1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drmP.h> 29 #include <drm/drm_vma_manager.h> 30 #include <drm/i915_drm.h> 31 #include "i915_drv.h" 32 #include "i915_trace.h" 33 #include "intel_drv.h" 34 #include <linux/shmem_fs.h> 35 #include <linux/slab.h> 36 #include <linux/swap.h> 37 #include <linux/pci.h> 38 #include <linux/dma-buf.h> 39 40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); 41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj, 42 bool force); 43 static __must_check int 44 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj, 45 struct i915_address_space *vm, 46 unsigned alignment, 47 bool map_and_fenceable, 48 bool nonblocking); 49 static int i915_gem_phys_pwrite(struct drm_device *dev, 50 struct drm_i915_gem_object *obj, 51 struct drm_i915_gem_pwrite *args, 52 struct drm_file *file); 53 54 static void i915_gem_write_fence(struct drm_device *dev, int reg, 55 struct drm_i915_gem_object *obj); 56 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 57 struct drm_i915_fence_reg *fence, 58 bool enable); 59 60 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker, 61 struct shrink_control *sc); 62 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker, 63 struct shrink_control *sc); 64 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target); 65 static long i915_gem_shrink_all(struct drm_i915_private *dev_priv); 66 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj); 67 68 static bool cpu_cache_is_coherent(struct drm_device *dev, 69 enum i915_cache_level level) 70 { 71 return HAS_LLC(dev) || level != I915_CACHE_NONE; 72 } 73 74 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj) 75 { 76 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) 77 return true; 78 79 return obj->pin_display; 80 } 81 82 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj) 83 { 84 if (obj->tiling_mode) 85 i915_gem_release_mmap(obj); 86 87 /* As we do not have an associated fence register, we will force 88 * a tiling change if we ever need to acquire one. 89 */ 90 obj->fence_dirty = false; 91 obj->fence_reg = I915_FENCE_REG_NONE; 92 } 93 94 /* some bookkeeping */ 95 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, 96 size_t size) 97 { 98 spin_lock(&dev_priv->mm.object_stat_lock); 99 dev_priv->mm.object_count++; 100 dev_priv->mm.object_memory += size; 101 spin_unlock(&dev_priv->mm.object_stat_lock); 102 } 103 104 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, 105 size_t size) 106 { 107 spin_lock(&dev_priv->mm.object_stat_lock); 108 dev_priv->mm.object_count--; 109 dev_priv->mm.object_memory -= size; 110 spin_unlock(&dev_priv->mm.object_stat_lock); 111 } 112 113 static int 114 i915_gem_wait_for_error(struct i915_gpu_error *error) 115 { 116 int ret; 117 118 #define EXIT_COND (!i915_reset_in_progress(error) || \ 119 i915_terminally_wedged(error)) 120 if (EXIT_COND) 121 return 0; 122 123 /* 124 * Only wait 10 seconds for the gpu reset to complete to avoid hanging 125 * userspace. If it takes that long something really bad is going on and 126 * we should simply try to bail out and fail as gracefully as possible. 127 */ 128 ret = wait_event_interruptible_timeout(error->reset_queue, 129 EXIT_COND, 130 10*HZ); 131 if (ret == 0) { 132 DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); 133 return -EIO; 134 } else if (ret < 0) { 135 return ret; 136 } 137 #undef EXIT_COND 138 139 return 0; 140 } 141 142 int i915_mutex_lock_interruptible(struct drm_device *dev) 143 { 144 struct drm_i915_private *dev_priv = dev->dev_private; 145 int ret; 146 147 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 148 if (ret) 149 return ret; 150 151 ret = mutex_lock_interruptible(&dev->struct_mutex); 152 if (ret) 153 return ret; 154 155 WARN_ON(i915_verify_lists(dev)); 156 return 0; 157 } 158 159 static inline bool 160 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj) 161 { 162 return i915_gem_obj_bound_any(obj) && !obj->active; 163 } 164 165 int 166 i915_gem_init_ioctl(struct drm_device *dev, void *data, 167 struct drm_file *file) 168 { 169 struct drm_i915_private *dev_priv = dev->dev_private; 170 struct drm_i915_gem_init *args = data; 171 172 if (drm_core_check_feature(dev, DRIVER_MODESET)) 173 return -ENODEV; 174 175 if (args->gtt_start >= args->gtt_end || 176 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1)) 177 return -EINVAL; 178 179 /* GEM with user mode setting was never supported on ilk and later. */ 180 if (INTEL_INFO(dev)->gen >= 5) 181 return -ENODEV; 182 183 mutex_lock(&dev->struct_mutex); 184 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end, 185 args->gtt_end); 186 dev_priv->gtt.mappable_end = args->gtt_end; 187 mutex_unlock(&dev->struct_mutex); 188 189 return 0; 190 } 191 192 int 193 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 194 struct drm_file *file) 195 { 196 struct drm_i915_private *dev_priv = dev->dev_private; 197 struct drm_i915_gem_get_aperture *args = data; 198 struct drm_i915_gem_object *obj; 199 size_t pinned; 200 201 pinned = 0; 202 mutex_lock(&dev->struct_mutex); 203 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) 204 if (obj->pin_count) 205 pinned += i915_gem_obj_ggtt_size(obj); 206 mutex_unlock(&dev->struct_mutex); 207 208 args->aper_size = dev_priv->gtt.base.total; 209 args->aper_available_size = args->aper_size - pinned; 210 211 return 0; 212 } 213 214 void *i915_gem_object_alloc(struct drm_device *dev) 215 { 216 struct drm_i915_private *dev_priv = dev->dev_private; 217 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL); 218 } 219 220 void i915_gem_object_free(struct drm_i915_gem_object *obj) 221 { 222 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 223 kmem_cache_free(dev_priv->slab, obj); 224 } 225 226 static int 227 i915_gem_create(struct drm_file *file, 228 struct drm_device *dev, 229 uint64_t size, 230 uint32_t *handle_p) 231 { 232 struct drm_i915_gem_object *obj; 233 int ret; 234 u32 handle; 235 236 size = roundup(size, PAGE_SIZE); 237 if (size == 0) 238 return -EINVAL; 239 240 /* Allocate the new object */ 241 obj = i915_gem_alloc_object(dev, size); 242 if (obj == NULL) 243 return -ENOMEM; 244 245 ret = drm_gem_handle_create(file, &obj->base, &handle); 246 /* drop reference from allocate - handle holds it now */ 247 drm_gem_object_unreference_unlocked(&obj->base); 248 if (ret) 249 return ret; 250 251 *handle_p = handle; 252 return 0; 253 } 254 255 int 256 i915_gem_dumb_create(struct drm_file *file, 257 struct drm_device *dev, 258 struct drm_mode_create_dumb *args) 259 { 260 /* have to work out size/pitch and return them */ 261 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64); 262 args->size = args->pitch * args->height; 263 return i915_gem_create(file, dev, 264 args->size, &args->handle); 265 } 266 267 /** 268 * Creates a new mm object and returns a handle to it. 269 */ 270 int 271 i915_gem_create_ioctl(struct drm_device *dev, void *data, 272 struct drm_file *file) 273 { 274 struct drm_i915_gem_create *args = data; 275 276 return i915_gem_create(file, dev, 277 args->size, &args->handle); 278 } 279 280 static inline int 281 __copy_to_user_swizzled(char __user *cpu_vaddr, 282 const char *gpu_vaddr, int gpu_offset, 283 int length) 284 { 285 int ret, cpu_offset = 0; 286 287 while (length > 0) { 288 int cacheline_end = ALIGN(gpu_offset + 1, 64); 289 int this_length = min(cacheline_end - gpu_offset, length); 290 int swizzled_gpu_offset = gpu_offset ^ 64; 291 292 ret = __copy_to_user(cpu_vaddr + cpu_offset, 293 gpu_vaddr + swizzled_gpu_offset, 294 this_length); 295 if (ret) 296 return ret + length; 297 298 cpu_offset += this_length; 299 gpu_offset += this_length; 300 length -= this_length; 301 } 302 303 return 0; 304 } 305 306 static inline int 307 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, 308 const char __user *cpu_vaddr, 309 int length) 310 { 311 int ret, cpu_offset = 0; 312 313 while (length > 0) { 314 int cacheline_end = ALIGN(gpu_offset + 1, 64); 315 int this_length = min(cacheline_end - gpu_offset, length); 316 int swizzled_gpu_offset = gpu_offset ^ 64; 317 318 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, 319 cpu_vaddr + cpu_offset, 320 this_length); 321 if (ret) 322 return ret + length; 323 324 cpu_offset += this_length; 325 gpu_offset += this_length; 326 length -= this_length; 327 } 328 329 return 0; 330 } 331 332 /* Per-page copy function for the shmem pread fastpath. 333 * Flushes invalid cachelines before reading the target if 334 * needs_clflush is set. */ 335 static int 336 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length, 337 char __user *user_data, 338 bool page_do_bit17_swizzling, bool needs_clflush) 339 { 340 char *vaddr; 341 int ret; 342 343 if (unlikely(page_do_bit17_swizzling)) 344 return -EINVAL; 345 346 vaddr = kmap_atomic(page); 347 if (needs_clflush) 348 drm_clflush_virt_range(vaddr + shmem_page_offset, 349 page_length); 350 ret = __copy_to_user_inatomic(user_data, 351 vaddr + shmem_page_offset, 352 page_length); 353 kunmap_atomic(vaddr); 354 355 return ret ? -EFAULT : 0; 356 } 357 358 static void 359 shmem_clflush_swizzled_range(char *addr, unsigned long length, 360 bool swizzled) 361 { 362 if (unlikely(swizzled)) { 363 unsigned long start = (unsigned long) addr; 364 unsigned long end = (unsigned long) addr + length; 365 366 /* For swizzling simply ensure that we always flush both 367 * channels. Lame, but simple and it works. Swizzled 368 * pwrite/pread is far from a hotpath - current userspace 369 * doesn't use it at all. */ 370 start = round_down(start, 128); 371 end = round_up(end, 128); 372 373 drm_clflush_virt_range((void *)start, end - start); 374 } else { 375 drm_clflush_virt_range(addr, length); 376 } 377 378 } 379 380 /* Only difference to the fast-path function is that this can handle bit17 381 * and uses non-atomic copy and kmap functions. */ 382 static int 383 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length, 384 char __user *user_data, 385 bool page_do_bit17_swizzling, bool needs_clflush) 386 { 387 char *vaddr; 388 int ret; 389 390 vaddr = kmap(page); 391 if (needs_clflush) 392 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 393 page_length, 394 page_do_bit17_swizzling); 395 396 if (page_do_bit17_swizzling) 397 ret = __copy_to_user_swizzled(user_data, 398 vaddr, shmem_page_offset, 399 page_length); 400 else 401 ret = __copy_to_user(user_data, 402 vaddr + shmem_page_offset, 403 page_length); 404 kunmap(page); 405 406 return ret ? - EFAULT : 0; 407 } 408 409 static int 410 i915_gem_shmem_pread(struct drm_device *dev, 411 struct drm_i915_gem_object *obj, 412 struct drm_i915_gem_pread *args, 413 struct drm_file *file) 414 { 415 char __user *user_data; 416 ssize_t remain; 417 loff_t offset; 418 int shmem_page_offset, page_length, ret = 0; 419 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 420 int prefaulted = 0; 421 int needs_clflush = 0; 422 struct sg_page_iter sg_iter; 423 424 user_data = to_user_ptr(args->data_ptr); 425 remain = args->size; 426 427 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 428 429 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) { 430 /* If we're not in the cpu read domain, set ourself into the gtt 431 * read domain and manually flush cachelines (if required). This 432 * optimizes for the case when the gpu will dirty the data 433 * anyway again before the next pread happens. */ 434 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level); 435 if (i915_gem_obj_bound_any(obj)) { 436 ret = i915_gem_object_set_to_gtt_domain(obj, false); 437 if (ret) 438 return ret; 439 } 440 } 441 442 ret = i915_gem_object_get_pages(obj); 443 if (ret) 444 return ret; 445 446 i915_gem_object_pin_pages(obj); 447 448 offset = args->offset; 449 450 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 451 offset >> PAGE_SHIFT) { 452 struct page *page = sg_page_iter_page(&sg_iter); 453 454 if (remain <= 0) 455 break; 456 457 /* Operation in this page 458 * 459 * shmem_page_offset = offset within page in shmem file 460 * page_length = bytes to copy for this page 461 */ 462 shmem_page_offset = offset_in_page(offset); 463 page_length = remain; 464 if ((shmem_page_offset + page_length) > PAGE_SIZE) 465 page_length = PAGE_SIZE - shmem_page_offset; 466 467 page_do_bit17_swizzling = obj_do_bit17_swizzling && 468 (page_to_phys(page) & (1 << 17)) != 0; 469 470 ret = shmem_pread_fast(page, shmem_page_offset, page_length, 471 user_data, page_do_bit17_swizzling, 472 needs_clflush); 473 if (ret == 0) 474 goto next_page; 475 476 mutex_unlock(&dev->struct_mutex); 477 478 if (likely(!i915_prefault_disable) && !prefaulted) { 479 ret = fault_in_multipages_writeable(user_data, remain); 480 /* Userspace is tricking us, but we've already clobbered 481 * its pages with the prefault and promised to write the 482 * data up to the first fault. Hence ignore any errors 483 * and just continue. */ 484 (void)ret; 485 prefaulted = 1; 486 } 487 488 ret = shmem_pread_slow(page, shmem_page_offset, page_length, 489 user_data, page_do_bit17_swizzling, 490 needs_clflush); 491 492 mutex_lock(&dev->struct_mutex); 493 494 next_page: 495 mark_page_accessed(page); 496 497 if (ret) 498 goto out; 499 500 remain -= page_length; 501 user_data += page_length; 502 offset += page_length; 503 } 504 505 out: 506 i915_gem_object_unpin_pages(obj); 507 508 return ret; 509 } 510 511 /** 512 * Reads data from the object referenced by handle. 513 * 514 * On error, the contents of *data are undefined. 515 */ 516 int 517 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 518 struct drm_file *file) 519 { 520 struct drm_i915_gem_pread *args = data; 521 struct drm_i915_gem_object *obj; 522 int ret = 0; 523 524 if (args->size == 0) 525 return 0; 526 527 if (!access_ok(VERIFY_WRITE, 528 to_user_ptr(args->data_ptr), 529 args->size)) 530 return -EFAULT; 531 532 ret = i915_mutex_lock_interruptible(dev); 533 if (ret) 534 return ret; 535 536 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 537 if (&obj->base == NULL) { 538 ret = -ENOENT; 539 goto unlock; 540 } 541 542 /* Bounds check source. */ 543 if (args->offset > obj->base.size || 544 args->size > obj->base.size - args->offset) { 545 ret = -EINVAL; 546 goto out; 547 } 548 549 /* prime objects have no backing filp to GEM pread/pwrite 550 * pages from. 551 */ 552 if (!obj->base.filp) { 553 ret = -EINVAL; 554 goto out; 555 } 556 557 trace_i915_gem_object_pread(obj, args->offset, args->size); 558 559 ret = i915_gem_shmem_pread(dev, obj, args, file); 560 561 out: 562 drm_gem_object_unreference(&obj->base); 563 unlock: 564 mutex_unlock(&dev->struct_mutex); 565 return ret; 566 } 567 568 /* This is the fast write path which cannot handle 569 * page faults in the source data 570 */ 571 572 static inline int 573 fast_user_write(struct io_mapping *mapping, 574 loff_t page_base, int page_offset, 575 char __user *user_data, 576 int length) 577 { 578 void __iomem *vaddr_atomic; 579 void *vaddr; 580 unsigned long unwritten; 581 582 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base); 583 /* We can use the cpu mem copy function because this is X86. */ 584 vaddr = (void __force*)vaddr_atomic + page_offset; 585 unwritten = __copy_from_user_inatomic_nocache(vaddr, 586 user_data, length); 587 io_mapping_unmap_atomic(vaddr_atomic); 588 return unwritten; 589 } 590 591 /** 592 * This is the fast pwrite path, where we copy the data directly from the 593 * user into the GTT, uncached. 594 */ 595 static int 596 i915_gem_gtt_pwrite_fast(struct drm_device *dev, 597 struct drm_i915_gem_object *obj, 598 struct drm_i915_gem_pwrite *args, 599 struct drm_file *file) 600 { 601 drm_i915_private_t *dev_priv = dev->dev_private; 602 ssize_t remain; 603 loff_t offset, page_base; 604 char __user *user_data; 605 int page_offset, page_length, ret; 606 607 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true); 608 if (ret) 609 goto out; 610 611 ret = i915_gem_object_set_to_gtt_domain(obj, true); 612 if (ret) 613 goto out_unpin; 614 615 ret = i915_gem_object_put_fence(obj); 616 if (ret) 617 goto out_unpin; 618 619 user_data = to_user_ptr(args->data_ptr); 620 remain = args->size; 621 622 offset = i915_gem_obj_ggtt_offset(obj) + args->offset; 623 624 while (remain > 0) { 625 /* Operation in this page 626 * 627 * page_base = page offset within aperture 628 * page_offset = offset within page 629 * page_length = bytes to copy for this page 630 */ 631 page_base = offset & PAGE_MASK; 632 page_offset = offset_in_page(offset); 633 page_length = remain; 634 if ((page_offset + remain) > PAGE_SIZE) 635 page_length = PAGE_SIZE - page_offset; 636 637 /* If we get a fault while copying data, then (presumably) our 638 * source page isn't available. Return the error and we'll 639 * retry in the slow path. 640 */ 641 if (fast_user_write(dev_priv->gtt.mappable, page_base, 642 page_offset, user_data, page_length)) { 643 ret = -EFAULT; 644 goto out_unpin; 645 } 646 647 remain -= page_length; 648 user_data += page_length; 649 offset += page_length; 650 } 651 652 out_unpin: 653 i915_gem_object_unpin(obj); 654 out: 655 return ret; 656 } 657 658 /* Per-page copy function for the shmem pwrite fastpath. 659 * Flushes invalid cachelines before writing to the target if 660 * needs_clflush_before is set and flushes out any written cachelines after 661 * writing if needs_clflush is set. */ 662 static int 663 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length, 664 char __user *user_data, 665 bool page_do_bit17_swizzling, 666 bool needs_clflush_before, 667 bool needs_clflush_after) 668 { 669 char *vaddr; 670 int ret; 671 672 if (unlikely(page_do_bit17_swizzling)) 673 return -EINVAL; 674 675 vaddr = kmap_atomic(page); 676 if (needs_clflush_before) 677 drm_clflush_virt_range(vaddr + shmem_page_offset, 678 page_length); 679 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset, 680 user_data, 681 page_length); 682 if (needs_clflush_after) 683 drm_clflush_virt_range(vaddr + shmem_page_offset, 684 page_length); 685 kunmap_atomic(vaddr); 686 687 return ret ? -EFAULT : 0; 688 } 689 690 /* Only difference to the fast-path function is that this can handle bit17 691 * and uses non-atomic copy and kmap functions. */ 692 static int 693 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length, 694 char __user *user_data, 695 bool page_do_bit17_swizzling, 696 bool needs_clflush_before, 697 bool needs_clflush_after) 698 { 699 char *vaddr; 700 int ret; 701 702 vaddr = kmap(page); 703 if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) 704 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 705 page_length, 706 page_do_bit17_swizzling); 707 if (page_do_bit17_swizzling) 708 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset, 709 user_data, 710 page_length); 711 else 712 ret = __copy_from_user(vaddr + shmem_page_offset, 713 user_data, 714 page_length); 715 if (needs_clflush_after) 716 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 717 page_length, 718 page_do_bit17_swizzling); 719 kunmap(page); 720 721 return ret ? -EFAULT : 0; 722 } 723 724 static int 725 i915_gem_shmem_pwrite(struct drm_device *dev, 726 struct drm_i915_gem_object *obj, 727 struct drm_i915_gem_pwrite *args, 728 struct drm_file *file) 729 { 730 ssize_t remain; 731 loff_t offset; 732 char __user *user_data; 733 int shmem_page_offset, page_length, ret = 0; 734 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 735 int hit_slowpath = 0; 736 int needs_clflush_after = 0; 737 int needs_clflush_before = 0; 738 struct sg_page_iter sg_iter; 739 740 user_data = to_user_ptr(args->data_ptr); 741 remain = args->size; 742 743 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 744 745 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 746 /* If we're not in the cpu write domain, set ourself into the gtt 747 * write domain and manually flush cachelines (if required). This 748 * optimizes for the case when the gpu will use the data 749 * right away and we therefore have to clflush anyway. */ 750 needs_clflush_after = cpu_write_needs_clflush(obj); 751 if (i915_gem_obj_bound_any(obj)) { 752 ret = i915_gem_object_set_to_gtt_domain(obj, true); 753 if (ret) 754 return ret; 755 } 756 } 757 /* Same trick applies to invalidate partially written cachelines read 758 * before writing. */ 759 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) 760 needs_clflush_before = 761 !cpu_cache_is_coherent(dev, obj->cache_level); 762 763 ret = i915_gem_object_get_pages(obj); 764 if (ret) 765 return ret; 766 767 i915_gem_object_pin_pages(obj); 768 769 offset = args->offset; 770 obj->dirty = 1; 771 772 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 773 offset >> PAGE_SHIFT) { 774 struct page *page = sg_page_iter_page(&sg_iter); 775 int partial_cacheline_write; 776 777 if (remain <= 0) 778 break; 779 780 /* Operation in this page 781 * 782 * shmem_page_offset = offset within page in shmem file 783 * page_length = bytes to copy for this page 784 */ 785 shmem_page_offset = offset_in_page(offset); 786 787 page_length = remain; 788 if ((shmem_page_offset + page_length) > PAGE_SIZE) 789 page_length = PAGE_SIZE - shmem_page_offset; 790 791 /* If we don't overwrite a cacheline completely we need to be 792 * careful to have up-to-date data by first clflushing. Don't 793 * overcomplicate things and flush the entire patch. */ 794 partial_cacheline_write = needs_clflush_before && 795 ((shmem_page_offset | page_length) 796 & (boot_cpu_data.x86_clflush_size - 1)); 797 798 page_do_bit17_swizzling = obj_do_bit17_swizzling && 799 (page_to_phys(page) & (1 << 17)) != 0; 800 801 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length, 802 user_data, page_do_bit17_swizzling, 803 partial_cacheline_write, 804 needs_clflush_after); 805 if (ret == 0) 806 goto next_page; 807 808 hit_slowpath = 1; 809 mutex_unlock(&dev->struct_mutex); 810 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length, 811 user_data, page_do_bit17_swizzling, 812 partial_cacheline_write, 813 needs_clflush_after); 814 815 mutex_lock(&dev->struct_mutex); 816 817 next_page: 818 set_page_dirty(page); 819 mark_page_accessed(page); 820 821 if (ret) 822 goto out; 823 824 remain -= page_length; 825 user_data += page_length; 826 offset += page_length; 827 } 828 829 out: 830 i915_gem_object_unpin_pages(obj); 831 832 if (hit_slowpath) { 833 /* 834 * Fixup: Flush cpu caches in case we didn't flush the dirty 835 * cachelines in-line while writing and the object moved 836 * out of the cpu write domain while we've dropped the lock. 837 */ 838 if (!needs_clflush_after && 839 obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 840 if (i915_gem_clflush_object(obj, obj->pin_display)) 841 i915_gem_chipset_flush(dev); 842 } 843 } 844 845 if (needs_clflush_after) 846 i915_gem_chipset_flush(dev); 847 848 return ret; 849 } 850 851 /** 852 * Writes data to the object referenced by handle. 853 * 854 * On error, the contents of the buffer that were to be modified are undefined. 855 */ 856 int 857 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 858 struct drm_file *file) 859 { 860 struct drm_i915_gem_pwrite *args = data; 861 struct drm_i915_gem_object *obj; 862 int ret; 863 864 if (args->size == 0) 865 return 0; 866 867 if (!access_ok(VERIFY_READ, 868 to_user_ptr(args->data_ptr), 869 args->size)) 870 return -EFAULT; 871 872 if (likely(!i915_prefault_disable)) { 873 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr), 874 args->size); 875 if (ret) 876 return -EFAULT; 877 } 878 879 ret = i915_mutex_lock_interruptible(dev); 880 if (ret) 881 return ret; 882 883 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 884 if (&obj->base == NULL) { 885 ret = -ENOENT; 886 goto unlock; 887 } 888 889 /* Bounds check destination. */ 890 if (args->offset > obj->base.size || 891 args->size > obj->base.size - args->offset) { 892 ret = -EINVAL; 893 goto out; 894 } 895 896 /* prime objects have no backing filp to GEM pread/pwrite 897 * pages from. 898 */ 899 if (!obj->base.filp) { 900 ret = -EINVAL; 901 goto out; 902 } 903 904 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 905 906 ret = -EFAULT; 907 /* We can only do the GTT pwrite on untiled buffers, as otherwise 908 * it would end up going through the fenced access, and we'll get 909 * different detiling behavior between reading and writing. 910 * pread/pwrite currently are reading and writing from the CPU 911 * perspective, requiring manual detiling by the client. 912 */ 913 if (obj->phys_obj) { 914 ret = i915_gem_phys_pwrite(dev, obj, args, file); 915 goto out; 916 } 917 918 if (obj->tiling_mode == I915_TILING_NONE && 919 obj->base.write_domain != I915_GEM_DOMAIN_CPU && 920 cpu_write_needs_clflush(obj)) { 921 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file); 922 /* Note that the gtt paths might fail with non-page-backed user 923 * pointers (e.g. gtt mappings when moving data between 924 * textures). Fallback to the shmem path in that case. */ 925 } 926 927 if (ret == -EFAULT || ret == -ENOSPC) 928 ret = i915_gem_shmem_pwrite(dev, obj, args, file); 929 930 out: 931 drm_gem_object_unreference(&obj->base); 932 unlock: 933 mutex_unlock(&dev->struct_mutex); 934 return ret; 935 } 936 937 int 938 i915_gem_check_wedge(struct i915_gpu_error *error, 939 bool interruptible) 940 { 941 if (i915_reset_in_progress(error)) { 942 /* Non-interruptible callers can't handle -EAGAIN, hence return 943 * -EIO unconditionally for these. */ 944 if (!interruptible) 945 return -EIO; 946 947 /* Recovery complete, but the reset failed ... */ 948 if (i915_terminally_wedged(error)) 949 return -EIO; 950 951 return -EAGAIN; 952 } 953 954 return 0; 955 } 956 957 /* 958 * Compare seqno against outstanding lazy request. Emit a request if they are 959 * equal. 960 */ 961 static int 962 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno) 963 { 964 int ret; 965 966 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex)); 967 968 ret = 0; 969 if (seqno == ring->outstanding_lazy_request) 970 ret = i915_add_request(ring, NULL); 971 972 return ret; 973 } 974 975 /** 976 * __wait_seqno - wait until execution of seqno has finished 977 * @ring: the ring expected to report seqno 978 * @seqno: duh! 979 * @reset_counter: reset sequence associated with the given seqno 980 * @interruptible: do an interruptible wait (normally yes) 981 * @timeout: in - how long to wait (NULL forever); out - how much time remaining 982 * 983 * Note: It is of utmost importance that the passed in seqno and reset_counter 984 * values have been read by the caller in an smp safe manner. Where read-side 985 * locks are involved, it is sufficient to read the reset_counter before 986 * unlocking the lock that protects the seqno. For lockless tricks, the 987 * reset_counter _must_ be read before, and an appropriate smp_rmb must be 988 * inserted. 989 * 990 * Returns 0 if the seqno was found within the alloted time. Else returns the 991 * errno with remaining time filled in timeout argument. 992 */ 993 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno, 994 unsigned reset_counter, 995 bool interruptible, struct timespec *timeout) 996 { 997 drm_i915_private_t *dev_priv = ring->dev->dev_private; 998 struct timespec before, now, wait_time={1,0}; 999 unsigned long timeout_jiffies; 1000 long end; 1001 bool wait_forever = true; 1002 int ret; 1003 1004 WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n"); 1005 1006 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno)) 1007 return 0; 1008 1009 trace_i915_gem_request_wait_begin(ring, seqno); 1010 1011 if (timeout != NULL) { 1012 wait_time = *timeout; 1013 wait_forever = false; 1014 } 1015 1016 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time); 1017 1018 if (WARN_ON(!ring->irq_get(ring))) 1019 return -ENODEV; 1020 1021 /* Record current time in case interrupted by signal, or wedged * */ 1022 getrawmonotonic(&before); 1023 1024 #define EXIT_COND \ 1025 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \ 1026 i915_reset_in_progress(&dev_priv->gpu_error) || \ 1027 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) 1028 do { 1029 if (interruptible) 1030 end = wait_event_interruptible_timeout(ring->irq_queue, 1031 EXIT_COND, 1032 timeout_jiffies); 1033 else 1034 end = wait_event_timeout(ring->irq_queue, EXIT_COND, 1035 timeout_jiffies); 1036 1037 /* We need to check whether any gpu reset happened in between 1038 * the caller grabbing the seqno and now ... */ 1039 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) 1040 end = -EAGAIN; 1041 1042 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely 1043 * gone. */ 1044 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1045 if (ret) 1046 end = ret; 1047 } while (end == 0 && wait_forever); 1048 1049 getrawmonotonic(&now); 1050 1051 ring->irq_put(ring); 1052 trace_i915_gem_request_wait_end(ring, seqno); 1053 #undef EXIT_COND 1054 1055 if (timeout) { 1056 struct timespec sleep_time = timespec_sub(now, before); 1057 *timeout = timespec_sub(*timeout, sleep_time); 1058 if (!timespec_valid(timeout)) /* i.e. negative time remains */ 1059 set_normalized_timespec(timeout, 0, 0); 1060 } 1061 1062 switch (end) { 1063 case -EIO: 1064 case -EAGAIN: /* Wedged */ 1065 case -ERESTARTSYS: /* Signal */ 1066 return (int)end; 1067 case 0: /* Timeout */ 1068 return -ETIME; 1069 default: /* Completed */ 1070 WARN_ON(end < 0); /* We're not aware of other errors */ 1071 return 0; 1072 } 1073 } 1074 1075 /** 1076 * Waits for a sequence number to be signaled, and cleans up the 1077 * request and object lists appropriately for that event. 1078 */ 1079 int 1080 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno) 1081 { 1082 struct drm_device *dev = ring->dev; 1083 struct drm_i915_private *dev_priv = dev->dev_private; 1084 bool interruptible = dev_priv->mm.interruptible; 1085 int ret; 1086 1087 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1088 BUG_ON(seqno == 0); 1089 1090 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1091 if (ret) 1092 return ret; 1093 1094 ret = i915_gem_check_olr(ring, seqno); 1095 if (ret) 1096 return ret; 1097 1098 return __wait_seqno(ring, seqno, 1099 atomic_read(&dev_priv->gpu_error.reset_counter), 1100 interruptible, NULL); 1101 } 1102 1103 static int 1104 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj, 1105 struct intel_ring_buffer *ring) 1106 { 1107 i915_gem_retire_requests_ring(ring); 1108 1109 /* Manually manage the write flush as we may have not yet 1110 * retired the buffer. 1111 * 1112 * Note that the last_write_seqno is always the earlier of 1113 * the two (read/write) seqno, so if we haved successfully waited, 1114 * we know we have passed the last write. 1115 */ 1116 obj->last_write_seqno = 0; 1117 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS; 1118 1119 return 0; 1120 } 1121 1122 /** 1123 * Ensures that all rendering to the object has completed and the object is 1124 * safe to unbind from the GTT or access from the CPU. 1125 */ 1126 static __must_check int 1127 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 1128 bool readonly) 1129 { 1130 struct intel_ring_buffer *ring = obj->ring; 1131 u32 seqno; 1132 int ret; 1133 1134 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1135 if (seqno == 0) 1136 return 0; 1137 1138 ret = i915_wait_seqno(ring, seqno); 1139 if (ret) 1140 return ret; 1141 1142 return i915_gem_object_wait_rendering__tail(obj, ring); 1143 } 1144 1145 /* A nonblocking variant of the above wait. This is a highly dangerous routine 1146 * as the object state may change during this call. 1147 */ 1148 static __must_check int 1149 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj, 1150 bool readonly) 1151 { 1152 struct drm_device *dev = obj->base.dev; 1153 struct drm_i915_private *dev_priv = dev->dev_private; 1154 struct intel_ring_buffer *ring = obj->ring; 1155 unsigned reset_counter; 1156 u32 seqno; 1157 int ret; 1158 1159 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1160 BUG_ON(!dev_priv->mm.interruptible); 1161 1162 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1163 if (seqno == 0) 1164 return 0; 1165 1166 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true); 1167 if (ret) 1168 return ret; 1169 1170 ret = i915_gem_check_olr(ring, seqno); 1171 if (ret) 1172 return ret; 1173 1174 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 1175 mutex_unlock(&dev->struct_mutex); 1176 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL); 1177 mutex_lock(&dev->struct_mutex); 1178 if (ret) 1179 return ret; 1180 1181 return i915_gem_object_wait_rendering__tail(obj, ring); 1182 } 1183 1184 /** 1185 * Called when user space prepares to use an object with the CPU, either 1186 * through the mmap ioctl's mapping or a GTT mapping. 1187 */ 1188 int 1189 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 1190 struct drm_file *file) 1191 { 1192 struct drm_i915_gem_set_domain *args = data; 1193 struct drm_i915_gem_object *obj; 1194 uint32_t read_domains = args->read_domains; 1195 uint32_t write_domain = args->write_domain; 1196 int ret; 1197 1198 /* Only handle setting domains to types used by the CPU. */ 1199 if (write_domain & I915_GEM_GPU_DOMAINS) 1200 return -EINVAL; 1201 1202 if (read_domains & I915_GEM_GPU_DOMAINS) 1203 return -EINVAL; 1204 1205 /* Having something in the write domain implies it's in the read 1206 * domain, and only that read domain. Enforce that in the request. 1207 */ 1208 if (write_domain != 0 && read_domains != write_domain) 1209 return -EINVAL; 1210 1211 ret = i915_mutex_lock_interruptible(dev); 1212 if (ret) 1213 return ret; 1214 1215 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1216 if (&obj->base == NULL) { 1217 ret = -ENOENT; 1218 goto unlock; 1219 } 1220 1221 /* Try to flush the object off the GPU without holding the lock. 1222 * We will repeat the flush holding the lock in the normal manner 1223 * to catch cases where we are gazumped. 1224 */ 1225 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain); 1226 if (ret) 1227 goto unref; 1228 1229 if (read_domains & I915_GEM_DOMAIN_GTT) { 1230 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); 1231 1232 /* Silently promote "you're not bound, there was nothing to do" 1233 * to success, since the client was just asking us to 1234 * make sure everything was done. 1235 */ 1236 if (ret == -EINVAL) 1237 ret = 0; 1238 } else { 1239 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); 1240 } 1241 1242 unref: 1243 drm_gem_object_unreference(&obj->base); 1244 unlock: 1245 mutex_unlock(&dev->struct_mutex); 1246 return ret; 1247 } 1248 1249 /** 1250 * Called when user space has done writes to this buffer 1251 */ 1252 int 1253 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1254 struct drm_file *file) 1255 { 1256 struct drm_i915_gem_sw_finish *args = data; 1257 struct drm_i915_gem_object *obj; 1258 int ret = 0; 1259 1260 ret = i915_mutex_lock_interruptible(dev); 1261 if (ret) 1262 return ret; 1263 1264 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1265 if (&obj->base == NULL) { 1266 ret = -ENOENT; 1267 goto unlock; 1268 } 1269 1270 /* Pinned buffers may be scanout, so flush the cache */ 1271 if (obj->pin_display) 1272 i915_gem_object_flush_cpu_write_domain(obj, true); 1273 1274 drm_gem_object_unreference(&obj->base); 1275 unlock: 1276 mutex_unlock(&dev->struct_mutex); 1277 return ret; 1278 } 1279 1280 /** 1281 * Maps the contents of an object, returning the address it is mapped 1282 * into. 1283 * 1284 * While the mapping holds a reference on the contents of the object, it doesn't 1285 * imply a ref on the object itself. 1286 */ 1287 int 1288 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1289 struct drm_file *file) 1290 { 1291 struct drm_i915_gem_mmap *args = data; 1292 struct drm_gem_object *obj; 1293 unsigned long addr; 1294 1295 obj = drm_gem_object_lookup(dev, file, args->handle); 1296 if (obj == NULL) 1297 return -ENOENT; 1298 1299 /* prime objects have no backing filp to GEM mmap 1300 * pages from. 1301 */ 1302 if (!obj->filp) { 1303 drm_gem_object_unreference_unlocked(obj); 1304 return -EINVAL; 1305 } 1306 1307 addr = vm_mmap(obj->filp, 0, args->size, 1308 PROT_READ | PROT_WRITE, MAP_SHARED, 1309 args->offset); 1310 drm_gem_object_unreference_unlocked(obj); 1311 if (IS_ERR((void *)addr)) 1312 return addr; 1313 1314 args->addr_ptr = (uint64_t) addr; 1315 1316 return 0; 1317 } 1318 1319 /** 1320 * i915_gem_fault - fault a page into the GTT 1321 * vma: VMA in question 1322 * vmf: fault info 1323 * 1324 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1325 * from userspace. The fault handler takes care of binding the object to 1326 * the GTT (if needed), allocating and programming a fence register (again, 1327 * only if needed based on whether the old reg is still valid or the object 1328 * is tiled) and inserting a new PTE into the faulting process. 1329 * 1330 * Note that the faulting process may involve evicting existing objects 1331 * from the GTT and/or fence registers to make room. So performance may 1332 * suffer if the GTT working set is large or there are few fence registers 1333 * left. 1334 */ 1335 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1336 { 1337 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data); 1338 struct drm_device *dev = obj->base.dev; 1339 drm_i915_private_t *dev_priv = dev->dev_private; 1340 pgoff_t page_offset; 1341 unsigned long pfn; 1342 int ret = 0; 1343 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 1344 1345 /* We don't use vmf->pgoff since that has the fake offset */ 1346 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >> 1347 PAGE_SHIFT; 1348 1349 ret = i915_mutex_lock_interruptible(dev); 1350 if (ret) 1351 goto out; 1352 1353 trace_i915_gem_object_fault(obj, page_offset, true, write); 1354 1355 /* Access to snoopable pages through the GTT is incoherent. */ 1356 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) { 1357 ret = -EINVAL; 1358 goto unlock; 1359 } 1360 1361 /* Now bind it into the GTT if needed */ 1362 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false); 1363 if (ret) 1364 goto unlock; 1365 1366 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1367 if (ret) 1368 goto unpin; 1369 1370 ret = i915_gem_object_get_fence(obj); 1371 if (ret) 1372 goto unpin; 1373 1374 obj->fault_mappable = true; 1375 1376 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj); 1377 pfn >>= PAGE_SHIFT; 1378 pfn += page_offset; 1379 1380 /* Finally, remap it using the new GTT offset */ 1381 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn); 1382 unpin: 1383 i915_gem_object_unpin(obj); 1384 unlock: 1385 mutex_unlock(&dev->struct_mutex); 1386 out: 1387 switch (ret) { 1388 case -EIO: 1389 /* If this -EIO is due to a gpu hang, give the reset code a 1390 * chance to clean up the mess. Otherwise return the proper 1391 * SIGBUS. */ 1392 if (i915_terminally_wedged(&dev_priv->gpu_error)) 1393 return VM_FAULT_SIGBUS; 1394 case -EAGAIN: 1395 /* 1396 * EAGAIN means the gpu is hung and we'll wait for the error 1397 * handler to reset everything when re-faulting in 1398 * i915_mutex_lock_interruptible. 1399 */ 1400 case 0: 1401 case -ERESTARTSYS: 1402 case -EINTR: 1403 case -EBUSY: 1404 /* 1405 * EBUSY is ok: this just means that another thread 1406 * already did the job. 1407 */ 1408 return VM_FAULT_NOPAGE; 1409 case -ENOMEM: 1410 return VM_FAULT_OOM; 1411 case -ENOSPC: 1412 return VM_FAULT_SIGBUS; 1413 default: 1414 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); 1415 return VM_FAULT_SIGBUS; 1416 } 1417 } 1418 1419 /** 1420 * i915_gem_release_mmap - remove physical page mappings 1421 * @obj: obj in question 1422 * 1423 * Preserve the reservation of the mmapping with the DRM core code, but 1424 * relinquish ownership of the pages back to the system. 1425 * 1426 * It is vital that we remove the page mapping if we have mapped a tiled 1427 * object through the GTT and then lose the fence register due to 1428 * resource pressure. Similarly if the object has been moved out of the 1429 * aperture, than pages mapped into userspace must be revoked. Removing the 1430 * mapping will then trigger a page fault on the next user access, allowing 1431 * fixup by i915_gem_fault(). 1432 */ 1433 void 1434 i915_gem_release_mmap(struct drm_i915_gem_object *obj) 1435 { 1436 if (!obj->fault_mappable) 1437 return; 1438 1439 drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping); 1440 obj->fault_mappable = false; 1441 } 1442 1443 uint32_t 1444 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode) 1445 { 1446 uint32_t gtt_size; 1447 1448 if (INTEL_INFO(dev)->gen >= 4 || 1449 tiling_mode == I915_TILING_NONE) 1450 return size; 1451 1452 /* Previous chips need a power-of-two fence region when tiling */ 1453 if (INTEL_INFO(dev)->gen == 3) 1454 gtt_size = 1024*1024; 1455 else 1456 gtt_size = 512*1024; 1457 1458 while (gtt_size < size) 1459 gtt_size <<= 1; 1460 1461 return gtt_size; 1462 } 1463 1464 /** 1465 * i915_gem_get_gtt_alignment - return required GTT alignment for an object 1466 * @obj: object to check 1467 * 1468 * Return the required GTT alignment for an object, taking into account 1469 * potential fence register mapping. 1470 */ 1471 uint32_t 1472 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size, 1473 int tiling_mode, bool fenced) 1474 { 1475 /* 1476 * Minimum alignment is 4k (GTT page size), but might be greater 1477 * if a fence register is needed for the object. 1478 */ 1479 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) || 1480 tiling_mode == I915_TILING_NONE) 1481 return 4096; 1482 1483 /* 1484 * Previous chips need to be aligned to the size of the smallest 1485 * fence register that can contain the object. 1486 */ 1487 return i915_gem_get_gtt_size(dev, size, tiling_mode); 1488 } 1489 1490 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) 1491 { 1492 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1493 int ret; 1494 1495 if (drm_vma_node_has_offset(&obj->base.vma_node)) 1496 return 0; 1497 1498 dev_priv->mm.shrinker_no_lock_stealing = true; 1499 1500 ret = drm_gem_create_mmap_offset(&obj->base); 1501 if (ret != -ENOSPC) 1502 goto out; 1503 1504 /* Badly fragmented mmap space? The only way we can recover 1505 * space is by destroying unwanted objects. We can't randomly release 1506 * mmap_offsets as userspace expects them to be persistent for the 1507 * lifetime of the objects. The closest we can is to release the 1508 * offsets on purgeable objects by truncating it and marking it purged, 1509 * which prevents userspace from ever using that object again. 1510 */ 1511 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT); 1512 ret = drm_gem_create_mmap_offset(&obj->base); 1513 if (ret != -ENOSPC) 1514 goto out; 1515 1516 i915_gem_shrink_all(dev_priv); 1517 ret = drm_gem_create_mmap_offset(&obj->base); 1518 out: 1519 dev_priv->mm.shrinker_no_lock_stealing = false; 1520 1521 return ret; 1522 } 1523 1524 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) 1525 { 1526 drm_gem_free_mmap_offset(&obj->base); 1527 } 1528 1529 int 1530 i915_gem_mmap_gtt(struct drm_file *file, 1531 struct drm_device *dev, 1532 uint32_t handle, 1533 uint64_t *offset) 1534 { 1535 struct drm_i915_private *dev_priv = dev->dev_private; 1536 struct drm_i915_gem_object *obj; 1537 int ret; 1538 1539 ret = i915_mutex_lock_interruptible(dev); 1540 if (ret) 1541 return ret; 1542 1543 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle)); 1544 if (&obj->base == NULL) { 1545 ret = -ENOENT; 1546 goto unlock; 1547 } 1548 1549 if (obj->base.size > dev_priv->gtt.mappable_end) { 1550 ret = -E2BIG; 1551 goto out; 1552 } 1553 1554 if (obj->madv != I915_MADV_WILLNEED) { 1555 DRM_ERROR("Attempting to mmap a purgeable buffer\n"); 1556 ret = -EINVAL; 1557 goto out; 1558 } 1559 1560 ret = i915_gem_object_create_mmap_offset(obj); 1561 if (ret) 1562 goto out; 1563 1564 *offset = drm_vma_node_offset_addr(&obj->base.vma_node); 1565 1566 out: 1567 drm_gem_object_unreference(&obj->base); 1568 unlock: 1569 mutex_unlock(&dev->struct_mutex); 1570 return ret; 1571 } 1572 1573 /** 1574 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 1575 * @dev: DRM device 1576 * @data: GTT mapping ioctl data 1577 * @file: GEM object info 1578 * 1579 * Simply returns the fake offset to userspace so it can mmap it. 1580 * The mmap call will end up in drm_gem_mmap(), which will set things 1581 * up so we can get faults in the handler above. 1582 * 1583 * The fault handler will take care of binding the object into the GTT 1584 * (since it may have been evicted to make room for something), allocating 1585 * a fence register, and mapping the appropriate aperture address into 1586 * userspace. 1587 */ 1588 int 1589 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 1590 struct drm_file *file) 1591 { 1592 struct drm_i915_gem_mmap_gtt *args = data; 1593 1594 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); 1595 } 1596 1597 /* Immediately discard the backing storage */ 1598 static void 1599 i915_gem_object_truncate(struct drm_i915_gem_object *obj) 1600 { 1601 struct inode *inode; 1602 1603 i915_gem_object_free_mmap_offset(obj); 1604 1605 if (obj->base.filp == NULL) 1606 return; 1607 1608 /* Our goal here is to return as much of the memory as 1609 * is possible back to the system as we are called from OOM. 1610 * To do this we must instruct the shmfs to drop all of its 1611 * backing pages, *now*. 1612 */ 1613 inode = file_inode(obj->base.filp); 1614 shmem_truncate_range(inode, 0, (loff_t)-1); 1615 1616 obj->madv = __I915_MADV_PURGED; 1617 } 1618 1619 static inline int 1620 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj) 1621 { 1622 return obj->madv == I915_MADV_DONTNEED; 1623 } 1624 1625 static void 1626 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj) 1627 { 1628 struct sg_page_iter sg_iter; 1629 int ret; 1630 1631 BUG_ON(obj->madv == __I915_MADV_PURGED); 1632 1633 ret = i915_gem_object_set_to_cpu_domain(obj, true); 1634 if (ret) { 1635 /* In the event of a disaster, abandon all caches and 1636 * hope for the best. 1637 */ 1638 WARN_ON(ret != -EIO); 1639 i915_gem_clflush_object(obj, true); 1640 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; 1641 } 1642 1643 if (i915_gem_object_needs_bit17_swizzle(obj)) 1644 i915_gem_object_save_bit_17_swizzle(obj); 1645 1646 if (obj->madv == I915_MADV_DONTNEED) 1647 obj->dirty = 0; 1648 1649 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) { 1650 struct page *page = sg_page_iter_page(&sg_iter); 1651 1652 if (obj->dirty) 1653 set_page_dirty(page); 1654 1655 if (obj->madv == I915_MADV_WILLNEED) 1656 mark_page_accessed(page); 1657 1658 page_cache_release(page); 1659 } 1660 obj->dirty = 0; 1661 1662 sg_free_table(obj->pages); 1663 kfree(obj->pages); 1664 } 1665 1666 int 1667 i915_gem_object_put_pages(struct drm_i915_gem_object *obj) 1668 { 1669 const struct drm_i915_gem_object_ops *ops = obj->ops; 1670 1671 if (obj->pages == NULL) 1672 return 0; 1673 1674 if (obj->pages_pin_count) 1675 return -EBUSY; 1676 1677 BUG_ON(i915_gem_obj_bound_any(obj)); 1678 1679 /* ->put_pages might need to allocate memory for the bit17 swizzle 1680 * array, hence protect them from being reaped by removing them from gtt 1681 * lists early. */ 1682 list_del(&obj->global_list); 1683 1684 ops->put_pages(obj); 1685 obj->pages = NULL; 1686 1687 if (i915_gem_object_is_purgeable(obj)) 1688 i915_gem_object_truncate(obj); 1689 1690 return 0; 1691 } 1692 1693 static long 1694 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target, 1695 bool purgeable_only) 1696 { 1697 struct list_head still_bound_list; 1698 struct drm_i915_gem_object *obj, *next; 1699 long count = 0; 1700 1701 list_for_each_entry_safe(obj, next, 1702 &dev_priv->mm.unbound_list, 1703 global_list) { 1704 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) && 1705 i915_gem_object_put_pages(obj) == 0) { 1706 count += obj->base.size >> PAGE_SHIFT; 1707 if (count >= target) 1708 return count; 1709 } 1710 } 1711 1712 /* 1713 * As we may completely rewrite the bound list whilst unbinding 1714 * (due to retiring requests) we have to strictly process only 1715 * one element of the list at the time, and recheck the list 1716 * on every iteration. 1717 */ 1718 INIT_LIST_HEAD(&still_bound_list); 1719 while (count < target && !list_empty(&dev_priv->mm.bound_list)) { 1720 struct i915_vma *vma, *v; 1721 1722 obj = list_first_entry(&dev_priv->mm.bound_list, 1723 typeof(*obj), global_list); 1724 list_move_tail(&obj->global_list, &still_bound_list); 1725 1726 if (!i915_gem_object_is_purgeable(obj) && purgeable_only) 1727 continue; 1728 1729 /* 1730 * Hold a reference whilst we unbind this object, as we may 1731 * end up waiting for and retiring requests. This might 1732 * release the final reference (held by the active list) 1733 * and result in the object being freed from under us. 1734 * in this object being freed. 1735 * 1736 * Note 1: Shrinking the bound list is special since only active 1737 * (and hence bound objects) can contain such limbo objects, so 1738 * we don't need special tricks for shrinking the unbound list. 1739 * The only other place where we have to be careful with active 1740 * objects suddenly disappearing due to retiring requests is the 1741 * eviction code. 1742 * 1743 * Note 2: Even though the bound list doesn't hold a reference 1744 * to the object we can safely grab one here: The final object 1745 * unreferencing and the bound_list are both protected by the 1746 * dev->struct_mutex and so we won't ever be able to observe an 1747 * object on the bound_list with a reference count equals 0. 1748 */ 1749 drm_gem_object_reference(&obj->base); 1750 1751 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link) 1752 if (i915_vma_unbind(vma)) 1753 break; 1754 1755 if (i915_gem_object_put_pages(obj) == 0) 1756 count += obj->base.size >> PAGE_SHIFT; 1757 1758 drm_gem_object_unreference(&obj->base); 1759 } 1760 list_splice(&still_bound_list, &dev_priv->mm.bound_list); 1761 1762 return count; 1763 } 1764 1765 static long 1766 i915_gem_purge(struct drm_i915_private *dev_priv, long target) 1767 { 1768 return __i915_gem_shrink(dev_priv, target, true); 1769 } 1770 1771 static long 1772 i915_gem_shrink_all(struct drm_i915_private *dev_priv) 1773 { 1774 struct drm_i915_gem_object *obj, *next; 1775 long freed = 0; 1776 1777 i915_gem_evict_everything(dev_priv->dev); 1778 1779 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, 1780 global_list) { 1781 if (obj->pages_pin_count == 0) 1782 freed += obj->base.size >> PAGE_SHIFT; 1783 i915_gem_object_put_pages(obj); 1784 } 1785 return freed; 1786 } 1787 1788 static int 1789 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) 1790 { 1791 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1792 int page_count, i; 1793 struct address_space *mapping; 1794 struct sg_table *st; 1795 struct scatterlist *sg; 1796 struct sg_page_iter sg_iter; 1797 struct page *page; 1798 unsigned long last_pfn = 0; /* suppress gcc warning */ 1799 gfp_t gfp; 1800 1801 /* Assert that the object is not currently in any GPU domain. As it 1802 * wasn't in the GTT, there shouldn't be any way it could have been in 1803 * a GPU cache 1804 */ 1805 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); 1806 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); 1807 1808 st = kmalloc(sizeof(*st), GFP_KERNEL); 1809 if (st == NULL) 1810 return -ENOMEM; 1811 1812 page_count = obj->base.size / PAGE_SIZE; 1813 if (sg_alloc_table(st, page_count, GFP_KERNEL)) { 1814 kfree(st); 1815 return -ENOMEM; 1816 } 1817 1818 /* Get the list of pages out of our struct file. They'll be pinned 1819 * at this point until we release them. 1820 * 1821 * Fail silently without starting the shrinker 1822 */ 1823 mapping = file_inode(obj->base.filp)->i_mapping; 1824 gfp = mapping_gfp_mask(mapping); 1825 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD; 1826 gfp &= ~(__GFP_IO | __GFP_WAIT); 1827 sg = st->sgl; 1828 st->nents = 0; 1829 for (i = 0; i < page_count; i++) { 1830 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1831 if (IS_ERR(page)) { 1832 i915_gem_purge(dev_priv, page_count); 1833 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1834 } 1835 if (IS_ERR(page)) { 1836 /* We've tried hard to allocate the memory by reaping 1837 * our own buffer, now let the real VM do its job and 1838 * go down in flames if truly OOM. 1839 */ 1840 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD); 1841 gfp |= __GFP_IO | __GFP_WAIT; 1842 1843 i915_gem_shrink_all(dev_priv); 1844 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1845 if (IS_ERR(page)) 1846 goto err_pages; 1847 1848 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD; 1849 gfp &= ~(__GFP_IO | __GFP_WAIT); 1850 } 1851 #ifdef CONFIG_SWIOTLB 1852 if (swiotlb_nr_tbl()) { 1853 st->nents++; 1854 sg_set_page(sg, page, PAGE_SIZE, 0); 1855 sg = sg_next(sg); 1856 continue; 1857 } 1858 #endif 1859 if (!i || page_to_pfn(page) != last_pfn + 1) { 1860 if (i) 1861 sg = sg_next(sg); 1862 st->nents++; 1863 sg_set_page(sg, page, PAGE_SIZE, 0); 1864 } else { 1865 sg->length += PAGE_SIZE; 1866 } 1867 last_pfn = page_to_pfn(page); 1868 } 1869 #ifdef CONFIG_SWIOTLB 1870 if (!swiotlb_nr_tbl()) 1871 #endif 1872 sg_mark_end(sg); 1873 obj->pages = st; 1874 1875 if (i915_gem_object_needs_bit17_swizzle(obj)) 1876 i915_gem_object_do_bit_17_swizzle(obj); 1877 1878 return 0; 1879 1880 err_pages: 1881 sg_mark_end(sg); 1882 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) 1883 page_cache_release(sg_page_iter_page(&sg_iter)); 1884 sg_free_table(st); 1885 kfree(st); 1886 return PTR_ERR(page); 1887 } 1888 1889 /* Ensure that the associated pages are gathered from the backing storage 1890 * and pinned into our object. i915_gem_object_get_pages() may be called 1891 * multiple times before they are released by a single call to 1892 * i915_gem_object_put_pages() - once the pages are no longer referenced 1893 * either as a result of memory pressure (reaping pages under the shrinker) 1894 * or as the object is itself released. 1895 */ 1896 int 1897 i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 1898 { 1899 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1900 const struct drm_i915_gem_object_ops *ops = obj->ops; 1901 int ret; 1902 1903 if (obj->pages) 1904 return 0; 1905 1906 if (obj->madv != I915_MADV_WILLNEED) { 1907 DRM_ERROR("Attempting to obtain a purgeable object\n"); 1908 return -EINVAL; 1909 } 1910 1911 BUG_ON(obj->pages_pin_count); 1912 1913 ret = ops->get_pages(obj); 1914 if (ret) 1915 return ret; 1916 1917 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list); 1918 return 0; 1919 } 1920 1921 void 1922 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj, 1923 struct intel_ring_buffer *ring) 1924 { 1925 struct drm_device *dev = obj->base.dev; 1926 struct drm_i915_private *dev_priv = dev->dev_private; 1927 u32 seqno = intel_ring_get_seqno(ring); 1928 1929 BUG_ON(ring == NULL); 1930 if (obj->ring != ring && obj->last_write_seqno) { 1931 /* Keep the seqno relative to the current ring */ 1932 obj->last_write_seqno = seqno; 1933 } 1934 obj->ring = ring; 1935 1936 /* Add a reference if we're newly entering the active list. */ 1937 if (!obj->active) { 1938 drm_gem_object_reference(&obj->base); 1939 obj->active = 1; 1940 } 1941 1942 list_move_tail(&obj->ring_list, &ring->active_list); 1943 1944 obj->last_read_seqno = seqno; 1945 1946 if (obj->fenced_gpu_access) { 1947 obj->last_fenced_seqno = seqno; 1948 1949 /* Bump MRU to take account of the delayed flush */ 1950 if (obj->fence_reg != I915_FENCE_REG_NONE) { 1951 struct drm_i915_fence_reg *reg; 1952 1953 reg = &dev_priv->fence_regs[obj->fence_reg]; 1954 list_move_tail(®->lru_list, 1955 &dev_priv->mm.fence_list); 1956 } 1957 } 1958 } 1959 1960 static void 1961 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj) 1962 { 1963 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1964 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base; 1965 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm); 1966 1967 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS); 1968 BUG_ON(!obj->active); 1969 1970 list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list); 1971 1972 list_del_init(&obj->ring_list); 1973 obj->ring = NULL; 1974 1975 obj->last_read_seqno = 0; 1976 obj->last_write_seqno = 0; 1977 obj->base.write_domain = 0; 1978 1979 obj->last_fenced_seqno = 0; 1980 obj->fenced_gpu_access = false; 1981 1982 obj->active = 0; 1983 drm_gem_object_unreference(&obj->base); 1984 1985 WARN_ON(i915_verify_lists(dev)); 1986 } 1987 1988 static int 1989 i915_gem_init_seqno(struct drm_device *dev, u32 seqno) 1990 { 1991 struct drm_i915_private *dev_priv = dev->dev_private; 1992 struct intel_ring_buffer *ring; 1993 int ret, i, j; 1994 1995 /* Carefully retire all requests without writing to the rings */ 1996 for_each_ring(ring, dev_priv, i) { 1997 ret = intel_ring_idle(ring); 1998 if (ret) 1999 return ret; 2000 } 2001 i915_gem_retire_requests(dev); 2002 2003 /* Finally reset hw state */ 2004 for_each_ring(ring, dev_priv, i) { 2005 intel_ring_init_seqno(ring, seqno); 2006 2007 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++) 2008 ring->sync_seqno[j] = 0; 2009 } 2010 2011 return 0; 2012 } 2013 2014 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno) 2015 { 2016 struct drm_i915_private *dev_priv = dev->dev_private; 2017 int ret; 2018 2019 if (seqno == 0) 2020 return -EINVAL; 2021 2022 /* HWS page needs to be set less than what we 2023 * will inject to ring 2024 */ 2025 ret = i915_gem_init_seqno(dev, seqno - 1); 2026 if (ret) 2027 return ret; 2028 2029 /* Carefully set the last_seqno value so that wrap 2030 * detection still works 2031 */ 2032 dev_priv->next_seqno = seqno; 2033 dev_priv->last_seqno = seqno - 1; 2034 if (dev_priv->last_seqno == 0) 2035 dev_priv->last_seqno--; 2036 2037 return 0; 2038 } 2039 2040 int 2041 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno) 2042 { 2043 struct drm_i915_private *dev_priv = dev->dev_private; 2044 2045 /* reserve 0 for non-seqno */ 2046 if (dev_priv->next_seqno == 0) { 2047 int ret = i915_gem_init_seqno(dev, 0); 2048 if (ret) 2049 return ret; 2050 2051 dev_priv->next_seqno = 1; 2052 } 2053 2054 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++; 2055 return 0; 2056 } 2057 2058 int __i915_add_request(struct intel_ring_buffer *ring, 2059 struct drm_file *file, 2060 struct drm_i915_gem_object *obj, 2061 u32 *out_seqno) 2062 { 2063 drm_i915_private_t *dev_priv = ring->dev->dev_private; 2064 struct drm_i915_gem_request *request; 2065 u32 request_ring_position, request_start; 2066 int was_empty; 2067 int ret; 2068 2069 request_start = intel_ring_get_tail(ring); 2070 /* 2071 * Emit any outstanding flushes - execbuf can fail to emit the flush 2072 * after having emitted the batchbuffer command. Hence we need to fix 2073 * things up similar to emitting the lazy request. The difference here 2074 * is that the flush _must_ happen before the next request, no matter 2075 * what. 2076 */ 2077 ret = intel_ring_flush_all_caches(ring); 2078 if (ret) 2079 return ret; 2080 2081 request = kmalloc(sizeof(*request), GFP_KERNEL); 2082 if (request == NULL) 2083 return -ENOMEM; 2084 2085 2086 /* Record the position of the start of the request so that 2087 * should we detect the updated seqno part-way through the 2088 * GPU processing the request, we never over-estimate the 2089 * position of the head. 2090 */ 2091 request_ring_position = intel_ring_get_tail(ring); 2092 2093 ret = ring->add_request(ring); 2094 if (ret) { 2095 kfree(request); 2096 return ret; 2097 } 2098 2099 request->seqno = intel_ring_get_seqno(ring); 2100 request->ring = ring; 2101 request->head = request_start; 2102 request->tail = request_ring_position; 2103 request->ctx = ring->last_context; 2104 request->batch_obj = obj; 2105 2106 /* Whilst this request exists, batch_obj will be on the 2107 * active_list, and so will hold the active reference. Only when this 2108 * request is retired will the the batch_obj be moved onto the 2109 * inactive_list and lose its active reference. Hence we do not need 2110 * to explicitly hold another reference here. 2111 */ 2112 2113 if (request->ctx) 2114 i915_gem_context_reference(request->ctx); 2115 2116 request->emitted_jiffies = jiffies; 2117 was_empty = list_empty(&ring->request_list); 2118 list_add_tail(&request->list, &ring->request_list); 2119 request->file_priv = NULL; 2120 2121 if (file) { 2122 struct drm_i915_file_private *file_priv = file->driver_priv; 2123 2124 spin_lock(&file_priv->mm.lock); 2125 request->file_priv = file_priv; 2126 list_add_tail(&request->client_list, 2127 &file_priv->mm.request_list); 2128 spin_unlock(&file_priv->mm.lock); 2129 } 2130 2131 trace_i915_gem_request_add(ring, request->seqno); 2132 ring->outstanding_lazy_request = 0; 2133 2134 if (!dev_priv->ums.mm_suspended) { 2135 i915_queue_hangcheck(ring->dev); 2136 2137 if (was_empty) { 2138 queue_delayed_work(dev_priv->wq, 2139 &dev_priv->mm.retire_work, 2140 round_jiffies_up_relative(HZ)); 2141 intel_mark_busy(dev_priv->dev); 2142 } 2143 } 2144 2145 if (out_seqno) 2146 *out_seqno = request->seqno; 2147 return 0; 2148 } 2149 2150 static inline void 2151 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request) 2152 { 2153 struct drm_i915_file_private *file_priv = request->file_priv; 2154 2155 if (!file_priv) 2156 return; 2157 2158 spin_lock(&file_priv->mm.lock); 2159 if (request->file_priv) { 2160 list_del(&request->client_list); 2161 request->file_priv = NULL; 2162 } 2163 spin_unlock(&file_priv->mm.lock); 2164 } 2165 2166 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj, 2167 struct i915_address_space *vm) 2168 { 2169 if (acthd >= i915_gem_obj_offset(obj, vm) && 2170 acthd < i915_gem_obj_offset(obj, vm) + obj->base.size) 2171 return true; 2172 2173 return false; 2174 } 2175 2176 static bool i915_head_inside_request(const u32 acthd_unmasked, 2177 const u32 request_start, 2178 const u32 request_end) 2179 { 2180 const u32 acthd = acthd_unmasked & HEAD_ADDR; 2181 2182 if (request_start < request_end) { 2183 if (acthd >= request_start && acthd < request_end) 2184 return true; 2185 } else if (request_start > request_end) { 2186 if (acthd >= request_start || acthd < request_end) 2187 return true; 2188 } 2189 2190 return false; 2191 } 2192 2193 static struct i915_address_space * 2194 request_to_vm(struct drm_i915_gem_request *request) 2195 { 2196 struct drm_i915_private *dev_priv = request->ring->dev->dev_private; 2197 struct i915_address_space *vm; 2198 2199 vm = &dev_priv->gtt.base; 2200 2201 return vm; 2202 } 2203 2204 static bool i915_request_guilty(struct drm_i915_gem_request *request, 2205 const u32 acthd, bool *inside) 2206 { 2207 /* There is a possibility that unmasked head address 2208 * pointing inside the ring, matches the batch_obj address range. 2209 * However this is extremely unlikely. 2210 */ 2211 if (request->batch_obj) { 2212 if (i915_head_inside_object(acthd, request->batch_obj, 2213 request_to_vm(request))) { 2214 *inside = true; 2215 return true; 2216 } 2217 } 2218 2219 if (i915_head_inside_request(acthd, request->head, request->tail)) { 2220 *inside = false; 2221 return true; 2222 } 2223 2224 return false; 2225 } 2226 2227 static void i915_set_reset_status(struct intel_ring_buffer *ring, 2228 struct drm_i915_gem_request *request, 2229 u32 acthd) 2230 { 2231 struct i915_ctx_hang_stats *hs = NULL; 2232 bool inside, guilty; 2233 unsigned long offset = 0; 2234 2235 /* Innocent until proven guilty */ 2236 guilty = false; 2237 2238 if (request->batch_obj) 2239 offset = i915_gem_obj_offset(request->batch_obj, 2240 request_to_vm(request)); 2241 2242 if (ring->hangcheck.action != HANGCHECK_WAIT && 2243 i915_request_guilty(request, acthd, &inside)) { 2244 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n", 2245 ring->name, 2246 inside ? "inside" : "flushing", 2247 offset, 2248 request->ctx ? request->ctx->id : 0, 2249 acthd); 2250 2251 guilty = true; 2252 } 2253 2254 /* If contexts are disabled or this is the default context, use 2255 * file_priv->reset_state 2256 */ 2257 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID) 2258 hs = &request->ctx->hang_stats; 2259 else if (request->file_priv) 2260 hs = &request->file_priv->hang_stats; 2261 2262 if (hs) { 2263 if (guilty) 2264 hs->batch_active++; 2265 else 2266 hs->batch_pending++; 2267 } 2268 } 2269 2270 static void i915_gem_free_request(struct drm_i915_gem_request *request) 2271 { 2272 list_del(&request->list); 2273 i915_gem_request_remove_from_client(request); 2274 2275 if (request->ctx) 2276 i915_gem_context_unreference(request->ctx); 2277 2278 kfree(request); 2279 } 2280 2281 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv, 2282 struct intel_ring_buffer *ring) 2283 { 2284 u32 completed_seqno; 2285 u32 acthd; 2286 2287 acthd = intel_ring_get_active_head(ring); 2288 completed_seqno = ring->get_seqno(ring, false); 2289 2290 while (!list_empty(&ring->request_list)) { 2291 struct drm_i915_gem_request *request; 2292 2293 request = list_first_entry(&ring->request_list, 2294 struct drm_i915_gem_request, 2295 list); 2296 2297 if (request->seqno > completed_seqno) 2298 i915_set_reset_status(ring, request, acthd); 2299 2300 i915_gem_free_request(request); 2301 } 2302 2303 while (!list_empty(&ring->active_list)) { 2304 struct drm_i915_gem_object *obj; 2305 2306 obj = list_first_entry(&ring->active_list, 2307 struct drm_i915_gem_object, 2308 ring_list); 2309 2310 i915_gem_object_move_to_inactive(obj); 2311 } 2312 } 2313 2314 void i915_gem_restore_fences(struct drm_device *dev) 2315 { 2316 struct drm_i915_private *dev_priv = dev->dev_private; 2317 int i; 2318 2319 for (i = 0; i < dev_priv->num_fence_regs; i++) { 2320 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; 2321 2322 /* 2323 * Commit delayed tiling changes if we have an object still 2324 * attached to the fence, otherwise just clear the fence. 2325 */ 2326 if (reg->obj) { 2327 i915_gem_object_update_fence(reg->obj, reg, 2328 reg->obj->tiling_mode); 2329 } else { 2330 i915_gem_write_fence(dev, i, NULL); 2331 } 2332 } 2333 } 2334 2335 void i915_gem_reset(struct drm_device *dev) 2336 { 2337 struct drm_i915_private *dev_priv = dev->dev_private; 2338 struct intel_ring_buffer *ring; 2339 int i; 2340 2341 for_each_ring(ring, dev_priv, i) 2342 i915_gem_reset_ring_lists(dev_priv, ring); 2343 2344 i915_gem_restore_fences(dev); 2345 } 2346 2347 /** 2348 * This function clears the request list as sequence numbers are passed. 2349 */ 2350 void 2351 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring) 2352 { 2353 uint32_t seqno; 2354 2355 if (list_empty(&ring->request_list)) 2356 return; 2357 2358 WARN_ON(i915_verify_lists(ring->dev)); 2359 2360 seqno = ring->get_seqno(ring, true); 2361 2362 while (!list_empty(&ring->request_list)) { 2363 struct drm_i915_gem_request *request; 2364 2365 request = list_first_entry(&ring->request_list, 2366 struct drm_i915_gem_request, 2367 list); 2368 2369 if (!i915_seqno_passed(seqno, request->seqno)) 2370 break; 2371 2372 trace_i915_gem_request_retire(ring, request->seqno); 2373 /* We know the GPU must have read the request to have 2374 * sent us the seqno + interrupt, so use the position 2375 * of tail of the request to update the last known position 2376 * of the GPU head. 2377 */ 2378 ring->last_retired_head = request->tail; 2379 2380 i915_gem_free_request(request); 2381 } 2382 2383 /* Move any buffers on the active list that are no longer referenced 2384 * by the ringbuffer to the flushing/inactive lists as appropriate. 2385 */ 2386 while (!list_empty(&ring->active_list)) { 2387 struct drm_i915_gem_object *obj; 2388 2389 obj = list_first_entry(&ring->active_list, 2390 struct drm_i915_gem_object, 2391 ring_list); 2392 2393 if (!i915_seqno_passed(seqno, obj->last_read_seqno)) 2394 break; 2395 2396 i915_gem_object_move_to_inactive(obj); 2397 } 2398 2399 if (unlikely(ring->trace_irq_seqno && 2400 i915_seqno_passed(seqno, ring->trace_irq_seqno))) { 2401 ring->irq_put(ring); 2402 ring->trace_irq_seqno = 0; 2403 } 2404 2405 WARN_ON(i915_verify_lists(ring->dev)); 2406 } 2407 2408 void 2409 i915_gem_retire_requests(struct drm_device *dev) 2410 { 2411 drm_i915_private_t *dev_priv = dev->dev_private; 2412 struct intel_ring_buffer *ring; 2413 int i; 2414 2415 for_each_ring(ring, dev_priv, i) 2416 i915_gem_retire_requests_ring(ring); 2417 } 2418 2419 static void 2420 i915_gem_retire_work_handler(struct work_struct *work) 2421 { 2422 drm_i915_private_t *dev_priv; 2423 struct drm_device *dev; 2424 struct intel_ring_buffer *ring; 2425 bool idle; 2426 int i; 2427 2428 dev_priv = container_of(work, drm_i915_private_t, 2429 mm.retire_work.work); 2430 dev = dev_priv->dev; 2431 2432 /* Come back later if the device is busy... */ 2433 if (!mutex_trylock(&dev->struct_mutex)) { 2434 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 2435 round_jiffies_up_relative(HZ)); 2436 return; 2437 } 2438 2439 i915_gem_retire_requests(dev); 2440 2441 /* Send a periodic flush down the ring so we don't hold onto GEM 2442 * objects indefinitely. 2443 */ 2444 idle = true; 2445 for_each_ring(ring, dev_priv, i) { 2446 if (ring->gpu_caches_dirty) 2447 i915_add_request(ring, NULL); 2448 2449 idle &= list_empty(&ring->request_list); 2450 } 2451 2452 if (!dev_priv->ums.mm_suspended && !idle) 2453 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 2454 round_jiffies_up_relative(HZ)); 2455 if (idle) 2456 intel_mark_idle(dev); 2457 2458 mutex_unlock(&dev->struct_mutex); 2459 } 2460 2461 /** 2462 * Ensures that an object will eventually get non-busy by flushing any required 2463 * write domains, emitting any outstanding lazy request and retiring and 2464 * completed requests. 2465 */ 2466 static int 2467 i915_gem_object_flush_active(struct drm_i915_gem_object *obj) 2468 { 2469 int ret; 2470 2471 if (obj->active) { 2472 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno); 2473 if (ret) 2474 return ret; 2475 2476 i915_gem_retire_requests_ring(obj->ring); 2477 } 2478 2479 return 0; 2480 } 2481 2482 /** 2483 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT 2484 * @DRM_IOCTL_ARGS: standard ioctl arguments 2485 * 2486 * Returns 0 if successful, else an error is returned with the remaining time in 2487 * the timeout parameter. 2488 * -ETIME: object is still busy after timeout 2489 * -ERESTARTSYS: signal interrupted the wait 2490 * -ENONENT: object doesn't exist 2491 * Also possible, but rare: 2492 * -EAGAIN: GPU wedged 2493 * -ENOMEM: damn 2494 * -ENODEV: Internal IRQ fail 2495 * -E?: The add request failed 2496 * 2497 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any 2498 * non-zero timeout parameter the wait ioctl will wait for the given number of 2499 * nanoseconds on an object becoming unbusy. Since the wait itself does so 2500 * without holding struct_mutex the object may become re-busied before this 2501 * function completes. A similar but shorter * race condition exists in the busy 2502 * ioctl 2503 */ 2504 int 2505 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 2506 { 2507 drm_i915_private_t *dev_priv = dev->dev_private; 2508 struct drm_i915_gem_wait *args = data; 2509 struct drm_i915_gem_object *obj; 2510 struct intel_ring_buffer *ring = NULL; 2511 struct timespec timeout_stack, *timeout = NULL; 2512 unsigned reset_counter; 2513 u32 seqno = 0; 2514 int ret = 0; 2515 2516 if (args->timeout_ns >= 0) { 2517 timeout_stack = ns_to_timespec(args->timeout_ns); 2518 timeout = &timeout_stack; 2519 } 2520 2521 ret = i915_mutex_lock_interruptible(dev); 2522 if (ret) 2523 return ret; 2524 2525 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle)); 2526 if (&obj->base == NULL) { 2527 mutex_unlock(&dev->struct_mutex); 2528 return -ENOENT; 2529 } 2530 2531 /* Need to make sure the object gets inactive eventually. */ 2532 ret = i915_gem_object_flush_active(obj); 2533 if (ret) 2534 goto out; 2535 2536 if (obj->active) { 2537 seqno = obj->last_read_seqno; 2538 ring = obj->ring; 2539 } 2540 2541 if (seqno == 0) 2542 goto out; 2543 2544 /* Do this after OLR check to make sure we make forward progress polling 2545 * on this IOCTL with a 0 timeout (like busy ioctl) 2546 */ 2547 if (!args->timeout_ns) { 2548 ret = -ETIME; 2549 goto out; 2550 } 2551 2552 drm_gem_object_unreference(&obj->base); 2553 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 2554 mutex_unlock(&dev->struct_mutex); 2555 2556 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout); 2557 if (timeout) 2558 args->timeout_ns = timespec_to_ns(timeout); 2559 return ret; 2560 2561 out: 2562 drm_gem_object_unreference(&obj->base); 2563 mutex_unlock(&dev->struct_mutex); 2564 return ret; 2565 } 2566 2567 /** 2568 * i915_gem_object_sync - sync an object to a ring. 2569 * 2570 * @obj: object which may be in use on another ring. 2571 * @to: ring we wish to use the object on. May be NULL. 2572 * 2573 * This code is meant to abstract object synchronization with the GPU. 2574 * Calling with NULL implies synchronizing the object with the CPU 2575 * rather than a particular GPU ring. 2576 * 2577 * Returns 0 if successful, else propagates up the lower layer error. 2578 */ 2579 int 2580 i915_gem_object_sync(struct drm_i915_gem_object *obj, 2581 struct intel_ring_buffer *to) 2582 { 2583 struct intel_ring_buffer *from = obj->ring; 2584 u32 seqno; 2585 int ret, idx; 2586 2587 if (from == NULL || to == from) 2588 return 0; 2589 2590 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev)) 2591 return i915_gem_object_wait_rendering(obj, false); 2592 2593 idx = intel_ring_sync_index(from, to); 2594 2595 seqno = obj->last_read_seqno; 2596 if (seqno <= from->sync_seqno[idx]) 2597 return 0; 2598 2599 ret = i915_gem_check_olr(obj->ring, seqno); 2600 if (ret) 2601 return ret; 2602 2603 ret = to->sync_to(to, from, seqno); 2604 if (!ret) 2605 /* We use last_read_seqno because sync_to() 2606 * might have just caused seqno wrap under 2607 * the radar. 2608 */ 2609 from->sync_seqno[idx] = obj->last_read_seqno; 2610 2611 return ret; 2612 } 2613 2614 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj) 2615 { 2616 u32 old_write_domain, old_read_domains; 2617 2618 /* Force a pagefault for domain tracking on next user access */ 2619 i915_gem_release_mmap(obj); 2620 2621 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 2622 return; 2623 2624 /* Wait for any direct GTT access to complete */ 2625 mb(); 2626 2627 old_read_domains = obj->base.read_domains; 2628 old_write_domain = obj->base.write_domain; 2629 2630 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT; 2631 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT; 2632 2633 trace_i915_gem_object_change_domain(obj, 2634 old_read_domains, 2635 old_write_domain); 2636 } 2637 2638 int i915_vma_unbind(struct i915_vma *vma) 2639 { 2640 struct drm_i915_gem_object *obj = vma->obj; 2641 drm_i915_private_t *dev_priv = obj->base.dev->dev_private; 2642 int ret; 2643 2644 if (list_empty(&vma->vma_link)) 2645 return 0; 2646 2647 if (!drm_mm_node_allocated(&vma->node)) 2648 goto destroy; 2649 2650 if (obj->pin_count) 2651 return -EBUSY; 2652 2653 BUG_ON(obj->pages == NULL); 2654 2655 ret = i915_gem_object_finish_gpu(obj); 2656 if (ret) 2657 return ret; 2658 /* Continue on if we fail due to EIO, the GPU is hung so we 2659 * should be safe and we need to cleanup or else we might 2660 * cause memory corruption through use-after-free. 2661 */ 2662 2663 i915_gem_object_finish_gtt(obj); 2664 2665 /* release the fence reg _after_ flushing */ 2666 ret = i915_gem_object_put_fence(obj); 2667 if (ret) 2668 return ret; 2669 2670 trace_i915_vma_unbind(vma); 2671 2672 if (obj->has_global_gtt_mapping) 2673 i915_gem_gtt_unbind_object(obj); 2674 if (obj->has_aliasing_ppgtt_mapping) { 2675 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj); 2676 obj->has_aliasing_ppgtt_mapping = 0; 2677 } 2678 i915_gem_gtt_finish_object(obj); 2679 i915_gem_object_unpin_pages(obj); 2680 2681 list_del(&vma->mm_list); 2682 /* Avoid an unnecessary call to unbind on rebind. */ 2683 if (i915_is_ggtt(vma->vm)) 2684 obj->map_and_fenceable = true; 2685 2686 drm_mm_remove_node(&vma->node); 2687 2688 destroy: 2689 i915_gem_vma_destroy(vma); 2690 2691 /* Since the unbound list is global, only move to that list if 2692 * no more VMAs exist. 2693 * NB: Until we have real VMAs there will only ever be one */ 2694 WARN_ON(!list_empty(&obj->vma_list)); 2695 if (list_empty(&obj->vma_list)) 2696 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list); 2697 2698 return 0; 2699 } 2700 2701 /** 2702 * Unbinds an object from the global GTT aperture. 2703 */ 2704 int 2705 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj) 2706 { 2707 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2708 struct i915_address_space *ggtt = &dev_priv->gtt.base; 2709 2710 if (!i915_gem_obj_ggtt_bound(obj)) 2711 return 0; 2712 2713 if (obj->pin_count) 2714 return -EBUSY; 2715 2716 BUG_ON(obj->pages == NULL); 2717 2718 return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt)); 2719 } 2720 2721 int i915_gpu_idle(struct drm_device *dev) 2722 { 2723 drm_i915_private_t *dev_priv = dev->dev_private; 2724 struct intel_ring_buffer *ring; 2725 int ret, i; 2726 2727 /* Flush everything onto the inactive list. */ 2728 for_each_ring(ring, dev_priv, i) { 2729 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID); 2730 if (ret) 2731 return ret; 2732 2733 ret = intel_ring_idle(ring); 2734 if (ret) 2735 return ret; 2736 } 2737 2738 return 0; 2739 } 2740 2741 static void i965_write_fence_reg(struct drm_device *dev, int reg, 2742 struct drm_i915_gem_object *obj) 2743 { 2744 drm_i915_private_t *dev_priv = dev->dev_private; 2745 int fence_reg; 2746 int fence_pitch_shift; 2747 2748 if (INTEL_INFO(dev)->gen >= 6) { 2749 fence_reg = FENCE_REG_SANDYBRIDGE_0; 2750 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT; 2751 } else { 2752 fence_reg = FENCE_REG_965_0; 2753 fence_pitch_shift = I965_FENCE_PITCH_SHIFT; 2754 } 2755 2756 fence_reg += reg * 8; 2757 2758 /* To w/a incoherency with non-atomic 64-bit register updates, 2759 * we split the 64-bit update into two 32-bit writes. In order 2760 * for a partial fence not to be evaluated between writes, we 2761 * precede the update with write to turn off the fence register, 2762 * and only enable the fence as the last step. 2763 * 2764 * For extra levels of paranoia, we make sure each step lands 2765 * before applying the next step. 2766 */ 2767 I915_WRITE(fence_reg, 0); 2768 POSTING_READ(fence_reg); 2769 2770 if (obj) { 2771 u32 size = i915_gem_obj_ggtt_size(obj); 2772 uint64_t val; 2773 2774 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) & 2775 0xfffff000) << 32; 2776 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000; 2777 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift; 2778 if (obj->tiling_mode == I915_TILING_Y) 2779 val |= 1 << I965_FENCE_TILING_Y_SHIFT; 2780 val |= I965_FENCE_REG_VALID; 2781 2782 I915_WRITE(fence_reg + 4, val >> 32); 2783 POSTING_READ(fence_reg + 4); 2784 2785 I915_WRITE(fence_reg + 0, val); 2786 POSTING_READ(fence_reg); 2787 } else { 2788 I915_WRITE(fence_reg + 4, 0); 2789 POSTING_READ(fence_reg + 4); 2790 } 2791 } 2792 2793 static void i915_write_fence_reg(struct drm_device *dev, int reg, 2794 struct drm_i915_gem_object *obj) 2795 { 2796 drm_i915_private_t *dev_priv = dev->dev_private; 2797 u32 val; 2798 2799 if (obj) { 2800 u32 size = i915_gem_obj_ggtt_size(obj); 2801 int pitch_val; 2802 int tile_width; 2803 2804 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) || 2805 (size & -size) != size || 2806 (i915_gem_obj_ggtt_offset(obj) & (size - 1)), 2807 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n", 2808 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size); 2809 2810 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)) 2811 tile_width = 128; 2812 else 2813 tile_width = 512; 2814 2815 /* Note: pitch better be a power of two tile widths */ 2816 pitch_val = obj->stride / tile_width; 2817 pitch_val = ffs(pitch_val) - 1; 2818 2819 val = i915_gem_obj_ggtt_offset(obj); 2820 if (obj->tiling_mode == I915_TILING_Y) 2821 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 2822 val |= I915_FENCE_SIZE_BITS(size); 2823 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 2824 val |= I830_FENCE_REG_VALID; 2825 } else 2826 val = 0; 2827 2828 if (reg < 8) 2829 reg = FENCE_REG_830_0 + reg * 4; 2830 else 2831 reg = FENCE_REG_945_8 + (reg - 8) * 4; 2832 2833 I915_WRITE(reg, val); 2834 POSTING_READ(reg); 2835 } 2836 2837 static void i830_write_fence_reg(struct drm_device *dev, int reg, 2838 struct drm_i915_gem_object *obj) 2839 { 2840 drm_i915_private_t *dev_priv = dev->dev_private; 2841 uint32_t val; 2842 2843 if (obj) { 2844 u32 size = i915_gem_obj_ggtt_size(obj); 2845 uint32_t pitch_val; 2846 2847 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) || 2848 (size & -size) != size || 2849 (i915_gem_obj_ggtt_offset(obj) & (size - 1)), 2850 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n", 2851 i915_gem_obj_ggtt_offset(obj), size); 2852 2853 pitch_val = obj->stride / 128; 2854 pitch_val = ffs(pitch_val) - 1; 2855 2856 val = i915_gem_obj_ggtt_offset(obj); 2857 if (obj->tiling_mode == I915_TILING_Y) 2858 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 2859 val |= I830_FENCE_SIZE_BITS(size); 2860 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 2861 val |= I830_FENCE_REG_VALID; 2862 } else 2863 val = 0; 2864 2865 I915_WRITE(FENCE_REG_830_0 + reg * 4, val); 2866 POSTING_READ(FENCE_REG_830_0 + reg * 4); 2867 } 2868 2869 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj) 2870 { 2871 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT; 2872 } 2873 2874 static void i915_gem_write_fence(struct drm_device *dev, int reg, 2875 struct drm_i915_gem_object *obj) 2876 { 2877 struct drm_i915_private *dev_priv = dev->dev_private; 2878 2879 /* Ensure that all CPU reads are completed before installing a fence 2880 * and all writes before removing the fence. 2881 */ 2882 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj)) 2883 mb(); 2884 2885 WARN(obj && (!obj->stride || !obj->tiling_mode), 2886 "bogus fence setup with stride: 0x%x, tiling mode: %i\n", 2887 obj->stride, obj->tiling_mode); 2888 2889 switch (INTEL_INFO(dev)->gen) { 2890 case 7: 2891 case 6: 2892 case 5: 2893 case 4: i965_write_fence_reg(dev, reg, obj); break; 2894 case 3: i915_write_fence_reg(dev, reg, obj); break; 2895 case 2: i830_write_fence_reg(dev, reg, obj); break; 2896 default: BUG(); 2897 } 2898 2899 /* And similarly be paranoid that no direct access to this region 2900 * is reordered to before the fence is installed. 2901 */ 2902 if (i915_gem_object_needs_mb(obj)) 2903 mb(); 2904 } 2905 2906 static inline int fence_number(struct drm_i915_private *dev_priv, 2907 struct drm_i915_fence_reg *fence) 2908 { 2909 return fence - dev_priv->fence_regs; 2910 } 2911 2912 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 2913 struct drm_i915_fence_reg *fence, 2914 bool enable) 2915 { 2916 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2917 int reg = fence_number(dev_priv, fence); 2918 2919 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL); 2920 2921 if (enable) { 2922 obj->fence_reg = reg; 2923 fence->obj = obj; 2924 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list); 2925 } else { 2926 obj->fence_reg = I915_FENCE_REG_NONE; 2927 fence->obj = NULL; 2928 list_del_init(&fence->lru_list); 2929 } 2930 obj->fence_dirty = false; 2931 } 2932 2933 static int 2934 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj) 2935 { 2936 if (obj->last_fenced_seqno) { 2937 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno); 2938 if (ret) 2939 return ret; 2940 2941 obj->last_fenced_seqno = 0; 2942 } 2943 2944 obj->fenced_gpu_access = false; 2945 return 0; 2946 } 2947 2948 int 2949 i915_gem_object_put_fence(struct drm_i915_gem_object *obj) 2950 { 2951 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2952 struct drm_i915_fence_reg *fence; 2953 int ret; 2954 2955 ret = i915_gem_object_wait_fence(obj); 2956 if (ret) 2957 return ret; 2958 2959 if (obj->fence_reg == I915_FENCE_REG_NONE) 2960 return 0; 2961 2962 fence = &dev_priv->fence_regs[obj->fence_reg]; 2963 2964 i915_gem_object_fence_lost(obj); 2965 i915_gem_object_update_fence(obj, fence, false); 2966 2967 return 0; 2968 } 2969 2970 static struct drm_i915_fence_reg * 2971 i915_find_fence_reg(struct drm_device *dev) 2972 { 2973 struct drm_i915_private *dev_priv = dev->dev_private; 2974 struct drm_i915_fence_reg *reg, *avail; 2975 int i; 2976 2977 /* First try to find a free reg */ 2978 avail = NULL; 2979 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) { 2980 reg = &dev_priv->fence_regs[i]; 2981 if (!reg->obj) 2982 return reg; 2983 2984 if (!reg->pin_count) 2985 avail = reg; 2986 } 2987 2988 if (avail == NULL) 2989 return NULL; 2990 2991 /* None available, try to steal one or wait for a user to finish */ 2992 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) { 2993 if (reg->pin_count) 2994 continue; 2995 2996 return reg; 2997 } 2998 2999 return NULL; 3000 } 3001 3002 /** 3003 * i915_gem_object_get_fence - set up fencing for an object 3004 * @obj: object to map through a fence reg 3005 * 3006 * When mapping objects through the GTT, userspace wants to be able to write 3007 * to them without having to worry about swizzling if the object is tiled. 3008 * This function walks the fence regs looking for a free one for @obj, 3009 * stealing one if it can't find any. 3010 * 3011 * It then sets up the reg based on the object's properties: address, pitch 3012 * and tiling format. 3013 * 3014 * For an untiled surface, this removes any existing fence. 3015 */ 3016 int 3017 i915_gem_object_get_fence(struct drm_i915_gem_object *obj) 3018 { 3019 struct drm_device *dev = obj->base.dev; 3020 struct drm_i915_private *dev_priv = dev->dev_private; 3021 bool enable = obj->tiling_mode != I915_TILING_NONE; 3022 struct drm_i915_fence_reg *reg; 3023 int ret; 3024 3025 /* Have we updated the tiling parameters upon the object and so 3026 * will need to serialise the write to the associated fence register? 3027 */ 3028 if (obj->fence_dirty) { 3029 ret = i915_gem_object_wait_fence(obj); 3030 if (ret) 3031 return ret; 3032 } 3033 3034 /* Just update our place in the LRU if our fence is getting reused. */ 3035 if (obj->fence_reg != I915_FENCE_REG_NONE) { 3036 reg = &dev_priv->fence_regs[obj->fence_reg]; 3037 if (!obj->fence_dirty) { 3038 list_move_tail(®->lru_list, 3039 &dev_priv->mm.fence_list); 3040 return 0; 3041 } 3042 } else if (enable) { 3043 reg = i915_find_fence_reg(dev); 3044 if (reg == NULL) 3045 return -EDEADLK; 3046 3047 if (reg->obj) { 3048 struct drm_i915_gem_object *old = reg->obj; 3049 3050 ret = i915_gem_object_wait_fence(old); 3051 if (ret) 3052 return ret; 3053 3054 i915_gem_object_fence_lost(old); 3055 } 3056 } else 3057 return 0; 3058 3059 i915_gem_object_update_fence(obj, reg, enable); 3060 3061 return 0; 3062 } 3063 3064 static bool i915_gem_valid_gtt_space(struct drm_device *dev, 3065 struct drm_mm_node *gtt_space, 3066 unsigned long cache_level) 3067 { 3068 struct drm_mm_node *other; 3069 3070 /* On non-LLC machines we have to be careful when putting differing 3071 * types of snoopable memory together to avoid the prefetcher 3072 * crossing memory domains and dying. 3073 */ 3074 if (HAS_LLC(dev)) 3075 return true; 3076 3077 if (!drm_mm_node_allocated(gtt_space)) 3078 return true; 3079 3080 if (list_empty(>t_space->node_list)) 3081 return true; 3082 3083 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list); 3084 if (other->allocated && !other->hole_follows && other->color != cache_level) 3085 return false; 3086 3087 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list); 3088 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level) 3089 return false; 3090 3091 return true; 3092 } 3093 3094 static void i915_gem_verify_gtt(struct drm_device *dev) 3095 { 3096 #if WATCH_GTT 3097 struct drm_i915_private *dev_priv = dev->dev_private; 3098 struct drm_i915_gem_object *obj; 3099 int err = 0; 3100 3101 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) { 3102 if (obj->gtt_space == NULL) { 3103 printk(KERN_ERR "object found on GTT list with no space reserved\n"); 3104 err++; 3105 continue; 3106 } 3107 3108 if (obj->cache_level != obj->gtt_space->color) { 3109 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n", 3110 i915_gem_obj_ggtt_offset(obj), 3111 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj), 3112 obj->cache_level, 3113 obj->gtt_space->color); 3114 err++; 3115 continue; 3116 } 3117 3118 if (!i915_gem_valid_gtt_space(dev, 3119 obj->gtt_space, 3120 obj->cache_level)) { 3121 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n", 3122 i915_gem_obj_ggtt_offset(obj), 3123 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj), 3124 obj->cache_level); 3125 err++; 3126 continue; 3127 } 3128 } 3129 3130 WARN_ON(err); 3131 #endif 3132 } 3133 3134 /** 3135 * Finds free space in the GTT aperture and binds the object there. 3136 */ 3137 static int 3138 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj, 3139 struct i915_address_space *vm, 3140 unsigned alignment, 3141 bool map_and_fenceable, 3142 bool nonblocking) 3143 { 3144 struct drm_device *dev = obj->base.dev; 3145 drm_i915_private_t *dev_priv = dev->dev_private; 3146 u32 size, fence_size, fence_alignment, unfenced_alignment; 3147 size_t gtt_max = 3148 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total; 3149 struct i915_vma *vma; 3150 int ret; 3151 3152 fence_size = i915_gem_get_gtt_size(dev, 3153 obj->base.size, 3154 obj->tiling_mode); 3155 fence_alignment = i915_gem_get_gtt_alignment(dev, 3156 obj->base.size, 3157 obj->tiling_mode, true); 3158 unfenced_alignment = 3159 i915_gem_get_gtt_alignment(dev, 3160 obj->base.size, 3161 obj->tiling_mode, false); 3162 3163 if (alignment == 0) 3164 alignment = map_and_fenceable ? fence_alignment : 3165 unfenced_alignment; 3166 if (map_and_fenceable && alignment & (fence_alignment - 1)) { 3167 DRM_ERROR("Invalid object alignment requested %u\n", alignment); 3168 return -EINVAL; 3169 } 3170 3171 size = map_and_fenceable ? fence_size : obj->base.size; 3172 3173 /* If the object is bigger than the entire aperture, reject it early 3174 * before evicting everything in a vain attempt to find space. 3175 */ 3176 if (obj->base.size > gtt_max) { 3177 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n", 3178 obj->base.size, 3179 map_and_fenceable ? "mappable" : "total", 3180 gtt_max); 3181 return -E2BIG; 3182 } 3183 3184 ret = i915_gem_object_get_pages(obj); 3185 if (ret) 3186 return ret; 3187 3188 i915_gem_object_pin_pages(obj); 3189 3190 BUG_ON(!i915_is_ggtt(vm)); 3191 3192 vma = i915_gem_obj_lookup_or_create_vma(obj, vm); 3193 if (IS_ERR(vma)) { 3194 ret = PTR_ERR(vma); 3195 goto err_unpin; 3196 } 3197 3198 /* For now we only ever use 1 vma per object */ 3199 WARN_ON(!list_is_singular(&obj->vma_list)); 3200 3201 search_free: 3202 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node, 3203 size, alignment, 3204 obj->cache_level, 0, gtt_max, 3205 DRM_MM_SEARCH_DEFAULT); 3206 if (ret) { 3207 ret = i915_gem_evict_something(dev, vm, size, alignment, 3208 obj->cache_level, 3209 map_and_fenceable, 3210 nonblocking); 3211 if (ret == 0) 3212 goto search_free; 3213 3214 goto err_free_vma; 3215 } 3216 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node, 3217 obj->cache_level))) { 3218 ret = -EINVAL; 3219 goto err_remove_node; 3220 } 3221 3222 ret = i915_gem_gtt_prepare_object(obj); 3223 if (ret) 3224 goto err_remove_node; 3225 3226 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list); 3227 list_add_tail(&vma->mm_list, &vm->inactive_list); 3228 3229 if (i915_is_ggtt(vm)) { 3230 bool mappable, fenceable; 3231 3232 fenceable = (vma->node.size == fence_size && 3233 (vma->node.start & (fence_alignment - 1)) == 0); 3234 3235 mappable = (vma->node.start + obj->base.size <= 3236 dev_priv->gtt.mappable_end); 3237 3238 obj->map_and_fenceable = mappable && fenceable; 3239 } 3240 3241 WARN_ON(map_and_fenceable && !obj->map_and_fenceable); 3242 3243 trace_i915_vma_bind(vma, map_and_fenceable); 3244 i915_gem_verify_gtt(dev); 3245 return 0; 3246 3247 err_remove_node: 3248 drm_mm_remove_node(&vma->node); 3249 err_free_vma: 3250 i915_gem_vma_destroy(vma); 3251 err_unpin: 3252 i915_gem_object_unpin_pages(obj); 3253 return ret; 3254 } 3255 3256 bool 3257 i915_gem_clflush_object(struct drm_i915_gem_object *obj, 3258 bool force) 3259 { 3260 /* If we don't have a page list set up, then we're not pinned 3261 * to GPU, and we can ignore the cache flush because it'll happen 3262 * again at bind time. 3263 */ 3264 if (obj->pages == NULL) 3265 return false; 3266 3267 /* 3268 * Stolen memory is always coherent with the GPU as it is explicitly 3269 * marked as wc by the system, or the system is cache-coherent. 3270 */ 3271 if (obj->stolen) 3272 return false; 3273 3274 /* If the GPU is snooping the contents of the CPU cache, 3275 * we do not need to manually clear the CPU cache lines. However, 3276 * the caches are only snooped when the render cache is 3277 * flushed/invalidated. As we always have to emit invalidations 3278 * and flushes when moving into and out of the RENDER domain, correct 3279 * snooping behaviour occurs naturally as the result of our domain 3280 * tracking. 3281 */ 3282 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) 3283 return false; 3284 3285 trace_i915_gem_object_clflush(obj); 3286 drm_clflush_sg(obj->pages); 3287 3288 return true; 3289 } 3290 3291 /** Flushes the GTT write domain for the object if it's dirty. */ 3292 static void 3293 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj) 3294 { 3295 uint32_t old_write_domain; 3296 3297 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT) 3298 return; 3299 3300 /* No actual flushing is required for the GTT write domain. Writes 3301 * to it immediately go to main memory as far as we know, so there's 3302 * no chipset flush. It also doesn't land in render cache. 3303 * 3304 * However, we do have to enforce the order so that all writes through 3305 * the GTT land before any writes to the device, such as updates to 3306 * the GATT itself. 3307 */ 3308 wmb(); 3309 3310 old_write_domain = obj->base.write_domain; 3311 obj->base.write_domain = 0; 3312 3313 trace_i915_gem_object_change_domain(obj, 3314 obj->base.read_domains, 3315 old_write_domain); 3316 } 3317 3318 /** Flushes the CPU write domain for the object if it's dirty. */ 3319 static void 3320 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj, 3321 bool force) 3322 { 3323 uint32_t old_write_domain; 3324 3325 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) 3326 return; 3327 3328 if (i915_gem_clflush_object(obj, force)) 3329 i915_gem_chipset_flush(obj->base.dev); 3330 3331 old_write_domain = obj->base.write_domain; 3332 obj->base.write_domain = 0; 3333 3334 trace_i915_gem_object_change_domain(obj, 3335 obj->base.read_domains, 3336 old_write_domain); 3337 } 3338 3339 /** 3340 * Moves a single object to the GTT read, and possibly write domain. 3341 * 3342 * This function returns when the move is complete, including waiting on 3343 * flushes to occur. 3344 */ 3345 int 3346 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) 3347 { 3348 drm_i915_private_t *dev_priv = obj->base.dev->dev_private; 3349 uint32_t old_write_domain, old_read_domains; 3350 int ret; 3351 3352 /* Not valid to be called on unbound objects. */ 3353 if (!i915_gem_obj_bound_any(obj)) 3354 return -EINVAL; 3355 3356 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) 3357 return 0; 3358 3359 ret = i915_gem_object_wait_rendering(obj, !write); 3360 if (ret) 3361 return ret; 3362 3363 i915_gem_object_flush_cpu_write_domain(obj, false); 3364 3365 /* Serialise direct access to this object with the barriers for 3366 * coherent writes from the GPU, by effectively invalidating the 3367 * GTT domain upon first access. 3368 */ 3369 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 3370 mb(); 3371 3372 old_write_domain = obj->base.write_domain; 3373 old_read_domains = obj->base.read_domains; 3374 3375 /* It should now be out of any other write domains, and we can update 3376 * the domain values for our changes. 3377 */ 3378 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 3379 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3380 if (write) { 3381 obj->base.read_domains = I915_GEM_DOMAIN_GTT; 3382 obj->base.write_domain = I915_GEM_DOMAIN_GTT; 3383 obj->dirty = 1; 3384 } 3385 3386 trace_i915_gem_object_change_domain(obj, 3387 old_read_domains, 3388 old_write_domain); 3389 3390 /* And bump the LRU for this access */ 3391 if (i915_gem_object_is_inactive(obj)) { 3392 struct i915_vma *vma = i915_gem_obj_to_vma(obj, 3393 &dev_priv->gtt.base); 3394 if (vma) 3395 list_move_tail(&vma->mm_list, 3396 &dev_priv->gtt.base.inactive_list); 3397 3398 } 3399 3400 return 0; 3401 } 3402 3403 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3404 enum i915_cache_level cache_level) 3405 { 3406 struct drm_device *dev = obj->base.dev; 3407 drm_i915_private_t *dev_priv = dev->dev_private; 3408 struct i915_vma *vma; 3409 int ret; 3410 3411 if (obj->cache_level == cache_level) 3412 return 0; 3413 3414 if (obj->pin_count) { 3415 DRM_DEBUG("can not change the cache level of pinned objects\n"); 3416 return -EBUSY; 3417 } 3418 3419 list_for_each_entry(vma, &obj->vma_list, vma_link) { 3420 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) { 3421 ret = i915_vma_unbind(vma); 3422 if (ret) 3423 return ret; 3424 3425 break; 3426 } 3427 } 3428 3429 if (i915_gem_obj_bound_any(obj)) { 3430 ret = i915_gem_object_finish_gpu(obj); 3431 if (ret) 3432 return ret; 3433 3434 i915_gem_object_finish_gtt(obj); 3435 3436 /* Before SandyBridge, you could not use tiling or fence 3437 * registers with snooped memory, so relinquish any fences 3438 * currently pointing to our region in the aperture. 3439 */ 3440 if (INTEL_INFO(dev)->gen < 6) { 3441 ret = i915_gem_object_put_fence(obj); 3442 if (ret) 3443 return ret; 3444 } 3445 3446 if (obj->has_global_gtt_mapping) 3447 i915_gem_gtt_bind_object(obj, cache_level); 3448 if (obj->has_aliasing_ppgtt_mapping) 3449 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt, 3450 obj, cache_level); 3451 } 3452 3453 list_for_each_entry(vma, &obj->vma_list, vma_link) 3454 vma->node.color = cache_level; 3455 obj->cache_level = cache_level; 3456 3457 if (cpu_write_needs_clflush(obj)) { 3458 u32 old_read_domains, old_write_domain; 3459 3460 /* If we're coming from LLC cached, then we haven't 3461 * actually been tracking whether the data is in the 3462 * CPU cache or not, since we only allow one bit set 3463 * in obj->write_domain and have been skipping the clflushes. 3464 * Just set it to the CPU cache for now. 3465 */ 3466 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU); 3467 3468 old_read_domains = obj->base.read_domains; 3469 old_write_domain = obj->base.write_domain; 3470 3471 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3472 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3473 3474 trace_i915_gem_object_change_domain(obj, 3475 old_read_domains, 3476 old_write_domain); 3477 } 3478 3479 i915_gem_verify_gtt(dev); 3480 return 0; 3481 } 3482 3483 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3484 struct drm_file *file) 3485 { 3486 struct drm_i915_gem_caching *args = data; 3487 struct drm_i915_gem_object *obj; 3488 int ret; 3489 3490 ret = i915_mutex_lock_interruptible(dev); 3491 if (ret) 3492 return ret; 3493 3494 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3495 if (&obj->base == NULL) { 3496 ret = -ENOENT; 3497 goto unlock; 3498 } 3499 3500 switch (obj->cache_level) { 3501 case I915_CACHE_LLC: 3502 case I915_CACHE_L3_LLC: 3503 args->caching = I915_CACHING_CACHED; 3504 break; 3505 3506 case I915_CACHE_WT: 3507 args->caching = I915_CACHING_DISPLAY; 3508 break; 3509 3510 default: 3511 args->caching = I915_CACHING_NONE; 3512 break; 3513 } 3514 3515 drm_gem_object_unreference(&obj->base); 3516 unlock: 3517 mutex_unlock(&dev->struct_mutex); 3518 return ret; 3519 } 3520 3521 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3522 struct drm_file *file) 3523 { 3524 struct drm_i915_gem_caching *args = data; 3525 struct drm_i915_gem_object *obj; 3526 enum i915_cache_level level; 3527 int ret; 3528 3529 switch (args->caching) { 3530 case I915_CACHING_NONE: 3531 level = I915_CACHE_NONE; 3532 break; 3533 case I915_CACHING_CACHED: 3534 level = I915_CACHE_LLC; 3535 break; 3536 case I915_CACHING_DISPLAY: 3537 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE; 3538 break; 3539 default: 3540 return -EINVAL; 3541 } 3542 3543 ret = i915_mutex_lock_interruptible(dev); 3544 if (ret) 3545 return ret; 3546 3547 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3548 if (&obj->base == NULL) { 3549 ret = -ENOENT; 3550 goto unlock; 3551 } 3552 3553 ret = i915_gem_object_set_cache_level(obj, level); 3554 3555 drm_gem_object_unreference(&obj->base); 3556 unlock: 3557 mutex_unlock(&dev->struct_mutex); 3558 return ret; 3559 } 3560 3561 static bool is_pin_display(struct drm_i915_gem_object *obj) 3562 { 3563 /* There are 3 sources that pin objects: 3564 * 1. The display engine (scanouts, sprites, cursors); 3565 * 2. Reservations for execbuffer; 3566 * 3. The user. 3567 * 3568 * We can ignore reservations as we hold the struct_mutex and 3569 * are only called outside of the reservation path. The user 3570 * can only increment pin_count once, and so if after 3571 * subtracting the potential reference by the user, any pin_count 3572 * remains, it must be due to another use by the display engine. 3573 */ 3574 return obj->pin_count - !!obj->user_pin_count; 3575 } 3576 3577 /* 3578 * Prepare buffer for display plane (scanout, cursors, etc). 3579 * Can be called from an uninterruptible phase (modesetting) and allows 3580 * any flushes to be pipelined (for pageflips). 3581 */ 3582 int 3583 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3584 u32 alignment, 3585 struct intel_ring_buffer *pipelined) 3586 { 3587 u32 old_read_domains, old_write_domain; 3588 int ret; 3589 3590 if (pipelined != obj->ring) { 3591 ret = i915_gem_object_sync(obj, pipelined); 3592 if (ret) 3593 return ret; 3594 } 3595 3596 /* Mark the pin_display early so that we account for the 3597 * display coherency whilst setting up the cache domains. 3598 */ 3599 obj->pin_display = true; 3600 3601 /* The display engine is not coherent with the LLC cache on gen6. As 3602 * a result, we make sure that the pinning that is about to occur is 3603 * done with uncached PTEs. This is lowest common denominator for all 3604 * chipsets. 3605 * 3606 * However for gen6+, we could do better by using the GFDT bit instead 3607 * of uncaching, which would allow us to flush all the LLC-cached data 3608 * with that bit in the PTE to main memory with just one PIPE_CONTROL. 3609 */ 3610 ret = i915_gem_object_set_cache_level(obj, 3611 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE); 3612 if (ret) 3613 goto err_unpin_display; 3614 3615 /* As the user may map the buffer once pinned in the display plane 3616 * (e.g. libkms for the bootup splash), we have to ensure that we 3617 * always use map_and_fenceable for all scanout buffers. 3618 */ 3619 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false); 3620 if (ret) 3621 goto err_unpin_display; 3622 3623 i915_gem_object_flush_cpu_write_domain(obj, true); 3624 3625 old_write_domain = obj->base.write_domain; 3626 old_read_domains = obj->base.read_domains; 3627 3628 /* It should now be out of any other write domains, and we can update 3629 * the domain values for our changes. 3630 */ 3631 obj->base.write_domain = 0; 3632 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3633 3634 trace_i915_gem_object_change_domain(obj, 3635 old_read_domains, 3636 old_write_domain); 3637 3638 return 0; 3639 3640 err_unpin_display: 3641 obj->pin_display = is_pin_display(obj); 3642 return ret; 3643 } 3644 3645 void 3646 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj) 3647 { 3648 i915_gem_object_unpin(obj); 3649 obj->pin_display = is_pin_display(obj); 3650 } 3651 3652 int 3653 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj) 3654 { 3655 int ret; 3656 3657 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0) 3658 return 0; 3659 3660 ret = i915_gem_object_wait_rendering(obj, false); 3661 if (ret) 3662 return ret; 3663 3664 /* Ensure that we invalidate the GPU's caches and TLBs. */ 3665 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; 3666 return 0; 3667 } 3668 3669 /** 3670 * Moves a single object to the CPU read, and possibly write domain. 3671 * 3672 * This function returns when the move is complete, including waiting on 3673 * flushes to occur. 3674 */ 3675 int 3676 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) 3677 { 3678 uint32_t old_write_domain, old_read_domains; 3679 int ret; 3680 3681 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) 3682 return 0; 3683 3684 ret = i915_gem_object_wait_rendering(obj, !write); 3685 if (ret) 3686 return ret; 3687 3688 i915_gem_object_flush_gtt_write_domain(obj); 3689 3690 old_write_domain = obj->base.write_domain; 3691 old_read_domains = obj->base.read_domains; 3692 3693 /* Flush the CPU cache if it's still invalid. */ 3694 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { 3695 i915_gem_clflush_object(obj, false); 3696 3697 obj->base.read_domains |= I915_GEM_DOMAIN_CPU; 3698 } 3699 3700 /* It should now be out of any other write domains, and we can update 3701 * the domain values for our changes. 3702 */ 3703 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); 3704 3705 /* If we're writing through the CPU, then the GPU read domains will 3706 * need to be invalidated at next use. 3707 */ 3708 if (write) { 3709 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3710 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3711 } 3712 3713 trace_i915_gem_object_change_domain(obj, 3714 old_read_domains, 3715 old_write_domain); 3716 3717 return 0; 3718 } 3719 3720 /* Throttle our rendering by waiting until the ring has completed our requests 3721 * emitted over 20 msec ago. 3722 * 3723 * Note that if we were to use the current jiffies each time around the loop, 3724 * we wouldn't escape the function with any frames outstanding if the time to 3725 * render a frame was over 20ms. 3726 * 3727 * This should get us reasonable parallelism between CPU and GPU but also 3728 * relatively low latency when blocking on a particular request to finish. 3729 */ 3730 static int 3731 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) 3732 { 3733 struct drm_i915_private *dev_priv = dev->dev_private; 3734 struct drm_i915_file_private *file_priv = file->driver_priv; 3735 unsigned long recent_enough = jiffies - msecs_to_jiffies(20); 3736 struct drm_i915_gem_request *request; 3737 struct intel_ring_buffer *ring = NULL; 3738 unsigned reset_counter; 3739 u32 seqno = 0; 3740 int ret; 3741 3742 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 3743 if (ret) 3744 return ret; 3745 3746 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false); 3747 if (ret) 3748 return ret; 3749 3750 spin_lock(&file_priv->mm.lock); 3751 list_for_each_entry(request, &file_priv->mm.request_list, client_list) { 3752 if (time_after_eq(request->emitted_jiffies, recent_enough)) 3753 break; 3754 3755 ring = request->ring; 3756 seqno = request->seqno; 3757 } 3758 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 3759 spin_unlock(&file_priv->mm.lock); 3760 3761 if (seqno == 0) 3762 return 0; 3763 3764 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL); 3765 if (ret == 0) 3766 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0); 3767 3768 return ret; 3769 } 3770 3771 int 3772 i915_gem_object_pin(struct drm_i915_gem_object *obj, 3773 struct i915_address_space *vm, 3774 uint32_t alignment, 3775 bool map_and_fenceable, 3776 bool nonblocking) 3777 { 3778 struct i915_vma *vma; 3779 int ret; 3780 3781 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT)) 3782 return -EBUSY; 3783 3784 WARN_ON(map_and_fenceable && !i915_is_ggtt(vm)); 3785 3786 vma = i915_gem_obj_to_vma(obj, vm); 3787 3788 if (vma) { 3789 if ((alignment && 3790 vma->node.start & (alignment - 1)) || 3791 (map_and_fenceable && !obj->map_and_fenceable)) { 3792 WARN(obj->pin_count, 3793 "bo is already pinned with incorrect alignment:" 3794 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d," 3795 " obj->map_and_fenceable=%d\n", 3796 i915_gem_obj_offset(obj, vm), alignment, 3797 map_and_fenceable, 3798 obj->map_and_fenceable); 3799 ret = i915_vma_unbind(vma); 3800 if (ret) 3801 return ret; 3802 } 3803 } 3804 3805 if (!i915_gem_obj_bound(obj, vm)) { 3806 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3807 3808 ret = i915_gem_object_bind_to_vm(obj, vm, alignment, 3809 map_and_fenceable, 3810 nonblocking); 3811 if (ret) 3812 return ret; 3813 3814 if (!dev_priv->mm.aliasing_ppgtt) 3815 i915_gem_gtt_bind_object(obj, obj->cache_level); 3816 } 3817 3818 if (!obj->has_global_gtt_mapping && map_and_fenceable) 3819 i915_gem_gtt_bind_object(obj, obj->cache_level); 3820 3821 obj->pin_count++; 3822 obj->pin_mappable |= map_and_fenceable; 3823 3824 return 0; 3825 } 3826 3827 void 3828 i915_gem_object_unpin(struct drm_i915_gem_object *obj) 3829 { 3830 BUG_ON(obj->pin_count == 0); 3831 BUG_ON(!i915_gem_obj_bound_any(obj)); 3832 3833 if (--obj->pin_count == 0) 3834 obj->pin_mappable = false; 3835 } 3836 3837 int 3838 i915_gem_pin_ioctl(struct drm_device *dev, void *data, 3839 struct drm_file *file) 3840 { 3841 struct drm_i915_gem_pin *args = data; 3842 struct drm_i915_gem_object *obj; 3843 int ret; 3844 3845 ret = i915_mutex_lock_interruptible(dev); 3846 if (ret) 3847 return ret; 3848 3849 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3850 if (&obj->base == NULL) { 3851 ret = -ENOENT; 3852 goto unlock; 3853 } 3854 3855 if (obj->madv != I915_MADV_WILLNEED) { 3856 DRM_ERROR("Attempting to pin a purgeable buffer\n"); 3857 ret = -EINVAL; 3858 goto out; 3859 } 3860 3861 if (obj->pin_filp != NULL && obj->pin_filp != file) { 3862 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n", 3863 args->handle); 3864 ret = -EINVAL; 3865 goto out; 3866 } 3867 3868 if (obj->user_pin_count == 0) { 3869 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false); 3870 if (ret) 3871 goto out; 3872 } 3873 3874 obj->user_pin_count++; 3875 obj->pin_filp = file; 3876 3877 args->offset = i915_gem_obj_ggtt_offset(obj); 3878 out: 3879 drm_gem_object_unreference(&obj->base); 3880 unlock: 3881 mutex_unlock(&dev->struct_mutex); 3882 return ret; 3883 } 3884 3885 int 3886 i915_gem_unpin_ioctl(struct drm_device *dev, void *data, 3887 struct drm_file *file) 3888 { 3889 struct drm_i915_gem_pin *args = data; 3890 struct drm_i915_gem_object *obj; 3891 int ret; 3892 3893 ret = i915_mutex_lock_interruptible(dev); 3894 if (ret) 3895 return ret; 3896 3897 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3898 if (&obj->base == NULL) { 3899 ret = -ENOENT; 3900 goto unlock; 3901 } 3902 3903 if (obj->pin_filp != file) { 3904 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n", 3905 args->handle); 3906 ret = -EINVAL; 3907 goto out; 3908 } 3909 obj->user_pin_count--; 3910 if (obj->user_pin_count == 0) { 3911 obj->pin_filp = NULL; 3912 i915_gem_object_unpin(obj); 3913 } 3914 3915 out: 3916 drm_gem_object_unreference(&obj->base); 3917 unlock: 3918 mutex_unlock(&dev->struct_mutex); 3919 return ret; 3920 } 3921 3922 int 3923 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 3924 struct drm_file *file) 3925 { 3926 struct drm_i915_gem_busy *args = data; 3927 struct drm_i915_gem_object *obj; 3928 int ret; 3929 3930 ret = i915_mutex_lock_interruptible(dev); 3931 if (ret) 3932 return ret; 3933 3934 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3935 if (&obj->base == NULL) { 3936 ret = -ENOENT; 3937 goto unlock; 3938 } 3939 3940 /* Count all active objects as busy, even if they are currently not used 3941 * by the gpu. Users of this interface expect objects to eventually 3942 * become non-busy without any further actions, therefore emit any 3943 * necessary flushes here. 3944 */ 3945 ret = i915_gem_object_flush_active(obj); 3946 3947 args->busy = obj->active; 3948 if (obj->ring) { 3949 BUILD_BUG_ON(I915_NUM_RINGS > 16); 3950 args->busy |= intel_ring_flag(obj->ring) << 16; 3951 } 3952 3953 drm_gem_object_unreference(&obj->base); 3954 unlock: 3955 mutex_unlock(&dev->struct_mutex); 3956 return ret; 3957 } 3958 3959 int 3960 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 3961 struct drm_file *file_priv) 3962 { 3963 return i915_gem_ring_throttle(dev, file_priv); 3964 } 3965 3966 int 3967 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 3968 struct drm_file *file_priv) 3969 { 3970 struct drm_i915_gem_madvise *args = data; 3971 struct drm_i915_gem_object *obj; 3972 int ret; 3973 3974 switch (args->madv) { 3975 case I915_MADV_DONTNEED: 3976 case I915_MADV_WILLNEED: 3977 break; 3978 default: 3979 return -EINVAL; 3980 } 3981 3982 ret = i915_mutex_lock_interruptible(dev); 3983 if (ret) 3984 return ret; 3985 3986 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle)); 3987 if (&obj->base == NULL) { 3988 ret = -ENOENT; 3989 goto unlock; 3990 } 3991 3992 if (obj->pin_count) { 3993 ret = -EINVAL; 3994 goto out; 3995 } 3996 3997 if (obj->madv != __I915_MADV_PURGED) 3998 obj->madv = args->madv; 3999 4000 /* if the object is no longer attached, discard its backing storage */ 4001 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL) 4002 i915_gem_object_truncate(obj); 4003 4004 args->retained = obj->madv != __I915_MADV_PURGED; 4005 4006 out: 4007 drm_gem_object_unreference(&obj->base); 4008 unlock: 4009 mutex_unlock(&dev->struct_mutex); 4010 return ret; 4011 } 4012 4013 void i915_gem_object_init(struct drm_i915_gem_object *obj, 4014 const struct drm_i915_gem_object_ops *ops) 4015 { 4016 INIT_LIST_HEAD(&obj->global_list); 4017 INIT_LIST_HEAD(&obj->ring_list); 4018 INIT_LIST_HEAD(&obj->exec_list); 4019 INIT_LIST_HEAD(&obj->obj_exec_link); 4020 INIT_LIST_HEAD(&obj->vma_list); 4021 4022 obj->ops = ops; 4023 4024 obj->fence_reg = I915_FENCE_REG_NONE; 4025 obj->madv = I915_MADV_WILLNEED; 4026 /* Avoid an unnecessary call to unbind on the first bind. */ 4027 obj->map_and_fenceable = true; 4028 4029 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size); 4030 } 4031 4032 static const struct drm_i915_gem_object_ops i915_gem_object_ops = { 4033 .get_pages = i915_gem_object_get_pages_gtt, 4034 .put_pages = i915_gem_object_put_pages_gtt, 4035 }; 4036 4037 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev, 4038 size_t size) 4039 { 4040 struct drm_i915_gem_object *obj; 4041 struct address_space *mapping; 4042 gfp_t mask; 4043 4044 obj = i915_gem_object_alloc(dev); 4045 if (obj == NULL) 4046 return NULL; 4047 4048 if (drm_gem_object_init(dev, &obj->base, size) != 0) { 4049 i915_gem_object_free(obj); 4050 return NULL; 4051 } 4052 4053 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 4054 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) { 4055 /* 965gm cannot relocate objects above 4GiB. */ 4056 mask &= ~__GFP_HIGHMEM; 4057 mask |= __GFP_DMA32; 4058 } 4059 4060 mapping = file_inode(obj->base.filp)->i_mapping; 4061 mapping_set_gfp_mask(mapping, mask); 4062 4063 i915_gem_object_init(obj, &i915_gem_object_ops); 4064 4065 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 4066 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 4067 4068 if (HAS_LLC(dev)) { 4069 /* On some devices, we can have the GPU use the LLC (the CPU 4070 * cache) for about a 10% performance improvement 4071 * compared to uncached. Graphics requests other than 4072 * display scanout are coherent with the CPU in 4073 * accessing this cache. This means in this mode we 4074 * don't need to clflush on the CPU side, and on the 4075 * GPU side we only need to flush internal caches to 4076 * get data visible to the CPU. 4077 * 4078 * However, we maintain the display planes as UC, and so 4079 * need to rebind when first used as such. 4080 */ 4081 obj->cache_level = I915_CACHE_LLC; 4082 } else 4083 obj->cache_level = I915_CACHE_NONE; 4084 4085 trace_i915_gem_object_create(obj); 4086 4087 return obj; 4088 } 4089 4090 int i915_gem_init_object(struct drm_gem_object *obj) 4091 { 4092 BUG(); 4093 4094 return 0; 4095 } 4096 4097 void i915_gem_free_object(struct drm_gem_object *gem_obj) 4098 { 4099 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 4100 struct drm_device *dev = obj->base.dev; 4101 drm_i915_private_t *dev_priv = dev->dev_private; 4102 struct i915_vma *vma, *next; 4103 4104 trace_i915_gem_object_destroy(obj); 4105 4106 if (obj->phys_obj) 4107 i915_gem_detach_phys_object(dev, obj); 4108 4109 obj->pin_count = 0; 4110 /* NB: 0 or 1 elements */ 4111 WARN_ON(!list_empty(&obj->vma_list) && 4112 !list_is_singular(&obj->vma_list)); 4113 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) { 4114 int ret = i915_vma_unbind(vma); 4115 if (WARN_ON(ret == -ERESTARTSYS)) { 4116 bool was_interruptible; 4117 4118 was_interruptible = dev_priv->mm.interruptible; 4119 dev_priv->mm.interruptible = false; 4120 4121 WARN_ON(i915_vma_unbind(vma)); 4122 4123 dev_priv->mm.interruptible = was_interruptible; 4124 } 4125 } 4126 4127 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up 4128 * before progressing. */ 4129 if (obj->stolen) 4130 i915_gem_object_unpin_pages(obj); 4131 4132 if (WARN_ON(obj->pages_pin_count)) 4133 obj->pages_pin_count = 0; 4134 i915_gem_object_put_pages(obj); 4135 i915_gem_object_free_mmap_offset(obj); 4136 i915_gem_object_release_stolen(obj); 4137 4138 BUG_ON(obj->pages); 4139 4140 if (obj->base.import_attach) 4141 drm_prime_gem_destroy(&obj->base, NULL); 4142 4143 drm_gem_object_release(&obj->base); 4144 i915_gem_info_remove_obj(dev_priv, obj->base.size); 4145 4146 kfree(obj->bit_17); 4147 i915_gem_object_free(obj); 4148 } 4149 4150 struct i915_vma *i915_gem_vma_create(struct drm_i915_gem_object *obj, 4151 struct i915_address_space *vm) 4152 { 4153 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL); 4154 if (vma == NULL) 4155 return ERR_PTR(-ENOMEM); 4156 4157 INIT_LIST_HEAD(&vma->vma_link); 4158 INIT_LIST_HEAD(&vma->mm_list); 4159 INIT_LIST_HEAD(&vma->exec_list); 4160 vma->vm = vm; 4161 vma->obj = obj; 4162 4163 /* Keep GGTT vmas first to make debug easier */ 4164 if (i915_is_ggtt(vm)) 4165 list_add(&vma->vma_link, &obj->vma_list); 4166 else 4167 list_add_tail(&vma->vma_link, &obj->vma_list); 4168 4169 return vma; 4170 } 4171 4172 void i915_gem_vma_destroy(struct i915_vma *vma) 4173 { 4174 WARN_ON(vma->node.allocated); 4175 list_del(&vma->vma_link); 4176 kfree(vma); 4177 } 4178 4179 int 4180 i915_gem_idle(struct drm_device *dev) 4181 { 4182 drm_i915_private_t *dev_priv = dev->dev_private; 4183 int ret; 4184 4185 if (dev_priv->ums.mm_suspended) { 4186 mutex_unlock(&dev->struct_mutex); 4187 return 0; 4188 } 4189 4190 ret = i915_gpu_idle(dev); 4191 if (ret) { 4192 mutex_unlock(&dev->struct_mutex); 4193 return ret; 4194 } 4195 i915_gem_retire_requests(dev); 4196 4197 /* Under UMS, be paranoid and evict. */ 4198 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4199 i915_gem_evict_everything(dev); 4200 4201 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer); 4202 4203 i915_kernel_lost_context(dev); 4204 i915_gem_cleanup_ringbuffer(dev); 4205 4206 /* Cancel the retire work handler, which should be idle now. */ 4207 cancel_delayed_work_sync(&dev_priv->mm.retire_work); 4208 4209 return 0; 4210 } 4211 4212 void i915_gem_l3_remap(struct drm_device *dev) 4213 { 4214 drm_i915_private_t *dev_priv = dev->dev_private; 4215 u32 misccpctl; 4216 int i; 4217 4218 if (!HAS_L3_GPU_CACHE(dev)) 4219 return; 4220 4221 if (!dev_priv->l3_parity.remap_info) 4222 return; 4223 4224 misccpctl = I915_READ(GEN7_MISCCPCTL); 4225 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); 4226 POSTING_READ(GEN7_MISCCPCTL); 4227 4228 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) { 4229 u32 remap = I915_READ(GEN7_L3LOG_BASE + i); 4230 if (remap && remap != dev_priv->l3_parity.remap_info[i/4]) 4231 DRM_DEBUG("0x%x was already programmed to %x\n", 4232 GEN7_L3LOG_BASE + i, remap); 4233 if (remap && !dev_priv->l3_parity.remap_info[i/4]) 4234 DRM_DEBUG_DRIVER("Clearing remapped register\n"); 4235 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]); 4236 } 4237 4238 /* Make sure all the writes land before disabling dop clock gating */ 4239 POSTING_READ(GEN7_L3LOG_BASE); 4240 4241 I915_WRITE(GEN7_MISCCPCTL, misccpctl); 4242 } 4243 4244 void i915_gem_init_swizzling(struct drm_device *dev) 4245 { 4246 drm_i915_private_t *dev_priv = dev->dev_private; 4247 4248 if (INTEL_INFO(dev)->gen < 5 || 4249 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 4250 return; 4251 4252 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | 4253 DISP_TILE_SURFACE_SWIZZLING); 4254 4255 if (IS_GEN5(dev)) 4256 return; 4257 4258 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); 4259 if (IS_GEN6(dev)) 4260 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 4261 else if (IS_GEN7(dev)) 4262 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 4263 else 4264 BUG(); 4265 } 4266 4267 static bool 4268 intel_enable_blt(struct drm_device *dev) 4269 { 4270 if (!HAS_BLT(dev)) 4271 return false; 4272 4273 /* The blitter was dysfunctional on early prototypes */ 4274 if (IS_GEN6(dev) && dev->pdev->revision < 8) { 4275 DRM_INFO("BLT not supported on this pre-production hardware;" 4276 " graphics performance will be degraded.\n"); 4277 return false; 4278 } 4279 4280 return true; 4281 } 4282 4283 static int i915_gem_init_rings(struct drm_device *dev) 4284 { 4285 struct drm_i915_private *dev_priv = dev->dev_private; 4286 int ret; 4287 4288 ret = intel_init_render_ring_buffer(dev); 4289 if (ret) 4290 return ret; 4291 4292 if (HAS_BSD(dev)) { 4293 ret = intel_init_bsd_ring_buffer(dev); 4294 if (ret) 4295 goto cleanup_render_ring; 4296 } 4297 4298 if (intel_enable_blt(dev)) { 4299 ret = intel_init_blt_ring_buffer(dev); 4300 if (ret) 4301 goto cleanup_bsd_ring; 4302 } 4303 4304 if (HAS_VEBOX(dev)) { 4305 ret = intel_init_vebox_ring_buffer(dev); 4306 if (ret) 4307 goto cleanup_blt_ring; 4308 } 4309 4310 4311 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000)); 4312 if (ret) 4313 goto cleanup_vebox_ring; 4314 4315 return 0; 4316 4317 cleanup_vebox_ring: 4318 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]); 4319 cleanup_blt_ring: 4320 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]); 4321 cleanup_bsd_ring: 4322 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]); 4323 cleanup_render_ring: 4324 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]); 4325 4326 return ret; 4327 } 4328 4329 int 4330 i915_gem_init_hw(struct drm_device *dev) 4331 { 4332 drm_i915_private_t *dev_priv = dev->dev_private; 4333 int ret; 4334 4335 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt()) 4336 return -EIO; 4337 4338 if (dev_priv->ellc_size) 4339 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf)); 4340 4341 if (HAS_PCH_NOP(dev)) { 4342 u32 temp = I915_READ(GEN7_MSG_CTL); 4343 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK); 4344 I915_WRITE(GEN7_MSG_CTL, temp); 4345 } 4346 4347 i915_gem_l3_remap(dev); 4348 4349 i915_gem_init_swizzling(dev); 4350 4351 ret = i915_gem_init_rings(dev); 4352 if (ret) 4353 return ret; 4354 4355 /* 4356 * XXX: There was some w/a described somewhere suggesting loading 4357 * contexts before PPGTT. 4358 */ 4359 i915_gem_context_init(dev); 4360 if (dev_priv->mm.aliasing_ppgtt) { 4361 ret = dev_priv->mm.aliasing_ppgtt->enable(dev); 4362 if (ret) { 4363 i915_gem_cleanup_aliasing_ppgtt(dev); 4364 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n"); 4365 } 4366 } 4367 4368 return 0; 4369 } 4370 4371 int i915_gem_init(struct drm_device *dev) 4372 { 4373 struct drm_i915_private *dev_priv = dev->dev_private; 4374 int ret; 4375 4376 mutex_lock(&dev->struct_mutex); 4377 4378 if (IS_VALLEYVIEW(dev)) { 4379 /* VLVA0 (potential hack), BIOS isn't actually waking us */ 4380 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1); 4381 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10)) 4382 DRM_DEBUG_DRIVER("allow wake ack timed out\n"); 4383 } 4384 4385 i915_gem_init_global_gtt(dev); 4386 4387 ret = i915_gem_init_hw(dev); 4388 mutex_unlock(&dev->struct_mutex); 4389 if (ret) { 4390 i915_gem_cleanup_aliasing_ppgtt(dev); 4391 return ret; 4392 } 4393 4394 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */ 4395 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4396 dev_priv->dri1.allow_batchbuffer = 1; 4397 return 0; 4398 } 4399 4400 void 4401 i915_gem_cleanup_ringbuffer(struct drm_device *dev) 4402 { 4403 drm_i915_private_t *dev_priv = dev->dev_private; 4404 struct intel_ring_buffer *ring; 4405 int i; 4406 4407 for_each_ring(ring, dev_priv, i) 4408 intel_cleanup_ring_buffer(ring); 4409 } 4410 4411 int 4412 i915_gem_entervt_ioctl(struct drm_device *dev, void *data, 4413 struct drm_file *file_priv) 4414 { 4415 struct drm_i915_private *dev_priv = dev->dev_private; 4416 int ret; 4417 4418 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4419 return 0; 4420 4421 if (i915_reset_in_progress(&dev_priv->gpu_error)) { 4422 DRM_ERROR("Reenabling wedged hardware, good luck\n"); 4423 atomic_set(&dev_priv->gpu_error.reset_counter, 0); 4424 } 4425 4426 mutex_lock(&dev->struct_mutex); 4427 dev_priv->ums.mm_suspended = 0; 4428 4429 ret = i915_gem_init_hw(dev); 4430 if (ret != 0) { 4431 mutex_unlock(&dev->struct_mutex); 4432 return ret; 4433 } 4434 4435 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list)); 4436 mutex_unlock(&dev->struct_mutex); 4437 4438 ret = drm_irq_install(dev); 4439 if (ret) 4440 goto cleanup_ringbuffer; 4441 4442 return 0; 4443 4444 cleanup_ringbuffer: 4445 mutex_lock(&dev->struct_mutex); 4446 i915_gem_cleanup_ringbuffer(dev); 4447 dev_priv->ums.mm_suspended = 1; 4448 mutex_unlock(&dev->struct_mutex); 4449 4450 return ret; 4451 } 4452 4453 int 4454 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data, 4455 struct drm_file *file_priv) 4456 { 4457 struct drm_i915_private *dev_priv = dev->dev_private; 4458 int ret; 4459 4460 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4461 return 0; 4462 4463 drm_irq_uninstall(dev); 4464 4465 mutex_lock(&dev->struct_mutex); 4466 ret = i915_gem_idle(dev); 4467 4468 /* Hack! Don't let anybody do execbuf while we don't control the chip. 4469 * We need to replace this with a semaphore, or something. 4470 * And not confound ums.mm_suspended! 4471 */ 4472 if (ret != 0) 4473 dev_priv->ums.mm_suspended = 1; 4474 mutex_unlock(&dev->struct_mutex); 4475 4476 return ret; 4477 } 4478 4479 void 4480 i915_gem_lastclose(struct drm_device *dev) 4481 { 4482 int ret; 4483 4484 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4485 return; 4486 4487 mutex_lock(&dev->struct_mutex); 4488 ret = i915_gem_idle(dev); 4489 if (ret) 4490 DRM_ERROR("failed to idle hardware: %d\n", ret); 4491 mutex_unlock(&dev->struct_mutex); 4492 } 4493 4494 static void 4495 init_ring_lists(struct intel_ring_buffer *ring) 4496 { 4497 INIT_LIST_HEAD(&ring->active_list); 4498 INIT_LIST_HEAD(&ring->request_list); 4499 } 4500 4501 static void i915_init_vm(struct drm_i915_private *dev_priv, 4502 struct i915_address_space *vm) 4503 { 4504 vm->dev = dev_priv->dev; 4505 INIT_LIST_HEAD(&vm->active_list); 4506 INIT_LIST_HEAD(&vm->inactive_list); 4507 INIT_LIST_HEAD(&vm->global_link); 4508 list_add(&vm->global_link, &dev_priv->vm_list); 4509 } 4510 4511 void 4512 i915_gem_load(struct drm_device *dev) 4513 { 4514 drm_i915_private_t *dev_priv = dev->dev_private; 4515 int i; 4516 4517 dev_priv->slab = 4518 kmem_cache_create("i915_gem_object", 4519 sizeof(struct drm_i915_gem_object), 0, 4520 SLAB_HWCACHE_ALIGN, 4521 NULL); 4522 4523 INIT_LIST_HEAD(&dev_priv->vm_list); 4524 i915_init_vm(dev_priv, &dev_priv->gtt.base); 4525 4526 INIT_LIST_HEAD(&dev_priv->mm.unbound_list); 4527 INIT_LIST_HEAD(&dev_priv->mm.bound_list); 4528 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4529 for (i = 0; i < I915_NUM_RINGS; i++) 4530 init_ring_lists(&dev_priv->ring[i]); 4531 for (i = 0; i < I915_MAX_NUM_FENCES; i++) 4532 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list); 4533 INIT_DELAYED_WORK(&dev_priv->mm.retire_work, 4534 i915_gem_retire_work_handler); 4535 init_waitqueue_head(&dev_priv->gpu_error.reset_queue); 4536 4537 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ 4538 if (IS_GEN3(dev)) { 4539 I915_WRITE(MI_ARB_STATE, 4540 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE)); 4541 } 4542 4543 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL; 4544 4545 /* Old X drivers will take 0-2 for front, back, depth buffers */ 4546 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4547 dev_priv->fence_reg_start = 3; 4548 4549 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev)) 4550 dev_priv->num_fence_regs = 32; 4551 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) 4552 dev_priv->num_fence_regs = 16; 4553 else 4554 dev_priv->num_fence_regs = 8; 4555 4556 /* Initialize fence registers to zero */ 4557 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4558 i915_gem_restore_fences(dev); 4559 4560 i915_gem_detect_bit_6_swizzle(dev); 4561 init_waitqueue_head(&dev_priv->pending_flip_queue); 4562 4563 dev_priv->mm.interruptible = true; 4564 4565 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan; 4566 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count; 4567 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS; 4568 register_shrinker(&dev_priv->mm.inactive_shrinker); 4569 } 4570 4571 /* 4572 * Create a physically contiguous memory object for this object 4573 * e.g. for cursor + overlay regs 4574 */ 4575 static int i915_gem_init_phys_object(struct drm_device *dev, 4576 int id, int size, int align) 4577 { 4578 drm_i915_private_t *dev_priv = dev->dev_private; 4579 struct drm_i915_gem_phys_object *phys_obj; 4580 int ret; 4581 4582 if (dev_priv->mm.phys_objs[id - 1] || !size) 4583 return 0; 4584 4585 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL); 4586 if (!phys_obj) 4587 return -ENOMEM; 4588 4589 phys_obj->id = id; 4590 4591 phys_obj->handle = drm_pci_alloc(dev, size, align); 4592 if (!phys_obj->handle) { 4593 ret = -ENOMEM; 4594 goto kfree_obj; 4595 } 4596 #ifdef CONFIG_X86 4597 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); 4598 #endif 4599 4600 dev_priv->mm.phys_objs[id - 1] = phys_obj; 4601 4602 return 0; 4603 kfree_obj: 4604 kfree(phys_obj); 4605 return ret; 4606 } 4607 4608 static void i915_gem_free_phys_object(struct drm_device *dev, int id) 4609 { 4610 drm_i915_private_t *dev_priv = dev->dev_private; 4611 struct drm_i915_gem_phys_object *phys_obj; 4612 4613 if (!dev_priv->mm.phys_objs[id - 1]) 4614 return; 4615 4616 phys_obj = dev_priv->mm.phys_objs[id - 1]; 4617 if (phys_obj->cur_obj) { 4618 i915_gem_detach_phys_object(dev, phys_obj->cur_obj); 4619 } 4620 4621 #ifdef CONFIG_X86 4622 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); 4623 #endif 4624 drm_pci_free(dev, phys_obj->handle); 4625 kfree(phys_obj); 4626 dev_priv->mm.phys_objs[id - 1] = NULL; 4627 } 4628 4629 void i915_gem_free_all_phys_object(struct drm_device *dev) 4630 { 4631 int i; 4632 4633 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++) 4634 i915_gem_free_phys_object(dev, i); 4635 } 4636 4637 void i915_gem_detach_phys_object(struct drm_device *dev, 4638 struct drm_i915_gem_object *obj) 4639 { 4640 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping; 4641 char *vaddr; 4642 int i; 4643 int page_count; 4644 4645 if (!obj->phys_obj) 4646 return; 4647 vaddr = obj->phys_obj->handle->vaddr; 4648 4649 page_count = obj->base.size / PAGE_SIZE; 4650 for (i = 0; i < page_count; i++) { 4651 struct page *page = shmem_read_mapping_page(mapping, i); 4652 if (!IS_ERR(page)) { 4653 char *dst = kmap_atomic(page); 4654 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE); 4655 kunmap_atomic(dst); 4656 4657 drm_clflush_pages(&page, 1); 4658 4659 set_page_dirty(page); 4660 mark_page_accessed(page); 4661 page_cache_release(page); 4662 } 4663 } 4664 i915_gem_chipset_flush(dev); 4665 4666 obj->phys_obj->cur_obj = NULL; 4667 obj->phys_obj = NULL; 4668 } 4669 4670 int 4671 i915_gem_attach_phys_object(struct drm_device *dev, 4672 struct drm_i915_gem_object *obj, 4673 int id, 4674 int align) 4675 { 4676 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping; 4677 drm_i915_private_t *dev_priv = dev->dev_private; 4678 int ret = 0; 4679 int page_count; 4680 int i; 4681 4682 if (id > I915_MAX_PHYS_OBJECT) 4683 return -EINVAL; 4684 4685 if (obj->phys_obj) { 4686 if (obj->phys_obj->id == id) 4687 return 0; 4688 i915_gem_detach_phys_object(dev, obj); 4689 } 4690 4691 /* create a new object */ 4692 if (!dev_priv->mm.phys_objs[id - 1]) { 4693 ret = i915_gem_init_phys_object(dev, id, 4694 obj->base.size, align); 4695 if (ret) { 4696 DRM_ERROR("failed to init phys object %d size: %zu\n", 4697 id, obj->base.size); 4698 return ret; 4699 } 4700 } 4701 4702 /* bind to the object */ 4703 obj->phys_obj = dev_priv->mm.phys_objs[id - 1]; 4704 obj->phys_obj->cur_obj = obj; 4705 4706 page_count = obj->base.size / PAGE_SIZE; 4707 4708 for (i = 0; i < page_count; i++) { 4709 struct page *page; 4710 char *dst, *src; 4711 4712 page = shmem_read_mapping_page(mapping, i); 4713 if (IS_ERR(page)) 4714 return PTR_ERR(page); 4715 4716 src = kmap_atomic(page); 4717 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE); 4718 memcpy(dst, src, PAGE_SIZE); 4719 kunmap_atomic(src); 4720 4721 mark_page_accessed(page); 4722 page_cache_release(page); 4723 } 4724 4725 return 0; 4726 } 4727 4728 static int 4729 i915_gem_phys_pwrite(struct drm_device *dev, 4730 struct drm_i915_gem_object *obj, 4731 struct drm_i915_gem_pwrite *args, 4732 struct drm_file *file_priv) 4733 { 4734 void *vaddr = obj->phys_obj->handle->vaddr + args->offset; 4735 char __user *user_data = to_user_ptr(args->data_ptr); 4736 4737 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) { 4738 unsigned long unwritten; 4739 4740 /* The physical object once assigned is fixed for the lifetime 4741 * of the obj, so we can safely drop the lock and continue 4742 * to access vaddr. 4743 */ 4744 mutex_unlock(&dev->struct_mutex); 4745 unwritten = copy_from_user(vaddr, user_data, args->size); 4746 mutex_lock(&dev->struct_mutex); 4747 if (unwritten) 4748 return -EFAULT; 4749 } 4750 4751 i915_gem_chipset_flush(dev); 4752 return 0; 4753 } 4754 4755 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 4756 { 4757 struct drm_i915_file_private *file_priv = file->driver_priv; 4758 4759 /* Clean up our request list when the client is going away, so that 4760 * later retire_requests won't dereference our soon-to-be-gone 4761 * file_priv. 4762 */ 4763 spin_lock(&file_priv->mm.lock); 4764 while (!list_empty(&file_priv->mm.request_list)) { 4765 struct drm_i915_gem_request *request; 4766 4767 request = list_first_entry(&file_priv->mm.request_list, 4768 struct drm_i915_gem_request, 4769 client_list); 4770 list_del(&request->client_list); 4771 request->file_priv = NULL; 4772 } 4773 spin_unlock(&file_priv->mm.lock); 4774 } 4775 4776 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task) 4777 { 4778 if (!mutex_is_locked(mutex)) 4779 return false; 4780 4781 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES) 4782 return mutex->owner == task; 4783 #else 4784 /* Since UP may be pre-empted, we cannot assume that we own the lock */ 4785 return false; 4786 #endif 4787 } 4788 4789 static unsigned long 4790 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc) 4791 { 4792 struct drm_i915_private *dev_priv = 4793 container_of(shrinker, 4794 struct drm_i915_private, 4795 mm.inactive_shrinker); 4796 struct drm_device *dev = dev_priv->dev; 4797 struct drm_i915_gem_object *obj; 4798 bool unlock = true; 4799 unsigned long count; 4800 4801 if (!mutex_trylock(&dev->struct_mutex)) { 4802 if (!mutex_is_locked_by(&dev->struct_mutex, current)) 4803 return SHRINK_STOP; 4804 4805 if (dev_priv->mm.shrinker_no_lock_stealing) 4806 return SHRINK_STOP; 4807 4808 unlock = false; 4809 } 4810 4811 count = 0; 4812 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) 4813 if (obj->pages_pin_count == 0) 4814 count += obj->base.size >> PAGE_SHIFT; 4815 4816 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { 4817 if (obj->active) 4818 continue; 4819 4820 if (obj->pin_count == 0 && obj->pages_pin_count == 0) 4821 count += obj->base.size >> PAGE_SHIFT; 4822 } 4823 4824 if (unlock) 4825 mutex_unlock(&dev->struct_mutex); 4826 return count; 4827 } 4828 4829 /* All the new VM stuff */ 4830 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o, 4831 struct i915_address_space *vm) 4832 { 4833 struct drm_i915_private *dev_priv = o->base.dev->dev_private; 4834 struct i915_vma *vma; 4835 4836 if (vm == &dev_priv->mm.aliasing_ppgtt->base) 4837 vm = &dev_priv->gtt.base; 4838 4839 BUG_ON(list_empty(&o->vma_list)); 4840 list_for_each_entry(vma, &o->vma_list, vma_link) { 4841 if (vma->vm == vm) 4842 return vma->node.start; 4843 4844 } 4845 return -1; 4846 } 4847 4848 bool i915_gem_obj_bound(struct drm_i915_gem_object *o, 4849 struct i915_address_space *vm) 4850 { 4851 struct i915_vma *vma; 4852 4853 list_for_each_entry(vma, &o->vma_list, vma_link) 4854 if (vma->vm == vm && drm_mm_node_allocated(&vma->node)) 4855 return true; 4856 4857 return false; 4858 } 4859 4860 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o) 4861 { 4862 struct drm_i915_private *dev_priv = o->base.dev->dev_private; 4863 struct i915_address_space *vm; 4864 4865 list_for_each_entry(vm, &dev_priv->vm_list, global_link) 4866 if (i915_gem_obj_bound(o, vm)) 4867 return true; 4868 4869 return false; 4870 } 4871 4872 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o, 4873 struct i915_address_space *vm) 4874 { 4875 struct drm_i915_private *dev_priv = o->base.dev->dev_private; 4876 struct i915_vma *vma; 4877 4878 if (vm == &dev_priv->mm.aliasing_ppgtt->base) 4879 vm = &dev_priv->gtt.base; 4880 4881 BUG_ON(list_empty(&o->vma_list)); 4882 4883 list_for_each_entry(vma, &o->vma_list, vma_link) 4884 if (vma->vm == vm) 4885 return vma->node.size; 4886 4887 return 0; 4888 } 4889 4890 static unsigned long 4891 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc) 4892 { 4893 struct drm_i915_private *dev_priv = 4894 container_of(shrinker, 4895 struct drm_i915_private, 4896 mm.inactive_shrinker); 4897 struct drm_device *dev = dev_priv->dev; 4898 int nr_to_scan = sc->nr_to_scan; 4899 unsigned long freed; 4900 bool unlock = true; 4901 4902 if (!mutex_trylock(&dev->struct_mutex)) { 4903 if (!mutex_is_locked_by(&dev->struct_mutex, current)) 4904 return 0; 4905 4906 if (dev_priv->mm.shrinker_no_lock_stealing) 4907 return 0; 4908 4909 unlock = false; 4910 } 4911 4912 freed = i915_gem_purge(dev_priv, nr_to_scan); 4913 if (freed < nr_to_scan) 4914 freed += __i915_gem_shrink(dev_priv, nr_to_scan, 4915 false); 4916 if (freed < nr_to_scan) 4917 freed += i915_gem_shrink_all(dev_priv); 4918 4919 if (unlock) 4920 mutex_unlock(&dev->struct_mutex); 4921 return freed; 4922 } 4923 4924 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj, 4925 struct i915_address_space *vm) 4926 { 4927 struct i915_vma *vma; 4928 list_for_each_entry(vma, &obj->vma_list, vma_link) 4929 if (vma->vm == vm) 4930 return vma; 4931 4932 return NULL; 4933 } 4934 4935 struct i915_vma * 4936 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj, 4937 struct i915_address_space *vm) 4938 { 4939 struct i915_vma *vma; 4940 4941 vma = i915_gem_obj_to_vma(obj, vm); 4942 if (!vma) 4943 vma = i915_gem_vma_create(obj, vm); 4944 4945 return vma; 4946 } 4947