1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drmP.h> 29 #include <drm/i915_drm.h> 30 #include "i915_drv.h" 31 #include "i915_trace.h" 32 #include "intel_drv.h" 33 #include <linux/shmem_fs.h> 34 #include <linux/slab.h> 35 #include <linux/swap.h> 36 #include <linux/pci.h> 37 #include <linux/dma-buf.h> 38 39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); 40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj); 41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, 42 unsigned alignment, 43 bool map_and_fenceable, 44 bool nonblocking); 45 static int i915_gem_phys_pwrite(struct drm_device *dev, 46 struct drm_i915_gem_object *obj, 47 struct drm_i915_gem_pwrite *args, 48 struct drm_file *file); 49 50 static void i915_gem_write_fence(struct drm_device *dev, int reg, 51 struct drm_i915_gem_object *obj); 52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 53 struct drm_i915_fence_reg *fence, 54 bool enable); 55 56 static int i915_gem_inactive_shrink(struct shrinker *shrinker, 57 struct shrink_control *sc); 58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target); 59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv); 60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj); 61 62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj) 63 { 64 if (obj->tiling_mode) 65 i915_gem_release_mmap(obj); 66 67 /* As we do not have an associated fence register, we will force 68 * a tiling change if we ever need to acquire one. 69 */ 70 obj->fence_dirty = false; 71 obj->fence_reg = I915_FENCE_REG_NONE; 72 } 73 74 /* some bookkeeping */ 75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, 76 size_t size) 77 { 78 dev_priv->mm.object_count++; 79 dev_priv->mm.object_memory += size; 80 } 81 82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, 83 size_t size) 84 { 85 dev_priv->mm.object_count--; 86 dev_priv->mm.object_memory -= size; 87 } 88 89 static int 90 i915_gem_wait_for_error(struct i915_gpu_error *error) 91 { 92 int ret; 93 94 #define EXIT_COND (!i915_reset_in_progress(error) || \ 95 i915_terminally_wedged(error)) 96 if (EXIT_COND) 97 return 0; 98 99 /* 100 * Only wait 10 seconds for the gpu reset to complete to avoid hanging 101 * userspace. If it takes that long something really bad is going on and 102 * we should simply try to bail out and fail as gracefully as possible. 103 */ 104 ret = wait_event_interruptible_timeout(error->reset_queue, 105 EXIT_COND, 106 10*HZ); 107 if (ret == 0) { 108 DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); 109 return -EIO; 110 } else if (ret < 0) { 111 return ret; 112 } 113 #undef EXIT_COND 114 115 return 0; 116 } 117 118 int i915_mutex_lock_interruptible(struct drm_device *dev) 119 { 120 struct drm_i915_private *dev_priv = dev->dev_private; 121 int ret; 122 123 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 124 if (ret) 125 return ret; 126 127 ret = mutex_lock_interruptible(&dev->struct_mutex); 128 if (ret) 129 return ret; 130 131 WARN_ON(i915_verify_lists(dev)); 132 return 0; 133 } 134 135 static inline bool 136 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj) 137 { 138 return obj->gtt_space && !obj->active; 139 } 140 141 int 142 i915_gem_init_ioctl(struct drm_device *dev, void *data, 143 struct drm_file *file) 144 { 145 struct drm_i915_private *dev_priv = dev->dev_private; 146 struct drm_i915_gem_init *args = data; 147 148 if (drm_core_check_feature(dev, DRIVER_MODESET)) 149 return -ENODEV; 150 151 if (args->gtt_start >= args->gtt_end || 152 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1)) 153 return -EINVAL; 154 155 /* GEM with user mode setting was never supported on ilk and later. */ 156 if (INTEL_INFO(dev)->gen >= 5) 157 return -ENODEV; 158 159 mutex_lock(&dev->struct_mutex); 160 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end, 161 args->gtt_end); 162 dev_priv->gtt.mappable_end = args->gtt_end; 163 mutex_unlock(&dev->struct_mutex); 164 165 return 0; 166 } 167 168 int 169 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 170 struct drm_file *file) 171 { 172 struct drm_i915_private *dev_priv = dev->dev_private; 173 struct drm_i915_gem_get_aperture *args = data; 174 struct drm_i915_gem_object *obj; 175 size_t pinned; 176 177 pinned = 0; 178 mutex_lock(&dev->struct_mutex); 179 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list) 180 if (obj->pin_count) 181 pinned += obj->gtt_space->size; 182 mutex_unlock(&dev->struct_mutex); 183 184 args->aper_size = dev_priv->gtt.total; 185 args->aper_available_size = args->aper_size - pinned; 186 187 return 0; 188 } 189 190 void *i915_gem_object_alloc(struct drm_device *dev) 191 { 192 struct drm_i915_private *dev_priv = dev->dev_private; 193 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO); 194 } 195 196 void i915_gem_object_free(struct drm_i915_gem_object *obj) 197 { 198 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 199 kmem_cache_free(dev_priv->slab, obj); 200 } 201 202 static int 203 i915_gem_create(struct drm_file *file, 204 struct drm_device *dev, 205 uint64_t size, 206 uint32_t *handle_p) 207 { 208 struct drm_i915_gem_object *obj; 209 int ret; 210 u32 handle; 211 212 size = roundup(size, PAGE_SIZE); 213 if (size == 0) 214 return -EINVAL; 215 216 /* Allocate the new object */ 217 obj = i915_gem_alloc_object(dev, size); 218 if (obj == NULL) 219 return -ENOMEM; 220 221 ret = drm_gem_handle_create(file, &obj->base, &handle); 222 if (ret) { 223 drm_gem_object_release(&obj->base); 224 i915_gem_info_remove_obj(dev->dev_private, obj->base.size); 225 i915_gem_object_free(obj); 226 return ret; 227 } 228 229 /* drop reference from allocate - handle holds it now */ 230 drm_gem_object_unreference(&obj->base); 231 trace_i915_gem_object_create(obj); 232 233 *handle_p = handle; 234 return 0; 235 } 236 237 int 238 i915_gem_dumb_create(struct drm_file *file, 239 struct drm_device *dev, 240 struct drm_mode_create_dumb *args) 241 { 242 /* have to work out size/pitch and return them */ 243 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64); 244 args->size = args->pitch * args->height; 245 return i915_gem_create(file, dev, 246 args->size, &args->handle); 247 } 248 249 int i915_gem_dumb_destroy(struct drm_file *file, 250 struct drm_device *dev, 251 uint32_t handle) 252 { 253 return drm_gem_handle_delete(file, handle); 254 } 255 256 /** 257 * Creates a new mm object and returns a handle to it. 258 */ 259 int 260 i915_gem_create_ioctl(struct drm_device *dev, void *data, 261 struct drm_file *file) 262 { 263 struct drm_i915_gem_create *args = data; 264 265 return i915_gem_create(file, dev, 266 args->size, &args->handle); 267 } 268 269 static inline int 270 __copy_to_user_swizzled(char __user *cpu_vaddr, 271 const char *gpu_vaddr, int gpu_offset, 272 int length) 273 { 274 int ret, cpu_offset = 0; 275 276 while (length > 0) { 277 int cacheline_end = ALIGN(gpu_offset + 1, 64); 278 int this_length = min(cacheline_end - gpu_offset, length); 279 int swizzled_gpu_offset = gpu_offset ^ 64; 280 281 ret = __copy_to_user(cpu_vaddr + cpu_offset, 282 gpu_vaddr + swizzled_gpu_offset, 283 this_length); 284 if (ret) 285 return ret + length; 286 287 cpu_offset += this_length; 288 gpu_offset += this_length; 289 length -= this_length; 290 } 291 292 return 0; 293 } 294 295 static inline int 296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, 297 const char __user *cpu_vaddr, 298 int length) 299 { 300 int ret, cpu_offset = 0; 301 302 while (length > 0) { 303 int cacheline_end = ALIGN(gpu_offset + 1, 64); 304 int this_length = min(cacheline_end - gpu_offset, length); 305 int swizzled_gpu_offset = gpu_offset ^ 64; 306 307 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, 308 cpu_vaddr + cpu_offset, 309 this_length); 310 if (ret) 311 return ret + length; 312 313 cpu_offset += this_length; 314 gpu_offset += this_length; 315 length -= this_length; 316 } 317 318 return 0; 319 } 320 321 /* Per-page copy function for the shmem pread fastpath. 322 * Flushes invalid cachelines before reading the target if 323 * needs_clflush is set. */ 324 static int 325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length, 326 char __user *user_data, 327 bool page_do_bit17_swizzling, bool needs_clflush) 328 { 329 char *vaddr; 330 int ret; 331 332 if (unlikely(page_do_bit17_swizzling)) 333 return -EINVAL; 334 335 vaddr = kmap_atomic(page); 336 if (needs_clflush) 337 drm_clflush_virt_range(vaddr + shmem_page_offset, 338 page_length); 339 ret = __copy_to_user_inatomic(user_data, 340 vaddr + shmem_page_offset, 341 page_length); 342 kunmap_atomic(vaddr); 343 344 return ret ? -EFAULT : 0; 345 } 346 347 static void 348 shmem_clflush_swizzled_range(char *addr, unsigned long length, 349 bool swizzled) 350 { 351 if (unlikely(swizzled)) { 352 unsigned long start = (unsigned long) addr; 353 unsigned long end = (unsigned long) addr + length; 354 355 /* For swizzling simply ensure that we always flush both 356 * channels. Lame, but simple and it works. Swizzled 357 * pwrite/pread is far from a hotpath - current userspace 358 * doesn't use it at all. */ 359 start = round_down(start, 128); 360 end = round_up(end, 128); 361 362 drm_clflush_virt_range((void *)start, end - start); 363 } else { 364 drm_clflush_virt_range(addr, length); 365 } 366 367 } 368 369 /* Only difference to the fast-path function is that this can handle bit17 370 * and uses non-atomic copy and kmap functions. */ 371 static int 372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length, 373 char __user *user_data, 374 bool page_do_bit17_swizzling, bool needs_clflush) 375 { 376 char *vaddr; 377 int ret; 378 379 vaddr = kmap(page); 380 if (needs_clflush) 381 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 382 page_length, 383 page_do_bit17_swizzling); 384 385 if (page_do_bit17_swizzling) 386 ret = __copy_to_user_swizzled(user_data, 387 vaddr, shmem_page_offset, 388 page_length); 389 else 390 ret = __copy_to_user(user_data, 391 vaddr + shmem_page_offset, 392 page_length); 393 kunmap(page); 394 395 return ret ? - EFAULT : 0; 396 } 397 398 static int 399 i915_gem_shmem_pread(struct drm_device *dev, 400 struct drm_i915_gem_object *obj, 401 struct drm_i915_gem_pread *args, 402 struct drm_file *file) 403 { 404 char __user *user_data; 405 ssize_t remain; 406 loff_t offset; 407 int shmem_page_offset, page_length, ret = 0; 408 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 409 int prefaulted = 0; 410 int needs_clflush = 0; 411 struct sg_page_iter sg_iter; 412 413 user_data = to_user_ptr(args->data_ptr); 414 remain = args->size; 415 416 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 417 418 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) { 419 /* If we're not in the cpu read domain, set ourself into the gtt 420 * read domain and manually flush cachelines (if required). This 421 * optimizes for the case when the gpu will dirty the data 422 * anyway again before the next pread happens. */ 423 if (obj->cache_level == I915_CACHE_NONE) 424 needs_clflush = 1; 425 if (obj->gtt_space) { 426 ret = i915_gem_object_set_to_gtt_domain(obj, false); 427 if (ret) 428 return ret; 429 } 430 } 431 432 ret = i915_gem_object_get_pages(obj); 433 if (ret) 434 return ret; 435 436 i915_gem_object_pin_pages(obj); 437 438 offset = args->offset; 439 440 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 441 offset >> PAGE_SHIFT) { 442 struct page *page = sg_page_iter_page(&sg_iter); 443 444 if (remain <= 0) 445 break; 446 447 /* Operation in this page 448 * 449 * shmem_page_offset = offset within page in shmem file 450 * page_length = bytes to copy for this page 451 */ 452 shmem_page_offset = offset_in_page(offset); 453 page_length = remain; 454 if ((shmem_page_offset + page_length) > PAGE_SIZE) 455 page_length = PAGE_SIZE - shmem_page_offset; 456 457 page_do_bit17_swizzling = obj_do_bit17_swizzling && 458 (page_to_phys(page) & (1 << 17)) != 0; 459 460 ret = shmem_pread_fast(page, shmem_page_offset, page_length, 461 user_data, page_do_bit17_swizzling, 462 needs_clflush); 463 if (ret == 0) 464 goto next_page; 465 466 mutex_unlock(&dev->struct_mutex); 467 468 if (!prefaulted) { 469 ret = fault_in_multipages_writeable(user_data, remain); 470 /* Userspace is tricking us, but we've already clobbered 471 * its pages with the prefault and promised to write the 472 * data up to the first fault. Hence ignore any errors 473 * and just continue. */ 474 (void)ret; 475 prefaulted = 1; 476 } 477 478 ret = shmem_pread_slow(page, shmem_page_offset, page_length, 479 user_data, page_do_bit17_swizzling, 480 needs_clflush); 481 482 mutex_lock(&dev->struct_mutex); 483 484 next_page: 485 mark_page_accessed(page); 486 487 if (ret) 488 goto out; 489 490 remain -= page_length; 491 user_data += page_length; 492 offset += page_length; 493 } 494 495 out: 496 i915_gem_object_unpin_pages(obj); 497 498 return ret; 499 } 500 501 /** 502 * Reads data from the object referenced by handle. 503 * 504 * On error, the contents of *data are undefined. 505 */ 506 int 507 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 508 struct drm_file *file) 509 { 510 struct drm_i915_gem_pread *args = data; 511 struct drm_i915_gem_object *obj; 512 int ret = 0; 513 514 if (args->size == 0) 515 return 0; 516 517 if (!access_ok(VERIFY_WRITE, 518 to_user_ptr(args->data_ptr), 519 args->size)) 520 return -EFAULT; 521 522 ret = i915_mutex_lock_interruptible(dev); 523 if (ret) 524 return ret; 525 526 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 527 if (&obj->base == NULL) { 528 ret = -ENOENT; 529 goto unlock; 530 } 531 532 /* Bounds check source. */ 533 if (args->offset > obj->base.size || 534 args->size > obj->base.size - args->offset) { 535 ret = -EINVAL; 536 goto out; 537 } 538 539 /* prime objects have no backing filp to GEM pread/pwrite 540 * pages from. 541 */ 542 if (!obj->base.filp) { 543 ret = -EINVAL; 544 goto out; 545 } 546 547 trace_i915_gem_object_pread(obj, args->offset, args->size); 548 549 ret = i915_gem_shmem_pread(dev, obj, args, file); 550 551 out: 552 drm_gem_object_unreference(&obj->base); 553 unlock: 554 mutex_unlock(&dev->struct_mutex); 555 return ret; 556 } 557 558 /* This is the fast write path which cannot handle 559 * page faults in the source data 560 */ 561 562 static inline int 563 fast_user_write(struct io_mapping *mapping, 564 loff_t page_base, int page_offset, 565 char __user *user_data, 566 int length) 567 { 568 void __iomem *vaddr_atomic; 569 void *vaddr; 570 unsigned long unwritten; 571 572 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base); 573 /* We can use the cpu mem copy function because this is X86. */ 574 vaddr = (void __force*)vaddr_atomic + page_offset; 575 unwritten = __copy_from_user_inatomic_nocache(vaddr, 576 user_data, length); 577 io_mapping_unmap_atomic(vaddr_atomic); 578 return unwritten; 579 } 580 581 /** 582 * This is the fast pwrite path, where we copy the data directly from the 583 * user into the GTT, uncached. 584 */ 585 static int 586 i915_gem_gtt_pwrite_fast(struct drm_device *dev, 587 struct drm_i915_gem_object *obj, 588 struct drm_i915_gem_pwrite *args, 589 struct drm_file *file) 590 { 591 drm_i915_private_t *dev_priv = dev->dev_private; 592 ssize_t remain; 593 loff_t offset, page_base; 594 char __user *user_data; 595 int page_offset, page_length, ret; 596 597 ret = i915_gem_object_pin(obj, 0, true, true); 598 if (ret) 599 goto out; 600 601 ret = i915_gem_object_set_to_gtt_domain(obj, true); 602 if (ret) 603 goto out_unpin; 604 605 ret = i915_gem_object_put_fence(obj); 606 if (ret) 607 goto out_unpin; 608 609 user_data = to_user_ptr(args->data_ptr); 610 remain = args->size; 611 612 offset = obj->gtt_offset + args->offset; 613 614 while (remain > 0) { 615 /* Operation in this page 616 * 617 * page_base = page offset within aperture 618 * page_offset = offset within page 619 * page_length = bytes to copy for this page 620 */ 621 page_base = offset & PAGE_MASK; 622 page_offset = offset_in_page(offset); 623 page_length = remain; 624 if ((page_offset + remain) > PAGE_SIZE) 625 page_length = PAGE_SIZE - page_offset; 626 627 /* If we get a fault while copying data, then (presumably) our 628 * source page isn't available. Return the error and we'll 629 * retry in the slow path. 630 */ 631 if (fast_user_write(dev_priv->gtt.mappable, page_base, 632 page_offset, user_data, page_length)) { 633 ret = -EFAULT; 634 goto out_unpin; 635 } 636 637 remain -= page_length; 638 user_data += page_length; 639 offset += page_length; 640 } 641 642 out_unpin: 643 i915_gem_object_unpin(obj); 644 out: 645 return ret; 646 } 647 648 /* Per-page copy function for the shmem pwrite fastpath. 649 * Flushes invalid cachelines before writing to the target if 650 * needs_clflush_before is set and flushes out any written cachelines after 651 * writing if needs_clflush is set. */ 652 static int 653 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length, 654 char __user *user_data, 655 bool page_do_bit17_swizzling, 656 bool needs_clflush_before, 657 bool needs_clflush_after) 658 { 659 char *vaddr; 660 int ret; 661 662 if (unlikely(page_do_bit17_swizzling)) 663 return -EINVAL; 664 665 vaddr = kmap_atomic(page); 666 if (needs_clflush_before) 667 drm_clflush_virt_range(vaddr + shmem_page_offset, 668 page_length); 669 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset, 670 user_data, 671 page_length); 672 if (needs_clflush_after) 673 drm_clflush_virt_range(vaddr + shmem_page_offset, 674 page_length); 675 kunmap_atomic(vaddr); 676 677 return ret ? -EFAULT : 0; 678 } 679 680 /* Only difference to the fast-path function is that this can handle bit17 681 * and uses non-atomic copy and kmap functions. */ 682 static int 683 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length, 684 char __user *user_data, 685 bool page_do_bit17_swizzling, 686 bool needs_clflush_before, 687 bool needs_clflush_after) 688 { 689 char *vaddr; 690 int ret; 691 692 vaddr = kmap(page); 693 if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) 694 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 695 page_length, 696 page_do_bit17_swizzling); 697 if (page_do_bit17_swizzling) 698 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset, 699 user_data, 700 page_length); 701 else 702 ret = __copy_from_user(vaddr + shmem_page_offset, 703 user_data, 704 page_length); 705 if (needs_clflush_after) 706 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 707 page_length, 708 page_do_bit17_swizzling); 709 kunmap(page); 710 711 return ret ? -EFAULT : 0; 712 } 713 714 static int 715 i915_gem_shmem_pwrite(struct drm_device *dev, 716 struct drm_i915_gem_object *obj, 717 struct drm_i915_gem_pwrite *args, 718 struct drm_file *file) 719 { 720 ssize_t remain; 721 loff_t offset; 722 char __user *user_data; 723 int shmem_page_offset, page_length, ret = 0; 724 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 725 int hit_slowpath = 0; 726 int needs_clflush_after = 0; 727 int needs_clflush_before = 0; 728 struct sg_page_iter sg_iter; 729 730 user_data = to_user_ptr(args->data_ptr); 731 remain = args->size; 732 733 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 734 735 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 736 /* If we're not in the cpu write domain, set ourself into the gtt 737 * write domain and manually flush cachelines (if required). This 738 * optimizes for the case when the gpu will use the data 739 * right away and we therefore have to clflush anyway. */ 740 if (obj->cache_level == I915_CACHE_NONE) 741 needs_clflush_after = 1; 742 if (obj->gtt_space) { 743 ret = i915_gem_object_set_to_gtt_domain(obj, true); 744 if (ret) 745 return ret; 746 } 747 } 748 /* Same trick applies for invalidate partially written cachelines before 749 * writing. */ 750 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU) 751 && obj->cache_level == I915_CACHE_NONE) 752 needs_clflush_before = 1; 753 754 ret = i915_gem_object_get_pages(obj); 755 if (ret) 756 return ret; 757 758 i915_gem_object_pin_pages(obj); 759 760 offset = args->offset; 761 obj->dirty = 1; 762 763 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 764 offset >> PAGE_SHIFT) { 765 struct page *page = sg_page_iter_page(&sg_iter); 766 int partial_cacheline_write; 767 768 if (remain <= 0) 769 break; 770 771 /* Operation in this page 772 * 773 * shmem_page_offset = offset within page in shmem file 774 * page_length = bytes to copy for this page 775 */ 776 shmem_page_offset = offset_in_page(offset); 777 778 page_length = remain; 779 if ((shmem_page_offset + page_length) > PAGE_SIZE) 780 page_length = PAGE_SIZE - shmem_page_offset; 781 782 /* If we don't overwrite a cacheline completely we need to be 783 * careful to have up-to-date data by first clflushing. Don't 784 * overcomplicate things and flush the entire patch. */ 785 partial_cacheline_write = needs_clflush_before && 786 ((shmem_page_offset | page_length) 787 & (boot_cpu_data.x86_clflush_size - 1)); 788 789 page_do_bit17_swizzling = obj_do_bit17_swizzling && 790 (page_to_phys(page) & (1 << 17)) != 0; 791 792 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length, 793 user_data, page_do_bit17_swizzling, 794 partial_cacheline_write, 795 needs_clflush_after); 796 if (ret == 0) 797 goto next_page; 798 799 hit_slowpath = 1; 800 mutex_unlock(&dev->struct_mutex); 801 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length, 802 user_data, page_do_bit17_swizzling, 803 partial_cacheline_write, 804 needs_clflush_after); 805 806 mutex_lock(&dev->struct_mutex); 807 808 next_page: 809 set_page_dirty(page); 810 mark_page_accessed(page); 811 812 if (ret) 813 goto out; 814 815 remain -= page_length; 816 user_data += page_length; 817 offset += page_length; 818 } 819 820 out: 821 i915_gem_object_unpin_pages(obj); 822 823 if (hit_slowpath) { 824 /* 825 * Fixup: Flush cpu caches in case we didn't flush the dirty 826 * cachelines in-line while writing and the object moved 827 * out of the cpu write domain while we've dropped the lock. 828 */ 829 if (!needs_clflush_after && 830 obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 831 i915_gem_clflush_object(obj); 832 i915_gem_chipset_flush(dev); 833 } 834 } 835 836 if (needs_clflush_after) 837 i915_gem_chipset_flush(dev); 838 839 return ret; 840 } 841 842 /** 843 * Writes data to the object referenced by handle. 844 * 845 * On error, the contents of the buffer that were to be modified are undefined. 846 */ 847 int 848 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 849 struct drm_file *file) 850 { 851 struct drm_i915_gem_pwrite *args = data; 852 struct drm_i915_gem_object *obj; 853 int ret; 854 855 if (args->size == 0) 856 return 0; 857 858 if (!access_ok(VERIFY_READ, 859 to_user_ptr(args->data_ptr), 860 args->size)) 861 return -EFAULT; 862 863 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr), 864 args->size); 865 if (ret) 866 return -EFAULT; 867 868 ret = i915_mutex_lock_interruptible(dev); 869 if (ret) 870 return ret; 871 872 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 873 if (&obj->base == NULL) { 874 ret = -ENOENT; 875 goto unlock; 876 } 877 878 /* Bounds check destination. */ 879 if (args->offset > obj->base.size || 880 args->size > obj->base.size - args->offset) { 881 ret = -EINVAL; 882 goto out; 883 } 884 885 /* prime objects have no backing filp to GEM pread/pwrite 886 * pages from. 887 */ 888 if (!obj->base.filp) { 889 ret = -EINVAL; 890 goto out; 891 } 892 893 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 894 895 ret = -EFAULT; 896 /* We can only do the GTT pwrite on untiled buffers, as otherwise 897 * it would end up going through the fenced access, and we'll get 898 * different detiling behavior between reading and writing. 899 * pread/pwrite currently are reading and writing from the CPU 900 * perspective, requiring manual detiling by the client. 901 */ 902 if (obj->phys_obj) { 903 ret = i915_gem_phys_pwrite(dev, obj, args, file); 904 goto out; 905 } 906 907 if (obj->cache_level == I915_CACHE_NONE && 908 obj->tiling_mode == I915_TILING_NONE && 909 obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 910 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file); 911 /* Note that the gtt paths might fail with non-page-backed user 912 * pointers (e.g. gtt mappings when moving data between 913 * textures). Fallback to the shmem path in that case. */ 914 } 915 916 if (ret == -EFAULT || ret == -ENOSPC) 917 ret = i915_gem_shmem_pwrite(dev, obj, args, file); 918 919 out: 920 drm_gem_object_unreference(&obj->base); 921 unlock: 922 mutex_unlock(&dev->struct_mutex); 923 return ret; 924 } 925 926 int 927 i915_gem_check_wedge(struct i915_gpu_error *error, 928 bool interruptible) 929 { 930 if (i915_reset_in_progress(error)) { 931 /* Non-interruptible callers can't handle -EAGAIN, hence return 932 * -EIO unconditionally for these. */ 933 if (!interruptible) 934 return -EIO; 935 936 /* Recovery complete, but the reset failed ... */ 937 if (i915_terminally_wedged(error)) 938 return -EIO; 939 940 return -EAGAIN; 941 } 942 943 return 0; 944 } 945 946 /* 947 * Compare seqno against outstanding lazy request. Emit a request if they are 948 * equal. 949 */ 950 static int 951 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno) 952 { 953 int ret; 954 955 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex)); 956 957 ret = 0; 958 if (seqno == ring->outstanding_lazy_request) 959 ret = i915_add_request(ring, NULL, NULL); 960 961 return ret; 962 } 963 964 /** 965 * __wait_seqno - wait until execution of seqno has finished 966 * @ring: the ring expected to report seqno 967 * @seqno: duh! 968 * @reset_counter: reset sequence associated with the given seqno 969 * @interruptible: do an interruptible wait (normally yes) 970 * @timeout: in - how long to wait (NULL forever); out - how much time remaining 971 * 972 * Note: It is of utmost importance that the passed in seqno and reset_counter 973 * values have been read by the caller in an smp safe manner. Where read-side 974 * locks are involved, it is sufficient to read the reset_counter before 975 * unlocking the lock that protects the seqno. For lockless tricks, the 976 * reset_counter _must_ be read before, and an appropriate smp_rmb must be 977 * inserted. 978 * 979 * Returns 0 if the seqno was found within the alloted time. Else returns the 980 * errno with remaining time filled in timeout argument. 981 */ 982 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno, 983 unsigned reset_counter, 984 bool interruptible, struct timespec *timeout) 985 { 986 drm_i915_private_t *dev_priv = ring->dev->dev_private; 987 struct timespec before, now, wait_time={1,0}; 988 unsigned long timeout_jiffies; 989 long end; 990 bool wait_forever = true; 991 int ret; 992 993 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno)) 994 return 0; 995 996 trace_i915_gem_request_wait_begin(ring, seqno); 997 998 if (timeout != NULL) { 999 wait_time = *timeout; 1000 wait_forever = false; 1001 } 1002 1003 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time); 1004 1005 if (WARN_ON(!ring->irq_get(ring))) 1006 return -ENODEV; 1007 1008 /* Record current time in case interrupted by signal, or wedged * */ 1009 getrawmonotonic(&before); 1010 1011 #define EXIT_COND \ 1012 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \ 1013 i915_reset_in_progress(&dev_priv->gpu_error) || \ 1014 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) 1015 do { 1016 if (interruptible) 1017 end = wait_event_interruptible_timeout(ring->irq_queue, 1018 EXIT_COND, 1019 timeout_jiffies); 1020 else 1021 end = wait_event_timeout(ring->irq_queue, EXIT_COND, 1022 timeout_jiffies); 1023 1024 /* We need to check whether any gpu reset happened in between 1025 * the caller grabbing the seqno and now ... */ 1026 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) 1027 end = -EAGAIN; 1028 1029 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely 1030 * gone. */ 1031 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1032 if (ret) 1033 end = ret; 1034 } while (end == 0 && wait_forever); 1035 1036 getrawmonotonic(&now); 1037 1038 ring->irq_put(ring); 1039 trace_i915_gem_request_wait_end(ring, seqno); 1040 #undef EXIT_COND 1041 1042 if (timeout) { 1043 struct timespec sleep_time = timespec_sub(now, before); 1044 *timeout = timespec_sub(*timeout, sleep_time); 1045 if (!timespec_valid(timeout)) /* i.e. negative time remains */ 1046 set_normalized_timespec(timeout, 0, 0); 1047 } 1048 1049 switch (end) { 1050 case -EIO: 1051 case -EAGAIN: /* Wedged */ 1052 case -ERESTARTSYS: /* Signal */ 1053 return (int)end; 1054 case 0: /* Timeout */ 1055 return -ETIME; 1056 default: /* Completed */ 1057 WARN_ON(end < 0); /* We're not aware of other errors */ 1058 return 0; 1059 } 1060 } 1061 1062 /** 1063 * Waits for a sequence number to be signaled, and cleans up the 1064 * request and object lists appropriately for that event. 1065 */ 1066 int 1067 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno) 1068 { 1069 struct drm_device *dev = ring->dev; 1070 struct drm_i915_private *dev_priv = dev->dev_private; 1071 bool interruptible = dev_priv->mm.interruptible; 1072 int ret; 1073 1074 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1075 BUG_ON(seqno == 0); 1076 1077 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1078 if (ret) 1079 return ret; 1080 1081 ret = i915_gem_check_olr(ring, seqno); 1082 if (ret) 1083 return ret; 1084 1085 return __wait_seqno(ring, seqno, 1086 atomic_read(&dev_priv->gpu_error.reset_counter), 1087 interruptible, NULL); 1088 } 1089 1090 /** 1091 * Ensures that all rendering to the object has completed and the object is 1092 * safe to unbind from the GTT or access from the CPU. 1093 */ 1094 static __must_check int 1095 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 1096 bool readonly) 1097 { 1098 struct intel_ring_buffer *ring = obj->ring; 1099 u32 seqno; 1100 int ret; 1101 1102 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1103 if (seqno == 0) 1104 return 0; 1105 1106 ret = i915_wait_seqno(ring, seqno); 1107 if (ret) 1108 return ret; 1109 1110 i915_gem_retire_requests_ring(ring); 1111 1112 /* Manually manage the write flush as we may have not yet 1113 * retired the buffer. 1114 */ 1115 if (obj->last_write_seqno && 1116 i915_seqno_passed(seqno, obj->last_write_seqno)) { 1117 obj->last_write_seqno = 0; 1118 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS; 1119 } 1120 1121 return 0; 1122 } 1123 1124 /* A nonblocking variant of the above wait. This is a highly dangerous routine 1125 * as the object state may change during this call. 1126 */ 1127 static __must_check int 1128 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj, 1129 bool readonly) 1130 { 1131 struct drm_device *dev = obj->base.dev; 1132 struct drm_i915_private *dev_priv = dev->dev_private; 1133 struct intel_ring_buffer *ring = obj->ring; 1134 unsigned reset_counter; 1135 u32 seqno; 1136 int ret; 1137 1138 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1139 BUG_ON(!dev_priv->mm.interruptible); 1140 1141 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1142 if (seqno == 0) 1143 return 0; 1144 1145 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true); 1146 if (ret) 1147 return ret; 1148 1149 ret = i915_gem_check_olr(ring, seqno); 1150 if (ret) 1151 return ret; 1152 1153 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 1154 mutex_unlock(&dev->struct_mutex); 1155 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL); 1156 mutex_lock(&dev->struct_mutex); 1157 1158 i915_gem_retire_requests_ring(ring); 1159 1160 /* Manually manage the write flush as we may have not yet 1161 * retired the buffer. 1162 */ 1163 if (obj->last_write_seqno && 1164 i915_seqno_passed(seqno, obj->last_write_seqno)) { 1165 obj->last_write_seqno = 0; 1166 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS; 1167 } 1168 1169 return ret; 1170 } 1171 1172 /** 1173 * Called when user space prepares to use an object with the CPU, either 1174 * through the mmap ioctl's mapping or a GTT mapping. 1175 */ 1176 int 1177 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 1178 struct drm_file *file) 1179 { 1180 struct drm_i915_gem_set_domain *args = data; 1181 struct drm_i915_gem_object *obj; 1182 uint32_t read_domains = args->read_domains; 1183 uint32_t write_domain = args->write_domain; 1184 int ret; 1185 1186 /* Only handle setting domains to types used by the CPU. */ 1187 if (write_domain & I915_GEM_GPU_DOMAINS) 1188 return -EINVAL; 1189 1190 if (read_domains & I915_GEM_GPU_DOMAINS) 1191 return -EINVAL; 1192 1193 /* Having something in the write domain implies it's in the read 1194 * domain, and only that read domain. Enforce that in the request. 1195 */ 1196 if (write_domain != 0 && read_domains != write_domain) 1197 return -EINVAL; 1198 1199 ret = i915_mutex_lock_interruptible(dev); 1200 if (ret) 1201 return ret; 1202 1203 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1204 if (&obj->base == NULL) { 1205 ret = -ENOENT; 1206 goto unlock; 1207 } 1208 1209 /* Try to flush the object off the GPU without holding the lock. 1210 * We will repeat the flush holding the lock in the normal manner 1211 * to catch cases where we are gazumped. 1212 */ 1213 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain); 1214 if (ret) 1215 goto unref; 1216 1217 if (read_domains & I915_GEM_DOMAIN_GTT) { 1218 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); 1219 1220 /* Silently promote "you're not bound, there was nothing to do" 1221 * to success, since the client was just asking us to 1222 * make sure everything was done. 1223 */ 1224 if (ret == -EINVAL) 1225 ret = 0; 1226 } else { 1227 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); 1228 } 1229 1230 unref: 1231 drm_gem_object_unreference(&obj->base); 1232 unlock: 1233 mutex_unlock(&dev->struct_mutex); 1234 return ret; 1235 } 1236 1237 /** 1238 * Called when user space has done writes to this buffer 1239 */ 1240 int 1241 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1242 struct drm_file *file) 1243 { 1244 struct drm_i915_gem_sw_finish *args = data; 1245 struct drm_i915_gem_object *obj; 1246 int ret = 0; 1247 1248 ret = i915_mutex_lock_interruptible(dev); 1249 if (ret) 1250 return ret; 1251 1252 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1253 if (&obj->base == NULL) { 1254 ret = -ENOENT; 1255 goto unlock; 1256 } 1257 1258 /* Pinned buffers may be scanout, so flush the cache */ 1259 if (obj->pin_count) 1260 i915_gem_object_flush_cpu_write_domain(obj); 1261 1262 drm_gem_object_unreference(&obj->base); 1263 unlock: 1264 mutex_unlock(&dev->struct_mutex); 1265 return ret; 1266 } 1267 1268 /** 1269 * Maps the contents of an object, returning the address it is mapped 1270 * into. 1271 * 1272 * While the mapping holds a reference on the contents of the object, it doesn't 1273 * imply a ref on the object itself. 1274 */ 1275 int 1276 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1277 struct drm_file *file) 1278 { 1279 struct drm_i915_gem_mmap *args = data; 1280 struct drm_gem_object *obj; 1281 unsigned long addr; 1282 1283 obj = drm_gem_object_lookup(dev, file, args->handle); 1284 if (obj == NULL) 1285 return -ENOENT; 1286 1287 /* prime objects have no backing filp to GEM mmap 1288 * pages from. 1289 */ 1290 if (!obj->filp) { 1291 drm_gem_object_unreference_unlocked(obj); 1292 return -EINVAL; 1293 } 1294 1295 addr = vm_mmap(obj->filp, 0, args->size, 1296 PROT_READ | PROT_WRITE, MAP_SHARED, 1297 args->offset); 1298 drm_gem_object_unreference_unlocked(obj); 1299 if (IS_ERR((void *)addr)) 1300 return addr; 1301 1302 args->addr_ptr = (uint64_t) addr; 1303 1304 return 0; 1305 } 1306 1307 /** 1308 * i915_gem_fault - fault a page into the GTT 1309 * vma: VMA in question 1310 * vmf: fault info 1311 * 1312 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1313 * from userspace. The fault handler takes care of binding the object to 1314 * the GTT (if needed), allocating and programming a fence register (again, 1315 * only if needed based on whether the old reg is still valid or the object 1316 * is tiled) and inserting a new PTE into the faulting process. 1317 * 1318 * Note that the faulting process may involve evicting existing objects 1319 * from the GTT and/or fence registers to make room. So performance may 1320 * suffer if the GTT working set is large or there are few fence registers 1321 * left. 1322 */ 1323 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1324 { 1325 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data); 1326 struct drm_device *dev = obj->base.dev; 1327 drm_i915_private_t *dev_priv = dev->dev_private; 1328 pgoff_t page_offset; 1329 unsigned long pfn; 1330 int ret = 0; 1331 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 1332 1333 /* We don't use vmf->pgoff since that has the fake offset */ 1334 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >> 1335 PAGE_SHIFT; 1336 1337 ret = i915_mutex_lock_interruptible(dev); 1338 if (ret) 1339 goto out; 1340 1341 trace_i915_gem_object_fault(obj, page_offset, true, write); 1342 1343 /* Access to snoopable pages through the GTT is incoherent. */ 1344 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) { 1345 ret = -EINVAL; 1346 goto unlock; 1347 } 1348 1349 /* Now bind it into the GTT if needed */ 1350 ret = i915_gem_object_pin(obj, 0, true, false); 1351 if (ret) 1352 goto unlock; 1353 1354 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1355 if (ret) 1356 goto unpin; 1357 1358 ret = i915_gem_object_get_fence(obj); 1359 if (ret) 1360 goto unpin; 1361 1362 obj->fault_mappable = true; 1363 1364 pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) + 1365 page_offset; 1366 1367 /* Finally, remap it using the new GTT offset */ 1368 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn); 1369 unpin: 1370 i915_gem_object_unpin(obj); 1371 unlock: 1372 mutex_unlock(&dev->struct_mutex); 1373 out: 1374 switch (ret) { 1375 case -EIO: 1376 /* If this -EIO is due to a gpu hang, give the reset code a 1377 * chance to clean up the mess. Otherwise return the proper 1378 * SIGBUS. */ 1379 if (i915_terminally_wedged(&dev_priv->gpu_error)) 1380 return VM_FAULT_SIGBUS; 1381 case -EAGAIN: 1382 /* Give the error handler a chance to run and move the 1383 * objects off the GPU active list. Next time we service the 1384 * fault, we should be able to transition the page into the 1385 * GTT without touching the GPU (and so avoid further 1386 * EIO/EGAIN). If the GPU is wedged, then there is no issue 1387 * with coherency, just lost writes. 1388 */ 1389 set_need_resched(); 1390 case 0: 1391 case -ERESTARTSYS: 1392 case -EINTR: 1393 case -EBUSY: 1394 /* 1395 * EBUSY is ok: this just means that another thread 1396 * already did the job. 1397 */ 1398 return VM_FAULT_NOPAGE; 1399 case -ENOMEM: 1400 return VM_FAULT_OOM; 1401 case -ENOSPC: 1402 return VM_FAULT_SIGBUS; 1403 default: 1404 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); 1405 return VM_FAULT_SIGBUS; 1406 } 1407 } 1408 1409 /** 1410 * i915_gem_release_mmap - remove physical page mappings 1411 * @obj: obj in question 1412 * 1413 * Preserve the reservation of the mmapping with the DRM core code, but 1414 * relinquish ownership of the pages back to the system. 1415 * 1416 * It is vital that we remove the page mapping if we have mapped a tiled 1417 * object through the GTT and then lose the fence register due to 1418 * resource pressure. Similarly if the object has been moved out of the 1419 * aperture, than pages mapped into userspace must be revoked. Removing the 1420 * mapping will then trigger a page fault on the next user access, allowing 1421 * fixup by i915_gem_fault(). 1422 */ 1423 void 1424 i915_gem_release_mmap(struct drm_i915_gem_object *obj) 1425 { 1426 if (!obj->fault_mappable) 1427 return; 1428 1429 if (obj->base.dev->dev_mapping) 1430 unmap_mapping_range(obj->base.dev->dev_mapping, 1431 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT, 1432 obj->base.size, 1); 1433 1434 obj->fault_mappable = false; 1435 } 1436 1437 uint32_t 1438 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode) 1439 { 1440 uint32_t gtt_size; 1441 1442 if (INTEL_INFO(dev)->gen >= 4 || 1443 tiling_mode == I915_TILING_NONE) 1444 return size; 1445 1446 /* Previous chips need a power-of-two fence region when tiling */ 1447 if (INTEL_INFO(dev)->gen == 3) 1448 gtt_size = 1024*1024; 1449 else 1450 gtt_size = 512*1024; 1451 1452 while (gtt_size < size) 1453 gtt_size <<= 1; 1454 1455 return gtt_size; 1456 } 1457 1458 /** 1459 * i915_gem_get_gtt_alignment - return required GTT alignment for an object 1460 * @obj: object to check 1461 * 1462 * Return the required GTT alignment for an object, taking into account 1463 * potential fence register mapping. 1464 */ 1465 uint32_t 1466 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size, 1467 int tiling_mode, bool fenced) 1468 { 1469 /* 1470 * Minimum alignment is 4k (GTT page size), but might be greater 1471 * if a fence register is needed for the object. 1472 */ 1473 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) || 1474 tiling_mode == I915_TILING_NONE) 1475 return 4096; 1476 1477 /* 1478 * Previous chips need to be aligned to the size of the smallest 1479 * fence register that can contain the object. 1480 */ 1481 return i915_gem_get_gtt_size(dev, size, tiling_mode); 1482 } 1483 1484 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) 1485 { 1486 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1487 int ret; 1488 1489 if (obj->base.map_list.map) 1490 return 0; 1491 1492 dev_priv->mm.shrinker_no_lock_stealing = true; 1493 1494 ret = drm_gem_create_mmap_offset(&obj->base); 1495 if (ret != -ENOSPC) 1496 goto out; 1497 1498 /* Badly fragmented mmap space? The only way we can recover 1499 * space is by destroying unwanted objects. We can't randomly release 1500 * mmap_offsets as userspace expects them to be persistent for the 1501 * lifetime of the objects. The closest we can is to release the 1502 * offsets on purgeable objects by truncating it and marking it purged, 1503 * which prevents userspace from ever using that object again. 1504 */ 1505 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT); 1506 ret = drm_gem_create_mmap_offset(&obj->base); 1507 if (ret != -ENOSPC) 1508 goto out; 1509 1510 i915_gem_shrink_all(dev_priv); 1511 ret = drm_gem_create_mmap_offset(&obj->base); 1512 out: 1513 dev_priv->mm.shrinker_no_lock_stealing = false; 1514 1515 return ret; 1516 } 1517 1518 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) 1519 { 1520 if (!obj->base.map_list.map) 1521 return; 1522 1523 drm_gem_free_mmap_offset(&obj->base); 1524 } 1525 1526 int 1527 i915_gem_mmap_gtt(struct drm_file *file, 1528 struct drm_device *dev, 1529 uint32_t handle, 1530 uint64_t *offset) 1531 { 1532 struct drm_i915_private *dev_priv = dev->dev_private; 1533 struct drm_i915_gem_object *obj; 1534 int ret; 1535 1536 ret = i915_mutex_lock_interruptible(dev); 1537 if (ret) 1538 return ret; 1539 1540 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle)); 1541 if (&obj->base == NULL) { 1542 ret = -ENOENT; 1543 goto unlock; 1544 } 1545 1546 if (obj->base.size > dev_priv->gtt.mappable_end) { 1547 ret = -E2BIG; 1548 goto out; 1549 } 1550 1551 if (obj->madv != I915_MADV_WILLNEED) { 1552 DRM_ERROR("Attempting to mmap a purgeable buffer\n"); 1553 ret = -EINVAL; 1554 goto out; 1555 } 1556 1557 ret = i915_gem_object_create_mmap_offset(obj); 1558 if (ret) 1559 goto out; 1560 1561 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT; 1562 1563 out: 1564 drm_gem_object_unreference(&obj->base); 1565 unlock: 1566 mutex_unlock(&dev->struct_mutex); 1567 return ret; 1568 } 1569 1570 /** 1571 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 1572 * @dev: DRM device 1573 * @data: GTT mapping ioctl data 1574 * @file: GEM object info 1575 * 1576 * Simply returns the fake offset to userspace so it can mmap it. 1577 * The mmap call will end up in drm_gem_mmap(), which will set things 1578 * up so we can get faults in the handler above. 1579 * 1580 * The fault handler will take care of binding the object into the GTT 1581 * (since it may have been evicted to make room for something), allocating 1582 * a fence register, and mapping the appropriate aperture address into 1583 * userspace. 1584 */ 1585 int 1586 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 1587 struct drm_file *file) 1588 { 1589 struct drm_i915_gem_mmap_gtt *args = data; 1590 1591 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); 1592 } 1593 1594 /* Immediately discard the backing storage */ 1595 static void 1596 i915_gem_object_truncate(struct drm_i915_gem_object *obj) 1597 { 1598 struct inode *inode; 1599 1600 i915_gem_object_free_mmap_offset(obj); 1601 1602 if (obj->base.filp == NULL) 1603 return; 1604 1605 /* Our goal here is to return as much of the memory as 1606 * is possible back to the system as we are called from OOM. 1607 * To do this we must instruct the shmfs to drop all of its 1608 * backing pages, *now*. 1609 */ 1610 inode = file_inode(obj->base.filp); 1611 shmem_truncate_range(inode, 0, (loff_t)-1); 1612 1613 obj->madv = __I915_MADV_PURGED; 1614 } 1615 1616 static inline int 1617 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj) 1618 { 1619 return obj->madv == I915_MADV_DONTNEED; 1620 } 1621 1622 static void 1623 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj) 1624 { 1625 struct sg_page_iter sg_iter; 1626 int ret; 1627 1628 BUG_ON(obj->madv == __I915_MADV_PURGED); 1629 1630 ret = i915_gem_object_set_to_cpu_domain(obj, true); 1631 if (ret) { 1632 /* In the event of a disaster, abandon all caches and 1633 * hope for the best. 1634 */ 1635 WARN_ON(ret != -EIO); 1636 i915_gem_clflush_object(obj); 1637 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; 1638 } 1639 1640 if (i915_gem_object_needs_bit17_swizzle(obj)) 1641 i915_gem_object_save_bit_17_swizzle(obj); 1642 1643 if (obj->madv == I915_MADV_DONTNEED) 1644 obj->dirty = 0; 1645 1646 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) { 1647 struct page *page = sg_page_iter_page(&sg_iter); 1648 1649 if (obj->dirty) 1650 set_page_dirty(page); 1651 1652 if (obj->madv == I915_MADV_WILLNEED) 1653 mark_page_accessed(page); 1654 1655 page_cache_release(page); 1656 } 1657 obj->dirty = 0; 1658 1659 sg_free_table(obj->pages); 1660 kfree(obj->pages); 1661 } 1662 1663 int 1664 i915_gem_object_put_pages(struct drm_i915_gem_object *obj) 1665 { 1666 const struct drm_i915_gem_object_ops *ops = obj->ops; 1667 1668 if (obj->pages == NULL) 1669 return 0; 1670 1671 BUG_ON(obj->gtt_space); 1672 1673 if (obj->pages_pin_count) 1674 return -EBUSY; 1675 1676 /* ->put_pages might need to allocate memory for the bit17 swizzle 1677 * array, hence protect them from being reaped by removing them from gtt 1678 * lists early. */ 1679 list_del(&obj->gtt_list); 1680 1681 ops->put_pages(obj); 1682 obj->pages = NULL; 1683 1684 if (i915_gem_object_is_purgeable(obj)) 1685 i915_gem_object_truncate(obj); 1686 1687 return 0; 1688 } 1689 1690 static long 1691 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target, 1692 bool purgeable_only) 1693 { 1694 struct drm_i915_gem_object *obj, *next; 1695 long count = 0; 1696 1697 list_for_each_entry_safe(obj, next, 1698 &dev_priv->mm.unbound_list, 1699 gtt_list) { 1700 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) && 1701 i915_gem_object_put_pages(obj) == 0) { 1702 count += obj->base.size >> PAGE_SHIFT; 1703 if (count >= target) 1704 return count; 1705 } 1706 } 1707 1708 list_for_each_entry_safe(obj, next, 1709 &dev_priv->mm.inactive_list, 1710 mm_list) { 1711 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) && 1712 i915_gem_object_unbind(obj) == 0 && 1713 i915_gem_object_put_pages(obj) == 0) { 1714 count += obj->base.size >> PAGE_SHIFT; 1715 if (count >= target) 1716 return count; 1717 } 1718 } 1719 1720 return count; 1721 } 1722 1723 static long 1724 i915_gem_purge(struct drm_i915_private *dev_priv, long target) 1725 { 1726 return __i915_gem_shrink(dev_priv, target, true); 1727 } 1728 1729 static void 1730 i915_gem_shrink_all(struct drm_i915_private *dev_priv) 1731 { 1732 struct drm_i915_gem_object *obj, *next; 1733 1734 i915_gem_evict_everything(dev_priv->dev); 1735 1736 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list) 1737 i915_gem_object_put_pages(obj); 1738 } 1739 1740 static int 1741 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) 1742 { 1743 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1744 int page_count, i; 1745 struct address_space *mapping; 1746 struct sg_table *st; 1747 struct scatterlist *sg; 1748 struct sg_page_iter sg_iter; 1749 struct page *page; 1750 unsigned long last_pfn = 0; /* suppress gcc warning */ 1751 gfp_t gfp; 1752 1753 /* Assert that the object is not currently in any GPU domain. As it 1754 * wasn't in the GTT, there shouldn't be any way it could have been in 1755 * a GPU cache 1756 */ 1757 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); 1758 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); 1759 1760 st = kmalloc(sizeof(*st), GFP_KERNEL); 1761 if (st == NULL) 1762 return -ENOMEM; 1763 1764 page_count = obj->base.size / PAGE_SIZE; 1765 if (sg_alloc_table(st, page_count, GFP_KERNEL)) { 1766 sg_free_table(st); 1767 kfree(st); 1768 return -ENOMEM; 1769 } 1770 1771 /* Get the list of pages out of our struct file. They'll be pinned 1772 * at this point until we release them. 1773 * 1774 * Fail silently without starting the shrinker 1775 */ 1776 mapping = file_inode(obj->base.filp)->i_mapping; 1777 gfp = mapping_gfp_mask(mapping); 1778 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD; 1779 gfp &= ~(__GFP_IO | __GFP_WAIT); 1780 sg = st->sgl; 1781 st->nents = 0; 1782 for (i = 0; i < page_count; i++) { 1783 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1784 if (IS_ERR(page)) { 1785 i915_gem_purge(dev_priv, page_count); 1786 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1787 } 1788 if (IS_ERR(page)) { 1789 /* We've tried hard to allocate the memory by reaping 1790 * our own buffer, now let the real VM do its job and 1791 * go down in flames if truly OOM. 1792 */ 1793 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD); 1794 gfp |= __GFP_IO | __GFP_WAIT; 1795 1796 i915_gem_shrink_all(dev_priv); 1797 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 1798 if (IS_ERR(page)) 1799 goto err_pages; 1800 1801 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD; 1802 gfp &= ~(__GFP_IO | __GFP_WAIT); 1803 } 1804 1805 if (!i || page_to_pfn(page) != last_pfn + 1) { 1806 if (i) 1807 sg = sg_next(sg); 1808 st->nents++; 1809 sg_set_page(sg, page, PAGE_SIZE, 0); 1810 } else { 1811 sg->length += PAGE_SIZE; 1812 } 1813 last_pfn = page_to_pfn(page); 1814 } 1815 1816 sg_mark_end(sg); 1817 obj->pages = st; 1818 1819 if (i915_gem_object_needs_bit17_swizzle(obj)) 1820 i915_gem_object_do_bit_17_swizzle(obj); 1821 1822 return 0; 1823 1824 err_pages: 1825 sg_mark_end(sg); 1826 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) 1827 page_cache_release(sg_page_iter_page(&sg_iter)); 1828 sg_free_table(st); 1829 kfree(st); 1830 return PTR_ERR(page); 1831 } 1832 1833 /* Ensure that the associated pages are gathered from the backing storage 1834 * and pinned into our object. i915_gem_object_get_pages() may be called 1835 * multiple times before they are released by a single call to 1836 * i915_gem_object_put_pages() - once the pages are no longer referenced 1837 * either as a result of memory pressure (reaping pages under the shrinker) 1838 * or as the object is itself released. 1839 */ 1840 int 1841 i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 1842 { 1843 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1844 const struct drm_i915_gem_object_ops *ops = obj->ops; 1845 int ret; 1846 1847 if (obj->pages) 1848 return 0; 1849 1850 if (obj->madv != I915_MADV_WILLNEED) { 1851 DRM_ERROR("Attempting to obtain a purgeable object\n"); 1852 return -EINVAL; 1853 } 1854 1855 BUG_ON(obj->pages_pin_count); 1856 1857 ret = ops->get_pages(obj); 1858 if (ret) 1859 return ret; 1860 1861 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list); 1862 return 0; 1863 } 1864 1865 void 1866 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj, 1867 struct intel_ring_buffer *ring) 1868 { 1869 struct drm_device *dev = obj->base.dev; 1870 struct drm_i915_private *dev_priv = dev->dev_private; 1871 u32 seqno = intel_ring_get_seqno(ring); 1872 1873 BUG_ON(ring == NULL); 1874 obj->ring = ring; 1875 1876 /* Add a reference if we're newly entering the active list. */ 1877 if (!obj->active) { 1878 drm_gem_object_reference(&obj->base); 1879 obj->active = 1; 1880 } 1881 1882 /* Move from whatever list we were on to the tail of execution. */ 1883 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list); 1884 list_move_tail(&obj->ring_list, &ring->active_list); 1885 1886 obj->last_read_seqno = seqno; 1887 1888 if (obj->fenced_gpu_access) { 1889 obj->last_fenced_seqno = seqno; 1890 1891 /* Bump MRU to take account of the delayed flush */ 1892 if (obj->fence_reg != I915_FENCE_REG_NONE) { 1893 struct drm_i915_fence_reg *reg; 1894 1895 reg = &dev_priv->fence_regs[obj->fence_reg]; 1896 list_move_tail(®->lru_list, 1897 &dev_priv->mm.fence_list); 1898 } 1899 } 1900 } 1901 1902 static void 1903 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj) 1904 { 1905 struct drm_device *dev = obj->base.dev; 1906 struct drm_i915_private *dev_priv = dev->dev_private; 1907 1908 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS); 1909 BUG_ON(!obj->active); 1910 1911 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 1912 1913 list_del_init(&obj->ring_list); 1914 obj->ring = NULL; 1915 1916 obj->last_read_seqno = 0; 1917 obj->last_write_seqno = 0; 1918 obj->base.write_domain = 0; 1919 1920 obj->last_fenced_seqno = 0; 1921 obj->fenced_gpu_access = false; 1922 1923 obj->active = 0; 1924 drm_gem_object_unreference(&obj->base); 1925 1926 WARN_ON(i915_verify_lists(dev)); 1927 } 1928 1929 static int 1930 i915_gem_init_seqno(struct drm_device *dev, u32 seqno) 1931 { 1932 struct drm_i915_private *dev_priv = dev->dev_private; 1933 struct intel_ring_buffer *ring; 1934 int ret, i, j; 1935 1936 /* Carefully retire all requests without writing to the rings */ 1937 for_each_ring(ring, dev_priv, i) { 1938 ret = intel_ring_idle(ring); 1939 if (ret) 1940 return ret; 1941 } 1942 i915_gem_retire_requests(dev); 1943 1944 /* Finally reset hw state */ 1945 for_each_ring(ring, dev_priv, i) { 1946 intel_ring_init_seqno(ring, seqno); 1947 1948 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++) 1949 ring->sync_seqno[j] = 0; 1950 } 1951 1952 return 0; 1953 } 1954 1955 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno) 1956 { 1957 struct drm_i915_private *dev_priv = dev->dev_private; 1958 int ret; 1959 1960 if (seqno == 0) 1961 return -EINVAL; 1962 1963 /* HWS page needs to be set less than what we 1964 * will inject to ring 1965 */ 1966 ret = i915_gem_init_seqno(dev, seqno - 1); 1967 if (ret) 1968 return ret; 1969 1970 /* Carefully set the last_seqno value so that wrap 1971 * detection still works 1972 */ 1973 dev_priv->next_seqno = seqno; 1974 dev_priv->last_seqno = seqno - 1; 1975 if (dev_priv->last_seqno == 0) 1976 dev_priv->last_seqno--; 1977 1978 return 0; 1979 } 1980 1981 int 1982 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno) 1983 { 1984 struct drm_i915_private *dev_priv = dev->dev_private; 1985 1986 /* reserve 0 for non-seqno */ 1987 if (dev_priv->next_seqno == 0) { 1988 int ret = i915_gem_init_seqno(dev, 0); 1989 if (ret) 1990 return ret; 1991 1992 dev_priv->next_seqno = 1; 1993 } 1994 1995 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++; 1996 return 0; 1997 } 1998 1999 int 2000 i915_add_request(struct intel_ring_buffer *ring, 2001 struct drm_file *file, 2002 u32 *out_seqno) 2003 { 2004 drm_i915_private_t *dev_priv = ring->dev->dev_private; 2005 struct drm_i915_gem_request *request; 2006 u32 request_ring_position; 2007 int was_empty; 2008 int ret; 2009 2010 /* 2011 * Emit any outstanding flushes - execbuf can fail to emit the flush 2012 * after having emitted the batchbuffer command. Hence we need to fix 2013 * things up similar to emitting the lazy request. The difference here 2014 * is that the flush _must_ happen before the next request, no matter 2015 * what. 2016 */ 2017 ret = intel_ring_flush_all_caches(ring); 2018 if (ret) 2019 return ret; 2020 2021 request = kmalloc(sizeof(*request), GFP_KERNEL); 2022 if (request == NULL) 2023 return -ENOMEM; 2024 2025 2026 /* Record the position of the start of the request so that 2027 * should we detect the updated seqno part-way through the 2028 * GPU processing the request, we never over-estimate the 2029 * position of the head. 2030 */ 2031 request_ring_position = intel_ring_get_tail(ring); 2032 2033 ret = ring->add_request(ring); 2034 if (ret) { 2035 kfree(request); 2036 return ret; 2037 } 2038 2039 request->seqno = intel_ring_get_seqno(ring); 2040 request->ring = ring; 2041 request->tail = request_ring_position; 2042 request->emitted_jiffies = jiffies; 2043 was_empty = list_empty(&ring->request_list); 2044 list_add_tail(&request->list, &ring->request_list); 2045 request->file_priv = NULL; 2046 2047 if (file) { 2048 struct drm_i915_file_private *file_priv = file->driver_priv; 2049 2050 spin_lock(&file_priv->mm.lock); 2051 request->file_priv = file_priv; 2052 list_add_tail(&request->client_list, 2053 &file_priv->mm.request_list); 2054 spin_unlock(&file_priv->mm.lock); 2055 } 2056 2057 trace_i915_gem_request_add(ring, request->seqno); 2058 ring->outstanding_lazy_request = 0; 2059 2060 if (!dev_priv->mm.suspended) { 2061 if (i915_enable_hangcheck) { 2062 mod_timer(&dev_priv->gpu_error.hangcheck_timer, 2063 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES)); 2064 } 2065 if (was_empty) { 2066 queue_delayed_work(dev_priv->wq, 2067 &dev_priv->mm.retire_work, 2068 round_jiffies_up_relative(HZ)); 2069 intel_mark_busy(dev_priv->dev); 2070 } 2071 } 2072 2073 if (out_seqno) 2074 *out_seqno = request->seqno; 2075 return 0; 2076 } 2077 2078 static inline void 2079 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request) 2080 { 2081 struct drm_i915_file_private *file_priv = request->file_priv; 2082 2083 if (!file_priv) 2084 return; 2085 2086 spin_lock(&file_priv->mm.lock); 2087 if (request->file_priv) { 2088 list_del(&request->client_list); 2089 request->file_priv = NULL; 2090 } 2091 spin_unlock(&file_priv->mm.lock); 2092 } 2093 2094 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv, 2095 struct intel_ring_buffer *ring) 2096 { 2097 while (!list_empty(&ring->request_list)) { 2098 struct drm_i915_gem_request *request; 2099 2100 request = list_first_entry(&ring->request_list, 2101 struct drm_i915_gem_request, 2102 list); 2103 2104 list_del(&request->list); 2105 i915_gem_request_remove_from_client(request); 2106 kfree(request); 2107 } 2108 2109 while (!list_empty(&ring->active_list)) { 2110 struct drm_i915_gem_object *obj; 2111 2112 obj = list_first_entry(&ring->active_list, 2113 struct drm_i915_gem_object, 2114 ring_list); 2115 2116 i915_gem_object_move_to_inactive(obj); 2117 } 2118 } 2119 2120 static void i915_gem_reset_fences(struct drm_device *dev) 2121 { 2122 struct drm_i915_private *dev_priv = dev->dev_private; 2123 int i; 2124 2125 for (i = 0; i < dev_priv->num_fence_regs; i++) { 2126 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; 2127 2128 if (reg->obj) 2129 i915_gem_object_fence_lost(reg->obj); 2130 2131 i915_gem_write_fence(dev, i, NULL); 2132 2133 reg->pin_count = 0; 2134 reg->obj = NULL; 2135 INIT_LIST_HEAD(®->lru_list); 2136 } 2137 2138 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 2139 } 2140 2141 void i915_gem_reset(struct drm_device *dev) 2142 { 2143 struct drm_i915_private *dev_priv = dev->dev_private; 2144 struct drm_i915_gem_object *obj; 2145 struct intel_ring_buffer *ring; 2146 int i; 2147 2148 for_each_ring(ring, dev_priv, i) 2149 i915_gem_reset_ring_lists(dev_priv, ring); 2150 2151 /* Move everything out of the GPU domains to ensure we do any 2152 * necessary invalidation upon reuse. 2153 */ 2154 list_for_each_entry(obj, 2155 &dev_priv->mm.inactive_list, 2156 mm_list) 2157 { 2158 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; 2159 } 2160 2161 /* The fence registers are invalidated so clear them out */ 2162 i915_gem_reset_fences(dev); 2163 } 2164 2165 /** 2166 * This function clears the request list as sequence numbers are passed. 2167 */ 2168 void 2169 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring) 2170 { 2171 uint32_t seqno; 2172 2173 if (list_empty(&ring->request_list)) 2174 return; 2175 2176 WARN_ON(i915_verify_lists(ring->dev)); 2177 2178 seqno = ring->get_seqno(ring, true); 2179 2180 while (!list_empty(&ring->request_list)) { 2181 struct drm_i915_gem_request *request; 2182 2183 request = list_first_entry(&ring->request_list, 2184 struct drm_i915_gem_request, 2185 list); 2186 2187 if (!i915_seqno_passed(seqno, request->seqno)) 2188 break; 2189 2190 trace_i915_gem_request_retire(ring, request->seqno); 2191 /* We know the GPU must have read the request to have 2192 * sent us the seqno + interrupt, so use the position 2193 * of tail of the request to update the last known position 2194 * of the GPU head. 2195 */ 2196 ring->last_retired_head = request->tail; 2197 2198 list_del(&request->list); 2199 i915_gem_request_remove_from_client(request); 2200 kfree(request); 2201 } 2202 2203 /* Move any buffers on the active list that are no longer referenced 2204 * by the ringbuffer to the flushing/inactive lists as appropriate. 2205 */ 2206 while (!list_empty(&ring->active_list)) { 2207 struct drm_i915_gem_object *obj; 2208 2209 obj = list_first_entry(&ring->active_list, 2210 struct drm_i915_gem_object, 2211 ring_list); 2212 2213 if (!i915_seqno_passed(seqno, obj->last_read_seqno)) 2214 break; 2215 2216 i915_gem_object_move_to_inactive(obj); 2217 } 2218 2219 if (unlikely(ring->trace_irq_seqno && 2220 i915_seqno_passed(seqno, ring->trace_irq_seqno))) { 2221 ring->irq_put(ring); 2222 ring->trace_irq_seqno = 0; 2223 } 2224 2225 WARN_ON(i915_verify_lists(ring->dev)); 2226 } 2227 2228 void 2229 i915_gem_retire_requests(struct drm_device *dev) 2230 { 2231 drm_i915_private_t *dev_priv = dev->dev_private; 2232 struct intel_ring_buffer *ring; 2233 int i; 2234 2235 for_each_ring(ring, dev_priv, i) 2236 i915_gem_retire_requests_ring(ring); 2237 } 2238 2239 static void 2240 i915_gem_retire_work_handler(struct work_struct *work) 2241 { 2242 drm_i915_private_t *dev_priv; 2243 struct drm_device *dev; 2244 struct intel_ring_buffer *ring; 2245 bool idle; 2246 int i; 2247 2248 dev_priv = container_of(work, drm_i915_private_t, 2249 mm.retire_work.work); 2250 dev = dev_priv->dev; 2251 2252 /* Come back later if the device is busy... */ 2253 if (!mutex_trylock(&dev->struct_mutex)) { 2254 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 2255 round_jiffies_up_relative(HZ)); 2256 return; 2257 } 2258 2259 i915_gem_retire_requests(dev); 2260 2261 /* Send a periodic flush down the ring so we don't hold onto GEM 2262 * objects indefinitely. 2263 */ 2264 idle = true; 2265 for_each_ring(ring, dev_priv, i) { 2266 if (ring->gpu_caches_dirty) 2267 i915_add_request(ring, NULL, NULL); 2268 2269 idle &= list_empty(&ring->request_list); 2270 } 2271 2272 if (!dev_priv->mm.suspended && !idle) 2273 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 2274 round_jiffies_up_relative(HZ)); 2275 if (idle) 2276 intel_mark_idle(dev); 2277 2278 mutex_unlock(&dev->struct_mutex); 2279 } 2280 2281 /** 2282 * Ensures that an object will eventually get non-busy by flushing any required 2283 * write domains, emitting any outstanding lazy request and retiring and 2284 * completed requests. 2285 */ 2286 static int 2287 i915_gem_object_flush_active(struct drm_i915_gem_object *obj) 2288 { 2289 int ret; 2290 2291 if (obj->active) { 2292 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno); 2293 if (ret) 2294 return ret; 2295 2296 i915_gem_retire_requests_ring(obj->ring); 2297 } 2298 2299 return 0; 2300 } 2301 2302 /** 2303 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT 2304 * @DRM_IOCTL_ARGS: standard ioctl arguments 2305 * 2306 * Returns 0 if successful, else an error is returned with the remaining time in 2307 * the timeout parameter. 2308 * -ETIME: object is still busy after timeout 2309 * -ERESTARTSYS: signal interrupted the wait 2310 * -ENONENT: object doesn't exist 2311 * Also possible, but rare: 2312 * -EAGAIN: GPU wedged 2313 * -ENOMEM: damn 2314 * -ENODEV: Internal IRQ fail 2315 * -E?: The add request failed 2316 * 2317 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any 2318 * non-zero timeout parameter the wait ioctl will wait for the given number of 2319 * nanoseconds on an object becoming unbusy. Since the wait itself does so 2320 * without holding struct_mutex the object may become re-busied before this 2321 * function completes. A similar but shorter * race condition exists in the busy 2322 * ioctl 2323 */ 2324 int 2325 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 2326 { 2327 drm_i915_private_t *dev_priv = dev->dev_private; 2328 struct drm_i915_gem_wait *args = data; 2329 struct drm_i915_gem_object *obj; 2330 struct intel_ring_buffer *ring = NULL; 2331 struct timespec timeout_stack, *timeout = NULL; 2332 unsigned reset_counter; 2333 u32 seqno = 0; 2334 int ret = 0; 2335 2336 if (args->timeout_ns >= 0) { 2337 timeout_stack = ns_to_timespec(args->timeout_ns); 2338 timeout = &timeout_stack; 2339 } 2340 2341 ret = i915_mutex_lock_interruptible(dev); 2342 if (ret) 2343 return ret; 2344 2345 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle)); 2346 if (&obj->base == NULL) { 2347 mutex_unlock(&dev->struct_mutex); 2348 return -ENOENT; 2349 } 2350 2351 /* Need to make sure the object gets inactive eventually. */ 2352 ret = i915_gem_object_flush_active(obj); 2353 if (ret) 2354 goto out; 2355 2356 if (obj->active) { 2357 seqno = obj->last_read_seqno; 2358 ring = obj->ring; 2359 } 2360 2361 if (seqno == 0) 2362 goto out; 2363 2364 /* Do this after OLR check to make sure we make forward progress polling 2365 * on this IOCTL with a 0 timeout (like busy ioctl) 2366 */ 2367 if (!args->timeout_ns) { 2368 ret = -ETIME; 2369 goto out; 2370 } 2371 2372 drm_gem_object_unreference(&obj->base); 2373 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 2374 mutex_unlock(&dev->struct_mutex); 2375 2376 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout); 2377 if (timeout) 2378 args->timeout_ns = timespec_to_ns(timeout); 2379 return ret; 2380 2381 out: 2382 drm_gem_object_unreference(&obj->base); 2383 mutex_unlock(&dev->struct_mutex); 2384 return ret; 2385 } 2386 2387 /** 2388 * i915_gem_object_sync - sync an object to a ring. 2389 * 2390 * @obj: object which may be in use on another ring. 2391 * @to: ring we wish to use the object on. May be NULL. 2392 * 2393 * This code is meant to abstract object synchronization with the GPU. 2394 * Calling with NULL implies synchronizing the object with the CPU 2395 * rather than a particular GPU ring. 2396 * 2397 * Returns 0 if successful, else propagates up the lower layer error. 2398 */ 2399 int 2400 i915_gem_object_sync(struct drm_i915_gem_object *obj, 2401 struct intel_ring_buffer *to) 2402 { 2403 struct intel_ring_buffer *from = obj->ring; 2404 u32 seqno; 2405 int ret, idx; 2406 2407 if (from == NULL || to == from) 2408 return 0; 2409 2410 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev)) 2411 return i915_gem_object_wait_rendering(obj, false); 2412 2413 idx = intel_ring_sync_index(from, to); 2414 2415 seqno = obj->last_read_seqno; 2416 if (seqno <= from->sync_seqno[idx]) 2417 return 0; 2418 2419 ret = i915_gem_check_olr(obj->ring, seqno); 2420 if (ret) 2421 return ret; 2422 2423 ret = to->sync_to(to, from, seqno); 2424 if (!ret) 2425 /* We use last_read_seqno because sync_to() 2426 * might have just caused seqno wrap under 2427 * the radar. 2428 */ 2429 from->sync_seqno[idx] = obj->last_read_seqno; 2430 2431 return ret; 2432 } 2433 2434 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj) 2435 { 2436 u32 old_write_domain, old_read_domains; 2437 2438 /* Force a pagefault for domain tracking on next user access */ 2439 i915_gem_release_mmap(obj); 2440 2441 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 2442 return; 2443 2444 /* Wait for any direct GTT access to complete */ 2445 mb(); 2446 2447 old_read_domains = obj->base.read_domains; 2448 old_write_domain = obj->base.write_domain; 2449 2450 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT; 2451 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT; 2452 2453 trace_i915_gem_object_change_domain(obj, 2454 old_read_domains, 2455 old_write_domain); 2456 } 2457 2458 /** 2459 * Unbinds an object from the GTT aperture. 2460 */ 2461 int 2462 i915_gem_object_unbind(struct drm_i915_gem_object *obj) 2463 { 2464 drm_i915_private_t *dev_priv = obj->base.dev->dev_private; 2465 int ret; 2466 2467 if (obj->gtt_space == NULL) 2468 return 0; 2469 2470 if (obj->pin_count) 2471 return -EBUSY; 2472 2473 BUG_ON(obj->pages == NULL); 2474 2475 ret = i915_gem_object_finish_gpu(obj); 2476 if (ret) 2477 return ret; 2478 /* Continue on if we fail due to EIO, the GPU is hung so we 2479 * should be safe and we need to cleanup or else we might 2480 * cause memory corruption through use-after-free. 2481 */ 2482 2483 i915_gem_object_finish_gtt(obj); 2484 2485 /* release the fence reg _after_ flushing */ 2486 ret = i915_gem_object_put_fence(obj); 2487 if (ret) 2488 return ret; 2489 2490 trace_i915_gem_object_unbind(obj); 2491 2492 if (obj->has_global_gtt_mapping) 2493 i915_gem_gtt_unbind_object(obj); 2494 if (obj->has_aliasing_ppgtt_mapping) { 2495 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj); 2496 obj->has_aliasing_ppgtt_mapping = 0; 2497 } 2498 i915_gem_gtt_finish_object(obj); 2499 2500 list_del(&obj->mm_list); 2501 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list); 2502 /* Avoid an unnecessary call to unbind on rebind. */ 2503 obj->map_and_fenceable = true; 2504 2505 drm_mm_put_block(obj->gtt_space); 2506 obj->gtt_space = NULL; 2507 obj->gtt_offset = 0; 2508 2509 return 0; 2510 } 2511 2512 int i915_gpu_idle(struct drm_device *dev) 2513 { 2514 drm_i915_private_t *dev_priv = dev->dev_private; 2515 struct intel_ring_buffer *ring; 2516 int ret, i; 2517 2518 /* Flush everything onto the inactive list. */ 2519 for_each_ring(ring, dev_priv, i) { 2520 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID); 2521 if (ret) 2522 return ret; 2523 2524 ret = intel_ring_idle(ring); 2525 if (ret) 2526 return ret; 2527 } 2528 2529 return 0; 2530 } 2531 2532 static void i965_write_fence_reg(struct drm_device *dev, int reg, 2533 struct drm_i915_gem_object *obj) 2534 { 2535 drm_i915_private_t *dev_priv = dev->dev_private; 2536 int fence_reg; 2537 int fence_pitch_shift; 2538 uint64_t val; 2539 2540 if (INTEL_INFO(dev)->gen >= 6) { 2541 fence_reg = FENCE_REG_SANDYBRIDGE_0; 2542 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT; 2543 } else { 2544 fence_reg = FENCE_REG_965_0; 2545 fence_pitch_shift = I965_FENCE_PITCH_SHIFT; 2546 } 2547 2548 if (obj) { 2549 u32 size = obj->gtt_space->size; 2550 2551 val = (uint64_t)((obj->gtt_offset + size - 4096) & 2552 0xfffff000) << 32; 2553 val |= obj->gtt_offset & 0xfffff000; 2554 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift; 2555 if (obj->tiling_mode == I915_TILING_Y) 2556 val |= 1 << I965_FENCE_TILING_Y_SHIFT; 2557 val |= I965_FENCE_REG_VALID; 2558 } else 2559 val = 0; 2560 2561 fence_reg += reg * 8; 2562 I915_WRITE64(fence_reg, val); 2563 POSTING_READ(fence_reg); 2564 } 2565 2566 static void i915_write_fence_reg(struct drm_device *dev, int reg, 2567 struct drm_i915_gem_object *obj) 2568 { 2569 drm_i915_private_t *dev_priv = dev->dev_private; 2570 u32 val; 2571 2572 if (obj) { 2573 u32 size = obj->gtt_space->size; 2574 int pitch_val; 2575 int tile_width; 2576 2577 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) || 2578 (size & -size) != size || 2579 (obj->gtt_offset & (size - 1)), 2580 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n", 2581 obj->gtt_offset, obj->map_and_fenceable, size); 2582 2583 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)) 2584 tile_width = 128; 2585 else 2586 tile_width = 512; 2587 2588 /* Note: pitch better be a power of two tile widths */ 2589 pitch_val = obj->stride / tile_width; 2590 pitch_val = ffs(pitch_val) - 1; 2591 2592 val = obj->gtt_offset; 2593 if (obj->tiling_mode == I915_TILING_Y) 2594 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 2595 val |= I915_FENCE_SIZE_BITS(size); 2596 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 2597 val |= I830_FENCE_REG_VALID; 2598 } else 2599 val = 0; 2600 2601 if (reg < 8) 2602 reg = FENCE_REG_830_0 + reg * 4; 2603 else 2604 reg = FENCE_REG_945_8 + (reg - 8) * 4; 2605 2606 I915_WRITE(reg, val); 2607 POSTING_READ(reg); 2608 } 2609 2610 static void i830_write_fence_reg(struct drm_device *dev, int reg, 2611 struct drm_i915_gem_object *obj) 2612 { 2613 drm_i915_private_t *dev_priv = dev->dev_private; 2614 uint32_t val; 2615 2616 if (obj) { 2617 u32 size = obj->gtt_space->size; 2618 uint32_t pitch_val; 2619 2620 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) || 2621 (size & -size) != size || 2622 (obj->gtt_offset & (size - 1)), 2623 "object 0x%08x not 512K or pot-size 0x%08x aligned\n", 2624 obj->gtt_offset, size); 2625 2626 pitch_val = obj->stride / 128; 2627 pitch_val = ffs(pitch_val) - 1; 2628 2629 val = obj->gtt_offset; 2630 if (obj->tiling_mode == I915_TILING_Y) 2631 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 2632 val |= I830_FENCE_SIZE_BITS(size); 2633 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 2634 val |= I830_FENCE_REG_VALID; 2635 } else 2636 val = 0; 2637 2638 I915_WRITE(FENCE_REG_830_0 + reg * 4, val); 2639 POSTING_READ(FENCE_REG_830_0 + reg * 4); 2640 } 2641 2642 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj) 2643 { 2644 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT; 2645 } 2646 2647 static void i915_gem_write_fence(struct drm_device *dev, int reg, 2648 struct drm_i915_gem_object *obj) 2649 { 2650 struct drm_i915_private *dev_priv = dev->dev_private; 2651 2652 /* Ensure that all CPU reads are completed before installing a fence 2653 * and all writes before removing the fence. 2654 */ 2655 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj)) 2656 mb(); 2657 2658 switch (INTEL_INFO(dev)->gen) { 2659 case 7: 2660 case 6: 2661 case 5: 2662 case 4: i965_write_fence_reg(dev, reg, obj); break; 2663 case 3: i915_write_fence_reg(dev, reg, obj); break; 2664 case 2: i830_write_fence_reg(dev, reg, obj); break; 2665 default: BUG(); 2666 } 2667 2668 /* And similarly be paranoid that no direct access to this region 2669 * is reordered to before the fence is installed. 2670 */ 2671 if (i915_gem_object_needs_mb(obj)) 2672 mb(); 2673 } 2674 2675 static inline int fence_number(struct drm_i915_private *dev_priv, 2676 struct drm_i915_fence_reg *fence) 2677 { 2678 return fence - dev_priv->fence_regs; 2679 } 2680 2681 static void i915_gem_write_fence__ipi(void *data) 2682 { 2683 wbinvd(); 2684 } 2685 2686 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 2687 struct drm_i915_fence_reg *fence, 2688 bool enable) 2689 { 2690 struct drm_device *dev = obj->base.dev; 2691 struct drm_i915_private *dev_priv = dev->dev_private; 2692 int fence_reg = fence_number(dev_priv, fence); 2693 2694 /* In order to fully serialize access to the fenced region and 2695 * the update to the fence register we need to take extreme 2696 * measures on SNB+. In theory, the write to the fence register 2697 * flushes all memory transactions before, and coupled with the 2698 * mb() placed around the register write we serialise all memory 2699 * operations with respect to the changes in the tiler. Yet, on 2700 * SNB+ we need to take a step further and emit an explicit wbinvd() 2701 * on each processor in order to manually flush all memory 2702 * transactions before updating the fence register. 2703 */ 2704 if (HAS_LLC(obj->base.dev)) 2705 on_each_cpu(i915_gem_write_fence__ipi, NULL, 1); 2706 i915_gem_write_fence(dev, fence_reg, enable ? obj : NULL); 2707 2708 if (enable) { 2709 obj->fence_reg = fence_reg; 2710 fence->obj = obj; 2711 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list); 2712 } else { 2713 obj->fence_reg = I915_FENCE_REG_NONE; 2714 fence->obj = NULL; 2715 list_del_init(&fence->lru_list); 2716 } 2717 } 2718 2719 static int 2720 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj) 2721 { 2722 if (obj->last_fenced_seqno) { 2723 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno); 2724 if (ret) 2725 return ret; 2726 2727 obj->last_fenced_seqno = 0; 2728 } 2729 2730 obj->fenced_gpu_access = false; 2731 return 0; 2732 } 2733 2734 int 2735 i915_gem_object_put_fence(struct drm_i915_gem_object *obj) 2736 { 2737 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2738 struct drm_i915_fence_reg *fence; 2739 int ret; 2740 2741 ret = i915_gem_object_wait_fence(obj); 2742 if (ret) 2743 return ret; 2744 2745 if (obj->fence_reg == I915_FENCE_REG_NONE) 2746 return 0; 2747 2748 fence = &dev_priv->fence_regs[obj->fence_reg]; 2749 2750 i915_gem_object_fence_lost(obj); 2751 i915_gem_object_update_fence(obj, fence, false); 2752 2753 return 0; 2754 } 2755 2756 static struct drm_i915_fence_reg * 2757 i915_find_fence_reg(struct drm_device *dev) 2758 { 2759 struct drm_i915_private *dev_priv = dev->dev_private; 2760 struct drm_i915_fence_reg *reg, *avail; 2761 int i; 2762 2763 /* First try to find a free reg */ 2764 avail = NULL; 2765 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) { 2766 reg = &dev_priv->fence_regs[i]; 2767 if (!reg->obj) 2768 return reg; 2769 2770 if (!reg->pin_count) 2771 avail = reg; 2772 } 2773 2774 if (avail == NULL) 2775 return NULL; 2776 2777 /* None available, try to steal one or wait for a user to finish */ 2778 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) { 2779 if (reg->pin_count) 2780 continue; 2781 2782 return reg; 2783 } 2784 2785 return NULL; 2786 } 2787 2788 /** 2789 * i915_gem_object_get_fence - set up fencing for an object 2790 * @obj: object to map through a fence reg 2791 * 2792 * When mapping objects through the GTT, userspace wants to be able to write 2793 * to them without having to worry about swizzling if the object is tiled. 2794 * This function walks the fence regs looking for a free one for @obj, 2795 * stealing one if it can't find any. 2796 * 2797 * It then sets up the reg based on the object's properties: address, pitch 2798 * and tiling format. 2799 * 2800 * For an untiled surface, this removes any existing fence. 2801 */ 2802 int 2803 i915_gem_object_get_fence(struct drm_i915_gem_object *obj) 2804 { 2805 struct drm_device *dev = obj->base.dev; 2806 struct drm_i915_private *dev_priv = dev->dev_private; 2807 bool enable = obj->tiling_mode != I915_TILING_NONE; 2808 struct drm_i915_fence_reg *reg; 2809 int ret; 2810 2811 /* Have we updated the tiling parameters upon the object and so 2812 * will need to serialise the write to the associated fence register? 2813 */ 2814 if (obj->fence_dirty) { 2815 ret = i915_gem_object_wait_fence(obj); 2816 if (ret) 2817 return ret; 2818 } 2819 2820 /* Just update our place in the LRU if our fence is getting reused. */ 2821 if (obj->fence_reg != I915_FENCE_REG_NONE) { 2822 reg = &dev_priv->fence_regs[obj->fence_reg]; 2823 if (!obj->fence_dirty) { 2824 list_move_tail(®->lru_list, 2825 &dev_priv->mm.fence_list); 2826 return 0; 2827 } 2828 } else if (enable) { 2829 reg = i915_find_fence_reg(dev); 2830 if (reg == NULL) 2831 return -EDEADLK; 2832 2833 if (reg->obj) { 2834 struct drm_i915_gem_object *old = reg->obj; 2835 2836 ret = i915_gem_object_wait_fence(old); 2837 if (ret) 2838 return ret; 2839 2840 i915_gem_object_fence_lost(old); 2841 } 2842 } else 2843 return 0; 2844 2845 i915_gem_object_update_fence(obj, reg, enable); 2846 obj->fence_dirty = false; 2847 2848 return 0; 2849 } 2850 2851 static bool i915_gem_valid_gtt_space(struct drm_device *dev, 2852 struct drm_mm_node *gtt_space, 2853 unsigned long cache_level) 2854 { 2855 struct drm_mm_node *other; 2856 2857 /* On non-LLC machines we have to be careful when putting differing 2858 * types of snoopable memory together to avoid the prefetcher 2859 * crossing memory domains and dying. 2860 */ 2861 if (HAS_LLC(dev)) 2862 return true; 2863 2864 if (gtt_space == NULL) 2865 return true; 2866 2867 if (list_empty(>t_space->node_list)) 2868 return true; 2869 2870 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list); 2871 if (other->allocated && !other->hole_follows && other->color != cache_level) 2872 return false; 2873 2874 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list); 2875 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level) 2876 return false; 2877 2878 return true; 2879 } 2880 2881 static void i915_gem_verify_gtt(struct drm_device *dev) 2882 { 2883 #if WATCH_GTT 2884 struct drm_i915_private *dev_priv = dev->dev_private; 2885 struct drm_i915_gem_object *obj; 2886 int err = 0; 2887 2888 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) { 2889 if (obj->gtt_space == NULL) { 2890 printk(KERN_ERR "object found on GTT list with no space reserved\n"); 2891 err++; 2892 continue; 2893 } 2894 2895 if (obj->cache_level != obj->gtt_space->color) { 2896 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n", 2897 obj->gtt_space->start, 2898 obj->gtt_space->start + obj->gtt_space->size, 2899 obj->cache_level, 2900 obj->gtt_space->color); 2901 err++; 2902 continue; 2903 } 2904 2905 if (!i915_gem_valid_gtt_space(dev, 2906 obj->gtt_space, 2907 obj->cache_level)) { 2908 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n", 2909 obj->gtt_space->start, 2910 obj->gtt_space->start + obj->gtt_space->size, 2911 obj->cache_level); 2912 err++; 2913 continue; 2914 } 2915 } 2916 2917 WARN_ON(err); 2918 #endif 2919 } 2920 2921 /** 2922 * Finds free space in the GTT aperture and binds the object there. 2923 */ 2924 static int 2925 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj, 2926 unsigned alignment, 2927 bool map_and_fenceable, 2928 bool nonblocking) 2929 { 2930 struct drm_device *dev = obj->base.dev; 2931 drm_i915_private_t *dev_priv = dev->dev_private; 2932 struct drm_mm_node *node; 2933 u32 size, fence_size, fence_alignment, unfenced_alignment; 2934 bool mappable, fenceable; 2935 int ret; 2936 2937 fence_size = i915_gem_get_gtt_size(dev, 2938 obj->base.size, 2939 obj->tiling_mode); 2940 fence_alignment = i915_gem_get_gtt_alignment(dev, 2941 obj->base.size, 2942 obj->tiling_mode, true); 2943 unfenced_alignment = 2944 i915_gem_get_gtt_alignment(dev, 2945 obj->base.size, 2946 obj->tiling_mode, false); 2947 2948 if (alignment == 0) 2949 alignment = map_and_fenceable ? fence_alignment : 2950 unfenced_alignment; 2951 if (map_and_fenceable && alignment & (fence_alignment - 1)) { 2952 DRM_ERROR("Invalid object alignment requested %u\n", alignment); 2953 return -EINVAL; 2954 } 2955 2956 size = map_and_fenceable ? fence_size : obj->base.size; 2957 2958 /* If the object is bigger than the entire aperture, reject it early 2959 * before evicting everything in a vain attempt to find space. 2960 */ 2961 if (obj->base.size > 2962 (map_and_fenceable ? dev_priv->gtt.mappable_end : dev_priv->gtt.total)) { 2963 DRM_ERROR("Attempting to bind an object larger than the aperture\n"); 2964 return -E2BIG; 2965 } 2966 2967 ret = i915_gem_object_get_pages(obj); 2968 if (ret) 2969 return ret; 2970 2971 i915_gem_object_pin_pages(obj); 2972 2973 node = kzalloc(sizeof(*node), GFP_KERNEL); 2974 if (node == NULL) { 2975 i915_gem_object_unpin_pages(obj); 2976 return -ENOMEM; 2977 } 2978 2979 search_free: 2980 if (map_and_fenceable) 2981 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node, 2982 size, alignment, obj->cache_level, 2983 0, dev_priv->gtt.mappable_end); 2984 else 2985 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node, 2986 size, alignment, obj->cache_level); 2987 if (ret) { 2988 ret = i915_gem_evict_something(dev, size, alignment, 2989 obj->cache_level, 2990 map_and_fenceable, 2991 nonblocking); 2992 if (ret == 0) 2993 goto search_free; 2994 2995 i915_gem_object_unpin_pages(obj); 2996 kfree(node); 2997 return ret; 2998 } 2999 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) { 3000 i915_gem_object_unpin_pages(obj); 3001 drm_mm_put_block(node); 3002 return -EINVAL; 3003 } 3004 3005 ret = i915_gem_gtt_prepare_object(obj); 3006 if (ret) { 3007 i915_gem_object_unpin_pages(obj); 3008 drm_mm_put_block(node); 3009 return ret; 3010 } 3011 3012 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list); 3013 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 3014 3015 obj->gtt_space = node; 3016 obj->gtt_offset = node->start; 3017 3018 fenceable = 3019 node->size == fence_size && 3020 (node->start & (fence_alignment - 1)) == 0; 3021 3022 mappable = 3023 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end; 3024 3025 obj->map_and_fenceable = mappable && fenceable; 3026 3027 i915_gem_object_unpin_pages(obj); 3028 trace_i915_gem_object_bind(obj, map_and_fenceable); 3029 i915_gem_verify_gtt(dev); 3030 return 0; 3031 } 3032 3033 void 3034 i915_gem_clflush_object(struct drm_i915_gem_object *obj) 3035 { 3036 /* If we don't have a page list set up, then we're not pinned 3037 * to GPU, and we can ignore the cache flush because it'll happen 3038 * again at bind time. 3039 */ 3040 if (obj->pages == NULL) 3041 return; 3042 3043 /* 3044 * Stolen memory is always coherent with the GPU as it is explicitly 3045 * marked as wc by the system, or the system is cache-coherent. 3046 */ 3047 if (obj->stolen) 3048 return; 3049 3050 /* If the GPU is snooping the contents of the CPU cache, 3051 * we do not need to manually clear the CPU cache lines. However, 3052 * the caches are only snooped when the render cache is 3053 * flushed/invalidated. As we always have to emit invalidations 3054 * and flushes when moving into and out of the RENDER domain, correct 3055 * snooping behaviour occurs naturally as the result of our domain 3056 * tracking. 3057 */ 3058 if (obj->cache_level != I915_CACHE_NONE) 3059 return; 3060 3061 trace_i915_gem_object_clflush(obj); 3062 3063 drm_clflush_sg(obj->pages); 3064 } 3065 3066 /** Flushes the GTT write domain for the object if it's dirty. */ 3067 static void 3068 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj) 3069 { 3070 uint32_t old_write_domain; 3071 3072 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT) 3073 return; 3074 3075 /* No actual flushing is required for the GTT write domain. Writes 3076 * to it immediately go to main memory as far as we know, so there's 3077 * no chipset flush. It also doesn't land in render cache. 3078 * 3079 * However, we do have to enforce the order so that all writes through 3080 * the GTT land before any writes to the device, such as updates to 3081 * the GATT itself. 3082 */ 3083 wmb(); 3084 3085 old_write_domain = obj->base.write_domain; 3086 obj->base.write_domain = 0; 3087 3088 trace_i915_gem_object_change_domain(obj, 3089 obj->base.read_domains, 3090 old_write_domain); 3091 } 3092 3093 /** Flushes the CPU write domain for the object if it's dirty. */ 3094 static void 3095 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj) 3096 { 3097 uint32_t old_write_domain; 3098 3099 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) 3100 return; 3101 3102 i915_gem_clflush_object(obj); 3103 i915_gem_chipset_flush(obj->base.dev); 3104 old_write_domain = obj->base.write_domain; 3105 obj->base.write_domain = 0; 3106 3107 trace_i915_gem_object_change_domain(obj, 3108 obj->base.read_domains, 3109 old_write_domain); 3110 } 3111 3112 /** 3113 * Moves a single object to the GTT read, and possibly write domain. 3114 * 3115 * This function returns when the move is complete, including waiting on 3116 * flushes to occur. 3117 */ 3118 int 3119 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) 3120 { 3121 drm_i915_private_t *dev_priv = obj->base.dev->dev_private; 3122 uint32_t old_write_domain, old_read_domains; 3123 int ret; 3124 3125 /* Not valid to be called on unbound objects. */ 3126 if (obj->gtt_space == NULL) 3127 return -EINVAL; 3128 3129 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) 3130 return 0; 3131 3132 ret = i915_gem_object_wait_rendering(obj, !write); 3133 if (ret) 3134 return ret; 3135 3136 i915_gem_object_flush_cpu_write_domain(obj); 3137 3138 /* Serialise direct access to this object with the barriers for 3139 * coherent writes from the GPU, by effectively invalidating the 3140 * GTT domain upon first access. 3141 */ 3142 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 3143 mb(); 3144 3145 old_write_domain = obj->base.write_domain; 3146 old_read_domains = obj->base.read_domains; 3147 3148 /* It should now be out of any other write domains, and we can update 3149 * the domain values for our changes. 3150 */ 3151 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 3152 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3153 if (write) { 3154 obj->base.read_domains = I915_GEM_DOMAIN_GTT; 3155 obj->base.write_domain = I915_GEM_DOMAIN_GTT; 3156 obj->dirty = 1; 3157 } 3158 3159 trace_i915_gem_object_change_domain(obj, 3160 old_read_domains, 3161 old_write_domain); 3162 3163 /* And bump the LRU for this access */ 3164 if (i915_gem_object_is_inactive(obj)) 3165 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list); 3166 3167 return 0; 3168 } 3169 3170 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3171 enum i915_cache_level cache_level) 3172 { 3173 struct drm_device *dev = obj->base.dev; 3174 drm_i915_private_t *dev_priv = dev->dev_private; 3175 int ret; 3176 3177 if (obj->cache_level == cache_level) 3178 return 0; 3179 3180 if (obj->pin_count) { 3181 DRM_DEBUG("can not change the cache level of pinned objects\n"); 3182 return -EBUSY; 3183 } 3184 3185 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) { 3186 ret = i915_gem_object_unbind(obj); 3187 if (ret) 3188 return ret; 3189 } 3190 3191 if (obj->gtt_space) { 3192 ret = i915_gem_object_finish_gpu(obj); 3193 if (ret) 3194 return ret; 3195 3196 i915_gem_object_finish_gtt(obj); 3197 3198 /* Before SandyBridge, you could not use tiling or fence 3199 * registers with snooped memory, so relinquish any fences 3200 * currently pointing to our region in the aperture. 3201 */ 3202 if (INTEL_INFO(dev)->gen < 6) { 3203 ret = i915_gem_object_put_fence(obj); 3204 if (ret) 3205 return ret; 3206 } 3207 3208 if (obj->has_global_gtt_mapping) 3209 i915_gem_gtt_bind_object(obj, cache_level); 3210 if (obj->has_aliasing_ppgtt_mapping) 3211 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt, 3212 obj, cache_level); 3213 3214 obj->gtt_space->color = cache_level; 3215 } 3216 3217 if (cache_level == I915_CACHE_NONE) { 3218 u32 old_read_domains, old_write_domain; 3219 3220 /* If we're coming from LLC cached, then we haven't 3221 * actually been tracking whether the data is in the 3222 * CPU cache or not, since we only allow one bit set 3223 * in obj->write_domain and have been skipping the clflushes. 3224 * Just set it to the CPU cache for now. 3225 */ 3226 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU); 3227 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU); 3228 3229 old_read_domains = obj->base.read_domains; 3230 old_write_domain = obj->base.write_domain; 3231 3232 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3233 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3234 3235 trace_i915_gem_object_change_domain(obj, 3236 old_read_domains, 3237 old_write_domain); 3238 } 3239 3240 obj->cache_level = cache_level; 3241 i915_gem_verify_gtt(dev); 3242 return 0; 3243 } 3244 3245 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3246 struct drm_file *file) 3247 { 3248 struct drm_i915_gem_caching *args = data; 3249 struct drm_i915_gem_object *obj; 3250 int ret; 3251 3252 ret = i915_mutex_lock_interruptible(dev); 3253 if (ret) 3254 return ret; 3255 3256 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3257 if (&obj->base == NULL) { 3258 ret = -ENOENT; 3259 goto unlock; 3260 } 3261 3262 args->caching = obj->cache_level != I915_CACHE_NONE; 3263 3264 drm_gem_object_unreference(&obj->base); 3265 unlock: 3266 mutex_unlock(&dev->struct_mutex); 3267 return ret; 3268 } 3269 3270 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3271 struct drm_file *file) 3272 { 3273 struct drm_i915_gem_caching *args = data; 3274 struct drm_i915_gem_object *obj; 3275 enum i915_cache_level level; 3276 int ret; 3277 3278 switch (args->caching) { 3279 case I915_CACHING_NONE: 3280 level = I915_CACHE_NONE; 3281 break; 3282 case I915_CACHING_CACHED: 3283 level = I915_CACHE_LLC; 3284 break; 3285 default: 3286 return -EINVAL; 3287 } 3288 3289 ret = i915_mutex_lock_interruptible(dev); 3290 if (ret) 3291 return ret; 3292 3293 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3294 if (&obj->base == NULL) { 3295 ret = -ENOENT; 3296 goto unlock; 3297 } 3298 3299 ret = i915_gem_object_set_cache_level(obj, level); 3300 3301 drm_gem_object_unreference(&obj->base); 3302 unlock: 3303 mutex_unlock(&dev->struct_mutex); 3304 return ret; 3305 } 3306 3307 /* 3308 * Prepare buffer for display plane (scanout, cursors, etc). 3309 * Can be called from an uninterruptible phase (modesetting) and allows 3310 * any flushes to be pipelined (for pageflips). 3311 */ 3312 int 3313 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3314 u32 alignment, 3315 struct intel_ring_buffer *pipelined) 3316 { 3317 u32 old_read_domains, old_write_domain; 3318 int ret; 3319 3320 if (pipelined != obj->ring) { 3321 ret = i915_gem_object_sync(obj, pipelined); 3322 if (ret) 3323 return ret; 3324 } 3325 3326 /* The display engine is not coherent with the LLC cache on gen6. As 3327 * a result, we make sure that the pinning that is about to occur is 3328 * done with uncached PTEs. This is lowest common denominator for all 3329 * chipsets. 3330 * 3331 * However for gen6+, we could do better by using the GFDT bit instead 3332 * of uncaching, which would allow us to flush all the LLC-cached data 3333 * with that bit in the PTE to main memory with just one PIPE_CONTROL. 3334 */ 3335 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE); 3336 if (ret) 3337 return ret; 3338 3339 /* As the user may map the buffer once pinned in the display plane 3340 * (e.g. libkms for the bootup splash), we have to ensure that we 3341 * always use map_and_fenceable for all scanout buffers. 3342 */ 3343 ret = i915_gem_object_pin(obj, alignment, true, false); 3344 if (ret) 3345 return ret; 3346 3347 i915_gem_object_flush_cpu_write_domain(obj); 3348 3349 old_write_domain = obj->base.write_domain; 3350 old_read_domains = obj->base.read_domains; 3351 3352 /* It should now be out of any other write domains, and we can update 3353 * the domain values for our changes. 3354 */ 3355 obj->base.write_domain = 0; 3356 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3357 3358 trace_i915_gem_object_change_domain(obj, 3359 old_read_domains, 3360 old_write_domain); 3361 3362 return 0; 3363 } 3364 3365 int 3366 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj) 3367 { 3368 int ret; 3369 3370 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0) 3371 return 0; 3372 3373 ret = i915_gem_object_wait_rendering(obj, false); 3374 if (ret) 3375 return ret; 3376 3377 /* Ensure that we invalidate the GPU's caches and TLBs. */ 3378 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; 3379 return 0; 3380 } 3381 3382 /** 3383 * Moves a single object to the CPU read, and possibly write domain. 3384 * 3385 * This function returns when the move is complete, including waiting on 3386 * flushes to occur. 3387 */ 3388 int 3389 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) 3390 { 3391 uint32_t old_write_domain, old_read_domains; 3392 int ret; 3393 3394 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) 3395 return 0; 3396 3397 ret = i915_gem_object_wait_rendering(obj, !write); 3398 if (ret) 3399 return ret; 3400 3401 i915_gem_object_flush_gtt_write_domain(obj); 3402 3403 old_write_domain = obj->base.write_domain; 3404 old_read_domains = obj->base.read_domains; 3405 3406 /* Flush the CPU cache if it's still invalid. */ 3407 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { 3408 i915_gem_clflush_object(obj); 3409 3410 obj->base.read_domains |= I915_GEM_DOMAIN_CPU; 3411 } 3412 3413 /* It should now be out of any other write domains, and we can update 3414 * the domain values for our changes. 3415 */ 3416 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); 3417 3418 /* If we're writing through the CPU, then the GPU read domains will 3419 * need to be invalidated at next use. 3420 */ 3421 if (write) { 3422 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3423 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3424 } 3425 3426 trace_i915_gem_object_change_domain(obj, 3427 old_read_domains, 3428 old_write_domain); 3429 3430 return 0; 3431 } 3432 3433 /* Throttle our rendering by waiting until the ring has completed our requests 3434 * emitted over 20 msec ago. 3435 * 3436 * Note that if we were to use the current jiffies each time around the loop, 3437 * we wouldn't escape the function with any frames outstanding if the time to 3438 * render a frame was over 20ms. 3439 * 3440 * This should get us reasonable parallelism between CPU and GPU but also 3441 * relatively low latency when blocking on a particular request to finish. 3442 */ 3443 static int 3444 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) 3445 { 3446 struct drm_i915_private *dev_priv = dev->dev_private; 3447 struct drm_i915_file_private *file_priv = file->driver_priv; 3448 unsigned long recent_enough = jiffies - msecs_to_jiffies(20); 3449 struct drm_i915_gem_request *request; 3450 struct intel_ring_buffer *ring = NULL; 3451 unsigned reset_counter; 3452 u32 seqno = 0; 3453 int ret; 3454 3455 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 3456 if (ret) 3457 return ret; 3458 3459 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false); 3460 if (ret) 3461 return ret; 3462 3463 spin_lock(&file_priv->mm.lock); 3464 list_for_each_entry(request, &file_priv->mm.request_list, client_list) { 3465 if (time_after_eq(request->emitted_jiffies, recent_enough)) 3466 break; 3467 3468 ring = request->ring; 3469 seqno = request->seqno; 3470 } 3471 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 3472 spin_unlock(&file_priv->mm.lock); 3473 3474 if (seqno == 0) 3475 return 0; 3476 3477 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL); 3478 if (ret == 0) 3479 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0); 3480 3481 return ret; 3482 } 3483 3484 int 3485 i915_gem_object_pin(struct drm_i915_gem_object *obj, 3486 uint32_t alignment, 3487 bool map_and_fenceable, 3488 bool nonblocking) 3489 { 3490 int ret; 3491 3492 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT)) 3493 return -EBUSY; 3494 3495 if (obj->gtt_space != NULL) { 3496 if ((alignment && obj->gtt_offset & (alignment - 1)) || 3497 (map_and_fenceable && !obj->map_and_fenceable)) { 3498 WARN(obj->pin_count, 3499 "bo is already pinned with incorrect alignment:" 3500 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d," 3501 " obj->map_and_fenceable=%d\n", 3502 obj->gtt_offset, alignment, 3503 map_and_fenceable, 3504 obj->map_and_fenceable); 3505 ret = i915_gem_object_unbind(obj); 3506 if (ret) 3507 return ret; 3508 } 3509 } 3510 3511 if (obj->gtt_space == NULL) { 3512 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3513 3514 ret = i915_gem_object_bind_to_gtt(obj, alignment, 3515 map_and_fenceable, 3516 nonblocking); 3517 if (ret) 3518 return ret; 3519 3520 if (!dev_priv->mm.aliasing_ppgtt) 3521 i915_gem_gtt_bind_object(obj, obj->cache_level); 3522 } 3523 3524 if (!obj->has_global_gtt_mapping && map_and_fenceable) 3525 i915_gem_gtt_bind_object(obj, obj->cache_level); 3526 3527 obj->pin_count++; 3528 obj->pin_mappable |= map_and_fenceable; 3529 3530 return 0; 3531 } 3532 3533 void 3534 i915_gem_object_unpin(struct drm_i915_gem_object *obj) 3535 { 3536 BUG_ON(obj->pin_count == 0); 3537 BUG_ON(obj->gtt_space == NULL); 3538 3539 if (--obj->pin_count == 0) 3540 obj->pin_mappable = false; 3541 } 3542 3543 int 3544 i915_gem_pin_ioctl(struct drm_device *dev, void *data, 3545 struct drm_file *file) 3546 { 3547 struct drm_i915_gem_pin *args = data; 3548 struct drm_i915_gem_object *obj; 3549 int ret; 3550 3551 ret = i915_mutex_lock_interruptible(dev); 3552 if (ret) 3553 return ret; 3554 3555 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3556 if (&obj->base == NULL) { 3557 ret = -ENOENT; 3558 goto unlock; 3559 } 3560 3561 if (obj->madv != I915_MADV_WILLNEED) { 3562 DRM_ERROR("Attempting to pin a purgeable buffer\n"); 3563 ret = -EINVAL; 3564 goto out; 3565 } 3566 3567 if (obj->pin_filp != NULL && obj->pin_filp != file) { 3568 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n", 3569 args->handle); 3570 ret = -EINVAL; 3571 goto out; 3572 } 3573 3574 if (obj->user_pin_count == 0) { 3575 ret = i915_gem_object_pin(obj, args->alignment, true, false); 3576 if (ret) 3577 goto out; 3578 } 3579 3580 obj->user_pin_count++; 3581 obj->pin_filp = file; 3582 3583 /* XXX - flush the CPU caches for pinned objects 3584 * as the X server doesn't manage domains yet 3585 */ 3586 i915_gem_object_flush_cpu_write_domain(obj); 3587 args->offset = obj->gtt_offset; 3588 out: 3589 drm_gem_object_unreference(&obj->base); 3590 unlock: 3591 mutex_unlock(&dev->struct_mutex); 3592 return ret; 3593 } 3594 3595 int 3596 i915_gem_unpin_ioctl(struct drm_device *dev, void *data, 3597 struct drm_file *file) 3598 { 3599 struct drm_i915_gem_pin *args = data; 3600 struct drm_i915_gem_object *obj; 3601 int ret; 3602 3603 ret = i915_mutex_lock_interruptible(dev); 3604 if (ret) 3605 return ret; 3606 3607 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3608 if (&obj->base == NULL) { 3609 ret = -ENOENT; 3610 goto unlock; 3611 } 3612 3613 if (obj->pin_filp != file) { 3614 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n", 3615 args->handle); 3616 ret = -EINVAL; 3617 goto out; 3618 } 3619 obj->user_pin_count--; 3620 if (obj->user_pin_count == 0) { 3621 obj->pin_filp = NULL; 3622 i915_gem_object_unpin(obj); 3623 } 3624 3625 out: 3626 drm_gem_object_unreference(&obj->base); 3627 unlock: 3628 mutex_unlock(&dev->struct_mutex); 3629 return ret; 3630 } 3631 3632 int 3633 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 3634 struct drm_file *file) 3635 { 3636 struct drm_i915_gem_busy *args = data; 3637 struct drm_i915_gem_object *obj; 3638 int ret; 3639 3640 ret = i915_mutex_lock_interruptible(dev); 3641 if (ret) 3642 return ret; 3643 3644 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3645 if (&obj->base == NULL) { 3646 ret = -ENOENT; 3647 goto unlock; 3648 } 3649 3650 /* Count all active objects as busy, even if they are currently not used 3651 * by the gpu. Users of this interface expect objects to eventually 3652 * become non-busy without any further actions, therefore emit any 3653 * necessary flushes here. 3654 */ 3655 ret = i915_gem_object_flush_active(obj); 3656 3657 args->busy = obj->active; 3658 if (obj->ring) { 3659 BUILD_BUG_ON(I915_NUM_RINGS > 16); 3660 args->busy |= intel_ring_flag(obj->ring) << 16; 3661 } 3662 3663 drm_gem_object_unreference(&obj->base); 3664 unlock: 3665 mutex_unlock(&dev->struct_mutex); 3666 return ret; 3667 } 3668 3669 int 3670 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 3671 struct drm_file *file_priv) 3672 { 3673 return i915_gem_ring_throttle(dev, file_priv); 3674 } 3675 3676 int 3677 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 3678 struct drm_file *file_priv) 3679 { 3680 struct drm_i915_gem_madvise *args = data; 3681 struct drm_i915_gem_object *obj; 3682 int ret; 3683 3684 switch (args->madv) { 3685 case I915_MADV_DONTNEED: 3686 case I915_MADV_WILLNEED: 3687 break; 3688 default: 3689 return -EINVAL; 3690 } 3691 3692 ret = i915_mutex_lock_interruptible(dev); 3693 if (ret) 3694 return ret; 3695 3696 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle)); 3697 if (&obj->base == NULL) { 3698 ret = -ENOENT; 3699 goto unlock; 3700 } 3701 3702 if (obj->pin_count) { 3703 ret = -EINVAL; 3704 goto out; 3705 } 3706 3707 if (obj->madv != __I915_MADV_PURGED) 3708 obj->madv = args->madv; 3709 3710 /* if the object is no longer attached, discard its backing storage */ 3711 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL) 3712 i915_gem_object_truncate(obj); 3713 3714 args->retained = obj->madv != __I915_MADV_PURGED; 3715 3716 out: 3717 drm_gem_object_unreference(&obj->base); 3718 unlock: 3719 mutex_unlock(&dev->struct_mutex); 3720 return ret; 3721 } 3722 3723 void i915_gem_object_init(struct drm_i915_gem_object *obj, 3724 const struct drm_i915_gem_object_ops *ops) 3725 { 3726 INIT_LIST_HEAD(&obj->mm_list); 3727 INIT_LIST_HEAD(&obj->gtt_list); 3728 INIT_LIST_HEAD(&obj->ring_list); 3729 INIT_LIST_HEAD(&obj->exec_list); 3730 3731 obj->ops = ops; 3732 3733 obj->fence_reg = I915_FENCE_REG_NONE; 3734 obj->madv = I915_MADV_WILLNEED; 3735 /* Avoid an unnecessary call to unbind on the first bind. */ 3736 obj->map_and_fenceable = true; 3737 3738 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size); 3739 } 3740 3741 static const struct drm_i915_gem_object_ops i915_gem_object_ops = { 3742 .get_pages = i915_gem_object_get_pages_gtt, 3743 .put_pages = i915_gem_object_put_pages_gtt, 3744 }; 3745 3746 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev, 3747 size_t size) 3748 { 3749 struct drm_i915_gem_object *obj; 3750 struct address_space *mapping; 3751 gfp_t mask; 3752 3753 obj = i915_gem_object_alloc(dev); 3754 if (obj == NULL) 3755 return NULL; 3756 3757 if (drm_gem_object_init(dev, &obj->base, size) != 0) { 3758 i915_gem_object_free(obj); 3759 return NULL; 3760 } 3761 3762 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 3763 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) { 3764 /* 965gm cannot relocate objects above 4GiB. */ 3765 mask &= ~__GFP_HIGHMEM; 3766 mask |= __GFP_DMA32; 3767 } 3768 3769 mapping = file_inode(obj->base.filp)->i_mapping; 3770 mapping_set_gfp_mask(mapping, mask); 3771 3772 i915_gem_object_init(obj, &i915_gem_object_ops); 3773 3774 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3775 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3776 3777 if (HAS_LLC(dev)) { 3778 /* On some devices, we can have the GPU use the LLC (the CPU 3779 * cache) for about a 10% performance improvement 3780 * compared to uncached. Graphics requests other than 3781 * display scanout are coherent with the CPU in 3782 * accessing this cache. This means in this mode we 3783 * don't need to clflush on the CPU side, and on the 3784 * GPU side we only need to flush internal caches to 3785 * get data visible to the CPU. 3786 * 3787 * However, we maintain the display planes as UC, and so 3788 * need to rebind when first used as such. 3789 */ 3790 obj->cache_level = I915_CACHE_LLC; 3791 } else 3792 obj->cache_level = I915_CACHE_NONE; 3793 3794 return obj; 3795 } 3796 3797 int i915_gem_init_object(struct drm_gem_object *obj) 3798 { 3799 BUG(); 3800 3801 return 0; 3802 } 3803 3804 void i915_gem_free_object(struct drm_gem_object *gem_obj) 3805 { 3806 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 3807 struct drm_device *dev = obj->base.dev; 3808 drm_i915_private_t *dev_priv = dev->dev_private; 3809 3810 trace_i915_gem_object_destroy(obj); 3811 3812 if (obj->phys_obj) 3813 i915_gem_detach_phys_object(dev, obj); 3814 3815 obj->pin_count = 0; 3816 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) { 3817 bool was_interruptible; 3818 3819 was_interruptible = dev_priv->mm.interruptible; 3820 dev_priv->mm.interruptible = false; 3821 3822 WARN_ON(i915_gem_object_unbind(obj)); 3823 3824 dev_priv->mm.interruptible = was_interruptible; 3825 } 3826 3827 obj->pages_pin_count = 0; 3828 i915_gem_object_put_pages(obj); 3829 i915_gem_object_free_mmap_offset(obj); 3830 i915_gem_object_release_stolen(obj); 3831 3832 BUG_ON(obj->pages); 3833 3834 if (obj->base.import_attach) 3835 drm_prime_gem_destroy(&obj->base, NULL); 3836 3837 drm_gem_object_release(&obj->base); 3838 i915_gem_info_remove_obj(dev_priv, obj->base.size); 3839 3840 kfree(obj->bit_17); 3841 i915_gem_object_free(obj); 3842 } 3843 3844 int 3845 i915_gem_idle(struct drm_device *dev) 3846 { 3847 drm_i915_private_t *dev_priv = dev->dev_private; 3848 int ret; 3849 3850 mutex_lock(&dev->struct_mutex); 3851 3852 if (dev_priv->mm.suspended) { 3853 mutex_unlock(&dev->struct_mutex); 3854 return 0; 3855 } 3856 3857 ret = i915_gpu_idle(dev); 3858 if (ret) { 3859 mutex_unlock(&dev->struct_mutex); 3860 return ret; 3861 } 3862 i915_gem_retire_requests(dev); 3863 3864 /* Under UMS, be paranoid and evict. */ 3865 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 3866 i915_gem_evict_everything(dev); 3867 3868 i915_gem_reset_fences(dev); 3869 3870 /* Hack! Don't let anybody do execbuf while we don't control the chip. 3871 * We need to replace this with a semaphore, or something. 3872 * And not confound mm.suspended! 3873 */ 3874 dev_priv->mm.suspended = 1; 3875 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer); 3876 3877 i915_kernel_lost_context(dev); 3878 i915_gem_cleanup_ringbuffer(dev); 3879 3880 mutex_unlock(&dev->struct_mutex); 3881 3882 /* Cancel the retire work handler, which should be idle now. */ 3883 cancel_delayed_work_sync(&dev_priv->mm.retire_work); 3884 3885 return 0; 3886 } 3887 3888 void i915_gem_l3_remap(struct drm_device *dev) 3889 { 3890 drm_i915_private_t *dev_priv = dev->dev_private; 3891 u32 misccpctl; 3892 int i; 3893 3894 if (!HAS_L3_GPU_CACHE(dev)) 3895 return; 3896 3897 if (!dev_priv->l3_parity.remap_info) 3898 return; 3899 3900 misccpctl = I915_READ(GEN7_MISCCPCTL); 3901 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); 3902 POSTING_READ(GEN7_MISCCPCTL); 3903 3904 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) { 3905 u32 remap = I915_READ(GEN7_L3LOG_BASE + i); 3906 if (remap && remap != dev_priv->l3_parity.remap_info[i/4]) 3907 DRM_DEBUG("0x%x was already programmed to %x\n", 3908 GEN7_L3LOG_BASE + i, remap); 3909 if (remap && !dev_priv->l3_parity.remap_info[i/4]) 3910 DRM_DEBUG_DRIVER("Clearing remapped register\n"); 3911 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]); 3912 } 3913 3914 /* Make sure all the writes land before disabling dop clock gating */ 3915 POSTING_READ(GEN7_L3LOG_BASE); 3916 3917 I915_WRITE(GEN7_MISCCPCTL, misccpctl); 3918 } 3919 3920 void i915_gem_init_swizzling(struct drm_device *dev) 3921 { 3922 drm_i915_private_t *dev_priv = dev->dev_private; 3923 3924 if (INTEL_INFO(dev)->gen < 5 || 3925 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 3926 return; 3927 3928 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | 3929 DISP_TILE_SURFACE_SWIZZLING); 3930 3931 if (IS_GEN5(dev)) 3932 return; 3933 3934 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); 3935 if (IS_GEN6(dev)) 3936 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 3937 else if (IS_GEN7(dev)) 3938 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 3939 else 3940 BUG(); 3941 } 3942 3943 static bool 3944 intel_enable_blt(struct drm_device *dev) 3945 { 3946 if (!HAS_BLT(dev)) 3947 return false; 3948 3949 /* The blitter was dysfunctional on early prototypes */ 3950 if (IS_GEN6(dev) && dev->pdev->revision < 8) { 3951 DRM_INFO("BLT not supported on this pre-production hardware;" 3952 " graphics performance will be degraded.\n"); 3953 return false; 3954 } 3955 3956 return true; 3957 } 3958 3959 static int i915_gem_init_rings(struct drm_device *dev) 3960 { 3961 struct drm_i915_private *dev_priv = dev->dev_private; 3962 int ret; 3963 3964 ret = intel_init_render_ring_buffer(dev); 3965 if (ret) 3966 return ret; 3967 3968 if (HAS_BSD(dev)) { 3969 ret = intel_init_bsd_ring_buffer(dev); 3970 if (ret) 3971 goto cleanup_render_ring; 3972 } 3973 3974 if (intel_enable_blt(dev)) { 3975 ret = intel_init_blt_ring_buffer(dev); 3976 if (ret) 3977 goto cleanup_bsd_ring; 3978 } 3979 3980 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000)); 3981 if (ret) 3982 goto cleanup_blt_ring; 3983 3984 return 0; 3985 3986 cleanup_blt_ring: 3987 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]); 3988 cleanup_bsd_ring: 3989 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]); 3990 cleanup_render_ring: 3991 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]); 3992 3993 return ret; 3994 } 3995 3996 int 3997 i915_gem_init_hw(struct drm_device *dev) 3998 { 3999 drm_i915_private_t *dev_priv = dev->dev_private; 4000 int ret; 4001 4002 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt()) 4003 return -EIO; 4004 4005 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1)) 4006 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000); 4007 4008 if (HAS_PCH_NOP(dev)) { 4009 u32 temp = I915_READ(GEN7_MSG_CTL); 4010 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK); 4011 I915_WRITE(GEN7_MSG_CTL, temp); 4012 } 4013 4014 i915_gem_l3_remap(dev); 4015 4016 i915_gem_init_swizzling(dev); 4017 4018 ret = i915_gem_init_rings(dev); 4019 if (ret) 4020 return ret; 4021 4022 /* 4023 * XXX: There was some w/a described somewhere suggesting loading 4024 * contexts before PPGTT. 4025 */ 4026 i915_gem_context_init(dev); 4027 if (dev_priv->mm.aliasing_ppgtt) { 4028 ret = dev_priv->mm.aliasing_ppgtt->enable(dev); 4029 if (ret) { 4030 i915_gem_cleanup_aliasing_ppgtt(dev); 4031 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n"); 4032 } 4033 } 4034 4035 return 0; 4036 } 4037 4038 int i915_gem_init(struct drm_device *dev) 4039 { 4040 struct drm_i915_private *dev_priv = dev->dev_private; 4041 int ret; 4042 4043 mutex_lock(&dev->struct_mutex); 4044 4045 if (IS_VALLEYVIEW(dev)) { 4046 /* VLVA0 (potential hack), BIOS isn't actually waking us */ 4047 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1); 4048 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10)) 4049 DRM_DEBUG_DRIVER("allow wake ack timed out\n"); 4050 } 4051 4052 i915_gem_init_global_gtt(dev); 4053 4054 ret = i915_gem_init_hw(dev); 4055 mutex_unlock(&dev->struct_mutex); 4056 if (ret) { 4057 i915_gem_cleanup_aliasing_ppgtt(dev); 4058 return ret; 4059 } 4060 4061 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */ 4062 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4063 dev_priv->dri1.allow_batchbuffer = 1; 4064 return 0; 4065 } 4066 4067 void 4068 i915_gem_cleanup_ringbuffer(struct drm_device *dev) 4069 { 4070 drm_i915_private_t *dev_priv = dev->dev_private; 4071 struct intel_ring_buffer *ring; 4072 int i; 4073 4074 for_each_ring(ring, dev_priv, i) 4075 intel_cleanup_ring_buffer(ring); 4076 } 4077 4078 int 4079 i915_gem_entervt_ioctl(struct drm_device *dev, void *data, 4080 struct drm_file *file_priv) 4081 { 4082 drm_i915_private_t *dev_priv = dev->dev_private; 4083 int ret; 4084 4085 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4086 return 0; 4087 4088 if (i915_reset_in_progress(&dev_priv->gpu_error)) { 4089 DRM_ERROR("Reenabling wedged hardware, good luck\n"); 4090 atomic_set(&dev_priv->gpu_error.reset_counter, 0); 4091 } 4092 4093 mutex_lock(&dev->struct_mutex); 4094 dev_priv->mm.suspended = 0; 4095 4096 ret = i915_gem_init_hw(dev); 4097 if (ret != 0) { 4098 mutex_unlock(&dev->struct_mutex); 4099 return ret; 4100 } 4101 4102 BUG_ON(!list_empty(&dev_priv->mm.active_list)); 4103 mutex_unlock(&dev->struct_mutex); 4104 4105 ret = drm_irq_install(dev); 4106 if (ret) 4107 goto cleanup_ringbuffer; 4108 4109 return 0; 4110 4111 cleanup_ringbuffer: 4112 mutex_lock(&dev->struct_mutex); 4113 i915_gem_cleanup_ringbuffer(dev); 4114 dev_priv->mm.suspended = 1; 4115 mutex_unlock(&dev->struct_mutex); 4116 4117 return ret; 4118 } 4119 4120 int 4121 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data, 4122 struct drm_file *file_priv) 4123 { 4124 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4125 return 0; 4126 4127 drm_irq_uninstall(dev); 4128 return i915_gem_idle(dev); 4129 } 4130 4131 void 4132 i915_gem_lastclose(struct drm_device *dev) 4133 { 4134 int ret; 4135 4136 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4137 return; 4138 4139 ret = i915_gem_idle(dev); 4140 if (ret) 4141 DRM_ERROR("failed to idle hardware: %d\n", ret); 4142 } 4143 4144 static void 4145 init_ring_lists(struct intel_ring_buffer *ring) 4146 { 4147 INIT_LIST_HEAD(&ring->active_list); 4148 INIT_LIST_HEAD(&ring->request_list); 4149 } 4150 4151 void 4152 i915_gem_load(struct drm_device *dev) 4153 { 4154 drm_i915_private_t *dev_priv = dev->dev_private; 4155 int i; 4156 4157 dev_priv->slab = 4158 kmem_cache_create("i915_gem_object", 4159 sizeof(struct drm_i915_gem_object), 0, 4160 SLAB_HWCACHE_ALIGN, 4161 NULL); 4162 4163 INIT_LIST_HEAD(&dev_priv->mm.active_list); 4164 INIT_LIST_HEAD(&dev_priv->mm.inactive_list); 4165 INIT_LIST_HEAD(&dev_priv->mm.unbound_list); 4166 INIT_LIST_HEAD(&dev_priv->mm.bound_list); 4167 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4168 for (i = 0; i < I915_NUM_RINGS; i++) 4169 init_ring_lists(&dev_priv->ring[i]); 4170 for (i = 0; i < I915_MAX_NUM_FENCES; i++) 4171 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list); 4172 INIT_DELAYED_WORK(&dev_priv->mm.retire_work, 4173 i915_gem_retire_work_handler); 4174 init_waitqueue_head(&dev_priv->gpu_error.reset_queue); 4175 4176 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ 4177 if (IS_GEN3(dev)) { 4178 I915_WRITE(MI_ARB_STATE, 4179 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE)); 4180 } 4181 4182 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL; 4183 4184 /* Old X drivers will take 0-2 for front, back, depth buffers */ 4185 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4186 dev_priv->fence_reg_start = 3; 4187 4188 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev)) 4189 dev_priv->num_fence_regs = 32; 4190 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) 4191 dev_priv->num_fence_regs = 16; 4192 else 4193 dev_priv->num_fence_regs = 8; 4194 4195 /* Initialize fence registers to zero */ 4196 i915_gem_reset_fences(dev); 4197 4198 i915_gem_detect_bit_6_swizzle(dev); 4199 init_waitqueue_head(&dev_priv->pending_flip_queue); 4200 4201 dev_priv->mm.interruptible = true; 4202 4203 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink; 4204 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS; 4205 register_shrinker(&dev_priv->mm.inactive_shrinker); 4206 } 4207 4208 /* 4209 * Create a physically contiguous memory object for this object 4210 * e.g. for cursor + overlay regs 4211 */ 4212 static int i915_gem_init_phys_object(struct drm_device *dev, 4213 int id, int size, int align) 4214 { 4215 drm_i915_private_t *dev_priv = dev->dev_private; 4216 struct drm_i915_gem_phys_object *phys_obj; 4217 int ret; 4218 4219 if (dev_priv->mm.phys_objs[id - 1] || !size) 4220 return 0; 4221 4222 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL); 4223 if (!phys_obj) 4224 return -ENOMEM; 4225 4226 phys_obj->id = id; 4227 4228 phys_obj->handle = drm_pci_alloc(dev, size, align); 4229 if (!phys_obj->handle) { 4230 ret = -ENOMEM; 4231 goto kfree_obj; 4232 } 4233 #ifdef CONFIG_X86 4234 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); 4235 #endif 4236 4237 dev_priv->mm.phys_objs[id - 1] = phys_obj; 4238 4239 return 0; 4240 kfree_obj: 4241 kfree(phys_obj); 4242 return ret; 4243 } 4244 4245 static void i915_gem_free_phys_object(struct drm_device *dev, int id) 4246 { 4247 drm_i915_private_t *dev_priv = dev->dev_private; 4248 struct drm_i915_gem_phys_object *phys_obj; 4249 4250 if (!dev_priv->mm.phys_objs[id - 1]) 4251 return; 4252 4253 phys_obj = dev_priv->mm.phys_objs[id - 1]; 4254 if (phys_obj->cur_obj) { 4255 i915_gem_detach_phys_object(dev, phys_obj->cur_obj); 4256 } 4257 4258 #ifdef CONFIG_X86 4259 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE); 4260 #endif 4261 drm_pci_free(dev, phys_obj->handle); 4262 kfree(phys_obj); 4263 dev_priv->mm.phys_objs[id - 1] = NULL; 4264 } 4265 4266 void i915_gem_free_all_phys_object(struct drm_device *dev) 4267 { 4268 int i; 4269 4270 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++) 4271 i915_gem_free_phys_object(dev, i); 4272 } 4273 4274 void i915_gem_detach_phys_object(struct drm_device *dev, 4275 struct drm_i915_gem_object *obj) 4276 { 4277 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping; 4278 char *vaddr; 4279 int i; 4280 int page_count; 4281 4282 if (!obj->phys_obj) 4283 return; 4284 vaddr = obj->phys_obj->handle->vaddr; 4285 4286 page_count = obj->base.size / PAGE_SIZE; 4287 for (i = 0; i < page_count; i++) { 4288 struct page *page = shmem_read_mapping_page(mapping, i); 4289 if (!IS_ERR(page)) { 4290 char *dst = kmap_atomic(page); 4291 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE); 4292 kunmap_atomic(dst); 4293 4294 drm_clflush_pages(&page, 1); 4295 4296 set_page_dirty(page); 4297 mark_page_accessed(page); 4298 page_cache_release(page); 4299 } 4300 } 4301 i915_gem_chipset_flush(dev); 4302 4303 obj->phys_obj->cur_obj = NULL; 4304 obj->phys_obj = NULL; 4305 } 4306 4307 int 4308 i915_gem_attach_phys_object(struct drm_device *dev, 4309 struct drm_i915_gem_object *obj, 4310 int id, 4311 int align) 4312 { 4313 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping; 4314 drm_i915_private_t *dev_priv = dev->dev_private; 4315 int ret = 0; 4316 int page_count; 4317 int i; 4318 4319 if (id > I915_MAX_PHYS_OBJECT) 4320 return -EINVAL; 4321 4322 if (obj->phys_obj) { 4323 if (obj->phys_obj->id == id) 4324 return 0; 4325 i915_gem_detach_phys_object(dev, obj); 4326 } 4327 4328 /* create a new object */ 4329 if (!dev_priv->mm.phys_objs[id - 1]) { 4330 ret = i915_gem_init_phys_object(dev, id, 4331 obj->base.size, align); 4332 if (ret) { 4333 DRM_ERROR("failed to init phys object %d size: %zu\n", 4334 id, obj->base.size); 4335 return ret; 4336 } 4337 } 4338 4339 /* bind to the object */ 4340 obj->phys_obj = dev_priv->mm.phys_objs[id - 1]; 4341 obj->phys_obj->cur_obj = obj; 4342 4343 page_count = obj->base.size / PAGE_SIZE; 4344 4345 for (i = 0; i < page_count; i++) { 4346 struct page *page; 4347 char *dst, *src; 4348 4349 page = shmem_read_mapping_page(mapping, i); 4350 if (IS_ERR(page)) 4351 return PTR_ERR(page); 4352 4353 src = kmap_atomic(page); 4354 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE); 4355 memcpy(dst, src, PAGE_SIZE); 4356 kunmap_atomic(src); 4357 4358 mark_page_accessed(page); 4359 page_cache_release(page); 4360 } 4361 4362 return 0; 4363 } 4364 4365 static int 4366 i915_gem_phys_pwrite(struct drm_device *dev, 4367 struct drm_i915_gem_object *obj, 4368 struct drm_i915_gem_pwrite *args, 4369 struct drm_file *file_priv) 4370 { 4371 void *vaddr = obj->phys_obj->handle->vaddr + args->offset; 4372 char __user *user_data = to_user_ptr(args->data_ptr); 4373 4374 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) { 4375 unsigned long unwritten; 4376 4377 /* The physical object once assigned is fixed for the lifetime 4378 * of the obj, so we can safely drop the lock and continue 4379 * to access vaddr. 4380 */ 4381 mutex_unlock(&dev->struct_mutex); 4382 unwritten = copy_from_user(vaddr, user_data, args->size); 4383 mutex_lock(&dev->struct_mutex); 4384 if (unwritten) 4385 return -EFAULT; 4386 } 4387 4388 i915_gem_chipset_flush(dev); 4389 return 0; 4390 } 4391 4392 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 4393 { 4394 struct drm_i915_file_private *file_priv = file->driver_priv; 4395 4396 /* Clean up our request list when the client is going away, so that 4397 * later retire_requests won't dereference our soon-to-be-gone 4398 * file_priv. 4399 */ 4400 spin_lock(&file_priv->mm.lock); 4401 while (!list_empty(&file_priv->mm.request_list)) { 4402 struct drm_i915_gem_request *request; 4403 4404 request = list_first_entry(&file_priv->mm.request_list, 4405 struct drm_i915_gem_request, 4406 client_list); 4407 list_del(&request->client_list); 4408 request->file_priv = NULL; 4409 } 4410 spin_unlock(&file_priv->mm.lock); 4411 } 4412 4413 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task) 4414 { 4415 if (!mutex_is_locked(mutex)) 4416 return false; 4417 4418 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES) 4419 return mutex->owner == task; 4420 #else 4421 /* Since UP may be pre-empted, we cannot assume that we own the lock */ 4422 return false; 4423 #endif 4424 } 4425 4426 static int 4427 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc) 4428 { 4429 struct drm_i915_private *dev_priv = 4430 container_of(shrinker, 4431 struct drm_i915_private, 4432 mm.inactive_shrinker); 4433 struct drm_device *dev = dev_priv->dev; 4434 struct drm_i915_gem_object *obj; 4435 int nr_to_scan = sc->nr_to_scan; 4436 bool unlock = true; 4437 int cnt; 4438 4439 if (!mutex_trylock(&dev->struct_mutex)) { 4440 if (!mutex_is_locked_by(&dev->struct_mutex, current)) 4441 return 0; 4442 4443 if (dev_priv->mm.shrinker_no_lock_stealing) 4444 return 0; 4445 4446 unlock = false; 4447 } 4448 4449 if (nr_to_scan) { 4450 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan); 4451 if (nr_to_scan > 0) 4452 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan, 4453 false); 4454 if (nr_to_scan > 0) 4455 i915_gem_shrink_all(dev_priv); 4456 } 4457 4458 cnt = 0; 4459 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list) 4460 if (obj->pages_pin_count == 0) 4461 cnt += obj->base.size >> PAGE_SHIFT; 4462 list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list) 4463 if (obj->pin_count == 0 && obj->pages_pin_count == 0) 4464 cnt += obj->base.size >> PAGE_SHIFT; 4465 4466 if (unlock) 4467 mutex_unlock(&dev->struct_mutex); 4468 return cnt; 4469 } 4470