xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision 39b6f3aa)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38 
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 						    unsigned alignment,
43 						    bool map_and_fenceable,
44 						    bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 				struct drm_i915_gem_object *obj,
47 				struct drm_i915_gem_pwrite *args,
48 				struct drm_file *file);
49 
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 				 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 					 struct drm_i915_fence_reg *fence,
54 					 bool enable);
55 
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 				    struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61 
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 	if (obj->tiling_mode)
65 		i915_gem_release_mmap(obj);
66 
67 	/* As we do not have an associated fence register, we will force
68 	 * a tiling change if we ever need to acquire one.
69 	 */
70 	obj->fence_dirty = false;
71 	obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73 
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 				  size_t size)
77 {
78 	dev_priv->mm.object_count++;
79 	dev_priv->mm.object_memory += size;
80 }
81 
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 				     size_t size)
84 {
85 	dev_priv->mm.object_count--;
86 	dev_priv->mm.object_memory -= size;
87 }
88 
89 static int
90 i915_gem_wait_for_error(struct i915_gpu_error *error)
91 {
92 	int ret;
93 
94 #define EXIT_COND (!i915_reset_in_progress(error) || \
95 		   i915_terminally_wedged(error))
96 	if (EXIT_COND)
97 		return 0;
98 
99 	/*
100 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101 	 * userspace. If it takes that long something really bad is going on and
102 	 * we should simply try to bail out and fail as gracefully as possible.
103 	 */
104 	ret = wait_event_interruptible_timeout(error->reset_queue,
105 					       EXIT_COND,
106 					       10*HZ);
107 	if (ret == 0) {
108 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109 		return -EIO;
110 	} else if (ret < 0) {
111 		return ret;
112 	}
113 #undef EXIT_COND
114 
115 	return 0;
116 }
117 
118 int i915_mutex_lock_interruptible(struct drm_device *dev)
119 {
120 	struct drm_i915_private *dev_priv = dev->dev_private;
121 	int ret;
122 
123 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
124 	if (ret)
125 		return ret;
126 
127 	ret = mutex_lock_interruptible(&dev->struct_mutex);
128 	if (ret)
129 		return ret;
130 
131 	WARN_ON(i915_verify_lists(dev));
132 	return 0;
133 }
134 
135 static inline bool
136 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
137 {
138 	return obj->gtt_space && !obj->active;
139 }
140 
141 int
142 i915_gem_init_ioctl(struct drm_device *dev, void *data,
143 		    struct drm_file *file)
144 {
145 	struct drm_i915_private *dev_priv = dev->dev_private;
146 	struct drm_i915_gem_init *args = data;
147 
148 	if (drm_core_check_feature(dev, DRIVER_MODESET))
149 		return -ENODEV;
150 
151 	if (args->gtt_start >= args->gtt_end ||
152 	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
153 		return -EINVAL;
154 
155 	/* GEM with user mode setting was never supported on ilk and later. */
156 	if (INTEL_INFO(dev)->gen >= 5)
157 		return -ENODEV;
158 
159 	mutex_lock(&dev->struct_mutex);
160 	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
161 				  args->gtt_end);
162 	dev_priv->gtt.mappable_end = args->gtt_end;
163 	mutex_unlock(&dev->struct_mutex);
164 
165 	return 0;
166 }
167 
168 int
169 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
170 			    struct drm_file *file)
171 {
172 	struct drm_i915_private *dev_priv = dev->dev_private;
173 	struct drm_i915_gem_get_aperture *args = data;
174 	struct drm_i915_gem_object *obj;
175 	size_t pinned;
176 
177 	pinned = 0;
178 	mutex_lock(&dev->struct_mutex);
179 	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
180 		if (obj->pin_count)
181 			pinned += obj->gtt_space->size;
182 	mutex_unlock(&dev->struct_mutex);
183 
184 	args->aper_size = dev_priv->gtt.total;
185 	args->aper_available_size = args->aper_size - pinned;
186 
187 	return 0;
188 }
189 
190 void *i915_gem_object_alloc(struct drm_device *dev)
191 {
192 	struct drm_i915_private *dev_priv = dev->dev_private;
193 	return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
194 }
195 
196 void i915_gem_object_free(struct drm_i915_gem_object *obj)
197 {
198 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
199 	kmem_cache_free(dev_priv->slab, obj);
200 }
201 
202 static int
203 i915_gem_create(struct drm_file *file,
204 		struct drm_device *dev,
205 		uint64_t size,
206 		uint32_t *handle_p)
207 {
208 	struct drm_i915_gem_object *obj;
209 	int ret;
210 	u32 handle;
211 
212 	size = roundup(size, PAGE_SIZE);
213 	if (size == 0)
214 		return -EINVAL;
215 
216 	/* Allocate the new object */
217 	obj = i915_gem_alloc_object(dev, size);
218 	if (obj == NULL)
219 		return -ENOMEM;
220 
221 	ret = drm_gem_handle_create(file, &obj->base, &handle);
222 	if (ret) {
223 		drm_gem_object_release(&obj->base);
224 		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
225 		i915_gem_object_free(obj);
226 		return ret;
227 	}
228 
229 	/* drop reference from allocate - handle holds it now */
230 	drm_gem_object_unreference(&obj->base);
231 	trace_i915_gem_object_create(obj);
232 
233 	*handle_p = handle;
234 	return 0;
235 }
236 
237 int
238 i915_gem_dumb_create(struct drm_file *file,
239 		     struct drm_device *dev,
240 		     struct drm_mode_create_dumb *args)
241 {
242 	/* have to work out size/pitch and return them */
243 	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
244 	args->size = args->pitch * args->height;
245 	return i915_gem_create(file, dev,
246 			       args->size, &args->handle);
247 }
248 
249 int i915_gem_dumb_destroy(struct drm_file *file,
250 			  struct drm_device *dev,
251 			  uint32_t handle)
252 {
253 	return drm_gem_handle_delete(file, handle);
254 }
255 
256 /**
257  * Creates a new mm object and returns a handle to it.
258  */
259 int
260 i915_gem_create_ioctl(struct drm_device *dev, void *data,
261 		      struct drm_file *file)
262 {
263 	struct drm_i915_gem_create *args = data;
264 
265 	return i915_gem_create(file, dev,
266 			       args->size, &args->handle);
267 }
268 
269 static inline int
270 __copy_to_user_swizzled(char __user *cpu_vaddr,
271 			const char *gpu_vaddr, int gpu_offset,
272 			int length)
273 {
274 	int ret, cpu_offset = 0;
275 
276 	while (length > 0) {
277 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
278 		int this_length = min(cacheline_end - gpu_offset, length);
279 		int swizzled_gpu_offset = gpu_offset ^ 64;
280 
281 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
282 				     gpu_vaddr + swizzled_gpu_offset,
283 				     this_length);
284 		if (ret)
285 			return ret + length;
286 
287 		cpu_offset += this_length;
288 		gpu_offset += this_length;
289 		length -= this_length;
290 	}
291 
292 	return 0;
293 }
294 
295 static inline int
296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297 			  const char __user *cpu_vaddr,
298 			  int length)
299 {
300 	int ret, cpu_offset = 0;
301 
302 	while (length > 0) {
303 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
304 		int this_length = min(cacheline_end - gpu_offset, length);
305 		int swizzled_gpu_offset = gpu_offset ^ 64;
306 
307 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308 				       cpu_vaddr + cpu_offset,
309 				       this_length);
310 		if (ret)
311 			return ret + length;
312 
313 		cpu_offset += this_length;
314 		gpu_offset += this_length;
315 		length -= this_length;
316 	}
317 
318 	return 0;
319 }
320 
321 /* Per-page copy function for the shmem pread fastpath.
322  * Flushes invalid cachelines before reading the target if
323  * needs_clflush is set. */
324 static int
325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326 		 char __user *user_data,
327 		 bool page_do_bit17_swizzling, bool needs_clflush)
328 {
329 	char *vaddr;
330 	int ret;
331 
332 	if (unlikely(page_do_bit17_swizzling))
333 		return -EINVAL;
334 
335 	vaddr = kmap_atomic(page);
336 	if (needs_clflush)
337 		drm_clflush_virt_range(vaddr + shmem_page_offset,
338 				       page_length);
339 	ret = __copy_to_user_inatomic(user_data,
340 				      vaddr + shmem_page_offset,
341 				      page_length);
342 	kunmap_atomic(vaddr);
343 
344 	return ret ? -EFAULT : 0;
345 }
346 
347 static void
348 shmem_clflush_swizzled_range(char *addr, unsigned long length,
349 			     bool swizzled)
350 {
351 	if (unlikely(swizzled)) {
352 		unsigned long start = (unsigned long) addr;
353 		unsigned long end = (unsigned long) addr + length;
354 
355 		/* For swizzling simply ensure that we always flush both
356 		 * channels. Lame, but simple and it works. Swizzled
357 		 * pwrite/pread is far from a hotpath - current userspace
358 		 * doesn't use it at all. */
359 		start = round_down(start, 128);
360 		end = round_up(end, 128);
361 
362 		drm_clflush_virt_range((void *)start, end - start);
363 	} else {
364 		drm_clflush_virt_range(addr, length);
365 	}
366 
367 }
368 
369 /* Only difference to the fast-path function is that this can handle bit17
370  * and uses non-atomic copy and kmap functions. */
371 static int
372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373 		 char __user *user_data,
374 		 bool page_do_bit17_swizzling, bool needs_clflush)
375 {
376 	char *vaddr;
377 	int ret;
378 
379 	vaddr = kmap(page);
380 	if (needs_clflush)
381 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382 					     page_length,
383 					     page_do_bit17_swizzling);
384 
385 	if (page_do_bit17_swizzling)
386 		ret = __copy_to_user_swizzled(user_data,
387 					      vaddr, shmem_page_offset,
388 					      page_length);
389 	else
390 		ret = __copy_to_user(user_data,
391 				     vaddr + shmem_page_offset,
392 				     page_length);
393 	kunmap(page);
394 
395 	return ret ? - EFAULT : 0;
396 }
397 
398 static int
399 i915_gem_shmem_pread(struct drm_device *dev,
400 		     struct drm_i915_gem_object *obj,
401 		     struct drm_i915_gem_pread *args,
402 		     struct drm_file *file)
403 {
404 	char __user *user_data;
405 	ssize_t remain;
406 	loff_t offset;
407 	int shmem_page_offset, page_length, ret = 0;
408 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
409 	int prefaulted = 0;
410 	int needs_clflush = 0;
411 	struct sg_page_iter sg_iter;
412 
413 	user_data = to_user_ptr(args->data_ptr);
414 	remain = args->size;
415 
416 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
417 
418 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
419 		/* If we're not in the cpu read domain, set ourself into the gtt
420 		 * read domain and manually flush cachelines (if required). This
421 		 * optimizes for the case when the gpu will dirty the data
422 		 * anyway again before the next pread happens. */
423 		if (obj->cache_level == I915_CACHE_NONE)
424 			needs_clflush = 1;
425 		if (obj->gtt_space) {
426 			ret = i915_gem_object_set_to_gtt_domain(obj, false);
427 			if (ret)
428 				return ret;
429 		}
430 	}
431 
432 	ret = i915_gem_object_get_pages(obj);
433 	if (ret)
434 		return ret;
435 
436 	i915_gem_object_pin_pages(obj);
437 
438 	offset = args->offset;
439 
440 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
441 			 offset >> PAGE_SHIFT) {
442 		struct page *page = sg_page_iter_page(&sg_iter);
443 
444 		if (remain <= 0)
445 			break;
446 
447 		/* Operation in this page
448 		 *
449 		 * shmem_page_offset = offset within page in shmem file
450 		 * page_length = bytes to copy for this page
451 		 */
452 		shmem_page_offset = offset_in_page(offset);
453 		page_length = remain;
454 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
455 			page_length = PAGE_SIZE - shmem_page_offset;
456 
457 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
458 			(page_to_phys(page) & (1 << 17)) != 0;
459 
460 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
461 				       user_data, page_do_bit17_swizzling,
462 				       needs_clflush);
463 		if (ret == 0)
464 			goto next_page;
465 
466 		mutex_unlock(&dev->struct_mutex);
467 
468 		if (!prefaulted) {
469 			ret = fault_in_multipages_writeable(user_data, remain);
470 			/* Userspace is tricking us, but we've already clobbered
471 			 * its pages with the prefault and promised to write the
472 			 * data up to the first fault. Hence ignore any errors
473 			 * and just continue. */
474 			(void)ret;
475 			prefaulted = 1;
476 		}
477 
478 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
479 				       user_data, page_do_bit17_swizzling,
480 				       needs_clflush);
481 
482 		mutex_lock(&dev->struct_mutex);
483 
484 next_page:
485 		mark_page_accessed(page);
486 
487 		if (ret)
488 			goto out;
489 
490 		remain -= page_length;
491 		user_data += page_length;
492 		offset += page_length;
493 	}
494 
495 out:
496 	i915_gem_object_unpin_pages(obj);
497 
498 	return ret;
499 }
500 
501 /**
502  * Reads data from the object referenced by handle.
503  *
504  * On error, the contents of *data are undefined.
505  */
506 int
507 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
508 		     struct drm_file *file)
509 {
510 	struct drm_i915_gem_pread *args = data;
511 	struct drm_i915_gem_object *obj;
512 	int ret = 0;
513 
514 	if (args->size == 0)
515 		return 0;
516 
517 	if (!access_ok(VERIFY_WRITE,
518 		       to_user_ptr(args->data_ptr),
519 		       args->size))
520 		return -EFAULT;
521 
522 	ret = i915_mutex_lock_interruptible(dev);
523 	if (ret)
524 		return ret;
525 
526 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
527 	if (&obj->base == NULL) {
528 		ret = -ENOENT;
529 		goto unlock;
530 	}
531 
532 	/* Bounds check source.  */
533 	if (args->offset > obj->base.size ||
534 	    args->size > obj->base.size - args->offset) {
535 		ret = -EINVAL;
536 		goto out;
537 	}
538 
539 	/* prime objects have no backing filp to GEM pread/pwrite
540 	 * pages from.
541 	 */
542 	if (!obj->base.filp) {
543 		ret = -EINVAL;
544 		goto out;
545 	}
546 
547 	trace_i915_gem_object_pread(obj, args->offset, args->size);
548 
549 	ret = i915_gem_shmem_pread(dev, obj, args, file);
550 
551 out:
552 	drm_gem_object_unreference(&obj->base);
553 unlock:
554 	mutex_unlock(&dev->struct_mutex);
555 	return ret;
556 }
557 
558 /* This is the fast write path which cannot handle
559  * page faults in the source data
560  */
561 
562 static inline int
563 fast_user_write(struct io_mapping *mapping,
564 		loff_t page_base, int page_offset,
565 		char __user *user_data,
566 		int length)
567 {
568 	void __iomem *vaddr_atomic;
569 	void *vaddr;
570 	unsigned long unwritten;
571 
572 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
573 	/* We can use the cpu mem copy function because this is X86. */
574 	vaddr = (void __force*)vaddr_atomic + page_offset;
575 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
576 						      user_data, length);
577 	io_mapping_unmap_atomic(vaddr_atomic);
578 	return unwritten;
579 }
580 
581 /**
582  * This is the fast pwrite path, where we copy the data directly from the
583  * user into the GTT, uncached.
584  */
585 static int
586 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
587 			 struct drm_i915_gem_object *obj,
588 			 struct drm_i915_gem_pwrite *args,
589 			 struct drm_file *file)
590 {
591 	drm_i915_private_t *dev_priv = dev->dev_private;
592 	ssize_t remain;
593 	loff_t offset, page_base;
594 	char __user *user_data;
595 	int page_offset, page_length, ret;
596 
597 	ret = i915_gem_object_pin(obj, 0, true, true);
598 	if (ret)
599 		goto out;
600 
601 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
602 	if (ret)
603 		goto out_unpin;
604 
605 	ret = i915_gem_object_put_fence(obj);
606 	if (ret)
607 		goto out_unpin;
608 
609 	user_data = to_user_ptr(args->data_ptr);
610 	remain = args->size;
611 
612 	offset = obj->gtt_offset + args->offset;
613 
614 	while (remain > 0) {
615 		/* Operation in this page
616 		 *
617 		 * page_base = page offset within aperture
618 		 * page_offset = offset within page
619 		 * page_length = bytes to copy for this page
620 		 */
621 		page_base = offset & PAGE_MASK;
622 		page_offset = offset_in_page(offset);
623 		page_length = remain;
624 		if ((page_offset + remain) > PAGE_SIZE)
625 			page_length = PAGE_SIZE - page_offset;
626 
627 		/* If we get a fault while copying data, then (presumably) our
628 		 * source page isn't available.  Return the error and we'll
629 		 * retry in the slow path.
630 		 */
631 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
632 				    page_offset, user_data, page_length)) {
633 			ret = -EFAULT;
634 			goto out_unpin;
635 		}
636 
637 		remain -= page_length;
638 		user_data += page_length;
639 		offset += page_length;
640 	}
641 
642 out_unpin:
643 	i915_gem_object_unpin(obj);
644 out:
645 	return ret;
646 }
647 
648 /* Per-page copy function for the shmem pwrite fastpath.
649  * Flushes invalid cachelines before writing to the target if
650  * needs_clflush_before is set and flushes out any written cachelines after
651  * writing if needs_clflush is set. */
652 static int
653 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
654 		  char __user *user_data,
655 		  bool page_do_bit17_swizzling,
656 		  bool needs_clflush_before,
657 		  bool needs_clflush_after)
658 {
659 	char *vaddr;
660 	int ret;
661 
662 	if (unlikely(page_do_bit17_swizzling))
663 		return -EINVAL;
664 
665 	vaddr = kmap_atomic(page);
666 	if (needs_clflush_before)
667 		drm_clflush_virt_range(vaddr + shmem_page_offset,
668 				       page_length);
669 	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
670 						user_data,
671 						page_length);
672 	if (needs_clflush_after)
673 		drm_clflush_virt_range(vaddr + shmem_page_offset,
674 				       page_length);
675 	kunmap_atomic(vaddr);
676 
677 	return ret ? -EFAULT : 0;
678 }
679 
680 /* Only difference to the fast-path function is that this can handle bit17
681  * and uses non-atomic copy and kmap functions. */
682 static int
683 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
684 		  char __user *user_data,
685 		  bool page_do_bit17_swizzling,
686 		  bool needs_clflush_before,
687 		  bool needs_clflush_after)
688 {
689 	char *vaddr;
690 	int ret;
691 
692 	vaddr = kmap(page);
693 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
694 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
695 					     page_length,
696 					     page_do_bit17_swizzling);
697 	if (page_do_bit17_swizzling)
698 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
699 						user_data,
700 						page_length);
701 	else
702 		ret = __copy_from_user(vaddr + shmem_page_offset,
703 				       user_data,
704 				       page_length);
705 	if (needs_clflush_after)
706 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707 					     page_length,
708 					     page_do_bit17_swizzling);
709 	kunmap(page);
710 
711 	return ret ? -EFAULT : 0;
712 }
713 
714 static int
715 i915_gem_shmem_pwrite(struct drm_device *dev,
716 		      struct drm_i915_gem_object *obj,
717 		      struct drm_i915_gem_pwrite *args,
718 		      struct drm_file *file)
719 {
720 	ssize_t remain;
721 	loff_t offset;
722 	char __user *user_data;
723 	int shmem_page_offset, page_length, ret = 0;
724 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
725 	int hit_slowpath = 0;
726 	int needs_clflush_after = 0;
727 	int needs_clflush_before = 0;
728 	struct sg_page_iter sg_iter;
729 
730 	user_data = to_user_ptr(args->data_ptr);
731 	remain = args->size;
732 
733 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
734 
735 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
736 		/* If we're not in the cpu write domain, set ourself into the gtt
737 		 * write domain and manually flush cachelines (if required). This
738 		 * optimizes for the case when the gpu will use the data
739 		 * right away and we therefore have to clflush anyway. */
740 		if (obj->cache_level == I915_CACHE_NONE)
741 			needs_clflush_after = 1;
742 		if (obj->gtt_space) {
743 			ret = i915_gem_object_set_to_gtt_domain(obj, true);
744 			if (ret)
745 				return ret;
746 		}
747 	}
748 	/* Same trick applies for invalidate partially written cachelines before
749 	 * writing.  */
750 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
751 	    && obj->cache_level == I915_CACHE_NONE)
752 		needs_clflush_before = 1;
753 
754 	ret = i915_gem_object_get_pages(obj);
755 	if (ret)
756 		return ret;
757 
758 	i915_gem_object_pin_pages(obj);
759 
760 	offset = args->offset;
761 	obj->dirty = 1;
762 
763 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
764 			 offset >> PAGE_SHIFT) {
765 		struct page *page = sg_page_iter_page(&sg_iter);
766 		int partial_cacheline_write;
767 
768 		if (remain <= 0)
769 			break;
770 
771 		/* Operation in this page
772 		 *
773 		 * shmem_page_offset = offset within page in shmem file
774 		 * page_length = bytes to copy for this page
775 		 */
776 		shmem_page_offset = offset_in_page(offset);
777 
778 		page_length = remain;
779 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
780 			page_length = PAGE_SIZE - shmem_page_offset;
781 
782 		/* If we don't overwrite a cacheline completely we need to be
783 		 * careful to have up-to-date data by first clflushing. Don't
784 		 * overcomplicate things and flush the entire patch. */
785 		partial_cacheline_write = needs_clflush_before &&
786 			((shmem_page_offset | page_length)
787 				& (boot_cpu_data.x86_clflush_size - 1));
788 
789 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
790 			(page_to_phys(page) & (1 << 17)) != 0;
791 
792 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
793 					user_data, page_do_bit17_swizzling,
794 					partial_cacheline_write,
795 					needs_clflush_after);
796 		if (ret == 0)
797 			goto next_page;
798 
799 		hit_slowpath = 1;
800 		mutex_unlock(&dev->struct_mutex);
801 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
802 					user_data, page_do_bit17_swizzling,
803 					partial_cacheline_write,
804 					needs_clflush_after);
805 
806 		mutex_lock(&dev->struct_mutex);
807 
808 next_page:
809 		set_page_dirty(page);
810 		mark_page_accessed(page);
811 
812 		if (ret)
813 			goto out;
814 
815 		remain -= page_length;
816 		user_data += page_length;
817 		offset += page_length;
818 	}
819 
820 out:
821 	i915_gem_object_unpin_pages(obj);
822 
823 	if (hit_slowpath) {
824 		/*
825 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
826 		 * cachelines in-line while writing and the object moved
827 		 * out of the cpu write domain while we've dropped the lock.
828 		 */
829 		if (!needs_clflush_after &&
830 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
831 			i915_gem_clflush_object(obj);
832 			i915_gem_chipset_flush(dev);
833 		}
834 	}
835 
836 	if (needs_clflush_after)
837 		i915_gem_chipset_flush(dev);
838 
839 	return ret;
840 }
841 
842 /**
843  * Writes data to the object referenced by handle.
844  *
845  * On error, the contents of the buffer that were to be modified are undefined.
846  */
847 int
848 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
849 		      struct drm_file *file)
850 {
851 	struct drm_i915_gem_pwrite *args = data;
852 	struct drm_i915_gem_object *obj;
853 	int ret;
854 
855 	if (args->size == 0)
856 		return 0;
857 
858 	if (!access_ok(VERIFY_READ,
859 		       to_user_ptr(args->data_ptr),
860 		       args->size))
861 		return -EFAULT;
862 
863 	ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
864 					   args->size);
865 	if (ret)
866 		return -EFAULT;
867 
868 	ret = i915_mutex_lock_interruptible(dev);
869 	if (ret)
870 		return ret;
871 
872 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
873 	if (&obj->base == NULL) {
874 		ret = -ENOENT;
875 		goto unlock;
876 	}
877 
878 	/* Bounds check destination. */
879 	if (args->offset > obj->base.size ||
880 	    args->size > obj->base.size - args->offset) {
881 		ret = -EINVAL;
882 		goto out;
883 	}
884 
885 	/* prime objects have no backing filp to GEM pread/pwrite
886 	 * pages from.
887 	 */
888 	if (!obj->base.filp) {
889 		ret = -EINVAL;
890 		goto out;
891 	}
892 
893 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
894 
895 	ret = -EFAULT;
896 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
897 	 * it would end up going through the fenced access, and we'll get
898 	 * different detiling behavior between reading and writing.
899 	 * pread/pwrite currently are reading and writing from the CPU
900 	 * perspective, requiring manual detiling by the client.
901 	 */
902 	if (obj->phys_obj) {
903 		ret = i915_gem_phys_pwrite(dev, obj, args, file);
904 		goto out;
905 	}
906 
907 	if (obj->cache_level == I915_CACHE_NONE &&
908 	    obj->tiling_mode == I915_TILING_NONE &&
909 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
910 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
911 		/* Note that the gtt paths might fail with non-page-backed user
912 		 * pointers (e.g. gtt mappings when moving data between
913 		 * textures). Fallback to the shmem path in that case. */
914 	}
915 
916 	if (ret == -EFAULT || ret == -ENOSPC)
917 		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
918 
919 out:
920 	drm_gem_object_unreference(&obj->base);
921 unlock:
922 	mutex_unlock(&dev->struct_mutex);
923 	return ret;
924 }
925 
926 int
927 i915_gem_check_wedge(struct i915_gpu_error *error,
928 		     bool interruptible)
929 {
930 	if (i915_reset_in_progress(error)) {
931 		/* Non-interruptible callers can't handle -EAGAIN, hence return
932 		 * -EIO unconditionally for these. */
933 		if (!interruptible)
934 			return -EIO;
935 
936 		/* Recovery complete, but the reset failed ... */
937 		if (i915_terminally_wedged(error))
938 			return -EIO;
939 
940 		return -EAGAIN;
941 	}
942 
943 	return 0;
944 }
945 
946 /*
947  * Compare seqno against outstanding lazy request. Emit a request if they are
948  * equal.
949  */
950 static int
951 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
952 {
953 	int ret;
954 
955 	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
956 
957 	ret = 0;
958 	if (seqno == ring->outstanding_lazy_request)
959 		ret = i915_add_request(ring, NULL, NULL);
960 
961 	return ret;
962 }
963 
964 /**
965  * __wait_seqno - wait until execution of seqno has finished
966  * @ring: the ring expected to report seqno
967  * @seqno: duh!
968  * @reset_counter: reset sequence associated with the given seqno
969  * @interruptible: do an interruptible wait (normally yes)
970  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
971  *
972  * Note: It is of utmost importance that the passed in seqno and reset_counter
973  * values have been read by the caller in an smp safe manner. Where read-side
974  * locks are involved, it is sufficient to read the reset_counter before
975  * unlocking the lock that protects the seqno. For lockless tricks, the
976  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
977  * inserted.
978  *
979  * Returns 0 if the seqno was found within the alloted time. Else returns the
980  * errno with remaining time filled in timeout argument.
981  */
982 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
983 			unsigned reset_counter,
984 			bool interruptible, struct timespec *timeout)
985 {
986 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
987 	struct timespec before, now, wait_time={1,0};
988 	unsigned long timeout_jiffies;
989 	long end;
990 	bool wait_forever = true;
991 	int ret;
992 
993 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
994 		return 0;
995 
996 	trace_i915_gem_request_wait_begin(ring, seqno);
997 
998 	if (timeout != NULL) {
999 		wait_time = *timeout;
1000 		wait_forever = false;
1001 	}
1002 
1003 	timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1004 
1005 	if (WARN_ON(!ring->irq_get(ring)))
1006 		return -ENODEV;
1007 
1008 	/* Record current time in case interrupted by signal, or wedged * */
1009 	getrawmonotonic(&before);
1010 
1011 #define EXIT_COND \
1012 	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1013 	 i915_reset_in_progress(&dev_priv->gpu_error) || \
1014 	 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1015 	do {
1016 		if (interruptible)
1017 			end = wait_event_interruptible_timeout(ring->irq_queue,
1018 							       EXIT_COND,
1019 							       timeout_jiffies);
1020 		else
1021 			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1022 						 timeout_jiffies);
1023 
1024 		/* We need to check whether any gpu reset happened in between
1025 		 * the caller grabbing the seqno and now ... */
1026 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1027 			end = -EAGAIN;
1028 
1029 		/* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1030 		 * gone. */
1031 		ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1032 		if (ret)
1033 			end = ret;
1034 	} while (end == 0 && wait_forever);
1035 
1036 	getrawmonotonic(&now);
1037 
1038 	ring->irq_put(ring);
1039 	trace_i915_gem_request_wait_end(ring, seqno);
1040 #undef EXIT_COND
1041 
1042 	if (timeout) {
1043 		struct timespec sleep_time = timespec_sub(now, before);
1044 		*timeout = timespec_sub(*timeout, sleep_time);
1045 		if (!timespec_valid(timeout)) /* i.e. negative time remains */
1046 			set_normalized_timespec(timeout, 0, 0);
1047 	}
1048 
1049 	switch (end) {
1050 	case -EIO:
1051 	case -EAGAIN: /* Wedged */
1052 	case -ERESTARTSYS: /* Signal */
1053 		return (int)end;
1054 	case 0: /* Timeout */
1055 		return -ETIME;
1056 	default: /* Completed */
1057 		WARN_ON(end < 0); /* We're not aware of other errors */
1058 		return 0;
1059 	}
1060 }
1061 
1062 /**
1063  * Waits for a sequence number to be signaled, and cleans up the
1064  * request and object lists appropriately for that event.
1065  */
1066 int
1067 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1068 {
1069 	struct drm_device *dev = ring->dev;
1070 	struct drm_i915_private *dev_priv = dev->dev_private;
1071 	bool interruptible = dev_priv->mm.interruptible;
1072 	int ret;
1073 
1074 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1075 	BUG_ON(seqno == 0);
1076 
1077 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1078 	if (ret)
1079 		return ret;
1080 
1081 	ret = i915_gem_check_olr(ring, seqno);
1082 	if (ret)
1083 		return ret;
1084 
1085 	return __wait_seqno(ring, seqno,
1086 			    atomic_read(&dev_priv->gpu_error.reset_counter),
1087 			    interruptible, NULL);
1088 }
1089 
1090 /**
1091  * Ensures that all rendering to the object has completed and the object is
1092  * safe to unbind from the GTT or access from the CPU.
1093  */
1094 static __must_check int
1095 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1096 			       bool readonly)
1097 {
1098 	struct intel_ring_buffer *ring = obj->ring;
1099 	u32 seqno;
1100 	int ret;
1101 
1102 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1103 	if (seqno == 0)
1104 		return 0;
1105 
1106 	ret = i915_wait_seqno(ring, seqno);
1107 	if (ret)
1108 		return ret;
1109 
1110 	i915_gem_retire_requests_ring(ring);
1111 
1112 	/* Manually manage the write flush as we may have not yet
1113 	 * retired the buffer.
1114 	 */
1115 	if (obj->last_write_seqno &&
1116 	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
1117 		obj->last_write_seqno = 0;
1118 		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1119 	}
1120 
1121 	return 0;
1122 }
1123 
1124 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1125  * as the object state may change during this call.
1126  */
1127 static __must_check int
1128 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1129 					    bool readonly)
1130 {
1131 	struct drm_device *dev = obj->base.dev;
1132 	struct drm_i915_private *dev_priv = dev->dev_private;
1133 	struct intel_ring_buffer *ring = obj->ring;
1134 	unsigned reset_counter;
1135 	u32 seqno;
1136 	int ret;
1137 
1138 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1139 	BUG_ON(!dev_priv->mm.interruptible);
1140 
1141 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1142 	if (seqno == 0)
1143 		return 0;
1144 
1145 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1146 	if (ret)
1147 		return ret;
1148 
1149 	ret = i915_gem_check_olr(ring, seqno);
1150 	if (ret)
1151 		return ret;
1152 
1153 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1154 	mutex_unlock(&dev->struct_mutex);
1155 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1156 	mutex_lock(&dev->struct_mutex);
1157 
1158 	i915_gem_retire_requests_ring(ring);
1159 
1160 	/* Manually manage the write flush as we may have not yet
1161 	 * retired the buffer.
1162 	 */
1163 	if (obj->last_write_seqno &&
1164 	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
1165 		obj->last_write_seqno = 0;
1166 		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1167 	}
1168 
1169 	return ret;
1170 }
1171 
1172 /**
1173  * Called when user space prepares to use an object with the CPU, either
1174  * through the mmap ioctl's mapping or a GTT mapping.
1175  */
1176 int
1177 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1178 			  struct drm_file *file)
1179 {
1180 	struct drm_i915_gem_set_domain *args = data;
1181 	struct drm_i915_gem_object *obj;
1182 	uint32_t read_domains = args->read_domains;
1183 	uint32_t write_domain = args->write_domain;
1184 	int ret;
1185 
1186 	/* Only handle setting domains to types used by the CPU. */
1187 	if (write_domain & I915_GEM_GPU_DOMAINS)
1188 		return -EINVAL;
1189 
1190 	if (read_domains & I915_GEM_GPU_DOMAINS)
1191 		return -EINVAL;
1192 
1193 	/* Having something in the write domain implies it's in the read
1194 	 * domain, and only that read domain.  Enforce that in the request.
1195 	 */
1196 	if (write_domain != 0 && read_domains != write_domain)
1197 		return -EINVAL;
1198 
1199 	ret = i915_mutex_lock_interruptible(dev);
1200 	if (ret)
1201 		return ret;
1202 
1203 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1204 	if (&obj->base == NULL) {
1205 		ret = -ENOENT;
1206 		goto unlock;
1207 	}
1208 
1209 	/* Try to flush the object off the GPU without holding the lock.
1210 	 * We will repeat the flush holding the lock in the normal manner
1211 	 * to catch cases where we are gazumped.
1212 	 */
1213 	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1214 	if (ret)
1215 		goto unref;
1216 
1217 	if (read_domains & I915_GEM_DOMAIN_GTT) {
1218 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1219 
1220 		/* Silently promote "you're not bound, there was nothing to do"
1221 		 * to success, since the client was just asking us to
1222 		 * make sure everything was done.
1223 		 */
1224 		if (ret == -EINVAL)
1225 			ret = 0;
1226 	} else {
1227 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1228 	}
1229 
1230 unref:
1231 	drm_gem_object_unreference(&obj->base);
1232 unlock:
1233 	mutex_unlock(&dev->struct_mutex);
1234 	return ret;
1235 }
1236 
1237 /**
1238  * Called when user space has done writes to this buffer
1239  */
1240 int
1241 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1242 			 struct drm_file *file)
1243 {
1244 	struct drm_i915_gem_sw_finish *args = data;
1245 	struct drm_i915_gem_object *obj;
1246 	int ret = 0;
1247 
1248 	ret = i915_mutex_lock_interruptible(dev);
1249 	if (ret)
1250 		return ret;
1251 
1252 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1253 	if (&obj->base == NULL) {
1254 		ret = -ENOENT;
1255 		goto unlock;
1256 	}
1257 
1258 	/* Pinned buffers may be scanout, so flush the cache */
1259 	if (obj->pin_count)
1260 		i915_gem_object_flush_cpu_write_domain(obj);
1261 
1262 	drm_gem_object_unreference(&obj->base);
1263 unlock:
1264 	mutex_unlock(&dev->struct_mutex);
1265 	return ret;
1266 }
1267 
1268 /**
1269  * Maps the contents of an object, returning the address it is mapped
1270  * into.
1271  *
1272  * While the mapping holds a reference on the contents of the object, it doesn't
1273  * imply a ref on the object itself.
1274  */
1275 int
1276 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1277 		    struct drm_file *file)
1278 {
1279 	struct drm_i915_gem_mmap *args = data;
1280 	struct drm_gem_object *obj;
1281 	unsigned long addr;
1282 
1283 	obj = drm_gem_object_lookup(dev, file, args->handle);
1284 	if (obj == NULL)
1285 		return -ENOENT;
1286 
1287 	/* prime objects have no backing filp to GEM mmap
1288 	 * pages from.
1289 	 */
1290 	if (!obj->filp) {
1291 		drm_gem_object_unreference_unlocked(obj);
1292 		return -EINVAL;
1293 	}
1294 
1295 	addr = vm_mmap(obj->filp, 0, args->size,
1296 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1297 		       args->offset);
1298 	drm_gem_object_unreference_unlocked(obj);
1299 	if (IS_ERR((void *)addr))
1300 		return addr;
1301 
1302 	args->addr_ptr = (uint64_t) addr;
1303 
1304 	return 0;
1305 }
1306 
1307 /**
1308  * i915_gem_fault - fault a page into the GTT
1309  * vma: VMA in question
1310  * vmf: fault info
1311  *
1312  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1313  * from userspace.  The fault handler takes care of binding the object to
1314  * the GTT (if needed), allocating and programming a fence register (again,
1315  * only if needed based on whether the old reg is still valid or the object
1316  * is tiled) and inserting a new PTE into the faulting process.
1317  *
1318  * Note that the faulting process may involve evicting existing objects
1319  * from the GTT and/or fence registers to make room.  So performance may
1320  * suffer if the GTT working set is large or there are few fence registers
1321  * left.
1322  */
1323 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1324 {
1325 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1326 	struct drm_device *dev = obj->base.dev;
1327 	drm_i915_private_t *dev_priv = dev->dev_private;
1328 	pgoff_t page_offset;
1329 	unsigned long pfn;
1330 	int ret = 0;
1331 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1332 
1333 	/* We don't use vmf->pgoff since that has the fake offset */
1334 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1335 		PAGE_SHIFT;
1336 
1337 	ret = i915_mutex_lock_interruptible(dev);
1338 	if (ret)
1339 		goto out;
1340 
1341 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1342 
1343 	/* Access to snoopable pages through the GTT is incoherent. */
1344 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1345 		ret = -EINVAL;
1346 		goto unlock;
1347 	}
1348 
1349 	/* Now bind it into the GTT if needed */
1350 	ret = i915_gem_object_pin(obj, 0, true, false);
1351 	if (ret)
1352 		goto unlock;
1353 
1354 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1355 	if (ret)
1356 		goto unpin;
1357 
1358 	ret = i915_gem_object_get_fence(obj);
1359 	if (ret)
1360 		goto unpin;
1361 
1362 	obj->fault_mappable = true;
1363 
1364 	pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
1365 		page_offset;
1366 
1367 	/* Finally, remap it using the new GTT offset */
1368 	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1369 unpin:
1370 	i915_gem_object_unpin(obj);
1371 unlock:
1372 	mutex_unlock(&dev->struct_mutex);
1373 out:
1374 	switch (ret) {
1375 	case -EIO:
1376 		/* If this -EIO is due to a gpu hang, give the reset code a
1377 		 * chance to clean up the mess. Otherwise return the proper
1378 		 * SIGBUS. */
1379 		if (i915_terminally_wedged(&dev_priv->gpu_error))
1380 			return VM_FAULT_SIGBUS;
1381 	case -EAGAIN:
1382 		/* Give the error handler a chance to run and move the
1383 		 * objects off the GPU active list. Next time we service the
1384 		 * fault, we should be able to transition the page into the
1385 		 * GTT without touching the GPU (and so avoid further
1386 		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1387 		 * with coherency, just lost writes.
1388 		 */
1389 		set_need_resched();
1390 	case 0:
1391 	case -ERESTARTSYS:
1392 	case -EINTR:
1393 	case -EBUSY:
1394 		/*
1395 		 * EBUSY is ok: this just means that another thread
1396 		 * already did the job.
1397 		 */
1398 		return VM_FAULT_NOPAGE;
1399 	case -ENOMEM:
1400 		return VM_FAULT_OOM;
1401 	case -ENOSPC:
1402 		return VM_FAULT_SIGBUS;
1403 	default:
1404 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1405 		return VM_FAULT_SIGBUS;
1406 	}
1407 }
1408 
1409 /**
1410  * i915_gem_release_mmap - remove physical page mappings
1411  * @obj: obj in question
1412  *
1413  * Preserve the reservation of the mmapping with the DRM core code, but
1414  * relinquish ownership of the pages back to the system.
1415  *
1416  * It is vital that we remove the page mapping if we have mapped a tiled
1417  * object through the GTT and then lose the fence register due to
1418  * resource pressure. Similarly if the object has been moved out of the
1419  * aperture, than pages mapped into userspace must be revoked. Removing the
1420  * mapping will then trigger a page fault on the next user access, allowing
1421  * fixup by i915_gem_fault().
1422  */
1423 void
1424 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1425 {
1426 	if (!obj->fault_mappable)
1427 		return;
1428 
1429 	if (obj->base.dev->dev_mapping)
1430 		unmap_mapping_range(obj->base.dev->dev_mapping,
1431 				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1432 				    obj->base.size, 1);
1433 
1434 	obj->fault_mappable = false;
1435 }
1436 
1437 uint32_t
1438 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1439 {
1440 	uint32_t gtt_size;
1441 
1442 	if (INTEL_INFO(dev)->gen >= 4 ||
1443 	    tiling_mode == I915_TILING_NONE)
1444 		return size;
1445 
1446 	/* Previous chips need a power-of-two fence region when tiling */
1447 	if (INTEL_INFO(dev)->gen == 3)
1448 		gtt_size = 1024*1024;
1449 	else
1450 		gtt_size = 512*1024;
1451 
1452 	while (gtt_size < size)
1453 		gtt_size <<= 1;
1454 
1455 	return gtt_size;
1456 }
1457 
1458 /**
1459  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1460  * @obj: object to check
1461  *
1462  * Return the required GTT alignment for an object, taking into account
1463  * potential fence register mapping.
1464  */
1465 uint32_t
1466 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1467 			   int tiling_mode, bool fenced)
1468 {
1469 	/*
1470 	 * Minimum alignment is 4k (GTT page size), but might be greater
1471 	 * if a fence register is needed for the object.
1472 	 */
1473 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1474 	    tiling_mode == I915_TILING_NONE)
1475 		return 4096;
1476 
1477 	/*
1478 	 * Previous chips need to be aligned to the size of the smallest
1479 	 * fence register that can contain the object.
1480 	 */
1481 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1482 }
1483 
1484 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1485 {
1486 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1487 	int ret;
1488 
1489 	if (obj->base.map_list.map)
1490 		return 0;
1491 
1492 	dev_priv->mm.shrinker_no_lock_stealing = true;
1493 
1494 	ret = drm_gem_create_mmap_offset(&obj->base);
1495 	if (ret != -ENOSPC)
1496 		goto out;
1497 
1498 	/* Badly fragmented mmap space? The only way we can recover
1499 	 * space is by destroying unwanted objects. We can't randomly release
1500 	 * mmap_offsets as userspace expects them to be persistent for the
1501 	 * lifetime of the objects. The closest we can is to release the
1502 	 * offsets on purgeable objects by truncating it and marking it purged,
1503 	 * which prevents userspace from ever using that object again.
1504 	 */
1505 	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1506 	ret = drm_gem_create_mmap_offset(&obj->base);
1507 	if (ret != -ENOSPC)
1508 		goto out;
1509 
1510 	i915_gem_shrink_all(dev_priv);
1511 	ret = drm_gem_create_mmap_offset(&obj->base);
1512 out:
1513 	dev_priv->mm.shrinker_no_lock_stealing = false;
1514 
1515 	return ret;
1516 }
1517 
1518 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1519 {
1520 	if (!obj->base.map_list.map)
1521 		return;
1522 
1523 	drm_gem_free_mmap_offset(&obj->base);
1524 }
1525 
1526 int
1527 i915_gem_mmap_gtt(struct drm_file *file,
1528 		  struct drm_device *dev,
1529 		  uint32_t handle,
1530 		  uint64_t *offset)
1531 {
1532 	struct drm_i915_private *dev_priv = dev->dev_private;
1533 	struct drm_i915_gem_object *obj;
1534 	int ret;
1535 
1536 	ret = i915_mutex_lock_interruptible(dev);
1537 	if (ret)
1538 		return ret;
1539 
1540 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1541 	if (&obj->base == NULL) {
1542 		ret = -ENOENT;
1543 		goto unlock;
1544 	}
1545 
1546 	if (obj->base.size > dev_priv->gtt.mappable_end) {
1547 		ret = -E2BIG;
1548 		goto out;
1549 	}
1550 
1551 	if (obj->madv != I915_MADV_WILLNEED) {
1552 		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1553 		ret = -EINVAL;
1554 		goto out;
1555 	}
1556 
1557 	ret = i915_gem_object_create_mmap_offset(obj);
1558 	if (ret)
1559 		goto out;
1560 
1561 	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1562 
1563 out:
1564 	drm_gem_object_unreference(&obj->base);
1565 unlock:
1566 	mutex_unlock(&dev->struct_mutex);
1567 	return ret;
1568 }
1569 
1570 /**
1571  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1572  * @dev: DRM device
1573  * @data: GTT mapping ioctl data
1574  * @file: GEM object info
1575  *
1576  * Simply returns the fake offset to userspace so it can mmap it.
1577  * The mmap call will end up in drm_gem_mmap(), which will set things
1578  * up so we can get faults in the handler above.
1579  *
1580  * The fault handler will take care of binding the object into the GTT
1581  * (since it may have been evicted to make room for something), allocating
1582  * a fence register, and mapping the appropriate aperture address into
1583  * userspace.
1584  */
1585 int
1586 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1587 			struct drm_file *file)
1588 {
1589 	struct drm_i915_gem_mmap_gtt *args = data;
1590 
1591 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1592 }
1593 
1594 /* Immediately discard the backing storage */
1595 static void
1596 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1597 {
1598 	struct inode *inode;
1599 
1600 	i915_gem_object_free_mmap_offset(obj);
1601 
1602 	if (obj->base.filp == NULL)
1603 		return;
1604 
1605 	/* Our goal here is to return as much of the memory as
1606 	 * is possible back to the system as we are called from OOM.
1607 	 * To do this we must instruct the shmfs to drop all of its
1608 	 * backing pages, *now*.
1609 	 */
1610 	inode = file_inode(obj->base.filp);
1611 	shmem_truncate_range(inode, 0, (loff_t)-1);
1612 
1613 	obj->madv = __I915_MADV_PURGED;
1614 }
1615 
1616 static inline int
1617 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1618 {
1619 	return obj->madv == I915_MADV_DONTNEED;
1620 }
1621 
1622 static void
1623 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1624 {
1625 	struct sg_page_iter sg_iter;
1626 	int ret;
1627 
1628 	BUG_ON(obj->madv == __I915_MADV_PURGED);
1629 
1630 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1631 	if (ret) {
1632 		/* In the event of a disaster, abandon all caches and
1633 		 * hope for the best.
1634 		 */
1635 		WARN_ON(ret != -EIO);
1636 		i915_gem_clflush_object(obj);
1637 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1638 	}
1639 
1640 	if (i915_gem_object_needs_bit17_swizzle(obj))
1641 		i915_gem_object_save_bit_17_swizzle(obj);
1642 
1643 	if (obj->madv == I915_MADV_DONTNEED)
1644 		obj->dirty = 0;
1645 
1646 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1647 		struct page *page = sg_page_iter_page(&sg_iter);
1648 
1649 		if (obj->dirty)
1650 			set_page_dirty(page);
1651 
1652 		if (obj->madv == I915_MADV_WILLNEED)
1653 			mark_page_accessed(page);
1654 
1655 		page_cache_release(page);
1656 	}
1657 	obj->dirty = 0;
1658 
1659 	sg_free_table(obj->pages);
1660 	kfree(obj->pages);
1661 }
1662 
1663 int
1664 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1665 {
1666 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1667 
1668 	if (obj->pages == NULL)
1669 		return 0;
1670 
1671 	BUG_ON(obj->gtt_space);
1672 
1673 	if (obj->pages_pin_count)
1674 		return -EBUSY;
1675 
1676 	/* ->put_pages might need to allocate memory for the bit17 swizzle
1677 	 * array, hence protect them from being reaped by removing them from gtt
1678 	 * lists early. */
1679 	list_del(&obj->gtt_list);
1680 
1681 	ops->put_pages(obj);
1682 	obj->pages = NULL;
1683 
1684 	if (i915_gem_object_is_purgeable(obj))
1685 		i915_gem_object_truncate(obj);
1686 
1687 	return 0;
1688 }
1689 
1690 static long
1691 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1692 		  bool purgeable_only)
1693 {
1694 	struct drm_i915_gem_object *obj, *next;
1695 	long count = 0;
1696 
1697 	list_for_each_entry_safe(obj, next,
1698 				 &dev_priv->mm.unbound_list,
1699 				 gtt_list) {
1700 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1701 		    i915_gem_object_put_pages(obj) == 0) {
1702 			count += obj->base.size >> PAGE_SHIFT;
1703 			if (count >= target)
1704 				return count;
1705 		}
1706 	}
1707 
1708 	list_for_each_entry_safe(obj, next,
1709 				 &dev_priv->mm.inactive_list,
1710 				 mm_list) {
1711 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1712 		    i915_gem_object_unbind(obj) == 0 &&
1713 		    i915_gem_object_put_pages(obj) == 0) {
1714 			count += obj->base.size >> PAGE_SHIFT;
1715 			if (count >= target)
1716 				return count;
1717 		}
1718 	}
1719 
1720 	return count;
1721 }
1722 
1723 static long
1724 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1725 {
1726 	return __i915_gem_shrink(dev_priv, target, true);
1727 }
1728 
1729 static void
1730 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1731 {
1732 	struct drm_i915_gem_object *obj, *next;
1733 
1734 	i915_gem_evict_everything(dev_priv->dev);
1735 
1736 	list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1737 		i915_gem_object_put_pages(obj);
1738 }
1739 
1740 static int
1741 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1742 {
1743 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1744 	int page_count, i;
1745 	struct address_space *mapping;
1746 	struct sg_table *st;
1747 	struct scatterlist *sg;
1748 	struct sg_page_iter sg_iter;
1749 	struct page *page;
1750 	unsigned long last_pfn = 0;	/* suppress gcc warning */
1751 	gfp_t gfp;
1752 
1753 	/* Assert that the object is not currently in any GPU domain. As it
1754 	 * wasn't in the GTT, there shouldn't be any way it could have been in
1755 	 * a GPU cache
1756 	 */
1757 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1758 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1759 
1760 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1761 	if (st == NULL)
1762 		return -ENOMEM;
1763 
1764 	page_count = obj->base.size / PAGE_SIZE;
1765 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1766 		sg_free_table(st);
1767 		kfree(st);
1768 		return -ENOMEM;
1769 	}
1770 
1771 	/* Get the list of pages out of our struct file.  They'll be pinned
1772 	 * at this point until we release them.
1773 	 *
1774 	 * Fail silently without starting the shrinker
1775 	 */
1776 	mapping = file_inode(obj->base.filp)->i_mapping;
1777 	gfp = mapping_gfp_mask(mapping);
1778 	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1779 	gfp &= ~(__GFP_IO | __GFP_WAIT);
1780 	sg = st->sgl;
1781 	st->nents = 0;
1782 	for (i = 0; i < page_count; i++) {
1783 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1784 		if (IS_ERR(page)) {
1785 			i915_gem_purge(dev_priv, page_count);
1786 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1787 		}
1788 		if (IS_ERR(page)) {
1789 			/* We've tried hard to allocate the memory by reaping
1790 			 * our own buffer, now let the real VM do its job and
1791 			 * go down in flames if truly OOM.
1792 			 */
1793 			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1794 			gfp |= __GFP_IO | __GFP_WAIT;
1795 
1796 			i915_gem_shrink_all(dev_priv);
1797 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1798 			if (IS_ERR(page))
1799 				goto err_pages;
1800 
1801 			gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1802 			gfp &= ~(__GFP_IO | __GFP_WAIT);
1803 		}
1804 
1805 		if (!i || page_to_pfn(page) != last_pfn + 1) {
1806 			if (i)
1807 				sg = sg_next(sg);
1808 			st->nents++;
1809 			sg_set_page(sg, page, PAGE_SIZE, 0);
1810 		} else {
1811 			sg->length += PAGE_SIZE;
1812 		}
1813 		last_pfn = page_to_pfn(page);
1814 	}
1815 
1816 	sg_mark_end(sg);
1817 	obj->pages = st;
1818 
1819 	if (i915_gem_object_needs_bit17_swizzle(obj))
1820 		i915_gem_object_do_bit_17_swizzle(obj);
1821 
1822 	return 0;
1823 
1824 err_pages:
1825 	sg_mark_end(sg);
1826 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1827 		page_cache_release(sg_page_iter_page(&sg_iter));
1828 	sg_free_table(st);
1829 	kfree(st);
1830 	return PTR_ERR(page);
1831 }
1832 
1833 /* Ensure that the associated pages are gathered from the backing storage
1834  * and pinned into our object. i915_gem_object_get_pages() may be called
1835  * multiple times before they are released by a single call to
1836  * i915_gem_object_put_pages() - once the pages are no longer referenced
1837  * either as a result of memory pressure (reaping pages under the shrinker)
1838  * or as the object is itself released.
1839  */
1840 int
1841 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1842 {
1843 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1844 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1845 	int ret;
1846 
1847 	if (obj->pages)
1848 		return 0;
1849 
1850 	if (obj->madv != I915_MADV_WILLNEED) {
1851 		DRM_ERROR("Attempting to obtain a purgeable object\n");
1852 		return -EINVAL;
1853 	}
1854 
1855 	BUG_ON(obj->pages_pin_count);
1856 
1857 	ret = ops->get_pages(obj);
1858 	if (ret)
1859 		return ret;
1860 
1861 	list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1862 	return 0;
1863 }
1864 
1865 void
1866 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1867 			       struct intel_ring_buffer *ring)
1868 {
1869 	struct drm_device *dev = obj->base.dev;
1870 	struct drm_i915_private *dev_priv = dev->dev_private;
1871 	u32 seqno = intel_ring_get_seqno(ring);
1872 
1873 	BUG_ON(ring == NULL);
1874 	obj->ring = ring;
1875 
1876 	/* Add a reference if we're newly entering the active list. */
1877 	if (!obj->active) {
1878 		drm_gem_object_reference(&obj->base);
1879 		obj->active = 1;
1880 	}
1881 
1882 	/* Move from whatever list we were on to the tail of execution. */
1883 	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1884 	list_move_tail(&obj->ring_list, &ring->active_list);
1885 
1886 	obj->last_read_seqno = seqno;
1887 
1888 	if (obj->fenced_gpu_access) {
1889 		obj->last_fenced_seqno = seqno;
1890 
1891 		/* Bump MRU to take account of the delayed flush */
1892 		if (obj->fence_reg != I915_FENCE_REG_NONE) {
1893 			struct drm_i915_fence_reg *reg;
1894 
1895 			reg = &dev_priv->fence_regs[obj->fence_reg];
1896 			list_move_tail(&reg->lru_list,
1897 				       &dev_priv->mm.fence_list);
1898 		}
1899 	}
1900 }
1901 
1902 static void
1903 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1904 {
1905 	struct drm_device *dev = obj->base.dev;
1906 	struct drm_i915_private *dev_priv = dev->dev_private;
1907 
1908 	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1909 	BUG_ON(!obj->active);
1910 
1911 	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1912 
1913 	list_del_init(&obj->ring_list);
1914 	obj->ring = NULL;
1915 
1916 	obj->last_read_seqno = 0;
1917 	obj->last_write_seqno = 0;
1918 	obj->base.write_domain = 0;
1919 
1920 	obj->last_fenced_seqno = 0;
1921 	obj->fenced_gpu_access = false;
1922 
1923 	obj->active = 0;
1924 	drm_gem_object_unreference(&obj->base);
1925 
1926 	WARN_ON(i915_verify_lists(dev));
1927 }
1928 
1929 static int
1930 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1931 {
1932 	struct drm_i915_private *dev_priv = dev->dev_private;
1933 	struct intel_ring_buffer *ring;
1934 	int ret, i, j;
1935 
1936 	/* Carefully retire all requests without writing to the rings */
1937 	for_each_ring(ring, dev_priv, i) {
1938 		ret = intel_ring_idle(ring);
1939 		if (ret)
1940 			return ret;
1941 	}
1942 	i915_gem_retire_requests(dev);
1943 
1944 	/* Finally reset hw state */
1945 	for_each_ring(ring, dev_priv, i) {
1946 		intel_ring_init_seqno(ring, seqno);
1947 
1948 		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1949 			ring->sync_seqno[j] = 0;
1950 	}
1951 
1952 	return 0;
1953 }
1954 
1955 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1956 {
1957 	struct drm_i915_private *dev_priv = dev->dev_private;
1958 	int ret;
1959 
1960 	if (seqno == 0)
1961 		return -EINVAL;
1962 
1963 	/* HWS page needs to be set less than what we
1964 	 * will inject to ring
1965 	 */
1966 	ret = i915_gem_init_seqno(dev, seqno - 1);
1967 	if (ret)
1968 		return ret;
1969 
1970 	/* Carefully set the last_seqno value so that wrap
1971 	 * detection still works
1972 	 */
1973 	dev_priv->next_seqno = seqno;
1974 	dev_priv->last_seqno = seqno - 1;
1975 	if (dev_priv->last_seqno == 0)
1976 		dev_priv->last_seqno--;
1977 
1978 	return 0;
1979 }
1980 
1981 int
1982 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1983 {
1984 	struct drm_i915_private *dev_priv = dev->dev_private;
1985 
1986 	/* reserve 0 for non-seqno */
1987 	if (dev_priv->next_seqno == 0) {
1988 		int ret = i915_gem_init_seqno(dev, 0);
1989 		if (ret)
1990 			return ret;
1991 
1992 		dev_priv->next_seqno = 1;
1993 	}
1994 
1995 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
1996 	return 0;
1997 }
1998 
1999 int
2000 i915_add_request(struct intel_ring_buffer *ring,
2001 		 struct drm_file *file,
2002 		 u32 *out_seqno)
2003 {
2004 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
2005 	struct drm_i915_gem_request *request;
2006 	u32 request_ring_position;
2007 	int was_empty;
2008 	int ret;
2009 
2010 	/*
2011 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2012 	 * after having emitted the batchbuffer command. Hence we need to fix
2013 	 * things up similar to emitting the lazy request. The difference here
2014 	 * is that the flush _must_ happen before the next request, no matter
2015 	 * what.
2016 	 */
2017 	ret = intel_ring_flush_all_caches(ring);
2018 	if (ret)
2019 		return ret;
2020 
2021 	request = kmalloc(sizeof(*request), GFP_KERNEL);
2022 	if (request == NULL)
2023 		return -ENOMEM;
2024 
2025 
2026 	/* Record the position of the start of the request so that
2027 	 * should we detect the updated seqno part-way through the
2028 	 * GPU processing the request, we never over-estimate the
2029 	 * position of the head.
2030 	 */
2031 	request_ring_position = intel_ring_get_tail(ring);
2032 
2033 	ret = ring->add_request(ring);
2034 	if (ret) {
2035 		kfree(request);
2036 		return ret;
2037 	}
2038 
2039 	request->seqno = intel_ring_get_seqno(ring);
2040 	request->ring = ring;
2041 	request->tail = request_ring_position;
2042 	request->emitted_jiffies = jiffies;
2043 	was_empty = list_empty(&ring->request_list);
2044 	list_add_tail(&request->list, &ring->request_list);
2045 	request->file_priv = NULL;
2046 
2047 	if (file) {
2048 		struct drm_i915_file_private *file_priv = file->driver_priv;
2049 
2050 		spin_lock(&file_priv->mm.lock);
2051 		request->file_priv = file_priv;
2052 		list_add_tail(&request->client_list,
2053 			      &file_priv->mm.request_list);
2054 		spin_unlock(&file_priv->mm.lock);
2055 	}
2056 
2057 	trace_i915_gem_request_add(ring, request->seqno);
2058 	ring->outstanding_lazy_request = 0;
2059 
2060 	if (!dev_priv->mm.suspended) {
2061 		if (i915_enable_hangcheck) {
2062 			mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2063 				  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2064 		}
2065 		if (was_empty) {
2066 			queue_delayed_work(dev_priv->wq,
2067 					   &dev_priv->mm.retire_work,
2068 					   round_jiffies_up_relative(HZ));
2069 			intel_mark_busy(dev_priv->dev);
2070 		}
2071 	}
2072 
2073 	if (out_seqno)
2074 		*out_seqno = request->seqno;
2075 	return 0;
2076 }
2077 
2078 static inline void
2079 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2080 {
2081 	struct drm_i915_file_private *file_priv = request->file_priv;
2082 
2083 	if (!file_priv)
2084 		return;
2085 
2086 	spin_lock(&file_priv->mm.lock);
2087 	if (request->file_priv) {
2088 		list_del(&request->client_list);
2089 		request->file_priv = NULL;
2090 	}
2091 	spin_unlock(&file_priv->mm.lock);
2092 }
2093 
2094 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2095 				      struct intel_ring_buffer *ring)
2096 {
2097 	while (!list_empty(&ring->request_list)) {
2098 		struct drm_i915_gem_request *request;
2099 
2100 		request = list_first_entry(&ring->request_list,
2101 					   struct drm_i915_gem_request,
2102 					   list);
2103 
2104 		list_del(&request->list);
2105 		i915_gem_request_remove_from_client(request);
2106 		kfree(request);
2107 	}
2108 
2109 	while (!list_empty(&ring->active_list)) {
2110 		struct drm_i915_gem_object *obj;
2111 
2112 		obj = list_first_entry(&ring->active_list,
2113 				       struct drm_i915_gem_object,
2114 				       ring_list);
2115 
2116 		i915_gem_object_move_to_inactive(obj);
2117 	}
2118 }
2119 
2120 static void i915_gem_reset_fences(struct drm_device *dev)
2121 {
2122 	struct drm_i915_private *dev_priv = dev->dev_private;
2123 	int i;
2124 
2125 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2126 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2127 
2128 		if (reg->obj)
2129 			i915_gem_object_fence_lost(reg->obj);
2130 
2131 		i915_gem_write_fence(dev, i, NULL);
2132 
2133 		reg->pin_count = 0;
2134 		reg->obj = NULL;
2135 		INIT_LIST_HEAD(&reg->lru_list);
2136 	}
2137 
2138 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2139 }
2140 
2141 void i915_gem_reset(struct drm_device *dev)
2142 {
2143 	struct drm_i915_private *dev_priv = dev->dev_private;
2144 	struct drm_i915_gem_object *obj;
2145 	struct intel_ring_buffer *ring;
2146 	int i;
2147 
2148 	for_each_ring(ring, dev_priv, i)
2149 		i915_gem_reset_ring_lists(dev_priv, ring);
2150 
2151 	/* Move everything out of the GPU domains to ensure we do any
2152 	 * necessary invalidation upon reuse.
2153 	 */
2154 	list_for_each_entry(obj,
2155 			    &dev_priv->mm.inactive_list,
2156 			    mm_list)
2157 	{
2158 		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2159 	}
2160 
2161 	/* The fence registers are invalidated so clear them out */
2162 	i915_gem_reset_fences(dev);
2163 }
2164 
2165 /**
2166  * This function clears the request list as sequence numbers are passed.
2167  */
2168 void
2169 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2170 {
2171 	uint32_t seqno;
2172 
2173 	if (list_empty(&ring->request_list))
2174 		return;
2175 
2176 	WARN_ON(i915_verify_lists(ring->dev));
2177 
2178 	seqno = ring->get_seqno(ring, true);
2179 
2180 	while (!list_empty(&ring->request_list)) {
2181 		struct drm_i915_gem_request *request;
2182 
2183 		request = list_first_entry(&ring->request_list,
2184 					   struct drm_i915_gem_request,
2185 					   list);
2186 
2187 		if (!i915_seqno_passed(seqno, request->seqno))
2188 			break;
2189 
2190 		trace_i915_gem_request_retire(ring, request->seqno);
2191 		/* We know the GPU must have read the request to have
2192 		 * sent us the seqno + interrupt, so use the position
2193 		 * of tail of the request to update the last known position
2194 		 * of the GPU head.
2195 		 */
2196 		ring->last_retired_head = request->tail;
2197 
2198 		list_del(&request->list);
2199 		i915_gem_request_remove_from_client(request);
2200 		kfree(request);
2201 	}
2202 
2203 	/* Move any buffers on the active list that are no longer referenced
2204 	 * by the ringbuffer to the flushing/inactive lists as appropriate.
2205 	 */
2206 	while (!list_empty(&ring->active_list)) {
2207 		struct drm_i915_gem_object *obj;
2208 
2209 		obj = list_first_entry(&ring->active_list,
2210 				      struct drm_i915_gem_object,
2211 				      ring_list);
2212 
2213 		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2214 			break;
2215 
2216 		i915_gem_object_move_to_inactive(obj);
2217 	}
2218 
2219 	if (unlikely(ring->trace_irq_seqno &&
2220 		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2221 		ring->irq_put(ring);
2222 		ring->trace_irq_seqno = 0;
2223 	}
2224 
2225 	WARN_ON(i915_verify_lists(ring->dev));
2226 }
2227 
2228 void
2229 i915_gem_retire_requests(struct drm_device *dev)
2230 {
2231 	drm_i915_private_t *dev_priv = dev->dev_private;
2232 	struct intel_ring_buffer *ring;
2233 	int i;
2234 
2235 	for_each_ring(ring, dev_priv, i)
2236 		i915_gem_retire_requests_ring(ring);
2237 }
2238 
2239 static void
2240 i915_gem_retire_work_handler(struct work_struct *work)
2241 {
2242 	drm_i915_private_t *dev_priv;
2243 	struct drm_device *dev;
2244 	struct intel_ring_buffer *ring;
2245 	bool idle;
2246 	int i;
2247 
2248 	dev_priv = container_of(work, drm_i915_private_t,
2249 				mm.retire_work.work);
2250 	dev = dev_priv->dev;
2251 
2252 	/* Come back later if the device is busy... */
2253 	if (!mutex_trylock(&dev->struct_mutex)) {
2254 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2255 				   round_jiffies_up_relative(HZ));
2256 		return;
2257 	}
2258 
2259 	i915_gem_retire_requests(dev);
2260 
2261 	/* Send a periodic flush down the ring so we don't hold onto GEM
2262 	 * objects indefinitely.
2263 	 */
2264 	idle = true;
2265 	for_each_ring(ring, dev_priv, i) {
2266 		if (ring->gpu_caches_dirty)
2267 			i915_add_request(ring, NULL, NULL);
2268 
2269 		idle &= list_empty(&ring->request_list);
2270 	}
2271 
2272 	if (!dev_priv->mm.suspended && !idle)
2273 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2274 				   round_jiffies_up_relative(HZ));
2275 	if (idle)
2276 		intel_mark_idle(dev);
2277 
2278 	mutex_unlock(&dev->struct_mutex);
2279 }
2280 
2281 /**
2282  * Ensures that an object will eventually get non-busy by flushing any required
2283  * write domains, emitting any outstanding lazy request and retiring and
2284  * completed requests.
2285  */
2286 static int
2287 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2288 {
2289 	int ret;
2290 
2291 	if (obj->active) {
2292 		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2293 		if (ret)
2294 			return ret;
2295 
2296 		i915_gem_retire_requests_ring(obj->ring);
2297 	}
2298 
2299 	return 0;
2300 }
2301 
2302 /**
2303  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2304  * @DRM_IOCTL_ARGS: standard ioctl arguments
2305  *
2306  * Returns 0 if successful, else an error is returned with the remaining time in
2307  * the timeout parameter.
2308  *  -ETIME: object is still busy after timeout
2309  *  -ERESTARTSYS: signal interrupted the wait
2310  *  -ENONENT: object doesn't exist
2311  * Also possible, but rare:
2312  *  -EAGAIN: GPU wedged
2313  *  -ENOMEM: damn
2314  *  -ENODEV: Internal IRQ fail
2315  *  -E?: The add request failed
2316  *
2317  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2318  * non-zero timeout parameter the wait ioctl will wait for the given number of
2319  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2320  * without holding struct_mutex the object may become re-busied before this
2321  * function completes. A similar but shorter * race condition exists in the busy
2322  * ioctl
2323  */
2324 int
2325 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2326 {
2327 	drm_i915_private_t *dev_priv = dev->dev_private;
2328 	struct drm_i915_gem_wait *args = data;
2329 	struct drm_i915_gem_object *obj;
2330 	struct intel_ring_buffer *ring = NULL;
2331 	struct timespec timeout_stack, *timeout = NULL;
2332 	unsigned reset_counter;
2333 	u32 seqno = 0;
2334 	int ret = 0;
2335 
2336 	if (args->timeout_ns >= 0) {
2337 		timeout_stack = ns_to_timespec(args->timeout_ns);
2338 		timeout = &timeout_stack;
2339 	}
2340 
2341 	ret = i915_mutex_lock_interruptible(dev);
2342 	if (ret)
2343 		return ret;
2344 
2345 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2346 	if (&obj->base == NULL) {
2347 		mutex_unlock(&dev->struct_mutex);
2348 		return -ENOENT;
2349 	}
2350 
2351 	/* Need to make sure the object gets inactive eventually. */
2352 	ret = i915_gem_object_flush_active(obj);
2353 	if (ret)
2354 		goto out;
2355 
2356 	if (obj->active) {
2357 		seqno = obj->last_read_seqno;
2358 		ring = obj->ring;
2359 	}
2360 
2361 	if (seqno == 0)
2362 		 goto out;
2363 
2364 	/* Do this after OLR check to make sure we make forward progress polling
2365 	 * on this IOCTL with a 0 timeout (like busy ioctl)
2366 	 */
2367 	if (!args->timeout_ns) {
2368 		ret = -ETIME;
2369 		goto out;
2370 	}
2371 
2372 	drm_gem_object_unreference(&obj->base);
2373 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2374 	mutex_unlock(&dev->struct_mutex);
2375 
2376 	ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2377 	if (timeout)
2378 		args->timeout_ns = timespec_to_ns(timeout);
2379 	return ret;
2380 
2381 out:
2382 	drm_gem_object_unreference(&obj->base);
2383 	mutex_unlock(&dev->struct_mutex);
2384 	return ret;
2385 }
2386 
2387 /**
2388  * i915_gem_object_sync - sync an object to a ring.
2389  *
2390  * @obj: object which may be in use on another ring.
2391  * @to: ring we wish to use the object on. May be NULL.
2392  *
2393  * This code is meant to abstract object synchronization with the GPU.
2394  * Calling with NULL implies synchronizing the object with the CPU
2395  * rather than a particular GPU ring.
2396  *
2397  * Returns 0 if successful, else propagates up the lower layer error.
2398  */
2399 int
2400 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2401 		     struct intel_ring_buffer *to)
2402 {
2403 	struct intel_ring_buffer *from = obj->ring;
2404 	u32 seqno;
2405 	int ret, idx;
2406 
2407 	if (from == NULL || to == from)
2408 		return 0;
2409 
2410 	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2411 		return i915_gem_object_wait_rendering(obj, false);
2412 
2413 	idx = intel_ring_sync_index(from, to);
2414 
2415 	seqno = obj->last_read_seqno;
2416 	if (seqno <= from->sync_seqno[idx])
2417 		return 0;
2418 
2419 	ret = i915_gem_check_olr(obj->ring, seqno);
2420 	if (ret)
2421 		return ret;
2422 
2423 	ret = to->sync_to(to, from, seqno);
2424 	if (!ret)
2425 		/* We use last_read_seqno because sync_to()
2426 		 * might have just caused seqno wrap under
2427 		 * the radar.
2428 		 */
2429 		from->sync_seqno[idx] = obj->last_read_seqno;
2430 
2431 	return ret;
2432 }
2433 
2434 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2435 {
2436 	u32 old_write_domain, old_read_domains;
2437 
2438 	/* Force a pagefault for domain tracking on next user access */
2439 	i915_gem_release_mmap(obj);
2440 
2441 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2442 		return;
2443 
2444 	/* Wait for any direct GTT access to complete */
2445 	mb();
2446 
2447 	old_read_domains = obj->base.read_domains;
2448 	old_write_domain = obj->base.write_domain;
2449 
2450 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2451 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2452 
2453 	trace_i915_gem_object_change_domain(obj,
2454 					    old_read_domains,
2455 					    old_write_domain);
2456 }
2457 
2458 /**
2459  * Unbinds an object from the GTT aperture.
2460  */
2461 int
2462 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2463 {
2464 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2465 	int ret;
2466 
2467 	if (obj->gtt_space == NULL)
2468 		return 0;
2469 
2470 	if (obj->pin_count)
2471 		return -EBUSY;
2472 
2473 	BUG_ON(obj->pages == NULL);
2474 
2475 	ret = i915_gem_object_finish_gpu(obj);
2476 	if (ret)
2477 		return ret;
2478 	/* Continue on if we fail due to EIO, the GPU is hung so we
2479 	 * should be safe and we need to cleanup or else we might
2480 	 * cause memory corruption through use-after-free.
2481 	 */
2482 
2483 	i915_gem_object_finish_gtt(obj);
2484 
2485 	/* release the fence reg _after_ flushing */
2486 	ret = i915_gem_object_put_fence(obj);
2487 	if (ret)
2488 		return ret;
2489 
2490 	trace_i915_gem_object_unbind(obj);
2491 
2492 	if (obj->has_global_gtt_mapping)
2493 		i915_gem_gtt_unbind_object(obj);
2494 	if (obj->has_aliasing_ppgtt_mapping) {
2495 		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2496 		obj->has_aliasing_ppgtt_mapping = 0;
2497 	}
2498 	i915_gem_gtt_finish_object(obj);
2499 
2500 	list_del(&obj->mm_list);
2501 	list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2502 	/* Avoid an unnecessary call to unbind on rebind. */
2503 	obj->map_and_fenceable = true;
2504 
2505 	drm_mm_put_block(obj->gtt_space);
2506 	obj->gtt_space = NULL;
2507 	obj->gtt_offset = 0;
2508 
2509 	return 0;
2510 }
2511 
2512 int i915_gpu_idle(struct drm_device *dev)
2513 {
2514 	drm_i915_private_t *dev_priv = dev->dev_private;
2515 	struct intel_ring_buffer *ring;
2516 	int ret, i;
2517 
2518 	/* Flush everything onto the inactive list. */
2519 	for_each_ring(ring, dev_priv, i) {
2520 		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2521 		if (ret)
2522 			return ret;
2523 
2524 		ret = intel_ring_idle(ring);
2525 		if (ret)
2526 			return ret;
2527 	}
2528 
2529 	return 0;
2530 }
2531 
2532 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2533 				 struct drm_i915_gem_object *obj)
2534 {
2535 	drm_i915_private_t *dev_priv = dev->dev_private;
2536 	int fence_reg;
2537 	int fence_pitch_shift;
2538 	uint64_t val;
2539 
2540 	if (INTEL_INFO(dev)->gen >= 6) {
2541 		fence_reg = FENCE_REG_SANDYBRIDGE_0;
2542 		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2543 	} else {
2544 		fence_reg = FENCE_REG_965_0;
2545 		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2546 	}
2547 
2548 	if (obj) {
2549 		u32 size = obj->gtt_space->size;
2550 
2551 		val = (uint64_t)((obj->gtt_offset + size - 4096) &
2552 				 0xfffff000) << 32;
2553 		val |= obj->gtt_offset & 0xfffff000;
2554 		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2555 		if (obj->tiling_mode == I915_TILING_Y)
2556 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2557 		val |= I965_FENCE_REG_VALID;
2558 	} else
2559 		val = 0;
2560 
2561 	fence_reg += reg * 8;
2562 	I915_WRITE64(fence_reg, val);
2563 	POSTING_READ(fence_reg);
2564 }
2565 
2566 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2567 				 struct drm_i915_gem_object *obj)
2568 {
2569 	drm_i915_private_t *dev_priv = dev->dev_private;
2570 	u32 val;
2571 
2572 	if (obj) {
2573 		u32 size = obj->gtt_space->size;
2574 		int pitch_val;
2575 		int tile_width;
2576 
2577 		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2578 		     (size & -size) != size ||
2579 		     (obj->gtt_offset & (size - 1)),
2580 		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2581 		     obj->gtt_offset, obj->map_and_fenceable, size);
2582 
2583 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2584 			tile_width = 128;
2585 		else
2586 			tile_width = 512;
2587 
2588 		/* Note: pitch better be a power of two tile widths */
2589 		pitch_val = obj->stride / tile_width;
2590 		pitch_val = ffs(pitch_val) - 1;
2591 
2592 		val = obj->gtt_offset;
2593 		if (obj->tiling_mode == I915_TILING_Y)
2594 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2595 		val |= I915_FENCE_SIZE_BITS(size);
2596 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2597 		val |= I830_FENCE_REG_VALID;
2598 	} else
2599 		val = 0;
2600 
2601 	if (reg < 8)
2602 		reg = FENCE_REG_830_0 + reg * 4;
2603 	else
2604 		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2605 
2606 	I915_WRITE(reg, val);
2607 	POSTING_READ(reg);
2608 }
2609 
2610 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2611 				struct drm_i915_gem_object *obj)
2612 {
2613 	drm_i915_private_t *dev_priv = dev->dev_private;
2614 	uint32_t val;
2615 
2616 	if (obj) {
2617 		u32 size = obj->gtt_space->size;
2618 		uint32_t pitch_val;
2619 
2620 		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2621 		     (size & -size) != size ||
2622 		     (obj->gtt_offset & (size - 1)),
2623 		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2624 		     obj->gtt_offset, size);
2625 
2626 		pitch_val = obj->stride / 128;
2627 		pitch_val = ffs(pitch_val) - 1;
2628 
2629 		val = obj->gtt_offset;
2630 		if (obj->tiling_mode == I915_TILING_Y)
2631 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2632 		val |= I830_FENCE_SIZE_BITS(size);
2633 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2634 		val |= I830_FENCE_REG_VALID;
2635 	} else
2636 		val = 0;
2637 
2638 	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2639 	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2640 }
2641 
2642 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2643 {
2644 	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2645 }
2646 
2647 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2648 				 struct drm_i915_gem_object *obj)
2649 {
2650 	struct drm_i915_private *dev_priv = dev->dev_private;
2651 
2652 	/* Ensure that all CPU reads are completed before installing a fence
2653 	 * and all writes before removing the fence.
2654 	 */
2655 	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2656 		mb();
2657 
2658 	switch (INTEL_INFO(dev)->gen) {
2659 	case 7:
2660 	case 6:
2661 	case 5:
2662 	case 4: i965_write_fence_reg(dev, reg, obj); break;
2663 	case 3: i915_write_fence_reg(dev, reg, obj); break;
2664 	case 2: i830_write_fence_reg(dev, reg, obj); break;
2665 	default: BUG();
2666 	}
2667 
2668 	/* And similarly be paranoid that no direct access to this region
2669 	 * is reordered to before the fence is installed.
2670 	 */
2671 	if (i915_gem_object_needs_mb(obj))
2672 		mb();
2673 }
2674 
2675 static inline int fence_number(struct drm_i915_private *dev_priv,
2676 			       struct drm_i915_fence_reg *fence)
2677 {
2678 	return fence - dev_priv->fence_regs;
2679 }
2680 
2681 static void i915_gem_write_fence__ipi(void *data)
2682 {
2683 	wbinvd();
2684 }
2685 
2686 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2687 					 struct drm_i915_fence_reg *fence,
2688 					 bool enable)
2689 {
2690 	struct drm_device *dev = obj->base.dev;
2691 	struct drm_i915_private *dev_priv = dev->dev_private;
2692 	int fence_reg = fence_number(dev_priv, fence);
2693 
2694 	/* In order to fully serialize access to the fenced region and
2695 	 * the update to the fence register we need to take extreme
2696 	 * measures on SNB+. In theory, the write to the fence register
2697 	 * flushes all memory transactions before, and coupled with the
2698 	 * mb() placed around the register write we serialise all memory
2699 	 * operations with respect to the changes in the tiler. Yet, on
2700 	 * SNB+ we need to take a step further and emit an explicit wbinvd()
2701 	 * on each processor in order to manually flush all memory
2702 	 * transactions before updating the fence register.
2703 	 */
2704 	if (HAS_LLC(obj->base.dev))
2705 		on_each_cpu(i915_gem_write_fence__ipi, NULL, 1);
2706 	i915_gem_write_fence(dev, fence_reg, enable ? obj : NULL);
2707 
2708 	if (enable) {
2709 		obj->fence_reg = fence_reg;
2710 		fence->obj = obj;
2711 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2712 	} else {
2713 		obj->fence_reg = I915_FENCE_REG_NONE;
2714 		fence->obj = NULL;
2715 		list_del_init(&fence->lru_list);
2716 	}
2717 }
2718 
2719 static int
2720 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2721 {
2722 	if (obj->last_fenced_seqno) {
2723 		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2724 		if (ret)
2725 			return ret;
2726 
2727 		obj->last_fenced_seqno = 0;
2728 	}
2729 
2730 	obj->fenced_gpu_access = false;
2731 	return 0;
2732 }
2733 
2734 int
2735 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2736 {
2737 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2738 	struct drm_i915_fence_reg *fence;
2739 	int ret;
2740 
2741 	ret = i915_gem_object_wait_fence(obj);
2742 	if (ret)
2743 		return ret;
2744 
2745 	if (obj->fence_reg == I915_FENCE_REG_NONE)
2746 		return 0;
2747 
2748 	fence = &dev_priv->fence_regs[obj->fence_reg];
2749 
2750 	i915_gem_object_fence_lost(obj);
2751 	i915_gem_object_update_fence(obj, fence, false);
2752 
2753 	return 0;
2754 }
2755 
2756 static struct drm_i915_fence_reg *
2757 i915_find_fence_reg(struct drm_device *dev)
2758 {
2759 	struct drm_i915_private *dev_priv = dev->dev_private;
2760 	struct drm_i915_fence_reg *reg, *avail;
2761 	int i;
2762 
2763 	/* First try to find a free reg */
2764 	avail = NULL;
2765 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2766 		reg = &dev_priv->fence_regs[i];
2767 		if (!reg->obj)
2768 			return reg;
2769 
2770 		if (!reg->pin_count)
2771 			avail = reg;
2772 	}
2773 
2774 	if (avail == NULL)
2775 		return NULL;
2776 
2777 	/* None available, try to steal one or wait for a user to finish */
2778 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2779 		if (reg->pin_count)
2780 			continue;
2781 
2782 		return reg;
2783 	}
2784 
2785 	return NULL;
2786 }
2787 
2788 /**
2789  * i915_gem_object_get_fence - set up fencing for an object
2790  * @obj: object to map through a fence reg
2791  *
2792  * When mapping objects through the GTT, userspace wants to be able to write
2793  * to them without having to worry about swizzling if the object is tiled.
2794  * This function walks the fence regs looking for a free one for @obj,
2795  * stealing one if it can't find any.
2796  *
2797  * It then sets up the reg based on the object's properties: address, pitch
2798  * and tiling format.
2799  *
2800  * For an untiled surface, this removes any existing fence.
2801  */
2802 int
2803 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2804 {
2805 	struct drm_device *dev = obj->base.dev;
2806 	struct drm_i915_private *dev_priv = dev->dev_private;
2807 	bool enable = obj->tiling_mode != I915_TILING_NONE;
2808 	struct drm_i915_fence_reg *reg;
2809 	int ret;
2810 
2811 	/* Have we updated the tiling parameters upon the object and so
2812 	 * will need to serialise the write to the associated fence register?
2813 	 */
2814 	if (obj->fence_dirty) {
2815 		ret = i915_gem_object_wait_fence(obj);
2816 		if (ret)
2817 			return ret;
2818 	}
2819 
2820 	/* Just update our place in the LRU if our fence is getting reused. */
2821 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2822 		reg = &dev_priv->fence_regs[obj->fence_reg];
2823 		if (!obj->fence_dirty) {
2824 			list_move_tail(&reg->lru_list,
2825 				       &dev_priv->mm.fence_list);
2826 			return 0;
2827 		}
2828 	} else if (enable) {
2829 		reg = i915_find_fence_reg(dev);
2830 		if (reg == NULL)
2831 			return -EDEADLK;
2832 
2833 		if (reg->obj) {
2834 			struct drm_i915_gem_object *old = reg->obj;
2835 
2836 			ret = i915_gem_object_wait_fence(old);
2837 			if (ret)
2838 				return ret;
2839 
2840 			i915_gem_object_fence_lost(old);
2841 		}
2842 	} else
2843 		return 0;
2844 
2845 	i915_gem_object_update_fence(obj, reg, enable);
2846 	obj->fence_dirty = false;
2847 
2848 	return 0;
2849 }
2850 
2851 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2852 				     struct drm_mm_node *gtt_space,
2853 				     unsigned long cache_level)
2854 {
2855 	struct drm_mm_node *other;
2856 
2857 	/* On non-LLC machines we have to be careful when putting differing
2858 	 * types of snoopable memory together to avoid the prefetcher
2859 	 * crossing memory domains and dying.
2860 	 */
2861 	if (HAS_LLC(dev))
2862 		return true;
2863 
2864 	if (gtt_space == NULL)
2865 		return true;
2866 
2867 	if (list_empty(&gtt_space->node_list))
2868 		return true;
2869 
2870 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2871 	if (other->allocated && !other->hole_follows && other->color != cache_level)
2872 		return false;
2873 
2874 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2875 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2876 		return false;
2877 
2878 	return true;
2879 }
2880 
2881 static void i915_gem_verify_gtt(struct drm_device *dev)
2882 {
2883 #if WATCH_GTT
2884 	struct drm_i915_private *dev_priv = dev->dev_private;
2885 	struct drm_i915_gem_object *obj;
2886 	int err = 0;
2887 
2888 	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2889 		if (obj->gtt_space == NULL) {
2890 			printk(KERN_ERR "object found on GTT list with no space reserved\n");
2891 			err++;
2892 			continue;
2893 		}
2894 
2895 		if (obj->cache_level != obj->gtt_space->color) {
2896 			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2897 			       obj->gtt_space->start,
2898 			       obj->gtt_space->start + obj->gtt_space->size,
2899 			       obj->cache_level,
2900 			       obj->gtt_space->color);
2901 			err++;
2902 			continue;
2903 		}
2904 
2905 		if (!i915_gem_valid_gtt_space(dev,
2906 					      obj->gtt_space,
2907 					      obj->cache_level)) {
2908 			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2909 			       obj->gtt_space->start,
2910 			       obj->gtt_space->start + obj->gtt_space->size,
2911 			       obj->cache_level);
2912 			err++;
2913 			continue;
2914 		}
2915 	}
2916 
2917 	WARN_ON(err);
2918 #endif
2919 }
2920 
2921 /**
2922  * Finds free space in the GTT aperture and binds the object there.
2923  */
2924 static int
2925 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2926 			    unsigned alignment,
2927 			    bool map_and_fenceable,
2928 			    bool nonblocking)
2929 {
2930 	struct drm_device *dev = obj->base.dev;
2931 	drm_i915_private_t *dev_priv = dev->dev_private;
2932 	struct drm_mm_node *node;
2933 	u32 size, fence_size, fence_alignment, unfenced_alignment;
2934 	bool mappable, fenceable;
2935 	int ret;
2936 
2937 	fence_size = i915_gem_get_gtt_size(dev,
2938 					   obj->base.size,
2939 					   obj->tiling_mode);
2940 	fence_alignment = i915_gem_get_gtt_alignment(dev,
2941 						     obj->base.size,
2942 						     obj->tiling_mode, true);
2943 	unfenced_alignment =
2944 		i915_gem_get_gtt_alignment(dev,
2945 						    obj->base.size,
2946 						    obj->tiling_mode, false);
2947 
2948 	if (alignment == 0)
2949 		alignment = map_and_fenceable ? fence_alignment :
2950 						unfenced_alignment;
2951 	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2952 		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2953 		return -EINVAL;
2954 	}
2955 
2956 	size = map_and_fenceable ? fence_size : obj->base.size;
2957 
2958 	/* If the object is bigger than the entire aperture, reject it early
2959 	 * before evicting everything in a vain attempt to find space.
2960 	 */
2961 	if (obj->base.size >
2962 	    (map_and_fenceable ? dev_priv->gtt.mappable_end : dev_priv->gtt.total)) {
2963 		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2964 		return -E2BIG;
2965 	}
2966 
2967 	ret = i915_gem_object_get_pages(obj);
2968 	if (ret)
2969 		return ret;
2970 
2971 	i915_gem_object_pin_pages(obj);
2972 
2973 	node = kzalloc(sizeof(*node), GFP_KERNEL);
2974 	if (node == NULL) {
2975 		i915_gem_object_unpin_pages(obj);
2976 		return -ENOMEM;
2977 	}
2978 
2979  search_free:
2980 	if (map_and_fenceable)
2981 		ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
2982 							  size, alignment, obj->cache_level,
2983 							  0, dev_priv->gtt.mappable_end);
2984 	else
2985 		ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2986 						 size, alignment, obj->cache_level);
2987 	if (ret) {
2988 		ret = i915_gem_evict_something(dev, size, alignment,
2989 					       obj->cache_level,
2990 					       map_and_fenceable,
2991 					       nonblocking);
2992 		if (ret == 0)
2993 			goto search_free;
2994 
2995 		i915_gem_object_unpin_pages(obj);
2996 		kfree(node);
2997 		return ret;
2998 	}
2999 	if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
3000 		i915_gem_object_unpin_pages(obj);
3001 		drm_mm_put_block(node);
3002 		return -EINVAL;
3003 	}
3004 
3005 	ret = i915_gem_gtt_prepare_object(obj);
3006 	if (ret) {
3007 		i915_gem_object_unpin_pages(obj);
3008 		drm_mm_put_block(node);
3009 		return ret;
3010 	}
3011 
3012 	list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
3013 	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3014 
3015 	obj->gtt_space = node;
3016 	obj->gtt_offset = node->start;
3017 
3018 	fenceable =
3019 		node->size == fence_size &&
3020 		(node->start & (fence_alignment - 1)) == 0;
3021 
3022 	mappable =
3023 		obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
3024 
3025 	obj->map_and_fenceable = mappable && fenceable;
3026 
3027 	i915_gem_object_unpin_pages(obj);
3028 	trace_i915_gem_object_bind(obj, map_and_fenceable);
3029 	i915_gem_verify_gtt(dev);
3030 	return 0;
3031 }
3032 
3033 void
3034 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3035 {
3036 	/* If we don't have a page list set up, then we're not pinned
3037 	 * to GPU, and we can ignore the cache flush because it'll happen
3038 	 * again at bind time.
3039 	 */
3040 	if (obj->pages == NULL)
3041 		return;
3042 
3043 	/*
3044 	 * Stolen memory is always coherent with the GPU as it is explicitly
3045 	 * marked as wc by the system, or the system is cache-coherent.
3046 	 */
3047 	if (obj->stolen)
3048 		return;
3049 
3050 	/* If the GPU is snooping the contents of the CPU cache,
3051 	 * we do not need to manually clear the CPU cache lines.  However,
3052 	 * the caches are only snooped when the render cache is
3053 	 * flushed/invalidated.  As we always have to emit invalidations
3054 	 * and flushes when moving into and out of the RENDER domain, correct
3055 	 * snooping behaviour occurs naturally as the result of our domain
3056 	 * tracking.
3057 	 */
3058 	if (obj->cache_level != I915_CACHE_NONE)
3059 		return;
3060 
3061 	trace_i915_gem_object_clflush(obj);
3062 
3063 	drm_clflush_sg(obj->pages);
3064 }
3065 
3066 /** Flushes the GTT write domain for the object if it's dirty. */
3067 static void
3068 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3069 {
3070 	uint32_t old_write_domain;
3071 
3072 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3073 		return;
3074 
3075 	/* No actual flushing is required for the GTT write domain.  Writes
3076 	 * to it immediately go to main memory as far as we know, so there's
3077 	 * no chipset flush.  It also doesn't land in render cache.
3078 	 *
3079 	 * However, we do have to enforce the order so that all writes through
3080 	 * the GTT land before any writes to the device, such as updates to
3081 	 * the GATT itself.
3082 	 */
3083 	wmb();
3084 
3085 	old_write_domain = obj->base.write_domain;
3086 	obj->base.write_domain = 0;
3087 
3088 	trace_i915_gem_object_change_domain(obj,
3089 					    obj->base.read_domains,
3090 					    old_write_domain);
3091 }
3092 
3093 /** Flushes the CPU write domain for the object if it's dirty. */
3094 static void
3095 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3096 {
3097 	uint32_t old_write_domain;
3098 
3099 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3100 		return;
3101 
3102 	i915_gem_clflush_object(obj);
3103 	i915_gem_chipset_flush(obj->base.dev);
3104 	old_write_domain = obj->base.write_domain;
3105 	obj->base.write_domain = 0;
3106 
3107 	trace_i915_gem_object_change_domain(obj,
3108 					    obj->base.read_domains,
3109 					    old_write_domain);
3110 }
3111 
3112 /**
3113  * Moves a single object to the GTT read, and possibly write domain.
3114  *
3115  * This function returns when the move is complete, including waiting on
3116  * flushes to occur.
3117  */
3118 int
3119 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3120 {
3121 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3122 	uint32_t old_write_domain, old_read_domains;
3123 	int ret;
3124 
3125 	/* Not valid to be called on unbound objects. */
3126 	if (obj->gtt_space == NULL)
3127 		return -EINVAL;
3128 
3129 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3130 		return 0;
3131 
3132 	ret = i915_gem_object_wait_rendering(obj, !write);
3133 	if (ret)
3134 		return ret;
3135 
3136 	i915_gem_object_flush_cpu_write_domain(obj);
3137 
3138 	/* Serialise direct access to this object with the barriers for
3139 	 * coherent writes from the GPU, by effectively invalidating the
3140 	 * GTT domain upon first access.
3141 	 */
3142 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3143 		mb();
3144 
3145 	old_write_domain = obj->base.write_domain;
3146 	old_read_domains = obj->base.read_domains;
3147 
3148 	/* It should now be out of any other write domains, and we can update
3149 	 * the domain values for our changes.
3150 	 */
3151 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3152 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3153 	if (write) {
3154 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3155 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3156 		obj->dirty = 1;
3157 	}
3158 
3159 	trace_i915_gem_object_change_domain(obj,
3160 					    old_read_domains,
3161 					    old_write_domain);
3162 
3163 	/* And bump the LRU for this access */
3164 	if (i915_gem_object_is_inactive(obj))
3165 		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3166 
3167 	return 0;
3168 }
3169 
3170 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3171 				    enum i915_cache_level cache_level)
3172 {
3173 	struct drm_device *dev = obj->base.dev;
3174 	drm_i915_private_t *dev_priv = dev->dev_private;
3175 	int ret;
3176 
3177 	if (obj->cache_level == cache_level)
3178 		return 0;
3179 
3180 	if (obj->pin_count) {
3181 		DRM_DEBUG("can not change the cache level of pinned objects\n");
3182 		return -EBUSY;
3183 	}
3184 
3185 	if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3186 		ret = i915_gem_object_unbind(obj);
3187 		if (ret)
3188 			return ret;
3189 	}
3190 
3191 	if (obj->gtt_space) {
3192 		ret = i915_gem_object_finish_gpu(obj);
3193 		if (ret)
3194 			return ret;
3195 
3196 		i915_gem_object_finish_gtt(obj);
3197 
3198 		/* Before SandyBridge, you could not use tiling or fence
3199 		 * registers with snooped memory, so relinquish any fences
3200 		 * currently pointing to our region in the aperture.
3201 		 */
3202 		if (INTEL_INFO(dev)->gen < 6) {
3203 			ret = i915_gem_object_put_fence(obj);
3204 			if (ret)
3205 				return ret;
3206 		}
3207 
3208 		if (obj->has_global_gtt_mapping)
3209 			i915_gem_gtt_bind_object(obj, cache_level);
3210 		if (obj->has_aliasing_ppgtt_mapping)
3211 			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3212 					       obj, cache_level);
3213 
3214 		obj->gtt_space->color = cache_level;
3215 	}
3216 
3217 	if (cache_level == I915_CACHE_NONE) {
3218 		u32 old_read_domains, old_write_domain;
3219 
3220 		/* If we're coming from LLC cached, then we haven't
3221 		 * actually been tracking whether the data is in the
3222 		 * CPU cache or not, since we only allow one bit set
3223 		 * in obj->write_domain and have been skipping the clflushes.
3224 		 * Just set it to the CPU cache for now.
3225 		 */
3226 		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3227 		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3228 
3229 		old_read_domains = obj->base.read_domains;
3230 		old_write_domain = obj->base.write_domain;
3231 
3232 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3233 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3234 
3235 		trace_i915_gem_object_change_domain(obj,
3236 						    old_read_domains,
3237 						    old_write_domain);
3238 	}
3239 
3240 	obj->cache_level = cache_level;
3241 	i915_gem_verify_gtt(dev);
3242 	return 0;
3243 }
3244 
3245 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3246 			       struct drm_file *file)
3247 {
3248 	struct drm_i915_gem_caching *args = data;
3249 	struct drm_i915_gem_object *obj;
3250 	int ret;
3251 
3252 	ret = i915_mutex_lock_interruptible(dev);
3253 	if (ret)
3254 		return ret;
3255 
3256 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3257 	if (&obj->base == NULL) {
3258 		ret = -ENOENT;
3259 		goto unlock;
3260 	}
3261 
3262 	args->caching = obj->cache_level != I915_CACHE_NONE;
3263 
3264 	drm_gem_object_unreference(&obj->base);
3265 unlock:
3266 	mutex_unlock(&dev->struct_mutex);
3267 	return ret;
3268 }
3269 
3270 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3271 			       struct drm_file *file)
3272 {
3273 	struct drm_i915_gem_caching *args = data;
3274 	struct drm_i915_gem_object *obj;
3275 	enum i915_cache_level level;
3276 	int ret;
3277 
3278 	switch (args->caching) {
3279 	case I915_CACHING_NONE:
3280 		level = I915_CACHE_NONE;
3281 		break;
3282 	case I915_CACHING_CACHED:
3283 		level = I915_CACHE_LLC;
3284 		break;
3285 	default:
3286 		return -EINVAL;
3287 	}
3288 
3289 	ret = i915_mutex_lock_interruptible(dev);
3290 	if (ret)
3291 		return ret;
3292 
3293 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3294 	if (&obj->base == NULL) {
3295 		ret = -ENOENT;
3296 		goto unlock;
3297 	}
3298 
3299 	ret = i915_gem_object_set_cache_level(obj, level);
3300 
3301 	drm_gem_object_unreference(&obj->base);
3302 unlock:
3303 	mutex_unlock(&dev->struct_mutex);
3304 	return ret;
3305 }
3306 
3307 /*
3308  * Prepare buffer for display plane (scanout, cursors, etc).
3309  * Can be called from an uninterruptible phase (modesetting) and allows
3310  * any flushes to be pipelined (for pageflips).
3311  */
3312 int
3313 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3314 				     u32 alignment,
3315 				     struct intel_ring_buffer *pipelined)
3316 {
3317 	u32 old_read_domains, old_write_domain;
3318 	int ret;
3319 
3320 	if (pipelined != obj->ring) {
3321 		ret = i915_gem_object_sync(obj, pipelined);
3322 		if (ret)
3323 			return ret;
3324 	}
3325 
3326 	/* The display engine is not coherent with the LLC cache on gen6.  As
3327 	 * a result, we make sure that the pinning that is about to occur is
3328 	 * done with uncached PTEs. This is lowest common denominator for all
3329 	 * chipsets.
3330 	 *
3331 	 * However for gen6+, we could do better by using the GFDT bit instead
3332 	 * of uncaching, which would allow us to flush all the LLC-cached data
3333 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3334 	 */
3335 	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3336 	if (ret)
3337 		return ret;
3338 
3339 	/* As the user may map the buffer once pinned in the display plane
3340 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3341 	 * always use map_and_fenceable for all scanout buffers.
3342 	 */
3343 	ret = i915_gem_object_pin(obj, alignment, true, false);
3344 	if (ret)
3345 		return ret;
3346 
3347 	i915_gem_object_flush_cpu_write_domain(obj);
3348 
3349 	old_write_domain = obj->base.write_domain;
3350 	old_read_domains = obj->base.read_domains;
3351 
3352 	/* It should now be out of any other write domains, and we can update
3353 	 * the domain values for our changes.
3354 	 */
3355 	obj->base.write_domain = 0;
3356 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3357 
3358 	trace_i915_gem_object_change_domain(obj,
3359 					    old_read_domains,
3360 					    old_write_domain);
3361 
3362 	return 0;
3363 }
3364 
3365 int
3366 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3367 {
3368 	int ret;
3369 
3370 	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3371 		return 0;
3372 
3373 	ret = i915_gem_object_wait_rendering(obj, false);
3374 	if (ret)
3375 		return ret;
3376 
3377 	/* Ensure that we invalidate the GPU's caches and TLBs. */
3378 	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3379 	return 0;
3380 }
3381 
3382 /**
3383  * Moves a single object to the CPU read, and possibly write domain.
3384  *
3385  * This function returns when the move is complete, including waiting on
3386  * flushes to occur.
3387  */
3388 int
3389 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3390 {
3391 	uint32_t old_write_domain, old_read_domains;
3392 	int ret;
3393 
3394 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3395 		return 0;
3396 
3397 	ret = i915_gem_object_wait_rendering(obj, !write);
3398 	if (ret)
3399 		return ret;
3400 
3401 	i915_gem_object_flush_gtt_write_domain(obj);
3402 
3403 	old_write_domain = obj->base.write_domain;
3404 	old_read_domains = obj->base.read_domains;
3405 
3406 	/* Flush the CPU cache if it's still invalid. */
3407 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3408 		i915_gem_clflush_object(obj);
3409 
3410 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3411 	}
3412 
3413 	/* It should now be out of any other write domains, and we can update
3414 	 * the domain values for our changes.
3415 	 */
3416 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3417 
3418 	/* If we're writing through the CPU, then the GPU read domains will
3419 	 * need to be invalidated at next use.
3420 	 */
3421 	if (write) {
3422 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3423 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3424 	}
3425 
3426 	trace_i915_gem_object_change_domain(obj,
3427 					    old_read_domains,
3428 					    old_write_domain);
3429 
3430 	return 0;
3431 }
3432 
3433 /* Throttle our rendering by waiting until the ring has completed our requests
3434  * emitted over 20 msec ago.
3435  *
3436  * Note that if we were to use the current jiffies each time around the loop,
3437  * we wouldn't escape the function with any frames outstanding if the time to
3438  * render a frame was over 20ms.
3439  *
3440  * This should get us reasonable parallelism between CPU and GPU but also
3441  * relatively low latency when blocking on a particular request to finish.
3442  */
3443 static int
3444 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3445 {
3446 	struct drm_i915_private *dev_priv = dev->dev_private;
3447 	struct drm_i915_file_private *file_priv = file->driver_priv;
3448 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3449 	struct drm_i915_gem_request *request;
3450 	struct intel_ring_buffer *ring = NULL;
3451 	unsigned reset_counter;
3452 	u32 seqno = 0;
3453 	int ret;
3454 
3455 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3456 	if (ret)
3457 		return ret;
3458 
3459 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3460 	if (ret)
3461 		return ret;
3462 
3463 	spin_lock(&file_priv->mm.lock);
3464 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3465 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3466 			break;
3467 
3468 		ring = request->ring;
3469 		seqno = request->seqno;
3470 	}
3471 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3472 	spin_unlock(&file_priv->mm.lock);
3473 
3474 	if (seqno == 0)
3475 		return 0;
3476 
3477 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3478 	if (ret == 0)
3479 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3480 
3481 	return ret;
3482 }
3483 
3484 int
3485 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3486 		    uint32_t alignment,
3487 		    bool map_and_fenceable,
3488 		    bool nonblocking)
3489 {
3490 	int ret;
3491 
3492 	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3493 		return -EBUSY;
3494 
3495 	if (obj->gtt_space != NULL) {
3496 		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3497 		    (map_and_fenceable && !obj->map_and_fenceable)) {
3498 			WARN(obj->pin_count,
3499 			     "bo is already pinned with incorrect alignment:"
3500 			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3501 			     " obj->map_and_fenceable=%d\n",
3502 			     obj->gtt_offset, alignment,
3503 			     map_and_fenceable,
3504 			     obj->map_and_fenceable);
3505 			ret = i915_gem_object_unbind(obj);
3506 			if (ret)
3507 				return ret;
3508 		}
3509 	}
3510 
3511 	if (obj->gtt_space == NULL) {
3512 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3513 
3514 		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3515 						  map_and_fenceable,
3516 						  nonblocking);
3517 		if (ret)
3518 			return ret;
3519 
3520 		if (!dev_priv->mm.aliasing_ppgtt)
3521 			i915_gem_gtt_bind_object(obj, obj->cache_level);
3522 	}
3523 
3524 	if (!obj->has_global_gtt_mapping && map_and_fenceable)
3525 		i915_gem_gtt_bind_object(obj, obj->cache_level);
3526 
3527 	obj->pin_count++;
3528 	obj->pin_mappable |= map_and_fenceable;
3529 
3530 	return 0;
3531 }
3532 
3533 void
3534 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3535 {
3536 	BUG_ON(obj->pin_count == 0);
3537 	BUG_ON(obj->gtt_space == NULL);
3538 
3539 	if (--obj->pin_count == 0)
3540 		obj->pin_mappable = false;
3541 }
3542 
3543 int
3544 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3545 		   struct drm_file *file)
3546 {
3547 	struct drm_i915_gem_pin *args = data;
3548 	struct drm_i915_gem_object *obj;
3549 	int ret;
3550 
3551 	ret = i915_mutex_lock_interruptible(dev);
3552 	if (ret)
3553 		return ret;
3554 
3555 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3556 	if (&obj->base == NULL) {
3557 		ret = -ENOENT;
3558 		goto unlock;
3559 	}
3560 
3561 	if (obj->madv != I915_MADV_WILLNEED) {
3562 		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3563 		ret = -EINVAL;
3564 		goto out;
3565 	}
3566 
3567 	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3568 		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3569 			  args->handle);
3570 		ret = -EINVAL;
3571 		goto out;
3572 	}
3573 
3574 	if (obj->user_pin_count == 0) {
3575 		ret = i915_gem_object_pin(obj, args->alignment, true, false);
3576 		if (ret)
3577 			goto out;
3578 	}
3579 
3580 	obj->user_pin_count++;
3581 	obj->pin_filp = file;
3582 
3583 	/* XXX - flush the CPU caches for pinned objects
3584 	 * as the X server doesn't manage domains yet
3585 	 */
3586 	i915_gem_object_flush_cpu_write_domain(obj);
3587 	args->offset = obj->gtt_offset;
3588 out:
3589 	drm_gem_object_unreference(&obj->base);
3590 unlock:
3591 	mutex_unlock(&dev->struct_mutex);
3592 	return ret;
3593 }
3594 
3595 int
3596 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3597 		     struct drm_file *file)
3598 {
3599 	struct drm_i915_gem_pin *args = data;
3600 	struct drm_i915_gem_object *obj;
3601 	int ret;
3602 
3603 	ret = i915_mutex_lock_interruptible(dev);
3604 	if (ret)
3605 		return ret;
3606 
3607 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3608 	if (&obj->base == NULL) {
3609 		ret = -ENOENT;
3610 		goto unlock;
3611 	}
3612 
3613 	if (obj->pin_filp != file) {
3614 		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3615 			  args->handle);
3616 		ret = -EINVAL;
3617 		goto out;
3618 	}
3619 	obj->user_pin_count--;
3620 	if (obj->user_pin_count == 0) {
3621 		obj->pin_filp = NULL;
3622 		i915_gem_object_unpin(obj);
3623 	}
3624 
3625 out:
3626 	drm_gem_object_unreference(&obj->base);
3627 unlock:
3628 	mutex_unlock(&dev->struct_mutex);
3629 	return ret;
3630 }
3631 
3632 int
3633 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3634 		    struct drm_file *file)
3635 {
3636 	struct drm_i915_gem_busy *args = data;
3637 	struct drm_i915_gem_object *obj;
3638 	int ret;
3639 
3640 	ret = i915_mutex_lock_interruptible(dev);
3641 	if (ret)
3642 		return ret;
3643 
3644 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3645 	if (&obj->base == NULL) {
3646 		ret = -ENOENT;
3647 		goto unlock;
3648 	}
3649 
3650 	/* Count all active objects as busy, even if they are currently not used
3651 	 * by the gpu. Users of this interface expect objects to eventually
3652 	 * become non-busy without any further actions, therefore emit any
3653 	 * necessary flushes here.
3654 	 */
3655 	ret = i915_gem_object_flush_active(obj);
3656 
3657 	args->busy = obj->active;
3658 	if (obj->ring) {
3659 		BUILD_BUG_ON(I915_NUM_RINGS > 16);
3660 		args->busy |= intel_ring_flag(obj->ring) << 16;
3661 	}
3662 
3663 	drm_gem_object_unreference(&obj->base);
3664 unlock:
3665 	mutex_unlock(&dev->struct_mutex);
3666 	return ret;
3667 }
3668 
3669 int
3670 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3671 			struct drm_file *file_priv)
3672 {
3673 	return i915_gem_ring_throttle(dev, file_priv);
3674 }
3675 
3676 int
3677 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3678 		       struct drm_file *file_priv)
3679 {
3680 	struct drm_i915_gem_madvise *args = data;
3681 	struct drm_i915_gem_object *obj;
3682 	int ret;
3683 
3684 	switch (args->madv) {
3685 	case I915_MADV_DONTNEED:
3686 	case I915_MADV_WILLNEED:
3687 	    break;
3688 	default:
3689 	    return -EINVAL;
3690 	}
3691 
3692 	ret = i915_mutex_lock_interruptible(dev);
3693 	if (ret)
3694 		return ret;
3695 
3696 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3697 	if (&obj->base == NULL) {
3698 		ret = -ENOENT;
3699 		goto unlock;
3700 	}
3701 
3702 	if (obj->pin_count) {
3703 		ret = -EINVAL;
3704 		goto out;
3705 	}
3706 
3707 	if (obj->madv != __I915_MADV_PURGED)
3708 		obj->madv = args->madv;
3709 
3710 	/* if the object is no longer attached, discard its backing storage */
3711 	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3712 		i915_gem_object_truncate(obj);
3713 
3714 	args->retained = obj->madv != __I915_MADV_PURGED;
3715 
3716 out:
3717 	drm_gem_object_unreference(&obj->base);
3718 unlock:
3719 	mutex_unlock(&dev->struct_mutex);
3720 	return ret;
3721 }
3722 
3723 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3724 			  const struct drm_i915_gem_object_ops *ops)
3725 {
3726 	INIT_LIST_HEAD(&obj->mm_list);
3727 	INIT_LIST_HEAD(&obj->gtt_list);
3728 	INIT_LIST_HEAD(&obj->ring_list);
3729 	INIT_LIST_HEAD(&obj->exec_list);
3730 
3731 	obj->ops = ops;
3732 
3733 	obj->fence_reg = I915_FENCE_REG_NONE;
3734 	obj->madv = I915_MADV_WILLNEED;
3735 	/* Avoid an unnecessary call to unbind on the first bind. */
3736 	obj->map_and_fenceable = true;
3737 
3738 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3739 }
3740 
3741 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3742 	.get_pages = i915_gem_object_get_pages_gtt,
3743 	.put_pages = i915_gem_object_put_pages_gtt,
3744 };
3745 
3746 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3747 						  size_t size)
3748 {
3749 	struct drm_i915_gem_object *obj;
3750 	struct address_space *mapping;
3751 	gfp_t mask;
3752 
3753 	obj = i915_gem_object_alloc(dev);
3754 	if (obj == NULL)
3755 		return NULL;
3756 
3757 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3758 		i915_gem_object_free(obj);
3759 		return NULL;
3760 	}
3761 
3762 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3763 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3764 		/* 965gm cannot relocate objects above 4GiB. */
3765 		mask &= ~__GFP_HIGHMEM;
3766 		mask |= __GFP_DMA32;
3767 	}
3768 
3769 	mapping = file_inode(obj->base.filp)->i_mapping;
3770 	mapping_set_gfp_mask(mapping, mask);
3771 
3772 	i915_gem_object_init(obj, &i915_gem_object_ops);
3773 
3774 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3775 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3776 
3777 	if (HAS_LLC(dev)) {
3778 		/* On some devices, we can have the GPU use the LLC (the CPU
3779 		 * cache) for about a 10% performance improvement
3780 		 * compared to uncached.  Graphics requests other than
3781 		 * display scanout are coherent with the CPU in
3782 		 * accessing this cache.  This means in this mode we
3783 		 * don't need to clflush on the CPU side, and on the
3784 		 * GPU side we only need to flush internal caches to
3785 		 * get data visible to the CPU.
3786 		 *
3787 		 * However, we maintain the display planes as UC, and so
3788 		 * need to rebind when first used as such.
3789 		 */
3790 		obj->cache_level = I915_CACHE_LLC;
3791 	} else
3792 		obj->cache_level = I915_CACHE_NONE;
3793 
3794 	return obj;
3795 }
3796 
3797 int i915_gem_init_object(struct drm_gem_object *obj)
3798 {
3799 	BUG();
3800 
3801 	return 0;
3802 }
3803 
3804 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3805 {
3806 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3807 	struct drm_device *dev = obj->base.dev;
3808 	drm_i915_private_t *dev_priv = dev->dev_private;
3809 
3810 	trace_i915_gem_object_destroy(obj);
3811 
3812 	if (obj->phys_obj)
3813 		i915_gem_detach_phys_object(dev, obj);
3814 
3815 	obj->pin_count = 0;
3816 	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3817 		bool was_interruptible;
3818 
3819 		was_interruptible = dev_priv->mm.interruptible;
3820 		dev_priv->mm.interruptible = false;
3821 
3822 		WARN_ON(i915_gem_object_unbind(obj));
3823 
3824 		dev_priv->mm.interruptible = was_interruptible;
3825 	}
3826 
3827 	obj->pages_pin_count = 0;
3828 	i915_gem_object_put_pages(obj);
3829 	i915_gem_object_free_mmap_offset(obj);
3830 	i915_gem_object_release_stolen(obj);
3831 
3832 	BUG_ON(obj->pages);
3833 
3834 	if (obj->base.import_attach)
3835 		drm_prime_gem_destroy(&obj->base, NULL);
3836 
3837 	drm_gem_object_release(&obj->base);
3838 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3839 
3840 	kfree(obj->bit_17);
3841 	i915_gem_object_free(obj);
3842 }
3843 
3844 int
3845 i915_gem_idle(struct drm_device *dev)
3846 {
3847 	drm_i915_private_t *dev_priv = dev->dev_private;
3848 	int ret;
3849 
3850 	mutex_lock(&dev->struct_mutex);
3851 
3852 	if (dev_priv->mm.suspended) {
3853 		mutex_unlock(&dev->struct_mutex);
3854 		return 0;
3855 	}
3856 
3857 	ret = i915_gpu_idle(dev);
3858 	if (ret) {
3859 		mutex_unlock(&dev->struct_mutex);
3860 		return ret;
3861 	}
3862 	i915_gem_retire_requests(dev);
3863 
3864 	/* Under UMS, be paranoid and evict. */
3865 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
3866 		i915_gem_evict_everything(dev);
3867 
3868 	i915_gem_reset_fences(dev);
3869 
3870 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
3871 	 * We need to replace this with a semaphore, or something.
3872 	 * And not confound mm.suspended!
3873 	 */
3874 	dev_priv->mm.suspended = 1;
3875 	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3876 
3877 	i915_kernel_lost_context(dev);
3878 	i915_gem_cleanup_ringbuffer(dev);
3879 
3880 	mutex_unlock(&dev->struct_mutex);
3881 
3882 	/* Cancel the retire work handler, which should be idle now. */
3883 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3884 
3885 	return 0;
3886 }
3887 
3888 void i915_gem_l3_remap(struct drm_device *dev)
3889 {
3890 	drm_i915_private_t *dev_priv = dev->dev_private;
3891 	u32 misccpctl;
3892 	int i;
3893 
3894 	if (!HAS_L3_GPU_CACHE(dev))
3895 		return;
3896 
3897 	if (!dev_priv->l3_parity.remap_info)
3898 		return;
3899 
3900 	misccpctl = I915_READ(GEN7_MISCCPCTL);
3901 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3902 	POSTING_READ(GEN7_MISCCPCTL);
3903 
3904 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3905 		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3906 		if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3907 			DRM_DEBUG("0x%x was already programmed to %x\n",
3908 				  GEN7_L3LOG_BASE + i, remap);
3909 		if (remap && !dev_priv->l3_parity.remap_info[i/4])
3910 			DRM_DEBUG_DRIVER("Clearing remapped register\n");
3911 		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3912 	}
3913 
3914 	/* Make sure all the writes land before disabling dop clock gating */
3915 	POSTING_READ(GEN7_L3LOG_BASE);
3916 
3917 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3918 }
3919 
3920 void i915_gem_init_swizzling(struct drm_device *dev)
3921 {
3922 	drm_i915_private_t *dev_priv = dev->dev_private;
3923 
3924 	if (INTEL_INFO(dev)->gen < 5 ||
3925 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3926 		return;
3927 
3928 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3929 				 DISP_TILE_SURFACE_SWIZZLING);
3930 
3931 	if (IS_GEN5(dev))
3932 		return;
3933 
3934 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3935 	if (IS_GEN6(dev))
3936 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3937 	else if (IS_GEN7(dev))
3938 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3939 	else
3940 		BUG();
3941 }
3942 
3943 static bool
3944 intel_enable_blt(struct drm_device *dev)
3945 {
3946 	if (!HAS_BLT(dev))
3947 		return false;
3948 
3949 	/* The blitter was dysfunctional on early prototypes */
3950 	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3951 		DRM_INFO("BLT not supported on this pre-production hardware;"
3952 			 " graphics performance will be degraded.\n");
3953 		return false;
3954 	}
3955 
3956 	return true;
3957 }
3958 
3959 static int i915_gem_init_rings(struct drm_device *dev)
3960 {
3961 	struct drm_i915_private *dev_priv = dev->dev_private;
3962 	int ret;
3963 
3964 	ret = intel_init_render_ring_buffer(dev);
3965 	if (ret)
3966 		return ret;
3967 
3968 	if (HAS_BSD(dev)) {
3969 		ret = intel_init_bsd_ring_buffer(dev);
3970 		if (ret)
3971 			goto cleanup_render_ring;
3972 	}
3973 
3974 	if (intel_enable_blt(dev)) {
3975 		ret = intel_init_blt_ring_buffer(dev);
3976 		if (ret)
3977 			goto cleanup_bsd_ring;
3978 	}
3979 
3980 	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
3981 	if (ret)
3982 		goto cleanup_blt_ring;
3983 
3984 	return 0;
3985 
3986 cleanup_blt_ring:
3987 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
3988 cleanup_bsd_ring:
3989 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3990 cleanup_render_ring:
3991 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3992 
3993 	return ret;
3994 }
3995 
3996 int
3997 i915_gem_init_hw(struct drm_device *dev)
3998 {
3999 	drm_i915_private_t *dev_priv = dev->dev_private;
4000 	int ret;
4001 
4002 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4003 		return -EIO;
4004 
4005 	if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4006 		I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4007 
4008 	if (HAS_PCH_NOP(dev)) {
4009 		u32 temp = I915_READ(GEN7_MSG_CTL);
4010 		temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4011 		I915_WRITE(GEN7_MSG_CTL, temp);
4012 	}
4013 
4014 	i915_gem_l3_remap(dev);
4015 
4016 	i915_gem_init_swizzling(dev);
4017 
4018 	ret = i915_gem_init_rings(dev);
4019 	if (ret)
4020 		return ret;
4021 
4022 	/*
4023 	 * XXX: There was some w/a described somewhere suggesting loading
4024 	 * contexts before PPGTT.
4025 	 */
4026 	i915_gem_context_init(dev);
4027 	if (dev_priv->mm.aliasing_ppgtt) {
4028 		ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4029 		if (ret) {
4030 			i915_gem_cleanup_aliasing_ppgtt(dev);
4031 			DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4032 		}
4033 	}
4034 
4035 	return 0;
4036 }
4037 
4038 int i915_gem_init(struct drm_device *dev)
4039 {
4040 	struct drm_i915_private *dev_priv = dev->dev_private;
4041 	int ret;
4042 
4043 	mutex_lock(&dev->struct_mutex);
4044 
4045 	if (IS_VALLEYVIEW(dev)) {
4046 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4047 		I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4048 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4049 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4050 	}
4051 
4052 	i915_gem_init_global_gtt(dev);
4053 
4054 	ret = i915_gem_init_hw(dev);
4055 	mutex_unlock(&dev->struct_mutex);
4056 	if (ret) {
4057 		i915_gem_cleanup_aliasing_ppgtt(dev);
4058 		return ret;
4059 	}
4060 
4061 	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4062 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4063 		dev_priv->dri1.allow_batchbuffer = 1;
4064 	return 0;
4065 }
4066 
4067 void
4068 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4069 {
4070 	drm_i915_private_t *dev_priv = dev->dev_private;
4071 	struct intel_ring_buffer *ring;
4072 	int i;
4073 
4074 	for_each_ring(ring, dev_priv, i)
4075 		intel_cleanup_ring_buffer(ring);
4076 }
4077 
4078 int
4079 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4080 		       struct drm_file *file_priv)
4081 {
4082 	drm_i915_private_t *dev_priv = dev->dev_private;
4083 	int ret;
4084 
4085 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4086 		return 0;
4087 
4088 	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4089 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4090 		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4091 	}
4092 
4093 	mutex_lock(&dev->struct_mutex);
4094 	dev_priv->mm.suspended = 0;
4095 
4096 	ret = i915_gem_init_hw(dev);
4097 	if (ret != 0) {
4098 		mutex_unlock(&dev->struct_mutex);
4099 		return ret;
4100 	}
4101 
4102 	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4103 	mutex_unlock(&dev->struct_mutex);
4104 
4105 	ret = drm_irq_install(dev);
4106 	if (ret)
4107 		goto cleanup_ringbuffer;
4108 
4109 	return 0;
4110 
4111 cleanup_ringbuffer:
4112 	mutex_lock(&dev->struct_mutex);
4113 	i915_gem_cleanup_ringbuffer(dev);
4114 	dev_priv->mm.suspended = 1;
4115 	mutex_unlock(&dev->struct_mutex);
4116 
4117 	return ret;
4118 }
4119 
4120 int
4121 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4122 		       struct drm_file *file_priv)
4123 {
4124 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4125 		return 0;
4126 
4127 	drm_irq_uninstall(dev);
4128 	return i915_gem_idle(dev);
4129 }
4130 
4131 void
4132 i915_gem_lastclose(struct drm_device *dev)
4133 {
4134 	int ret;
4135 
4136 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4137 		return;
4138 
4139 	ret = i915_gem_idle(dev);
4140 	if (ret)
4141 		DRM_ERROR("failed to idle hardware: %d\n", ret);
4142 }
4143 
4144 static void
4145 init_ring_lists(struct intel_ring_buffer *ring)
4146 {
4147 	INIT_LIST_HEAD(&ring->active_list);
4148 	INIT_LIST_HEAD(&ring->request_list);
4149 }
4150 
4151 void
4152 i915_gem_load(struct drm_device *dev)
4153 {
4154 	drm_i915_private_t *dev_priv = dev->dev_private;
4155 	int i;
4156 
4157 	dev_priv->slab =
4158 		kmem_cache_create("i915_gem_object",
4159 				  sizeof(struct drm_i915_gem_object), 0,
4160 				  SLAB_HWCACHE_ALIGN,
4161 				  NULL);
4162 
4163 	INIT_LIST_HEAD(&dev_priv->mm.active_list);
4164 	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4165 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4166 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4167 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4168 	for (i = 0; i < I915_NUM_RINGS; i++)
4169 		init_ring_lists(&dev_priv->ring[i]);
4170 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4171 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4172 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4173 			  i915_gem_retire_work_handler);
4174 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4175 
4176 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4177 	if (IS_GEN3(dev)) {
4178 		I915_WRITE(MI_ARB_STATE,
4179 			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4180 	}
4181 
4182 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4183 
4184 	/* Old X drivers will take 0-2 for front, back, depth buffers */
4185 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4186 		dev_priv->fence_reg_start = 3;
4187 
4188 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4189 		dev_priv->num_fence_regs = 32;
4190 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4191 		dev_priv->num_fence_regs = 16;
4192 	else
4193 		dev_priv->num_fence_regs = 8;
4194 
4195 	/* Initialize fence registers to zero */
4196 	i915_gem_reset_fences(dev);
4197 
4198 	i915_gem_detect_bit_6_swizzle(dev);
4199 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4200 
4201 	dev_priv->mm.interruptible = true;
4202 
4203 	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4204 	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4205 	register_shrinker(&dev_priv->mm.inactive_shrinker);
4206 }
4207 
4208 /*
4209  * Create a physically contiguous memory object for this object
4210  * e.g. for cursor + overlay regs
4211  */
4212 static int i915_gem_init_phys_object(struct drm_device *dev,
4213 				     int id, int size, int align)
4214 {
4215 	drm_i915_private_t *dev_priv = dev->dev_private;
4216 	struct drm_i915_gem_phys_object *phys_obj;
4217 	int ret;
4218 
4219 	if (dev_priv->mm.phys_objs[id - 1] || !size)
4220 		return 0;
4221 
4222 	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4223 	if (!phys_obj)
4224 		return -ENOMEM;
4225 
4226 	phys_obj->id = id;
4227 
4228 	phys_obj->handle = drm_pci_alloc(dev, size, align);
4229 	if (!phys_obj->handle) {
4230 		ret = -ENOMEM;
4231 		goto kfree_obj;
4232 	}
4233 #ifdef CONFIG_X86
4234 	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4235 #endif
4236 
4237 	dev_priv->mm.phys_objs[id - 1] = phys_obj;
4238 
4239 	return 0;
4240 kfree_obj:
4241 	kfree(phys_obj);
4242 	return ret;
4243 }
4244 
4245 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4246 {
4247 	drm_i915_private_t *dev_priv = dev->dev_private;
4248 	struct drm_i915_gem_phys_object *phys_obj;
4249 
4250 	if (!dev_priv->mm.phys_objs[id - 1])
4251 		return;
4252 
4253 	phys_obj = dev_priv->mm.phys_objs[id - 1];
4254 	if (phys_obj->cur_obj) {
4255 		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4256 	}
4257 
4258 #ifdef CONFIG_X86
4259 	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4260 #endif
4261 	drm_pci_free(dev, phys_obj->handle);
4262 	kfree(phys_obj);
4263 	dev_priv->mm.phys_objs[id - 1] = NULL;
4264 }
4265 
4266 void i915_gem_free_all_phys_object(struct drm_device *dev)
4267 {
4268 	int i;
4269 
4270 	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4271 		i915_gem_free_phys_object(dev, i);
4272 }
4273 
4274 void i915_gem_detach_phys_object(struct drm_device *dev,
4275 				 struct drm_i915_gem_object *obj)
4276 {
4277 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4278 	char *vaddr;
4279 	int i;
4280 	int page_count;
4281 
4282 	if (!obj->phys_obj)
4283 		return;
4284 	vaddr = obj->phys_obj->handle->vaddr;
4285 
4286 	page_count = obj->base.size / PAGE_SIZE;
4287 	for (i = 0; i < page_count; i++) {
4288 		struct page *page = shmem_read_mapping_page(mapping, i);
4289 		if (!IS_ERR(page)) {
4290 			char *dst = kmap_atomic(page);
4291 			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4292 			kunmap_atomic(dst);
4293 
4294 			drm_clflush_pages(&page, 1);
4295 
4296 			set_page_dirty(page);
4297 			mark_page_accessed(page);
4298 			page_cache_release(page);
4299 		}
4300 	}
4301 	i915_gem_chipset_flush(dev);
4302 
4303 	obj->phys_obj->cur_obj = NULL;
4304 	obj->phys_obj = NULL;
4305 }
4306 
4307 int
4308 i915_gem_attach_phys_object(struct drm_device *dev,
4309 			    struct drm_i915_gem_object *obj,
4310 			    int id,
4311 			    int align)
4312 {
4313 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4314 	drm_i915_private_t *dev_priv = dev->dev_private;
4315 	int ret = 0;
4316 	int page_count;
4317 	int i;
4318 
4319 	if (id > I915_MAX_PHYS_OBJECT)
4320 		return -EINVAL;
4321 
4322 	if (obj->phys_obj) {
4323 		if (obj->phys_obj->id == id)
4324 			return 0;
4325 		i915_gem_detach_phys_object(dev, obj);
4326 	}
4327 
4328 	/* create a new object */
4329 	if (!dev_priv->mm.phys_objs[id - 1]) {
4330 		ret = i915_gem_init_phys_object(dev, id,
4331 						obj->base.size, align);
4332 		if (ret) {
4333 			DRM_ERROR("failed to init phys object %d size: %zu\n",
4334 				  id, obj->base.size);
4335 			return ret;
4336 		}
4337 	}
4338 
4339 	/* bind to the object */
4340 	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4341 	obj->phys_obj->cur_obj = obj;
4342 
4343 	page_count = obj->base.size / PAGE_SIZE;
4344 
4345 	for (i = 0; i < page_count; i++) {
4346 		struct page *page;
4347 		char *dst, *src;
4348 
4349 		page = shmem_read_mapping_page(mapping, i);
4350 		if (IS_ERR(page))
4351 			return PTR_ERR(page);
4352 
4353 		src = kmap_atomic(page);
4354 		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4355 		memcpy(dst, src, PAGE_SIZE);
4356 		kunmap_atomic(src);
4357 
4358 		mark_page_accessed(page);
4359 		page_cache_release(page);
4360 	}
4361 
4362 	return 0;
4363 }
4364 
4365 static int
4366 i915_gem_phys_pwrite(struct drm_device *dev,
4367 		     struct drm_i915_gem_object *obj,
4368 		     struct drm_i915_gem_pwrite *args,
4369 		     struct drm_file *file_priv)
4370 {
4371 	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4372 	char __user *user_data = to_user_ptr(args->data_ptr);
4373 
4374 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4375 		unsigned long unwritten;
4376 
4377 		/* The physical object once assigned is fixed for the lifetime
4378 		 * of the obj, so we can safely drop the lock and continue
4379 		 * to access vaddr.
4380 		 */
4381 		mutex_unlock(&dev->struct_mutex);
4382 		unwritten = copy_from_user(vaddr, user_data, args->size);
4383 		mutex_lock(&dev->struct_mutex);
4384 		if (unwritten)
4385 			return -EFAULT;
4386 	}
4387 
4388 	i915_gem_chipset_flush(dev);
4389 	return 0;
4390 }
4391 
4392 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4393 {
4394 	struct drm_i915_file_private *file_priv = file->driver_priv;
4395 
4396 	/* Clean up our request list when the client is going away, so that
4397 	 * later retire_requests won't dereference our soon-to-be-gone
4398 	 * file_priv.
4399 	 */
4400 	spin_lock(&file_priv->mm.lock);
4401 	while (!list_empty(&file_priv->mm.request_list)) {
4402 		struct drm_i915_gem_request *request;
4403 
4404 		request = list_first_entry(&file_priv->mm.request_list,
4405 					   struct drm_i915_gem_request,
4406 					   client_list);
4407 		list_del(&request->client_list);
4408 		request->file_priv = NULL;
4409 	}
4410 	spin_unlock(&file_priv->mm.lock);
4411 }
4412 
4413 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4414 {
4415 	if (!mutex_is_locked(mutex))
4416 		return false;
4417 
4418 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4419 	return mutex->owner == task;
4420 #else
4421 	/* Since UP may be pre-empted, we cannot assume that we own the lock */
4422 	return false;
4423 #endif
4424 }
4425 
4426 static int
4427 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4428 {
4429 	struct drm_i915_private *dev_priv =
4430 		container_of(shrinker,
4431 			     struct drm_i915_private,
4432 			     mm.inactive_shrinker);
4433 	struct drm_device *dev = dev_priv->dev;
4434 	struct drm_i915_gem_object *obj;
4435 	int nr_to_scan = sc->nr_to_scan;
4436 	bool unlock = true;
4437 	int cnt;
4438 
4439 	if (!mutex_trylock(&dev->struct_mutex)) {
4440 		if (!mutex_is_locked_by(&dev->struct_mutex, current))
4441 			return 0;
4442 
4443 		if (dev_priv->mm.shrinker_no_lock_stealing)
4444 			return 0;
4445 
4446 		unlock = false;
4447 	}
4448 
4449 	if (nr_to_scan) {
4450 		nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4451 		if (nr_to_scan > 0)
4452 			nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4453 							false);
4454 		if (nr_to_scan > 0)
4455 			i915_gem_shrink_all(dev_priv);
4456 	}
4457 
4458 	cnt = 0;
4459 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4460 		if (obj->pages_pin_count == 0)
4461 			cnt += obj->base.size >> PAGE_SHIFT;
4462 	list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list)
4463 		if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4464 			cnt += obj->base.size >> PAGE_SHIFT;
4465 
4466 	if (unlock)
4467 		mutex_unlock(&dev->struct_mutex);
4468 	return cnt;
4469 }
4470