xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision 2eb3ed33e55d003d721d4d1a5e72fe323c12b4c0)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/dma-fence-array.h>
39 #include <linux/kthread.h>
40 #include <linux/reservation.h>
41 #include <linux/shmem_fs.h>
42 #include <linux/slab.h>
43 #include <linux/stop_machine.h>
44 #include <linux/swap.h>
45 #include <linux/pci.h>
46 #include <linux/dma-buf.h>
47 
48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49 
50 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
51 {
52 	if (obj->cache_dirty)
53 		return false;
54 
55 	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
56 		return true;
57 
58 	return obj->pin_display;
59 }
60 
61 static int
62 insert_mappable_node(struct i915_ggtt *ggtt,
63                      struct drm_mm_node *node, u32 size)
64 {
65 	memset(node, 0, sizeof(*node));
66 	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
67 					   size, 0, I915_COLOR_UNEVICTABLE,
68 					   0, ggtt->mappable_end,
69 					   DRM_MM_INSERT_LOW);
70 }
71 
72 static void
73 remove_mappable_node(struct drm_mm_node *node)
74 {
75 	drm_mm_remove_node(node);
76 }
77 
78 /* some bookkeeping */
79 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
80 				  u64 size)
81 {
82 	spin_lock(&dev_priv->mm.object_stat_lock);
83 	dev_priv->mm.object_count++;
84 	dev_priv->mm.object_memory += size;
85 	spin_unlock(&dev_priv->mm.object_stat_lock);
86 }
87 
88 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
89 				     u64 size)
90 {
91 	spin_lock(&dev_priv->mm.object_stat_lock);
92 	dev_priv->mm.object_count--;
93 	dev_priv->mm.object_memory -= size;
94 	spin_unlock(&dev_priv->mm.object_stat_lock);
95 }
96 
97 static int
98 i915_gem_wait_for_error(struct i915_gpu_error *error)
99 {
100 	int ret;
101 
102 	might_sleep();
103 
104 	/*
105 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
106 	 * userspace. If it takes that long something really bad is going on and
107 	 * we should simply try to bail out and fail as gracefully as possible.
108 	 */
109 	ret = wait_event_interruptible_timeout(error->reset_queue,
110 					       !i915_reset_backoff(error),
111 					       I915_RESET_TIMEOUT);
112 	if (ret == 0) {
113 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
114 		return -EIO;
115 	} else if (ret < 0) {
116 		return ret;
117 	} else {
118 		return 0;
119 	}
120 }
121 
122 int i915_mutex_lock_interruptible(struct drm_device *dev)
123 {
124 	struct drm_i915_private *dev_priv = to_i915(dev);
125 	int ret;
126 
127 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
128 	if (ret)
129 		return ret;
130 
131 	ret = mutex_lock_interruptible(&dev->struct_mutex);
132 	if (ret)
133 		return ret;
134 
135 	return 0;
136 }
137 
138 int
139 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
140 			    struct drm_file *file)
141 {
142 	struct drm_i915_private *dev_priv = to_i915(dev);
143 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
144 	struct drm_i915_gem_get_aperture *args = data;
145 	struct i915_vma *vma;
146 	u64 pinned;
147 
148 	pinned = ggtt->base.reserved;
149 	mutex_lock(&dev->struct_mutex);
150 	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
151 		if (i915_vma_is_pinned(vma))
152 			pinned += vma->node.size;
153 	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
154 		if (i915_vma_is_pinned(vma))
155 			pinned += vma->node.size;
156 	mutex_unlock(&dev->struct_mutex);
157 
158 	args->aper_size = ggtt->base.total;
159 	args->aper_available_size = args->aper_size - pinned;
160 
161 	return 0;
162 }
163 
164 static struct sg_table *
165 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166 {
167 	struct address_space *mapping = obj->base.filp->f_mapping;
168 	drm_dma_handle_t *phys;
169 	struct sg_table *st;
170 	struct scatterlist *sg;
171 	char *vaddr;
172 	int i;
173 
174 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
175 		return ERR_PTR(-EINVAL);
176 
177 	/* Always aligning to the object size, allows a single allocation
178 	 * to handle all possible callers, and given typical object sizes,
179 	 * the alignment of the buddy allocation will naturally match.
180 	 */
181 	phys = drm_pci_alloc(obj->base.dev,
182 			     obj->base.size,
183 			     roundup_pow_of_two(obj->base.size));
184 	if (!phys)
185 		return ERR_PTR(-ENOMEM);
186 
187 	vaddr = phys->vaddr;
188 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
189 		struct page *page;
190 		char *src;
191 
192 		page = shmem_read_mapping_page(mapping, i);
193 		if (IS_ERR(page)) {
194 			st = ERR_CAST(page);
195 			goto err_phys;
196 		}
197 
198 		src = kmap_atomic(page);
199 		memcpy(vaddr, src, PAGE_SIZE);
200 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
201 		kunmap_atomic(src);
202 
203 		put_page(page);
204 		vaddr += PAGE_SIZE;
205 	}
206 
207 	i915_gem_chipset_flush(to_i915(obj->base.dev));
208 
209 	st = kmalloc(sizeof(*st), GFP_KERNEL);
210 	if (!st) {
211 		st = ERR_PTR(-ENOMEM);
212 		goto err_phys;
213 	}
214 
215 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
216 		kfree(st);
217 		st = ERR_PTR(-ENOMEM);
218 		goto err_phys;
219 	}
220 
221 	sg = st->sgl;
222 	sg->offset = 0;
223 	sg->length = obj->base.size;
224 
225 	sg_dma_address(sg) = phys->busaddr;
226 	sg_dma_len(sg) = obj->base.size;
227 
228 	obj->phys_handle = phys;
229 	return st;
230 
231 err_phys:
232 	drm_pci_free(obj->base.dev, phys);
233 	return st;
234 }
235 
236 static void __start_cpu_write(struct drm_i915_gem_object *obj)
237 {
238 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
239 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
240 	if (cpu_write_needs_clflush(obj))
241 		obj->cache_dirty = true;
242 }
243 
244 static void
245 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
246 				struct sg_table *pages,
247 				bool needs_clflush)
248 {
249 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
250 
251 	if (obj->mm.madv == I915_MADV_DONTNEED)
252 		obj->mm.dirty = false;
253 
254 	if (needs_clflush &&
255 	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
256 	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
257 		drm_clflush_sg(pages);
258 
259 	__start_cpu_write(obj);
260 }
261 
262 static void
263 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
264 			       struct sg_table *pages)
265 {
266 	__i915_gem_object_release_shmem(obj, pages, false);
267 
268 	if (obj->mm.dirty) {
269 		struct address_space *mapping = obj->base.filp->f_mapping;
270 		char *vaddr = obj->phys_handle->vaddr;
271 		int i;
272 
273 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
274 			struct page *page;
275 			char *dst;
276 
277 			page = shmem_read_mapping_page(mapping, i);
278 			if (IS_ERR(page))
279 				continue;
280 
281 			dst = kmap_atomic(page);
282 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
283 			memcpy(dst, vaddr, PAGE_SIZE);
284 			kunmap_atomic(dst);
285 
286 			set_page_dirty(page);
287 			if (obj->mm.madv == I915_MADV_WILLNEED)
288 				mark_page_accessed(page);
289 			put_page(page);
290 			vaddr += PAGE_SIZE;
291 		}
292 		obj->mm.dirty = false;
293 	}
294 
295 	sg_free_table(pages);
296 	kfree(pages);
297 
298 	drm_pci_free(obj->base.dev, obj->phys_handle);
299 }
300 
301 static void
302 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
303 {
304 	i915_gem_object_unpin_pages(obj);
305 }
306 
307 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
308 	.get_pages = i915_gem_object_get_pages_phys,
309 	.put_pages = i915_gem_object_put_pages_phys,
310 	.release = i915_gem_object_release_phys,
311 };
312 
313 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
314 
315 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 {
317 	struct i915_vma *vma;
318 	LIST_HEAD(still_in_list);
319 	int ret;
320 
321 	lockdep_assert_held(&obj->base.dev->struct_mutex);
322 
323 	/* Closed vma are removed from the obj->vma_list - but they may
324 	 * still have an active binding on the object. To remove those we
325 	 * must wait for all rendering to complete to the object (as unbinding
326 	 * must anyway), and retire the requests.
327 	 */
328 	ret = i915_gem_object_wait(obj,
329 				   I915_WAIT_INTERRUPTIBLE |
330 				   I915_WAIT_LOCKED |
331 				   I915_WAIT_ALL,
332 				   MAX_SCHEDULE_TIMEOUT,
333 				   NULL);
334 	if (ret)
335 		return ret;
336 
337 	i915_gem_retire_requests(to_i915(obj->base.dev));
338 
339 	while ((vma = list_first_entry_or_null(&obj->vma_list,
340 					       struct i915_vma,
341 					       obj_link))) {
342 		list_move_tail(&vma->obj_link, &still_in_list);
343 		ret = i915_vma_unbind(vma);
344 		if (ret)
345 			break;
346 	}
347 	list_splice(&still_in_list, &obj->vma_list);
348 
349 	return ret;
350 }
351 
352 static long
353 i915_gem_object_wait_fence(struct dma_fence *fence,
354 			   unsigned int flags,
355 			   long timeout,
356 			   struct intel_rps_client *rps)
357 {
358 	struct drm_i915_gem_request *rq;
359 
360 	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361 
362 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363 		return timeout;
364 
365 	if (!dma_fence_is_i915(fence))
366 		return dma_fence_wait_timeout(fence,
367 					      flags & I915_WAIT_INTERRUPTIBLE,
368 					      timeout);
369 
370 	rq = to_request(fence);
371 	if (i915_gem_request_completed(rq))
372 		goto out;
373 
374 	/* This client is about to stall waiting for the GPU. In many cases
375 	 * this is undesirable and limits the throughput of the system, as
376 	 * many clients cannot continue processing user input/output whilst
377 	 * blocked. RPS autotuning may take tens of milliseconds to respond
378 	 * to the GPU load and thus incurs additional latency for the client.
379 	 * We can circumvent that by promoting the GPU frequency to maximum
380 	 * before we wait. This makes the GPU throttle up much more quickly
381 	 * (good for benchmarks and user experience, e.g. window animations),
382 	 * but at a cost of spending more power processing the workload
383 	 * (bad for battery). Not all clients even want their results
384 	 * immediately and for them we should just let the GPU select its own
385 	 * frequency to maximise efficiency. To prevent a single client from
386 	 * forcing the clocks too high for the whole system, we only allow
387 	 * each client to waitboost once in a busy period.
388 	 */
389 	if (rps) {
390 		if (INTEL_GEN(rq->i915) >= 6)
391 			gen6_rps_boost(rq, rps);
392 		else
393 			rps = NULL;
394 	}
395 
396 	timeout = i915_wait_request(rq, flags, timeout);
397 
398 out:
399 	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400 		i915_gem_request_retire_upto(rq);
401 
402 	return timeout;
403 }
404 
405 static long
406 i915_gem_object_wait_reservation(struct reservation_object *resv,
407 				 unsigned int flags,
408 				 long timeout,
409 				 struct intel_rps_client *rps)
410 {
411 	unsigned int seq = __read_seqcount_begin(&resv->seq);
412 	struct dma_fence *excl;
413 	bool prune_fences = false;
414 
415 	if (flags & I915_WAIT_ALL) {
416 		struct dma_fence **shared;
417 		unsigned int count, i;
418 		int ret;
419 
420 		ret = reservation_object_get_fences_rcu(resv,
421 							&excl, &count, &shared);
422 		if (ret)
423 			return ret;
424 
425 		for (i = 0; i < count; i++) {
426 			timeout = i915_gem_object_wait_fence(shared[i],
427 							     flags, timeout,
428 							     rps);
429 			if (timeout < 0)
430 				break;
431 
432 			dma_fence_put(shared[i]);
433 		}
434 
435 		for (; i < count; i++)
436 			dma_fence_put(shared[i]);
437 		kfree(shared);
438 
439 		prune_fences = count && timeout >= 0;
440 	} else {
441 		excl = reservation_object_get_excl_rcu(resv);
442 	}
443 
444 	if (excl && timeout >= 0) {
445 		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
446 		prune_fences = timeout >= 0;
447 	}
448 
449 	dma_fence_put(excl);
450 
451 	/* Oportunistically prune the fences iff we know they have *all* been
452 	 * signaled and that the reservation object has not been changed (i.e.
453 	 * no new fences have been added).
454 	 */
455 	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
456 		if (reservation_object_trylock(resv)) {
457 			if (!__read_seqcount_retry(&resv->seq, seq))
458 				reservation_object_add_excl_fence(resv, NULL);
459 			reservation_object_unlock(resv);
460 		}
461 	}
462 
463 	return timeout;
464 }
465 
466 static void __fence_set_priority(struct dma_fence *fence, int prio)
467 {
468 	struct drm_i915_gem_request *rq;
469 	struct intel_engine_cs *engine;
470 
471 	if (!dma_fence_is_i915(fence))
472 		return;
473 
474 	rq = to_request(fence);
475 	engine = rq->engine;
476 	if (!engine->schedule)
477 		return;
478 
479 	engine->schedule(rq, prio);
480 }
481 
482 static void fence_set_priority(struct dma_fence *fence, int prio)
483 {
484 	/* Recurse once into a fence-array */
485 	if (dma_fence_is_array(fence)) {
486 		struct dma_fence_array *array = to_dma_fence_array(fence);
487 		int i;
488 
489 		for (i = 0; i < array->num_fences; i++)
490 			__fence_set_priority(array->fences[i], prio);
491 	} else {
492 		__fence_set_priority(fence, prio);
493 	}
494 }
495 
496 int
497 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
498 			      unsigned int flags,
499 			      int prio)
500 {
501 	struct dma_fence *excl;
502 
503 	if (flags & I915_WAIT_ALL) {
504 		struct dma_fence **shared;
505 		unsigned int count, i;
506 		int ret;
507 
508 		ret = reservation_object_get_fences_rcu(obj->resv,
509 							&excl, &count, &shared);
510 		if (ret)
511 			return ret;
512 
513 		for (i = 0; i < count; i++) {
514 			fence_set_priority(shared[i], prio);
515 			dma_fence_put(shared[i]);
516 		}
517 
518 		kfree(shared);
519 	} else {
520 		excl = reservation_object_get_excl_rcu(obj->resv);
521 	}
522 
523 	if (excl) {
524 		fence_set_priority(excl, prio);
525 		dma_fence_put(excl);
526 	}
527 	return 0;
528 }
529 
530 /**
531  * Waits for rendering to the object to be completed
532  * @obj: i915 gem object
533  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
534  * @timeout: how long to wait
535  * @rps: client (user process) to charge for any waitboosting
536  */
537 int
538 i915_gem_object_wait(struct drm_i915_gem_object *obj,
539 		     unsigned int flags,
540 		     long timeout,
541 		     struct intel_rps_client *rps)
542 {
543 	might_sleep();
544 #if IS_ENABLED(CONFIG_LOCKDEP)
545 	GEM_BUG_ON(debug_locks &&
546 		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
547 		   !!(flags & I915_WAIT_LOCKED));
548 #endif
549 	GEM_BUG_ON(timeout < 0);
550 
551 	timeout = i915_gem_object_wait_reservation(obj->resv,
552 						   flags, timeout,
553 						   rps);
554 	return timeout < 0 ? timeout : 0;
555 }
556 
557 static struct intel_rps_client *to_rps_client(struct drm_file *file)
558 {
559 	struct drm_i915_file_private *fpriv = file->driver_priv;
560 
561 	return &fpriv->rps;
562 }
563 
564 static int
565 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
566 		     struct drm_i915_gem_pwrite *args,
567 		     struct drm_file *file)
568 {
569 	void *vaddr = obj->phys_handle->vaddr + args->offset;
570 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
571 
572 	/* We manually control the domain here and pretend that it
573 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
574 	 */
575 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
576 	if (copy_from_user(vaddr, user_data, args->size))
577 		return -EFAULT;
578 
579 	drm_clflush_virt_range(vaddr, args->size);
580 	i915_gem_chipset_flush(to_i915(obj->base.dev));
581 
582 	intel_fb_obj_flush(obj, ORIGIN_CPU);
583 	return 0;
584 }
585 
586 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
587 {
588 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
589 }
590 
591 void i915_gem_object_free(struct drm_i915_gem_object *obj)
592 {
593 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
594 	kmem_cache_free(dev_priv->objects, obj);
595 }
596 
597 static int
598 i915_gem_create(struct drm_file *file,
599 		struct drm_i915_private *dev_priv,
600 		uint64_t size,
601 		uint32_t *handle_p)
602 {
603 	struct drm_i915_gem_object *obj;
604 	int ret;
605 	u32 handle;
606 
607 	size = roundup(size, PAGE_SIZE);
608 	if (size == 0)
609 		return -EINVAL;
610 
611 	/* Allocate the new object */
612 	obj = i915_gem_object_create(dev_priv, size);
613 	if (IS_ERR(obj))
614 		return PTR_ERR(obj);
615 
616 	ret = drm_gem_handle_create(file, &obj->base, &handle);
617 	/* drop reference from allocate - handle holds it now */
618 	i915_gem_object_put(obj);
619 	if (ret)
620 		return ret;
621 
622 	*handle_p = handle;
623 	return 0;
624 }
625 
626 int
627 i915_gem_dumb_create(struct drm_file *file,
628 		     struct drm_device *dev,
629 		     struct drm_mode_create_dumb *args)
630 {
631 	/* have to work out size/pitch and return them */
632 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
633 	args->size = args->pitch * args->height;
634 	return i915_gem_create(file, to_i915(dev),
635 			       args->size, &args->handle);
636 }
637 
638 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
639 {
640 	return !(obj->cache_level == I915_CACHE_NONE ||
641 		 obj->cache_level == I915_CACHE_WT);
642 }
643 
644 /**
645  * Creates a new mm object and returns a handle to it.
646  * @dev: drm device pointer
647  * @data: ioctl data blob
648  * @file: drm file pointer
649  */
650 int
651 i915_gem_create_ioctl(struct drm_device *dev, void *data,
652 		      struct drm_file *file)
653 {
654 	struct drm_i915_private *dev_priv = to_i915(dev);
655 	struct drm_i915_gem_create *args = data;
656 
657 	i915_gem_flush_free_objects(dev_priv);
658 
659 	return i915_gem_create(file, dev_priv,
660 			       args->size, &args->handle);
661 }
662 
663 static inline enum fb_op_origin
664 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
665 {
666 	return (domain == I915_GEM_DOMAIN_GTT ?
667 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
668 }
669 
670 static void
671 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
672 {
673 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
674 
675 	if (!(obj->base.write_domain & flush_domains))
676 		return;
677 
678 	/* No actual flushing is required for the GTT write domain.  Writes
679 	 * to it "immediately" go to main memory as far as we know, so there's
680 	 * no chipset flush.  It also doesn't land in render cache.
681 	 *
682 	 * However, we do have to enforce the order so that all writes through
683 	 * the GTT land before any writes to the device, such as updates to
684 	 * the GATT itself.
685 	 *
686 	 * We also have to wait a bit for the writes to land from the GTT.
687 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
688 	 * timing. This issue has only been observed when switching quickly
689 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
690 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
691 	 * system agents we cannot reproduce this behaviour).
692 	 */
693 	wmb();
694 
695 	switch (obj->base.write_domain) {
696 	case I915_GEM_DOMAIN_GTT:
697 		if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
698 			intel_runtime_pm_get(dev_priv);
699 			spin_lock_irq(&dev_priv->uncore.lock);
700 			POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
701 			spin_unlock_irq(&dev_priv->uncore.lock);
702 			intel_runtime_pm_put(dev_priv);
703 		}
704 
705 		intel_fb_obj_flush(obj,
706 				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
707 		break;
708 
709 	case I915_GEM_DOMAIN_CPU:
710 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
711 		break;
712 
713 	case I915_GEM_DOMAIN_RENDER:
714 		if (gpu_write_needs_clflush(obj))
715 			obj->cache_dirty = true;
716 		break;
717 	}
718 
719 	obj->base.write_domain = 0;
720 }
721 
722 static inline int
723 __copy_to_user_swizzled(char __user *cpu_vaddr,
724 			const char *gpu_vaddr, int gpu_offset,
725 			int length)
726 {
727 	int ret, cpu_offset = 0;
728 
729 	while (length > 0) {
730 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
731 		int this_length = min(cacheline_end - gpu_offset, length);
732 		int swizzled_gpu_offset = gpu_offset ^ 64;
733 
734 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
735 				     gpu_vaddr + swizzled_gpu_offset,
736 				     this_length);
737 		if (ret)
738 			return ret + length;
739 
740 		cpu_offset += this_length;
741 		gpu_offset += this_length;
742 		length -= this_length;
743 	}
744 
745 	return 0;
746 }
747 
748 static inline int
749 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
750 			  const char __user *cpu_vaddr,
751 			  int length)
752 {
753 	int ret, cpu_offset = 0;
754 
755 	while (length > 0) {
756 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
757 		int this_length = min(cacheline_end - gpu_offset, length);
758 		int swizzled_gpu_offset = gpu_offset ^ 64;
759 
760 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
761 				       cpu_vaddr + cpu_offset,
762 				       this_length);
763 		if (ret)
764 			return ret + length;
765 
766 		cpu_offset += this_length;
767 		gpu_offset += this_length;
768 		length -= this_length;
769 	}
770 
771 	return 0;
772 }
773 
774 /*
775  * Pins the specified object's pages and synchronizes the object with
776  * GPU accesses. Sets needs_clflush to non-zero if the caller should
777  * flush the object from the CPU cache.
778  */
779 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
780 				    unsigned int *needs_clflush)
781 {
782 	int ret;
783 
784 	lockdep_assert_held(&obj->base.dev->struct_mutex);
785 
786 	*needs_clflush = 0;
787 	if (!i915_gem_object_has_struct_page(obj))
788 		return -ENODEV;
789 
790 	ret = i915_gem_object_wait(obj,
791 				   I915_WAIT_INTERRUPTIBLE |
792 				   I915_WAIT_LOCKED,
793 				   MAX_SCHEDULE_TIMEOUT,
794 				   NULL);
795 	if (ret)
796 		return ret;
797 
798 	ret = i915_gem_object_pin_pages(obj);
799 	if (ret)
800 		return ret;
801 
802 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
803 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
804 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
805 		if (ret)
806 			goto err_unpin;
807 		else
808 			goto out;
809 	}
810 
811 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
812 
813 	/* If we're not in the cpu read domain, set ourself into the gtt
814 	 * read domain and manually flush cachelines (if required). This
815 	 * optimizes for the case when the gpu will dirty the data
816 	 * anyway again before the next pread happens.
817 	 */
818 	if (!obj->cache_dirty &&
819 	    !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
820 		*needs_clflush = CLFLUSH_BEFORE;
821 
822 out:
823 	/* return with the pages pinned */
824 	return 0;
825 
826 err_unpin:
827 	i915_gem_object_unpin_pages(obj);
828 	return ret;
829 }
830 
831 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
832 				     unsigned int *needs_clflush)
833 {
834 	int ret;
835 
836 	lockdep_assert_held(&obj->base.dev->struct_mutex);
837 
838 	*needs_clflush = 0;
839 	if (!i915_gem_object_has_struct_page(obj))
840 		return -ENODEV;
841 
842 	ret = i915_gem_object_wait(obj,
843 				   I915_WAIT_INTERRUPTIBLE |
844 				   I915_WAIT_LOCKED |
845 				   I915_WAIT_ALL,
846 				   MAX_SCHEDULE_TIMEOUT,
847 				   NULL);
848 	if (ret)
849 		return ret;
850 
851 	ret = i915_gem_object_pin_pages(obj);
852 	if (ret)
853 		return ret;
854 
855 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
856 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
857 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
858 		if (ret)
859 			goto err_unpin;
860 		else
861 			goto out;
862 	}
863 
864 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
865 
866 	/* If we're not in the cpu write domain, set ourself into the
867 	 * gtt write domain and manually flush cachelines (as required).
868 	 * This optimizes for the case when the gpu will use the data
869 	 * right away and we therefore have to clflush anyway.
870 	 */
871 	if (!obj->cache_dirty) {
872 		*needs_clflush |= CLFLUSH_AFTER;
873 
874 		/*
875 		 * Same trick applies to invalidate partially written
876 		 * cachelines read before writing.
877 		 */
878 		if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
879 			*needs_clflush |= CLFLUSH_BEFORE;
880 	}
881 
882 out:
883 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
884 	obj->mm.dirty = true;
885 	/* return with the pages pinned */
886 	return 0;
887 
888 err_unpin:
889 	i915_gem_object_unpin_pages(obj);
890 	return ret;
891 }
892 
893 static void
894 shmem_clflush_swizzled_range(char *addr, unsigned long length,
895 			     bool swizzled)
896 {
897 	if (unlikely(swizzled)) {
898 		unsigned long start = (unsigned long) addr;
899 		unsigned long end = (unsigned long) addr + length;
900 
901 		/* For swizzling simply ensure that we always flush both
902 		 * channels. Lame, but simple and it works. Swizzled
903 		 * pwrite/pread is far from a hotpath - current userspace
904 		 * doesn't use it at all. */
905 		start = round_down(start, 128);
906 		end = round_up(end, 128);
907 
908 		drm_clflush_virt_range((void *)start, end - start);
909 	} else {
910 		drm_clflush_virt_range(addr, length);
911 	}
912 
913 }
914 
915 /* Only difference to the fast-path function is that this can handle bit17
916  * and uses non-atomic copy and kmap functions. */
917 static int
918 shmem_pread_slow(struct page *page, int offset, int length,
919 		 char __user *user_data,
920 		 bool page_do_bit17_swizzling, bool needs_clflush)
921 {
922 	char *vaddr;
923 	int ret;
924 
925 	vaddr = kmap(page);
926 	if (needs_clflush)
927 		shmem_clflush_swizzled_range(vaddr + offset, length,
928 					     page_do_bit17_swizzling);
929 
930 	if (page_do_bit17_swizzling)
931 		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
932 	else
933 		ret = __copy_to_user(user_data, vaddr + offset, length);
934 	kunmap(page);
935 
936 	return ret ? - EFAULT : 0;
937 }
938 
939 static int
940 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
941 	    bool page_do_bit17_swizzling, bool needs_clflush)
942 {
943 	int ret;
944 
945 	ret = -ENODEV;
946 	if (!page_do_bit17_swizzling) {
947 		char *vaddr = kmap_atomic(page);
948 
949 		if (needs_clflush)
950 			drm_clflush_virt_range(vaddr + offset, length);
951 		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
952 		kunmap_atomic(vaddr);
953 	}
954 	if (ret == 0)
955 		return 0;
956 
957 	return shmem_pread_slow(page, offset, length, user_data,
958 				page_do_bit17_swizzling, needs_clflush);
959 }
960 
961 static int
962 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
963 		     struct drm_i915_gem_pread *args)
964 {
965 	char __user *user_data;
966 	u64 remain;
967 	unsigned int obj_do_bit17_swizzling;
968 	unsigned int needs_clflush;
969 	unsigned int idx, offset;
970 	int ret;
971 
972 	obj_do_bit17_swizzling = 0;
973 	if (i915_gem_object_needs_bit17_swizzle(obj))
974 		obj_do_bit17_swizzling = BIT(17);
975 
976 	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
977 	if (ret)
978 		return ret;
979 
980 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
981 	mutex_unlock(&obj->base.dev->struct_mutex);
982 	if (ret)
983 		return ret;
984 
985 	remain = args->size;
986 	user_data = u64_to_user_ptr(args->data_ptr);
987 	offset = offset_in_page(args->offset);
988 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
989 		struct page *page = i915_gem_object_get_page(obj, idx);
990 		int length;
991 
992 		length = remain;
993 		if (offset + length > PAGE_SIZE)
994 			length = PAGE_SIZE - offset;
995 
996 		ret = shmem_pread(page, offset, length, user_data,
997 				  page_to_phys(page) & obj_do_bit17_swizzling,
998 				  needs_clflush);
999 		if (ret)
1000 			break;
1001 
1002 		remain -= length;
1003 		user_data += length;
1004 		offset = 0;
1005 	}
1006 
1007 	i915_gem_obj_finish_shmem_access(obj);
1008 	return ret;
1009 }
1010 
1011 static inline bool
1012 gtt_user_read(struct io_mapping *mapping,
1013 	      loff_t base, int offset,
1014 	      char __user *user_data, int length)
1015 {
1016 	void *vaddr;
1017 	unsigned long unwritten;
1018 
1019 	/* We can use the cpu mem copy function because this is X86. */
1020 	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1021 	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1022 	io_mapping_unmap_atomic(vaddr);
1023 	if (unwritten) {
1024 		vaddr = (void __force *)
1025 			io_mapping_map_wc(mapping, base, PAGE_SIZE);
1026 		unwritten = copy_to_user(user_data, vaddr + offset, length);
1027 		io_mapping_unmap(vaddr);
1028 	}
1029 	return unwritten;
1030 }
1031 
1032 static int
1033 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1034 		   const struct drm_i915_gem_pread *args)
1035 {
1036 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1037 	struct i915_ggtt *ggtt = &i915->ggtt;
1038 	struct drm_mm_node node;
1039 	struct i915_vma *vma;
1040 	void __user *user_data;
1041 	u64 remain, offset;
1042 	int ret;
1043 
1044 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1045 	if (ret)
1046 		return ret;
1047 
1048 	intel_runtime_pm_get(i915);
1049 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1050 				       PIN_MAPPABLE | PIN_NONBLOCK);
1051 	if (!IS_ERR(vma)) {
1052 		node.start = i915_ggtt_offset(vma);
1053 		node.allocated = false;
1054 		ret = i915_vma_put_fence(vma);
1055 		if (ret) {
1056 			i915_vma_unpin(vma);
1057 			vma = ERR_PTR(ret);
1058 		}
1059 	}
1060 	if (IS_ERR(vma)) {
1061 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1062 		if (ret)
1063 			goto out_unlock;
1064 		GEM_BUG_ON(!node.allocated);
1065 	}
1066 
1067 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1068 	if (ret)
1069 		goto out_unpin;
1070 
1071 	mutex_unlock(&i915->drm.struct_mutex);
1072 
1073 	user_data = u64_to_user_ptr(args->data_ptr);
1074 	remain = args->size;
1075 	offset = args->offset;
1076 
1077 	while (remain > 0) {
1078 		/* Operation in this page
1079 		 *
1080 		 * page_base = page offset within aperture
1081 		 * page_offset = offset within page
1082 		 * page_length = bytes to copy for this page
1083 		 */
1084 		u32 page_base = node.start;
1085 		unsigned page_offset = offset_in_page(offset);
1086 		unsigned page_length = PAGE_SIZE - page_offset;
1087 		page_length = remain < page_length ? remain : page_length;
1088 		if (node.allocated) {
1089 			wmb();
1090 			ggtt->base.insert_page(&ggtt->base,
1091 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1092 					       node.start, I915_CACHE_NONE, 0);
1093 			wmb();
1094 		} else {
1095 			page_base += offset & PAGE_MASK;
1096 		}
1097 
1098 		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1099 				  user_data, page_length)) {
1100 			ret = -EFAULT;
1101 			break;
1102 		}
1103 
1104 		remain -= page_length;
1105 		user_data += page_length;
1106 		offset += page_length;
1107 	}
1108 
1109 	mutex_lock(&i915->drm.struct_mutex);
1110 out_unpin:
1111 	if (node.allocated) {
1112 		wmb();
1113 		ggtt->base.clear_range(&ggtt->base,
1114 				       node.start, node.size);
1115 		remove_mappable_node(&node);
1116 	} else {
1117 		i915_vma_unpin(vma);
1118 	}
1119 out_unlock:
1120 	intel_runtime_pm_put(i915);
1121 	mutex_unlock(&i915->drm.struct_mutex);
1122 
1123 	return ret;
1124 }
1125 
1126 /**
1127  * Reads data from the object referenced by handle.
1128  * @dev: drm device pointer
1129  * @data: ioctl data blob
1130  * @file: drm file pointer
1131  *
1132  * On error, the contents of *data are undefined.
1133  */
1134 int
1135 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1136 		     struct drm_file *file)
1137 {
1138 	struct drm_i915_gem_pread *args = data;
1139 	struct drm_i915_gem_object *obj;
1140 	int ret;
1141 
1142 	if (args->size == 0)
1143 		return 0;
1144 
1145 	if (!access_ok(VERIFY_WRITE,
1146 		       u64_to_user_ptr(args->data_ptr),
1147 		       args->size))
1148 		return -EFAULT;
1149 
1150 	obj = i915_gem_object_lookup(file, args->handle);
1151 	if (!obj)
1152 		return -ENOENT;
1153 
1154 	/* Bounds check source.  */
1155 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1156 		ret = -EINVAL;
1157 		goto out;
1158 	}
1159 
1160 	trace_i915_gem_object_pread(obj, args->offset, args->size);
1161 
1162 	ret = i915_gem_object_wait(obj,
1163 				   I915_WAIT_INTERRUPTIBLE,
1164 				   MAX_SCHEDULE_TIMEOUT,
1165 				   to_rps_client(file));
1166 	if (ret)
1167 		goto out;
1168 
1169 	ret = i915_gem_object_pin_pages(obj);
1170 	if (ret)
1171 		goto out;
1172 
1173 	ret = i915_gem_shmem_pread(obj, args);
1174 	if (ret == -EFAULT || ret == -ENODEV)
1175 		ret = i915_gem_gtt_pread(obj, args);
1176 
1177 	i915_gem_object_unpin_pages(obj);
1178 out:
1179 	i915_gem_object_put(obj);
1180 	return ret;
1181 }
1182 
1183 /* This is the fast write path which cannot handle
1184  * page faults in the source data
1185  */
1186 
1187 static inline bool
1188 ggtt_write(struct io_mapping *mapping,
1189 	   loff_t base, int offset,
1190 	   char __user *user_data, int length)
1191 {
1192 	void *vaddr;
1193 	unsigned long unwritten;
1194 
1195 	/* We can use the cpu mem copy function because this is X86. */
1196 	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1197 	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1198 						      user_data, length);
1199 	io_mapping_unmap_atomic(vaddr);
1200 	if (unwritten) {
1201 		vaddr = (void __force *)
1202 			io_mapping_map_wc(mapping, base, PAGE_SIZE);
1203 		unwritten = copy_from_user(vaddr + offset, user_data, length);
1204 		io_mapping_unmap(vaddr);
1205 	}
1206 
1207 	return unwritten;
1208 }
1209 
1210 /**
1211  * This is the fast pwrite path, where we copy the data directly from the
1212  * user into the GTT, uncached.
1213  * @obj: i915 GEM object
1214  * @args: pwrite arguments structure
1215  */
1216 static int
1217 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1218 			 const struct drm_i915_gem_pwrite *args)
1219 {
1220 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1221 	struct i915_ggtt *ggtt = &i915->ggtt;
1222 	struct drm_mm_node node;
1223 	struct i915_vma *vma;
1224 	u64 remain, offset;
1225 	void __user *user_data;
1226 	int ret;
1227 
1228 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1229 	if (ret)
1230 		return ret;
1231 
1232 	intel_runtime_pm_get(i915);
1233 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1234 				       PIN_MAPPABLE | PIN_NONBLOCK);
1235 	if (!IS_ERR(vma)) {
1236 		node.start = i915_ggtt_offset(vma);
1237 		node.allocated = false;
1238 		ret = i915_vma_put_fence(vma);
1239 		if (ret) {
1240 			i915_vma_unpin(vma);
1241 			vma = ERR_PTR(ret);
1242 		}
1243 	}
1244 	if (IS_ERR(vma)) {
1245 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1246 		if (ret)
1247 			goto out_unlock;
1248 		GEM_BUG_ON(!node.allocated);
1249 	}
1250 
1251 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1252 	if (ret)
1253 		goto out_unpin;
1254 
1255 	mutex_unlock(&i915->drm.struct_mutex);
1256 
1257 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1258 
1259 	user_data = u64_to_user_ptr(args->data_ptr);
1260 	offset = args->offset;
1261 	remain = args->size;
1262 	while (remain) {
1263 		/* Operation in this page
1264 		 *
1265 		 * page_base = page offset within aperture
1266 		 * page_offset = offset within page
1267 		 * page_length = bytes to copy for this page
1268 		 */
1269 		u32 page_base = node.start;
1270 		unsigned int page_offset = offset_in_page(offset);
1271 		unsigned int page_length = PAGE_SIZE - page_offset;
1272 		page_length = remain < page_length ? remain : page_length;
1273 		if (node.allocated) {
1274 			wmb(); /* flush the write before we modify the GGTT */
1275 			ggtt->base.insert_page(&ggtt->base,
1276 					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1277 					       node.start, I915_CACHE_NONE, 0);
1278 			wmb(); /* flush modifications to the GGTT (insert_page) */
1279 		} else {
1280 			page_base += offset & PAGE_MASK;
1281 		}
1282 		/* If we get a fault while copying data, then (presumably) our
1283 		 * source page isn't available.  Return the error and we'll
1284 		 * retry in the slow path.
1285 		 * If the object is non-shmem backed, we retry again with the
1286 		 * path that handles page fault.
1287 		 */
1288 		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1289 			       user_data, page_length)) {
1290 			ret = -EFAULT;
1291 			break;
1292 		}
1293 
1294 		remain -= page_length;
1295 		user_data += page_length;
1296 		offset += page_length;
1297 	}
1298 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1299 
1300 	mutex_lock(&i915->drm.struct_mutex);
1301 out_unpin:
1302 	if (node.allocated) {
1303 		wmb();
1304 		ggtt->base.clear_range(&ggtt->base,
1305 				       node.start, node.size);
1306 		remove_mappable_node(&node);
1307 	} else {
1308 		i915_vma_unpin(vma);
1309 	}
1310 out_unlock:
1311 	intel_runtime_pm_put(i915);
1312 	mutex_unlock(&i915->drm.struct_mutex);
1313 	return ret;
1314 }
1315 
1316 static int
1317 shmem_pwrite_slow(struct page *page, int offset, int length,
1318 		  char __user *user_data,
1319 		  bool page_do_bit17_swizzling,
1320 		  bool needs_clflush_before,
1321 		  bool needs_clflush_after)
1322 {
1323 	char *vaddr;
1324 	int ret;
1325 
1326 	vaddr = kmap(page);
1327 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1328 		shmem_clflush_swizzled_range(vaddr + offset, length,
1329 					     page_do_bit17_swizzling);
1330 	if (page_do_bit17_swizzling)
1331 		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1332 						length);
1333 	else
1334 		ret = __copy_from_user(vaddr + offset, user_data, length);
1335 	if (needs_clflush_after)
1336 		shmem_clflush_swizzled_range(vaddr + offset, length,
1337 					     page_do_bit17_swizzling);
1338 	kunmap(page);
1339 
1340 	return ret ? -EFAULT : 0;
1341 }
1342 
1343 /* Per-page copy function for the shmem pwrite fastpath.
1344  * Flushes invalid cachelines before writing to the target if
1345  * needs_clflush_before is set and flushes out any written cachelines after
1346  * writing if needs_clflush is set.
1347  */
1348 static int
1349 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1350 	     bool page_do_bit17_swizzling,
1351 	     bool needs_clflush_before,
1352 	     bool needs_clflush_after)
1353 {
1354 	int ret;
1355 
1356 	ret = -ENODEV;
1357 	if (!page_do_bit17_swizzling) {
1358 		char *vaddr = kmap_atomic(page);
1359 
1360 		if (needs_clflush_before)
1361 			drm_clflush_virt_range(vaddr + offset, len);
1362 		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1363 		if (needs_clflush_after)
1364 			drm_clflush_virt_range(vaddr + offset, len);
1365 
1366 		kunmap_atomic(vaddr);
1367 	}
1368 	if (ret == 0)
1369 		return ret;
1370 
1371 	return shmem_pwrite_slow(page, offset, len, user_data,
1372 				 page_do_bit17_swizzling,
1373 				 needs_clflush_before,
1374 				 needs_clflush_after);
1375 }
1376 
1377 static int
1378 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1379 		      const struct drm_i915_gem_pwrite *args)
1380 {
1381 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1382 	void __user *user_data;
1383 	u64 remain;
1384 	unsigned int obj_do_bit17_swizzling;
1385 	unsigned int partial_cacheline_write;
1386 	unsigned int needs_clflush;
1387 	unsigned int offset, idx;
1388 	int ret;
1389 
1390 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1391 	if (ret)
1392 		return ret;
1393 
1394 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1395 	mutex_unlock(&i915->drm.struct_mutex);
1396 	if (ret)
1397 		return ret;
1398 
1399 	obj_do_bit17_swizzling = 0;
1400 	if (i915_gem_object_needs_bit17_swizzle(obj))
1401 		obj_do_bit17_swizzling = BIT(17);
1402 
1403 	/* If we don't overwrite a cacheline completely we need to be
1404 	 * careful to have up-to-date data by first clflushing. Don't
1405 	 * overcomplicate things and flush the entire patch.
1406 	 */
1407 	partial_cacheline_write = 0;
1408 	if (needs_clflush & CLFLUSH_BEFORE)
1409 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1410 
1411 	user_data = u64_to_user_ptr(args->data_ptr);
1412 	remain = args->size;
1413 	offset = offset_in_page(args->offset);
1414 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1415 		struct page *page = i915_gem_object_get_page(obj, idx);
1416 		int length;
1417 
1418 		length = remain;
1419 		if (offset + length > PAGE_SIZE)
1420 			length = PAGE_SIZE - offset;
1421 
1422 		ret = shmem_pwrite(page, offset, length, user_data,
1423 				   page_to_phys(page) & obj_do_bit17_swizzling,
1424 				   (offset | length) & partial_cacheline_write,
1425 				   needs_clflush & CLFLUSH_AFTER);
1426 		if (ret)
1427 			break;
1428 
1429 		remain -= length;
1430 		user_data += length;
1431 		offset = 0;
1432 	}
1433 
1434 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1435 	i915_gem_obj_finish_shmem_access(obj);
1436 	return ret;
1437 }
1438 
1439 /**
1440  * Writes data to the object referenced by handle.
1441  * @dev: drm device
1442  * @data: ioctl data blob
1443  * @file: drm file
1444  *
1445  * On error, the contents of the buffer that were to be modified are undefined.
1446  */
1447 int
1448 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1449 		      struct drm_file *file)
1450 {
1451 	struct drm_i915_gem_pwrite *args = data;
1452 	struct drm_i915_gem_object *obj;
1453 	int ret;
1454 
1455 	if (args->size == 0)
1456 		return 0;
1457 
1458 	if (!access_ok(VERIFY_READ,
1459 		       u64_to_user_ptr(args->data_ptr),
1460 		       args->size))
1461 		return -EFAULT;
1462 
1463 	obj = i915_gem_object_lookup(file, args->handle);
1464 	if (!obj)
1465 		return -ENOENT;
1466 
1467 	/* Bounds check destination. */
1468 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1469 		ret = -EINVAL;
1470 		goto err;
1471 	}
1472 
1473 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1474 
1475 	ret = -ENODEV;
1476 	if (obj->ops->pwrite)
1477 		ret = obj->ops->pwrite(obj, args);
1478 	if (ret != -ENODEV)
1479 		goto err;
1480 
1481 	ret = i915_gem_object_wait(obj,
1482 				   I915_WAIT_INTERRUPTIBLE |
1483 				   I915_WAIT_ALL,
1484 				   MAX_SCHEDULE_TIMEOUT,
1485 				   to_rps_client(file));
1486 	if (ret)
1487 		goto err;
1488 
1489 	ret = i915_gem_object_pin_pages(obj);
1490 	if (ret)
1491 		goto err;
1492 
1493 	ret = -EFAULT;
1494 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1495 	 * it would end up going through the fenced access, and we'll get
1496 	 * different detiling behavior between reading and writing.
1497 	 * pread/pwrite currently are reading and writing from the CPU
1498 	 * perspective, requiring manual detiling by the client.
1499 	 */
1500 	if (!i915_gem_object_has_struct_page(obj) ||
1501 	    cpu_write_needs_clflush(obj))
1502 		/* Note that the gtt paths might fail with non-page-backed user
1503 		 * pointers (e.g. gtt mappings when moving data between
1504 		 * textures). Fallback to the shmem path in that case.
1505 		 */
1506 		ret = i915_gem_gtt_pwrite_fast(obj, args);
1507 
1508 	if (ret == -EFAULT || ret == -ENOSPC) {
1509 		if (obj->phys_handle)
1510 			ret = i915_gem_phys_pwrite(obj, args, file);
1511 		else
1512 			ret = i915_gem_shmem_pwrite(obj, args);
1513 	}
1514 
1515 	i915_gem_object_unpin_pages(obj);
1516 err:
1517 	i915_gem_object_put(obj);
1518 	return ret;
1519 }
1520 
1521 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1522 {
1523 	struct drm_i915_private *i915;
1524 	struct list_head *list;
1525 	struct i915_vma *vma;
1526 
1527 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
1528 		if (!i915_vma_is_ggtt(vma))
1529 			break;
1530 
1531 		if (i915_vma_is_active(vma))
1532 			continue;
1533 
1534 		if (!drm_mm_node_allocated(&vma->node))
1535 			continue;
1536 
1537 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1538 	}
1539 
1540 	i915 = to_i915(obj->base.dev);
1541 	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1542 	list_move_tail(&obj->global_link, list);
1543 }
1544 
1545 /**
1546  * Called when user space prepares to use an object with the CPU, either
1547  * through the mmap ioctl's mapping or a GTT mapping.
1548  * @dev: drm device
1549  * @data: ioctl data blob
1550  * @file: drm file
1551  */
1552 int
1553 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1554 			  struct drm_file *file)
1555 {
1556 	struct drm_i915_gem_set_domain *args = data;
1557 	struct drm_i915_gem_object *obj;
1558 	uint32_t read_domains = args->read_domains;
1559 	uint32_t write_domain = args->write_domain;
1560 	int err;
1561 
1562 	/* Only handle setting domains to types used by the CPU. */
1563 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1564 		return -EINVAL;
1565 
1566 	/* Having something in the write domain implies it's in the read
1567 	 * domain, and only that read domain.  Enforce that in the request.
1568 	 */
1569 	if (write_domain != 0 && read_domains != write_domain)
1570 		return -EINVAL;
1571 
1572 	obj = i915_gem_object_lookup(file, args->handle);
1573 	if (!obj)
1574 		return -ENOENT;
1575 
1576 	/* Try to flush the object off the GPU without holding the lock.
1577 	 * We will repeat the flush holding the lock in the normal manner
1578 	 * to catch cases where we are gazumped.
1579 	 */
1580 	err = i915_gem_object_wait(obj,
1581 				   I915_WAIT_INTERRUPTIBLE |
1582 				   (write_domain ? I915_WAIT_ALL : 0),
1583 				   MAX_SCHEDULE_TIMEOUT,
1584 				   to_rps_client(file));
1585 	if (err)
1586 		goto out;
1587 
1588 	/* Flush and acquire obj->pages so that we are coherent through
1589 	 * direct access in memory with previous cached writes through
1590 	 * shmemfs and that our cache domain tracking remains valid.
1591 	 * For example, if the obj->filp was moved to swap without us
1592 	 * being notified and releasing the pages, we would mistakenly
1593 	 * continue to assume that the obj remained out of the CPU cached
1594 	 * domain.
1595 	 */
1596 	err = i915_gem_object_pin_pages(obj);
1597 	if (err)
1598 		goto out;
1599 
1600 	err = i915_mutex_lock_interruptible(dev);
1601 	if (err)
1602 		goto out_unpin;
1603 
1604 	if (read_domains & I915_GEM_DOMAIN_WC)
1605 		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1606 	else if (read_domains & I915_GEM_DOMAIN_GTT)
1607 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1608 	else
1609 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1610 
1611 	/* And bump the LRU for this access */
1612 	i915_gem_object_bump_inactive_ggtt(obj);
1613 
1614 	mutex_unlock(&dev->struct_mutex);
1615 
1616 	if (write_domain != 0)
1617 		intel_fb_obj_invalidate(obj,
1618 					fb_write_origin(obj, write_domain));
1619 
1620 out_unpin:
1621 	i915_gem_object_unpin_pages(obj);
1622 out:
1623 	i915_gem_object_put(obj);
1624 	return err;
1625 }
1626 
1627 /**
1628  * Called when user space has done writes to this buffer
1629  * @dev: drm device
1630  * @data: ioctl data blob
1631  * @file: drm file
1632  */
1633 int
1634 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1635 			 struct drm_file *file)
1636 {
1637 	struct drm_i915_gem_sw_finish *args = data;
1638 	struct drm_i915_gem_object *obj;
1639 
1640 	obj = i915_gem_object_lookup(file, args->handle);
1641 	if (!obj)
1642 		return -ENOENT;
1643 
1644 	/* Pinned buffers may be scanout, so flush the cache */
1645 	i915_gem_object_flush_if_display(obj);
1646 	i915_gem_object_put(obj);
1647 
1648 	return 0;
1649 }
1650 
1651 /**
1652  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1653  *			 it is mapped to.
1654  * @dev: drm device
1655  * @data: ioctl data blob
1656  * @file: drm file
1657  *
1658  * While the mapping holds a reference on the contents of the object, it doesn't
1659  * imply a ref on the object itself.
1660  *
1661  * IMPORTANT:
1662  *
1663  * DRM driver writers who look a this function as an example for how to do GEM
1664  * mmap support, please don't implement mmap support like here. The modern way
1665  * to implement DRM mmap support is with an mmap offset ioctl (like
1666  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1667  * That way debug tooling like valgrind will understand what's going on, hiding
1668  * the mmap call in a driver private ioctl will break that. The i915 driver only
1669  * does cpu mmaps this way because we didn't know better.
1670  */
1671 int
1672 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1673 		    struct drm_file *file)
1674 {
1675 	struct drm_i915_gem_mmap *args = data;
1676 	struct drm_i915_gem_object *obj;
1677 	unsigned long addr;
1678 
1679 	if (args->flags & ~(I915_MMAP_WC))
1680 		return -EINVAL;
1681 
1682 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1683 		return -ENODEV;
1684 
1685 	obj = i915_gem_object_lookup(file, args->handle);
1686 	if (!obj)
1687 		return -ENOENT;
1688 
1689 	/* prime objects have no backing filp to GEM mmap
1690 	 * pages from.
1691 	 */
1692 	if (!obj->base.filp) {
1693 		i915_gem_object_put(obj);
1694 		return -EINVAL;
1695 	}
1696 
1697 	addr = vm_mmap(obj->base.filp, 0, args->size,
1698 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1699 		       args->offset);
1700 	if (args->flags & I915_MMAP_WC) {
1701 		struct mm_struct *mm = current->mm;
1702 		struct vm_area_struct *vma;
1703 
1704 		if (down_write_killable(&mm->mmap_sem)) {
1705 			i915_gem_object_put(obj);
1706 			return -EINTR;
1707 		}
1708 		vma = find_vma(mm, addr);
1709 		if (vma)
1710 			vma->vm_page_prot =
1711 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1712 		else
1713 			addr = -ENOMEM;
1714 		up_write(&mm->mmap_sem);
1715 
1716 		/* This may race, but that's ok, it only gets set */
1717 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1718 	}
1719 	i915_gem_object_put(obj);
1720 	if (IS_ERR((void *)addr))
1721 		return addr;
1722 
1723 	args->addr_ptr = (uint64_t) addr;
1724 
1725 	return 0;
1726 }
1727 
1728 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1729 {
1730 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1731 }
1732 
1733 /**
1734  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1735  *
1736  * A history of the GTT mmap interface:
1737  *
1738  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1739  *     aligned and suitable for fencing, and still fit into the available
1740  *     mappable space left by the pinned display objects. A classic problem
1741  *     we called the page-fault-of-doom where we would ping-pong between
1742  *     two objects that could not fit inside the GTT and so the memcpy
1743  *     would page one object in at the expense of the other between every
1744  *     single byte.
1745  *
1746  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1747  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1748  *     object is too large for the available space (or simply too large
1749  *     for the mappable aperture!), a view is created instead and faulted
1750  *     into userspace. (This view is aligned and sized appropriately for
1751  *     fenced access.)
1752  *
1753  * 2 - Recognise WC as a separate cache domain so that we can flush the
1754  *     delayed writes via GTT before performing direct access via WC.
1755  *
1756  * Restrictions:
1757  *
1758  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1759  *    hangs on some architectures, corruption on others. An attempt to service
1760  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1761  *
1762  *  * the object must be able to fit into RAM (physical memory, though no
1763  *    limited to the mappable aperture).
1764  *
1765  *
1766  * Caveats:
1767  *
1768  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1769  *    all data to system memory. Subsequent access will not be synchronized.
1770  *
1771  *  * all mappings are revoked on runtime device suspend.
1772  *
1773  *  * there are only 8, 16 or 32 fence registers to share between all users
1774  *    (older machines require fence register for display and blitter access
1775  *    as well). Contention of the fence registers will cause the previous users
1776  *    to be unmapped and any new access will generate new page faults.
1777  *
1778  *  * running out of memory while servicing a fault may generate a SIGBUS,
1779  *    rather than the expected SIGSEGV.
1780  */
1781 int i915_gem_mmap_gtt_version(void)
1782 {
1783 	return 2;
1784 }
1785 
1786 static inline struct i915_ggtt_view
1787 compute_partial_view(struct drm_i915_gem_object *obj,
1788 		     pgoff_t page_offset,
1789 		     unsigned int chunk)
1790 {
1791 	struct i915_ggtt_view view;
1792 
1793 	if (i915_gem_object_is_tiled(obj))
1794 		chunk = roundup(chunk, tile_row_pages(obj));
1795 
1796 	view.type = I915_GGTT_VIEW_PARTIAL;
1797 	view.partial.offset = rounddown(page_offset, chunk);
1798 	view.partial.size =
1799 		min_t(unsigned int, chunk,
1800 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1801 
1802 	/* If the partial covers the entire object, just create a normal VMA. */
1803 	if (chunk >= obj->base.size >> PAGE_SHIFT)
1804 		view.type = I915_GGTT_VIEW_NORMAL;
1805 
1806 	return view;
1807 }
1808 
1809 /**
1810  * i915_gem_fault - fault a page into the GTT
1811  * @vmf: fault info
1812  *
1813  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1814  * from userspace.  The fault handler takes care of binding the object to
1815  * the GTT (if needed), allocating and programming a fence register (again,
1816  * only if needed based on whether the old reg is still valid or the object
1817  * is tiled) and inserting a new PTE into the faulting process.
1818  *
1819  * Note that the faulting process may involve evicting existing objects
1820  * from the GTT and/or fence registers to make room.  So performance may
1821  * suffer if the GTT working set is large or there are few fence registers
1822  * left.
1823  *
1824  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1825  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1826  */
1827 int i915_gem_fault(struct vm_fault *vmf)
1828 {
1829 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1830 	struct vm_area_struct *area = vmf->vma;
1831 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1832 	struct drm_device *dev = obj->base.dev;
1833 	struct drm_i915_private *dev_priv = to_i915(dev);
1834 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1835 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1836 	struct i915_vma *vma;
1837 	pgoff_t page_offset;
1838 	unsigned int flags;
1839 	int ret;
1840 
1841 	/* We don't use vmf->pgoff since that has the fake offset */
1842 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1843 
1844 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1845 
1846 	/* Try to flush the object off the GPU first without holding the lock.
1847 	 * Upon acquiring the lock, we will perform our sanity checks and then
1848 	 * repeat the flush holding the lock in the normal manner to catch cases
1849 	 * where we are gazumped.
1850 	 */
1851 	ret = i915_gem_object_wait(obj,
1852 				   I915_WAIT_INTERRUPTIBLE,
1853 				   MAX_SCHEDULE_TIMEOUT,
1854 				   NULL);
1855 	if (ret)
1856 		goto err;
1857 
1858 	ret = i915_gem_object_pin_pages(obj);
1859 	if (ret)
1860 		goto err;
1861 
1862 	intel_runtime_pm_get(dev_priv);
1863 
1864 	ret = i915_mutex_lock_interruptible(dev);
1865 	if (ret)
1866 		goto err_rpm;
1867 
1868 	/* Access to snoopable pages through the GTT is incoherent. */
1869 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1870 		ret = -EFAULT;
1871 		goto err_unlock;
1872 	}
1873 
1874 	/* If the object is smaller than a couple of partial vma, it is
1875 	 * not worth only creating a single partial vma - we may as well
1876 	 * clear enough space for the full object.
1877 	 */
1878 	flags = PIN_MAPPABLE;
1879 	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1880 		flags |= PIN_NONBLOCK | PIN_NONFAULT;
1881 
1882 	/* Now pin it into the GTT as needed */
1883 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1884 	if (IS_ERR(vma)) {
1885 		/* Use a partial view if it is bigger than available space */
1886 		struct i915_ggtt_view view =
1887 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1888 
1889 		/* Userspace is now writing through an untracked VMA, abandon
1890 		 * all hope that the hardware is able to track future writes.
1891 		 */
1892 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1893 
1894 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1895 	}
1896 	if (IS_ERR(vma)) {
1897 		ret = PTR_ERR(vma);
1898 		goto err_unlock;
1899 	}
1900 
1901 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1902 	if (ret)
1903 		goto err_unpin;
1904 
1905 	ret = i915_vma_get_fence(vma);
1906 	if (ret)
1907 		goto err_unpin;
1908 
1909 	/* Mark as being mmapped into userspace for later revocation */
1910 	assert_rpm_wakelock_held(dev_priv);
1911 	if (list_empty(&obj->userfault_link))
1912 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1913 
1914 	/* Finally, remap it using the new GTT offset */
1915 	ret = remap_io_mapping(area,
1916 			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1917 			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1918 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1919 			       &ggtt->mappable);
1920 
1921 err_unpin:
1922 	__i915_vma_unpin(vma);
1923 err_unlock:
1924 	mutex_unlock(&dev->struct_mutex);
1925 err_rpm:
1926 	intel_runtime_pm_put(dev_priv);
1927 	i915_gem_object_unpin_pages(obj);
1928 err:
1929 	switch (ret) {
1930 	case -EIO:
1931 		/*
1932 		 * We eat errors when the gpu is terminally wedged to avoid
1933 		 * userspace unduly crashing (gl has no provisions for mmaps to
1934 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1935 		 * and so needs to be reported.
1936 		 */
1937 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1938 			ret = VM_FAULT_SIGBUS;
1939 			break;
1940 		}
1941 	case -EAGAIN:
1942 		/*
1943 		 * EAGAIN means the gpu is hung and we'll wait for the error
1944 		 * handler to reset everything when re-faulting in
1945 		 * i915_mutex_lock_interruptible.
1946 		 */
1947 	case 0:
1948 	case -ERESTARTSYS:
1949 	case -EINTR:
1950 	case -EBUSY:
1951 		/*
1952 		 * EBUSY is ok: this just means that another thread
1953 		 * already did the job.
1954 		 */
1955 		ret = VM_FAULT_NOPAGE;
1956 		break;
1957 	case -ENOMEM:
1958 		ret = VM_FAULT_OOM;
1959 		break;
1960 	case -ENOSPC:
1961 	case -EFAULT:
1962 		ret = VM_FAULT_SIGBUS;
1963 		break;
1964 	default:
1965 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1966 		ret = VM_FAULT_SIGBUS;
1967 		break;
1968 	}
1969 	return ret;
1970 }
1971 
1972 /**
1973  * i915_gem_release_mmap - remove physical page mappings
1974  * @obj: obj in question
1975  *
1976  * Preserve the reservation of the mmapping with the DRM core code, but
1977  * relinquish ownership of the pages back to the system.
1978  *
1979  * It is vital that we remove the page mapping if we have mapped a tiled
1980  * object through the GTT and then lose the fence register due to
1981  * resource pressure. Similarly if the object has been moved out of the
1982  * aperture, than pages mapped into userspace must be revoked. Removing the
1983  * mapping will then trigger a page fault on the next user access, allowing
1984  * fixup by i915_gem_fault().
1985  */
1986 void
1987 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1988 {
1989 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1990 
1991 	/* Serialisation between user GTT access and our code depends upon
1992 	 * revoking the CPU's PTE whilst the mutex is held. The next user
1993 	 * pagefault then has to wait until we release the mutex.
1994 	 *
1995 	 * Note that RPM complicates somewhat by adding an additional
1996 	 * requirement that operations to the GGTT be made holding the RPM
1997 	 * wakeref.
1998 	 */
1999 	lockdep_assert_held(&i915->drm.struct_mutex);
2000 	intel_runtime_pm_get(i915);
2001 
2002 	if (list_empty(&obj->userfault_link))
2003 		goto out;
2004 
2005 	list_del_init(&obj->userfault_link);
2006 	drm_vma_node_unmap(&obj->base.vma_node,
2007 			   obj->base.dev->anon_inode->i_mapping);
2008 
2009 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
2010 	 * memory transactions from userspace before we return. The TLB
2011 	 * flushing implied above by changing the PTE above *should* be
2012 	 * sufficient, an extra barrier here just provides us with a bit
2013 	 * of paranoid documentation about our requirement to serialise
2014 	 * memory writes before touching registers / GSM.
2015 	 */
2016 	wmb();
2017 
2018 out:
2019 	intel_runtime_pm_put(i915);
2020 }
2021 
2022 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2023 {
2024 	struct drm_i915_gem_object *obj, *on;
2025 	int i;
2026 
2027 	/*
2028 	 * Only called during RPM suspend. All users of the userfault_list
2029 	 * must be holding an RPM wakeref to ensure that this can not
2030 	 * run concurrently with themselves (and use the struct_mutex for
2031 	 * protection between themselves).
2032 	 */
2033 
2034 	list_for_each_entry_safe(obj, on,
2035 				 &dev_priv->mm.userfault_list, userfault_link) {
2036 		list_del_init(&obj->userfault_link);
2037 		drm_vma_node_unmap(&obj->base.vma_node,
2038 				   obj->base.dev->anon_inode->i_mapping);
2039 	}
2040 
2041 	/* The fence will be lost when the device powers down. If any were
2042 	 * in use by hardware (i.e. they are pinned), we should not be powering
2043 	 * down! All other fences will be reacquired by the user upon waking.
2044 	 */
2045 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2046 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2047 
2048 		/* Ideally we want to assert that the fence register is not
2049 		 * live at this point (i.e. that no piece of code will be
2050 		 * trying to write through fence + GTT, as that both violates
2051 		 * our tracking of activity and associated locking/barriers,
2052 		 * but also is illegal given that the hw is powered down).
2053 		 *
2054 		 * Previously we used reg->pin_count as a "liveness" indicator.
2055 		 * That is not sufficient, and we need a more fine-grained
2056 		 * tool if we want to have a sanity check here.
2057 		 */
2058 
2059 		if (!reg->vma)
2060 			continue;
2061 
2062 		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2063 		reg->dirty = true;
2064 	}
2065 }
2066 
2067 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2068 {
2069 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2070 	int err;
2071 
2072 	err = drm_gem_create_mmap_offset(&obj->base);
2073 	if (likely(!err))
2074 		return 0;
2075 
2076 	/* Attempt to reap some mmap space from dead objects */
2077 	do {
2078 		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2079 		if (err)
2080 			break;
2081 
2082 		i915_gem_drain_freed_objects(dev_priv);
2083 		err = drm_gem_create_mmap_offset(&obj->base);
2084 		if (!err)
2085 			break;
2086 
2087 	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2088 
2089 	return err;
2090 }
2091 
2092 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2093 {
2094 	drm_gem_free_mmap_offset(&obj->base);
2095 }
2096 
2097 int
2098 i915_gem_mmap_gtt(struct drm_file *file,
2099 		  struct drm_device *dev,
2100 		  uint32_t handle,
2101 		  uint64_t *offset)
2102 {
2103 	struct drm_i915_gem_object *obj;
2104 	int ret;
2105 
2106 	obj = i915_gem_object_lookup(file, handle);
2107 	if (!obj)
2108 		return -ENOENT;
2109 
2110 	ret = i915_gem_object_create_mmap_offset(obj);
2111 	if (ret == 0)
2112 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2113 
2114 	i915_gem_object_put(obj);
2115 	return ret;
2116 }
2117 
2118 /**
2119  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2120  * @dev: DRM device
2121  * @data: GTT mapping ioctl data
2122  * @file: GEM object info
2123  *
2124  * Simply returns the fake offset to userspace so it can mmap it.
2125  * The mmap call will end up in drm_gem_mmap(), which will set things
2126  * up so we can get faults in the handler above.
2127  *
2128  * The fault handler will take care of binding the object into the GTT
2129  * (since it may have been evicted to make room for something), allocating
2130  * a fence register, and mapping the appropriate aperture address into
2131  * userspace.
2132  */
2133 int
2134 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2135 			struct drm_file *file)
2136 {
2137 	struct drm_i915_gem_mmap_gtt *args = data;
2138 
2139 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2140 }
2141 
2142 /* Immediately discard the backing storage */
2143 static void
2144 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2145 {
2146 	i915_gem_object_free_mmap_offset(obj);
2147 
2148 	if (obj->base.filp == NULL)
2149 		return;
2150 
2151 	/* Our goal here is to return as much of the memory as
2152 	 * is possible back to the system as we are called from OOM.
2153 	 * To do this we must instruct the shmfs to drop all of its
2154 	 * backing pages, *now*.
2155 	 */
2156 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2157 	obj->mm.madv = __I915_MADV_PURGED;
2158 	obj->mm.pages = ERR_PTR(-EFAULT);
2159 }
2160 
2161 /* Try to discard unwanted pages */
2162 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2163 {
2164 	struct address_space *mapping;
2165 
2166 	lockdep_assert_held(&obj->mm.lock);
2167 	GEM_BUG_ON(obj->mm.pages);
2168 
2169 	switch (obj->mm.madv) {
2170 	case I915_MADV_DONTNEED:
2171 		i915_gem_object_truncate(obj);
2172 	case __I915_MADV_PURGED:
2173 		return;
2174 	}
2175 
2176 	if (obj->base.filp == NULL)
2177 		return;
2178 
2179 	mapping = obj->base.filp->f_mapping,
2180 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2181 }
2182 
2183 static void
2184 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2185 			      struct sg_table *pages)
2186 {
2187 	struct sgt_iter sgt_iter;
2188 	struct page *page;
2189 
2190 	__i915_gem_object_release_shmem(obj, pages, true);
2191 
2192 	i915_gem_gtt_finish_pages(obj, pages);
2193 
2194 	if (i915_gem_object_needs_bit17_swizzle(obj))
2195 		i915_gem_object_save_bit_17_swizzle(obj, pages);
2196 
2197 	for_each_sgt_page(page, sgt_iter, pages) {
2198 		if (obj->mm.dirty)
2199 			set_page_dirty(page);
2200 
2201 		if (obj->mm.madv == I915_MADV_WILLNEED)
2202 			mark_page_accessed(page);
2203 
2204 		put_page(page);
2205 	}
2206 	obj->mm.dirty = false;
2207 
2208 	sg_free_table(pages);
2209 	kfree(pages);
2210 }
2211 
2212 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2213 {
2214 	struct radix_tree_iter iter;
2215 	void __rcu **slot;
2216 
2217 	rcu_read_lock();
2218 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2219 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2220 	rcu_read_unlock();
2221 }
2222 
2223 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2224 				 enum i915_mm_subclass subclass)
2225 {
2226 	struct sg_table *pages;
2227 
2228 	if (i915_gem_object_has_pinned_pages(obj))
2229 		return;
2230 
2231 	GEM_BUG_ON(obj->bind_count);
2232 	if (!READ_ONCE(obj->mm.pages))
2233 		return;
2234 
2235 	/* May be called by shrinker from within get_pages() (on another bo) */
2236 	mutex_lock_nested(&obj->mm.lock, subclass);
2237 	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2238 		goto unlock;
2239 
2240 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2241 	 * array, hence protect them from being reaped by removing them from gtt
2242 	 * lists early. */
2243 	pages = fetch_and_zero(&obj->mm.pages);
2244 	GEM_BUG_ON(!pages);
2245 
2246 	if (obj->mm.mapping) {
2247 		void *ptr;
2248 
2249 		ptr = page_mask_bits(obj->mm.mapping);
2250 		if (is_vmalloc_addr(ptr))
2251 			vunmap(ptr);
2252 		else
2253 			kunmap(kmap_to_page(ptr));
2254 
2255 		obj->mm.mapping = NULL;
2256 	}
2257 
2258 	__i915_gem_object_reset_page_iter(obj);
2259 
2260 	if (!IS_ERR(pages))
2261 		obj->ops->put_pages(obj, pages);
2262 
2263 unlock:
2264 	mutex_unlock(&obj->mm.lock);
2265 }
2266 
2267 static bool i915_sg_trim(struct sg_table *orig_st)
2268 {
2269 	struct sg_table new_st;
2270 	struct scatterlist *sg, *new_sg;
2271 	unsigned int i;
2272 
2273 	if (orig_st->nents == orig_st->orig_nents)
2274 		return false;
2275 
2276 	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2277 		return false;
2278 
2279 	new_sg = new_st.sgl;
2280 	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2281 		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2282 		/* called before being DMA mapped, no need to copy sg->dma_* */
2283 		new_sg = sg_next(new_sg);
2284 	}
2285 	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2286 
2287 	sg_free_table(orig_st);
2288 
2289 	*orig_st = new_st;
2290 	return true;
2291 }
2292 
2293 static struct sg_table *
2294 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2295 {
2296 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2297 	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2298 	unsigned long i;
2299 	struct address_space *mapping;
2300 	struct sg_table *st;
2301 	struct scatterlist *sg;
2302 	struct sgt_iter sgt_iter;
2303 	struct page *page;
2304 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2305 	unsigned int max_segment;
2306 	gfp_t noreclaim;
2307 	int ret;
2308 
2309 	/* Assert that the object is not currently in any GPU domain. As it
2310 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2311 	 * a GPU cache
2312 	 */
2313 	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2314 	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2315 
2316 	max_segment = swiotlb_max_segment();
2317 	if (!max_segment)
2318 		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2319 
2320 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2321 	if (st == NULL)
2322 		return ERR_PTR(-ENOMEM);
2323 
2324 rebuild_st:
2325 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2326 		kfree(st);
2327 		return ERR_PTR(-ENOMEM);
2328 	}
2329 
2330 	/* Get the list of pages out of our struct file.  They'll be pinned
2331 	 * at this point until we release them.
2332 	 *
2333 	 * Fail silently without starting the shrinker
2334 	 */
2335 	mapping = obj->base.filp->f_mapping;
2336 	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2337 	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2338 
2339 	sg = st->sgl;
2340 	st->nents = 0;
2341 	for (i = 0; i < page_count; i++) {
2342 		const unsigned int shrink[] = {
2343 			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2344 			0,
2345 		}, *s = shrink;
2346 		gfp_t gfp = noreclaim;
2347 
2348 		do {
2349 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2350 			if (likely(!IS_ERR(page)))
2351 				break;
2352 
2353 			if (!*s) {
2354 				ret = PTR_ERR(page);
2355 				goto err_sg;
2356 			}
2357 
2358 			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2359 			cond_resched();
2360 
2361 			/* We've tried hard to allocate the memory by reaping
2362 			 * our own buffer, now let the real VM do its job and
2363 			 * go down in flames if truly OOM.
2364 			 *
2365 			 * However, since graphics tend to be disposable,
2366 			 * defer the oom here by reporting the ENOMEM back
2367 			 * to userspace.
2368 			 */
2369 			if (!*s) {
2370 				/* reclaim and warn, but no oom */
2371 				gfp = mapping_gfp_mask(mapping);
2372 
2373 				/* Our bo are always dirty and so we require
2374 				 * kswapd to reclaim our pages (direct reclaim
2375 				 * does not effectively begin pageout of our
2376 				 * buffers on its own). However, direct reclaim
2377 				 * only waits for kswapd when under allocation
2378 				 * congestion. So as a result __GFP_RECLAIM is
2379 				 * unreliable and fails to actually reclaim our
2380 				 * dirty pages -- unless you try over and over
2381 				 * again with !__GFP_NORETRY. However, we still
2382 				 * want to fail this allocation rather than
2383 				 * trigger the out-of-memory killer and for
2384 				 * this we want __GFP_RETRY_MAYFAIL.
2385 				 */
2386 				gfp |= __GFP_RETRY_MAYFAIL;
2387 			}
2388 		} while (1);
2389 
2390 		if (!i ||
2391 		    sg->length >= max_segment ||
2392 		    page_to_pfn(page) != last_pfn + 1) {
2393 			if (i)
2394 				sg = sg_next(sg);
2395 			st->nents++;
2396 			sg_set_page(sg, page, PAGE_SIZE, 0);
2397 		} else {
2398 			sg->length += PAGE_SIZE;
2399 		}
2400 		last_pfn = page_to_pfn(page);
2401 
2402 		/* Check that the i965g/gm workaround works. */
2403 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2404 	}
2405 	if (sg) /* loop terminated early; short sg table */
2406 		sg_mark_end(sg);
2407 
2408 	/* Trim unused sg entries to avoid wasting memory. */
2409 	i915_sg_trim(st);
2410 
2411 	ret = i915_gem_gtt_prepare_pages(obj, st);
2412 	if (ret) {
2413 		/* DMA remapping failed? One possible cause is that
2414 		 * it could not reserve enough large entries, asking
2415 		 * for PAGE_SIZE chunks instead may be helpful.
2416 		 */
2417 		if (max_segment > PAGE_SIZE) {
2418 			for_each_sgt_page(page, sgt_iter, st)
2419 				put_page(page);
2420 			sg_free_table(st);
2421 
2422 			max_segment = PAGE_SIZE;
2423 			goto rebuild_st;
2424 		} else {
2425 			dev_warn(&dev_priv->drm.pdev->dev,
2426 				 "Failed to DMA remap %lu pages\n",
2427 				 page_count);
2428 			goto err_pages;
2429 		}
2430 	}
2431 
2432 	if (i915_gem_object_needs_bit17_swizzle(obj))
2433 		i915_gem_object_do_bit_17_swizzle(obj, st);
2434 
2435 	return st;
2436 
2437 err_sg:
2438 	sg_mark_end(sg);
2439 err_pages:
2440 	for_each_sgt_page(page, sgt_iter, st)
2441 		put_page(page);
2442 	sg_free_table(st);
2443 	kfree(st);
2444 
2445 	/* shmemfs first checks if there is enough memory to allocate the page
2446 	 * and reports ENOSPC should there be insufficient, along with the usual
2447 	 * ENOMEM for a genuine allocation failure.
2448 	 *
2449 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2450 	 * space and so want to translate the error from shmemfs back to our
2451 	 * usual understanding of ENOMEM.
2452 	 */
2453 	if (ret == -ENOSPC)
2454 		ret = -ENOMEM;
2455 
2456 	return ERR_PTR(ret);
2457 }
2458 
2459 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2460 				 struct sg_table *pages)
2461 {
2462 	lockdep_assert_held(&obj->mm.lock);
2463 
2464 	obj->mm.get_page.sg_pos = pages->sgl;
2465 	obj->mm.get_page.sg_idx = 0;
2466 
2467 	obj->mm.pages = pages;
2468 
2469 	if (i915_gem_object_is_tiled(obj) &&
2470 	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2471 		GEM_BUG_ON(obj->mm.quirked);
2472 		__i915_gem_object_pin_pages(obj);
2473 		obj->mm.quirked = true;
2474 	}
2475 }
2476 
2477 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2478 {
2479 	struct sg_table *pages;
2480 
2481 	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2482 
2483 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2484 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2485 		return -EFAULT;
2486 	}
2487 
2488 	pages = obj->ops->get_pages(obj);
2489 	if (unlikely(IS_ERR(pages)))
2490 		return PTR_ERR(pages);
2491 
2492 	__i915_gem_object_set_pages(obj, pages);
2493 	return 0;
2494 }
2495 
2496 /* Ensure that the associated pages are gathered from the backing storage
2497  * and pinned into our object. i915_gem_object_pin_pages() may be called
2498  * multiple times before they are released by a single call to
2499  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2500  * either as a result of memory pressure (reaping pages under the shrinker)
2501  * or as the object is itself released.
2502  */
2503 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2504 {
2505 	int err;
2506 
2507 	err = mutex_lock_interruptible(&obj->mm.lock);
2508 	if (err)
2509 		return err;
2510 
2511 	if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2512 		err = ____i915_gem_object_get_pages(obj);
2513 		if (err)
2514 			goto unlock;
2515 
2516 		smp_mb__before_atomic();
2517 	}
2518 	atomic_inc(&obj->mm.pages_pin_count);
2519 
2520 unlock:
2521 	mutex_unlock(&obj->mm.lock);
2522 	return err;
2523 }
2524 
2525 /* The 'mapping' part of i915_gem_object_pin_map() below */
2526 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2527 				 enum i915_map_type type)
2528 {
2529 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2530 	struct sg_table *sgt = obj->mm.pages;
2531 	struct sgt_iter sgt_iter;
2532 	struct page *page;
2533 	struct page *stack_pages[32];
2534 	struct page **pages = stack_pages;
2535 	unsigned long i = 0;
2536 	pgprot_t pgprot;
2537 	void *addr;
2538 
2539 	/* A single page can always be kmapped */
2540 	if (n_pages == 1 && type == I915_MAP_WB)
2541 		return kmap(sg_page(sgt->sgl));
2542 
2543 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2544 		/* Too big for stack -- allocate temporary array instead */
2545 		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2546 		if (!pages)
2547 			return NULL;
2548 	}
2549 
2550 	for_each_sgt_page(page, sgt_iter, sgt)
2551 		pages[i++] = page;
2552 
2553 	/* Check that we have the expected number of pages */
2554 	GEM_BUG_ON(i != n_pages);
2555 
2556 	switch (type) {
2557 	default:
2558 		MISSING_CASE(type);
2559 		/* fallthrough to use PAGE_KERNEL anyway */
2560 	case I915_MAP_WB:
2561 		pgprot = PAGE_KERNEL;
2562 		break;
2563 	case I915_MAP_WC:
2564 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2565 		break;
2566 	}
2567 	addr = vmap(pages, n_pages, 0, pgprot);
2568 
2569 	if (pages != stack_pages)
2570 		kvfree(pages);
2571 
2572 	return addr;
2573 }
2574 
2575 /* get, pin, and map the pages of the object into kernel space */
2576 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2577 			      enum i915_map_type type)
2578 {
2579 	enum i915_map_type has_type;
2580 	bool pinned;
2581 	void *ptr;
2582 	int ret;
2583 
2584 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2585 
2586 	ret = mutex_lock_interruptible(&obj->mm.lock);
2587 	if (ret)
2588 		return ERR_PTR(ret);
2589 
2590 	pinned = !(type & I915_MAP_OVERRIDE);
2591 	type &= ~I915_MAP_OVERRIDE;
2592 
2593 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2594 		if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2595 			ret = ____i915_gem_object_get_pages(obj);
2596 			if (ret)
2597 				goto err_unlock;
2598 
2599 			smp_mb__before_atomic();
2600 		}
2601 		atomic_inc(&obj->mm.pages_pin_count);
2602 		pinned = false;
2603 	}
2604 	GEM_BUG_ON(!obj->mm.pages);
2605 
2606 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2607 	if (ptr && has_type != type) {
2608 		if (pinned) {
2609 			ret = -EBUSY;
2610 			goto err_unpin;
2611 		}
2612 
2613 		if (is_vmalloc_addr(ptr))
2614 			vunmap(ptr);
2615 		else
2616 			kunmap(kmap_to_page(ptr));
2617 
2618 		ptr = obj->mm.mapping = NULL;
2619 	}
2620 
2621 	if (!ptr) {
2622 		ptr = i915_gem_object_map(obj, type);
2623 		if (!ptr) {
2624 			ret = -ENOMEM;
2625 			goto err_unpin;
2626 		}
2627 
2628 		obj->mm.mapping = page_pack_bits(ptr, type);
2629 	}
2630 
2631 out_unlock:
2632 	mutex_unlock(&obj->mm.lock);
2633 	return ptr;
2634 
2635 err_unpin:
2636 	atomic_dec(&obj->mm.pages_pin_count);
2637 err_unlock:
2638 	ptr = ERR_PTR(ret);
2639 	goto out_unlock;
2640 }
2641 
2642 static int
2643 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2644 			   const struct drm_i915_gem_pwrite *arg)
2645 {
2646 	struct address_space *mapping = obj->base.filp->f_mapping;
2647 	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2648 	u64 remain, offset;
2649 	unsigned int pg;
2650 
2651 	/* Before we instantiate/pin the backing store for our use, we
2652 	 * can prepopulate the shmemfs filp efficiently using a write into
2653 	 * the pagecache. We avoid the penalty of instantiating all the
2654 	 * pages, important if the user is just writing to a few and never
2655 	 * uses the object on the GPU, and using a direct write into shmemfs
2656 	 * allows it to avoid the cost of retrieving a page (either swapin
2657 	 * or clearing-before-use) before it is overwritten.
2658 	 */
2659 	if (READ_ONCE(obj->mm.pages))
2660 		return -ENODEV;
2661 
2662 	if (obj->mm.madv != I915_MADV_WILLNEED)
2663 		return -EFAULT;
2664 
2665 	/* Before the pages are instantiated the object is treated as being
2666 	 * in the CPU domain. The pages will be clflushed as required before
2667 	 * use, and we can freely write into the pages directly. If userspace
2668 	 * races pwrite with any other operation; corruption will ensue -
2669 	 * that is userspace's prerogative!
2670 	 */
2671 
2672 	remain = arg->size;
2673 	offset = arg->offset;
2674 	pg = offset_in_page(offset);
2675 
2676 	do {
2677 		unsigned int len, unwritten;
2678 		struct page *page;
2679 		void *data, *vaddr;
2680 		int err;
2681 
2682 		len = PAGE_SIZE - pg;
2683 		if (len > remain)
2684 			len = remain;
2685 
2686 		err = pagecache_write_begin(obj->base.filp, mapping,
2687 					    offset, len, 0,
2688 					    &page, &data);
2689 		if (err < 0)
2690 			return err;
2691 
2692 		vaddr = kmap(page);
2693 		unwritten = copy_from_user(vaddr + pg, user_data, len);
2694 		kunmap(page);
2695 
2696 		err = pagecache_write_end(obj->base.filp, mapping,
2697 					  offset, len, len - unwritten,
2698 					  page, data);
2699 		if (err < 0)
2700 			return err;
2701 
2702 		if (unwritten)
2703 			return -EFAULT;
2704 
2705 		remain -= len;
2706 		user_data += len;
2707 		offset += len;
2708 		pg = 0;
2709 	} while (remain);
2710 
2711 	return 0;
2712 }
2713 
2714 static bool ban_context(const struct i915_gem_context *ctx,
2715 			unsigned int score)
2716 {
2717 	return (i915_gem_context_is_bannable(ctx) &&
2718 		score >= CONTEXT_SCORE_BAN_THRESHOLD);
2719 }
2720 
2721 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2722 {
2723 	unsigned int score;
2724 	bool banned;
2725 
2726 	atomic_inc(&ctx->guilty_count);
2727 
2728 	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
2729 	banned = ban_context(ctx, score);
2730 	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2731 			 ctx->name, score, yesno(banned));
2732 	if (!banned)
2733 		return;
2734 
2735 	i915_gem_context_set_banned(ctx);
2736 	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2737 		atomic_inc(&ctx->file_priv->context_bans);
2738 		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2739 				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
2740 	}
2741 }
2742 
2743 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2744 {
2745 	atomic_inc(&ctx->active_count);
2746 }
2747 
2748 struct drm_i915_gem_request *
2749 i915_gem_find_active_request(struct intel_engine_cs *engine)
2750 {
2751 	struct drm_i915_gem_request *request, *active = NULL;
2752 	unsigned long flags;
2753 
2754 	/* We are called by the error capture and reset at a random
2755 	 * point in time. In particular, note that neither is crucially
2756 	 * ordered with an interrupt. After a hang, the GPU is dead and we
2757 	 * assume that no more writes can happen (we waited long enough for
2758 	 * all writes that were in transaction to be flushed) - adding an
2759 	 * extra delay for a recent interrupt is pointless. Hence, we do
2760 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2761 	 */
2762 	spin_lock_irqsave(&engine->timeline->lock, flags);
2763 	list_for_each_entry(request, &engine->timeline->requests, link) {
2764 		if (__i915_gem_request_completed(request,
2765 						 request->global_seqno))
2766 			continue;
2767 
2768 		GEM_BUG_ON(request->engine != engine);
2769 		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2770 				    &request->fence.flags));
2771 
2772 		active = request;
2773 		break;
2774 	}
2775 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2776 
2777 	return active;
2778 }
2779 
2780 static bool engine_stalled(struct intel_engine_cs *engine)
2781 {
2782 	if (!engine->hangcheck.stalled)
2783 		return false;
2784 
2785 	/* Check for possible seqno movement after hang declaration */
2786 	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2787 		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2788 		return false;
2789 	}
2790 
2791 	return true;
2792 }
2793 
2794 /*
2795  * Ensure irq handler finishes, and not run again.
2796  * Also return the active request so that we only search for it once.
2797  */
2798 struct drm_i915_gem_request *
2799 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2800 {
2801 	struct drm_i915_gem_request *request = NULL;
2802 
2803 	/* Prevent the signaler thread from updating the request
2804 	 * state (by calling dma_fence_signal) as we are processing
2805 	 * the reset. The write from the GPU of the seqno is
2806 	 * asynchronous and the signaler thread may see a different
2807 	 * value to us and declare the request complete, even though
2808 	 * the reset routine have picked that request as the active
2809 	 * (incomplete) request. This conflict is not handled
2810 	 * gracefully!
2811 	 */
2812 	kthread_park(engine->breadcrumbs.signaler);
2813 
2814 	/* Prevent request submission to the hardware until we have
2815 	 * completed the reset in i915_gem_reset_finish(). If a request
2816 	 * is completed by one engine, it may then queue a request
2817 	 * to a second via its engine->irq_tasklet *just* as we are
2818 	 * calling engine->init_hw() and also writing the ELSP.
2819 	 * Turning off the engine->irq_tasklet until the reset is over
2820 	 * prevents the race.
2821 	 */
2822 	tasklet_kill(&engine->irq_tasklet);
2823 	tasklet_disable(&engine->irq_tasklet);
2824 
2825 	if (engine->irq_seqno_barrier)
2826 		engine->irq_seqno_barrier(engine);
2827 
2828 	request = i915_gem_find_active_request(engine);
2829 	if (request && request->fence.error == -EIO)
2830 		request = ERR_PTR(-EIO); /* Previous reset failed! */
2831 
2832 	return request;
2833 }
2834 
2835 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2836 {
2837 	struct intel_engine_cs *engine;
2838 	struct drm_i915_gem_request *request;
2839 	enum intel_engine_id id;
2840 	int err = 0;
2841 
2842 	for_each_engine(engine, dev_priv, id) {
2843 		request = i915_gem_reset_prepare_engine(engine);
2844 		if (IS_ERR(request)) {
2845 			err = PTR_ERR(request);
2846 			continue;
2847 		}
2848 
2849 		engine->hangcheck.active_request = request;
2850 	}
2851 
2852 	i915_gem_revoke_fences(dev_priv);
2853 
2854 	return err;
2855 }
2856 
2857 static void skip_request(struct drm_i915_gem_request *request)
2858 {
2859 	void *vaddr = request->ring->vaddr;
2860 	u32 head;
2861 
2862 	/* As this request likely depends on state from the lost
2863 	 * context, clear out all the user operations leaving the
2864 	 * breadcrumb at the end (so we get the fence notifications).
2865 	 */
2866 	head = request->head;
2867 	if (request->postfix < head) {
2868 		memset(vaddr + head, 0, request->ring->size - head);
2869 		head = 0;
2870 	}
2871 	memset(vaddr + head, 0, request->postfix - head);
2872 
2873 	dma_fence_set_error(&request->fence, -EIO);
2874 }
2875 
2876 static void engine_skip_context(struct drm_i915_gem_request *request)
2877 {
2878 	struct intel_engine_cs *engine = request->engine;
2879 	struct i915_gem_context *hung_ctx = request->ctx;
2880 	struct intel_timeline *timeline;
2881 	unsigned long flags;
2882 
2883 	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2884 
2885 	spin_lock_irqsave(&engine->timeline->lock, flags);
2886 	spin_lock(&timeline->lock);
2887 
2888 	list_for_each_entry_continue(request, &engine->timeline->requests, link)
2889 		if (request->ctx == hung_ctx)
2890 			skip_request(request);
2891 
2892 	list_for_each_entry(request, &timeline->requests, link)
2893 		skip_request(request);
2894 
2895 	spin_unlock(&timeline->lock);
2896 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2897 }
2898 
2899 /* Returns the request if it was guilty of the hang */
2900 static struct drm_i915_gem_request *
2901 i915_gem_reset_request(struct intel_engine_cs *engine,
2902 		       struct drm_i915_gem_request *request)
2903 {
2904 	/* The guilty request will get skipped on a hung engine.
2905 	 *
2906 	 * Users of client default contexts do not rely on logical
2907 	 * state preserved between batches so it is safe to execute
2908 	 * queued requests following the hang. Non default contexts
2909 	 * rely on preserved state, so skipping a batch loses the
2910 	 * evolution of the state and it needs to be considered corrupted.
2911 	 * Executing more queued batches on top of corrupted state is
2912 	 * risky. But we take the risk by trying to advance through
2913 	 * the queued requests in order to make the client behaviour
2914 	 * more predictable around resets, by not throwing away random
2915 	 * amount of batches it has prepared for execution. Sophisticated
2916 	 * clients can use gem_reset_stats_ioctl and dma fence status
2917 	 * (exported via sync_file info ioctl on explicit fences) to observe
2918 	 * when it loses the context state and should rebuild accordingly.
2919 	 *
2920 	 * The context ban, and ultimately the client ban, mechanism are safety
2921 	 * valves if client submission ends up resulting in nothing more than
2922 	 * subsequent hangs.
2923 	 */
2924 
2925 	if (engine_stalled(engine)) {
2926 		i915_gem_context_mark_guilty(request->ctx);
2927 		skip_request(request);
2928 
2929 		/* If this context is now banned, skip all pending requests. */
2930 		if (i915_gem_context_is_banned(request->ctx))
2931 			engine_skip_context(request);
2932 	} else {
2933 		/*
2934 		 * Since this is not the hung engine, it may have advanced
2935 		 * since the hang declaration. Double check by refinding
2936 		 * the active request at the time of the reset.
2937 		 */
2938 		request = i915_gem_find_active_request(engine);
2939 		if (request) {
2940 			i915_gem_context_mark_innocent(request->ctx);
2941 			dma_fence_set_error(&request->fence, -EAGAIN);
2942 
2943 			/* Rewind the engine to replay the incomplete rq */
2944 			spin_lock_irq(&engine->timeline->lock);
2945 			request = list_prev_entry(request, link);
2946 			if (&request->link == &engine->timeline->requests)
2947 				request = NULL;
2948 			spin_unlock_irq(&engine->timeline->lock);
2949 		}
2950 	}
2951 
2952 	return request;
2953 }
2954 
2955 void i915_gem_reset_engine(struct intel_engine_cs *engine,
2956 			   struct drm_i915_gem_request *request)
2957 {
2958 	engine->irq_posted = 0;
2959 
2960 	if (request)
2961 		request = i915_gem_reset_request(engine, request);
2962 
2963 	if (request) {
2964 		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2965 				 engine->name, request->global_seqno);
2966 	}
2967 
2968 	/* Setup the CS to resume from the breadcrumb of the hung request */
2969 	engine->reset_hw(engine, request);
2970 }
2971 
2972 void i915_gem_reset(struct drm_i915_private *dev_priv)
2973 {
2974 	struct intel_engine_cs *engine;
2975 	enum intel_engine_id id;
2976 
2977 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2978 
2979 	i915_gem_retire_requests(dev_priv);
2980 
2981 	for_each_engine(engine, dev_priv, id) {
2982 		struct i915_gem_context *ctx;
2983 
2984 		i915_gem_reset_engine(engine, engine->hangcheck.active_request);
2985 		ctx = fetch_and_zero(&engine->last_retired_context);
2986 		if (ctx)
2987 			engine->context_unpin(engine, ctx);
2988 	}
2989 
2990 	i915_gem_restore_fences(dev_priv);
2991 
2992 	if (dev_priv->gt.awake) {
2993 		intel_sanitize_gt_powersave(dev_priv);
2994 		intel_enable_gt_powersave(dev_priv);
2995 		if (INTEL_GEN(dev_priv) >= 6)
2996 			gen6_rps_busy(dev_priv);
2997 	}
2998 }
2999 
3000 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3001 {
3002 	tasklet_enable(&engine->irq_tasklet);
3003 	kthread_unpark(engine->breadcrumbs.signaler);
3004 }
3005 
3006 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3007 {
3008 	struct intel_engine_cs *engine;
3009 	enum intel_engine_id id;
3010 
3011 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3012 
3013 	for_each_engine(engine, dev_priv, id) {
3014 		engine->hangcheck.active_request = NULL;
3015 		i915_gem_reset_finish_engine(engine);
3016 	}
3017 }
3018 
3019 static void nop_submit_request(struct drm_i915_gem_request *request)
3020 {
3021 	unsigned long flags;
3022 
3023 	GEM_BUG_ON(!i915_terminally_wedged(&request->i915->gpu_error));
3024 	dma_fence_set_error(&request->fence, -EIO);
3025 
3026 	spin_lock_irqsave(&request->engine->timeline->lock, flags);
3027 	__i915_gem_request_submit(request);
3028 	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3029 	spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3030 }
3031 
3032 static void engine_set_wedged(struct intel_engine_cs *engine)
3033 {
3034 	struct drm_i915_gem_request *request;
3035 	unsigned long flags;
3036 
3037 	/* We need to be sure that no thread is running the old callback as
3038 	 * we install the nop handler (otherwise we would submit a request
3039 	 * to hardware that will never complete). In order to prevent this
3040 	 * race, we wait until the machine is idle before making the swap
3041 	 * (using stop_machine()).
3042 	 */
3043 	engine->submit_request = nop_submit_request;
3044 
3045 	/* Mark all executing requests as skipped */
3046 	spin_lock_irqsave(&engine->timeline->lock, flags);
3047 	list_for_each_entry(request, &engine->timeline->requests, link)
3048 		if (!i915_gem_request_completed(request))
3049 			dma_fence_set_error(&request->fence, -EIO);
3050 	spin_unlock_irqrestore(&engine->timeline->lock, flags);
3051 
3052 	/*
3053 	 * Clear the execlists queue up before freeing the requests, as those
3054 	 * are the ones that keep the context and ringbuffer backing objects
3055 	 * pinned in place.
3056 	 */
3057 
3058 	if (i915.enable_execlists) {
3059 		struct execlist_port *port = engine->execlist_port;
3060 		unsigned long flags;
3061 		unsigned int n;
3062 
3063 		spin_lock_irqsave(&engine->timeline->lock, flags);
3064 
3065 		for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
3066 			i915_gem_request_put(port_request(&port[n]));
3067 		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
3068 		engine->execlist_queue = RB_ROOT;
3069 		engine->execlist_first = NULL;
3070 
3071 		spin_unlock_irqrestore(&engine->timeline->lock, flags);
3072 
3073 		/* The port is checked prior to scheduling a tasklet, but
3074 		 * just in case we have suspended the tasklet to do the
3075 		 * wedging make sure that when it wakes, it decides there
3076 		 * is no work to do by clearing the irq_posted bit.
3077 		 */
3078 		clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
3079 	}
3080 
3081 	/* Mark all pending requests as complete so that any concurrent
3082 	 * (lockless) lookup doesn't try and wait upon the request as we
3083 	 * reset it.
3084 	 */
3085 	intel_engine_init_global_seqno(engine,
3086 				       intel_engine_last_submit(engine));
3087 }
3088 
3089 static int __i915_gem_set_wedged_BKL(void *data)
3090 {
3091 	struct drm_i915_private *i915 = data;
3092 	struct intel_engine_cs *engine;
3093 	enum intel_engine_id id;
3094 
3095 	for_each_engine(engine, i915, id)
3096 		engine_set_wedged(engine);
3097 
3098 	set_bit(I915_WEDGED, &i915->gpu_error.flags);
3099 	wake_up_all(&i915->gpu_error.reset_queue);
3100 
3101 	return 0;
3102 }
3103 
3104 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
3105 {
3106 	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3107 }
3108 
3109 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3110 {
3111 	struct i915_gem_timeline *tl;
3112 	int i;
3113 
3114 	lockdep_assert_held(&i915->drm.struct_mutex);
3115 	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3116 		return true;
3117 
3118 	/* Before unwedging, make sure that all pending operations
3119 	 * are flushed and errored out - we may have requests waiting upon
3120 	 * third party fences. We marked all inflight requests as EIO, and
3121 	 * every execbuf since returned EIO, for consistency we want all
3122 	 * the currently pending requests to also be marked as EIO, which
3123 	 * is done inside our nop_submit_request - and so we must wait.
3124 	 *
3125 	 * No more can be submitted until we reset the wedged bit.
3126 	 */
3127 	list_for_each_entry(tl, &i915->gt.timelines, link) {
3128 		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3129 			struct drm_i915_gem_request *rq;
3130 
3131 			rq = i915_gem_active_peek(&tl->engine[i].last_request,
3132 						  &i915->drm.struct_mutex);
3133 			if (!rq)
3134 				continue;
3135 
3136 			/* We can't use our normal waiter as we want to
3137 			 * avoid recursively trying to handle the current
3138 			 * reset. The basic dma_fence_default_wait() installs
3139 			 * a callback for dma_fence_signal(), which is
3140 			 * triggered by our nop handler (indirectly, the
3141 			 * callback enables the signaler thread which is
3142 			 * woken by the nop_submit_request() advancing the seqno
3143 			 * and when the seqno passes the fence, the signaler
3144 			 * then signals the fence waking us up).
3145 			 */
3146 			if (dma_fence_default_wait(&rq->fence, true,
3147 						   MAX_SCHEDULE_TIMEOUT) < 0)
3148 				return false;
3149 		}
3150 	}
3151 
3152 	/* Undo nop_submit_request. We prevent all new i915 requests from
3153 	 * being queued (by disallowing execbuf whilst wedged) so having
3154 	 * waited for all active requests above, we know the system is idle
3155 	 * and do not have to worry about a thread being inside
3156 	 * engine->submit_request() as we swap over. So unlike installing
3157 	 * the nop_submit_request on reset, we can do this from normal
3158 	 * context and do not require stop_machine().
3159 	 */
3160 	intel_engines_reset_default_submission(i915);
3161 	i915_gem_contexts_lost(i915);
3162 
3163 	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3164 	clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3165 
3166 	return true;
3167 }
3168 
3169 static void
3170 i915_gem_retire_work_handler(struct work_struct *work)
3171 {
3172 	struct drm_i915_private *dev_priv =
3173 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3174 	struct drm_device *dev = &dev_priv->drm;
3175 
3176 	/* Come back later if the device is busy... */
3177 	if (mutex_trylock(&dev->struct_mutex)) {
3178 		i915_gem_retire_requests(dev_priv);
3179 		mutex_unlock(&dev->struct_mutex);
3180 	}
3181 
3182 	/* Keep the retire handler running until we are finally idle.
3183 	 * We do not need to do this test under locking as in the worst-case
3184 	 * we queue the retire worker once too often.
3185 	 */
3186 	if (READ_ONCE(dev_priv->gt.awake)) {
3187 		i915_queue_hangcheck(dev_priv);
3188 		queue_delayed_work(dev_priv->wq,
3189 				   &dev_priv->gt.retire_work,
3190 				   round_jiffies_up_relative(HZ));
3191 	}
3192 }
3193 
3194 static void
3195 i915_gem_idle_work_handler(struct work_struct *work)
3196 {
3197 	struct drm_i915_private *dev_priv =
3198 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3199 	struct drm_device *dev = &dev_priv->drm;
3200 	bool rearm_hangcheck;
3201 
3202 	if (!READ_ONCE(dev_priv->gt.awake))
3203 		return;
3204 
3205 	/*
3206 	 * Wait for last execlists context complete, but bail out in case a
3207 	 * new request is submitted.
3208 	 */
3209 	wait_for(intel_engines_are_idle(dev_priv), 10);
3210 	if (READ_ONCE(dev_priv->gt.active_requests))
3211 		return;
3212 
3213 	rearm_hangcheck =
3214 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3215 
3216 	if (!mutex_trylock(&dev->struct_mutex)) {
3217 		/* Currently busy, come back later */
3218 		mod_delayed_work(dev_priv->wq,
3219 				 &dev_priv->gt.idle_work,
3220 				 msecs_to_jiffies(50));
3221 		goto out_rearm;
3222 	}
3223 
3224 	/*
3225 	 * New request retired after this work handler started, extend active
3226 	 * period until next instance of the work.
3227 	 */
3228 	if (work_pending(work))
3229 		goto out_unlock;
3230 
3231 	if (dev_priv->gt.active_requests)
3232 		goto out_unlock;
3233 
3234 	if (wait_for(intel_engines_are_idle(dev_priv), 10))
3235 		DRM_ERROR("Timeout waiting for engines to idle\n");
3236 
3237 	intel_engines_mark_idle(dev_priv);
3238 	i915_gem_timelines_mark_idle(dev_priv);
3239 
3240 	GEM_BUG_ON(!dev_priv->gt.awake);
3241 	dev_priv->gt.awake = false;
3242 	rearm_hangcheck = false;
3243 
3244 	if (INTEL_GEN(dev_priv) >= 6)
3245 		gen6_rps_idle(dev_priv);
3246 	intel_runtime_pm_put(dev_priv);
3247 out_unlock:
3248 	mutex_unlock(&dev->struct_mutex);
3249 
3250 out_rearm:
3251 	if (rearm_hangcheck) {
3252 		GEM_BUG_ON(!dev_priv->gt.awake);
3253 		i915_queue_hangcheck(dev_priv);
3254 	}
3255 }
3256 
3257 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3258 {
3259 	struct drm_i915_private *i915 = to_i915(gem->dev);
3260 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
3261 	struct drm_i915_file_private *fpriv = file->driver_priv;
3262 	struct i915_lut_handle *lut, *ln;
3263 
3264 	mutex_lock(&i915->drm.struct_mutex);
3265 
3266 	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3267 		struct i915_gem_context *ctx = lut->ctx;
3268 		struct i915_vma *vma;
3269 
3270 		if (ctx->file_priv != fpriv)
3271 			continue;
3272 
3273 		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3274 
3275 		GEM_BUG_ON(vma->obj != obj);
3276 
3277 		/* We allow the process to have multiple handles to the same
3278 		 * vma, in the same fd namespace, by virtue of flink/open.
3279 		 */
3280 		GEM_BUG_ON(!vma->open_count);
3281 		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3282 			i915_vma_close(vma);
3283 
3284 		list_del(&lut->obj_link);
3285 		list_del(&lut->ctx_link);
3286 
3287 		kmem_cache_free(i915->luts, lut);
3288 		__i915_gem_object_release_unless_active(obj);
3289 	}
3290 
3291 	mutex_unlock(&i915->drm.struct_mutex);
3292 }
3293 
3294 static unsigned long to_wait_timeout(s64 timeout_ns)
3295 {
3296 	if (timeout_ns < 0)
3297 		return MAX_SCHEDULE_TIMEOUT;
3298 
3299 	if (timeout_ns == 0)
3300 		return 0;
3301 
3302 	return nsecs_to_jiffies_timeout(timeout_ns);
3303 }
3304 
3305 /**
3306  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3307  * @dev: drm device pointer
3308  * @data: ioctl data blob
3309  * @file: drm file pointer
3310  *
3311  * Returns 0 if successful, else an error is returned with the remaining time in
3312  * the timeout parameter.
3313  *  -ETIME: object is still busy after timeout
3314  *  -ERESTARTSYS: signal interrupted the wait
3315  *  -ENONENT: object doesn't exist
3316  * Also possible, but rare:
3317  *  -EAGAIN: incomplete, restart syscall
3318  *  -ENOMEM: damn
3319  *  -ENODEV: Internal IRQ fail
3320  *  -E?: The add request failed
3321  *
3322  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3323  * non-zero timeout parameter the wait ioctl will wait for the given number of
3324  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3325  * without holding struct_mutex the object may become re-busied before this
3326  * function completes. A similar but shorter * race condition exists in the busy
3327  * ioctl
3328  */
3329 int
3330 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3331 {
3332 	struct drm_i915_gem_wait *args = data;
3333 	struct drm_i915_gem_object *obj;
3334 	ktime_t start;
3335 	long ret;
3336 
3337 	if (args->flags != 0)
3338 		return -EINVAL;
3339 
3340 	obj = i915_gem_object_lookup(file, args->bo_handle);
3341 	if (!obj)
3342 		return -ENOENT;
3343 
3344 	start = ktime_get();
3345 
3346 	ret = i915_gem_object_wait(obj,
3347 				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3348 				   to_wait_timeout(args->timeout_ns),
3349 				   to_rps_client(file));
3350 
3351 	if (args->timeout_ns > 0) {
3352 		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3353 		if (args->timeout_ns < 0)
3354 			args->timeout_ns = 0;
3355 
3356 		/*
3357 		 * Apparently ktime isn't accurate enough and occasionally has a
3358 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3359 		 * things up to make the test happy. We allow up to 1 jiffy.
3360 		 *
3361 		 * This is a regression from the timespec->ktime conversion.
3362 		 */
3363 		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3364 			args->timeout_ns = 0;
3365 
3366 		/* Asked to wait beyond the jiffie/scheduler precision? */
3367 		if (ret == -ETIME && args->timeout_ns)
3368 			ret = -EAGAIN;
3369 	}
3370 
3371 	i915_gem_object_put(obj);
3372 	return ret;
3373 }
3374 
3375 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3376 {
3377 	int ret, i;
3378 
3379 	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3380 		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3381 		if (ret)
3382 			return ret;
3383 	}
3384 
3385 	return 0;
3386 }
3387 
3388 static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
3389 {
3390 	return wait_for(intel_engine_is_idle(engine), timeout_ms);
3391 }
3392 
3393 static int wait_for_engines(struct drm_i915_private *i915)
3394 {
3395 	struct intel_engine_cs *engine;
3396 	enum intel_engine_id id;
3397 
3398 	for_each_engine(engine, i915, id) {
3399 		if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
3400 			i915_gem_set_wedged(i915);
3401 			return -EIO;
3402 		}
3403 
3404 		GEM_BUG_ON(intel_engine_get_seqno(engine) !=
3405 			   intel_engine_last_submit(engine));
3406 	}
3407 
3408 	return 0;
3409 }
3410 
3411 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3412 {
3413 	int ret;
3414 
3415 	/* If the device is asleep, we have no requests outstanding */
3416 	if (!READ_ONCE(i915->gt.awake))
3417 		return 0;
3418 
3419 	if (flags & I915_WAIT_LOCKED) {
3420 		struct i915_gem_timeline *tl;
3421 
3422 		lockdep_assert_held(&i915->drm.struct_mutex);
3423 
3424 		list_for_each_entry(tl, &i915->gt.timelines, link) {
3425 			ret = wait_for_timeline(tl, flags);
3426 			if (ret)
3427 				return ret;
3428 		}
3429 
3430 		i915_gem_retire_requests(i915);
3431 		GEM_BUG_ON(i915->gt.active_requests);
3432 
3433 		ret = wait_for_engines(i915);
3434 	} else {
3435 		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3436 	}
3437 
3438 	return ret;
3439 }
3440 
3441 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3442 {
3443 	/*
3444 	 * We manually flush the CPU domain so that we can override and
3445 	 * force the flush for the display, and perform it asyncrhonously.
3446 	 */
3447 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3448 	if (obj->cache_dirty)
3449 		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3450 	obj->base.write_domain = 0;
3451 }
3452 
3453 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3454 {
3455 	if (!READ_ONCE(obj->pin_display))
3456 		return;
3457 
3458 	mutex_lock(&obj->base.dev->struct_mutex);
3459 	__i915_gem_object_flush_for_display(obj);
3460 	mutex_unlock(&obj->base.dev->struct_mutex);
3461 }
3462 
3463 /**
3464  * Moves a single object to the WC read, and possibly write domain.
3465  * @obj: object to act on
3466  * @write: ask for write access or read only
3467  *
3468  * This function returns when the move is complete, including waiting on
3469  * flushes to occur.
3470  */
3471 int
3472 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3473 {
3474 	int ret;
3475 
3476 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3477 
3478 	ret = i915_gem_object_wait(obj,
3479 				   I915_WAIT_INTERRUPTIBLE |
3480 				   I915_WAIT_LOCKED |
3481 				   (write ? I915_WAIT_ALL : 0),
3482 				   MAX_SCHEDULE_TIMEOUT,
3483 				   NULL);
3484 	if (ret)
3485 		return ret;
3486 
3487 	if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3488 		return 0;
3489 
3490 	/* Flush and acquire obj->pages so that we are coherent through
3491 	 * direct access in memory with previous cached writes through
3492 	 * shmemfs and that our cache domain tracking remains valid.
3493 	 * For example, if the obj->filp was moved to swap without us
3494 	 * being notified and releasing the pages, we would mistakenly
3495 	 * continue to assume that the obj remained out of the CPU cached
3496 	 * domain.
3497 	 */
3498 	ret = i915_gem_object_pin_pages(obj);
3499 	if (ret)
3500 		return ret;
3501 
3502 	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3503 
3504 	/* Serialise direct access to this object with the barriers for
3505 	 * coherent writes from the GPU, by effectively invalidating the
3506 	 * WC domain upon first access.
3507 	 */
3508 	if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3509 		mb();
3510 
3511 	/* It should now be out of any other write domains, and we can update
3512 	 * the domain values for our changes.
3513 	 */
3514 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3515 	obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3516 	if (write) {
3517 		obj->base.read_domains = I915_GEM_DOMAIN_WC;
3518 		obj->base.write_domain = I915_GEM_DOMAIN_WC;
3519 		obj->mm.dirty = true;
3520 	}
3521 
3522 	i915_gem_object_unpin_pages(obj);
3523 	return 0;
3524 }
3525 
3526 /**
3527  * Moves a single object to the GTT read, and possibly write domain.
3528  * @obj: object to act on
3529  * @write: ask for write access or read only
3530  *
3531  * This function returns when the move is complete, including waiting on
3532  * flushes to occur.
3533  */
3534 int
3535 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3536 {
3537 	int ret;
3538 
3539 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3540 
3541 	ret = i915_gem_object_wait(obj,
3542 				   I915_WAIT_INTERRUPTIBLE |
3543 				   I915_WAIT_LOCKED |
3544 				   (write ? I915_WAIT_ALL : 0),
3545 				   MAX_SCHEDULE_TIMEOUT,
3546 				   NULL);
3547 	if (ret)
3548 		return ret;
3549 
3550 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3551 		return 0;
3552 
3553 	/* Flush and acquire obj->pages so that we are coherent through
3554 	 * direct access in memory with previous cached writes through
3555 	 * shmemfs and that our cache domain tracking remains valid.
3556 	 * For example, if the obj->filp was moved to swap without us
3557 	 * being notified and releasing the pages, we would mistakenly
3558 	 * continue to assume that the obj remained out of the CPU cached
3559 	 * domain.
3560 	 */
3561 	ret = i915_gem_object_pin_pages(obj);
3562 	if (ret)
3563 		return ret;
3564 
3565 	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3566 
3567 	/* Serialise direct access to this object with the barriers for
3568 	 * coherent writes from the GPU, by effectively invalidating the
3569 	 * GTT domain upon first access.
3570 	 */
3571 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3572 		mb();
3573 
3574 	/* It should now be out of any other write domains, and we can update
3575 	 * the domain values for our changes.
3576 	 */
3577 	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3578 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3579 	if (write) {
3580 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3581 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3582 		obj->mm.dirty = true;
3583 	}
3584 
3585 	i915_gem_object_unpin_pages(obj);
3586 	return 0;
3587 }
3588 
3589 /**
3590  * Changes the cache-level of an object across all VMA.
3591  * @obj: object to act on
3592  * @cache_level: new cache level to set for the object
3593  *
3594  * After this function returns, the object will be in the new cache-level
3595  * across all GTT and the contents of the backing storage will be coherent,
3596  * with respect to the new cache-level. In order to keep the backing storage
3597  * coherent for all users, we only allow a single cache level to be set
3598  * globally on the object and prevent it from being changed whilst the
3599  * hardware is reading from the object. That is if the object is currently
3600  * on the scanout it will be set to uncached (or equivalent display
3601  * cache coherency) and all non-MOCS GPU access will also be uncached so
3602  * that all direct access to the scanout remains coherent.
3603  */
3604 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3605 				    enum i915_cache_level cache_level)
3606 {
3607 	struct i915_vma *vma;
3608 	int ret;
3609 
3610 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3611 
3612 	if (obj->cache_level == cache_level)
3613 		return 0;
3614 
3615 	/* Inspect the list of currently bound VMA and unbind any that would
3616 	 * be invalid given the new cache-level. This is principally to
3617 	 * catch the issue of the CS prefetch crossing page boundaries and
3618 	 * reading an invalid PTE on older architectures.
3619 	 */
3620 restart:
3621 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3622 		if (!drm_mm_node_allocated(&vma->node))
3623 			continue;
3624 
3625 		if (i915_vma_is_pinned(vma)) {
3626 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3627 			return -EBUSY;
3628 		}
3629 
3630 		if (i915_gem_valid_gtt_space(vma, cache_level))
3631 			continue;
3632 
3633 		ret = i915_vma_unbind(vma);
3634 		if (ret)
3635 			return ret;
3636 
3637 		/* As unbinding may affect other elements in the
3638 		 * obj->vma_list (due to side-effects from retiring
3639 		 * an active vma), play safe and restart the iterator.
3640 		 */
3641 		goto restart;
3642 	}
3643 
3644 	/* We can reuse the existing drm_mm nodes but need to change the
3645 	 * cache-level on the PTE. We could simply unbind them all and
3646 	 * rebind with the correct cache-level on next use. However since
3647 	 * we already have a valid slot, dma mapping, pages etc, we may as
3648 	 * rewrite the PTE in the belief that doing so tramples upon less
3649 	 * state and so involves less work.
3650 	 */
3651 	if (obj->bind_count) {
3652 		/* Before we change the PTE, the GPU must not be accessing it.
3653 		 * If we wait upon the object, we know that all the bound
3654 		 * VMA are no longer active.
3655 		 */
3656 		ret = i915_gem_object_wait(obj,
3657 					   I915_WAIT_INTERRUPTIBLE |
3658 					   I915_WAIT_LOCKED |
3659 					   I915_WAIT_ALL,
3660 					   MAX_SCHEDULE_TIMEOUT,
3661 					   NULL);
3662 		if (ret)
3663 			return ret;
3664 
3665 		if (!HAS_LLC(to_i915(obj->base.dev)) &&
3666 		    cache_level != I915_CACHE_NONE) {
3667 			/* Access to snoopable pages through the GTT is
3668 			 * incoherent and on some machines causes a hard
3669 			 * lockup. Relinquish the CPU mmaping to force
3670 			 * userspace to refault in the pages and we can
3671 			 * then double check if the GTT mapping is still
3672 			 * valid for that pointer access.
3673 			 */
3674 			i915_gem_release_mmap(obj);
3675 
3676 			/* As we no longer need a fence for GTT access,
3677 			 * we can relinquish it now (and so prevent having
3678 			 * to steal a fence from someone else on the next
3679 			 * fence request). Note GPU activity would have
3680 			 * dropped the fence as all snoopable access is
3681 			 * supposed to be linear.
3682 			 */
3683 			list_for_each_entry(vma, &obj->vma_list, obj_link) {
3684 				ret = i915_vma_put_fence(vma);
3685 				if (ret)
3686 					return ret;
3687 			}
3688 		} else {
3689 			/* We either have incoherent backing store and
3690 			 * so no GTT access or the architecture is fully
3691 			 * coherent. In such cases, existing GTT mmaps
3692 			 * ignore the cache bit in the PTE and we can
3693 			 * rewrite it without confusing the GPU or having
3694 			 * to force userspace to fault back in its mmaps.
3695 			 */
3696 		}
3697 
3698 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3699 			if (!drm_mm_node_allocated(&vma->node))
3700 				continue;
3701 
3702 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3703 			if (ret)
3704 				return ret;
3705 		}
3706 	}
3707 
3708 	list_for_each_entry(vma, &obj->vma_list, obj_link)
3709 		vma->node.color = cache_level;
3710 	i915_gem_object_set_cache_coherency(obj, cache_level);
3711 	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3712 
3713 	return 0;
3714 }
3715 
3716 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3717 			       struct drm_file *file)
3718 {
3719 	struct drm_i915_gem_caching *args = data;
3720 	struct drm_i915_gem_object *obj;
3721 	int err = 0;
3722 
3723 	rcu_read_lock();
3724 	obj = i915_gem_object_lookup_rcu(file, args->handle);
3725 	if (!obj) {
3726 		err = -ENOENT;
3727 		goto out;
3728 	}
3729 
3730 	switch (obj->cache_level) {
3731 	case I915_CACHE_LLC:
3732 	case I915_CACHE_L3_LLC:
3733 		args->caching = I915_CACHING_CACHED;
3734 		break;
3735 
3736 	case I915_CACHE_WT:
3737 		args->caching = I915_CACHING_DISPLAY;
3738 		break;
3739 
3740 	default:
3741 		args->caching = I915_CACHING_NONE;
3742 		break;
3743 	}
3744 out:
3745 	rcu_read_unlock();
3746 	return err;
3747 }
3748 
3749 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3750 			       struct drm_file *file)
3751 {
3752 	struct drm_i915_private *i915 = to_i915(dev);
3753 	struct drm_i915_gem_caching *args = data;
3754 	struct drm_i915_gem_object *obj;
3755 	enum i915_cache_level level;
3756 	int ret = 0;
3757 
3758 	switch (args->caching) {
3759 	case I915_CACHING_NONE:
3760 		level = I915_CACHE_NONE;
3761 		break;
3762 	case I915_CACHING_CACHED:
3763 		/*
3764 		 * Due to a HW issue on BXT A stepping, GPU stores via a
3765 		 * snooped mapping may leave stale data in a corresponding CPU
3766 		 * cacheline, whereas normally such cachelines would get
3767 		 * invalidated.
3768 		 */
3769 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3770 			return -ENODEV;
3771 
3772 		level = I915_CACHE_LLC;
3773 		break;
3774 	case I915_CACHING_DISPLAY:
3775 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3776 		break;
3777 	default:
3778 		return -EINVAL;
3779 	}
3780 
3781 	obj = i915_gem_object_lookup(file, args->handle);
3782 	if (!obj)
3783 		return -ENOENT;
3784 
3785 	if (obj->cache_level == level)
3786 		goto out;
3787 
3788 	ret = i915_gem_object_wait(obj,
3789 				   I915_WAIT_INTERRUPTIBLE,
3790 				   MAX_SCHEDULE_TIMEOUT,
3791 				   to_rps_client(file));
3792 	if (ret)
3793 		goto out;
3794 
3795 	ret = i915_mutex_lock_interruptible(dev);
3796 	if (ret)
3797 		goto out;
3798 
3799 	ret = i915_gem_object_set_cache_level(obj, level);
3800 	mutex_unlock(&dev->struct_mutex);
3801 
3802 out:
3803 	i915_gem_object_put(obj);
3804 	return ret;
3805 }
3806 
3807 /*
3808  * Prepare buffer for display plane (scanout, cursors, etc).
3809  * Can be called from an uninterruptible phase (modesetting) and allows
3810  * any flushes to be pipelined (for pageflips).
3811  */
3812 struct i915_vma *
3813 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3814 				     u32 alignment,
3815 				     const struct i915_ggtt_view *view)
3816 {
3817 	struct i915_vma *vma;
3818 	int ret;
3819 
3820 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3821 
3822 	/* Mark the pin_display early so that we account for the
3823 	 * display coherency whilst setting up the cache domains.
3824 	 */
3825 	obj->pin_display++;
3826 
3827 	/* The display engine is not coherent with the LLC cache on gen6.  As
3828 	 * a result, we make sure that the pinning that is about to occur is
3829 	 * done with uncached PTEs. This is lowest common denominator for all
3830 	 * chipsets.
3831 	 *
3832 	 * However for gen6+, we could do better by using the GFDT bit instead
3833 	 * of uncaching, which would allow us to flush all the LLC-cached data
3834 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3835 	 */
3836 	ret = i915_gem_object_set_cache_level(obj,
3837 					      HAS_WT(to_i915(obj->base.dev)) ?
3838 					      I915_CACHE_WT : I915_CACHE_NONE);
3839 	if (ret) {
3840 		vma = ERR_PTR(ret);
3841 		goto err_unpin_display;
3842 	}
3843 
3844 	/* As the user may map the buffer once pinned in the display plane
3845 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3846 	 * always use map_and_fenceable for all scanout buffers. However,
3847 	 * it may simply be too big to fit into mappable, in which case
3848 	 * put it anyway and hope that userspace can cope (but always first
3849 	 * try to preserve the existing ABI).
3850 	 */
3851 	vma = ERR_PTR(-ENOSPC);
3852 	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3853 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3854 					       PIN_MAPPABLE | PIN_NONBLOCK);
3855 	if (IS_ERR(vma)) {
3856 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3857 		unsigned int flags;
3858 
3859 		/* Valleyview is definitely limited to scanning out the first
3860 		 * 512MiB. Lets presume this behaviour was inherited from the
3861 		 * g4x display engine and that all earlier gen are similarly
3862 		 * limited. Testing suggests that it is a little more
3863 		 * complicated than this. For example, Cherryview appears quite
3864 		 * happy to scanout from anywhere within its global aperture.
3865 		 */
3866 		flags = 0;
3867 		if (HAS_GMCH_DISPLAY(i915))
3868 			flags = PIN_MAPPABLE;
3869 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3870 	}
3871 	if (IS_ERR(vma))
3872 		goto err_unpin_display;
3873 
3874 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3875 
3876 	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3877 	__i915_gem_object_flush_for_display(obj);
3878 	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3879 
3880 	/* It should now be out of any other write domains, and we can update
3881 	 * the domain values for our changes.
3882 	 */
3883 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3884 
3885 	return vma;
3886 
3887 err_unpin_display:
3888 	obj->pin_display--;
3889 	return vma;
3890 }
3891 
3892 void
3893 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3894 {
3895 	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3896 
3897 	if (WARN_ON(vma->obj->pin_display == 0))
3898 		return;
3899 
3900 	if (--vma->obj->pin_display == 0)
3901 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3902 
3903 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3904 	i915_gem_object_bump_inactive_ggtt(vma->obj);
3905 
3906 	i915_vma_unpin(vma);
3907 }
3908 
3909 /**
3910  * Moves a single object to the CPU read, and possibly write domain.
3911  * @obj: object to act on
3912  * @write: requesting write or read-only access
3913  *
3914  * This function returns when the move is complete, including waiting on
3915  * flushes to occur.
3916  */
3917 int
3918 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3919 {
3920 	int ret;
3921 
3922 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3923 
3924 	ret = i915_gem_object_wait(obj,
3925 				   I915_WAIT_INTERRUPTIBLE |
3926 				   I915_WAIT_LOCKED |
3927 				   (write ? I915_WAIT_ALL : 0),
3928 				   MAX_SCHEDULE_TIMEOUT,
3929 				   NULL);
3930 	if (ret)
3931 		return ret;
3932 
3933 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3934 
3935 	/* Flush the CPU cache if it's still invalid. */
3936 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3937 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3938 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3939 	}
3940 
3941 	/* It should now be out of any other write domains, and we can update
3942 	 * the domain values for our changes.
3943 	 */
3944 	GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3945 
3946 	/* If we're writing through the CPU, then the GPU read domains will
3947 	 * need to be invalidated at next use.
3948 	 */
3949 	if (write)
3950 		__start_cpu_write(obj);
3951 
3952 	return 0;
3953 }
3954 
3955 /* Throttle our rendering by waiting until the ring has completed our requests
3956  * emitted over 20 msec ago.
3957  *
3958  * Note that if we were to use the current jiffies each time around the loop,
3959  * we wouldn't escape the function with any frames outstanding if the time to
3960  * render a frame was over 20ms.
3961  *
3962  * This should get us reasonable parallelism between CPU and GPU but also
3963  * relatively low latency when blocking on a particular request to finish.
3964  */
3965 static int
3966 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3967 {
3968 	struct drm_i915_private *dev_priv = to_i915(dev);
3969 	struct drm_i915_file_private *file_priv = file->driver_priv;
3970 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3971 	struct drm_i915_gem_request *request, *target = NULL;
3972 	long ret;
3973 
3974 	/* ABI: return -EIO if already wedged */
3975 	if (i915_terminally_wedged(&dev_priv->gpu_error))
3976 		return -EIO;
3977 
3978 	spin_lock(&file_priv->mm.lock);
3979 	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3980 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3981 			break;
3982 
3983 		if (target) {
3984 			list_del(&target->client_link);
3985 			target->file_priv = NULL;
3986 		}
3987 
3988 		target = request;
3989 	}
3990 	if (target)
3991 		i915_gem_request_get(target);
3992 	spin_unlock(&file_priv->mm.lock);
3993 
3994 	if (target == NULL)
3995 		return 0;
3996 
3997 	ret = i915_wait_request(target,
3998 				I915_WAIT_INTERRUPTIBLE,
3999 				MAX_SCHEDULE_TIMEOUT);
4000 	i915_gem_request_put(target);
4001 
4002 	return ret < 0 ? ret : 0;
4003 }
4004 
4005 struct i915_vma *
4006 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4007 			 const struct i915_ggtt_view *view,
4008 			 u64 size,
4009 			 u64 alignment,
4010 			 u64 flags)
4011 {
4012 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4013 	struct i915_address_space *vm = &dev_priv->ggtt.base;
4014 	struct i915_vma *vma;
4015 	int ret;
4016 
4017 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4018 
4019 	vma = i915_vma_instance(obj, vm, view);
4020 	if (unlikely(IS_ERR(vma)))
4021 		return vma;
4022 
4023 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4024 		if (flags & PIN_NONBLOCK &&
4025 		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
4026 			return ERR_PTR(-ENOSPC);
4027 
4028 		if (flags & PIN_MAPPABLE) {
4029 			/* If the required space is larger than the available
4030 			 * aperture, we will not able to find a slot for the
4031 			 * object and unbinding the object now will be in
4032 			 * vain. Worse, doing so may cause us to ping-pong
4033 			 * the object in and out of the Global GTT and
4034 			 * waste a lot of cycles under the mutex.
4035 			 */
4036 			if (vma->fence_size > dev_priv->ggtt.mappable_end)
4037 				return ERR_PTR(-E2BIG);
4038 
4039 			/* If NONBLOCK is set the caller is optimistically
4040 			 * trying to cache the full object within the mappable
4041 			 * aperture, and *must* have a fallback in place for
4042 			 * situations where we cannot bind the object. We
4043 			 * can be a little more lax here and use the fallback
4044 			 * more often to avoid costly migrations of ourselves
4045 			 * and other objects within the aperture.
4046 			 *
4047 			 * Half-the-aperture is used as a simple heuristic.
4048 			 * More interesting would to do search for a free
4049 			 * block prior to making the commitment to unbind.
4050 			 * That caters for the self-harm case, and with a
4051 			 * little more heuristics (e.g. NOFAULT, NOEVICT)
4052 			 * we could try to minimise harm to others.
4053 			 */
4054 			if (flags & PIN_NONBLOCK &&
4055 			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4056 				return ERR_PTR(-ENOSPC);
4057 		}
4058 
4059 		WARN(i915_vma_is_pinned(vma),
4060 		     "bo is already pinned in ggtt with incorrect alignment:"
4061 		     " offset=%08x, req.alignment=%llx,"
4062 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4063 		     i915_ggtt_offset(vma), alignment,
4064 		     !!(flags & PIN_MAPPABLE),
4065 		     i915_vma_is_map_and_fenceable(vma));
4066 		ret = i915_vma_unbind(vma);
4067 		if (ret)
4068 			return ERR_PTR(ret);
4069 	}
4070 
4071 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4072 	if (ret)
4073 		return ERR_PTR(ret);
4074 
4075 	return vma;
4076 }
4077 
4078 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4079 {
4080 	/* Note that we could alias engines in the execbuf API, but
4081 	 * that would be very unwise as it prevents userspace from
4082 	 * fine control over engine selection. Ahem.
4083 	 *
4084 	 * This should be something like EXEC_MAX_ENGINE instead of
4085 	 * I915_NUM_ENGINES.
4086 	 */
4087 	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4088 	return 0x10000 << id;
4089 }
4090 
4091 static __always_inline unsigned int __busy_write_id(unsigned int id)
4092 {
4093 	/* The uABI guarantees an active writer is also amongst the read
4094 	 * engines. This would be true if we accessed the activity tracking
4095 	 * under the lock, but as we perform the lookup of the object and
4096 	 * its activity locklessly we can not guarantee that the last_write
4097 	 * being active implies that we have set the same engine flag from
4098 	 * last_read - hence we always set both read and write busy for
4099 	 * last_write.
4100 	 */
4101 	return id | __busy_read_flag(id);
4102 }
4103 
4104 static __always_inline unsigned int
4105 __busy_set_if_active(const struct dma_fence *fence,
4106 		     unsigned int (*flag)(unsigned int id))
4107 {
4108 	struct drm_i915_gem_request *rq;
4109 
4110 	/* We have to check the current hw status of the fence as the uABI
4111 	 * guarantees forward progress. We could rely on the idle worker
4112 	 * to eventually flush us, but to minimise latency just ask the
4113 	 * hardware.
4114 	 *
4115 	 * Note we only report on the status of native fences.
4116 	 */
4117 	if (!dma_fence_is_i915(fence))
4118 		return 0;
4119 
4120 	/* opencode to_request() in order to avoid const warnings */
4121 	rq = container_of(fence, struct drm_i915_gem_request, fence);
4122 	if (i915_gem_request_completed(rq))
4123 		return 0;
4124 
4125 	return flag(rq->engine->uabi_id);
4126 }
4127 
4128 static __always_inline unsigned int
4129 busy_check_reader(const struct dma_fence *fence)
4130 {
4131 	return __busy_set_if_active(fence, __busy_read_flag);
4132 }
4133 
4134 static __always_inline unsigned int
4135 busy_check_writer(const struct dma_fence *fence)
4136 {
4137 	if (!fence)
4138 		return 0;
4139 
4140 	return __busy_set_if_active(fence, __busy_write_id);
4141 }
4142 
4143 int
4144 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4145 		    struct drm_file *file)
4146 {
4147 	struct drm_i915_gem_busy *args = data;
4148 	struct drm_i915_gem_object *obj;
4149 	struct reservation_object_list *list;
4150 	unsigned int seq;
4151 	int err;
4152 
4153 	err = -ENOENT;
4154 	rcu_read_lock();
4155 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4156 	if (!obj)
4157 		goto out;
4158 
4159 	/* A discrepancy here is that we do not report the status of
4160 	 * non-i915 fences, i.e. even though we may report the object as idle,
4161 	 * a call to set-domain may still stall waiting for foreign rendering.
4162 	 * This also means that wait-ioctl may report an object as busy,
4163 	 * where busy-ioctl considers it idle.
4164 	 *
4165 	 * We trade the ability to warn of foreign fences to report on which
4166 	 * i915 engines are active for the object.
4167 	 *
4168 	 * Alternatively, we can trade that extra information on read/write
4169 	 * activity with
4170 	 *	args->busy =
4171 	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
4172 	 * to report the overall busyness. This is what the wait-ioctl does.
4173 	 *
4174 	 */
4175 retry:
4176 	seq = raw_read_seqcount(&obj->resv->seq);
4177 
4178 	/* Translate the exclusive fence to the READ *and* WRITE engine */
4179 	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4180 
4181 	/* Translate shared fences to READ set of engines */
4182 	list = rcu_dereference(obj->resv->fence);
4183 	if (list) {
4184 		unsigned int shared_count = list->shared_count, i;
4185 
4186 		for (i = 0; i < shared_count; ++i) {
4187 			struct dma_fence *fence =
4188 				rcu_dereference(list->shared[i]);
4189 
4190 			args->busy |= busy_check_reader(fence);
4191 		}
4192 	}
4193 
4194 	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4195 		goto retry;
4196 
4197 	err = 0;
4198 out:
4199 	rcu_read_unlock();
4200 	return err;
4201 }
4202 
4203 int
4204 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4205 			struct drm_file *file_priv)
4206 {
4207 	return i915_gem_ring_throttle(dev, file_priv);
4208 }
4209 
4210 int
4211 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4212 		       struct drm_file *file_priv)
4213 {
4214 	struct drm_i915_private *dev_priv = to_i915(dev);
4215 	struct drm_i915_gem_madvise *args = data;
4216 	struct drm_i915_gem_object *obj;
4217 	int err;
4218 
4219 	switch (args->madv) {
4220 	case I915_MADV_DONTNEED:
4221 	case I915_MADV_WILLNEED:
4222 	    break;
4223 	default:
4224 	    return -EINVAL;
4225 	}
4226 
4227 	obj = i915_gem_object_lookup(file_priv, args->handle);
4228 	if (!obj)
4229 		return -ENOENT;
4230 
4231 	err = mutex_lock_interruptible(&obj->mm.lock);
4232 	if (err)
4233 		goto out;
4234 
4235 	if (obj->mm.pages &&
4236 	    i915_gem_object_is_tiled(obj) &&
4237 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4238 		if (obj->mm.madv == I915_MADV_WILLNEED) {
4239 			GEM_BUG_ON(!obj->mm.quirked);
4240 			__i915_gem_object_unpin_pages(obj);
4241 			obj->mm.quirked = false;
4242 		}
4243 		if (args->madv == I915_MADV_WILLNEED) {
4244 			GEM_BUG_ON(obj->mm.quirked);
4245 			__i915_gem_object_pin_pages(obj);
4246 			obj->mm.quirked = true;
4247 		}
4248 	}
4249 
4250 	if (obj->mm.madv != __I915_MADV_PURGED)
4251 		obj->mm.madv = args->madv;
4252 
4253 	/* if the object is no longer attached, discard its backing storage */
4254 	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4255 		i915_gem_object_truncate(obj);
4256 
4257 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4258 	mutex_unlock(&obj->mm.lock);
4259 
4260 out:
4261 	i915_gem_object_put(obj);
4262 	return err;
4263 }
4264 
4265 static void
4266 frontbuffer_retire(struct i915_gem_active *active,
4267 		   struct drm_i915_gem_request *request)
4268 {
4269 	struct drm_i915_gem_object *obj =
4270 		container_of(active, typeof(*obj), frontbuffer_write);
4271 
4272 	intel_fb_obj_flush(obj, ORIGIN_CS);
4273 }
4274 
4275 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4276 			  const struct drm_i915_gem_object_ops *ops)
4277 {
4278 	mutex_init(&obj->mm.lock);
4279 
4280 	INIT_LIST_HEAD(&obj->global_link);
4281 	INIT_LIST_HEAD(&obj->userfault_link);
4282 	INIT_LIST_HEAD(&obj->vma_list);
4283 	INIT_LIST_HEAD(&obj->lut_list);
4284 	INIT_LIST_HEAD(&obj->batch_pool_link);
4285 
4286 	obj->ops = ops;
4287 
4288 	reservation_object_init(&obj->__builtin_resv);
4289 	obj->resv = &obj->__builtin_resv;
4290 
4291 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4292 	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4293 
4294 	obj->mm.madv = I915_MADV_WILLNEED;
4295 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4296 	mutex_init(&obj->mm.get_page.lock);
4297 
4298 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4299 }
4300 
4301 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4302 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4303 		 I915_GEM_OBJECT_IS_SHRINKABLE,
4304 
4305 	.get_pages = i915_gem_object_get_pages_gtt,
4306 	.put_pages = i915_gem_object_put_pages_gtt,
4307 
4308 	.pwrite = i915_gem_object_pwrite_gtt,
4309 };
4310 
4311 struct drm_i915_gem_object *
4312 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4313 {
4314 	struct drm_i915_gem_object *obj;
4315 	struct address_space *mapping;
4316 	unsigned int cache_level;
4317 	gfp_t mask;
4318 	int ret;
4319 
4320 	/* There is a prevalence of the assumption that we fit the object's
4321 	 * page count inside a 32bit _signed_ variable. Let's document this and
4322 	 * catch if we ever need to fix it. In the meantime, if you do spot
4323 	 * such a local variable, please consider fixing!
4324 	 */
4325 	if (size >> PAGE_SHIFT > INT_MAX)
4326 		return ERR_PTR(-E2BIG);
4327 
4328 	if (overflows_type(size, obj->base.size))
4329 		return ERR_PTR(-E2BIG);
4330 
4331 	obj = i915_gem_object_alloc(dev_priv);
4332 	if (obj == NULL)
4333 		return ERR_PTR(-ENOMEM);
4334 
4335 	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4336 	if (ret)
4337 		goto fail;
4338 
4339 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4340 	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4341 		/* 965gm cannot relocate objects above 4GiB. */
4342 		mask &= ~__GFP_HIGHMEM;
4343 		mask |= __GFP_DMA32;
4344 	}
4345 
4346 	mapping = obj->base.filp->f_mapping;
4347 	mapping_set_gfp_mask(mapping, mask);
4348 	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4349 
4350 	i915_gem_object_init(obj, &i915_gem_object_ops);
4351 
4352 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4353 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4354 
4355 	if (HAS_LLC(dev_priv))
4356 		/* On some devices, we can have the GPU use the LLC (the CPU
4357 		 * cache) for about a 10% performance improvement
4358 		 * compared to uncached.  Graphics requests other than
4359 		 * display scanout are coherent with the CPU in
4360 		 * accessing this cache.  This means in this mode we
4361 		 * don't need to clflush on the CPU side, and on the
4362 		 * GPU side we only need to flush internal caches to
4363 		 * get data visible to the CPU.
4364 		 *
4365 		 * However, we maintain the display planes as UC, and so
4366 		 * need to rebind when first used as such.
4367 		 */
4368 		cache_level = I915_CACHE_LLC;
4369 	else
4370 		cache_level = I915_CACHE_NONE;
4371 
4372 	i915_gem_object_set_cache_coherency(obj, cache_level);
4373 
4374 	trace_i915_gem_object_create(obj);
4375 
4376 	return obj;
4377 
4378 fail:
4379 	i915_gem_object_free(obj);
4380 	return ERR_PTR(ret);
4381 }
4382 
4383 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4384 {
4385 	/* If we are the last user of the backing storage (be it shmemfs
4386 	 * pages or stolen etc), we know that the pages are going to be
4387 	 * immediately released. In this case, we can then skip copying
4388 	 * back the contents from the GPU.
4389 	 */
4390 
4391 	if (obj->mm.madv != I915_MADV_WILLNEED)
4392 		return false;
4393 
4394 	if (obj->base.filp == NULL)
4395 		return true;
4396 
4397 	/* At first glance, this looks racy, but then again so would be
4398 	 * userspace racing mmap against close. However, the first external
4399 	 * reference to the filp can only be obtained through the
4400 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4401 	 * acquiring such a reference whilst we are in the middle of
4402 	 * freeing the object.
4403 	 */
4404 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4405 }
4406 
4407 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4408 				    struct llist_node *freed)
4409 {
4410 	struct drm_i915_gem_object *obj, *on;
4411 
4412 	mutex_lock(&i915->drm.struct_mutex);
4413 	intel_runtime_pm_get(i915);
4414 	llist_for_each_entry(obj, freed, freed) {
4415 		struct i915_vma *vma, *vn;
4416 
4417 		trace_i915_gem_object_destroy(obj);
4418 
4419 		GEM_BUG_ON(i915_gem_object_is_active(obj));
4420 		list_for_each_entry_safe(vma, vn,
4421 					 &obj->vma_list, obj_link) {
4422 			GEM_BUG_ON(i915_vma_is_active(vma));
4423 			vma->flags &= ~I915_VMA_PIN_MASK;
4424 			i915_vma_close(vma);
4425 		}
4426 		GEM_BUG_ON(!list_empty(&obj->vma_list));
4427 		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4428 
4429 		list_del(&obj->global_link);
4430 	}
4431 	intel_runtime_pm_put(i915);
4432 	mutex_unlock(&i915->drm.struct_mutex);
4433 
4434 	cond_resched();
4435 
4436 	llist_for_each_entry_safe(obj, on, freed, freed) {
4437 		GEM_BUG_ON(obj->bind_count);
4438 		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4439 
4440 		if (obj->ops->release)
4441 			obj->ops->release(obj);
4442 
4443 		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4444 			atomic_set(&obj->mm.pages_pin_count, 0);
4445 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4446 		GEM_BUG_ON(obj->mm.pages);
4447 
4448 		if (obj->base.import_attach)
4449 			drm_prime_gem_destroy(&obj->base, NULL);
4450 
4451 		reservation_object_fini(&obj->__builtin_resv);
4452 		drm_gem_object_release(&obj->base);
4453 		i915_gem_info_remove_obj(i915, obj->base.size);
4454 
4455 		kfree(obj->bit_17);
4456 		i915_gem_object_free(obj);
4457 	}
4458 }
4459 
4460 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4461 {
4462 	struct llist_node *freed;
4463 
4464 	freed = llist_del_all(&i915->mm.free_list);
4465 	if (unlikely(freed))
4466 		__i915_gem_free_objects(i915, freed);
4467 }
4468 
4469 static void __i915_gem_free_work(struct work_struct *work)
4470 {
4471 	struct drm_i915_private *i915 =
4472 		container_of(work, struct drm_i915_private, mm.free_work);
4473 	struct llist_node *freed;
4474 
4475 	/* All file-owned VMA should have been released by this point through
4476 	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4477 	 * However, the object may also be bound into the global GTT (e.g.
4478 	 * older GPUs without per-process support, or for direct access through
4479 	 * the GTT either for the user or for scanout). Those VMA still need to
4480 	 * unbound now.
4481 	 */
4482 
4483 	while ((freed = llist_del_all(&i915->mm.free_list))) {
4484 		__i915_gem_free_objects(i915, freed);
4485 		if (need_resched())
4486 			break;
4487 	}
4488 }
4489 
4490 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4491 {
4492 	struct drm_i915_gem_object *obj =
4493 		container_of(head, typeof(*obj), rcu);
4494 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4495 
4496 	/* We can't simply use call_rcu() from i915_gem_free_object()
4497 	 * as we need to block whilst unbinding, and the call_rcu
4498 	 * task may be called from softirq context. So we take a
4499 	 * detour through a worker.
4500 	 */
4501 	if (llist_add(&obj->freed, &i915->mm.free_list))
4502 		schedule_work(&i915->mm.free_work);
4503 }
4504 
4505 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4506 {
4507 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4508 
4509 	if (obj->mm.quirked)
4510 		__i915_gem_object_unpin_pages(obj);
4511 
4512 	if (discard_backing_storage(obj))
4513 		obj->mm.madv = I915_MADV_DONTNEED;
4514 
4515 	/* Before we free the object, make sure any pure RCU-only
4516 	 * read-side critical sections are complete, e.g.
4517 	 * i915_gem_busy_ioctl(). For the corresponding synchronized
4518 	 * lookup see i915_gem_object_lookup_rcu().
4519 	 */
4520 	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4521 }
4522 
4523 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4524 {
4525 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4526 
4527 	if (!i915_gem_object_has_active_reference(obj) &&
4528 	    i915_gem_object_is_active(obj))
4529 		i915_gem_object_set_active_reference(obj);
4530 	else
4531 		i915_gem_object_put(obj);
4532 }
4533 
4534 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4535 {
4536 	struct intel_engine_cs *engine;
4537 	enum intel_engine_id id;
4538 
4539 	for_each_engine(engine, dev_priv, id)
4540 		GEM_BUG_ON(engine->last_retired_context &&
4541 			   !i915_gem_context_is_kernel(engine->last_retired_context));
4542 }
4543 
4544 void i915_gem_sanitize(struct drm_i915_private *i915)
4545 {
4546 	/*
4547 	 * If we inherit context state from the BIOS or earlier occupants
4548 	 * of the GPU, the GPU may be in an inconsistent state when we
4549 	 * try to take over. The only way to remove the earlier state
4550 	 * is by resetting. However, resetting on earlier gen is tricky as
4551 	 * it may impact the display and we are uncertain about the stability
4552 	 * of the reset, so this could be applied to even earlier gen.
4553 	 */
4554 	if (INTEL_GEN(i915) >= 5) {
4555 		int reset = intel_gpu_reset(i915, ALL_ENGINES);
4556 		WARN_ON(reset && reset != -ENODEV);
4557 	}
4558 }
4559 
4560 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4561 {
4562 	struct drm_device *dev = &dev_priv->drm;
4563 	int ret;
4564 
4565 	intel_runtime_pm_get(dev_priv);
4566 	intel_suspend_gt_powersave(dev_priv);
4567 
4568 	mutex_lock(&dev->struct_mutex);
4569 
4570 	/* We have to flush all the executing contexts to main memory so
4571 	 * that they can saved in the hibernation image. To ensure the last
4572 	 * context image is coherent, we have to switch away from it. That
4573 	 * leaves the dev_priv->kernel_context still active when
4574 	 * we actually suspend, and its image in memory may not match the GPU
4575 	 * state. Fortunately, the kernel_context is disposable and we do
4576 	 * not rely on its state.
4577 	 */
4578 	ret = i915_gem_switch_to_kernel_context(dev_priv);
4579 	if (ret)
4580 		goto err_unlock;
4581 
4582 	ret = i915_gem_wait_for_idle(dev_priv,
4583 				     I915_WAIT_INTERRUPTIBLE |
4584 				     I915_WAIT_LOCKED);
4585 	if (ret)
4586 		goto err_unlock;
4587 
4588 	assert_kernel_context_is_current(dev_priv);
4589 	i915_gem_contexts_lost(dev_priv);
4590 	mutex_unlock(&dev->struct_mutex);
4591 
4592 	intel_guc_suspend(dev_priv);
4593 
4594 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4595 	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4596 
4597 	/* As the idle_work is rearming if it detects a race, play safe and
4598 	 * repeat the flush until it is definitely idle.
4599 	 */
4600 	while (flush_delayed_work(&dev_priv->gt.idle_work))
4601 		;
4602 
4603 	/* Assert that we sucessfully flushed all the work and
4604 	 * reset the GPU back to its idle, low power state.
4605 	 */
4606 	WARN_ON(dev_priv->gt.awake);
4607 	WARN_ON(!intel_engines_are_idle(dev_priv));
4608 
4609 	/*
4610 	 * Neither the BIOS, ourselves or any other kernel
4611 	 * expects the system to be in execlists mode on startup,
4612 	 * so we need to reset the GPU back to legacy mode. And the only
4613 	 * known way to disable logical contexts is through a GPU reset.
4614 	 *
4615 	 * So in order to leave the system in a known default configuration,
4616 	 * always reset the GPU upon unload and suspend. Afterwards we then
4617 	 * clean up the GEM state tracking, flushing off the requests and
4618 	 * leaving the system in a known idle state.
4619 	 *
4620 	 * Note that is of the upmost importance that the GPU is idle and
4621 	 * all stray writes are flushed *before* we dismantle the backing
4622 	 * storage for the pinned objects.
4623 	 *
4624 	 * However, since we are uncertain that resetting the GPU on older
4625 	 * machines is a good idea, we don't - just in case it leaves the
4626 	 * machine in an unusable condition.
4627 	 */
4628 	i915_gem_sanitize(dev_priv);
4629 	goto out_rpm_put;
4630 
4631 err_unlock:
4632 	mutex_unlock(&dev->struct_mutex);
4633 out_rpm_put:
4634 	intel_runtime_pm_put(dev_priv);
4635 	return ret;
4636 }
4637 
4638 void i915_gem_resume(struct drm_i915_private *dev_priv)
4639 {
4640 	struct drm_device *dev = &dev_priv->drm;
4641 
4642 	WARN_ON(dev_priv->gt.awake);
4643 
4644 	mutex_lock(&dev->struct_mutex);
4645 	i915_gem_restore_gtt_mappings(dev_priv);
4646 
4647 	/* As we didn't flush the kernel context before suspend, we cannot
4648 	 * guarantee that the context image is complete. So let's just reset
4649 	 * it and start again.
4650 	 */
4651 	dev_priv->gt.resume(dev_priv);
4652 
4653 	mutex_unlock(&dev->struct_mutex);
4654 }
4655 
4656 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4657 {
4658 	if (INTEL_GEN(dev_priv) < 5 ||
4659 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4660 		return;
4661 
4662 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4663 				 DISP_TILE_SURFACE_SWIZZLING);
4664 
4665 	if (IS_GEN5(dev_priv))
4666 		return;
4667 
4668 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4669 	if (IS_GEN6(dev_priv))
4670 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4671 	else if (IS_GEN7(dev_priv))
4672 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4673 	else if (IS_GEN8(dev_priv))
4674 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4675 	else
4676 		BUG();
4677 }
4678 
4679 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4680 {
4681 	I915_WRITE(RING_CTL(base), 0);
4682 	I915_WRITE(RING_HEAD(base), 0);
4683 	I915_WRITE(RING_TAIL(base), 0);
4684 	I915_WRITE(RING_START(base), 0);
4685 }
4686 
4687 static void init_unused_rings(struct drm_i915_private *dev_priv)
4688 {
4689 	if (IS_I830(dev_priv)) {
4690 		init_unused_ring(dev_priv, PRB1_BASE);
4691 		init_unused_ring(dev_priv, SRB0_BASE);
4692 		init_unused_ring(dev_priv, SRB1_BASE);
4693 		init_unused_ring(dev_priv, SRB2_BASE);
4694 		init_unused_ring(dev_priv, SRB3_BASE);
4695 	} else if (IS_GEN2(dev_priv)) {
4696 		init_unused_ring(dev_priv, SRB0_BASE);
4697 		init_unused_ring(dev_priv, SRB1_BASE);
4698 	} else if (IS_GEN3(dev_priv)) {
4699 		init_unused_ring(dev_priv, PRB1_BASE);
4700 		init_unused_ring(dev_priv, PRB2_BASE);
4701 	}
4702 }
4703 
4704 static int __i915_gem_restart_engines(void *data)
4705 {
4706 	struct drm_i915_private *i915 = data;
4707 	struct intel_engine_cs *engine;
4708 	enum intel_engine_id id;
4709 	int err;
4710 
4711 	for_each_engine(engine, i915, id) {
4712 		err = engine->init_hw(engine);
4713 		if (err)
4714 			return err;
4715 	}
4716 
4717 	return 0;
4718 }
4719 
4720 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4721 {
4722 	int ret;
4723 
4724 	dev_priv->gt.last_init_time = ktime_get();
4725 
4726 	/* Double layer security blanket, see i915_gem_init() */
4727 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4728 
4729 	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4730 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4731 
4732 	if (IS_HASWELL(dev_priv))
4733 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4734 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4735 
4736 	if (HAS_PCH_NOP(dev_priv)) {
4737 		if (IS_IVYBRIDGE(dev_priv)) {
4738 			u32 temp = I915_READ(GEN7_MSG_CTL);
4739 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4740 			I915_WRITE(GEN7_MSG_CTL, temp);
4741 		} else if (INTEL_GEN(dev_priv) >= 7) {
4742 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4743 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4744 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4745 		}
4746 	}
4747 
4748 	i915_gem_init_swizzling(dev_priv);
4749 
4750 	/*
4751 	 * At least 830 can leave some of the unused rings
4752 	 * "active" (ie. head != tail) after resume which
4753 	 * will prevent c3 entry. Makes sure all unused rings
4754 	 * are totally idle.
4755 	 */
4756 	init_unused_rings(dev_priv);
4757 
4758 	BUG_ON(!dev_priv->kernel_context);
4759 
4760 	ret = i915_ppgtt_init_hw(dev_priv);
4761 	if (ret) {
4762 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4763 		goto out;
4764 	}
4765 
4766 	/* Need to do basic initialisation of all rings first: */
4767 	ret = __i915_gem_restart_engines(dev_priv);
4768 	if (ret)
4769 		goto out;
4770 
4771 	intel_mocs_init_l3cc_table(dev_priv);
4772 
4773 	/* We can't enable contexts until all firmware is loaded */
4774 	ret = intel_uc_init_hw(dev_priv);
4775 	if (ret)
4776 		goto out;
4777 
4778 out:
4779 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4780 	return ret;
4781 }
4782 
4783 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4784 {
4785 	if (INTEL_INFO(dev_priv)->gen < 6)
4786 		return false;
4787 
4788 	/* TODO: make semaphores and Execlists play nicely together */
4789 	if (i915.enable_execlists)
4790 		return false;
4791 
4792 	if (value >= 0)
4793 		return value;
4794 
4795 	/* Enable semaphores on SNB when IO remapping is off */
4796 	if (IS_GEN6(dev_priv) && intel_vtd_active())
4797 		return false;
4798 
4799 	return true;
4800 }
4801 
4802 int i915_gem_init(struct drm_i915_private *dev_priv)
4803 {
4804 	int ret;
4805 
4806 	mutex_lock(&dev_priv->drm.struct_mutex);
4807 
4808 	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4809 
4810 	if (!i915.enable_execlists) {
4811 		dev_priv->gt.resume = intel_legacy_submission_resume;
4812 		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4813 	} else {
4814 		dev_priv->gt.resume = intel_lr_context_resume;
4815 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4816 	}
4817 
4818 	/* This is just a security blanket to placate dragons.
4819 	 * On some systems, we very sporadically observe that the first TLBs
4820 	 * used by the CS may be stale, despite us poking the TLB reset. If
4821 	 * we hold the forcewake during initialisation these problems
4822 	 * just magically go away.
4823 	 */
4824 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4825 
4826 	ret = i915_gem_init_userptr(dev_priv);
4827 	if (ret)
4828 		goto out_unlock;
4829 
4830 	ret = i915_gem_init_ggtt(dev_priv);
4831 	if (ret)
4832 		goto out_unlock;
4833 
4834 	ret = i915_gem_contexts_init(dev_priv);
4835 	if (ret)
4836 		goto out_unlock;
4837 
4838 	ret = intel_engines_init(dev_priv);
4839 	if (ret)
4840 		goto out_unlock;
4841 
4842 	ret = i915_gem_init_hw(dev_priv);
4843 	if (ret == -EIO) {
4844 		/* Allow engine initialisation to fail by marking the GPU as
4845 		 * wedged. But we only want to do this where the GPU is angry,
4846 		 * for all other failure, such as an allocation failure, bail.
4847 		 */
4848 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4849 		i915_gem_set_wedged(dev_priv);
4850 		ret = 0;
4851 	}
4852 
4853 out_unlock:
4854 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4855 	mutex_unlock(&dev_priv->drm.struct_mutex);
4856 
4857 	return ret;
4858 }
4859 
4860 void i915_gem_init_mmio(struct drm_i915_private *i915)
4861 {
4862 	i915_gem_sanitize(i915);
4863 }
4864 
4865 void
4866 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4867 {
4868 	struct intel_engine_cs *engine;
4869 	enum intel_engine_id id;
4870 
4871 	for_each_engine(engine, dev_priv, id)
4872 		dev_priv->gt.cleanup_engine(engine);
4873 }
4874 
4875 void
4876 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4877 {
4878 	int i;
4879 
4880 	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4881 	    !IS_CHERRYVIEW(dev_priv))
4882 		dev_priv->num_fence_regs = 32;
4883 	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4884 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4885 		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4886 		dev_priv->num_fence_regs = 16;
4887 	else
4888 		dev_priv->num_fence_regs = 8;
4889 
4890 	if (intel_vgpu_active(dev_priv))
4891 		dev_priv->num_fence_regs =
4892 				I915_READ(vgtif_reg(avail_rs.fence_num));
4893 
4894 	/* Initialize fence registers to zero */
4895 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
4896 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4897 
4898 		fence->i915 = dev_priv;
4899 		fence->id = i;
4900 		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4901 	}
4902 	i915_gem_restore_fences(dev_priv);
4903 
4904 	i915_gem_detect_bit_6_swizzle(dev_priv);
4905 }
4906 
4907 int
4908 i915_gem_load_init(struct drm_i915_private *dev_priv)
4909 {
4910 	int err = -ENOMEM;
4911 
4912 	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4913 	if (!dev_priv->objects)
4914 		goto err_out;
4915 
4916 	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4917 	if (!dev_priv->vmas)
4918 		goto err_objects;
4919 
4920 	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
4921 	if (!dev_priv->luts)
4922 		goto err_vmas;
4923 
4924 	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4925 					SLAB_HWCACHE_ALIGN |
4926 					SLAB_RECLAIM_ACCOUNT |
4927 					SLAB_TYPESAFE_BY_RCU);
4928 	if (!dev_priv->requests)
4929 		goto err_luts;
4930 
4931 	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4932 					    SLAB_HWCACHE_ALIGN |
4933 					    SLAB_RECLAIM_ACCOUNT);
4934 	if (!dev_priv->dependencies)
4935 		goto err_requests;
4936 
4937 	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
4938 	if (!dev_priv->priorities)
4939 		goto err_dependencies;
4940 
4941 	mutex_lock(&dev_priv->drm.struct_mutex);
4942 	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4943 	err = i915_gem_timeline_init__global(dev_priv);
4944 	mutex_unlock(&dev_priv->drm.struct_mutex);
4945 	if (err)
4946 		goto err_priorities;
4947 
4948 	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4949 	init_llist_head(&dev_priv->mm.free_list);
4950 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4951 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4952 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4953 	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4954 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4955 			  i915_gem_retire_work_handler);
4956 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4957 			  i915_gem_idle_work_handler);
4958 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4959 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4960 
4961 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4962 
4963 	spin_lock_init(&dev_priv->fb_tracking.lock);
4964 
4965 	return 0;
4966 
4967 err_priorities:
4968 	kmem_cache_destroy(dev_priv->priorities);
4969 err_dependencies:
4970 	kmem_cache_destroy(dev_priv->dependencies);
4971 err_requests:
4972 	kmem_cache_destroy(dev_priv->requests);
4973 err_luts:
4974 	kmem_cache_destroy(dev_priv->luts);
4975 err_vmas:
4976 	kmem_cache_destroy(dev_priv->vmas);
4977 err_objects:
4978 	kmem_cache_destroy(dev_priv->objects);
4979 err_out:
4980 	return err;
4981 }
4982 
4983 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4984 {
4985 	i915_gem_drain_freed_objects(dev_priv);
4986 	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4987 	WARN_ON(dev_priv->mm.object_count);
4988 
4989 	mutex_lock(&dev_priv->drm.struct_mutex);
4990 	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4991 	WARN_ON(!list_empty(&dev_priv->gt.timelines));
4992 	mutex_unlock(&dev_priv->drm.struct_mutex);
4993 
4994 	kmem_cache_destroy(dev_priv->priorities);
4995 	kmem_cache_destroy(dev_priv->dependencies);
4996 	kmem_cache_destroy(dev_priv->requests);
4997 	kmem_cache_destroy(dev_priv->luts);
4998 	kmem_cache_destroy(dev_priv->vmas);
4999 	kmem_cache_destroy(dev_priv->objects);
5000 
5001 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5002 	rcu_barrier();
5003 }
5004 
5005 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5006 {
5007 	/* Discard all purgeable objects, let userspace recover those as
5008 	 * required after resuming.
5009 	 */
5010 	i915_gem_shrink_all(dev_priv);
5011 
5012 	return 0;
5013 }
5014 
5015 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5016 {
5017 	struct drm_i915_gem_object *obj;
5018 	struct list_head *phases[] = {
5019 		&dev_priv->mm.unbound_list,
5020 		&dev_priv->mm.bound_list,
5021 		NULL
5022 	}, **p;
5023 
5024 	/* Called just before we write the hibernation image.
5025 	 *
5026 	 * We need to update the domain tracking to reflect that the CPU
5027 	 * will be accessing all the pages to create and restore from the
5028 	 * hibernation, and so upon restoration those pages will be in the
5029 	 * CPU domain.
5030 	 *
5031 	 * To make sure the hibernation image contains the latest state,
5032 	 * we update that state just before writing out the image.
5033 	 *
5034 	 * To try and reduce the hibernation image, we manually shrink
5035 	 * the objects as well, see i915_gem_freeze()
5036 	 */
5037 
5038 	i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5039 	i915_gem_drain_freed_objects(dev_priv);
5040 
5041 	mutex_lock(&dev_priv->drm.struct_mutex);
5042 	for (p = phases; *p; p++) {
5043 		list_for_each_entry(obj, *p, global_link)
5044 			__start_cpu_write(obj);
5045 	}
5046 	mutex_unlock(&dev_priv->drm.struct_mutex);
5047 
5048 	return 0;
5049 }
5050 
5051 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5052 {
5053 	struct drm_i915_file_private *file_priv = file->driver_priv;
5054 	struct drm_i915_gem_request *request;
5055 
5056 	/* Clean up our request list when the client is going away, so that
5057 	 * later retire_requests won't dereference our soon-to-be-gone
5058 	 * file_priv.
5059 	 */
5060 	spin_lock(&file_priv->mm.lock);
5061 	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5062 		request->file_priv = NULL;
5063 	spin_unlock(&file_priv->mm.lock);
5064 }
5065 
5066 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5067 {
5068 	struct drm_i915_file_private *file_priv;
5069 	int ret;
5070 
5071 	DRM_DEBUG("\n");
5072 
5073 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5074 	if (!file_priv)
5075 		return -ENOMEM;
5076 
5077 	file->driver_priv = file_priv;
5078 	file_priv->dev_priv = i915;
5079 	file_priv->file = file;
5080 
5081 	spin_lock_init(&file_priv->mm.lock);
5082 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5083 
5084 	file_priv->bsd_engine = -1;
5085 
5086 	ret = i915_gem_context_open(i915, file);
5087 	if (ret)
5088 		kfree(file_priv);
5089 
5090 	return ret;
5091 }
5092 
5093 /**
5094  * i915_gem_track_fb - update frontbuffer tracking
5095  * @old: current GEM buffer for the frontbuffer slots
5096  * @new: new GEM buffer for the frontbuffer slots
5097  * @frontbuffer_bits: bitmask of frontbuffer slots
5098  *
5099  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5100  * from @old and setting them in @new. Both @old and @new can be NULL.
5101  */
5102 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5103 		       struct drm_i915_gem_object *new,
5104 		       unsigned frontbuffer_bits)
5105 {
5106 	/* Control of individual bits within the mask are guarded by
5107 	 * the owning plane->mutex, i.e. we can never see concurrent
5108 	 * manipulation of individual bits. But since the bitfield as a whole
5109 	 * is updated using RMW, we need to use atomics in order to update
5110 	 * the bits.
5111 	 */
5112 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5113 		     sizeof(atomic_t) * BITS_PER_BYTE);
5114 
5115 	if (old) {
5116 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5117 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5118 	}
5119 
5120 	if (new) {
5121 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5122 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5123 	}
5124 }
5125 
5126 /* Allocate a new GEM object and fill it with the supplied data */
5127 struct drm_i915_gem_object *
5128 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5129 			         const void *data, size_t size)
5130 {
5131 	struct drm_i915_gem_object *obj;
5132 	struct file *file;
5133 	size_t offset;
5134 	int err;
5135 
5136 	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5137 	if (IS_ERR(obj))
5138 		return obj;
5139 
5140 	GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5141 
5142 	file = obj->base.filp;
5143 	offset = 0;
5144 	do {
5145 		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5146 		struct page *page;
5147 		void *pgdata, *vaddr;
5148 
5149 		err = pagecache_write_begin(file, file->f_mapping,
5150 					    offset, len, 0,
5151 					    &page, &pgdata);
5152 		if (err < 0)
5153 			goto fail;
5154 
5155 		vaddr = kmap(page);
5156 		memcpy(vaddr, data, len);
5157 		kunmap(page);
5158 
5159 		err = pagecache_write_end(file, file->f_mapping,
5160 					  offset, len, len,
5161 					  page, pgdata);
5162 		if (err < 0)
5163 			goto fail;
5164 
5165 		size -= len;
5166 		data += len;
5167 		offset += len;
5168 	} while (size);
5169 
5170 	return obj;
5171 
5172 fail:
5173 	i915_gem_object_put(obj);
5174 	return ERR_PTR(err);
5175 }
5176 
5177 struct scatterlist *
5178 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5179 		       unsigned int n,
5180 		       unsigned int *offset)
5181 {
5182 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5183 	struct scatterlist *sg;
5184 	unsigned int idx, count;
5185 
5186 	might_sleep();
5187 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5188 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5189 
5190 	/* As we iterate forward through the sg, we record each entry in a
5191 	 * radixtree for quick repeated (backwards) lookups. If we have seen
5192 	 * this index previously, we will have an entry for it.
5193 	 *
5194 	 * Initial lookup is O(N), but this is amortized to O(1) for
5195 	 * sequential page access (where each new request is consecutive
5196 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5197 	 * i.e. O(1) with a large constant!
5198 	 */
5199 	if (n < READ_ONCE(iter->sg_idx))
5200 		goto lookup;
5201 
5202 	mutex_lock(&iter->lock);
5203 
5204 	/* We prefer to reuse the last sg so that repeated lookup of this
5205 	 * (or the subsequent) sg are fast - comparing against the last
5206 	 * sg is faster than going through the radixtree.
5207 	 */
5208 
5209 	sg = iter->sg_pos;
5210 	idx = iter->sg_idx;
5211 	count = __sg_page_count(sg);
5212 
5213 	while (idx + count <= n) {
5214 		unsigned long exception, i;
5215 		int ret;
5216 
5217 		/* If we cannot allocate and insert this entry, or the
5218 		 * individual pages from this range, cancel updating the
5219 		 * sg_idx so that on this lookup we are forced to linearly
5220 		 * scan onwards, but on future lookups we will try the
5221 		 * insertion again (in which case we need to be careful of
5222 		 * the error return reporting that we have already inserted
5223 		 * this index).
5224 		 */
5225 		ret = radix_tree_insert(&iter->radix, idx, sg);
5226 		if (ret && ret != -EEXIST)
5227 			goto scan;
5228 
5229 		exception =
5230 			RADIX_TREE_EXCEPTIONAL_ENTRY |
5231 			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5232 		for (i = 1; i < count; i++) {
5233 			ret = radix_tree_insert(&iter->radix, idx + i,
5234 						(void *)exception);
5235 			if (ret && ret != -EEXIST)
5236 				goto scan;
5237 		}
5238 
5239 		idx += count;
5240 		sg = ____sg_next(sg);
5241 		count = __sg_page_count(sg);
5242 	}
5243 
5244 scan:
5245 	iter->sg_pos = sg;
5246 	iter->sg_idx = idx;
5247 
5248 	mutex_unlock(&iter->lock);
5249 
5250 	if (unlikely(n < idx)) /* insertion completed by another thread */
5251 		goto lookup;
5252 
5253 	/* In case we failed to insert the entry into the radixtree, we need
5254 	 * to look beyond the current sg.
5255 	 */
5256 	while (idx + count <= n) {
5257 		idx += count;
5258 		sg = ____sg_next(sg);
5259 		count = __sg_page_count(sg);
5260 	}
5261 
5262 	*offset = n - idx;
5263 	return sg;
5264 
5265 lookup:
5266 	rcu_read_lock();
5267 
5268 	sg = radix_tree_lookup(&iter->radix, n);
5269 	GEM_BUG_ON(!sg);
5270 
5271 	/* If this index is in the middle of multi-page sg entry,
5272 	 * the radixtree will contain an exceptional entry that points
5273 	 * to the start of that range. We will return the pointer to
5274 	 * the base page and the offset of this page within the
5275 	 * sg entry's range.
5276 	 */
5277 	*offset = 0;
5278 	if (unlikely(radix_tree_exception(sg))) {
5279 		unsigned long base =
5280 			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5281 
5282 		sg = radix_tree_lookup(&iter->radix, base);
5283 		GEM_BUG_ON(!sg);
5284 
5285 		*offset = n - base;
5286 	}
5287 
5288 	rcu_read_unlock();
5289 
5290 	return sg;
5291 }
5292 
5293 struct page *
5294 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5295 {
5296 	struct scatterlist *sg;
5297 	unsigned int offset;
5298 
5299 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5300 
5301 	sg = i915_gem_object_get_sg(obj, n, &offset);
5302 	return nth_page(sg_page(sg), offset);
5303 }
5304 
5305 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5306 struct page *
5307 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5308 			       unsigned int n)
5309 {
5310 	struct page *page;
5311 
5312 	page = i915_gem_object_get_page(obj, n);
5313 	if (!obj->mm.dirty)
5314 		set_page_dirty(page);
5315 
5316 	return page;
5317 }
5318 
5319 dma_addr_t
5320 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5321 				unsigned long n)
5322 {
5323 	struct scatterlist *sg;
5324 	unsigned int offset;
5325 
5326 	sg = i915_gem_object_get_sg(obj, n, &offset);
5327 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5328 }
5329 
5330 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5331 {
5332 	struct sg_table *pages;
5333 	int err;
5334 
5335 	if (align > obj->base.size)
5336 		return -EINVAL;
5337 
5338 	if (obj->ops == &i915_gem_phys_ops)
5339 		return 0;
5340 
5341 	if (obj->ops != &i915_gem_object_ops)
5342 		return -EINVAL;
5343 
5344 	err = i915_gem_object_unbind(obj);
5345 	if (err)
5346 		return err;
5347 
5348 	mutex_lock(&obj->mm.lock);
5349 
5350 	if (obj->mm.madv != I915_MADV_WILLNEED) {
5351 		err = -EFAULT;
5352 		goto err_unlock;
5353 	}
5354 
5355 	if (obj->mm.quirked) {
5356 		err = -EFAULT;
5357 		goto err_unlock;
5358 	}
5359 
5360 	if (obj->mm.mapping) {
5361 		err = -EBUSY;
5362 		goto err_unlock;
5363 	}
5364 
5365 	pages = obj->mm.pages;
5366 	obj->ops = &i915_gem_phys_ops;
5367 
5368 	err = ____i915_gem_object_get_pages(obj);
5369 	if (err)
5370 		goto err_xfer;
5371 
5372 	/* Perma-pin (until release) the physical set of pages */
5373 	__i915_gem_object_pin_pages(obj);
5374 
5375 	if (!IS_ERR_OR_NULL(pages))
5376 		i915_gem_object_ops.put_pages(obj, pages);
5377 	mutex_unlock(&obj->mm.lock);
5378 	return 0;
5379 
5380 err_xfer:
5381 	obj->ops = &i915_gem_object_ops;
5382 	obj->mm.pages = pages;
5383 err_unlock:
5384 	mutex_unlock(&obj->mm.lock);
5385 	return err;
5386 }
5387 
5388 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5389 #include "selftests/scatterlist.c"
5390 #include "selftests/mock_gem_device.c"
5391 #include "selftests/huge_gem_object.c"
5392 #include "selftests/i915_gem_object.c"
5393 #include "selftests/i915_gem_coherency.c"
5394 #endif
5395