNEED; 4493 4494 /* Before we free the object, make sure any pure RCU-only 4495 * read-side critical sections are complete, e.g. 4496 * i915_gem_busy_ioctl(). For the corresponding synchronized 4497 * lookup see i915_gem_object_lookup_rcu(). 4498 */ 4499 call_rcu(&obj->rcu, __i915_gem_free_object_rcu); 4500 } 4501 4502 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj) 4503 { 4504 lockdep_assert_held(&obj->base.dev->struct_mutex); 4505 4506 GEM_BUG_ON(i915_gem_object_has_active_reference(obj)); 4507 if (i915_gem_object_is_active(obj)) 4508 i915_gem_object_set_active_reference(obj); 4509 else 4510 i915_gem_object_put(obj); 4511 } 4512 4513 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv) 4514 { 4515 struct intel_engine_cs *engine; 4516 enum intel_engine_id id; 4517 4518 for_each_engine(engine, dev_priv, id) 4519 GEM_BUG_ON(engine->last_retired_context && 4520 !i915_gem_context_is_kernel(engine->last_retired_context)); 4521 } 4522 4523 void i915_gem_sanitize(struct drm_i915_private *i915) 4524 { 4525 /* 4526 * If we inherit context state from the BIOS or earlier occupants 4527 * of the GPU, the GPU may be in an inconsistent state when we 4528 * try to take over. The only way to remove the earlier state 4529 * is by resetting. However, resetting on earlier gen is tricky as 4530 * it may impact the display and we are uncertain about the stability 4531 * of the reset, so this could be applied to even earlier gen. 4532 */ 4533 if (INTEL_GEN(i915) >= 5) { 4534 int reset = intel_gpu_reset(i915, ALL_ENGINES); 4535 WARN_ON(reset && reset != -ENODEV); 4536 } 4537 } 4538 4539 int i915_gem_suspend(struct drm_i915_private *dev_priv) 4540 { 4541 struct drm_device *dev = &dev_priv->drm; 4542 int ret; 4543 4544 intel_runtime_pm_get(dev_priv); 4545 intel_suspend_gt_powersave(dev_priv); 4546 4547 mutex_lock(&dev->struct_mutex); 4548 4549 /* We have to flush all the executing contexts to main memory so 4550 * that they can saved in the hibernation image. To ensure the last 4551 * context image is coherent, we have to switch away from it. That 4552 * leaves the dev_priv->kernel_context still active when 4553 * we actually suspend, and its image in memory may not match the GPU 4554 * state. Fortunately, the kernel_context is disposable and we do 4555 * not rely on its state. 4556 */ 4557 ret = i915_gem_switch_to_kernel_context(dev_priv); 4558 if (ret) 4559 goto err_unlock; 4560 4561 ret = i915_gem_wait_for_idle(dev_priv, 4562 I915_WAIT_INTERRUPTIBLE | 4563 I915_WAIT_LOCKED); 4564 if (ret) 4565 goto err_unlock; 4566 4567 assert_kernel_context_is_current(dev_priv); 4568 i915_gem_context_lost(dev_priv); 4569 mutex_unlock(&dev->struct_mutex); 4570 4571 intel_guc_suspend(dev_priv); 4572 4573 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); 4574 cancel_delayed_work_sync(&dev_priv->gt.retire_work); 4575 4576 /* As the idle_work is rearming if it detects a race, play safe and 4577 * repeat the flush until it is definitely idle. 4578 */ 4579 while (flush_delayed_work(&dev_priv->gt.idle_work)) 4580 ; 4581 4582 i915_gem_drain_freed_objects(dev_priv); 4583 4584 /* Assert that we sucessfully flushed all the work and 4585 * reset the GPU back to its idle, low power state. 4586 */ 4587 WARN_ON(dev_priv->gt.awake); 4588 WARN_ON(!intel_engines_are_idle(dev_priv)); 4589 4590 /* 4591 * Neither the BIOS, ourselves or any other kernel 4592 * expects the system to be in execlists mode on startup, 4593 * so we need to reset the GPU back to legacy mode. And the only 4594 * known way to disable logical contexts is through a GPU reset. 4595 * 4596 * So in order to leave the system in a known default configuration, 4597 * always reset the GPU upon unload and suspend. Afterwards we then 4598 * clean up the GEM state tracking, flushing off the requests and 4599 * leaving the system in a known idle state. 4600 * 4601 * Note that is of the upmost importance that the GPU is idle and 4602 * all stray writes are flushed *before* we dismantle the backing 4603 * storage for the pinned objects. 4604 * 4605 * However, since we are uncertain that resetting the GPU on older 4606 * machines is a good idea, we don't - just in case it leaves the 4607 * machine in an unusable condition. 4608 */ 4609 i915_gem_sanitize(dev_priv); 4610 goto out_rpm_put; 4611 4612 err_unlock: 4613 mutex_unlock(&dev->struct_mutex); 4614 out_rpm_put: 4615 intel_runtime_pm_put(dev_priv); 4616 return ret; 4617 } 4618 4619 void i915_gem_resume(struct drm_i915_private *dev_priv) 4620 { 4621 struct drm_device *dev = &dev_priv->drm; 4622 4623 WARN_ON(dev_priv->gt.awake); 4624 4625 mutex_lock(&dev->struct_mutex); 4626 i915_gem_restore_gtt_mappings(dev_priv); 4627 4628 /* As we didn't flush the kernel context before suspend, we cannot 4629 * guarantee that the context image is complete. So let's just reset 4630 * it and start again. 4631 */ 4632 dev_priv->gt.resume(dev_priv); 4633 4634 mutex_unlock(&dev->struct_mutex); 4635 } 4636 4637 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv) 4638 { 4639 if (INTEL_GEN(dev_priv) < 5 || 4640 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 4641 return; 4642 4643 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | 4644 DISP_TILE_SURFACE_SWIZZLING); 4645 4646 if (IS_GEN5(dev_priv)) 4647 return; 4648 4649 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); 4650 if (IS_GEN6(dev_priv)) 4651 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 4652 else if (IS_GEN7(dev_priv)) 4653 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 4654 else if (IS_GEN8(dev_priv)) 4655 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW)); 4656 else 4657 BUG(); 4658 } 4659 4660 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base) 4661 { 4662 I915_WRITE(RING_CTL(base), 0); 4663 I915_WRITE(RING_HEAD(base), 0); 4664 I915_WRITE(RING_TAIL(base), 0); 4665 I915_WRITE(RING_START(base), 0); 4666 } 4667 4668 static void init_unused_rings(struct drm_i915_private *dev_priv) 4669 { 4670 if (IS_I830(dev_priv)) { 4671 init_unused_ring(dev_priv, PRB1_BASE); 4672 init_unused_ring(dev_priv, SRB0_BASE); 4673 init_unused_ring(dev_priv, SRB1_BASE); 4674 init_unused_ring(dev_priv, SRB2_BASE); 4675 init_unused_ring(dev_priv, SRB3_BASE); 4676 } else if (IS_GEN2(dev_priv)) { 4677 init_unused_ring(dev_priv, SRB0_BASE); 4678 init_unused_ring(dev_priv, SRB1_BASE); 4679 } else if (IS_GEN3(dev_priv)) { 4680 init_unused_ring(dev_priv, PRB1_BASE); 4681 init_unused_ring(dev_priv, PRB2_BASE); 4682 } 4683 } 4684 4685 static int __i915_gem_restart_engines(void *data) 4686 { 4687 struct drm_i915_private *i915 = data; 4688 struct intel_engine_cs *engine; 4689 enum intel_engine_id id; 4690 int err; 4691 4692 for_each_engine(engine, i915, id) { 4693 err = engine->init_hw(engine); 4694 if (err) 4695 return err; 4696 } 4697 4698 return 0; 4699 } 4700 4701 int i915_gem_init_hw(struct drm_i915_private *dev_priv) 4702 { 4703 int ret; 4704 4705 dev_priv->gt.last_init_time = ktime_get(); 4706 4707 /* Double layer security blanket, see i915_gem_init() */ 4708 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 4709 4710 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9) 4711 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf)); 4712 4713 if (IS_HASWELL(dev_priv)) 4714 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ? 4715 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 4716 4717 if (HAS_PCH_NOP(dev_priv)) { 4718 if (IS_IVYBRIDGE(dev_priv)) { 4719 u32 temp = I915_READ(GEN7_MSG_CTL); 4720 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK); 4721 I915_WRITE(GEN7_MSG_CTL, temp); 4722 } else if (INTEL_GEN(dev_priv) >= 7) { 4723 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT); 4724 temp &= ~RESET_PCH_HANDSHAKE_ENABLE; 4725 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp); 4726 } 4727 } 4728 4729 i915_gem_init_swizzling(dev_priv); 4730 4731 /* 4732 * At least 830 can leave some of the unused rings 4733 * "active" (ie. head != tail) after resume which 4734 * will prevent c3 entry. Makes sure all unused rings 4735 * are totally idle. 4736 */ 4737 init_unused_rings(dev_priv); 4738 4739 BUG_ON(!dev_priv->kernel_context); 4740 4741 ret = i915_ppgtt_init_hw(dev_priv); 4742 if (ret) { 4743 DRM_ERROR("PPGTT enable HW failed %d\n", ret); 4744 goto out; 4745 } 4746 4747 /* Need to do basic initialisation of all rings first: */ 4748 ret = __i915_gem_restart_engines(dev_priv); 4749 if (ret) 4750 goto out; 4751 4752 intel_mocs_init_l3cc_table(dev_priv); 4753 4754 /* We can't enable contexts until all firmware is loaded */ 4755 ret = intel_uc_init_hw(dev_priv); 4756 if (ret) 4757 goto out; 4758 4759 out: 4760 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 4761 return ret; 4762 } 4763 4764 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value) 4765 { 4766 if (INTEL_INFO(dev_priv)->gen < 6) 4767 return false; 4768 4769 /* TODO: make semaphores and Execlists play nicely together */ 4770 if (i915.enable_execlists) 4771 return false; 4772 4773 if (value >= 0) 4774 return value; 4775 4776 /* Enable semaphores on SNB when IO remapping is off */ 4777 if (IS_GEN6(dev_priv) && intel_vtd_active()) 4778 return false; 4779 4780 return true; 4781 } 4782 4783 int i915_gem_init(struct drm_i915_private *dev_priv) 4784 { 4785 int ret; 4786 4787 mutex_lock(&dev_priv->drm.struct_mutex); 4788 4789 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1); 4790 4791 if (!i915.enable_execlists) { 4792 dev_priv->gt.resume = intel_legacy_submission_resume; 4793 dev_priv->gt.cleanup_engine = intel_engine_cleanup; 4794 } else { 4795 dev_priv->gt.resume = intel_lr_context_resume; 4796 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup; 4797 } 4798 4799 /* This is just a security blanket to placate dragons. 4800 * On some systems, we very sporadically observe that the first TLBs 4801 * used by the CS may be stale, despite us poking the TLB reset. If 4802 * we hold the forcewake during initialisation these problems 4803 * just magically go away. 4804 */ 4805 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 4806 4807 ret = i915_gem_init_userptr(dev_priv); 4808 if (ret) 4809 goto out_unlock; 4810 4811 ret = i915_gem_init_ggtt(dev_priv); 4812 if (ret) 4813 goto out_unlock; 4814 4815 ret = i915_gem_context_init(dev_priv); 4816 if (ret) 4817 goto out_unlock; 4818 4819 ret = intel_engines_init(dev_priv); 4820 if (ret) 4821 goto out_unlock; 4822 4823 ret = i915_gem_init_hw(dev_priv); 4824 if (ret == -EIO) { 4825 /* Allow engine initialisation to fail by marking the GPU as 4826 * wedged. But we only want to do this where the GPU is angry, 4827 * for all other failure, such as an allocation failure, bail. 4828 */ 4829 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n"); 4830 i915_gem_set_wedged(dev_priv); 4831 ret = 0; 4832 } 4833 4834 out_unlock: 4835 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 4836 mutex_unlock(&dev_priv->drm.struct_mutex); 4837 4838 return ret; 4839 } 4840 4841 void i915_gem_init_mmio(struct drm_i915_private *i915) 4842 { 4843 i915_gem_sanitize(i915); 4844 } 4845 4846 void 4847 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv) 4848 { 4849 struct intel_engine_cs *engine; 4850 enum intel_engine_id id; 4851 4852 for_each_engine(engine, dev_priv, id) 4853 dev_priv->gt.cleanup_engine(engine); 4854 } 4855 4856 void 4857 i915_gem_load_init_fences(struct drm_i915_private *dev_priv) 4858 { 4859 int i; 4860 4861 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) && 4862 !IS_CHERRYVIEW(dev_priv)) 4863 dev_priv->num_fence_regs = 32; 4864 else if (INTEL_INFO(dev_priv)->gen >= 4 || 4865 IS_I945G(dev_priv) || IS_I945GM(dev_priv) || 4866 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) 4867 dev_priv->num_fence_regs = 16; 4868 else 4869 dev_priv->num_fence_regs = 8; 4870 4871 if (intel_vgpu_active(dev_priv)) 4872 dev_priv->num_fence_regs = 4873 I915_READ(vgtif_reg(avail_rs.fence_num)); 4874 4875 /* Initialize fence registers to zero */ 4876 for (i = 0; i < dev_priv->num_fence_regs; i++) { 4877 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i]; 4878 4879 fence->i915 = dev_priv; 4880 fence->id = i; 4881 list_add_tail(&fence->link, &dev_priv->mm.fence_list); 4882 } 4883 i915_gem_restore_fences(dev_priv); 4884 4885 i915_gem_detect_bit_6_swizzle(dev_priv); 4886 } 4887 4888 int 4889 i915_gem_load_init(struct drm_i915_private *dev_priv) 4890 { 4891 int err = -ENOMEM; 4892 4893 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN); 4894 if (!dev_priv->objects) 4895 goto err_out; 4896 4897 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN); 4898 if (!dev_priv->vmas) 4899 goto err_objects; 4900 4901 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request, 4902 SLAB_HWCACHE_ALIGN | 4903 SLAB_RECLAIM_ACCOUNT | 4904 SLAB_TYPESAFE_BY_RCU); 4905 if (!dev_priv->requests) 4906 goto err_vmas; 4907 4908 dev_priv->dependencies = KMEM_CACHE(i915_dependency, 4909 SLAB_HWCACHE_ALIGN | 4910 SLAB_RECLAIM_ACCOUNT); 4911 if (!dev_priv->dependencies) 4912 goto err_requests; 4913 4914 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN); 4915 if (!dev_priv->priorities) 4916 goto err_dependencies; 4917 4918 mutex_lock(&dev_priv->drm.struct_mutex); 4919 INIT_LIST_HEAD(&dev_priv->gt.timelines); 4920 err = i915_gem_timeline_init__global(dev_priv); 4921 mutex_unlock(&dev_priv->drm.struct_mutex); 4922 if (err) 4923 goto err_priorities; 4924 4925 INIT_LIST_HEAD(&dev_priv->context_list); 4926 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work); 4927 init_llist_head(&dev_priv->mm.free_list); 4928 INIT_LIST_HEAD(&dev_priv->mm.unbound_list); 4929 INIT_LIST_HEAD(&dev_priv->mm.bound_list); 4930 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4931 INIT_LIST_HEAD(&dev_priv->mm.userfault_list); 4932 INIT_DELAYED_WORK(&dev_priv->gt.retire_work, 4933 i915_gem_retire_work_handler); 4934 INIT_DELAYED_WORK(&dev_priv->gt.idle_work, 4935 i915_gem_idle_work_handler); 4936 init_waitqueue_head(&dev_priv->gpu_error.wait_queue); 4937 init_waitqueue_head(&dev_priv->gpu_error.reset_queue); 4938 4939 init_waitqueue_head(&dev_priv->pending_flip_queue); 4940 4941 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0); 4942 4943 spin_lock_init(&dev_priv->fb_tracking.lock); 4944 4945 return 0; 4946 4947 err_priorities: 4948 kmem_cache_destroy(dev_priv->priorities); 4949 err_dependencies: 4950 kmem_cache_destroy(dev_priv->dependencies); 4951 err_requests: 4952 kmem_cache_destroy(dev_priv->requests); 4953 err_vmas: 4954 kmem_cache_destroy(dev_priv->vmas); 4955 err_objects: 4956 kmem_cache_destroy(dev_priv->objects); 4957 err_out: 4958 return err; 4959 } 4960 4961 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv) 4962 { 4963 i915_gem_drain_freed_objects(dev_priv); 4964 WARN_ON(!llist_empty(&dev_priv->mm.free_list)); 4965 WARN_ON(dev_priv->mm.object_count); 4966 4967 mutex_lock(&dev_priv->drm.struct_mutex); 4968 i915_gem_timeline_fini(&dev_priv->gt.global_timeline); 4969 WARN_ON(!list_empty(&dev_priv->gt.timelines)); 4970 mutex_unlock(&dev_priv->drm.struct_mutex); 4971 4972 kmem_cache_destroy(dev_priv->priorities); 4973 kmem_cache_destroy(dev_priv->dependencies); 4974 kmem_cache_destroy(dev_priv->requests); 4975 kmem_cache_destroy(dev_priv->vmas); 4976 kmem_cache_destroy(dev_priv->objects); 4977 4978 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */ 4979 rcu_barrier(); 4980 } 4981 4982 int i915_gem_freeze(struct drm_i915_private *dev_priv) 4983 { 4984 /* Discard all purgeable objects, let userspace recover those as 4985 * required after resuming. 4986 */ 4987 i915_gem_shrink_all(dev_priv); 4988 4989 return 0; 4990 } 4991 4992 int i915_gem_freeze_late(struct drm_i915_private *dev_priv) 4993 { 4994 struct drm_i915_gem_object *obj; 4995 struct list_head *phases[] = { 4996 &dev_priv->mm.unbound_list, 4997 &dev_priv->mm.bound_list, 4998 NULL 4999 }, **p; 5000 5001 /* Called just before we write the hibernation image. 5002 * 5003 * We need to update the domain tracking to reflect that the CPU 5004 * will be accessing all the pages to create and restore from the 5005 * hibernation, and so upon restoration those pages will be in the 5006 * CPU domain. 5007 * 5008 * To make sure the hibernation image contains the latest state, 5009 * we update that state just before writing out the image. 5010 * 5011 * To try and reduce the hibernation image, we manually shrink 5012 * the objects as well, see i915_gem_freeze() 5013 */ 5014 5015 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND); 5016 i915_gem_drain_freed_objects(dev_priv); 5017 5018 mutex_lock(&dev_priv->drm.struct_mutex); 5019 for (p = phases; *p; p++) { 5020 list_for_each_entry(obj, *p, global_link) 5021 __start_cpu_write(obj); 5022 } 5023 mutex_unlock(&dev_priv->drm.struct_mutex); 5024 5025 return 0; 5026 } 5027 5028 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 5029 { 5030 struct drm_i915_file_private *file_priv = file->driver_priv; 5031 struct drm_i915_gem_request *request; 5032 5033 /* Clean up our request list when the client is going away, so that 5034 * later retire_requests won't dereference our soon-to-be-gone 5035 * file_priv. 5036 */ 5037 spin_lock(&file_priv->mm.lock); 5038 list_for_each_entry(request, &file_priv->mm.request_list, client_link) 5039 request->file_priv = NULL; 5040 spin_unlock(&file_priv->mm.lock); 5041 5042 if (!list_empty(&file_priv->rps.link)) { 5043 spin_lock(&to_i915(dev)->rps.client_lock); 5044 list_del(&file_priv->rps.link); 5045 spin_unlock(&to_i915(dev)->rps.client_lock); 5046 } 5047 } 5048 5049 int i915_gem_open(struct drm_device *dev, struct drm_file *file) 5050 { 5051 struct drm_i915_file_private *file_priv; 5052 int ret; 5053 5054 DRM_DEBUG("\n"); 5055 5056 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); 5057 if (!file_priv) 5058 return -ENOMEM; 5059 5060 file->driver_priv = file_priv; 5061 file_priv->dev_priv = to_i915(dev); 5062 file_priv->file = file; 5063 INIT_LIST_HEAD(&file_priv->rps.link); 5064 5065 spin_lock_init(&file_priv->mm.lock); 5066 INIT_LIST_HEAD(&file_priv->mm.request_list); 5067 5068 file_priv->bsd_engine = -1; 5069 5070 ret = i915_gem_context_open(dev, file); 5071 if (ret) 5072 kfree(file_priv); 5073 5074 return ret; 5075 } 5076 5077 /** 5078 * i915_gem_track_fb - update frontbuffer tracking 5079 * @old: current GEM buffer for the frontbuffer slots 5080 * @new: new GEM buffer for the frontbuffer slots 5081 * @frontbuffer_bits: bitmask of frontbuffer slots 5082 * 5083 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them 5084 * from @old and setting them in @new. Both @old and @new can be NULL. 5085 */ 5086 void i915_gem_track_fb(struct drm_i915_gem_object *old, 5087 struct drm_i915_gem_object *new, 5088 unsigned frontbuffer_bits) 5089 { 5090 /* Control of individual bits within the mask are guarded by 5091 * the owning plane->mutex, i.e. we can never see concurrent 5092 * manipulation of individual bits. But since the bitfield as a whole 5093 * is updated using RMW, we need to use atomics in order to update 5094 * the bits. 5095 */ 5096 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 5097 sizeof(atomic_t) * BITS_PER_BYTE); 5098 5099 if (old) { 5100 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits)); 5101 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits); 5102 } 5103 5104 if (new) { 5105 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits); 5106 atomic_or(frontbuffer_bits, &new->frontbuffer_bits); 5107 } 5108 } 5109 5110 /* Allocate a new GEM object and fill it with the supplied data */ 5111 struct drm_i915_gem_object * 5112 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv, 5113 const void *data, size_t size) 5114 { 5115 struct drm_i915_gem_object *obj; 5116 struct file *file; 5117 size_t offset; 5118 int err; 5119 5120 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE)); 5121 if (IS_ERR(obj)) 5122 return obj; 5123 5124 GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU); 5125 5126 file = obj->base.filp; 5127 offset = 0; 5128 do { 5129 unsigned int len = min_t(typeof(size), size, PAGE_SIZE); 5130 struct page *page; 5131 void *pgdata, *vaddr; 5132 5133 err = pagecache_write_begin(file, file->f_mapping, 5134 offset, len, 0, 5135 &page, &pgdata); 5136 if (err < 0) 5137 goto fail; 5138 5139 vaddr = kmap(page); 5140 memcpy(vaddr, data, len); 5141 kunmap(page); 5142 5143 err = pagecache_write_end(file, file->f_mapping, 5144 offset, len, len, 5145 page, pgdata); 5146 if (err < 0) 5147 goto fail; 5148 5149 size -= len; 5150 data += len; 5151 offset += len; 5152 } while (size); 5153 5154 return obj; 5155 5156 fail: 5157 i915_gem_object_put(obj); 5158 return ERR_PTR(err); 5159 } 5160 5161 struct scatterlist * 5162 i915_gem_object_get_sg(struct drm_i915_gem_object *obj, 5163 unsigned int n, 5164 unsigned int *offset) 5165 { 5166 struct i915_gem_object_page_iter *iter = &obj->mm.get_page; 5167 struct scatterlist *sg; 5168 unsigned int idx, count; 5169 5170 might_sleep(); 5171 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT); 5172 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 5173 5174 /* As we iterate forward through the sg, we record each entry in a 5175 * radixtree for quick repeated (backwards) lookups. If we have seen 5176 * this index previously, we will have an entry for it. 5177 * 5178 * Initial lookup is O(N), but this is amortized to O(1) for 5179 * sequential page access (where each new request is consecutive 5180 * to the previous one). Repeated lookups are O(lg(obj->base.size)), 5181 * i.e. O(1) with a large constant! 5182 */ 5183 if (n < READ_ONCE(iter->sg_idx)) 5184 goto lookup; 5185 5186 mutex_lock(&iter->lock); 5187 5188 /* We prefer to reuse the last sg so that repeated lookup of this 5189 * (or the subsequent) sg are fast - comparing against the last 5190 * sg is faster than going through the radixtree. 5191 */ 5192 5193 sg = iter->sg_pos; 5194 idx = iter->sg_idx; 5195 count = __sg_page_count(sg); 5196 5197 while (idx + count <= n) { 5198 unsigned long exception, i; 5199 int ret; 5200 5201 /* If we cannot allocate and insert this entry, or the 5202 * individual pages from this range, cancel updating the 5203 * sg_idx so that on this lookup we are forced to linearly 5204 * scan onwards, but on future lookups we will try the 5205 * insertion again (in which case we need to be careful of 5206 * the error return reporting that we have already inserted 5207 * this index). 5208 */ 5209 ret = radix_tree_insert(&iter->radix, idx, sg); 5210 if (ret && ret != -EEXIST) 5211 goto scan; 5212 5213 exception = 5214 RADIX_TREE_EXCEPTIONAL_ENTRY | 5215 idx << RADIX_TREE_EXCEPTIONAL_SHIFT; 5216 for (i = 1; i < count; i++) { 5217 ret = radix_tree_insert(&iter->radix, idx + i, 5218 (void *)exception); 5219 if (ret && ret != -EEXIST) 5220 goto scan; 5221 } 5222 5223 idx += count; 5224 sg = ____sg_next(sg); 5225 count = __sg_page_count(sg); 5226 } 5227 5228 scan: 5229 iter->sg_pos = sg; 5230 iter->sg_idx = idx; 5231 5232 mutex_unlock(&iter->lock); 5233 5234 if (unlikely(n < idx)) /* insertion completed by another thread */ 5235 goto lookup; 5236 5237 /* In case we failed to insert the entry into the radixtree, we need 5238 * to look beyond the current sg. 5239 */ 5240 while (idx + count <= n) { 5241 idx += count; 5242 sg = ____sg_next(sg); 5243 count = __sg_page_count(sg); 5244 } 5245 5246 *offset = n - idx; 5247 return sg; 5248 5249 lookup: 5250 rcu_read_lock(); 5251 5252 sg = radix_tree_lookup(&iter->radix, n); 5253 GEM_BUG_ON(!sg); 5254 5255 /* If this index is in the middle of multi-page sg entry, 5256 * the radixtree will contain an exceptional entry that points 5257 * to the start of that range. We will return the pointer to 5258 * the base page and the offset of this page within the 5259 * sg entry's range. 5260 */ 5261 *offset = 0; 5262 if (unlikely(radix_tree_exception(sg))) { 5263 unsigned long base = 5264 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT; 5265 5266 sg = radix_tree_lookup(&iter->radix, base); 5267 GEM_BUG_ON(!sg); 5268 5269 *offset = n - base; 5270 } 5271 5272 rcu_read_unlock(); 5273 5274 return sg; 5275 } 5276 5277 struct page * 5278 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n) 5279 { 5280 struct scatterlist *sg; 5281 unsigned int offset; 5282 5283 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj)); 5284 5285 sg = i915_gem_object_get_sg(obj, n, &offset); 5286 return nth_page(sg_page(sg), offset); 5287 } 5288 5289 /* Like i915_gem_object_get_page(), but mark the returned page dirty */ 5290 struct page * 5291 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, 5292 unsigned int n) 5293 { 5294 struct page *page; 5295 5296 page = i915_gem_object_get_page(obj, n); 5297 if (!obj->mm.dirty) 5298 set_page_dirty(page); 5299 5300 return page; 5301 } 5302 5303 dma_addr_t 5304 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, 5305 unsigned long n) 5306 { 5307 struct scatterlist *sg; 5308 unsigned int offset; 5309 5310 sg = i915_gem_object_get_sg(obj, n, &offset); 5311 return sg_dma_address(sg) + (offset << PAGE_SHIFT); 5312 } 5313 5314 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 5315 #include "selftests/scatterlist.c" 5316 #include "selftests/mock_gem_device.c" 5317 #include "selftests/huge_gem_object.c" 5318 #include "selftests/i915_gem_object.c" 5319 #include "selftests/i915_gem_coherency.c" 5320 #endif 5321