xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision 301306a9)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drm_vma_manager.h>
29 #include <linux/dma-fence-array.h>
30 #include <linux/kthread.h>
31 #include <linux/dma-resv.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/slab.h>
34 #include <linux/stop_machine.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38 #include <linux/mman.h>
39 
40 #include "display/intel_display.h"
41 #include "display/intel_frontbuffer.h"
42 
43 #include "gem/i915_gem_clflush.h"
44 #include "gem/i915_gem_context.h"
45 #include "gem/i915_gem_ioctls.h"
46 #include "gem/i915_gem_mman.h"
47 #include "gem/i915_gem_region.h"
48 #include "gem/i915_gem_userptr.h"
49 #include "gt/intel_engine_user.h"
50 #include "gt/intel_gt.h"
51 #include "gt/intel_gt_pm.h"
52 #include "gt/intel_workarounds.h"
53 
54 #include "i915_drv.h"
55 #include "i915_trace.h"
56 #include "i915_vgpu.h"
57 
58 #include "intel_pm.h"
59 
60 static int
61 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
62 {
63 	int err;
64 
65 	err = mutex_lock_interruptible(&ggtt->vm.mutex);
66 	if (err)
67 		return err;
68 
69 	memset(node, 0, sizeof(*node));
70 	err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
71 					  size, 0, I915_COLOR_UNEVICTABLE,
72 					  0, ggtt->mappable_end,
73 					  DRM_MM_INSERT_LOW);
74 
75 	mutex_unlock(&ggtt->vm.mutex);
76 
77 	return err;
78 }
79 
80 static void
81 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
82 {
83 	mutex_lock(&ggtt->vm.mutex);
84 	drm_mm_remove_node(node);
85 	mutex_unlock(&ggtt->vm.mutex);
86 }
87 
88 int
89 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
90 			    struct drm_file *file)
91 {
92 	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
93 	struct drm_i915_gem_get_aperture *args = data;
94 	struct i915_vma *vma;
95 	u64 pinned;
96 
97 	if (mutex_lock_interruptible(&ggtt->vm.mutex))
98 		return -EINTR;
99 
100 	pinned = ggtt->vm.reserved;
101 	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
102 		if (i915_vma_is_pinned(vma))
103 			pinned += vma->node.size;
104 
105 	mutex_unlock(&ggtt->vm.mutex);
106 
107 	args->aper_size = ggtt->vm.total;
108 	args->aper_available_size = args->aper_size - pinned;
109 
110 	return 0;
111 }
112 
113 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
114 			   unsigned long flags)
115 {
116 	struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
117 	LIST_HEAD(still_in_list);
118 	intel_wakeref_t wakeref;
119 	struct i915_vma *vma;
120 	int ret;
121 
122 	if (list_empty(&obj->vma.list))
123 		return 0;
124 
125 	/*
126 	 * As some machines use ACPI to handle runtime-resume callbacks, and
127 	 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
128 	 * as they are required by the shrinker. Ergo, we wake the device up
129 	 * first just in case.
130 	 */
131 	wakeref = intel_runtime_pm_get(rpm);
132 
133 try_again:
134 	ret = 0;
135 	spin_lock(&obj->vma.lock);
136 	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
137 						       struct i915_vma,
138 						       obj_link))) {
139 		struct i915_address_space *vm = vma->vm;
140 
141 		list_move_tail(&vma->obj_link, &still_in_list);
142 		if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
143 			continue;
144 
145 		if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
146 			ret = -EBUSY;
147 			break;
148 		}
149 
150 		ret = -EAGAIN;
151 		if (!i915_vm_tryopen(vm))
152 			break;
153 
154 		/* Prevent vma being freed by i915_vma_parked as we unbind */
155 		vma = __i915_vma_get(vma);
156 		spin_unlock(&obj->vma.lock);
157 
158 		if (vma) {
159 			ret = -EBUSY;
160 			if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
161 			    !i915_vma_is_active(vma)) {
162 				if (flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK) {
163 					if (mutex_trylock(&vma->vm->mutex)) {
164 						ret = __i915_vma_unbind(vma);
165 						mutex_unlock(&vma->vm->mutex);
166 					} else {
167 						ret = -EBUSY;
168 					}
169 				} else {
170 					ret = i915_vma_unbind(vma);
171 				}
172 			}
173 
174 			__i915_vma_put(vma);
175 		}
176 
177 		i915_vm_close(vm);
178 		spin_lock(&obj->vma.lock);
179 	}
180 	list_splice_init(&still_in_list, &obj->vma.list);
181 	spin_unlock(&obj->vma.lock);
182 
183 	if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
184 		rcu_barrier(); /* flush the i915_vm_release() */
185 		goto try_again;
186 	}
187 
188 	intel_runtime_pm_put(rpm, wakeref);
189 
190 	return ret;
191 }
192 
193 static int
194 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
195 	    bool needs_clflush)
196 {
197 	char *vaddr;
198 	int ret;
199 
200 	vaddr = kmap(page);
201 
202 	if (needs_clflush)
203 		drm_clflush_virt_range(vaddr + offset, len);
204 
205 	ret = __copy_to_user(user_data, vaddr + offset, len);
206 
207 	kunmap(page);
208 
209 	return ret ? -EFAULT : 0;
210 }
211 
212 static int
213 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
214 		     struct drm_i915_gem_pread *args)
215 {
216 	unsigned int needs_clflush;
217 	unsigned int idx, offset;
218 	char __user *user_data;
219 	u64 remain;
220 	int ret;
221 
222 	ret = i915_gem_object_lock_interruptible(obj, NULL);
223 	if (ret)
224 		return ret;
225 
226 	ret = i915_gem_object_pin_pages(obj);
227 	if (ret)
228 		goto err_unlock;
229 
230 	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
231 	if (ret)
232 		goto err_unpin;
233 
234 	i915_gem_object_finish_access(obj);
235 	i915_gem_object_unlock(obj);
236 
237 	remain = args->size;
238 	user_data = u64_to_user_ptr(args->data_ptr);
239 	offset = offset_in_page(args->offset);
240 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
241 		struct page *page = i915_gem_object_get_page(obj, idx);
242 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
243 
244 		ret = shmem_pread(page, offset, length, user_data,
245 				  needs_clflush);
246 		if (ret)
247 			break;
248 
249 		remain -= length;
250 		user_data += length;
251 		offset = 0;
252 	}
253 
254 	i915_gem_object_unpin_pages(obj);
255 	return ret;
256 
257 err_unpin:
258 	i915_gem_object_unpin_pages(obj);
259 err_unlock:
260 	i915_gem_object_unlock(obj);
261 	return ret;
262 }
263 
264 static inline bool
265 gtt_user_read(struct io_mapping *mapping,
266 	      loff_t base, int offset,
267 	      char __user *user_data, int length)
268 {
269 	void __iomem *vaddr;
270 	unsigned long unwritten;
271 
272 	/* We can use the cpu mem copy function because this is X86. */
273 	vaddr = io_mapping_map_atomic_wc(mapping, base);
274 	unwritten = __copy_to_user_inatomic(user_data,
275 					    (void __force *)vaddr + offset,
276 					    length);
277 	io_mapping_unmap_atomic(vaddr);
278 	if (unwritten) {
279 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
280 		unwritten = copy_to_user(user_data,
281 					 (void __force *)vaddr + offset,
282 					 length);
283 		io_mapping_unmap(vaddr);
284 	}
285 	return unwritten;
286 }
287 
288 static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj,
289 					     struct drm_mm_node *node,
290 					     bool write)
291 {
292 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
293 	struct i915_ggtt *ggtt = &i915->ggtt;
294 	struct i915_vma *vma;
295 	struct i915_gem_ww_ctx ww;
296 	int ret;
297 
298 	i915_gem_ww_ctx_init(&ww, true);
299 retry:
300 	vma = ERR_PTR(-ENODEV);
301 	ret = i915_gem_object_lock(obj, &ww);
302 	if (ret)
303 		goto err_ww;
304 
305 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
306 	if (ret)
307 		goto err_ww;
308 
309 	if (!i915_gem_object_is_tiled(obj))
310 		vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
311 						  PIN_MAPPABLE |
312 						  PIN_NONBLOCK /* NOWARN */ |
313 						  PIN_NOEVICT);
314 	if (vma == ERR_PTR(-EDEADLK)) {
315 		ret = -EDEADLK;
316 		goto err_ww;
317 	} else if (!IS_ERR(vma)) {
318 		node->start = i915_ggtt_offset(vma);
319 		node->flags = 0;
320 	} else {
321 		ret = insert_mappable_node(ggtt, node, PAGE_SIZE);
322 		if (ret)
323 			goto err_ww;
324 		GEM_BUG_ON(!drm_mm_node_allocated(node));
325 		vma = NULL;
326 	}
327 
328 	ret = i915_gem_object_pin_pages(obj);
329 	if (ret) {
330 		if (drm_mm_node_allocated(node)) {
331 			ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
332 			remove_mappable_node(ggtt, node);
333 		} else {
334 			i915_vma_unpin(vma);
335 		}
336 	}
337 
338 err_ww:
339 	if (ret == -EDEADLK) {
340 		ret = i915_gem_ww_ctx_backoff(&ww);
341 		if (!ret)
342 			goto retry;
343 	}
344 	i915_gem_ww_ctx_fini(&ww);
345 
346 	return ret ? ERR_PTR(ret) : vma;
347 }
348 
349 static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj,
350 				 struct drm_mm_node *node,
351 				 struct i915_vma *vma)
352 {
353 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
354 	struct i915_ggtt *ggtt = &i915->ggtt;
355 
356 	i915_gem_object_unpin_pages(obj);
357 	if (drm_mm_node_allocated(node)) {
358 		ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
359 		remove_mappable_node(ggtt, node);
360 	} else {
361 		i915_vma_unpin(vma);
362 	}
363 }
364 
365 static int
366 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
367 		   const struct drm_i915_gem_pread *args)
368 {
369 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
370 	struct i915_ggtt *ggtt = &i915->ggtt;
371 	intel_wakeref_t wakeref;
372 	struct drm_mm_node node;
373 	void __user *user_data;
374 	struct i915_vma *vma;
375 	u64 remain, offset;
376 	int ret = 0;
377 
378 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
379 
380 	vma = i915_gem_gtt_prepare(obj, &node, false);
381 	if (IS_ERR(vma)) {
382 		ret = PTR_ERR(vma);
383 		goto out_rpm;
384 	}
385 
386 	user_data = u64_to_user_ptr(args->data_ptr);
387 	remain = args->size;
388 	offset = args->offset;
389 
390 	while (remain > 0) {
391 		/* Operation in this page
392 		 *
393 		 * page_base = page offset within aperture
394 		 * page_offset = offset within page
395 		 * page_length = bytes to copy for this page
396 		 */
397 		u32 page_base = node.start;
398 		unsigned page_offset = offset_in_page(offset);
399 		unsigned page_length = PAGE_SIZE - page_offset;
400 		page_length = remain < page_length ? remain : page_length;
401 		if (drm_mm_node_allocated(&node)) {
402 			ggtt->vm.insert_page(&ggtt->vm,
403 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
404 					     node.start, I915_CACHE_NONE, 0);
405 		} else {
406 			page_base += offset & PAGE_MASK;
407 		}
408 
409 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
410 				  user_data, page_length)) {
411 			ret = -EFAULT;
412 			break;
413 		}
414 
415 		remain -= page_length;
416 		user_data += page_length;
417 		offset += page_length;
418 	}
419 
420 	i915_gem_gtt_cleanup(obj, &node, vma);
421 out_rpm:
422 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
423 	return ret;
424 }
425 
426 /**
427  * Reads data from the object referenced by handle.
428  * @dev: drm device pointer
429  * @data: ioctl data blob
430  * @file: drm file pointer
431  *
432  * On error, the contents of *data are undefined.
433  */
434 int
435 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
436 		     struct drm_file *file)
437 {
438 	struct drm_i915_private *i915 = to_i915(dev);
439 	struct drm_i915_gem_pread *args = data;
440 	struct drm_i915_gem_object *obj;
441 	int ret;
442 
443 	/* PREAD is disallowed for all platforms after TGL-LP.  This also
444 	 * covers all platforms with local memory.
445 	 */
446 	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
447 		return -EOPNOTSUPP;
448 
449 	if (args->size == 0)
450 		return 0;
451 
452 	if (!access_ok(u64_to_user_ptr(args->data_ptr),
453 		       args->size))
454 		return -EFAULT;
455 
456 	obj = i915_gem_object_lookup(file, args->handle);
457 	if (!obj)
458 		return -ENOENT;
459 
460 	/* Bounds check source.  */
461 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
462 		ret = -EINVAL;
463 		goto out;
464 	}
465 
466 	trace_i915_gem_object_pread(obj, args->offset, args->size);
467 	ret = -ENODEV;
468 	if (obj->ops->pread)
469 		ret = obj->ops->pread(obj, args);
470 	if (ret != -ENODEV)
471 		goto out;
472 
473 	ret = i915_gem_object_wait(obj,
474 				   I915_WAIT_INTERRUPTIBLE,
475 				   MAX_SCHEDULE_TIMEOUT);
476 	if (ret)
477 		goto out;
478 
479 	ret = i915_gem_shmem_pread(obj, args);
480 	if (ret == -EFAULT || ret == -ENODEV)
481 		ret = i915_gem_gtt_pread(obj, args);
482 
483 out:
484 	i915_gem_object_put(obj);
485 	return ret;
486 }
487 
488 /* This is the fast write path which cannot handle
489  * page faults in the source data
490  */
491 
492 static inline bool
493 ggtt_write(struct io_mapping *mapping,
494 	   loff_t base, int offset,
495 	   char __user *user_data, int length)
496 {
497 	void __iomem *vaddr;
498 	unsigned long unwritten;
499 
500 	/* We can use the cpu mem copy function because this is X86. */
501 	vaddr = io_mapping_map_atomic_wc(mapping, base);
502 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
503 						      user_data, length);
504 	io_mapping_unmap_atomic(vaddr);
505 	if (unwritten) {
506 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
507 		unwritten = copy_from_user((void __force *)vaddr + offset,
508 					   user_data, length);
509 		io_mapping_unmap(vaddr);
510 	}
511 
512 	return unwritten;
513 }
514 
515 /**
516  * This is the fast pwrite path, where we copy the data directly from the
517  * user into the GTT, uncached.
518  * @obj: i915 GEM object
519  * @args: pwrite arguments structure
520  */
521 static int
522 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
523 			 const struct drm_i915_gem_pwrite *args)
524 {
525 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
526 	struct i915_ggtt *ggtt = &i915->ggtt;
527 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
528 	intel_wakeref_t wakeref;
529 	struct drm_mm_node node;
530 	struct i915_vma *vma;
531 	u64 remain, offset;
532 	void __user *user_data;
533 	int ret = 0;
534 
535 	if (i915_gem_object_has_struct_page(obj)) {
536 		/*
537 		 * Avoid waking the device up if we can fallback, as
538 		 * waking/resuming is very slow (worst-case 10-100 ms
539 		 * depending on PCI sleeps and our own resume time).
540 		 * This easily dwarfs any performance advantage from
541 		 * using the cache bypass of indirect GGTT access.
542 		 */
543 		wakeref = intel_runtime_pm_get_if_in_use(rpm);
544 		if (!wakeref)
545 			return -EFAULT;
546 	} else {
547 		/* No backing pages, no fallback, we must force GGTT access */
548 		wakeref = intel_runtime_pm_get(rpm);
549 	}
550 
551 	vma = i915_gem_gtt_prepare(obj, &node, true);
552 	if (IS_ERR(vma)) {
553 		ret = PTR_ERR(vma);
554 		goto out_rpm;
555 	}
556 
557 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
558 
559 	user_data = u64_to_user_ptr(args->data_ptr);
560 	offset = args->offset;
561 	remain = args->size;
562 	while (remain) {
563 		/* Operation in this page
564 		 *
565 		 * page_base = page offset within aperture
566 		 * page_offset = offset within page
567 		 * page_length = bytes to copy for this page
568 		 */
569 		u32 page_base = node.start;
570 		unsigned int page_offset = offset_in_page(offset);
571 		unsigned int page_length = PAGE_SIZE - page_offset;
572 		page_length = remain < page_length ? remain : page_length;
573 		if (drm_mm_node_allocated(&node)) {
574 			/* flush the write before we modify the GGTT */
575 			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
576 			ggtt->vm.insert_page(&ggtt->vm,
577 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
578 					     node.start, I915_CACHE_NONE, 0);
579 			wmb(); /* flush modifications to the GGTT (insert_page) */
580 		} else {
581 			page_base += offset & PAGE_MASK;
582 		}
583 		/* If we get a fault while copying data, then (presumably) our
584 		 * source page isn't available.  Return the error and we'll
585 		 * retry in the slow path.
586 		 * If the object is non-shmem backed, we retry again with the
587 		 * path that handles page fault.
588 		 */
589 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
590 			       user_data, page_length)) {
591 			ret = -EFAULT;
592 			break;
593 		}
594 
595 		remain -= page_length;
596 		user_data += page_length;
597 		offset += page_length;
598 	}
599 
600 	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
601 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
602 
603 	i915_gem_gtt_cleanup(obj, &node, vma);
604 out_rpm:
605 	intel_runtime_pm_put(rpm, wakeref);
606 	return ret;
607 }
608 
609 /* Per-page copy function for the shmem pwrite fastpath.
610  * Flushes invalid cachelines before writing to the target if
611  * needs_clflush_before is set and flushes out any written cachelines after
612  * writing if needs_clflush is set.
613  */
614 static int
615 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
616 	     bool needs_clflush_before,
617 	     bool needs_clflush_after)
618 {
619 	char *vaddr;
620 	int ret;
621 
622 	vaddr = kmap(page);
623 
624 	if (needs_clflush_before)
625 		drm_clflush_virt_range(vaddr + offset, len);
626 
627 	ret = __copy_from_user(vaddr + offset, user_data, len);
628 	if (!ret && needs_clflush_after)
629 		drm_clflush_virt_range(vaddr + offset, len);
630 
631 	kunmap(page);
632 
633 	return ret ? -EFAULT : 0;
634 }
635 
636 static int
637 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
638 		      const struct drm_i915_gem_pwrite *args)
639 {
640 	unsigned int partial_cacheline_write;
641 	unsigned int needs_clflush;
642 	unsigned int offset, idx;
643 	void __user *user_data;
644 	u64 remain;
645 	int ret;
646 
647 	ret = i915_gem_object_lock_interruptible(obj, NULL);
648 	if (ret)
649 		return ret;
650 
651 	ret = i915_gem_object_pin_pages(obj);
652 	if (ret)
653 		goto err_unlock;
654 
655 	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
656 	if (ret)
657 		goto err_unpin;
658 
659 	i915_gem_object_finish_access(obj);
660 	i915_gem_object_unlock(obj);
661 
662 	/* If we don't overwrite a cacheline completely we need to be
663 	 * careful to have up-to-date data by first clflushing. Don't
664 	 * overcomplicate things and flush the entire patch.
665 	 */
666 	partial_cacheline_write = 0;
667 	if (needs_clflush & CLFLUSH_BEFORE)
668 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
669 
670 	user_data = u64_to_user_ptr(args->data_ptr);
671 	remain = args->size;
672 	offset = offset_in_page(args->offset);
673 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
674 		struct page *page = i915_gem_object_get_page(obj, idx);
675 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
676 
677 		ret = shmem_pwrite(page, offset, length, user_data,
678 				   (offset | length) & partial_cacheline_write,
679 				   needs_clflush & CLFLUSH_AFTER);
680 		if (ret)
681 			break;
682 
683 		remain -= length;
684 		user_data += length;
685 		offset = 0;
686 	}
687 
688 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
689 
690 	i915_gem_object_unpin_pages(obj);
691 	return ret;
692 
693 err_unpin:
694 	i915_gem_object_unpin_pages(obj);
695 err_unlock:
696 	i915_gem_object_unlock(obj);
697 	return ret;
698 }
699 
700 /**
701  * Writes data to the object referenced by handle.
702  * @dev: drm device
703  * @data: ioctl data blob
704  * @file: drm file
705  *
706  * On error, the contents of the buffer that were to be modified are undefined.
707  */
708 int
709 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
710 		      struct drm_file *file)
711 {
712 	struct drm_i915_private *i915 = to_i915(dev);
713 	struct drm_i915_gem_pwrite *args = data;
714 	struct drm_i915_gem_object *obj;
715 	int ret;
716 
717 	/* PWRITE is disallowed for all platforms after TGL-LP.  This also
718 	 * covers all platforms with local memory.
719 	 */
720 	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
721 		return -EOPNOTSUPP;
722 
723 	if (args->size == 0)
724 		return 0;
725 
726 	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
727 		return -EFAULT;
728 
729 	obj = i915_gem_object_lookup(file, args->handle);
730 	if (!obj)
731 		return -ENOENT;
732 
733 	/* Bounds check destination. */
734 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
735 		ret = -EINVAL;
736 		goto err;
737 	}
738 
739 	/* Writes not allowed into this read-only object */
740 	if (i915_gem_object_is_readonly(obj)) {
741 		ret = -EINVAL;
742 		goto err;
743 	}
744 
745 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
746 
747 	ret = -ENODEV;
748 	if (obj->ops->pwrite)
749 		ret = obj->ops->pwrite(obj, args);
750 	if (ret != -ENODEV)
751 		goto err;
752 
753 	ret = i915_gem_object_wait(obj,
754 				   I915_WAIT_INTERRUPTIBLE |
755 				   I915_WAIT_ALL,
756 				   MAX_SCHEDULE_TIMEOUT);
757 	if (ret)
758 		goto err;
759 
760 	ret = -EFAULT;
761 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
762 	 * it would end up going through the fenced access, and we'll get
763 	 * different detiling behavior between reading and writing.
764 	 * pread/pwrite currently are reading and writing from the CPU
765 	 * perspective, requiring manual detiling by the client.
766 	 */
767 	if (!i915_gem_object_has_struct_page(obj) ||
768 	    i915_gem_cpu_write_needs_clflush(obj))
769 		/* Note that the gtt paths might fail with non-page-backed user
770 		 * pointers (e.g. gtt mappings when moving data between
771 		 * textures). Fallback to the shmem path in that case.
772 		 */
773 		ret = i915_gem_gtt_pwrite_fast(obj, args);
774 
775 	if (ret == -EFAULT || ret == -ENOSPC) {
776 		if (i915_gem_object_has_struct_page(obj))
777 			ret = i915_gem_shmem_pwrite(obj, args);
778 	}
779 
780 err:
781 	i915_gem_object_put(obj);
782 	return ret;
783 }
784 
785 /**
786  * Called when user space has done writes to this buffer
787  * @dev: drm device
788  * @data: ioctl data blob
789  * @file: drm file
790  */
791 int
792 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
793 			 struct drm_file *file)
794 {
795 	struct drm_i915_gem_sw_finish *args = data;
796 	struct drm_i915_gem_object *obj;
797 
798 	obj = i915_gem_object_lookup(file, args->handle);
799 	if (!obj)
800 		return -ENOENT;
801 
802 	/*
803 	 * Proxy objects are barred from CPU access, so there is no
804 	 * need to ban sw_finish as it is a nop.
805 	 */
806 
807 	/* Pinned buffers may be scanout, so flush the cache */
808 	i915_gem_object_flush_if_display(obj);
809 	i915_gem_object_put(obj);
810 
811 	return 0;
812 }
813 
814 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
815 {
816 	struct drm_i915_gem_object *obj, *on;
817 	int i;
818 
819 	/*
820 	 * Only called during RPM suspend. All users of the userfault_list
821 	 * must be holding an RPM wakeref to ensure that this can not
822 	 * run concurrently with themselves (and use the struct_mutex for
823 	 * protection between themselves).
824 	 */
825 
826 	list_for_each_entry_safe(obj, on,
827 				 &i915->ggtt.userfault_list, userfault_link)
828 		__i915_gem_object_release_mmap_gtt(obj);
829 
830 	/*
831 	 * The fence will be lost when the device powers down. If any were
832 	 * in use by hardware (i.e. they are pinned), we should not be powering
833 	 * down! All other fences will be reacquired by the user upon waking.
834 	 */
835 	for (i = 0; i < i915->ggtt.num_fences; i++) {
836 		struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
837 
838 		/*
839 		 * Ideally we want to assert that the fence register is not
840 		 * live at this point (i.e. that no piece of code will be
841 		 * trying to write through fence + GTT, as that both violates
842 		 * our tracking of activity and associated locking/barriers,
843 		 * but also is illegal given that the hw is powered down).
844 		 *
845 		 * Previously we used reg->pin_count as a "liveness" indicator.
846 		 * That is not sufficient, and we need a more fine-grained
847 		 * tool if we want to have a sanity check here.
848 		 */
849 
850 		if (!reg->vma)
851 			continue;
852 
853 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
854 		reg->dirty = true;
855 	}
856 }
857 
858 static void discard_ggtt_vma(struct i915_vma *vma)
859 {
860 	struct drm_i915_gem_object *obj = vma->obj;
861 
862 	spin_lock(&obj->vma.lock);
863 	if (!RB_EMPTY_NODE(&vma->obj_node)) {
864 		rb_erase(&vma->obj_node, &obj->vma.tree);
865 		RB_CLEAR_NODE(&vma->obj_node);
866 	}
867 	spin_unlock(&obj->vma.lock);
868 }
869 
870 struct i915_vma *
871 i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
872 			    struct i915_gem_ww_ctx *ww,
873 			    const struct i915_ggtt_view *view,
874 			    u64 size, u64 alignment, u64 flags)
875 {
876 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
877 	struct i915_ggtt *ggtt = &i915->ggtt;
878 	struct i915_vma *vma;
879 	int ret;
880 
881 	GEM_WARN_ON(!ww);
882 
883 	if (flags & PIN_MAPPABLE &&
884 	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
885 		/*
886 		 * If the required space is larger than the available
887 		 * aperture, we will not able to find a slot for the
888 		 * object and unbinding the object now will be in
889 		 * vain. Worse, doing so may cause us to ping-pong
890 		 * the object in and out of the Global GTT and
891 		 * waste a lot of cycles under the mutex.
892 		 */
893 		if (obj->base.size > ggtt->mappable_end)
894 			return ERR_PTR(-E2BIG);
895 
896 		/*
897 		 * If NONBLOCK is set the caller is optimistically
898 		 * trying to cache the full object within the mappable
899 		 * aperture, and *must* have a fallback in place for
900 		 * situations where we cannot bind the object. We
901 		 * can be a little more lax here and use the fallback
902 		 * more often to avoid costly migrations of ourselves
903 		 * and other objects within the aperture.
904 		 *
905 		 * Half-the-aperture is used as a simple heuristic.
906 		 * More interesting would to do search for a free
907 		 * block prior to making the commitment to unbind.
908 		 * That caters for the self-harm case, and with a
909 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
910 		 * we could try to minimise harm to others.
911 		 */
912 		if (flags & PIN_NONBLOCK &&
913 		    obj->base.size > ggtt->mappable_end / 2)
914 			return ERR_PTR(-ENOSPC);
915 	}
916 
917 new_vma:
918 	vma = i915_vma_instance(obj, &ggtt->vm, view);
919 	if (IS_ERR(vma))
920 		return vma;
921 
922 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
923 		if (flags & PIN_NONBLOCK) {
924 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
925 				return ERR_PTR(-ENOSPC);
926 
927 			if (flags & PIN_MAPPABLE &&
928 			    vma->fence_size > ggtt->mappable_end / 2)
929 				return ERR_PTR(-ENOSPC);
930 		}
931 
932 		if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
933 			discard_ggtt_vma(vma);
934 			goto new_vma;
935 		}
936 
937 		ret = i915_vma_unbind(vma);
938 		if (ret)
939 			return ERR_PTR(ret);
940 	}
941 
942 	ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
943 
944 	if (ret)
945 		return ERR_PTR(ret);
946 
947 	if (vma->fence && !i915_gem_object_is_tiled(obj)) {
948 		mutex_lock(&ggtt->vm.mutex);
949 		i915_vma_revoke_fence(vma);
950 		mutex_unlock(&ggtt->vm.mutex);
951 	}
952 
953 	ret = i915_vma_wait_for_bind(vma);
954 	if (ret) {
955 		i915_vma_unpin(vma);
956 		return ERR_PTR(ret);
957 	}
958 
959 	return vma;
960 }
961 
962 struct i915_vma * __must_check
963 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
964 			 const struct i915_ggtt_view *view,
965 			 u64 size, u64 alignment, u64 flags)
966 {
967 	struct i915_gem_ww_ctx ww;
968 	struct i915_vma *ret;
969 	int err;
970 
971 	for_i915_gem_ww(&ww, err, true) {
972 		err = i915_gem_object_lock(obj, &ww);
973 		if (err)
974 			continue;
975 
976 		ret = i915_gem_object_ggtt_pin_ww(obj, &ww, view, size,
977 						  alignment, flags);
978 		if (IS_ERR(ret))
979 			err = PTR_ERR(ret);
980 	}
981 
982 	return err ? ERR_PTR(err) : ret;
983 }
984 
985 int
986 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
987 		       struct drm_file *file_priv)
988 {
989 	struct drm_i915_private *i915 = to_i915(dev);
990 	struct drm_i915_gem_madvise *args = data;
991 	struct drm_i915_gem_object *obj;
992 	int err;
993 
994 	switch (args->madv) {
995 	case I915_MADV_DONTNEED:
996 	case I915_MADV_WILLNEED:
997 	    break;
998 	default:
999 	    return -EINVAL;
1000 	}
1001 
1002 	obj = i915_gem_object_lookup(file_priv, args->handle);
1003 	if (!obj)
1004 		return -ENOENT;
1005 
1006 	err = i915_gem_object_lock_interruptible(obj, NULL);
1007 	if (err)
1008 		goto out;
1009 
1010 	if (i915_gem_object_has_pages(obj) &&
1011 	    i915_gem_object_is_tiled(obj) &&
1012 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
1013 		if (obj->mm.madv == I915_MADV_WILLNEED) {
1014 			GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
1015 			i915_gem_object_clear_tiling_quirk(obj);
1016 			i915_gem_object_make_shrinkable(obj);
1017 		}
1018 		if (args->madv == I915_MADV_WILLNEED) {
1019 			GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
1020 			i915_gem_object_make_unshrinkable(obj);
1021 			i915_gem_object_set_tiling_quirk(obj);
1022 		}
1023 	}
1024 
1025 	if (obj->mm.madv != __I915_MADV_PURGED) {
1026 		obj->mm.madv = args->madv;
1027 		if (obj->ops->adjust_lru)
1028 			obj->ops->adjust_lru(obj);
1029 	}
1030 
1031 	if (i915_gem_object_has_pages(obj) ||
1032 	    i915_gem_object_has_self_managed_shrink_list(obj)) {
1033 		unsigned long flags;
1034 
1035 		spin_lock_irqsave(&i915->mm.obj_lock, flags);
1036 		if (!list_empty(&obj->mm.link)) {
1037 			struct list_head *list;
1038 
1039 			if (obj->mm.madv != I915_MADV_WILLNEED)
1040 				list = &i915->mm.purge_list;
1041 			else
1042 				list = &i915->mm.shrink_list;
1043 			list_move_tail(&obj->mm.link, list);
1044 
1045 		}
1046 		spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1047 	}
1048 
1049 	/* if the object is no longer attached, discard its backing storage */
1050 	if (obj->mm.madv == I915_MADV_DONTNEED &&
1051 	    !i915_gem_object_has_pages(obj))
1052 		i915_gem_object_truncate(obj);
1053 
1054 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
1055 
1056 	i915_gem_object_unlock(obj);
1057 out:
1058 	i915_gem_object_put(obj);
1059 	return err;
1060 }
1061 
1062 int i915_gem_init(struct drm_i915_private *dev_priv)
1063 {
1064 	int ret;
1065 
1066 	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
1067 	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1068 		mkwrite_device_info(dev_priv)->page_sizes =
1069 			I915_GTT_PAGE_SIZE_4K;
1070 
1071 	ret = i915_gem_init_userptr(dev_priv);
1072 	if (ret)
1073 		return ret;
1074 
1075 	intel_uc_fetch_firmwares(&to_gt(dev_priv)->uc);
1076 	intel_wopcm_init(&dev_priv->wopcm);
1077 
1078 	ret = i915_init_ggtt(dev_priv);
1079 	if (ret) {
1080 		GEM_BUG_ON(ret == -EIO);
1081 		goto err_unlock;
1082 	}
1083 
1084 	/*
1085 	 * Despite its name intel_init_clock_gating applies both display
1086 	 * clock gating workarounds; GT mmio workarounds and the occasional
1087 	 * GT power context workaround. Worse, sometimes it includes a context
1088 	 * register workaround which we need to apply before we record the
1089 	 * default HW state for all contexts.
1090 	 *
1091 	 * FIXME: break up the workarounds and apply them at the right time!
1092 	 */
1093 	intel_init_clock_gating(dev_priv);
1094 
1095 	ret = intel_gt_init(to_gt(dev_priv));
1096 	if (ret)
1097 		goto err_unlock;
1098 
1099 	return 0;
1100 
1101 	/*
1102 	 * Unwinding is complicated by that we want to handle -EIO to mean
1103 	 * disable GPU submission but keep KMS alive. We want to mark the
1104 	 * HW as irrevisibly wedged, but keep enough state around that the
1105 	 * driver doesn't explode during runtime.
1106 	 */
1107 err_unlock:
1108 	i915_gem_drain_workqueue(dev_priv);
1109 
1110 	if (ret != -EIO)
1111 		intel_uc_cleanup_firmwares(&to_gt(dev_priv)->uc);
1112 
1113 	if (ret == -EIO) {
1114 		/*
1115 		 * Allow engines or uC initialisation to fail by marking the GPU
1116 		 * as wedged. But we only want to do this when the GPU is angry,
1117 		 * for all other failure, such as an allocation failure, bail.
1118 		 */
1119 		if (!intel_gt_is_wedged(to_gt(dev_priv))) {
1120 			i915_probe_error(dev_priv,
1121 					 "Failed to initialize GPU, declaring it wedged!\n");
1122 			intel_gt_set_wedged(to_gt(dev_priv));
1123 		}
1124 
1125 		/* Minimal basic recovery for KMS */
1126 		ret = i915_ggtt_enable_hw(dev_priv);
1127 		i915_ggtt_resume(&dev_priv->ggtt);
1128 		intel_init_clock_gating(dev_priv);
1129 	}
1130 
1131 	i915_gem_drain_freed_objects(dev_priv);
1132 
1133 	return ret;
1134 }
1135 
1136 void i915_gem_driver_register(struct drm_i915_private *i915)
1137 {
1138 	i915_gem_driver_register__shrinker(i915);
1139 
1140 	intel_engines_driver_register(i915);
1141 }
1142 
1143 void i915_gem_driver_unregister(struct drm_i915_private *i915)
1144 {
1145 	i915_gem_driver_unregister__shrinker(i915);
1146 }
1147 
1148 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1149 {
1150 	intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1151 
1152 	i915_gem_suspend_late(dev_priv);
1153 	intel_gt_driver_remove(to_gt(dev_priv));
1154 	dev_priv->uabi_engines = RB_ROOT;
1155 
1156 	/* Flush any outstanding unpin_work. */
1157 	i915_gem_drain_workqueue(dev_priv);
1158 
1159 	i915_gem_drain_freed_objects(dev_priv);
1160 }
1161 
1162 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1163 {
1164 	intel_gt_driver_release(to_gt(dev_priv));
1165 
1166 	intel_uc_cleanup_firmwares(&to_gt(dev_priv)->uc);
1167 
1168 	i915_gem_drain_freed_objects(dev_priv);
1169 
1170 	drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1171 }
1172 
1173 static void i915_gem_init__mm(struct drm_i915_private *i915)
1174 {
1175 	spin_lock_init(&i915->mm.obj_lock);
1176 
1177 	init_llist_head(&i915->mm.free_list);
1178 
1179 	INIT_LIST_HEAD(&i915->mm.purge_list);
1180 	INIT_LIST_HEAD(&i915->mm.shrink_list);
1181 
1182 	i915_gem_init__objects(i915);
1183 }
1184 
1185 void i915_gem_init_early(struct drm_i915_private *dev_priv)
1186 {
1187 	i915_gem_init__mm(dev_priv);
1188 	i915_gem_init__contexts(dev_priv);
1189 
1190 	spin_lock_init(&dev_priv->fb_tracking.lock);
1191 }
1192 
1193 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1194 {
1195 	i915_gem_drain_freed_objects(dev_priv);
1196 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1197 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1198 	drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1199 }
1200 
1201 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1202 {
1203 	struct drm_i915_file_private *file_priv;
1204 	int ret;
1205 
1206 	DRM_DEBUG("\n");
1207 
1208 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1209 	if (!file_priv)
1210 		return -ENOMEM;
1211 
1212 	file->driver_priv = file_priv;
1213 	file_priv->dev_priv = i915;
1214 	file_priv->file = file;
1215 
1216 	file_priv->bsd_engine = -1;
1217 	file_priv->hang_timestamp = jiffies;
1218 
1219 	ret = i915_gem_context_open(i915, file);
1220 	if (ret)
1221 		kfree(file_priv);
1222 
1223 	return ret;
1224 }
1225 
1226 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1227 #include "selftests/mock_gem_device.c"
1228 #include "selftests/i915_gem.c"
1229 #endif
1230