xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision 5d0e4d78)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/dma-fence-array.h>
39 #include <linux/kthread.h>
40 #include <linux/reservation.h>
41 #include <linux/shmem_fs.h>
42 #include <linux/slab.h>
43 #include <linux/stop_machine.h>
44 #include <linux/swap.h>
45 #include <linux/pci.h>
46 #include <linux/dma-buf.h>
47 
48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49 
50 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
51 {
52 	if (obj->cache_dirty)
53 		return false;
54 
55 	if (!obj->cache_coherent)
56 		return true;
57 
58 	return obj->pin_display;
59 }
60 
61 static int
62 insert_mappable_node(struct i915_ggtt *ggtt,
63                      struct drm_mm_node *node, u32 size)
64 {
65 	memset(node, 0, sizeof(*node));
66 	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
67 					   size, 0, I915_COLOR_UNEVICTABLE,
68 					   0, ggtt->mappable_end,
69 					   DRM_MM_INSERT_LOW);
70 }
71 
72 static void
73 remove_mappable_node(struct drm_mm_node *node)
74 {
75 	drm_mm_remove_node(node);
76 }
77 
78 /* some bookkeeping */
79 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
80 				  u64 size)
81 {
82 	spin_lock(&dev_priv->mm.object_stat_lock);
83 	dev_priv->mm.object_count++;
84 	dev_priv->mm.object_memory += size;
85 	spin_unlock(&dev_priv->mm.object_stat_lock);
86 }
87 
88 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
89 				     u64 size)
90 {
91 	spin_lock(&dev_priv->mm.object_stat_lock);
92 	dev_priv->mm.object_count--;
93 	dev_priv->mm.object_memory -= size;
94 	spin_unlock(&dev_priv->mm.object_stat_lock);
95 }
96 
97 static int
98 i915_gem_wait_for_error(struct i915_gpu_error *error)
99 {
100 	int ret;
101 
102 	might_sleep();
103 
104 	/*
105 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
106 	 * userspace. If it takes that long something really bad is going on and
107 	 * we should simply try to bail out and fail as gracefully as possible.
108 	 */
109 	ret = wait_event_interruptible_timeout(error->reset_queue,
110 					       !i915_reset_backoff(error),
111 					       I915_RESET_TIMEOUT);
112 	if (ret == 0) {
113 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
114 		return -EIO;
115 	} else if (ret < 0) {
116 		return ret;
117 	} else {
118 		return 0;
119 	}
120 }
121 
122 int i915_mutex_lock_interruptible(struct drm_device *dev)
123 {
124 	struct drm_i915_private *dev_priv = to_i915(dev);
125 	int ret;
126 
127 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
128 	if (ret)
129 		return ret;
130 
131 	ret = mutex_lock_interruptible(&dev->struct_mutex);
132 	if (ret)
133 		return ret;
134 
135 	return 0;
136 }
137 
138 int
139 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
140 			    struct drm_file *file)
141 {
142 	struct drm_i915_private *dev_priv = to_i915(dev);
143 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
144 	struct drm_i915_gem_get_aperture *args = data;
145 	struct i915_vma *vma;
146 	u64 pinned;
147 
148 	pinned = ggtt->base.reserved;
149 	mutex_lock(&dev->struct_mutex);
150 	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
151 		if (i915_vma_is_pinned(vma))
152 			pinned += vma->node.size;
153 	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
154 		if (i915_vma_is_pinned(vma))
155 			pinned += vma->node.size;
156 	mutex_unlock(&dev->struct_mutex);
157 
158 	args->aper_size = ggtt->base.total;
159 	args->aper_available_size = args->aper_size - pinned;
160 
161 	return 0;
162 }
163 
164 static struct sg_table *
165 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166 {
167 	struct address_space *mapping = obj->base.filp->f_mapping;
168 	drm_dma_handle_t *phys;
169 	struct sg_table *st;
170 	struct scatterlist *sg;
171 	char *vaddr;
172 	int i;
173 
174 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
175 		return ERR_PTR(-EINVAL);
176 
177 	/* Always aligning to the object size, allows a single allocation
178 	 * to handle all possible callers, and given typical object sizes,
179 	 * the alignment of the buddy allocation will naturally match.
180 	 */
181 	phys = drm_pci_alloc(obj->base.dev,
182 			     obj->base.size,
183 			     roundup_pow_of_two(obj->base.size));
184 	if (!phys)
185 		return ERR_PTR(-ENOMEM);
186 
187 	vaddr = phys->vaddr;
188 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
189 		struct page *page;
190 		char *src;
191 
192 		page = shmem_read_mapping_page(mapping, i);
193 		if (IS_ERR(page)) {
194 			st = ERR_CAST(page);
195 			goto err_phys;
196 		}
197 
198 		src = kmap_atomic(page);
199 		memcpy(vaddr, src, PAGE_SIZE);
200 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
201 		kunmap_atomic(src);
202 
203 		put_page(page);
204 		vaddr += PAGE_SIZE;
205 	}
206 
207 	i915_gem_chipset_flush(to_i915(obj->base.dev));
208 
209 	st = kmalloc(sizeof(*st), GFP_KERNEL);
210 	if (!st) {
211 		st = ERR_PTR(-ENOMEM);
212 		goto err_phys;
213 	}
214 
215 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
216 		kfree(st);
217 		st = ERR_PTR(-ENOMEM);
218 		goto err_phys;
219 	}
220 
221 	sg = st->sgl;
222 	sg->offset = 0;
223 	sg->length = obj->base.size;
224 
225 	sg_dma_address(sg) = phys->busaddr;
226 	sg_dma_len(sg) = obj->base.size;
227 
228 	obj->phys_handle = phys;
229 	return st;
230 
231 err_phys:
232 	drm_pci_free(obj->base.dev, phys);
233 	return st;
234 }
235 
236 static void __start_cpu_write(struct drm_i915_gem_object *obj)
237 {
238 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
239 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
240 	if (cpu_write_needs_clflush(obj))
241 		obj->cache_dirty = true;
242 }
243 
244 static void
245 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
246 				struct sg_table *pages,
247 				bool needs_clflush)
248 {
249 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
250 
251 	if (obj->mm.madv == I915_MADV_DONTNEED)
252 		obj->mm.dirty = false;
253 
254 	if (needs_clflush &&
255 	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
256 	    !obj->cache_coherent)
257 		drm_clflush_sg(pages);
258 
259 	__start_cpu_write(obj);
260 }
261 
262 static void
263 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
264 			       struct sg_table *pages)
265 {
266 	__i915_gem_object_release_shmem(obj, pages, false);
267 
268 	if (obj->mm.dirty) {
269 		struct address_space *mapping = obj->base.filp->f_mapping;
270 		char *vaddr = obj->phys_handle->vaddr;
271 		int i;
272 
273 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
274 			struct page *page;
275 			char *dst;
276 
277 			page = shmem_read_mapping_page(mapping, i);
278 			if (IS_ERR(page))
279 				continue;
280 
281 			dst = kmap_atomic(page);
282 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
283 			memcpy(dst, vaddr, PAGE_SIZE);
284 			kunmap_atomic(dst);
285 
286 			set_page_dirty(page);
287 			if (obj->mm.madv == I915_MADV_WILLNEED)
288 				mark_page_accessed(page);
289 			put_page(page);
290 			vaddr += PAGE_SIZE;
291 		}
292 		obj->mm.dirty = false;
293 	}
294 
295 	sg_free_table(pages);
296 	kfree(pages);
297 
298 	drm_pci_free(obj->base.dev, obj->phys_handle);
299 }
300 
301 static void
302 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
303 {
304 	i915_gem_object_unpin_pages(obj);
305 }
306 
307 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
308 	.get_pages = i915_gem_object_get_pages_phys,
309 	.put_pages = i915_gem_object_put_pages_phys,
310 	.release = i915_gem_object_release_phys,
311 };
312 
313 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
314 
315 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 {
317 	struct i915_vma *vma;
318 	LIST_HEAD(still_in_list);
319 	int ret;
320 
321 	lockdep_assert_held(&obj->base.dev->struct_mutex);
322 
323 	/* Closed vma are removed from the obj->vma_list - but they may
324 	 * still have an active binding on the object. To remove those we
325 	 * must wait for all rendering to complete to the object (as unbinding
326 	 * must anyway), and retire the requests.
327 	 */
328 	ret = i915_gem_object_wait(obj,
329 				   I915_WAIT_INTERRUPTIBLE |
330 				   I915_WAIT_LOCKED |
331 				   I915_WAIT_ALL,
332 				   MAX_SCHEDULE_TIMEOUT,
333 				   NULL);
334 	if (ret)
335 		return ret;
336 
337 	i915_gem_retire_requests(to_i915(obj->base.dev));
338 
339 	while ((vma = list_first_entry_or_null(&obj->vma_list,
340 					       struct i915_vma,
341 					       obj_link))) {
342 		list_move_tail(&vma->obj_link, &still_in_list);
343 		ret = i915_vma_unbind(vma);
344 		if (ret)
345 			break;
346 	}
347 	list_splice(&still_in_list, &obj->vma_list);
348 
349 	return ret;
350 }
351 
352 static long
353 i915_gem_object_wait_fence(struct dma_fence *fence,
354 			   unsigned int flags,
355 			   long timeout,
356 			   struct intel_rps_client *rps)
357 {
358 	struct drm_i915_gem_request *rq;
359 
360 	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361 
362 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363 		return timeout;
364 
365 	if (!dma_fence_is_i915(fence))
366 		return dma_fence_wait_timeout(fence,
367 					      flags & I915_WAIT_INTERRUPTIBLE,
368 					      timeout);
369 
370 	rq = to_request(fence);
371 	if (i915_gem_request_completed(rq))
372 		goto out;
373 
374 	/* This client is about to stall waiting for the GPU. In many cases
375 	 * this is undesirable and limits the throughput of the system, as
376 	 * many clients cannot continue processing user input/output whilst
377 	 * blocked. RPS autotuning may take tens of milliseconds to respond
378 	 * to the GPU load and thus incurs additional latency for the client.
379 	 * We can circumvent that by promoting the GPU frequency to maximum
380 	 * before we wait. This makes the GPU throttle up much more quickly
381 	 * (good for benchmarks and user experience, e.g. window animations),
382 	 * but at a cost of spending more power processing the workload
383 	 * (bad for battery). Not all clients even want their results
384 	 * immediately and for them we should just let the GPU select its own
385 	 * frequency to maximise efficiency. To prevent a single client from
386 	 * forcing the clocks too high for the whole system, we only allow
387 	 * each client to waitboost once in a busy period.
388 	 */
389 	if (rps) {
390 		if (INTEL_GEN(rq->i915) >= 6)
391 			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
392 		else
393 			rps = NULL;
394 	}
395 
396 	timeout = i915_wait_request(rq, flags, timeout);
397 
398 out:
399 	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400 		i915_gem_request_retire_upto(rq);
401 
402 	if (rps && i915_gem_request_global_seqno(rq) == intel_engine_last_submit(rq->engine)) {
403 		/* The GPU is now idle and this client has stalled.
404 		 * Since no other client has submitted a request in the
405 		 * meantime, assume that this client is the only one
406 		 * supplying work to the GPU but is unable to keep that
407 		 * work supplied because it is waiting. Since the GPU is
408 		 * then never kept fully busy, RPS autoclocking will
409 		 * keep the clocks relatively low, causing further delays.
410 		 * Compensate by giving the synchronous client credit for
411 		 * a waitboost next time.
412 		 */
413 		spin_lock(&rq->i915->rps.client_lock);
414 		list_del_init(&rps->link);
415 		spin_unlock(&rq->i915->rps.client_lock);
416 	}
417 
418 	return timeout;
419 }
420 
421 static long
422 i915_gem_object_wait_reservation(struct reservation_object *resv,
423 				 unsigned int flags,
424 				 long timeout,
425 				 struct intel_rps_client *rps)
426 {
427 	unsigned int seq = __read_seqcount_begin(&resv->seq);
428 	struct dma_fence *excl;
429 	bool prune_fences = false;
430 
431 	if (flags & I915_WAIT_ALL) {
432 		struct dma_fence **shared;
433 		unsigned int count, i;
434 		int ret;
435 
436 		ret = reservation_object_get_fences_rcu(resv,
437 							&excl, &count, &shared);
438 		if (ret)
439 			return ret;
440 
441 		for (i = 0; i < count; i++) {
442 			timeout = i915_gem_object_wait_fence(shared[i],
443 							     flags, timeout,
444 							     rps);
445 			if (timeout < 0)
446 				break;
447 
448 			dma_fence_put(shared[i]);
449 		}
450 
451 		for (; i < count; i++)
452 			dma_fence_put(shared[i]);
453 		kfree(shared);
454 
455 		prune_fences = count && timeout >= 0;
456 	} else {
457 		excl = reservation_object_get_excl_rcu(resv);
458 	}
459 
460 	if (excl && timeout >= 0) {
461 		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
462 		prune_fences = timeout >= 0;
463 	}
464 
465 	dma_fence_put(excl);
466 
467 	/* Oportunistically prune the fences iff we know they have *all* been
468 	 * signaled and that the reservation object has not been changed (i.e.
469 	 * no new fences have been added).
470 	 */
471 	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
472 		if (reservation_object_trylock(resv)) {
473 			if (!__read_seqcount_retry(&resv->seq, seq))
474 				reservation_object_add_excl_fence(resv, NULL);
475 			reservation_object_unlock(resv);
476 		}
477 	}
478 
479 	return timeout;
480 }
481 
482 static void __fence_set_priority(struct dma_fence *fence, int prio)
483 {
484 	struct drm_i915_gem_request *rq;
485 	struct intel_engine_cs *engine;
486 
487 	if (!dma_fence_is_i915(fence))
488 		return;
489 
490 	rq = to_request(fence);
491 	engine = rq->engine;
492 	if (!engine->schedule)
493 		return;
494 
495 	engine->schedule(rq, prio);
496 }
497 
498 static void fence_set_priority(struct dma_fence *fence, int prio)
499 {
500 	/* Recurse once into a fence-array */
501 	if (dma_fence_is_array(fence)) {
502 		struct dma_fence_array *array = to_dma_fence_array(fence);
503 		int i;
504 
505 		for (i = 0; i < array->num_fences; i++)
506 			__fence_set_priority(array->fences[i], prio);
507 	} else {
508 		__fence_set_priority(fence, prio);
509 	}
510 }
511 
512 int
513 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
514 			      unsigned int flags,
515 			      int prio)
516 {
517 	struct dma_fence *excl;
518 
519 	if (flags & I915_WAIT_ALL) {
520 		struct dma_fence **shared;
521 		unsigned int count, i;
522 		int ret;
523 
524 		ret = reservation_object_get_fences_rcu(obj->resv,
525 							&excl, &count, &shared);
526 		if (ret)
527 			return ret;
528 
529 		for (i = 0; i < count; i++) {
530 			fence_set_priority(shared[i], prio);
531 			dma_fence_put(shared[i]);
532 		}
533 
534 		kfree(shared);
535 	} else {
536 		excl = reservation_object_get_excl_rcu(obj->resv);
537 	}
538 
539 	if (excl) {
540 		fence_set_priority(excl, prio);
541 		dma_fence_put(excl);
542 	}
543 	return 0;
544 }
545 
546 /**
547  * Waits for rendering to the object to be completed
548  * @obj: i915 gem object
549  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
550  * @timeout: how long to wait
551  * @rps: client (user process) to charge for any waitboosting
552  */
553 int
554 i915_gem_object_wait(struct drm_i915_gem_object *obj,
555 		     unsigned int flags,
556 		     long timeout,
557 		     struct intel_rps_client *rps)
558 {
559 	might_sleep();
560 #if IS_ENABLED(CONFIG_LOCKDEP)
561 	GEM_BUG_ON(debug_locks &&
562 		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
563 		   !!(flags & I915_WAIT_LOCKED));
564 #endif
565 	GEM_BUG_ON(timeout < 0);
566 
567 	timeout = i915_gem_object_wait_reservation(obj->resv,
568 						   flags, timeout,
569 						   rps);
570 	return timeout < 0 ? timeout : 0;
571 }
572 
573 static struct intel_rps_client *to_rps_client(struct drm_file *file)
574 {
575 	struct drm_i915_file_private *fpriv = file->driver_priv;
576 
577 	return &fpriv->rps;
578 }
579 
580 int
581 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
582 			    int align)
583 {
584 	int ret;
585 
586 	if (align > obj->base.size)
587 		return -EINVAL;
588 
589 	if (obj->ops == &i915_gem_phys_ops)
590 		return 0;
591 
592 	if (obj->mm.madv != I915_MADV_WILLNEED)
593 		return -EFAULT;
594 
595 	if (obj->base.filp == NULL)
596 		return -EINVAL;
597 
598 	ret = i915_gem_object_unbind(obj);
599 	if (ret)
600 		return ret;
601 
602 	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
603 	if (obj->mm.pages)
604 		return -EBUSY;
605 
606 	GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
607 	obj->ops = &i915_gem_phys_ops;
608 
609 	ret = i915_gem_object_pin_pages(obj);
610 	if (ret)
611 		goto err_xfer;
612 
613 	return 0;
614 
615 err_xfer:
616 	obj->ops = &i915_gem_object_ops;
617 	return ret;
618 }
619 
620 static int
621 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
622 		     struct drm_i915_gem_pwrite *args,
623 		     struct drm_file *file)
624 {
625 	void *vaddr = obj->phys_handle->vaddr + args->offset;
626 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
627 
628 	/* We manually control the domain here and pretend that it
629 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
630 	 */
631 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
632 	if (copy_from_user(vaddr, user_data, args->size))
633 		return -EFAULT;
634 
635 	drm_clflush_virt_range(vaddr, args->size);
636 	i915_gem_chipset_flush(to_i915(obj->base.dev));
637 
638 	intel_fb_obj_flush(obj, ORIGIN_CPU);
639 	return 0;
640 }
641 
642 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
643 {
644 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
645 }
646 
647 void i915_gem_object_free(struct drm_i915_gem_object *obj)
648 {
649 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
650 	kmem_cache_free(dev_priv->objects, obj);
651 }
652 
653 static int
654 i915_gem_create(struct drm_file *file,
655 		struct drm_i915_private *dev_priv,
656 		uint64_t size,
657 		uint32_t *handle_p)
658 {
659 	struct drm_i915_gem_object *obj;
660 	int ret;
661 	u32 handle;
662 
663 	size = roundup(size, PAGE_SIZE);
664 	if (size == 0)
665 		return -EINVAL;
666 
667 	/* Allocate the new object */
668 	obj = i915_gem_object_create(dev_priv, size);
669 	if (IS_ERR(obj))
670 		return PTR_ERR(obj);
671 
672 	ret = drm_gem_handle_create(file, &obj->base, &handle);
673 	/* drop reference from allocate - handle holds it now */
674 	i915_gem_object_put(obj);
675 	if (ret)
676 		return ret;
677 
678 	*handle_p = handle;
679 	return 0;
680 }
681 
682 int
683 i915_gem_dumb_create(struct drm_file *file,
684 		     struct drm_device *dev,
685 		     struct drm_mode_create_dumb *args)
686 {
687 	/* have to work out size/pitch and return them */
688 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
689 	args->size = args->pitch * args->height;
690 	return i915_gem_create(file, to_i915(dev),
691 			       args->size, &args->handle);
692 }
693 
694 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
695 {
696 	return !(obj->cache_level == I915_CACHE_NONE ||
697 		 obj->cache_level == I915_CACHE_WT);
698 }
699 
700 /**
701  * Creates a new mm object and returns a handle to it.
702  * @dev: drm device pointer
703  * @data: ioctl data blob
704  * @file: drm file pointer
705  */
706 int
707 i915_gem_create_ioctl(struct drm_device *dev, void *data,
708 		      struct drm_file *file)
709 {
710 	struct drm_i915_private *dev_priv = to_i915(dev);
711 	struct drm_i915_gem_create *args = data;
712 
713 	i915_gem_flush_free_objects(dev_priv);
714 
715 	return i915_gem_create(file, dev_priv,
716 			       args->size, &args->handle);
717 }
718 
719 static inline enum fb_op_origin
720 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
721 {
722 	return (domain == I915_GEM_DOMAIN_GTT ?
723 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
724 }
725 
726 static void
727 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
728 {
729 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
730 
731 	if (!(obj->base.write_domain & flush_domains))
732 		return;
733 
734 	/* No actual flushing is required for the GTT write domain.  Writes
735 	 * to it "immediately" go to main memory as far as we know, so there's
736 	 * no chipset flush.  It also doesn't land in render cache.
737 	 *
738 	 * However, we do have to enforce the order so that all writes through
739 	 * the GTT land before any writes to the device, such as updates to
740 	 * the GATT itself.
741 	 *
742 	 * We also have to wait a bit for the writes to land from the GTT.
743 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
744 	 * timing. This issue has only been observed when switching quickly
745 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
746 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
747 	 * system agents we cannot reproduce this behaviour).
748 	 */
749 	wmb();
750 
751 	switch (obj->base.write_domain) {
752 	case I915_GEM_DOMAIN_GTT:
753 		if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
754 			if (intel_runtime_pm_get_if_in_use(dev_priv)) {
755 				spin_lock_irq(&dev_priv->uncore.lock);
756 				POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
757 				spin_unlock_irq(&dev_priv->uncore.lock);
758 				intel_runtime_pm_put(dev_priv);
759 			}
760 		}
761 
762 		intel_fb_obj_flush(obj,
763 				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
764 		break;
765 
766 	case I915_GEM_DOMAIN_CPU:
767 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
768 		break;
769 
770 	case I915_GEM_DOMAIN_RENDER:
771 		if (gpu_write_needs_clflush(obj))
772 			obj->cache_dirty = true;
773 		break;
774 	}
775 
776 	obj->base.write_domain = 0;
777 }
778 
779 static inline int
780 __copy_to_user_swizzled(char __user *cpu_vaddr,
781 			const char *gpu_vaddr, int gpu_offset,
782 			int length)
783 {
784 	int ret, cpu_offset = 0;
785 
786 	while (length > 0) {
787 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
788 		int this_length = min(cacheline_end - gpu_offset, length);
789 		int swizzled_gpu_offset = gpu_offset ^ 64;
790 
791 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
792 				     gpu_vaddr + swizzled_gpu_offset,
793 				     this_length);
794 		if (ret)
795 			return ret + length;
796 
797 		cpu_offset += this_length;
798 		gpu_offset += this_length;
799 		length -= this_length;
800 	}
801 
802 	return 0;
803 }
804 
805 static inline int
806 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
807 			  const char __user *cpu_vaddr,
808 			  int length)
809 {
810 	int ret, cpu_offset = 0;
811 
812 	while (length > 0) {
813 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
814 		int this_length = min(cacheline_end - gpu_offset, length);
815 		int swizzled_gpu_offset = gpu_offset ^ 64;
816 
817 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
818 				       cpu_vaddr + cpu_offset,
819 				       this_length);
820 		if (ret)
821 			return ret + length;
822 
823 		cpu_offset += this_length;
824 		gpu_offset += this_length;
825 		length -= this_length;
826 	}
827 
828 	return 0;
829 }
830 
831 /*
832  * Pins the specified object's pages and synchronizes the object with
833  * GPU accesses. Sets needs_clflush to non-zero if the caller should
834  * flush the object from the CPU cache.
835  */
836 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
837 				    unsigned int *needs_clflush)
838 {
839 	int ret;
840 
841 	lockdep_assert_held(&obj->base.dev->struct_mutex);
842 
843 	*needs_clflush = 0;
844 	if (!i915_gem_object_has_struct_page(obj))
845 		return -ENODEV;
846 
847 	ret = i915_gem_object_wait(obj,
848 				   I915_WAIT_INTERRUPTIBLE |
849 				   I915_WAIT_LOCKED,
850 				   MAX_SCHEDULE_TIMEOUT,
851 				   NULL);
852 	if (ret)
853 		return ret;
854 
855 	ret = i915_gem_object_pin_pages(obj);
856 	if (ret)
857 		return ret;
858 
859 	if (obj->cache_coherent || !static_cpu_has(X86_FEATURE_CLFLUSH)) {
860 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
861 		if (ret)
862 			goto err_unpin;
863 		else
864 			goto out;
865 	}
866 
867 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
868 
869 	/* If we're not in the cpu read domain, set ourself into the gtt
870 	 * read domain and manually flush cachelines (if required). This
871 	 * optimizes for the case when the gpu will dirty the data
872 	 * anyway again before the next pread happens.
873 	 */
874 	if (!obj->cache_dirty &&
875 	    !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
876 		*needs_clflush = CLFLUSH_BEFORE;
877 
878 out:
879 	/* return with the pages pinned */
880 	return 0;
881 
882 err_unpin:
883 	i915_gem_object_unpin_pages(obj);
884 	return ret;
885 }
886 
887 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
888 				     unsigned int *needs_clflush)
889 {
890 	int ret;
891 
892 	lockdep_assert_held(&obj->base.dev->struct_mutex);
893 
894 	*needs_clflush = 0;
895 	if (!i915_gem_object_has_struct_page(obj))
896 		return -ENODEV;
897 
898 	ret = i915_gem_object_wait(obj,
899 				   I915_WAIT_INTERRUPTIBLE |
900 				   I915_WAIT_LOCKED |
901 				   I915_WAIT_ALL,
902 				   MAX_SCHEDULE_TIMEOUT,
903 				   NULL);
904 	if (ret)
905 		return ret;
906 
907 	ret = i915_gem_object_pin_pages(obj);
908 	if (ret)
909 		return ret;
910 
911 	if (obj->cache_coherent || !static_cpu_has(X86_FEATURE_CLFLUSH)) {
912 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
913 		if (ret)
914 			goto err_unpin;
915 		else
916 			goto out;
917 	}
918 
919 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
920 
921 	/* If we're not in the cpu write domain, set ourself into the
922 	 * gtt write domain and manually flush cachelines (as required).
923 	 * This optimizes for the case when the gpu will use the data
924 	 * right away and we therefore have to clflush anyway.
925 	 */
926 	if (!obj->cache_dirty) {
927 		*needs_clflush |= CLFLUSH_AFTER;
928 
929 		/*
930 		 * Same trick applies to invalidate partially written
931 		 * cachelines read before writing.
932 		 */
933 		if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
934 			*needs_clflush |= CLFLUSH_BEFORE;
935 	}
936 
937 out:
938 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
939 	obj->mm.dirty = true;
940 	/* return with the pages pinned */
941 	return 0;
942 
943 err_unpin:
944 	i915_gem_object_unpin_pages(obj);
945 	return ret;
946 }
947 
948 static void
949 shmem_clflush_swizzled_range(char *addr, unsigned long length,
950 			     bool swizzled)
951 {
952 	if (unlikely(swizzled)) {
953 		unsigned long start = (unsigned long) addr;
954 		unsigned long end = (unsigned long) addr + length;
955 
956 		/* For swizzling simply ensure that we always flush both
957 		 * channels. Lame, but simple and it works. Swizzled
958 		 * pwrite/pread is far from a hotpath - current userspace
959 		 * doesn't use it at all. */
960 		start = round_down(start, 128);
961 		end = round_up(end, 128);
962 
963 		drm_clflush_virt_range((void *)start, end - start);
964 	} else {
965 		drm_clflush_virt_range(addr, length);
966 	}
967 
968 }
969 
970 /* Only difference to the fast-path function is that this can handle bit17
971  * and uses non-atomic copy and kmap functions. */
972 static int
973 shmem_pread_slow(struct page *page, int offset, int length,
974 		 char __user *user_data,
975 		 bool page_do_bit17_swizzling, bool needs_clflush)
976 {
977 	char *vaddr;
978 	int ret;
979 
980 	vaddr = kmap(page);
981 	if (needs_clflush)
982 		shmem_clflush_swizzled_range(vaddr + offset, length,
983 					     page_do_bit17_swizzling);
984 
985 	if (page_do_bit17_swizzling)
986 		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
987 	else
988 		ret = __copy_to_user(user_data, vaddr + offset, length);
989 	kunmap(page);
990 
991 	return ret ? - EFAULT : 0;
992 }
993 
994 static int
995 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
996 	    bool page_do_bit17_swizzling, bool needs_clflush)
997 {
998 	int ret;
999 
1000 	ret = -ENODEV;
1001 	if (!page_do_bit17_swizzling) {
1002 		char *vaddr = kmap_atomic(page);
1003 
1004 		if (needs_clflush)
1005 			drm_clflush_virt_range(vaddr + offset, length);
1006 		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1007 		kunmap_atomic(vaddr);
1008 	}
1009 	if (ret == 0)
1010 		return 0;
1011 
1012 	return shmem_pread_slow(page, offset, length, user_data,
1013 				page_do_bit17_swizzling, needs_clflush);
1014 }
1015 
1016 static int
1017 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
1018 		     struct drm_i915_gem_pread *args)
1019 {
1020 	char __user *user_data;
1021 	u64 remain;
1022 	unsigned int obj_do_bit17_swizzling;
1023 	unsigned int needs_clflush;
1024 	unsigned int idx, offset;
1025 	int ret;
1026 
1027 	obj_do_bit17_swizzling = 0;
1028 	if (i915_gem_object_needs_bit17_swizzle(obj))
1029 		obj_do_bit17_swizzling = BIT(17);
1030 
1031 	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1032 	if (ret)
1033 		return ret;
1034 
1035 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1036 	mutex_unlock(&obj->base.dev->struct_mutex);
1037 	if (ret)
1038 		return ret;
1039 
1040 	remain = args->size;
1041 	user_data = u64_to_user_ptr(args->data_ptr);
1042 	offset = offset_in_page(args->offset);
1043 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1044 		struct page *page = i915_gem_object_get_page(obj, idx);
1045 		int length;
1046 
1047 		length = remain;
1048 		if (offset + length > PAGE_SIZE)
1049 			length = PAGE_SIZE - offset;
1050 
1051 		ret = shmem_pread(page, offset, length, user_data,
1052 				  page_to_phys(page) & obj_do_bit17_swizzling,
1053 				  needs_clflush);
1054 		if (ret)
1055 			break;
1056 
1057 		remain -= length;
1058 		user_data += length;
1059 		offset = 0;
1060 	}
1061 
1062 	i915_gem_obj_finish_shmem_access(obj);
1063 	return ret;
1064 }
1065 
1066 static inline bool
1067 gtt_user_read(struct io_mapping *mapping,
1068 	      loff_t base, int offset,
1069 	      char __user *user_data, int length)
1070 {
1071 	void *vaddr;
1072 	unsigned long unwritten;
1073 
1074 	/* We can use the cpu mem copy function because this is X86. */
1075 	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1076 	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1077 	io_mapping_unmap_atomic(vaddr);
1078 	if (unwritten) {
1079 		vaddr = (void __force *)
1080 			io_mapping_map_wc(mapping, base, PAGE_SIZE);
1081 		unwritten = copy_to_user(user_data, vaddr + offset, length);
1082 		io_mapping_unmap(vaddr);
1083 	}
1084 	return unwritten;
1085 }
1086 
1087 static int
1088 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1089 		   const struct drm_i915_gem_pread *args)
1090 {
1091 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1092 	struct i915_ggtt *ggtt = &i915->ggtt;
1093 	struct drm_mm_node node;
1094 	struct i915_vma *vma;
1095 	void __user *user_data;
1096 	u64 remain, offset;
1097 	int ret;
1098 
1099 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1100 	if (ret)
1101 		return ret;
1102 
1103 	intel_runtime_pm_get(i915);
1104 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1105 				       PIN_MAPPABLE | PIN_NONBLOCK);
1106 	if (!IS_ERR(vma)) {
1107 		node.start = i915_ggtt_offset(vma);
1108 		node.allocated = false;
1109 		ret = i915_vma_put_fence(vma);
1110 		if (ret) {
1111 			i915_vma_unpin(vma);
1112 			vma = ERR_PTR(ret);
1113 		}
1114 	}
1115 	if (IS_ERR(vma)) {
1116 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1117 		if (ret)
1118 			goto out_unlock;
1119 		GEM_BUG_ON(!node.allocated);
1120 	}
1121 
1122 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1123 	if (ret)
1124 		goto out_unpin;
1125 
1126 	mutex_unlock(&i915->drm.struct_mutex);
1127 
1128 	user_data = u64_to_user_ptr(args->data_ptr);
1129 	remain = args->size;
1130 	offset = args->offset;
1131 
1132 	while (remain > 0) {
1133 		/* Operation in this page
1134 		 *
1135 		 * page_base = page offset within aperture
1136 		 * page_offset = offset within page
1137 		 * page_length = bytes to copy for this page
1138 		 */
1139 		u32 page_base = node.start;
1140 		unsigned page_offset = offset_in_page(offset);
1141 		unsigned page_length = PAGE_SIZE - page_offset;
1142 		page_length = remain < page_length ? remain : page_length;
1143 		if (node.allocated) {
1144 			wmb();
1145 			ggtt->base.insert_page(&ggtt->base,
1146 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1147 					       node.start, I915_CACHE_NONE, 0);
1148 			wmb();
1149 		} else {
1150 			page_base += offset & PAGE_MASK;
1151 		}
1152 
1153 		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1154 				  user_data, page_length)) {
1155 			ret = -EFAULT;
1156 			break;
1157 		}
1158 
1159 		remain -= page_length;
1160 		user_data += page_length;
1161 		offset += page_length;
1162 	}
1163 
1164 	mutex_lock(&i915->drm.struct_mutex);
1165 out_unpin:
1166 	if (node.allocated) {
1167 		wmb();
1168 		ggtt->base.clear_range(&ggtt->base,
1169 				       node.start, node.size);
1170 		remove_mappable_node(&node);
1171 	} else {
1172 		i915_vma_unpin(vma);
1173 	}
1174 out_unlock:
1175 	intel_runtime_pm_put(i915);
1176 	mutex_unlock(&i915->drm.struct_mutex);
1177 
1178 	return ret;
1179 }
1180 
1181 /**
1182  * Reads data from the object referenced by handle.
1183  * @dev: drm device pointer
1184  * @data: ioctl data blob
1185  * @file: drm file pointer
1186  *
1187  * On error, the contents of *data are undefined.
1188  */
1189 int
1190 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1191 		     struct drm_file *file)
1192 {
1193 	struct drm_i915_gem_pread *args = data;
1194 	struct drm_i915_gem_object *obj;
1195 	int ret;
1196 
1197 	if (args->size == 0)
1198 		return 0;
1199 
1200 	if (!access_ok(VERIFY_WRITE,
1201 		       u64_to_user_ptr(args->data_ptr),
1202 		       args->size))
1203 		return -EFAULT;
1204 
1205 	obj = i915_gem_object_lookup(file, args->handle);
1206 	if (!obj)
1207 		return -ENOENT;
1208 
1209 	/* Bounds check source.  */
1210 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1211 		ret = -EINVAL;
1212 		goto out;
1213 	}
1214 
1215 	trace_i915_gem_object_pread(obj, args->offset, args->size);
1216 
1217 	ret = i915_gem_object_wait(obj,
1218 				   I915_WAIT_INTERRUPTIBLE,
1219 				   MAX_SCHEDULE_TIMEOUT,
1220 				   to_rps_client(file));
1221 	if (ret)
1222 		goto out;
1223 
1224 	ret = i915_gem_object_pin_pages(obj);
1225 	if (ret)
1226 		goto out;
1227 
1228 	ret = i915_gem_shmem_pread(obj, args);
1229 	if (ret == -EFAULT || ret == -ENODEV)
1230 		ret = i915_gem_gtt_pread(obj, args);
1231 
1232 	i915_gem_object_unpin_pages(obj);
1233 out:
1234 	i915_gem_object_put(obj);
1235 	return ret;
1236 }
1237 
1238 /* This is the fast write path which cannot handle
1239  * page faults in the source data
1240  */
1241 
1242 static inline bool
1243 ggtt_write(struct io_mapping *mapping,
1244 	   loff_t base, int offset,
1245 	   char __user *user_data, int length)
1246 {
1247 	void *vaddr;
1248 	unsigned long unwritten;
1249 
1250 	/* We can use the cpu mem copy function because this is X86. */
1251 	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1252 	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1253 						      user_data, length);
1254 	io_mapping_unmap_atomic(vaddr);
1255 	if (unwritten) {
1256 		vaddr = (void __force *)
1257 			io_mapping_map_wc(mapping, base, PAGE_SIZE);
1258 		unwritten = copy_from_user(vaddr + offset, user_data, length);
1259 		io_mapping_unmap(vaddr);
1260 	}
1261 
1262 	return unwritten;
1263 }
1264 
1265 /**
1266  * This is the fast pwrite path, where we copy the data directly from the
1267  * user into the GTT, uncached.
1268  * @obj: i915 GEM object
1269  * @args: pwrite arguments structure
1270  */
1271 static int
1272 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1273 			 const struct drm_i915_gem_pwrite *args)
1274 {
1275 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1276 	struct i915_ggtt *ggtt = &i915->ggtt;
1277 	struct drm_mm_node node;
1278 	struct i915_vma *vma;
1279 	u64 remain, offset;
1280 	void __user *user_data;
1281 	int ret;
1282 
1283 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1284 	if (ret)
1285 		return ret;
1286 
1287 	intel_runtime_pm_get(i915);
1288 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1289 				       PIN_MAPPABLE | PIN_NONBLOCK);
1290 	if (!IS_ERR(vma)) {
1291 		node.start = i915_ggtt_offset(vma);
1292 		node.allocated = false;
1293 		ret = i915_vma_put_fence(vma);
1294 		if (ret) {
1295 			i915_vma_unpin(vma);
1296 			vma = ERR_PTR(ret);
1297 		}
1298 	}
1299 	if (IS_ERR(vma)) {
1300 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1301 		if (ret)
1302 			goto out_unlock;
1303 		GEM_BUG_ON(!node.allocated);
1304 	}
1305 
1306 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1307 	if (ret)
1308 		goto out_unpin;
1309 
1310 	mutex_unlock(&i915->drm.struct_mutex);
1311 
1312 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1313 
1314 	user_data = u64_to_user_ptr(args->data_ptr);
1315 	offset = args->offset;
1316 	remain = args->size;
1317 	while (remain) {
1318 		/* Operation in this page
1319 		 *
1320 		 * page_base = page offset within aperture
1321 		 * page_offset = offset within page
1322 		 * page_length = bytes to copy for this page
1323 		 */
1324 		u32 page_base = node.start;
1325 		unsigned int page_offset = offset_in_page(offset);
1326 		unsigned int page_length = PAGE_SIZE - page_offset;
1327 		page_length = remain < page_length ? remain : page_length;
1328 		if (node.allocated) {
1329 			wmb(); /* flush the write before we modify the GGTT */
1330 			ggtt->base.insert_page(&ggtt->base,
1331 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1332 					       node.start, I915_CACHE_NONE, 0);
1333 			wmb(); /* flush modifications to the GGTT (insert_page) */
1334 		} else {
1335 			page_base += offset & PAGE_MASK;
1336 		}
1337 		/* If we get a fault while copying data, then (presumably) our
1338 		 * source page isn't available.  Return the error and we'll
1339 		 * retry in the slow path.
1340 		 * If the object is non-shmem backed, we retry again with the
1341 		 * path that handles page fault.
1342 		 */
1343 		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1344 			       user_data, page_length)) {
1345 			ret = -EFAULT;
1346 			break;
1347 		}
1348 
1349 		remain -= page_length;
1350 		user_data += page_length;
1351 		offset += page_length;
1352 	}
1353 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1354 
1355 	mutex_lock(&i915->drm.struct_mutex);
1356 out_unpin:
1357 	if (node.allocated) {
1358 		wmb();
1359 		ggtt->base.clear_range(&ggtt->base,
1360 				       node.start, node.size);
1361 		remove_mappable_node(&node);
1362 	} else {
1363 		i915_vma_unpin(vma);
1364 	}
1365 out_unlock:
1366 	intel_runtime_pm_put(i915);
1367 	mutex_unlock(&i915->drm.struct_mutex);
1368 	return ret;
1369 }
1370 
1371 static int
1372 shmem_pwrite_slow(struct page *page, int offset, int length,
1373 		  char __user *user_data,
1374 		  bool page_do_bit17_swizzling,
1375 		  bool needs_clflush_before,
1376 		  bool needs_clflush_after)
1377 {
1378 	char *vaddr;
1379 	int ret;
1380 
1381 	vaddr = kmap(page);
1382 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1383 		shmem_clflush_swizzled_range(vaddr + offset, length,
1384 					     page_do_bit17_swizzling);
1385 	if (page_do_bit17_swizzling)
1386 		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1387 						length);
1388 	else
1389 		ret = __copy_from_user(vaddr + offset, user_data, length);
1390 	if (needs_clflush_after)
1391 		shmem_clflush_swizzled_range(vaddr + offset, length,
1392 					     page_do_bit17_swizzling);
1393 	kunmap(page);
1394 
1395 	return ret ? -EFAULT : 0;
1396 }
1397 
1398 /* Per-page copy function for the shmem pwrite fastpath.
1399  * Flushes invalid cachelines before writing to the target if
1400  * needs_clflush_before is set and flushes out any written cachelines after
1401  * writing if needs_clflush is set.
1402  */
1403 static int
1404 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1405 	     bool page_do_bit17_swizzling,
1406 	     bool needs_clflush_before,
1407 	     bool needs_clflush_after)
1408 {
1409 	int ret;
1410 
1411 	ret = -ENODEV;
1412 	if (!page_do_bit17_swizzling) {
1413 		char *vaddr = kmap_atomic(page);
1414 
1415 		if (needs_clflush_before)
1416 			drm_clflush_virt_range(vaddr + offset, len);
1417 		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1418 		if (needs_clflush_after)
1419 			drm_clflush_virt_range(vaddr + offset, len);
1420 
1421 		kunmap_atomic(vaddr);
1422 	}
1423 	if (ret == 0)
1424 		return ret;
1425 
1426 	return shmem_pwrite_slow(page, offset, len, user_data,
1427 				 page_do_bit17_swizzling,
1428 				 needs_clflush_before,
1429 				 needs_clflush_after);
1430 }
1431 
1432 static int
1433 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1434 		      const struct drm_i915_gem_pwrite *args)
1435 {
1436 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1437 	void __user *user_data;
1438 	u64 remain;
1439 	unsigned int obj_do_bit17_swizzling;
1440 	unsigned int partial_cacheline_write;
1441 	unsigned int needs_clflush;
1442 	unsigned int offset, idx;
1443 	int ret;
1444 
1445 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1446 	if (ret)
1447 		return ret;
1448 
1449 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1450 	mutex_unlock(&i915->drm.struct_mutex);
1451 	if (ret)
1452 		return ret;
1453 
1454 	obj_do_bit17_swizzling = 0;
1455 	if (i915_gem_object_needs_bit17_swizzle(obj))
1456 		obj_do_bit17_swizzling = BIT(17);
1457 
1458 	/* If we don't overwrite a cacheline completely we need to be
1459 	 * careful to have up-to-date data by first clflushing. Don't
1460 	 * overcomplicate things and flush the entire patch.
1461 	 */
1462 	partial_cacheline_write = 0;
1463 	if (needs_clflush & CLFLUSH_BEFORE)
1464 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1465 
1466 	user_data = u64_to_user_ptr(args->data_ptr);
1467 	remain = args->size;
1468 	offset = offset_in_page(args->offset);
1469 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1470 		struct page *page = i915_gem_object_get_page(obj, idx);
1471 		int length;
1472 
1473 		length = remain;
1474 		if (offset + length > PAGE_SIZE)
1475 			length = PAGE_SIZE - offset;
1476 
1477 		ret = shmem_pwrite(page, offset, length, user_data,
1478 				   page_to_phys(page) & obj_do_bit17_swizzling,
1479 				   (offset | length) & partial_cacheline_write,
1480 				   needs_clflush & CLFLUSH_AFTER);
1481 		if (ret)
1482 			break;
1483 
1484 		remain -= length;
1485 		user_data += length;
1486 		offset = 0;
1487 	}
1488 
1489 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1490 	i915_gem_obj_finish_shmem_access(obj);
1491 	return ret;
1492 }
1493 
1494 /**
1495  * Writes data to the object referenced by handle.
1496  * @dev: drm device
1497  * @data: ioctl data blob
1498  * @file: drm file
1499  *
1500  * On error, the contents of the buffer that were to be modified are undefined.
1501  */
1502 int
1503 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1504 		      struct drm_file *file)
1505 {
1506 	struct drm_i915_gem_pwrite *args = data;
1507 	struct drm_i915_gem_object *obj;
1508 	int ret;
1509 
1510 	if (args->size == 0)
1511 		return 0;
1512 
1513 	if (!access_ok(VERIFY_READ,
1514 		       u64_to_user_ptr(args->data_ptr),
1515 		       args->size))
1516 		return -EFAULT;
1517 
1518 	obj = i915_gem_object_lookup(file, args->handle);
1519 	if (!obj)
1520 		return -ENOENT;
1521 
1522 	/* Bounds check destination. */
1523 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1524 		ret = -EINVAL;
1525 		goto err;
1526 	}
1527 
1528 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1529 
1530 	ret = -ENODEV;
1531 	if (obj->ops->pwrite)
1532 		ret = obj->ops->pwrite(obj, args);
1533 	if (ret != -ENODEV)
1534 		goto err;
1535 
1536 	ret = i915_gem_object_wait(obj,
1537 				   I915_WAIT_INTERRUPTIBLE |
1538 				   I915_WAIT_ALL,
1539 				   MAX_SCHEDULE_TIMEOUT,
1540 				   to_rps_client(file));
1541 	if (ret)
1542 		goto err;
1543 
1544 	ret = i915_gem_object_pin_pages(obj);
1545 	if (ret)
1546 		goto err;
1547 
1548 	ret = -EFAULT;
1549 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1550 	 * it would end up going through the fenced access, and we'll get
1551 	 * different detiling behavior between reading and writing.
1552 	 * pread/pwrite currently are reading and writing from the CPU
1553 	 * perspective, requiring manual detiling by the client.
1554 	 */
1555 	if (!i915_gem_object_has_struct_page(obj) ||
1556 	    cpu_write_needs_clflush(obj))
1557 		/* Note that the gtt paths might fail with non-page-backed user
1558 		 * pointers (e.g. gtt mappings when moving data between
1559 		 * textures). Fallback to the shmem path in that case.
1560 		 */
1561 		ret = i915_gem_gtt_pwrite_fast(obj, args);
1562 
1563 	if (ret == -EFAULT || ret == -ENOSPC) {
1564 		if (obj->phys_handle)
1565 			ret = i915_gem_phys_pwrite(obj, args, file);
1566 		else
1567 			ret = i915_gem_shmem_pwrite(obj, args);
1568 	}
1569 
1570 	i915_gem_object_unpin_pages(obj);
1571 err:
1572 	i915_gem_object_put(obj);
1573 	return ret;
1574 }
1575 
1576 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1577 {
1578 	struct drm_i915_private *i915;
1579 	struct list_head *list;
1580 	struct i915_vma *vma;
1581 
1582 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
1583 		if (!i915_vma_is_ggtt(vma))
1584 			break;
1585 
1586 		if (i915_vma_is_active(vma))
1587 			continue;
1588 
1589 		if (!drm_mm_node_allocated(&vma->node))
1590 			continue;
1591 
1592 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1593 	}
1594 
1595 	i915 = to_i915(obj->base.dev);
1596 	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1597 	list_move_tail(&obj->global_link, list);
1598 }
1599 
1600 /**
1601  * Called when user space prepares to use an object with the CPU, either
1602  * through the mmap ioctl's mapping or a GTT mapping.
1603  * @dev: drm device
1604  * @data: ioctl data blob
1605  * @file: drm file
1606  */
1607 int
1608 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1609 			  struct drm_file *file)
1610 {
1611 	struct drm_i915_gem_set_domain *args = data;
1612 	struct drm_i915_gem_object *obj;
1613 	uint32_t read_domains = args->read_domains;
1614 	uint32_t write_domain = args->write_domain;
1615 	int err;
1616 
1617 	/* Only handle setting domains to types used by the CPU. */
1618 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1619 		return -EINVAL;
1620 
1621 	/* Having something in the write domain implies it's in the read
1622 	 * domain, and only that read domain.  Enforce that in the request.
1623 	 */
1624 	if (write_domain != 0 && read_domains != write_domain)
1625 		return -EINVAL;
1626 
1627 	obj = i915_gem_object_lookup(file, args->handle);
1628 	if (!obj)
1629 		return -ENOENT;
1630 
1631 	/* Try to flush the object off the GPU without holding the lock.
1632 	 * We will repeat the flush holding the lock in the normal manner
1633 	 * to catch cases where we are gazumped.
1634 	 */
1635 	err = i915_gem_object_wait(obj,
1636 				   I915_WAIT_INTERRUPTIBLE |
1637 				   (write_domain ? I915_WAIT_ALL : 0),
1638 				   MAX_SCHEDULE_TIMEOUT,
1639 				   to_rps_client(file));
1640 	if (err)
1641 		goto out;
1642 
1643 	/* Flush and acquire obj->pages so that we are coherent through
1644 	 * direct access in memory with previous cached writes through
1645 	 * shmemfs and that our cache domain tracking remains valid.
1646 	 * For example, if the obj->filp was moved to swap without us
1647 	 * being notified and releasing the pages, we would mistakenly
1648 	 * continue to assume that the obj remained out of the CPU cached
1649 	 * domain.
1650 	 */
1651 	err = i915_gem_object_pin_pages(obj);
1652 	if (err)
1653 		goto out;
1654 
1655 	err = i915_mutex_lock_interruptible(dev);
1656 	if (err)
1657 		goto out_unpin;
1658 
1659 	if (read_domains & I915_GEM_DOMAIN_WC)
1660 		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1661 	else if (read_domains & I915_GEM_DOMAIN_GTT)
1662 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1663 	else
1664 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1665 
1666 	/* And bump the LRU for this access */
1667 	i915_gem_object_bump_inactive_ggtt(obj);
1668 
1669 	mutex_unlock(&dev->struct_mutex);
1670 
1671 	if (write_domain != 0)
1672 		intel_fb_obj_invalidate(obj,
1673 					fb_write_origin(obj, write_domain));
1674 
1675 out_unpin:
1676 	i915_gem_object_unpin_pages(obj);
1677 out:
1678 	i915_gem_object_put(obj);
1679 	return err;
1680 }
1681 
1682 /**
1683  * Called when user space has done writes to this buffer
1684  * @dev: drm device
1685  * @data: ioctl data blob
1686  * @file: drm file
1687  */
1688 int
1689 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1690 			 struct drm_file *file)
1691 {
1692 	struct drm_i915_gem_sw_finish *args = data;
1693 	struct drm_i915_gem_object *obj;
1694 
1695 	obj = i915_gem_object_lookup(file, args->handle);
1696 	if (!obj)
1697 		return -ENOENT;
1698 
1699 	/* Pinned buffers may be scanout, so flush the cache */
1700 	i915_gem_object_flush_if_display(obj);
1701 	i915_gem_object_put(obj);
1702 
1703 	return 0;
1704 }
1705 
1706 /**
1707  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1708  *			 it is mapped to.
1709  * @dev: drm device
1710  * @data: ioctl data blob
1711  * @file: drm file
1712  *
1713  * While the mapping holds a reference on the contents of the object, it doesn't
1714  * imply a ref on the object itself.
1715  *
1716  * IMPORTANT:
1717  *
1718  * DRM driver writers who look a this function as an example for how to do GEM
1719  * mmap support, please don't implement mmap support like here. The modern way
1720  * to implement DRM mmap support is with an mmap offset ioctl (like
1721  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1722  * That way debug tooling like valgrind will understand what's going on, hiding
1723  * the mmap call in a driver private ioctl will break that. The i915 driver only
1724  * does cpu mmaps this way because we didn't know better.
1725  */
1726 int
1727 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1728 		    struct drm_file *file)
1729 {
1730 	struct drm_i915_gem_mmap *args = data;
1731 	struct drm_i915_gem_object *obj;
1732 	unsigned long addr;
1733 
1734 	if (args->flags & ~(I915_MMAP_WC))
1735 		return -EINVAL;
1736 
1737 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1738 		return -ENODEV;
1739 
1740 	obj = i915_gem_object_lookup(file, args->handle);
1741 	if (!obj)
1742 		return -ENOENT;
1743 
1744 	/* prime objects have no backing filp to GEM mmap
1745 	 * pages from.
1746 	 */
1747 	if (!obj->base.filp) {
1748 		i915_gem_object_put(obj);
1749 		return -EINVAL;
1750 	}
1751 
1752 	addr = vm_mmap(obj->base.filp, 0, args->size,
1753 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1754 		       args->offset);
1755 	if (args->flags & I915_MMAP_WC) {
1756 		struct mm_struct *mm = current->mm;
1757 		struct vm_area_struct *vma;
1758 
1759 		if (down_write_killable(&mm->mmap_sem)) {
1760 			i915_gem_object_put(obj);
1761 			return -EINTR;
1762 		}
1763 		vma = find_vma(mm, addr);
1764 		if (vma)
1765 			vma->vm_page_prot =
1766 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1767 		else
1768 			addr = -ENOMEM;
1769 		up_write(&mm->mmap_sem);
1770 
1771 		/* This may race, but that's ok, it only gets set */
1772 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1773 	}
1774 	i915_gem_object_put(obj);
1775 	if (IS_ERR((void *)addr))
1776 		return addr;
1777 
1778 	args->addr_ptr = (uint64_t) addr;
1779 
1780 	return 0;
1781 }
1782 
1783 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1784 {
1785 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1786 }
1787 
1788 /**
1789  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1790  *
1791  * A history of the GTT mmap interface:
1792  *
1793  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1794  *     aligned and suitable for fencing, and still fit into the available
1795  *     mappable space left by the pinned display objects. A classic problem
1796  *     we called the page-fault-of-doom where we would ping-pong between
1797  *     two objects that could not fit inside the GTT and so the memcpy
1798  *     would page one object in at the expense of the other between every
1799  *     single byte.
1800  *
1801  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1802  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1803  *     object is too large for the available space (or simply too large
1804  *     for the mappable aperture!), a view is created instead and faulted
1805  *     into userspace. (This view is aligned and sized appropriately for
1806  *     fenced access.)
1807  *
1808  * 2 - Recognise WC as a separate cache domain so that we can flush the
1809  *     delayed writes via GTT before performing direct access via WC.
1810  *
1811  * Restrictions:
1812  *
1813  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1814  *    hangs on some architectures, corruption on others. An attempt to service
1815  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1816  *
1817  *  * the object must be able to fit into RAM (physical memory, though no
1818  *    limited to the mappable aperture).
1819  *
1820  *
1821  * Caveats:
1822  *
1823  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1824  *    all data to system memory. Subsequent access will not be synchronized.
1825  *
1826  *  * all mappings are revoked on runtime device suspend.
1827  *
1828  *  * there are only 8, 16 or 32 fence registers to share between all users
1829  *    (older machines require fence register for display and blitter access
1830  *    as well). Contention of the fence registers will cause the previous users
1831  *    to be unmapped and any new access will generate new page faults.
1832  *
1833  *  * running out of memory while servicing a fault may generate a SIGBUS,
1834  *    rather than the expected SIGSEGV.
1835  */
1836 int i915_gem_mmap_gtt_version(void)
1837 {
1838 	return 2;
1839 }
1840 
1841 static inline struct i915_ggtt_view
1842 compute_partial_view(struct drm_i915_gem_object *obj,
1843 		     pgoff_t page_offset,
1844 		     unsigned int chunk)
1845 {
1846 	struct i915_ggtt_view view;
1847 
1848 	if (i915_gem_object_is_tiled(obj))
1849 		chunk = roundup(chunk, tile_row_pages(obj));
1850 
1851 	view.type = I915_GGTT_VIEW_PARTIAL;
1852 	view.partial.offset = rounddown(page_offset, chunk);
1853 	view.partial.size =
1854 		min_t(unsigned int, chunk,
1855 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1856 
1857 	/* If the partial covers the entire object, just create a normal VMA. */
1858 	if (chunk >= obj->base.size >> PAGE_SHIFT)
1859 		view.type = I915_GGTT_VIEW_NORMAL;
1860 
1861 	return view;
1862 }
1863 
1864 /**
1865  * i915_gem_fault - fault a page into the GTT
1866  * @vmf: fault info
1867  *
1868  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1869  * from userspace.  The fault handler takes care of binding the object to
1870  * the GTT (if needed), allocating and programming a fence register (again,
1871  * only if needed based on whether the old reg is still valid or the object
1872  * is tiled) and inserting a new PTE into the faulting process.
1873  *
1874  * Note that the faulting process may involve evicting existing objects
1875  * from the GTT and/or fence registers to make room.  So performance may
1876  * suffer if the GTT working set is large or there are few fence registers
1877  * left.
1878  *
1879  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1880  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1881  */
1882 int i915_gem_fault(struct vm_fault *vmf)
1883 {
1884 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1885 	struct vm_area_struct *area = vmf->vma;
1886 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1887 	struct drm_device *dev = obj->base.dev;
1888 	struct drm_i915_private *dev_priv = to_i915(dev);
1889 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1890 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1891 	struct i915_vma *vma;
1892 	pgoff_t page_offset;
1893 	unsigned int flags;
1894 	int ret;
1895 
1896 	/* We don't use vmf->pgoff since that has the fake offset */
1897 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1898 
1899 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1900 
1901 	/* Try to flush the object off the GPU first without holding the lock.
1902 	 * Upon acquiring the lock, we will perform our sanity checks and then
1903 	 * repeat the flush holding the lock in the normal manner to catch cases
1904 	 * where we are gazumped.
1905 	 */
1906 	ret = i915_gem_object_wait(obj,
1907 				   I915_WAIT_INTERRUPTIBLE,
1908 				   MAX_SCHEDULE_TIMEOUT,
1909 				   NULL);
1910 	if (ret)
1911 		goto err;
1912 
1913 	ret = i915_gem_object_pin_pages(obj);
1914 	if (ret)
1915 		goto err;
1916 
1917 	intel_runtime_pm_get(dev_priv);
1918 
1919 	ret = i915_mutex_lock_interruptible(dev);
1920 	if (ret)
1921 		goto err_rpm;
1922 
1923 	/* Access to snoopable pages through the GTT is incoherent. */
1924 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1925 		ret = -EFAULT;
1926 		goto err_unlock;
1927 	}
1928 
1929 	/* If the object is smaller than a couple of partial vma, it is
1930 	 * not worth only creating a single partial vma - we may as well
1931 	 * clear enough space for the full object.
1932 	 */
1933 	flags = PIN_MAPPABLE;
1934 	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1935 		flags |= PIN_NONBLOCK | PIN_NONFAULT;
1936 
1937 	/* Now pin it into the GTT as needed */
1938 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1939 	if (IS_ERR(vma)) {
1940 		/* Use a partial view if it is bigger than available space */
1941 		struct i915_ggtt_view view =
1942 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1943 
1944 		/* Userspace is now writing through an untracked VMA, abandon
1945 		 * all hope that the hardware is able to track future writes.
1946 		 */
1947 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1948 
1949 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1950 	}
1951 	if (IS_ERR(vma)) {
1952 		ret = PTR_ERR(vma);
1953 		goto err_unlock;
1954 	}
1955 
1956 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1957 	if (ret)
1958 		goto err_unpin;
1959 
1960 	ret = i915_vma_get_fence(vma);
1961 	if (ret)
1962 		goto err_unpin;
1963 
1964 	/* Mark as being mmapped into userspace for later revocation */
1965 	assert_rpm_wakelock_held(dev_priv);
1966 	if (list_empty(&obj->userfault_link))
1967 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1968 
1969 	/* Finally, remap it using the new GTT offset */
1970 	ret = remap_io_mapping(area,
1971 			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1972 			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1973 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1974 			       &ggtt->mappable);
1975 
1976 err_unpin:
1977 	__i915_vma_unpin(vma);
1978 err_unlock:
1979 	mutex_unlock(&dev->struct_mutex);
1980 err_rpm:
1981 	intel_runtime_pm_put(dev_priv);
1982 	i915_gem_object_unpin_pages(obj);
1983 err:
1984 	switch (ret) {
1985 	case -EIO:
1986 		/*
1987 		 * We eat errors when the gpu is terminally wedged to avoid
1988 		 * userspace unduly crashing (gl has no provisions for mmaps to
1989 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1990 		 * and so needs to be reported.
1991 		 */
1992 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1993 			ret = VM_FAULT_SIGBUS;
1994 			break;
1995 		}
1996 	case -EAGAIN:
1997 		/*
1998 		 * EAGAIN means the gpu is hung and we'll wait for the error
1999 		 * handler to reset everything when re-faulting in
2000 		 * i915_mutex_lock_interruptible.
2001 		 */
2002 	case 0:
2003 	case -ERESTARTSYS:
2004 	case -EINTR:
2005 	case -EBUSY:
2006 		/*
2007 		 * EBUSY is ok: this just means that another thread
2008 		 * already did the job.
2009 		 */
2010 		ret = VM_FAULT_NOPAGE;
2011 		break;
2012 	case -ENOMEM:
2013 		ret = VM_FAULT_OOM;
2014 		break;
2015 	case -ENOSPC:
2016 	case -EFAULT:
2017 		ret = VM_FAULT_SIGBUS;
2018 		break;
2019 	default:
2020 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2021 		ret = VM_FAULT_SIGBUS;
2022 		break;
2023 	}
2024 	return ret;
2025 }
2026 
2027 /**
2028  * i915_gem_release_mmap - remove physical page mappings
2029  * @obj: obj in question
2030  *
2031  * Preserve the reservation of the mmapping with the DRM core code, but
2032  * relinquish ownership of the pages back to the system.
2033  *
2034  * It is vital that we remove the page mapping if we have mapped a tiled
2035  * object through the GTT and then lose the fence register due to
2036  * resource pressure. Similarly if the object has been moved out of the
2037  * aperture, than pages mapped into userspace must be revoked. Removing the
2038  * mapping will then trigger a page fault on the next user access, allowing
2039  * fixup by i915_gem_fault().
2040  */
2041 void
2042 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2043 {
2044 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2045 
2046 	/* Serialisation between user GTT access and our code depends upon
2047 	 * revoking the CPU's PTE whilst the mutex is held. The next user
2048 	 * pagefault then has to wait until we release the mutex.
2049 	 *
2050 	 * Note that RPM complicates somewhat by adding an additional
2051 	 * requirement that operations to the GGTT be made holding the RPM
2052 	 * wakeref.
2053 	 */
2054 	lockdep_assert_held(&i915->drm.struct_mutex);
2055 	intel_runtime_pm_get(i915);
2056 
2057 	if (list_empty(&obj->userfault_link))
2058 		goto out;
2059 
2060 	list_del_init(&obj->userfault_link);
2061 	drm_vma_node_unmap(&obj->base.vma_node,
2062 			   obj->base.dev->anon_inode->i_mapping);
2063 
2064 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
2065 	 * memory transactions from userspace before we return. The TLB
2066 	 * flushing implied above by changing the PTE above *should* be
2067 	 * sufficient, an extra barrier here just provides us with a bit
2068 	 * of paranoid documentation about our requirement to serialise
2069 	 * memory writes before touching registers / GSM.
2070 	 */
2071 	wmb();
2072 
2073 out:
2074 	intel_runtime_pm_put(i915);
2075 }
2076 
2077 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2078 {
2079 	struct drm_i915_gem_object *obj, *on;
2080 	int i;
2081 
2082 	/*
2083 	 * Only called during RPM suspend. All users of the userfault_list
2084 	 * must be holding an RPM wakeref to ensure that this can not
2085 	 * run concurrently with themselves (and use the struct_mutex for
2086 	 * protection between themselves).
2087 	 */
2088 
2089 	list_for_each_entry_safe(obj, on,
2090 				 &dev_priv->mm.userfault_list, userfault_link) {
2091 		list_del_init(&obj->userfault_link);
2092 		drm_vma_node_unmap(&obj->base.vma_node,
2093 				   obj->base.dev->anon_inode->i_mapping);
2094 	}
2095 
2096 	/* The fence will be lost when the device powers down. If any were
2097 	 * in use by hardware (i.e. they are pinned), we should not be powering
2098 	 * down! All other fences will be reacquired by the user upon waking.
2099 	 */
2100 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2101 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2102 
2103 		/* Ideally we want to assert that the fence register is not
2104 		 * live at this point (i.e. that no piece of code will be
2105 		 * trying to write through fence + GTT, as that both violates
2106 		 * our tracking of activity and associated locking/barriers,
2107 		 * but also is illegal given that the hw is powered down).
2108 		 *
2109 		 * Previously we used reg->pin_count as a "liveness" indicator.
2110 		 * That is not sufficient, and we need a more fine-grained
2111 		 * tool if we want to have a sanity check here.
2112 		 */
2113 
2114 		if (!reg->vma)
2115 			continue;
2116 
2117 		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2118 		reg->dirty = true;
2119 	}
2120 }
2121 
2122 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2123 {
2124 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2125 	int err;
2126 
2127 	err = drm_gem_create_mmap_offset(&obj->base);
2128 	if (likely(!err))
2129 		return 0;
2130 
2131 	/* Attempt to reap some mmap space from dead objects */
2132 	do {
2133 		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2134 		if (err)
2135 			break;
2136 
2137 		i915_gem_drain_freed_objects(dev_priv);
2138 		err = drm_gem_create_mmap_offset(&obj->base);
2139 		if (!err)
2140 			break;
2141 
2142 	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2143 
2144 	return err;
2145 }
2146 
2147 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2148 {
2149 	drm_gem_free_mmap_offset(&obj->base);
2150 }
2151 
2152 int
2153 i915_gem_mmap_gtt(struct drm_file *file,
2154 		  struct drm_device *dev,
2155 		  uint32_t handle,
2156 		  uint64_t *offset)
2157 {
2158 	struct drm_i915_gem_object *obj;
2159 	int ret;
2160 
2161 	obj = i915_gem_object_lookup(file, handle);
2162 	if (!obj)
2163 		return -ENOENT;
2164 
2165 	ret = i915_gem_object_create_mmap_offset(obj);
2166 	if (ret == 0)
2167 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2168 
2169 	i915_gem_object_put(obj);
2170 	return ret;
2171 }
2172 
2173 /**
2174  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2175  * @dev: DRM device
2176  * @data: GTT mapping ioctl data
2177  * @file: GEM object info
2178  *
2179  * Simply returns the fake offset to userspace so it can mmap it.
2180  * The mmap call will end up in drm_gem_mmap(), which will set things
2181  * up so we can get faults in the handler above.
2182  *
2183  * The fault handler will take care of binding the object into the GTT
2184  * (since it may have been evicted to make room for something), allocating
2185  * a fence register, and mapping the appropriate aperture address into
2186  * userspace.
2187  */
2188 int
2189 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2190 			struct drm_file *file)
2191 {
2192 	struct drm_i915_gem_mmap_gtt *args = data;
2193 
2194 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2195 }
2196 
2197 /* Immediately discard the backing storage */
2198 static void
2199 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2200 {
2201 	i915_gem_object_free_mmap_offset(obj);
2202 
2203 	if (obj->base.filp == NULL)
2204 		return;
2205 
2206 	/* Our goal here is to return as much of the memory as
2207 	 * is possible back to the system as we are called from OOM.
2208 	 * To do this we must instruct the shmfs to drop all of its
2209 	 * backing pages, *now*.
2210 	 */
2211 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2212 	obj->mm.madv = __I915_MADV_PURGED;
2213 	obj->mm.pages = ERR_PTR(-EFAULT);
2214 }
2215 
2216 /* Try to discard unwanted pages */
2217 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2218 {
2219 	struct address_space *mapping;
2220 
2221 	lockdep_assert_held(&obj->mm.lock);
2222 	GEM_BUG_ON(obj->mm.pages);
2223 
2224 	switch (obj->mm.madv) {
2225 	case I915_MADV_DONTNEED:
2226 		i915_gem_object_truncate(obj);
2227 	case __I915_MADV_PURGED:
2228 		return;
2229 	}
2230 
2231 	if (obj->base.filp == NULL)
2232 		return;
2233 
2234 	mapping = obj->base.filp->f_mapping,
2235 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2236 }
2237 
2238 static void
2239 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2240 			      struct sg_table *pages)
2241 {
2242 	struct sgt_iter sgt_iter;
2243 	struct page *page;
2244 
2245 	__i915_gem_object_release_shmem(obj, pages, true);
2246 
2247 	i915_gem_gtt_finish_pages(obj, pages);
2248 
2249 	if (i915_gem_object_needs_bit17_swizzle(obj))
2250 		i915_gem_object_save_bit_17_swizzle(obj, pages);
2251 
2252 	for_each_sgt_page(page, sgt_iter, pages) {
2253 		if (obj->mm.dirty)
2254 			set_page_dirty(page);
2255 
2256 		if (obj->mm.madv == I915_MADV_WILLNEED)
2257 			mark_page_accessed(page);
2258 
2259 		put_page(page);
2260 	}
2261 	obj->mm.dirty = false;
2262 
2263 	sg_free_table(pages);
2264 	kfree(pages);
2265 }
2266 
2267 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2268 {
2269 	struct radix_tree_iter iter;
2270 	void **slot;
2271 
2272 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2273 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2274 }
2275 
2276 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2277 				 enum i915_mm_subclass subclass)
2278 {
2279 	struct sg_table *pages;
2280 
2281 	if (i915_gem_object_has_pinned_pages(obj))
2282 		return;
2283 
2284 	GEM_BUG_ON(obj->bind_count);
2285 	if (!READ_ONCE(obj->mm.pages))
2286 		return;
2287 
2288 	/* May be called by shrinker from within get_pages() (on another bo) */
2289 	mutex_lock_nested(&obj->mm.lock, subclass);
2290 	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2291 		goto unlock;
2292 
2293 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2294 	 * array, hence protect them from being reaped by removing them from gtt
2295 	 * lists early. */
2296 	pages = fetch_and_zero(&obj->mm.pages);
2297 	GEM_BUG_ON(!pages);
2298 
2299 	if (obj->mm.mapping) {
2300 		void *ptr;
2301 
2302 		ptr = page_mask_bits(obj->mm.mapping);
2303 		if (is_vmalloc_addr(ptr))
2304 			vunmap(ptr);
2305 		else
2306 			kunmap(kmap_to_page(ptr));
2307 
2308 		obj->mm.mapping = NULL;
2309 	}
2310 
2311 	__i915_gem_object_reset_page_iter(obj);
2312 
2313 	if (!IS_ERR(pages))
2314 		obj->ops->put_pages(obj, pages);
2315 
2316 unlock:
2317 	mutex_unlock(&obj->mm.lock);
2318 }
2319 
2320 static bool i915_sg_trim(struct sg_table *orig_st)
2321 {
2322 	struct sg_table new_st;
2323 	struct scatterlist *sg, *new_sg;
2324 	unsigned int i;
2325 
2326 	if (orig_st->nents == orig_st->orig_nents)
2327 		return false;
2328 
2329 	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2330 		return false;
2331 
2332 	new_sg = new_st.sgl;
2333 	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2334 		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2335 		/* called before being DMA mapped, no need to copy sg->dma_* */
2336 		new_sg = sg_next(new_sg);
2337 	}
2338 	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2339 
2340 	sg_free_table(orig_st);
2341 
2342 	*orig_st = new_st;
2343 	return true;
2344 }
2345 
2346 static struct sg_table *
2347 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2348 {
2349 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2350 	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2351 	unsigned long i;
2352 	struct address_space *mapping;
2353 	struct sg_table *st;
2354 	struct scatterlist *sg;
2355 	struct sgt_iter sgt_iter;
2356 	struct page *page;
2357 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2358 	unsigned int max_segment;
2359 	gfp_t noreclaim;
2360 	int ret;
2361 
2362 	/* Assert that the object is not currently in any GPU domain. As it
2363 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2364 	 * a GPU cache
2365 	 */
2366 	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2367 	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2368 
2369 	max_segment = swiotlb_max_segment();
2370 	if (!max_segment)
2371 		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2372 
2373 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2374 	if (st == NULL)
2375 		return ERR_PTR(-ENOMEM);
2376 
2377 rebuild_st:
2378 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2379 		kfree(st);
2380 		return ERR_PTR(-ENOMEM);
2381 	}
2382 
2383 	/* Get the list of pages out of our struct file.  They'll be pinned
2384 	 * at this point until we release them.
2385 	 *
2386 	 * Fail silently without starting the shrinker
2387 	 */
2388 	mapping = obj->base.filp->f_mapping;
2389 	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2390 	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2391 
2392 	sg = st->sgl;
2393 	st->nents = 0;
2394 	for (i = 0; i < page_count; i++) {
2395 		const unsigned int shrink[] = {
2396 			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2397 			0,
2398 		}, *s = shrink;
2399 		gfp_t gfp = noreclaim;
2400 
2401 		do {
2402 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2403 			if (likely(!IS_ERR(page)))
2404 				break;
2405 
2406 			if (!*s) {
2407 				ret = PTR_ERR(page);
2408 				goto err_sg;
2409 			}
2410 
2411 			i915_gem_shrink(dev_priv, 2 * page_count, *s++);
2412 			cond_resched();
2413 
2414 			/* We've tried hard to allocate the memory by reaping
2415 			 * our own buffer, now let the real VM do its job and
2416 			 * go down in flames if truly OOM.
2417 			 *
2418 			 * However, since graphics tend to be disposable,
2419 			 * defer the oom here by reporting the ENOMEM back
2420 			 * to userspace.
2421 			 */
2422 			if (!*s) {
2423 				/* reclaim and warn, but no oom */
2424 				gfp = mapping_gfp_mask(mapping);
2425 
2426 				/* Our bo are always dirty and so we require
2427 				 * kswapd to reclaim our pages (direct reclaim
2428 				 * does not effectively begin pageout of our
2429 				 * buffers on its own). However, direct reclaim
2430 				 * only waits for kswapd when under allocation
2431 				 * congestion. So as a result __GFP_RECLAIM is
2432 				 * unreliable and fails to actually reclaim our
2433 				 * dirty pages -- unless you try over and over
2434 				 * again with !__GFP_NORETRY. However, we still
2435 				 * want to fail this allocation rather than
2436 				 * trigger the out-of-memory killer and for
2437 				 * this we want __GFP_RETRY_MAYFAIL.
2438 				 */
2439 				gfp |= __GFP_RETRY_MAYFAIL;
2440 			}
2441 		} while (1);
2442 
2443 		if (!i ||
2444 		    sg->length >= max_segment ||
2445 		    page_to_pfn(page) != last_pfn + 1) {
2446 			if (i)
2447 				sg = sg_next(sg);
2448 			st->nents++;
2449 			sg_set_page(sg, page, PAGE_SIZE, 0);
2450 		} else {
2451 			sg->length += PAGE_SIZE;
2452 		}
2453 		last_pfn = page_to_pfn(page);
2454 
2455 		/* Check that the i965g/gm workaround works. */
2456 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2457 	}
2458 	if (sg) /* loop terminated early; short sg table */
2459 		sg_mark_end(sg);
2460 
2461 	/* Trim unused sg entries to avoid wasting memory. */
2462 	i915_sg_trim(st);
2463 
2464 	ret = i915_gem_gtt_prepare_pages(obj, st);
2465 	if (ret) {
2466 		/* DMA remapping failed? One possible cause is that
2467 		 * it could not reserve enough large entries, asking
2468 		 * for PAGE_SIZE chunks instead may be helpful.
2469 		 */
2470 		if (max_segment > PAGE_SIZE) {
2471 			for_each_sgt_page(page, sgt_iter, st)
2472 				put_page(page);
2473 			sg_free_table(st);
2474 
2475 			max_segment = PAGE_SIZE;
2476 			goto rebuild_st;
2477 		} else {
2478 			dev_warn(&dev_priv->drm.pdev->dev,
2479 				 "Failed to DMA remap %lu pages\n",
2480 				 page_count);
2481 			goto err_pages;
2482 		}
2483 	}
2484 
2485 	if (i915_gem_object_needs_bit17_swizzle(obj))
2486 		i915_gem_object_do_bit_17_swizzle(obj, st);
2487 
2488 	return st;
2489 
2490 err_sg:
2491 	sg_mark_end(sg);
2492 err_pages:
2493 	for_each_sgt_page(page, sgt_iter, st)
2494 		put_page(page);
2495 	sg_free_table(st);
2496 	kfree(st);
2497 
2498 	/* shmemfs first checks if there is enough memory to allocate the page
2499 	 * and reports ENOSPC should there be insufficient, along with the usual
2500 	 * ENOMEM for a genuine allocation failure.
2501 	 *
2502 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2503 	 * space and so want to translate the error from shmemfs back to our
2504 	 * usual understanding of ENOMEM.
2505 	 */
2506 	if (ret == -ENOSPC)
2507 		ret = -ENOMEM;
2508 
2509 	return ERR_PTR(ret);
2510 }
2511 
2512 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2513 				 struct sg_table *pages)
2514 {
2515 	lockdep_assert_held(&obj->mm.lock);
2516 
2517 	obj->mm.get_page.sg_pos = pages->sgl;
2518 	obj->mm.get_page.sg_idx = 0;
2519 
2520 	obj->mm.pages = pages;
2521 
2522 	if (i915_gem_object_is_tiled(obj) &&
2523 	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2524 		GEM_BUG_ON(obj->mm.quirked);
2525 		__i915_gem_object_pin_pages(obj);
2526 		obj->mm.quirked = true;
2527 	}
2528 }
2529 
2530 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2531 {
2532 	struct sg_table *pages;
2533 
2534 	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2535 
2536 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2537 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2538 		return -EFAULT;
2539 	}
2540 
2541 	pages = obj->ops->get_pages(obj);
2542 	if (unlikely(IS_ERR(pages)))
2543 		return PTR_ERR(pages);
2544 
2545 	__i915_gem_object_set_pages(obj, pages);
2546 	return 0;
2547 }
2548 
2549 /* Ensure that the associated pages are gathered from the backing storage
2550  * and pinned into our object. i915_gem_object_pin_pages() may be called
2551  * multiple times before they are released by a single call to
2552  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2553  * either as a result of memory pressure (reaping pages under the shrinker)
2554  * or as the object is itself released.
2555  */
2556 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2557 {
2558 	int err;
2559 
2560 	err = mutex_lock_interruptible(&obj->mm.lock);
2561 	if (err)
2562 		return err;
2563 
2564 	if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2565 		err = ____i915_gem_object_get_pages(obj);
2566 		if (err)
2567 			goto unlock;
2568 
2569 		smp_mb__before_atomic();
2570 	}
2571 	atomic_inc(&obj->mm.pages_pin_count);
2572 
2573 unlock:
2574 	mutex_unlock(&obj->mm.lock);
2575 	return err;
2576 }
2577 
2578 /* The 'mapping' part of i915_gem_object_pin_map() below */
2579 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2580 				 enum i915_map_type type)
2581 {
2582 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2583 	struct sg_table *sgt = obj->mm.pages;
2584 	struct sgt_iter sgt_iter;
2585 	struct page *page;
2586 	struct page *stack_pages[32];
2587 	struct page **pages = stack_pages;
2588 	unsigned long i = 0;
2589 	pgprot_t pgprot;
2590 	void *addr;
2591 
2592 	/* A single page can always be kmapped */
2593 	if (n_pages == 1 && type == I915_MAP_WB)
2594 		return kmap(sg_page(sgt->sgl));
2595 
2596 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2597 		/* Too big for stack -- allocate temporary array instead */
2598 		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_TEMPORARY);
2599 		if (!pages)
2600 			return NULL;
2601 	}
2602 
2603 	for_each_sgt_page(page, sgt_iter, sgt)
2604 		pages[i++] = page;
2605 
2606 	/* Check that we have the expected number of pages */
2607 	GEM_BUG_ON(i != n_pages);
2608 
2609 	switch (type) {
2610 	case I915_MAP_WB:
2611 		pgprot = PAGE_KERNEL;
2612 		break;
2613 	case I915_MAP_WC:
2614 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2615 		break;
2616 	}
2617 	addr = vmap(pages, n_pages, 0, pgprot);
2618 
2619 	if (pages != stack_pages)
2620 		kvfree(pages);
2621 
2622 	return addr;
2623 }
2624 
2625 /* get, pin, and map the pages of the object into kernel space */
2626 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2627 			      enum i915_map_type type)
2628 {
2629 	enum i915_map_type has_type;
2630 	bool pinned;
2631 	void *ptr;
2632 	int ret;
2633 
2634 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2635 
2636 	ret = mutex_lock_interruptible(&obj->mm.lock);
2637 	if (ret)
2638 		return ERR_PTR(ret);
2639 
2640 	pinned = true;
2641 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2642 		if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2643 			ret = ____i915_gem_object_get_pages(obj);
2644 			if (ret)
2645 				goto err_unlock;
2646 
2647 			smp_mb__before_atomic();
2648 		}
2649 		atomic_inc(&obj->mm.pages_pin_count);
2650 		pinned = false;
2651 	}
2652 	GEM_BUG_ON(!obj->mm.pages);
2653 
2654 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2655 	if (ptr && has_type != type) {
2656 		if (pinned) {
2657 			ret = -EBUSY;
2658 			goto err_unpin;
2659 		}
2660 
2661 		if (is_vmalloc_addr(ptr))
2662 			vunmap(ptr);
2663 		else
2664 			kunmap(kmap_to_page(ptr));
2665 
2666 		ptr = obj->mm.mapping = NULL;
2667 	}
2668 
2669 	if (!ptr) {
2670 		ptr = i915_gem_object_map(obj, type);
2671 		if (!ptr) {
2672 			ret = -ENOMEM;
2673 			goto err_unpin;
2674 		}
2675 
2676 		obj->mm.mapping = page_pack_bits(ptr, type);
2677 	}
2678 
2679 out_unlock:
2680 	mutex_unlock(&obj->mm.lock);
2681 	return ptr;
2682 
2683 err_unpin:
2684 	atomic_dec(&obj->mm.pages_pin_count);
2685 err_unlock:
2686 	ptr = ERR_PTR(ret);
2687 	goto out_unlock;
2688 }
2689 
2690 static int
2691 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2692 			   const struct drm_i915_gem_pwrite *arg)
2693 {
2694 	struct address_space *mapping = obj->base.filp->f_mapping;
2695 	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2696 	u64 remain, offset;
2697 	unsigned int pg;
2698 
2699 	/* Before we instantiate/pin the backing store for our use, we
2700 	 * can prepopulate the shmemfs filp efficiently using a write into
2701 	 * the pagecache. We avoid the penalty of instantiating all the
2702 	 * pages, important if the user is just writing to a few and never
2703 	 * uses the object on the GPU, and using a direct write into shmemfs
2704 	 * allows it to avoid the cost of retrieving a page (either swapin
2705 	 * or clearing-before-use) before it is overwritten.
2706 	 */
2707 	if (READ_ONCE(obj->mm.pages))
2708 		return -ENODEV;
2709 
2710 	/* Before the pages are instantiated the object is treated as being
2711 	 * in the CPU domain. The pages will be clflushed as required before
2712 	 * use, and we can freely write into the pages directly. If userspace
2713 	 * races pwrite with any other operation; corruption will ensue -
2714 	 * that is userspace's prerogative!
2715 	 */
2716 
2717 	remain = arg->size;
2718 	offset = arg->offset;
2719 	pg = offset_in_page(offset);
2720 
2721 	do {
2722 		unsigned int len, unwritten;
2723 		struct page *page;
2724 		void *data, *vaddr;
2725 		int err;
2726 
2727 		len = PAGE_SIZE - pg;
2728 		if (len > remain)
2729 			len = remain;
2730 
2731 		err = pagecache_write_begin(obj->base.filp, mapping,
2732 					    offset, len, 0,
2733 					    &page, &data);
2734 		if (err < 0)
2735 			return err;
2736 
2737 		vaddr = kmap(page);
2738 		unwritten = copy_from_user(vaddr + pg, user_data, len);
2739 		kunmap(page);
2740 
2741 		err = pagecache_write_end(obj->base.filp, mapping,
2742 					  offset, len, len - unwritten,
2743 					  page, data);
2744 		if (err < 0)
2745 			return err;
2746 
2747 		if (unwritten)
2748 			return -EFAULT;
2749 
2750 		remain -= len;
2751 		user_data += len;
2752 		offset += len;
2753 		pg = 0;
2754 	} while (remain);
2755 
2756 	return 0;
2757 }
2758 
2759 static bool ban_context(const struct i915_gem_context *ctx)
2760 {
2761 	return (i915_gem_context_is_bannable(ctx) &&
2762 		ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2763 }
2764 
2765 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2766 {
2767 	ctx->guilty_count++;
2768 	ctx->ban_score += CONTEXT_SCORE_GUILTY;
2769 	if (ban_context(ctx))
2770 		i915_gem_context_set_banned(ctx);
2771 
2772 	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2773 			 ctx->name, ctx->ban_score,
2774 			 yesno(i915_gem_context_is_banned(ctx)));
2775 
2776 	if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2777 		return;
2778 
2779 	ctx->file_priv->context_bans++;
2780 	DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2781 			 ctx->name, ctx->file_priv->context_bans);
2782 }
2783 
2784 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2785 {
2786 	ctx->active_count++;
2787 }
2788 
2789 struct drm_i915_gem_request *
2790 i915_gem_find_active_request(struct intel_engine_cs *engine)
2791 {
2792 	struct drm_i915_gem_request *request, *active = NULL;
2793 	unsigned long flags;
2794 
2795 	/* We are called by the error capture and reset at a random
2796 	 * point in time. In particular, note that neither is crucially
2797 	 * ordered with an interrupt. After a hang, the GPU is dead and we
2798 	 * assume that no more writes can happen (we waited long enough for
2799 	 * all writes that were in transaction to be flushed) - adding an
2800 	 * extra delay for a recent interrupt is pointless. Hence, we do
2801 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2802 	 */
2803 	spin_lock_irqsave(&engine->timeline->lock, flags);
2804 	list_for_each_entry(request, &engine->timeline->requests, link) {
2805 		if (__i915_gem_request_completed(request,
2806 						 request->global_seqno))
2807 			continue;
2808 
2809 		GEM_BUG_ON(request->engine != engine);
2810 		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2811 				    &request->fence.flags));
2812 
2813 		active = request;
2814 		break;
2815 	}
2816 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2817 
2818 	return active;
2819 }
2820 
2821 static bool engine_stalled(struct intel_engine_cs *engine)
2822 {
2823 	if (!engine->hangcheck.stalled)
2824 		return false;
2825 
2826 	/* Check for possible seqno movement after hang declaration */
2827 	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2828 		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2829 		return false;
2830 	}
2831 
2832 	return true;
2833 }
2834 
2835 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2836 {
2837 	struct intel_engine_cs *engine;
2838 	enum intel_engine_id id;
2839 	int err = 0;
2840 
2841 	/* Ensure irq handler finishes, and not run again. */
2842 	for_each_engine(engine, dev_priv, id) {
2843 		struct drm_i915_gem_request *request;
2844 
2845 		/* Prevent the signaler thread from updating the request
2846 		 * state (by calling dma_fence_signal) as we are processing
2847 		 * the reset. The write from the GPU of the seqno is
2848 		 * asynchronous and the signaler thread may see a different
2849 		 * value to us and declare the request complete, even though
2850 		 * the reset routine have picked that request as the active
2851 		 * (incomplete) request. This conflict is not handled
2852 		 * gracefully!
2853 		 */
2854 		kthread_park(engine->breadcrumbs.signaler);
2855 
2856 		/* Prevent request submission to the hardware until we have
2857 		 * completed the reset in i915_gem_reset_finish(). If a request
2858 		 * is completed by one engine, it may then queue a request
2859 		 * to a second via its engine->irq_tasklet *just* as we are
2860 		 * calling engine->init_hw() and also writing the ELSP.
2861 		 * Turning off the engine->irq_tasklet until the reset is over
2862 		 * prevents the race.
2863 		 */
2864 		tasklet_kill(&engine->irq_tasklet);
2865 		tasklet_disable(&engine->irq_tasklet);
2866 
2867 		if (engine->irq_seqno_barrier)
2868 			engine->irq_seqno_barrier(engine);
2869 
2870 		if (engine_stalled(engine)) {
2871 			request = i915_gem_find_active_request(engine);
2872 			if (request && request->fence.error == -EIO)
2873 				err = -EIO; /* Previous reset failed! */
2874 		}
2875 	}
2876 
2877 	i915_gem_revoke_fences(dev_priv);
2878 
2879 	return err;
2880 }
2881 
2882 static void skip_request(struct drm_i915_gem_request *request)
2883 {
2884 	void *vaddr = request->ring->vaddr;
2885 	u32 head;
2886 
2887 	/* As this request likely depends on state from the lost
2888 	 * context, clear out all the user operations leaving the
2889 	 * breadcrumb at the end (so we get the fence notifications).
2890 	 */
2891 	head = request->head;
2892 	if (request->postfix < head) {
2893 		memset(vaddr + head, 0, request->ring->size - head);
2894 		head = 0;
2895 	}
2896 	memset(vaddr + head, 0, request->postfix - head);
2897 
2898 	dma_fence_set_error(&request->fence, -EIO);
2899 }
2900 
2901 static void engine_skip_context(struct drm_i915_gem_request *request)
2902 {
2903 	struct intel_engine_cs *engine = request->engine;
2904 	struct i915_gem_context *hung_ctx = request->ctx;
2905 	struct intel_timeline *timeline;
2906 	unsigned long flags;
2907 
2908 	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2909 
2910 	spin_lock_irqsave(&engine->timeline->lock, flags);
2911 	spin_lock(&timeline->lock);
2912 
2913 	list_for_each_entry_continue(request, &engine->timeline->requests, link)
2914 		if (request->ctx == hung_ctx)
2915 			skip_request(request);
2916 
2917 	list_for_each_entry(request, &timeline->requests, link)
2918 		skip_request(request);
2919 
2920 	spin_unlock(&timeline->lock);
2921 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2922 }
2923 
2924 /* Returns true if the request was guilty of hang */
2925 static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
2926 {
2927 	/* Read once and return the resolution */
2928 	const bool guilty = engine_stalled(request->engine);
2929 
2930 	/* The guilty request will get skipped on a hung engine.
2931 	 *
2932 	 * Users of client default contexts do not rely on logical
2933 	 * state preserved between batches so it is safe to execute
2934 	 * queued requests following the hang. Non default contexts
2935 	 * rely on preserved state, so skipping a batch loses the
2936 	 * evolution of the state and it needs to be considered corrupted.
2937 	 * Executing more queued batches on top of corrupted state is
2938 	 * risky. But we take the risk by trying to advance through
2939 	 * the queued requests in order to make the client behaviour
2940 	 * more predictable around resets, by not throwing away random
2941 	 * amount of batches it has prepared for execution. Sophisticated
2942 	 * clients can use gem_reset_stats_ioctl and dma fence status
2943 	 * (exported via sync_file info ioctl on explicit fences) to observe
2944 	 * when it loses the context state and should rebuild accordingly.
2945 	 *
2946 	 * The context ban, and ultimately the client ban, mechanism are safety
2947 	 * valves if client submission ends up resulting in nothing more than
2948 	 * subsequent hangs.
2949 	 */
2950 
2951 	if (guilty) {
2952 		i915_gem_context_mark_guilty(request->ctx);
2953 		skip_request(request);
2954 	} else {
2955 		i915_gem_context_mark_innocent(request->ctx);
2956 		dma_fence_set_error(&request->fence, -EAGAIN);
2957 	}
2958 
2959 	return guilty;
2960 }
2961 
2962 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2963 {
2964 	struct drm_i915_gem_request *request;
2965 
2966 	request = i915_gem_find_active_request(engine);
2967 	if (request && i915_gem_reset_request(request)) {
2968 		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2969 				 engine->name, request->global_seqno);
2970 
2971 		/* If this context is now banned, skip all pending requests. */
2972 		if (i915_gem_context_is_banned(request->ctx))
2973 			engine_skip_context(request);
2974 	}
2975 
2976 	/* Setup the CS to resume from the breadcrumb of the hung request */
2977 	engine->reset_hw(engine, request);
2978 }
2979 
2980 void i915_gem_reset(struct drm_i915_private *dev_priv)
2981 {
2982 	struct intel_engine_cs *engine;
2983 	enum intel_engine_id id;
2984 
2985 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2986 
2987 	i915_gem_retire_requests(dev_priv);
2988 
2989 	for_each_engine(engine, dev_priv, id) {
2990 		struct i915_gem_context *ctx;
2991 
2992 		i915_gem_reset_engine(engine);
2993 		ctx = fetch_and_zero(&engine->last_retired_context);
2994 		if (ctx)
2995 			engine->context_unpin(engine, ctx);
2996 	}
2997 
2998 	i915_gem_restore_fences(dev_priv);
2999 
3000 	if (dev_priv->gt.awake) {
3001 		intel_sanitize_gt_powersave(dev_priv);
3002 		intel_enable_gt_powersave(dev_priv);
3003 		if (INTEL_GEN(dev_priv) >= 6)
3004 			gen6_rps_busy(dev_priv);
3005 	}
3006 }
3007 
3008 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3009 {
3010 	struct intel_engine_cs *engine;
3011 	enum intel_engine_id id;
3012 
3013 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3014 
3015 	for_each_engine(engine, dev_priv, id) {
3016 		tasklet_enable(&engine->irq_tasklet);
3017 		kthread_unpark(engine->breadcrumbs.signaler);
3018 	}
3019 }
3020 
3021 static void nop_submit_request(struct drm_i915_gem_request *request)
3022 {
3023 	dma_fence_set_error(&request->fence, -EIO);
3024 	i915_gem_request_submit(request);
3025 	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3026 }
3027 
3028 static void engine_set_wedged(struct intel_engine_cs *engine)
3029 {
3030 	struct drm_i915_gem_request *request;
3031 	unsigned long flags;
3032 
3033 	/* We need to be sure that no thread is running the old callback as
3034 	 * we install the nop handler (otherwise we would submit a request
3035 	 * to hardware that will never complete). In order to prevent this
3036 	 * race, we wait until the machine is idle before making the swap
3037 	 * (using stop_machine()).
3038 	 */
3039 	engine->submit_request = nop_submit_request;
3040 
3041 	/* Mark all executing requests as skipped */
3042 	spin_lock_irqsave(&engine->timeline->lock, flags);
3043 	list_for_each_entry(request, &engine->timeline->requests, link)
3044 		dma_fence_set_error(&request->fence, -EIO);
3045 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
3046 
3047 	/* Mark all pending requests as complete so that any concurrent
3048 	 * (lockless) lookup doesn't try and wait upon the request as we
3049 	 * reset it.
3050 	 */
3051 	intel_engine_init_global_seqno(engine,
3052 				       intel_engine_last_submit(engine));
3053 
3054 	/*
3055 	 * Clear the execlists queue up before freeing the requests, as those
3056 	 * are the ones that keep the context and ringbuffer backing objects
3057 	 * pinned in place.
3058 	 */
3059 
3060 	if (i915.enable_execlists) {
3061 		struct execlist_port *port = engine->execlist_port;
3062 		unsigned long flags;
3063 		unsigned int n;
3064 
3065 		spin_lock_irqsave(&engine->timeline->lock, flags);
3066 
3067 		for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
3068 			i915_gem_request_put(port_request(&port[n]));
3069 		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
3070 		engine->execlist_queue = RB_ROOT;
3071 		engine->execlist_first = NULL;
3072 
3073 		spin_unlock_irqrestore(&engine->timeline->lock, flags);
3074 	}
3075 }
3076 
3077 static int __i915_gem_set_wedged_BKL(void *data)
3078 {
3079 	struct drm_i915_private *i915 = data;
3080 	struct intel_engine_cs *engine;
3081 	enum intel_engine_id id;
3082 
3083 	for_each_engine(engine, i915, id)
3084 		engine_set_wedged(engine);
3085 
3086 	return 0;
3087 }
3088 
3089 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
3090 {
3091 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3092 	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
3093 
3094 	/* Retire completed requests first so the list of inflight/incomplete
3095 	 * requests is accurate and we don't try and mark successful requests
3096 	 * as in error during __i915_gem_set_wedged_BKL().
3097 	 */
3098 	i915_gem_retire_requests(dev_priv);
3099 
3100 	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3101 
3102 	i915_gem_context_lost(dev_priv);
3103 
3104 	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
3105 }
3106 
3107 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3108 {
3109 	struct i915_gem_timeline *tl;
3110 	int i;
3111 
3112 	lockdep_assert_held(&i915->drm.struct_mutex);
3113 	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3114 		return true;
3115 
3116 	/* Before unwedging, make sure that all pending operations
3117 	 * are flushed and errored out - we may have requests waiting upon
3118 	 * third party fences. We marked all inflight requests as EIO, and
3119 	 * every execbuf since returned EIO, for consistency we want all
3120 	 * the currently pending requests to also be marked as EIO, which
3121 	 * is done inside our nop_submit_request - and so we must wait.
3122 	 *
3123 	 * No more can be submitted until we reset the wedged bit.
3124 	 */
3125 	list_for_each_entry(tl, &i915->gt.timelines, link) {
3126 		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3127 			struct drm_i915_gem_request *rq;
3128 
3129 			rq = i915_gem_active_peek(&tl->engine[i].last_request,
3130 						  &i915->drm.struct_mutex);
3131 			if (!rq)
3132 				continue;
3133 
3134 			/* We can't use our normal waiter as we want to
3135 			 * avoid recursively trying to handle the current
3136 			 * reset. The basic dma_fence_default_wait() installs
3137 			 * a callback for dma_fence_signal(), which is
3138 			 * triggered by our nop handler (indirectly, the
3139 			 * callback enables the signaler thread which is
3140 			 * woken by the nop_submit_request() advancing the seqno
3141 			 * and when the seqno passes the fence, the signaler
3142 			 * then signals the fence waking us up).
3143 			 */
3144 			if (dma_fence_default_wait(&rq->fence, true,
3145 						   MAX_SCHEDULE_TIMEOUT) < 0)
3146 				return false;
3147 		}
3148 	}
3149 
3150 	/* Undo nop_submit_request. We prevent all new i915 requests from
3151 	 * being queued (by disallowing execbuf whilst wedged) so having
3152 	 * waited for all active requests above, we know the system is idle
3153 	 * and do not have to worry about a thread being inside
3154 	 * engine->submit_request() as we swap over. So unlike installing
3155 	 * the nop_submit_request on reset, we can do this from normal
3156 	 * context and do not require stop_machine().
3157 	 */
3158 	intel_engines_reset_default_submission(i915);
3159 
3160 	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3161 	clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3162 
3163 	return true;
3164 }
3165 
3166 static void
3167 i915_gem_retire_work_handler(struct work_struct *work)
3168 {
3169 	struct drm_i915_private *dev_priv =
3170 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3171 	struct drm_device *dev = &dev_priv->drm;
3172 
3173 	/* Come back later if the device is busy... */
3174 	if (mutex_trylock(&dev->struct_mutex)) {
3175 		i915_gem_retire_requests(dev_priv);
3176 		mutex_unlock(&dev->struct_mutex);
3177 	}
3178 
3179 	/* Keep the retire handler running until we are finally idle.
3180 	 * We do not need to do this test under locking as in the worst-case
3181 	 * we queue the retire worker once too often.
3182 	 */
3183 	if (READ_ONCE(dev_priv->gt.awake)) {
3184 		i915_queue_hangcheck(dev_priv);
3185 		queue_delayed_work(dev_priv->wq,
3186 				   &dev_priv->gt.retire_work,
3187 				   round_jiffies_up_relative(HZ));
3188 	}
3189 }
3190 
3191 static void
3192 i915_gem_idle_work_handler(struct work_struct *work)
3193 {
3194 	struct drm_i915_private *dev_priv =
3195 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3196 	struct drm_device *dev = &dev_priv->drm;
3197 	bool rearm_hangcheck;
3198 
3199 	if (!READ_ONCE(dev_priv->gt.awake))
3200 		return;
3201 
3202 	/*
3203 	 * Wait for last execlists context complete, but bail out in case a
3204 	 * new request is submitted.
3205 	 */
3206 	wait_for(intel_engines_are_idle(dev_priv), 10);
3207 	if (READ_ONCE(dev_priv->gt.active_requests))
3208 		return;
3209 
3210 	rearm_hangcheck =
3211 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3212 
3213 	if (!mutex_trylock(&dev->struct_mutex)) {
3214 		/* Currently busy, come back later */
3215 		mod_delayed_work(dev_priv->wq,
3216 				 &dev_priv->gt.idle_work,
3217 				 msecs_to_jiffies(50));
3218 		goto out_rearm;
3219 	}
3220 
3221 	/*
3222 	 * New request retired after this work handler started, extend active
3223 	 * period until next instance of the work.
3224 	 */
3225 	if (work_pending(work))
3226 		goto out_unlock;
3227 
3228 	if (dev_priv->gt.active_requests)
3229 		goto out_unlock;
3230 
3231 	if (wait_for(intel_engines_are_idle(dev_priv), 10))
3232 		DRM_ERROR("Timeout waiting for engines to idle\n");
3233 
3234 	intel_engines_mark_idle(dev_priv);
3235 	i915_gem_timelines_mark_idle(dev_priv);
3236 
3237 	GEM_BUG_ON(!dev_priv->gt.awake);
3238 	dev_priv->gt.awake = false;
3239 	rearm_hangcheck = false;
3240 
3241 	if (INTEL_GEN(dev_priv) >= 6)
3242 		gen6_rps_idle(dev_priv);
3243 	intel_runtime_pm_put(dev_priv);
3244 out_unlock:
3245 	mutex_unlock(&dev->struct_mutex);
3246 
3247 out_rearm:
3248 	if (rearm_hangcheck) {
3249 		GEM_BUG_ON(!dev_priv->gt.awake);
3250 		i915_queue_hangcheck(dev_priv);
3251 	}
3252 }
3253 
3254 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3255 {
3256 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
3257 	struct drm_i915_file_private *fpriv = file->driver_priv;
3258 	struct i915_vma *vma, *vn;
3259 
3260 	mutex_lock(&obj->base.dev->struct_mutex);
3261 	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
3262 		if (vma->vm->file == fpriv)
3263 			i915_vma_close(vma);
3264 
3265 	vma = obj->vma_hashed;
3266 	if (vma && vma->ctx->file_priv == fpriv)
3267 		i915_vma_unlink_ctx(vma);
3268 
3269 	if (i915_gem_object_is_active(obj) &&
3270 	    !i915_gem_object_has_active_reference(obj)) {
3271 		i915_gem_object_set_active_reference(obj);
3272 		i915_gem_object_get(obj);
3273 	}
3274 	mutex_unlock(&obj->base.dev->struct_mutex);
3275 }
3276 
3277 static unsigned long to_wait_timeout(s64 timeout_ns)
3278 {
3279 	if (timeout_ns < 0)
3280 		return MAX_SCHEDULE_TIMEOUT;
3281 
3282 	if (timeout_ns == 0)
3283 		return 0;
3284 
3285 	return nsecs_to_jiffies_timeout(timeout_ns);
3286 }
3287 
3288 /**
3289  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3290  * @dev: drm device pointer
3291  * @data: ioctl data blob
3292  * @file: drm file pointer
3293  *
3294  * Returns 0 if successful, else an error is returned with the remaining time in
3295  * the timeout parameter.
3296  *  -ETIME: object is still busy after timeout
3297  *  -ERESTARTSYS: signal interrupted the wait
3298  *  -ENONENT: object doesn't exist
3299  * Also possible, but rare:
3300  *  -EAGAIN: GPU wedged
3301  *  -ENOMEM: damn
3302  *  -ENODEV: Internal IRQ fail
3303  *  -E?: The add request failed
3304  *
3305  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3306  * non-zero timeout parameter the wait ioctl will wait for the given number of
3307  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3308  * without holding struct_mutex the object may become re-busied before this
3309  * function completes. A similar but shorter * race condition exists in the busy
3310  * ioctl
3311  */
3312 int
3313 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3314 {
3315 	struct drm_i915_gem_wait *args = data;
3316 	struct drm_i915_gem_object *obj;
3317 	ktime_t start;
3318 	long ret;
3319 
3320 	if (args->flags != 0)
3321 		return -EINVAL;
3322 
3323 	obj = i915_gem_object_lookup(file, args->bo_handle);
3324 	if (!obj)
3325 		return -ENOENT;
3326 
3327 	start = ktime_get();
3328 
3329 	ret = i915_gem_object_wait(obj,
3330 				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3331 				   to_wait_timeout(args->timeout_ns),
3332 				   to_rps_client(file));
3333 
3334 	if (args->timeout_ns > 0) {
3335 		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3336 		if (args->timeout_ns < 0)
3337 			args->timeout_ns = 0;
3338 
3339 		/*
3340 		 * Apparently ktime isn't accurate enough and occasionally has a
3341 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3342 		 * things up to make the test happy. We allow up to 1 jiffy.
3343 		 *
3344 		 * This is a regression from the timespec->ktime conversion.
3345 		 */
3346 		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3347 			args->timeout_ns = 0;
3348 	}
3349 
3350 	i915_gem_object_put(obj);
3351 	return ret;
3352 }
3353 
3354 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3355 {
3356 	int ret, i;
3357 
3358 	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3359 		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3360 		if (ret)
3361 			return ret;
3362 	}
3363 
3364 	return 0;
3365 }
3366 
3367 static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
3368 {
3369 	return wait_for(intel_engine_is_idle(engine), timeout_ms);
3370 }
3371 
3372 static int wait_for_engines(struct drm_i915_private *i915)
3373 {
3374 	struct intel_engine_cs *engine;
3375 	enum intel_engine_id id;
3376 
3377 	for_each_engine(engine, i915, id) {
3378 		if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
3379 			i915_gem_set_wedged(i915);
3380 			return -EIO;
3381 		}
3382 
3383 		GEM_BUG_ON(intel_engine_get_seqno(engine) !=
3384 			   intel_engine_last_submit(engine));
3385 	}
3386 
3387 	return 0;
3388 }
3389 
3390 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3391 {
3392 	int ret;
3393 
3394 	/* If the device is asleep, we have no requests outstanding */
3395 	if (!READ_ONCE(i915->gt.awake))
3396 		return 0;
3397 
3398 	if (flags & I915_WAIT_LOCKED) {
3399 		struct i915_gem_timeline *tl;
3400 
3401 		lockdep_assert_held(&i915->drm.struct_mutex);
3402 
3403 		list_for_each_entry(tl, &i915->gt.timelines, link) {
3404 			ret = wait_for_timeline(tl, flags);
3405 			if (ret)
3406 				return ret;
3407 		}
3408 
3409 		i915_gem_retire_requests(i915);
3410 		GEM_BUG_ON(i915->gt.active_requests);
3411 
3412 		ret = wait_for_engines(i915);
3413 	} else {
3414 		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3415 	}
3416 
3417 	return ret;
3418 }
3419 
3420 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3421 {
3422 	/*
3423 	 * We manually flush the CPU domain so that we can override and
3424 	 * force the flush for the display, and perform it asyncrhonously.
3425 	 */
3426 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3427 	if (obj->cache_dirty)
3428 		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3429 	obj->base.write_domain = 0;
3430 }
3431 
3432 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3433 {
3434 	if (!READ_ONCE(obj->pin_display))
3435 		return;
3436 
3437 	mutex_lock(&obj->base.dev->struct_mutex);
3438 	__i915_gem_object_flush_for_display(obj);
3439 	mutex_unlock(&obj->base.dev->struct_mutex);
3440 }
3441 
3442 /**
3443  * Moves a single object to the WC read, and possibly write domain.
3444  * @obj: object to act on
3445  * @write: ask for write access or read only
3446  *
3447  * This function returns when the move is complete, including waiting on
3448  * flushes to occur.
3449  */
3450 int
3451 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3452 {
3453 	int ret;
3454 
3455 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3456 
3457 	ret = i915_gem_object_wait(obj,
3458 				   I915_WAIT_INTERRUPTIBLE |
3459 				   I915_WAIT_LOCKED |
3460 				   (write ? I915_WAIT_ALL : 0),
3461 				   MAX_SCHEDULE_TIMEOUT,
3462 				   NULL);
3463 	if (ret)
3464 		return ret;
3465 
3466 	if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3467 		return 0;
3468 
3469 	/* Flush and acquire obj->pages so that we are coherent through
3470 	 * direct access in memory with previous cached writes through
3471 	 * shmemfs and that our cache domain tracking remains valid.
3472 	 * For example, if the obj->filp was moved to swap without us
3473 	 * being notified and releasing the pages, we would mistakenly
3474 	 * continue to assume that the obj remained out of the CPU cached
3475 	 * domain.
3476 	 */
3477 	ret = i915_gem_object_pin_pages(obj);
3478 	if (ret)
3479 		return ret;
3480 
3481 	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3482 
3483 	/* Serialise direct access to this object with the barriers for
3484 	 * coherent writes from the GPU, by effectively invalidating the
3485 	 * WC domain upon first access.
3486 	 */
3487 	if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3488 		mb();
3489 
3490 	/* It should now be out of any other write domains, and we can update
3491 	 * the domain values for our changes.
3492 	 */
3493 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3494 	obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3495 	if (write) {
3496 		obj->base.read_domains = I915_GEM_DOMAIN_WC;
3497 		obj->base.write_domain = I915_GEM_DOMAIN_WC;
3498 		obj->mm.dirty = true;
3499 	}
3500 
3501 	i915_gem_object_unpin_pages(obj);
3502 	return 0;
3503 }
3504 
3505 /**
3506  * Moves a single object to the GTT read, and possibly write domain.
3507  * @obj: object to act on
3508  * @write: ask for write access or read only
3509  *
3510  * This function returns when the move is complete, including waiting on
3511  * flushes to occur.
3512  */
3513 int
3514 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3515 {
3516 	int ret;
3517 
3518 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3519 
3520 	ret = i915_gem_object_wait(obj,
3521 				   I915_WAIT_INTERRUPTIBLE |
3522 				   I915_WAIT_LOCKED |
3523 				   (write ? I915_WAIT_ALL : 0),
3524 				   MAX_SCHEDULE_TIMEOUT,
3525 				   NULL);
3526 	if (ret)
3527 		return ret;
3528 
3529 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3530 		return 0;
3531 
3532 	/* Flush and acquire obj->pages so that we are coherent through
3533 	 * direct access in memory with previous cached writes through
3534 	 * shmemfs and that our cache domain tracking remains valid.
3535 	 * For example, if the obj->filp was moved to swap without us
3536 	 * being notified and releasing the pages, we would mistakenly
3537 	 * continue to assume that the obj remained out of the CPU cached
3538 	 * domain.
3539 	 */
3540 	ret = i915_gem_object_pin_pages(obj);
3541 	if (ret)
3542 		return ret;
3543 
3544 	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3545 
3546 	/* Serialise direct access to this object with the barriers for
3547 	 * coherent writes from the GPU, by effectively invalidating the
3548 	 * GTT domain upon first access.
3549 	 */
3550 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3551 		mb();
3552 
3553 	/* It should now be out of any other write domains, and we can update
3554 	 * the domain values for our changes.
3555 	 */
3556 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3557 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3558 	if (write) {
3559 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3560 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3561 		obj->mm.dirty = true;
3562 	}
3563 
3564 	i915_gem_object_unpin_pages(obj);
3565 	return 0;
3566 }
3567 
3568 /**
3569  * Changes the cache-level of an object across all VMA.
3570  * @obj: object to act on
3571  * @cache_level: new cache level to set for the object
3572  *
3573  * After this function returns, the object will be in the new cache-level
3574  * across all GTT and the contents of the backing storage will be coherent,
3575  * with respect to the new cache-level. In order to keep the backing storage
3576  * coherent for all users, we only allow a single cache level to be set
3577  * globally on the object and prevent it from being changed whilst the
3578  * hardware is reading from the object. That is if the object is currently
3579  * on the scanout it will be set to uncached (or equivalent display
3580  * cache coherency) and all non-MOCS GPU access will also be uncached so
3581  * that all direct access to the scanout remains coherent.
3582  */
3583 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3584 				    enum i915_cache_level cache_level)
3585 {
3586 	struct i915_vma *vma;
3587 	int ret;
3588 
3589 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3590 
3591 	if (obj->cache_level == cache_level)
3592 		return 0;
3593 
3594 	/* Inspect the list of currently bound VMA and unbind any that would
3595 	 * be invalid given the new cache-level. This is principally to
3596 	 * catch the issue of the CS prefetch crossing page boundaries and
3597 	 * reading an invalid PTE on older architectures.
3598 	 */
3599 restart:
3600 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3601 		if (!drm_mm_node_allocated(&vma->node))
3602 			continue;
3603 
3604 		if (i915_vma_is_pinned(vma)) {
3605 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3606 			return -EBUSY;
3607 		}
3608 
3609 		if (i915_gem_valid_gtt_space(vma, cache_level))
3610 			continue;
3611 
3612 		ret = i915_vma_unbind(vma);
3613 		if (ret)
3614 			return ret;
3615 
3616 		/* As unbinding may affect other elements in the
3617 		 * obj->vma_list (due to side-effects from retiring
3618 		 * an active vma), play safe and restart the iterator.
3619 		 */
3620 		goto restart;
3621 	}
3622 
3623 	/* We can reuse the existing drm_mm nodes but need to change the
3624 	 * cache-level on the PTE. We could simply unbind them all and
3625 	 * rebind with the correct cache-level on next use. However since
3626 	 * we already have a valid slot, dma mapping, pages etc, we may as
3627 	 * rewrite the PTE in the belief that doing so tramples upon less
3628 	 * state and so involves less work.
3629 	 */
3630 	if (obj->bind_count) {
3631 		/* Before we change the PTE, the GPU must not be accessing it.
3632 		 * If we wait upon the object, we know that all the bound
3633 		 * VMA are no longer active.
3634 		 */
3635 		ret = i915_gem_object_wait(obj,
3636 					   I915_WAIT_INTERRUPTIBLE |
3637 					   I915_WAIT_LOCKED |
3638 					   I915_WAIT_ALL,
3639 					   MAX_SCHEDULE_TIMEOUT,
3640 					   NULL);
3641 		if (ret)
3642 			return ret;
3643 
3644 		if (!HAS_LLC(to_i915(obj->base.dev)) &&
3645 		    cache_level != I915_CACHE_NONE) {
3646 			/* Access to snoopable pages through the GTT is
3647 			 * incoherent and on some machines causes a hard
3648 			 * lockup. Relinquish the CPU mmaping to force
3649 			 * userspace to refault in the pages and we can
3650 			 * then double check if the GTT mapping is still
3651 			 * valid for that pointer access.
3652 			 */
3653 			i915_gem_release_mmap(obj);
3654 
3655 			/* As we no longer need a fence for GTT access,
3656 			 * we can relinquish it now (and so prevent having
3657 			 * to steal a fence from someone else on the next
3658 			 * fence request). Note GPU activity would have
3659 			 * dropped the fence as all snoopable access is
3660 			 * supposed to be linear.
3661 			 */
3662 			list_for_each_entry(vma, &obj->vma_list, obj_link) {
3663 				ret = i915_vma_put_fence(vma);
3664 				if (ret)
3665 					return ret;
3666 			}
3667 		} else {
3668 			/* We either have incoherent backing store and
3669 			 * so no GTT access or the architecture is fully
3670 			 * coherent. In such cases, existing GTT mmaps
3671 			 * ignore the cache bit in the PTE and we can
3672 			 * rewrite it without confusing the GPU or having
3673 			 * to force userspace to fault back in its mmaps.
3674 			 */
3675 		}
3676 
3677 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3678 			if (!drm_mm_node_allocated(&vma->node))
3679 				continue;
3680 
3681 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3682 			if (ret)
3683 				return ret;
3684 		}
3685 	}
3686 
3687 	list_for_each_entry(vma, &obj->vma_list, obj_link)
3688 		vma->node.color = cache_level;
3689 	obj->cache_level = cache_level;
3690 	obj->cache_coherent = i915_gem_object_is_coherent(obj);
3691 	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3692 
3693 	return 0;
3694 }
3695 
3696 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3697 			       struct drm_file *file)
3698 {
3699 	struct drm_i915_gem_caching *args = data;
3700 	struct drm_i915_gem_object *obj;
3701 	int err = 0;
3702 
3703 	rcu_read_lock();
3704 	obj = i915_gem_object_lookup_rcu(file, args->handle);
3705 	if (!obj) {
3706 		err = -ENOENT;
3707 		goto out;
3708 	}
3709 
3710 	switch (obj->cache_level) {
3711 	case I915_CACHE_LLC:
3712 	case I915_CACHE_L3_LLC:
3713 		args->caching = I915_CACHING_CACHED;
3714 		break;
3715 
3716 	case I915_CACHE_WT:
3717 		args->caching = I915_CACHING_DISPLAY;
3718 		break;
3719 
3720 	default:
3721 		args->caching = I915_CACHING_NONE;
3722 		break;
3723 	}
3724 out:
3725 	rcu_read_unlock();
3726 	return err;
3727 }
3728 
3729 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3730 			       struct drm_file *file)
3731 {
3732 	struct drm_i915_private *i915 = to_i915(dev);
3733 	struct drm_i915_gem_caching *args = data;
3734 	struct drm_i915_gem_object *obj;
3735 	enum i915_cache_level level;
3736 	int ret = 0;
3737 
3738 	switch (args->caching) {
3739 	case I915_CACHING_NONE:
3740 		level = I915_CACHE_NONE;
3741 		break;
3742 	case I915_CACHING_CACHED:
3743 		/*
3744 		 * Due to a HW issue on BXT A stepping, GPU stores via a
3745 		 * snooped mapping may leave stale data in a corresponding CPU
3746 		 * cacheline, whereas normally such cachelines would get
3747 		 * invalidated.
3748 		 */
3749 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3750 			return -ENODEV;
3751 
3752 		level = I915_CACHE_LLC;
3753 		break;
3754 	case I915_CACHING_DISPLAY:
3755 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3756 		break;
3757 	default:
3758 		return -EINVAL;
3759 	}
3760 
3761 	obj = i915_gem_object_lookup(file, args->handle);
3762 	if (!obj)
3763 		return -ENOENT;
3764 
3765 	if (obj->cache_level == level)
3766 		goto out;
3767 
3768 	ret = i915_gem_object_wait(obj,
3769 				   I915_WAIT_INTERRUPTIBLE,
3770 				   MAX_SCHEDULE_TIMEOUT,
3771 				   to_rps_client(file));
3772 	if (ret)
3773 		goto out;
3774 
3775 	ret = i915_mutex_lock_interruptible(dev);
3776 	if (ret)
3777 		goto out;
3778 
3779 	ret = i915_gem_object_set_cache_level(obj, level);
3780 	mutex_unlock(&dev->struct_mutex);
3781 
3782 out:
3783 	i915_gem_object_put(obj);
3784 	return ret;
3785 }
3786 
3787 /*
3788  * Prepare buffer for display plane (scanout, cursors, etc).
3789  * Can be called from an uninterruptible phase (modesetting) and allows
3790  * any flushes to be pipelined (for pageflips).
3791  */
3792 struct i915_vma *
3793 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3794 				     u32 alignment,
3795 				     const struct i915_ggtt_view *view)
3796 {
3797 	struct i915_vma *vma;
3798 	int ret;
3799 
3800 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3801 
3802 	/* Mark the pin_display early so that we account for the
3803 	 * display coherency whilst setting up the cache domains.
3804 	 */
3805 	obj->pin_display++;
3806 
3807 	/* The display engine is not coherent with the LLC cache on gen6.  As
3808 	 * a result, we make sure that the pinning that is about to occur is
3809 	 * done with uncached PTEs. This is lowest common denominator for all
3810 	 * chipsets.
3811 	 *
3812 	 * However for gen6+, we could do better by using the GFDT bit instead
3813 	 * of uncaching, which would allow us to flush all the LLC-cached data
3814 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3815 	 */
3816 	ret = i915_gem_object_set_cache_level(obj,
3817 					      HAS_WT(to_i915(obj->base.dev)) ?
3818 					      I915_CACHE_WT : I915_CACHE_NONE);
3819 	if (ret) {
3820 		vma = ERR_PTR(ret);
3821 		goto err_unpin_display;
3822 	}
3823 
3824 	/* As the user may map the buffer once pinned in the display plane
3825 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3826 	 * always use map_and_fenceable for all scanout buffers. However,
3827 	 * it may simply be too big to fit into mappable, in which case
3828 	 * put it anyway and hope that userspace can cope (but always first
3829 	 * try to preserve the existing ABI).
3830 	 */
3831 	vma = ERR_PTR(-ENOSPC);
3832 	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3833 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3834 					       PIN_MAPPABLE | PIN_NONBLOCK);
3835 	if (IS_ERR(vma)) {
3836 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3837 		unsigned int flags;
3838 
3839 		/* Valleyview is definitely limited to scanning out the first
3840 		 * 512MiB. Lets presume this behaviour was inherited from the
3841 		 * g4x display engine and that all earlier gen are similarly
3842 		 * limited. Testing suggests that it is a little more
3843 		 * complicated than this. For example, Cherryview appears quite
3844 		 * happy to scanout from anywhere within its global aperture.
3845 		 */
3846 		flags = 0;
3847 		if (HAS_GMCH_DISPLAY(i915))
3848 			flags = PIN_MAPPABLE;
3849 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3850 	}
3851 	if (IS_ERR(vma))
3852 		goto err_unpin_display;
3853 
3854 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3855 
3856 	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3857 	__i915_gem_object_flush_for_display(obj);
3858 	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3859 
3860 	/* It should now be out of any other write domains, and we can update
3861 	 * the domain values for our changes.
3862 	 */
3863 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3864 
3865 	return vma;
3866 
3867 err_unpin_display:
3868 	obj->pin_display--;
3869 	return vma;
3870 }
3871 
3872 void
3873 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3874 {
3875 	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3876 
3877 	if (WARN_ON(vma->obj->pin_display == 0))
3878 		return;
3879 
3880 	if (--vma->obj->pin_display == 0)
3881 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3882 
3883 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3884 	i915_gem_object_bump_inactive_ggtt(vma->obj);
3885 
3886 	i915_vma_unpin(vma);
3887 }
3888 
3889 /**
3890  * Moves a single object to the CPU read, and possibly write domain.
3891  * @obj: object to act on
3892  * @write: requesting write or read-only access
3893  *
3894  * This function returns when the move is complete, including waiting on
3895  * flushes to occur.
3896  */
3897 int
3898 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3899 {
3900 	int ret;
3901 
3902 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3903 
3904 	ret = i915_gem_object_wait(obj,
3905 				   I915_WAIT_INTERRUPTIBLE |
3906 				   I915_WAIT_LOCKED |
3907 				   (write ? I915_WAIT_ALL : 0),
3908 				   MAX_SCHEDULE_TIMEOUT,
3909 				   NULL);
3910 	if (ret)
3911 		return ret;
3912 
3913 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3914 
3915 	/* Flush the CPU cache if it's still invalid. */
3916 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3917 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3918 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3919 	}
3920 
3921 	/* It should now be out of any other write domains, and we can update
3922 	 * the domain values for our changes.
3923 	 */
3924 	GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3925 
3926 	/* If we're writing through the CPU, then the GPU read domains will
3927 	 * need to be invalidated at next use.
3928 	 */
3929 	if (write)
3930 		__start_cpu_write(obj);
3931 
3932 	return 0;
3933 }
3934 
3935 /* Throttle our rendering by waiting until the ring has completed our requests
3936  * emitted over 20 msec ago.
3937  *
3938  * Note that if we were to use the current jiffies each time around the loop,
3939  * we wouldn't escape the function with any frames outstanding if the time to
3940  * render a frame was over 20ms.
3941  *
3942  * This should get us reasonable parallelism between CPU and GPU but also
3943  * relatively low latency when blocking on a particular request to finish.
3944  */
3945 static int
3946 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3947 {
3948 	struct drm_i915_private *dev_priv = to_i915(dev);
3949 	struct drm_i915_file_private *file_priv = file->driver_priv;
3950 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3951 	struct drm_i915_gem_request *request, *target = NULL;
3952 	long ret;
3953 
3954 	/* ABI: return -EIO if already wedged */
3955 	if (i915_terminally_wedged(&dev_priv->gpu_error))
3956 		return -EIO;
3957 
3958 	spin_lock(&file_priv->mm.lock);
3959 	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3960 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3961 			break;
3962 
3963 		if (target) {
3964 			list_del(&target->client_link);
3965 			target->file_priv = NULL;
3966 		}
3967 
3968 		target = request;
3969 	}
3970 	if (target)
3971 		i915_gem_request_get(target);
3972 	spin_unlock(&file_priv->mm.lock);
3973 
3974 	if (target == NULL)
3975 		return 0;
3976 
3977 	ret = i915_wait_request(target,
3978 				I915_WAIT_INTERRUPTIBLE,
3979 				MAX_SCHEDULE_TIMEOUT);
3980 	i915_gem_request_put(target);
3981 
3982 	return ret < 0 ? ret : 0;
3983 }
3984 
3985 struct i915_vma *
3986 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3987 			 const struct i915_ggtt_view *view,
3988 			 u64 size,
3989 			 u64 alignment,
3990 			 u64 flags)
3991 {
3992 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3993 	struct i915_address_space *vm = &dev_priv->ggtt.base;
3994 	struct i915_vma *vma;
3995 	int ret;
3996 
3997 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3998 
3999 	vma = i915_vma_instance(obj, vm, view);
4000 	if (unlikely(IS_ERR(vma)))
4001 		return vma;
4002 
4003 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4004 		if (flags & PIN_NONBLOCK &&
4005 		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
4006 			return ERR_PTR(-ENOSPC);
4007 
4008 		if (flags & PIN_MAPPABLE) {
4009 			/* If the required space is larger than the available
4010 			 * aperture, we will not able to find a slot for the
4011 			 * object and unbinding the object now will be in
4012 			 * vain. Worse, doing so may cause us to ping-pong
4013 			 * the object in and out of the Global GTT and
4014 			 * waste a lot of cycles under the mutex.
4015 			 */
4016 			if (vma->fence_size > dev_priv->ggtt.mappable_end)
4017 				return ERR_PTR(-E2BIG);
4018 
4019 			/* If NONBLOCK is set the caller is optimistically
4020 			 * trying to cache the full object within the mappable
4021 			 * aperture, and *must* have a fallback in place for
4022 			 * situations where we cannot bind the object. We
4023 			 * can be a little more lax here and use the fallback
4024 			 * more often to avoid costly migrations of ourselves
4025 			 * and other objects within the aperture.
4026 			 *
4027 			 * Half-the-aperture is used as a simple heuristic.
4028 			 * More interesting would to do search for a free
4029 			 * block prior to making the commitment to unbind.
4030 			 * That caters for the self-harm case, and with a
4031 			 * little more heuristics (e.g. NOFAULT, NOEVICT)
4032 			 * we could try to minimise harm to others.
4033 			 */
4034 			if (flags & PIN_NONBLOCK &&
4035 			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4036 				return ERR_PTR(-ENOSPC);
4037 		}
4038 
4039 		WARN(i915_vma_is_pinned(vma),
4040 		     "bo is already pinned in ggtt with incorrect alignment:"
4041 		     " offset=%08x, req.alignment=%llx,"
4042 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4043 		     i915_ggtt_offset(vma), alignment,
4044 		     !!(flags & PIN_MAPPABLE),
4045 		     i915_vma_is_map_and_fenceable(vma));
4046 		ret = i915_vma_unbind(vma);
4047 		if (ret)
4048 			return ERR_PTR(ret);
4049 	}
4050 
4051 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4052 	if (ret)
4053 		return ERR_PTR(ret);
4054 
4055 	return vma;
4056 }
4057 
4058 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4059 {
4060 	/* Note that we could alias engines in the execbuf API, but
4061 	 * that would be very unwise as it prevents userspace from
4062 	 * fine control over engine selection. Ahem.
4063 	 *
4064 	 * This should be something like EXEC_MAX_ENGINE instead of
4065 	 * I915_NUM_ENGINES.
4066 	 */
4067 	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4068 	return 0x10000 << id;
4069 }
4070 
4071 static __always_inline unsigned int __busy_write_id(unsigned int id)
4072 {
4073 	/* The uABI guarantees an active writer is also amongst the read
4074 	 * engines. This would be true if we accessed the activity tracking
4075 	 * under the lock, but as we perform the lookup of the object and
4076 	 * its activity locklessly we can not guarantee that the last_write
4077 	 * being active implies that we have set the same engine flag from
4078 	 * last_read - hence we always set both read and write busy for
4079 	 * last_write.
4080 	 */
4081 	return id | __busy_read_flag(id);
4082 }
4083 
4084 static __always_inline unsigned int
4085 __busy_set_if_active(const struct dma_fence *fence,
4086 		     unsigned int (*flag)(unsigned int id))
4087 {
4088 	struct drm_i915_gem_request *rq;
4089 
4090 	/* We have to check the current hw status of the fence as the uABI
4091 	 * guarantees forward progress. We could rely on the idle worker
4092 	 * to eventually flush us, but to minimise latency just ask the
4093 	 * hardware.
4094 	 *
4095 	 * Note we only report on the status of native fences.
4096 	 */
4097 	if (!dma_fence_is_i915(fence))
4098 		return 0;
4099 
4100 	/* opencode to_request() in order to avoid const warnings */
4101 	rq = container_of(fence, struct drm_i915_gem_request, fence);
4102 	if (i915_gem_request_completed(rq))
4103 		return 0;
4104 
4105 	return flag(rq->engine->uabi_id);
4106 }
4107 
4108 static __always_inline unsigned int
4109 busy_check_reader(const struct dma_fence *fence)
4110 {
4111 	return __busy_set_if_active(fence, __busy_read_flag);
4112 }
4113 
4114 static __always_inline unsigned int
4115 busy_check_writer(const struct dma_fence *fence)
4116 {
4117 	if (!fence)
4118 		return 0;
4119 
4120 	return __busy_set_if_active(fence, __busy_write_id);
4121 }
4122 
4123 int
4124 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4125 		    struct drm_file *file)
4126 {
4127 	struct drm_i915_gem_busy *args = data;
4128 	struct drm_i915_gem_object *obj;
4129 	struct reservation_object_list *list;
4130 	unsigned int seq;
4131 	int err;
4132 
4133 	err = -ENOENT;
4134 	rcu_read_lock();
4135 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4136 	if (!obj)
4137 		goto out;
4138 
4139 	/* A discrepancy here is that we do not report the status of
4140 	 * non-i915 fences, i.e. even though we may report the object as idle,
4141 	 * a call to set-domain may still stall waiting for foreign rendering.
4142 	 * This also means that wait-ioctl may report an object as busy,
4143 	 * where busy-ioctl considers it idle.
4144 	 *
4145 	 * We trade the ability to warn of foreign fences to report on which
4146 	 * i915 engines are active for the object.
4147 	 *
4148 	 * Alternatively, we can trade that extra information on read/write
4149 	 * activity with
4150 	 *	args->busy =
4151 	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
4152 	 * to report the overall busyness. This is what the wait-ioctl does.
4153 	 *
4154 	 */
4155 retry:
4156 	seq = raw_read_seqcount(&obj->resv->seq);
4157 
4158 	/* Translate the exclusive fence to the READ *and* WRITE engine */
4159 	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4160 
4161 	/* Translate shared fences to READ set of engines */
4162 	list = rcu_dereference(obj->resv->fence);
4163 	if (list) {
4164 		unsigned int shared_count = list->shared_count, i;
4165 
4166 		for (i = 0; i < shared_count; ++i) {
4167 			struct dma_fence *fence =
4168 				rcu_dereference(list->shared[i]);
4169 
4170 			args->busy |= busy_check_reader(fence);
4171 		}
4172 	}
4173 
4174 	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4175 		goto retry;
4176 
4177 	err = 0;
4178 out:
4179 	rcu_read_unlock();
4180 	return err;
4181 }
4182 
4183 int
4184 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4185 			struct drm_file *file_priv)
4186 {
4187 	return i915_gem_ring_throttle(dev, file_priv);
4188 }
4189 
4190 int
4191 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4192 		       struct drm_file *file_priv)
4193 {
4194 	struct drm_i915_private *dev_priv = to_i915(dev);
4195 	struct drm_i915_gem_madvise *args = data;
4196 	struct drm_i915_gem_object *obj;
4197 	int err;
4198 
4199 	switch (args->madv) {
4200 	case I915_MADV_DONTNEED:
4201 	case I915_MADV_WILLNEED:
4202 	    break;
4203 	default:
4204 	    return -EINVAL;
4205 	}
4206 
4207 	obj = i915_gem_object_lookup(file_priv, args->handle);
4208 	if (!obj)
4209 		return -ENOENT;
4210 
4211 	err = mutex_lock_interruptible(&obj->mm.lock);
4212 	if (err)
4213 		goto out;
4214 
4215 	if (obj->mm.pages &&
4216 	    i915_gem_object_is_tiled(obj) &&
4217 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4218 		if (obj->mm.madv == I915_MADV_WILLNEED) {
4219 			GEM_BUG_ON(!obj->mm.quirked);
4220 			__i915_gem_object_unpin_pages(obj);
4221 			obj->mm.quirked = false;
4222 		}
4223 		if (args->madv == I915_MADV_WILLNEED) {
4224 			GEM_BUG_ON(obj->mm.quirked);
4225 			__i915_gem_object_pin_pages(obj);
4226 			obj->mm.quirked = true;
4227 		}
4228 	}
4229 
4230 	if (obj->mm.madv != __I915_MADV_PURGED)
4231 		obj->mm.madv = args->madv;
4232 
4233 	/* if the object is no longer attached, discard its backing storage */
4234 	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4235 		i915_gem_object_truncate(obj);
4236 
4237 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4238 	mutex_unlock(&obj->mm.lock);
4239 
4240 out:
4241 	i915_gem_object_put(obj);
4242 	return err;
4243 }
4244 
4245 static void
4246 frontbuffer_retire(struct i915_gem_active *active,
4247 		   struct drm_i915_gem_request *request)
4248 {
4249 	struct drm_i915_gem_object *obj =
4250 		container_of(active, typeof(*obj), frontbuffer_write);
4251 
4252 	intel_fb_obj_flush(obj, ORIGIN_CS);
4253 }
4254 
4255 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4256 			  const struct drm_i915_gem_object_ops *ops)
4257 {
4258 	mutex_init(&obj->mm.lock);
4259 
4260 	INIT_LIST_HEAD(&obj->global_link);
4261 	INIT_LIST_HEAD(&obj->userfault_link);
4262 	INIT_LIST_HEAD(&obj->vma_list);
4263 	INIT_LIST_HEAD(&obj->batch_pool_link);
4264 
4265 	obj->ops = ops;
4266 
4267 	reservation_object_init(&obj->__builtin_resv);
4268 	obj->resv = &obj->__builtin_resv;
4269 
4270 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4271 	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4272 
4273 	obj->mm.madv = I915_MADV_WILLNEED;
4274 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4275 	mutex_init(&obj->mm.get_page.lock);
4276 
4277 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4278 }
4279 
4280 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4281 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4282 		 I915_GEM_OBJECT_IS_SHRINKABLE,
4283 
4284 	.get_pages = i915_gem_object_get_pages_gtt,
4285 	.put_pages = i915_gem_object_put_pages_gtt,
4286 
4287 	.pwrite = i915_gem_object_pwrite_gtt,
4288 };
4289 
4290 struct drm_i915_gem_object *
4291 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4292 {
4293 	struct drm_i915_gem_object *obj;
4294 	struct address_space *mapping;
4295 	gfp_t mask;
4296 	int ret;
4297 
4298 	/* There is a prevalence of the assumption that we fit the object's
4299 	 * page count inside a 32bit _signed_ variable. Let's document this and
4300 	 * catch if we ever need to fix it. In the meantime, if you do spot
4301 	 * such a local variable, please consider fixing!
4302 	 */
4303 	if (size >> PAGE_SHIFT > INT_MAX)
4304 		return ERR_PTR(-E2BIG);
4305 
4306 	if (overflows_type(size, obj->base.size))
4307 		return ERR_PTR(-E2BIG);
4308 
4309 	obj = i915_gem_object_alloc(dev_priv);
4310 	if (obj == NULL)
4311 		return ERR_PTR(-ENOMEM);
4312 
4313 	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4314 	if (ret)
4315 		goto fail;
4316 
4317 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4318 	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4319 		/* 965gm cannot relocate objects above 4GiB. */
4320 		mask &= ~__GFP_HIGHMEM;
4321 		mask |= __GFP_DMA32;
4322 	}
4323 
4324 	mapping = obj->base.filp->f_mapping;
4325 	mapping_set_gfp_mask(mapping, mask);
4326 	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4327 
4328 	i915_gem_object_init(obj, &i915_gem_object_ops);
4329 
4330 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4331 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4332 
4333 	if (HAS_LLC(dev_priv)) {
4334 		/* On some devices, we can have the GPU use the LLC (the CPU
4335 		 * cache) for about a 10% performance improvement
4336 		 * compared to uncached.  Graphics requests other than
4337 		 * display scanout are coherent with the CPU in
4338 		 * accessing this cache.  This means in this mode we
4339 		 * don't need to clflush on the CPU side, and on the
4340 		 * GPU side we only need to flush internal caches to
4341 		 * get data visible to the CPU.
4342 		 *
4343 		 * However, we maintain the display planes as UC, and so
4344 		 * need to rebind when first used as such.
4345 		 */
4346 		obj->cache_level = I915_CACHE_LLC;
4347 	} else
4348 		obj->cache_level = I915_CACHE_NONE;
4349 
4350 	obj->cache_coherent = i915_gem_object_is_coherent(obj);
4351 	obj->cache_dirty = !obj->cache_coherent;
4352 
4353 	trace_i915_gem_object_create(obj);
4354 
4355 	return obj;
4356 
4357 fail:
4358 	i915_gem_object_free(obj);
4359 	return ERR_PTR(ret);
4360 }
4361 
4362 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4363 {
4364 	/* If we are the last user of the backing storage (be it shmemfs
4365 	 * pages or stolen etc), we know that the pages are going to be
4366 	 * immediately released. In this case, we can then skip copying
4367 	 * back the contents from the GPU.
4368 	 */
4369 
4370 	if (obj->mm.madv != I915_MADV_WILLNEED)
4371 		return false;
4372 
4373 	if (obj->base.filp == NULL)
4374 		return true;
4375 
4376 	/* At first glance, this looks racy, but then again so would be
4377 	 * userspace racing mmap against close. However, the first external
4378 	 * reference to the filp can only be obtained through the
4379 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4380 	 * acquiring such a reference whilst we are in the middle of
4381 	 * freeing the object.
4382 	 */
4383 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4384 }
4385 
4386 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4387 				    struct llist_node *freed)
4388 {
4389 	struct drm_i915_gem_object *obj, *on;
4390 
4391 	mutex_lock(&i915->drm.struct_mutex);
4392 	intel_runtime_pm_get(i915);
4393 	llist_for_each_entry(obj, freed, freed) {
4394 		struct i915_vma *vma, *vn;
4395 
4396 		trace_i915_gem_object_destroy(obj);
4397 
4398 		GEM_BUG_ON(i915_gem_object_is_active(obj));
4399 		list_for_each_entry_safe(vma, vn,
4400 					 &obj->vma_list, obj_link) {
4401 			GEM_BUG_ON(i915_vma_is_active(vma));
4402 			vma->flags &= ~I915_VMA_PIN_MASK;
4403 			i915_vma_close(vma);
4404 		}
4405 		GEM_BUG_ON(!list_empty(&obj->vma_list));
4406 		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4407 
4408 		list_del(&obj->global_link);
4409 	}
4410 	intel_runtime_pm_put(i915);
4411 	mutex_unlock(&i915->drm.struct_mutex);
4412 
4413 	cond_resched();
4414 
4415 	llist_for_each_entry_safe(obj, on, freed, freed) {
4416 		GEM_BUG_ON(obj->bind_count);
4417 		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4418 
4419 		if (obj->ops->release)
4420 			obj->ops->release(obj);
4421 
4422 		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4423 			atomic_set(&obj->mm.pages_pin_count, 0);
4424 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4425 		GEM_BUG_ON(obj->mm.pages);
4426 
4427 		if (obj->base.import_attach)
4428 			drm_prime_gem_destroy(&obj->base, NULL);
4429 
4430 		reservation_object_fini(&obj->__builtin_resv);
4431 		drm_gem_object_release(&obj->base);
4432 		i915_gem_info_remove_obj(i915, obj->base.size);
4433 
4434 		kfree(obj->bit_17);
4435 		i915_gem_object_free(obj);
4436 	}
4437 }
4438 
4439 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4440 {
4441 	struct llist_node *freed;
4442 
4443 	freed = llist_del_all(&i915->mm.free_list);
4444 	if (unlikely(freed))
4445 		__i915_gem_free_objects(i915, freed);
4446 }
4447 
4448 static void __i915_gem_free_work(struct work_struct *work)
4449 {
4450 	struct drm_i915_private *i915 =
4451 		container_of(work, struct drm_i915_private, mm.free_work);
4452 	struct llist_node *freed;
4453 
4454 	/* All file-owned VMA should have been released by this point through
4455 	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4456 	 * However, the object may also be bound into the global GTT (e.g.
4457 	 * older GPUs without per-process support, or for direct access through
4458 	 * the GTT either for the user or for scanout). Those VMA still need to
4459 	 * unbound now.
4460 	 */
4461 
4462 	while ((freed = llist_del_all(&i915->mm.free_list))) {
4463 		__i915_gem_free_objects(i915, freed);
4464 		if (need_resched())
4465 			break;
4466 	}
4467 }
4468 
4469 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4470 {
4471 	struct drm_i915_gem_object *obj =
4472 		container_of(head, typeof(*obj), rcu);
4473 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4474 
4475 	/* We can't simply use call_rcu() from i915_gem_free_object()
4476 	 * as we need to block whilst unbinding, and the call_rcu
4477 	 * task may be called from softirq context. So we take a
4478 	 * detour through a worker.
4479 	 */
4480 	if (llist_add(&obj->freed, &i915->mm.free_list))
4481 		schedule_work(&i915->mm.free_work);
4482 }
4483 
4484 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4485 {
4486 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4487 
4488 	if (obj->mm.quirked)
4489 		__i915_gem_object_unpin_pages(obj);
4490 
4491 	if (discard_backing_storage(obj))
4492 		obj->mm.madv = I915_MADV_DONTNEED;
4493 
4494 	/* Before we free the object, make sure any pure RCU-only
4495 	 * read-side critical sections are complete, e.g.
4496 	 * i915_gem_busy_ioctl(). For the corresponding synchronized
4497 	 * lookup see i915_gem_object_lookup_rcu().
4498 	 */
4499 	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4500 }
4501 
4502 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4503 {
4504 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4505 
4506 	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4507 	if (i915_gem_object_is_active(obj))
4508 		i915_gem_object_set_active_reference(obj);
4509 	else
4510 		i915_gem_object_put(obj);
4511 }
4512 
4513 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4514 {
4515 	struct intel_engine_cs *engine;
4516 	enum intel_engine_id id;
4517 
4518 	for_each_engine(engine, dev_priv, id)
4519 		GEM_BUG_ON(engine->last_retired_context &&
4520 			   !i915_gem_context_is_kernel(engine->last_retired_context));
4521 }
4522 
4523 void i915_gem_sanitize(struct drm_i915_private *i915)
4524 {
4525 	/*
4526 	 * If we inherit context state from the BIOS or earlier occupants
4527 	 * of the GPU, the GPU may be in an inconsistent state when we
4528 	 * try to take over. The only way to remove the earlier state
4529 	 * is by resetting. However, resetting on earlier gen is tricky as
4530 	 * it may impact the display and we are uncertain about the stability
4531 	 * of the reset, so this could be applied to even earlier gen.
4532 	 */
4533 	if (INTEL_GEN(i915) >= 5) {
4534 		int reset = intel_gpu_reset(i915, ALL_ENGINES);
4535 		WARN_ON(reset && reset != -ENODEV);
4536 	}
4537 }
4538 
4539 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4540 {
4541 	struct drm_device *dev = &dev_priv->drm;
4542 	int ret;
4543 
4544 	intel_runtime_pm_get(dev_priv);
4545 	intel_suspend_gt_powersave(dev_priv);
4546 
4547 	mutex_lock(&dev->struct_mutex);
4548 
4549 	/* We have to flush all the executing contexts to main memory so
4550 	 * that they can saved in the hibernation image. To ensure the last
4551 	 * context image is coherent, we have to switch away from it. That
4552 	 * leaves the dev_priv->kernel_context still active when
4553 	 * we actually suspend, and its image in memory may not match the GPU
4554 	 * state. Fortunately, the kernel_context is disposable and we do
4555 	 * not rely on its state.
4556 	 */
4557 	ret = i915_gem_switch_to_kernel_context(dev_priv);
4558 	if (ret)
4559 		goto err_unlock;
4560 
4561 	ret = i915_gem_wait_for_idle(dev_priv,
4562 				     I915_WAIT_INTERRUPTIBLE |
4563 				     I915_WAIT_LOCKED);
4564 	if (ret)
4565 		goto err_unlock;
4566 
4567 	assert_kernel_context_is_current(dev_priv);
4568 	i915_gem_context_lost(dev_priv);
4569 	mutex_unlock(&dev->struct_mutex);
4570 
4571 	intel_guc_suspend(dev_priv);
4572 
4573 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4574 	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4575 
4576 	/* As the idle_work is rearming if it detects a race, play safe and
4577 	 * repeat the flush until it is definitely idle.
4578 	 */
4579 	while (flush_delayed_work(&dev_priv->gt.idle_work))
4580 		;
4581 
4582 	i915_gem_drain_freed_objects(dev_priv);
4583 
4584 	/* Assert that we sucessfully flushed all the work and
4585 	 * reset the GPU back to its idle, low power state.
4586 	 */
4587 	WARN_ON(dev_priv->gt.awake);
4588 	WARN_ON(!intel_engines_are_idle(dev_priv));
4589 
4590 	/*
4591 	 * Neither the BIOS, ourselves or any other kernel
4592 	 * expects the system to be in execlists mode on startup,
4593 	 * so we need to reset the GPU back to legacy mode. And the only
4594 	 * known way to disable logical contexts is through a GPU reset.
4595 	 *
4596 	 * So in order to leave the system in a known default configuration,
4597 	 * always reset the GPU upon unload and suspend. Afterwards we then
4598 	 * clean up the GEM state tracking, flushing off the requests and
4599 	 * leaving the system in a known idle state.
4600 	 *
4601 	 * Note that is of the upmost importance that the GPU is idle and
4602 	 * all stray writes are flushed *before* we dismantle the backing
4603 	 * storage for the pinned objects.
4604 	 *
4605 	 * However, since we are uncertain that resetting the GPU on older
4606 	 * machines is a good idea, we don't - just in case it leaves the
4607 	 * machine in an unusable condition.
4608 	 */
4609 	i915_gem_sanitize(dev_priv);
4610 	goto out_rpm_put;
4611 
4612 err_unlock:
4613 	mutex_unlock(&dev->struct_mutex);
4614 out_rpm_put:
4615 	intel_runtime_pm_put(dev_priv);
4616 	return ret;
4617 }
4618 
4619 void i915_gem_resume(struct drm_i915_private *dev_priv)
4620 {
4621 	struct drm_device *dev = &dev_priv->drm;
4622 
4623 	WARN_ON(dev_priv->gt.awake);
4624 
4625 	mutex_lock(&dev->struct_mutex);
4626 	i915_gem_restore_gtt_mappings(dev_priv);
4627 
4628 	/* As we didn't flush the kernel context before suspend, we cannot
4629 	 * guarantee that the context image is complete. So let's just reset
4630 	 * it and start again.
4631 	 */
4632 	dev_priv->gt.resume(dev_priv);
4633 
4634 	mutex_unlock(&dev->struct_mutex);
4635 }
4636 
4637 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4638 {
4639 	if (INTEL_GEN(dev_priv) < 5 ||
4640 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4641 		return;
4642 
4643 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4644 				 DISP_TILE_SURFACE_SWIZZLING);
4645 
4646 	if (IS_GEN5(dev_priv))
4647 		return;
4648 
4649 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4650 	if (IS_GEN6(dev_priv))
4651 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4652 	else if (IS_GEN7(dev_priv))
4653 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4654 	else if (IS_GEN8(dev_priv))
4655 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4656 	else
4657 		BUG();
4658 }
4659 
4660 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4661 {
4662 	I915_WRITE(RING_CTL(base), 0);
4663 	I915_WRITE(RING_HEAD(base), 0);
4664 	I915_WRITE(RING_TAIL(base), 0);
4665 	I915_WRITE(RING_START(base), 0);
4666 }
4667 
4668 static void init_unused_rings(struct drm_i915_private *dev_priv)
4669 {
4670 	if (IS_I830(dev_priv)) {
4671 		init_unused_ring(dev_priv, PRB1_BASE);
4672 		init_unused_ring(dev_priv, SRB0_BASE);
4673 		init_unused_ring(dev_priv, SRB1_BASE);
4674 		init_unused_ring(dev_priv, SRB2_BASE);
4675 		init_unused_ring(dev_priv, SRB3_BASE);
4676 	} else if (IS_GEN2(dev_priv)) {
4677 		init_unused_ring(dev_priv, SRB0_BASE);
4678 		init_unused_ring(dev_priv, SRB1_BASE);
4679 	} else if (IS_GEN3(dev_priv)) {
4680 		init_unused_ring(dev_priv, PRB1_BASE);
4681 		init_unused_ring(dev_priv, PRB2_BASE);
4682 	}
4683 }
4684 
4685 static int __i915_gem_restart_engines(void *data)
4686 {
4687 	struct drm_i915_private *i915 = data;
4688 	struct intel_engine_cs *engine;
4689 	enum intel_engine_id id;
4690 	int err;
4691 
4692 	for_each_engine(engine, i915, id) {
4693 		err = engine->init_hw(engine);
4694 		if (err)
4695 			return err;
4696 	}
4697 
4698 	return 0;
4699 }
4700 
4701 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4702 {
4703 	int ret;
4704 
4705 	dev_priv->gt.last_init_time = ktime_get();
4706 
4707 	/* Double layer security blanket, see i915_gem_init() */
4708 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4709 
4710 	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4711 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4712 
4713 	if (IS_HASWELL(dev_priv))
4714 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4715 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4716 
4717 	if (HAS_PCH_NOP(dev_priv)) {
4718 		if (IS_IVYBRIDGE(dev_priv)) {
4719 			u32 temp = I915_READ(GEN7_MSG_CTL);
4720 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4721 			I915_WRITE(GEN7_MSG_CTL, temp);
4722 		} else if (INTEL_GEN(dev_priv) >= 7) {
4723 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4724 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4725 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4726 		}
4727 	}
4728 
4729 	i915_gem_init_swizzling(dev_priv);
4730 
4731 	/*
4732 	 * At least 830 can leave some of the unused rings
4733 	 * "active" (ie. head != tail) after resume which
4734 	 * will prevent c3 entry. Makes sure all unused rings
4735 	 * are totally idle.
4736 	 */
4737 	init_unused_rings(dev_priv);
4738 
4739 	BUG_ON(!dev_priv->kernel_context);
4740 
4741 	ret = i915_ppgtt_init_hw(dev_priv);
4742 	if (ret) {
4743 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4744 		goto out;
4745 	}
4746 
4747 	/* Need to do basic initialisation of all rings first: */
4748 	ret = __i915_gem_restart_engines(dev_priv);
4749 	if (ret)
4750 		goto out;
4751 
4752 	intel_mocs_init_l3cc_table(dev_priv);
4753 
4754 	/* We can't enable contexts until all firmware is loaded */
4755 	ret = intel_uc_init_hw(dev_priv);
4756 	if (ret)
4757 		goto out;
4758 
4759 out:
4760 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4761 	return ret;
4762 }
4763 
4764 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4765 {
4766 	if (INTEL_INFO(dev_priv)->gen < 6)
4767 		return false;
4768 
4769 	/* TODO: make semaphores and Execlists play nicely together */
4770 	if (i915.enable_execlists)
4771 		return false;
4772 
4773 	if (value >= 0)
4774 		return value;
4775 
4776 	/* Enable semaphores on SNB when IO remapping is off */
4777 	if (IS_GEN6(dev_priv) && intel_vtd_active())
4778 		return false;
4779 
4780 	return true;
4781 }
4782 
4783 int i915_gem_init(struct drm_i915_private *dev_priv)
4784 {
4785 	int ret;
4786 
4787 	mutex_lock(&dev_priv->drm.struct_mutex);
4788 
4789 	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4790 
4791 	if (!i915.enable_execlists) {
4792 		dev_priv->gt.resume = intel_legacy_submission_resume;
4793 		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4794 	} else {
4795 		dev_priv->gt.resume = intel_lr_context_resume;
4796 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4797 	}
4798 
4799 	/* This is just a security blanket to placate dragons.
4800 	 * On some systems, we very sporadically observe that the first TLBs
4801 	 * used by the CS may be stale, despite us poking the TLB reset. If
4802 	 * we hold the forcewake during initialisation these problems
4803 	 * just magically go away.
4804 	 */
4805 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4806 
4807 	ret = i915_gem_init_userptr(dev_priv);
4808 	if (ret)
4809 		goto out_unlock;
4810 
4811 	ret = i915_gem_init_ggtt(dev_priv);
4812 	if (ret)
4813 		goto out_unlock;
4814 
4815 	ret = i915_gem_context_init(dev_priv);
4816 	if (ret)
4817 		goto out_unlock;
4818 
4819 	ret = intel_engines_init(dev_priv);
4820 	if (ret)
4821 		goto out_unlock;
4822 
4823 	ret = i915_gem_init_hw(dev_priv);
4824 	if (ret == -EIO) {
4825 		/* Allow engine initialisation to fail by marking the GPU as
4826 		 * wedged. But we only want to do this where the GPU is angry,
4827 		 * for all other failure, such as an allocation failure, bail.
4828 		 */
4829 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4830 		i915_gem_set_wedged(dev_priv);
4831 		ret = 0;
4832 	}
4833 
4834 out_unlock:
4835 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4836 	mutex_unlock(&dev_priv->drm.struct_mutex);
4837 
4838 	return ret;
4839 }
4840 
4841 void i915_gem_init_mmio(struct drm_i915_private *i915)
4842 {
4843 	i915_gem_sanitize(i915);
4844 }
4845 
4846 void
4847 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4848 {
4849 	struct intel_engine_cs *engine;
4850 	enum intel_engine_id id;
4851 
4852 	for_each_engine(engine, dev_priv, id)
4853 		dev_priv->gt.cleanup_engine(engine);
4854 }
4855 
4856 void
4857 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4858 {
4859 	int i;
4860 
4861 	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4862 	    !IS_CHERRYVIEW(dev_priv))
4863 		dev_priv->num_fence_regs = 32;
4864 	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4865 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4866 		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4867 		dev_priv->num_fence_regs = 16;
4868 	else
4869 		dev_priv->num_fence_regs = 8;
4870 
4871 	if (intel_vgpu_active(dev_priv))
4872 		dev_priv->num_fence_regs =
4873 				I915_READ(vgtif_reg(avail_rs.fence_num));
4874 
4875 	/* Initialize fence registers to zero */
4876 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
4877 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4878 
4879 		fence->i915 = dev_priv;
4880 		fence->id = i;
4881 		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4882 	}
4883 	i915_gem_restore_fences(dev_priv);
4884 
4885 	i915_gem_detect_bit_6_swizzle(dev_priv);
4886 }
4887 
4888 int
4889 i915_gem_load_init(struct drm_i915_private *dev_priv)
4890 {
4891 	int err = -ENOMEM;
4892 
4893 	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4894 	if (!dev_priv->objects)
4895 		goto err_out;
4896 
4897 	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4898 	if (!dev_priv->vmas)
4899 		goto err_objects;
4900 
4901 	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4902 					SLAB_HWCACHE_ALIGN |
4903 					SLAB_RECLAIM_ACCOUNT |
4904 					SLAB_TYPESAFE_BY_RCU);
4905 	if (!dev_priv->requests)
4906 		goto err_vmas;
4907 
4908 	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4909 					    SLAB_HWCACHE_ALIGN |
4910 					    SLAB_RECLAIM_ACCOUNT);
4911 	if (!dev_priv->dependencies)
4912 		goto err_requests;
4913 
4914 	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
4915 	if (!dev_priv->priorities)
4916 		goto err_dependencies;
4917 
4918 	mutex_lock(&dev_priv->drm.struct_mutex);
4919 	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4920 	err = i915_gem_timeline_init__global(dev_priv);
4921 	mutex_unlock(&dev_priv->drm.struct_mutex);
4922 	if (err)
4923 		goto err_priorities;
4924 
4925 	INIT_LIST_HEAD(&dev_priv->context_list);
4926 	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4927 	init_llist_head(&dev_priv->mm.free_list);
4928 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4929 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4930 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4931 	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4932 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4933 			  i915_gem_retire_work_handler);
4934 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4935 			  i915_gem_idle_work_handler);
4936 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4937 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4938 
4939 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4940 
4941 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4942 
4943 	spin_lock_init(&dev_priv->fb_tracking.lock);
4944 
4945 	return 0;
4946 
4947 err_priorities:
4948 	kmem_cache_destroy(dev_priv->priorities);
4949 err_dependencies:
4950 	kmem_cache_destroy(dev_priv->dependencies);
4951 err_requests:
4952 	kmem_cache_destroy(dev_priv->requests);
4953 err_vmas:
4954 	kmem_cache_destroy(dev_priv->vmas);
4955 err_objects:
4956 	kmem_cache_destroy(dev_priv->objects);
4957 err_out:
4958 	return err;
4959 }
4960 
4961 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4962 {
4963 	i915_gem_drain_freed_objects(dev_priv);
4964 	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4965 	WARN_ON(dev_priv->mm.object_count);
4966 
4967 	mutex_lock(&dev_priv->drm.struct_mutex);
4968 	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4969 	WARN_ON(!list_empty(&dev_priv->gt.timelines));
4970 	mutex_unlock(&dev_priv->drm.struct_mutex);
4971 
4972 	kmem_cache_destroy(dev_priv->priorities);
4973 	kmem_cache_destroy(dev_priv->dependencies);
4974 	kmem_cache_destroy(dev_priv->requests);
4975 	kmem_cache_destroy(dev_priv->vmas);
4976 	kmem_cache_destroy(dev_priv->objects);
4977 
4978 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4979 	rcu_barrier();
4980 }
4981 
4982 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4983 {
4984 	/* Discard all purgeable objects, let userspace recover those as
4985 	 * required after resuming.
4986 	 */
4987 	i915_gem_shrink_all(dev_priv);
4988 
4989 	return 0;
4990 }
4991 
4992 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4993 {
4994 	struct drm_i915_gem_object *obj;
4995 	struct list_head *phases[] = {
4996 		&dev_priv->mm.unbound_list,
4997 		&dev_priv->mm.bound_list,
4998 		NULL
4999 	}, **p;
5000 
5001 	/* Called just before we write the hibernation image.
5002 	 *
5003 	 * We need to update the domain tracking to reflect that the CPU
5004 	 * will be accessing all the pages to create and restore from the
5005 	 * hibernation, and so upon restoration those pages will be in the
5006 	 * CPU domain.
5007 	 *
5008 	 * To make sure the hibernation image contains the latest state,
5009 	 * we update that state just before writing out the image.
5010 	 *
5011 	 * To try and reduce the hibernation image, we manually shrink
5012 	 * the objects as well, see i915_gem_freeze()
5013 	 */
5014 
5015 	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
5016 	i915_gem_drain_freed_objects(dev_priv);
5017 
5018 	mutex_lock(&dev_priv->drm.struct_mutex);
5019 	for (p = phases; *p; p++) {
5020 		list_for_each_entry(obj, *p, global_link)
5021 			__start_cpu_write(obj);
5022 	}
5023 	mutex_unlock(&dev_priv->drm.struct_mutex);
5024 
5025 	return 0;
5026 }
5027 
5028 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5029 {
5030 	struct drm_i915_file_private *file_priv = file->driver_priv;
5031 	struct drm_i915_gem_request *request;
5032 
5033 	/* Clean up our request list when the client is going away, so that
5034 	 * later retire_requests won't dereference our soon-to-be-gone
5035 	 * file_priv.
5036 	 */
5037 	spin_lock(&file_priv->mm.lock);
5038 	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5039 		request->file_priv = NULL;
5040 	spin_unlock(&file_priv->mm.lock);
5041 
5042 	if (!list_empty(&file_priv->rps.link)) {
5043 		spin_lock(&to_i915(dev)->rps.client_lock);
5044 		list_del(&file_priv->rps.link);
5045 		spin_unlock(&to_i915(dev)->rps.client_lock);
5046 	}
5047 }
5048 
5049 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5050 {
5051 	struct drm_i915_file_private *file_priv;
5052 	int ret;
5053 
5054 	DRM_DEBUG("\n");
5055 
5056 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5057 	if (!file_priv)
5058 		return -ENOMEM;
5059 
5060 	file->driver_priv = file_priv;
5061 	file_priv->dev_priv = to_i915(dev);
5062 	file_priv->file = file;
5063 	INIT_LIST_HEAD(&file_priv->rps.link);
5064 
5065 	spin_lock_init(&file_priv->mm.lock);
5066 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5067 
5068 	file_priv->bsd_engine = -1;
5069 
5070 	ret = i915_gem_context_open(dev, file);
5071 	if (ret)
5072 		kfree(file_priv);
5073 
5074 	return ret;
5075 }
5076 
5077 /**
5078  * i915_gem_track_fb - update frontbuffer tracking
5079  * @old: current GEM buffer for the frontbuffer slots
5080  * @new: new GEM buffer for the frontbuffer slots
5081  * @frontbuffer_bits: bitmask of frontbuffer slots
5082  *
5083  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5084  * from @old and setting them in @new. Both @old and @new can be NULL.
5085  */
5086 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5087 		       struct drm_i915_gem_object *new,
5088 		       unsigned frontbuffer_bits)
5089 {
5090 	/* Control of individual bits within the mask are guarded by
5091 	 * the owning plane->mutex, i.e. we can never see concurrent
5092 	 * manipulation of individual bits. But since the bitfield as a whole
5093 	 * is updated using RMW, we need to use atomics in order to update
5094 	 * the bits.
5095 	 */
5096 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5097 		     sizeof(atomic_t) * BITS_PER_BYTE);
5098 
5099 	if (old) {
5100 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5101 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5102 	}
5103 
5104 	if (new) {
5105 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5106 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5107 	}
5108 }
5109 
5110 /* Allocate a new GEM object and fill it with the supplied data */
5111 struct drm_i915_gem_object *
5112 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5113 			         const void *data, size_t size)
5114 {
5115 	struct drm_i915_gem_object *obj;
5116 	struct file *file;
5117 	size_t offset;
5118 	int err;
5119 
5120 	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5121 	if (IS_ERR(obj))
5122 		return obj;
5123 
5124 	GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5125 
5126 	file = obj->base.filp;
5127 	offset = 0;
5128 	do {
5129 		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5130 		struct page *page;
5131 		void *pgdata, *vaddr;
5132 
5133 		err = pagecache_write_begin(file, file->f_mapping,
5134 					    offset, len, 0,
5135 					    &page, &pgdata);
5136 		if (err < 0)
5137 			goto fail;
5138 
5139 		vaddr = kmap(page);
5140 		memcpy(vaddr, data, len);
5141 		kunmap(page);
5142 
5143 		err = pagecache_write_end(file, file->f_mapping,
5144 					  offset, len, len,
5145 					  page, pgdata);
5146 		if (err < 0)
5147 			goto fail;
5148 
5149 		size -= len;
5150 		data += len;
5151 		offset += len;
5152 	} while (size);
5153 
5154 	return obj;
5155 
5156 fail:
5157 	i915_gem_object_put(obj);
5158 	return ERR_PTR(err);
5159 }
5160 
5161 struct scatterlist *
5162 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5163 		       unsigned int n,
5164 		       unsigned int *offset)
5165 {
5166 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5167 	struct scatterlist *sg;
5168 	unsigned int idx, count;
5169 
5170 	might_sleep();
5171 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5172 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5173 
5174 	/* As we iterate forward through the sg, we record each entry in a
5175 	 * radixtree for quick repeated (backwards) lookups. If we have seen
5176 	 * this index previously, we will have an entry for it.
5177 	 *
5178 	 * Initial lookup is O(N), but this is amortized to O(1) for
5179 	 * sequential page access (where each new request is consecutive
5180 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5181 	 * i.e. O(1) with a large constant!
5182 	 */
5183 	if (n < READ_ONCE(iter->sg_idx))
5184 		goto lookup;
5185 
5186 	mutex_lock(&iter->lock);
5187 
5188 	/* We prefer to reuse the last sg so that repeated lookup of this
5189 	 * (or the subsequent) sg are fast - comparing against the last
5190 	 * sg is faster than going through the radixtree.
5191 	 */
5192 
5193 	sg = iter->sg_pos;
5194 	idx = iter->sg_idx;
5195 	count = __sg_page_count(sg);
5196 
5197 	while (idx + count <= n) {
5198 		unsigned long exception, i;
5199 		int ret;
5200 
5201 		/* If we cannot allocate and insert this entry, or the
5202 		 * individual pages from this range, cancel updating the
5203 		 * sg_idx so that on this lookup we are forced to linearly
5204 		 * scan onwards, but on future lookups we will try the
5205 		 * insertion again (in which case we need to be careful of
5206 		 * the error return reporting that we have already inserted
5207 		 * this index).
5208 		 */
5209 		ret = radix_tree_insert(&iter->radix, idx, sg);
5210 		if (ret && ret != -EEXIST)
5211 			goto scan;
5212 
5213 		exception =
5214 			RADIX_TREE_EXCEPTIONAL_ENTRY |
5215 			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5216 		for (i = 1; i < count; i++) {
5217 			ret = radix_tree_insert(&iter->radix, idx + i,
5218 						(void *)exception);
5219 			if (ret && ret != -EEXIST)
5220 				goto scan;
5221 		}
5222 
5223 		idx += count;
5224 		sg = ____sg_next(sg);
5225 		count = __sg_page_count(sg);
5226 	}
5227 
5228 scan:
5229 	iter->sg_pos = sg;
5230 	iter->sg_idx = idx;
5231 
5232 	mutex_unlock(&iter->lock);
5233 
5234 	if (unlikely(n < idx)) /* insertion completed by another thread */
5235 		goto lookup;
5236 
5237 	/* In case we failed to insert the entry into the radixtree, we need
5238 	 * to look beyond the current sg.
5239 	 */
5240 	while (idx + count <= n) {
5241 		idx += count;
5242 		sg = ____sg_next(sg);
5243 		count = __sg_page_count(sg);
5244 	}
5245 
5246 	*offset = n - idx;
5247 	return sg;
5248 
5249 lookup:
5250 	rcu_read_lock();
5251 
5252 	sg = radix_tree_lookup(&iter->radix, n);
5253 	GEM_BUG_ON(!sg);
5254 
5255 	/* If this index is in the middle of multi-page sg entry,
5256 	 * the radixtree will contain an exceptional entry that points
5257 	 * to the start of that range. We will return the pointer to
5258 	 * the base page and the offset of this page within the
5259 	 * sg entry's range.
5260 	 */
5261 	*offset = 0;
5262 	if (unlikely(radix_tree_exception(sg))) {
5263 		unsigned long base =
5264 			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5265 
5266 		sg = radix_tree_lookup(&iter->radix, base);
5267 		GEM_BUG_ON(!sg);
5268 
5269 		*offset = n - base;
5270 	}
5271 
5272 	rcu_read_unlock();
5273 
5274 	return sg;
5275 }
5276 
5277 struct page *
5278 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5279 {
5280 	struct scatterlist *sg;
5281 	unsigned int offset;
5282 
5283 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5284 
5285 	sg = i915_gem_object_get_sg(obj, n, &offset);
5286 	return nth_page(sg_page(sg), offset);
5287 }
5288 
5289 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5290 struct page *
5291 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5292 			       unsigned int n)
5293 {
5294 	struct page *page;
5295 
5296 	page = i915_gem_object_get_page(obj, n);
5297 	if (!obj->mm.dirty)
5298 		set_page_dirty(page);
5299 
5300 	return page;
5301 }
5302 
5303 dma_addr_t
5304 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5305 				unsigned long n)
5306 {
5307 	struct scatterlist *sg;
5308 	unsigned int offset;
5309 
5310 	sg = i915_gem_object_get_sg(obj, n, &offset);
5311 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5312 }
5313 
5314 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5315 #include "selftests/scatterlist.c"
5316 #include "selftests/mock_gem_device.c"
5317 #include "selftests/huge_gem_object.c"
5318 #include "selftests/i915_gem_object.c"
5319 #include "selftests/i915_gem_coherency.c"
5320 #endif
5321