xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision 2a76fc89)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <linux/dma-fence-array.h>
29 #include <linux/kthread.h>
30 #include <linux/dma-resv.h>
31 #include <linux/shmem_fs.h>
32 #include <linux/slab.h>
33 #include <linux/stop_machine.h>
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36 #include <linux/dma-buf.h>
37 #include <linux/mman.h>
38 
39 #include <drm/drm_cache.h>
40 #include <drm/drm_vma_manager.h>
41 
42 #include "display/intel_display.h"
43 #include "display/intel_frontbuffer.h"
44 
45 #include "gem/i915_gem_clflush.h"
46 #include "gem/i915_gem_context.h"
47 #include "gem/i915_gem_ioctls.h"
48 #include "gem/i915_gem_mman.h"
49 #include "gem/i915_gem_pm.h"
50 #include "gem/i915_gem_region.h"
51 #include "gem/i915_gem_userptr.h"
52 #include "gt/intel_engine_user.h"
53 #include "gt/intel_gt.h"
54 #include "gt/intel_gt_pm.h"
55 #include "gt/intel_workarounds.h"
56 
57 #include "i915_drv.h"
58 #include "i915_file_private.h"
59 #include "i915_trace.h"
60 #include "i915_vgpu.h"
61 #include "intel_pm.h"
62 
63 static int
64 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
65 {
66 	int err;
67 
68 	err = mutex_lock_interruptible(&ggtt->vm.mutex);
69 	if (err)
70 		return err;
71 
72 	memset(node, 0, sizeof(*node));
73 	err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
74 					  size, 0, I915_COLOR_UNEVICTABLE,
75 					  0, ggtt->mappable_end,
76 					  DRM_MM_INSERT_LOW);
77 
78 	mutex_unlock(&ggtt->vm.mutex);
79 
80 	return err;
81 }
82 
83 static void
84 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
85 {
86 	mutex_lock(&ggtt->vm.mutex);
87 	drm_mm_remove_node(node);
88 	mutex_unlock(&ggtt->vm.mutex);
89 }
90 
91 int
92 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
93 			    struct drm_file *file)
94 {
95 	struct drm_i915_private *i915 = to_i915(dev);
96 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
97 	struct drm_i915_gem_get_aperture *args = data;
98 	struct i915_vma *vma;
99 	u64 pinned;
100 
101 	if (mutex_lock_interruptible(&ggtt->vm.mutex))
102 		return -EINTR;
103 
104 	pinned = ggtt->vm.reserved;
105 	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
106 		if (i915_vma_is_pinned(vma))
107 			pinned += vma->node.size;
108 
109 	mutex_unlock(&ggtt->vm.mutex);
110 
111 	args->aper_size = ggtt->vm.total;
112 	args->aper_available_size = args->aper_size - pinned;
113 
114 	return 0;
115 }
116 
117 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
118 			   unsigned long flags)
119 {
120 	struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
121 	bool vm_trylock = !!(flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK);
122 	LIST_HEAD(still_in_list);
123 	intel_wakeref_t wakeref;
124 	struct i915_vma *vma;
125 	int ret;
126 
127 	assert_object_held(obj);
128 
129 	if (list_empty(&obj->vma.list))
130 		return 0;
131 
132 	/*
133 	 * As some machines use ACPI to handle runtime-resume callbacks, and
134 	 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
135 	 * as they are required by the shrinker. Ergo, we wake the device up
136 	 * first just in case.
137 	 */
138 	wakeref = intel_runtime_pm_get(rpm);
139 
140 try_again:
141 	ret = 0;
142 	spin_lock(&obj->vma.lock);
143 	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
144 						       struct i915_vma,
145 						       obj_link))) {
146 		list_move_tail(&vma->obj_link, &still_in_list);
147 		if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
148 			continue;
149 
150 		if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
151 			ret = -EBUSY;
152 			break;
153 		}
154 
155 		/*
156 		 * Requiring the vm destructor to take the object lock
157 		 * before destroying a vma would help us eliminate the
158 		 * i915_vm_tryget() here, AND thus also the barrier stuff
159 		 * at the end. That's an easy fix, but sleeping locks in
160 		 * a kthread should generally be avoided.
161 		 */
162 		ret = -EAGAIN;
163 		if (!i915_vm_tryget(vma->vm))
164 			break;
165 
166 		spin_unlock(&obj->vma.lock);
167 
168 		/*
169 		 * Since i915_vma_parked() takes the object lock
170 		 * before vma destruction, it won't race us here,
171 		 * and destroy the vma from under us.
172 		 */
173 
174 		ret = -EBUSY;
175 		if (flags & I915_GEM_OBJECT_UNBIND_ASYNC) {
176 			assert_object_held(vma->obj);
177 			ret = i915_vma_unbind_async(vma, vm_trylock);
178 		}
179 
180 		if (ret == -EBUSY && (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
181 				      !i915_vma_is_active(vma))) {
182 			if (vm_trylock) {
183 				if (mutex_trylock(&vma->vm->mutex)) {
184 					ret = __i915_vma_unbind(vma);
185 					mutex_unlock(&vma->vm->mutex);
186 				}
187 			} else {
188 				ret = i915_vma_unbind(vma);
189 			}
190 		}
191 
192 		i915_vm_put(vma->vm);
193 		spin_lock(&obj->vma.lock);
194 	}
195 	list_splice_init(&still_in_list, &obj->vma.list);
196 	spin_unlock(&obj->vma.lock);
197 
198 	if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
199 		rcu_barrier(); /* flush the i915_vm_release() */
200 		goto try_again;
201 	}
202 
203 	intel_runtime_pm_put(rpm, wakeref);
204 
205 	return ret;
206 }
207 
208 static int
209 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
210 	    bool needs_clflush)
211 {
212 	char *vaddr;
213 	int ret;
214 
215 	vaddr = kmap(page);
216 
217 	if (needs_clflush)
218 		drm_clflush_virt_range(vaddr + offset, len);
219 
220 	ret = __copy_to_user(user_data, vaddr + offset, len);
221 
222 	kunmap(page);
223 
224 	return ret ? -EFAULT : 0;
225 }
226 
227 static int
228 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
229 		     struct drm_i915_gem_pread *args)
230 {
231 	unsigned int needs_clflush;
232 	unsigned int idx, offset;
233 	char __user *user_data;
234 	u64 remain;
235 	int ret;
236 
237 	ret = i915_gem_object_lock_interruptible(obj, NULL);
238 	if (ret)
239 		return ret;
240 
241 	ret = i915_gem_object_pin_pages(obj);
242 	if (ret)
243 		goto err_unlock;
244 
245 	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
246 	if (ret)
247 		goto err_unpin;
248 
249 	i915_gem_object_finish_access(obj);
250 	i915_gem_object_unlock(obj);
251 
252 	remain = args->size;
253 	user_data = u64_to_user_ptr(args->data_ptr);
254 	offset = offset_in_page(args->offset);
255 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
256 		struct page *page = i915_gem_object_get_page(obj, idx);
257 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
258 
259 		ret = shmem_pread(page, offset, length, user_data,
260 				  needs_clflush);
261 		if (ret)
262 			break;
263 
264 		remain -= length;
265 		user_data += length;
266 		offset = 0;
267 	}
268 
269 	i915_gem_object_unpin_pages(obj);
270 	return ret;
271 
272 err_unpin:
273 	i915_gem_object_unpin_pages(obj);
274 err_unlock:
275 	i915_gem_object_unlock(obj);
276 	return ret;
277 }
278 
279 static inline bool
280 gtt_user_read(struct io_mapping *mapping,
281 	      loff_t base, int offset,
282 	      char __user *user_data, int length)
283 {
284 	void __iomem *vaddr;
285 	unsigned long unwritten;
286 
287 	/* We can use the cpu mem copy function because this is X86. */
288 	vaddr = io_mapping_map_atomic_wc(mapping, base);
289 	unwritten = __copy_to_user_inatomic(user_data,
290 					    (void __force *)vaddr + offset,
291 					    length);
292 	io_mapping_unmap_atomic(vaddr);
293 	if (unwritten) {
294 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
295 		unwritten = copy_to_user(user_data,
296 					 (void __force *)vaddr + offset,
297 					 length);
298 		io_mapping_unmap(vaddr);
299 	}
300 	return unwritten;
301 }
302 
303 static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj,
304 					     struct drm_mm_node *node,
305 					     bool write)
306 {
307 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
308 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
309 	struct i915_vma *vma;
310 	struct i915_gem_ww_ctx ww;
311 	int ret;
312 
313 	i915_gem_ww_ctx_init(&ww, true);
314 retry:
315 	vma = ERR_PTR(-ENODEV);
316 	ret = i915_gem_object_lock(obj, &ww);
317 	if (ret)
318 		goto err_ww;
319 
320 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
321 	if (ret)
322 		goto err_ww;
323 
324 	if (!i915_gem_object_is_tiled(obj))
325 		vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
326 						  PIN_MAPPABLE |
327 						  PIN_NONBLOCK /* NOWARN */ |
328 						  PIN_NOEVICT);
329 	if (vma == ERR_PTR(-EDEADLK)) {
330 		ret = -EDEADLK;
331 		goto err_ww;
332 	} else if (!IS_ERR(vma)) {
333 		node->start = i915_ggtt_offset(vma);
334 		node->flags = 0;
335 	} else {
336 		ret = insert_mappable_node(ggtt, node, PAGE_SIZE);
337 		if (ret)
338 			goto err_ww;
339 		GEM_BUG_ON(!drm_mm_node_allocated(node));
340 		vma = NULL;
341 	}
342 
343 	ret = i915_gem_object_pin_pages(obj);
344 	if (ret) {
345 		if (drm_mm_node_allocated(node)) {
346 			ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
347 			remove_mappable_node(ggtt, node);
348 		} else {
349 			i915_vma_unpin(vma);
350 		}
351 	}
352 
353 err_ww:
354 	if (ret == -EDEADLK) {
355 		ret = i915_gem_ww_ctx_backoff(&ww);
356 		if (!ret)
357 			goto retry;
358 	}
359 	i915_gem_ww_ctx_fini(&ww);
360 
361 	return ret ? ERR_PTR(ret) : vma;
362 }
363 
364 static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj,
365 				 struct drm_mm_node *node,
366 				 struct i915_vma *vma)
367 {
368 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
369 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
370 
371 	i915_gem_object_unpin_pages(obj);
372 	if (drm_mm_node_allocated(node)) {
373 		ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
374 		remove_mappable_node(ggtt, node);
375 	} else {
376 		i915_vma_unpin(vma);
377 	}
378 }
379 
380 static int
381 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
382 		   const struct drm_i915_gem_pread *args)
383 {
384 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
385 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
386 	intel_wakeref_t wakeref;
387 	struct drm_mm_node node;
388 	void __user *user_data;
389 	struct i915_vma *vma;
390 	u64 remain, offset;
391 	int ret = 0;
392 
393 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
394 
395 	vma = i915_gem_gtt_prepare(obj, &node, false);
396 	if (IS_ERR(vma)) {
397 		ret = PTR_ERR(vma);
398 		goto out_rpm;
399 	}
400 
401 	user_data = u64_to_user_ptr(args->data_ptr);
402 	remain = args->size;
403 	offset = args->offset;
404 
405 	while (remain > 0) {
406 		/* Operation in this page
407 		 *
408 		 * page_base = page offset within aperture
409 		 * page_offset = offset within page
410 		 * page_length = bytes to copy for this page
411 		 */
412 		u32 page_base = node.start;
413 		unsigned page_offset = offset_in_page(offset);
414 		unsigned page_length = PAGE_SIZE - page_offset;
415 		page_length = remain < page_length ? remain : page_length;
416 		if (drm_mm_node_allocated(&node)) {
417 			ggtt->vm.insert_page(&ggtt->vm,
418 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
419 					     node.start, I915_CACHE_NONE, 0);
420 		} else {
421 			page_base += offset & PAGE_MASK;
422 		}
423 
424 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
425 				  user_data, page_length)) {
426 			ret = -EFAULT;
427 			break;
428 		}
429 
430 		remain -= page_length;
431 		user_data += page_length;
432 		offset += page_length;
433 	}
434 
435 	i915_gem_gtt_cleanup(obj, &node, vma);
436 out_rpm:
437 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
438 	return ret;
439 }
440 
441 /**
442  * Reads data from the object referenced by handle.
443  * @dev: drm device pointer
444  * @data: ioctl data blob
445  * @file: drm file pointer
446  *
447  * On error, the contents of *data are undefined.
448  */
449 int
450 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
451 		     struct drm_file *file)
452 {
453 	struct drm_i915_private *i915 = to_i915(dev);
454 	struct drm_i915_gem_pread *args = data;
455 	struct drm_i915_gem_object *obj;
456 	int ret;
457 
458 	/* PREAD is disallowed for all platforms after TGL-LP.  This also
459 	 * covers all platforms with local memory.
460 	 */
461 	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
462 		return -EOPNOTSUPP;
463 
464 	if (args->size == 0)
465 		return 0;
466 
467 	if (!access_ok(u64_to_user_ptr(args->data_ptr),
468 		       args->size))
469 		return -EFAULT;
470 
471 	obj = i915_gem_object_lookup(file, args->handle);
472 	if (!obj)
473 		return -ENOENT;
474 
475 	/* Bounds check source.  */
476 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
477 		ret = -EINVAL;
478 		goto out;
479 	}
480 
481 	trace_i915_gem_object_pread(obj, args->offset, args->size);
482 	ret = -ENODEV;
483 	if (obj->ops->pread)
484 		ret = obj->ops->pread(obj, args);
485 	if (ret != -ENODEV)
486 		goto out;
487 
488 	ret = i915_gem_object_wait(obj,
489 				   I915_WAIT_INTERRUPTIBLE,
490 				   MAX_SCHEDULE_TIMEOUT);
491 	if (ret)
492 		goto out;
493 
494 	ret = i915_gem_shmem_pread(obj, args);
495 	if (ret == -EFAULT || ret == -ENODEV)
496 		ret = i915_gem_gtt_pread(obj, args);
497 
498 out:
499 	i915_gem_object_put(obj);
500 	return ret;
501 }
502 
503 /* This is the fast write path which cannot handle
504  * page faults in the source data
505  */
506 
507 static inline bool
508 ggtt_write(struct io_mapping *mapping,
509 	   loff_t base, int offset,
510 	   char __user *user_data, int length)
511 {
512 	void __iomem *vaddr;
513 	unsigned long unwritten;
514 
515 	/* We can use the cpu mem copy function because this is X86. */
516 	vaddr = io_mapping_map_atomic_wc(mapping, base);
517 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
518 						      user_data, length);
519 	io_mapping_unmap_atomic(vaddr);
520 	if (unwritten) {
521 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
522 		unwritten = copy_from_user((void __force *)vaddr + offset,
523 					   user_data, length);
524 		io_mapping_unmap(vaddr);
525 	}
526 
527 	return unwritten;
528 }
529 
530 /**
531  * This is the fast pwrite path, where we copy the data directly from the
532  * user into the GTT, uncached.
533  * @obj: i915 GEM object
534  * @args: pwrite arguments structure
535  */
536 static int
537 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
538 			 const struct drm_i915_gem_pwrite *args)
539 {
540 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
541 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
542 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
543 	intel_wakeref_t wakeref;
544 	struct drm_mm_node node;
545 	struct i915_vma *vma;
546 	u64 remain, offset;
547 	void __user *user_data;
548 	int ret = 0;
549 
550 	if (i915_gem_object_has_struct_page(obj)) {
551 		/*
552 		 * Avoid waking the device up if we can fallback, as
553 		 * waking/resuming is very slow (worst-case 10-100 ms
554 		 * depending on PCI sleeps and our own resume time).
555 		 * This easily dwarfs any performance advantage from
556 		 * using the cache bypass of indirect GGTT access.
557 		 */
558 		wakeref = intel_runtime_pm_get_if_in_use(rpm);
559 		if (!wakeref)
560 			return -EFAULT;
561 	} else {
562 		/* No backing pages, no fallback, we must force GGTT access */
563 		wakeref = intel_runtime_pm_get(rpm);
564 	}
565 
566 	vma = i915_gem_gtt_prepare(obj, &node, true);
567 	if (IS_ERR(vma)) {
568 		ret = PTR_ERR(vma);
569 		goto out_rpm;
570 	}
571 
572 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
573 
574 	user_data = u64_to_user_ptr(args->data_ptr);
575 	offset = args->offset;
576 	remain = args->size;
577 	while (remain) {
578 		/* Operation in this page
579 		 *
580 		 * page_base = page offset within aperture
581 		 * page_offset = offset within page
582 		 * page_length = bytes to copy for this page
583 		 */
584 		u32 page_base = node.start;
585 		unsigned int page_offset = offset_in_page(offset);
586 		unsigned int page_length = PAGE_SIZE - page_offset;
587 		page_length = remain < page_length ? remain : page_length;
588 		if (drm_mm_node_allocated(&node)) {
589 			/* flush the write before we modify the GGTT */
590 			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
591 			ggtt->vm.insert_page(&ggtt->vm,
592 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
593 					     node.start, I915_CACHE_NONE, 0);
594 			wmb(); /* flush modifications to the GGTT (insert_page) */
595 		} else {
596 			page_base += offset & PAGE_MASK;
597 		}
598 		/* If we get a fault while copying data, then (presumably) our
599 		 * source page isn't available.  Return the error and we'll
600 		 * retry in the slow path.
601 		 * If the object is non-shmem backed, we retry again with the
602 		 * path that handles page fault.
603 		 */
604 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
605 			       user_data, page_length)) {
606 			ret = -EFAULT;
607 			break;
608 		}
609 
610 		remain -= page_length;
611 		user_data += page_length;
612 		offset += page_length;
613 	}
614 
615 	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
616 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
617 
618 	i915_gem_gtt_cleanup(obj, &node, vma);
619 out_rpm:
620 	intel_runtime_pm_put(rpm, wakeref);
621 	return ret;
622 }
623 
624 /* Per-page copy function for the shmem pwrite fastpath.
625  * Flushes invalid cachelines before writing to the target if
626  * needs_clflush_before is set and flushes out any written cachelines after
627  * writing if needs_clflush is set.
628  */
629 static int
630 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
631 	     bool needs_clflush_before,
632 	     bool needs_clflush_after)
633 {
634 	char *vaddr;
635 	int ret;
636 
637 	vaddr = kmap(page);
638 
639 	if (needs_clflush_before)
640 		drm_clflush_virt_range(vaddr + offset, len);
641 
642 	ret = __copy_from_user(vaddr + offset, user_data, len);
643 	if (!ret && needs_clflush_after)
644 		drm_clflush_virt_range(vaddr + offset, len);
645 
646 	kunmap(page);
647 
648 	return ret ? -EFAULT : 0;
649 }
650 
651 static int
652 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
653 		      const struct drm_i915_gem_pwrite *args)
654 {
655 	unsigned int partial_cacheline_write;
656 	unsigned int needs_clflush;
657 	unsigned int offset, idx;
658 	void __user *user_data;
659 	u64 remain;
660 	int ret;
661 
662 	ret = i915_gem_object_lock_interruptible(obj, NULL);
663 	if (ret)
664 		return ret;
665 
666 	ret = i915_gem_object_pin_pages(obj);
667 	if (ret)
668 		goto err_unlock;
669 
670 	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
671 	if (ret)
672 		goto err_unpin;
673 
674 	i915_gem_object_finish_access(obj);
675 	i915_gem_object_unlock(obj);
676 
677 	/* If we don't overwrite a cacheline completely we need to be
678 	 * careful to have up-to-date data by first clflushing. Don't
679 	 * overcomplicate things and flush the entire patch.
680 	 */
681 	partial_cacheline_write = 0;
682 	if (needs_clflush & CLFLUSH_BEFORE)
683 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
684 
685 	user_data = u64_to_user_ptr(args->data_ptr);
686 	remain = args->size;
687 	offset = offset_in_page(args->offset);
688 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
689 		struct page *page = i915_gem_object_get_page(obj, idx);
690 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
691 
692 		ret = shmem_pwrite(page, offset, length, user_data,
693 				   (offset | length) & partial_cacheline_write,
694 				   needs_clflush & CLFLUSH_AFTER);
695 		if (ret)
696 			break;
697 
698 		remain -= length;
699 		user_data += length;
700 		offset = 0;
701 	}
702 
703 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
704 
705 	i915_gem_object_unpin_pages(obj);
706 	return ret;
707 
708 err_unpin:
709 	i915_gem_object_unpin_pages(obj);
710 err_unlock:
711 	i915_gem_object_unlock(obj);
712 	return ret;
713 }
714 
715 /**
716  * Writes data to the object referenced by handle.
717  * @dev: drm device
718  * @data: ioctl data blob
719  * @file: drm file
720  *
721  * On error, the contents of the buffer that were to be modified are undefined.
722  */
723 int
724 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
725 		      struct drm_file *file)
726 {
727 	struct drm_i915_private *i915 = to_i915(dev);
728 	struct drm_i915_gem_pwrite *args = data;
729 	struct drm_i915_gem_object *obj;
730 	int ret;
731 
732 	/* PWRITE is disallowed for all platforms after TGL-LP.  This also
733 	 * covers all platforms with local memory.
734 	 */
735 	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
736 		return -EOPNOTSUPP;
737 
738 	if (args->size == 0)
739 		return 0;
740 
741 	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
742 		return -EFAULT;
743 
744 	obj = i915_gem_object_lookup(file, args->handle);
745 	if (!obj)
746 		return -ENOENT;
747 
748 	/* Bounds check destination. */
749 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
750 		ret = -EINVAL;
751 		goto err;
752 	}
753 
754 	/* Writes not allowed into this read-only object */
755 	if (i915_gem_object_is_readonly(obj)) {
756 		ret = -EINVAL;
757 		goto err;
758 	}
759 
760 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
761 
762 	ret = -ENODEV;
763 	if (obj->ops->pwrite)
764 		ret = obj->ops->pwrite(obj, args);
765 	if (ret != -ENODEV)
766 		goto err;
767 
768 	ret = i915_gem_object_wait(obj,
769 				   I915_WAIT_INTERRUPTIBLE |
770 				   I915_WAIT_ALL,
771 				   MAX_SCHEDULE_TIMEOUT);
772 	if (ret)
773 		goto err;
774 
775 	ret = -EFAULT;
776 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
777 	 * it would end up going through the fenced access, and we'll get
778 	 * different detiling behavior between reading and writing.
779 	 * pread/pwrite currently are reading and writing from the CPU
780 	 * perspective, requiring manual detiling by the client.
781 	 */
782 	if (!i915_gem_object_has_struct_page(obj) ||
783 	    i915_gem_cpu_write_needs_clflush(obj))
784 		/* Note that the gtt paths might fail with non-page-backed user
785 		 * pointers (e.g. gtt mappings when moving data between
786 		 * textures). Fallback to the shmem path in that case.
787 		 */
788 		ret = i915_gem_gtt_pwrite_fast(obj, args);
789 
790 	if (ret == -EFAULT || ret == -ENOSPC) {
791 		if (i915_gem_object_has_struct_page(obj))
792 			ret = i915_gem_shmem_pwrite(obj, args);
793 	}
794 
795 err:
796 	i915_gem_object_put(obj);
797 	return ret;
798 }
799 
800 /**
801  * Called when user space has done writes to this buffer
802  * @dev: drm device
803  * @data: ioctl data blob
804  * @file: drm file
805  */
806 int
807 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
808 			 struct drm_file *file)
809 {
810 	struct drm_i915_gem_sw_finish *args = data;
811 	struct drm_i915_gem_object *obj;
812 
813 	obj = i915_gem_object_lookup(file, args->handle);
814 	if (!obj)
815 		return -ENOENT;
816 
817 	/*
818 	 * Proxy objects are barred from CPU access, so there is no
819 	 * need to ban sw_finish as it is a nop.
820 	 */
821 
822 	/* Pinned buffers may be scanout, so flush the cache */
823 	i915_gem_object_flush_if_display(obj);
824 	i915_gem_object_put(obj);
825 
826 	return 0;
827 }
828 
829 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
830 {
831 	struct drm_i915_gem_object *obj, *on;
832 	int i;
833 
834 	/*
835 	 * Only called during RPM suspend. All users of the userfault_list
836 	 * must be holding an RPM wakeref to ensure that this can not
837 	 * run concurrently with themselves (and use the struct_mutex for
838 	 * protection between themselves).
839 	 */
840 
841 	list_for_each_entry_safe(obj, on,
842 				 &to_gt(i915)->ggtt->userfault_list, userfault_link)
843 		__i915_gem_object_release_mmap_gtt(obj);
844 
845 	list_for_each_entry_safe(obj, on,
846 				 &i915->runtime_pm.lmem_userfault_list, userfault_link)
847 		i915_gem_object_runtime_pm_release_mmap_offset(obj);
848 
849 	/*
850 	 * The fence will be lost when the device powers down. If any were
851 	 * in use by hardware (i.e. they are pinned), we should not be powering
852 	 * down! All other fences will be reacquired by the user upon waking.
853 	 */
854 	for (i = 0; i < to_gt(i915)->ggtt->num_fences; i++) {
855 		struct i915_fence_reg *reg = &to_gt(i915)->ggtt->fence_regs[i];
856 
857 		/*
858 		 * Ideally we want to assert that the fence register is not
859 		 * live at this point (i.e. that no piece of code will be
860 		 * trying to write through fence + GTT, as that both violates
861 		 * our tracking of activity and associated locking/barriers,
862 		 * but also is illegal given that the hw is powered down).
863 		 *
864 		 * Previously we used reg->pin_count as a "liveness" indicator.
865 		 * That is not sufficient, and we need a more fine-grained
866 		 * tool if we want to have a sanity check here.
867 		 */
868 
869 		if (!reg->vma)
870 			continue;
871 
872 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
873 		reg->dirty = true;
874 	}
875 }
876 
877 static void discard_ggtt_vma(struct i915_vma *vma)
878 {
879 	struct drm_i915_gem_object *obj = vma->obj;
880 
881 	spin_lock(&obj->vma.lock);
882 	if (!RB_EMPTY_NODE(&vma->obj_node)) {
883 		rb_erase(&vma->obj_node, &obj->vma.tree);
884 		RB_CLEAR_NODE(&vma->obj_node);
885 	}
886 	spin_unlock(&obj->vma.lock);
887 }
888 
889 struct i915_vma *
890 i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
891 			    struct i915_gem_ww_ctx *ww,
892 			    const struct i915_gtt_view *view,
893 			    u64 size, u64 alignment, u64 flags)
894 {
895 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
896 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
897 	struct i915_vma *vma;
898 	int ret;
899 
900 	GEM_WARN_ON(!ww);
901 
902 	if (flags & PIN_MAPPABLE &&
903 	    (!view || view->type == I915_GTT_VIEW_NORMAL)) {
904 		/*
905 		 * If the required space is larger than the available
906 		 * aperture, we will not able to find a slot for the
907 		 * object and unbinding the object now will be in
908 		 * vain. Worse, doing so may cause us to ping-pong
909 		 * the object in and out of the Global GTT and
910 		 * waste a lot of cycles under the mutex.
911 		 */
912 		if (obj->base.size > ggtt->mappable_end)
913 			return ERR_PTR(-E2BIG);
914 
915 		/*
916 		 * If NONBLOCK is set the caller is optimistically
917 		 * trying to cache the full object within the mappable
918 		 * aperture, and *must* have a fallback in place for
919 		 * situations where we cannot bind the object. We
920 		 * can be a little more lax here and use the fallback
921 		 * more often to avoid costly migrations of ourselves
922 		 * and other objects within the aperture.
923 		 *
924 		 * Half-the-aperture is used as a simple heuristic.
925 		 * More interesting would to do search for a free
926 		 * block prior to making the commitment to unbind.
927 		 * That caters for the self-harm case, and with a
928 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
929 		 * we could try to minimise harm to others.
930 		 */
931 		if (flags & PIN_NONBLOCK &&
932 		    obj->base.size > ggtt->mappable_end / 2)
933 			return ERR_PTR(-ENOSPC);
934 	}
935 
936 new_vma:
937 	vma = i915_vma_instance(obj, &ggtt->vm, view);
938 	if (IS_ERR(vma))
939 		return vma;
940 
941 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
942 		if (flags & PIN_NONBLOCK) {
943 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
944 				return ERR_PTR(-ENOSPC);
945 
946 			/*
947 			 * If this misplaced vma is too big (i.e, at-least
948 			 * half the size of aperture) or hasn't been pinned
949 			 * mappable before, we ignore the misplacement when
950 			 * PIN_NONBLOCK is set in order to avoid the ping-pong
951 			 * issue described above. In other words, we try to
952 			 * avoid the costly operation of unbinding this vma
953 			 * from the GGTT and rebinding it back because there
954 			 * may not be enough space for this vma in the aperture.
955 			 */
956 			if (flags & PIN_MAPPABLE &&
957 			    (vma->fence_size > ggtt->mappable_end / 2 ||
958 			    !i915_vma_is_map_and_fenceable(vma)))
959 				return ERR_PTR(-ENOSPC);
960 		}
961 
962 		if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
963 			discard_ggtt_vma(vma);
964 			goto new_vma;
965 		}
966 
967 		ret = i915_vma_unbind(vma);
968 		if (ret)
969 			return ERR_PTR(ret);
970 	}
971 
972 	ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
973 
974 	if (ret)
975 		return ERR_PTR(ret);
976 
977 	if (vma->fence && !i915_gem_object_is_tiled(obj)) {
978 		mutex_lock(&ggtt->vm.mutex);
979 		i915_vma_revoke_fence(vma);
980 		mutex_unlock(&ggtt->vm.mutex);
981 	}
982 
983 	ret = i915_vma_wait_for_bind(vma);
984 	if (ret) {
985 		i915_vma_unpin(vma);
986 		return ERR_PTR(ret);
987 	}
988 
989 	return vma;
990 }
991 
992 struct i915_vma * __must_check
993 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
994 			 const struct i915_gtt_view *view,
995 			 u64 size, u64 alignment, u64 flags)
996 {
997 	struct i915_gem_ww_ctx ww;
998 	struct i915_vma *ret;
999 	int err;
1000 
1001 	for_i915_gem_ww(&ww, err, true) {
1002 		err = i915_gem_object_lock(obj, &ww);
1003 		if (err)
1004 			continue;
1005 
1006 		ret = i915_gem_object_ggtt_pin_ww(obj, &ww, view, size,
1007 						  alignment, flags);
1008 		if (IS_ERR(ret))
1009 			err = PTR_ERR(ret);
1010 	}
1011 
1012 	return err ? ERR_PTR(err) : ret;
1013 }
1014 
1015 int
1016 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1017 		       struct drm_file *file_priv)
1018 {
1019 	struct drm_i915_private *i915 = to_i915(dev);
1020 	struct drm_i915_gem_madvise *args = data;
1021 	struct drm_i915_gem_object *obj;
1022 	int err;
1023 
1024 	switch (args->madv) {
1025 	case I915_MADV_DONTNEED:
1026 	case I915_MADV_WILLNEED:
1027 	    break;
1028 	default:
1029 	    return -EINVAL;
1030 	}
1031 
1032 	obj = i915_gem_object_lookup(file_priv, args->handle);
1033 	if (!obj)
1034 		return -ENOENT;
1035 
1036 	err = i915_gem_object_lock_interruptible(obj, NULL);
1037 	if (err)
1038 		goto out;
1039 
1040 	if (i915_gem_object_has_pages(obj) &&
1041 	    i915_gem_object_is_tiled(obj) &&
1042 	    i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) {
1043 		if (obj->mm.madv == I915_MADV_WILLNEED) {
1044 			GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
1045 			i915_gem_object_clear_tiling_quirk(obj);
1046 			i915_gem_object_make_shrinkable(obj);
1047 		}
1048 		if (args->madv == I915_MADV_WILLNEED) {
1049 			GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
1050 			i915_gem_object_make_unshrinkable(obj);
1051 			i915_gem_object_set_tiling_quirk(obj);
1052 		}
1053 	}
1054 
1055 	if (obj->mm.madv != __I915_MADV_PURGED) {
1056 		obj->mm.madv = args->madv;
1057 		if (obj->ops->adjust_lru)
1058 			obj->ops->adjust_lru(obj);
1059 	}
1060 
1061 	if (i915_gem_object_has_pages(obj) ||
1062 	    i915_gem_object_has_self_managed_shrink_list(obj)) {
1063 		unsigned long flags;
1064 
1065 		spin_lock_irqsave(&i915->mm.obj_lock, flags);
1066 		if (!list_empty(&obj->mm.link)) {
1067 			struct list_head *list;
1068 
1069 			if (obj->mm.madv != I915_MADV_WILLNEED)
1070 				list = &i915->mm.purge_list;
1071 			else
1072 				list = &i915->mm.shrink_list;
1073 			list_move_tail(&obj->mm.link, list);
1074 
1075 		}
1076 		spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1077 	}
1078 
1079 	/* if the object is no longer attached, discard its backing storage */
1080 	if (obj->mm.madv == I915_MADV_DONTNEED &&
1081 	    !i915_gem_object_has_pages(obj))
1082 		i915_gem_object_truncate(obj);
1083 
1084 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
1085 
1086 	i915_gem_object_unlock(obj);
1087 out:
1088 	i915_gem_object_put(obj);
1089 	return err;
1090 }
1091 
1092 /*
1093  * A single pass should suffice to release all the freed objects (along most
1094  * call paths), but be a little more paranoid in that freeing the objects does
1095  * take a little amount of time, during which the rcu callbacks could have added
1096  * new objects into the freed list, and armed the work again.
1097  */
1098 void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
1099 {
1100 	while (atomic_read(&i915->mm.free_count)) {
1101 		flush_work(&i915->mm.free_work);
1102 		flush_delayed_work(&i915->bdev.wq);
1103 		rcu_barrier();
1104 	}
1105 }
1106 
1107 /*
1108  * Similar to objects above (see i915_gem_drain_freed-objects), in general we
1109  * have workers that are armed by RCU and then rearm themselves in their
1110  * callbacks. To be paranoid, we need to drain the workqueue a second time after
1111  * waiting for the RCU grace period so that we catch work queued via RCU from
1112  * the first pass. As neither drain_workqueue() nor flush_workqueue() report a
1113  * result, we make an assumption that we only don't require more than 3 passes
1114  * to catch all _recursive_ RCU delayed work.
1115  */
1116 void i915_gem_drain_workqueue(struct drm_i915_private *i915)
1117 {
1118 	int i;
1119 
1120 	for (i = 0; i < 3; i++) {
1121 		flush_workqueue(i915->wq);
1122 		rcu_barrier();
1123 		i915_gem_drain_freed_objects(i915);
1124 	}
1125 
1126 	drain_workqueue(i915->wq);
1127 }
1128 
1129 int i915_gem_init(struct drm_i915_private *dev_priv)
1130 {
1131 	struct intel_gt *gt;
1132 	unsigned int i;
1133 	int ret;
1134 
1135 	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
1136 	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1137 		RUNTIME_INFO(dev_priv)->page_sizes = I915_GTT_PAGE_SIZE_4K;
1138 
1139 	ret = i915_gem_init_userptr(dev_priv);
1140 	if (ret)
1141 		return ret;
1142 
1143 	for_each_gt(gt, dev_priv, i) {
1144 		intel_uc_fetch_firmwares(&gt->uc);
1145 		intel_wopcm_init(&gt->wopcm);
1146 	}
1147 
1148 	ret = i915_init_ggtt(dev_priv);
1149 	if (ret) {
1150 		GEM_BUG_ON(ret == -EIO);
1151 		goto err_unlock;
1152 	}
1153 
1154 	/*
1155 	 * Despite its name intel_init_clock_gating applies both display
1156 	 * clock gating workarounds; GT mmio workarounds and the occasional
1157 	 * GT power context workaround. Worse, sometimes it includes a context
1158 	 * register workaround which we need to apply before we record the
1159 	 * default HW state for all contexts.
1160 	 *
1161 	 * FIXME: break up the workarounds and apply them at the right time!
1162 	 */
1163 	intel_init_clock_gating(dev_priv);
1164 
1165 	for_each_gt(gt, dev_priv, i) {
1166 		ret = intel_gt_init(gt);
1167 		if (ret)
1168 			goto err_unlock;
1169 	}
1170 
1171 	return 0;
1172 
1173 	/*
1174 	 * Unwinding is complicated by that we want to handle -EIO to mean
1175 	 * disable GPU submission but keep KMS alive. We want to mark the
1176 	 * HW as irrevisibly wedged, but keep enough state around that the
1177 	 * driver doesn't explode during runtime.
1178 	 */
1179 err_unlock:
1180 	i915_gem_drain_workqueue(dev_priv);
1181 
1182 	if (ret != -EIO) {
1183 		for_each_gt(gt, dev_priv, i) {
1184 			intel_gt_driver_remove(gt);
1185 			intel_gt_driver_release(gt);
1186 			intel_uc_cleanup_firmwares(&gt->uc);
1187 		}
1188 	}
1189 
1190 	if (ret == -EIO) {
1191 		/*
1192 		 * Allow engines or uC initialisation to fail by marking the GPU
1193 		 * as wedged. But we only want to do this when the GPU is angry,
1194 		 * for all other failure, such as an allocation failure, bail.
1195 		 */
1196 		for_each_gt(gt, dev_priv, i) {
1197 			if (!intel_gt_is_wedged(gt)) {
1198 				i915_probe_error(dev_priv,
1199 						 "Failed to initialize GPU, declaring it wedged!\n");
1200 				intel_gt_set_wedged(gt);
1201 			}
1202 		}
1203 
1204 		/* Minimal basic recovery for KMS */
1205 		ret = i915_ggtt_enable_hw(dev_priv);
1206 		i915_ggtt_resume(to_gt(dev_priv)->ggtt);
1207 		intel_init_clock_gating(dev_priv);
1208 	}
1209 
1210 	i915_gem_drain_freed_objects(dev_priv);
1211 
1212 	return ret;
1213 }
1214 
1215 void i915_gem_driver_register(struct drm_i915_private *i915)
1216 {
1217 	i915_gem_driver_register__shrinker(i915);
1218 
1219 	intel_engines_driver_register(i915);
1220 }
1221 
1222 void i915_gem_driver_unregister(struct drm_i915_private *i915)
1223 {
1224 	i915_gem_driver_unregister__shrinker(i915);
1225 }
1226 
1227 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1228 {
1229 	struct intel_gt *gt;
1230 	unsigned int i;
1231 
1232 	i915_gem_suspend_late(dev_priv);
1233 	for_each_gt(gt, dev_priv, i)
1234 		intel_gt_driver_remove(gt);
1235 	dev_priv->uabi_engines = RB_ROOT;
1236 
1237 	/* Flush any outstanding unpin_work. */
1238 	i915_gem_drain_workqueue(dev_priv);
1239 }
1240 
1241 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1242 {
1243 	struct intel_gt *gt;
1244 	unsigned int i;
1245 
1246 	for_each_gt(gt, dev_priv, i) {
1247 		intel_gt_driver_release(gt);
1248 		intel_uc_cleanup_firmwares(&gt->uc);
1249 	}
1250 
1251 	/* Flush any outstanding work, including i915_gem_context.release_work. */
1252 	i915_gem_drain_workqueue(dev_priv);
1253 
1254 	drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1255 }
1256 
1257 static void i915_gem_init__mm(struct drm_i915_private *i915)
1258 {
1259 	spin_lock_init(&i915->mm.obj_lock);
1260 
1261 	init_llist_head(&i915->mm.free_list);
1262 
1263 	INIT_LIST_HEAD(&i915->mm.purge_list);
1264 	INIT_LIST_HEAD(&i915->mm.shrink_list);
1265 
1266 	i915_gem_init__objects(i915);
1267 }
1268 
1269 void i915_gem_init_early(struct drm_i915_private *dev_priv)
1270 {
1271 	i915_gem_init__mm(dev_priv);
1272 	i915_gem_init__contexts(dev_priv);
1273 
1274 	spin_lock_init(&dev_priv->display.fb_tracking.lock);
1275 }
1276 
1277 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1278 {
1279 	i915_gem_drain_workqueue(dev_priv);
1280 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1281 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1282 	drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1283 }
1284 
1285 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1286 {
1287 	struct drm_i915_file_private *file_priv;
1288 	struct i915_drm_client *client;
1289 	int ret = -ENOMEM;
1290 
1291 	drm_dbg(&i915->drm, "\n");
1292 
1293 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1294 	if (!file_priv)
1295 		goto err_alloc;
1296 
1297 	client = i915_drm_client_add(&i915->clients);
1298 	if (IS_ERR(client)) {
1299 		ret = PTR_ERR(client);
1300 		goto err_client;
1301 	}
1302 
1303 	file->driver_priv = file_priv;
1304 	file_priv->dev_priv = i915;
1305 	file_priv->file = file;
1306 	file_priv->client = client;
1307 
1308 	file_priv->bsd_engine = -1;
1309 	file_priv->hang_timestamp = jiffies;
1310 
1311 	ret = i915_gem_context_open(i915, file);
1312 	if (ret)
1313 		goto err_context;
1314 
1315 	return 0;
1316 
1317 err_context:
1318 	i915_drm_client_put(client);
1319 err_client:
1320 	kfree(file_priv);
1321 err_alloc:
1322 	return ret;
1323 }
1324 
1325 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1326 #include "selftests/mock_gem_device.c"
1327 #include "selftests/i915_gem.c"
1328 #endif
1329