xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision 5c73cc4b6c83e88863a5de869cc5df3b913aef4a)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40 
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 			       bool readonly);
46 static void
47 i915_gem_object_retire(struct drm_i915_gem_object *obj);
48 
49 static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 				 struct drm_i915_gem_object *obj);
51 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 					 struct drm_i915_fence_reg *fence,
53 					 bool enable);
54 
55 static bool cpu_cache_is_coherent(struct drm_device *dev,
56 				  enum i915_cache_level level)
57 {
58 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
59 }
60 
61 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62 {
63 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 		return true;
65 
66 	return obj->pin_display;
67 }
68 
69 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70 {
71 	if (obj->tiling_mode)
72 		i915_gem_release_mmap(obj);
73 
74 	/* As we do not have an associated fence register, we will force
75 	 * a tiling change if we ever need to acquire one.
76 	 */
77 	obj->fence_dirty = false;
78 	obj->fence_reg = I915_FENCE_REG_NONE;
79 }
80 
81 /* some bookkeeping */
82 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 				  size_t size)
84 {
85 	spin_lock(&dev_priv->mm.object_stat_lock);
86 	dev_priv->mm.object_count++;
87 	dev_priv->mm.object_memory += size;
88 	spin_unlock(&dev_priv->mm.object_stat_lock);
89 }
90 
91 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 				     size_t size)
93 {
94 	spin_lock(&dev_priv->mm.object_stat_lock);
95 	dev_priv->mm.object_count--;
96 	dev_priv->mm.object_memory -= size;
97 	spin_unlock(&dev_priv->mm.object_stat_lock);
98 }
99 
100 static int
101 i915_gem_wait_for_error(struct i915_gpu_error *error)
102 {
103 	int ret;
104 
105 #define EXIT_COND (!i915_reset_in_progress(error) || \
106 		   i915_terminally_wedged(error))
107 	if (EXIT_COND)
108 		return 0;
109 
110 	/*
111 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 	 * userspace. If it takes that long something really bad is going on and
113 	 * we should simply try to bail out and fail as gracefully as possible.
114 	 */
115 	ret = wait_event_interruptible_timeout(error->reset_queue,
116 					       EXIT_COND,
117 					       10*HZ);
118 	if (ret == 0) {
119 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 		return -EIO;
121 	} else if (ret < 0) {
122 		return ret;
123 	}
124 #undef EXIT_COND
125 
126 	return 0;
127 }
128 
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131 	struct drm_i915_private *dev_priv = dev->dev_private;
132 	int ret;
133 
134 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 	if (ret)
136 		return ret;
137 
138 	ret = mutex_lock_interruptible(&dev->struct_mutex);
139 	if (ret)
140 		return ret;
141 
142 	WARN_ON(i915_verify_lists(dev));
143 	return 0;
144 }
145 
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148 			    struct drm_file *file)
149 {
150 	struct drm_i915_private *dev_priv = dev->dev_private;
151 	struct drm_i915_gem_get_aperture *args = data;
152 	struct drm_i915_gem_object *obj;
153 	size_t pinned;
154 
155 	pinned = 0;
156 	mutex_lock(&dev->struct_mutex);
157 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
158 		if (i915_gem_obj_is_pinned(obj))
159 			pinned += i915_gem_obj_ggtt_size(obj);
160 	mutex_unlock(&dev->struct_mutex);
161 
162 	args->aper_size = dev_priv->gtt.base.total;
163 	args->aper_available_size = args->aper_size - pinned;
164 
165 	return 0;
166 }
167 
168 static int
169 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170 {
171 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172 	char *vaddr = obj->phys_handle->vaddr;
173 	struct sg_table *st;
174 	struct scatterlist *sg;
175 	int i;
176 
177 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178 		return -EINVAL;
179 
180 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181 		struct page *page;
182 		char *src;
183 
184 		page = shmem_read_mapping_page(mapping, i);
185 		if (IS_ERR(page))
186 			return PTR_ERR(page);
187 
188 		src = kmap_atomic(page);
189 		memcpy(vaddr, src, PAGE_SIZE);
190 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
191 		kunmap_atomic(src);
192 
193 		page_cache_release(page);
194 		vaddr += PAGE_SIZE;
195 	}
196 
197 	i915_gem_chipset_flush(obj->base.dev);
198 
199 	st = kmalloc(sizeof(*st), GFP_KERNEL);
200 	if (st == NULL)
201 		return -ENOMEM;
202 
203 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204 		kfree(st);
205 		return -ENOMEM;
206 	}
207 
208 	sg = st->sgl;
209 	sg->offset = 0;
210 	sg->length = obj->base.size;
211 
212 	sg_dma_address(sg) = obj->phys_handle->busaddr;
213 	sg_dma_len(sg) = obj->base.size;
214 
215 	obj->pages = st;
216 	obj->has_dma_mapping = true;
217 	return 0;
218 }
219 
220 static void
221 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222 {
223 	int ret;
224 
225 	BUG_ON(obj->madv == __I915_MADV_PURGED);
226 
227 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
228 	if (ret) {
229 		/* In the event of a disaster, abandon all caches and
230 		 * hope for the best.
231 		 */
232 		WARN_ON(ret != -EIO);
233 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 	}
235 
236 	if (obj->madv == I915_MADV_DONTNEED)
237 		obj->dirty = 0;
238 
239 	if (obj->dirty) {
240 		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241 		char *vaddr = obj->phys_handle->vaddr;
242 		int i;
243 
244 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 			struct page *page;
246 			char *dst;
247 
248 			page = shmem_read_mapping_page(mapping, i);
249 			if (IS_ERR(page))
250 				continue;
251 
252 			dst = kmap_atomic(page);
253 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 			memcpy(dst, vaddr, PAGE_SIZE);
255 			kunmap_atomic(dst);
256 
257 			set_page_dirty(page);
258 			if (obj->madv == I915_MADV_WILLNEED)
259 				mark_page_accessed(page);
260 			page_cache_release(page);
261 			vaddr += PAGE_SIZE;
262 		}
263 		obj->dirty = 0;
264 	}
265 
266 	sg_free_table(obj->pages);
267 	kfree(obj->pages);
268 
269 	obj->has_dma_mapping = false;
270 }
271 
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275 	drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277 
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 	.get_pages = i915_gem_object_get_pages_phys,
280 	.put_pages = i915_gem_object_put_pages_phys,
281 	.release = i915_gem_object_release_phys,
282 };
283 
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287 	struct i915_vma *vma, *next;
288 	int ret;
289 
290 	drm_gem_object_reference(&obj->base);
291 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292 		if (i915_vma_unbind(vma))
293 			break;
294 
295 	ret = i915_gem_object_put_pages(obj);
296 	drm_gem_object_unreference(&obj->base);
297 
298 	return ret;
299 }
300 
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 			    int align)
304 {
305 	drm_dma_handle_t *phys;
306 	int ret;
307 
308 	if (obj->phys_handle) {
309 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 			return -EBUSY;
311 
312 		return 0;
313 	}
314 
315 	if (obj->madv != I915_MADV_WILLNEED)
316 		return -EFAULT;
317 
318 	if (obj->base.filp == NULL)
319 		return -EINVAL;
320 
321 	ret = drop_pages(obj);
322 	if (ret)
323 		return ret;
324 
325 	/* create a new object */
326 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 	if (!phys)
328 		return -ENOMEM;
329 
330 	obj->phys_handle = phys;
331 	obj->ops = &i915_gem_phys_ops;
332 
333 	return i915_gem_object_get_pages(obj);
334 }
335 
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 		     struct drm_i915_gem_pwrite *args,
339 		     struct drm_file *file_priv)
340 {
341 	struct drm_device *dev = obj->base.dev;
342 	void *vaddr = obj->phys_handle->vaddr + args->offset;
343 	char __user *user_data = to_user_ptr(args->data_ptr);
344 	int ret = 0;
345 
346 	/* We manually control the domain here and pretend that it
347 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 	 */
349 	ret = i915_gem_object_wait_rendering(obj, false);
350 	if (ret)
351 		return ret;
352 
353 	intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
354 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 		unsigned long unwritten;
356 
357 		/* The physical object once assigned is fixed for the lifetime
358 		 * of the obj, so we can safely drop the lock and continue
359 		 * to access vaddr.
360 		 */
361 		mutex_unlock(&dev->struct_mutex);
362 		unwritten = copy_from_user(vaddr, user_data, args->size);
363 		mutex_lock(&dev->struct_mutex);
364 		if (unwritten) {
365 			ret = -EFAULT;
366 			goto out;
367 		}
368 	}
369 
370 	drm_clflush_virt_range(vaddr, args->size);
371 	i915_gem_chipset_flush(dev);
372 
373 out:
374 	intel_fb_obj_flush(obj, false);
375 	return ret;
376 }
377 
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380 	struct drm_i915_private *dev_priv = dev->dev_private;
381 	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
382 }
383 
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387 	kmem_cache_free(dev_priv->slab, obj);
388 }
389 
390 static int
391 i915_gem_create(struct drm_file *file,
392 		struct drm_device *dev,
393 		uint64_t size,
394 		uint32_t *handle_p)
395 {
396 	struct drm_i915_gem_object *obj;
397 	int ret;
398 	u32 handle;
399 
400 	size = roundup(size, PAGE_SIZE);
401 	if (size == 0)
402 		return -EINVAL;
403 
404 	/* Allocate the new object */
405 	obj = i915_gem_alloc_object(dev, size);
406 	if (obj == NULL)
407 		return -ENOMEM;
408 
409 	ret = drm_gem_handle_create(file, &obj->base, &handle);
410 	/* drop reference from allocate - handle holds it now */
411 	drm_gem_object_unreference_unlocked(&obj->base);
412 	if (ret)
413 		return ret;
414 
415 	*handle_p = handle;
416 	return 0;
417 }
418 
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421 		     struct drm_device *dev,
422 		     struct drm_mode_create_dumb *args)
423 {
424 	/* have to work out size/pitch and return them */
425 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 	args->size = args->pitch * args->height;
427 	return i915_gem_create(file, dev,
428 			       args->size, &args->handle);
429 }
430 
431 /**
432  * Creates a new mm object and returns a handle to it.
433  */
434 int
435 i915_gem_create_ioctl(struct drm_device *dev, void *data,
436 		      struct drm_file *file)
437 {
438 	struct drm_i915_gem_create *args = data;
439 
440 	return i915_gem_create(file, dev,
441 			       args->size, &args->handle);
442 }
443 
444 static inline int
445 __copy_to_user_swizzled(char __user *cpu_vaddr,
446 			const char *gpu_vaddr, int gpu_offset,
447 			int length)
448 {
449 	int ret, cpu_offset = 0;
450 
451 	while (length > 0) {
452 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
453 		int this_length = min(cacheline_end - gpu_offset, length);
454 		int swizzled_gpu_offset = gpu_offset ^ 64;
455 
456 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
457 				     gpu_vaddr + swizzled_gpu_offset,
458 				     this_length);
459 		if (ret)
460 			return ret + length;
461 
462 		cpu_offset += this_length;
463 		gpu_offset += this_length;
464 		length -= this_length;
465 	}
466 
467 	return 0;
468 }
469 
470 static inline int
471 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472 			  const char __user *cpu_vaddr,
473 			  int length)
474 {
475 	int ret, cpu_offset = 0;
476 
477 	while (length > 0) {
478 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
479 		int this_length = min(cacheline_end - gpu_offset, length);
480 		int swizzled_gpu_offset = gpu_offset ^ 64;
481 
482 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483 				       cpu_vaddr + cpu_offset,
484 				       this_length);
485 		if (ret)
486 			return ret + length;
487 
488 		cpu_offset += this_length;
489 		gpu_offset += this_length;
490 		length -= this_length;
491 	}
492 
493 	return 0;
494 }
495 
496 /*
497  * Pins the specified object's pages and synchronizes the object with
498  * GPU accesses. Sets needs_clflush to non-zero if the caller should
499  * flush the object from the CPU cache.
500  */
501 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502 				    int *needs_clflush)
503 {
504 	int ret;
505 
506 	*needs_clflush = 0;
507 
508 	if (!obj->base.filp)
509 		return -EINVAL;
510 
511 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512 		/* If we're not in the cpu read domain, set ourself into the gtt
513 		 * read domain and manually flush cachelines (if required). This
514 		 * optimizes for the case when the gpu will dirty the data
515 		 * anyway again before the next pread happens. */
516 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517 							obj->cache_level);
518 		ret = i915_gem_object_wait_rendering(obj, true);
519 		if (ret)
520 			return ret;
521 
522 		i915_gem_object_retire(obj);
523 	}
524 
525 	ret = i915_gem_object_get_pages(obj);
526 	if (ret)
527 		return ret;
528 
529 	i915_gem_object_pin_pages(obj);
530 
531 	return ret;
532 }
533 
534 /* Per-page copy function for the shmem pread fastpath.
535  * Flushes invalid cachelines before reading the target if
536  * needs_clflush is set. */
537 static int
538 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
539 		 char __user *user_data,
540 		 bool page_do_bit17_swizzling, bool needs_clflush)
541 {
542 	char *vaddr;
543 	int ret;
544 
545 	if (unlikely(page_do_bit17_swizzling))
546 		return -EINVAL;
547 
548 	vaddr = kmap_atomic(page);
549 	if (needs_clflush)
550 		drm_clflush_virt_range(vaddr + shmem_page_offset,
551 				       page_length);
552 	ret = __copy_to_user_inatomic(user_data,
553 				      vaddr + shmem_page_offset,
554 				      page_length);
555 	kunmap_atomic(vaddr);
556 
557 	return ret ? -EFAULT : 0;
558 }
559 
560 static void
561 shmem_clflush_swizzled_range(char *addr, unsigned long length,
562 			     bool swizzled)
563 {
564 	if (unlikely(swizzled)) {
565 		unsigned long start = (unsigned long) addr;
566 		unsigned long end = (unsigned long) addr + length;
567 
568 		/* For swizzling simply ensure that we always flush both
569 		 * channels. Lame, but simple and it works. Swizzled
570 		 * pwrite/pread is far from a hotpath - current userspace
571 		 * doesn't use it at all. */
572 		start = round_down(start, 128);
573 		end = round_up(end, 128);
574 
575 		drm_clflush_virt_range((void *)start, end - start);
576 	} else {
577 		drm_clflush_virt_range(addr, length);
578 	}
579 
580 }
581 
582 /* Only difference to the fast-path function is that this can handle bit17
583  * and uses non-atomic copy and kmap functions. */
584 static int
585 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
586 		 char __user *user_data,
587 		 bool page_do_bit17_swizzling, bool needs_clflush)
588 {
589 	char *vaddr;
590 	int ret;
591 
592 	vaddr = kmap(page);
593 	if (needs_clflush)
594 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
595 					     page_length,
596 					     page_do_bit17_swizzling);
597 
598 	if (page_do_bit17_swizzling)
599 		ret = __copy_to_user_swizzled(user_data,
600 					      vaddr, shmem_page_offset,
601 					      page_length);
602 	else
603 		ret = __copy_to_user(user_data,
604 				     vaddr + shmem_page_offset,
605 				     page_length);
606 	kunmap(page);
607 
608 	return ret ? - EFAULT : 0;
609 }
610 
611 static int
612 i915_gem_shmem_pread(struct drm_device *dev,
613 		     struct drm_i915_gem_object *obj,
614 		     struct drm_i915_gem_pread *args,
615 		     struct drm_file *file)
616 {
617 	char __user *user_data;
618 	ssize_t remain;
619 	loff_t offset;
620 	int shmem_page_offset, page_length, ret = 0;
621 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
622 	int prefaulted = 0;
623 	int needs_clflush = 0;
624 	struct sg_page_iter sg_iter;
625 
626 	user_data = to_user_ptr(args->data_ptr);
627 	remain = args->size;
628 
629 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
630 
631 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
632 	if (ret)
633 		return ret;
634 
635 	offset = args->offset;
636 
637 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
638 			 offset >> PAGE_SHIFT) {
639 		struct page *page = sg_page_iter_page(&sg_iter);
640 
641 		if (remain <= 0)
642 			break;
643 
644 		/* Operation in this page
645 		 *
646 		 * shmem_page_offset = offset within page in shmem file
647 		 * page_length = bytes to copy for this page
648 		 */
649 		shmem_page_offset = offset_in_page(offset);
650 		page_length = remain;
651 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
652 			page_length = PAGE_SIZE - shmem_page_offset;
653 
654 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
655 			(page_to_phys(page) & (1 << 17)) != 0;
656 
657 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
658 				       user_data, page_do_bit17_swizzling,
659 				       needs_clflush);
660 		if (ret == 0)
661 			goto next_page;
662 
663 		mutex_unlock(&dev->struct_mutex);
664 
665 		if (likely(!i915.prefault_disable) && !prefaulted) {
666 			ret = fault_in_multipages_writeable(user_data, remain);
667 			/* Userspace is tricking us, but we've already clobbered
668 			 * its pages with the prefault and promised to write the
669 			 * data up to the first fault. Hence ignore any errors
670 			 * and just continue. */
671 			(void)ret;
672 			prefaulted = 1;
673 		}
674 
675 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
676 				       user_data, page_do_bit17_swizzling,
677 				       needs_clflush);
678 
679 		mutex_lock(&dev->struct_mutex);
680 
681 		if (ret)
682 			goto out;
683 
684 next_page:
685 		remain -= page_length;
686 		user_data += page_length;
687 		offset += page_length;
688 	}
689 
690 out:
691 	i915_gem_object_unpin_pages(obj);
692 
693 	return ret;
694 }
695 
696 /**
697  * Reads data from the object referenced by handle.
698  *
699  * On error, the contents of *data are undefined.
700  */
701 int
702 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
703 		     struct drm_file *file)
704 {
705 	struct drm_i915_gem_pread *args = data;
706 	struct drm_i915_gem_object *obj;
707 	int ret = 0;
708 
709 	if (args->size == 0)
710 		return 0;
711 
712 	if (!access_ok(VERIFY_WRITE,
713 		       to_user_ptr(args->data_ptr),
714 		       args->size))
715 		return -EFAULT;
716 
717 	ret = i915_mutex_lock_interruptible(dev);
718 	if (ret)
719 		return ret;
720 
721 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
722 	if (&obj->base == NULL) {
723 		ret = -ENOENT;
724 		goto unlock;
725 	}
726 
727 	/* Bounds check source.  */
728 	if (args->offset > obj->base.size ||
729 	    args->size > obj->base.size - args->offset) {
730 		ret = -EINVAL;
731 		goto out;
732 	}
733 
734 	/* prime objects have no backing filp to GEM pread/pwrite
735 	 * pages from.
736 	 */
737 	if (!obj->base.filp) {
738 		ret = -EINVAL;
739 		goto out;
740 	}
741 
742 	trace_i915_gem_object_pread(obj, args->offset, args->size);
743 
744 	ret = i915_gem_shmem_pread(dev, obj, args, file);
745 
746 out:
747 	drm_gem_object_unreference(&obj->base);
748 unlock:
749 	mutex_unlock(&dev->struct_mutex);
750 	return ret;
751 }
752 
753 /* This is the fast write path which cannot handle
754  * page faults in the source data
755  */
756 
757 static inline int
758 fast_user_write(struct io_mapping *mapping,
759 		loff_t page_base, int page_offset,
760 		char __user *user_data,
761 		int length)
762 {
763 	void __iomem *vaddr_atomic;
764 	void *vaddr;
765 	unsigned long unwritten;
766 
767 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
768 	/* We can use the cpu mem copy function because this is X86. */
769 	vaddr = (void __force*)vaddr_atomic + page_offset;
770 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
771 						      user_data, length);
772 	io_mapping_unmap_atomic(vaddr_atomic);
773 	return unwritten;
774 }
775 
776 /**
777  * This is the fast pwrite path, where we copy the data directly from the
778  * user into the GTT, uncached.
779  */
780 static int
781 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
782 			 struct drm_i915_gem_object *obj,
783 			 struct drm_i915_gem_pwrite *args,
784 			 struct drm_file *file)
785 {
786 	struct drm_i915_private *dev_priv = dev->dev_private;
787 	ssize_t remain;
788 	loff_t offset, page_base;
789 	char __user *user_data;
790 	int page_offset, page_length, ret;
791 
792 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
793 	if (ret)
794 		goto out;
795 
796 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
797 	if (ret)
798 		goto out_unpin;
799 
800 	ret = i915_gem_object_put_fence(obj);
801 	if (ret)
802 		goto out_unpin;
803 
804 	user_data = to_user_ptr(args->data_ptr);
805 	remain = args->size;
806 
807 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
808 
809 	intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
810 
811 	while (remain > 0) {
812 		/* Operation in this page
813 		 *
814 		 * page_base = page offset within aperture
815 		 * page_offset = offset within page
816 		 * page_length = bytes to copy for this page
817 		 */
818 		page_base = offset & PAGE_MASK;
819 		page_offset = offset_in_page(offset);
820 		page_length = remain;
821 		if ((page_offset + remain) > PAGE_SIZE)
822 			page_length = PAGE_SIZE - page_offset;
823 
824 		/* If we get a fault while copying data, then (presumably) our
825 		 * source page isn't available.  Return the error and we'll
826 		 * retry in the slow path.
827 		 */
828 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
829 				    page_offset, user_data, page_length)) {
830 			ret = -EFAULT;
831 			goto out_flush;
832 		}
833 
834 		remain -= page_length;
835 		user_data += page_length;
836 		offset += page_length;
837 	}
838 
839 out_flush:
840 	intel_fb_obj_flush(obj, false);
841 out_unpin:
842 	i915_gem_object_ggtt_unpin(obj);
843 out:
844 	return ret;
845 }
846 
847 /* Per-page copy function for the shmem pwrite fastpath.
848  * Flushes invalid cachelines before writing to the target if
849  * needs_clflush_before is set and flushes out any written cachelines after
850  * writing if needs_clflush is set. */
851 static int
852 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
853 		  char __user *user_data,
854 		  bool page_do_bit17_swizzling,
855 		  bool needs_clflush_before,
856 		  bool needs_clflush_after)
857 {
858 	char *vaddr;
859 	int ret;
860 
861 	if (unlikely(page_do_bit17_swizzling))
862 		return -EINVAL;
863 
864 	vaddr = kmap_atomic(page);
865 	if (needs_clflush_before)
866 		drm_clflush_virt_range(vaddr + shmem_page_offset,
867 				       page_length);
868 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
869 					user_data, page_length);
870 	if (needs_clflush_after)
871 		drm_clflush_virt_range(vaddr + shmem_page_offset,
872 				       page_length);
873 	kunmap_atomic(vaddr);
874 
875 	return ret ? -EFAULT : 0;
876 }
877 
878 /* Only difference to the fast-path function is that this can handle bit17
879  * and uses non-atomic copy and kmap functions. */
880 static int
881 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
882 		  char __user *user_data,
883 		  bool page_do_bit17_swizzling,
884 		  bool needs_clflush_before,
885 		  bool needs_clflush_after)
886 {
887 	char *vaddr;
888 	int ret;
889 
890 	vaddr = kmap(page);
891 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
892 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
893 					     page_length,
894 					     page_do_bit17_swizzling);
895 	if (page_do_bit17_swizzling)
896 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
897 						user_data,
898 						page_length);
899 	else
900 		ret = __copy_from_user(vaddr + shmem_page_offset,
901 				       user_data,
902 				       page_length);
903 	if (needs_clflush_after)
904 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
905 					     page_length,
906 					     page_do_bit17_swizzling);
907 	kunmap(page);
908 
909 	return ret ? -EFAULT : 0;
910 }
911 
912 static int
913 i915_gem_shmem_pwrite(struct drm_device *dev,
914 		      struct drm_i915_gem_object *obj,
915 		      struct drm_i915_gem_pwrite *args,
916 		      struct drm_file *file)
917 {
918 	ssize_t remain;
919 	loff_t offset;
920 	char __user *user_data;
921 	int shmem_page_offset, page_length, ret = 0;
922 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
923 	int hit_slowpath = 0;
924 	int needs_clflush_after = 0;
925 	int needs_clflush_before = 0;
926 	struct sg_page_iter sg_iter;
927 
928 	user_data = to_user_ptr(args->data_ptr);
929 	remain = args->size;
930 
931 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
932 
933 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
934 		/* If we're not in the cpu write domain, set ourself into the gtt
935 		 * write domain and manually flush cachelines (if required). This
936 		 * optimizes for the case when the gpu will use the data
937 		 * right away and we therefore have to clflush anyway. */
938 		needs_clflush_after = cpu_write_needs_clflush(obj);
939 		ret = i915_gem_object_wait_rendering(obj, false);
940 		if (ret)
941 			return ret;
942 
943 		i915_gem_object_retire(obj);
944 	}
945 	/* Same trick applies to invalidate partially written cachelines read
946 	 * before writing. */
947 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
948 		needs_clflush_before =
949 			!cpu_cache_is_coherent(dev, obj->cache_level);
950 
951 	ret = i915_gem_object_get_pages(obj);
952 	if (ret)
953 		return ret;
954 
955 	intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
956 
957 	i915_gem_object_pin_pages(obj);
958 
959 	offset = args->offset;
960 	obj->dirty = 1;
961 
962 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
963 			 offset >> PAGE_SHIFT) {
964 		struct page *page = sg_page_iter_page(&sg_iter);
965 		int partial_cacheline_write;
966 
967 		if (remain <= 0)
968 			break;
969 
970 		/* Operation in this page
971 		 *
972 		 * shmem_page_offset = offset within page in shmem file
973 		 * page_length = bytes to copy for this page
974 		 */
975 		shmem_page_offset = offset_in_page(offset);
976 
977 		page_length = remain;
978 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
979 			page_length = PAGE_SIZE - shmem_page_offset;
980 
981 		/* If we don't overwrite a cacheline completely we need to be
982 		 * careful to have up-to-date data by first clflushing. Don't
983 		 * overcomplicate things and flush the entire patch. */
984 		partial_cacheline_write = needs_clflush_before &&
985 			((shmem_page_offset | page_length)
986 				& (boot_cpu_data.x86_clflush_size - 1));
987 
988 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
989 			(page_to_phys(page) & (1 << 17)) != 0;
990 
991 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
992 					user_data, page_do_bit17_swizzling,
993 					partial_cacheline_write,
994 					needs_clflush_after);
995 		if (ret == 0)
996 			goto next_page;
997 
998 		hit_slowpath = 1;
999 		mutex_unlock(&dev->struct_mutex);
1000 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1001 					user_data, page_do_bit17_swizzling,
1002 					partial_cacheline_write,
1003 					needs_clflush_after);
1004 
1005 		mutex_lock(&dev->struct_mutex);
1006 
1007 		if (ret)
1008 			goto out;
1009 
1010 next_page:
1011 		remain -= page_length;
1012 		user_data += page_length;
1013 		offset += page_length;
1014 	}
1015 
1016 out:
1017 	i915_gem_object_unpin_pages(obj);
1018 
1019 	if (hit_slowpath) {
1020 		/*
1021 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
1022 		 * cachelines in-line while writing and the object moved
1023 		 * out of the cpu write domain while we've dropped the lock.
1024 		 */
1025 		if (!needs_clflush_after &&
1026 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1027 			if (i915_gem_clflush_object(obj, obj->pin_display))
1028 				i915_gem_chipset_flush(dev);
1029 		}
1030 	}
1031 
1032 	if (needs_clflush_after)
1033 		i915_gem_chipset_flush(dev);
1034 
1035 	intel_fb_obj_flush(obj, false);
1036 	return ret;
1037 }
1038 
1039 /**
1040  * Writes data to the object referenced by handle.
1041  *
1042  * On error, the contents of the buffer that were to be modified are undefined.
1043  */
1044 int
1045 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1046 		      struct drm_file *file)
1047 {
1048 	struct drm_i915_private *dev_priv = dev->dev_private;
1049 	struct drm_i915_gem_pwrite *args = data;
1050 	struct drm_i915_gem_object *obj;
1051 	int ret;
1052 
1053 	if (args->size == 0)
1054 		return 0;
1055 
1056 	if (!access_ok(VERIFY_READ,
1057 		       to_user_ptr(args->data_ptr),
1058 		       args->size))
1059 		return -EFAULT;
1060 
1061 	if (likely(!i915.prefault_disable)) {
1062 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1063 						   args->size);
1064 		if (ret)
1065 			return -EFAULT;
1066 	}
1067 
1068 	intel_runtime_pm_get(dev_priv);
1069 
1070 	ret = i915_mutex_lock_interruptible(dev);
1071 	if (ret)
1072 		goto put_rpm;
1073 
1074 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1075 	if (&obj->base == NULL) {
1076 		ret = -ENOENT;
1077 		goto unlock;
1078 	}
1079 
1080 	/* Bounds check destination. */
1081 	if (args->offset > obj->base.size ||
1082 	    args->size > obj->base.size - args->offset) {
1083 		ret = -EINVAL;
1084 		goto out;
1085 	}
1086 
1087 	/* prime objects have no backing filp to GEM pread/pwrite
1088 	 * pages from.
1089 	 */
1090 	if (!obj->base.filp) {
1091 		ret = -EINVAL;
1092 		goto out;
1093 	}
1094 
1095 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1096 
1097 	ret = -EFAULT;
1098 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1099 	 * it would end up going through the fenced access, and we'll get
1100 	 * different detiling behavior between reading and writing.
1101 	 * pread/pwrite currently are reading and writing from the CPU
1102 	 * perspective, requiring manual detiling by the client.
1103 	 */
1104 	if (obj->tiling_mode == I915_TILING_NONE &&
1105 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1106 	    cpu_write_needs_clflush(obj)) {
1107 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1108 		/* Note that the gtt paths might fail with non-page-backed user
1109 		 * pointers (e.g. gtt mappings when moving data between
1110 		 * textures). Fallback to the shmem path in that case. */
1111 	}
1112 
1113 	if (ret == -EFAULT || ret == -ENOSPC) {
1114 		if (obj->phys_handle)
1115 			ret = i915_gem_phys_pwrite(obj, args, file);
1116 		else
1117 			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1118 	}
1119 
1120 out:
1121 	drm_gem_object_unreference(&obj->base);
1122 unlock:
1123 	mutex_unlock(&dev->struct_mutex);
1124 put_rpm:
1125 	intel_runtime_pm_put(dev_priv);
1126 
1127 	return ret;
1128 }
1129 
1130 int
1131 i915_gem_check_wedge(struct i915_gpu_error *error,
1132 		     bool interruptible)
1133 {
1134 	if (i915_reset_in_progress(error)) {
1135 		/* Non-interruptible callers can't handle -EAGAIN, hence return
1136 		 * -EIO unconditionally for these. */
1137 		if (!interruptible)
1138 			return -EIO;
1139 
1140 		/* Recovery complete, but the reset failed ... */
1141 		if (i915_terminally_wedged(error))
1142 			return -EIO;
1143 
1144 		/*
1145 		 * Check if GPU Reset is in progress - we need intel_ring_begin
1146 		 * to work properly to reinit the hw state while the gpu is
1147 		 * still marked as reset-in-progress. Handle this with a flag.
1148 		 */
1149 		if (!error->reload_in_reset)
1150 			return -EAGAIN;
1151 	}
1152 
1153 	return 0;
1154 }
1155 
1156 /*
1157  * Compare arbitrary request against outstanding lazy request. Emit on match.
1158  */
1159 int
1160 i915_gem_check_olr(struct drm_i915_gem_request *req)
1161 {
1162 	int ret;
1163 
1164 	WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1165 
1166 	ret = 0;
1167 	if (req == req->ring->outstanding_lazy_request)
1168 		ret = i915_add_request(req->ring);
1169 
1170 	return ret;
1171 }
1172 
1173 static void fake_irq(unsigned long data)
1174 {
1175 	wake_up_process((struct task_struct *)data);
1176 }
1177 
1178 static bool missed_irq(struct drm_i915_private *dev_priv,
1179 		       struct intel_engine_cs *ring)
1180 {
1181 	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1182 }
1183 
1184 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1185 {
1186 	if (file_priv == NULL)
1187 		return true;
1188 
1189 	return !atomic_xchg(&file_priv->rps_wait_boost, true);
1190 }
1191 
1192 /**
1193  * __i915_wait_request - wait until execution of request has finished
1194  * @req: duh!
1195  * @reset_counter: reset sequence associated with the given request
1196  * @interruptible: do an interruptible wait (normally yes)
1197  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1198  *
1199  * Note: It is of utmost importance that the passed in seqno and reset_counter
1200  * values have been read by the caller in an smp safe manner. Where read-side
1201  * locks are involved, it is sufficient to read the reset_counter before
1202  * unlocking the lock that protects the seqno. For lockless tricks, the
1203  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1204  * inserted.
1205  *
1206  * Returns 0 if the request was found within the alloted time. Else returns the
1207  * errno with remaining time filled in timeout argument.
1208  */
1209 int __i915_wait_request(struct drm_i915_gem_request *req,
1210 			unsigned reset_counter,
1211 			bool interruptible,
1212 			s64 *timeout,
1213 			struct drm_i915_file_private *file_priv)
1214 {
1215 	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1216 	struct drm_device *dev = ring->dev;
1217 	struct drm_i915_private *dev_priv = dev->dev_private;
1218 	const bool irq_test_in_progress =
1219 		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1220 	DEFINE_WAIT(wait);
1221 	unsigned long timeout_expire;
1222 	s64 before, now;
1223 	int ret;
1224 
1225 	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1226 
1227 	if (i915_gem_request_completed(req, true))
1228 		return 0;
1229 
1230 	timeout_expire = timeout ?
1231 		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1232 
1233 	if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1234 		gen6_rps_boost(dev_priv);
1235 		if (file_priv)
1236 			mod_delayed_work(dev_priv->wq,
1237 					 &file_priv->mm.idle_work,
1238 					 msecs_to_jiffies(100));
1239 	}
1240 
1241 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1242 		return -ENODEV;
1243 
1244 	/* Record current time in case interrupted by signal, or wedged */
1245 	trace_i915_gem_request_wait_begin(req);
1246 	before = ktime_get_raw_ns();
1247 	for (;;) {
1248 		struct timer_list timer;
1249 
1250 		prepare_to_wait(&ring->irq_queue, &wait,
1251 				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1252 
1253 		/* We need to check whether any gpu reset happened in between
1254 		 * the caller grabbing the seqno and now ... */
1255 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1256 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
1257 			 * is truely gone. */
1258 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1259 			if (ret == 0)
1260 				ret = -EAGAIN;
1261 			break;
1262 		}
1263 
1264 		if (i915_gem_request_completed(req, false)) {
1265 			ret = 0;
1266 			break;
1267 		}
1268 
1269 		if (interruptible && signal_pending(current)) {
1270 			ret = -ERESTARTSYS;
1271 			break;
1272 		}
1273 
1274 		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1275 			ret = -ETIME;
1276 			break;
1277 		}
1278 
1279 		timer.function = NULL;
1280 		if (timeout || missed_irq(dev_priv, ring)) {
1281 			unsigned long expire;
1282 
1283 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1284 			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1285 			mod_timer(&timer, expire);
1286 		}
1287 
1288 		io_schedule();
1289 
1290 		if (timer.function) {
1291 			del_singleshot_timer_sync(&timer);
1292 			destroy_timer_on_stack(&timer);
1293 		}
1294 	}
1295 	now = ktime_get_raw_ns();
1296 	trace_i915_gem_request_wait_end(req);
1297 
1298 	if (!irq_test_in_progress)
1299 		ring->irq_put(ring);
1300 
1301 	finish_wait(&ring->irq_queue, &wait);
1302 
1303 	if (timeout) {
1304 		s64 tres = *timeout - (now - before);
1305 
1306 		*timeout = tres < 0 ? 0 : tres;
1307 
1308 		/*
1309 		 * Apparently ktime isn't accurate enough and occasionally has a
1310 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1311 		 * things up to make the test happy. We allow up to 1 jiffy.
1312 		 *
1313 		 * This is a regrssion from the timespec->ktime conversion.
1314 		 */
1315 		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1316 			*timeout = 0;
1317 	}
1318 
1319 	return ret;
1320 }
1321 
1322 /**
1323  * Waits for a request to be signaled, and cleans up the
1324  * request and object lists appropriately for that event.
1325  */
1326 int
1327 i915_wait_request(struct drm_i915_gem_request *req)
1328 {
1329 	struct drm_device *dev;
1330 	struct drm_i915_private *dev_priv;
1331 	bool interruptible;
1332 	unsigned reset_counter;
1333 	int ret;
1334 
1335 	BUG_ON(req == NULL);
1336 
1337 	dev = req->ring->dev;
1338 	dev_priv = dev->dev_private;
1339 	interruptible = dev_priv->mm.interruptible;
1340 
1341 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1342 
1343 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1344 	if (ret)
1345 		return ret;
1346 
1347 	ret = i915_gem_check_olr(req);
1348 	if (ret)
1349 		return ret;
1350 
1351 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1352 	i915_gem_request_reference(req);
1353 	ret = __i915_wait_request(req, reset_counter,
1354 				  interruptible, NULL, NULL);
1355 	i915_gem_request_unreference(req);
1356 	return ret;
1357 }
1358 
1359 static int
1360 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1361 {
1362 	if (!obj->active)
1363 		return 0;
1364 
1365 	/* Manually manage the write flush as we may have not yet
1366 	 * retired the buffer.
1367 	 *
1368 	 * Note that the last_write_req is always the earlier of
1369 	 * the two (read/write) requests, so if we haved successfully waited,
1370 	 * we know we have passed the last write.
1371 	 */
1372 	i915_gem_request_assign(&obj->last_write_req, NULL);
1373 
1374 	return 0;
1375 }
1376 
1377 /**
1378  * Ensures that all rendering to the object has completed and the object is
1379  * safe to unbind from the GTT or access from the CPU.
1380  */
1381 static __must_check int
1382 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1383 			       bool readonly)
1384 {
1385 	struct drm_i915_gem_request *req;
1386 	int ret;
1387 
1388 	req = readonly ? obj->last_write_req : obj->last_read_req;
1389 	if (!req)
1390 		return 0;
1391 
1392 	ret = i915_wait_request(req);
1393 	if (ret)
1394 		return ret;
1395 
1396 	return i915_gem_object_wait_rendering__tail(obj);
1397 }
1398 
1399 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1400  * as the object state may change during this call.
1401  */
1402 static __must_check int
1403 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1404 					    struct drm_i915_file_private *file_priv,
1405 					    bool readonly)
1406 {
1407 	struct drm_i915_gem_request *req;
1408 	struct drm_device *dev = obj->base.dev;
1409 	struct drm_i915_private *dev_priv = dev->dev_private;
1410 	unsigned reset_counter;
1411 	int ret;
1412 
1413 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1414 	BUG_ON(!dev_priv->mm.interruptible);
1415 
1416 	req = readonly ? obj->last_write_req : obj->last_read_req;
1417 	if (!req)
1418 		return 0;
1419 
1420 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1421 	if (ret)
1422 		return ret;
1423 
1424 	ret = i915_gem_check_olr(req);
1425 	if (ret)
1426 		return ret;
1427 
1428 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1429 	i915_gem_request_reference(req);
1430 	mutex_unlock(&dev->struct_mutex);
1431 	ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1432 	mutex_lock(&dev->struct_mutex);
1433 	i915_gem_request_unreference(req);
1434 	if (ret)
1435 		return ret;
1436 
1437 	return i915_gem_object_wait_rendering__tail(obj);
1438 }
1439 
1440 /**
1441  * Called when user space prepares to use an object with the CPU, either
1442  * through the mmap ioctl's mapping or a GTT mapping.
1443  */
1444 int
1445 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1446 			  struct drm_file *file)
1447 {
1448 	struct drm_i915_gem_set_domain *args = data;
1449 	struct drm_i915_gem_object *obj;
1450 	uint32_t read_domains = args->read_domains;
1451 	uint32_t write_domain = args->write_domain;
1452 	int ret;
1453 
1454 	/* Only handle setting domains to types used by the CPU. */
1455 	if (write_domain & I915_GEM_GPU_DOMAINS)
1456 		return -EINVAL;
1457 
1458 	if (read_domains & I915_GEM_GPU_DOMAINS)
1459 		return -EINVAL;
1460 
1461 	/* Having something in the write domain implies it's in the read
1462 	 * domain, and only that read domain.  Enforce that in the request.
1463 	 */
1464 	if (write_domain != 0 && read_domains != write_domain)
1465 		return -EINVAL;
1466 
1467 	ret = i915_mutex_lock_interruptible(dev);
1468 	if (ret)
1469 		return ret;
1470 
1471 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1472 	if (&obj->base == NULL) {
1473 		ret = -ENOENT;
1474 		goto unlock;
1475 	}
1476 
1477 	/* Try to flush the object off the GPU without holding the lock.
1478 	 * We will repeat the flush holding the lock in the normal manner
1479 	 * to catch cases where we are gazumped.
1480 	 */
1481 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1482 							  file->driver_priv,
1483 							  !write_domain);
1484 	if (ret)
1485 		goto unref;
1486 
1487 	if (read_domains & I915_GEM_DOMAIN_GTT)
1488 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1489 	else
1490 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1491 
1492 unref:
1493 	drm_gem_object_unreference(&obj->base);
1494 unlock:
1495 	mutex_unlock(&dev->struct_mutex);
1496 	return ret;
1497 }
1498 
1499 /**
1500  * Called when user space has done writes to this buffer
1501  */
1502 int
1503 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1504 			 struct drm_file *file)
1505 {
1506 	struct drm_i915_gem_sw_finish *args = data;
1507 	struct drm_i915_gem_object *obj;
1508 	int ret = 0;
1509 
1510 	ret = i915_mutex_lock_interruptible(dev);
1511 	if (ret)
1512 		return ret;
1513 
1514 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1515 	if (&obj->base == NULL) {
1516 		ret = -ENOENT;
1517 		goto unlock;
1518 	}
1519 
1520 	/* Pinned buffers may be scanout, so flush the cache */
1521 	if (obj->pin_display)
1522 		i915_gem_object_flush_cpu_write_domain(obj);
1523 
1524 	drm_gem_object_unreference(&obj->base);
1525 unlock:
1526 	mutex_unlock(&dev->struct_mutex);
1527 	return ret;
1528 }
1529 
1530 /**
1531  * Maps the contents of an object, returning the address it is mapped
1532  * into.
1533  *
1534  * While the mapping holds a reference on the contents of the object, it doesn't
1535  * imply a ref on the object itself.
1536  *
1537  * IMPORTANT:
1538  *
1539  * DRM driver writers who look a this function as an example for how to do GEM
1540  * mmap support, please don't implement mmap support like here. The modern way
1541  * to implement DRM mmap support is with an mmap offset ioctl (like
1542  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1543  * That way debug tooling like valgrind will understand what's going on, hiding
1544  * the mmap call in a driver private ioctl will break that. The i915 driver only
1545  * does cpu mmaps this way because we didn't know better.
1546  */
1547 int
1548 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1549 		    struct drm_file *file)
1550 {
1551 	struct drm_i915_gem_mmap *args = data;
1552 	struct drm_gem_object *obj;
1553 	unsigned long addr;
1554 
1555 	if (args->flags & ~(I915_MMAP_WC))
1556 		return -EINVAL;
1557 
1558 	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1559 		return -ENODEV;
1560 
1561 	obj = drm_gem_object_lookup(dev, file, args->handle);
1562 	if (obj == NULL)
1563 		return -ENOENT;
1564 
1565 	/* prime objects have no backing filp to GEM mmap
1566 	 * pages from.
1567 	 */
1568 	if (!obj->filp) {
1569 		drm_gem_object_unreference_unlocked(obj);
1570 		return -EINVAL;
1571 	}
1572 
1573 	addr = vm_mmap(obj->filp, 0, args->size,
1574 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1575 		       args->offset);
1576 	if (args->flags & I915_MMAP_WC) {
1577 		struct mm_struct *mm = current->mm;
1578 		struct vm_area_struct *vma;
1579 
1580 		down_write(&mm->mmap_sem);
1581 		vma = find_vma(mm, addr);
1582 		if (vma)
1583 			vma->vm_page_prot =
1584 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1585 		else
1586 			addr = -ENOMEM;
1587 		up_write(&mm->mmap_sem);
1588 	}
1589 	drm_gem_object_unreference_unlocked(obj);
1590 	if (IS_ERR((void *)addr))
1591 		return addr;
1592 
1593 	args->addr_ptr = (uint64_t) addr;
1594 
1595 	return 0;
1596 }
1597 
1598 /**
1599  * i915_gem_fault - fault a page into the GTT
1600  * vma: VMA in question
1601  * vmf: fault info
1602  *
1603  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1604  * from userspace.  The fault handler takes care of binding the object to
1605  * the GTT (if needed), allocating and programming a fence register (again,
1606  * only if needed based on whether the old reg is still valid or the object
1607  * is tiled) and inserting a new PTE into the faulting process.
1608  *
1609  * Note that the faulting process may involve evicting existing objects
1610  * from the GTT and/or fence registers to make room.  So performance may
1611  * suffer if the GTT working set is large or there are few fence registers
1612  * left.
1613  */
1614 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1615 {
1616 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1617 	struct drm_device *dev = obj->base.dev;
1618 	struct drm_i915_private *dev_priv = dev->dev_private;
1619 	pgoff_t page_offset;
1620 	unsigned long pfn;
1621 	int ret = 0;
1622 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1623 
1624 	intel_runtime_pm_get(dev_priv);
1625 
1626 	/* We don't use vmf->pgoff since that has the fake offset */
1627 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1628 		PAGE_SHIFT;
1629 
1630 	ret = i915_mutex_lock_interruptible(dev);
1631 	if (ret)
1632 		goto out;
1633 
1634 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1635 
1636 	/* Try to flush the object off the GPU first without holding the lock.
1637 	 * Upon reacquiring the lock, we will perform our sanity checks and then
1638 	 * repeat the flush holding the lock in the normal manner to catch cases
1639 	 * where we are gazumped.
1640 	 */
1641 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1642 	if (ret)
1643 		goto unlock;
1644 
1645 	/* Access to snoopable pages through the GTT is incoherent. */
1646 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1647 		ret = -EFAULT;
1648 		goto unlock;
1649 	}
1650 
1651 	/* Now bind it into the GTT if needed */
1652 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1653 	if (ret)
1654 		goto unlock;
1655 
1656 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1657 	if (ret)
1658 		goto unpin;
1659 
1660 	ret = i915_gem_object_get_fence(obj);
1661 	if (ret)
1662 		goto unpin;
1663 
1664 	/* Finally, remap it using the new GTT offset */
1665 	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1666 	pfn >>= PAGE_SHIFT;
1667 
1668 	if (!obj->fault_mappable) {
1669 		unsigned long size = min_t(unsigned long,
1670 					   vma->vm_end - vma->vm_start,
1671 					   obj->base.size);
1672 		int i;
1673 
1674 		for (i = 0; i < size >> PAGE_SHIFT; i++) {
1675 			ret = vm_insert_pfn(vma,
1676 					    (unsigned long)vma->vm_start + i * PAGE_SIZE,
1677 					    pfn + i);
1678 			if (ret)
1679 				break;
1680 		}
1681 
1682 		obj->fault_mappable = true;
1683 	} else
1684 		ret = vm_insert_pfn(vma,
1685 				    (unsigned long)vmf->virtual_address,
1686 				    pfn + page_offset);
1687 unpin:
1688 	i915_gem_object_ggtt_unpin(obj);
1689 unlock:
1690 	mutex_unlock(&dev->struct_mutex);
1691 out:
1692 	switch (ret) {
1693 	case -EIO:
1694 		/*
1695 		 * We eat errors when the gpu is terminally wedged to avoid
1696 		 * userspace unduly crashing (gl has no provisions for mmaps to
1697 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1698 		 * and so needs to be reported.
1699 		 */
1700 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1701 			ret = VM_FAULT_SIGBUS;
1702 			break;
1703 		}
1704 	case -EAGAIN:
1705 		/*
1706 		 * EAGAIN means the gpu is hung and we'll wait for the error
1707 		 * handler to reset everything when re-faulting in
1708 		 * i915_mutex_lock_interruptible.
1709 		 */
1710 	case 0:
1711 	case -ERESTARTSYS:
1712 	case -EINTR:
1713 	case -EBUSY:
1714 		/*
1715 		 * EBUSY is ok: this just means that another thread
1716 		 * already did the job.
1717 		 */
1718 		ret = VM_FAULT_NOPAGE;
1719 		break;
1720 	case -ENOMEM:
1721 		ret = VM_FAULT_OOM;
1722 		break;
1723 	case -ENOSPC:
1724 	case -EFAULT:
1725 		ret = VM_FAULT_SIGBUS;
1726 		break;
1727 	default:
1728 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1729 		ret = VM_FAULT_SIGBUS;
1730 		break;
1731 	}
1732 
1733 	intel_runtime_pm_put(dev_priv);
1734 	return ret;
1735 }
1736 
1737 /**
1738  * i915_gem_release_mmap - remove physical page mappings
1739  * @obj: obj in question
1740  *
1741  * Preserve the reservation of the mmapping with the DRM core code, but
1742  * relinquish ownership of the pages back to the system.
1743  *
1744  * It is vital that we remove the page mapping if we have mapped a tiled
1745  * object through the GTT and then lose the fence register due to
1746  * resource pressure. Similarly if the object has been moved out of the
1747  * aperture, than pages mapped into userspace must be revoked. Removing the
1748  * mapping will then trigger a page fault on the next user access, allowing
1749  * fixup by i915_gem_fault().
1750  */
1751 void
1752 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1753 {
1754 	if (!obj->fault_mappable)
1755 		return;
1756 
1757 	drm_vma_node_unmap(&obj->base.vma_node,
1758 			   obj->base.dev->anon_inode->i_mapping);
1759 	obj->fault_mappable = false;
1760 }
1761 
1762 void
1763 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1764 {
1765 	struct drm_i915_gem_object *obj;
1766 
1767 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1768 		i915_gem_release_mmap(obj);
1769 }
1770 
1771 uint32_t
1772 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1773 {
1774 	uint32_t gtt_size;
1775 
1776 	if (INTEL_INFO(dev)->gen >= 4 ||
1777 	    tiling_mode == I915_TILING_NONE)
1778 		return size;
1779 
1780 	/* Previous chips need a power-of-two fence region when tiling */
1781 	if (INTEL_INFO(dev)->gen == 3)
1782 		gtt_size = 1024*1024;
1783 	else
1784 		gtt_size = 512*1024;
1785 
1786 	while (gtt_size < size)
1787 		gtt_size <<= 1;
1788 
1789 	return gtt_size;
1790 }
1791 
1792 /**
1793  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1794  * @obj: object to check
1795  *
1796  * Return the required GTT alignment for an object, taking into account
1797  * potential fence register mapping.
1798  */
1799 uint32_t
1800 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1801 			   int tiling_mode, bool fenced)
1802 {
1803 	/*
1804 	 * Minimum alignment is 4k (GTT page size), but might be greater
1805 	 * if a fence register is needed for the object.
1806 	 */
1807 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1808 	    tiling_mode == I915_TILING_NONE)
1809 		return 4096;
1810 
1811 	/*
1812 	 * Previous chips need to be aligned to the size of the smallest
1813 	 * fence register that can contain the object.
1814 	 */
1815 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1816 }
1817 
1818 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1819 {
1820 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1821 	int ret;
1822 
1823 	if (drm_vma_node_has_offset(&obj->base.vma_node))
1824 		return 0;
1825 
1826 	dev_priv->mm.shrinker_no_lock_stealing = true;
1827 
1828 	ret = drm_gem_create_mmap_offset(&obj->base);
1829 	if (ret != -ENOSPC)
1830 		goto out;
1831 
1832 	/* Badly fragmented mmap space? The only way we can recover
1833 	 * space is by destroying unwanted objects. We can't randomly release
1834 	 * mmap_offsets as userspace expects them to be persistent for the
1835 	 * lifetime of the objects. The closest we can is to release the
1836 	 * offsets on purgeable objects by truncating it and marking it purged,
1837 	 * which prevents userspace from ever using that object again.
1838 	 */
1839 	i915_gem_shrink(dev_priv,
1840 			obj->base.size >> PAGE_SHIFT,
1841 			I915_SHRINK_BOUND |
1842 			I915_SHRINK_UNBOUND |
1843 			I915_SHRINK_PURGEABLE);
1844 	ret = drm_gem_create_mmap_offset(&obj->base);
1845 	if (ret != -ENOSPC)
1846 		goto out;
1847 
1848 	i915_gem_shrink_all(dev_priv);
1849 	ret = drm_gem_create_mmap_offset(&obj->base);
1850 out:
1851 	dev_priv->mm.shrinker_no_lock_stealing = false;
1852 
1853 	return ret;
1854 }
1855 
1856 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1857 {
1858 	drm_gem_free_mmap_offset(&obj->base);
1859 }
1860 
1861 int
1862 i915_gem_mmap_gtt(struct drm_file *file,
1863 		  struct drm_device *dev,
1864 		  uint32_t handle,
1865 		  uint64_t *offset)
1866 {
1867 	struct drm_i915_private *dev_priv = dev->dev_private;
1868 	struct drm_i915_gem_object *obj;
1869 	int ret;
1870 
1871 	ret = i915_mutex_lock_interruptible(dev);
1872 	if (ret)
1873 		return ret;
1874 
1875 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1876 	if (&obj->base == NULL) {
1877 		ret = -ENOENT;
1878 		goto unlock;
1879 	}
1880 
1881 	if (obj->base.size > dev_priv->gtt.mappable_end) {
1882 		ret = -E2BIG;
1883 		goto out;
1884 	}
1885 
1886 	if (obj->madv != I915_MADV_WILLNEED) {
1887 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1888 		ret = -EFAULT;
1889 		goto out;
1890 	}
1891 
1892 	ret = i915_gem_object_create_mmap_offset(obj);
1893 	if (ret)
1894 		goto out;
1895 
1896 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1897 
1898 out:
1899 	drm_gem_object_unreference(&obj->base);
1900 unlock:
1901 	mutex_unlock(&dev->struct_mutex);
1902 	return ret;
1903 }
1904 
1905 /**
1906  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1907  * @dev: DRM device
1908  * @data: GTT mapping ioctl data
1909  * @file: GEM object info
1910  *
1911  * Simply returns the fake offset to userspace so it can mmap it.
1912  * The mmap call will end up in drm_gem_mmap(), which will set things
1913  * up so we can get faults in the handler above.
1914  *
1915  * The fault handler will take care of binding the object into the GTT
1916  * (since it may have been evicted to make room for something), allocating
1917  * a fence register, and mapping the appropriate aperture address into
1918  * userspace.
1919  */
1920 int
1921 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1922 			struct drm_file *file)
1923 {
1924 	struct drm_i915_gem_mmap_gtt *args = data;
1925 
1926 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1927 }
1928 
1929 /* Immediately discard the backing storage */
1930 static void
1931 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1932 {
1933 	i915_gem_object_free_mmap_offset(obj);
1934 
1935 	if (obj->base.filp == NULL)
1936 		return;
1937 
1938 	/* Our goal here is to return as much of the memory as
1939 	 * is possible back to the system as we are called from OOM.
1940 	 * To do this we must instruct the shmfs to drop all of its
1941 	 * backing pages, *now*.
1942 	 */
1943 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1944 	obj->madv = __I915_MADV_PURGED;
1945 }
1946 
1947 /* Try to discard unwanted pages */
1948 static void
1949 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1950 {
1951 	struct address_space *mapping;
1952 
1953 	switch (obj->madv) {
1954 	case I915_MADV_DONTNEED:
1955 		i915_gem_object_truncate(obj);
1956 	case __I915_MADV_PURGED:
1957 		return;
1958 	}
1959 
1960 	if (obj->base.filp == NULL)
1961 		return;
1962 
1963 	mapping = file_inode(obj->base.filp)->i_mapping,
1964 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1965 }
1966 
1967 static void
1968 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1969 {
1970 	struct sg_page_iter sg_iter;
1971 	int ret;
1972 
1973 	BUG_ON(obj->madv == __I915_MADV_PURGED);
1974 
1975 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1976 	if (ret) {
1977 		/* In the event of a disaster, abandon all caches and
1978 		 * hope for the best.
1979 		 */
1980 		WARN_ON(ret != -EIO);
1981 		i915_gem_clflush_object(obj, true);
1982 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1983 	}
1984 
1985 	if (i915_gem_object_needs_bit17_swizzle(obj))
1986 		i915_gem_object_save_bit_17_swizzle(obj);
1987 
1988 	if (obj->madv == I915_MADV_DONTNEED)
1989 		obj->dirty = 0;
1990 
1991 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1992 		struct page *page = sg_page_iter_page(&sg_iter);
1993 
1994 		if (obj->dirty)
1995 			set_page_dirty(page);
1996 
1997 		if (obj->madv == I915_MADV_WILLNEED)
1998 			mark_page_accessed(page);
1999 
2000 		page_cache_release(page);
2001 	}
2002 	obj->dirty = 0;
2003 
2004 	sg_free_table(obj->pages);
2005 	kfree(obj->pages);
2006 }
2007 
2008 int
2009 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2010 {
2011 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2012 
2013 	if (obj->pages == NULL)
2014 		return 0;
2015 
2016 	if (obj->pages_pin_count)
2017 		return -EBUSY;
2018 
2019 	BUG_ON(i915_gem_obj_bound_any(obj));
2020 
2021 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2022 	 * array, hence protect them from being reaped by removing them from gtt
2023 	 * lists early. */
2024 	list_del(&obj->global_list);
2025 
2026 	ops->put_pages(obj);
2027 	obj->pages = NULL;
2028 
2029 	i915_gem_object_invalidate(obj);
2030 
2031 	return 0;
2032 }
2033 
2034 static int
2035 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2036 {
2037 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2038 	int page_count, i;
2039 	struct address_space *mapping;
2040 	struct sg_table *st;
2041 	struct scatterlist *sg;
2042 	struct sg_page_iter sg_iter;
2043 	struct page *page;
2044 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2045 	gfp_t gfp;
2046 
2047 	/* Assert that the object is not currently in any GPU domain. As it
2048 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2049 	 * a GPU cache
2050 	 */
2051 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2052 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2053 
2054 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2055 	if (st == NULL)
2056 		return -ENOMEM;
2057 
2058 	page_count = obj->base.size / PAGE_SIZE;
2059 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2060 		kfree(st);
2061 		return -ENOMEM;
2062 	}
2063 
2064 	/* Get the list of pages out of our struct file.  They'll be pinned
2065 	 * at this point until we release them.
2066 	 *
2067 	 * Fail silently without starting the shrinker
2068 	 */
2069 	mapping = file_inode(obj->base.filp)->i_mapping;
2070 	gfp = mapping_gfp_mask(mapping);
2071 	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2072 	gfp &= ~(__GFP_IO | __GFP_WAIT);
2073 	sg = st->sgl;
2074 	st->nents = 0;
2075 	for (i = 0; i < page_count; i++) {
2076 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2077 		if (IS_ERR(page)) {
2078 			i915_gem_shrink(dev_priv,
2079 					page_count,
2080 					I915_SHRINK_BOUND |
2081 					I915_SHRINK_UNBOUND |
2082 					I915_SHRINK_PURGEABLE);
2083 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2084 		}
2085 		if (IS_ERR(page)) {
2086 			/* We've tried hard to allocate the memory by reaping
2087 			 * our own buffer, now let the real VM do its job and
2088 			 * go down in flames if truly OOM.
2089 			 */
2090 			i915_gem_shrink_all(dev_priv);
2091 			page = shmem_read_mapping_page(mapping, i);
2092 			if (IS_ERR(page))
2093 				goto err_pages;
2094 		}
2095 #ifdef CONFIG_SWIOTLB
2096 		if (swiotlb_nr_tbl()) {
2097 			st->nents++;
2098 			sg_set_page(sg, page, PAGE_SIZE, 0);
2099 			sg = sg_next(sg);
2100 			continue;
2101 		}
2102 #endif
2103 		if (!i || page_to_pfn(page) != last_pfn + 1) {
2104 			if (i)
2105 				sg = sg_next(sg);
2106 			st->nents++;
2107 			sg_set_page(sg, page, PAGE_SIZE, 0);
2108 		} else {
2109 			sg->length += PAGE_SIZE;
2110 		}
2111 		last_pfn = page_to_pfn(page);
2112 
2113 		/* Check that the i965g/gm workaround works. */
2114 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2115 	}
2116 #ifdef CONFIG_SWIOTLB
2117 	if (!swiotlb_nr_tbl())
2118 #endif
2119 		sg_mark_end(sg);
2120 	obj->pages = st;
2121 
2122 	if (i915_gem_object_needs_bit17_swizzle(obj))
2123 		i915_gem_object_do_bit_17_swizzle(obj);
2124 
2125 	if (obj->tiling_mode != I915_TILING_NONE &&
2126 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2127 		i915_gem_object_pin_pages(obj);
2128 
2129 	return 0;
2130 
2131 err_pages:
2132 	sg_mark_end(sg);
2133 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2134 		page_cache_release(sg_page_iter_page(&sg_iter));
2135 	sg_free_table(st);
2136 	kfree(st);
2137 
2138 	/* shmemfs first checks if there is enough memory to allocate the page
2139 	 * and reports ENOSPC should there be insufficient, along with the usual
2140 	 * ENOMEM for a genuine allocation failure.
2141 	 *
2142 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2143 	 * space and so want to translate the error from shmemfs back to our
2144 	 * usual understanding of ENOMEM.
2145 	 */
2146 	if (PTR_ERR(page) == -ENOSPC)
2147 		return -ENOMEM;
2148 	else
2149 		return PTR_ERR(page);
2150 }
2151 
2152 /* Ensure that the associated pages are gathered from the backing storage
2153  * and pinned into our object. i915_gem_object_get_pages() may be called
2154  * multiple times before they are released by a single call to
2155  * i915_gem_object_put_pages() - once the pages are no longer referenced
2156  * either as a result of memory pressure (reaping pages under the shrinker)
2157  * or as the object is itself released.
2158  */
2159 int
2160 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2161 {
2162 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2163 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2164 	int ret;
2165 
2166 	if (obj->pages)
2167 		return 0;
2168 
2169 	if (obj->madv != I915_MADV_WILLNEED) {
2170 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2171 		return -EFAULT;
2172 	}
2173 
2174 	BUG_ON(obj->pages_pin_count);
2175 
2176 	ret = ops->get_pages(obj);
2177 	if (ret)
2178 		return ret;
2179 
2180 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2181 	return 0;
2182 }
2183 
2184 static void
2185 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2186 			       struct intel_engine_cs *ring)
2187 {
2188 	struct drm_i915_gem_request *req;
2189 	struct intel_engine_cs *old_ring;
2190 
2191 	BUG_ON(ring == NULL);
2192 
2193 	req = intel_ring_get_request(ring);
2194 	old_ring = i915_gem_request_get_ring(obj->last_read_req);
2195 
2196 	if (old_ring != ring && obj->last_write_req) {
2197 		/* Keep the request relative to the current ring */
2198 		i915_gem_request_assign(&obj->last_write_req, req);
2199 	}
2200 
2201 	/* Add a reference if we're newly entering the active list. */
2202 	if (!obj->active) {
2203 		drm_gem_object_reference(&obj->base);
2204 		obj->active = 1;
2205 	}
2206 
2207 	list_move_tail(&obj->ring_list, &ring->active_list);
2208 
2209 	i915_gem_request_assign(&obj->last_read_req, req);
2210 }
2211 
2212 void i915_vma_move_to_active(struct i915_vma *vma,
2213 			     struct intel_engine_cs *ring)
2214 {
2215 	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2216 	return i915_gem_object_move_to_active(vma->obj, ring);
2217 }
2218 
2219 static void
2220 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2221 {
2222 	struct i915_vma *vma;
2223 
2224 	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2225 	BUG_ON(!obj->active);
2226 
2227 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
2228 		if (!list_empty(&vma->mm_list))
2229 			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2230 	}
2231 
2232 	intel_fb_obj_flush(obj, true);
2233 
2234 	list_del_init(&obj->ring_list);
2235 
2236 	i915_gem_request_assign(&obj->last_read_req, NULL);
2237 	i915_gem_request_assign(&obj->last_write_req, NULL);
2238 	obj->base.write_domain = 0;
2239 
2240 	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2241 
2242 	obj->active = 0;
2243 	drm_gem_object_unreference(&obj->base);
2244 
2245 	WARN_ON(i915_verify_lists(dev));
2246 }
2247 
2248 static void
2249 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2250 {
2251 	if (obj->last_read_req == NULL)
2252 		return;
2253 
2254 	if (i915_gem_request_completed(obj->last_read_req, true))
2255 		i915_gem_object_move_to_inactive(obj);
2256 }
2257 
2258 static int
2259 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2260 {
2261 	struct drm_i915_private *dev_priv = dev->dev_private;
2262 	struct intel_engine_cs *ring;
2263 	int ret, i, j;
2264 
2265 	/* Carefully retire all requests without writing to the rings */
2266 	for_each_ring(ring, dev_priv, i) {
2267 		ret = intel_ring_idle(ring);
2268 		if (ret)
2269 			return ret;
2270 	}
2271 	i915_gem_retire_requests(dev);
2272 
2273 	/* Finally reset hw state */
2274 	for_each_ring(ring, dev_priv, i) {
2275 		intel_ring_init_seqno(ring, seqno);
2276 
2277 		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2278 			ring->semaphore.sync_seqno[j] = 0;
2279 	}
2280 
2281 	return 0;
2282 }
2283 
2284 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2285 {
2286 	struct drm_i915_private *dev_priv = dev->dev_private;
2287 	int ret;
2288 
2289 	if (seqno == 0)
2290 		return -EINVAL;
2291 
2292 	/* HWS page needs to be set less than what we
2293 	 * will inject to ring
2294 	 */
2295 	ret = i915_gem_init_seqno(dev, seqno - 1);
2296 	if (ret)
2297 		return ret;
2298 
2299 	/* Carefully set the last_seqno value so that wrap
2300 	 * detection still works
2301 	 */
2302 	dev_priv->next_seqno = seqno;
2303 	dev_priv->last_seqno = seqno - 1;
2304 	if (dev_priv->last_seqno == 0)
2305 		dev_priv->last_seqno--;
2306 
2307 	return 0;
2308 }
2309 
2310 int
2311 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2312 {
2313 	struct drm_i915_private *dev_priv = dev->dev_private;
2314 
2315 	/* reserve 0 for non-seqno */
2316 	if (dev_priv->next_seqno == 0) {
2317 		int ret = i915_gem_init_seqno(dev, 0);
2318 		if (ret)
2319 			return ret;
2320 
2321 		dev_priv->next_seqno = 1;
2322 	}
2323 
2324 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2325 	return 0;
2326 }
2327 
2328 int __i915_add_request(struct intel_engine_cs *ring,
2329 		       struct drm_file *file,
2330 		       struct drm_i915_gem_object *obj)
2331 {
2332 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2333 	struct drm_i915_gem_request *request;
2334 	struct intel_ringbuffer *ringbuf;
2335 	u32 request_start;
2336 	int ret;
2337 
2338 	request = ring->outstanding_lazy_request;
2339 	if (WARN_ON(request == NULL))
2340 		return -ENOMEM;
2341 
2342 	if (i915.enable_execlists) {
2343 		ringbuf = request->ctx->engine[ring->id].ringbuf;
2344 	} else
2345 		ringbuf = ring->buffer;
2346 
2347 	request_start = intel_ring_get_tail(ringbuf);
2348 	/*
2349 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2350 	 * after having emitted the batchbuffer command. Hence we need to fix
2351 	 * things up similar to emitting the lazy request. The difference here
2352 	 * is that the flush _must_ happen before the next request, no matter
2353 	 * what.
2354 	 */
2355 	if (i915.enable_execlists) {
2356 		ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2357 		if (ret)
2358 			return ret;
2359 	} else {
2360 		ret = intel_ring_flush_all_caches(ring);
2361 		if (ret)
2362 			return ret;
2363 	}
2364 
2365 	/* Record the position of the start of the request so that
2366 	 * should we detect the updated seqno part-way through the
2367 	 * GPU processing the request, we never over-estimate the
2368 	 * position of the head.
2369 	 */
2370 	request->postfix = intel_ring_get_tail(ringbuf);
2371 
2372 	if (i915.enable_execlists) {
2373 		ret = ring->emit_request(ringbuf, request);
2374 		if (ret)
2375 			return ret;
2376 	} else {
2377 		ret = ring->add_request(ring);
2378 		if (ret)
2379 			return ret;
2380 	}
2381 
2382 	request->head = request_start;
2383 	request->tail = intel_ring_get_tail(ringbuf);
2384 
2385 	/* Whilst this request exists, batch_obj will be on the
2386 	 * active_list, and so will hold the active reference. Only when this
2387 	 * request is retired will the the batch_obj be moved onto the
2388 	 * inactive_list and lose its active reference. Hence we do not need
2389 	 * to explicitly hold another reference here.
2390 	 */
2391 	request->batch_obj = obj;
2392 
2393 	if (!i915.enable_execlists) {
2394 		/* Hold a reference to the current context so that we can inspect
2395 		 * it later in case a hangcheck error event fires.
2396 		 */
2397 		request->ctx = ring->last_context;
2398 		if (request->ctx)
2399 			i915_gem_context_reference(request->ctx);
2400 	}
2401 
2402 	request->emitted_jiffies = jiffies;
2403 	list_add_tail(&request->list, &ring->request_list);
2404 	request->file_priv = NULL;
2405 
2406 	if (file) {
2407 		struct drm_i915_file_private *file_priv = file->driver_priv;
2408 
2409 		spin_lock(&file_priv->mm.lock);
2410 		request->file_priv = file_priv;
2411 		list_add_tail(&request->client_list,
2412 			      &file_priv->mm.request_list);
2413 		spin_unlock(&file_priv->mm.lock);
2414 
2415 		request->pid = get_pid(task_pid(current));
2416 	}
2417 
2418 	trace_i915_gem_request_add(request);
2419 	ring->outstanding_lazy_request = NULL;
2420 
2421 	i915_queue_hangcheck(ring->dev);
2422 
2423 	cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2424 	queue_delayed_work(dev_priv->wq,
2425 			   &dev_priv->mm.retire_work,
2426 			   round_jiffies_up_relative(HZ));
2427 	intel_mark_busy(dev_priv->dev);
2428 
2429 	return 0;
2430 }
2431 
2432 static inline void
2433 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2434 {
2435 	struct drm_i915_file_private *file_priv = request->file_priv;
2436 
2437 	if (!file_priv)
2438 		return;
2439 
2440 	spin_lock(&file_priv->mm.lock);
2441 	list_del(&request->client_list);
2442 	request->file_priv = NULL;
2443 	spin_unlock(&file_priv->mm.lock);
2444 }
2445 
2446 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2447 				   const struct intel_context *ctx)
2448 {
2449 	unsigned long elapsed;
2450 
2451 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2452 
2453 	if (ctx->hang_stats.banned)
2454 		return true;
2455 
2456 	if (ctx->hang_stats.ban_period_seconds &&
2457 	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2458 		if (!i915_gem_context_is_default(ctx)) {
2459 			DRM_DEBUG("context hanging too fast, banning!\n");
2460 			return true;
2461 		} else if (i915_stop_ring_allow_ban(dev_priv)) {
2462 			if (i915_stop_ring_allow_warn(dev_priv))
2463 				DRM_ERROR("gpu hanging too fast, banning!\n");
2464 			return true;
2465 		}
2466 	}
2467 
2468 	return false;
2469 }
2470 
2471 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2472 				  struct intel_context *ctx,
2473 				  const bool guilty)
2474 {
2475 	struct i915_ctx_hang_stats *hs;
2476 
2477 	if (WARN_ON(!ctx))
2478 		return;
2479 
2480 	hs = &ctx->hang_stats;
2481 
2482 	if (guilty) {
2483 		hs->banned = i915_context_is_banned(dev_priv, ctx);
2484 		hs->batch_active++;
2485 		hs->guilty_ts = get_seconds();
2486 	} else {
2487 		hs->batch_pending++;
2488 	}
2489 }
2490 
2491 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2492 {
2493 	list_del(&request->list);
2494 	i915_gem_request_remove_from_client(request);
2495 
2496 	put_pid(request->pid);
2497 
2498 	i915_gem_request_unreference(request);
2499 }
2500 
2501 void i915_gem_request_free(struct kref *req_ref)
2502 {
2503 	struct drm_i915_gem_request *req = container_of(req_ref,
2504 						 typeof(*req), ref);
2505 	struct intel_context *ctx = req->ctx;
2506 
2507 	if (ctx) {
2508 		if (i915.enable_execlists) {
2509 			struct intel_engine_cs *ring = req->ring;
2510 
2511 			if (ctx != ring->default_context)
2512 				intel_lr_context_unpin(ring, ctx);
2513 		}
2514 
2515 		i915_gem_context_unreference(ctx);
2516 	}
2517 
2518 	kfree(req);
2519 }
2520 
2521 struct drm_i915_gem_request *
2522 i915_gem_find_active_request(struct intel_engine_cs *ring)
2523 {
2524 	struct drm_i915_gem_request *request;
2525 
2526 	list_for_each_entry(request, &ring->request_list, list) {
2527 		if (i915_gem_request_completed(request, false))
2528 			continue;
2529 
2530 		return request;
2531 	}
2532 
2533 	return NULL;
2534 }
2535 
2536 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2537 				       struct intel_engine_cs *ring)
2538 {
2539 	struct drm_i915_gem_request *request;
2540 	bool ring_hung;
2541 
2542 	request = i915_gem_find_active_request(ring);
2543 
2544 	if (request == NULL)
2545 		return;
2546 
2547 	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2548 
2549 	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2550 
2551 	list_for_each_entry_continue(request, &ring->request_list, list)
2552 		i915_set_reset_status(dev_priv, request->ctx, false);
2553 }
2554 
2555 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2556 					struct intel_engine_cs *ring)
2557 {
2558 	while (!list_empty(&ring->active_list)) {
2559 		struct drm_i915_gem_object *obj;
2560 
2561 		obj = list_first_entry(&ring->active_list,
2562 				       struct drm_i915_gem_object,
2563 				       ring_list);
2564 
2565 		i915_gem_object_move_to_inactive(obj);
2566 	}
2567 
2568 	/*
2569 	 * Clear the execlists queue up before freeing the requests, as those
2570 	 * are the ones that keep the context and ringbuffer backing objects
2571 	 * pinned in place.
2572 	 */
2573 	while (!list_empty(&ring->execlist_queue)) {
2574 		struct drm_i915_gem_request *submit_req;
2575 
2576 		submit_req = list_first_entry(&ring->execlist_queue,
2577 				struct drm_i915_gem_request,
2578 				execlist_link);
2579 		list_del(&submit_req->execlist_link);
2580 		intel_runtime_pm_put(dev_priv);
2581 
2582 		if (submit_req->ctx != ring->default_context)
2583 			intel_lr_context_unpin(ring, submit_req->ctx);
2584 
2585 		i915_gem_request_unreference(submit_req);
2586 	}
2587 
2588 	/*
2589 	 * We must free the requests after all the corresponding objects have
2590 	 * been moved off active lists. Which is the same order as the normal
2591 	 * retire_requests function does. This is important if object hold
2592 	 * implicit references on things like e.g. ppgtt address spaces through
2593 	 * the request.
2594 	 */
2595 	while (!list_empty(&ring->request_list)) {
2596 		struct drm_i915_gem_request *request;
2597 
2598 		request = list_first_entry(&ring->request_list,
2599 					   struct drm_i915_gem_request,
2600 					   list);
2601 
2602 		i915_gem_free_request(request);
2603 	}
2604 
2605 	/* This may not have been flushed before the reset, so clean it now */
2606 	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2607 }
2608 
2609 void i915_gem_restore_fences(struct drm_device *dev)
2610 {
2611 	struct drm_i915_private *dev_priv = dev->dev_private;
2612 	int i;
2613 
2614 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2615 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2616 
2617 		/*
2618 		 * Commit delayed tiling changes if we have an object still
2619 		 * attached to the fence, otherwise just clear the fence.
2620 		 */
2621 		if (reg->obj) {
2622 			i915_gem_object_update_fence(reg->obj, reg,
2623 						     reg->obj->tiling_mode);
2624 		} else {
2625 			i915_gem_write_fence(dev, i, NULL);
2626 		}
2627 	}
2628 }
2629 
2630 void i915_gem_reset(struct drm_device *dev)
2631 {
2632 	struct drm_i915_private *dev_priv = dev->dev_private;
2633 	struct intel_engine_cs *ring;
2634 	int i;
2635 
2636 	/*
2637 	 * Before we free the objects from the requests, we need to inspect
2638 	 * them for finding the guilty party. As the requests only borrow
2639 	 * their reference to the objects, the inspection must be done first.
2640 	 */
2641 	for_each_ring(ring, dev_priv, i)
2642 		i915_gem_reset_ring_status(dev_priv, ring);
2643 
2644 	for_each_ring(ring, dev_priv, i)
2645 		i915_gem_reset_ring_cleanup(dev_priv, ring);
2646 
2647 	i915_gem_context_reset(dev);
2648 
2649 	i915_gem_restore_fences(dev);
2650 }
2651 
2652 /**
2653  * This function clears the request list as sequence numbers are passed.
2654  */
2655 void
2656 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2657 {
2658 	if (list_empty(&ring->request_list))
2659 		return;
2660 
2661 	WARN_ON(i915_verify_lists(ring->dev));
2662 
2663 	/* Retire requests first as we use it above for the early return.
2664 	 * If we retire requests last, we may use a later seqno and so clear
2665 	 * the requests lists without clearing the active list, leading to
2666 	 * confusion.
2667 	 */
2668 	while (!list_empty(&ring->request_list)) {
2669 		struct drm_i915_gem_request *request;
2670 
2671 		request = list_first_entry(&ring->request_list,
2672 					   struct drm_i915_gem_request,
2673 					   list);
2674 
2675 		if (!i915_gem_request_completed(request, true))
2676 			break;
2677 
2678 		trace_i915_gem_request_retire(request);
2679 
2680 		/* We know the GPU must have read the request to have
2681 		 * sent us the seqno + interrupt, so use the position
2682 		 * of tail of the request to update the last known position
2683 		 * of the GPU head.
2684 		 */
2685 		request->ringbuf->last_retired_head = request->postfix;
2686 
2687 		i915_gem_free_request(request);
2688 	}
2689 
2690 	/* Move any buffers on the active list that are no longer referenced
2691 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
2692 	 * before we free the context associated with the requests.
2693 	 */
2694 	while (!list_empty(&ring->active_list)) {
2695 		struct drm_i915_gem_object *obj;
2696 
2697 		obj = list_first_entry(&ring->active_list,
2698 				      struct drm_i915_gem_object,
2699 				      ring_list);
2700 
2701 		if (!i915_gem_request_completed(obj->last_read_req, true))
2702 			break;
2703 
2704 		i915_gem_object_move_to_inactive(obj);
2705 	}
2706 
2707 	if (unlikely(ring->trace_irq_req &&
2708 		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2709 		ring->irq_put(ring);
2710 		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2711 	}
2712 
2713 	WARN_ON(i915_verify_lists(ring->dev));
2714 }
2715 
2716 bool
2717 i915_gem_retire_requests(struct drm_device *dev)
2718 {
2719 	struct drm_i915_private *dev_priv = dev->dev_private;
2720 	struct intel_engine_cs *ring;
2721 	bool idle = true;
2722 	int i;
2723 
2724 	for_each_ring(ring, dev_priv, i) {
2725 		i915_gem_retire_requests_ring(ring);
2726 		idle &= list_empty(&ring->request_list);
2727 		if (i915.enable_execlists) {
2728 			unsigned long flags;
2729 
2730 			spin_lock_irqsave(&ring->execlist_lock, flags);
2731 			idle &= list_empty(&ring->execlist_queue);
2732 			spin_unlock_irqrestore(&ring->execlist_lock, flags);
2733 
2734 			intel_execlists_retire_requests(ring);
2735 		}
2736 	}
2737 
2738 	if (idle)
2739 		mod_delayed_work(dev_priv->wq,
2740 				   &dev_priv->mm.idle_work,
2741 				   msecs_to_jiffies(100));
2742 
2743 	return idle;
2744 }
2745 
2746 static void
2747 i915_gem_retire_work_handler(struct work_struct *work)
2748 {
2749 	struct drm_i915_private *dev_priv =
2750 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
2751 	struct drm_device *dev = dev_priv->dev;
2752 	bool idle;
2753 
2754 	/* Come back later if the device is busy... */
2755 	idle = false;
2756 	if (mutex_trylock(&dev->struct_mutex)) {
2757 		idle = i915_gem_retire_requests(dev);
2758 		mutex_unlock(&dev->struct_mutex);
2759 	}
2760 	if (!idle)
2761 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2762 				   round_jiffies_up_relative(HZ));
2763 }
2764 
2765 static void
2766 i915_gem_idle_work_handler(struct work_struct *work)
2767 {
2768 	struct drm_i915_private *dev_priv =
2769 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2770 
2771 	intel_mark_idle(dev_priv->dev);
2772 }
2773 
2774 /**
2775  * Ensures that an object will eventually get non-busy by flushing any required
2776  * write domains, emitting any outstanding lazy request and retiring and
2777  * completed requests.
2778  */
2779 static int
2780 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2781 {
2782 	struct intel_engine_cs *ring;
2783 	int ret;
2784 
2785 	if (obj->active) {
2786 		ring = i915_gem_request_get_ring(obj->last_read_req);
2787 
2788 		ret = i915_gem_check_olr(obj->last_read_req);
2789 		if (ret)
2790 			return ret;
2791 
2792 		i915_gem_retire_requests_ring(ring);
2793 	}
2794 
2795 	return 0;
2796 }
2797 
2798 /**
2799  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2800  * @DRM_IOCTL_ARGS: standard ioctl arguments
2801  *
2802  * Returns 0 if successful, else an error is returned with the remaining time in
2803  * the timeout parameter.
2804  *  -ETIME: object is still busy after timeout
2805  *  -ERESTARTSYS: signal interrupted the wait
2806  *  -ENONENT: object doesn't exist
2807  * Also possible, but rare:
2808  *  -EAGAIN: GPU wedged
2809  *  -ENOMEM: damn
2810  *  -ENODEV: Internal IRQ fail
2811  *  -E?: The add request failed
2812  *
2813  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2814  * non-zero timeout parameter the wait ioctl will wait for the given number of
2815  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2816  * without holding struct_mutex the object may become re-busied before this
2817  * function completes. A similar but shorter * race condition exists in the busy
2818  * ioctl
2819  */
2820 int
2821 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2822 {
2823 	struct drm_i915_private *dev_priv = dev->dev_private;
2824 	struct drm_i915_gem_wait *args = data;
2825 	struct drm_i915_gem_object *obj;
2826 	struct drm_i915_gem_request *req;
2827 	unsigned reset_counter;
2828 	int ret = 0;
2829 
2830 	if (args->flags != 0)
2831 		return -EINVAL;
2832 
2833 	ret = i915_mutex_lock_interruptible(dev);
2834 	if (ret)
2835 		return ret;
2836 
2837 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2838 	if (&obj->base == NULL) {
2839 		mutex_unlock(&dev->struct_mutex);
2840 		return -ENOENT;
2841 	}
2842 
2843 	/* Need to make sure the object gets inactive eventually. */
2844 	ret = i915_gem_object_flush_active(obj);
2845 	if (ret)
2846 		goto out;
2847 
2848 	if (!obj->active || !obj->last_read_req)
2849 		goto out;
2850 
2851 	req = obj->last_read_req;
2852 
2853 	/* Do this after OLR check to make sure we make forward progress polling
2854 	 * on this IOCTL with a timeout == 0 (like busy ioctl)
2855 	 */
2856 	if (args->timeout_ns == 0) {
2857 		ret = -ETIME;
2858 		goto out;
2859 	}
2860 
2861 	drm_gem_object_unreference(&obj->base);
2862 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2863 	i915_gem_request_reference(req);
2864 	mutex_unlock(&dev->struct_mutex);
2865 
2866 	ret = __i915_wait_request(req, reset_counter, true,
2867 				  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2868 				  file->driver_priv);
2869 	mutex_lock(&dev->struct_mutex);
2870 	i915_gem_request_unreference(req);
2871 	mutex_unlock(&dev->struct_mutex);
2872 	return ret;
2873 
2874 out:
2875 	drm_gem_object_unreference(&obj->base);
2876 	mutex_unlock(&dev->struct_mutex);
2877 	return ret;
2878 }
2879 
2880 /**
2881  * i915_gem_object_sync - sync an object to a ring.
2882  *
2883  * @obj: object which may be in use on another ring.
2884  * @to: ring we wish to use the object on. May be NULL.
2885  *
2886  * This code is meant to abstract object synchronization with the GPU.
2887  * Calling with NULL implies synchronizing the object with the CPU
2888  * rather than a particular GPU ring.
2889  *
2890  * Returns 0 if successful, else propagates up the lower layer error.
2891  */
2892 int
2893 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2894 		     struct intel_engine_cs *to)
2895 {
2896 	struct intel_engine_cs *from;
2897 	u32 seqno;
2898 	int ret, idx;
2899 
2900 	from = i915_gem_request_get_ring(obj->last_read_req);
2901 
2902 	if (from == NULL || to == from)
2903 		return 0;
2904 
2905 	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2906 		return i915_gem_object_wait_rendering(obj, false);
2907 
2908 	idx = intel_ring_sync_index(from, to);
2909 
2910 	seqno = i915_gem_request_get_seqno(obj->last_read_req);
2911 	/* Optimization: Avoid semaphore sync when we are sure we already
2912 	 * waited for an object with higher seqno */
2913 	if (seqno <= from->semaphore.sync_seqno[idx])
2914 		return 0;
2915 
2916 	ret = i915_gem_check_olr(obj->last_read_req);
2917 	if (ret)
2918 		return ret;
2919 
2920 	trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
2921 	ret = to->semaphore.sync_to(to, from, seqno);
2922 	if (!ret)
2923 		/* We use last_read_req because sync_to()
2924 		 * might have just caused seqno wrap under
2925 		 * the radar.
2926 		 */
2927 		from->semaphore.sync_seqno[idx] =
2928 				i915_gem_request_get_seqno(obj->last_read_req);
2929 
2930 	return ret;
2931 }
2932 
2933 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2934 {
2935 	u32 old_write_domain, old_read_domains;
2936 
2937 	/* Force a pagefault for domain tracking on next user access */
2938 	i915_gem_release_mmap(obj);
2939 
2940 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2941 		return;
2942 
2943 	/* Wait for any direct GTT access to complete */
2944 	mb();
2945 
2946 	old_read_domains = obj->base.read_domains;
2947 	old_write_domain = obj->base.write_domain;
2948 
2949 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2950 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2951 
2952 	trace_i915_gem_object_change_domain(obj,
2953 					    old_read_domains,
2954 					    old_write_domain);
2955 }
2956 
2957 int i915_vma_unbind(struct i915_vma *vma)
2958 {
2959 	struct drm_i915_gem_object *obj = vma->obj;
2960 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2961 	int ret;
2962 
2963 	if (list_empty(&vma->vma_link))
2964 		return 0;
2965 
2966 	if (!drm_mm_node_allocated(&vma->node)) {
2967 		i915_gem_vma_destroy(vma);
2968 		return 0;
2969 	}
2970 
2971 	if (vma->pin_count)
2972 		return -EBUSY;
2973 
2974 	BUG_ON(obj->pages == NULL);
2975 
2976 	ret = i915_gem_object_finish_gpu(obj);
2977 	if (ret)
2978 		return ret;
2979 	/* Continue on if we fail due to EIO, the GPU is hung so we
2980 	 * should be safe and we need to cleanup or else we might
2981 	 * cause memory corruption through use-after-free.
2982 	 */
2983 
2984 	if (i915_is_ggtt(vma->vm) &&
2985 	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2986 		i915_gem_object_finish_gtt(obj);
2987 
2988 		/* release the fence reg _after_ flushing */
2989 		ret = i915_gem_object_put_fence(obj);
2990 		if (ret)
2991 			return ret;
2992 	}
2993 
2994 	trace_i915_vma_unbind(vma);
2995 
2996 	vma->unbind_vma(vma);
2997 
2998 	list_del_init(&vma->mm_list);
2999 	if (i915_is_ggtt(vma->vm)) {
3000 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3001 			obj->map_and_fenceable = false;
3002 		} else if (vma->ggtt_view.pages) {
3003 			sg_free_table(vma->ggtt_view.pages);
3004 			kfree(vma->ggtt_view.pages);
3005 			vma->ggtt_view.pages = NULL;
3006 		}
3007 	}
3008 
3009 	drm_mm_remove_node(&vma->node);
3010 	i915_gem_vma_destroy(vma);
3011 
3012 	/* Since the unbound list is global, only move to that list if
3013 	 * no more VMAs exist. */
3014 	if (list_empty(&obj->vma_list)) {
3015 		/* Throw away the active reference before
3016 		 * moving to the unbound list. */
3017 		i915_gem_object_retire(obj);
3018 
3019 		i915_gem_gtt_finish_object(obj);
3020 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3021 	}
3022 
3023 	/* And finally now the object is completely decoupled from this vma,
3024 	 * we can drop its hold on the backing storage and allow it to be
3025 	 * reaped by the shrinker.
3026 	 */
3027 	i915_gem_object_unpin_pages(obj);
3028 
3029 	return 0;
3030 }
3031 
3032 int i915_gpu_idle(struct drm_device *dev)
3033 {
3034 	struct drm_i915_private *dev_priv = dev->dev_private;
3035 	struct intel_engine_cs *ring;
3036 	int ret, i;
3037 
3038 	/* Flush everything onto the inactive list. */
3039 	for_each_ring(ring, dev_priv, i) {
3040 		if (!i915.enable_execlists) {
3041 			ret = i915_switch_context(ring, ring->default_context);
3042 			if (ret)
3043 				return ret;
3044 		}
3045 
3046 		ret = intel_ring_idle(ring);
3047 		if (ret)
3048 			return ret;
3049 	}
3050 
3051 	return 0;
3052 }
3053 
3054 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3055 				 struct drm_i915_gem_object *obj)
3056 {
3057 	struct drm_i915_private *dev_priv = dev->dev_private;
3058 	int fence_reg;
3059 	int fence_pitch_shift;
3060 
3061 	if (INTEL_INFO(dev)->gen >= 6) {
3062 		fence_reg = FENCE_REG_SANDYBRIDGE_0;
3063 		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3064 	} else {
3065 		fence_reg = FENCE_REG_965_0;
3066 		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3067 	}
3068 
3069 	fence_reg += reg * 8;
3070 
3071 	/* To w/a incoherency with non-atomic 64-bit register updates,
3072 	 * we split the 64-bit update into two 32-bit writes. In order
3073 	 * for a partial fence not to be evaluated between writes, we
3074 	 * precede the update with write to turn off the fence register,
3075 	 * and only enable the fence as the last step.
3076 	 *
3077 	 * For extra levels of paranoia, we make sure each step lands
3078 	 * before applying the next step.
3079 	 */
3080 	I915_WRITE(fence_reg, 0);
3081 	POSTING_READ(fence_reg);
3082 
3083 	if (obj) {
3084 		u32 size = i915_gem_obj_ggtt_size(obj);
3085 		uint64_t val;
3086 
3087 		/* Adjust fence size to match tiled area */
3088 		if (obj->tiling_mode != I915_TILING_NONE) {
3089 			uint32_t row_size = obj->stride *
3090 				(obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3091 			size = (size / row_size) * row_size;
3092 		}
3093 
3094 		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3095 				 0xfffff000) << 32;
3096 		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3097 		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3098 		if (obj->tiling_mode == I915_TILING_Y)
3099 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3100 		val |= I965_FENCE_REG_VALID;
3101 
3102 		I915_WRITE(fence_reg + 4, val >> 32);
3103 		POSTING_READ(fence_reg + 4);
3104 
3105 		I915_WRITE(fence_reg + 0, val);
3106 		POSTING_READ(fence_reg);
3107 	} else {
3108 		I915_WRITE(fence_reg + 4, 0);
3109 		POSTING_READ(fence_reg + 4);
3110 	}
3111 }
3112 
3113 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3114 				 struct drm_i915_gem_object *obj)
3115 {
3116 	struct drm_i915_private *dev_priv = dev->dev_private;
3117 	u32 val;
3118 
3119 	if (obj) {
3120 		u32 size = i915_gem_obj_ggtt_size(obj);
3121 		int pitch_val;
3122 		int tile_width;
3123 
3124 		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3125 		     (size & -size) != size ||
3126 		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3127 		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3128 		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3129 
3130 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3131 			tile_width = 128;
3132 		else
3133 			tile_width = 512;
3134 
3135 		/* Note: pitch better be a power of two tile widths */
3136 		pitch_val = obj->stride / tile_width;
3137 		pitch_val = ffs(pitch_val) - 1;
3138 
3139 		val = i915_gem_obj_ggtt_offset(obj);
3140 		if (obj->tiling_mode == I915_TILING_Y)
3141 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3142 		val |= I915_FENCE_SIZE_BITS(size);
3143 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3144 		val |= I830_FENCE_REG_VALID;
3145 	} else
3146 		val = 0;
3147 
3148 	if (reg < 8)
3149 		reg = FENCE_REG_830_0 + reg * 4;
3150 	else
3151 		reg = FENCE_REG_945_8 + (reg - 8) * 4;
3152 
3153 	I915_WRITE(reg, val);
3154 	POSTING_READ(reg);
3155 }
3156 
3157 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3158 				struct drm_i915_gem_object *obj)
3159 {
3160 	struct drm_i915_private *dev_priv = dev->dev_private;
3161 	uint32_t val;
3162 
3163 	if (obj) {
3164 		u32 size = i915_gem_obj_ggtt_size(obj);
3165 		uint32_t pitch_val;
3166 
3167 		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3168 		     (size & -size) != size ||
3169 		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3170 		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3171 		     i915_gem_obj_ggtt_offset(obj), size);
3172 
3173 		pitch_val = obj->stride / 128;
3174 		pitch_val = ffs(pitch_val) - 1;
3175 
3176 		val = i915_gem_obj_ggtt_offset(obj);
3177 		if (obj->tiling_mode == I915_TILING_Y)
3178 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3179 		val |= I830_FENCE_SIZE_BITS(size);
3180 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3181 		val |= I830_FENCE_REG_VALID;
3182 	} else
3183 		val = 0;
3184 
3185 	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3186 	POSTING_READ(FENCE_REG_830_0 + reg * 4);
3187 }
3188 
3189 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3190 {
3191 	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3192 }
3193 
3194 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3195 				 struct drm_i915_gem_object *obj)
3196 {
3197 	struct drm_i915_private *dev_priv = dev->dev_private;
3198 
3199 	/* Ensure that all CPU reads are completed before installing a fence
3200 	 * and all writes before removing the fence.
3201 	 */
3202 	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3203 		mb();
3204 
3205 	WARN(obj && (!obj->stride || !obj->tiling_mode),
3206 	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3207 	     obj->stride, obj->tiling_mode);
3208 
3209 	if (IS_GEN2(dev))
3210 		i830_write_fence_reg(dev, reg, obj);
3211 	else if (IS_GEN3(dev))
3212 		i915_write_fence_reg(dev, reg, obj);
3213 	else if (INTEL_INFO(dev)->gen >= 4)
3214 		i965_write_fence_reg(dev, reg, obj);
3215 
3216 	/* And similarly be paranoid that no direct access to this region
3217 	 * is reordered to before the fence is installed.
3218 	 */
3219 	if (i915_gem_object_needs_mb(obj))
3220 		mb();
3221 }
3222 
3223 static inline int fence_number(struct drm_i915_private *dev_priv,
3224 			       struct drm_i915_fence_reg *fence)
3225 {
3226 	return fence - dev_priv->fence_regs;
3227 }
3228 
3229 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3230 					 struct drm_i915_fence_reg *fence,
3231 					 bool enable)
3232 {
3233 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3234 	int reg = fence_number(dev_priv, fence);
3235 
3236 	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3237 
3238 	if (enable) {
3239 		obj->fence_reg = reg;
3240 		fence->obj = obj;
3241 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3242 	} else {
3243 		obj->fence_reg = I915_FENCE_REG_NONE;
3244 		fence->obj = NULL;
3245 		list_del_init(&fence->lru_list);
3246 	}
3247 	obj->fence_dirty = false;
3248 }
3249 
3250 static int
3251 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3252 {
3253 	if (obj->last_fenced_req) {
3254 		int ret = i915_wait_request(obj->last_fenced_req);
3255 		if (ret)
3256 			return ret;
3257 
3258 		i915_gem_request_assign(&obj->last_fenced_req, NULL);
3259 	}
3260 
3261 	return 0;
3262 }
3263 
3264 int
3265 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3266 {
3267 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3268 	struct drm_i915_fence_reg *fence;
3269 	int ret;
3270 
3271 	ret = i915_gem_object_wait_fence(obj);
3272 	if (ret)
3273 		return ret;
3274 
3275 	if (obj->fence_reg == I915_FENCE_REG_NONE)
3276 		return 0;
3277 
3278 	fence = &dev_priv->fence_regs[obj->fence_reg];
3279 
3280 	if (WARN_ON(fence->pin_count))
3281 		return -EBUSY;
3282 
3283 	i915_gem_object_fence_lost(obj);
3284 	i915_gem_object_update_fence(obj, fence, false);
3285 
3286 	return 0;
3287 }
3288 
3289 static struct drm_i915_fence_reg *
3290 i915_find_fence_reg(struct drm_device *dev)
3291 {
3292 	struct drm_i915_private *dev_priv = dev->dev_private;
3293 	struct drm_i915_fence_reg *reg, *avail;
3294 	int i;
3295 
3296 	/* First try to find a free reg */
3297 	avail = NULL;
3298 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3299 		reg = &dev_priv->fence_regs[i];
3300 		if (!reg->obj)
3301 			return reg;
3302 
3303 		if (!reg->pin_count)
3304 			avail = reg;
3305 	}
3306 
3307 	if (avail == NULL)
3308 		goto deadlock;
3309 
3310 	/* None available, try to steal one or wait for a user to finish */
3311 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3312 		if (reg->pin_count)
3313 			continue;
3314 
3315 		return reg;
3316 	}
3317 
3318 deadlock:
3319 	/* Wait for completion of pending flips which consume fences */
3320 	if (intel_has_pending_fb_unpin(dev))
3321 		return ERR_PTR(-EAGAIN);
3322 
3323 	return ERR_PTR(-EDEADLK);
3324 }
3325 
3326 /**
3327  * i915_gem_object_get_fence - set up fencing for an object
3328  * @obj: object to map through a fence reg
3329  *
3330  * When mapping objects through the GTT, userspace wants to be able to write
3331  * to them without having to worry about swizzling if the object is tiled.
3332  * This function walks the fence regs looking for a free one for @obj,
3333  * stealing one if it can't find any.
3334  *
3335  * It then sets up the reg based on the object's properties: address, pitch
3336  * and tiling format.
3337  *
3338  * For an untiled surface, this removes any existing fence.
3339  */
3340 int
3341 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3342 {
3343 	struct drm_device *dev = obj->base.dev;
3344 	struct drm_i915_private *dev_priv = dev->dev_private;
3345 	bool enable = obj->tiling_mode != I915_TILING_NONE;
3346 	struct drm_i915_fence_reg *reg;
3347 	int ret;
3348 
3349 	/* Have we updated the tiling parameters upon the object and so
3350 	 * will need to serialise the write to the associated fence register?
3351 	 */
3352 	if (obj->fence_dirty) {
3353 		ret = i915_gem_object_wait_fence(obj);
3354 		if (ret)
3355 			return ret;
3356 	}
3357 
3358 	/* Just update our place in the LRU if our fence is getting reused. */
3359 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
3360 		reg = &dev_priv->fence_regs[obj->fence_reg];
3361 		if (!obj->fence_dirty) {
3362 			list_move_tail(&reg->lru_list,
3363 				       &dev_priv->mm.fence_list);
3364 			return 0;
3365 		}
3366 	} else if (enable) {
3367 		if (WARN_ON(!obj->map_and_fenceable))
3368 			return -EINVAL;
3369 
3370 		reg = i915_find_fence_reg(dev);
3371 		if (IS_ERR(reg))
3372 			return PTR_ERR(reg);
3373 
3374 		if (reg->obj) {
3375 			struct drm_i915_gem_object *old = reg->obj;
3376 
3377 			ret = i915_gem_object_wait_fence(old);
3378 			if (ret)
3379 				return ret;
3380 
3381 			i915_gem_object_fence_lost(old);
3382 		}
3383 	} else
3384 		return 0;
3385 
3386 	i915_gem_object_update_fence(obj, reg, enable);
3387 
3388 	return 0;
3389 }
3390 
3391 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3392 				     unsigned long cache_level)
3393 {
3394 	struct drm_mm_node *gtt_space = &vma->node;
3395 	struct drm_mm_node *other;
3396 
3397 	/*
3398 	 * On some machines we have to be careful when putting differing types
3399 	 * of snoopable memory together to avoid the prefetcher crossing memory
3400 	 * domains and dying. During vm initialisation, we decide whether or not
3401 	 * these constraints apply and set the drm_mm.color_adjust
3402 	 * appropriately.
3403 	 */
3404 	if (vma->vm->mm.color_adjust == NULL)
3405 		return true;
3406 
3407 	if (!drm_mm_node_allocated(gtt_space))
3408 		return true;
3409 
3410 	if (list_empty(&gtt_space->node_list))
3411 		return true;
3412 
3413 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3414 	if (other->allocated && !other->hole_follows && other->color != cache_level)
3415 		return false;
3416 
3417 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3418 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3419 		return false;
3420 
3421 	return true;
3422 }
3423 
3424 /**
3425  * Finds free space in the GTT aperture and binds the object there.
3426  */
3427 static struct i915_vma *
3428 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3429 			   struct i915_address_space *vm,
3430 			   const struct i915_ggtt_view *ggtt_view,
3431 			   unsigned alignment,
3432 			   uint64_t flags)
3433 {
3434 	struct drm_device *dev = obj->base.dev;
3435 	struct drm_i915_private *dev_priv = dev->dev_private;
3436 	u32 size, fence_size, fence_alignment, unfenced_alignment;
3437 	unsigned long start =
3438 		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3439 	unsigned long end =
3440 		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3441 	struct i915_vma *vma;
3442 	int ret;
3443 
3444 	if(WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3445 		return ERR_PTR(-EINVAL);
3446 
3447 	fence_size = i915_gem_get_gtt_size(dev,
3448 					   obj->base.size,
3449 					   obj->tiling_mode);
3450 	fence_alignment = i915_gem_get_gtt_alignment(dev,
3451 						     obj->base.size,
3452 						     obj->tiling_mode, true);
3453 	unfenced_alignment =
3454 		i915_gem_get_gtt_alignment(dev,
3455 					   obj->base.size,
3456 					   obj->tiling_mode, false);
3457 
3458 	if (alignment == 0)
3459 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3460 						unfenced_alignment;
3461 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3462 		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3463 		return ERR_PTR(-EINVAL);
3464 	}
3465 
3466 	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3467 
3468 	/* If the object is bigger than the entire aperture, reject it early
3469 	 * before evicting everything in a vain attempt to find space.
3470 	 */
3471 	if (obj->base.size > end) {
3472 		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3473 			  obj->base.size,
3474 			  flags & PIN_MAPPABLE ? "mappable" : "total",
3475 			  end);
3476 		return ERR_PTR(-E2BIG);
3477 	}
3478 
3479 	ret = i915_gem_object_get_pages(obj);
3480 	if (ret)
3481 		return ERR_PTR(ret);
3482 
3483 	i915_gem_object_pin_pages(obj);
3484 
3485 	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3486 			  i915_gem_obj_lookup_or_create_vma(obj, vm);
3487 
3488 	if (IS_ERR(vma))
3489 		goto err_unpin;
3490 
3491 search_free:
3492 	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3493 						  size, alignment,
3494 						  obj->cache_level,
3495 						  start, end,
3496 						  DRM_MM_SEARCH_DEFAULT,
3497 						  DRM_MM_CREATE_DEFAULT);
3498 	if (ret) {
3499 		ret = i915_gem_evict_something(dev, vm, size, alignment,
3500 					       obj->cache_level,
3501 					       start, end,
3502 					       flags);
3503 		if (ret == 0)
3504 			goto search_free;
3505 
3506 		goto err_free_vma;
3507 	}
3508 	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3509 		ret = -EINVAL;
3510 		goto err_remove_node;
3511 	}
3512 
3513 	ret = i915_gem_gtt_prepare_object(obj);
3514 	if (ret)
3515 		goto err_remove_node;
3516 
3517 	/*  allocate before insert / bind */
3518 	if (vma->vm->allocate_va_range) {
3519 		trace_i915_va_alloc(vma->vm, vma->node.start, vma->node.size,
3520 				VM_TO_TRACE_NAME(vma->vm));
3521 		ret = vma->vm->allocate_va_range(vma->vm,
3522 						vma->node.start,
3523 						vma->node.size);
3524 		if (ret)
3525 			goto err_remove_node;
3526 	}
3527 
3528 	trace_i915_vma_bind(vma, flags);
3529 	ret = i915_vma_bind(vma, obj->cache_level,
3530 			    flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3531 	if (ret)
3532 		goto err_finish_gtt;
3533 
3534 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3535 	list_add_tail(&vma->mm_list, &vm->inactive_list);
3536 
3537 	return vma;
3538 
3539 err_finish_gtt:
3540 	i915_gem_gtt_finish_object(obj);
3541 err_remove_node:
3542 	drm_mm_remove_node(&vma->node);
3543 err_free_vma:
3544 	i915_gem_vma_destroy(vma);
3545 	vma = ERR_PTR(ret);
3546 err_unpin:
3547 	i915_gem_object_unpin_pages(obj);
3548 	return vma;
3549 }
3550 
3551 bool
3552 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3553 			bool force)
3554 {
3555 	/* If we don't have a page list set up, then we're not pinned
3556 	 * to GPU, and we can ignore the cache flush because it'll happen
3557 	 * again at bind time.
3558 	 */
3559 	if (obj->pages == NULL)
3560 		return false;
3561 
3562 	/*
3563 	 * Stolen memory is always coherent with the GPU as it is explicitly
3564 	 * marked as wc by the system, or the system is cache-coherent.
3565 	 */
3566 	if (obj->stolen || obj->phys_handle)
3567 		return false;
3568 
3569 	/* If the GPU is snooping the contents of the CPU cache,
3570 	 * we do not need to manually clear the CPU cache lines.  However,
3571 	 * the caches are only snooped when the render cache is
3572 	 * flushed/invalidated.  As we always have to emit invalidations
3573 	 * and flushes when moving into and out of the RENDER domain, correct
3574 	 * snooping behaviour occurs naturally as the result of our domain
3575 	 * tracking.
3576 	 */
3577 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3578 		obj->cache_dirty = true;
3579 		return false;
3580 	}
3581 
3582 	trace_i915_gem_object_clflush(obj);
3583 	drm_clflush_sg(obj->pages);
3584 	obj->cache_dirty = false;
3585 
3586 	return true;
3587 }
3588 
3589 /** Flushes the GTT write domain for the object if it's dirty. */
3590 static void
3591 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3592 {
3593 	uint32_t old_write_domain;
3594 
3595 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3596 		return;
3597 
3598 	/* No actual flushing is required for the GTT write domain.  Writes
3599 	 * to it immediately go to main memory as far as we know, so there's
3600 	 * no chipset flush.  It also doesn't land in render cache.
3601 	 *
3602 	 * However, we do have to enforce the order so that all writes through
3603 	 * the GTT land before any writes to the device, such as updates to
3604 	 * the GATT itself.
3605 	 */
3606 	wmb();
3607 
3608 	old_write_domain = obj->base.write_domain;
3609 	obj->base.write_domain = 0;
3610 
3611 	intel_fb_obj_flush(obj, false);
3612 
3613 	trace_i915_gem_object_change_domain(obj,
3614 					    obj->base.read_domains,
3615 					    old_write_domain);
3616 }
3617 
3618 /** Flushes the CPU write domain for the object if it's dirty. */
3619 static void
3620 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3621 {
3622 	uint32_t old_write_domain;
3623 
3624 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3625 		return;
3626 
3627 	if (i915_gem_clflush_object(obj, obj->pin_display))
3628 		i915_gem_chipset_flush(obj->base.dev);
3629 
3630 	old_write_domain = obj->base.write_domain;
3631 	obj->base.write_domain = 0;
3632 
3633 	intel_fb_obj_flush(obj, false);
3634 
3635 	trace_i915_gem_object_change_domain(obj,
3636 					    obj->base.read_domains,
3637 					    old_write_domain);
3638 }
3639 
3640 /**
3641  * Moves a single object to the GTT read, and possibly write domain.
3642  *
3643  * This function returns when the move is complete, including waiting on
3644  * flushes to occur.
3645  */
3646 int
3647 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3648 {
3649 	uint32_t old_write_domain, old_read_domains;
3650 	struct i915_vma *vma;
3651 	int ret;
3652 
3653 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3654 		return 0;
3655 
3656 	ret = i915_gem_object_wait_rendering(obj, !write);
3657 	if (ret)
3658 		return ret;
3659 
3660 	i915_gem_object_retire(obj);
3661 
3662 	/* Flush and acquire obj->pages so that we are coherent through
3663 	 * direct access in memory with previous cached writes through
3664 	 * shmemfs and that our cache domain tracking remains valid.
3665 	 * For example, if the obj->filp was moved to swap without us
3666 	 * being notified and releasing the pages, we would mistakenly
3667 	 * continue to assume that the obj remained out of the CPU cached
3668 	 * domain.
3669 	 */
3670 	ret = i915_gem_object_get_pages(obj);
3671 	if (ret)
3672 		return ret;
3673 
3674 	i915_gem_object_flush_cpu_write_domain(obj);
3675 
3676 	/* Serialise direct access to this object with the barriers for
3677 	 * coherent writes from the GPU, by effectively invalidating the
3678 	 * GTT domain upon first access.
3679 	 */
3680 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3681 		mb();
3682 
3683 	old_write_domain = obj->base.write_domain;
3684 	old_read_domains = obj->base.read_domains;
3685 
3686 	/* It should now be out of any other write domains, and we can update
3687 	 * the domain values for our changes.
3688 	 */
3689 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3690 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3691 	if (write) {
3692 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3693 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3694 		obj->dirty = 1;
3695 	}
3696 
3697 	if (write)
3698 		intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
3699 
3700 	trace_i915_gem_object_change_domain(obj,
3701 					    old_read_domains,
3702 					    old_write_domain);
3703 
3704 	/* And bump the LRU for this access */
3705 	vma = i915_gem_obj_to_ggtt(obj);
3706 	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3707 		list_move_tail(&vma->mm_list,
3708 			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3709 
3710 	return 0;
3711 }
3712 
3713 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3714 				    enum i915_cache_level cache_level)
3715 {
3716 	struct drm_device *dev = obj->base.dev;
3717 	struct i915_vma *vma, *next;
3718 	int ret;
3719 
3720 	if (obj->cache_level == cache_level)
3721 		return 0;
3722 
3723 	if (i915_gem_obj_is_pinned(obj)) {
3724 		DRM_DEBUG("can not change the cache level of pinned objects\n");
3725 		return -EBUSY;
3726 	}
3727 
3728 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3729 		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3730 			ret = i915_vma_unbind(vma);
3731 			if (ret)
3732 				return ret;
3733 		}
3734 	}
3735 
3736 	if (i915_gem_obj_bound_any(obj)) {
3737 		ret = i915_gem_object_finish_gpu(obj);
3738 		if (ret)
3739 			return ret;
3740 
3741 		i915_gem_object_finish_gtt(obj);
3742 
3743 		/* Before SandyBridge, you could not use tiling or fence
3744 		 * registers with snooped memory, so relinquish any fences
3745 		 * currently pointing to our region in the aperture.
3746 		 */
3747 		if (INTEL_INFO(dev)->gen < 6) {
3748 			ret = i915_gem_object_put_fence(obj);
3749 			if (ret)
3750 				return ret;
3751 		}
3752 
3753 		list_for_each_entry(vma, &obj->vma_list, vma_link)
3754 			if (drm_mm_node_allocated(&vma->node)) {
3755 				ret = i915_vma_bind(vma, cache_level,
3756 						    vma->bound & GLOBAL_BIND);
3757 				if (ret)
3758 					return ret;
3759 			}
3760 	}
3761 
3762 	list_for_each_entry(vma, &obj->vma_list, vma_link)
3763 		vma->node.color = cache_level;
3764 	obj->cache_level = cache_level;
3765 
3766 	if (obj->cache_dirty &&
3767 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3768 	    cpu_write_needs_clflush(obj)) {
3769 		if (i915_gem_clflush_object(obj, true))
3770 			i915_gem_chipset_flush(obj->base.dev);
3771 	}
3772 
3773 	return 0;
3774 }
3775 
3776 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3777 			       struct drm_file *file)
3778 {
3779 	struct drm_i915_gem_caching *args = data;
3780 	struct drm_i915_gem_object *obj;
3781 	int ret;
3782 
3783 	ret = i915_mutex_lock_interruptible(dev);
3784 	if (ret)
3785 		return ret;
3786 
3787 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3788 	if (&obj->base == NULL) {
3789 		ret = -ENOENT;
3790 		goto unlock;
3791 	}
3792 
3793 	switch (obj->cache_level) {
3794 	case I915_CACHE_LLC:
3795 	case I915_CACHE_L3_LLC:
3796 		args->caching = I915_CACHING_CACHED;
3797 		break;
3798 
3799 	case I915_CACHE_WT:
3800 		args->caching = I915_CACHING_DISPLAY;
3801 		break;
3802 
3803 	default:
3804 		args->caching = I915_CACHING_NONE;
3805 		break;
3806 	}
3807 
3808 	drm_gem_object_unreference(&obj->base);
3809 unlock:
3810 	mutex_unlock(&dev->struct_mutex);
3811 	return ret;
3812 }
3813 
3814 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3815 			       struct drm_file *file)
3816 {
3817 	struct drm_i915_gem_caching *args = data;
3818 	struct drm_i915_gem_object *obj;
3819 	enum i915_cache_level level;
3820 	int ret;
3821 
3822 	switch (args->caching) {
3823 	case I915_CACHING_NONE:
3824 		level = I915_CACHE_NONE;
3825 		break;
3826 	case I915_CACHING_CACHED:
3827 		level = I915_CACHE_LLC;
3828 		break;
3829 	case I915_CACHING_DISPLAY:
3830 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3831 		break;
3832 	default:
3833 		return -EINVAL;
3834 	}
3835 
3836 	ret = i915_mutex_lock_interruptible(dev);
3837 	if (ret)
3838 		return ret;
3839 
3840 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3841 	if (&obj->base == NULL) {
3842 		ret = -ENOENT;
3843 		goto unlock;
3844 	}
3845 
3846 	ret = i915_gem_object_set_cache_level(obj, level);
3847 
3848 	drm_gem_object_unreference(&obj->base);
3849 unlock:
3850 	mutex_unlock(&dev->struct_mutex);
3851 	return ret;
3852 }
3853 
3854 static bool is_pin_display(struct drm_i915_gem_object *obj)
3855 {
3856 	struct i915_vma *vma;
3857 
3858 	vma = i915_gem_obj_to_ggtt(obj);
3859 	if (!vma)
3860 		return false;
3861 
3862 	/* There are 2 sources that pin objects:
3863 	 *   1. The display engine (scanouts, sprites, cursors);
3864 	 *   2. Reservations for execbuffer;
3865 	 *
3866 	 * We can ignore reservations as we hold the struct_mutex and
3867 	 * are only called outside of the reservation path.
3868 	 */
3869 	return vma->pin_count;
3870 }
3871 
3872 /*
3873  * Prepare buffer for display plane (scanout, cursors, etc).
3874  * Can be called from an uninterruptible phase (modesetting) and allows
3875  * any flushes to be pipelined (for pageflips).
3876  */
3877 int
3878 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3879 				     u32 alignment,
3880 				     struct intel_engine_cs *pipelined,
3881 				     const struct i915_ggtt_view *view)
3882 {
3883 	u32 old_read_domains, old_write_domain;
3884 	bool was_pin_display;
3885 	int ret;
3886 
3887 	if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3888 		ret = i915_gem_object_sync(obj, pipelined);
3889 		if (ret)
3890 			return ret;
3891 	}
3892 
3893 	/* Mark the pin_display early so that we account for the
3894 	 * display coherency whilst setting up the cache domains.
3895 	 */
3896 	was_pin_display = obj->pin_display;
3897 	obj->pin_display = true;
3898 
3899 	/* The display engine is not coherent with the LLC cache on gen6.  As
3900 	 * a result, we make sure that the pinning that is about to occur is
3901 	 * done with uncached PTEs. This is lowest common denominator for all
3902 	 * chipsets.
3903 	 *
3904 	 * However for gen6+, we could do better by using the GFDT bit instead
3905 	 * of uncaching, which would allow us to flush all the LLC-cached data
3906 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3907 	 */
3908 	ret = i915_gem_object_set_cache_level(obj,
3909 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3910 	if (ret)
3911 		goto err_unpin_display;
3912 
3913 	/* As the user may map the buffer once pinned in the display plane
3914 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3915 	 * always use map_and_fenceable for all scanout buffers.
3916 	 */
3917 	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3918 				       view->type == I915_GGTT_VIEW_NORMAL ?
3919 				       PIN_MAPPABLE : 0);
3920 	if (ret)
3921 		goto err_unpin_display;
3922 
3923 	i915_gem_object_flush_cpu_write_domain(obj);
3924 
3925 	old_write_domain = obj->base.write_domain;
3926 	old_read_domains = obj->base.read_domains;
3927 
3928 	/* It should now be out of any other write domains, and we can update
3929 	 * the domain values for our changes.
3930 	 */
3931 	obj->base.write_domain = 0;
3932 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3933 
3934 	trace_i915_gem_object_change_domain(obj,
3935 					    old_read_domains,
3936 					    old_write_domain);
3937 
3938 	return 0;
3939 
3940 err_unpin_display:
3941 	WARN_ON(was_pin_display != is_pin_display(obj));
3942 	obj->pin_display = was_pin_display;
3943 	return ret;
3944 }
3945 
3946 void
3947 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3948 					 const struct i915_ggtt_view *view)
3949 {
3950 	i915_gem_object_ggtt_unpin_view(obj, view);
3951 
3952 	obj->pin_display = is_pin_display(obj);
3953 }
3954 
3955 int
3956 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3957 {
3958 	int ret;
3959 
3960 	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3961 		return 0;
3962 
3963 	ret = i915_gem_object_wait_rendering(obj, false);
3964 	if (ret)
3965 		return ret;
3966 
3967 	/* Ensure that we invalidate the GPU's caches and TLBs. */
3968 	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3969 	return 0;
3970 }
3971 
3972 /**
3973  * Moves a single object to the CPU read, and possibly write domain.
3974  *
3975  * This function returns when the move is complete, including waiting on
3976  * flushes to occur.
3977  */
3978 int
3979 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3980 {
3981 	uint32_t old_write_domain, old_read_domains;
3982 	int ret;
3983 
3984 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3985 		return 0;
3986 
3987 	ret = i915_gem_object_wait_rendering(obj, !write);
3988 	if (ret)
3989 		return ret;
3990 
3991 	i915_gem_object_retire(obj);
3992 	i915_gem_object_flush_gtt_write_domain(obj);
3993 
3994 	old_write_domain = obj->base.write_domain;
3995 	old_read_domains = obj->base.read_domains;
3996 
3997 	/* Flush the CPU cache if it's still invalid. */
3998 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3999 		i915_gem_clflush_object(obj, false);
4000 
4001 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4002 	}
4003 
4004 	/* It should now be out of any other write domains, and we can update
4005 	 * the domain values for our changes.
4006 	 */
4007 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4008 
4009 	/* If we're writing through the CPU, then the GPU read domains will
4010 	 * need to be invalidated at next use.
4011 	 */
4012 	if (write) {
4013 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4014 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4015 	}
4016 
4017 	if (write)
4018 		intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
4019 
4020 	trace_i915_gem_object_change_domain(obj,
4021 					    old_read_domains,
4022 					    old_write_domain);
4023 
4024 	return 0;
4025 }
4026 
4027 /* Throttle our rendering by waiting until the ring has completed our requests
4028  * emitted over 20 msec ago.
4029  *
4030  * Note that if we were to use the current jiffies each time around the loop,
4031  * we wouldn't escape the function with any frames outstanding if the time to
4032  * render a frame was over 20ms.
4033  *
4034  * This should get us reasonable parallelism between CPU and GPU but also
4035  * relatively low latency when blocking on a particular request to finish.
4036  */
4037 static int
4038 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4039 {
4040 	struct drm_i915_private *dev_priv = dev->dev_private;
4041 	struct drm_i915_file_private *file_priv = file->driver_priv;
4042 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4043 	struct drm_i915_gem_request *request, *target = NULL;
4044 	unsigned reset_counter;
4045 	int ret;
4046 
4047 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4048 	if (ret)
4049 		return ret;
4050 
4051 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4052 	if (ret)
4053 		return ret;
4054 
4055 	spin_lock(&file_priv->mm.lock);
4056 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4057 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4058 			break;
4059 
4060 		target = request;
4061 	}
4062 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4063 	if (target)
4064 		i915_gem_request_reference(target);
4065 	spin_unlock(&file_priv->mm.lock);
4066 
4067 	if (target == NULL)
4068 		return 0;
4069 
4070 	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4071 	if (ret == 0)
4072 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4073 
4074 	mutex_lock(&dev->struct_mutex);
4075 	i915_gem_request_unreference(target);
4076 	mutex_unlock(&dev->struct_mutex);
4077 
4078 	return ret;
4079 }
4080 
4081 static bool
4082 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4083 {
4084 	struct drm_i915_gem_object *obj = vma->obj;
4085 
4086 	if (alignment &&
4087 	    vma->node.start & (alignment - 1))
4088 		return true;
4089 
4090 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4091 		return true;
4092 
4093 	if (flags & PIN_OFFSET_BIAS &&
4094 	    vma->node.start < (flags & PIN_OFFSET_MASK))
4095 		return true;
4096 
4097 	return false;
4098 }
4099 
4100 static int
4101 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4102 		       struct i915_address_space *vm,
4103 		       const struct i915_ggtt_view *ggtt_view,
4104 		       uint32_t alignment,
4105 		       uint64_t flags)
4106 {
4107 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4108 	struct i915_vma *vma;
4109 	unsigned bound;
4110 	int ret;
4111 
4112 	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4113 		return -ENODEV;
4114 
4115 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4116 		return -EINVAL;
4117 
4118 	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4119 		return -EINVAL;
4120 
4121 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4122 		return -EINVAL;
4123 
4124 	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4125 			  i915_gem_obj_to_vma(obj, vm);
4126 
4127 	if (IS_ERR(vma))
4128 		return PTR_ERR(vma);
4129 
4130 	if (vma) {
4131 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4132 			return -EBUSY;
4133 
4134 		if (i915_vma_misplaced(vma, alignment, flags)) {
4135 			unsigned long offset;
4136 			offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4137 					     i915_gem_obj_offset(obj, vm);
4138 			WARN(vma->pin_count,
4139 			     "bo is already pinned in %s with incorrect alignment:"
4140 			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4141 			     " obj->map_and_fenceable=%d\n",
4142 			     ggtt_view ? "ggtt" : "ppgtt",
4143 			     offset,
4144 			     alignment,
4145 			     !!(flags & PIN_MAPPABLE),
4146 			     obj->map_and_fenceable);
4147 			ret = i915_vma_unbind(vma);
4148 			if (ret)
4149 				return ret;
4150 
4151 			vma = NULL;
4152 		}
4153 	}
4154 
4155 	bound = vma ? vma->bound : 0;
4156 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4157 		/* In true PPGTT, bind has possibly changed PDEs, which
4158 		 * means we must do a context switch before the GPU can
4159 		 * accurately read some of the VMAs.
4160 		 */
4161 		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4162 						 flags);
4163 		if (IS_ERR(vma))
4164 			return PTR_ERR(vma);
4165 	}
4166 
4167 	if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
4168 		ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
4169 		if (ret)
4170 			return ret;
4171 	}
4172 
4173 	if ((bound ^ vma->bound) & GLOBAL_BIND) {
4174 		bool mappable, fenceable;
4175 		u32 fence_size, fence_alignment;
4176 
4177 		fence_size = i915_gem_get_gtt_size(obj->base.dev,
4178 						   obj->base.size,
4179 						   obj->tiling_mode);
4180 		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4181 							     obj->base.size,
4182 							     obj->tiling_mode,
4183 							     true);
4184 
4185 		fenceable = (vma->node.size == fence_size &&
4186 			     (vma->node.start & (fence_alignment - 1)) == 0);
4187 
4188 		mappable = (vma->node.start + fence_size <=
4189 			    dev_priv->gtt.mappable_end);
4190 
4191 		obj->map_and_fenceable = mappable && fenceable;
4192 	}
4193 
4194 	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4195 
4196 	vma->pin_count++;
4197 	if (flags & PIN_MAPPABLE)
4198 		obj->pin_mappable |= true;
4199 
4200 	return 0;
4201 }
4202 
4203 int
4204 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4205 		    struct i915_address_space *vm,
4206 		    uint32_t alignment,
4207 		    uint64_t flags)
4208 {
4209 	return i915_gem_object_do_pin(obj, vm,
4210 				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4211 				      alignment, flags);
4212 }
4213 
4214 int
4215 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4216 			 const struct i915_ggtt_view *view,
4217 			 uint32_t alignment,
4218 			 uint64_t flags)
4219 {
4220 	if (WARN_ONCE(!view, "no view specified"))
4221 		return -EINVAL;
4222 
4223 	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4224 				      alignment, flags | PIN_GLOBAL);
4225 }
4226 
4227 void
4228 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4229 				const struct i915_ggtt_view *view)
4230 {
4231 	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4232 
4233 	BUG_ON(!vma);
4234 	WARN_ON(vma->pin_count == 0);
4235 	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4236 
4237 	if (--vma->pin_count == 0 && view->type == I915_GGTT_VIEW_NORMAL)
4238 		obj->pin_mappable = false;
4239 }
4240 
4241 bool
4242 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4243 {
4244 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
4245 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4246 		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4247 
4248 		WARN_ON(!ggtt_vma ||
4249 			dev_priv->fence_regs[obj->fence_reg].pin_count >
4250 			ggtt_vma->pin_count);
4251 		dev_priv->fence_regs[obj->fence_reg].pin_count++;
4252 		return true;
4253 	} else
4254 		return false;
4255 }
4256 
4257 void
4258 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4259 {
4260 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
4261 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4262 		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4263 		dev_priv->fence_regs[obj->fence_reg].pin_count--;
4264 	}
4265 }
4266 
4267 int
4268 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4269 		    struct drm_file *file)
4270 {
4271 	struct drm_i915_gem_busy *args = data;
4272 	struct drm_i915_gem_object *obj;
4273 	int ret;
4274 
4275 	ret = i915_mutex_lock_interruptible(dev);
4276 	if (ret)
4277 		return ret;
4278 
4279 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4280 	if (&obj->base == NULL) {
4281 		ret = -ENOENT;
4282 		goto unlock;
4283 	}
4284 
4285 	/* Count all active objects as busy, even if they are currently not used
4286 	 * by the gpu. Users of this interface expect objects to eventually
4287 	 * become non-busy without any further actions, therefore emit any
4288 	 * necessary flushes here.
4289 	 */
4290 	ret = i915_gem_object_flush_active(obj);
4291 
4292 	args->busy = obj->active;
4293 	if (obj->last_read_req) {
4294 		struct intel_engine_cs *ring;
4295 		BUILD_BUG_ON(I915_NUM_RINGS > 16);
4296 		ring = i915_gem_request_get_ring(obj->last_read_req);
4297 		args->busy |= intel_ring_flag(ring) << 16;
4298 	}
4299 
4300 	drm_gem_object_unreference(&obj->base);
4301 unlock:
4302 	mutex_unlock(&dev->struct_mutex);
4303 	return ret;
4304 }
4305 
4306 int
4307 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4308 			struct drm_file *file_priv)
4309 {
4310 	return i915_gem_ring_throttle(dev, file_priv);
4311 }
4312 
4313 int
4314 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4315 		       struct drm_file *file_priv)
4316 {
4317 	struct drm_i915_private *dev_priv = dev->dev_private;
4318 	struct drm_i915_gem_madvise *args = data;
4319 	struct drm_i915_gem_object *obj;
4320 	int ret;
4321 
4322 	switch (args->madv) {
4323 	case I915_MADV_DONTNEED:
4324 	case I915_MADV_WILLNEED:
4325 	    break;
4326 	default:
4327 	    return -EINVAL;
4328 	}
4329 
4330 	ret = i915_mutex_lock_interruptible(dev);
4331 	if (ret)
4332 		return ret;
4333 
4334 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4335 	if (&obj->base == NULL) {
4336 		ret = -ENOENT;
4337 		goto unlock;
4338 	}
4339 
4340 	if (i915_gem_obj_is_pinned(obj)) {
4341 		ret = -EINVAL;
4342 		goto out;
4343 	}
4344 
4345 	if (obj->pages &&
4346 	    obj->tiling_mode != I915_TILING_NONE &&
4347 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4348 		if (obj->madv == I915_MADV_WILLNEED)
4349 			i915_gem_object_unpin_pages(obj);
4350 		if (args->madv == I915_MADV_WILLNEED)
4351 			i915_gem_object_pin_pages(obj);
4352 	}
4353 
4354 	if (obj->madv != __I915_MADV_PURGED)
4355 		obj->madv = args->madv;
4356 
4357 	/* if the object is no longer attached, discard its backing storage */
4358 	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4359 		i915_gem_object_truncate(obj);
4360 
4361 	args->retained = obj->madv != __I915_MADV_PURGED;
4362 
4363 out:
4364 	drm_gem_object_unreference(&obj->base);
4365 unlock:
4366 	mutex_unlock(&dev->struct_mutex);
4367 	return ret;
4368 }
4369 
4370 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4371 			  const struct drm_i915_gem_object_ops *ops)
4372 {
4373 	INIT_LIST_HEAD(&obj->global_list);
4374 	INIT_LIST_HEAD(&obj->ring_list);
4375 	INIT_LIST_HEAD(&obj->obj_exec_link);
4376 	INIT_LIST_HEAD(&obj->vma_list);
4377 	INIT_LIST_HEAD(&obj->batch_pool_list);
4378 
4379 	obj->ops = ops;
4380 
4381 	obj->fence_reg = I915_FENCE_REG_NONE;
4382 	obj->madv = I915_MADV_WILLNEED;
4383 
4384 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4385 }
4386 
4387 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4388 	.get_pages = i915_gem_object_get_pages_gtt,
4389 	.put_pages = i915_gem_object_put_pages_gtt,
4390 };
4391 
4392 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4393 						  size_t size)
4394 {
4395 	struct drm_i915_gem_object *obj;
4396 	struct address_space *mapping;
4397 	gfp_t mask;
4398 
4399 	obj = i915_gem_object_alloc(dev);
4400 	if (obj == NULL)
4401 		return NULL;
4402 
4403 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4404 		i915_gem_object_free(obj);
4405 		return NULL;
4406 	}
4407 
4408 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4409 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4410 		/* 965gm cannot relocate objects above 4GiB. */
4411 		mask &= ~__GFP_HIGHMEM;
4412 		mask |= __GFP_DMA32;
4413 	}
4414 
4415 	mapping = file_inode(obj->base.filp)->i_mapping;
4416 	mapping_set_gfp_mask(mapping, mask);
4417 
4418 	i915_gem_object_init(obj, &i915_gem_object_ops);
4419 
4420 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4421 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4422 
4423 	if (HAS_LLC(dev)) {
4424 		/* On some devices, we can have the GPU use the LLC (the CPU
4425 		 * cache) for about a 10% performance improvement
4426 		 * compared to uncached.  Graphics requests other than
4427 		 * display scanout are coherent with the CPU in
4428 		 * accessing this cache.  This means in this mode we
4429 		 * don't need to clflush on the CPU side, and on the
4430 		 * GPU side we only need to flush internal caches to
4431 		 * get data visible to the CPU.
4432 		 *
4433 		 * However, we maintain the display planes as UC, and so
4434 		 * need to rebind when first used as such.
4435 		 */
4436 		obj->cache_level = I915_CACHE_LLC;
4437 	} else
4438 		obj->cache_level = I915_CACHE_NONE;
4439 
4440 	trace_i915_gem_object_create(obj);
4441 
4442 	return obj;
4443 }
4444 
4445 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4446 {
4447 	/* If we are the last user of the backing storage (be it shmemfs
4448 	 * pages or stolen etc), we know that the pages are going to be
4449 	 * immediately released. In this case, we can then skip copying
4450 	 * back the contents from the GPU.
4451 	 */
4452 
4453 	if (obj->madv != I915_MADV_WILLNEED)
4454 		return false;
4455 
4456 	if (obj->base.filp == NULL)
4457 		return true;
4458 
4459 	/* At first glance, this looks racy, but then again so would be
4460 	 * userspace racing mmap against close. However, the first external
4461 	 * reference to the filp can only be obtained through the
4462 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4463 	 * acquiring such a reference whilst we are in the middle of
4464 	 * freeing the object.
4465 	 */
4466 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4467 }
4468 
4469 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4470 {
4471 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4472 	struct drm_device *dev = obj->base.dev;
4473 	struct drm_i915_private *dev_priv = dev->dev_private;
4474 	struct i915_vma *vma, *next;
4475 
4476 	intel_runtime_pm_get(dev_priv);
4477 
4478 	trace_i915_gem_object_destroy(obj);
4479 
4480 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4481 		int ret;
4482 
4483 		vma->pin_count = 0;
4484 		ret = i915_vma_unbind(vma);
4485 		if (WARN_ON(ret == -ERESTARTSYS)) {
4486 			bool was_interruptible;
4487 
4488 			was_interruptible = dev_priv->mm.interruptible;
4489 			dev_priv->mm.interruptible = false;
4490 
4491 			WARN_ON(i915_vma_unbind(vma));
4492 
4493 			dev_priv->mm.interruptible = was_interruptible;
4494 		}
4495 	}
4496 
4497 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4498 	 * before progressing. */
4499 	if (obj->stolen)
4500 		i915_gem_object_unpin_pages(obj);
4501 
4502 	WARN_ON(obj->frontbuffer_bits);
4503 
4504 	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4505 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4506 	    obj->tiling_mode != I915_TILING_NONE)
4507 		i915_gem_object_unpin_pages(obj);
4508 
4509 	if (WARN_ON(obj->pages_pin_count))
4510 		obj->pages_pin_count = 0;
4511 	if (discard_backing_storage(obj))
4512 		obj->madv = I915_MADV_DONTNEED;
4513 	i915_gem_object_put_pages(obj);
4514 	i915_gem_object_free_mmap_offset(obj);
4515 
4516 	BUG_ON(obj->pages);
4517 
4518 	if (obj->base.import_attach)
4519 		drm_prime_gem_destroy(&obj->base, NULL);
4520 
4521 	if (obj->ops->release)
4522 		obj->ops->release(obj);
4523 
4524 	drm_gem_object_release(&obj->base);
4525 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4526 
4527 	kfree(obj->bit_17);
4528 	i915_gem_object_free(obj);
4529 
4530 	intel_runtime_pm_put(dev_priv);
4531 }
4532 
4533 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4534 				     struct i915_address_space *vm)
4535 {
4536 	struct i915_vma *vma;
4537 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
4538 		if (i915_is_ggtt(vma->vm) &&
4539 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4540 			continue;
4541 		if (vma->vm == vm)
4542 			return vma;
4543 	}
4544 	return NULL;
4545 }
4546 
4547 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4548 					   const struct i915_ggtt_view *view)
4549 {
4550 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4551 	struct i915_vma *vma;
4552 
4553 	if (WARN_ONCE(!view, "no view specified"))
4554 		return ERR_PTR(-EINVAL);
4555 
4556 	list_for_each_entry(vma, &obj->vma_list, vma_link)
4557 		if (vma->vm == ggtt &&
4558 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4559 			return vma;
4560 	return NULL;
4561 }
4562 
4563 void i915_gem_vma_destroy(struct i915_vma *vma)
4564 {
4565 	struct i915_address_space *vm = NULL;
4566 	WARN_ON(vma->node.allocated);
4567 
4568 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4569 	if (!list_empty(&vma->exec_list))
4570 		return;
4571 
4572 	vm = vma->vm;
4573 
4574 	if (!i915_is_ggtt(vm))
4575 		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4576 
4577 	list_del(&vma->vma_link);
4578 
4579 	kfree(vma);
4580 }
4581 
4582 static void
4583 i915_gem_stop_ringbuffers(struct drm_device *dev)
4584 {
4585 	struct drm_i915_private *dev_priv = dev->dev_private;
4586 	struct intel_engine_cs *ring;
4587 	int i;
4588 
4589 	for_each_ring(ring, dev_priv, i)
4590 		dev_priv->gt.stop_ring(ring);
4591 }
4592 
4593 int
4594 i915_gem_suspend(struct drm_device *dev)
4595 {
4596 	struct drm_i915_private *dev_priv = dev->dev_private;
4597 	int ret = 0;
4598 
4599 	mutex_lock(&dev->struct_mutex);
4600 	ret = i915_gpu_idle(dev);
4601 	if (ret)
4602 		goto err;
4603 
4604 	i915_gem_retire_requests(dev);
4605 
4606 	i915_gem_stop_ringbuffers(dev);
4607 	mutex_unlock(&dev->struct_mutex);
4608 
4609 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4610 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4611 	flush_delayed_work(&dev_priv->mm.idle_work);
4612 
4613 	/* Assert that we sucessfully flushed all the work and
4614 	 * reset the GPU back to its idle, low power state.
4615 	 */
4616 	WARN_ON(dev_priv->mm.busy);
4617 
4618 	return 0;
4619 
4620 err:
4621 	mutex_unlock(&dev->struct_mutex);
4622 	return ret;
4623 }
4624 
4625 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4626 {
4627 	struct drm_device *dev = ring->dev;
4628 	struct drm_i915_private *dev_priv = dev->dev_private;
4629 	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4630 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4631 	int i, ret;
4632 
4633 	if (!HAS_L3_DPF(dev) || !remap_info)
4634 		return 0;
4635 
4636 	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4637 	if (ret)
4638 		return ret;
4639 
4640 	/*
4641 	 * Note: We do not worry about the concurrent register cacheline hang
4642 	 * here because no other code should access these registers other than
4643 	 * at initialization time.
4644 	 */
4645 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4646 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4647 		intel_ring_emit(ring, reg_base + i);
4648 		intel_ring_emit(ring, remap_info[i/4]);
4649 	}
4650 
4651 	intel_ring_advance(ring);
4652 
4653 	return ret;
4654 }
4655 
4656 void i915_gem_init_swizzling(struct drm_device *dev)
4657 {
4658 	struct drm_i915_private *dev_priv = dev->dev_private;
4659 
4660 	if (INTEL_INFO(dev)->gen < 5 ||
4661 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4662 		return;
4663 
4664 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4665 				 DISP_TILE_SURFACE_SWIZZLING);
4666 
4667 	if (IS_GEN5(dev))
4668 		return;
4669 
4670 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4671 	if (IS_GEN6(dev))
4672 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4673 	else if (IS_GEN7(dev))
4674 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4675 	else if (IS_GEN8(dev))
4676 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4677 	else
4678 		BUG();
4679 }
4680 
4681 static bool
4682 intel_enable_blt(struct drm_device *dev)
4683 {
4684 	if (!HAS_BLT(dev))
4685 		return false;
4686 
4687 	/* The blitter was dysfunctional on early prototypes */
4688 	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4689 		DRM_INFO("BLT not supported on this pre-production hardware;"
4690 			 " graphics performance will be degraded.\n");
4691 		return false;
4692 	}
4693 
4694 	return true;
4695 }
4696 
4697 static void init_unused_ring(struct drm_device *dev, u32 base)
4698 {
4699 	struct drm_i915_private *dev_priv = dev->dev_private;
4700 
4701 	I915_WRITE(RING_CTL(base), 0);
4702 	I915_WRITE(RING_HEAD(base), 0);
4703 	I915_WRITE(RING_TAIL(base), 0);
4704 	I915_WRITE(RING_START(base), 0);
4705 }
4706 
4707 static void init_unused_rings(struct drm_device *dev)
4708 {
4709 	if (IS_I830(dev)) {
4710 		init_unused_ring(dev, PRB1_BASE);
4711 		init_unused_ring(dev, SRB0_BASE);
4712 		init_unused_ring(dev, SRB1_BASE);
4713 		init_unused_ring(dev, SRB2_BASE);
4714 		init_unused_ring(dev, SRB3_BASE);
4715 	} else if (IS_GEN2(dev)) {
4716 		init_unused_ring(dev, SRB0_BASE);
4717 		init_unused_ring(dev, SRB1_BASE);
4718 	} else if (IS_GEN3(dev)) {
4719 		init_unused_ring(dev, PRB1_BASE);
4720 		init_unused_ring(dev, PRB2_BASE);
4721 	}
4722 }
4723 
4724 int i915_gem_init_rings(struct drm_device *dev)
4725 {
4726 	struct drm_i915_private *dev_priv = dev->dev_private;
4727 	int ret;
4728 
4729 	ret = intel_init_render_ring_buffer(dev);
4730 	if (ret)
4731 		return ret;
4732 
4733 	if (HAS_BSD(dev)) {
4734 		ret = intel_init_bsd_ring_buffer(dev);
4735 		if (ret)
4736 			goto cleanup_render_ring;
4737 	}
4738 
4739 	if (intel_enable_blt(dev)) {
4740 		ret = intel_init_blt_ring_buffer(dev);
4741 		if (ret)
4742 			goto cleanup_bsd_ring;
4743 	}
4744 
4745 	if (HAS_VEBOX(dev)) {
4746 		ret = intel_init_vebox_ring_buffer(dev);
4747 		if (ret)
4748 			goto cleanup_blt_ring;
4749 	}
4750 
4751 	if (HAS_BSD2(dev)) {
4752 		ret = intel_init_bsd2_ring_buffer(dev);
4753 		if (ret)
4754 			goto cleanup_vebox_ring;
4755 	}
4756 
4757 	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4758 	if (ret)
4759 		goto cleanup_bsd2_ring;
4760 
4761 	return 0;
4762 
4763 cleanup_bsd2_ring:
4764 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4765 cleanup_vebox_ring:
4766 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4767 cleanup_blt_ring:
4768 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4769 cleanup_bsd_ring:
4770 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4771 cleanup_render_ring:
4772 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4773 
4774 	return ret;
4775 }
4776 
4777 int
4778 i915_gem_init_hw(struct drm_device *dev)
4779 {
4780 	struct drm_i915_private *dev_priv = dev->dev_private;
4781 	struct intel_engine_cs *ring;
4782 	int ret, i;
4783 
4784 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4785 		return -EIO;
4786 
4787 	/* Double layer security blanket, see i915_gem_init() */
4788 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4789 
4790 	if (dev_priv->ellc_size)
4791 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4792 
4793 	if (IS_HASWELL(dev))
4794 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4795 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4796 
4797 	if (HAS_PCH_NOP(dev)) {
4798 		if (IS_IVYBRIDGE(dev)) {
4799 			u32 temp = I915_READ(GEN7_MSG_CTL);
4800 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4801 			I915_WRITE(GEN7_MSG_CTL, temp);
4802 		} else if (INTEL_INFO(dev)->gen >= 7) {
4803 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4804 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4805 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4806 		}
4807 	}
4808 
4809 	i915_gem_init_swizzling(dev);
4810 
4811 	/*
4812 	 * At least 830 can leave some of the unused rings
4813 	 * "active" (ie. head != tail) after resume which
4814 	 * will prevent c3 entry. Makes sure all unused rings
4815 	 * are totally idle.
4816 	 */
4817 	init_unused_rings(dev);
4818 
4819 	for_each_ring(ring, dev_priv, i) {
4820 		ret = ring->init_hw(ring);
4821 		if (ret)
4822 			goto out;
4823 	}
4824 
4825 	for (i = 0; i < NUM_L3_SLICES(dev); i++)
4826 		i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4827 
4828 	ret = i915_ppgtt_init_hw(dev);
4829 	if (ret && ret != -EIO) {
4830 		DRM_ERROR("PPGTT enable failed %d\n", ret);
4831 		i915_gem_cleanup_ringbuffer(dev);
4832 	}
4833 
4834 	ret = i915_gem_context_enable(dev_priv);
4835 	if (ret && ret != -EIO) {
4836 		DRM_ERROR("Context enable failed %d\n", ret);
4837 		i915_gem_cleanup_ringbuffer(dev);
4838 
4839 		goto out;
4840 	}
4841 
4842 out:
4843 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4844 	return ret;
4845 }
4846 
4847 int i915_gem_init(struct drm_device *dev)
4848 {
4849 	struct drm_i915_private *dev_priv = dev->dev_private;
4850 	int ret;
4851 
4852 	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4853 			i915.enable_execlists);
4854 
4855 	mutex_lock(&dev->struct_mutex);
4856 
4857 	if (IS_VALLEYVIEW(dev)) {
4858 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4859 		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4860 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4861 			      VLV_GTLC_ALLOWWAKEACK), 10))
4862 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4863 	}
4864 
4865 	if (!i915.enable_execlists) {
4866 		dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4867 		dev_priv->gt.init_rings = i915_gem_init_rings;
4868 		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4869 		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4870 	} else {
4871 		dev_priv->gt.do_execbuf = intel_execlists_submission;
4872 		dev_priv->gt.init_rings = intel_logical_rings_init;
4873 		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4874 		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4875 	}
4876 
4877 	/* This is just a security blanket to placate dragons.
4878 	 * On some systems, we very sporadically observe that the first TLBs
4879 	 * used by the CS may be stale, despite us poking the TLB reset. If
4880 	 * we hold the forcewake during initialisation these problems
4881 	 * just magically go away.
4882 	 */
4883 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4884 
4885 	ret = i915_gem_init_userptr(dev);
4886 	if (ret)
4887 		goto out_unlock;
4888 
4889 	i915_gem_init_global_gtt(dev);
4890 
4891 	ret = i915_gem_context_init(dev);
4892 	if (ret)
4893 		goto out_unlock;
4894 
4895 	ret = dev_priv->gt.init_rings(dev);
4896 	if (ret)
4897 		goto out_unlock;
4898 
4899 	ret = i915_gem_init_hw(dev);
4900 	if (ret == -EIO) {
4901 		/* Allow ring initialisation to fail by marking the GPU as
4902 		 * wedged. But we only want to do this where the GPU is angry,
4903 		 * for all other failure, such as an allocation failure, bail.
4904 		 */
4905 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4906 		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4907 		ret = 0;
4908 	}
4909 
4910 out_unlock:
4911 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4912 	mutex_unlock(&dev->struct_mutex);
4913 
4914 	return ret;
4915 }
4916 
4917 void
4918 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4919 {
4920 	struct drm_i915_private *dev_priv = dev->dev_private;
4921 	struct intel_engine_cs *ring;
4922 	int i;
4923 
4924 	for_each_ring(ring, dev_priv, i)
4925 		dev_priv->gt.cleanup_ring(ring);
4926 }
4927 
4928 static void
4929 init_ring_lists(struct intel_engine_cs *ring)
4930 {
4931 	INIT_LIST_HEAD(&ring->active_list);
4932 	INIT_LIST_HEAD(&ring->request_list);
4933 }
4934 
4935 void i915_init_vm(struct drm_i915_private *dev_priv,
4936 		  struct i915_address_space *vm)
4937 {
4938 	if (!i915_is_ggtt(vm))
4939 		drm_mm_init(&vm->mm, vm->start, vm->total);
4940 	vm->dev = dev_priv->dev;
4941 	INIT_LIST_HEAD(&vm->active_list);
4942 	INIT_LIST_HEAD(&vm->inactive_list);
4943 	INIT_LIST_HEAD(&vm->global_link);
4944 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
4945 }
4946 
4947 void
4948 i915_gem_load(struct drm_device *dev)
4949 {
4950 	struct drm_i915_private *dev_priv = dev->dev_private;
4951 	int i;
4952 
4953 	dev_priv->slab =
4954 		kmem_cache_create("i915_gem_object",
4955 				  sizeof(struct drm_i915_gem_object), 0,
4956 				  SLAB_HWCACHE_ALIGN,
4957 				  NULL);
4958 
4959 	INIT_LIST_HEAD(&dev_priv->vm_list);
4960 	i915_init_vm(dev_priv, &dev_priv->gtt.base);
4961 
4962 	INIT_LIST_HEAD(&dev_priv->context_list);
4963 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4964 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4965 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4966 	for (i = 0; i < I915_NUM_RINGS; i++)
4967 		init_ring_lists(&dev_priv->ring[i]);
4968 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4969 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4970 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4971 			  i915_gem_retire_work_handler);
4972 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4973 			  i915_gem_idle_work_handler);
4974 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4975 
4976 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4977 
4978 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4979 		dev_priv->num_fence_regs = 32;
4980 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4981 		dev_priv->num_fence_regs = 16;
4982 	else
4983 		dev_priv->num_fence_regs = 8;
4984 
4985 	if (intel_vgpu_active(dev))
4986 		dev_priv->num_fence_regs =
4987 				I915_READ(vgtif_reg(avail_rs.fence_num));
4988 
4989 	/* Initialize fence registers to zero */
4990 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4991 	i915_gem_restore_fences(dev);
4992 
4993 	i915_gem_detect_bit_6_swizzle(dev);
4994 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4995 
4996 	dev_priv->mm.interruptible = true;
4997 
4998 	i915_gem_shrinker_init(dev_priv);
4999 
5000 	i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);
5001 
5002 	mutex_init(&dev_priv->fb_tracking.lock);
5003 }
5004 
5005 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5006 {
5007 	struct drm_i915_file_private *file_priv = file->driver_priv;
5008 
5009 	cancel_delayed_work_sync(&file_priv->mm.idle_work);
5010 
5011 	/* Clean up our request list when the client is going away, so that
5012 	 * later retire_requests won't dereference our soon-to-be-gone
5013 	 * file_priv.
5014 	 */
5015 	spin_lock(&file_priv->mm.lock);
5016 	while (!list_empty(&file_priv->mm.request_list)) {
5017 		struct drm_i915_gem_request *request;
5018 
5019 		request = list_first_entry(&file_priv->mm.request_list,
5020 					   struct drm_i915_gem_request,
5021 					   client_list);
5022 		list_del(&request->client_list);
5023 		request->file_priv = NULL;
5024 	}
5025 	spin_unlock(&file_priv->mm.lock);
5026 }
5027 
5028 static void
5029 i915_gem_file_idle_work_handler(struct work_struct *work)
5030 {
5031 	struct drm_i915_file_private *file_priv =
5032 		container_of(work, typeof(*file_priv), mm.idle_work.work);
5033 
5034 	atomic_set(&file_priv->rps_wait_boost, false);
5035 }
5036 
5037 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5038 {
5039 	struct drm_i915_file_private *file_priv;
5040 	int ret;
5041 
5042 	DRM_DEBUG_DRIVER("\n");
5043 
5044 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5045 	if (!file_priv)
5046 		return -ENOMEM;
5047 
5048 	file->driver_priv = file_priv;
5049 	file_priv->dev_priv = dev->dev_private;
5050 	file_priv->file = file;
5051 
5052 	spin_lock_init(&file_priv->mm.lock);
5053 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5054 	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5055 			  i915_gem_file_idle_work_handler);
5056 
5057 	ret = i915_gem_context_open(dev, file);
5058 	if (ret)
5059 		kfree(file_priv);
5060 
5061 	return ret;
5062 }
5063 
5064 /**
5065  * i915_gem_track_fb - update frontbuffer tracking
5066  * old: current GEM buffer for the frontbuffer slots
5067  * new: new GEM buffer for the frontbuffer slots
5068  * frontbuffer_bits: bitmask of frontbuffer slots
5069  *
5070  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5071  * from @old and setting them in @new. Both @old and @new can be NULL.
5072  */
5073 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5074 		       struct drm_i915_gem_object *new,
5075 		       unsigned frontbuffer_bits)
5076 {
5077 	if (old) {
5078 		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5079 		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5080 		old->frontbuffer_bits &= ~frontbuffer_bits;
5081 	}
5082 
5083 	if (new) {
5084 		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5085 		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5086 		new->frontbuffer_bits |= frontbuffer_bits;
5087 	}
5088 }
5089 
5090 /* All the new VM stuff */
5091 unsigned long
5092 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5093 		    struct i915_address_space *vm)
5094 {
5095 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5096 	struct i915_vma *vma;
5097 
5098 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5099 
5100 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5101 		if (i915_is_ggtt(vma->vm) &&
5102 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5103 			continue;
5104 		if (vma->vm == vm)
5105 			return vma->node.start;
5106 	}
5107 
5108 	WARN(1, "%s vma for this object not found.\n",
5109 	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5110 	return -1;
5111 }
5112 
5113 unsigned long
5114 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5115 			      const struct i915_ggtt_view *view)
5116 {
5117 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5118 	struct i915_vma *vma;
5119 
5120 	list_for_each_entry(vma, &o->vma_list, vma_link)
5121 		if (vma->vm == ggtt &&
5122 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5123 			return vma->node.start;
5124 
5125 	WARN(1, "global vma for this object not found.\n");
5126 	return -1;
5127 }
5128 
5129 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5130 			struct i915_address_space *vm)
5131 {
5132 	struct i915_vma *vma;
5133 
5134 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5135 		if (i915_is_ggtt(vma->vm) &&
5136 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5137 			continue;
5138 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5139 			return true;
5140 	}
5141 
5142 	return false;
5143 }
5144 
5145 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5146 				  const struct i915_ggtt_view *view)
5147 {
5148 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5149 	struct i915_vma *vma;
5150 
5151 	list_for_each_entry(vma, &o->vma_list, vma_link)
5152 		if (vma->vm == ggtt &&
5153 		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5154 		    drm_mm_node_allocated(&vma->node))
5155 			return true;
5156 
5157 	return false;
5158 }
5159 
5160 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5161 {
5162 	struct i915_vma *vma;
5163 
5164 	list_for_each_entry(vma, &o->vma_list, vma_link)
5165 		if (drm_mm_node_allocated(&vma->node))
5166 			return true;
5167 
5168 	return false;
5169 }
5170 
5171 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5172 				struct i915_address_space *vm)
5173 {
5174 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5175 	struct i915_vma *vma;
5176 
5177 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5178 
5179 	BUG_ON(list_empty(&o->vma_list));
5180 
5181 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5182 		if (i915_is_ggtt(vma->vm) &&
5183 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5184 			continue;
5185 		if (vma->vm == vm)
5186 			return vma->node.size;
5187 	}
5188 	return 0;
5189 }
5190 
5191 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5192 {
5193 	struct i915_vma *vma;
5194 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
5195 		if (i915_is_ggtt(vma->vm) &&
5196 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5197 			continue;
5198 		if (vma->pin_count > 0)
5199 			return true;
5200 	}
5201 	return false;
5202 }
5203 
5204