1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drmP.h> 29 #include <drm/drm_vma_manager.h> 30 #include <drm/i915_drm.h> 31 #include "i915_drv.h" 32 #include "i915_trace.h" 33 #include "intel_drv.h" 34 #include <linux/oom.h> 35 #include <linux/shmem_fs.h> 36 #include <linux/slab.h> 37 #include <linux/swap.h> 38 #include <linux/pci.h> 39 #include <linux/dma-buf.h> 40 41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); 42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj, 43 bool force); 44 static __must_check int 45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 46 bool readonly); 47 static void 48 i915_gem_object_retire(struct drm_i915_gem_object *obj); 49 50 static void i915_gem_write_fence(struct drm_device *dev, int reg, 51 struct drm_i915_gem_object *obj); 52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 53 struct drm_i915_fence_reg *fence, 54 bool enable); 55 56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker, 57 struct shrink_control *sc); 58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker, 59 struct shrink_control *sc); 60 static int i915_gem_shrinker_oom(struct notifier_block *nb, 61 unsigned long event, 62 void *ptr); 63 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target); 64 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv); 65 66 static bool cpu_cache_is_coherent(struct drm_device *dev, 67 enum i915_cache_level level) 68 { 69 return HAS_LLC(dev) || level != I915_CACHE_NONE; 70 } 71 72 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj) 73 { 74 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) 75 return true; 76 77 return obj->pin_display; 78 } 79 80 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj) 81 { 82 if (obj->tiling_mode) 83 i915_gem_release_mmap(obj); 84 85 /* As we do not have an associated fence register, we will force 86 * a tiling change if we ever need to acquire one. 87 */ 88 obj->fence_dirty = false; 89 obj->fence_reg = I915_FENCE_REG_NONE; 90 } 91 92 /* some bookkeeping */ 93 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, 94 size_t size) 95 { 96 spin_lock(&dev_priv->mm.object_stat_lock); 97 dev_priv->mm.object_count++; 98 dev_priv->mm.object_memory += size; 99 spin_unlock(&dev_priv->mm.object_stat_lock); 100 } 101 102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, 103 size_t size) 104 { 105 spin_lock(&dev_priv->mm.object_stat_lock); 106 dev_priv->mm.object_count--; 107 dev_priv->mm.object_memory -= size; 108 spin_unlock(&dev_priv->mm.object_stat_lock); 109 } 110 111 static int 112 i915_gem_wait_for_error(struct i915_gpu_error *error) 113 { 114 int ret; 115 116 #define EXIT_COND (!i915_reset_in_progress(error) || \ 117 i915_terminally_wedged(error)) 118 if (EXIT_COND) 119 return 0; 120 121 /* 122 * Only wait 10 seconds for the gpu reset to complete to avoid hanging 123 * userspace. If it takes that long something really bad is going on and 124 * we should simply try to bail out and fail as gracefully as possible. 125 */ 126 ret = wait_event_interruptible_timeout(error->reset_queue, 127 EXIT_COND, 128 10*HZ); 129 if (ret == 0) { 130 DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); 131 return -EIO; 132 } else if (ret < 0) { 133 return ret; 134 } 135 #undef EXIT_COND 136 137 return 0; 138 } 139 140 int i915_mutex_lock_interruptible(struct drm_device *dev) 141 { 142 struct drm_i915_private *dev_priv = dev->dev_private; 143 int ret; 144 145 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 146 if (ret) 147 return ret; 148 149 ret = mutex_lock_interruptible(&dev->struct_mutex); 150 if (ret) 151 return ret; 152 153 WARN_ON(i915_verify_lists(dev)); 154 return 0; 155 } 156 157 static inline bool 158 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj) 159 { 160 return i915_gem_obj_bound_any(obj) && !obj->active; 161 } 162 163 int 164 i915_gem_init_ioctl(struct drm_device *dev, void *data, 165 struct drm_file *file) 166 { 167 struct drm_i915_private *dev_priv = dev->dev_private; 168 struct drm_i915_gem_init *args = data; 169 170 if (drm_core_check_feature(dev, DRIVER_MODESET)) 171 return -ENODEV; 172 173 if (args->gtt_start >= args->gtt_end || 174 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1)) 175 return -EINVAL; 176 177 /* GEM with user mode setting was never supported on ilk and later. */ 178 if (INTEL_INFO(dev)->gen >= 5) 179 return -ENODEV; 180 181 mutex_lock(&dev->struct_mutex); 182 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end, 183 args->gtt_end); 184 dev_priv->gtt.mappable_end = args->gtt_end; 185 mutex_unlock(&dev->struct_mutex); 186 187 return 0; 188 } 189 190 int 191 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 192 struct drm_file *file) 193 { 194 struct drm_i915_private *dev_priv = dev->dev_private; 195 struct drm_i915_gem_get_aperture *args = data; 196 struct drm_i915_gem_object *obj; 197 size_t pinned; 198 199 pinned = 0; 200 mutex_lock(&dev->struct_mutex); 201 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) 202 if (i915_gem_obj_is_pinned(obj)) 203 pinned += i915_gem_obj_ggtt_size(obj); 204 mutex_unlock(&dev->struct_mutex); 205 206 args->aper_size = dev_priv->gtt.base.total; 207 args->aper_available_size = args->aper_size - pinned; 208 209 return 0; 210 } 211 212 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj) 213 { 214 drm_dma_handle_t *phys = obj->phys_handle; 215 216 if (!phys) 217 return; 218 219 if (obj->madv == I915_MADV_WILLNEED) { 220 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping; 221 char *vaddr = phys->vaddr; 222 int i; 223 224 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 225 struct page *page = shmem_read_mapping_page(mapping, i); 226 if (!IS_ERR(page)) { 227 char *dst = kmap_atomic(page); 228 memcpy(dst, vaddr, PAGE_SIZE); 229 drm_clflush_virt_range(dst, PAGE_SIZE); 230 kunmap_atomic(dst); 231 232 set_page_dirty(page); 233 mark_page_accessed(page); 234 page_cache_release(page); 235 } 236 vaddr += PAGE_SIZE; 237 } 238 i915_gem_chipset_flush(obj->base.dev); 239 } 240 241 #ifdef CONFIG_X86 242 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE); 243 #endif 244 drm_pci_free(obj->base.dev, phys); 245 obj->phys_handle = NULL; 246 } 247 248 int 249 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 250 int align) 251 { 252 drm_dma_handle_t *phys; 253 struct address_space *mapping; 254 char *vaddr; 255 int i; 256 257 if (obj->phys_handle) { 258 if ((unsigned long)obj->phys_handle->vaddr & (align -1)) 259 return -EBUSY; 260 261 return 0; 262 } 263 264 if (obj->madv != I915_MADV_WILLNEED) 265 return -EFAULT; 266 267 if (obj->base.filp == NULL) 268 return -EINVAL; 269 270 /* create a new object */ 271 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align); 272 if (!phys) 273 return -ENOMEM; 274 275 vaddr = phys->vaddr; 276 #ifdef CONFIG_X86 277 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE); 278 #endif 279 mapping = file_inode(obj->base.filp)->i_mapping; 280 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 281 struct page *page; 282 char *src; 283 284 page = shmem_read_mapping_page(mapping, i); 285 if (IS_ERR(page)) { 286 #ifdef CONFIG_X86 287 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE); 288 #endif 289 drm_pci_free(obj->base.dev, phys); 290 return PTR_ERR(page); 291 } 292 293 src = kmap_atomic(page); 294 memcpy(vaddr, src, PAGE_SIZE); 295 kunmap_atomic(src); 296 297 mark_page_accessed(page); 298 page_cache_release(page); 299 300 vaddr += PAGE_SIZE; 301 } 302 303 obj->phys_handle = phys; 304 return 0; 305 } 306 307 static int 308 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj, 309 struct drm_i915_gem_pwrite *args, 310 struct drm_file *file_priv) 311 { 312 struct drm_device *dev = obj->base.dev; 313 void *vaddr = obj->phys_handle->vaddr + args->offset; 314 char __user *user_data = to_user_ptr(args->data_ptr); 315 316 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) { 317 unsigned long unwritten; 318 319 /* The physical object once assigned is fixed for the lifetime 320 * of the obj, so we can safely drop the lock and continue 321 * to access vaddr. 322 */ 323 mutex_unlock(&dev->struct_mutex); 324 unwritten = copy_from_user(vaddr, user_data, args->size); 325 mutex_lock(&dev->struct_mutex); 326 if (unwritten) 327 return -EFAULT; 328 } 329 330 i915_gem_chipset_flush(dev); 331 return 0; 332 } 333 334 void *i915_gem_object_alloc(struct drm_device *dev) 335 { 336 struct drm_i915_private *dev_priv = dev->dev_private; 337 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL); 338 } 339 340 void i915_gem_object_free(struct drm_i915_gem_object *obj) 341 { 342 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 343 kmem_cache_free(dev_priv->slab, obj); 344 } 345 346 static int 347 i915_gem_create(struct drm_file *file, 348 struct drm_device *dev, 349 uint64_t size, 350 uint32_t *handle_p) 351 { 352 struct drm_i915_gem_object *obj; 353 int ret; 354 u32 handle; 355 356 size = roundup(size, PAGE_SIZE); 357 if (size == 0) 358 return -EINVAL; 359 360 /* Allocate the new object */ 361 obj = i915_gem_alloc_object(dev, size); 362 if (obj == NULL) 363 return -ENOMEM; 364 365 ret = drm_gem_handle_create(file, &obj->base, &handle); 366 /* drop reference from allocate - handle holds it now */ 367 drm_gem_object_unreference_unlocked(&obj->base); 368 if (ret) 369 return ret; 370 371 *handle_p = handle; 372 return 0; 373 } 374 375 int 376 i915_gem_dumb_create(struct drm_file *file, 377 struct drm_device *dev, 378 struct drm_mode_create_dumb *args) 379 { 380 /* have to work out size/pitch and return them */ 381 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64); 382 args->size = args->pitch * args->height; 383 return i915_gem_create(file, dev, 384 args->size, &args->handle); 385 } 386 387 /** 388 * Creates a new mm object and returns a handle to it. 389 */ 390 int 391 i915_gem_create_ioctl(struct drm_device *dev, void *data, 392 struct drm_file *file) 393 { 394 struct drm_i915_gem_create *args = data; 395 396 return i915_gem_create(file, dev, 397 args->size, &args->handle); 398 } 399 400 static inline int 401 __copy_to_user_swizzled(char __user *cpu_vaddr, 402 const char *gpu_vaddr, int gpu_offset, 403 int length) 404 { 405 int ret, cpu_offset = 0; 406 407 while (length > 0) { 408 int cacheline_end = ALIGN(gpu_offset + 1, 64); 409 int this_length = min(cacheline_end - gpu_offset, length); 410 int swizzled_gpu_offset = gpu_offset ^ 64; 411 412 ret = __copy_to_user(cpu_vaddr + cpu_offset, 413 gpu_vaddr + swizzled_gpu_offset, 414 this_length); 415 if (ret) 416 return ret + length; 417 418 cpu_offset += this_length; 419 gpu_offset += this_length; 420 length -= this_length; 421 } 422 423 return 0; 424 } 425 426 static inline int 427 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, 428 const char __user *cpu_vaddr, 429 int length) 430 { 431 int ret, cpu_offset = 0; 432 433 while (length > 0) { 434 int cacheline_end = ALIGN(gpu_offset + 1, 64); 435 int this_length = min(cacheline_end - gpu_offset, length); 436 int swizzled_gpu_offset = gpu_offset ^ 64; 437 438 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, 439 cpu_vaddr + cpu_offset, 440 this_length); 441 if (ret) 442 return ret + length; 443 444 cpu_offset += this_length; 445 gpu_offset += this_length; 446 length -= this_length; 447 } 448 449 return 0; 450 } 451 452 /* 453 * Pins the specified object's pages and synchronizes the object with 454 * GPU accesses. Sets needs_clflush to non-zero if the caller should 455 * flush the object from the CPU cache. 456 */ 457 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 458 int *needs_clflush) 459 { 460 int ret; 461 462 *needs_clflush = 0; 463 464 if (!obj->base.filp) 465 return -EINVAL; 466 467 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) { 468 /* If we're not in the cpu read domain, set ourself into the gtt 469 * read domain and manually flush cachelines (if required). This 470 * optimizes for the case when the gpu will dirty the data 471 * anyway again before the next pread happens. */ 472 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev, 473 obj->cache_level); 474 ret = i915_gem_object_wait_rendering(obj, true); 475 if (ret) 476 return ret; 477 478 i915_gem_object_retire(obj); 479 } 480 481 ret = i915_gem_object_get_pages(obj); 482 if (ret) 483 return ret; 484 485 i915_gem_object_pin_pages(obj); 486 487 return ret; 488 } 489 490 /* Per-page copy function for the shmem pread fastpath. 491 * Flushes invalid cachelines before reading the target if 492 * needs_clflush is set. */ 493 static int 494 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length, 495 char __user *user_data, 496 bool page_do_bit17_swizzling, bool needs_clflush) 497 { 498 char *vaddr; 499 int ret; 500 501 if (unlikely(page_do_bit17_swizzling)) 502 return -EINVAL; 503 504 vaddr = kmap_atomic(page); 505 if (needs_clflush) 506 drm_clflush_virt_range(vaddr + shmem_page_offset, 507 page_length); 508 ret = __copy_to_user_inatomic(user_data, 509 vaddr + shmem_page_offset, 510 page_length); 511 kunmap_atomic(vaddr); 512 513 return ret ? -EFAULT : 0; 514 } 515 516 static void 517 shmem_clflush_swizzled_range(char *addr, unsigned long length, 518 bool swizzled) 519 { 520 if (unlikely(swizzled)) { 521 unsigned long start = (unsigned long) addr; 522 unsigned long end = (unsigned long) addr + length; 523 524 /* For swizzling simply ensure that we always flush both 525 * channels. Lame, but simple and it works. Swizzled 526 * pwrite/pread is far from a hotpath - current userspace 527 * doesn't use it at all. */ 528 start = round_down(start, 128); 529 end = round_up(end, 128); 530 531 drm_clflush_virt_range((void *)start, end - start); 532 } else { 533 drm_clflush_virt_range(addr, length); 534 } 535 536 } 537 538 /* Only difference to the fast-path function is that this can handle bit17 539 * and uses non-atomic copy and kmap functions. */ 540 static int 541 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length, 542 char __user *user_data, 543 bool page_do_bit17_swizzling, bool needs_clflush) 544 { 545 char *vaddr; 546 int ret; 547 548 vaddr = kmap(page); 549 if (needs_clflush) 550 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 551 page_length, 552 page_do_bit17_swizzling); 553 554 if (page_do_bit17_swizzling) 555 ret = __copy_to_user_swizzled(user_data, 556 vaddr, shmem_page_offset, 557 page_length); 558 else 559 ret = __copy_to_user(user_data, 560 vaddr + shmem_page_offset, 561 page_length); 562 kunmap(page); 563 564 return ret ? - EFAULT : 0; 565 } 566 567 static int 568 i915_gem_shmem_pread(struct drm_device *dev, 569 struct drm_i915_gem_object *obj, 570 struct drm_i915_gem_pread *args, 571 struct drm_file *file) 572 { 573 char __user *user_data; 574 ssize_t remain; 575 loff_t offset; 576 int shmem_page_offset, page_length, ret = 0; 577 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 578 int prefaulted = 0; 579 int needs_clflush = 0; 580 struct sg_page_iter sg_iter; 581 582 user_data = to_user_ptr(args->data_ptr); 583 remain = args->size; 584 585 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 586 587 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush); 588 if (ret) 589 return ret; 590 591 offset = args->offset; 592 593 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 594 offset >> PAGE_SHIFT) { 595 struct page *page = sg_page_iter_page(&sg_iter); 596 597 if (remain <= 0) 598 break; 599 600 /* Operation in this page 601 * 602 * shmem_page_offset = offset within page in shmem file 603 * page_length = bytes to copy for this page 604 */ 605 shmem_page_offset = offset_in_page(offset); 606 page_length = remain; 607 if ((shmem_page_offset + page_length) > PAGE_SIZE) 608 page_length = PAGE_SIZE - shmem_page_offset; 609 610 page_do_bit17_swizzling = obj_do_bit17_swizzling && 611 (page_to_phys(page) & (1 << 17)) != 0; 612 613 ret = shmem_pread_fast(page, shmem_page_offset, page_length, 614 user_data, page_do_bit17_swizzling, 615 needs_clflush); 616 if (ret == 0) 617 goto next_page; 618 619 mutex_unlock(&dev->struct_mutex); 620 621 if (likely(!i915.prefault_disable) && !prefaulted) { 622 ret = fault_in_multipages_writeable(user_data, remain); 623 /* Userspace is tricking us, but we've already clobbered 624 * its pages with the prefault and promised to write the 625 * data up to the first fault. Hence ignore any errors 626 * and just continue. */ 627 (void)ret; 628 prefaulted = 1; 629 } 630 631 ret = shmem_pread_slow(page, shmem_page_offset, page_length, 632 user_data, page_do_bit17_swizzling, 633 needs_clflush); 634 635 mutex_lock(&dev->struct_mutex); 636 637 if (ret) 638 goto out; 639 640 next_page: 641 remain -= page_length; 642 user_data += page_length; 643 offset += page_length; 644 } 645 646 out: 647 i915_gem_object_unpin_pages(obj); 648 649 return ret; 650 } 651 652 /** 653 * Reads data from the object referenced by handle. 654 * 655 * On error, the contents of *data are undefined. 656 */ 657 int 658 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 659 struct drm_file *file) 660 { 661 struct drm_i915_gem_pread *args = data; 662 struct drm_i915_gem_object *obj; 663 int ret = 0; 664 665 if (args->size == 0) 666 return 0; 667 668 if (!access_ok(VERIFY_WRITE, 669 to_user_ptr(args->data_ptr), 670 args->size)) 671 return -EFAULT; 672 673 ret = i915_mutex_lock_interruptible(dev); 674 if (ret) 675 return ret; 676 677 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 678 if (&obj->base == NULL) { 679 ret = -ENOENT; 680 goto unlock; 681 } 682 683 /* Bounds check source. */ 684 if (args->offset > obj->base.size || 685 args->size > obj->base.size - args->offset) { 686 ret = -EINVAL; 687 goto out; 688 } 689 690 /* prime objects have no backing filp to GEM pread/pwrite 691 * pages from. 692 */ 693 if (!obj->base.filp) { 694 ret = -EINVAL; 695 goto out; 696 } 697 698 trace_i915_gem_object_pread(obj, args->offset, args->size); 699 700 ret = i915_gem_shmem_pread(dev, obj, args, file); 701 702 out: 703 drm_gem_object_unreference(&obj->base); 704 unlock: 705 mutex_unlock(&dev->struct_mutex); 706 return ret; 707 } 708 709 /* This is the fast write path which cannot handle 710 * page faults in the source data 711 */ 712 713 static inline int 714 fast_user_write(struct io_mapping *mapping, 715 loff_t page_base, int page_offset, 716 char __user *user_data, 717 int length) 718 { 719 void __iomem *vaddr_atomic; 720 void *vaddr; 721 unsigned long unwritten; 722 723 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base); 724 /* We can use the cpu mem copy function because this is X86. */ 725 vaddr = (void __force*)vaddr_atomic + page_offset; 726 unwritten = __copy_from_user_inatomic_nocache(vaddr, 727 user_data, length); 728 io_mapping_unmap_atomic(vaddr_atomic); 729 return unwritten; 730 } 731 732 /** 733 * This is the fast pwrite path, where we copy the data directly from the 734 * user into the GTT, uncached. 735 */ 736 static int 737 i915_gem_gtt_pwrite_fast(struct drm_device *dev, 738 struct drm_i915_gem_object *obj, 739 struct drm_i915_gem_pwrite *args, 740 struct drm_file *file) 741 { 742 struct drm_i915_private *dev_priv = dev->dev_private; 743 ssize_t remain; 744 loff_t offset, page_base; 745 char __user *user_data; 746 int page_offset, page_length, ret; 747 748 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK); 749 if (ret) 750 goto out; 751 752 ret = i915_gem_object_set_to_gtt_domain(obj, true); 753 if (ret) 754 goto out_unpin; 755 756 ret = i915_gem_object_put_fence(obj); 757 if (ret) 758 goto out_unpin; 759 760 user_data = to_user_ptr(args->data_ptr); 761 remain = args->size; 762 763 offset = i915_gem_obj_ggtt_offset(obj) + args->offset; 764 765 while (remain > 0) { 766 /* Operation in this page 767 * 768 * page_base = page offset within aperture 769 * page_offset = offset within page 770 * page_length = bytes to copy for this page 771 */ 772 page_base = offset & PAGE_MASK; 773 page_offset = offset_in_page(offset); 774 page_length = remain; 775 if ((page_offset + remain) > PAGE_SIZE) 776 page_length = PAGE_SIZE - page_offset; 777 778 /* If we get a fault while copying data, then (presumably) our 779 * source page isn't available. Return the error and we'll 780 * retry in the slow path. 781 */ 782 if (fast_user_write(dev_priv->gtt.mappable, page_base, 783 page_offset, user_data, page_length)) { 784 ret = -EFAULT; 785 goto out_unpin; 786 } 787 788 remain -= page_length; 789 user_data += page_length; 790 offset += page_length; 791 } 792 793 out_unpin: 794 i915_gem_object_ggtt_unpin(obj); 795 out: 796 return ret; 797 } 798 799 /* Per-page copy function for the shmem pwrite fastpath. 800 * Flushes invalid cachelines before writing to the target if 801 * needs_clflush_before is set and flushes out any written cachelines after 802 * writing if needs_clflush is set. */ 803 static int 804 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length, 805 char __user *user_data, 806 bool page_do_bit17_swizzling, 807 bool needs_clflush_before, 808 bool needs_clflush_after) 809 { 810 char *vaddr; 811 int ret; 812 813 if (unlikely(page_do_bit17_swizzling)) 814 return -EINVAL; 815 816 vaddr = kmap_atomic(page); 817 if (needs_clflush_before) 818 drm_clflush_virt_range(vaddr + shmem_page_offset, 819 page_length); 820 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset, 821 user_data, page_length); 822 if (needs_clflush_after) 823 drm_clflush_virt_range(vaddr + shmem_page_offset, 824 page_length); 825 kunmap_atomic(vaddr); 826 827 return ret ? -EFAULT : 0; 828 } 829 830 /* Only difference to the fast-path function is that this can handle bit17 831 * and uses non-atomic copy and kmap functions. */ 832 static int 833 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length, 834 char __user *user_data, 835 bool page_do_bit17_swizzling, 836 bool needs_clflush_before, 837 bool needs_clflush_after) 838 { 839 char *vaddr; 840 int ret; 841 842 vaddr = kmap(page); 843 if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) 844 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 845 page_length, 846 page_do_bit17_swizzling); 847 if (page_do_bit17_swizzling) 848 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset, 849 user_data, 850 page_length); 851 else 852 ret = __copy_from_user(vaddr + shmem_page_offset, 853 user_data, 854 page_length); 855 if (needs_clflush_after) 856 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 857 page_length, 858 page_do_bit17_swizzling); 859 kunmap(page); 860 861 return ret ? -EFAULT : 0; 862 } 863 864 static int 865 i915_gem_shmem_pwrite(struct drm_device *dev, 866 struct drm_i915_gem_object *obj, 867 struct drm_i915_gem_pwrite *args, 868 struct drm_file *file) 869 { 870 ssize_t remain; 871 loff_t offset; 872 char __user *user_data; 873 int shmem_page_offset, page_length, ret = 0; 874 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 875 int hit_slowpath = 0; 876 int needs_clflush_after = 0; 877 int needs_clflush_before = 0; 878 struct sg_page_iter sg_iter; 879 880 user_data = to_user_ptr(args->data_ptr); 881 remain = args->size; 882 883 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 884 885 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 886 /* If we're not in the cpu write domain, set ourself into the gtt 887 * write domain and manually flush cachelines (if required). This 888 * optimizes for the case when the gpu will use the data 889 * right away and we therefore have to clflush anyway. */ 890 needs_clflush_after = cpu_write_needs_clflush(obj); 891 ret = i915_gem_object_wait_rendering(obj, false); 892 if (ret) 893 return ret; 894 895 i915_gem_object_retire(obj); 896 } 897 /* Same trick applies to invalidate partially written cachelines read 898 * before writing. */ 899 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) 900 needs_clflush_before = 901 !cpu_cache_is_coherent(dev, obj->cache_level); 902 903 ret = i915_gem_object_get_pages(obj); 904 if (ret) 905 return ret; 906 907 i915_gem_object_pin_pages(obj); 908 909 offset = args->offset; 910 obj->dirty = 1; 911 912 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 913 offset >> PAGE_SHIFT) { 914 struct page *page = sg_page_iter_page(&sg_iter); 915 int partial_cacheline_write; 916 917 if (remain <= 0) 918 break; 919 920 /* Operation in this page 921 * 922 * shmem_page_offset = offset within page in shmem file 923 * page_length = bytes to copy for this page 924 */ 925 shmem_page_offset = offset_in_page(offset); 926 927 page_length = remain; 928 if ((shmem_page_offset + page_length) > PAGE_SIZE) 929 page_length = PAGE_SIZE - shmem_page_offset; 930 931 /* If we don't overwrite a cacheline completely we need to be 932 * careful to have up-to-date data by first clflushing. Don't 933 * overcomplicate things and flush the entire patch. */ 934 partial_cacheline_write = needs_clflush_before && 935 ((shmem_page_offset | page_length) 936 & (boot_cpu_data.x86_clflush_size - 1)); 937 938 page_do_bit17_swizzling = obj_do_bit17_swizzling && 939 (page_to_phys(page) & (1 << 17)) != 0; 940 941 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length, 942 user_data, page_do_bit17_swizzling, 943 partial_cacheline_write, 944 needs_clflush_after); 945 if (ret == 0) 946 goto next_page; 947 948 hit_slowpath = 1; 949 mutex_unlock(&dev->struct_mutex); 950 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length, 951 user_data, page_do_bit17_swizzling, 952 partial_cacheline_write, 953 needs_clflush_after); 954 955 mutex_lock(&dev->struct_mutex); 956 957 if (ret) 958 goto out; 959 960 next_page: 961 remain -= page_length; 962 user_data += page_length; 963 offset += page_length; 964 } 965 966 out: 967 i915_gem_object_unpin_pages(obj); 968 969 if (hit_slowpath) { 970 /* 971 * Fixup: Flush cpu caches in case we didn't flush the dirty 972 * cachelines in-line while writing and the object moved 973 * out of the cpu write domain while we've dropped the lock. 974 */ 975 if (!needs_clflush_after && 976 obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 977 if (i915_gem_clflush_object(obj, obj->pin_display)) 978 i915_gem_chipset_flush(dev); 979 } 980 } 981 982 if (needs_clflush_after) 983 i915_gem_chipset_flush(dev); 984 985 return ret; 986 } 987 988 /** 989 * Writes data to the object referenced by handle. 990 * 991 * On error, the contents of the buffer that were to be modified are undefined. 992 */ 993 int 994 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 995 struct drm_file *file) 996 { 997 struct drm_i915_gem_pwrite *args = data; 998 struct drm_i915_gem_object *obj; 999 int ret; 1000 1001 if (args->size == 0) 1002 return 0; 1003 1004 if (!access_ok(VERIFY_READ, 1005 to_user_ptr(args->data_ptr), 1006 args->size)) 1007 return -EFAULT; 1008 1009 if (likely(!i915.prefault_disable)) { 1010 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr), 1011 args->size); 1012 if (ret) 1013 return -EFAULT; 1014 } 1015 1016 ret = i915_mutex_lock_interruptible(dev); 1017 if (ret) 1018 return ret; 1019 1020 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1021 if (&obj->base == NULL) { 1022 ret = -ENOENT; 1023 goto unlock; 1024 } 1025 1026 /* Bounds check destination. */ 1027 if (args->offset > obj->base.size || 1028 args->size > obj->base.size - args->offset) { 1029 ret = -EINVAL; 1030 goto out; 1031 } 1032 1033 /* prime objects have no backing filp to GEM pread/pwrite 1034 * pages from. 1035 */ 1036 if (!obj->base.filp) { 1037 ret = -EINVAL; 1038 goto out; 1039 } 1040 1041 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 1042 1043 ret = -EFAULT; 1044 /* We can only do the GTT pwrite on untiled buffers, as otherwise 1045 * it would end up going through the fenced access, and we'll get 1046 * different detiling behavior between reading and writing. 1047 * pread/pwrite currently are reading and writing from the CPU 1048 * perspective, requiring manual detiling by the client. 1049 */ 1050 if (obj->phys_handle) { 1051 ret = i915_gem_phys_pwrite(obj, args, file); 1052 goto out; 1053 } 1054 1055 if (obj->tiling_mode == I915_TILING_NONE && 1056 obj->base.write_domain != I915_GEM_DOMAIN_CPU && 1057 cpu_write_needs_clflush(obj)) { 1058 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file); 1059 /* Note that the gtt paths might fail with non-page-backed user 1060 * pointers (e.g. gtt mappings when moving data between 1061 * textures). Fallback to the shmem path in that case. */ 1062 } 1063 1064 if (ret == -EFAULT || ret == -ENOSPC) 1065 ret = i915_gem_shmem_pwrite(dev, obj, args, file); 1066 1067 out: 1068 drm_gem_object_unreference(&obj->base); 1069 unlock: 1070 mutex_unlock(&dev->struct_mutex); 1071 return ret; 1072 } 1073 1074 int 1075 i915_gem_check_wedge(struct i915_gpu_error *error, 1076 bool interruptible) 1077 { 1078 if (i915_reset_in_progress(error)) { 1079 /* Non-interruptible callers can't handle -EAGAIN, hence return 1080 * -EIO unconditionally for these. */ 1081 if (!interruptible) 1082 return -EIO; 1083 1084 /* Recovery complete, but the reset failed ... */ 1085 if (i915_terminally_wedged(error)) 1086 return -EIO; 1087 1088 return -EAGAIN; 1089 } 1090 1091 return 0; 1092 } 1093 1094 /* 1095 * Compare seqno against outstanding lazy request. Emit a request if they are 1096 * equal. 1097 */ 1098 int 1099 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno) 1100 { 1101 int ret; 1102 1103 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex)); 1104 1105 ret = 0; 1106 if (seqno == ring->outstanding_lazy_seqno) 1107 ret = i915_add_request(ring, NULL); 1108 1109 return ret; 1110 } 1111 1112 static void fake_irq(unsigned long data) 1113 { 1114 wake_up_process((struct task_struct *)data); 1115 } 1116 1117 static bool missed_irq(struct drm_i915_private *dev_priv, 1118 struct intel_engine_cs *ring) 1119 { 1120 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings); 1121 } 1122 1123 static bool can_wait_boost(struct drm_i915_file_private *file_priv) 1124 { 1125 if (file_priv == NULL) 1126 return true; 1127 1128 return !atomic_xchg(&file_priv->rps_wait_boost, true); 1129 } 1130 1131 /** 1132 * __wait_seqno - wait until execution of seqno has finished 1133 * @ring: the ring expected to report seqno 1134 * @seqno: duh! 1135 * @reset_counter: reset sequence associated with the given seqno 1136 * @interruptible: do an interruptible wait (normally yes) 1137 * @timeout: in - how long to wait (NULL forever); out - how much time remaining 1138 * 1139 * Note: It is of utmost importance that the passed in seqno and reset_counter 1140 * values have been read by the caller in an smp safe manner. Where read-side 1141 * locks are involved, it is sufficient to read the reset_counter before 1142 * unlocking the lock that protects the seqno. For lockless tricks, the 1143 * reset_counter _must_ be read before, and an appropriate smp_rmb must be 1144 * inserted. 1145 * 1146 * Returns 0 if the seqno was found within the alloted time. Else returns the 1147 * errno with remaining time filled in timeout argument. 1148 */ 1149 static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno, 1150 unsigned reset_counter, 1151 bool interruptible, 1152 s64 *timeout, 1153 struct drm_i915_file_private *file_priv) 1154 { 1155 struct drm_device *dev = ring->dev; 1156 struct drm_i915_private *dev_priv = dev->dev_private; 1157 const bool irq_test_in_progress = 1158 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring); 1159 DEFINE_WAIT(wait); 1160 unsigned long timeout_expire; 1161 s64 before, now; 1162 int ret; 1163 1164 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled"); 1165 1166 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno)) 1167 return 0; 1168 1169 timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0; 1170 1171 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) { 1172 gen6_rps_boost(dev_priv); 1173 if (file_priv) 1174 mod_delayed_work(dev_priv->wq, 1175 &file_priv->mm.idle_work, 1176 msecs_to_jiffies(100)); 1177 } 1178 1179 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) 1180 return -ENODEV; 1181 1182 /* Record current time in case interrupted by signal, or wedged */ 1183 trace_i915_gem_request_wait_begin(ring, seqno); 1184 before = ktime_get_raw_ns(); 1185 for (;;) { 1186 struct timer_list timer; 1187 1188 prepare_to_wait(&ring->irq_queue, &wait, 1189 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE); 1190 1191 /* We need to check whether any gpu reset happened in between 1192 * the caller grabbing the seqno and now ... */ 1193 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) { 1194 /* ... but upgrade the -EAGAIN to an -EIO if the gpu 1195 * is truely gone. */ 1196 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1197 if (ret == 0) 1198 ret = -EAGAIN; 1199 break; 1200 } 1201 1202 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) { 1203 ret = 0; 1204 break; 1205 } 1206 1207 if (interruptible && signal_pending(current)) { 1208 ret = -ERESTARTSYS; 1209 break; 1210 } 1211 1212 if (timeout && time_after_eq(jiffies, timeout_expire)) { 1213 ret = -ETIME; 1214 break; 1215 } 1216 1217 timer.function = NULL; 1218 if (timeout || missed_irq(dev_priv, ring)) { 1219 unsigned long expire; 1220 1221 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current); 1222 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire; 1223 mod_timer(&timer, expire); 1224 } 1225 1226 io_schedule(); 1227 1228 if (timer.function) { 1229 del_singleshot_timer_sync(&timer); 1230 destroy_timer_on_stack(&timer); 1231 } 1232 } 1233 now = ktime_get_raw_ns(); 1234 trace_i915_gem_request_wait_end(ring, seqno); 1235 1236 if (!irq_test_in_progress) 1237 ring->irq_put(ring); 1238 1239 finish_wait(&ring->irq_queue, &wait); 1240 1241 if (timeout) { 1242 s64 tres = *timeout - (now - before); 1243 1244 *timeout = tres < 0 ? 0 : tres; 1245 } 1246 1247 return ret; 1248 } 1249 1250 /** 1251 * Waits for a sequence number to be signaled, and cleans up the 1252 * request and object lists appropriately for that event. 1253 */ 1254 int 1255 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno) 1256 { 1257 struct drm_device *dev = ring->dev; 1258 struct drm_i915_private *dev_priv = dev->dev_private; 1259 bool interruptible = dev_priv->mm.interruptible; 1260 int ret; 1261 1262 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1263 BUG_ON(seqno == 0); 1264 1265 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1266 if (ret) 1267 return ret; 1268 1269 ret = i915_gem_check_olr(ring, seqno); 1270 if (ret) 1271 return ret; 1272 1273 return __wait_seqno(ring, seqno, 1274 atomic_read(&dev_priv->gpu_error.reset_counter), 1275 interruptible, NULL, NULL); 1276 } 1277 1278 static int 1279 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj, 1280 struct intel_engine_cs *ring) 1281 { 1282 if (!obj->active) 1283 return 0; 1284 1285 /* Manually manage the write flush as we may have not yet 1286 * retired the buffer. 1287 * 1288 * Note that the last_write_seqno is always the earlier of 1289 * the two (read/write) seqno, so if we haved successfully waited, 1290 * we know we have passed the last write. 1291 */ 1292 obj->last_write_seqno = 0; 1293 1294 return 0; 1295 } 1296 1297 /** 1298 * Ensures that all rendering to the object has completed and the object is 1299 * safe to unbind from the GTT or access from the CPU. 1300 */ 1301 static __must_check int 1302 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 1303 bool readonly) 1304 { 1305 struct intel_engine_cs *ring = obj->ring; 1306 u32 seqno; 1307 int ret; 1308 1309 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1310 if (seqno == 0) 1311 return 0; 1312 1313 ret = i915_wait_seqno(ring, seqno); 1314 if (ret) 1315 return ret; 1316 1317 return i915_gem_object_wait_rendering__tail(obj, ring); 1318 } 1319 1320 /* A nonblocking variant of the above wait. This is a highly dangerous routine 1321 * as the object state may change during this call. 1322 */ 1323 static __must_check int 1324 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj, 1325 struct drm_i915_file_private *file_priv, 1326 bool readonly) 1327 { 1328 struct drm_device *dev = obj->base.dev; 1329 struct drm_i915_private *dev_priv = dev->dev_private; 1330 struct intel_engine_cs *ring = obj->ring; 1331 unsigned reset_counter; 1332 u32 seqno; 1333 int ret; 1334 1335 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1336 BUG_ON(!dev_priv->mm.interruptible); 1337 1338 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1339 if (seqno == 0) 1340 return 0; 1341 1342 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true); 1343 if (ret) 1344 return ret; 1345 1346 ret = i915_gem_check_olr(ring, seqno); 1347 if (ret) 1348 return ret; 1349 1350 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 1351 mutex_unlock(&dev->struct_mutex); 1352 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv); 1353 mutex_lock(&dev->struct_mutex); 1354 if (ret) 1355 return ret; 1356 1357 return i915_gem_object_wait_rendering__tail(obj, ring); 1358 } 1359 1360 /** 1361 * Called when user space prepares to use an object with the CPU, either 1362 * through the mmap ioctl's mapping or a GTT mapping. 1363 */ 1364 int 1365 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 1366 struct drm_file *file) 1367 { 1368 struct drm_i915_gem_set_domain *args = data; 1369 struct drm_i915_gem_object *obj; 1370 uint32_t read_domains = args->read_domains; 1371 uint32_t write_domain = args->write_domain; 1372 int ret; 1373 1374 /* Only handle setting domains to types used by the CPU. */ 1375 if (write_domain & I915_GEM_GPU_DOMAINS) 1376 return -EINVAL; 1377 1378 if (read_domains & I915_GEM_GPU_DOMAINS) 1379 return -EINVAL; 1380 1381 /* Having something in the write domain implies it's in the read 1382 * domain, and only that read domain. Enforce that in the request. 1383 */ 1384 if (write_domain != 0 && read_domains != write_domain) 1385 return -EINVAL; 1386 1387 ret = i915_mutex_lock_interruptible(dev); 1388 if (ret) 1389 return ret; 1390 1391 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1392 if (&obj->base == NULL) { 1393 ret = -ENOENT; 1394 goto unlock; 1395 } 1396 1397 /* Try to flush the object off the GPU without holding the lock. 1398 * We will repeat the flush holding the lock in the normal manner 1399 * to catch cases where we are gazumped. 1400 */ 1401 ret = i915_gem_object_wait_rendering__nonblocking(obj, 1402 file->driver_priv, 1403 !write_domain); 1404 if (ret) 1405 goto unref; 1406 1407 if (read_domains & I915_GEM_DOMAIN_GTT) { 1408 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); 1409 1410 /* Silently promote "you're not bound, there was nothing to do" 1411 * to success, since the client was just asking us to 1412 * make sure everything was done. 1413 */ 1414 if (ret == -EINVAL) 1415 ret = 0; 1416 } else { 1417 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); 1418 } 1419 1420 unref: 1421 drm_gem_object_unreference(&obj->base); 1422 unlock: 1423 mutex_unlock(&dev->struct_mutex); 1424 return ret; 1425 } 1426 1427 /** 1428 * Called when user space has done writes to this buffer 1429 */ 1430 int 1431 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1432 struct drm_file *file) 1433 { 1434 struct drm_i915_gem_sw_finish *args = data; 1435 struct drm_i915_gem_object *obj; 1436 int ret = 0; 1437 1438 ret = i915_mutex_lock_interruptible(dev); 1439 if (ret) 1440 return ret; 1441 1442 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1443 if (&obj->base == NULL) { 1444 ret = -ENOENT; 1445 goto unlock; 1446 } 1447 1448 /* Pinned buffers may be scanout, so flush the cache */ 1449 if (obj->pin_display) 1450 i915_gem_object_flush_cpu_write_domain(obj, true); 1451 1452 drm_gem_object_unreference(&obj->base); 1453 unlock: 1454 mutex_unlock(&dev->struct_mutex); 1455 return ret; 1456 } 1457 1458 /** 1459 * Maps the contents of an object, returning the address it is mapped 1460 * into. 1461 * 1462 * While the mapping holds a reference on the contents of the object, it doesn't 1463 * imply a ref on the object itself. 1464 */ 1465 int 1466 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1467 struct drm_file *file) 1468 { 1469 struct drm_i915_gem_mmap *args = data; 1470 struct drm_gem_object *obj; 1471 unsigned long addr; 1472 1473 obj = drm_gem_object_lookup(dev, file, args->handle); 1474 if (obj == NULL) 1475 return -ENOENT; 1476 1477 /* prime objects have no backing filp to GEM mmap 1478 * pages from. 1479 */ 1480 if (!obj->filp) { 1481 drm_gem_object_unreference_unlocked(obj); 1482 return -EINVAL; 1483 } 1484 1485 addr = vm_mmap(obj->filp, 0, args->size, 1486 PROT_READ | PROT_WRITE, MAP_SHARED, 1487 args->offset); 1488 drm_gem_object_unreference_unlocked(obj); 1489 if (IS_ERR((void *)addr)) 1490 return addr; 1491 1492 args->addr_ptr = (uint64_t) addr; 1493 1494 return 0; 1495 } 1496 1497 /** 1498 * i915_gem_fault - fault a page into the GTT 1499 * vma: VMA in question 1500 * vmf: fault info 1501 * 1502 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1503 * from userspace. The fault handler takes care of binding the object to 1504 * the GTT (if needed), allocating and programming a fence register (again, 1505 * only if needed based on whether the old reg is still valid or the object 1506 * is tiled) and inserting a new PTE into the faulting process. 1507 * 1508 * Note that the faulting process may involve evicting existing objects 1509 * from the GTT and/or fence registers to make room. So performance may 1510 * suffer if the GTT working set is large or there are few fence registers 1511 * left. 1512 */ 1513 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1514 { 1515 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data); 1516 struct drm_device *dev = obj->base.dev; 1517 struct drm_i915_private *dev_priv = dev->dev_private; 1518 pgoff_t page_offset; 1519 unsigned long pfn; 1520 int ret = 0; 1521 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 1522 1523 intel_runtime_pm_get(dev_priv); 1524 1525 /* We don't use vmf->pgoff since that has the fake offset */ 1526 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >> 1527 PAGE_SHIFT; 1528 1529 ret = i915_mutex_lock_interruptible(dev); 1530 if (ret) 1531 goto out; 1532 1533 trace_i915_gem_object_fault(obj, page_offset, true, write); 1534 1535 /* Try to flush the object off the GPU first without holding the lock. 1536 * Upon reacquiring the lock, we will perform our sanity checks and then 1537 * repeat the flush holding the lock in the normal manner to catch cases 1538 * where we are gazumped. 1539 */ 1540 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write); 1541 if (ret) 1542 goto unlock; 1543 1544 /* Access to snoopable pages through the GTT is incoherent. */ 1545 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) { 1546 ret = -EFAULT; 1547 goto unlock; 1548 } 1549 1550 /* Now bind it into the GTT if needed */ 1551 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE); 1552 if (ret) 1553 goto unlock; 1554 1555 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1556 if (ret) 1557 goto unpin; 1558 1559 ret = i915_gem_object_get_fence(obj); 1560 if (ret) 1561 goto unpin; 1562 1563 /* Finally, remap it using the new GTT offset */ 1564 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj); 1565 pfn >>= PAGE_SHIFT; 1566 1567 if (!obj->fault_mappable) { 1568 unsigned long size = min_t(unsigned long, 1569 vma->vm_end - vma->vm_start, 1570 obj->base.size); 1571 int i; 1572 1573 for (i = 0; i < size >> PAGE_SHIFT; i++) { 1574 ret = vm_insert_pfn(vma, 1575 (unsigned long)vma->vm_start + i * PAGE_SIZE, 1576 pfn + i); 1577 if (ret) 1578 break; 1579 } 1580 1581 obj->fault_mappable = true; 1582 } else 1583 ret = vm_insert_pfn(vma, 1584 (unsigned long)vmf->virtual_address, 1585 pfn + page_offset); 1586 unpin: 1587 i915_gem_object_ggtt_unpin(obj); 1588 unlock: 1589 mutex_unlock(&dev->struct_mutex); 1590 out: 1591 switch (ret) { 1592 case -EIO: 1593 /* If this -EIO is due to a gpu hang, give the reset code a 1594 * chance to clean up the mess. Otherwise return the proper 1595 * SIGBUS. */ 1596 if (i915_terminally_wedged(&dev_priv->gpu_error)) { 1597 ret = VM_FAULT_SIGBUS; 1598 break; 1599 } 1600 case -EAGAIN: 1601 /* 1602 * EAGAIN means the gpu is hung and we'll wait for the error 1603 * handler to reset everything when re-faulting in 1604 * i915_mutex_lock_interruptible. 1605 */ 1606 case 0: 1607 case -ERESTARTSYS: 1608 case -EINTR: 1609 case -EBUSY: 1610 /* 1611 * EBUSY is ok: this just means that another thread 1612 * already did the job. 1613 */ 1614 ret = VM_FAULT_NOPAGE; 1615 break; 1616 case -ENOMEM: 1617 ret = VM_FAULT_OOM; 1618 break; 1619 case -ENOSPC: 1620 case -EFAULT: 1621 ret = VM_FAULT_SIGBUS; 1622 break; 1623 default: 1624 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); 1625 ret = VM_FAULT_SIGBUS; 1626 break; 1627 } 1628 1629 intel_runtime_pm_put(dev_priv); 1630 return ret; 1631 } 1632 1633 /** 1634 * i915_gem_release_mmap - remove physical page mappings 1635 * @obj: obj in question 1636 * 1637 * Preserve the reservation of the mmapping with the DRM core code, but 1638 * relinquish ownership of the pages back to the system. 1639 * 1640 * It is vital that we remove the page mapping if we have mapped a tiled 1641 * object through the GTT and then lose the fence register due to 1642 * resource pressure. Similarly if the object has been moved out of the 1643 * aperture, than pages mapped into userspace must be revoked. Removing the 1644 * mapping will then trigger a page fault on the next user access, allowing 1645 * fixup by i915_gem_fault(). 1646 */ 1647 void 1648 i915_gem_release_mmap(struct drm_i915_gem_object *obj) 1649 { 1650 if (!obj->fault_mappable) 1651 return; 1652 1653 drm_vma_node_unmap(&obj->base.vma_node, 1654 obj->base.dev->anon_inode->i_mapping); 1655 obj->fault_mappable = false; 1656 } 1657 1658 void 1659 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv) 1660 { 1661 struct drm_i915_gem_object *obj; 1662 1663 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) 1664 i915_gem_release_mmap(obj); 1665 } 1666 1667 uint32_t 1668 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode) 1669 { 1670 uint32_t gtt_size; 1671 1672 if (INTEL_INFO(dev)->gen >= 4 || 1673 tiling_mode == I915_TILING_NONE) 1674 return size; 1675 1676 /* Previous chips need a power-of-two fence region when tiling */ 1677 if (INTEL_INFO(dev)->gen == 3) 1678 gtt_size = 1024*1024; 1679 else 1680 gtt_size = 512*1024; 1681 1682 while (gtt_size < size) 1683 gtt_size <<= 1; 1684 1685 return gtt_size; 1686 } 1687 1688 /** 1689 * i915_gem_get_gtt_alignment - return required GTT alignment for an object 1690 * @obj: object to check 1691 * 1692 * Return the required GTT alignment for an object, taking into account 1693 * potential fence register mapping. 1694 */ 1695 uint32_t 1696 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size, 1697 int tiling_mode, bool fenced) 1698 { 1699 /* 1700 * Minimum alignment is 4k (GTT page size), but might be greater 1701 * if a fence register is needed for the object. 1702 */ 1703 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) || 1704 tiling_mode == I915_TILING_NONE) 1705 return 4096; 1706 1707 /* 1708 * Previous chips need to be aligned to the size of the smallest 1709 * fence register that can contain the object. 1710 */ 1711 return i915_gem_get_gtt_size(dev, size, tiling_mode); 1712 } 1713 1714 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) 1715 { 1716 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1717 int ret; 1718 1719 if (drm_vma_node_has_offset(&obj->base.vma_node)) 1720 return 0; 1721 1722 dev_priv->mm.shrinker_no_lock_stealing = true; 1723 1724 ret = drm_gem_create_mmap_offset(&obj->base); 1725 if (ret != -ENOSPC) 1726 goto out; 1727 1728 /* Badly fragmented mmap space? The only way we can recover 1729 * space is by destroying unwanted objects. We can't randomly release 1730 * mmap_offsets as userspace expects them to be persistent for the 1731 * lifetime of the objects. The closest we can is to release the 1732 * offsets on purgeable objects by truncating it and marking it purged, 1733 * which prevents userspace from ever using that object again. 1734 */ 1735 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT); 1736 ret = drm_gem_create_mmap_offset(&obj->base); 1737 if (ret != -ENOSPC) 1738 goto out; 1739 1740 i915_gem_shrink_all(dev_priv); 1741 ret = drm_gem_create_mmap_offset(&obj->base); 1742 out: 1743 dev_priv->mm.shrinker_no_lock_stealing = false; 1744 1745 return ret; 1746 } 1747 1748 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) 1749 { 1750 drm_gem_free_mmap_offset(&obj->base); 1751 } 1752 1753 int 1754 i915_gem_mmap_gtt(struct drm_file *file, 1755 struct drm_device *dev, 1756 uint32_t handle, 1757 uint64_t *offset) 1758 { 1759 struct drm_i915_private *dev_priv = dev->dev_private; 1760 struct drm_i915_gem_object *obj; 1761 int ret; 1762 1763 ret = i915_mutex_lock_interruptible(dev); 1764 if (ret) 1765 return ret; 1766 1767 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle)); 1768 if (&obj->base == NULL) { 1769 ret = -ENOENT; 1770 goto unlock; 1771 } 1772 1773 if (obj->base.size > dev_priv->gtt.mappable_end) { 1774 ret = -E2BIG; 1775 goto out; 1776 } 1777 1778 if (obj->madv != I915_MADV_WILLNEED) { 1779 DRM_DEBUG("Attempting to mmap a purgeable buffer\n"); 1780 ret = -EFAULT; 1781 goto out; 1782 } 1783 1784 ret = i915_gem_object_create_mmap_offset(obj); 1785 if (ret) 1786 goto out; 1787 1788 *offset = drm_vma_node_offset_addr(&obj->base.vma_node); 1789 1790 out: 1791 drm_gem_object_unreference(&obj->base); 1792 unlock: 1793 mutex_unlock(&dev->struct_mutex); 1794 return ret; 1795 } 1796 1797 /** 1798 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 1799 * @dev: DRM device 1800 * @data: GTT mapping ioctl data 1801 * @file: GEM object info 1802 * 1803 * Simply returns the fake offset to userspace so it can mmap it. 1804 * The mmap call will end up in drm_gem_mmap(), which will set things 1805 * up so we can get faults in the handler above. 1806 * 1807 * The fault handler will take care of binding the object into the GTT 1808 * (since it may have been evicted to make room for something), allocating 1809 * a fence register, and mapping the appropriate aperture address into 1810 * userspace. 1811 */ 1812 int 1813 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 1814 struct drm_file *file) 1815 { 1816 struct drm_i915_gem_mmap_gtt *args = data; 1817 1818 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); 1819 } 1820 1821 static inline int 1822 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj) 1823 { 1824 return obj->madv == I915_MADV_DONTNEED; 1825 } 1826 1827 /* Immediately discard the backing storage */ 1828 static void 1829 i915_gem_object_truncate(struct drm_i915_gem_object *obj) 1830 { 1831 i915_gem_object_free_mmap_offset(obj); 1832 1833 if (obj->base.filp == NULL) 1834 return; 1835 1836 /* Our goal here is to return as much of the memory as 1837 * is possible back to the system as we are called from OOM. 1838 * To do this we must instruct the shmfs to drop all of its 1839 * backing pages, *now*. 1840 */ 1841 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1); 1842 obj->madv = __I915_MADV_PURGED; 1843 } 1844 1845 /* Try to discard unwanted pages */ 1846 static void 1847 i915_gem_object_invalidate(struct drm_i915_gem_object *obj) 1848 { 1849 struct address_space *mapping; 1850 1851 switch (obj->madv) { 1852 case I915_MADV_DONTNEED: 1853 i915_gem_object_truncate(obj); 1854 case __I915_MADV_PURGED: 1855 return; 1856 } 1857 1858 if (obj->base.filp == NULL) 1859 return; 1860 1861 mapping = file_inode(obj->base.filp)->i_mapping, 1862 invalidate_mapping_pages(mapping, 0, (loff_t)-1); 1863 } 1864 1865 static void 1866 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj) 1867 { 1868 struct sg_page_iter sg_iter; 1869 int ret; 1870 1871 BUG_ON(obj->madv == __I915_MADV_PURGED); 1872 1873 ret = i915_gem_object_set_to_cpu_domain(obj, true); 1874 if (ret) { 1875 /* In the event of a disaster, abandon all caches and 1876 * hope for the best. 1877 */ 1878 WARN_ON(ret != -EIO); 1879 i915_gem_clflush_object(obj, true); 1880 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; 1881 } 1882 1883 if (i915_gem_object_needs_bit17_swizzle(obj)) 1884 i915_gem_object_save_bit_17_swizzle(obj); 1885 1886 if (obj->madv == I915_MADV_DONTNEED) 1887 obj->dirty = 0; 1888 1889 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) { 1890 struct page *page = sg_page_iter_page(&sg_iter); 1891 1892 if (obj->dirty) 1893 set_page_dirty(page); 1894 1895 if (obj->madv == I915_MADV_WILLNEED) 1896 mark_page_accessed(page); 1897 1898 page_cache_release(page); 1899 } 1900 obj->dirty = 0; 1901 1902 sg_free_table(obj->pages); 1903 kfree(obj->pages); 1904 } 1905 1906 int 1907 i915_gem_object_put_pages(struct drm_i915_gem_object *obj) 1908 { 1909 const struct drm_i915_gem_object_ops *ops = obj->ops; 1910 1911 if (obj->pages == NULL) 1912 return 0; 1913 1914 if (obj->pages_pin_count) 1915 return -EBUSY; 1916 1917 BUG_ON(i915_gem_obj_bound_any(obj)); 1918 1919 /* ->put_pages might need to allocate memory for the bit17 swizzle 1920 * array, hence protect them from being reaped by removing them from gtt 1921 * lists early. */ 1922 list_del(&obj->global_list); 1923 1924 ops->put_pages(obj); 1925 obj->pages = NULL; 1926 1927 i915_gem_object_invalidate(obj); 1928 1929 return 0; 1930 } 1931 1932 static unsigned long 1933 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target, 1934 bool purgeable_only) 1935 { 1936 struct list_head still_in_list; 1937 struct drm_i915_gem_object *obj; 1938 unsigned long count = 0; 1939 1940 /* 1941 * As we may completely rewrite the (un)bound list whilst unbinding 1942 * (due to retiring requests) we have to strictly process only 1943 * one element of the list at the time, and recheck the list 1944 * on every iteration. 1945 * 1946 * In particular, we must hold a reference whilst removing the 1947 * object as we may end up waiting for and/or retiring the objects. 1948 * This might release the final reference (held by the active list) 1949 * and result in the object being freed from under us. This is 1950 * similar to the precautions the eviction code must take whilst 1951 * removing objects. 1952 * 1953 * Also note that although these lists do not hold a reference to 1954 * the object we can safely grab one here: The final object 1955 * unreferencing and the bound_list are both protected by the 1956 * dev->struct_mutex and so we won't ever be able to observe an 1957 * object on the bound_list with a reference count equals 0. 1958 */ 1959 INIT_LIST_HEAD(&still_in_list); 1960 while (count < target && !list_empty(&dev_priv->mm.unbound_list)) { 1961 obj = list_first_entry(&dev_priv->mm.unbound_list, 1962 typeof(*obj), global_list); 1963 list_move_tail(&obj->global_list, &still_in_list); 1964 1965 if (!i915_gem_object_is_purgeable(obj) && purgeable_only) 1966 continue; 1967 1968 drm_gem_object_reference(&obj->base); 1969 1970 if (i915_gem_object_put_pages(obj) == 0) 1971 count += obj->base.size >> PAGE_SHIFT; 1972 1973 drm_gem_object_unreference(&obj->base); 1974 } 1975 list_splice(&still_in_list, &dev_priv->mm.unbound_list); 1976 1977 INIT_LIST_HEAD(&still_in_list); 1978 while (count < target && !list_empty(&dev_priv->mm.bound_list)) { 1979 struct i915_vma *vma, *v; 1980 1981 obj = list_first_entry(&dev_priv->mm.bound_list, 1982 typeof(*obj), global_list); 1983 list_move_tail(&obj->global_list, &still_in_list); 1984 1985 if (!i915_gem_object_is_purgeable(obj) && purgeable_only) 1986 continue; 1987 1988 drm_gem_object_reference(&obj->base); 1989 1990 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link) 1991 if (i915_vma_unbind(vma)) 1992 break; 1993 1994 if (i915_gem_object_put_pages(obj) == 0) 1995 count += obj->base.size >> PAGE_SHIFT; 1996 1997 drm_gem_object_unreference(&obj->base); 1998 } 1999 list_splice(&still_in_list, &dev_priv->mm.bound_list); 2000 2001 return count; 2002 } 2003 2004 static unsigned long 2005 i915_gem_purge(struct drm_i915_private *dev_priv, long target) 2006 { 2007 return __i915_gem_shrink(dev_priv, target, true); 2008 } 2009 2010 static unsigned long 2011 i915_gem_shrink_all(struct drm_i915_private *dev_priv) 2012 { 2013 i915_gem_evict_everything(dev_priv->dev); 2014 return __i915_gem_shrink(dev_priv, LONG_MAX, false); 2015 } 2016 2017 static int 2018 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) 2019 { 2020 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2021 int page_count, i; 2022 struct address_space *mapping; 2023 struct sg_table *st; 2024 struct scatterlist *sg; 2025 struct sg_page_iter sg_iter; 2026 struct page *page; 2027 unsigned long last_pfn = 0; /* suppress gcc warning */ 2028 gfp_t gfp; 2029 2030 /* Assert that the object is not currently in any GPU domain. As it 2031 * wasn't in the GTT, there shouldn't be any way it could have been in 2032 * a GPU cache 2033 */ 2034 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); 2035 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); 2036 2037 st = kmalloc(sizeof(*st), GFP_KERNEL); 2038 if (st == NULL) 2039 return -ENOMEM; 2040 2041 page_count = obj->base.size / PAGE_SIZE; 2042 if (sg_alloc_table(st, page_count, GFP_KERNEL)) { 2043 kfree(st); 2044 return -ENOMEM; 2045 } 2046 2047 /* Get the list of pages out of our struct file. They'll be pinned 2048 * at this point until we release them. 2049 * 2050 * Fail silently without starting the shrinker 2051 */ 2052 mapping = file_inode(obj->base.filp)->i_mapping; 2053 gfp = mapping_gfp_mask(mapping); 2054 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD; 2055 gfp &= ~(__GFP_IO | __GFP_WAIT); 2056 sg = st->sgl; 2057 st->nents = 0; 2058 for (i = 0; i < page_count; i++) { 2059 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 2060 if (IS_ERR(page)) { 2061 i915_gem_purge(dev_priv, page_count); 2062 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 2063 } 2064 if (IS_ERR(page)) { 2065 /* We've tried hard to allocate the memory by reaping 2066 * our own buffer, now let the real VM do its job and 2067 * go down in flames if truly OOM. 2068 */ 2069 i915_gem_shrink_all(dev_priv); 2070 page = shmem_read_mapping_page(mapping, i); 2071 if (IS_ERR(page)) 2072 goto err_pages; 2073 } 2074 #ifdef CONFIG_SWIOTLB 2075 if (swiotlb_nr_tbl()) { 2076 st->nents++; 2077 sg_set_page(sg, page, PAGE_SIZE, 0); 2078 sg = sg_next(sg); 2079 continue; 2080 } 2081 #endif 2082 if (!i || page_to_pfn(page) != last_pfn + 1) { 2083 if (i) 2084 sg = sg_next(sg); 2085 st->nents++; 2086 sg_set_page(sg, page, PAGE_SIZE, 0); 2087 } else { 2088 sg->length += PAGE_SIZE; 2089 } 2090 last_pfn = page_to_pfn(page); 2091 2092 /* Check that the i965g/gm workaround works. */ 2093 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL)); 2094 } 2095 #ifdef CONFIG_SWIOTLB 2096 if (!swiotlb_nr_tbl()) 2097 #endif 2098 sg_mark_end(sg); 2099 obj->pages = st; 2100 2101 if (i915_gem_object_needs_bit17_swizzle(obj)) 2102 i915_gem_object_do_bit_17_swizzle(obj); 2103 2104 return 0; 2105 2106 err_pages: 2107 sg_mark_end(sg); 2108 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) 2109 page_cache_release(sg_page_iter_page(&sg_iter)); 2110 sg_free_table(st); 2111 kfree(st); 2112 2113 /* shmemfs first checks if there is enough memory to allocate the page 2114 * and reports ENOSPC should there be insufficient, along with the usual 2115 * ENOMEM for a genuine allocation failure. 2116 * 2117 * We use ENOSPC in our driver to mean that we have run out of aperture 2118 * space and so want to translate the error from shmemfs back to our 2119 * usual understanding of ENOMEM. 2120 */ 2121 if (PTR_ERR(page) == -ENOSPC) 2122 return -ENOMEM; 2123 else 2124 return PTR_ERR(page); 2125 } 2126 2127 /* Ensure that the associated pages are gathered from the backing storage 2128 * and pinned into our object. i915_gem_object_get_pages() may be called 2129 * multiple times before they are released by a single call to 2130 * i915_gem_object_put_pages() - once the pages are no longer referenced 2131 * either as a result of memory pressure (reaping pages under the shrinker) 2132 * or as the object is itself released. 2133 */ 2134 int 2135 i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 2136 { 2137 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2138 const struct drm_i915_gem_object_ops *ops = obj->ops; 2139 int ret; 2140 2141 if (obj->pages) 2142 return 0; 2143 2144 if (obj->madv != I915_MADV_WILLNEED) { 2145 DRM_DEBUG("Attempting to obtain a purgeable object\n"); 2146 return -EFAULT; 2147 } 2148 2149 BUG_ON(obj->pages_pin_count); 2150 2151 ret = ops->get_pages(obj); 2152 if (ret) 2153 return ret; 2154 2155 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list); 2156 return 0; 2157 } 2158 2159 static void 2160 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj, 2161 struct intel_engine_cs *ring) 2162 { 2163 struct drm_device *dev = obj->base.dev; 2164 struct drm_i915_private *dev_priv = dev->dev_private; 2165 u32 seqno = intel_ring_get_seqno(ring); 2166 2167 BUG_ON(ring == NULL); 2168 if (obj->ring != ring && obj->last_write_seqno) { 2169 /* Keep the seqno relative to the current ring */ 2170 obj->last_write_seqno = seqno; 2171 } 2172 obj->ring = ring; 2173 2174 /* Add a reference if we're newly entering the active list. */ 2175 if (!obj->active) { 2176 drm_gem_object_reference(&obj->base); 2177 obj->active = 1; 2178 } 2179 2180 list_move_tail(&obj->ring_list, &ring->active_list); 2181 2182 obj->last_read_seqno = seqno; 2183 2184 if (obj->fenced_gpu_access) { 2185 obj->last_fenced_seqno = seqno; 2186 2187 /* Bump MRU to take account of the delayed flush */ 2188 if (obj->fence_reg != I915_FENCE_REG_NONE) { 2189 struct drm_i915_fence_reg *reg; 2190 2191 reg = &dev_priv->fence_regs[obj->fence_reg]; 2192 list_move_tail(®->lru_list, 2193 &dev_priv->mm.fence_list); 2194 } 2195 } 2196 } 2197 2198 void i915_vma_move_to_active(struct i915_vma *vma, 2199 struct intel_engine_cs *ring) 2200 { 2201 list_move_tail(&vma->mm_list, &vma->vm->active_list); 2202 return i915_gem_object_move_to_active(vma->obj, ring); 2203 } 2204 2205 static void 2206 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj) 2207 { 2208 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2209 struct i915_address_space *vm; 2210 struct i915_vma *vma; 2211 2212 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS); 2213 BUG_ON(!obj->active); 2214 2215 list_for_each_entry(vm, &dev_priv->vm_list, global_link) { 2216 vma = i915_gem_obj_to_vma(obj, vm); 2217 if (vma && !list_empty(&vma->mm_list)) 2218 list_move_tail(&vma->mm_list, &vm->inactive_list); 2219 } 2220 2221 intel_fb_obj_flush(obj, true); 2222 2223 list_del_init(&obj->ring_list); 2224 obj->ring = NULL; 2225 2226 obj->last_read_seqno = 0; 2227 obj->last_write_seqno = 0; 2228 obj->base.write_domain = 0; 2229 2230 obj->last_fenced_seqno = 0; 2231 obj->fenced_gpu_access = false; 2232 2233 obj->active = 0; 2234 drm_gem_object_unreference(&obj->base); 2235 2236 WARN_ON(i915_verify_lists(dev)); 2237 } 2238 2239 static void 2240 i915_gem_object_retire(struct drm_i915_gem_object *obj) 2241 { 2242 struct intel_engine_cs *ring = obj->ring; 2243 2244 if (ring == NULL) 2245 return; 2246 2247 if (i915_seqno_passed(ring->get_seqno(ring, true), 2248 obj->last_read_seqno)) 2249 i915_gem_object_move_to_inactive(obj); 2250 } 2251 2252 static int 2253 i915_gem_init_seqno(struct drm_device *dev, u32 seqno) 2254 { 2255 struct drm_i915_private *dev_priv = dev->dev_private; 2256 struct intel_engine_cs *ring; 2257 int ret, i, j; 2258 2259 /* Carefully retire all requests without writing to the rings */ 2260 for_each_ring(ring, dev_priv, i) { 2261 ret = intel_ring_idle(ring); 2262 if (ret) 2263 return ret; 2264 } 2265 i915_gem_retire_requests(dev); 2266 2267 /* Finally reset hw state */ 2268 for_each_ring(ring, dev_priv, i) { 2269 intel_ring_init_seqno(ring, seqno); 2270 2271 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++) 2272 ring->semaphore.sync_seqno[j] = 0; 2273 } 2274 2275 return 0; 2276 } 2277 2278 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno) 2279 { 2280 struct drm_i915_private *dev_priv = dev->dev_private; 2281 int ret; 2282 2283 if (seqno == 0) 2284 return -EINVAL; 2285 2286 /* HWS page needs to be set less than what we 2287 * will inject to ring 2288 */ 2289 ret = i915_gem_init_seqno(dev, seqno - 1); 2290 if (ret) 2291 return ret; 2292 2293 /* Carefully set the last_seqno value so that wrap 2294 * detection still works 2295 */ 2296 dev_priv->next_seqno = seqno; 2297 dev_priv->last_seqno = seqno - 1; 2298 if (dev_priv->last_seqno == 0) 2299 dev_priv->last_seqno--; 2300 2301 return 0; 2302 } 2303 2304 int 2305 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno) 2306 { 2307 struct drm_i915_private *dev_priv = dev->dev_private; 2308 2309 /* reserve 0 for non-seqno */ 2310 if (dev_priv->next_seqno == 0) { 2311 int ret = i915_gem_init_seqno(dev, 0); 2312 if (ret) 2313 return ret; 2314 2315 dev_priv->next_seqno = 1; 2316 } 2317 2318 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++; 2319 return 0; 2320 } 2321 2322 int __i915_add_request(struct intel_engine_cs *ring, 2323 struct drm_file *file, 2324 struct drm_i915_gem_object *obj, 2325 u32 *out_seqno) 2326 { 2327 struct drm_i915_private *dev_priv = ring->dev->dev_private; 2328 struct drm_i915_gem_request *request; 2329 u32 request_ring_position, request_start; 2330 int ret; 2331 2332 request_start = intel_ring_get_tail(ring->buffer); 2333 /* 2334 * Emit any outstanding flushes - execbuf can fail to emit the flush 2335 * after having emitted the batchbuffer command. Hence we need to fix 2336 * things up similar to emitting the lazy request. The difference here 2337 * is that the flush _must_ happen before the next request, no matter 2338 * what. 2339 */ 2340 ret = intel_ring_flush_all_caches(ring); 2341 if (ret) 2342 return ret; 2343 2344 request = ring->preallocated_lazy_request; 2345 if (WARN_ON(request == NULL)) 2346 return -ENOMEM; 2347 2348 /* Record the position of the start of the request so that 2349 * should we detect the updated seqno part-way through the 2350 * GPU processing the request, we never over-estimate the 2351 * position of the head. 2352 */ 2353 request_ring_position = intel_ring_get_tail(ring->buffer); 2354 2355 ret = ring->add_request(ring); 2356 if (ret) 2357 return ret; 2358 2359 request->seqno = intel_ring_get_seqno(ring); 2360 request->ring = ring; 2361 request->head = request_start; 2362 request->tail = request_ring_position; 2363 2364 /* Whilst this request exists, batch_obj will be on the 2365 * active_list, and so will hold the active reference. Only when this 2366 * request is retired will the the batch_obj be moved onto the 2367 * inactive_list and lose its active reference. Hence we do not need 2368 * to explicitly hold another reference here. 2369 */ 2370 request->batch_obj = obj; 2371 2372 /* Hold a reference to the current context so that we can inspect 2373 * it later in case a hangcheck error event fires. 2374 */ 2375 request->ctx = ring->last_context; 2376 if (request->ctx) 2377 i915_gem_context_reference(request->ctx); 2378 2379 request->emitted_jiffies = jiffies; 2380 list_add_tail(&request->list, &ring->request_list); 2381 request->file_priv = NULL; 2382 2383 if (file) { 2384 struct drm_i915_file_private *file_priv = file->driver_priv; 2385 2386 spin_lock(&file_priv->mm.lock); 2387 request->file_priv = file_priv; 2388 list_add_tail(&request->client_list, 2389 &file_priv->mm.request_list); 2390 spin_unlock(&file_priv->mm.lock); 2391 } 2392 2393 trace_i915_gem_request_add(ring, request->seqno); 2394 ring->outstanding_lazy_seqno = 0; 2395 ring->preallocated_lazy_request = NULL; 2396 2397 if (!dev_priv->ums.mm_suspended) { 2398 i915_queue_hangcheck(ring->dev); 2399 2400 cancel_delayed_work_sync(&dev_priv->mm.idle_work); 2401 queue_delayed_work(dev_priv->wq, 2402 &dev_priv->mm.retire_work, 2403 round_jiffies_up_relative(HZ)); 2404 intel_mark_busy(dev_priv->dev); 2405 } 2406 2407 if (out_seqno) 2408 *out_seqno = request->seqno; 2409 return 0; 2410 } 2411 2412 static inline void 2413 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request) 2414 { 2415 struct drm_i915_file_private *file_priv = request->file_priv; 2416 2417 if (!file_priv) 2418 return; 2419 2420 spin_lock(&file_priv->mm.lock); 2421 list_del(&request->client_list); 2422 request->file_priv = NULL; 2423 spin_unlock(&file_priv->mm.lock); 2424 } 2425 2426 static bool i915_context_is_banned(struct drm_i915_private *dev_priv, 2427 const struct intel_context *ctx) 2428 { 2429 unsigned long elapsed; 2430 2431 elapsed = get_seconds() - ctx->hang_stats.guilty_ts; 2432 2433 if (ctx->hang_stats.banned) 2434 return true; 2435 2436 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) { 2437 if (!i915_gem_context_is_default(ctx)) { 2438 DRM_DEBUG("context hanging too fast, banning!\n"); 2439 return true; 2440 } else if (i915_stop_ring_allow_ban(dev_priv)) { 2441 if (i915_stop_ring_allow_warn(dev_priv)) 2442 DRM_ERROR("gpu hanging too fast, banning!\n"); 2443 return true; 2444 } 2445 } 2446 2447 return false; 2448 } 2449 2450 static void i915_set_reset_status(struct drm_i915_private *dev_priv, 2451 struct intel_context *ctx, 2452 const bool guilty) 2453 { 2454 struct i915_ctx_hang_stats *hs; 2455 2456 if (WARN_ON(!ctx)) 2457 return; 2458 2459 hs = &ctx->hang_stats; 2460 2461 if (guilty) { 2462 hs->banned = i915_context_is_banned(dev_priv, ctx); 2463 hs->batch_active++; 2464 hs->guilty_ts = get_seconds(); 2465 } else { 2466 hs->batch_pending++; 2467 } 2468 } 2469 2470 static void i915_gem_free_request(struct drm_i915_gem_request *request) 2471 { 2472 list_del(&request->list); 2473 i915_gem_request_remove_from_client(request); 2474 2475 if (request->ctx) 2476 i915_gem_context_unreference(request->ctx); 2477 2478 kfree(request); 2479 } 2480 2481 struct drm_i915_gem_request * 2482 i915_gem_find_active_request(struct intel_engine_cs *ring) 2483 { 2484 struct drm_i915_gem_request *request; 2485 u32 completed_seqno; 2486 2487 completed_seqno = ring->get_seqno(ring, false); 2488 2489 list_for_each_entry(request, &ring->request_list, list) { 2490 if (i915_seqno_passed(completed_seqno, request->seqno)) 2491 continue; 2492 2493 return request; 2494 } 2495 2496 return NULL; 2497 } 2498 2499 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv, 2500 struct intel_engine_cs *ring) 2501 { 2502 struct drm_i915_gem_request *request; 2503 bool ring_hung; 2504 2505 request = i915_gem_find_active_request(ring); 2506 2507 if (request == NULL) 2508 return; 2509 2510 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG; 2511 2512 i915_set_reset_status(dev_priv, request->ctx, ring_hung); 2513 2514 list_for_each_entry_continue(request, &ring->request_list, list) 2515 i915_set_reset_status(dev_priv, request->ctx, false); 2516 } 2517 2518 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv, 2519 struct intel_engine_cs *ring) 2520 { 2521 while (!list_empty(&ring->active_list)) { 2522 struct drm_i915_gem_object *obj; 2523 2524 obj = list_first_entry(&ring->active_list, 2525 struct drm_i915_gem_object, 2526 ring_list); 2527 2528 i915_gem_object_move_to_inactive(obj); 2529 } 2530 2531 /* 2532 * We must free the requests after all the corresponding objects have 2533 * been moved off active lists. Which is the same order as the normal 2534 * retire_requests function does. This is important if object hold 2535 * implicit references on things like e.g. ppgtt address spaces through 2536 * the request. 2537 */ 2538 while (!list_empty(&ring->request_list)) { 2539 struct drm_i915_gem_request *request; 2540 2541 request = list_first_entry(&ring->request_list, 2542 struct drm_i915_gem_request, 2543 list); 2544 2545 i915_gem_free_request(request); 2546 } 2547 2548 /* These may not have been flush before the reset, do so now */ 2549 kfree(ring->preallocated_lazy_request); 2550 ring->preallocated_lazy_request = NULL; 2551 ring->outstanding_lazy_seqno = 0; 2552 } 2553 2554 void i915_gem_restore_fences(struct drm_device *dev) 2555 { 2556 struct drm_i915_private *dev_priv = dev->dev_private; 2557 int i; 2558 2559 for (i = 0; i < dev_priv->num_fence_regs; i++) { 2560 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; 2561 2562 /* 2563 * Commit delayed tiling changes if we have an object still 2564 * attached to the fence, otherwise just clear the fence. 2565 */ 2566 if (reg->obj) { 2567 i915_gem_object_update_fence(reg->obj, reg, 2568 reg->obj->tiling_mode); 2569 } else { 2570 i915_gem_write_fence(dev, i, NULL); 2571 } 2572 } 2573 } 2574 2575 void i915_gem_reset(struct drm_device *dev) 2576 { 2577 struct drm_i915_private *dev_priv = dev->dev_private; 2578 struct intel_engine_cs *ring; 2579 int i; 2580 2581 /* 2582 * Before we free the objects from the requests, we need to inspect 2583 * them for finding the guilty party. As the requests only borrow 2584 * their reference to the objects, the inspection must be done first. 2585 */ 2586 for_each_ring(ring, dev_priv, i) 2587 i915_gem_reset_ring_status(dev_priv, ring); 2588 2589 for_each_ring(ring, dev_priv, i) 2590 i915_gem_reset_ring_cleanup(dev_priv, ring); 2591 2592 i915_gem_context_reset(dev); 2593 2594 i915_gem_restore_fences(dev); 2595 } 2596 2597 /** 2598 * This function clears the request list as sequence numbers are passed. 2599 */ 2600 void 2601 i915_gem_retire_requests_ring(struct intel_engine_cs *ring) 2602 { 2603 uint32_t seqno; 2604 2605 if (list_empty(&ring->request_list)) 2606 return; 2607 2608 WARN_ON(i915_verify_lists(ring->dev)); 2609 2610 seqno = ring->get_seqno(ring, true); 2611 2612 /* Move any buffers on the active list that are no longer referenced 2613 * by the ringbuffer to the flushing/inactive lists as appropriate, 2614 * before we free the context associated with the requests. 2615 */ 2616 while (!list_empty(&ring->active_list)) { 2617 struct drm_i915_gem_object *obj; 2618 2619 obj = list_first_entry(&ring->active_list, 2620 struct drm_i915_gem_object, 2621 ring_list); 2622 2623 if (!i915_seqno_passed(seqno, obj->last_read_seqno)) 2624 break; 2625 2626 i915_gem_object_move_to_inactive(obj); 2627 } 2628 2629 2630 while (!list_empty(&ring->request_list)) { 2631 struct drm_i915_gem_request *request; 2632 2633 request = list_first_entry(&ring->request_list, 2634 struct drm_i915_gem_request, 2635 list); 2636 2637 if (!i915_seqno_passed(seqno, request->seqno)) 2638 break; 2639 2640 trace_i915_gem_request_retire(ring, request->seqno); 2641 /* We know the GPU must have read the request to have 2642 * sent us the seqno + interrupt, so use the position 2643 * of tail of the request to update the last known position 2644 * of the GPU head. 2645 */ 2646 ring->buffer->last_retired_head = request->tail; 2647 2648 i915_gem_free_request(request); 2649 } 2650 2651 if (unlikely(ring->trace_irq_seqno && 2652 i915_seqno_passed(seqno, ring->trace_irq_seqno))) { 2653 ring->irq_put(ring); 2654 ring->trace_irq_seqno = 0; 2655 } 2656 2657 WARN_ON(i915_verify_lists(ring->dev)); 2658 } 2659 2660 bool 2661 i915_gem_retire_requests(struct drm_device *dev) 2662 { 2663 struct drm_i915_private *dev_priv = dev->dev_private; 2664 struct intel_engine_cs *ring; 2665 bool idle = true; 2666 int i; 2667 2668 for_each_ring(ring, dev_priv, i) { 2669 i915_gem_retire_requests_ring(ring); 2670 idle &= list_empty(&ring->request_list); 2671 } 2672 2673 if (idle) 2674 mod_delayed_work(dev_priv->wq, 2675 &dev_priv->mm.idle_work, 2676 msecs_to_jiffies(100)); 2677 2678 return idle; 2679 } 2680 2681 static void 2682 i915_gem_retire_work_handler(struct work_struct *work) 2683 { 2684 struct drm_i915_private *dev_priv = 2685 container_of(work, typeof(*dev_priv), mm.retire_work.work); 2686 struct drm_device *dev = dev_priv->dev; 2687 bool idle; 2688 2689 /* Come back later if the device is busy... */ 2690 idle = false; 2691 if (mutex_trylock(&dev->struct_mutex)) { 2692 idle = i915_gem_retire_requests(dev); 2693 mutex_unlock(&dev->struct_mutex); 2694 } 2695 if (!idle) 2696 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 2697 round_jiffies_up_relative(HZ)); 2698 } 2699 2700 static void 2701 i915_gem_idle_work_handler(struct work_struct *work) 2702 { 2703 struct drm_i915_private *dev_priv = 2704 container_of(work, typeof(*dev_priv), mm.idle_work.work); 2705 2706 intel_mark_idle(dev_priv->dev); 2707 } 2708 2709 /** 2710 * Ensures that an object will eventually get non-busy by flushing any required 2711 * write domains, emitting any outstanding lazy request and retiring and 2712 * completed requests. 2713 */ 2714 static int 2715 i915_gem_object_flush_active(struct drm_i915_gem_object *obj) 2716 { 2717 int ret; 2718 2719 if (obj->active) { 2720 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno); 2721 if (ret) 2722 return ret; 2723 2724 i915_gem_retire_requests_ring(obj->ring); 2725 } 2726 2727 return 0; 2728 } 2729 2730 /** 2731 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT 2732 * @DRM_IOCTL_ARGS: standard ioctl arguments 2733 * 2734 * Returns 0 if successful, else an error is returned with the remaining time in 2735 * the timeout parameter. 2736 * -ETIME: object is still busy after timeout 2737 * -ERESTARTSYS: signal interrupted the wait 2738 * -ENONENT: object doesn't exist 2739 * Also possible, but rare: 2740 * -EAGAIN: GPU wedged 2741 * -ENOMEM: damn 2742 * -ENODEV: Internal IRQ fail 2743 * -E?: The add request failed 2744 * 2745 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any 2746 * non-zero timeout parameter the wait ioctl will wait for the given number of 2747 * nanoseconds on an object becoming unbusy. Since the wait itself does so 2748 * without holding struct_mutex the object may become re-busied before this 2749 * function completes. A similar but shorter * race condition exists in the busy 2750 * ioctl 2751 */ 2752 int 2753 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 2754 { 2755 struct drm_i915_private *dev_priv = dev->dev_private; 2756 struct drm_i915_gem_wait *args = data; 2757 struct drm_i915_gem_object *obj; 2758 struct intel_engine_cs *ring = NULL; 2759 unsigned reset_counter; 2760 u32 seqno = 0; 2761 int ret = 0; 2762 2763 ret = i915_mutex_lock_interruptible(dev); 2764 if (ret) 2765 return ret; 2766 2767 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle)); 2768 if (&obj->base == NULL) { 2769 mutex_unlock(&dev->struct_mutex); 2770 return -ENOENT; 2771 } 2772 2773 /* Need to make sure the object gets inactive eventually. */ 2774 ret = i915_gem_object_flush_active(obj); 2775 if (ret) 2776 goto out; 2777 2778 if (obj->active) { 2779 seqno = obj->last_read_seqno; 2780 ring = obj->ring; 2781 } 2782 2783 if (seqno == 0) 2784 goto out; 2785 2786 /* Do this after OLR check to make sure we make forward progress polling 2787 * on this IOCTL with a timeout <=0 (like busy ioctl) 2788 */ 2789 if (args->timeout_ns <= 0) { 2790 ret = -ETIME; 2791 goto out; 2792 } 2793 2794 drm_gem_object_unreference(&obj->base); 2795 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 2796 mutex_unlock(&dev->struct_mutex); 2797 2798 return __wait_seqno(ring, seqno, reset_counter, true, &args->timeout_ns, 2799 file->driver_priv); 2800 2801 out: 2802 drm_gem_object_unreference(&obj->base); 2803 mutex_unlock(&dev->struct_mutex); 2804 return ret; 2805 } 2806 2807 /** 2808 * i915_gem_object_sync - sync an object to a ring. 2809 * 2810 * @obj: object which may be in use on another ring. 2811 * @to: ring we wish to use the object on. May be NULL. 2812 * 2813 * This code is meant to abstract object synchronization with the GPU. 2814 * Calling with NULL implies synchronizing the object with the CPU 2815 * rather than a particular GPU ring. 2816 * 2817 * Returns 0 if successful, else propagates up the lower layer error. 2818 */ 2819 int 2820 i915_gem_object_sync(struct drm_i915_gem_object *obj, 2821 struct intel_engine_cs *to) 2822 { 2823 struct intel_engine_cs *from = obj->ring; 2824 u32 seqno; 2825 int ret, idx; 2826 2827 if (from == NULL || to == from) 2828 return 0; 2829 2830 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev)) 2831 return i915_gem_object_wait_rendering(obj, false); 2832 2833 idx = intel_ring_sync_index(from, to); 2834 2835 seqno = obj->last_read_seqno; 2836 /* Optimization: Avoid semaphore sync when we are sure we already 2837 * waited for an object with higher seqno */ 2838 if (seqno <= from->semaphore.sync_seqno[idx]) 2839 return 0; 2840 2841 ret = i915_gem_check_olr(obj->ring, seqno); 2842 if (ret) 2843 return ret; 2844 2845 trace_i915_gem_ring_sync_to(from, to, seqno); 2846 ret = to->semaphore.sync_to(to, from, seqno); 2847 if (!ret) 2848 /* We use last_read_seqno because sync_to() 2849 * might have just caused seqno wrap under 2850 * the radar. 2851 */ 2852 from->semaphore.sync_seqno[idx] = obj->last_read_seqno; 2853 2854 return ret; 2855 } 2856 2857 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj) 2858 { 2859 u32 old_write_domain, old_read_domains; 2860 2861 /* Force a pagefault for domain tracking on next user access */ 2862 i915_gem_release_mmap(obj); 2863 2864 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 2865 return; 2866 2867 /* Wait for any direct GTT access to complete */ 2868 mb(); 2869 2870 old_read_domains = obj->base.read_domains; 2871 old_write_domain = obj->base.write_domain; 2872 2873 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT; 2874 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT; 2875 2876 trace_i915_gem_object_change_domain(obj, 2877 old_read_domains, 2878 old_write_domain); 2879 } 2880 2881 int i915_vma_unbind(struct i915_vma *vma) 2882 { 2883 struct drm_i915_gem_object *obj = vma->obj; 2884 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2885 int ret; 2886 2887 if (list_empty(&vma->vma_link)) 2888 return 0; 2889 2890 if (!drm_mm_node_allocated(&vma->node)) { 2891 i915_gem_vma_destroy(vma); 2892 return 0; 2893 } 2894 2895 if (vma->pin_count) 2896 return -EBUSY; 2897 2898 BUG_ON(obj->pages == NULL); 2899 2900 ret = i915_gem_object_finish_gpu(obj); 2901 if (ret) 2902 return ret; 2903 /* Continue on if we fail due to EIO, the GPU is hung so we 2904 * should be safe and we need to cleanup or else we might 2905 * cause memory corruption through use-after-free. 2906 */ 2907 2908 if (i915_is_ggtt(vma->vm)) { 2909 i915_gem_object_finish_gtt(obj); 2910 2911 /* release the fence reg _after_ flushing */ 2912 ret = i915_gem_object_put_fence(obj); 2913 if (ret) 2914 return ret; 2915 } 2916 2917 trace_i915_vma_unbind(vma); 2918 2919 vma->unbind_vma(vma); 2920 2921 list_del_init(&vma->mm_list); 2922 /* Avoid an unnecessary call to unbind on rebind. */ 2923 if (i915_is_ggtt(vma->vm)) 2924 obj->map_and_fenceable = true; 2925 2926 drm_mm_remove_node(&vma->node); 2927 i915_gem_vma_destroy(vma); 2928 2929 /* Since the unbound list is global, only move to that list if 2930 * no more VMAs exist. */ 2931 if (list_empty(&obj->vma_list)) { 2932 i915_gem_gtt_finish_object(obj); 2933 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list); 2934 } 2935 2936 /* And finally now the object is completely decoupled from this vma, 2937 * we can drop its hold on the backing storage and allow it to be 2938 * reaped by the shrinker. 2939 */ 2940 i915_gem_object_unpin_pages(obj); 2941 2942 return 0; 2943 } 2944 2945 int i915_gpu_idle(struct drm_device *dev) 2946 { 2947 struct drm_i915_private *dev_priv = dev->dev_private; 2948 struct intel_engine_cs *ring; 2949 int ret, i; 2950 2951 /* Flush everything onto the inactive list. */ 2952 for_each_ring(ring, dev_priv, i) { 2953 ret = i915_switch_context(ring, ring->default_context); 2954 if (ret) 2955 return ret; 2956 2957 ret = intel_ring_idle(ring); 2958 if (ret) 2959 return ret; 2960 } 2961 2962 return 0; 2963 } 2964 2965 static void i965_write_fence_reg(struct drm_device *dev, int reg, 2966 struct drm_i915_gem_object *obj) 2967 { 2968 struct drm_i915_private *dev_priv = dev->dev_private; 2969 int fence_reg; 2970 int fence_pitch_shift; 2971 2972 if (INTEL_INFO(dev)->gen >= 6) { 2973 fence_reg = FENCE_REG_SANDYBRIDGE_0; 2974 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT; 2975 } else { 2976 fence_reg = FENCE_REG_965_0; 2977 fence_pitch_shift = I965_FENCE_PITCH_SHIFT; 2978 } 2979 2980 fence_reg += reg * 8; 2981 2982 /* To w/a incoherency with non-atomic 64-bit register updates, 2983 * we split the 64-bit update into two 32-bit writes. In order 2984 * for a partial fence not to be evaluated between writes, we 2985 * precede the update with write to turn off the fence register, 2986 * and only enable the fence as the last step. 2987 * 2988 * For extra levels of paranoia, we make sure each step lands 2989 * before applying the next step. 2990 */ 2991 I915_WRITE(fence_reg, 0); 2992 POSTING_READ(fence_reg); 2993 2994 if (obj) { 2995 u32 size = i915_gem_obj_ggtt_size(obj); 2996 uint64_t val; 2997 2998 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) & 2999 0xfffff000) << 32; 3000 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000; 3001 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift; 3002 if (obj->tiling_mode == I915_TILING_Y) 3003 val |= 1 << I965_FENCE_TILING_Y_SHIFT; 3004 val |= I965_FENCE_REG_VALID; 3005 3006 I915_WRITE(fence_reg + 4, val >> 32); 3007 POSTING_READ(fence_reg + 4); 3008 3009 I915_WRITE(fence_reg + 0, val); 3010 POSTING_READ(fence_reg); 3011 } else { 3012 I915_WRITE(fence_reg + 4, 0); 3013 POSTING_READ(fence_reg + 4); 3014 } 3015 } 3016 3017 static void i915_write_fence_reg(struct drm_device *dev, int reg, 3018 struct drm_i915_gem_object *obj) 3019 { 3020 struct drm_i915_private *dev_priv = dev->dev_private; 3021 u32 val; 3022 3023 if (obj) { 3024 u32 size = i915_gem_obj_ggtt_size(obj); 3025 int pitch_val; 3026 int tile_width; 3027 3028 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) || 3029 (size & -size) != size || 3030 (i915_gem_obj_ggtt_offset(obj) & (size - 1)), 3031 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n", 3032 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size); 3033 3034 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)) 3035 tile_width = 128; 3036 else 3037 tile_width = 512; 3038 3039 /* Note: pitch better be a power of two tile widths */ 3040 pitch_val = obj->stride / tile_width; 3041 pitch_val = ffs(pitch_val) - 1; 3042 3043 val = i915_gem_obj_ggtt_offset(obj); 3044 if (obj->tiling_mode == I915_TILING_Y) 3045 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 3046 val |= I915_FENCE_SIZE_BITS(size); 3047 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 3048 val |= I830_FENCE_REG_VALID; 3049 } else 3050 val = 0; 3051 3052 if (reg < 8) 3053 reg = FENCE_REG_830_0 + reg * 4; 3054 else 3055 reg = FENCE_REG_945_8 + (reg - 8) * 4; 3056 3057 I915_WRITE(reg, val); 3058 POSTING_READ(reg); 3059 } 3060 3061 static void i830_write_fence_reg(struct drm_device *dev, int reg, 3062 struct drm_i915_gem_object *obj) 3063 { 3064 struct drm_i915_private *dev_priv = dev->dev_private; 3065 uint32_t val; 3066 3067 if (obj) { 3068 u32 size = i915_gem_obj_ggtt_size(obj); 3069 uint32_t pitch_val; 3070 3071 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) || 3072 (size & -size) != size || 3073 (i915_gem_obj_ggtt_offset(obj) & (size - 1)), 3074 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n", 3075 i915_gem_obj_ggtt_offset(obj), size); 3076 3077 pitch_val = obj->stride / 128; 3078 pitch_val = ffs(pitch_val) - 1; 3079 3080 val = i915_gem_obj_ggtt_offset(obj); 3081 if (obj->tiling_mode == I915_TILING_Y) 3082 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 3083 val |= I830_FENCE_SIZE_BITS(size); 3084 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 3085 val |= I830_FENCE_REG_VALID; 3086 } else 3087 val = 0; 3088 3089 I915_WRITE(FENCE_REG_830_0 + reg * 4, val); 3090 POSTING_READ(FENCE_REG_830_0 + reg * 4); 3091 } 3092 3093 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj) 3094 { 3095 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT; 3096 } 3097 3098 static void i915_gem_write_fence(struct drm_device *dev, int reg, 3099 struct drm_i915_gem_object *obj) 3100 { 3101 struct drm_i915_private *dev_priv = dev->dev_private; 3102 3103 /* Ensure that all CPU reads are completed before installing a fence 3104 * and all writes before removing the fence. 3105 */ 3106 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj)) 3107 mb(); 3108 3109 WARN(obj && (!obj->stride || !obj->tiling_mode), 3110 "bogus fence setup with stride: 0x%x, tiling mode: %i\n", 3111 obj->stride, obj->tiling_mode); 3112 3113 switch (INTEL_INFO(dev)->gen) { 3114 case 8: 3115 case 7: 3116 case 6: 3117 case 5: 3118 case 4: i965_write_fence_reg(dev, reg, obj); break; 3119 case 3: i915_write_fence_reg(dev, reg, obj); break; 3120 case 2: i830_write_fence_reg(dev, reg, obj); break; 3121 default: BUG(); 3122 } 3123 3124 /* And similarly be paranoid that no direct access to this region 3125 * is reordered to before the fence is installed. 3126 */ 3127 if (i915_gem_object_needs_mb(obj)) 3128 mb(); 3129 } 3130 3131 static inline int fence_number(struct drm_i915_private *dev_priv, 3132 struct drm_i915_fence_reg *fence) 3133 { 3134 return fence - dev_priv->fence_regs; 3135 } 3136 3137 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 3138 struct drm_i915_fence_reg *fence, 3139 bool enable) 3140 { 3141 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3142 int reg = fence_number(dev_priv, fence); 3143 3144 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL); 3145 3146 if (enable) { 3147 obj->fence_reg = reg; 3148 fence->obj = obj; 3149 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list); 3150 } else { 3151 obj->fence_reg = I915_FENCE_REG_NONE; 3152 fence->obj = NULL; 3153 list_del_init(&fence->lru_list); 3154 } 3155 obj->fence_dirty = false; 3156 } 3157 3158 static int 3159 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj) 3160 { 3161 if (obj->last_fenced_seqno) { 3162 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno); 3163 if (ret) 3164 return ret; 3165 3166 obj->last_fenced_seqno = 0; 3167 } 3168 3169 obj->fenced_gpu_access = false; 3170 return 0; 3171 } 3172 3173 int 3174 i915_gem_object_put_fence(struct drm_i915_gem_object *obj) 3175 { 3176 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3177 struct drm_i915_fence_reg *fence; 3178 int ret; 3179 3180 ret = i915_gem_object_wait_fence(obj); 3181 if (ret) 3182 return ret; 3183 3184 if (obj->fence_reg == I915_FENCE_REG_NONE) 3185 return 0; 3186 3187 fence = &dev_priv->fence_regs[obj->fence_reg]; 3188 3189 if (WARN_ON(fence->pin_count)) 3190 return -EBUSY; 3191 3192 i915_gem_object_fence_lost(obj); 3193 i915_gem_object_update_fence(obj, fence, false); 3194 3195 return 0; 3196 } 3197 3198 static struct drm_i915_fence_reg * 3199 i915_find_fence_reg(struct drm_device *dev) 3200 { 3201 struct drm_i915_private *dev_priv = dev->dev_private; 3202 struct drm_i915_fence_reg *reg, *avail; 3203 int i; 3204 3205 /* First try to find a free reg */ 3206 avail = NULL; 3207 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) { 3208 reg = &dev_priv->fence_regs[i]; 3209 if (!reg->obj) 3210 return reg; 3211 3212 if (!reg->pin_count) 3213 avail = reg; 3214 } 3215 3216 if (avail == NULL) 3217 goto deadlock; 3218 3219 /* None available, try to steal one or wait for a user to finish */ 3220 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) { 3221 if (reg->pin_count) 3222 continue; 3223 3224 return reg; 3225 } 3226 3227 deadlock: 3228 /* Wait for completion of pending flips which consume fences */ 3229 if (intel_has_pending_fb_unpin(dev)) 3230 return ERR_PTR(-EAGAIN); 3231 3232 return ERR_PTR(-EDEADLK); 3233 } 3234 3235 /** 3236 * i915_gem_object_get_fence - set up fencing for an object 3237 * @obj: object to map through a fence reg 3238 * 3239 * When mapping objects through the GTT, userspace wants to be able to write 3240 * to them without having to worry about swizzling if the object is tiled. 3241 * This function walks the fence regs looking for a free one for @obj, 3242 * stealing one if it can't find any. 3243 * 3244 * It then sets up the reg based on the object's properties: address, pitch 3245 * and tiling format. 3246 * 3247 * For an untiled surface, this removes any existing fence. 3248 */ 3249 int 3250 i915_gem_object_get_fence(struct drm_i915_gem_object *obj) 3251 { 3252 struct drm_device *dev = obj->base.dev; 3253 struct drm_i915_private *dev_priv = dev->dev_private; 3254 bool enable = obj->tiling_mode != I915_TILING_NONE; 3255 struct drm_i915_fence_reg *reg; 3256 int ret; 3257 3258 /* Have we updated the tiling parameters upon the object and so 3259 * will need to serialise the write to the associated fence register? 3260 */ 3261 if (obj->fence_dirty) { 3262 ret = i915_gem_object_wait_fence(obj); 3263 if (ret) 3264 return ret; 3265 } 3266 3267 /* Just update our place in the LRU if our fence is getting reused. */ 3268 if (obj->fence_reg != I915_FENCE_REG_NONE) { 3269 reg = &dev_priv->fence_regs[obj->fence_reg]; 3270 if (!obj->fence_dirty) { 3271 list_move_tail(®->lru_list, 3272 &dev_priv->mm.fence_list); 3273 return 0; 3274 } 3275 } else if (enable) { 3276 reg = i915_find_fence_reg(dev); 3277 if (IS_ERR(reg)) 3278 return PTR_ERR(reg); 3279 3280 if (reg->obj) { 3281 struct drm_i915_gem_object *old = reg->obj; 3282 3283 ret = i915_gem_object_wait_fence(old); 3284 if (ret) 3285 return ret; 3286 3287 i915_gem_object_fence_lost(old); 3288 } 3289 } else 3290 return 0; 3291 3292 i915_gem_object_update_fence(obj, reg, enable); 3293 3294 return 0; 3295 } 3296 3297 static bool i915_gem_valid_gtt_space(struct drm_device *dev, 3298 struct drm_mm_node *gtt_space, 3299 unsigned long cache_level) 3300 { 3301 struct drm_mm_node *other; 3302 3303 /* On non-LLC machines we have to be careful when putting differing 3304 * types of snoopable memory together to avoid the prefetcher 3305 * crossing memory domains and dying. 3306 */ 3307 if (HAS_LLC(dev)) 3308 return true; 3309 3310 if (!drm_mm_node_allocated(gtt_space)) 3311 return true; 3312 3313 if (list_empty(>t_space->node_list)) 3314 return true; 3315 3316 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list); 3317 if (other->allocated && !other->hole_follows && other->color != cache_level) 3318 return false; 3319 3320 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list); 3321 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level) 3322 return false; 3323 3324 return true; 3325 } 3326 3327 static void i915_gem_verify_gtt(struct drm_device *dev) 3328 { 3329 #if WATCH_GTT 3330 struct drm_i915_private *dev_priv = dev->dev_private; 3331 struct drm_i915_gem_object *obj; 3332 int err = 0; 3333 3334 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) { 3335 if (obj->gtt_space == NULL) { 3336 printk(KERN_ERR "object found on GTT list with no space reserved\n"); 3337 err++; 3338 continue; 3339 } 3340 3341 if (obj->cache_level != obj->gtt_space->color) { 3342 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n", 3343 i915_gem_obj_ggtt_offset(obj), 3344 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj), 3345 obj->cache_level, 3346 obj->gtt_space->color); 3347 err++; 3348 continue; 3349 } 3350 3351 if (!i915_gem_valid_gtt_space(dev, 3352 obj->gtt_space, 3353 obj->cache_level)) { 3354 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n", 3355 i915_gem_obj_ggtt_offset(obj), 3356 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj), 3357 obj->cache_level); 3358 err++; 3359 continue; 3360 } 3361 } 3362 3363 WARN_ON(err); 3364 #endif 3365 } 3366 3367 /** 3368 * Finds free space in the GTT aperture and binds the object there. 3369 */ 3370 static struct i915_vma * 3371 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj, 3372 struct i915_address_space *vm, 3373 unsigned alignment, 3374 uint64_t flags) 3375 { 3376 struct drm_device *dev = obj->base.dev; 3377 struct drm_i915_private *dev_priv = dev->dev_private; 3378 u32 size, fence_size, fence_alignment, unfenced_alignment; 3379 unsigned long start = 3380 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0; 3381 unsigned long end = 3382 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total; 3383 struct i915_vma *vma; 3384 int ret; 3385 3386 fence_size = i915_gem_get_gtt_size(dev, 3387 obj->base.size, 3388 obj->tiling_mode); 3389 fence_alignment = i915_gem_get_gtt_alignment(dev, 3390 obj->base.size, 3391 obj->tiling_mode, true); 3392 unfenced_alignment = 3393 i915_gem_get_gtt_alignment(dev, 3394 obj->base.size, 3395 obj->tiling_mode, false); 3396 3397 if (alignment == 0) 3398 alignment = flags & PIN_MAPPABLE ? fence_alignment : 3399 unfenced_alignment; 3400 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) { 3401 DRM_DEBUG("Invalid object alignment requested %u\n", alignment); 3402 return ERR_PTR(-EINVAL); 3403 } 3404 3405 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size; 3406 3407 /* If the object is bigger than the entire aperture, reject it early 3408 * before evicting everything in a vain attempt to find space. 3409 */ 3410 if (obj->base.size > end) { 3411 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n", 3412 obj->base.size, 3413 flags & PIN_MAPPABLE ? "mappable" : "total", 3414 end); 3415 return ERR_PTR(-E2BIG); 3416 } 3417 3418 ret = i915_gem_object_get_pages(obj); 3419 if (ret) 3420 return ERR_PTR(ret); 3421 3422 i915_gem_object_pin_pages(obj); 3423 3424 vma = i915_gem_obj_lookup_or_create_vma(obj, vm); 3425 if (IS_ERR(vma)) 3426 goto err_unpin; 3427 3428 search_free: 3429 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node, 3430 size, alignment, 3431 obj->cache_level, 3432 start, end, 3433 DRM_MM_SEARCH_DEFAULT, 3434 DRM_MM_CREATE_DEFAULT); 3435 if (ret) { 3436 ret = i915_gem_evict_something(dev, vm, size, alignment, 3437 obj->cache_level, 3438 start, end, 3439 flags); 3440 if (ret == 0) 3441 goto search_free; 3442 3443 goto err_free_vma; 3444 } 3445 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node, 3446 obj->cache_level))) { 3447 ret = -EINVAL; 3448 goto err_remove_node; 3449 } 3450 3451 ret = i915_gem_gtt_prepare_object(obj); 3452 if (ret) 3453 goto err_remove_node; 3454 3455 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list); 3456 list_add_tail(&vma->mm_list, &vm->inactive_list); 3457 3458 if (i915_is_ggtt(vm)) { 3459 bool mappable, fenceable; 3460 3461 fenceable = (vma->node.size == fence_size && 3462 (vma->node.start & (fence_alignment - 1)) == 0); 3463 3464 mappable = (vma->node.start + obj->base.size <= 3465 dev_priv->gtt.mappable_end); 3466 3467 obj->map_and_fenceable = mappable && fenceable; 3468 } 3469 3470 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable); 3471 3472 trace_i915_vma_bind(vma, flags); 3473 vma->bind_vma(vma, obj->cache_level, 3474 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0); 3475 3476 i915_gem_verify_gtt(dev); 3477 return vma; 3478 3479 err_remove_node: 3480 drm_mm_remove_node(&vma->node); 3481 err_free_vma: 3482 i915_gem_vma_destroy(vma); 3483 vma = ERR_PTR(ret); 3484 err_unpin: 3485 i915_gem_object_unpin_pages(obj); 3486 return vma; 3487 } 3488 3489 bool 3490 i915_gem_clflush_object(struct drm_i915_gem_object *obj, 3491 bool force) 3492 { 3493 /* If we don't have a page list set up, then we're not pinned 3494 * to GPU, and we can ignore the cache flush because it'll happen 3495 * again at bind time. 3496 */ 3497 if (obj->pages == NULL) 3498 return false; 3499 3500 /* 3501 * Stolen memory is always coherent with the GPU as it is explicitly 3502 * marked as wc by the system, or the system is cache-coherent. 3503 */ 3504 if (obj->stolen) 3505 return false; 3506 3507 /* If the GPU is snooping the contents of the CPU cache, 3508 * we do not need to manually clear the CPU cache lines. However, 3509 * the caches are only snooped when the render cache is 3510 * flushed/invalidated. As we always have to emit invalidations 3511 * and flushes when moving into and out of the RENDER domain, correct 3512 * snooping behaviour occurs naturally as the result of our domain 3513 * tracking. 3514 */ 3515 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) 3516 return false; 3517 3518 trace_i915_gem_object_clflush(obj); 3519 drm_clflush_sg(obj->pages); 3520 3521 return true; 3522 } 3523 3524 /** Flushes the GTT write domain for the object if it's dirty. */ 3525 static void 3526 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj) 3527 { 3528 uint32_t old_write_domain; 3529 3530 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT) 3531 return; 3532 3533 /* No actual flushing is required for the GTT write domain. Writes 3534 * to it immediately go to main memory as far as we know, so there's 3535 * no chipset flush. It also doesn't land in render cache. 3536 * 3537 * However, we do have to enforce the order so that all writes through 3538 * the GTT land before any writes to the device, such as updates to 3539 * the GATT itself. 3540 */ 3541 wmb(); 3542 3543 old_write_domain = obj->base.write_domain; 3544 obj->base.write_domain = 0; 3545 3546 intel_fb_obj_flush(obj, false); 3547 3548 trace_i915_gem_object_change_domain(obj, 3549 obj->base.read_domains, 3550 old_write_domain); 3551 } 3552 3553 /** Flushes the CPU write domain for the object if it's dirty. */ 3554 static void 3555 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj, 3556 bool force) 3557 { 3558 uint32_t old_write_domain; 3559 3560 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) 3561 return; 3562 3563 if (i915_gem_clflush_object(obj, force)) 3564 i915_gem_chipset_flush(obj->base.dev); 3565 3566 old_write_domain = obj->base.write_domain; 3567 obj->base.write_domain = 0; 3568 3569 intel_fb_obj_flush(obj, false); 3570 3571 trace_i915_gem_object_change_domain(obj, 3572 obj->base.read_domains, 3573 old_write_domain); 3574 } 3575 3576 /** 3577 * Moves a single object to the GTT read, and possibly write domain. 3578 * 3579 * This function returns when the move is complete, including waiting on 3580 * flushes to occur. 3581 */ 3582 int 3583 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) 3584 { 3585 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3586 uint32_t old_write_domain, old_read_domains; 3587 int ret; 3588 3589 /* Not valid to be called on unbound objects. */ 3590 if (!i915_gem_obj_bound_any(obj)) 3591 return -EINVAL; 3592 3593 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) 3594 return 0; 3595 3596 ret = i915_gem_object_wait_rendering(obj, !write); 3597 if (ret) 3598 return ret; 3599 3600 i915_gem_object_retire(obj); 3601 i915_gem_object_flush_cpu_write_domain(obj, false); 3602 3603 /* Serialise direct access to this object with the barriers for 3604 * coherent writes from the GPU, by effectively invalidating the 3605 * GTT domain upon first access. 3606 */ 3607 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 3608 mb(); 3609 3610 old_write_domain = obj->base.write_domain; 3611 old_read_domains = obj->base.read_domains; 3612 3613 /* It should now be out of any other write domains, and we can update 3614 * the domain values for our changes. 3615 */ 3616 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 3617 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3618 if (write) { 3619 obj->base.read_domains = I915_GEM_DOMAIN_GTT; 3620 obj->base.write_domain = I915_GEM_DOMAIN_GTT; 3621 obj->dirty = 1; 3622 } 3623 3624 if (write) 3625 intel_fb_obj_invalidate(obj, NULL); 3626 3627 trace_i915_gem_object_change_domain(obj, 3628 old_read_domains, 3629 old_write_domain); 3630 3631 /* And bump the LRU for this access */ 3632 if (i915_gem_object_is_inactive(obj)) { 3633 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj); 3634 if (vma) 3635 list_move_tail(&vma->mm_list, 3636 &dev_priv->gtt.base.inactive_list); 3637 3638 } 3639 3640 return 0; 3641 } 3642 3643 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3644 enum i915_cache_level cache_level) 3645 { 3646 struct drm_device *dev = obj->base.dev; 3647 struct i915_vma *vma, *next; 3648 int ret; 3649 3650 if (obj->cache_level == cache_level) 3651 return 0; 3652 3653 if (i915_gem_obj_is_pinned(obj)) { 3654 DRM_DEBUG("can not change the cache level of pinned objects\n"); 3655 return -EBUSY; 3656 } 3657 3658 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) { 3659 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) { 3660 ret = i915_vma_unbind(vma); 3661 if (ret) 3662 return ret; 3663 } 3664 } 3665 3666 if (i915_gem_obj_bound_any(obj)) { 3667 ret = i915_gem_object_finish_gpu(obj); 3668 if (ret) 3669 return ret; 3670 3671 i915_gem_object_finish_gtt(obj); 3672 3673 /* Before SandyBridge, you could not use tiling or fence 3674 * registers with snooped memory, so relinquish any fences 3675 * currently pointing to our region in the aperture. 3676 */ 3677 if (INTEL_INFO(dev)->gen < 6) { 3678 ret = i915_gem_object_put_fence(obj); 3679 if (ret) 3680 return ret; 3681 } 3682 3683 list_for_each_entry(vma, &obj->vma_list, vma_link) 3684 if (drm_mm_node_allocated(&vma->node)) 3685 vma->bind_vma(vma, cache_level, 3686 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0); 3687 } 3688 3689 list_for_each_entry(vma, &obj->vma_list, vma_link) 3690 vma->node.color = cache_level; 3691 obj->cache_level = cache_level; 3692 3693 if (cpu_write_needs_clflush(obj)) { 3694 u32 old_read_domains, old_write_domain; 3695 3696 /* If we're coming from LLC cached, then we haven't 3697 * actually been tracking whether the data is in the 3698 * CPU cache or not, since we only allow one bit set 3699 * in obj->write_domain and have been skipping the clflushes. 3700 * Just set it to the CPU cache for now. 3701 */ 3702 i915_gem_object_retire(obj); 3703 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU); 3704 3705 old_read_domains = obj->base.read_domains; 3706 old_write_domain = obj->base.write_domain; 3707 3708 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3709 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3710 3711 trace_i915_gem_object_change_domain(obj, 3712 old_read_domains, 3713 old_write_domain); 3714 } 3715 3716 i915_gem_verify_gtt(dev); 3717 return 0; 3718 } 3719 3720 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3721 struct drm_file *file) 3722 { 3723 struct drm_i915_gem_caching *args = data; 3724 struct drm_i915_gem_object *obj; 3725 int ret; 3726 3727 ret = i915_mutex_lock_interruptible(dev); 3728 if (ret) 3729 return ret; 3730 3731 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3732 if (&obj->base == NULL) { 3733 ret = -ENOENT; 3734 goto unlock; 3735 } 3736 3737 switch (obj->cache_level) { 3738 case I915_CACHE_LLC: 3739 case I915_CACHE_L3_LLC: 3740 args->caching = I915_CACHING_CACHED; 3741 break; 3742 3743 case I915_CACHE_WT: 3744 args->caching = I915_CACHING_DISPLAY; 3745 break; 3746 3747 default: 3748 args->caching = I915_CACHING_NONE; 3749 break; 3750 } 3751 3752 drm_gem_object_unreference(&obj->base); 3753 unlock: 3754 mutex_unlock(&dev->struct_mutex); 3755 return ret; 3756 } 3757 3758 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3759 struct drm_file *file) 3760 { 3761 struct drm_i915_gem_caching *args = data; 3762 struct drm_i915_gem_object *obj; 3763 enum i915_cache_level level; 3764 int ret; 3765 3766 switch (args->caching) { 3767 case I915_CACHING_NONE: 3768 level = I915_CACHE_NONE; 3769 break; 3770 case I915_CACHING_CACHED: 3771 level = I915_CACHE_LLC; 3772 break; 3773 case I915_CACHING_DISPLAY: 3774 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE; 3775 break; 3776 default: 3777 return -EINVAL; 3778 } 3779 3780 ret = i915_mutex_lock_interruptible(dev); 3781 if (ret) 3782 return ret; 3783 3784 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3785 if (&obj->base == NULL) { 3786 ret = -ENOENT; 3787 goto unlock; 3788 } 3789 3790 ret = i915_gem_object_set_cache_level(obj, level); 3791 3792 drm_gem_object_unreference(&obj->base); 3793 unlock: 3794 mutex_unlock(&dev->struct_mutex); 3795 return ret; 3796 } 3797 3798 static bool is_pin_display(struct drm_i915_gem_object *obj) 3799 { 3800 struct i915_vma *vma; 3801 3802 if (list_empty(&obj->vma_list)) 3803 return false; 3804 3805 vma = i915_gem_obj_to_ggtt(obj); 3806 if (!vma) 3807 return false; 3808 3809 /* There are 3 sources that pin objects: 3810 * 1. The display engine (scanouts, sprites, cursors); 3811 * 2. Reservations for execbuffer; 3812 * 3. The user. 3813 * 3814 * We can ignore reservations as we hold the struct_mutex and 3815 * are only called outside of the reservation path. The user 3816 * can only increment pin_count once, and so if after 3817 * subtracting the potential reference by the user, any pin_count 3818 * remains, it must be due to another use by the display engine. 3819 */ 3820 return vma->pin_count - !!obj->user_pin_count; 3821 } 3822 3823 /* 3824 * Prepare buffer for display plane (scanout, cursors, etc). 3825 * Can be called from an uninterruptible phase (modesetting) and allows 3826 * any flushes to be pipelined (for pageflips). 3827 */ 3828 int 3829 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3830 u32 alignment, 3831 struct intel_engine_cs *pipelined) 3832 { 3833 u32 old_read_domains, old_write_domain; 3834 bool was_pin_display; 3835 int ret; 3836 3837 if (pipelined != obj->ring) { 3838 ret = i915_gem_object_sync(obj, pipelined); 3839 if (ret) 3840 return ret; 3841 } 3842 3843 /* Mark the pin_display early so that we account for the 3844 * display coherency whilst setting up the cache domains. 3845 */ 3846 was_pin_display = obj->pin_display; 3847 obj->pin_display = true; 3848 3849 /* The display engine is not coherent with the LLC cache on gen6. As 3850 * a result, we make sure that the pinning that is about to occur is 3851 * done with uncached PTEs. This is lowest common denominator for all 3852 * chipsets. 3853 * 3854 * However for gen6+, we could do better by using the GFDT bit instead 3855 * of uncaching, which would allow us to flush all the LLC-cached data 3856 * with that bit in the PTE to main memory with just one PIPE_CONTROL. 3857 */ 3858 ret = i915_gem_object_set_cache_level(obj, 3859 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE); 3860 if (ret) 3861 goto err_unpin_display; 3862 3863 /* As the user may map the buffer once pinned in the display plane 3864 * (e.g. libkms for the bootup splash), we have to ensure that we 3865 * always use map_and_fenceable for all scanout buffers. 3866 */ 3867 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE); 3868 if (ret) 3869 goto err_unpin_display; 3870 3871 i915_gem_object_flush_cpu_write_domain(obj, true); 3872 3873 old_write_domain = obj->base.write_domain; 3874 old_read_domains = obj->base.read_domains; 3875 3876 /* It should now be out of any other write domains, and we can update 3877 * the domain values for our changes. 3878 */ 3879 obj->base.write_domain = 0; 3880 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3881 3882 trace_i915_gem_object_change_domain(obj, 3883 old_read_domains, 3884 old_write_domain); 3885 3886 return 0; 3887 3888 err_unpin_display: 3889 WARN_ON(was_pin_display != is_pin_display(obj)); 3890 obj->pin_display = was_pin_display; 3891 return ret; 3892 } 3893 3894 void 3895 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj) 3896 { 3897 i915_gem_object_ggtt_unpin(obj); 3898 obj->pin_display = is_pin_display(obj); 3899 } 3900 3901 int 3902 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj) 3903 { 3904 int ret; 3905 3906 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0) 3907 return 0; 3908 3909 ret = i915_gem_object_wait_rendering(obj, false); 3910 if (ret) 3911 return ret; 3912 3913 /* Ensure that we invalidate the GPU's caches and TLBs. */ 3914 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; 3915 return 0; 3916 } 3917 3918 /** 3919 * Moves a single object to the CPU read, and possibly write domain. 3920 * 3921 * This function returns when the move is complete, including waiting on 3922 * flushes to occur. 3923 */ 3924 int 3925 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) 3926 { 3927 uint32_t old_write_domain, old_read_domains; 3928 int ret; 3929 3930 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) 3931 return 0; 3932 3933 ret = i915_gem_object_wait_rendering(obj, !write); 3934 if (ret) 3935 return ret; 3936 3937 i915_gem_object_retire(obj); 3938 i915_gem_object_flush_gtt_write_domain(obj); 3939 3940 old_write_domain = obj->base.write_domain; 3941 old_read_domains = obj->base.read_domains; 3942 3943 /* Flush the CPU cache if it's still invalid. */ 3944 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { 3945 i915_gem_clflush_object(obj, false); 3946 3947 obj->base.read_domains |= I915_GEM_DOMAIN_CPU; 3948 } 3949 3950 /* It should now be out of any other write domains, and we can update 3951 * the domain values for our changes. 3952 */ 3953 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); 3954 3955 /* If we're writing through the CPU, then the GPU read domains will 3956 * need to be invalidated at next use. 3957 */ 3958 if (write) { 3959 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3960 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3961 } 3962 3963 if (write) 3964 intel_fb_obj_invalidate(obj, NULL); 3965 3966 trace_i915_gem_object_change_domain(obj, 3967 old_read_domains, 3968 old_write_domain); 3969 3970 return 0; 3971 } 3972 3973 /* Throttle our rendering by waiting until the ring has completed our requests 3974 * emitted over 20 msec ago. 3975 * 3976 * Note that if we were to use the current jiffies each time around the loop, 3977 * we wouldn't escape the function with any frames outstanding if the time to 3978 * render a frame was over 20ms. 3979 * 3980 * This should get us reasonable parallelism between CPU and GPU but also 3981 * relatively low latency when blocking on a particular request to finish. 3982 */ 3983 static int 3984 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) 3985 { 3986 struct drm_i915_private *dev_priv = dev->dev_private; 3987 struct drm_i915_file_private *file_priv = file->driver_priv; 3988 unsigned long recent_enough = jiffies - msecs_to_jiffies(20); 3989 struct drm_i915_gem_request *request; 3990 struct intel_engine_cs *ring = NULL; 3991 unsigned reset_counter; 3992 u32 seqno = 0; 3993 int ret; 3994 3995 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 3996 if (ret) 3997 return ret; 3998 3999 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false); 4000 if (ret) 4001 return ret; 4002 4003 spin_lock(&file_priv->mm.lock); 4004 list_for_each_entry(request, &file_priv->mm.request_list, client_list) { 4005 if (time_after_eq(request->emitted_jiffies, recent_enough)) 4006 break; 4007 4008 ring = request->ring; 4009 seqno = request->seqno; 4010 } 4011 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 4012 spin_unlock(&file_priv->mm.lock); 4013 4014 if (seqno == 0) 4015 return 0; 4016 4017 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL); 4018 if (ret == 0) 4019 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0); 4020 4021 return ret; 4022 } 4023 4024 static bool 4025 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags) 4026 { 4027 struct drm_i915_gem_object *obj = vma->obj; 4028 4029 if (alignment && 4030 vma->node.start & (alignment - 1)) 4031 return true; 4032 4033 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable) 4034 return true; 4035 4036 if (flags & PIN_OFFSET_BIAS && 4037 vma->node.start < (flags & PIN_OFFSET_MASK)) 4038 return true; 4039 4040 return false; 4041 } 4042 4043 int 4044 i915_gem_object_pin(struct drm_i915_gem_object *obj, 4045 struct i915_address_space *vm, 4046 uint32_t alignment, 4047 uint64_t flags) 4048 { 4049 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 4050 struct i915_vma *vma; 4051 int ret; 4052 4053 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base)) 4054 return -ENODEV; 4055 4056 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm))) 4057 return -EINVAL; 4058 4059 vma = i915_gem_obj_to_vma(obj, vm); 4060 if (vma) { 4061 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT)) 4062 return -EBUSY; 4063 4064 if (i915_vma_misplaced(vma, alignment, flags)) { 4065 WARN(vma->pin_count, 4066 "bo is already pinned with incorrect alignment:" 4067 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d," 4068 " obj->map_and_fenceable=%d\n", 4069 i915_gem_obj_offset(obj, vm), alignment, 4070 !!(flags & PIN_MAPPABLE), 4071 obj->map_and_fenceable); 4072 ret = i915_vma_unbind(vma); 4073 if (ret) 4074 return ret; 4075 4076 vma = NULL; 4077 } 4078 } 4079 4080 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) { 4081 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags); 4082 if (IS_ERR(vma)) 4083 return PTR_ERR(vma); 4084 } 4085 4086 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping) 4087 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND); 4088 4089 vma->pin_count++; 4090 if (flags & PIN_MAPPABLE) 4091 obj->pin_mappable |= true; 4092 4093 return 0; 4094 } 4095 4096 void 4097 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj) 4098 { 4099 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj); 4100 4101 BUG_ON(!vma); 4102 BUG_ON(vma->pin_count == 0); 4103 BUG_ON(!i915_gem_obj_ggtt_bound(obj)); 4104 4105 if (--vma->pin_count == 0) 4106 obj->pin_mappable = false; 4107 } 4108 4109 bool 4110 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj) 4111 { 4112 if (obj->fence_reg != I915_FENCE_REG_NONE) { 4113 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 4114 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj); 4115 4116 WARN_ON(!ggtt_vma || 4117 dev_priv->fence_regs[obj->fence_reg].pin_count > 4118 ggtt_vma->pin_count); 4119 dev_priv->fence_regs[obj->fence_reg].pin_count++; 4120 return true; 4121 } else 4122 return false; 4123 } 4124 4125 void 4126 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj) 4127 { 4128 if (obj->fence_reg != I915_FENCE_REG_NONE) { 4129 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 4130 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0); 4131 dev_priv->fence_regs[obj->fence_reg].pin_count--; 4132 } 4133 } 4134 4135 int 4136 i915_gem_pin_ioctl(struct drm_device *dev, void *data, 4137 struct drm_file *file) 4138 { 4139 struct drm_i915_gem_pin *args = data; 4140 struct drm_i915_gem_object *obj; 4141 int ret; 4142 4143 if (INTEL_INFO(dev)->gen >= 6) 4144 return -ENODEV; 4145 4146 ret = i915_mutex_lock_interruptible(dev); 4147 if (ret) 4148 return ret; 4149 4150 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 4151 if (&obj->base == NULL) { 4152 ret = -ENOENT; 4153 goto unlock; 4154 } 4155 4156 if (obj->madv != I915_MADV_WILLNEED) { 4157 DRM_DEBUG("Attempting to pin a purgeable buffer\n"); 4158 ret = -EFAULT; 4159 goto out; 4160 } 4161 4162 if (obj->pin_filp != NULL && obj->pin_filp != file) { 4163 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n", 4164 args->handle); 4165 ret = -EINVAL; 4166 goto out; 4167 } 4168 4169 if (obj->user_pin_count == ULONG_MAX) { 4170 ret = -EBUSY; 4171 goto out; 4172 } 4173 4174 if (obj->user_pin_count == 0) { 4175 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE); 4176 if (ret) 4177 goto out; 4178 } 4179 4180 obj->user_pin_count++; 4181 obj->pin_filp = file; 4182 4183 args->offset = i915_gem_obj_ggtt_offset(obj); 4184 out: 4185 drm_gem_object_unreference(&obj->base); 4186 unlock: 4187 mutex_unlock(&dev->struct_mutex); 4188 return ret; 4189 } 4190 4191 int 4192 i915_gem_unpin_ioctl(struct drm_device *dev, void *data, 4193 struct drm_file *file) 4194 { 4195 struct drm_i915_gem_pin *args = data; 4196 struct drm_i915_gem_object *obj; 4197 int ret; 4198 4199 ret = i915_mutex_lock_interruptible(dev); 4200 if (ret) 4201 return ret; 4202 4203 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 4204 if (&obj->base == NULL) { 4205 ret = -ENOENT; 4206 goto unlock; 4207 } 4208 4209 if (obj->pin_filp != file) { 4210 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n", 4211 args->handle); 4212 ret = -EINVAL; 4213 goto out; 4214 } 4215 obj->user_pin_count--; 4216 if (obj->user_pin_count == 0) { 4217 obj->pin_filp = NULL; 4218 i915_gem_object_ggtt_unpin(obj); 4219 } 4220 4221 out: 4222 drm_gem_object_unreference(&obj->base); 4223 unlock: 4224 mutex_unlock(&dev->struct_mutex); 4225 return ret; 4226 } 4227 4228 int 4229 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 4230 struct drm_file *file) 4231 { 4232 struct drm_i915_gem_busy *args = data; 4233 struct drm_i915_gem_object *obj; 4234 int ret; 4235 4236 ret = i915_mutex_lock_interruptible(dev); 4237 if (ret) 4238 return ret; 4239 4240 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 4241 if (&obj->base == NULL) { 4242 ret = -ENOENT; 4243 goto unlock; 4244 } 4245 4246 /* Count all active objects as busy, even if they are currently not used 4247 * by the gpu. Users of this interface expect objects to eventually 4248 * become non-busy without any further actions, therefore emit any 4249 * necessary flushes here. 4250 */ 4251 ret = i915_gem_object_flush_active(obj); 4252 4253 args->busy = obj->active; 4254 if (obj->ring) { 4255 BUILD_BUG_ON(I915_NUM_RINGS > 16); 4256 args->busy |= intel_ring_flag(obj->ring) << 16; 4257 } 4258 4259 drm_gem_object_unreference(&obj->base); 4260 unlock: 4261 mutex_unlock(&dev->struct_mutex); 4262 return ret; 4263 } 4264 4265 int 4266 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 4267 struct drm_file *file_priv) 4268 { 4269 return i915_gem_ring_throttle(dev, file_priv); 4270 } 4271 4272 int 4273 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 4274 struct drm_file *file_priv) 4275 { 4276 struct drm_i915_gem_madvise *args = data; 4277 struct drm_i915_gem_object *obj; 4278 int ret; 4279 4280 switch (args->madv) { 4281 case I915_MADV_DONTNEED: 4282 case I915_MADV_WILLNEED: 4283 break; 4284 default: 4285 return -EINVAL; 4286 } 4287 4288 ret = i915_mutex_lock_interruptible(dev); 4289 if (ret) 4290 return ret; 4291 4292 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle)); 4293 if (&obj->base == NULL) { 4294 ret = -ENOENT; 4295 goto unlock; 4296 } 4297 4298 if (i915_gem_obj_is_pinned(obj)) { 4299 ret = -EINVAL; 4300 goto out; 4301 } 4302 4303 if (obj->madv != __I915_MADV_PURGED) 4304 obj->madv = args->madv; 4305 4306 /* if the object is no longer attached, discard its backing storage */ 4307 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL) 4308 i915_gem_object_truncate(obj); 4309 4310 args->retained = obj->madv != __I915_MADV_PURGED; 4311 4312 out: 4313 drm_gem_object_unreference(&obj->base); 4314 unlock: 4315 mutex_unlock(&dev->struct_mutex); 4316 return ret; 4317 } 4318 4319 void i915_gem_object_init(struct drm_i915_gem_object *obj, 4320 const struct drm_i915_gem_object_ops *ops) 4321 { 4322 INIT_LIST_HEAD(&obj->global_list); 4323 INIT_LIST_HEAD(&obj->ring_list); 4324 INIT_LIST_HEAD(&obj->obj_exec_link); 4325 INIT_LIST_HEAD(&obj->vma_list); 4326 4327 obj->ops = ops; 4328 4329 obj->fence_reg = I915_FENCE_REG_NONE; 4330 obj->madv = I915_MADV_WILLNEED; 4331 /* Avoid an unnecessary call to unbind on the first bind. */ 4332 obj->map_and_fenceable = true; 4333 4334 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size); 4335 } 4336 4337 static const struct drm_i915_gem_object_ops i915_gem_object_ops = { 4338 .get_pages = i915_gem_object_get_pages_gtt, 4339 .put_pages = i915_gem_object_put_pages_gtt, 4340 }; 4341 4342 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev, 4343 size_t size) 4344 { 4345 struct drm_i915_gem_object *obj; 4346 struct address_space *mapping; 4347 gfp_t mask; 4348 4349 obj = i915_gem_object_alloc(dev); 4350 if (obj == NULL) 4351 return NULL; 4352 4353 if (drm_gem_object_init(dev, &obj->base, size) != 0) { 4354 i915_gem_object_free(obj); 4355 return NULL; 4356 } 4357 4358 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 4359 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) { 4360 /* 965gm cannot relocate objects above 4GiB. */ 4361 mask &= ~__GFP_HIGHMEM; 4362 mask |= __GFP_DMA32; 4363 } 4364 4365 mapping = file_inode(obj->base.filp)->i_mapping; 4366 mapping_set_gfp_mask(mapping, mask); 4367 4368 i915_gem_object_init(obj, &i915_gem_object_ops); 4369 4370 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 4371 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 4372 4373 if (HAS_LLC(dev)) { 4374 /* On some devices, we can have the GPU use the LLC (the CPU 4375 * cache) for about a 10% performance improvement 4376 * compared to uncached. Graphics requests other than 4377 * display scanout are coherent with the CPU in 4378 * accessing this cache. This means in this mode we 4379 * don't need to clflush on the CPU side, and on the 4380 * GPU side we only need to flush internal caches to 4381 * get data visible to the CPU. 4382 * 4383 * However, we maintain the display planes as UC, and so 4384 * need to rebind when first used as such. 4385 */ 4386 obj->cache_level = I915_CACHE_LLC; 4387 } else 4388 obj->cache_level = I915_CACHE_NONE; 4389 4390 trace_i915_gem_object_create(obj); 4391 4392 return obj; 4393 } 4394 4395 static bool discard_backing_storage(struct drm_i915_gem_object *obj) 4396 { 4397 /* If we are the last user of the backing storage (be it shmemfs 4398 * pages or stolen etc), we know that the pages are going to be 4399 * immediately released. In this case, we can then skip copying 4400 * back the contents from the GPU. 4401 */ 4402 4403 if (obj->madv != I915_MADV_WILLNEED) 4404 return false; 4405 4406 if (obj->base.filp == NULL) 4407 return true; 4408 4409 /* At first glance, this looks racy, but then again so would be 4410 * userspace racing mmap against close. However, the first external 4411 * reference to the filp can only be obtained through the 4412 * i915_gem_mmap_ioctl() which safeguards us against the user 4413 * acquiring such a reference whilst we are in the middle of 4414 * freeing the object. 4415 */ 4416 return atomic_long_read(&obj->base.filp->f_count) == 1; 4417 } 4418 4419 void i915_gem_free_object(struct drm_gem_object *gem_obj) 4420 { 4421 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 4422 struct drm_device *dev = obj->base.dev; 4423 struct drm_i915_private *dev_priv = dev->dev_private; 4424 struct i915_vma *vma, *next; 4425 4426 intel_runtime_pm_get(dev_priv); 4427 4428 trace_i915_gem_object_destroy(obj); 4429 4430 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) { 4431 int ret; 4432 4433 vma->pin_count = 0; 4434 ret = i915_vma_unbind(vma); 4435 if (WARN_ON(ret == -ERESTARTSYS)) { 4436 bool was_interruptible; 4437 4438 was_interruptible = dev_priv->mm.interruptible; 4439 dev_priv->mm.interruptible = false; 4440 4441 WARN_ON(i915_vma_unbind(vma)); 4442 4443 dev_priv->mm.interruptible = was_interruptible; 4444 } 4445 } 4446 4447 i915_gem_object_detach_phys(obj); 4448 4449 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up 4450 * before progressing. */ 4451 if (obj->stolen) 4452 i915_gem_object_unpin_pages(obj); 4453 4454 WARN_ON(obj->frontbuffer_bits); 4455 4456 if (WARN_ON(obj->pages_pin_count)) 4457 obj->pages_pin_count = 0; 4458 if (discard_backing_storage(obj)) 4459 obj->madv = I915_MADV_DONTNEED; 4460 i915_gem_object_put_pages(obj); 4461 i915_gem_object_free_mmap_offset(obj); 4462 4463 BUG_ON(obj->pages); 4464 4465 if (obj->base.import_attach) 4466 drm_prime_gem_destroy(&obj->base, NULL); 4467 4468 if (obj->ops->release) 4469 obj->ops->release(obj); 4470 4471 drm_gem_object_release(&obj->base); 4472 i915_gem_info_remove_obj(dev_priv, obj->base.size); 4473 4474 kfree(obj->bit_17); 4475 i915_gem_object_free(obj); 4476 4477 intel_runtime_pm_put(dev_priv); 4478 } 4479 4480 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj, 4481 struct i915_address_space *vm) 4482 { 4483 struct i915_vma *vma; 4484 list_for_each_entry(vma, &obj->vma_list, vma_link) 4485 if (vma->vm == vm) 4486 return vma; 4487 4488 return NULL; 4489 } 4490 4491 void i915_gem_vma_destroy(struct i915_vma *vma) 4492 { 4493 WARN_ON(vma->node.allocated); 4494 4495 /* Keep the vma as a placeholder in the execbuffer reservation lists */ 4496 if (!list_empty(&vma->exec_list)) 4497 return; 4498 4499 list_del(&vma->vma_link); 4500 4501 kfree(vma); 4502 } 4503 4504 static void 4505 i915_gem_stop_ringbuffers(struct drm_device *dev) 4506 { 4507 struct drm_i915_private *dev_priv = dev->dev_private; 4508 struct intel_engine_cs *ring; 4509 int i; 4510 4511 for_each_ring(ring, dev_priv, i) 4512 intel_stop_ring_buffer(ring); 4513 } 4514 4515 int 4516 i915_gem_suspend(struct drm_device *dev) 4517 { 4518 struct drm_i915_private *dev_priv = dev->dev_private; 4519 int ret = 0; 4520 4521 mutex_lock(&dev->struct_mutex); 4522 if (dev_priv->ums.mm_suspended) 4523 goto err; 4524 4525 ret = i915_gpu_idle(dev); 4526 if (ret) 4527 goto err; 4528 4529 i915_gem_retire_requests(dev); 4530 4531 /* Under UMS, be paranoid and evict. */ 4532 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4533 i915_gem_evict_everything(dev); 4534 4535 i915_kernel_lost_context(dev); 4536 i915_gem_stop_ringbuffers(dev); 4537 4538 /* Hack! Don't let anybody do execbuf while we don't control the chip. 4539 * We need to replace this with a semaphore, or something. 4540 * And not confound ums.mm_suspended! 4541 */ 4542 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev, 4543 DRIVER_MODESET); 4544 mutex_unlock(&dev->struct_mutex); 4545 4546 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer); 4547 cancel_delayed_work_sync(&dev_priv->mm.retire_work); 4548 flush_delayed_work(&dev_priv->mm.idle_work); 4549 4550 return 0; 4551 4552 err: 4553 mutex_unlock(&dev->struct_mutex); 4554 return ret; 4555 } 4556 4557 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice) 4558 { 4559 struct drm_device *dev = ring->dev; 4560 struct drm_i915_private *dev_priv = dev->dev_private; 4561 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200); 4562 u32 *remap_info = dev_priv->l3_parity.remap_info[slice]; 4563 int i, ret; 4564 4565 if (!HAS_L3_DPF(dev) || !remap_info) 4566 return 0; 4567 4568 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3); 4569 if (ret) 4570 return ret; 4571 4572 /* 4573 * Note: We do not worry about the concurrent register cacheline hang 4574 * here because no other code should access these registers other than 4575 * at initialization time. 4576 */ 4577 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) { 4578 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); 4579 intel_ring_emit(ring, reg_base + i); 4580 intel_ring_emit(ring, remap_info[i/4]); 4581 } 4582 4583 intel_ring_advance(ring); 4584 4585 return ret; 4586 } 4587 4588 void i915_gem_init_swizzling(struct drm_device *dev) 4589 { 4590 struct drm_i915_private *dev_priv = dev->dev_private; 4591 4592 if (INTEL_INFO(dev)->gen < 5 || 4593 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 4594 return; 4595 4596 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | 4597 DISP_TILE_SURFACE_SWIZZLING); 4598 4599 if (IS_GEN5(dev)) 4600 return; 4601 4602 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); 4603 if (IS_GEN6(dev)) 4604 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 4605 else if (IS_GEN7(dev)) 4606 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 4607 else if (IS_GEN8(dev)) 4608 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW)); 4609 else 4610 BUG(); 4611 } 4612 4613 static bool 4614 intel_enable_blt(struct drm_device *dev) 4615 { 4616 if (!HAS_BLT(dev)) 4617 return false; 4618 4619 /* The blitter was dysfunctional on early prototypes */ 4620 if (IS_GEN6(dev) && dev->pdev->revision < 8) { 4621 DRM_INFO("BLT not supported on this pre-production hardware;" 4622 " graphics performance will be degraded.\n"); 4623 return false; 4624 } 4625 4626 return true; 4627 } 4628 4629 static int i915_gem_init_rings(struct drm_device *dev) 4630 { 4631 struct drm_i915_private *dev_priv = dev->dev_private; 4632 int ret; 4633 4634 ret = intel_init_render_ring_buffer(dev); 4635 if (ret) 4636 return ret; 4637 4638 if (HAS_BSD(dev)) { 4639 ret = intel_init_bsd_ring_buffer(dev); 4640 if (ret) 4641 goto cleanup_render_ring; 4642 } 4643 4644 if (intel_enable_blt(dev)) { 4645 ret = intel_init_blt_ring_buffer(dev); 4646 if (ret) 4647 goto cleanup_bsd_ring; 4648 } 4649 4650 if (HAS_VEBOX(dev)) { 4651 ret = intel_init_vebox_ring_buffer(dev); 4652 if (ret) 4653 goto cleanup_blt_ring; 4654 } 4655 4656 if (HAS_BSD2(dev)) { 4657 ret = intel_init_bsd2_ring_buffer(dev); 4658 if (ret) 4659 goto cleanup_vebox_ring; 4660 } 4661 4662 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000)); 4663 if (ret) 4664 goto cleanup_bsd2_ring; 4665 4666 return 0; 4667 4668 cleanup_bsd2_ring: 4669 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]); 4670 cleanup_vebox_ring: 4671 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]); 4672 cleanup_blt_ring: 4673 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]); 4674 cleanup_bsd_ring: 4675 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]); 4676 cleanup_render_ring: 4677 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]); 4678 4679 return ret; 4680 } 4681 4682 int 4683 i915_gem_init_hw(struct drm_device *dev) 4684 { 4685 struct drm_i915_private *dev_priv = dev->dev_private; 4686 int ret, i; 4687 4688 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt()) 4689 return -EIO; 4690 4691 if (dev_priv->ellc_size) 4692 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf)); 4693 4694 if (IS_HASWELL(dev)) 4695 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ? 4696 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 4697 4698 if (HAS_PCH_NOP(dev)) { 4699 if (IS_IVYBRIDGE(dev)) { 4700 u32 temp = I915_READ(GEN7_MSG_CTL); 4701 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK); 4702 I915_WRITE(GEN7_MSG_CTL, temp); 4703 } else if (INTEL_INFO(dev)->gen >= 7) { 4704 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT); 4705 temp &= ~RESET_PCH_HANDSHAKE_ENABLE; 4706 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp); 4707 } 4708 } 4709 4710 i915_gem_init_swizzling(dev); 4711 4712 ret = i915_gem_init_rings(dev); 4713 if (ret) 4714 return ret; 4715 4716 for (i = 0; i < NUM_L3_SLICES(dev); i++) 4717 i915_gem_l3_remap(&dev_priv->ring[RCS], i); 4718 4719 /* 4720 * XXX: Contexts should only be initialized once. Doing a switch to the 4721 * default context switch however is something we'd like to do after 4722 * reset or thaw (the latter may not actually be necessary for HW, but 4723 * goes with our code better). Context switching requires rings (for 4724 * the do_switch), but before enabling PPGTT. So don't move this. 4725 */ 4726 ret = i915_gem_context_enable(dev_priv); 4727 if (ret && ret != -EIO) { 4728 DRM_ERROR("Context enable failed %d\n", ret); 4729 i915_gem_cleanup_ringbuffer(dev); 4730 } 4731 4732 return ret; 4733 } 4734 4735 int i915_gem_init(struct drm_device *dev) 4736 { 4737 struct drm_i915_private *dev_priv = dev->dev_private; 4738 int ret; 4739 4740 mutex_lock(&dev->struct_mutex); 4741 4742 if (IS_VALLEYVIEW(dev)) { 4743 /* VLVA0 (potential hack), BIOS isn't actually waking us */ 4744 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ); 4745 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 4746 VLV_GTLC_ALLOWWAKEACK), 10)) 4747 DRM_DEBUG_DRIVER("allow wake ack timed out\n"); 4748 } 4749 4750 i915_gem_init_userptr(dev); 4751 i915_gem_init_global_gtt(dev); 4752 4753 ret = i915_gem_context_init(dev); 4754 if (ret) { 4755 mutex_unlock(&dev->struct_mutex); 4756 return ret; 4757 } 4758 4759 ret = i915_gem_init_hw(dev); 4760 if (ret == -EIO) { 4761 /* Allow ring initialisation to fail by marking the GPU as 4762 * wedged. But we only want to do this where the GPU is angry, 4763 * for all other failure, such as an allocation failure, bail. 4764 */ 4765 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n"); 4766 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter); 4767 ret = 0; 4768 } 4769 mutex_unlock(&dev->struct_mutex); 4770 4771 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */ 4772 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4773 dev_priv->dri1.allow_batchbuffer = 1; 4774 return ret; 4775 } 4776 4777 void 4778 i915_gem_cleanup_ringbuffer(struct drm_device *dev) 4779 { 4780 struct drm_i915_private *dev_priv = dev->dev_private; 4781 struct intel_engine_cs *ring; 4782 int i; 4783 4784 for_each_ring(ring, dev_priv, i) 4785 intel_cleanup_ring_buffer(ring); 4786 } 4787 4788 int 4789 i915_gem_entervt_ioctl(struct drm_device *dev, void *data, 4790 struct drm_file *file_priv) 4791 { 4792 struct drm_i915_private *dev_priv = dev->dev_private; 4793 int ret; 4794 4795 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4796 return 0; 4797 4798 if (i915_reset_in_progress(&dev_priv->gpu_error)) { 4799 DRM_ERROR("Reenabling wedged hardware, good luck\n"); 4800 atomic_set(&dev_priv->gpu_error.reset_counter, 0); 4801 } 4802 4803 mutex_lock(&dev->struct_mutex); 4804 dev_priv->ums.mm_suspended = 0; 4805 4806 ret = i915_gem_init_hw(dev); 4807 if (ret != 0) { 4808 mutex_unlock(&dev->struct_mutex); 4809 return ret; 4810 } 4811 4812 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list)); 4813 4814 ret = drm_irq_install(dev, dev->pdev->irq); 4815 if (ret) 4816 goto cleanup_ringbuffer; 4817 mutex_unlock(&dev->struct_mutex); 4818 4819 return 0; 4820 4821 cleanup_ringbuffer: 4822 i915_gem_cleanup_ringbuffer(dev); 4823 dev_priv->ums.mm_suspended = 1; 4824 mutex_unlock(&dev->struct_mutex); 4825 4826 return ret; 4827 } 4828 4829 int 4830 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data, 4831 struct drm_file *file_priv) 4832 { 4833 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4834 return 0; 4835 4836 mutex_lock(&dev->struct_mutex); 4837 drm_irq_uninstall(dev); 4838 mutex_unlock(&dev->struct_mutex); 4839 4840 return i915_gem_suspend(dev); 4841 } 4842 4843 void 4844 i915_gem_lastclose(struct drm_device *dev) 4845 { 4846 int ret; 4847 4848 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4849 return; 4850 4851 ret = i915_gem_suspend(dev); 4852 if (ret) 4853 DRM_ERROR("failed to idle hardware: %d\n", ret); 4854 } 4855 4856 static void 4857 init_ring_lists(struct intel_engine_cs *ring) 4858 { 4859 INIT_LIST_HEAD(&ring->active_list); 4860 INIT_LIST_HEAD(&ring->request_list); 4861 } 4862 4863 void i915_init_vm(struct drm_i915_private *dev_priv, 4864 struct i915_address_space *vm) 4865 { 4866 if (!i915_is_ggtt(vm)) 4867 drm_mm_init(&vm->mm, vm->start, vm->total); 4868 vm->dev = dev_priv->dev; 4869 INIT_LIST_HEAD(&vm->active_list); 4870 INIT_LIST_HEAD(&vm->inactive_list); 4871 INIT_LIST_HEAD(&vm->global_link); 4872 list_add_tail(&vm->global_link, &dev_priv->vm_list); 4873 } 4874 4875 void 4876 i915_gem_load(struct drm_device *dev) 4877 { 4878 struct drm_i915_private *dev_priv = dev->dev_private; 4879 int i; 4880 4881 dev_priv->slab = 4882 kmem_cache_create("i915_gem_object", 4883 sizeof(struct drm_i915_gem_object), 0, 4884 SLAB_HWCACHE_ALIGN, 4885 NULL); 4886 4887 INIT_LIST_HEAD(&dev_priv->vm_list); 4888 i915_init_vm(dev_priv, &dev_priv->gtt.base); 4889 4890 INIT_LIST_HEAD(&dev_priv->context_list); 4891 INIT_LIST_HEAD(&dev_priv->mm.unbound_list); 4892 INIT_LIST_HEAD(&dev_priv->mm.bound_list); 4893 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4894 for (i = 0; i < I915_NUM_RINGS; i++) 4895 init_ring_lists(&dev_priv->ring[i]); 4896 for (i = 0; i < I915_MAX_NUM_FENCES; i++) 4897 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list); 4898 INIT_DELAYED_WORK(&dev_priv->mm.retire_work, 4899 i915_gem_retire_work_handler); 4900 INIT_DELAYED_WORK(&dev_priv->mm.idle_work, 4901 i915_gem_idle_work_handler); 4902 init_waitqueue_head(&dev_priv->gpu_error.reset_queue); 4903 4904 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ 4905 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) { 4906 I915_WRITE(MI_ARB_STATE, 4907 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE)); 4908 } 4909 4910 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL; 4911 4912 /* Old X drivers will take 0-2 for front, back, depth buffers */ 4913 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4914 dev_priv->fence_reg_start = 3; 4915 4916 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev)) 4917 dev_priv->num_fence_regs = 32; 4918 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) 4919 dev_priv->num_fence_regs = 16; 4920 else 4921 dev_priv->num_fence_regs = 8; 4922 4923 /* Initialize fence registers to zero */ 4924 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4925 i915_gem_restore_fences(dev); 4926 4927 i915_gem_detect_bit_6_swizzle(dev); 4928 init_waitqueue_head(&dev_priv->pending_flip_queue); 4929 4930 dev_priv->mm.interruptible = true; 4931 4932 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan; 4933 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count; 4934 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS; 4935 register_shrinker(&dev_priv->mm.shrinker); 4936 4937 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom; 4938 register_oom_notifier(&dev_priv->mm.oom_notifier); 4939 4940 mutex_init(&dev_priv->fb_tracking.lock); 4941 } 4942 4943 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 4944 { 4945 struct drm_i915_file_private *file_priv = file->driver_priv; 4946 4947 cancel_delayed_work_sync(&file_priv->mm.idle_work); 4948 4949 /* Clean up our request list when the client is going away, so that 4950 * later retire_requests won't dereference our soon-to-be-gone 4951 * file_priv. 4952 */ 4953 spin_lock(&file_priv->mm.lock); 4954 while (!list_empty(&file_priv->mm.request_list)) { 4955 struct drm_i915_gem_request *request; 4956 4957 request = list_first_entry(&file_priv->mm.request_list, 4958 struct drm_i915_gem_request, 4959 client_list); 4960 list_del(&request->client_list); 4961 request->file_priv = NULL; 4962 } 4963 spin_unlock(&file_priv->mm.lock); 4964 } 4965 4966 static void 4967 i915_gem_file_idle_work_handler(struct work_struct *work) 4968 { 4969 struct drm_i915_file_private *file_priv = 4970 container_of(work, typeof(*file_priv), mm.idle_work.work); 4971 4972 atomic_set(&file_priv->rps_wait_boost, false); 4973 } 4974 4975 int i915_gem_open(struct drm_device *dev, struct drm_file *file) 4976 { 4977 struct drm_i915_file_private *file_priv; 4978 int ret; 4979 4980 DRM_DEBUG_DRIVER("\n"); 4981 4982 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); 4983 if (!file_priv) 4984 return -ENOMEM; 4985 4986 file->driver_priv = file_priv; 4987 file_priv->dev_priv = dev->dev_private; 4988 file_priv->file = file; 4989 4990 spin_lock_init(&file_priv->mm.lock); 4991 INIT_LIST_HEAD(&file_priv->mm.request_list); 4992 INIT_DELAYED_WORK(&file_priv->mm.idle_work, 4993 i915_gem_file_idle_work_handler); 4994 4995 ret = i915_gem_context_open(dev, file); 4996 if (ret) 4997 kfree(file_priv); 4998 4999 return ret; 5000 } 5001 5002 void i915_gem_track_fb(struct drm_i915_gem_object *old, 5003 struct drm_i915_gem_object *new, 5004 unsigned frontbuffer_bits) 5005 { 5006 if (old) { 5007 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex)); 5008 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits)); 5009 old->frontbuffer_bits &= ~frontbuffer_bits; 5010 } 5011 5012 if (new) { 5013 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex)); 5014 WARN_ON(new->frontbuffer_bits & frontbuffer_bits); 5015 new->frontbuffer_bits |= frontbuffer_bits; 5016 } 5017 } 5018 5019 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task) 5020 { 5021 if (!mutex_is_locked(mutex)) 5022 return false; 5023 5024 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES) 5025 return mutex->owner == task; 5026 #else 5027 /* Since UP may be pre-empted, we cannot assume that we own the lock */ 5028 return false; 5029 #endif 5030 } 5031 5032 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock) 5033 { 5034 if (!mutex_trylock(&dev->struct_mutex)) { 5035 if (!mutex_is_locked_by(&dev->struct_mutex, current)) 5036 return false; 5037 5038 if (to_i915(dev)->mm.shrinker_no_lock_stealing) 5039 return false; 5040 5041 *unlock = false; 5042 } else 5043 *unlock = true; 5044 5045 return true; 5046 } 5047 5048 static int num_vma_bound(struct drm_i915_gem_object *obj) 5049 { 5050 struct i915_vma *vma; 5051 int count = 0; 5052 5053 list_for_each_entry(vma, &obj->vma_list, vma_link) 5054 if (drm_mm_node_allocated(&vma->node)) 5055 count++; 5056 5057 return count; 5058 } 5059 5060 static unsigned long 5061 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc) 5062 { 5063 struct drm_i915_private *dev_priv = 5064 container_of(shrinker, struct drm_i915_private, mm.shrinker); 5065 struct drm_device *dev = dev_priv->dev; 5066 struct drm_i915_gem_object *obj; 5067 unsigned long count; 5068 bool unlock; 5069 5070 if (!i915_gem_shrinker_lock(dev, &unlock)) 5071 return 0; 5072 5073 count = 0; 5074 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) 5075 if (obj->pages_pin_count == 0) 5076 count += obj->base.size >> PAGE_SHIFT; 5077 5078 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { 5079 if (!i915_gem_obj_is_pinned(obj) && 5080 obj->pages_pin_count == num_vma_bound(obj)) 5081 count += obj->base.size >> PAGE_SHIFT; 5082 } 5083 5084 if (unlock) 5085 mutex_unlock(&dev->struct_mutex); 5086 5087 return count; 5088 } 5089 5090 /* All the new VM stuff */ 5091 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o, 5092 struct i915_address_space *vm) 5093 { 5094 struct drm_i915_private *dev_priv = o->base.dev->dev_private; 5095 struct i915_vma *vma; 5096 5097 if (!dev_priv->mm.aliasing_ppgtt || 5098 vm == &dev_priv->mm.aliasing_ppgtt->base) 5099 vm = &dev_priv->gtt.base; 5100 5101 list_for_each_entry(vma, &o->vma_list, vma_link) { 5102 if (vma->vm == vm) 5103 return vma->node.start; 5104 5105 } 5106 WARN(1, "%s vma for this object not found.\n", 5107 i915_is_ggtt(vm) ? "global" : "ppgtt"); 5108 return -1; 5109 } 5110 5111 bool i915_gem_obj_bound(struct drm_i915_gem_object *o, 5112 struct i915_address_space *vm) 5113 { 5114 struct i915_vma *vma; 5115 5116 list_for_each_entry(vma, &o->vma_list, vma_link) 5117 if (vma->vm == vm && drm_mm_node_allocated(&vma->node)) 5118 return true; 5119 5120 return false; 5121 } 5122 5123 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o) 5124 { 5125 struct i915_vma *vma; 5126 5127 list_for_each_entry(vma, &o->vma_list, vma_link) 5128 if (drm_mm_node_allocated(&vma->node)) 5129 return true; 5130 5131 return false; 5132 } 5133 5134 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o, 5135 struct i915_address_space *vm) 5136 { 5137 struct drm_i915_private *dev_priv = o->base.dev->dev_private; 5138 struct i915_vma *vma; 5139 5140 if (!dev_priv->mm.aliasing_ppgtt || 5141 vm == &dev_priv->mm.aliasing_ppgtt->base) 5142 vm = &dev_priv->gtt.base; 5143 5144 BUG_ON(list_empty(&o->vma_list)); 5145 5146 list_for_each_entry(vma, &o->vma_list, vma_link) 5147 if (vma->vm == vm) 5148 return vma->node.size; 5149 5150 return 0; 5151 } 5152 5153 static unsigned long 5154 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc) 5155 { 5156 struct drm_i915_private *dev_priv = 5157 container_of(shrinker, struct drm_i915_private, mm.shrinker); 5158 struct drm_device *dev = dev_priv->dev; 5159 unsigned long freed; 5160 bool unlock; 5161 5162 if (!i915_gem_shrinker_lock(dev, &unlock)) 5163 return SHRINK_STOP; 5164 5165 freed = i915_gem_purge(dev_priv, sc->nr_to_scan); 5166 if (freed < sc->nr_to_scan) 5167 freed += __i915_gem_shrink(dev_priv, 5168 sc->nr_to_scan - freed, 5169 false); 5170 if (unlock) 5171 mutex_unlock(&dev->struct_mutex); 5172 5173 return freed; 5174 } 5175 5176 static int 5177 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr) 5178 { 5179 struct drm_i915_private *dev_priv = 5180 container_of(nb, struct drm_i915_private, mm.oom_notifier); 5181 struct drm_device *dev = dev_priv->dev; 5182 struct drm_i915_gem_object *obj; 5183 unsigned long timeout = msecs_to_jiffies(5000) + 1; 5184 unsigned long pinned, bound, unbound, freed; 5185 bool was_interruptible; 5186 bool unlock; 5187 5188 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) { 5189 schedule_timeout_killable(1); 5190 if (fatal_signal_pending(current)) 5191 return NOTIFY_DONE; 5192 } 5193 if (timeout == 0) { 5194 pr_err("Unable to purge GPU memory due lock contention.\n"); 5195 return NOTIFY_DONE; 5196 } 5197 5198 was_interruptible = dev_priv->mm.interruptible; 5199 dev_priv->mm.interruptible = false; 5200 5201 freed = i915_gem_shrink_all(dev_priv); 5202 5203 dev_priv->mm.interruptible = was_interruptible; 5204 5205 /* Because we may be allocating inside our own driver, we cannot 5206 * assert that there are no objects with pinned pages that are not 5207 * being pointed to by hardware. 5208 */ 5209 unbound = bound = pinned = 0; 5210 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) { 5211 if (!obj->base.filp) /* not backed by a freeable object */ 5212 continue; 5213 5214 if (obj->pages_pin_count) 5215 pinned += obj->base.size; 5216 else 5217 unbound += obj->base.size; 5218 } 5219 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { 5220 if (!obj->base.filp) 5221 continue; 5222 5223 if (obj->pages_pin_count) 5224 pinned += obj->base.size; 5225 else 5226 bound += obj->base.size; 5227 } 5228 5229 if (unlock) 5230 mutex_unlock(&dev->struct_mutex); 5231 5232 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n", 5233 freed, pinned); 5234 if (unbound || bound) 5235 pr_err("%lu and %lu bytes still available in the " 5236 "bound and unbound GPU page lists.\n", 5237 bound, unbound); 5238 5239 *(unsigned long *)ptr += freed; 5240 return NOTIFY_DONE; 5241 } 5242 5243 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj) 5244 { 5245 struct i915_vma *vma; 5246 5247 /* This WARN has probably outlived its usefulness (callers already 5248 * WARN if they don't find the GGTT vma they expect). When removing, 5249 * remember to remove the pre-check in is_pin_display() as well */ 5250 if (WARN_ON(list_empty(&obj->vma_list))) 5251 return NULL; 5252 5253 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link); 5254 if (vma->vm != obj_to_ggtt(obj)) 5255 return NULL; 5256 5257 return vma; 5258 } 5259