xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision 5bdd5fbb)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "intel_workarounds.h"
39 #include "i915_gemfs.h"
40 #include <linux/dma-fence-array.h>
41 #include <linux/kthread.h>
42 #include <linux/reservation.h>
43 #include <linux/shmem_fs.h>
44 #include <linux/slab.h>
45 #include <linux/stop_machine.h>
46 #include <linux/swap.h>
47 #include <linux/pci.h>
48 #include <linux/dma-buf.h>
49 
50 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51 
52 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53 {
54 	if (obj->cache_dirty)
55 		return false;
56 
57 	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58 		return true;
59 
60 	return obj->pin_global; /* currently in use by HW, keep flushed */
61 }
62 
63 static int
64 insert_mappable_node(struct i915_ggtt *ggtt,
65                      struct drm_mm_node *node, u32 size)
66 {
67 	memset(node, 0, sizeof(*node));
68 	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
69 					   size, 0, I915_COLOR_UNEVICTABLE,
70 					   0, ggtt->mappable_end,
71 					   DRM_MM_INSERT_LOW);
72 }
73 
74 static void
75 remove_mappable_node(struct drm_mm_node *node)
76 {
77 	drm_mm_remove_node(node);
78 }
79 
80 /* some bookkeeping */
81 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82 				  u64 size)
83 {
84 	spin_lock(&dev_priv->mm.object_stat_lock);
85 	dev_priv->mm.object_count++;
86 	dev_priv->mm.object_memory += size;
87 	spin_unlock(&dev_priv->mm.object_stat_lock);
88 }
89 
90 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91 				     u64 size)
92 {
93 	spin_lock(&dev_priv->mm.object_stat_lock);
94 	dev_priv->mm.object_count--;
95 	dev_priv->mm.object_memory -= size;
96 	spin_unlock(&dev_priv->mm.object_stat_lock);
97 }
98 
99 static int
100 i915_gem_wait_for_error(struct i915_gpu_error *error)
101 {
102 	int ret;
103 
104 	might_sleep();
105 
106 	/*
107 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108 	 * userspace. If it takes that long something really bad is going on and
109 	 * we should simply try to bail out and fail as gracefully as possible.
110 	 */
111 	ret = wait_event_interruptible_timeout(error->reset_queue,
112 					       !i915_reset_backoff(error),
113 					       I915_RESET_TIMEOUT);
114 	if (ret == 0) {
115 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116 		return -EIO;
117 	} else if (ret < 0) {
118 		return ret;
119 	} else {
120 		return 0;
121 	}
122 }
123 
124 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 {
126 	struct drm_i915_private *dev_priv = to_i915(dev);
127 	int ret;
128 
129 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 	if (ret)
131 		return ret;
132 
133 	ret = mutex_lock_interruptible(&dev->struct_mutex);
134 	if (ret)
135 		return ret;
136 
137 	return 0;
138 }
139 
140 static u32 __i915_gem_park(struct drm_i915_private *i915)
141 {
142 	lockdep_assert_held(&i915->drm.struct_mutex);
143 	GEM_BUG_ON(i915->gt.active_requests);
144 	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
145 
146 	if (!i915->gt.awake)
147 		return I915_EPOCH_INVALID;
148 
149 	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);
150 
151 	/*
152 	 * Be paranoid and flush a concurrent interrupt to make sure
153 	 * we don't reactivate any irq tasklets after parking.
154 	 *
155 	 * FIXME: Note that even though we have waited for execlists to be idle,
156 	 * there may still be an in-flight interrupt even though the CSB
157 	 * is now empty. synchronize_irq() makes sure that a residual interrupt
158 	 * is completed before we continue, but it doesn't prevent the HW from
159 	 * raising a spurious interrupt later. To complete the shield we should
160 	 * coordinate disabling the CS irq with flushing the interrupts.
161 	 */
162 	synchronize_irq(i915->drm.irq);
163 
164 	intel_engines_park(i915);
165 	i915_timelines_park(i915);
166 
167 	i915_pmu_gt_parked(i915);
168 	i915_vma_parked(i915);
169 
170 	i915->gt.awake = false;
171 
172 	if (INTEL_GEN(i915) >= 6)
173 		gen6_rps_idle(i915);
174 
175 	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);
176 
177 	intel_runtime_pm_put(i915);
178 
179 	return i915->gt.epoch;
180 }
181 
182 void i915_gem_park(struct drm_i915_private *i915)
183 {
184 	lockdep_assert_held(&i915->drm.struct_mutex);
185 	GEM_BUG_ON(i915->gt.active_requests);
186 
187 	if (!i915->gt.awake)
188 		return;
189 
190 	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
191 	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
192 }
193 
194 void i915_gem_unpark(struct drm_i915_private *i915)
195 {
196 	lockdep_assert_held(&i915->drm.struct_mutex);
197 	GEM_BUG_ON(!i915->gt.active_requests);
198 
199 	if (i915->gt.awake)
200 		return;
201 
202 	intel_runtime_pm_get_noresume(i915);
203 
204 	/*
205 	 * It seems that the DMC likes to transition between the DC states a lot
206 	 * when there are no connected displays (no active power domains) during
207 	 * command submission.
208 	 *
209 	 * This activity has negative impact on the performance of the chip with
210 	 * huge latencies observed in the interrupt handler and elsewhere.
211 	 *
212 	 * Work around it by grabbing a GT IRQ power domain whilst there is any
213 	 * GT activity, preventing any DC state transitions.
214 	 */
215 	intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
216 
217 	i915->gt.awake = true;
218 	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
219 		i915->gt.epoch = 1;
220 
221 	intel_enable_gt_powersave(i915);
222 	i915_update_gfx_val(i915);
223 	if (INTEL_GEN(i915) >= 6)
224 		gen6_rps_busy(i915);
225 	i915_pmu_gt_unparked(i915);
226 
227 	intel_engines_unpark(i915);
228 
229 	i915_queue_hangcheck(i915);
230 
231 	queue_delayed_work(i915->wq,
232 			   &i915->gt.retire_work,
233 			   round_jiffies_up_relative(HZ));
234 }
235 
236 int
237 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
238 			    struct drm_file *file)
239 {
240 	struct drm_i915_private *dev_priv = to_i915(dev);
241 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
242 	struct drm_i915_gem_get_aperture *args = data;
243 	struct i915_vma *vma;
244 	u64 pinned;
245 
246 	pinned = ggtt->base.reserved;
247 	mutex_lock(&dev->struct_mutex);
248 	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
249 		if (i915_vma_is_pinned(vma))
250 			pinned += vma->node.size;
251 	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
252 		if (i915_vma_is_pinned(vma))
253 			pinned += vma->node.size;
254 	mutex_unlock(&dev->struct_mutex);
255 
256 	args->aper_size = ggtt->base.total;
257 	args->aper_available_size = args->aper_size - pinned;
258 
259 	return 0;
260 }
261 
262 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
263 {
264 	struct address_space *mapping = obj->base.filp->f_mapping;
265 	drm_dma_handle_t *phys;
266 	struct sg_table *st;
267 	struct scatterlist *sg;
268 	char *vaddr;
269 	int i;
270 	int err;
271 
272 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
273 		return -EINVAL;
274 
275 	/* Always aligning to the object size, allows a single allocation
276 	 * to handle all possible callers, and given typical object sizes,
277 	 * the alignment of the buddy allocation will naturally match.
278 	 */
279 	phys = drm_pci_alloc(obj->base.dev,
280 			     roundup_pow_of_two(obj->base.size),
281 			     roundup_pow_of_two(obj->base.size));
282 	if (!phys)
283 		return -ENOMEM;
284 
285 	vaddr = phys->vaddr;
286 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
287 		struct page *page;
288 		char *src;
289 
290 		page = shmem_read_mapping_page(mapping, i);
291 		if (IS_ERR(page)) {
292 			err = PTR_ERR(page);
293 			goto err_phys;
294 		}
295 
296 		src = kmap_atomic(page);
297 		memcpy(vaddr, src, PAGE_SIZE);
298 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
299 		kunmap_atomic(src);
300 
301 		put_page(page);
302 		vaddr += PAGE_SIZE;
303 	}
304 
305 	i915_gem_chipset_flush(to_i915(obj->base.dev));
306 
307 	st = kmalloc(sizeof(*st), GFP_KERNEL);
308 	if (!st) {
309 		err = -ENOMEM;
310 		goto err_phys;
311 	}
312 
313 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
314 		kfree(st);
315 		err = -ENOMEM;
316 		goto err_phys;
317 	}
318 
319 	sg = st->sgl;
320 	sg->offset = 0;
321 	sg->length = obj->base.size;
322 
323 	sg_dma_address(sg) = phys->busaddr;
324 	sg_dma_len(sg) = obj->base.size;
325 
326 	obj->phys_handle = phys;
327 
328 	__i915_gem_object_set_pages(obj, st, sg->length);
329 
330 	return 0;
331 
332 err_phys:
333 	drm_pci_free(obj->base.dev, phys);
334 
335 	return err;
336 }
337 
338 static void __start_cpu_write(struct drm_i915_gem_object *obj)
339 {
340 	obj->read_domains = I915_GEM_DOMAIN_CPU;
341 	obj->write_domain = I915_GEM_DOMAIN_CPU;
342 	if (cpu_write_needs_clflush(obj))
343 		obj->cache_dirty = true;
344 }
345 
346 static void
347 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
348 				struct sg_table *pages,
349 				bool needs_clflush)
350 {
351 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
352 
353 	if (obj->mm.madv == I915_MADV_DONTNEED)
354 		obj->mm.dirty = false;
355 
356 	if (needs_clflush &&
357 	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
358 	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
359 		drm_clflush_sg(pages);
360 
361 	__start_cpu_write(obj);
362 }
363 
364 static void
365 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
366 			       struct sg_table *pages)
367 {
368 	__i915_gem_object_release_shmem(obj, pages, false);
369 
370 	if (obj->mm.dirty) {
371 		struct address_space *mapping = obj->base.filp->f_mapping;
372 		char *vaddr = obj->phys_handle->vaddr;
373 		int i;
374 
375 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
376 			struct page *page;
377 			char *dst;
378 
379 			page = shmem_read_mapping_page(mapping, i);
380 			if (IS_ERR(page))
381 				continue;
382 
383 			dst = kmap_atomic(page);
384 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
385 			memcpy(dst, vaddr, PAGE_SIZE);
386 			kunmap_atomic(dst);
387 
388 			set_page_dirty(page);
389 			if (obj->mm.madv == I915_MADV_WILLNEED)
390 				mark_page_accessed(page);
391 			put_page(page);
392 			vaddr += PAGE_SIZE;
393 		}
394 		obj->mm.dirty = false;
395 	}
396 
397 	sg_free_table(pages);
398 	kfree(pages);
399 
400 	drm_pci_free(obj->base.dev, obj->phys_handle);
401 }
402 
403 static void
404 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
405 {
406 	i915_gem_object_unpin_pages(obj);
407 }
408 
409 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
410 	.get_pages = i915_gem_object_get_pages_phys,
411 	.put_pages = i915_gem_object_put_pages_phys,
412 	.release = i915_gem_object_release_phys,
413 };
414 
415 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
416 
417 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
418 {
419 	struct i915_vma *vma;
420 	LIST_HEAD(still_in_list);
421 	int ret;
422 
423 	lockdep_assert_held(&obj->base.dev->struct_mutex);
424 
425 	/* Closed vma are removed from the obj->vma_list - but they may
426 	 * still have an active binding on the object. To remove those we
427 	 * must wait for all rendering to complete to the object (as unbinding
428 	 * must anyway), and retire the requests.
429 	 */
430 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
431 	if (ret)
432 		return ret;
433 
434 	while ((vma = list_first_entry_or_null(&obj->vma_list,
435 					       struct i915_vma,
436 					       obj_link))) {
437 		list_move_tail(&vma->obj_link, &still_in_list);
438 		ret = i915_vma_unbind(vma);
439 		if (ret)
440 			break;
441 	}
442 	list_splice(&still_in_list, &obj->vma_list);
443 
444 	return ret;
445 }
446 
447 static long
448 i915_gem_object_wait_fence(struct dma_fence *fence,
449 			   unsigned int flags,
450 			   long timeout,
451 			   struct intel_rps_client *rps_client)
452 {
453 	struct i915_request *rq;
454 
455 	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
456 
457 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
458 		return timeout;
459 
460 	if (!dma_fence_is_i915(fence))
461 		return dma_fence_wait_timeout(fence,
462 					      flags & I915_WAIT_INTERRUPTIBLE,
463 					      timeout);
464 
465 	rq = to_request(fence);
466 	if (i915_request_completed(rq))
467 		goto out;
468 
469 	/*
470 	 * This client is about to stall waiting for the GPU. In many cases
471 	 * this is undesirable and limits the throughput of the system, as
472 	 * many clients cannot continue processing user input/output whilst
473 	 * blocked. RPS autotuning may take tens of milliseconds to respond
474 	 * to the GPU load and thus incurs additional latency for the client.
475 	 * We can circumvent that by promoting the GPU frequency to maximum
476 	 * before we wait. This makes the GPU throttle up much more quickly
477 	 * (good for benchmarks and user experience, e.g. window animations),
478 	 * but at a cost of spending more power processing the workload
479 	 * (bad for battery). Not all clients even want their results
480 	 * immediately and for them we should just let the GPU select its own
481 	 * frequency to maximise efficiency. To prevent a single client from
482 	 * forcing the clocks too high for the whole system, we only allow
483 	 * each client to waitboost once in a busy period.
484 	 */
485 	if (rps_client && !i915_request_started(rq)) {
486 		if (INTEL_GEN(rq->i915) >= 6)
487 			gen6_rps_boost(rq, rps_client);
488 	}
489 
490 	timeout = i915_request_wait(rq, flags, timeout);
491 
492 out:
493 	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
494 		i915_request_retire_upto(rq);
495 
496 	return timeout;
497 }
498 
499 static long
500 i915_gem_object_wait_reservation(struct reservation_object *resv,
501 				 unsigned int flags,
502 				 long timeout,
503 				 struct intel_rps_client *rps_client)
504 {
505 	unsigned int seq = __read_seqcount_begin(&resv->seq);
506 	struct dma_fence *excl;
507 	bool prune_fences = false;
508 
509 	if (flags & I915_WAIT_ALL) {
510 		struct dma_fence **shared;
511 		unsigned int count, i;
512 		int ret;
513 
514 		ret = reservation_object_get_fences_rcu(resv,
515 							&excl, &count, &shared);
516 		if (ret)
517 			return ret;
518 
519 		for (i = 0; i < count; i++) {
520 			timeout = i915_gem_object_wait_fence(shared[i],
521 							     flags, timeout,
522 							     rps_client);
523 			if (timeout < 0)
524 				break;
525 
526 			dma_fence_put(shared[i]);
527 		}
528 
529 		for (; i < count; i++)
530 			dma_fence_put(shared[i]);
531 		kfree(shared);
532 
533 		/*
534 		 * If both shared fences and an exclusive fence exist,
535 		 * then by construction the shared fences must be later
536 		 * than the exclusive fence. If we successfully wait for
537 		 * all the shared fences, we know that the exclusive fence
538 		 * must all be signaled. If all the shared fences are
539 		 * signaled, we can prune the array and recover the
540 		 * floating references on the fences/requests.
541 		 */
542 		prune_fences = count && timeout >= 0;
543 	} else {
544 		excl = reservation_object_get_excl_rcu(resv);
545 	}
546 
547 	if (excl && timeout >= 0)
548 		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
549 						     rps_client);
550 
551 	dma_fence_put(excl);
552 
553 	/*
554 	 * Opportunistically prune the fences iff we know they have *all* been
555 	 * signaled and that the reservation object has not been changed (i.e.
556 	 * no new fences have been added).
557 	 */
558 	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
559 		if (reservation_object_trylock(resv)) {
560 			if (!__read_seqcount_retry(&resv->seq, seq))
561 				reservation_object_add_excl_fence(resv, NULL);
562 			reservation_object_unlock(resv);
563 		}
564 	}
565 
566 	return timeout;
567 }
568 
569 static void __fence_set_priority(struct dma_fence *fence,
570 				 const struct i915_sched_attr *attr)
571 {
572 	struct i915_request *rq;
573 	struct intel_engine_cs *engine;
574 
575 	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
576 		return;
577 
578 	rq = to_request(fence);
579 	engine = rq->engine;
580 
581 	local_bh_disable();
582 	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
583 	if (engine->schedule)
584 		engine->schedule(rq, attr);
585 	rcu_read_unlock();
586 	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
587 }
588 
589 static void fence_set_priority(struct dma_fence *fence,
590 			       const struct i915_sched_attr *attr)
591 {
592 	/* Recurse once into a fence-array */
593 	if (dma_fence_is_array(fence)) {
594 		struct dma_fence_array *array = to_dma_fence_array(fence);
595 		int i;
596 
597 		for (i = 0; i < array->num_fences; i++)
598 			__fence_set_priority(array->fences[i], attr);
599 	} else {
600 		__fence_set_priority(fence, attr);
601 	}
602 }
603 
604 int
605 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
606 			      unsigned int flags,
607 			      const struct i915_sched_attr *attr)
608 {
609 	struct dma_fence *excl;
610 
611 	if (flags & I915_WAIT_ALL) {
612 		struct dma_fence **shared;
613 		unsigned int count, i;
614 		int ret;
615 
616 		ret = reservation_object_get_fences_rcu(obj->resv,
617 							&excl, &count, &shared);
618 		if (ret)
619 			return ret;
620 
621 		for (i = 0; i < count; i++) {
622 			fence_set_priority(shared[i], attr);
623 			dma_fence_put(shared[i]);
624 		}
625 
626 		kfree(shared);
627 	} else {
628 		excl = reservation_object_get_excl_rcu(obj->resv);
629 	}
630 
631 	if (excl) {
632 		fence_set_priority(excl, attr);
633 		dma_fence_put(excl);
634 	}
635 	return 0;
636 }
637 
638 /**
639  * Waits for rendering to the object to be completed
640  * @obj: i915 gem object
641  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
642  * @timeout: how long to wait
643  * @rps_client: client (user process) to charge for any waitboosting
644  */
645 int
646 i915_gem_object_wait(struct drm_i915_gem_object *obj,
647 		     unsigned int flags,
648 		     long timeout,
649 		     struct intel_rps_client *rps_client)
650 {
651 	might_sleep();
652 #if IS_ENABLED(CONFIG_LOCKDEP)
653 	GEM_BUG_ON(debug_locks &&
654 		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
655 		   !!(flags & I915_WAIT_LOCKED));
656 #endif
657 	GEM_BUG_ON(timeout < 0);
658 
659 	timeout = i915_gem_object_wait_reservation(obj->resv,
660 						   flags, timeout,
661 						   rps_client);
662 	return timeout < 0 ? timeout : 0;
663 }
664 
665 static struct intel_rps_client *to_rps_client(struct drm_file *file)
666 {
667 	struct drm_i915_file_private *fpriv = file->driver_priv;
668 
669 	return &fpriv->rps_client;
670 }
671 
672 static int
673 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
674 		     struct drm_i915_gem_pwrite *args,
675 		     struct drm_file *file)
676 {
677 	void *vaddr = obj->phys_handle->vaddr + args->offset;
678 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
679 
680 	/* We manually control the domain here and pretend that it
681 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
682 	 */
683 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
684 	if (copy_from_user(vaddr, user_data, args->size))
685 		return -EFAULT;
686 
687 	drm_clflush_virt_range(vaddr, args->size);
688 	i915_gem_chipset_flush(to_i915(obj->base.dev));
689 
690 	intel_fb_obj_flush(obj, ORIGIN_CPU);
691 	return 0;
692 }
693 
694 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
695 {
696 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
697 }
698 
699 void i915_gem_object_free(struct drm_i915_gem_object *obj)
700 {
701 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
702 	kmem_cache_free(dev_priv->objects, obj);
703 }
704 
705 static int
706 i915_gem_create(struct drm_file *file,
707 		struct drm_i915_private *dev_priv,
708 		uint64_t size,
709 		uint32_t *handle_p)
710 {
711 	struct drm_i915_gem_object *obj;
712 	int ret;
713 	u32 handle;
714 
715 	size = roundup(size, PAGE_SIZE);
716 	if (size == 0)
717 		return -EINVAL;
718 
719 	/* Allocate the new object */
720 	obj = i915_gem_object_create(dev_priv, size);
721 	if (IS_ERR(obj))
722 		return PTR_ERR(obj);
723 
724 	ret = drm_gem_handle_create(file, &obj->base, &handle);
725 	/* drop reference from allocate - handle holds it now */
726 	i915_gem_object_put(obj);
727 	if (ret)
728 		return ret;
729 
730 	*handle_p = handle;
731 	return 0;
732 }
733 
734 int
735 i915_gem_dumb_create(struct drm_file *file,
736 		     struct drm_device *dev,
737 		     struct drm_mode_create_dumb *args)
738 {
739 	/* have to work out size/pitch and return them */
740 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
741 	args->size = args->pitch * args->height;
742 	return i915_gem_create(file, to_i915(dev),
743 			       args->size, &args->handle);
744 }
745 
746 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
747 {
748 	return !(obj->cache_level == I915_CACHE_NONE ||
749 		 obj->cache_level == I915_CACHE_WT);
750 }
751 
752 /**
753  * Creates a new mm object and returns a handle to it.
754  * @dev: drm device pointer
755  * @data: ioctl data blob
756  * @file: drm file pointer
757  */
758 int
759 i915_gem_create_ioctl(struct drm_device *dev, void *data,
760 		      struct drm_file *file)
761 {
762 	struct drm_i915_private *dev_priv = to_i915(dev);
763 	struct drm_i915_gem_create *args = data;
764 
765 	i915_gem_flush_free_objects(dev_priv);
766 
767 	return i915_gem_create(file, dev_priv,
768 			       args->size, &args->handle);
769 }
770 
771 static inline enum fb_op_origin
772 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
773 {
774 	return (domain == I915_GEM_DOMAIN_GTT ?
775 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
776 }
777 
778 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
779 {
780 	/*
781 	 * No actual flushing is required for the GTT write domain for reads
782 	 * from the GTT domain. Writes to it "immediately" go to main memory
783 	 * as far as we know, so there's no chipset flush. It also doesn't
784 	 * land in the GPU render cache.
785 	 *
786 	 * However, we do have to enforce the order so that all writes through
787 	 * the GTT land before any writes to the device, such as updates to
788 	 * the GATT itself.
789 	 *
790 	 * We also have to wait a bit for the writes to land from the GTT.
791 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
792 	 * timing. This issue has only been observed when switching quickly
793 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
794 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
795 	 * system agents we cannot reproduce this behaviour, until Cannonlake
796 	 * that was!).
797 	 */
798 
799 	wmb();
800 
801 	intel_runtime_pm_get(dev_priv);
802 	spin_lock_irq(&dev_priv->uncore.lock);
803 
804 	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
805 
806 	spin_unlock_irq(&dev_priv->uncore.lock);
807 	intel_runtime_pm_put(dev_priv);
808 }
809 
810 static void
811 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
812 {
813 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
814 	struct i915_vma *vma;
815 
816 	if (!(obj->write_domain & flush_domains))
817 		return;
818 
819 	switch (obj->write_domain) {
820 	case I915_GEM_DOMAIN_GTT:
821 		i915_gem_flush_ggtt_writes(dev_priv);
822 
823 		intel_fb_obj_flush(obj,
824 				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
825 
826 		for_each_ggtt_vma(vma, obj) {
827 			if (vma->iomap)
828 				continue;
829 
830 			i915_vma_unset_ggtt_write(vma);
831 		}
832 		break;
833 
834 	case I915_GEM_DOMAIN_CPU:
835 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
836 		break;
837 
838 	case I915_GEM_DOMAIN_RENDER:
839 		if (gpu_write_needs_clflush(obj))
840 			obj->cache_dirty = true;
841 		break;
842 	}
843 
844 	obj->write_domain = 0;
845 }
846 
847 static inline int
848 __copy_to_user_swizzled(char __user *cpu_vaddr,
849 			const char *gpu_vaddr, int gpu_offset,
850 			int length)
851 {
852 	int ret, cpu_offset = 0;
853 
854 	while (length > 0) {
855 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
856 		int this_length = min(cacheline_end - gpu_offset, length);
857 		int swizzled_gpu_offset = gpu_offset ^ 64;
858 
859 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
860 				     gpu_vaddr + swizzled_gpu_offset,
861 				     this_length);
862 		if (ret)
863 			return ret + length;
864 
865 		cpu_offset += this_length;
866 		gpu_offset += this_length;
867 		length -= this_length;
868 	}
869 
870 	return 0;
871 }
872 
873 static inline int
874 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
875 			  const char __user *cpu_vaddr,
876 			  int length)
877 {
878 	int ret, cpu_offset = 0;
879 
880 	while (length > 0) {
881 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
882 		int this_length = min(cacheline_end - gpu_offset, length);
883 		int swizzled_gpu_offset = gpu_offset ^ 64;
884 
885 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
886 				       cpu_vaddr + cpu_offset,
887 				       this_length);
888 		if (ret)
889 			return ret + length;
890 
891 		cpu_offset += this_length;
892 		gpu_offset += this_length;
893 		length -= this_length;
894 	}
895 
896 	return 0;
897 }
898 
899 /*
900  * Pins the specified object's pages and synchronizes the object with
901  * GPU accesses. Sets needs_clflush to non-zero if the caller should
902  * flush the object from the CPU cache.
903  */
904 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
905 				    unsigned int *needs_clflush)
906 {
907 	int ret;
908 
909 	lockdep_assert_held(&obj->base.dev->struct_mutex);
910 
911 	*needs_clflush = 0;
912 	if (!i915_gem_object_has_struct_page(obj))
913 		return -ENODEV;
914 
915 	ret = i915_gem_object_wait(obj,
916 				   I915_WAIT_INTERRUPTIBLE |
917 				   I915_WAIT_LOCKED,
918 				   MAX_SCHEDULE_TIMEOUT,
919 				   NULL);
920 	if (ret)
921 		return ret;
922 
923 	ret = i915_gem_object_pin_pages(obj);
924 	if (ret)
925 		return ret;
926 
927 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
928 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
929 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
930 		if (ret)
931 			goto err_unpin;
932 		else
933 			goto out;
934 	}
935 
936 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
937 
938 	/* If we're not in the cpu read domain, set ourself into the gtt
939 	 * read domain and manually flush cachelines (if required). This
940 	 * optimizes for the case when the gpu will dirty the data
941 	 * anyway again before the next pread happens.
942 	 */
943 	if (!obj->cache_dirty &&
944 	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
945 		*needs_clflush = CLFLUSH_BEFORE;
946 
947 out:
948 	/* return with the pages pinned */
949 	return 0;
950 
951 err_unpin:
952 	i915_gem_object_unpin_pages(obj);
953 	return ret;
954 }
955 
956 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
957 				     unsigned int *needs_clflush)
958 {
959 	int ret;
960 
961 	lockdep_assert_held(&obj->base.dev->struct_mutex);
962 
963 	*needs_clflush = 0;
964 	if (!i915_gem_object_has_struct_page(obj))
965 		return -ENODEV;
966 
967 	ret = i915_gem_object_wait(obj,
968 				   I915_WAIT_INTERRUPTIBLE |
969 				   I915_WAIT_LOCKED |
970 				   I915_WAIT_ALL,
971 				   MAX_SCHEDULE_TIMEOUT,
972 				   NULL);
973 	if (ret)
974 		return ret;
975 
976 	ret = i915_gem_object_pin_pages(obj);
977 	if (ret)
978 		return ret;
979 
980 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
981 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
982 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
983 		if (ret)
984 			goto err_unpin;
985 		else
986 			goto out;
987 	}
988 
989 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
990 
991 	/* If we're not in the cpu write domain, set ourself into the
992 	 * gtt write domain and manually flush cachelines (as required).
993 	 * This optimizes for the case when the gpu will use the data
994 	 * right away and we therefore have to clflush anyway.
995 	 */
996 	if (!obj->cache_dirty) {
997 		*needs_clflush |= CLFLUSH_AFTER;
998 
999 		/*
1000 		 * Same trick applies to invalidate partially written
1001 		 * cachelines read before writing.
1002 		 */
1003 		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1004 			*needs_clflush |= CLFLUSH_BEFORE;
1005 	}
1006 
1007 out:
1008 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1009 	obj->mm.dirty = true;
1010 	/* return with the pages pinned */
1011 	return 0;
1012 
1013 err_unpin:
1014 	i915_gem_object_unpin_pages(obj);
1015 	return ret;
1016 }
1017 
1018 static void
1019 shmem_clflush_swizzled_range(char *addr, unsigned long length,
1020 			     bool swizzled)
1021 {
1022 	if (unlikely(swizzled)) {
1023 		unsigned long start = (unsigned long) addr;
1024 		unsigned long end = (unsigned long) addr + length;
1025 
1026 		/* For swizzling simply ensure that we always flush both
1027 		 * channels. Lame, but simple and it works. Swizzled
1028 		 * pwrite/pread is far from a hotpath - current userspace
1029 		 * doesn't use it at all. */
1030 		start = round_down(start, 128);
1031 		end = round_up(end, 128);
1032 
1033 		drm_clflush_virt_range((void *)start, end - start);
1034 	} else {
1035 		drm_clflush_virt_range(addr, length);
1036 	}
1037 
1038 }
1039 
1040 /* Only difference to the fast-path function is that this can handle bit17
1041  * and uses non-atomic copy and kmap functions. */
1042 static int
1043 shmem_pread_slow(struct page *page, int offset, int length,
1044 		 char __user *user_data,
1045 		 bool page_do_bit17_swizzling, bool needs_clflush)
1046 {
1047 	char *vaddr;
1048 	int ret;
1049 
1050 	vaddr = kmap(page);
1051 	if (needs_clflush)
1052 		shmem_clflush_swizzled_range(vaddr + offset, length,
1053 					     page_do_bit17_swizzling);
1054 
1055 	if (page_do_bit17_swizzling)
1056 		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1057 	else
1058 		ret = __copy_to_user(user_data, vaddr + offset, length);
1059 	kunmap(page);
1060 
1061 	return ret ? - EFAULT : 0;
1062 }
1063 
1064 static int
1065 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
1066 	    bool page_do_bit17_swizzling, bool needs_clflush)
1067 {
1068 	int ret;
1069 
1070 	ret = -ENODEV;
1071 	if (!page_do_bit17_swizzling) {
1072 		char *vaddr = kmap_atomic(page);
1073 
1074 		if (needs_clflush)
1075 			drm_clflush_virt_range(vaddr + offset, length);
1076 		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1077 		kunmap_atomic(vaddr);
1078 	}
1079 	if (ret == 0)
1080 		return 0;
1081 
1082 	return shmem_pread_slow(page, offset, length, user_data,
1083 				page_do_bit17_swizzling, needs_clflush);
1084 }
1085 
1086 static int
1087 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
1088 		     struct drm_i915_gem_pread *args)
1089 {
1090 	char __user *user_data;
1091 	u64 remain;
1092 	unsigned int obj_do_bit17_swizzling;
1093 	unsigned int needs_clflush;
1094 	unsigned int idx, offset;
1095 	int ret;
1096 
1097 	obj_do_bit17_swizzling = 0;
1098 	if (i915_gem_object_needs_bit17_swizzle(obj))
1099 		obj_do_bit17_swizzling = BIT(17);
1100 
1101 	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1102 	if (ret)
1103 		return ret;
1104 
1105 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1106 	mutex_unlock(&obj->base.dev->struct_mutex);
1107 	if (ret)
1108 		return ret;
1109 
1110 	remain = args->size;
1111 	user_data = u64_to_user_ptr(args->data_ptr);
1112 	offset = offset_in_page(args->offset);
1113 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1114 		struct page *page = i915_gem_object_get_page(obj, idx);
1115 		int length;
1116 
1117 		length = remain;
1118 		if (offset + length > PAGE_SIZE)
1119 			length = PAGE_SIZE - offset;
1120 
1121 		ret = shmem_pread(page, offset, length, user_data,
1122 				  page_to_phys(page) & obj_do_bit17_swizzling,
1123 				  needs_clflush);
1124 		if (ret)
1125 			break;
1126 
1127 		remain -= length;
1128 		user_data += length;
1129 		offset = 0;
1130 	}
1131 
1132 	i915_gem_obj_finish_shmem_access(obj);
1133 	return ret;
1134 }
1135 
1136 static inline bool
1137 gtt_user_read(struct io_mapping *mapping,
1138 	      loff_t base, int offset,
1139 	      char __user *user_data, int length)
1140 {
1141 	void __iomem *vaddr;
1142 	unsigned long unwritten;
1143 
1144 	/* We can use the cpu mem copy function because this is X86. */
1145 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1146 	unwritten = __copy_to_user_inatomic(user_data,
1147 					    (void __force *)vaddr + offset,
1148 					    length);
1149 	io_mapping_unmap_atomic(vaddr);
1150 	if (unwritten) {
1151 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1152 		unwritten = copy_to_user(user_data,
1153 					 (void __force *)vaddr + offset,
1154 					 length);
1155 		io_mapping_unmap(vaddr);
1156 	}
1157 	return unwritten;
1158 }
1159 
1160 static int
1161 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1162 		   const struct drm_i915_gem_pread *args)
1163 {
1164 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1165 	struct i915_ggtt *ggtt = &i915->ggtt;
1166 	struct drm_mm_node node;
1167 	struct i915_vma *vma;
1168 	void __user *user_data;
1169 	u64 remain, offset;
1170 	int ret;
1171 
1172 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1173 	if (ret)
1174 		return ret;
1175 
1176 	intel_runtime_pm_get(i915);
1177 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1178 				       PIN_MAPPABLE |
1179 				       PIN_NONFAULT |
1180 				       PIN_NONBLOCK);
1181 	if (!IS_ERR(vma)) {
1182 		node.start = i915_ggtt_offset(vma);
1183 		node.allocated = false;
1184 		ret = i915_vma_put_fence(vma);
1185 		if (ret) {
1186 			i915_vma_unpin(vma);
1187 			vma = ERR_PTR(ret);
1188 		}
1189 	}
1190 	if (IS_ERR(vma)) {
1191 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1192 		if (ret)
1193 			goto out_unlock;
1194 		GEM_BUG_ON(!node.allocated);
1195 	}
1196 
1197 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1198 	if (ret)
1199 		goto out_unpin;
1200 
1201 	mutex_unlock(&i915->drm.struct_mutex);
1202 
1203 	user_data = u64_to_user_ptr(args->data_ptr);
1204 	remain = args->size;
1205 	offset = args->offset;
1206 
1207 	while (remain > 0) {
1208 		/* Operation in this page
1209 		 *
1210 		 * page_base = page offset within aperture
1211 		 * page_offset = offset within page
1212 		 * page_length = bytes to copy for this page
1213 		 */
1214 		u32 page_base = node.start;
1215 		unsigned page_offset = offset_in_page(offset);
1216 		unsigned page_length = PAGE_SIZE - page_offset;
1217 		page_length = remain < page_length ? remain : page_length;
1218 		if (node.allocated) {
1219 			wmb();
1220 			ggtt->base.insert_page(&ggtt->base,
1221 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1222 					       node.start, I915_CACHE_NONE, 0);
1223 			wmb();
1224 		} else {
1225 			page_base += offset & PAGE_MASK;
1226 		}
1227 
1228 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1229 				  user_data, page_length)) {
1230 			ret = -EFAULT;
1231 			break;
1232 		}
1233 
1234 		remain -= page_length;
1235 		user_data += page_length;
1236 		offset += page_length;
1237 	}
1238 
1239 	mutex_lock(&i915->drm.struct_mutex);
1240 out_unpin:
1241 	if (node.allocated) {
1242 		wmb();
1243 		ggtt->base.clear_range(&ggtt->base,
1244 				       node.start, node.size);
1245 		remove_mappable_node(&node);
1246 	} else {
1247 		i915_vma_unpin(vma);
1248 	}
1249 out_unlock:
1250 	intel_runtime_pm_put(i915);
1251 	mutex_unlock(&i915->drm.struct_mutex);
1252 
1253 	return ret;
1254 }
1255 
1256 /**
1257  * Reads data from the object referenced by handle.
1258  * @dev: drm device pointer
1259  * @data: ioctl data blob
1260  * @file: drm file pointer
1261  *
1262  * On error, the contents of *data are undefined.
1263  */
1264 int
1265 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1266 		     struct drm_file *file)
1267 {
1268 	struct drm_i915_gem_pread *args = data;
1269 	struct drm_i915_gem_object *obj;
1270 	int ret;
1271 
1272 	if (args->size == 0)
1273 		return 0;
1274 
1275 	if (!access_ok(VERIFY_WRITE,
1276 		       u64_to_user_ptr(args->data_ptr),
1277 		       args->size))
1278 		return -EFAULT;
1279 
1280 	obj = i915_gem_object_lookup(file, args->handle);
1281 	if (!obj)
1282 		return -ENOENT;
1283 
1284 	/* Bounds check source.  */
1285 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1286 		ret = -EINVAL;
1287 		goto out;
1288 	}
1289 
1290 	trace_i915_gem_object_pread(obj, args->offset, args->size);
1291 
1292 	ret = i915_gem_object_wait(obj,
1293 				   I915_WAIT_INTERRUPTIBLE,
1294 				   MAX_SCHEDULE_TIMEOUT,
1295 				   to_rps_client(file));
1296 	if (ret)
1297 		goto out;
1298 
1299 	ret = i915_gem_object_pin_pages(obj);
1300 	if (ret)
1301 		goto out;
1302 
1303 	ret = i915_gem_shmem_pread(obj, args);
1304 	if (ret == -EFAULT || ret == -ENODEV)
1305 		ret = i915_gem_gtt_pread(obj, args);
1306 
1307 	i915_gem_object_unpin_pages(obj);
1308 out:
1309 	i915_gem_object_put(obj);
1310 	return ret;
1311 }
1312 
1313 /* This is the fast write path which cannot handle
1314  * page faults in the source data
1315  */
1316 
1317 static inline bool
1318 ggtt_write(struct io_mapping *mapping,
1319 	   loff_t base, int offset,
1320 	   char __user *user_data, int length)
1321 {
1322 	void __iomem *vaddr;
1323 	unsigned long unwritten;
1324 
1325 	/* We can use the cpu mem copy function because this is X86. */
1326 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1327 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1328 						      user_data, length);
1329 	io_mapping_unmap_atomic(vaddr);
1330 	if (unwritten) {
1331 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1332 		unwritten = copy_from_user((void __force *)vaddr + offset,
1333 					   user_data, length);
1334 		io_mapping_unmap(vaddr);
1335 	}
1336 
1337 	return unwritten;
1338 }
1339 
1340 /**
1341  * This is the fast pwrite path, where we copy the data directly from the
1342  * user into the GTT, uncached.
1343  * @obj: i915 GEM object
1344  * @args: pwrite arguments structure
1345  */
1346 static int
1347 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1348 			 const struct drm_i915_gem_pwrite *args)
1349 {
1350 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1351 	struct i915_ggtt *ggtt = &i915->ggtt;
1352 	struct drm_mm_node node;
1353 	struct i915_vma *vma;
1354 	u64 remain, offset;
1355 	void __user *user_data;
1356 	int ret;
1357 
1358 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1359 	if (ret)
1360 		return ret;
1361 
1362 	if (i915_gem_object_has_struct_page(obj)) {
1363 		/*
1364 		 * Avoid waking the device up if we can fallback, as
1365 		 * waking/resuming is very slow (worst-case 10-100 ms
1366 		 * depending on PCI sleeps and our own resume time).
1367 		 * This easily dwarfs any performance advantage from
1368 		 * using the cache bypass of indirect GGTT access.
1369 		 */
1370 		if (!intel_runtime_pm_get_if_in_use(i915)) {
1371 			ret = -EFAULT;
1372 			goto out_unlock;
1373 		}
1374 	} else {
1375 		/* No backing pages, no fallback, we must force GGTT access */
1376 		intel_runtime_pm_get(i915);
1377 	}
1378 
1379 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1380 				       PIN_MAPPABLE |
1381 				       PIN_NONFAULT |
1382 				       PIN_NONBLOCK);
1383 	if (!IS_ERR(vma)) {
1384 		node.start = i915_ggtt_offset(vma);
1385 		node.allocated = false;
1386 		ret = i915_vma_put_fence(vma);
1387 		if (ret) {
1388 			i915_vma_unpin(vma);
1389 			vma = ERR_PTR(ret);
1390 		}
1391 	}
1392 	if (IS_ERR(vma)) {
1393 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1394 		if (ret)
1395 			goto out_rpm;
1396 		GEM_BUG_ON(!node.allocated);
1397 	}
1398 
1399 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1400 	if (ret)
1401 		goto out_unpin;
1402 
1403 	mutex_unlock(&i915->drm.struct_mutex);
1404 
1405 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1406 
1407 	user_data = u64_to_user_ptr(args->data_ptr);
1408 	offset = args->offset;
1409 	remain = args->size;
1410 	while (remain) {
1411 		/* Operation in this page
1412 		 *
1413 		 * page_base = page offset within aperture
1414 		 * page_offset = offset within page
1415 		 * page_length = bytes to copy for this page
1416 		 */
1417 		u32 page_base = node.start;
1418 		unsigned int page_offset = offset_in_page(offset);
1419 		unsigned int page_length = PAGE_SIZE - page_offset;
1420 		page_length = remain < page_length ? remain : page_length;
1421 		if (node.allocated) {
1422 			wmb(); /* flush the write before we modify the GGTT */
1423 			ggtt->base.insert_page(&ggtt->base,
1424 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1425 					       node.start, I915_CACHE_NONE, 0);
1426 			wmb(); /* flush modifications to the GGTT (insert_page) */
1427 		} else {
1428 			page_base += offset & PAGE_MASK;
1429 		}
1430 		/* If we get a fault while copying data, then (presumably) our
1431 		 * source page isn't available.  Return the error and we'll
1432 		 * retry in the slow path.
1433 		 * If the object is non-shmem backed, we retry again with the
1434 		 * path that handles page fault.
1435 		 */
1436 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1437 			       user_data, page_length)) {
1438 			ret = -EFAULT;
1439 			break;
1440 		}
1441 
1442 		remain -= page_length;
1443 		user_data += page_length;
1444 		offset += page_length;
1445 	}
1446 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1447 
1448 	mutex_lock(&i915->drm.struct_mutex);
1449 out_unpin:
1450 	if (node.allocated) {
1451 		wmb();
1452 		ggtt->base.clear_range(&ggtt->base,
1453 				       node.start, node.size);
1454 		remove_mappable_node(&node);
1455 	} else {
1456 		i915_vma_unpin(vma);
1457 	}
1458 out_rpm:
1459 	intel_runtime_pm_put(i915);
1460 out_unlock:
1461 	mutex_unlock(&i915->drm.struct_mutex);
1462 	return ret;
1463 }
1464 
1465 static int
1466 shmem_pwrite_slow(struct page *page, int offset, int length,
1467 		  char __user *user_data,
1468 		  bool page_do_bit17_swizzling,
1469 		  bool needs_clflush_before,
1470 		  bool needs_clflush_after)
1471 {
1472 	char *vaddr;
1473 	int ret;
1474 
1475 	vaddr = kmap(page);
1476 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1477 		shmem_clflush_swizzled_range(vaddr + offset, length,
1478 					     page_do_bit17_swizzling);
1479 	if (page_do_bit17_swizzling)
1480 		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1481 						length);
1482 	else
1483 		ret = __copy_from_user(vaddr + offset, user_data, length);
1484 	if (needs_clflush_after)
1485 		shmem_clflush_swizzled_range(vaddr + offset, length,
1486 					     page_do_bit17_swizzling);
1487 	kunmap(page);
1488 
1489 	return ret ? -EFAULT : 0;
1490 }
1491 
1492 /* Per-page copy function for the shmem pwrite fastpath.
1493  * Flushes invalid cachelines before writing to the target if
1494  * needs_clflush_before is set and flushes out any written cachelines after
1495  * writing if needs_clflush is set.
1496  */
1497 static int
1498 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1499 	     bool page_do_bit17_swizzling,
1500 	     bool needs_clflush_before,
1501 	     bool needs_clflush_after)
1502 {
1503 	int ret;
1504 
1505 	ret = -ENODEV;
1506 	if (!page_do_bit17_swizzling) {
1507 		char *vaddr = kmap_atomic(page);
1508 
1509 		if (needs_clflush_before)
1510 			drm_clflush_virt_range(vaddr + offset, len);
1511 		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1512 		if (needs_clflush_after)
1513 			drm_clflush_virt_range(vaddr + offset, len);
1514 
1515 		kunmap_atomic(vaddr);
1516 	}
1517 	if (ret == 0)
1518 		return ret;
1519 
1520 	return shmem_pwrite_slow(page, offset, len, user_data,
1521 				 page_do_bit17_swizzling,
1522 				 needs_clflush_before,
1523 				 needs_clflush_after);
1524 }
1525 
1526 static int
1527 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1528 		      const struct drm_i915_gem_pwrite *args)
1529 {
1530 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1531 	void __user *user_data;
1532 	u64 remain;
1533 	unsigned int obj_do_bit17_swizzling;
1534 	unsigned int partial_cacheline_write;
1535 	unsigned int needs_clflush;
1536 	unsigned int offset, idx;
1537 	int ret;
1538 
1539 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1540 	if (ret)
1541 		return ret;
1542 
1543 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1544 	mutex_unlock(&i915->drm.struct_mutex);
1545 	if (ret)
1546 		return ret;
1547 
1548 	obj_do_bit17_swizzling = 0;
1549 	if (i915_gem_object_needs_bit17_swizzle(obj))
1550 		obj_do_bit17_swizzling = BIT(17);
1551 
1552 	/* If we don't overwrite a cacheline completely we need to be
1553 	 * careful to have up-to-date data by first clflushing. Don't
1554 	 * overcomplicate things and flush the entire patch.
1555 	 */
1556 	partial_cacheline_write = 0;
1557 	if (needs_clflush & CLFLUSH_BEFORE)
1558 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1559 
1560 	user_data = u64_to_user_ptr(args->data_ptr);
1561 	remain = args->size;
1562 	offset = offset_in_page(args->offset);
1563 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1564 		struct page *page = i915_gem_object_get_page(obj, idx);
1565 		int length;
1566 
1567 		length = remain;
1568 		if (offset + length > PAGE_SIZE)
1569 			length = PAGE_SIZE - offset;
1570 
1571 		ret = shmem_pwrite(page, offset, length, user_data,
1572 				   page_to_phys(page) & obj_do_bit17_swizzling,
1573 				   (offset | length) & partial_cacheline_write,
1574 				   needs_clflush & CLFLUSH_AFTER);
1575 		if (ret)
1576 			break;
1577 
1578 		remain -= length;
1579 		user_data += length;
1580 		offset = 0;
1581 	}
1582 
1583 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1584 	i915_gem_obj_finish_shmem_access(obj);
1585 	return ret;
1586 }
1587 
1588 /**
1589  * Writes data to the object referenced by handle.
1590  * @dev: drm device
1591  * @data: ioctl data blob
1592  * @file: drm file
1593  *
1594  * On error, the contents of the buffer that were to be modified are undefined.
1595  */
1596 int
1597 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1598 		      struct drm_file *file)
1599 {
1600 	struct drm_i915_gem_pwrite *args = data;
1601 	struct drm_i915_gem_object *obj;
1602 	int ret;
1603 
1604 	if (args->size == 0)
1605 		return 0;
1606 
1607 	if (!access_ok(VERIFY_READ,
1608 		       u64_to_user_ptr(args->data_ptr),
1609 		       args->size))
1610 		return -EFAULT;
1611 
1612 	obj = i915_gem_object_lookup(file, args->handle);
1613 	if (!obj)
1614 		return -ENOENT;
1615 
1616 	/* Bounds check destination. */
1617 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1618 		ret = -EINVAL;
1619 		goto err;
1620 	}
1621 
1622 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1623 
1624 	ret = -ENODEV;
1625 	if (obj->ops->pwrite)
1626 		ret = obj->ops->pwrite(obj, args);
1627 	if (ret != -ENODEV)
1628 		goto err;
1629 
1630 	ret = i915_gem_object_wait(obj,
1631 				   I915_WAIT_INTERRUPTIBLE |
1632 				   I915_WAIT_ALL,
1633 				   MAX_SCHEDULE_TIMEOUT,
1634 				   to_rps_client(file));
1635 	if (ret)
1636 		goto err;
1637 
1638 	ret = i915_gem_object_pin_pages(obj);
1639 	if (ret)
1640 		goto err;
1641 
1642 	ret = -EFAULT;
1643 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1644 	 * it would end up going through the fenced access, and we'll get
1645 	 * different detiling behavior between reading and writing.
1646 	 * pread/pwrite currently are reading and writing from the CPU
1647 	 * perspective, requiring manual detiling by the client.
1648 	 */
1649 	if (!i915_gem_object_has_struct_page(obj) ||
1650 	    cpu_write_needs_clflush(obj))
1651 		/* Note that the gtt paths might fail with non-page-backed user
1652 		 * pointers (e.g. gtt mappings when moving data between
1653 		 * textures). Fallback to the shmem path in that case.
1654 		 */
1655 		ret = i915_gem_gtt_pwrite_fast(obj, args);
1656 
1657 	if (ret == -EFAULT || ret == -ENOSPC) {
1658 		if (obj->phys_handle)
1659 			ret = i915_gem_phys_pwrite(obj, args, file);
1660 		else
1661 			ret = i915_gem_shmem_pwrite(obj, args);
1662 	}
1663 
1664 	i915_gem_object_unpin_pages(obj);
1665 err:
1666 	i915_gem_object_put(obj);
1667 	return ret;
1668 }
1669 
1670 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1671 {
1672 	struct drm_i915_private *i915;
1673 	struct list_head *list;
1674 	struct i915_vma *vma;
1675 
1676 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1677 
1678 	for_each_ggtt_vma(vma, obj) {
1679 		if (i915_vma_is_active(vma))
1680 			continue;
1681 
1682 		if (!drm_mm_node_allocated(&vma->node))
1683 			continue;
1684 
1685 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1686 	}
1687 
1688 	i915 = to_i915(obj->base.dev);
1689 	spin_lock(&i915->mm.obj_lock);
1690 	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1691 	list_move_tail(&obj->mm.link, list);
1692 	spin_unlock(&i915->mm.obj_lock);
1693 }
1694 
1695 /**
1696  * Called when user space prepares to use an object with the CPU, either
1697  * through the mmap ioctl's mapping or a GTT mapping.
1698  * @dev: drm device
1699  * @data: ioctl data blob
1700  * @file: drm file
1701  */
1702 int
1703 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1704 			  struct drm_file *file)
1705 {
1706 	struct drm_i915_gem_set_domain *args = data;
1707 	struct drm_i915_gem_object *obj;
1708 	uint32_t read_domains = args->read_domains;
1709 	uint32_t write_domain = args->write_domain;
1710 	int err;
1711 
1712 	/* Only handle setting domains to types used by the CPU. */
1713 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1714 		return -EINVAL;
1715 
1716 	/* Having something in the write domain implies it's in the read
1717 	 * domain, and only that read domain.  Enforce that in the request.
1718 	 */
1719 	if (write_domain != 0 && read_domains != write_domain)
1720 		return -EINVAL;
1721 
1722 	obj = i915_gem_object_lookup(file, args->handle);
1723 	if (!obj)
1724 		return -ENOENT;
1725 
1726 	/* Try to flush the object off the GPU without holding the lock.
1727 	 * We will repeat the flush holding the lock in the normal manner
1728 	 * to catch cases where we are gazumped.
1729 	 */
1730 	err = i915_gem_object_wait(obj,
1731 				   I915_WAIT_INTERRUPTIBLE |
1732 				   (write_domain ? I915_WAIT_ALL : 0),
1733 				   MAX_SCHEDULE_TIMEOUT,
1734 				   to_rps_client(file));
1735 	if (err)
1736 		goto out;
1737 
1738 	/*
1739 	 * Proxy objects do not control access to the backing storage, ergo
1740 	 * they cannot be used as a means to manipulate the cache domain
1741 	 * tracking for that backing storage. The proxy object is always
1742 	 * considered to be outside of any cache domain.
1743 	 */
1744 	if (i915_gem_object_is_proxy(obj)) {
1745 		err = -ENXIO;
1746 		goto out;
1747 	}
1748 
1749 	/*
1750 	 * Flush and acquire obj->pages so that we are coherent through
1751 	 * direct access in memory with previous cached writes through
1752 	 * shmemfs and that our cache domain tracking remains valid.
1753 	 * For example, if the obj->filp was moved to swap without us
1754 	 * being notified and releasing the pages, we would mistakenly
1755 	 * continue to assume that the obj remained out of the CPU cached
1756 	 * domain.
1757 	 */
1758 	err = i915_gem_object_pin_pages(obj);
1759 	if (err)
1760 		goto out;
1761 
1762 	err = i915_mutex_lock_interruptible(dev);
1763 	if (err)
1764 		goto out_unpin;
1765 
1766 	if (read_domains & I915_GEM_DOMAIN_WC)
1767 		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1768 	else if (read_domains & I915_GEM_DOMAIN_GTT)
1769 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1770 	else
1771 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1772 
1773 	/* And bump the LRU for this access */
1774 	i915_gem_object_bump_inactive_ggtt(obj);
1775 
1776 	mutex_unlock(&dev->struct_mutex);
1777 
1778 	if (write_domain != 0)
1779 		intel_fb_obj_invalidate(obj,
1780 					fb_write_origin(obj, write_domain));
1781 
1782 out_unpin:
1783 	i915_gem_object_unpin_pages(obj);
1784 out:
1785 	i915_gem_object_put(obj);
1786 	return err;
1787 }
1788 
1789 /**
1790  * Called when user space has done writes to this buffer
1791  * @dev: drm device
1792  * @data: ioctl data blob
1793  * @file: drm file
1794  */
1795 int
1796 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1797 			 struct drm_file *file)
1798 {
1799 	struct drm_i915_gem_sw_finish *args = data;
1800 	struct drm_i915_gem_object *obj;
1801 
1802 	obj = i915_gem_object_lookup(file, args->handle);
1803 	if (!obj)
1804 		return -ENOENT;
1805 
1806 	/*
1807 	 * Proxy objects are barred from CPU access, so there is no
1808 	 * need to ban sw_finish as it is a nop.
1809 	 */
1810 
1811 	/* Pinned buffers may be scanout, so flush the cache */
1812 	i915_gem_object_flush_if_display(obj);
1813 	i915_gem_object_put(obj);
1814 
1815 	return 0;
1816 }
1817 
1818 /**
1819  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1820  *			 it is mapped to.
1821  * @dev: drm device
1822  * @data: ioctl data blob
1823  * @file: drm file
1824  *
1825  * While the mapping holds a reference on the contents of the object, it doesn't
1826  * imply a ref on the object itself.
1827  *
1828  * IMPORTANT:
1829  *
1830  * DRM driver writers who look a this function as an example for how to do GEM
1831  * mmap support, please don't implement mmap support like here. The modern way
1832  * to implement DRM mmap support is with an mmap offset ioctl (like
1833  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1834  * That way debug tooling like valgrind will understand what's going on, hiding
1835  * the mmap call in a driver private ioctl will break that. The i915 driver only
1836  * does cpu mmaps this way because we didn't know better.
1837  */
1838 int
1839 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1840 		    struct drm_file *file)
1841 {
1842 	struct drm_i915_gem_mmap *args = data;
1843 	struct drm_i915_gem_object *obj;
1844 	unsigned long addr;
1845 
1846 	if (args->flags & ~(I915_MMAP_WC))
1847 		return -EINVAL;
1848 
1849 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1850 		return -ENODEV;
1851 
1852 	obj = i915_gem_object_lookup(file, args->handle);
1853 	if (!obj)
1854 		return -ENOENT;
1855 
1856 	/* prime objects have no backing filp to GEM mmap
1857 	 * pages from.
1858 	 */
1859 	if (!obj->base.filp) {
1860 		i915_gem_object_put(obj);
1861 		return -ENXIO;
1862 	}
1863 
1864 	addr = vm_mmap(obj->base.filp, 0, args->size,
1865 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1866 		       args->offset);
1867 	if (args->flags & I915_MMAP_WC) {
1868 		struct mm_struct *mm = current->mm;
1869 		struct vm_area_struct *vma;
1870 
1871 		if (down_write_killable(&mm->mmap_sem)) {
1872 			i915_gem_object_put(obj);
1873 			return -EINTR;
1874 		}
1875 		vma = find_vma(mm, addr);
1876 		if (vma)
1877 			vma->vm_page_prot =
1878 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1879 		else
1880 			addr = -ENOMEM;
1881 		up_write(&mm->mmap_sem);
1882 
1883 		/* This may race, but that's ok, it only gets set */
1884 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1885 	}
1886 	i915_gem_object_put(obj);
1887 	if (IS_ERR((void *)addr))
1888 		return addr;
1889 
1890 	args->addr_ptr = (uint64_t) addr;
1891 
1892 	return 0;
1893 }
1894 
1895 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1896 {
1897 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1898 }
1899 
1900 /**
1901  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1902  *
1903  * A history of the GTT mmap interface:
1904  *
1905  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1906  *     aligned and suitable for fencing, and still fit into the available
1907  *     mappable space left by the pinned display objects. A classic problem
1908  *     we called the page-fault-of-doom where we would ping-pong between
1909  *     two objects that could not fit inside the GTT and so the memcpy
1910  *     would page one object in at the expense of the other between every
1911  *     single byte.
1912  *
1913  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1914  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1915  *     object is too large for the available space (or simply too large
1916  *     for the mappable aperture!), a view is created instead and faulted
1917  *     into userspace. (This view is aligned and sized appropriately for
1918  *     fenced access.)
1919  *
1920  * 2 - Recognise WC as a separate cache domain so that we can flush the
1921  *     delayed writes via GTT before performing direct access via WC.
1922  *
1923  * Restrictions:
1924  *
1925  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1926  *    hangs on some architectures, corruption on others. An attempt to service
1927  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1928  *
1929  *  * the object must be able to fit into RAM (physical memory, though no
1930  *    limited to the mappable aperture).
1931  *
1932  *
1933  * Caveats:
1934  *
1935  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1936  *    all data to system memory. Subsequent access will not be synchronized.
1937  *
1938  *  * all mappings are revoked on runtime device suspend.
1939  *
1940  *  * there are only 8, 16 or 32 fence registers to share between all users
1941  *    (older machines require fence register for display and blitter access
1942  *    as well). Contention of the fence registers will cause the previous users
1943  *    to be unmapped and any new access will generate new page faults.
1944  *
1945  *  * running out of memory while servicing a fault may generate a SIGBUS,
1946  *    rather than the expected SIGSEGV.
1947  */
1948 int i915_gem_mmap_gtt_version(void)
1949 {
1950 	return 2;
1951 }
1952 
1953 static inline struct i915_ggtt_view
1954 compute_partial_view(struct drm_i915_gem_object *obj,
1955 		     pgoff_t page_offset,
1956 		     unsigned int chunk)
1957 {
1958 	struct i915_ggtt_view view;
1959 
1960 	if (i915_gem_object_is_tiled(obj))
1961 		chunk = roundup(chunk, tile_row_pages(obj));
1962 
1963 	view.type = I915_GGTT_VIEW_PARTIAL;
1964 	view.partial.offset = rounddown(page_offset, chunk);
1965 	view.partial.size =
1966 		min_t(unsigned int, chunk,
1967 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1968 
1969 	/* If the partial covers the entire object, just create a normal VMA. */
1970 	if (chunk >= obj->base.size >> PAGE_SHIFT)
1971 		view.type = I915_GGTT_VIEW_NORMAL;
1972 
1973 	return view;
1974 }
1975 
1976 /**
1977  * i915_gem_fault - fault a page into the GTT
1978  * @vmf: fault info
1979  *
1980  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1981  * from userspace.  The fault handler takes care of binding the object to
1982  * the GTT (if needed), allocating and programming a fence register (again,
1983  * only if needed based on whether the old reg is still valid or the object
1984  * is tiled) and inserting a new PTE into the faulting process.
1985  *
1986  * Note that the faulting process may involve evicting existing objects
1987  * from the GTT and/or fence registers to make room.  So performance may
1988  * suffer if the GTT working set is large or there are few fence registers
1989  * left.
1990  *
1991  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1992  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1993  */
1994 int i915_gem_fault(struct vm_fault *vmf)
1995 {
1996 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1997 	struct vm_area_struct *area = vmf->vma;
1998 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1999 	struct drm_device *dev = obj->base.dev;
2000 	struct drm_i915_private *dev_priv = to_i915(dev);
2001 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2002 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
2003 	struct i915_vma *vma;
2004 	pgoff_t page_offset;
2005 	unsigned int flags;
2006 	int ret;
2007 
2008 	/* We don't use vmf->pgoff since that has the fake offset */
2009 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2010 
2011 	trace_i915_gem_object_fault(obj, page_offset, true, write);
2012 
2013 	/* Try to flush the object off the GPU first without holding the lock.
2014 	 * Upon acquiring the lock, we will perform our sanity checks and then
2015 	 * repeat the flush holding the lock in the normal manner to catch cases
2016 	 * where we are gazumped.
2017 	 */
2018 	ret = i915_gem_object_wait(obj,
2019 				   I915_WAIT_INTERRUPTIBLE,
2020 				   MAX_SCHEDULE_TIMEOUT,
2021 				   NULL);
2022 	if (ret)
2023 		goto err;
2024 
2025 	ret = i915_gem_object_pin_pages(obj);
2026 	if (ret)
2027 		goto err;
2028 
2029 	intel_runtime_pm_get(dev_priv);
2030 
2031 	ret = i915_mutex_lock_interruptible(dev);
2032 	if (ret)
2033 		goto err_rpm;
2034 
2035 	/* Access to snoopable pages through the GTT is incoherent. */
2036 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2037 		ret = -EFAULT;
2038 		goto err_unlock;
2039 	}
2040 
2041 	/* If the object is smaller than a couple of partial vma, it is
2042 	 * not worth only creating a single partial vma - we may as well
2043 	 * clear enough space for the full object.
2044 	 */
2045 	flags = PIN_MAPPABLE;
2046 	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
2047 		flags |= PIN_NONBLOCK | PIN_NONFAULT;
2048 
2049 	/* Now pin it into the GTT as needed */
2050 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
2051 	if (IS_ERR(vma)) {
2052 		/* Use a partial view if it is bigger than available space */
2053 		struct i915_ggtt_view view =
2054 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2055 
2056 		/* Userspace is now writing through an untracked VMA, abandon
2057 		 * all hope that the hardware is able to track future writes.
2058 		 */
2059 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
2060 
2061 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
2062 	}
2063 	if (IS_ERR(vma)) {
2064 		ret = PTR_ERR(vma);
2065 		goto err_unlock;
2066 	}
2067 
2068 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
2069 	if (ret)
2070 		goto err_unpin;
2071 
2072 	ret = i915_vma_pin_fence(vma);
2073 	if (ret)
2074 		goto err_unpin;
2075 
2076 	/* Finally, remap it using the new GTT offset */
2077 	ret = remap_io_mapping(area,
2078 			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2079 			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2080 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
2081 			       &ggtt->iomap);
2082 	if (ret)
2083 		goto err_fence;
2084 
2085 	/* Mark as being mmapped into userspace for later revocation */
2086 	assert_rpm_wakelock_held(dev_priv);
2087 	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
2088 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
2089 	GEM_BUG_ON(!obj->userfault_count);
2090 
2091 	i915_vma_set_ggtt_write(vma);
2092 
2093 err_fence:
2094 	i915_vma_unpin_fence(vma);
2095 err_unpin:
2096 	__i915_vma_unpin(vma);
2097 err_unlock:
2098 	mutex_unlock(&dev->struct_mutex);
2099 err_rpm:
2100 	intel_runtime_pm_put(dev_priv);
2101 	i915_gem_object_unpin_pages(obj);
2102 err:
2103 	switch (ret) {
2104 	case -EIO:
2105 		/*
2106 		 * We eat errors when the gpu is terminally wedged to avoid
2107 		 * userspace unduly crashing (gl has no provisions for mmaps to
2108 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2109 		 * and so needs to be reported.
2110 		 */
2111 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2112 			ret = VM_FAULT_SIGBUS;
2113 			break;
2114 		}
2115 	case -EAGAIN:
2116 		/*
2117 		 * EAGAIN means the gpu is hung and we'll wait for the error
2118 		 * handler to reset everything when re-faulting in
2119 		 * i915_mutex_lock_interruptible.
2120 		 */
2121 	case 0:
2122 	case -ERESTARTSYS:
2123 	case -EINTR:
2124 	case -EBUSY:
2125 		/*
2126 		 * EBUSY is ok: this just means that another thread
2127 		 * already did the job.
2128 		 */
2129 		ret = VM_FAULT_NOPAGE;
2130 		break;
2131 	case -ENOMEM:
2132 		ret = VM_FAULT_OOM;
2133 		break;
2134 	case -ENOSPC:
2135 	case -EFAULT:
2136 		ret = VM_FAULT_SIGBUS;
2137 		break;
2138 	default:
2139 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2140 		ret = VM_FAULT_SIGBUS;
2141 		break;
2142 	}
2143 	return ret;
2144 }
2145 
2146 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2147 {
2148 	struct i915_vma *vma;
2149 
2150 	GEM_BUG_ON(!obj->userfault_count);
2151 
2152 	obj->userfault_count = 0;
2153 	list_del(&obj->userfault_link);
2154 	drm_vma_node_unmap(&obj->base.vma_node,
2155 			   obj->base.dev->anon_inode->i_mapping);
2156 
2157 	for_each_ggtt_vma(vma, obj)
2158 		i915_vma_unset_userfault(vma);
2159 }
2160 
2161 /**
2162  * i915_gem_release_mmap - remove physical page mappings
2163  * @obj: obj in question
2164  *
2165  * Preserve the reservation of the mmapping with the DRM core code, but
2166  * relinquish ownership of the pages back to the system.
2167  *
2168  * It is vital that we remove the page mapping if we have mapped a tiled
2169  * object through the GTT and then lose the fence register due to
2170  * resource pressure. Similarly if the object has been moved out of the
2171  * aperture, than pages mapped into userspace must be revoked. Removing the
2172  * mapping will then trigger a page fault on the next user access, allowing
2173  * fixup by i915_gem_fault().
2174  */
2175 void
2176 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2177 {
2178 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2179 
2180 	/* Serialisation between user GTT access and our code depends upon
2181 	 * revoking the CPU's PTE whilst the mutex is held. The next user
2182 	 * pagefault then has to wait until we release the mutex.
2183 	 *
2184 	 * Note that RPM complicates somewhat by adding an additional
2185 	 * requirement that operations to the GGTT be made holding the RPM
2186 	 * wakeref.
2187 	 */
2188 	lockdep_assert_held(&i915->drm.struct_mutex);
2189 	intel_runtime_pm_get(i915);
2190 
2191 	if (!obj->userfault_count)
2192 		goto out;
2193 
2194 	__i915_gem_object_release_mmap(obj);
2195 
2196 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
2197 	 * memory transactions from userspace before we return. The TLB
2198 	 * flushing implied above by changing the PTE above *should* be
2199 	 * sufficient, an extra barrier here just provides us with a bit
2200 	 * of paranoid documentation about our requirement to serialise
2201 	 * memory writes before touching registers / GSM.
2202 	 */
2203 	wmb();
2204 
2205 out:
2206 	intel_runtime_pm_put(i915);
2207 }
2208 
2209 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2210 {
2211 	struct drm_i915_gem_object *obj, *on;
2212 	int i;
2213 
2214 	/*
2215 	 * Only called during RPM suspend. All users of the userfault_list
2216 	 * must be holding an RPM wakeref to ensure that this can not
2217 	 * run concurrently with themselves (and use the struct_mutex for
2218 	 * protection between themselves).
2219 	 */
2220 
2221 	list_for_each_entry_safe(obj, on,
2222 				 &dev_priv->mm.userfault_list, userfault_link)
2223 		__i915_gem_object_release_mmap(obj);
2224 
2225 	/* The fence will be lost when the device powers down. If any were
2226 	 * in use by hardware (i.e. they are pinned), we should not be powering
2227 	 * down! All other fences will be reacquired by the user upon waking.
2228 	 */
2229 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2230 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2231 
2232 		/* Ideally we want to assert that the fence register is not
2233 		 * live at this point (i.e. that no piece of code will be
2234 		 * trying to write through fence + GTT, as that both violates
2235 		 * our tracking of activity and associated locking/barriers,
2236 		 * but also is illegal given that the hw is powered down).
2237 		 *
2238 		 * Previously we used reg->pin_count as a "liveness" indicator.
2239 		 * That is not sufficient, and we need a more fine-grained
2240 		 * tool if we want to have a sanity check here.
2241 		 */
2242 
2243 		if (!reg->vma)
2244 			continue;
2245 
2246 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2247 		reg->dirty = true;
2248 	}
2249 }
2250 
2251 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2252 {
2253 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2254 	int err;
2255 
2256 	err = drm_gem_create_mmap_offset(&obj->base);
2257 	if (likely(!err))
2258 		return 0;
2259 
2260 	/* Attempt to reap some mmap space from dead objects */
2261 	do {
2262 		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2263 		if (err)
2264 			break;
2265 
2266 		i915_gem_drain_freed_objects(dev_priv);
2267 		err = drm_gem_create_mmap_offset(&obj->base);
2268 		if (!err)
2269 			break;
2270 
2271 	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2272 
2273 	return err;
2274 }
2275 
2276 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2277 {
2278 	drm_gem_free_mmap_offset(&obj->base);
2279 }
2280 
2281 int
2282 i915_gem_mmap_gtt(struct drm_file *file,
2283 		  struct drm_device *dev,
2284 		  uint32_t handle,
2285 		  uint64_t *offset)
2286 {
2287 	struct drm_i915_gem_object *obj;
2288 	int ret;
2289 
2290 	obj = i915_gem_object_lookup(file, handle);
2291 	if (!obj)
2292 		return -ENOENT;
2293 
2294 	ret = i915_gem_object_create_mmap_offset(obj);
2295 	if (ret == 0)
2296 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2297 
2298 	i915_gem_object_put(obj);
2299 	return ret;
2300 }
2301 
2302 /**
2303  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2304  * @dev: DRM device
2305  * @data: GTT mapping ioctl data
2306  * @file: GEM object info
2307  *
2308  * Simply returns the fake offset to userspace so it can mmap it.
2309  * The mmap call will end up in drm_gem_mmap(), which will set things
2310  * up so we can get faults in the handler above.
2311  *
2312  * The fault handler will take care of binding the object into the GTT
2313  * (since it may have been evicted to make room for something), allocating
2314  * a fence register, and mapping the appropriate aperture address into
2315  * userspace.
2316  */
2317 int
2318 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2319 			struct drm_file *file)
2320 {
2321 	struct drm_i915_gem_mmap_gtt *args = data;
2322 
2323 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2324 }
2325 
2326 /* Immediately discard the backing storage */
2327 static void
2328 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2329 {
2330 	i915_gem_object_free_mmap_offset(obj);
2331 
2332 	if (obj->base.filp == NULL)
2333 		return;
2334 
2335 	/* Our goal here is to return as much of the memory as
2336 	 * is possible back to the system as we are called from OOM.
2337 	 * To do this we must instruct the shmfs to drop all of its
2338 	 * backing pages, *now*.
2339 	 */
2340 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2341 	obj->mm.madv = __I915_MADV_PURGED;
2342 	obj->mm.pages = ERR_PTR(-EFAULT);
2343 }
2344 
2345 /* Try to discard unwanted pages */
2346 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2347 {
2348 	struct address_space *mapping;
2349 
2350 	lockdep_assert_held(&obj->mm.lock);
2351 	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2352 
2353 	switch (obj->mm.madv) {
2354 	case I915_MADV_DONTNEED:
2355 		i915_gem_object_truncate(obj);
2356 	case __I915_MADV_PURGED:
2357 		return;
2358 	}
2359 
2360 	if (obj->base.filp == NULL)
2361 		return;
2362 
2363 	mapping = obj->base.filp->f_mapping,
2364 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2365 }
2366 
2367 static void
2368 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2369 			      struct sg_table *pages)
2370 {
2371 	struct sgt_iter sgt_iter;
2372 	struct page *page;
2373 
2374 	__i915_gem_object_release_shmem(obj, pages, true);
2375 
2376 	i915_gem_gtt_finish_pages(obj, pages);
2377 
2378 	if (i915_gem_object_needs_bit17_swizzle(obj))
2379 		i915_gem_object_save_bit_17_swizzle(obj, pages);
2380 
2381 	for_each_sgt_page(page, sgt_iter, pages) {
2382 		if (obj->mm.dirty)
2383 			set_page_dirty(page);
2384 
2385 		if (obj->mm.madv == I915_MADV_WILLNEED)
2386 			mark_page_accessed(page);
2387 
2388 		put_page(page);
2389 	}
2390 	obj->mm.dirty = false;
2391 
2392 	sg_free_table(pages);
2393 	kfree(pages);
2394 }
2395 
2396 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2397 {
2398 	struct radix_tree_iter iter;
2399 	void __rcu **slot;
2400 
2401 	rcu_read_lock();
2402 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2403 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2404 	rcu_read_unlock();
2405 }
2406 
2407 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2408 				 enum i915_mm_subclass subclass)
2409 {
2410 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2411 	struct sg_table *pages;
2412 
2413 	if (i915_gem_object_has_pinned_pages(obj))
2414 		return;
2415 
2416 	GEM_BUG_ON(obj->bind_count);
2417 	if (!i915_gem_object_has_pages(obj))
2418 		return;
2419 
2420 	/* May be called by shrinker from within get_pages() (on another bo) */
2421 	mutex_lock_nested(&obj->mm.lock, subclass);
2422 	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2423 		goto unlock;
2424 
2425 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2426 	 * array, hence protect them from being reaped by removing them from gtt
2427 	 * lists early. */
2428 	pages = fetch_and_zero(&obj->mm.pages);
2429 	GEM_BUG_ON(!pages);
2430 
2431 	spin_lock(&i915->mm.obj_lock);
2432 	list_del(&obj->mm.link);
2433 	spin_unlock(&i915->mm.obj_lock);
2434 
2435 	if (obj->mm.mapping) {
2436 		void *ptr;
2437 
2438 		ptr = page_mask_bits(obj->mm.mapping);
2439 		if (is_vmalloc_addr(ptr))
2440 			vunmap(ptr);
2441 		else
2442 			kunmap(kmap_to_page(ptr));
2443 
2444 		obj->mm.mapping = NULL;
2445 	}
2446 
2447 	__i915_gem_object_reset_page_iter(obj);
2448 
2449 	if (!IS_ERR(pages))
2450 		obj->ops->put_pages(obj, pages);
2451 
2452 	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2453 
2454 unlock:
2455 	mutex_unlock(&obj->mm.lock);
2456 }
2457 
2458 static bool i915_sg_trim(struct sg_table *orig_st)
2459 {
2460 	struct sg_table new_st;
2461 	struct scatterlist *sg, *new_sg;
2462 	unsigned int i;
2463 
2464 	if (orig_st->nents == orig_st->orig_nents)
2465 		return false;
2466 
2467 	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2468 		return false;
2469 
2470 	new_sg = new_st.sgl;
2471 	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2472 		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2473 		/* called before being DMA mapped, no need to copy sg->dma_* */
2474 		new_sg = sg_next(new_sg);
2475 	}
2476 	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2477 
2478 	sg_free_table(orig_st);
2479 
2480 	*orig_st = new_st;
2481 	return true;
2482 }
2483 
2484 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2485 {
2486 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2487 	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2488 	unsigned long i;
2489 	struct address_space *mapping;
2490 	struct sg_table *st;
2491 	struct scatterlist *sg;
2492 	struct sgt_iter sgt_iter;
2493 	struct page *page;
2494 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2495 	unsigned int max_segment = i915_sg_segment_size();
2496 	unsigned int sg_page_sizes;
2497 	gfp_t noreclaim;
2498 	int ret;
2499 
2500 	/* Assert that the object is not currently in any GPU domain. As it
2501 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2502 	 * a GPU cache
2503 	 */
2504 	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2505 	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2506 
2507 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2508 	if (st == NULL)
2509 		return -ENOMEM;
2510 
2511 rebuild_st:
2512 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2513 		kfree(st);
2514 		return -ENOMEM;
2515 	}
2516 
2517 	/* Get the list of pages out of our struct file.  They'll be pinned
2518 	 * at this point until we release them.
2519 	 *
2520 	 * Fail silently without starting the shrinker
2521 	 */
2522 	mapping = obj->base.filp->f_mapping;
2523 	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2524 	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2525 
2526 	sg = st->sgl;
2527 	st->nents = 0;
2528 	sg_page_sizes = 0;
2529 	for (i = 0; i < page_count; i++) {
2530 		const unsigned int shrink[] = {
2531 			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2532 			0,
2533 		}, *s = shrink;
2534 		gfp_t gfp = noreclaim;
2535 
2536 		do {
2537 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2538 			if (likely(!IS_ERR(page)))
2539 				break;
2540 
2541 			if (!*s) {
2542 				ret = PTR_ERR(page);
2543 				goto err_sg;
2544 			}
2545 
2546 			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2547 			cond_resched();
2548 
2549 			/* We've tried hard to allocate the memory by reaping
2550 			 * our own buffer, now let the real VM do its job and
2551 			 * go down in flames if truly OOM.
2552 			 *
2553 			 * However, since graphics tend to be disposable,
2554 			 * defer the oom here by reporting the ENOMEM back
2555 			 * to userspace.
2556 			 */
2557 			if (!*s) {
2558 				/* reclaim and warn, but no oom */
2559 				gfp = mapping_gfp_mask(mapping);
2560 
2561 				/* Our bo are always dirty and so we require
2562 				 * kswapd to reclaim our pages (direct reclaim
2563 				 * does not effectively begin pageout of our
2564 				 * buffers on its own). However, direct reclaim
2565 				 * only waits for kswapd when under allocation
2566 				 * congestion. So as a result __GFP_RECLAIM is
2567 				 * unreliable and fails to actually reclaim our
2568 				 * dirty pages -- unless you try over and over
2569 				 * again with !__GFP_NORETRY. However, we still
2570 				 * want to fail this allocation rather than
2571 				 * trigger the out-of-memory killer and for
2572 				 * this we want __GFP_RETRY_MAYFAIL.
2573 				 */
2574 				gfp |= __GFP_RETRY_MAYFAIL;
2575 			}
2576 		} while (1);
2577 
2578 		if (!i ||
2579 		    sg->length >= max_segment ||
2580 		    page_to_pfn(page) != last_pfn + 1) {
2581 			if (i) {
2582 				sg_page_sizes |= sg->length;
2583 				sg = sg_next(sg);
2584 			}
2585 			st->nents++;
2586 			sg_set_page(sg, page, PAGE_SIZE, 0);
2587 		} else {
2588 			sg->length += PAGE_SIZE;
2589 		}
2590 		last_pfn = page_to_pfn(page);
2591 
2592 		/* Check that the i965g/gm workaround works. */
2593 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2594 	}
2595 	if (sg) { /* loop terminated early; short sg table */
2596 		sg_page_sizes |= sg->length;
2597 		sg_mark_end(sg);
2598 	}
2599 
2600 	/* Trim unused sg entries to avoid wasting memory. */
2601 	i915_sg_trim(st);
2602 
2603 	ret = i915_gem_gtt_prepare_pages(obj, st);
2604 	if (ret) {
2605 		/* DMA remapping failed? One possible cause is that
2606 		 * it could not reserve enough large entries, asking
2607 		 * for PAGE_SIZE chunks instead may be helpful.
2608 		 */
2609 		if (max_segment > PAGE_SIZE) {
2610 			for_each_sgt_page(page, sgt_iter, st)
2611 				put_page(page);
2612 			sg_free_table(st);
2613 
2614 			max_segment = PAGE_SIZE;
2615 			goto rebuild_st;
2616 		} else {
2617 			dev_warn(&dev_priv->drm.pdev->dev,
2618 				 "Failed to DMA remap %lu pages\n",
2619 				 page_count);
2620 			goto err_pages;
2621 		}
2622 	}
2623 
2624 	if (i915_gem_object_needs_bit17_swizzle(obj))
2625 		i915_gem_object_do_bit_17_swizzle(obj, st);
2626 
2627 	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2628 
2629 	return 0;
2630 
2631 err_sg:
2632 	sg_mark_end(sg);
2633 err_pages:
2634 	for_each_sgt_page(page, sgt_iter, st)
2635 		put_page(page);
2636 	sg_free_table(st);
2637 	kfree(st);
2638 
2639 	/* shmemfs first checks if there is enough memory to allocate the page
2640 	 * and reports ENOSPC should there be insufficient, along with the usual
2641 	 * ENOMEM for a genuine allocation failure.
2642 	 *
2643 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2644 	 * space and so want to translate the error from shmemfs back to our
2645 	 * usual understanding of ENOMEM.
2646 	 */
2647 	if (ret == -ENOSPC)
2648 		ret = -ENOMEM;
2649 
2650 	return ret;
2651 }
2652 
2653 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2654 				 struct sg_table *pages,
2655 				 unsigned int sg_page_sizes)
2656 {
2657 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2658 	unsigned long supported = INTEL_INFO(i915)->page_sizes;
2659 	int i;
2660 
2661 	lockdep_assert_held(&obj->mm.lock);
2662 
2663 	obj->mm.get_page.sg_pos = pages->sgl;
2664 	obj->mm.get_page.sg_idx = 0;
2665 
2666 	obj->mm.pages = pages;
2667 
2668 	if (i915_gem_object_is_tiled(obj) &&
2669 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2670 		GEM_BUG_ON(obj->mm.quirked);
2671 		__i915_gem_object_pin_pages(obj);
2672 		obj->mm.quirked = true;
2673 	}
2674 
2675 	GEM_BUG_ON(!sg_page_sizes);
2676 	obj->mm.page_sizes.phys = sg_page_sizes;
2677 
2678 	/*
2679 	 * Calculate the supported page-sizes which fit into the given
2680 	 * sg_page_sizes. This will give us the page-sizes which we may be able
2681 	 * to use opportunistically when later inserting into the GTT. For
2682 	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2683 	 * 64K or 4K pages, although in practice this will depend on a number of
2684 	 * other factors.
2685 	 */
2686 	obj->mm.page_sizes.sg = 0;
2687 	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2688 		if (obj->mm.page_sizes.phys & ~0u << i)
2689 			obj->mm.page_sizes.sg |= BIT(i);
2690 	}
2691 	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2692 
2693 	spin_lock(&i915->mm.obj_lock);
2694 	list_add(&obj->mm.link, &i915->mm.unbound_list);
2695 	spin_unlock(&i915->mm.obj_lock);
2696 }
2697 
2698 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2699 {
2700 	int err;
2701 
2702 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2703 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2704 		return -EFAULT;
2705 	}
2706 
2707 	err = obj->ops->get_pages(obj);
2708 	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2709 
2710 	return err;
2711 }
2712 
2713 /* Ensure that the associated pages are gathered from the backing storage
2714  * and pinned into our object. i915_gem_object_pin_pages() may be called
2715  * multiple times before they are released by a single call to
2716  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2717  * either as a result of memory pressure (reaping pages under the shrinker)
2718  * or as the object is itself released.
2719  */
2720 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2721 {
2722 	int err;
2723 
2724 	err = mutex_lock_interruptible(&obj->mm.lock);
2725 	if (err)
2726 		return err;
2727 
2728 	if (unlikely(!i915_gem_object_has_pages(obj))) {
2729 		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2730 
2731 		err = ____i915_gem_object_get_pages(obj);
2732 		if (err)
2733 			goto unlock;
2734 
2735 		smp_mb__before_atomic();
2736 	}
2737 	atomic_inc(&obj->mm.pages_pin_count);
2738 
2739 unlock:
2740 	mutex_unlock(&obj->mm.lock);
2741 	return err;
2742 }
2743 
2744 /* The 'mapping' part of i915_gem_object_pin_map() below */
2745 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2746 				 enum i915_map_type type)
2747 {
2748 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2749 	struct sg_table *sgt = obj->mm.pages;
2750 	struct sgt_iter sgt_iter;
2751 	struct page *page;
2752 	struct page *stack_pages[32];
2753 	struct page **pages = stack_pages;
2754 	unsigned long i = 0;
2755 	pgprot_t pgprot;
2756 	void *addr;
2757 
2758 	/* A single page can always be kmapped */
2759 	if (n_pages == 1 && type == I915_MAP_WB)
2760 		return kmap(sg_page(sgt->sgl));
2761 
2762 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2763 		/* Too big for stack -- allocate temporary array instead */
2764 		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2765 		if (!pages)
2766 			return NULL;
2767 	}
2768 
2769 	for_each_sgt_page(page, sgt_iter, sgt)
2770 		pages[i++] = page;
2771 
2772 	/* Check that we have the expected number of pages */
2773 	GEM_BUG_ON(i != n_pages);
2774 
2775 	switch (type) {
2776 	default:
2777 		MISSING_CASE(type);
2778 		/* fallthrough to use PAGE_KERNEL anyway */
2779 	case I915_MAP_WB:
2780 		pgprot = PAGE_KERNEL;
2781 		break;
2782 	case I915_MAP_WC:
2783 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2784 		break;
2785 	}
2786 	addr = vmap(pages, n_pages, 0, pgprot);
2787 
2788 	if (pages != stack_pages)
2789 		kvfree(pages);
2790 
2791 	return addr;
2792 }
2793 
2794 /* get, pin, and map the pages of the object into kernel space */
2795 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2796 			      enum i915_map_type type)
2797 {
2798 	enum i915_map_type has_type;
2799 	bool pinned;
2800 	void *ptr;
2801 	int ret;
2802 
2803 	if (unlikely(!i915_gem_object_has_struct_page(obj)))
2804 		return ERR_PTR(-ENXIO);
2805 
2806 	ret = mutex_lock_interruptible(&obj->mm.lock);
2807 	if (ret)
2808 		return ERR_PTR(ret);
2809 
2810 	pinned = !(type & I915_MAP_OVERRIDE);
2811 	type &= ~I915_MAP_OVERRIDE;
2812 
2813 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2814 		if (unlikely(!i915_gem_object_has_pages(obj))) {
2815 			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2816 
2817 			ret = ____i915_gem_object_get_pages(obj);
2818 			if (ret)
2819 				goto err_unlock;
2820 
2821 			smp_mb__before_atomic();
2822 		}
2823 		atomic_inc(&obj->mm.pages_pin_count);
2824 		pinned = false;
2825 	}
2826 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2827 
2828 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2829 	if (ptr && has_type != type) {
2830 		if (pinned) {
2831 			ret = -EBUSY;
2832 			goto err_unpin;
2833 		}
2834 
2835 		if (is_vmalloc_addr(ptr))
2836 			vunmap(ptr);
2837 		else
2838 			kunmap(kmap_to_page(ptr));
2839 
2840 		ptr = obj->mm.mapping = NULL;
2841 	}
2842 
2843 	if (!ptr) {
2844 		ptr = i915_gem_object_map(obj, type);
2845 		if (!ptr) {
2846 			ret = -ENOMEM;
2847 			goto err_unpin;
2848 		}
2849 
2850 		obj->mm.mapping = page_pack_bits(ptr, type);
2851 	}
2852 
2853 out_unlock:
2854 	mutex_unlock(&obj->mm.lock);
2855 	return ptr;
2856 
2857 err_unpin:
2858 	atomic_dec(&obj->mm.pages_pin_count);
2859 err_unlock:
2860 	ptr = ERR_PTR(ret);
2861 	goto out_unlock;
2862 }
2863 
2864 static int
2865 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2866 			   const struct drm_i915_gem_pwrite *arg)
2867 {
2868 	struct address_space *mapping = obj->base.filp->f_mapping;
2869 	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2870 	u64 remain, offset;
2871 	unsigned int pg;
2872 
2873 	/* Before we instantiate/pin the backing store for our use, we
2874 	 * can prepopulate the shmemfs filp efficiently using a write into
2875 	 * the pagecache. We avoid the penalty of instantiating all the
2876 	 * pages, important if the user is just writing to a few and never
2877 	 * uses the object on the GPU, and using a direct write into shmemfs
2878 	 * allows it to avoid the cost of retrieving a page (either swapin
2879 	 * or clearing-before-use) before it is overwritten.
2880 	 */
2881 	if (i915_gem_object_has_pages(obj))
2882 		return -ENODEV;
2883 
2884 	if (obj->mm.madv != I915_MADV_WILLNEED)
2885 		return -EFAULT;
2886 
2887 	/* Before the pages are instantiated the object is treated as being
2888 	 * in the CPU domain. The pages will be clflushed as required before
2889 	 * use, and we can freely write into the pages directly. If userspace
2890 	 * races pwrite with any other operation; corruption will ensue -
2891 	 * that is userspace's prerogative!
2892 	 */
2893 
2894 	remain = arg->size;
2895 	offset = arg->offset;
2896 	pg = offset_in_page(offset);
2897 
2898 	do {
2899 		unsigned int len, unwritten;
2900 		struct page *page;
2901 		void *data, *vaddr;
2902 		int err;
2903 
2904 		len = PAGE_SIZE - pg;
2905 		if (len > remain)
2906 			len = remain;
2907 
2908 		err = pagecache_write_begin(obj->base.filp, mapping,
2909 					    offset, len, 0,
2910 					    &page, &data);
2911 		if (err < 0)
2912 			return err;
2913 
2914 		vaddr = kmap(page);
2915 		unwritten = copy_from_user(vaddr + pg, user_data, len);
2916 		kunmap(page);
2917 
2918 		err = pagecache_write_end(obj->base.filp, mapping,
2919 					  offset, len, len - unwritten,
2920 					  page, data);
2921 		if (err < 0)
2922 			return err;
2923 
2924 		if (unwritten)
2925 			return -EFAULT;
2926 
2927 		remain -= len;
2928 		user_data += len;
2929 		offset += len;
2930 		pg = 0;
2931 	} while (remain);
2932 
2933 	return 0;
2934 }
2935 
2936 static void i915_gem_client_mark_guilty(struct drm_i915_file_private *file_priv,
2937 					const struct i915_gem_context *ctx)
2938 {
2939 	unsigned int score;
2940 	unsigned long prev_hang;
2941 
2942 	if (i915_gem_context_is_banned(ctx))
2943 		score = I915_CLIENT_SCORE_CONTEXT_BAN;
2944 	else
2945 		score = 0;
2946 
2947 	prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
2948 	if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
2949 		score += I915_CLIENT_SCORE_HANG_FAST;
2950 
2951 	if (score) {
2952 		atomic_add(score, &file_priv->ban_score);
2953 
2954 		DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
2955 				 ctx->name, score,
2956 				 atomic_read(&file_priv->ban_score));
2957 	}
2958 }
2959 
2960 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2961 {
2962 	unsigned int score;
2963 	bool banned, bannable;
2964 
2965 	atomic_inc(&ctx->guilty_count);
2966 
2967 	bannable = i915_gem_context_is_bannable(ctx);
2968 	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
2969 	banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
2970 
2971 	DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, ban %s\n",
2972 			 ctx->name, atomic_read(&ctx->guilty_count),
2973 			 score, yesno(banned && bannable));
2974 
2975 	/* Cool contexts don't accumulate client ban score */
2976 	if (!bannable)
2977 		return;
2978 
2979 	if (banned)
2980 		i915_gem_context_set_banned(ctx);
2981 
2982 	if (!IS_ERR_OR_NULL(ctx->file_priv))
2983 		i915_gem_client_mark_guilty(ctx->file_priv, ctx);
2984 }
2985 
2986 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2987 {
2988 	atomic_inc(&ctx->active_count);
2989 }
2990 
2991 struct i915_request *
2992 i915_gem_find_active_request(struct intel_engine_cs *engine)
2993 {
2994 	struct i915_request *request, *active = NULL;
2995 	unsigned long flags;
2996 
2997 	/*
2998 	 * We are called by the error capture, reset and to dump engine
2999 	 * state at random points in time. In particular, note that neither is
3000 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
3001 	 * and we assume that no more writes can happen (we waited long enough
3002 	 * for all writes that were in transaction to be flushed) - adding an
3003 	 * extra delay for a recent interrupt is pointless. Hence, we do
3004 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
3005 	 * At all other times, we must assume the GPU is still running, but
3006 	 * we only care about the snapshot of this moment.
3007 	 */
3008 	spin_lock_irqsave(&engine->timeline.lock, flags);
3009 	list_for_each_entry(request, &engine->timeline.requests, link) {
3010 		if (__i915_request_completed(request, request->global_seqno))
3011 			continue;
3012 
3013 		active = request;
3014 		break;
3015 	}
3016 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3017 
3018 	return active;
3019 }
3020 
3021 /*
3022  * Ensure irq handler finishes, and not run again.
3023  * Also return the active request so that we only search for it once.
3024  */
3025 struct i915_request *
3026 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
3027 {
3028 	struct i915_request *request = NULL;
3029 
3030 	/*
3031 	 * During the reset sequence, we must prevent the engine from
3032 	 * entering RC6. As the context state is undefined until we restart
3033 	 * the engine, if it does enter RC6 during the reset, the state
3034 	 * written to the powercontext is undefined and so we may lose
3035 	 * GPU state upon resume, i.e. fail to restart after a reset.
3036 	 */
3037 	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
3038 
3039 	/*
3040 	 * Prevent the signaler thread from updating the request
3041 	 * state (by calling dma_fence_signal) as we are processing
3042 	 * the reset. The write from the GPU of the seqno is
3043 	 * asynchronous and the signaler thread may see a different
3044 	 * value to us and declare the request complete, even though
3045 	 * the reset routine have picked that request as the active
3046 	 * (incomplete) request. This conflict is not handled
3047 	 * gracefully!
3048 	 */
3049 	kthread_park(engine->breadcrumbs.signaler);
3050 
3051 	/*
3052 	 * Prevent request submission to the hardware until we have
3053 	 * completed the reset in i915_gem_reset_finish(). If a request
3054 	 * is completed by one engine, it may then queue a request
3055 	 * to a second via its execlists->tasklet *just* as we are
3056 	 * calling engine->init_hw() and also writing the ELSP.
3057 	 * Turning off the execlists->tasklet until the reset is over
3058 	 * prevents the race.
3059 	 *
3060 	 * Note that this needs to be a single atomic operation on the
3061 	 * tasklet (flush existing tasks, prevent new tasks) to prevent
3062 	 * a race between reset and set-wedged. It is not, so we do the best
3063 	 * we can atm and make sure we don't lock the machine up in the more
3064 	 * common case of recursively being called from set-wedged from inside
3065 	 * i915_reset.
3066 	 */
3067 	if (!atomic_read(&engine->execlists.tasklet.count))
3068 		tasklet_kill(&engine->execlists.tasklet);
3069 	tasklet_disable(&engine->execlists.tasklet);
3070 
3071 	/*
3072 	 * We're using worker to queue preemption requests from the tasklet in
3073 	 * GuC submission mode.
3074 	 * Even though tasklet was disabled, we may still have a worker queued.
3075 	 * Let's make sure that all workers scheduled before disabling the
3076 	 * tasklet are completed before continuing with the reset.
3077 	 */
3078 	if (engine->i915->guc.preempt_wq)
3079 		flush_workqueue(engine->i915->guc.preempt_wq);
3080 
3081 	if (engine->irq_seqno_barrier)
3082 		engine->irq_seqno_barrier(engine);
3083 
3084 	request = i915_gem_find_active_request(engine);
3085 	if (request && request->fence.error == -EIO)
3086 		request = ERR_PTR(-EIO); /* Previous reset failed! */
3087 
3088 	return request;
3089 }
3090 
3091 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3092 {
3093 	struct intel_engine_cs *engine;
3094 	struct i915_request *request;
3095 	enum intel_engine_id id;
3096 	int err = 0;
3097 
3098 	for_each_engine(engine, dev_priv, id) {
3099 		request = i915_gem_reset_prepare_engine(engine);
3100 		if (IS_ERR(request)) {
3101 			err = PTR_ERR(request);
3102 			continue;
3103 		}
3104 
3105 		engine->hangcheck.active_request = request;
3106 	}
3107 
3108 	i915_gem_revoke_fences(dev_priv);
3109 	intel_uc_sanitize(dev_priv);
3110 
3111 	return err;
3112 }
3113 
3114 static void skip_request(struct i915_request *request)
3115 {
3116 	void *vaddr = request->ring->vaddr;
3117 	u32 head;
3118 
3119 	/* As this request likely depends on state from the lost
3120 	 * context, clear out all the user operations leaving the
3121 	 * breadcrumb at the end (so we get the fence notifications).
3122 	 */
3123 	head = request->head;
3124 	if (request->postfix < head) {
3125 		memset(vaddr + head, 0, request->ring->size - head);
3126 		head = 0;
3127 	}
3128 	memset(vaddr + head, 0, request->postfix - head);
3129 
3130 	dma_fence_set_error(&request->fence, -EIO);
3131 }
3132 
3133 static void engine_skip_context(struct i915_request *request)
3134 {
3135 	struct intel_engine_cs *engine = request->engine;
3136 	struct i915_gem_context *hung_ctx = request->ctx;
3137 	struct i915_timeline *timeline = request->timeline;
3138 	unsigned long flags;
3139 
3140 	GEM_BUG_ON(timeline == &engine->timeline);
3141 
3142 	spin_lock_irqsave(&engine->timeline.lock, flags);
3143 	spin_lock_nested(&timeline->lock, SINGLE_DEPTH_NESTING);
3144 
3145 	list_for_each_entry_continue(request, &engine->timeline.requests, link)
3146 		if (request->ctx == hung_ctx)
3147 			skip_request(request);
3148 
3149 	list_for_each_entry(request, &timeline->requests, link)
3150 		skip_request(request);
3151 
3152 	spin_unlock(&timeline->lock);
3153 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3154 }
3155 
3156 /* Returns the request if it was guilty of the hang */
3157 static struct i915_request *
3158 i915_gem_reset_request(struct intel_engine_cs *engine,
3159 		       struct i915_request *request,
3160 		       bool stalled)
3161 {
3162 	/* The guilty request will get skipped on a hung engine.
3163 	 *
3164 	 * Users of client default contexts do not rely on logical
3165 	 * state preserved between batches so it is safe to execute
3166 	 * queued requests following the hang. Non default contexts
3167 	 * rely on preserved state, so skipping a batch loses the
3168 	 * evolution of the state and it needs to be considered corrupted.
3169 	 * Executing more queued batches on top of corrupted state is
3170 	 * risky. But we take the risk by trying to advance through
3171 	 * the queued requests in order to make the client behaviour
3172 	 * more predictable around resets, by not throwing away random
3173 	 * amount of batches it has prepared for execution. Sophisticated
3174 	 * clients can use gem_reset_stats_ioctl and dma fence status
3175 	 * (exported via sync_file info ioctl on explicit fences) to observe
3176 	 * when it loses the context state and should rebuild accordingly.
3177 	 *
3178 	 * The context ban, and ultimately the client ban, mechanism are safety
3179 	 * valves if client submission ends up resulting in nothing more than
3180 	 * subsequent hangs.
3181 	 */
3182 
3183 	if (i915_request_completed(request)) {
3184 		GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
3185 			  engine->name, request->global_seqno,
3186 			  request->fence.context, request->fence.seqno,
3187 			  intel_engine_get_seqno(engine));
3188 		stalled = false;
3189 	}
3190 
3191 	if (stalled) {
3192 		i915_gem_context_mark_guilty(request->ctx);
3193 		skip_request(request);
3194 
3195 		/* If this context is now banned, skip all pending requests. */
3196 		if (i915_gem_context_is_banned(request->ctx))
3197 			engine_skip_context(request);
3198 	} else {
3199 		/*
3200 		 * Since this is not the hung engine, it may have advanced
3201 		 * since the hang declaration. Double check by refinding
3202 		 * the active request at the time of the reset.
3203 		 */
3204 		request = i915_gem_find_active_request(engine);
3205 		if (request) {
3206 			i915_gem_context_mark_innocent(request->ctx);
3207 			dma_fence_set_error(&request->fence, -EAGAIN);
3208 
3209 			/* Rewind the engine to replay the incomplete rq */
3210 			spin_lock_irq(&engine->timeline.lock);
3211 			request = list_prev_entry(request, link);
3212 			if (&request->link == &engine->timeline.requests)
3213 				request = NULL;
3214 			spin_unlock_irq(&engine->timeline.lock);
3215 		}
3216 	}
3217 
3218 	return request;
3219 }
3220 
3221 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3222 			   struct i915_request *request,
3223 			   bool stalled)
3224 {
3225 	/*
3226 	 * Make sure this write is visible before we re-enable the interrupt
3227 	 * handlers on another CPU, as tasklet_enable() resolves to just
3228 	 * a compiler barrier which is insufficient for our purpose here.
3229 	 */
3230 	smp_store_mb(engine->irq_posted, 0);
3231 
3232 	if (request)
3233 		request = i915_gem_reset_request(engine, request, stalled);
3234 
3235 	if (request) {
3236 		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
3237 				 engine->name, request->global_seqno);
3238 	}
3239 
3240 	/* Setup the CS to resume from the breadcrumb of the hung request */
3241 	engine->reset_hw(engine, request);
3242 }
3243 
3244 void i915_gem_reset(struct drm_i915_private *dev_priv,
3245 		    unsigned int stalled_mask)
3246 {
3247 	struct intel_engine_cs *engine;
3248 	enum intel_engine_id id;
3249 
3250 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3251 
3252 	i915_retire_requests(dev_priv);
3253 
3254 	for_each_engine(engine, dev_priv, id) {
3255 		struct i915_gem_context *ctx;
3256 
3257 		i915_gem_reset_engine(engine,
3258 				      engine->hangcheck.active_request,
3259 				      stalled_mask & ENGINE_MASK(id));
3260 		ctx = fetch_and_zero(&engine->last_retired_context);
3261 		if (ctx)
3262 			intel_context_unpin(ctx, engine);
3263 
3264 		/*
3265 		 * Ostensibily, we always want a context loaded for powersaving,
3266 		 * so if the engine is idle after the reset, send a request
3267 		 * to load our scratch kernel_context.
3268 		 *
3269 		 * More mysteriously, if we leave the engine idle after a reset,
3270 		 * the next userspace batch may hang, with what appears to be
3271 		 * an incoherent read by the CS (presumably stale TLB). An
3272 		 * empty request appears sufficient to paper over the glitch.
3273 		 */
3274 		if (intel_engine_is_idle(engine)) {
3275 			struct i915_request *rq;
3276 
3277 			rq = i915_request_alloc(engine,
3278 						dev_priv->kernel_context);
3279 			if (!IS_ERR(rq))
3280 				__i915_request_add(rq, false);
3281 		}
3282 	}
3283 
3284 	i915_gem_restore_fences(dev_priv);
3285 }
3286 
3287 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3288 {
3289 	tasklet_enable(&engine->execlists.tasklet);
3290 	kthread_unpark(engine->breadcrumbs.signaler);
3291 
3292 	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3293 }
3294 
3295 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3296 {
3297 	struct intel_engine_cs *engine;
3298 	enum intel_engine_id id;
3299 
3300 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3301 
3302 	for_each_engine(engine, dev_priv, id) {
3303 		engine->hangcheck.active_request = NULL;
3304 		i915_gem_reset_finish_engine(engine);
3305 	}
3306 }
3307 
3308 static void nop_submit_request(struct i915_request *request)
3309 {
3310 	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3311 		  request->engine->name,
3312 		  request->fence.context, request->fence.seqno);
3313 	dma_fence_set_error(&request->fence, -EIO);
3314 
3315 	i915_request_submit(request);
3316 }
3317 
3318 static void nop_complete_submit_request(struct i915_request *request)
3319 {
3320 	unsigned long flags;
3321 
3322 	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3323 		  request->engine->name,
3324 		  request->fence.context, request->fence.seqno);
3325 	dma_fence_set_error(&request->fence, -EIO);
3326 
3327 	spin_lock_irqsave(&request->engine->timeline.lock, flags);
3328 	__i915_request_submit(request);
3329 	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3330 	spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3331 }
3332 
3333 void i915_gem_set_wedged(struct drm_i915_private *i915)
3334 {
3335 	struct intel_engine_cs *engine;
3336 	enum intel_engine_id id;
3337 
3338 	GEM_TRACE("start\n");
3339 
3340 	if (GEM_SHOW_DEBUG()) {
3341 		struct drm_printer p = drm_debug_printer(__func__);
3342 
3343 		for_each_engine(engine, i915, id)
3344 			intel_engine_dump(engine, &p, "%s\n", engine->name);
3345 	}
3346 
3347 	set_bit(I915_WEDGED, &i915->gpu_error.flags);
3348 	smp_mb__after_atomic();
3349 
3350 	/*
3351 	 * First, stop submission to hw, but do not yet complete requests by
3352 	 * rolling the global seqno forward (since this would complete requests
3353 	 * for which we haven't set the fence error to EIO yet).
3354 	 */
3355 	for_each_engine(engine, i915, id) {
3356 		i915_gem_reset_prepare_engine(engine);
3357 
3358 		engine->submit_request = nop_submit_request;
3359 		engine->schedule = NULL;
3360 	}
3361 	i915->caps.scheduler = 0;
3362 
3363 	/* Even if the GPU reset fails, it should still stop the engines */
3364 	intel_gpu_reset(i915, ALL_ENGINES);
3365 
3366 	/*
3367 	 * Make sure no one is running the old callback before we proceed with
3368 	 * cancelling requests and resetting the completion tracking. Otherwise
3369 	 * we might submit a request to the hardware which never completes.
3370 	 */
3371 	synchronize_rcu();
3372 
3373 	for_each_engine(engine, i915, id) {
3374 		/* Mark all executing requests as skipped */
3375 		engine->cancel_requests(engine);
3376 
3377 		/*
3378 		 * Only once we've force-cancelled all in-flight requests can we
3379 		 * start to complete all requests.
3380 		 */
3381 		engine->submit_request = nop_complete_submit_request;
3382 	}
3383 
3384 	/*
3385 	 * Make sure no request can slip through without getting completed by
3386 	 * either this call here to intel_engine_init_global_seqno, or the one
3387 	 * in nop_complete_submit_request.
3388 	 */
3389 	synchronize_rcu();
3390 
3391 	for_each_engine(engine, i915, id) {
3392 		unsigned long flags;
3393 
3394 		/*
3395 		 * Mark all pending requests as complete so that any concurrent
3396 		 * (lockless) lookup doesn't try and wait upon the request as we
3397 		 * reset it.
3398 		 */
3399 		spin_lock_irqsave(&engine->timeline.lock, flags);
3400 		intel_engine_init_global_seqno(engine,
3401 					       intel_engine_last_submit(engine));
3402 		spin_unlock_irqrestore(&engine->timeline.lock, flags);
3403 
3404 		i915_gem_reset_finish_engine(engine);
3405 	}
3406 
3407 	GEM_TRACE("end\n");
3408 
3409 	wake_up_all(&i915->gpu_error.reset_queue);
3410 }
3411 
3412 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3413 {
3414 	struct i915_timeline *tl;
3415 
3416 	lockdep_assert_held(&i915->drm.struct_mutex);
3417 	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3418 		return true;
3419 
3420 	GEM_TRACE("start\n");
3421 
3422 	/*
3423 	 * Before unwedging, make sure that all pending operations
3424 	 * are flushed and errored out - we may have requests waiting upon
3425 	 * third party fences. We marked all inflight requests as EIO, and
3426 	 * every execbuf since returned EIO, for consistency we want all
3427 	 * the currently pending requests to also be marked as EIO, which
3428 	 * is done inside our nop_submit_request - and so we must wait.
3429 	 *
3430 	 * No more can be submitted until we reset the wedged bit.
3431 	 */
3432 	list_for_each_entry(tl, &i915->gt.timelines, link) {
3433 		struct i915_request *rq;
3434 
3435 		rq = i915_gem_active_peek(&tl->last_request,
3436 					  &i915->drm.struct_mutex);
3437 		if (!rq)
3438 			continue;
3439 
3440 		/*
3441 		 * We can't use our normal waiter as we want to
3442 		 * avoid recursively trying to handle the current
3443 		 * reset. The basic dma_fence_default_wait() installs
3444 		 * a callback for dma_fence_signal(), which is
3445 		 * triggered by our nop handler (indirectly, the
3446 		 * callback enables the signaler thread which is
3447 		 * woken by the nop_submit_request() advancing the seqno
3448 		 * and when the seqno passes the fence, the signaler
3449 		 * then signals the fence waking us up).
3450 		 */
3451 		if (dma_fence_default_wait(&rq->fence, true,
3452 					   MAX_SCHEDULE_TIMEOUT) < 0)
3453 			return false;
3454 	}
3455 	i915_retire_requests(i915);
3456 	GEM_BUG_ON(i915->gt.active_requests);
3457 
3458 	/*
3459 	 * Undo nop_submit_request. We prevent all new i915 requests from
3460 	 * being queued (by disallowing execbuf whilst wedged) so having
3461 	 * waited for all active requests above, we know the system is idle
3462 	 * and do not have to worry about a thread being inside
3463 	 * engine->submit_request() as we swap over. So unlike installing
3464 	 * the nop_submit_request on reset, we can do this from normal
3465 	 * context and do not require stop_machine().
3466 	 */
3467 	intel_engines_reset_default_submission(i915);
3468 	i915_gem_contexts_lost(i915);
3469 
3470 	GEM_TRACE("end\n");
3471 
3472 	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3473 	clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3474 
3475 	return true;
3476 }
3477 
3478 static void
3479 i915_gem_retire_work_handler(struct work_struct *work)
3480 {
3481 	struct drm_i915_private *dev_priv =
3482 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3483 	struct drm_device *dev = &dev_priv->drm;
3484 
3485 	/* Come back later if the device is busy... */
3486 	if (mutex_trylock(&dev->struct_mutex)) {
3487 		i915_retire_requests(dev_priv);
3488 		mutex_unlock(&dev->struct_mutex);
3489 	}
3490 
3491 	/*
3492 	 * Keep the retire handler running until we are finally idle.
3493 	 * We do not need to do this test under locking as in the worst-case
3494 	 * we queue the retire worker once too often.
3495 	 */
3496 	if (READ_ONCE(dev_priv->gt.awake))
3497 		queue_delayed_work(dev_priv->wq,
3498 				   &dev_priv->gt.retire_work,
3499 				   round_jiffies_up_relative(HZ));
3500 }
3501 
3502 static void shrink_caches(struct drm_i915_private *i915)
3503 {
3504 	/*
3505 	 * kmem_cache_shrink() discards empty slabs and reorders partially
3506 	 * filled slabs to prioritise allocating from the mostly full slabs,
3507 	 * with the aim of reducing fragmentation.
3508 	 */
3509 	kmem_cache_shrink(i915->priorities);
3510 	kmem_cache_shrink(i915->dependencies);
3511 	kmem_cache_shrink(i915->requests);
3512 	kmem_cache_shrink(i915->luts);
3513 	kmem_cache_shrink(i915->vmas);
3514 	kmem_cache_shrink(i915->objects);
3515 }
3516 
3517 struct sleep_rcu_work {
3518 	union {
3519 		struct rcu_head rcu;
3520 		struct work_struct work;
3521 	};
3522 	struct drm_i915_private *i915;
3523 	unsigned int epoch;
3524 };
3525 
3526 static inline bool
3527 same_epoch(struct drm_i915_private *i915, unsigned int epoch)
3528 {
3529 	/*
3530 	 * There is a small chance that the epoch wrapped since we started
3531 	 * sleeping. If we assume that epoch is at least a u32, then it will
3532 	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
3533 	 */
3534 	return epoch == READ_ONCE(i915->gt.epoch);
3535 }
3536 
3537 static void __sleep_work(struct work_struct *work)
3538 {
3539 	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
3540 	struct drm_i915_private *i915 = s->i915;
3541 	unsigned int epoch = s->epoch;
3542 
3543 	kfree(s);
3544 	if (same_epoch(i915, epoch))
3545 		shrink_caches(i915);
3546 }
3547 
3548 static void __sleep_rcu(struct rcu_head *rcu)
3549 {
3550 	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
3551 	struct drm_i915_private *i915 = s->i915;
3552 
3553 	if (same_epoch(i915, s->epoch)) {
3554 		INIT_WORK(&s->work, __sleep_work);
3555 		queue_work(i915->wq, &s->work);
3556 	} else {
3557 		kfree(s);
3558 	}
3559 }
3560 
3561 static inline bool
3562 new_requests_since_last_retire(const struct drm_i915_private *i915)
3563 {
3564 	return (READ_ONCE(i915->gt.active_requests) ||
3565 		work_pending(&i915->gt.idle_work.work));
3566 }
3567 
3568 static void
3569 i915_gem_idle_work_handler(struct work_struct *work)
3570 {
3571 	struct drm_i915_private *dev_priv =
3572 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3573 	unsigned int epoch = I915_EPOCH_INVALID;
3574 	bool rearm_hangcheck;
3575 
3576 	if (!READ_ONCE(dev_priv->gt.awake))
3577 		return;
3578 
3579 	/*
3580 	 * Wait for last execlists context complete, but bail out in case a
3581 	 * new request is submitted. As we don't trust the hardware, we
3582 	 * continue on if the wait times out. This is necessary to allow
3583 	 * the machine to suspend even if the hardware dies, and we will
3584 	 * try to recover in resume (after depriving the hardware of power,
3585 	 * it may be in a better mmod).
3586 	 */
3587 	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
3588 		   intel_engines_are_idle(dev_priv),
3589 		   I915_IDLE_ENGINES_TIMEOUT * 1000,
3590 		   10, 500);
3591 
3592 	rearm_hangcheck =
3593 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3594 
3595 	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3596 		/* Currently busy, come back later */
3597 		mod_delayed_work(dev_priv->wq,
3598 				 &dev_priv->gt.idle_work,
3599 				 msecs_to_jiffies(50));
3600 		goto out_rearm;
3601 	}
3602 
3603 	/*
3604 	 * New request retired after this work handler started, extend active
3605 	 * period until next instance of the work.
3606 	 */
3607 	if (new_requests_since_last_retire(dev_priv))
3608 		goto out_unlock;
3609 
3610 	epoch = __i915_gem_park(dev_priv);
3611 
3612 	rearm_hangcheck = false;
3613 out_unlock:
3614 	mutex_unlock(&dev_priv->drm.struct_mutex);
3615 
3616 out_rearm:
3617 	if (rearm_hangcheck) {
3618 		GEM_BUG_ON(!dev_priv->gt.awake);
3619 		i915_queue_hangcheck(dev_priv);
3620 	}
3621 
3622 	/*
3623 	 * When we are idle, it is an opportune time to reap our caches.
3624 	 * However, we have many objects that utilise RCU and the ordered
3625 	 * i915->wq that this work is executing on. To try and flush any
3626 	 * pending frees now we are idle, we first wait for an RCU grace
3627 	 * period, and then queue a task (that will run last on the wq) to
3628 	 * shrink and re-optimize the caches.
3629 	 */
3630 	if (same_epoch(dev_priv, epoch)) {
3631 		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
3632 		if (s) {
3633 			s->i915 = dev_priv;
3634 			s->epoch = epoch;
3635 			call_rcu(&s->rcu, __sleep_rcu);
3636 		}
3637 	}
3638 }
3639 
3640 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3641 {
3642 	struct drm_i915_private *i915 = to_i915(gem->dev);
3643 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
3644 	struct drm_i915_file_private *fpriv = file->driver_priv;
3645 	struct i915_lut_handle *lut, *ln;
3646 
3647 	mutex_lock(&i915->drm.struct_mutex);
3648 
3649 	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3650 		struct i915_gem_context *ctx = lut->ctx;
3651 		struct i915_vma *vma;
3652 
3653 		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3654 		if (ctx->file_priv != fpriv)
3655 			continue;
3656 
3657 		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3658 		GEM_BUG_ON(vma->obj != obj);
3659 
3660 		/* We allow the process to have multiple handles to the same
3661 		 * vma, in the same fd namespace, by virtue of flink/open.
3662 		 */
3663 		GEM_BUG_ON(!vma->open_count);
3664 		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3665 			i915_vma_close(vma);
3666 
3667 		list_del(&lut->obj_link);
3668 		list_del(&lut->ctx_link);
3669 
3670 		kmem_cache_free(i915->luts, lut);
3671 		__i915_gem_object_release_unless_active(obj);
3672 	}
3673 
3674 	mutex_unlock(&i915->drm.struct_mutex);
3675 }
3676 
3677 static unsigned long to_wait_timeout(s64 timeout_ns)
3678 {
3679 	if (timeout_ns < 0)
3680 		return MAX_SCHEDULE_TIMEOUT;
3681 
3682 	if (timeout_ns == 0)
3683 		return 0;
3684 
3685 	return nsecs_to_jiffies_timeout(timeout_ns);
3686 }
3687 
3688 /**
3689  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3690  * @dev: drm device pointer
3691  * @data: ioctl data blob
3692  * @file: drm file pointer
3693  *
3694  * Returns 0 if successful, else an error is returned with the remaining time in
3695  * the timeout parameter.
3696  *  -ETIME: object is still busy after timeout
3697  *  -ERESTARTSYS: signal interrupted the wait
3698  *  -ENONENT: object doesn't exist
3699  * Also possible, but rare:
3700  *  -EAGAIN: incomplete, restart syscall
3701  *  -ENOMEM: damn
3702  *  -ENODEV: Internal IRQ fail
3703  *  -E?: The add request failed
3704  *
3705  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3706  * non-zero timeout parameter the wait ioctl will wait for the given number of
3707  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3708  * without holding struct_mutex the object may become re-busied before this
3709  * function completes. A similar but shorter * race condition exists in the busy
3710  * ioctl
3711  */
3712 int
3713 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3714 {
3715 	struct drm_i915_gem_wait *args = data;
3716 	struct drm_i915_gem_object *obj;
3717 	ktime_t start;
3718 	long ret;
3719 
3720 	if (args->flags != 0)
3721 		return -EINVAL;
3722 
3723 	obj = i915_gem_object_lookup(file, args->bo_handle);
3724 	if (!obj)
3725 		return -ENOENT;
3726 
3727 	start = ktime_get();
3728 
3729 	ret = i915_gem_object_wait(obj,
3730 				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3731 				   to_wait_timeout(args->timeout_ns),
3732 				   to_rps_client(file));
3733 
3734 	if (args->timeout_ns > 0) {
3735 		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3736 		if (args->timeout_ns < 0)
3737 			args->timeout_ns = 0;
3738 
3739 		/*
3740 		 * Apparently ktime isn't accurate enough and occasionally has a
3741 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3742 		 * things up to make the test happy. We allow up to 1 jiffy.
3743 		 *
3744 		 * This is a regression from the timespec->ktime conversion.
3745 		 */
3746 		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3747 			args->timeout_ns = 0;
3748 
3749 		/* Asked to wait beyond the jiffie/scheduler precision? */
3750 		if (ret == -ETIME && args->timeout_ns)
3751 			ret = -EAGAIN;
3752 	}
3753 
3754 	i915_gem_object_put(obj);
3755 	return ret;
3756 }
3757 
3758 static int wait_for_timeline(struct i915_timeline *tl, unsigned int flags)
3759 {
3760 	return i915_gem_active_wait(&tl->last_request, flags);
3761 }
3762 
3763 static int wait_for_engines(struct drm_i915_private *i915)
3764 {
3765 	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3766 		dev_err(i915->drm.dev,
3767 			"Failed to idle engines, declaring wedged!\n");
3768 		GEM_TRACE_DUMP();
3769 		i915_gem_set_wedged(i915);
3770 		return -EIO;
3771 	}
3772 
3773 	return 0;
3774 }
3775 
3776 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3777 {
3778 	/* If the device is asleep, we have no requests outstanding */
3779 	if (!READ_ONCE(i915->gt.awake))
3780 		return 0;
3781 
3782 	if (flags & I915_WAIT_LOCKED) {
3783 		struct i915_timeline *tl;
3784 		int err;
3785 
3786 		lockdep_assert_held(&i915->drm.struct_mutex);
3787 
3788 		list_for_each_entry(tl, &i915->gt.timelines, link) {
3789 			err = wait_for_timeline(tl, flags);
3790 			if (err)
3791 				return err;
3792 		}
3793 		i915_retire_requests(i915);
3794 
3795 		return wait_for_engines(i915);
3796 	} else {
3797 		struct intel_engine_cs *engine;
3798 		enum intel_engine_id id;
3799 		int err;
3800 
3801 		for_each_engine(engine, i915, id) {
3802 			err = wait_for_timeline(&engine->timeline, flags);
3803 			if (err)
3804 				return err;
3805 		}
3806 
3807 		return 0;
3808 	}
3809 }
3810 
3811 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3812 {
3813 	/*
3814 	 * We manually flush the CPU domain so that we can override and
3815 	 * force the flush for the display, and perform it asyncrhonously.
3816 	 */
3817 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3818 	if (obj->cache_dirty)
3819 		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3820 	obj->write_domain = 0;
3821 }
3822 
3823 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3824 {
3825 	if (!READ_ONCE(obj->pin_global))
3826 		return;
3827 
3828 	mutex_lock(&obj->base.dev->struct_mutex);
3829 	__i915_gem_object_flush_for_display(obj);
3830 	mutex_unlock(&obj->base.dev->struct_mutex);
3831 }
3832 
3833 /**
3834  * Moves a single object to the WC read, and possibly write domain.
3835  * @obj: object to act on
3836  * @write: ask for write access or read only
3837  *
3838  * This function returns when the move is complete, including waiting on
3839  * flushes to occur.
3840  */
3841 int
3842 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3843 {
3844 	int ret;
3845 
3846 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3847 
3848 	ret = i915_gem_object_wait(obj,
3849 				   I915_WAIT_INTERRUPTIBLE |
3850 				   I915_WAIT_LOCKED |
3851 				   (write ? I915_WAIT_ALL : 0),
3852 				   MAX_SCHEDULE_TIMEOUT,
3853 				   NULL);
3854 	if (ret)
3855 		return ret;
3856 
3857 	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3858 		return 0;
3859 
3860 	/* Flush and acquire obj->pages so that we are coherent through
3861 	 * direct access in memory with previous cached writes through
3862 	 * shmemfs and that our cache domain tracking remains valid.
3863 	 * For example, if the obj->filp was moved to swap without us
3864 	 * being notified and releasing the pages, we would mistakenly
3865 	 * continue to assume that the obj remained out of the CPU cached
3866 	 * domain.
3867 	 */
3868 	ret = i915_gem_object_pin_pages(obj);
3869 	if (ret)
3870 		return ret;
3871 
3872 	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3873 
3874 	/* Serialise direct access to this object with the barriers for
3875 	 * coherent writes from the GPU, by effectively invalidating the
3876 	 * WC domain upon first access.
3877 	 */
3878 	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3879 		mb();
3880 
3881 	/* It should now be out of any other write domains, and we can update
3882 	 * the domain values for our changes.
3883 	 */
3884 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3885 	obj->read_domains |= I915_GEM_DOMAIN_WC;
3886 	if (write) {
3887 		obj->read_domains = I915_GEM_DOMAIN_WC;
3888 		obj->write_domain = I915_GEM_DOMAIN_WC;
3889 		obj->mm.dirty = true;
3890 	}
3891 
3892 	i915_gem_object_unpin_pages(obj);
3893 	return 0;
3894 }
3895 
3896 /**
3897  * Moves a single object to the GTT read, and possibly write domain.
3898  * @obj: object to act on
3899  * @write: ask for write access or read only
3900  *
3901  * This function returns when the move is complete, including waiting on
3902  * flushes to occur.
3903  */
3904 int
3905 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3906 {
3907 	int ret;
3908 
3909 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3910 
3911 	ret = i915_gem_object_wait(obj,
3912 				   I915_WAIT_INTERRUPTIBLE |
3913 				   I915_WAIT_LOCKED |
3914 				   (write ? I915_WAIT_ALL : 0),
3915 				   MAX_SCHEDULE_TIMEOUT,
3916 				   NULL);
3917 	if (ret)
3918 		return ret;
3919 
3920 	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3921 		return 0;
3922 
3923 	/* Flush and acquire obj->pages so that we are coherent through
3924 	 * direct access in memory with previous cached writes through
3925 	 * shmemfs and that our cache domain tracking remains valid.
3926 	 * For example, if the obj->filp was moved to swap without us
3927 	 * being notified and releasing the pages, we would mistakenly
3928 	 * continue to assume that the obj remained out of the CPU cached
3929 	 * domain.
3930 	 */
3931 	ret = i915_gem_object_pin_pages(obj);
3932 	if (ret)
3933 		return ret;
3934 
3935 	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3936 
3937 	/* Serialise direct access to this object with the barriers for
3938 	 * coherent writes from the GPU, by effectively invalidating the
3939 	 * GTT domain upon first access.
3940 	 */
3941 	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3942 		mb();
3943 
3944 	/* It should now be out of any other write domains, and we can update
3945 	 * the domain values for our changes.
3946 	 */
3947 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3948 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3949 	if (write) {
3950 		obj->read_domains = I915_GEM_DOMAIN_GTT;
3951 		obj->write_domain = I915_GEM_DOMAIN_GTT;
3952 		obj->mm.dirty = true;
3953 	}
3954 
3955 	i915_gem_object_unpin_pages(obj);
3956 	return 0;
3957 }
3958 
3959 /**
3960  * Changes the cache-level of an object across all VMA.
3961  * @obj: object to act on
3962  * @cache_level: new cache level to set for the object
3963  *
3964  * After this function returns, the object will be in the new cache-level
3965  * across all GTT and the contents of the backing storage will be coherent,
3966  * with respect to the new cache-level. In order to keep the backing storage
3967  * coherent for all users, we only allow a single cache level to be set
3968  * globally on the object and prevent it from being changed whilst the
3969  * hardware is reading from the object. That is if the object is currently
3970  * on the scanout it will be set to uncached (or equivalent display
3971  * cache coherency) and all non-MOCS GPU access will also be uncached so
3972  * that all direct access to the scanout remains coherent.
3973  */
3974 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3975 				    enum i915_cache_level cache_level)
3976 {
3977 	struct i915_vma *vma;
3978 	int ret;
3979 
3980 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3981 
3982 	if (obj->cache_level == cache_level)
3983 		return 0;
3984 
3985 	/* Inspect the list of currently bound VMA and unbind any that would
3986 	 * be invalid given the new cache-level. This is principally to
3987 	 * catch the issue of the CS prefetch crossing page boundaries and
3988 	 * reading an invalid PTE on older architectures.
3989 	 */
3990 restart:
3991 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3992 		if (!drm_mm_node_allocated(&vma->node))
3993 			continue;
3994 
3995 		if (i915_vma_is_pinned(vma)) {
3996 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3997 			return -EBUSY;
3998 		}
3999 
4000 		if (!i915_vma_is_closed(vma) &&
4001 		    i915_gem_valid_gtt_space(vma, cache_level))
4002 			continue;
4003 
4004 		ret = i915_vma_unbind(vma);
4005 		if (ret)
4006 			return ret;
4007 
4008 		/* As unbinding may affect other elements in the
4009 		 * obj->vma_list (due to side-effects from retiring
4010 		 * an active vma), play safe and restart the iterator.
4011 		 */
4012 		goto restart;
4013 	}
4014 
4015 	/* We can reuse the existing drm_mm nodes but need to change the
4016 	 * cache-level on the PTE. We could simply unbind them all and
4017 	 * rebind with the correct cache-level on next use. However since
4018 	 * we already have a valid slot, dma mapping, pages etc, we may as
4019 	 * rewrite the PTE in the belief that doing so tramples upon less
4020 	 * state and so involves less work.
4021 	 */
4022 	if (obj->bind_count) {
4023 		/* Before we change the PTE, the GPU must not be accessing it.
4024 		 * If we wait upon the object, we know that all the bound
4025 		 * VMA are no longer active.
4026 		 */
4027 		ret = i915_gem_object_wait(obj,
4028 					   I915_WAIT_INTERRUPTIBLE |
4029 					   I915_WAIT_LOCKED |
4030 					   I915_WAIT_ALL,
4031 					   MAX_SCHEDULE_TIMEOUT,
4032 					   NULL);
4033 		if (ret)
4034 			return ret;
4035 
4036 		if (!HAS_LLC(to_i915(obj->base.dev)) &&
4037 		    cache_level != I915_CACHE_NONE) {
4038 			/* Access to snoopable pages through the GTT is
4039 			 * incoherent and on some machines causes a hard
4040 			 * lockup. Relinquish the CPU mmaping to force
4041 			 * userspace to refault in the pages and we can
4042 			 * then double check if the GTT mapping is still
4043 			 * valid for that pointer access.
4044 			 */
4045 			i915_gem_release_mmap(obj);
4046 
4047 			/* As we no longer need a fence for GTT access,
4048 			 * we can relinquish it now (and so prevent having
4049 			 * to steal a fence from someone else on the next
4050 			 * fence request). Note GPU activity would have
4051 			 * dropped the fence as all snoopable access is
4052 			 * supposed to be linear.
4053 			 */
4054 			for_each_ggtt_vma(vma, obj) {
4055 				ret = i915_vma_put_fence(vma);
4056 				if (ret)
4057 					return ret;
4058 			}
4059 		} else {
4060 			/* We either have incoherent backing store and
4061 			 * so no GTT access or the architecture is fully
4062 			 * coherent. In such cases, existing GTT mmaps
4063 			 * ignore the cache bit in the PTE and we can
4064 			 * rewrite it without confusing the GPU or having
4065 			 * to force userspace to fault back in its mmaps.
4066 			 */
4067 		}
4068 
4069 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4070 			if (!drm_mm_node_allocated(&vma->node))
4071 				continue;
4072 
4073 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4074 			if (ret)
4075 				return ret;
4076 		}
4077 	}
4078 
4079 	list_for_each_entry(vma, &obj->vma_list, obj_link)
4080 		vma->node.color = cache_level;
4081 	i915_gem_object_set_cache_coherency(obj, cache_level);
4082 	obj->cache_dirty = true; /* Always invalidate stale cachelines */
4083 
4084 	return 0;
4085 }
4086 
4087 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4088 			       struct drm_file *file)
4089 {
4090 	struct drm_i915_gem_caching *args = data;
4091 	struct drm_i915_gem_object *obj;
4092 	int err = 0;
4093 
4094 	rcu_read_lock();
4095 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4096 	if (!obj) {
4097 		err = -ENOENT;
4098 		goto out;
4099 	}
4100 
4101 	switch (obj->cache_level) {
4102 	case I915_CACHE_LLC:
4103 	case I915_CACHE_L3_LLC:
4104 		args->caching = I915_CACHING_CACHED;
4105 		break;
4106 
4107 	case I915_CACHE_WT:
4108 		args->caching = I915_CACHING_DISPLAY;
4109 		break;
4110 
4111 	default:
4112 		args->caching = I915_CACHING_NONE;
4113 		break;
4114 	}
4115 out:
4116 	rcu_read_unlock();
4117 	return err;
4118 }
4119 
4120 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4121 			       struct drm_file *file)
4122 {
4123 	struct drm_i915_private *i915 = to_i915(dev);
4124 	struct drm_i915_gem_caching *args = data;
4125 	struct drm_i915_gem_object *obj;
4126 	enum i915_cache_level level;
4127 	int ret = 0;
4128 
4129 	switch (args->caching) {
4130 	case I915_CACHING_NONE:
4131 		level = I915_CACHE_NONE;
4132 		break;
4133 	case I915_CACHING_CACHED:
4134 		/*
4135 		 * Due to a HW issue on BXT A stepping, GPU stores via a
4136 		 * snooped mapping may leave stale data in a corresponding CPU
4137 		 * cacheline, whereas normally such cachelines would get
4138 		 * invalidated.
4139 		 */
4140 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4141 			return -ENODEV;
4142 
4143 		level = I915_CACHE_LLC;
4144 		break;
4145 	case I915_CACHING_DISPLAY:
4146 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4147 		break;
4148 	default:
4149 		return -EINVAL;
4150 	}
4151 
4152 	obj = i915_gem_object_lookup(file, args->handle);
4153 	if (!obj)
4154 		return -ENOENT;
4155 
4156 	/*
4157 	 * The caching mode of proxy object is handled by its generator, and
4158 	 * not allowed to be changed by userspace.
4159 	 */
4160 	if (i915_gem_object_is_proxy(obj)) {
4161 		ret = -ENXIO;
4162 		goto out;
4163 	}
4164 
4165 	if (obj->cache_level == level)
4166 		goto out;
4167 
4168 	ret = i915_gem_object_wait(obj,
4169 				   I915_WAIT_INTERRUPTIBLE,
4170 				   MAX_SCHEDULE_TIMEOUT,
4171 				   to_rps_client(file));
4172 	if (ret)
4173 		goto out;
4174 
4175 	ret = i915_mutex_lock_interruptible(dev);
4176 	if (ret)
4177 		goto out;
4178 
4179 	ret = i915_gem_object_set_cache_level(obj, level);
4180 	mutex_unlock(&dev->struct_mutex);
4181 
4182 out:
4183 	i915_gem_object_put(obj);
4184 	return ret;
4185 }
4186 
4187 /*
4188  * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
4189  * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
4190  * (for pageflips). We only flush the caches while preparing the buffer for
4191  * display, the callers are responsible for frontbuffer flush.
4192  */
4193 struct i915_vma *
4194 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4195 				     u32 alignment,
4196 				     const struct i915_ggtt_view *view,
4197 				     unsigned int flags)
4198 {
4199 	struct i915_vma *vma;
4200 	int ret;
4201 
4202 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4203 
4204 	/* Mark the global pin early so that we account for the
4205 	 * display coherency whilst setting up the cache domains.
4206 	 */
4207 	obj->pin_global++;
4208 
4209 	/* The display engine is not coherent with the LLC cache on gen6.  As
4210 	 * a result, we make sure that the pinning that is about to occur is
4211 	 * done with uncached PTEs. This is lowest common denominator for all
4212 	 * chipsets.
4213 	 *
4214 	 * However for gen6+, we could do better by using the GFDT bit instead
4215 	 * of uncaching, which would allow us to flush all the LLC-cached data
4216 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4217 	 */
4218 	ret = i915_gem_object_set_cache_level(obj,
4219 					      HAS_WT(to_i915(obj->base.dev)) ?
4220 					      I915_CACHE_WT : I915_CACHE_NONE);
4221 	if (ret) {
4222 		vma = ERR_PTR(ret);
4223 		goto err_unpin_global;
4224 	}
4225 
4226 	/* As the user may map the buffer once pinned in the display plane
4227 	 * (e.g. libkms for the bootup splash), we have to ensure that we
4228 	 * always use map_and_fenceable for all scanout buffers. However,
4229 	 * it may simply be too big to fit into mappable, in which case
4230 	 * put it anyway and hope that userspace can cope (but always first
4231 	 * try to preserve the existing ABI).
4232 	 */
4233 	vma = ERR_PTR(-ENOSPC);
4234 	if ((flags & PIN_MAPPABLE) == 0 &&
4235 	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4236 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4237 					       flags |
4238 					       PIN_MAPPABLE |
4239 					       PIN_NONBLOCK);
4240 	if (IS_ERR(vma))
4241 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4242 	if (IS_ERR(vma))
4243 		goto err_unpin_global;
4244 
4245 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4246 
4247 	__i915_gem_object_flush_for_display(obj);
4248 
4249 	/* It should now be out of any other write domains, and we can update
4250 	 * the domain values for our changes.
4251 	 */
4252 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4253 
4254 	return vma;
4255 
4256 err_unpin_global:
4257 	obj->pin_global--;
4258 	return vma;
4259 }
4260 
4261 void
4262 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4263 {
4264 	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4265 
4266 	if (WARN_ON(vma->obj->pin_global == 0))
4267 		return;
4268 
4269 	if (--vma->obj->pin_global == 0)
4270 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4271 
4272 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4273 	i915_gem_object_bump_inactive_ggtt(vma->obj);
4274 
4275 	i915_vma_unpin(vma);
4276 }
4277 
4278 /**
4279  * Moves a single object to the CPU read, and possibly write domain.
4280  * @obj: object to act on
4281  * @write: requesting write or read-only access
4282  *
4283  * This function returns when the move is complete, including waiting on
4284  * flushes to occur.
4285  */
4286 int
4287 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4288 {
4289 	int ret;
4290 
4291 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4292 
4293 	ret = i915_gem_object_wait(obj,
4294 				   I915_WAIT_INTERRUPTIBLE |
4295 				   I915_WAIT_LOCKED |
4296 				   (write ? I915_WAIT_ALL : 0),
4297 				   MAX_SCHEDULE_TIMEOUT,
4298 				   NULL);
4299 	if (ret)
4300 		return ret;
4301 
4302 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4303 
4304 	/* Flush the CPU cache if it's still invalid. */
4305 	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4306 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4307 		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4308 	}
4309 
4310 	/* It should now be out of any other write domains, and we can update
4311 	 * the domain values for our changes.
4312 	 */
4313 	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4314 
4315 	/* If we're writing through the CPU, then the GPU read domains will
4316 	 * need to be invalidated at next use.
4317 	 */
4318 	if (write)
4319 		__start_cpu_write(obj);
4320 
4321 	return 0;
4322 }
4323 
4324 /* Throttle our rendering by waiting until the ring has completed our requests
4325  * emitted over 20 msec ago.
4326  *
4327  * Note that if we were to use the current jiffies each time around the loop,
4328  * we wouldn't escape the function with any frames outstanding if the time to
4329  * render a frame was over 20ms.
4330  *
4331  * This should get us reasonable parallelism between CPU and GPU but also
4332  * relatively low latency when blocking on a particular request to finish.
4333  */
4334 static int
4335 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4336 {
4337 	struct drm_i915_private *dev_priv = to_i915(dev);
4338 	struct drm_i915_file_private *file_priv = file->driver_priv;
4339 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4340 	struct i915_request *request, *target = NULL;
4341 	long ret;
4342 
4343 	/* ABI: return -EIO if already wedged */
4344 	if (i915_terminally_wedged(&dev_priv->gpu_error))
4345 		return -EIO;
4346 
4347 	spin_lock(&file_priv->mm.lock);
4348 	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4349 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4350 			break;
4351 
4352 		if (target) {
4353 			list_del(&target->client_link);
4354 			target->file_priv = NULL;
4355 		}
4356 
4357 		target = request;
4358 	}
4359 	if (target)
4360 		i915_request_get(target);
4361 	spin_unlock(&file_priv->mm.lock);
4362 
4363 	if (target == NULL)
4364 		return 0;
4365 
4366 	ret = i915_request_wait(target,
4367 				I915_WAIT_INTERRUPTIBLE,
4368 				MAX_SCHEDULE_TIMEOUT);
4369 	i915_request_put(target);
4370 
4371 	return ret < 0 ? ret : 0;
4372 }
4373 
4374 struct i915_vma *
4375 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4376 			 const struct i915_ggtt_view *view,
4377 			 u64 size,
4378 			 u64 alignment,
4379 			 u64 flags)
4380 {
4381 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4382 	struct i915_address_space *vm = &dev_priv->ggtt.base;
4383 	struct i915_vma *vma;
4384 	int ret;
4385 
4386 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4387 
4388 	if (flags & PIN_MAPPABLE &&
4389 	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4390 		/* If the required space is larger than the available
4391 		 * aperture, we will not able to find a slot for the
4392 		 * object and unbinding the object now will be in
4393 		 * vain. Worse, doing so may cause us to ping-pong
4394 		 * the object in and out of the Global GTT and
4395 		 * waste a lot of cycles under the mutex.
4396 		 */
4397 		if (obj->base.size > dev_priv->ggtt.mappable_end)
4398 			return ERR_PTR(-E2BIG);
4399 
4400 		/* If NONBLOCK is set the caller is optimistically
4401 		 * trying to cache the full object within the mappable
4402 		 * aperture, and *must* have a fallback in place for
4403 		 * situations where we cannot bind the object. We
4404 		 * can be a little more lax here and use the fallback
4405 		 * more often to avoid costly migrations of ourselves
4406 		 * and other objects within the aperture.
4407 		 *
4408 		 * Half-the-aperture is used as a simple heuristic.
4409 		 * More interesting would to do search for a free
4410 		 * block prior to making the commitment to unbind.
4411 		 * That caters for the self-harm case, and with a
4412 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
4413 		 * we could try to minimise harm to others.
4414 		 */
4415 		if (flags & PIN_NONBLOCK &&
4416 		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
4417 			return ERR_PTR(-ENOSPC);
4418 	}
4419 
4420 	vma = i915_vma_instance(obj, vm, view);
4421 	if (unlikely(IS_ERR(vma)))
4422 		return vma;
4423 
4424 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4425 		if (flags & PIN_NONBLOCK) {
4426 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4427 				return ERR_PTR(-ENOSPC);
4428 
4429 			if (flags & PIN_MAPPABLE &&
4430 			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4431 				return ERR_PTR(-ENOSPC);
4432 		}
4433 
4434 		WARN(i915_vma_is_pinned(vma),
4435 		     "bo is already pinned in ggtt with incorrect alignment:"
4436 		     " offset=%08x, req.alignment=%llx,"
4437 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4438 		     i915_ggtt_offset(vma), alignment,
4439 		     !!(flags & PIN_MAPPABLE),
4440 		     i915_vma_is_map_and_fenceable(vma));
4441 		ret = i915_vma_unbind(vma);
4442 		if (ret)
4443 			return ERR_PTR(ret);
4444 	}
4445 
4446 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4447 	if (ret)
4448 		return ERR_PTR(ret);
4449 
4450 	return vma;
4451 }
4452 
4453 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4454 {
4455 	/* Note that we could alias engines in the execbuf API, but
4456 	 * that would be very unwise as it prevents userspace from
4457 	 * fine control over engine selection. Ahem.
4458 	 *
4459 	 * This should be something like EXEC_MAX_ENGINE instead of
4460 	 * I915_NUM_ENGINES.
4461 	 */
4462 	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4463 	return 0x10000 << id;
4464 }
4465 
4466 static __always_inline unsigned int __busy_write_id(unsigned int id)
4467 {
4468 	/* The uABI guarantees an active writer is also amongst the read
4469 	 * engines. This would be true if we accessed the activity tracking
4470 	 * under the lock, but as we perform the lookup of the object and
4471 	 * its activity locklessly we can not guarantee that the last_write
4472 	 * being active implies that we have set the same engine flag from
4473 	 * last_read - hence we always set both read and write busy for
4474 	 * last_write.
4475 	 */
4476 	return id | __busy_read_flag(id);
4477 }
4478 
4479 static __always_inline unsigned int
4480 __busy_set_if_active(const struct dma_fence *fence,
4481 		     unsigned int (*flag)(unsigned int id))
4482 {
4483 	struct i915_request *rq;
4484 
4485 	/* We have to check the current hw status of the fence as the uABI
4486 	 * guarantees forward progress. We could rely on the idle worker
4487 	 * to eventually flush us, but to minimise latency just ask the
4488 	 * hardware.
4489 	 *
4490 	 * Note we only report on the status of native fences.
4491 	 */
4492 	if (!dma_fence_is_i915(fence))
4493 		return 0;
4494 
4495 	/* opencode to_request() in order to avoid const warnings */
4496 	rq = container_of(fence, struct i915_request, fence);
4497 	if (i915_request_completed(rq))
4498 		return 0;
4499 
4500 	return flag(rq->engine->uabi_id);
4501 }
4502 
4503 static __always_inline unsigned int
4504 busy_check_reader(const struct dma_fence *fence)
4505 {
4506 	return __busy_set_if_active(fence, __busy_read_flag);
4507 }
4508 
4509 static __always_inline unsigned int
4510 busy_check_writer(const struct dma_fence *fence)
4511 {
4512 	if (!fence)
4513 		return 0;
4514 
4515 	return __busy_set_if_active(fence, __busy_write_id);
4516 }
4517 
4518 int
4519 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4520 		    struct drm_file *file)
4521 {
4522 	struct drm_i915_gem_busy *args = data;
4523 	struct drm_i915_gem_object *obj;
4524 	struct reservation_object_list *list;
4525 	unsigned int seq;
4526 	int err;
4527 
4528 	err = -ENOENT;
4529 	rcu_read_lock();
4530 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4531 	if (!obj)
4532 		goto out;
4533 
4534 	/* A discrepancy here is that we do not report the status of
4535 	 * non-i915 fences, i.e. even though we may report the object as idle,
4536 	 * a call to set-domain may still stall waiting for foreign rendering.
4537 	 * This also means that wait-ioctl may report an object as busy,
4538 	 * where busy-ioctl considers it idle.
4539 	 *
4540 	 * We trade the ability to warn of foreign fences to report on which
4541 	 * i915 engines are active for the object.
4542 	 *
4543 	 * Alternatively, we can trade that extra information on read/write
4544 	 * activity with
4545 	 *	args->busy =
4546 	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
4547 	 * to report the overall busyness. This is what the wait-ioctl does.
4548 	 *
4549 	 */
4550 retry:
4551 	seq = raw_read_seqcount(&obj->resv->seq);
4552 
4553 	/* Translate the exclusive fence to the READ *and* WRITE engine */
4554 	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4555 
4556 	/* Translate shared fences to READ set of engines */
4557 	list = rcu_dereference(obj->resv->fence);
4558 	if (list) {
4559 		unsigned int shared_count = list->shared_count, i;
4560 
4561 		for (i = 0; i < shared_count; ++i) {
4562 			struct dma_fence *fence =
4563 				rcu_dereference(list->shared[i]);
4564 
4565 			args->busy |= busy_check_reader(fence);
4566 		}
4567 	}
4568 
4569 	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4570 		goto retry;
4571 
4572 	err = 0;
4573 out:
4574 	rcu_read_unlock();
4575 	return err;
4576 }
4577 
4578 int
4579 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4580 			struct drm_file *file_priv)
4581 {
4582 	return i915_gem_ring_throttle(dev, file_priv);
4583 }
4584 
4585 int
4586 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4587 		       struct drm_file *file_priv)
4588 {
4589 	struct drm_i915_private *dev_priv = to_i915(dev);
4590 	struct drm_i915_gem_madvise *args = data;
4591 	struct drm_i915_gem_object *obj;
4592 	int err;
4593 
4594 	switch (args->madv) {
4595 	case I915_MADV_DONTNEED:
4596 	case I915_MADV_WILLNEED:
4597 	    break;
4598 	default:
4599 	    return -EINVAL;
4600 	}
4601 
4602 	obj = i915_gem_object_lookup(file_priv, args->handle);
4603 	if (!obj)
4604 		return -ENOENT;
4605 
4606 	err = mutex_lock_interruptible(&obj->mm.lock);
4607 	if (err)
4608 		goto out;
4609 
4610 	if (i915_gem_object_has_pages(obj) &&
4611 	    i915_gem_object_is_tiled(obj) &&
4612 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4613 		if (obj->mm.madv == I915_MADV_WILLNEED) {
4614 			GEM_BUG_ON(!obj->mm.quirked);
4615 			__i915_gem_object_unpin_pages(obj);
4616 			obj->mm.quirked = false;
4617 		}
4618 		if (args->madv == I915_MADV_WILLNEED) {
4619 			GEM_BUG_ON(obj->mm.quirked);
4620 			__i915_gem_object_pin_pages(obj);
4621 			obj->mm.quirked = true;
4622 		}
4623 	}
4624 
4625 	if (obj->mm.madv != __I915_MADV_PURGED)
4626 		obj->mm.madv = args->madv;
4627 
4628 	/* if the object is no longer attached, discard its backing storage */
4629 	if (obj->mm.madv == I915_MADV_DONTNEED &&
4630 	    !i915_gem_object_has_pages(obj))
4631 		i915_gem_object_truncate(obj);
4632 
4633 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4634 	mutex_unlock(&obj->mm.lock);
4635 
4636 out:
4637 	i915_gem_object_put(obj);
4638 	return err;
4639 }
4640 
4641 static void
4642 frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4643 {
4644 	struct drm_i915_gem_object *obj =
4645 		container_of(active, typeof(*obj), frontbuffer_write);
4646 
4647 	intel_fb_obj_flush(obj, ORIGIN_CS);
4648 }
4649 
4650 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4651 			  const struct drm_i915_gem_object_ops *ops)
4652 {
4653 	mutex_init(&obj->mm.lock);
4654 
4655 	INIT_LIST_HEAD(&obj->vma_list);
4656 	INIT_LIST_HEAD(&obj->lut_list);
4657 	INIT_LIST_HEAD(&obj->batch_pool_link);
4658 
4659 	obj->ops = ops;
4660 
4661 	reservation_object_init(&obj->__builtin_resv);
4662 	obj->resv = &obj->__builtin_resv;
4663 
4664 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4665 	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4666 
4667 	obj->mm.madv = I915_MADV_WILLNEED;
4668 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4669 	mutex_init(&obj->mm.get_page.lock);
4670 
4671 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4672 }
4673 
4674 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4675 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4676 		 I915_GEM_OBJECT_IS_SHRINKABLE,
4677 
4678 	.get_pages = i915_gem_object_get_pages_gtt,
4679 	.put_pages = i915_gem_object_put_pages_gtt,
4680 
4681 	.pwrite = i915_gem_object_pwrite_gtt,
4682 };
4683 
4684 static int i915_gem_object_create_shmem(struct drm_device *dev,
4685 					struct drm_gem_object *obj,
4686 					size_t size)
4687 {
4688 	struct drm_i915_private *i915 = to_i915(dev);
4689 	unsigned long flags = VM_NORESERVE;
4690 	struct file *filp;
4691 
4692 	drm_gem_private_object_init(dev, obj, size);
4693 
4694 	if (i915->mm.gemfs)
4695 		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4696 						 flags);
4697 	else
4698 		filp = shmem_file_setup("i915", size, flags);
4699 
4700 	if (IS_ERR(filp))
4701 		return PTR_ERR(filp);
4702 
4703 	obj->filp = filp;
4704 
4705 	return 0;
4706 }
4707 
4708 struct drm_i915_gem_object *
4709 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4710 {
4711 	struct drm_i915_gem_object *obj;
4712 	struct address_space *mapping;
4713 	unsigned int cache_level;
4714 	gfp_t mask;
4715 	int ret;
4716 
4717 	/* There is a prevalence of the assumption that we fit the object's
4718 	 * page count inside a 32bit _signed_ variable. Let's document this and
4719 	 * catch if we ever need to fix it. In the meantime, if you do spot
4720 	 * such a local variable, please consider fixing!
4721 	 */
4722 	if (size >> PAGE_SHIFT > INT_MAX)
4723 		return ERR_PTR(-E2BIG);
4724 
4725 	if (overflows_type(size, obj->base.size))
4726 		return ERR_PTR(-E2BIG);
4727 
4728 	obj = i915_gem_object_alloc(dev_priv);
4729 	if (obj == NULL)
4730 		return ERR_PTR(-ENOMEM);
4731 
4732 	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4733 	if (ret)
4734 		goto fail;
4735 
4736 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4737 	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4738 		/* 965gm cannot relocate objects above 4GiB. */
4739 		mask &= ~__GFP_HIGHMEM;
4740 		mask |= __GFP_DMA32;
4741 	}
4742 
4743 	mapping = obj->base.filp->f_mapping;
4744 	mapping_set_gfp_mask(mapping, mask);
4745 	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4746 
4747 	i915_gem_object_init(obj, &i915_gem_object_ops);
4748 
4749 	obj->write_domain = I915_GEM_DOMAIN_CPU;
4750 	obj->read_domains = I915_GEM_DOMAIN_CPU;
4751 
4752 	if (HAS_LLC(dev_priv))
4753 		/* On some devices, we can have the GPU use the LLC (the CPU
4754 		 * cache) for about a 10% performance improvement
4755 		 * compared to uncached.  Graphics requests other than
4756 		 * display scanout are coherent with the CPU in
4757 		 * accessing this cache.  This means in this mode we
4758 		 * don't need to clflush on the CPU side, and on the
4759 		 * GPU side we only need to flush internal caches to
4760 		 * get data visible to the CPU.
4761 		 *
4762 		 * However, we maintain the display planes as UC, and so
4763 		 * need to rebind when first used as such.
4764 		 */
4765 		cache_level = I915_CACHE_LLC;
4766 	else
4767 		cache_level = I915_CACHE_NONE;
4768 
4769 	i915_gem_object_set_cache_coherency(obj, cache_level);
4770 
4771 	trace_i915_gem_object_create(obj);
4772 
4773 	return obj;
4774 
4775 fail:
4776 	i915_gem_object_free(obj);
4777 	return ERR_PTR(ret);
4778 }
4779 
4780 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4781 {
4782 	/* If we are the last user of the backing storage (be it shmemfs
4783 	 * pages or stolen etc), we know that the pages are going to be
4784 	 * immediately released. In this case, we can then skip copying
4785 	 * back the contents from the GPU.
4786 	 */
4787 
4788 	if (obj->mm.madv != I915_MADV_WILLNEED)
4789 		return false;
4790 
4791 	if (obj->base.filp == NULL)
4792 		return true;
4793 
4794 	/* At first glance, this looks racy, but then again so would be
4795 	 * userspace racing mmap against close. However, the first external
4796 	 * reference to the filp can only be obtained through the
4797 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4798 	 * acquiring such a reference whilst we are in the middle of
4799 	 * freeing the object.
4800 	 */
4801 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4802 }
4803 
4804 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4805 				    struct llist_node *freed)
4806 {
4807 	struct drm_i915_gem_object *obj, *on;
4808 
4809 	intel_runtime_pm_get(i915);
4810 	llist_for_each_entry_safe(obj, on, freed, freed) {
4811 		struct i915_vma *vma, *vn;
4812 
4813 		trace_i915_gem_object_destroy(obj);
4814 
4815 		mutex_lock(&i915->drm.struct_mutex);
4816 
4817 		GEM_BUG_ON(i915_gem_object_is_active(obj));
4818 		list_for_each_entry_safe(vma, vn,
4819 					 &obj->vma_list, obj_link) {
4820 			GEM_BUG_ON(i915_vma_is_active(vma));
4821 			vma->flags &= ~I915_VMA_PIN_MASK;
4822 			i915_vma_destroy(vma);
4823 		}
4824 		GEM_BUG_ON(!list_empty(&obj->vma_list));
4825 		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4826 
4827 		/* This serializes freeing with the shrinker. Since the free
4828 		 * is delayed, first by RCU then by the workqueue, we want the
4829 		 * shrinker to be able to free pages of unreferenced objects,
4830 		 * or else we may oom whilst there are plenty of deferred
4831 		 * freed objects.
4832 		 */
4833 		if (i915_gem_object_has_pages(obj)) {
4834 			spin_lock(&i915->mm.obj_lock);
4835 			list_del_init(&obj->mm.link);
4836 			spin_unlock(&i915->mm.obj_lock);
4837 		}
4838 
4839 		mutex_unlock(&i915->drm.struct_mutex);
4840 
4841 		GEM_BUG_ON(obj->bind_count);
4842 		GEM_BUG_ON(obj->userfault_count);
4843 		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4844 		GEM_BUG_ON(!list_empty(&obj->lut_list));
4845 
4846 		if (obj->ops->release)
4847 			obj->ops->release(obj);
4848 
4849 		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4850 			atomic_set(&obj->mm.pages_pin_count, 0);
4851 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4852 		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4853 
4854 		if (obj->base.import_attach)
4855 			drm_prime_gem_destroy(&obj->base, NULL);
4856 
4857 		reservation_object_fini(&obj->__builtin_resv);
4858 		drm_gem_object_release(&obj->base);
4859 		i915_gem_info_remove_obj(i915, obj->base.size);
4860 
4861 		kfree(obj->bit_17);
4862 		i915_gem_object_free(obj);
4863 
4864 		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
4865 		atomic_dec(&i915->mm.free_count);
4866 
4867 		if (on)
4868 			cond_resched();
4869 	}
4870 	intel_runtime_pm_put(i915);
4871 }
4872 
4873 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4874 {
4875 	struct llist_node *freed;
4876 
4877 	/* Free the oldest, most stale object to keep the free_list short */
4878 	freed = NULL;
4879 	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4880 		/* Only one consumer of llist_del_first() allowed */
4881 		spin_lock(&i915->mm.free_lock);
4882 		freed = llist_del_first(&i915->mm.free_list);
4883 		spin_unlock(&i915->mm.free_lock);
4884 	}
4885 	if (unlikely(freed)) {
4886 		freed->next = NULL;
4887 		__i915_gem_free_objects(i915, freed);
4888 	}
4889 }
4890 
4891 static void __i915_gem_free_work(struct work_struct *work)
4892 {
4893 	struct drm_i915_private *i915 =
4894 		container_of(work, struct drm_i915_private, mm.free_work);
4895 	struct llist_node *freed;
4896 
4897 	/*
4898 	 * All file-owned VMA should have been released by this point through
4899 	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4900 	 * However, the object may also be bound into the global GTT (e.g.
4901 	 * older GPUs without per-process support, or for direct access through
4902 	 * the GTT either for the user or for scanout). Those VMA still need to
4903 	 * unbound now.
4904 	 */
4905 
4906 	spin_lock(&i915->mm.free_lock);
4907 	while ((freed = llist_del_all(&i915->mm.free_list))) {
4908 		spin_unlock(&i915->mm.free_lock);
4909 
4910 		__i915_gem_free_objects(i915, freed);
4911 		if (need_resched())
4912 			return;
4913 
4914 		spin_lock(&i915->mm.free_lock);
4915 	}
4916 	spin_unlock(&i915->mm.free_lock);
4917 }
4918 
4919 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4920 {
4921 	struct drm_i915_gem_object *obj =
4922 		container_of(head, typeof(*obj), rcu);
4923 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4924 
4925 	/*
4926 	 * Since we require blocking on struct_mutex to unbind the freed
4927 	 * object from the GPU before releasing resources back to the
4928 	 * system, we can not do that directly from the RCU callback (which may
4929 	 * be a softirq context), but must instead then defer that work onto a
4930 	 * kthread. We use the RCU callback rather than move the freed object
4931 	 * directly onto the work queue so that we can mix between using the
4932 	 * worker and performing frees directly from subsequent allocations for
4933 	 * crude but effective memory throttling.
4934 	 */
4935 	if (llist_add(&obj->freed, &i915->mm.free_list))
4936 		queue_work(i915->wq, &i915->mm.free_work);
4937 }
4938 
4939 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4940 {
4941 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4942 
4943 	if (obj->mm.quirked)
4944 		__i915_gem_object_unpin_pages(obj);
4945 
4946 	if (discard_backing_storage(obj))
4947 		obj->mm.madv = I915_MADV_DONTNEED;
4948 
4949 	/*
4950 	 * Before we free the object, make sure any pure RCU-only
4951 	 * read-side critical sections are complete, e.g.
4952 	 * i915_gem_busy_ioctl(). For the corresponding synchronized
4953 	 * lookup see i915_gem_object_lookup_rcu().
4954 	 */
4955 	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4956 	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4957 }
4958 
4959 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4960 {
4961 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4962 
4963 	if (!i915_gem_object_has_active_reference(obj) &&
4964 	    i915_gem_object_is_active(obj))
4965 		i915_gem_object_set_active_reference(obj);
4966 	else
4967 		i915_gem_object_put(obj);
4968 }
4969 
4970 static void assert_kernel_context_is_current(struct drm_i915_private *i915)
4971 {
4972 	struct i915_gem_context *kernel_context = i915->kernel_context;
4973 	struct intel_engine_cs *engine;
4974 	enum intel_engine_id id;
4975 
4976 	for_each_engine(engine, i915, id) {
4977 		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
4978 		GEM_BUG_ON(engine->last_retired_context != kernel_context);
4979 	}
4980 }
4981 
4982 void i915_gem_sanitize(struct drm_i915_private *i915)
4983 {
4984 	if (i915_terminally_wedged(&i915->gpu_error)) {
4985 		mutex_lock(&i915->drm.struct_mutex);
4986 		i915_gem_unset_wedged(i915);
4987 		mutex_unlock(&i915->drm.struct_mutex);
4988 	}
4989 
4990 	/*
4991 	 * If we inherit context state from the BIOS or earlier occupants
4992 	 * of the GPU, the GPU may be in an inconsistent state when we
4993 	 * try to take over. The only way to remove the earlier state
4994 	 * is by resetting. However, resetting on earlier gen is tricky as
4995 	 * it may impact the display and we are uncertain about the stability
4996 	 * of the reset, so this could be applied to even earlier gen.
4997 	 */
4998 	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
4999 		WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
5000 }
5001 
5002 int i915_gem_suspend(struct drm_i915_private *dev_priv)
5003 {
5004 	struct drm_device *dev = &dev_priv->drm;
5005 	int ret;
5006 
5007 	intel_runtime_pm_get(dev_priv);
5008 	intel_suspend_gt_powersave(dev_priv);
5009 
5010 	mutex_lock(&dev->struct_mutex);
5011 
5012 	/* We have to flush all the executing contexts to main memory so
5013 	 * that they can saved in the hibernation image. To ensure the last
5014 	 * context image is coherent, we have to switch away from it. That
5015 	 * leaves the dev_priv->kernel_context still active when
5016 	 * we actually suspend, and its image in memory may not match the GPU
5017 	 * state. Fortunately, the kernel_context is disposable and we do
5018 	 * not rely on its state.
5019 	 */
5020 	if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5021 		ret = i915_gem_switch_to_kernel_context(dev_priv);
5022 		if (ret)
5023 			goto err_unlock;
5024 
5025 		ret = i915_gem_wait_for_idle(dev_priv,
5026 					     I915_WAIT_INTERRUPTIBLE |
5027 					     I915_WAIT_LOCKED);
5028 		if (ret && ret != -EIO)
5029 			goto err_unlock;
5030 
5031 		assert_kernel_context_is_current(dev_priv);
5032 	}
5033 	i915_gem_contexts_lost(dev_priv);
5034 	mutex_unlock(&dev->struct_mutex);
5035 
5036 	intel_uc_suspend(dev_priv);
5037 
5038 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
5039 	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
5040 
5041 	/* As the idle_work is rearming if it detects a race, play safe and
5042 	 * repeat the flush until it is definitely idle.
5043 	 */
5044 	drain_delayed_work(&dev_priv->gt.idle_work);
5045 
5046 	/* Assert that we sucessfully flushed all the work and
5047 	 * reset the GPU back to its idle, low power state.
5048 	 */
5049 	WARN_ON(dev_priv->gt.awake);
5050 	if (WARN_ON(!intel_engines_are_idle(dev_priv)))
5051 		i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
5052 
5053 	/*
5054 	 * Neither the BIOS, ourselves or any other kernel
5055 	 * expects the system to be in execlists mode on startup,
5056 	 * so we need to reset the GPU back to legacy mode. And the only
5057 	 * known way to disable logical contexts is through a GPU reset.
5058 	 *
5059 	 * So in order to leave the system in a known default configuration,
5060 	 * always reset the GPU upon unload and suspend. Afterwards we then
5061 	 * clean up the GEM state tracking, flushing off the requests and
5062 	 * leaving the system in a known idle state.
5063 	 *
5064 	 * Note that is of the upmost importance that the GPU is idle and
5065 	 * all stray writes are flushed *before* we dismantle the backing
5066 	 * storage for the pinned objects.
5067 	 *
5068 	 * However, since we are uncertain that resetting the GPU on older
5069 	 * machines is a good idea, we don't - just in case it leaves the
5070 	 * machine in an unusable condition.
5071 	 */
5072 	intel_uc_sanitize(dev_priv);
5073 	i915_gem_sanitize(dev_priv);
5074 
5075 	intel_runtime_pm_put(dev_priv);
5076 	return 0;
5077 
5078 err_unlock:
5079 	mutex_unlock(&dev->struct_mutex);
5080 	intel_runtime_pm_put(dev_priv);
5081 	return ret;
5082 }
5083 
5084 void i915_gem_resume(struct drm_i915_private *i915)
5085 {
5086 	WARN_ON(i915->gt.awake);
5087 
5088 	mutex_lock(&i915->drm.struct_mutex);
5089 	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5090 
5091 	i915_gem_restore_gtt_mappings(i915);
5092 	i915_gem_restore_fences(i915);
5093 
5094 	/*
5095 	 * As we didn't flush the kernel context before suspend, we cannot
5096 	 * guarantee that the context image is complete. So let's just reset
5097 	 * it and start again.
5098 	 */
5099 	i915->gt.resume(i915);
5100 
5101 	if (i915_gem_init_hw(i915))
5102 		goto err_wedged;
5103 
5104 	intel_uc_resume(i915);
5105 
5106 	/* Always reload a context for powersaving. */
5107 	if (i915_gem_switch_to_kernel_context(i915))
5108 		goto err_wedged;
5109 
5110 out_unlock:
5111 	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5112 	mutex_unlock(&i915->drm.struct_mutex);
5113 	return;
5114 
5115 err_wedged:
5116 	if (!i915_terminally_wedged(&i915->gpu_error)) {
5117 		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
5118 		i915_gem_set_wedged(i915);
5119 	}
5120 	goto out_unlock;
5121 }
5122 
5123 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5124 {
5125 	if (INTEL_GEN(dev_priv) < 5 ||
5126 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5127 		return;
5128 
5129 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5130 				 DISP_TILE_SURFACE_SWIZZLING);
5131 
5132 	if (IS_GEN5(dev_priv))
5133 		return;
5134 
5135 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5136 	if (IS_GEN6(dev_priv))
5137 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5138 	else if (IS_GEN7(dev_priv))
5139 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5140 	else if (IS_GEN8(dev_priv))
5141 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5142 	else
5143 		BUG();
5144 }
5145 
5146 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5147 {
5148 	I915_WRITE(RING_CTL(base), 0);
5149 	I915_WRITE(RING_HEAD(base), 0);
5150 	I915_WRITE(RING_TAIL(base), 0);
5151 	I915_WRITE(RING_START(base), 0);
5152 }
5153 
5154 static void init_unused_rings(struct drm_i915_private *dev_priv)
5155 {
5156 	if (IS_I830(dev_priv)) {
5157 		init_unused_ring(dev_priv, PRB1_BASE);
5158 		init_unused_ring(dev_priv, SRB0_BASE);
5159 		init_unused_ring(dev_priv, SRB1_BASE);
5160 		init_unused_ring(dev_priv, SRB2_BASE);
5161 		init_unused_ring(dev_priv, SRB3_BASE);
5162 	} else if (IS_GEN2(dev_priv)) {
5163 		init_unused_ring(dev_priv, SRB0_BASE);
5164 		init_unused_ring(dev_priv, SRB1_BASE);
5165 	} else if (IS_GEN3(dev_priv)) {
5166 		init_unused_ring(dev_priv, PRB1_BASE);
5167 		init_unused_ring(dev_priv, PRB2_BASE);
5168 	}
5169 }
5170 
5171 static int __i915_gem_restart_engines(void *data)
5172 {
5173 	struct drm_i915_private *i915 = data;
5174 	struct intel_engine_cs *engine;
5175 	enum intel_engine_id id;
5176 	int err;
5177 
5178 	for_each_engine(engine, i915, id) {
5179 		err = engine->init_hw(engine);
5180 		if (err) {
5181 			DRM_ERROR("Failed to restart %s (%d)\n",
5182 				  engine->name, err);
5183 			return err;
5184 		}
5185 	}
5186 
5187 	return 0;
5188 }
5189 
5190 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
5191 {
5192 	int ret;
5193 
5194 	dev_priv->gt.last_init_time = ktime_get();
5195 
5196 	/* Double layer security blanket, see i915_gem_init() */
5197 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5198 
5199 	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5200 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5201 
5202 	if (IS_HASWELL(dev_priv))
5203 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5204 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5205 
5206 	if (HAS_PCH_NOP(dev_priv)) {
5207 		if (IS_IVYBRIDGE(dev_priv)) {
5208 			u32 temp = I915_READ(GEN7_MSG_CTL);
5209 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5210 			I915_WRITE(GEN7_MSG_CTL, temp);
5211 		} else if (INTEL_GEN(dev_priv) >= 7) {
5212 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5213 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5214 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5215 		}
5216 	}
5217 
5218 	intel_gt_workarounds_apply(dev_priv);
5219 
5220 	i915_gem_init_swizzling(dev_priv);
5221 
5222 	/*
5223 	 * At least 830 can leave some of the unused rings
5224 	 * "active" (ie. head != tail) after resume which
5225 	 * will prevent c3 entry. Makes sure all unused rings
5226 	 * are totally idle.
5227 	 */
5228 	init_unused_rings(dev_priv);
5229 
5230 	BUG_ON(!dev_priv->kernel_context);
5231 	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5232 		ret = -EIO;
5233 		goto out;
5234 	}
5235 
5236 	ret = i915_ppgtt_init_hw(dev_priv);
5237 	if (ret) {
5238 		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5239 		goto out;
5240 	}
5241 
5242 	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
5243 	if (ret) {
5244 		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
5245 		goto out;
5246 	}
5247 
5248 	/* We can't enable contexts until all firmware is loaded */
5249 	ret = intel_uc_init_hw(dev_priv);
5250 	if (ret) {
5251 		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5252 		goto out;
5253 	}
5254 
5255 	intel_mocs_init_l3cc_table(dev_priv);
5256 
5257 	/* Only when the HW is re-initialised, can we replay the requests */
5258 	ret = __i915_gem_restart_engines(dev_priv);
5259 out:
5260 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5261 	return ret;
5262 }
5263 
5264 static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5265 {
5266 	struct i915_gem_context *ctx;
5267 	struct intel_engine_cs *engine;
5268 	enum intel_engine_id id;
5269 	int err;
5270 
5271 	/*
5272 	 * As we reset the gpu during very early sanitisation, the current
5273 	 * register state on the GPU should reflect its defaults values.
5274 	 * We load a context onto the hw (with restore-inhibit), then switch
5275 	 * over to a second context to save that default register state. We
5276 	 * can then prime every new context with that state so they all start
5277 	 * from the same default HW values.
5278 	 */
5279 
5280 	ctx = i915_gem_context_create_kernel(i915, 0);
5281 	if (IS_ERR(ctx))
5282 		return PTR_ERR(ctx);
5283 
5284 	for_each_engine(engine, i915, id) {
5285 		struct i915_request *rq;
5286 
5287 		rq = i915_request_alloc(engine, ctx);
5288 		if (IS_ERR(rq)) {
5289 			err = PTR_ERR(rq);
5290 			goto out_ctx;
5291 		}
5292 
5293 		err = 0;
5294 		if (engine->init_context)
5295 			err = engine->init_context(rq);
5296 
5297 		__i915_request_add(rq, true);
5298 		if (err)
5299 			goto err_active;
5300 	}
5301 
5302 	err = i915_gem_switch_to_kernel_context(i915);
5303 	if (err)
5304 		goto err_active;
5305 
5306 	err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED);
5307 	if (err)
5308 		goto err_active;
5309 
5310 	assert_kernel_context_is_current(i915);
5311 
5312 	for_each_engine(engine, i915, id) {
5313 		struct i915_vma *state;
5314 
5315 		state = to_intel_context(ctx, engine)->state;
5316 		if (!state)
5317 			continue;
5318 
5319 		/*
5320 		 * As we will hold a reference to the logical state, it will
5321 		 * not be torn down with the context, and importantly the
5322 		 * object will hold onto its vma (making it possible for a
5323 		 * stray GTT write to corrupt our defaults). Unmap the vma
5324 		 * from the GTT to prevent such accidents and reclaim the
5325 		 * space.
5326 		 */
5327 		err = i915_vma_unbind(state);
5328 		if (err)
5329 			goto err_active;
5330 
5331 		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5332 		if (err)
5333 			goto err_active;
5334 
5335 		engine->default_state = i915_gem_object_get(state->obj);
5336 	}
5337 
5338 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5339 		unsigned int found = intel_engines_has_context_isolation(i915);
5340 
5341 		/*
5342 		 * Make sure that classes with multiple engine instances all
5343 		 * share the same basic configuration.
5344 		 */
5345 		for_each_engine(engine, i915, id) {
5346 			unsigned int bit = BIT(engine->uabi_class);
5347 			unsigned int expected = engine->default_state ? bit : 0;
5348 
5349 			if ((found & bit) != expected) {
5350 				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5351 					  engine->uabi_class, engine->name);
5352 			}
5353 		}
5354 	}
5355 
5356 out_ctx:
5357 	i915_gem_context_set_closed(ctx);
5358 	i915_gem_context_put(ctx);
5359 	return err;
5360 
5361 err_active:
5362 	/*
5363 	 * If we have to abandon now, we expect the engines to be idle
5364 	 * and ready to be torn-down. First try to flush any remaining
5365 	 * request, ensure we are pointing at the kernel context and
5366 	 * then remove it.
5367 	 */
5368 	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5369 		goto out_ctx;
5370 
5371 	if (WARN_ON(i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED)))
5372 		goto out_ctx;
5373 
5374 	i915_gem_contexts_lost(i915);
5375 	goto out_ctx;
5376 }
5377 
5378 int i915_gem_init(struct drm_i915_private *dev_priv)
5379 {
5380 	int ret;
5381 
5382 	/*
5383 	 * We need to fallback to 4K pages since gvt gtt handling doesn't
5384 	 * support huge page entries - we will need to check either hypervisor
5385 	 * mm can support huge guest page or just do emulation in gvt.
5386 	 */
5387 	if (intel_vgpu_active(dev_priv))
5388 		mkwrite_device_info(dev_priv)->page_sizes =
5389 			I915_GTT_PAGE_SIZE_4K;
5390 
5391 	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5392 
5393 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5394 		dev_priv->gt.resume = intel_lr_context_resume;
5395 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5396 	} else {
5397 		dev_priv->gt.resume = intel_legacy_submission_resume;
5398 		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5399 	}
5400 
5401 	ret = i915_gem_init_userptr(dev_priv);
5402 	if (ret)
5403 		return ret;
5404 
5405 	ret = intel_wopcm_init(&dev_priv->wopcm);
5406 	if (ret)
5407 		return ret;
5408 
5409 	ret = intel_uc_init_misc(dev_priv);
5410 	if (ret)
5411 		return ret;
5412 
5413 	/* This is just a security blanket to placate dragons.
5414 	 * On some systems, we very sporadically observe that the first TLBs
5415 	 * used by the CS may be stale, despite us poking the TLB reset. If
5416 	 * we hold the forcewake during initialisation these problems
5417 	 * just magically go away.
5418 	 */
5419 	mutex_lock(&dev_priv->drm.struct_mutex);
5420 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5421 
5422 	ret = i915_gem_init_ggtt(dev_priv);
5423 	if (ret) {
5424 		GEM_BUG_ON(ret == -EIO);
5425 		goto err_unlock;
5426 	}
5427 
5428 	ret = i915_gem_contexts_init(dev_priv);
5429 	if (ret) {
5430 		GEM_BUG_ON(ret == -EIO);
5431 		goto err_ggtt;
5432 	}
5433 
5434 	ret = intel_engines_init(dev_priv);
5435 	if (ret) {
5436 		GEM_BUG_ON(ret == -EIO);
5437 		goto err_context;
5438 	}
5439 
5440 	intel_init_gt_powersave(dev_priv);
5441 
5442 	ret = intel_uc_init(dev_priv);
5443 	if (ret)
5444 		goto err_pm;
5445 
5446 	ret = i915_gem_init_hw(dev_priv);
5447 	if (ret)
5448 		goto err_uc_init;
5449 
5450 	/*
5451 	 * Despite its name intel_init_clock_gating applies both display
5452 	 * clock gating workarounds; GT mmio workarounds and the occasional
5453 	 * GT power context workaround. Worse, sometimes it includes a context
5454 	 * register workaround which we need to apply before we record the
5455 	 * default HW state for all contexts.
5456 	 *
5457 	 * FIXME: break up the workarounds and apply them at the right time!
5458 	 */
5459 	intel_init_clock_gating(dev_priv);
5460 
5461 	ret = __intel_engines_record_defaults(dev_priv);
5462 	if (ret)
5463 		goto err_init_hw;
5464 
5465 	if (i915_inject_load_failure()) {
5466 		ret = -ENODEV;
5467 		goto err_init_hw;
5468 	}
5469 
5470 	if (i915_inject_load_failure()) {
5471 		ret = -EIO;
5472 		goto err_init_hw;
5473 	}
5474 
5475 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5476 	mutex_unlock(&dev_priv->drm.struct_mutex);
5477 
5478 	return 0;
5479 
5480 	/*
5481 	 * Unwinding is complicated by that we want to handle -EIO to mean
5482 	 * disable GPU submission but keep KMS alive. We want to mark the
5483 	 * HW as irrevisibly wedged, but keep enough state around that the
5484 	 * driver doesn't explode during runtime.
5485 	 */
5486 err_init_hw:
5487 	i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED);
5488 	i915_gem_contexts_lost(dev_priv);
5489 	intel_uc_fini_hw(dev_priv);
5490 err_uc_init:
5491 	intel_uc_fini(dev_priv);
5492 err_pm:
5493 	if (ret != -EIO) {
5494 		intel_cleanup_gt_powersave(dev_priv);
5495 		i915_gem_cleanup_engines(dev_priv);
5496 	}
5497 err_context:
5498 	if (ret != -EIO)
5499 		i915_gem_contexts_fini(dev_priv);
5500 err_ggtt:
5501 err_unlock:
5502 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5503 	mutex_unlock(&dev_priv->drm.struct_mutex);
5504 
5505 	intel_uc_fini_misc(dev_priv);
5506 
5507 	if (ret != -EIO)
5508 		i915_gem_cleanup_userptr(dev_priv);
5509 
5510 	if (ret == -EIO) {
5511 		/*
5512 		 * Allow engine initialisation to fail by marking the GPU as
5513 		 * wedged. But we only want to do this where the GPU is angry,
5514 		 * for all other failure, such as an allocation failure, bail.
5515 		 */
5516 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5517 			DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5518 			i915_gem_set_wedged(dev_priv);
5519 		}
5520 		ret = 0;
5521 	}
5522 
5523 	i915_gem_drain_freed_objects(dev_priv);
5524 	return ret;
5525 }
5526 
5527 void i915_gem_init_mmio(struct drm_i915_private *i915)
5528 {
5529 	i915_gem_sanitize(i915);
5530 }
5531 
5532 void
5533 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5534 {
5535 	struct intel_engine_cs *engine;
5536 	enum intel_engine_id id;
5537 
5538 	for_each_engine(engine, dev_priv, id)
5539 		dev_priv->gt.cleanup_engine(engine);
5540 }
5541 
5542 void
5543 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5544 {
5545 	int i;
5546 
5547 	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5548 	    !IS_CHERRYVIEW(dev_priv))
5549 		dev_priv->num_fence_regs = 32;
5550 	else if (INTEL_GEN(dev_priv) >= 4 ||
5551 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5552 		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5553 		dev_priv->num_fence_regs = 16;
5554 	else
5555 		dev_priv->num_fence_regs = 8;
5556 
5557 	if (intel_vgpu_active(dev_priv))
5558 		dev_priv->num_fence_regs =
5559 				I915_READ(vgtif_reg(avail_rs.fence_num));
5560 
5561 	/* Initialize fence registers to zero */
5562 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
5563 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5564 
5565 		fence->i915 = dev_priv;
5566 		fence->id = i;
5567 		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5568 	}
5569 	i915_gem_restore_fences(dev_priv);
5570 
5571 	i915_gem_detect_bit_6_swizzle(dev_priv);
5572 }
5573 
5574 static void i915_gem_init__mm(struct drm_i915_private *i915)
5575 {
5576 	spin_lock_init(&i915->mm.object_stat_lock);
5577 	spin_lock_init(&i915->mm.obj_lock);
5578 	spin_lock_init(&i915->mm.free_lock);
5579 
5580 	init_llist_head(&i915->mm.free_list);
5581 
5582 	INIT_LIST_HEAD(&i915->mm.unbound_list);
5583 	INIT_LIST_HEAD(&i915->mm.bound_list);
5584 	INIT_LIST_HEAD(&i915->mm.fence_list);
5585 	INIT_LIST_HEAD(&i915->mm.userfault_list);
5586 
5587 	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5588 }
5589 
5590 int i915_gem_init_early(struct drm_i915_private *dev_priv)
5591 {
5592 	int err = -ENOMEM;
5593 
5594 	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5595 	if (!dev_priv->objects)
5596 		goto err_out;
5597 
5598 	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5599 	if (!dev_priv->vmas)
5600 		goto err_objects;
5601 
5602 	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5603 	if (!dev_priv->luts)
5604 		goto err_vmas;
5605 
5606 	dev_priv->requests = KMEM_CACHE(i915_request,
5607 					SLAB_HWCACHE_ALIGN |
5608 					SLAB_RECLAIM_ACCOUNT |
5609 					SLAB_TYPESAFE_BY_RCU);
5610 	if (!dev_priv->requests)
5611 		goto err_luts;
5612 
5613 	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5614 					    SLAB_HWCACHE_ALIGN |
5615 					    SLAB_RECLAIM_ACCOUNT);
5616 	if (!dev_priv->dependencies)
5617 		goto err_requests;
5618 
5619 	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5620 	if (!dev_priv->priorities)
5621 		goto err_dependencies;
5622 
5623 	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5624 	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5625 	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5626 
5627 	i915_gem_init__mm(dev_priv);
5628 
5629 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5630 			  i915_gem_retire_work_handler);
5631 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5632 			  i915_gem_idle_work_handler);
5633 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5634 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5635 
5636 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5637 
5638 	spin_lock_init(&dev_priv->fb_tracking.lock);
5639 
5640 	err = i915_gemfs_init(dev_priv);
5641 	if (err)
5642 		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5643 
5644 	return 0;
5645 
5646 err_dependencies:
5647 	kmem_cache_destroy(dev_priv->dependencies);
5648 err_requests:
5649 	kmem_cache_destroy(dev_priv->requests);
5650 err_luts:
5651 	kmem_cache_destroy(dev_priv->luts);
5652 err_vmas:
5653 	kmem_cache_destroy(dev_priv->vmas);
5654 err_objects:
5655 	kmem_cache_destroy(dev_priv->objects);
5656 err_out:
5657 	return err;
5658 }
5659 
5660 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5661 {
5662 	i915_gem_drain_freed_objects(dev_priv);
5663 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
5664 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5665 	WARN_ON(dev_priv->mm.object_count);
5666 	WARN_ON(!list_empty(&dev_priv->gt.timelines));
5667 
5668 	kmem_cache_destroy(dev_priv->priorities);
5669 	kmem_cache_destroy(dev_priv->dependencies);
5670 	kmem_cache_destroy(dev_priv->requests);
5671 	kmem_cache_destroy(dev_priv->luts);
5672 	kmem_cache_destroy(dev_priv->vmas);
5673 	kmem_cache_destroy(dev_priv->objects);
5674 
5675 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5676 	rcu_barrier();
5677 
5678 	i915_gemfs_fini(dev_priv);
5679 }
5680 
5681 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5682 {
5683 	/* Discard all purgeable objects, let userspace recover those as
5684 	 * required after resuming.
5685 	 */
5686 	i915_gem_shrink_all(dev_priv);
5687 
5688 	return 0;
5689 }
5690 
5691 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5692 {
5693 	struct drm_i915_gem_object *obj;
5694 	struct list_head *phases[] = {
5695 		&dev_priv->mm.unbound_list,
5696 		&dev_priv->mm.bound_list,
5697 		NULL
5698 	}, **p;
5699 
5700 	/* Called just before we write the hibernation image.
5701 	 *
5702 	 * We need to update the domain tracking to reflect that the CPU
5703 	 * will be accessing all the pages to create and restore from the
5704 	 * hibernation, and so upon restoration those pages will be in the
5705 	 * CPU domain.
5706 	 *
5707 	 * To make sure the hibernation image contains the latest state,
5708 	 * we update that state just before writing out the image.
5709 	 *
5710 	 * To try and reduce the hibernation image, we manually shrink
5711 	 * the objects as well, see i915_gem_freeze()
5712 	 */
5713 
5714 	i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5715 	i915_gem_drain_freed_objects(dev_priv);
5716 
5717 	spin_lock(&dev_priv->mm.obj_lock);
5718 	for (p = phases; *p; p++) {
5719 		list_for_each_entry(obj, *p, mm.link)
5720 			__start_cpu_write(obj);
5721 	}
5722 	spin_unlock(&dev_priv->mm.obj_lock);
5723 
5724 	return 0;
5725 }
5726 
5727 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5728 {
5729 	struct drm_i915_file_private *file_priv = file->driver_priv;
5730 	struct i915_request *request;
5731 
5732 	/* Clean up our request list when the client is going away, so that
5733 	 * later retire_requests won't dereference our soon-to-be-gone
5734 	 * file_priv.
5735 	 */
5736 	spin_lock(&file_priv->mm.lock);
5737 	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5738 		request->file_priv = NULL;
5739 	spin_unlock(&file_priv->mm.lock);
5740 }
5741 
5742 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5743 {
5744 	struct drm_i915_file_private *file_priv;
5745 	int ret;
5746 
5747 	DRM_DEBUG("\n");
5748 
5749 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5750 	if (!file_priv)
5751 		return -ENOMEM;
5752 
5753 	file->driver_priv = file_priv;
5754 	file_priv->dev_priv = i915;
5755 	file_priv->file = file;
5756 
5757 	spin_lock_init(&file_priv->mm.lock);
5758 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5759 
5760 	file_priv->bsd_engine = -1;
5761 	file_priv->hang_timestamp = jiffies;
5762 
5763 	ret = i915_gem_context_open(i915, file);
5764 	if (ret)
5765 		kfree(file_priv);
5766 
5767 	return ret;
5768 }
5769 
5770 /**
5771  * i915_gem_track_fb - update frontbuffer tracking
5772  * @old: current GEM buffer for the frontbuffer slots
5773  * @new: new GEM buffer for the frontbuffer slots
5774  * @frontbuffer_bits: bitmask of frontbuffer slots
5775  *
5776  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5777  * from @old and setting them in @new. Both @old and @new can be NULL.
5778  */
5779 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5780 		       struct drm_i915_gem_object *new,
5781 		       unsigned frontbuffer_bits)
5782 {
5783 	/* Control of individual bits within the mask are guarded by
5784 	 * the owning plane->mutex, i.e. we can never see concurrent
5785 	 * manipulation of individual bits. But since the bitfield as a whole
5786 	 * is updated using RMW, we need to use atomics in order to update
5787 	 * the bits.
5788 	 */
5789 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5790 		     sizeof(atomic_t) * BITS_PER_BYTE);
5791 
5792 	if (old) {
5793 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5794 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5795 	}
5796 
5797 	if (new) {
5798 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5799 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5800 	}
5801 }
5802 
5803 /* Allocate a new GEM object and fill it with the supplied data */
5804 struct drm_i915_gem_object *
5805 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5806 			         const void *data, size_t size)
5807 {
5808 	struct drm_i915_gem_object *obj;
5809 	struct file *file;
5810 	size_t offset;
5811 	int err;
5812 
5813 	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5814 	if (IS_ERR(obj))
5815 		return obj;
5816 
5817 	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5818 
5819 	file = obj->base.filp;
5820 	offset = 0;
5821 	do {
5822 		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5823 		struct page *page;
5824 		void *pgdata, *vaddr;
5825 
5826 		err = pagecache_write_begin(file, file->f_mapping,
5827 					    offset, len, 0,
5828 					    &page, &pgdata);
5829 		if (err < 0)
5830 			goto fail;
5831 
5832 		vaddr = kmap(page);
5833 		memcpy(vaddr, data, len);
5834 		kunmap(page);
5835 
5836 		err = pagecache_write_end(file, file->f_mapping,
5837 					  offset, len, len,
5838 					  page, pgdata);
5839 		if (err < 0)
5840 			goto fail;
5841 
5842 		size -= len;
5843 		data += len;
5844 		offset += len;
5845 	} while (size);
5846 
5847 	return obj;
5848 
5849 fail:
5850 	i915_gem_object_put(obj);
5851 	return ERR_PTR(err);
5852 }
5853 
5854 struct scatterlist *
5855 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5856 		       unsigned int n,
5857 		       unsigned int *offset)
5858 {
5859 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5860 	struct scatterlist *sg;
5861 	unsigned int idx, count;
5862 
5863 	might_sleep();
5864 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5865 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5866 
5867 	/* As we iterate forward through the sg, we record each entry in a
5868 	 * radixtree for quick repeated (backwards) lookups. If we have seen
5869 	 * this index previously, we will have an entry for it.
5870 	 *
5871 	 * Initial lookup is O(N), but this is amortized to O(1) for
5872 	 * sequential page access (where each new request is consecutive
5873 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5874 	 * i.e. O(1) with a large constant!
5875 	 */
5876 	if (n < READ_ONCE(iter->sg_idx))
5877 		goto lookup;
5878 
5879 	mutex_lock(&iter->lock);
5880 
5881 	/* We prefer to reuse the last sg so that repeated lookup of this
5882 	 * (or the subsequent) sg are fast - comparing against the last
5883 	 * sg is faster than going through the radixtree.
5884 	 */
5885 
5886 	sg = iter->sg_pos;
5887 	idx = iter->sg_idx;
5888 	count = __sg_page_count(sg);
5889 
5890 	while (idx + count <= n) {
5891 		unsigned long exception, i;
5892 		int ret;
5893 
5894 		/* If we cannot allocate and insert this entry, or the
5895 		 * individual pages from this range, cancel updating the
5896 		 * sg_idx so that on this lookup we are forced to linearly
5897 		 * scan onwards, but on future lookups we will try the
5898 		 * insertion again (in which case we need to be careful of
5899 		 * the error return reporting that we have already inserted
5900 		 * this index).
5901 		 */
5902 		ret = radix_tree_insert(&iter->radix, idx, sg);
5903 		if (ret && ret != -EEXIST)
5904 			goto scan;
5905 
5906 		exception =
5907 			RADIX_TREE_EXCEPTIONAL_ENTRY |
5908 			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5909 		for (i = 1; i < count; i++) {
5910 			ret = radix_tree_insert(&iter->radix, idx + i,
5911 						(void *)exception);
5912 			if (ret && ret != -EEXIST)
5913 				goto scan;
5914 		}
5915 
5916 		idx += count;
5917 		sg = ____sg_next(sg);
5918 		count = __sg_page_count(sg);
5919 	}
5920 
5921 scan:
5922 	iter->sg_pos = sg;
5923 	iter->sg_idx = idx;
5924 
5925 	mutex_unlock(&iter->lock);
5926 
5927 	if (unlikely(n < idx)) /* insertion completed by another thread */
5928 		goto lookup;
5929 
5930 	/* In case we failed to insert the entry into the radixtree, we need
5931 	 * to look beyond the current sg.
5932 	 */
5933 	while (idx + count <= n) {
5934 		idx += count;
5935 		sg = ____sg_next(sg);
5936 		count = __sg_page_count(sg);
5937 	}
5938 
5939 	*offset = n - idx;
5940 	return sg;
5941 
5942 lookup:
5943 	rcu_read_lock();
5944 
5945 	sg = radix_tree_lookup(&iter->radix, n);
5946 	GEM_BUG_ON(!sg);
5947 
5948 	/* If this index is in the middle of multi-page sg entry,
5949 	 * the radixtree will contain an exceptional entry that points
5950 	 * to the start of that range. We will return the pointer to
5951 	 * the base page and the offset of this page within the
5952 	 * sg entry's range.
5953 	 */
5954 	*offset = 0;
5955 	if (unlikely(radix_tree_exception(sg))) {
5956 		unsigned long base =
5957 			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5958 
5959 		sg = radix_tree_lookup(&iter->radix, base);
5960 		GEM_BUG_ON(!sg);
5961 
5962 		*offset = n - base;
5963 	}
5964 
5965 	rcu_read_unlock();
5966 
5967 	return sg;
5968 }
5969 
5970 struct page *
5971 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5972 {
5973 	struct scatterlist *sg;
5974 	unsigned int offset;
5975 
5976 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5977 
5978 	sg = i915_gem_object_get_sg(obj, n, &offset);
5979 	return nth_page(sg_page(sg), offset);
5980 }
5981 
5982 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5983 struct page *
5984 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5985 			       unsigned int n)
5986 {
5987 	struct page *page;
5988 
5989 	page = i915_gem_object_get_page(obj, n);
5990 	if (!obj->mm.dirty)
5991 		set_page_dirty(page);
5992 
5993 	return page;
5994 }
5995 
5996 dma_addr_t
5997 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5998 				unsigned long n)
5999 {
6000 	struct scatterlist *sg;
6001 	unsigned int offset;
6002 
6003 	sg = i915_gem_object_get_sg(obj, n, &offset);
6004 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
6005 }
6006 
6007 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
6008 {
6009 	struct sg_table *pages;
6010 	int err;
6011 
6012 	if (align > obj->base.size)
6013 		return -EINVAL;
6014 
6015 	if (obj->ops == &i915_gem_phys_ops)
6016 		return 0;
6017 
6018 	if (obj->ops != &i915_gem_object_ops)
6019 		return -EINVAL;
6020 
6021 	err = i915_gem_object_unbind(obj);
6022 	if (err)
6023 		return err;
6024 
6025 	mutex_lock(&obj->mm.lock);
6026 
6027 	if (obj->mm.madv != I915_MADV_WILLNEED) {
6028 		err = -EFAULT;
6029 		goto err_unlock;
6030 	}
6031 
6032 	if (obj->mm.quirked) {
6033 		err = -EFAULT;
6034 		goto err_unlock;
6035 	}
6036 
6037 	if (obj->mm.mapping) {
6038 		err = -EBUSY;
6039 		goto err_unlock;
6040 	}
6041 
6042 	pages = fetch_and_zero(&obj->mm.pages);
6043 	if (pages) {
6044 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
6045 
6046 		__i915_gem_object_reset_page_iter(obj);
6047 
6048 		spin_lock(&i915->mm.obj_lock);
6049 		list_del(&obj->mm.link);
6050 		spin_unlock(&i915->mm.obj_lock);
6051 	}
6052 
6053 	obj->ops = &i915_gem_phys_ops;
6054 
6055 	err = ____i915_gem_object_get_pages(obj);
6056 	if (err)
6057 		goto err_xfer;
6058 
6059 	/* Perma-pin (until release) the physical set of pages */
6060 	__i915_gem_object_pin_pages(obj);
6061 
6062 	if (!IS_ERR_OR_NULL(pages))
6063 		i915_gem_object_ops.put_pages(obj, pages);
6064 	mutex_unlock(&obj->mm.lock);
6065 	return 0;
6066 
6067 err_xfer:
6068 	obj->ops = &i915_gem_object_ops;
6069 	obj->mm.pages = pages;
6070 err_unlock:
6071 	mutex_unlock(&obj->mm.lock);
6072 	return err;
6073 }
6074 
6075 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6076 #include "selftests/scatterlist.c"
6077 #include "selftests/mock_gem_device.c"
6078 #include "selftests/huge_gem_object.c"
6079 #include "selftests/huge_pages.c"
6080 #include "selftests/i915_gem_object.c"
6081 #include "selftests/i915_gem_coherency.c"
6082 #endif
6083