xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision 275876e2)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40 
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 						   bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 			       bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49 
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 				 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 					 struct drm_i915_fence_reg *fence,
54 					 bool enable);
55 
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57 					     struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59 					    struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 				 unsigned long event,
62 				 void *ptr);
63 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
64 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
65 
66 static bool cpu_cache_is_coherent(struct drm_device *dev,
67 				  enum i915_cache_level level)
68 {
69 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
70 }
71 
72 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
73 {
74 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
75 		return true;
76 
77 	return obj->pin_display;
78 }
79 
80 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
81 {
82 	if (obj->tiling_mode)
83 		i915_gem_release_mmap(obj);
84 
85 	/* As we do not have an associated fence register, we will force
86 	 * a tiling change if we ever need to acquire one.
87 	 */
88 	obj->fence_dirty = false;
89 	obj->fence_reg = I915_FENCE_REG_NONE;
90 }
91 
92 /* some bookkeeping */
93 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
94 				  size_t size)
95 {
96 	spin_lock(&dev_priv->mm.object_stat_lock);
97 	dev_priv->mm.object_count++;
98 	dev_priv->mm.object_memory += size;
99 	spin_unlock(&dev_priv->mm.object_stat_lock);
100 }
101 
102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103 				     size_t size)
104 {
105 	spin_lock(&dev_priv->mm.object_stat_lock);
106 	dev_priv->mm.object_count--;
107 	dev_priv->mm.object_memory -= size;
108 	spin_unlock(&dev_priv->mm.object_stat_lock);
109 }
110 
111 static int
112 i915_gem_wait_for_error(struct i915_gpu_error *error)
113 {
114 	int ret;
115 
116 #define EXIT_COND (!i915_reset_in_progress(error) || \
117 		   i915_terminally_wedged(error))
118 	if (EXIT_COND)
119 		return 0;
120 
121 	/*
122 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123 	 * userspace. If it takes that long something really bad is going on and
124 	 * we should simply try to bail out and fail as gracefully as possible.
125 	 */
126 	ret = wait_event_interruptible_timeout(error->reset_queue,
127 					       EXIT_COND,
128 					       10*HZ);
129 	if (ret == 0) {
130 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
131 		return -EIO;
132 	} else if (ret < 0) {
133 		return ret;
134 	}
135 #undef EXIT_COND
136 
137 	return 0;
138 }
139 
140 int i915_mutex_lock_interruptible(struct drm_device *dev)
141 {
142 	struct drm_i915_private *dev_priv = dev->dev_private;
143 	int ret;
144 
145 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
146 	if (ret)
147 		return ret;
148 
149 	ret = mutex_lock_interruptible(&dev->struct_mutex);
150 	if (ret)
151 		return ret;
152 
153 	WARN_ON(i915_verify_lists(dev));
154 	return 0;
155 }
156 
157 static inline bool
158 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
159 {
160 	return i915_gem_obj_bound_any(obj) && !obj->active;
161 }
162 
163 int
164 i915_gem_init_ioctl(struct drm_device *dev, void *data,
165 		    struct drm_file *file)
166 {
167 	struct drm_i915_private *dev_priv = dev->dev_private;
168 	struct drm_i915_gem_init *args = data;
169 
170 	if (drm_core_check_feature(dev, DRIVER_MODESET))
171 		return -ENODEV;
172 
173 	if (args->gtt_start >= args->gtt_end ||
174 	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
175 		return -EINVAL;
176 
177 	/* GEM with user mode setting was never supported on ilk and later. */
178 	if (INTEL_INFO(dev)->gen >= 5)
179 		return -ENODEV;
180 
181 	mutex_lock(&dev->struct_mutex);
182 	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
183 				  args->gtt_end);
184 	dev_priv->gtt.mappable_end = args->gtt_end;
185 	mutex_unlock(&dev->struct_mutex);
186 
187 	return 0;
188 }
189 
190 int
191 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
192 			    struct drm_file *file)
193 {
194 	struct drm_i915_private *dev_priv = dev->dev_private;
195 	struct drm_i915_gem_get_aperture *args = data;
196 	struct drm_i915_gem_object *obj;
197 	size_t pinned;
198 
199 	pinned = 0;
200 	mutex_lock(&dev->struct_mutex);
201 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
202 		if (i915_gem_obj_is_pinned(obj))
203 			pinned += i915_gem_obj_ggtt_size(obj);
204 	mutex_unlock(&dev->struct_mutex);
205 
206 	args->aper_size = dev_priv->gtt.base.total;
207 	args->aper_available_size = args->aper_size - pinned;
208 
209 	return 0;
210 }
211 
212 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
213 {
214 	drm_dma_handle_t *phys = obj->phys_handle;
215 
216 	if (!phys)
217 		return;
218 
219 	if (obj->madv == I915_MADV_WILLNEED) {
220 		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
221 		char *vaddr = phys->vaddr;
222 		int i;
223 
224 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
225 			struct page *page = shmem_read_mapping_page(mapping, i);
226 			if (!IS_ERR(page)) {
227 				char *dst = kmap_atomic(page);
228 				memcpy(dst, vaddr, PAGE_SIZE);
229 				drm_clflush_virt_range(dst, PAGE_SIZE);
230 				kunmap_atomic(dst);
231 
232 				set_page_dirty(page);
233 				mark_page_accessed(page);
234 				page_cache_release(page);
235 			}
236 			vaddr += PAGE_SIZE;
237 		}
238 		i915_gem_chipset_flush(obj->base.dev);
239 	}
240 
241 #ifdef CONFIG_X86
242 	set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
243 #endif
244 	drm_pci_free(obj->base.dev, phys);
245 	obj->phys_handle = NULL;
246 }
247 
248 int
249 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
250 			    int align)
251 {
252 	drm_dma_handle_t *phys;
253 	struct address_space *mapping;
254 	char *vaddr;
255 	int i;
256 
257 	if (obj->phys_handle) {
258 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
259 			return -EBUSY;
260 
261 		return 0;
262 	}
263 
264 	if (obj->madv != I915_MADV_WILLNEED)
265 		return -EFAULT;
266 
267 	if (obj->base.filp == NULL)
268 		return -EINVAL;
269 
270 	/* create a new object */
271 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
272 	if (!phys)
273 		return -ENOMEM;
274 
275 	vaddr = phys->vaddr;
276 #ifdef CONFIG_X86
277 	set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
278 #endif
279 	mapping = file_inode(obj->base.filp)->i_mapping;
280 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
281 		struct page *page;
282 		char *src;
283 
284 		page = shmem_read_mapping_page(mapping, i);
285 		if (IS_ERR(page)) {
286 #ifdef CONFIG_X86
287 			set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
288 #endif
289 			drm_pci_free(obj->base.dev, phys);
290 			return PTR_ERR(page);
291 		}
292 
293 		src = kmap_atomic(page);
294 		memcpy(vaddr, src, PAGE_SIZE);
295 		kunmap_atomic(src);
296 
297 		mark_page_accessed(page);
298 		page_cache_release(page);
299 
300 		vaddr += PAGE_SIZE;
301 	}
302 
303 	obj->phys_handle = phys;
304 	return 0;
305 }
306 
307 static int
308 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
309 		     struct drm_i915_gem_pwrite *args,
310 		     struct drm_file *file_priv)
311 {
312 	struct drm_device *dev = obj->base.dev;
313 	void *vaddr = obj->phys_handle->vaddr + args->offset;
314 	char __user *user_data = to_user_ptr(args->data_ptr);
315 
316 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
317 		unsigned long unwritten;
318 
319 		/* The physical object once assigned is fixed for the lifetime
320 		 * of the obj, so we can safely drop the lock and continue
321 		 * to access vaddr.
322 		 */
323 		mutex_unlock(&dev->struct_mutex);
324 		unwritten = copy_from_user(vaddr, user_data, args->size);
325 		mutex_lock(&dev->struct_mutex);
326 		if (unwritten)
327 			return -EFAULT;
328 	}
329 
330 	i915_gem_chipset_flush(dev);
331 	return 0;
332 }
333 
334 void *i915_gem_object_alloc(struct drm_device *dev)
335 {
336 	struct drm_i915_private *dev_priv = dev->dev_private;
337 	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
338 }
339 
340 void i915_gem_object_free(struct drm_i915_gem_object *obj)
341 {
342 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
343 	kmem_cache_free(dev_priv->slab, obj);
344 }
345 
346 static int
347 i915_gem_create(struct drm_file *file,
348 		struct drm_device *dev,
349 		uint64_t size,
350 		uint32_t *handle_p)
351 {
352 	struct drm_i915_gem_object *obj;
353 	int ret;
354 	u32 handle;
355 
356 	size = roundup(size, PAGE_SIZE);
357 	if (size == 0)
358 		return -EINVAL;
359 
360 	/* Allocate the new object */
361 	obj = i915_gem_alloc_object(dev, size);
362 	if (obj == NULL)
363 		return -ENOMEM;
364 
365 	ret = drm_gem_handle_create(file, &obj->base, &handle);
366 	/* drop reference from allocate - handle holds it now */
367 	drm_gem_object_unreference_unlocked(&obj->base);
368 	if (ret)
369 		return ret;
370 
371 	*handle_p = handle;
372 	return 0;
373 }
374 
375 int
376 i915_gem_dumb_create(struct drm_file *file,
377 		     struct drm_device *dev,
378 		     struct drm_mode_create_dumb *args)
379 {
380 	/* have to work out size/pitch and return them */
381 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
382 	args->size = args->pitch * args->height;
383 	return i915_gem_create(file, dev,
384 			       args->size, &args->handle);
385 }
386 
387 /**
388  * Creates a new mm object and returns a handle to it.
389  */
390 int
391 i915_gem_create_ioctl(struct drm_device *dev, void *data,
392 		      struct drm_file *file)
393 {
394 	struct drm_i915_gem_create *args = data;
395 
396 	return i915_gem_create(file, dev,
397 			       args->size, &args->handle);
398 }
399 
400 static inline int
401 __copy_to_user_swizzled(char __user *cpu_vaddr,
402 			const char *gpu_vaddr, int gpu_offset,
403 			int length)
404 {
405 	int ret, cpu_offset = 0;
406 
407 	while (length > 0) {
408 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
409 		int this_length = min(cacheline_end - gpu_offset, length);
410 		int swizzled_gpu_offset = gpu_offset ^ 64;
411 
412 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
413 				     gpu_vaddr + swizzled_gpu_offset,
414 				     this_length);
415 		if (ret)
416 			return ret + length;
417 
418 		cpu_offset += this_length;
419 		gpu_offset += this_length;
420 		length -= this_length;
421 	}
422 
423 	return 0;
424 }
425 
426 static inline int
427 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
428 			  const char __user *cpu_vaddr,
429 			  int length)
430 {
431 	int ret, cpu_offset = 0;
432 
433 	while (length > 0) {
434 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
435 		int this_length = min(cacheline_end - gpu_offset, length);
436 		int swizzled_gpu_offset = gpu_offset ^ 64;
437 
438 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
439 				       cpu_vaddr + cpu_offset,
440 				       this_length);
441 		if (ret)
442 			return ret + length;
443 
444 		cpu_offset += this_length;
445 		gpu_offset += this_length;
446 		length -= this_length;
447 	}
448 
449 	return 0;
450 }
451 
452 /*
453  * Pins the specified object's pages and synchronizes the object with
454  * GPU accesses. Sets needs_clflush to non-zero if the caller should
455  * flush the object from the CPU cache.
456  */
457 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
458 				    int *needs_clflush)
459 {
460 	int ret;
461 
462 	*needs_clflush = 0;
463 
464 	if (!obj->base.filp)
465 		return -EINVAL;
466 
467 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
468 		/* If we're not in the cpu read domain, set ourself into the gtt
469 		 * read domain and manually flush cachelines (if required). This
470 		 * optimizes for the case when the gpu will dirty the data
471 		 * anyway again before the next pread happens. */
472 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
473 							obj->cache_level);
474 		ret = i915_gem_object_wait_rendering(obj, true);
475 		if (ret)
476 			return ret;
477 
478 		i915_gem_object_retire(obj);
479 	}
480 
481 	ret = i915_gem_object_get_pages(obj);
482 	if (ret)
483 		return ret;
484 
485 	i915_gem_object_pin_pages(obj);
486 
487 	return ret;
488 }
489 
490 /* Per-page copy function for the shmem pread fastpath.
491  * Flushes invalid cachelines before reading the target if
492  * needs_clflush is set. */
493 static int
494 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
495 		 char __user *user_data,
496 		 bool page_do_bit17_swizzling, bool needs_clflush)
497 {
498 	char *vaddr;
499 	int ret;
500 
501 	if (unlikely(page_do_bit17_swizzling))
502 		return -EINVAL;
503 
504 	vaddr = kmap_atomic(page);
505 	if (needs_clflush)
506 		drm_clflush_virt_range(vaddr + shmem_page_offset,
507 				       page_length);
508 	ret = __copy_to_user_inatomic(user_data,
509 				      vaddr + shmem_page_offset,
510 				      page_length);
511 	kunmap_atomic(vaddr);
512 
513 	return ret ? -EFAULT : 0;
514 }
515 
516 static void
517 shmem_clflush_swizzled_range(char *addr, unsigned long length,
518 			     bool swizzled)
519 {
520 	if (unlikely(swizzled)) {
521 		unsigned long start = (unsigned long) addr;
522 		unsigned long end = (unsigned long) addr + length;
523 
524 		/* For swizzling simply ensure that we always flush both
525 		 * channels. Lame, but simple and it works. Swizzled
526 		 * pwrite/pread is far from a hotpath - current userspace
527 		 * doesn't use it at all. */
528 		start = round_down(start, 128);
529 		end = round_up(end, 128);
530 
531 		drm_clflush_virt_range((void *)start, end - start);
532 	} else {
533 		drm_clflush_virt_range(addr, length);
534 	}
535 
536 }
537 
538 /* Only difference to the fast-path function is that this can handle bit17
539  * and uses non-atomic copy and kmap functions. */
540 static int
541 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
542 		 char __user *user_data,
543 		 bool page_do_bit17_swizzling, bool needs_clflush)
544 {
545 	char *vaddr;
546 	int ret;
547 
548 	vaddr = kmap(page);
549 	if (needs_clflush)
550 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
551 					     page_length,
552 					     page_do_bit17_swizzling);
553 
554 	if (page_do_bit17_swizzling)
555 		ret = __copy_to_user_swizzled(user_data,
556 					      vaddr, shmem_page_offset,
557 					      page_length);
558 	else
559 		ret = __copy_to_user(user_data,
560 				     vaddr + shmem_page_offset,
561 				     page_length);
562 	kunmap(page);
563 
564 	return ret ? - EFAULT : 0;
565 }
566 
567 static int
568 i915_gem_shmem_pread(struct drm_device *dev,
569 		     struct drm_i915_gem_object *obj,
570 		     struct drm_i915_gem_pread *args,
571 		     struct drm_file *file)
572 {
573 	char __user *user_data;
574 	ssize_t remain;
575 	loff_t offset;
576 	int shmem_page_offset, page_length, ret = 0;
577 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
578 	int prefaulted = 0;
579 	int needs_clflush = 0;
580 	struct sg_page_iter sg_iter;
581 
582 	user_data = to_user_ptr(args->data_ptr);
583 	remain = args->size;
584 
585 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
586 
587 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
588 	if (ret)
589 		return ret;
590 
591 	offset = args->offset;
592 
593 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
594 			 offset >> PAGE_SHIFT) {
595 		struct page *page = sg_page_iter_page(&sg_iter);
596 
597 		if (remain <= 0)
598 			break;
599 
600 		/* Operation in this page
601 		 *
602 		 * shmem_page_offset = offset within page in shmem file
603 		 * page_length = bytes to copy for this page
604 		 */
605 		shmem_page_offset = offset_in_page(offset);
606 		page_length = remain;
607 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
608 			page_length = PAGE_SIZE - shmem_page_offset;
609 
610 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
611 			(page_to_phys(page) & (1 << 17)) != 0;
612 
613 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
614 				       user_data, page_do_bit17_swizzling,
615 				       needs_clflush);
616 		if (ret == 0)
617 			goto next_page;
618 
619 		mutex_unlock(&dev->struct_mutex);
620 
621 		if (likely(!i915.prefault_disable) && !prefaulted) {
622 			ret = fault_in_multipages_writeable(user_data, remain);
623 			/* Userspace is tricking us, but we've already clobbered
624 			 * its pages with the prefault and promised to write the
625 			 * data up to the first fault. Hence ignore any errors
626 			 * and just continue. */
627 			(void)ret;
628 			prefaulted = 1;
629 		}
630 
631 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
632 				       user_data, page_do_bit17_swizzling,
633 				       needs_clflush);
634 
635 		mutex_lock(&dev->struct_mutex);
636 
637 		if (ret)
638 			goto out;
639 
640 next_page:
641 		remain -= page_length;
642 		user_data += page_length;
643 		offset += page_length;
644 	}
645 
646 out:
647 	i915_gem_object_unpin_pages(obj);
648 
649 	return ret;
650 }
651 
652 /**
653  * Reads data from the object referenced by handle.
654  *
655  * On error, the contents of *data are undefined.
656  */
657 int
658 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
659 		     struct drm_file *file)
660 {
661 	struct drm_i915_gem_pread *args = data;
662 	struct drm_i915_gem_object *obj;
663 	int ret = 0;
664 
665 	if (args->size == 0)
666 		return 0;
667 
668 	if (!access_ok(VERIFY_WRITE,
669 		       to_user_ptr(args->data_ptr),
670 		       args->size))
671 		return -EFAULT;
672 
673 	ret = i915_mutex_lock_interruptible(dev);
674 	if (ret)
675 		return ret;
676 
677 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
678 	if (&obj->base == NULL) {
679 		ret = -ENOENT;
680 		goto unlock;
681 	}
682 
683 	/* Bounds check source.  */
684 	if (args->offset > obj->base.size ||
685 	    args->size > obj->base.size - args->offset) {
686 		ret = -EINVAL;
687 		goto out;
688 	}
689 
690 	/* prime objects have no backing filp to GEM pread/pwrite
691 	 * pages from.
692 	 */
693 	if (!obj->base.filp) {
694 		ret = -EINVAL;
695 		goto out;
696 	}
697 
698 	trace_i915_gem_object_pread(obj, args->offset, args->size);
699 
700 	ret = i915_gem_shmem_pread(dev, obj, args, file);
701 
702 out:
703 	drm_gem_object_unreference(&obj->base);
704 unlock:
705 	mutex_unlock(&dev->struct_mutex);
706 	return ret;
707 }
708 
709 /* This is the fast write path which cannot handle
710  * page faults in the source data
711  */
712 
713 static inline int
714 fast_user_write(struct io_mapping *mapping,
715 		loff_t page_base, int page_offset,
716 		char __user *user_data,
717 		int length)
718 {
719 	void __iomem *vaddr_atomic;
720 	void *vaddr;
721 	unsigned long unwritten;
722 
723 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
724 	/* We can use the cpu mem copy function because this is X86. */
725 	vaddr = (void __force*)vaddr_atomic + page_offset;
726 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
727 						      user_data, length);
728 	io_mapping_unmap_atomic(vaddr_atomic);
729 	return unwritten;
730 }
731 
732 /**
733  * This is the fast pwrite path, where we copy the data directly from the
734  * user into the GTT, uncached.
735  */
736 static int
737 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
738 			 struct drm_i915_gem_object *obj,
739 			 struct drm_i915_gem_pwrite *args,
740 			 struct drm_file *file)
741 {
742 	struct drm_i915_private *dev_priv = dev->dev_private;
743 	ssize_t remain;
744 	loff_t offset, page_base;
745 	char __user *user_data;
746 	int page_offset, page_length, ret;
747 
748 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
749 	if (ret)
750 		goto out;
751 
752 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
753 	if (ret)
754 		goto out_unpin;
755 
756 	ret = i915_gem_object_put_fence(obj);
757 	if (ret)
758 		goto out_unpin;
759 
760 	user_data = to_user_ptr(args->data_ptr);
761 	remain = args->size;
762 
763 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
764 
765 	while (remain > 0) {
766 		/* Operation in this page
767 		 *
768 		 * page_base = page offset within aperture
769 		 * page_offset = offset within page
770 		 * page_length = bytes to copy for this page
771 		 */
772 		page_base = offset & PAGE_MASK;
773 		page_offset = offset_in_page(offset);
774 		page_length = remain;
775 		if ((page_offset + remain) > PAGE_SIZE)
776 			page_length = PAGE_SIZE - page_offset;
777 
778 		/* If we get a fault while copying data, then (presumably) our
779 		 * source page isn't available.  Return the error and we'll
780 		 * retry in the slow path.
781 		 */
782 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
783 				    page_offset, user_data, page_length)) {
784 			ret = -EFAULT;
785 			goto out_unpin;
786 		}
787 
788 		remain -= page_length;
789 		user_data += page_length;
790 		offset += page_length;
791 	}
792 
793 out_unpin:
794 	i915_gem_object_ggtt_unpin(obj);
795 out:
796 	return ret;
797 }
798 
799 /* Per-page copy function for the shmem pwrite fastpath.
800  * Flushes invalid cachelines before writing to the target if
801  * needs_clflush_before is set and flushes out any written cachelines after
802  * writing if needs_clflush is set. */
803 static int
804 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
805 		  char __user *user_data,
806 		  bool page_do_bit17_swizzling,
807 		  bool needs_clflush_before,
808 		  bool needs_clflush_after)
809 {
810 	char *vaddr;
811 	int ret;
812 
813 	if (unlikely(page_do_bit17_swizzling))
814 		return -EINVAL;
815 
816 	vaddr = kmap_atomic(page);
817 	if (needs_clflush_before)
818 		drm_clflush_virt_range(vaddr + shmem_page_offset,
819 				       page_length);
820 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
821 					user_data, page_length);
822 	if (needs_clflush_after)
823 		drm_clflush_virt_range(vaddr + shmem_page_offset,
824 				       page_length);
825 	kunmap_atomic(vaddr);
826 
827 	return ret ? -EFAULT : 0;
828 }
829 
830 /* Only difference to the fast-path function is that this can handle bit17
831  * and uses non-atomic copy and kmap functions. */
832 static int
833 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
834 		  char __user *user_data,
835 		  bool page_do_bit17_swizzling,
836 		  bool needs_clflush_before,
837 		  bool needs_clflush_after)
838 {
839 	char *vaddr;
840 	int ret;
841 
842 	vaddr = kmap(page);
843 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
844 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
845 					     page_length,
846 					     page_do_bit17_swizzling);
847 	if (page_do_bit17_swizzling)
848 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
849 						user_data,
850 						page_length);
851 	else
852 		ret = __copy_from_user(vaddr + shmem_page_offset,
853 				       user_data,
854 				       page_length);
855 	if (needs_clflush_after)
856 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
857 					     page_length,
858 					     page_do_bit17_swizzling);
859 	kunmap(page);
860 
861 	return ret ? -EFAULT : 0;
862 }
863 
864 static int
865 i915_gem_shmem_pwrite(struct drm_device *dev,
866 		      struct drm_i915_gem_object *obj,
867 		      struct drm_i915_gem_pwrite *args,
868 		      struct drm_file *file)
869 {
870 	ssize_t remain;
871 	loff_t offset;
872 	char __user *user_data;
873 	int shmem_page_offset, page_length, ret = 0;
874 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
875 	int hit_slowpath = 0;
876 	int needs_clflush_after = 0;
877 	int needs_clflush_before = 0;
878 	struct sg_page_iter sg_iter;
879 
880 	user_data = to_user_ptr(args->data_ptr);
881 	remain = args->size;
882 
883 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
884 
885 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
886 		/* If we're not in the cpu write domain, set ourself into the gtt
887 		 * write domain and manually flush cachelines (if required). This
888 		 * optimizes for the case when the gpu will use the data
889 		 * right away and we therefore have to clflush anyway. */
890 		needs_clflush_after = cpu_write_needs_clflush(obj);
891 		ret = i915_gem_object_wait_rendering(obj, false);
892 		if (ret)
893 			return ret;
894 
895 		i915_gem_object_retire(obj);
896 	}
897 	/* Same trick applies to invalidate partially written cachelines read
898 	 * before writing. */
899 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
900 		needs_clflush_before =
901 			!cpu_cache_is_coherent(dev, obj->cache_level);
902 
903 	ret = i915_gem_object_get_pages(obj);
904 	if (ret)
905 		return ret;
906 
907 	i915_gem_object_pin_pages(obj);
908 
909 	offset = args->offset;
910 	obj->dirty = 1;
911 
912 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
913 			 offset >> PAGE_SHIFT) {
914 		struct page *page = sg_page_iter_page(&sg_iter);
915 		int partial_cacheline_write;
916 
917 		if (remain <= 0)
918 			break;
919 
920 		/* Operation in this page
921 		 *
922 		 * shmem_page_offset = offset within page in shmem file
923 		 * page_length = bytes to copy for this page
924 		 */
925 		shmem_page_offset = offset_in_page(offset);
926 
927 		page_length = remain;
928 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
929 			page_length = PAGE_SIZE - shmem_page_offset;
930 
931 		/* If we don't overwrite a cacheline completely we need to be
932 		 * careful to have up-to-date data by first clflushing. Don't
933 		 * overcomplicate things and flush the entire patch. */
934 		partial_cacheline_write = needs_clflush_before &&
935 			((shmem_page_offset | page_length)
936 				& (boot_cpu_data.x86_clflush_size - 1));
937 
938 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
939 			(page_to_phys(page) & (1 << 17)) != 0;
940 
941 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
942 					user_data, page_do_bit17_swizzling,
943 					partial_cacheline_write,
944 					needs_clflush_after);
945 		if (ret == 0)
946 			goto next_page;
947 
948 		hit_slowpath = 1;
949 		mutex_unlock(&dev->struct_mutex);
950 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
951 					user_data, page_do_bit17_swizzling,
952 					partial_cacheline_write,
953 					needs_clflush_after);
954 
955 		mutex_lock(&dev->struct_mutex);
956 
957 		if (ret)
958 			goto out;
959 
960 next_page:
961 		remain -= page_length;
962 		user_data += page_length;
963 		offset += page_length;
964 	}
965 
966 out:
967 	i915_gem_object_unpin_pages(obj);
968 
969 	if (hit_slowpath) {
970 		/*
971 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
972 		 * cachelines in-line while writing and the object moved
973 		 * out of the cpu write domain while we've dropped the lock.
974 		 */
975 		if (!needs_clflush_after &&
976 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
977 			if (i915_gem_clflush_object(obj, obj->pin_display))
978 				i915_gem_chipset_flush(dev);
979 		}
980 	}
981 
982 	if (needs_clflush_after)
983 		i915_gem_chipset_flush(dev);
984 
985 	return ret;
986 }
987 
988 /**
989  * Writes data to the object referenced by handle.
990  *
991  * On error, the contents of the buffer that were to be modified are undefined.
992  */
993 int
994 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
995 		      struct drm_file *file)
996 {
997 	struct drm_i915_gem_pwrite *args = data;
998 	struct drm_i915_gem_object *obj;
999 	int ret;
1000 
1001 	if (args->size == 0)
1002 		return 0;
1003 
1004 	if (!access_ok(VERIFY_READ,
1005 		       to_user_ptr(args->data_ptr),
1006 		       args->size))
1007 		return -EFAULT;
1008 
1009 	if (likely(!i915.prefault_disable)) {
1010 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1011 						   args->size);
1012 		if (ret)
1013 			return -EFAULT;
1014 	}
1015 
1016 	ret = i915_mutex_lock_interruptible(dev);
1017 	if (ret)
1018 		return ret;
1019 
1020 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1021 	if (&obj->base == NULL) {
1022 		ret = -ENOENT;
1023 		goto unlock;
1024 	}
1025 
1026 	/* Bounds check destination. */
1027 	if (args->offset > obj->base.size ||
1028 	    args->size > obj->base.size - args->offset) {
1029 		ret = -EINVAL;
1030 		goto out;
1031 	}
1032 
1033 	/* prime objects have no backing filp to GEM pread/pwrite
1034 	 * pages from.
1035 	 */
1036 	if (!obj->base.filp) {
1037 		ret = -EINVAL;
1038 		goto out;
1039 	}
1040 
1041 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1042 
1043 	ret = -EFAULT;
1044 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1045 	 * it would end up going through the fenced access, and we'll get
1046 	 * different detiling behavior between reading and writing.
1047 	 * pread/pwrite currently are reading and writing from the CPU
1048 	 * perspective, requiring manual detiling by the client.
1049 	 */
1050 	if (obj->phys_handle) {
1051 		ret = i915_gem_phys_pwrite(obj, args, file);
1052 		goto out;
1053 	}
1054 
1055 	if (obj->tiling_mode == I915_TILING_NONE &&
1056 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1057 	    cpu_write_needs_clflush(obj)) {
1058 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1059 		/* Note that the gtt paths might fail with non-page-backed user
1060 		 * pointers (e.g. gtt mappings when moving data between
1061 		 * textures). Fallback to the shmem path in that case. */
1062 	}
1063 
1064 	if (ret == -EFAULT || ret == -ENOSPC)
1065 		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1066 
1067 out:
1068 	drm_gem_object_unreference(&obj->base);
1069 unlock:
1070 	mutex_unlock(&dev->struct_mutex);
1071 	return ret;
1072 }
1073 
1074 int
1075 i915_gem_check_wedge(struct i915_gpu_error *error,
1076 		     bool interruptible)
1077 {
1078 	if (i915_reset_in_progress(error)) {
1079 		/* Non-interruptible callers can't handle -EAGAIN, hence return
1080 		 * -EIO unconditionally for these. */
1081 		if (!interruptible)
1082 			return -EIO;
1083 
1084 		/* Recovery complete, but the reset failed ... */
1085 		if (i915_terminally_wedged(error))
1086 			return -EIO;
1087 
1088 		return -EAGAIN;
1089 	}
1090 
1091 	return 0;
1092 }
1093 
1094 /*
1095  * Compare seqno against outstanding lazy request. Emit a request if they are
1096  * equal.
1097  */
1098 int
1099 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1100 {
1101 	int ret;
1102 
1103 	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1104 
1105 	ret = 0;
1106 	if (seqno == ring->outstanding_lazy_seqno)
1107 		ret = i915_add_request(ring, NULL);
1108 
1109 	return ret;
1110 }
1111 
1112 static void fake_irq(unsigned long data)
1113 {
1114 	wake_up_process((struct task_struct *)data);
1115 }
1116 
1117 static bool missed_irq(struct drm_i915_private *dev_priv,
1118 		       struct intel_engine_cs *ring)
1119 {
1120 	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1121 }
1122 
1123 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1124 {
1125 	if (file_priv == NULL)
1126 		return true;
1127 
1128 	return !atomic_xchg(&file_priv->rps_wait_boost, true);
1129 }
1130 
1131 /**
1132  * __wait_seqno - wait until execution of seqno has finished
1133  * @ring: the ring expected to report seqno
1134  * @seqno: duh!
1135  * @reset_counter: reset sequence associated with the given seqno
1136  * @interruptible: do an interruptible wait (normally yes)
1137  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1138  *
1139  * Note: It is of utmost importance that the passed in seqno and reset_counter
1140  * values have been read by the caller in an smp safe manner. Where read-side
1141  * locks are involved, it is sufficient to read the reset_counter before
1142  * unlocking the lock that protects the seqno. For lockless tricks, the
1143  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1144  * inserted.
1145  *
1146  * Returns 0 if the seqno was found within the alloted time. Else returns the
1147  * errno with remaining time filled in timeout argument.
1148  */
1149 static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1150 			unsigned reset_counter,
1151 			bool interruptible,
1152 			s64 *timeout,
1153 			struct drm_i915_file_private *file_priv)
1154 {
1155 	struct drm_device *dev = ring->dev;
1156 	struct drm_i915_private *dev_priv = dev->dev_private;
1157 	const bool irq_test_in_progress =
1158 		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1159 	DEFINE_WAIT(wait);
1160 	unsigned long timeout_expire;
1161 	s64 before, now;
1162 	int ret;
1163 
1164 	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1165 
1166 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1167 		return 0;
1168 
1169 	timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
1170 
1171 	if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1172 		gen6_rps_boost(dev_priv);
1173 		if (file_priv)
1174 			mod_delayed_work(dev_priv->wq,
1175 					 &file_priv->mm.idle_work,
1176 					 msecs_to_jiffies(100));
1177 	}
1178 
1179 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1180 		return -ENODEV;
1181 
1182 	/* Record current time in case interrupted by signal, or wedged */
1183 	trace_i915_gem_request_wait_begin(ring, seqno);
1184 	before = ktime_get_raw_ns();
1185 	for (;;) {
1186 		struct timer_list timer;
1187 
1188 		prepare_to_wait(&ring->irq_queue, &wait,
1189 				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1190 
1191 		/* We need to check whether any gpu reset happened in between
1192 		 * the caller grabbing the seqno and now ... */
1193 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1194 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
1195 			 * is truely gone. */
1196 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1197 			if (ret == 0)
1198 				ret = -EAGAIN;
1199 			break;
1200 		}
1201 
1202 		if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1203 			ret = 0;
1204 			break;
1205 		}
1206 
1207 		if (interruptible && signal_pending(current)) {
1208 			ret = -ERESTARTSYS;
1209 			break;
1210 		}
1211 
1212 		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1213 			ret = -ETIME;
1214 			break;
1215 		}
1216 
1217 		timer.function = NULL;
1218 		if (timeout || missed_irq(dev_priv, ring)) {
1219 			unsigned long expire;
1220 
1221 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1222 			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1223 			mod_timer(&timer, expire);
1224 		}
1225 
1226 		io_schedule();
1227 
1228 		if (timer.function) {
1229 			del_singleshot_timer_sync(&timer);
1230 			destroy_timer_on_stack(&timer);
1231 		}
1232 	}
1233 	now = ktime_get_raw_ns();
1234 	trace_i915_gem_request_wait_end(ring, seqno);
1235 
1236 	if (!irq_test_in_progress)
1237 		ring->irq_put(ring);
1238 
1239 	finish_wait(&ring->irq_queue, &wait);
1240 
1241 	if (timeout) {
1242 		s64 tres = *timeout - (now - before);
1243 
1244 		*timeout = tres < 0 ? 0 : tres;
1245 	}
1246 
1247 	return ret;
1248 }
1249 
1250 /**
1251  * Waits for a sequence number to be signaled, and cleans up the
1252  * request and object lists appropriately for that event.
1253  */
1254 int
1255 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1256 {
1257 	struct drm_device *dev = ring->dev;
1258 	struct drm_i915_private *dev_priv = dev->dev_private;
1259 	bool interruptible = dev_priv->mm.interruptible;
1260 	int ret;
1261 
1262 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1263 	BUG_ON(seqno == 0);
1264 
1265 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1266 	if (ret)
1267 		return ret;
1268 
1269 	ret = i915_gem_check_olr(ring, seqno);
1270 	if (ret)
1271 		return ret;
1272 
1273 	return __wait_seqno(ring, seqno,
1274 			    atomic_read(&dev_priv->gpu_error.reset_counter),
1275 			    interruptible, NULL, NULL);
1276 }
1277 
1278 static int
1279 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1280 				     struct intel_engine_cs *ring)
1281 {
1282 	if (!obj->active)
1283 		return 0;
1284 
1285 	/* Manually manage the write flush as we may have not yet
1286 	 * retired the buffer.
1287 	 *
1288 	 * Note that the last_write_seqno is always the earlier of
1289 	 * the two (read/write) seqno, so if we haved successfully waited,
1290 	 * we know we have passed the last write.
1291 	 */
1292 	obj->last_write_seqno = 0;
1293 
1294 	return 0;
1295 }
1296 
1297 /**
1298  * Ensures that all rendering to the object has completed and the object is
1299  * safe to unbind from the GTT or access from the CPU.
1300  */
1301 static __must_check int
1302 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1303 			       bool readonly)
1304 {
1305 	struct intel_engine_cs *ring = obj->ring;
1306 	u32 seqno;
1307 	int ret;
1308 
1309 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1310 	if (seqno == 0)
1311 		return 0;
1312 
1313 	ret = i915_wait_seqno(ring, seqno);
1314 	if (ret)
1315 		return ret;
1316 
1317 	return i915_gem_object_wait_rendering__tail(obj, ring);
1318 }
1319 
1320 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1321  * as the object state may change during this call.
1322  */
1323 static __must_check int
1324 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1325 					    struct drm_i915_file_private *file_priv,
1326 					    bool readonly)
1327 {
1328 	struct drm_device *dev = obj->base.dev;
1329 	struct drm_i915_private *dev_priv = dev->dev_private;
1330 	struct intel_engine_cs *ring = obj->ring;
1331 	unsigned reset_counter;
1332 	u32 seqno;
1333 	int ret;
1334 
1335 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1336 	BUG_ON(!dev_priv->mm.interruptible);
1337 
1338 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1339 	if (seqno == 0)
1340 		return 0;
1341 
1342 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1343 	if (ret)
1344 		return ret;
1345 
1346 	ret = i915_gem_check_olr(ring, seqno);
1347 	if (ret)
1348 		return ret;
1349 
1350 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1351 	mutex_unlock(&dev->struct_mutex);
1352 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1353 	mutex_lock(&dev->struct_mutex);
1354 	if (ret)
1355 		return ret;
1356 
1357 	return i915_gem_object_wait_rendering__tail(obj, ring);
1358 }
1359 
1360 /**
1361  * Called when user space prepares to use an object with the CPU, either
1362  * through the mmap ioctl's mapping or a GTT mapping.
1363  */
1364 int
1365 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1366 			  struct drm_file *file)
1367 {
1368 	struct drm_i915_gem_set_domain *args = data;
1369 	struct drm_i915_gem_object *obj;
1370 	uint32_t read_domains = args->read_domains;
1371 	uint32_t write_domain = args->write_domain;
1372 	int ret;
1373 
1374 	/* Only handle setting domains to types used by the CPU. */
1375 	if (write_domain & I915_GEM_GPU_DOMAINS)
1376 		return -EINVAL;
1377 
1378 	if (read_domains & I915_GEM_GPU_DOMAINS)
1379 		return -EINVAL;
1380 
1381 	/* Having something in the write domain implies it's in the read
1382 	 * domain, and only that read domain.  Enforce that in the request.
1383 	 */
1384 	if (write_domain != 0 && read_domains != write_domain)
1385 		return -EINVAL;
1386 
1387 	ret = i915_mutex_lock_interruptible(dev);
1388 	if (ret)
1389 		return ret;
1390 
1391 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1392 	if (&obj->base == NULL) {
1393 		ret = -ENOENT;
1394 		goto unlock;
1395 	}
1396 
1397 	/* Try to flush the object off the GPU without holding the lock.
1398 	 * We will repeat the flush holding the lock in the normal manner
1399 	 * to catch cases where we are gazumped.
1400 	 */
1401 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1402 							  file->driver_priv,
1403 							  !write_domain);
1404 	if (ret)
1405 		goto unref;
1406 
1407 	if (read_domains & I915_GEM_DOMAIN_GTT) {
1408 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1409 
1410 		/* Silently promote "you're not bound, there was nothing to do"
1411 		 * to success, since the client was just asking us to
1412 		 * make sure everything was done.
1413 		 */
1414 		if (ret == -EINVAL)
1415 			ret = 0;
1416 	} else {
1417 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1418 	}
1419 
1420 unref:
1421 	drm_gem_object_unreference(&obj->base);
1422 unlock:
1423 	mutex_unlock(&dev->struct_mutex);
1424 	return ret;
1425 }
1426 
1427 /**
1428  * Called when user space has done writes to this buffer
1429  */
1430 int
1431 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1432 			 struct drm_file *file)
1433 {
1434 	struct drm_i915_gem_sw_finish *args = data;
1435 	struct drm_i915_gem_object *obj;
1436 	int ret = 0;
1437 
1438 	ret = i915_mutex_lock_interruptible(dev);
1439 	if (ret)
1440 		return ret;
1441 
1442 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1443 	if (&obj->base == NULL) {
1444 		ret = -ENOENT;
1445 		goto unlock;
1446 	}
1447 
1448 	/* Pinned buffers may be scanout, so flush the cache */
1449 	if (obj->pin_display)
1450 		i915_gem_object_flush_cpu_write_domain(obj, true);
1451 
1452 	drm_gem_object_unreference(&obj->base);
1453 unlock:
1454 	mutex_unlock(&dev->struct_mutex);
1455 	return ret;
1456 }
1457 
1458 /**
1459  * Maps the contents of an object, returning the address it is mapped
1460  * into.
1461  *
1462  * While the mapping holds a reference on the contents of the object, it doesn't
1463  * imply a ref on the object itself.
1464  */
1465 int
1466 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1467 		    struct drm_file *file)
1468 {
1469 	struct drm_i915_gem_mmap *args = data;
1470 	struct drm_gem_object *obj;
1471 	unsigned long addr;
1472 
1473 	obj = drm_gem_object_lookup(dev, file, args->handle);
1474 	if (obj == NULL)
1475 		return -ENOENT;
1476 
1477 	/* prime objects have no backing filp to GEM mmap
1478 	 * pages from.
1479 	 */
1480 	if (!obj->filp) {
1481 		drm_gem_object_unreference_unlocked(obj);
1482 		return -EINVAL;
1483 	}
1484 
1485 	addr = vm_mmap(obj->filp, 0, args->size,
1486 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1487 		       args->offset);
1488 	drm_gem_object_unreference_unlocked(obj);
1489 	if (IS_ERR((void *)addr))
1490 		return addr;
1491 
1492 	args->addr_ptr = (uint64_t) addr;
1493 
1494 	return 0;
1495 }
1496 
1497 /**
1498  * i915_gem_fault - fault a page into the GTT
1499  * vma: VMA in question
1500  * vmf: fault info
1501  *
1502  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1503  * from userspace.  The fault handler takes care of binding the object to
1504  * the GTT (if needed), allocating and programming a fence register (again,
1505  * only if needed based on whether the old reg is still valid or the object
1506  * is tiled) and inserting a new PTE into the faulting process.
1507  *
1508  * Note that the faulting process may involve evicting existing objects
1509  * from the GTT and/or fence registers to make room.  So performance may
1510  * suffer if the GTT working set is large or there are few fence registers
1511  * left.
1512  */
1513 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1514 {
1515 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1516 	struct drm_device *dev = obj->base.dev;
1517 	struct drm_i915_private *dev_priv = dev->dev_private;
1518 	pgoff_t page_offset;
1519 	unsigned long pfn;
1520 	int ret = 0;
1521 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1522 
1523 	intel_runtime_pm_get(dev_priv);
1524 
1525 	/* We don't use vmf->pgoff since that has the fake offset */
1526 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1527 		PAGE_SHIFT;
1528 
1529 	ret = i915_mutex_lock_interruptible(dev);
1530 	if (ret)
1531 		goto out;
1532 
1533 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1534 
1535 	/* Try to flush the object off the GPU first without holding the lock.
1536 	 * Upon reacquiring the lock, we will perform our sanity checks and then
1537 	 * repeat the flush holding the lock in the normal manner to catch cases
1538 	 * where we are gazumped.
1539 	 */
1540 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1541 	if (ret)
1542 		goto unlock;
1543 
1544 	/* Access to snoopable pages through the GTT is incoherent. */
1545 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1546 		ret = -EFAULT;
1547 		goto unlock;
1548 	}
1549 
1550 	/* Now bind it into the GTT if needed */
1551 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1552 	if (ret)
1553 		goto unlock;
1554 
1555 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1556 	if (ret)
1557 		goto unpin;
1558 
1559 	ret = i915_gem_object_get_fence(obj);
1560 	if (ret)
1561 		goto unpin;
1562 
1563 	/* Finally, remap it using the new GTT offset */
1564 	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1565 	pfn >>= PAGE_SHIFT;
1566 
1567 	if (!obj->fault_mappable) {
1568 		unsigned long size = min_t(unsigned long,
1569 					   vma->vm_end - vma->vm_start,
1570 					   obj->base.size);
1571 		int i;
1572 
1573 		for (i = 0; i < size >> PAGE_SHIFT; i++) {
1574 			ret = vm_insert_pfn(vma,
1575 					    (unsigned long)vma->vm_start + i * PAGE_SIZE,
1576 					    pfn + i);
1577 			if (ret)
1578 				break;
1579 		}
1580 
1581 		obj->fault_mappable = true;
1582 	} else
1583 		ret = vm_insert_pfn(vma,
1584 				    (unsigned long)vmf->virtual_address,
1585 				    pfn + page_offset);
1586 unpin:
1587 	i915_gem_object_ggtt_unpin(obj);
1588 unlock:
1589 	mutex_unlock(&dev->struct_mutex);
1590 out:
1591 	switch (ret) {
1592 	case -EIO:
1593 		/* If this -EIO is due to a gpu hang, give the reset code a
1594 		 * chance to clean up the mess. Otherwise return the proper
1595 		 * SIGBUS. */
1596 		if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1597 			ret = VM_FAULT_SIGBUS;
1598 			break;
1599 		}
1600 	case -EAGAIN:
1601 		/*
1602 		 * EAGAIN means the gpu is hung and we'll wait for the error
1603 		 * handler to reset everything when re-faulting in
1604 		 * i915_mutex_lock_interruptible.
1605 		 */
1606 	case 0:
1607 	case -ERESTARTSYS:
1608 	case -EINTR:
1609 	case -EBUSY:
1610 		/*
1611 		 * EBUSY is ok: this just means that another thread
1612 		 * already did the job.
1613 		 */
1614 		ret = VM_FAULT_NOPAGE;
1615 		break;
1616 	case -ENOMEM:
1617 		ret = VM_FAULT_OOM;
1618 		break;
1619 	case -ENOSPC:
1620 	case -EFAULT:
1621 		ret = VM_FAULT_SIGBUS;
1622 		break;
1623 	default:
1624 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1625 		ret = VM_FAULT_SIGBUS;
1626 		break;
1627 	}
1628 
1629 	intel_runtime_pm_put(dev_priv);
1630 	return ret;
1631 }
1632 
1633 /**
1634  * i915_gem_release_mmap - remove physical page mappings
1635  * @obj: obj in question
1636  *
1637  * Preserve the reservation of the mmapping with the DRM core code, but
1638  * relinquish ownership of the pages back to the system.
1639  *
1640  * It is vital that we remove the page mapping if we have mapped a tiled
1641  * object through the GTT and then lose the fence register due to
1642  * resource pressure. Similarly if the object has been moved out of the
1643  * aperture, than pages mapped into userspace must be revoked. Removing the
1644  * mapping will then trigger a page fault on the next user access, allowing
1645  * fixup by i915_gem_fault().
1646  */
1647 void
1648 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1649 {
1650 	if (!obj->fault_mappable)
1651 		return;
1652 
1653 	drm_vma_node_unmap(&obj->base.vma_node,
1654 			   obj->base.dev->anon_inode->i_mapping);
1655 	obj->fault_mappable = false;
1656 }
1657 
1658 void
1659 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1660 {
1661 	struct drm_i915_gem_object *obj;
1662 
1663 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1664 		i915_gem_release_mmap(obj);
1665 }
1666 
1667 uint32_t
1668 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1669 {
1670 	uint32_t gtt_size;
1671 
1672 	if (INTEL_INFO(dev)->gen >= 4 ||
1673 	    tiling_mode == I915_TILING_NONE)
1674 		return size;
1675 
1676 	/* Previous chips need a power-of-two fence region when tiling */
1677 	if (INTEL_INFO(dev)->gen == 3)
1678 		gtt_size = 1024*1024;
1679 	else
1680 		gtt_size = 512*1024;
1681 
1682 	while (gtt_size < size)
1683 		gtt_size <<= 1;
1684 
1685 	return gtt_size;
1686 }
1687 
1688 /**
1689  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1690  * @obj: object to check
1691  *
1692  * Return the required GTT alignment for an object, taking into account
1693  * potential fence register mapping.
1694  */
1695 uint32_t
1696 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1697 			   int tiling_mode, bool fenced)
1698 {
1699 	/*
1700 	 * Minimum alignment is 4k (GTT page size), but might be greater
1701 	 * if a fence register is needed for the object.
1702 	 */
1703 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1704 	    tiling_mode == I915_TILING_NONE)
1705 		return 4096;
1706 
1707 	/*
1708 	 * Previous chips need to be aligned to the size of the smallest
1709 	 * fence register that can contain the object.
1710 	 */
1711 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1712 }
1713 
1714 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1715 {
1716 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1717 	int ret;
1718 
1719 	if (drm_vma_node_has_offset(&obj->base.vma_node))
1720 		return 0;
1721 
1722 	dev_priv->mm.shrinker_no_lock_stealing = true;
1723 
1724 	ret = drm_gem_create_mmap_offset(&obj->base);
1725 	if (ret != -ENOSPC)
1726 		goto out;
1727 
1728 	/* Badly fragmented mmap space? The only way we can recover
1729 	 * space is by destroying unwanted objects. We can't randomly release
1730 	 * mmap_offsets as userspace expects them to be persistent for the
1731 	 * lifetime of the objects. The closest we can is to release the
1732 	 * offsets on purgeable objects by truncating it and marking it purged,
1733 	 * which prevents userspace from ever using that object again.
1734 	 */
1735 	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1736 	ret = drm_gem_create_mmap_offset(&obj->base);
1737 	if (ret != -ENOSPC)
1738 		goto out;
1739 
1740 	i915_gem_shrink_all(dev_priv);
1741 	ret = drm_gem_create_mmap_offset(&obj->base);
1742 out:
1743 	dev_priv->mm.shrinker_no_lock_stealing = false;
1744 
1745 	return ret;
1746 }
1747 
1748 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1749 {
1750 	drm_gem_free_mmap_offset(&obj->base);
1751 }
1752 
1753 int
1754 i915_gem_mmap_gtt(struct drm_file *file,
1755 		  struct drm_device *dev,
1756 		  uint32_t handle,
1757 		  uint64_t *offset)
1758 {
1759 	struct drm_i915_private *dev_priv = dev->dev_private;
1760 	struct drm_i915_gem_object *obj;
1761 	int ret;
1762 
1763 	ret = i915_mutex_lock_interruptible(dev);
1764 	if (ret)
1765 		return ret;
1766 
1767 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1768 	if (&obj->base == NULL) {
1769 		ret = -ENOENT;
1770 		goto unlock;
1771 	}
1772 
1773 	if (obj->base.size > dev_priv->gtt.mappable_end) {
1774 		ret = -E2BIG;
1775 		goto out;
1776 	}
1777 
1778 	if (obj->madv != I915_MADV_WILLNEED) {
1779 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1780 		ret = -EFAULT;
1781 		goto out;
1782 	}
1783 
1784 	ret = i915_gem_object_create_mmap_offset(obj);
1785 	if (ret)
1786 		goto out;
1787 
1788 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1789 
1790 out:
1791 	drm_gem_object_unreference(&obj->base);
1792 unlock:
1793 	mutex_unlock(&dev->struct_mutex);
1794 	return ret;
1795 }
1796 
1797 /**
1798  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1799  * @dev: DRM device
1800  * @data: GTT mapping ioctl data
1801  * @file: GEM object info
1802  *
1803  * Simply returns the fake offset to userspace so it can mmap it.
1804  * The mmap call will end up in drm_gem_mmap(), which will set things
1805  * up so we can get faults in the handler above.
1806  *
1807  * The fault handler will take care of binding the object into the GTT
1808  * (since it may have been evicted to make room for something), allocating
1809  * a fence register, and mapping the appropriate aperture address into
1810  * userspace.
1811  */
1812 int
1813 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1814 			struct drm_file *file)
1815 {
1816 	struct drm_i915_gem_mmap_gtt *args = data;
1817 
1818 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1819 }
1820 
1821 static inline int
1822 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1823 {
1824 	return obj->madv == I915_MADV_DONTNEED;
1825 }
1826 
1827 /* Immediately discard the backing storage */
1828 static void
1829 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1830 {
1831 	i915_gem_object_free_mmap_offset(obj);
1832 
1833 	if (obj->base.filp == NULL)
1834 		return;
1835 
1836 	/* Our goal here is to return as much of the memory as
1837 	 * is possible back to the system as we are called from OOM.
1838 	 * To do this we must instruct the shmfs to drop all of its
1839 	 * backing pages, *now*.
1840 	 */
1841 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1842 	obj->madv = __I915_MADV_PURGED;
1843 }
1844 
1845 /* Try to discard unwanted pages */
1846 static void
1847 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1848 {
1849 	struct address_space *mapping;
1850 
1851 	switch (obj->madv) {
1852 	case I915_MADV_DONTNEED:
1853 		i915_gem_object_truncate(obj);
1854 	case __I915_MADV_PURGED:
1855 		return;
1856 	}
1857 
1858 	if (obj->base.filp == NULL)
1859 		return;
1860 
1861 	mapping = file_inode(obj->base.filp)->i_mapping,
1862 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1863 }
1864 
1865 static void
1866 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1867 {
1868 	struct sg_page_iter sg_iter;
1869 	int ret;
1870 
1871 	BUG_ON(obj->madv == __I915_MADV_PURGED);
1872 
1873 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1874 	if (ret) {
1875 		/* In the event of a disaster, abandon all caches and
1876 		 * hope for the best.
1877 		 */
1878 		WARN_ON(ret != -EIO);
1879 		i915_gem_clflush_object(obj, true);
1880 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1881 	}
1882 
1883 	if (i915_gem_object_needs_bit17_swizzle(obj))
1884 		i915_gem_object_save_bit_17_swizzle(obj);
1885 
1886 	if (obj->madv == I915_MADV_DONTNEED)
1887 		obj->dirty = 0;
1888 
1889 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1890 		struct page *page = sg_page_iter_page(&sg_iter);
1891 
1892 		if (obj->dirty)
1893 			set_page_dirty(page);
1894 
1895 		if (obj->madv == I915_MADV_WILLNEED)
1896 			mark_page_accessed(page);
1897 
1898 		page_cache_release(page);
1899 	}
1900 	obj->dirty = 0;
1901 
1902 	sg_free_table(obj->pages);
1903 	kfree(obj->pages);
1904 }
1905 
1906 int
1907 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1908 {
1909 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1910 
1911 	if (obj->pages == NULL)
1912 		return 0;
1913 
1914 	if (obj->pages_pin_count)
1915 		return -EBUSY;
1916 
1917 	BUG_ON(i915_gem_obj_bound_any(obj));
1918 
1919 	/* ->put_pages might need to allocate memory for the bit17 swizzle
1920 	 * array, hence protect them from being reaped by removing them from gtt
1921 	 * lists early. */
1922 	list_del(&obj->global_list);
1923 
1924 	ops->put_pages(obj);
1925 	obj->pages = NULL;
1926 
1927 	i915_gem_object_invalidate(obj);
1928 
1929 	return 0;
1930 }
1931 
1932 static unsigned long
1933 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1934 		  bool purgeable_only)
1935 {
1936 	struct list_head still_in_list;
1937 	struct drm_i915_gem_object *obj;
1938 	unsigned long count = 0;
1939 
1940 	/*
1941 	 * As we may completely rewrite the (un)bound list whilst unbinding
1942 	 * (due to retiring requests) we have to strictly process only
1943 	 * one element of the list at the time, and recheck the list
1944 	 * on every iteration.
1945 	 *
1946 	 * In particular, we must hold a reference whilst removing the
1947 	 * object as we may end up waiting for and/or retiring the objects.
1948 	 * This might release the final reference (held by the active list)
1949 	 * and result in the object being freed from under us. This is
1950 	 * similar to the precautions the eviction code must take whilst
1951 	 * removing objects.
1952 	 *
1953 	 * Also note that although these lists do not hold a reference to
1954 	 * the object we can safely grab one here: The final object
1955 	 * unreferencing and the bound_list are both protected by the
1956 	 * dev->struct_mutex and so we won't ever be able to observe an
1957 	 * object on the bound_list with a reference count equals 0.
1958 	 */
1959 	INIT_LIST_HEAD(&still_in_list);
1960 	while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1961 		obj = list_first_entry(&dev_priv->mm.unbound_list,
1962 				       typeof(*obj), global_list);
1963 		list_move_tail(&obj->global_list, &still_in_list);
1964 
1965 		if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1966 			continue;
1967 
1968 		drm_gem_object_reference(&obj->base);
1969 
1970 		if (i915_gem_object_put_pages(obj) == 0)
1971 			count += obj->base.size >> PAGE_SHIFT;
1972 
1973 		drm_gem_object_unreference(&obj->base);
1974 	}
1975 	list_splice(&still_in_list, &dev_priv->mm.unbound_list);
1976 
1977 	INIT_LIST_HEAD(&still_in_list);
1978 	while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1979 		struct i915_vma *vma, *v;
1980 
1981 		obj = list_first_entry(&dev_priv->mm.bound_list,
1982 				       typeof(*obj), global_list);
1983 		list_move_tail(&obj->global_list, &still_in_list);
1984 
1985 		if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1986 			continue;
1987 
1988 		drm_gem_object_reference(&obj->base);
1989 
1990 		list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1991 			if (i915_vma_unbind(vma))
1992 				break;
1993 
1994 		if (i915_gem_object_put_pages(obj) == 0)
1995 			count += obj->base.size >> PAGE_SHIFT;
1996 
1997 		drm_gem_object_unreference(&obj->base);
1998 	}
1999 	list_splice(&still_in_list, &dev_priv->mm.bound_list);
2000 
2001 	return count;
2002 }
2003 
2004 static unsigned long
2005 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
2006 {
2007 	return __i915_gem_shrink(dev_priv, target, true);
2008 }
2009 
2010 static unsigned long
2011 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2012 {
2013 	i915_gem_evict_everything(dev_priv->dev);
2014 	return __i915_gem_shrink(dev_priv, LONG_MAX, false);
2015 }
2016 
2017 static int
2018 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2019 {
2020 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2021 	int page_count, i;
2022 	struct address_space *mapping;
2023 	struct sg_table *st;
2024 	struct scatterlist *sg;
2025 	struct sg_page_iter sg_iter;
2026 	struct page *page;
2027 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2028 	gfp_t gfp;
2029 
2030 	/* Assert that the object is not currently in any GPU domain. As it
2031 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2032 	 * a GPU cache
2033 	 */
2034 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2035 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2036 
2037 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2038 	if (st == NULL)
2039 		return -ENOMEM;
2040 
2041 	page_count = obj->base.size / PAGE_SIZE;
2042 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2043 		kfree(st);
2044 		return -ENOMEM;
2045 	}
2046 
2047 	/* Get the list of pages out of our struct file.  They'll be pinned
2048 	 * at this point until we release them.
2049 	 *
2050 	 * Fail silently without starting the shrinker
2051 	 */
2052 	mapping = file_inode(obj->base.filp)->i_mapping;
2053 	gfp = mapping_gfp_mask(mapping);
2054 	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2055 	gfp &= ~(__GFP_IO | __GFP_WAIT);
2056 	sg = st->sgl;
2057 	st->nents = 0;
2058 	for (i = 0; i < page_count; i++) {
2059 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2060 		if (IS_ERR(page)) {
2061 			i915_gem_purge(dev_priv, page_count);
2062 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2063 		}
2064 		if (IS_ERR(page)) {
2065 			/* We've tried hard to allocate the memory by reaping
2066 			 * our own buffer, now let the real VM do its job and
2067 			 * go down in flames if truly OOM.
2068 			 */
2069 			i915_gem_shrink_all(dev_priv);
2070 			page = shmem_read_mapping_page(mapping, i);
2071 			if (IS_ERR(page))
2072 				goto err_pages;
2073 		}
2074 #ifdef CONFIG_SWIOTLB
2075 		if (swiotlb_nr_tbl()) {
2076 			st->nents++;
2077 			sg_set_page(sg, page, PAGE_SIZE, 0);
2078 			sg = sg_next(sg);
2079 			continue;
2080 		}
2081 #endif
2082 		if (!i || page_to_pfn(page) != last_pfn + 1) {
2083 			if (i)
2084 				sg = sg_next(sg);
2085 			st->nents++;
2086 			sg_set_page(sg, page, PAGE_SIZE, 0);
2087 		} else {
2088 			sg->length += PAGE_SIZE;
2089 		}
2090 		last_pfn = page_to_pfn(page);
2091 
2092 		/* Check that the i965g/gm workaround works. */
2093 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2094 	}
2095 #ifdef CONFIG_SWIOTLB
2096 	if (!swiotlb_nr_tbl())
2097 #endif
2098 		sg_mark_end(sg);
2099 	obj->pages = st;
2100 
2101 	if (i915_gem_object_needs_bit17_swizzle(obj))
2102 		i915_gem_object_do_bit_17_swizzle(obj);
2103 
2104 	return 0;
2105 
2106 err_pages:
2107 	sg_mark_end(sg);
2108 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2109 		page_cache_release(sg_page_iter_page(&sg_iter));
2110 	sg_free_table(st);
2111 	kfree(st);
2112 
2113 	/* shmemfs first checks if there is enough memory to allocate the page
2114 	 * and reports ENOSPC should there be insufficient, along with the usual
2115 	 * ENOMEM for a genuine allocation failure.
2116 	 *
2117 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2118 	 * space and so want to translate the error from shmemfs back to our
2119 	 * usual understanding of ENOMEM.
2120 	 */
2121 	if (PTR_ERR(page) == -ENOSPC)
2122 		return -ENOMEM;
2123 	else
2124 		return PTR_ERR(page);
2125 }
2126 
2127 /* Ensure that the associated pages are gathered from the backing storage
2128  * and pinned into our object. i915_gem_object_get_pages() may be called
2129  * multiple times before they are released by a single call to
2130  * i915_gem_object_put_pages() - once the pages are no longer referenced
2131  * either as a result of memory pressure (reaping pages under the shrinker)
2132  * or as the object is itself released.
2133  */
2134 int
2135 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2136 {
2137 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2138 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2139 	int ret;
2140 
2141 	if (obj->pages)
2142 		return 0;
2143 
2144 	if (obj->madv != I915_MADV_WILLNEED) {
2145 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2146 		return -EFAULT;
2147 	}
2148 
2149 	BUG_ON(obj->pages_pin_count);
2150 
2151 	ret = ops->get_pages(obj);
2152 	if (ret)
2153 		return ret;
2154 
2155 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2156 	return 0;
2157 }
2158 
2159 static void
2160 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2161 			       struct intel_engine_cs *ring)
2162 {
2163 	struct drm_device *dev = obj->base.dev;
2164 	struct drm_i915_private *dev_priv = dev->dev_private;
2165 	u32 seqno = intel_ring_get_seqno(ring);
2166 
2167 	BUG_ON(ring == NULL);
2168 	if (obj->ring != ring && obj->last_write_seqno) {
2169 		/* Keep the seqno relative to the current ring */
2170 		obj->last_write_seqno = seqno;
2171 	}
2172 	obj->ring = ring;
2173 
2174 	/* Add a reference if we're newly entering the active list. */
2175 	if (!obj->active) {
2176 		drm_gem_object_reference(&obj->base);
2177 		obj->active = 1;
2178 	}
2179 
2180 	list_move_tail(&obj->ring_list, &ring->active_list);
2181 
2182 	obj->last_read_seqno = seqno;
2183 
2184 	if (obj->fenced_gpu_access) {
2185 		obj->last_fenced_seqno = seqno;
2186 
2187 		/* Bump MRU to take account of the delayed flush */
2188 		if (obj->fence_reg != I915_FENCE_REG_NONE) {
2189 			struct drm_i915_fence_reg *reg;
2190 
2191 			reg = &dev_priv->fence_regs[obj->fence_reg];
2192 			list_move_tail(&reg->lru_list,
2193 				       &dev_priv->mm.fence_list);
2194 		}
2195 	}
2196 }
2197 
2198 void i915_vma_move_to_active(struct i915_vma *vma,
2199 			     struct intel_engine_cs *ring)
2200 {
2201 	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2202 	return i915_gem_object_move_to_active(vma->obj, ring);
2203 }
2204 
2205 static void
2206 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2207 {
2208 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2209 	struct i915_address_space *vm;
2210 	struct i915_vma *vma;
2211 
2212 	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2213 	BUG_ON(!obj->active);
2214 
2215 	list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2216 		vma = i915_gem_obj_to_vma(obj, vm);
2217 		if (vma && !list_empty(&vma->mm_list))
2218 			list_move_tail(&vma->mm_list, &vm->inactive_list);
2219 	}
2220 
2221 	intel_fb_obj_flush(obj, true);
2222 
2223 	list_del_init(&obj->ring_list);
2224 	obj->ring = NULL;
2225 
2226 	obj->last_read_seqno = 0;
2227 	obj->last_write_seqno = 0;
2228 	obj->base.write_domain = 0;
2229 
2230 	obj->last_fenced_seqno = 0;
2231 	obj->fenced_gpu_access = false;
2232 
2233 	obj->active = 0;
2234 	drm_gem_object_unreference(&obj->base);
2235 
2236 	WARN_ON(i915_verify_lists(dev));
2237 }
2238 
2239 static void
2240 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2241 {
2242 	struct intel_engine_cs *ring = obj->ring;
2243 
2244 	if (ring == NULL)
2245 		return;
2246 
2247 	if (i915_seqno_passed(ring->get_seqno(ring, true),
2248 			      obj->last_read_seqno))
2249 		i915_gem_object_move_to_inactive(obj);
2250 }
2251 
2252 static int
2253 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2254 {
2255 	struct drm_i915_private *dev_priv = dev->dev_private;
2256 	struct intel_engine_cs *ring;
2257 	int ret, i, j;
2258 
2259 	/* Carefully retire all requests without writing to the rings */
2260 	for_each_ring(ring, dev_priv, i) {
2261 		ret = intel_ring_idle(ring);
2262 		if (ret)
2263 			return ret;
2264 	}
2265 	i915_gem_retire_requests(dev);
2266 
2267 	/* Finally reset hw state */
2268 	for_each_ring(ring, dev_priv, i) {
2269 		intel_ring_init_seqno(ring, seqno);
2270 
2271 		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2272 			ring->semaphore.sync_seqno[j] = 0;
2273 	}
2274 
2275 	return 0;
2276 }
2277 
2278 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2279 {
2280 	struct drm_i915_private *dev_priv = dev->dev_private;
2281 	int ret;
2282 
2283 	if (seqno == 0)
2284 		return -EINVAL;
2285 
2286 	/* HWS page needs to be set less than what we
2287 	 * will inject to ring
2288 	 */
2289 	ret = i915_gem_init_seqno(dev, seqno - 1);
2290 	if (ret)
2291 		return ret;
2292 
2293 	/* Carefully set the last_seqno value so that wrap
2294 	 * detection still works
2295 	 */
2296 	dev_priv->next_seqno = seqno;
2297 	dev_priv->last_seqno = seqno - 1;
2298 	if (dev_priv->last_seqno == 0)
2299 		dev_priv->last_seqno--;
2300 
2301 	return 0;
2302 }
2303 
2304 int
2305 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2306 {
2307 	struct drm_i915_private *dev_priv = dev->dev_private;
2308 
2309 	/* reserve 0 for non-seqno */
2310 	if (dev_priv->next_seqno == 0) {
2311 		int ret = i915_gem_init_seqno(dev, 0);
2312 		if (ret)
2313 			return ret;
2314 
2315 		dev_priv->next_seqno = 1;
2316 	}
2317 
2318 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2319 	return 0;
2320 }
2321 
2322 int __i915_add_request(struct intel_engine_cs *ring,
2323 		       struct drm_file *file,
2324 		       struct drm_i915_gem_object *obj,
2325 		       u32 *out_seqno)
2326 {
2327 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2328 	struct drm_i915_gem_request *request;
2329 	u32 request_ring_position, request_start;
2330 	int ret;
2331 
2332 	request_start = intel_ring_get_tail(ring->buffer);
2333 	/*
2334 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2335 	 * after having emitted the batchbuffer command. Hence we need to fix
2336 	 * things up similar to emitting the lazy request. The difference here
2337 	 * is that the flush _must_ happen before the next request, no matter
2338 	 * what.
2339 	 */
2340 	ret = intel_ring_flush_all_caches(ring);
2341 	if (ret)
2342 		return ret;
2343 
2344 	request = ring->preallocated_lazy_request;
2345 	if (WARN_ON(request == NULL))
2346 		return -ENOMEM;
2347 
2348 	/* Record the position of the start of the request so that
2349 	 * should we detect the updated seqno part-way through the
2350 	 * GPU processing the request, we never over-estimate the
2351 	 * position of the head.
2352 	 */
2353 	request_ring_position = intel_ring_get_tail(ring->buffer);
2354 
2355 	ret = ring->add_request(ring);
2356 	if (ret)
2357 		return ret;
2358 
2359 	request->seqno = intel_ring_get_seqno(ring);
2360 	request->ring = ring;
2361 	request->head = request_start;
2362 	request->tail = request_ring_position;
2363 
2364 	/* Whilst this request exists, batch_obj will be on the
2365 	 * active_list, and so will hold the active reference. Only when this
2366 	 * request is retired will the the batch_obj be moved onto the
2367 	 * inactive_list and lose its active reference. Hence we do not need
2368 	 * to explicitly hold another reference here.
2369 	 */
2370 	request->batch_obj = obj;
2371 
2372 	/* Hold a reference to the current context so that we can inspect
2373 	 * it later in case a hangcheck error event fires.
2374 	 */
2375 	request->ctx = ring->last_context;
2376 	if (request->ctx)
2377 		i915_gem_context_reference(request->ctx);
2378 
2379 	request->emitted_jiffies = jiffies;
2380 	list_add_tail(&request->list, &ring->request_list);
2381 	request->file_priv = NULL;
2382 
2383 	if (file) {
2384 		struct drm_i915_file_private *file_priv = file->driver_priv;
2385 
2386 		spin_lock(&file_priv->mm.lock);
2387 		request->file_priv = file_priv;
2388 		list_add_tail(&request->client_list,
2389 			      &file_priv->mm.request_list);
2390 		spin_unlock(&file_priv->mm.lock);
2391 	}
2392 
2393 	trace_i915_gem_request_add(ring, request->seqno);
2394 	ring->outstanding_lazy_seqno = 0;
2395 	ring->preallocated_lazy_request = NULL;
2396 
2397 	if (!dev_priv->ums.mm_suspended) {
2398 		i915_queue_hangcheck(ring->dev);
2399 
2400 		cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2401 		queue_delayed_work(dev_priv->wq,
2402 				   &dev_priv->mm.retire_work,
2403 				   round_jiffies_up_relative(HZ));
2404 		intel_mark_busy(dev_priv->dev);
2405 	}
2406 
2407 	if (out_seqno)
2408 		*out_seqno = request->seqno;
2409 	return 0;
2410 }
2411 
2412 static inline void
2413 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2414 {
2415 	struct drm_i915_file_private *file_priv = request->file_priv;
2416 
2417 	if (!file_priv)
2418 		return;
2419 
2420 	spin_lock(&file_priv->mm.lock);
2421 	list_del(&request->client_list);
2422 	request->file_priv = NULL;
2423 	spin_unlock(&file_priv->mm.lock);
2424 }
2425 
2426 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2427 				   const struct intel_context *ctx)
2428 {
2429 	unsigned long elapsed;
2430 
2431 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2432 
2433 	if (ctx->hang_stats.banned)
2434 		return true;
2435 
2436 	if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2437 		if (!i915_gem_context_is_default(ctx)) {
2438 			DRM_DEBUG("context hanging too fast, banning!\n");
2439 			return true;
2440 		} else if (i915_stop_ring_allow_ban(dev_priv)) {
2441 			if (i915_stop_ring_allow_warn(dev_priv))
2442 				DRM_ERROR("gpu hanging too fast, banning!\n");
2443 			return true;
2444 		}
2445 	}
2446 
2447 	return false;
2448 }
2449 
2450 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2451 				  struct intel_context *ctx,
2452 				  const bool guilty)
2453 {
2454 	struct i915_ctx_hang_stats *hs;
2455 
2456 	if (WARN_ON(!ctx))
2457 		return;
2458 
2459 	hs = &ctx->hang_stats;
2460 
2461 	if (guilty) {
2462 		hs->banned = i915_context_is_banned(dev_priv, ctx);
2463 		hs->batch_active++;
2464 		hs->guilty_ts = get_seconds();
2465 	} else {
2466 		hs->batch_pending++;
2467 	}
2468 }
2469 
2470 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2471 {
2472 	list_del(&request->list);
2473 	i915_gem_request_remove_from_client(request);
2474 
2475 	if (request->ctx)
2476 		i915_gem_context_unreference(request->ctx);
2477 
2478 	kfree(request);
2479 }
2480 
2481 struct drm_i915_gem_request *
2482 i915_gem_find_active_request(struct intel_engine_cs *ring)
2483 {
2484 	struct drm_i915_gem_request *request;
2485 	u32 completed_seqno;
2486 
2487 	completed_seqno = ring->get_seqno(ring, false);
2488 
2489 	list_for_each_entry(request, &ring->request_list, list) {
2490 		if (i915_seqno_passed(completed_seqno, request->seqno))
2491 			continue;
2492 
2493 		return request;
2494 	}
2495 
2496 	return NULL;
2497 }
2498 
2499 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2500 				       struct intel_engine_cs *ring)
2501 {
2502 	struct drm_i915_gem_request *request;
2503 	bool ring_hung;
2504 
2505 	request = i915_gem_find_active_request(ring);
2506 
2507 	if (request == NULL)
2508 		return;
2509 
2510 	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2511 
2512 	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2513 
2514 	list_for_each_entry_continue(request, &ring->request_list, list)
2515 		i915_set_reset_status(dev_priv, request->ctx, false);
2516 }
2517 
2518 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2519 					struct intel_engine_cs *ring)
2520 {
2521 	while (!list_empty(&ring->active_list)) {
2522 		struct drm_i915_gem_object *obj;
2523 
2524 		obj = list_first_entry(&ring->active_list,
2525 				       struct drm_i915_gem_object,
2526 				       ring_list);
2527 
2528 		i915_gem_object_move_to_inactive(obj);
2529 	}
2530 
2531 	/*
2532 	 * We must free the requests after all the corresponding objects have
2533 	 * been moved off active lists. Which is the same order as the normal
2534 	 * retire_requests function does. This is important if object hold
2535 	 * implicit references on things like e.g. ppgtt address spaces through
2536 	 * the request.
2537 	 */
2538 	while (!list_empty(&ring->request_list)) {
2539 		struct drm_i915_gem_request *request;
2540 
2541 		request = list_first_entry(&ring->request_list,
2542 					   struct drm_i915_gem_request,
2543 					   list);
2544 
2545 		i915_gem_free_request(request);
2546 	}
2547 
2548 	/* These may not have been flush before the reset, do so now */
2549 	kfree(ring->preallocated_lazy_request);
2550 	ring->preallocated_lazy_request = NULL;
2551 	ring->outstanding_lazy_seqno = 0;
2552 }
2553 
2554 void i915_gem_restore_fences(struct drm_device *dev)
2555 {
2556 	struct drm_i915_private *dev_priv = dev->dev_private;
2557 	int i;
2558 
2559 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2560 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2561 
2562 		/*
2563 		 * Commit delayed tiling changes if we have an object still
2564 		 * attached to the fence, otherwise just clear the fence.
2565 		 */
2566 		if (reg->obj) {
2567 			i915_gem_object_update_fence(reg->obj, reg,
2568 						     reg->obj->tiling_mode);
2569 		} else {
2570 			i915_gem_write_fence(dev, i, NULL);
2571 		}
2572 	}
2573 }
2574 
2575 void i915_gem_reset(struct drm_device *dev)
2576 {
2577 	struct drm_i915_private *dev_priv = dev->dev_private;
2578 	struct intel_engine_cs *ring;
2579 	int i;
2580 
2581 	/*
2582 	 * Before we free the objects from the requests, we need to inspect
2583 	 * them for finding the guilty party. As the requests only borrow
2584 	 * their reference to the objects, the inspection must be done first.
2585 	 */
2586 	for_each_ring(ring, dev_priv, i)
2587 		i915_gem_reset_ring_status(dev_priv, ring);
2588 
2589 	for_each_ring(ring, dev_priv, i)
2590 		i915_gem_reset_ring_cleanup(dev_priv, ring);
2591 
2592 	i915_gem_context_reset(dev);
2593 
2594 	i915_gem_restore_fences(dev);
2595 }
2596 
2597 /**
2598  * This function clears the request list as sequence numbers are passed.
2599  */
2600 void
2601 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2602 {
2603 	uint32_t seqno;
2604 
2605 	if (list_empty(&ring->request_list))
2606 		return;
2607 
2608 	WARN_ON(i915_verify_lists(ring->dev));
2609 
2610 	seqno = ring->get_seqno(ring, true);
2611 
2612 	/* Move any buffers on the active list that are no longer referenced
2613 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
2614 	 * before we free the context associated with the requests.
2615 	 */
2616 	while (!list_empty(&ring->active_list)) {
2617 		struct drm_i915_gem_object *obj;
2618 
2619 		obj = list_first_entry(&ring->active_list,
2620 				      struct drm_i915_gem_object,
2621 				      ring_list);
2622 
2623 		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2624 			break;
2625 
2626 		i915_gem_object_move_to_inactive(obj);
2627 	}
2628 
2629 
2630 	while (!list_empty(&ring->request_list)) {
2631 		struct drm_i915_gem_request *request;
2632 
2633 		request = list_first_entry(&ring->request_list,
2634 					   struct drm_i915_gem_request,
2635 					   list);
2636 
2637 		if (!i915_seqno_passed(seqno, request->seqno))
2638 			break;
2639 
2640 		trace_i915_gem_request_retire(ring, request->seqno);
2641 		/* We know the GPU must have read the request to have
2642 		 * sent us the seqno + interrupt, so use the position
2643 		 * of tail of the request to update the last known position
2644 		 * of the GPU head.
2645 		 */
2646 		ring->buffer->last_retired_head = request->tail;
2647 
2648 		i915_gem_free_request(request);
2649 	}
2650 
2651 	if (unlikely(ring->trace_irq_seqno &&
2652 		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2653 		ring->irq_put(ring);
2654 		ring->trace_irq_seqno = 0;
2655 	}
2656 
2657 	WARN_ON(i915_verify_lists(ring->dev));
2658 }
2659 
2660 bool
2661 i915_gem_retire_requests(struct drm_device *dev)
2662 {
2663 	struct drm_i915_private *dev_priv = dev->dev_private;
2664 	struct intel_engine_cs *ring;
2665 	bool idle = true;
2666 	int i;
2667 
2668 	for_each_ring(ring, dev_priv, i) {
2669 		i915_gem_retire_requests_ring(ring);
2670 		idle &= list_empty(&ring->request_list);
2671 	}
2672 
2673 	if (idle)
2674 		mod_delayed_work(dev_priv->wq,
2675 				   &dev_priv->mm.idle_work,
2676 				   msecs_to_jiffies(100));
2677 
2678 	return idle;
2679 }
2680 
2681 static void
2682 i915_gem_retire_work_handler(struct work_struct *work)
2683 {
2684 	struct drm_i915_private *dev_priv =
2685 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
2686 	struct drm_device *dev = dev_priv->dev;
2687 	bool idle;
2688 
2689 	/* Come back later if the device is busy... */
2690 	idle = false;
2691 	if (mutex_trylock(&dev->struct_mutex)) {
2692 		idle = i915_gem_retire_requests(dev);
2693 		mutex_unlock(&dev->struct_mutex);
2694 	}
2695 	if (!idle)
2696 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2697 				   round_jiffies_up_relative(HZ));
2698 }
2699 
2700 static void
2701 i915_gem_idle_work_handler(struct work_struct *work)
2702 {
2703 	struct drm_i915_private *dev_priv =
2704 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2705 
2706 	intel_mark_idle(dev_priv->dev);
2707 }
2708 
2709 /**
2710  * Ensures that an object will eventually get non-busy by flushing any required
2711  * write domains, emitting any outstanding lazy request and retiring and
2712  * completed requests.
2713  */
2714 static int
2715 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2716 {
2717 	int ret;
2718 
2719 	if (obj->active) {
2720 		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2721 		if (ret)
2722 			return ret;
2723 
2724 		i915_gem_retire_requests_ring(obj->ring);
2725 	}
2726 
2727 	return 0;
2728 }
2729 
2730 /**
2731  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2732  * @DRM_IOCTL_ARGS: standard ioctl arguments
2733  *
2734  * Returns 0 if successful, else an error is returned with the remaining time in
2735  * the timeout parameter.
2736  *  -ETIME: object is still busy after timeout
2737  *  -ERESTARTSYS: signal interrupted the wait
2738  *  -ENONENT: object doesn't exist
2739  * Also possible, but rare:
2740  *  -EAGAIN: GPU wedged
2741  *  -ENOMEM: damn
2742  *  -ENODEV: Internal IRQ fail
2743  *  -E?: The add request failed
2744  *
2745  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2746  * non-zero timeout parameter the wait ioctl will wait for the given number of
2747  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2748  * without holding struct_mutex the object may become re-busied before this
2749  * function completes. A similar but shorter * race condition exists in the busy
2750  * ioctl
2751  */
2752 int
2753 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2754 {
2755 	struct drm_i915_private *dev_priv = dev->dev_private;
2756 	struct drm_i915_gem_wait *args = data;
2757 	struct drm_i915_gem_object *obj;
2758 	struct intel_engine_cs *ring = NULL;
2759 	unsigned reset_counter;
2760 	u32 seqno = 0;
2761 	int ret = 0;
2762 
2763 	ret = i915_mutex_lock_interruptible(dev);
2764 	if (ret)
2765 		return ret;
2766 
2767 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2768 	if (&obj->base == NULL) {
2769 		mutex_unlock(&dev->struct_mutex);
2770 		return -ENOENT;
2771 	}
2772 
2773 	/* Need to make sure the object gets inactive eventually. */
2774 	ret = i915_gem_object_flush_active(obj);
2775 	if (ret)
2776 		goto out;
2777 
2778 	if (obj->active) {
2779 		seqno = obj->last_read_seqno;
2780 		ring = obj->ring;
2781 	}
2782 
2783 	if (seqno == 0)
2784 		 goto out;
2785 
2786 	/* Do this after OLR check to make sure we make forward progress polling
2787 	 * on this IOCTL with a timeout <=0 (like busy ioctl)
2788 	 */
2789 	if (args->timeout_ns <= 0) {
2790 		ret = -ETIME;
2791 		goto out;
2792 	}
2793 
2794 	drm_gem_object_unreference(&obj->base);
2795 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2796 	mutex_unlock(&dev->struct_mutex);
2797 
2798 	return __wait_seqno(ring, seqno, reset_counter, true, &args->timeout_ns,
2799 			    file->driver_priv);
2800 
2801 out:
2802 	drm_gem_object_unreference(&obj->base);
2803 	mutex_unlock(&dev->struct_mutex);
2804 	return ret;
2805 }
2806 
2807 /**
2808  * i915_gem_object_sync - sync an object to a ring.
2809  *
2810  * @obj: object which may be in use on another ring.
2811  * @to: ring we wish to use the object on. May be NULL.
2812  *
2813  * This code is meant to abstract object synchronization with the GPU.
2814  * Calling with NULL implies synchronizing the object with the CPU
2815  * rather than a particular GPU ring.
2816  *
2817  * Returns 0 if successful, else propagates up the lower layer error.
2818  */
2819 int
2820 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2821 		     struct intel_engine_cs *to)
2822 {
2823 	struct intel_engine_cs *from = obj->ring;
2824 	u32 seqno;
2825 	int ret, idx;
2826 
2827 	if (from == NULL || to == from)
2828 		return 0;
2829 
2830 	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2831 		return i915_gem_object_wait_rendering(obj, false);
2832 
2833 	idx = intel_ring_sync_index(from, to);
2834 
2835 	seqno = obj->last_read_seqno;
2836 	/* Optimization: Avoid semaphore sync when we are sure we already
2837 	 * waited for an object with higher seqno */
2838 	if (seqno <= from->semaphore.sync_seqno[idx])
2839 		return 0;
2840 
2841 	ret = i915_gem_check_olr(obj->ring, seqno);
2842 	if (ret)
2843 		return ret;
2844 
2845 	trace_i915_gem_ring_sync_to(from, to, seqno);
2846 	ret = to->semaphore.sync_to(to, from, seqno);
2847 	if (!ret)
2848 		/* We use last_read_seqno because sync_to()
2849 		 * might have just caused seqno wrap under
2850 		 * the radar.
2851 		 */
2852 		from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2853 
2854 	return ret;
2855 }
2856 
2857 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2858 {
2859 	u32 old_write_domain, old_read_domains;
2860 
2861 	/* Force a pagefault for domain tracking on next user access */
2862 	i915_gem_release_mmap(obj);
2863 
2864 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2865 		return;
2866 
2867 	/* Wait for any direct GTT access to complete */
2868 	mb();
2869 
2870 	old_read_domains = obj->base.read_domains;
2871 	old_write_domain = obj->base.write_domain;
2872 
2873 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2874 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2875 
2876 	trace_i915_gem_object_change_domain(obj,
2877 					    old_read_domains,
2878 					    old_write_domain);
2879 }
2880 
2881 int i915_vma_unbind(struct i915_vma *vma)
2882 {
2883 	struct drm_i915_gem_object *obj = vma->obj;
2884 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2885 	int ret;
2886 
2887 	if (list_empty(&vma->vma_link))
2888 		return 0;
2889 
2890 	if (!drm_mm_node_allocated(&vma->node)) {
2891 		i915_gem_vma_destroy(vma);
2892 		return 0;
2893 	}
2894 
2895 	if (vma->pin_count)
2896 		return -EBUSY;
2897 
2898 	BUG_ON(obj->pages == NULL);
2899 
2900 	ret = i915_gem_object_finish_gpu(obj);
2901 	if (ret)
2902 		return ret;
2903 	/* Continue on if we fail due to EIO, the GPU is hung so we
2904 	 * should be safe and we need to cleanup or else we might
2905 	 * cause memory corruption through use-after-free.
2906 	 */
2907 
2908 	if (i915_is_ggtt(vma->vm)) {
2909 		i915_gem_object_finish_gtt(obj);
2910 
2911 		/* release the fence reg _after_ flushing */
2912 		ret = i915_gem_object_put_fence(obj);
2913 		if (ret)
2914 			return ret;
2915 	}
2916 
2917 	trace_i915_vma_unbind(vma);
2918 
2919 	vma->unbind_vma(vma);
2920 
2921 	list_del_init(&vma->mm_list);
2922 	/* Avoid an unnecessary call to unbind on rebind. */
2923 	if (i915_is_ggtt(vma->vm))
2924 		obj->map_and_fenceable = true;
2925 
2926 	drm_mm_remove_node(&vma->node);
2927 	i915_gem_vma_destroy(vma);
2928 
2929 	/* Since the unbound list is global, only move to that list if
2930 	 * no more VMAs exist. */
2931 	if (list_empty(&obj->vma_list)) {
2932 		i915_gem_gtt_finish_object(obj);
2933 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2934 	}
2935 
2936 	/* And finally now the object is completely decoupled from this vma,
2937 	 * we can drop its hold on the backing storage and allow it to be
2938 	 * reaped by the shrinker.
2939 	 */
2940 	i915_gem_object_unpin_pages(obj);
2941 
2942 	return 0;
2943 }
2944 
2945 int i915_gpu_idle(struct drm_device *dev)
2946 {
2947 	struct drm_i915_private *dev_priv = dev->dev_private;
2948 	struct intel_engine_cs *ring;
2949 	int ret, i;
2950 
2951 	/* Flush everything onto the inactive list. */
2952 	for_each_ring(ring, dev_priv, i) {
2953 		ret = i915_switch_context(ring, ring->default_context);
2954 		if (ret)
2955 			return ret;
2956 
2957 		ret = intel_ring_idle(ring);
2958 		if (ret)
2959 			return ret;
2960 	}
2961 
2962 	return 0;
2963 }
2964 
2965 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2966 				 struct drm_i915_gem_object *obj)
2967 {
2968 	struct drm_i915_private *dev_priv = dev->dev_private;
2969 	int fence_reg;
2970 	int fence_pitch_shift;
2971 
2972 	if (INTEL_INFO(dev)->gen >= 6) {
2973 		fence_reg = FENCE_REG_SANDYBRIDGE_0;
2974 		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2975 	} else {
2976 		fence_reg = FENCE_REG_965_0;
2977 		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2978 	}
2979 
2980 	fence_reg += reg * 8;
2981 
2982 	/* To w/a incoherency with non-atomic 64-bit register updates,
2983 	 * we split the 64-bit update into two 32-bit writes. In order
2984 	 * for a partial fence not to be evaluated between writes, we
2985 	 * precede the update with write to turn off the fence register,
2986 	 * and only enable the fence as the last step.
2987 	 *
2988 	 * For extra levels of paranoia, we make sure each step lands
2989 	 * before applying the next step.
2990 	 */
2991 	I915_WRITE(fence_reg, 0);
2992 	POSTING_READ(fence_reg);
2993 
2994 	if (obj) {
2995 		u32 size = i915_gem_obj_ggtt_size(obj);
2996 		uint64_t val;
2997 
2998 		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2999 				 0xfffff000) << 32;
3000 		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3001 		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3002 		if (obj->tiling_mode == I915_TILING_Y)
3003 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3004 		val |= I965_FENCE_REG_VALID;
3005 
3006 		I915_WRITE(fence_reg + 4, val >> 32);
3007 		POSTING_READ(fence_reg + 4);
3008 
3009 		I915_WRITE(fence_reg + 0, val);
3010 		POSTING_READ(fence_reg);
3011 	} else {
3012 		I915_WRITE(fence_reg + 4, 0);
3013 		POSTING_READ(fence_reg + 4);
3014 	}
3015 }
3016 
3017 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3018 				 struct drm_i915_gem_object *obj)
3019 {
3020 	struct drm_i915_private *dev_priv = dev->dev_private;
3021 	u32 val;
3022 
3023 	if (obj) {
3024 		u32 size = i915_gem_obj_ggtt_size(obj);
3025 		int pitch_val;
3026 		int tile_width;
3027 
3028 		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3029 		     (size & -size) != size ||
3030 		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3031 		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3032 		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3033 
3034 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3035 			tile_width = 128;
3036 		else
3037 			tile_width = 512;
3038 
3039 		/* Note: pitch better be a power of two tile widths */
3040 		pitch_val = obj->stride / tile_width;
3041 		pitch_val = ffs(pitch_val) - 1;
3042 
3043 		val = i915_gem_obj_ggtt_offset(obj);
3044 		if (obj->tiling_mode == I915_TILING_Y)
3045 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3046 		val |= I915_FENCE_SIZE_BITS(size);
3047 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3048 		val |= I830_FENCE_REG_VALID;
3049 	} else
3050 		val = 0;
3051 
3052 	if (reg < 8)
3053 		reg = FENCE_REG_830_0 + reg * 4;
3054 	else
3055 		reg = FENCE_REG_945_8 + (reg - 8) * 4;
3056 
3057 	I915_WRITE(reg, val);
3058 	POSTING_READ(reg);
3059 }
3060 
3061 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3062 				struct drm_i915_gem_object *obj)
3063 {
3064 	struct drm_i915_private *dev_priv = dev->dev_private;
3065 	uint32_t val;
3066 
3067 	if (obj) {
3068 		u32 size = i915_gem_obj_ggtt_size(obj);
3069 		uint32_t pitch_val;
3070 
3071 		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3072 		     (size & -size) != size ||
3073 		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3074 		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3075 		     i915_gem_obj_ggtt_offset(obj), size);
3076 
3077 		pitch_val = obj->stride / 128;
3078 		pitch_val = ffs(pitch_val) - 1;
3079 
3080 		val = i915_gem_obj_ggtt_offset(obj);
3081 		if (obj->tiling_mode == I915_TILING_Y)
3082 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3083 		val |= I830_FENCE_SIZE_BITS(size);
3084 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3085 		val |= I830_FENCE_REG_VALID;
3086 	} else
3087 		val = 0;
3088 
3089 	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3090 	POSTING_READ(FENCE_REG_830_0 + reg * 4);
3091 }
3092 
3093 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3094 {
3095 	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3096 }
3097 
3098 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3099 				 struct drm_i915_gem_object *obj)
3100 {
3101 	struct drm_i915_private *dev_priv = dev->dev_private;
3102 
3103 	/* Ensure that all CPU reads are completed before installing a fence
3104 	 * and all writes before removing the fence.
3105 	 */
3106 	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3107 		mb();
3108 
3109 	WARN(obj && (!obj->stride || !obj->tiling_mode),
3110 	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3111 	     obj->stride, obj->tiling_mode);
3112 
3113 	switch (INTEL_INFO(dev)->gen) {
3114 	case 8:
3115 	case 7:
3116 	case 6:
3117 	case 5:
3118 	case 4: i965_write_fence_reg(dev, reg, obj); break;
3119 	case 3: i915_write_fence_reg(dev, reg, obj); break;
3120 	case 2: i830_write_fence_reg(dev, reg, obj); break;
3121 	default: BUG();
3122 	}
3123 
3124 	/* And similarly be paranoid that no direct access to this region
3125 	 * is reordered to before the fence is installed.
3126 	 */
3127 	if (i915_gem_object_needs_mb(obj))
3128 		mb();
3129 }
3130 
3131 static inline int fence_number(struct drm_i915_private *dev_priv,
3132 			       struct drm_i915_fence_reg *fence)
3133 {
3134 	return fence - dev_priv->fence_regs;
3135 }
3136 
3137 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3138 					 struct drm_i915_fence_reg *fence,
3139 					 bool enable)
3140 {
3141 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3142 	int reg = fence_number(dev_priv, fence);
3143 
3144 	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3145 
3146 	if (enable) {
3147 		obj->fence_reg = reg;
3148 		fence->obj = obj;
3149 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3150 	} else {
3151 		obj->fence_reg = I915_FENCE_REG_NONE;
3152 		fence->obj = NULL;
3153 		list_del_init(&fence->lru_list);
3154 	}
3155 	obj->fence_dirty = false;
3156 }
3157 
3158 static int
3159 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3160 {
3161 	if (obj->last_fenced_seqno) {
3162 		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3163 		if (ret)
3164 			return ret;
3165 
3166 		obj->last_fenced_seqno = 0;
3167 	}
3168 
3169 	obj->fenced_gpu_access = false;
3170 	return 0;
3171 }
3172 
3173 int
3174 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3175 {
3176 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3177 	struct drm_i915_fence_reg *fence;
3178 	int ret;
3179 
3180 	ret = i915_gem_object_wait_fence(obj);
3181 	if (ret)
3182 		return ret;
3183 
3184 	if (obj->fence_reg == I915_FENCE_REG_NONE)
3185 		return 0;
3186 
3187 	fence = &dev_priv->fence_regs[obj->fence_reg];
3188 
3189 	if (WARN_ON(fence->pin_count))
3190 		return -EBUSY;
3191 
3192 	i915_gem_object_fence_lost(obj);
3193 	i915_gem_object_update_fence(obj, fence, false);
3194 
3195 	return 0;
3196 }
3197 
3198 static struct drm_i915_fence_reg *
3199 i915_find_fence_reg(struct drm_device *dev)
3200 {
3201 	struct drm_i915_private *dev_priv = dev->dev_private;
3202 	struct drm_i915_fence_reg *reg, *avail;
3203 	int i;
3204 
3205 	/* First try to find a free reg */
3206 	avail = NULL;
3207 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3208 		reg = &dev_priv->fence_regs[i];
3209 		if (!reg->obj)
3210 			return reg;
3211 
3212 		if (!reg->pin_count)
3213 			avail = reg;
3214 	}
3215 
3216 	if (avail == NULL)
3217 		goto deadlock;
3218 
3219 	/* None available, try to steal one or wait for a user to finish */
3220 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3221 		if (reg->pin_count)
3222 			continue;
3223 
3224 		return reg;
3225 	}
3226 
3227 deadlock:
3228 	/* Wait for completion of pending flips which consume fences */
3229 	if (intel_has_pending_fb_unpin(dev))
3230 		return ERR_PTR(-EAGAIN);
3231 
3232 	return ERR_PTR(-EDEADLK);
3233 }
3234 
3235 /**
3236  * i915_gem_object_get_fence - set up fencing for an object
3237  * @obj: object to map through a fence reg
3238  *
3239  * When mapping objects through the GTT, userspace wants to be able to write
3240  * to them without having to worry about swizzling if the object is tiled.
3241  * This function walks the fence regs looking for a free one for @obj,
3242  * stealing one if it can't find any.
3243  *
3244  * It then sets up the reg based on the object's properties: address, pitch
3245  * and tiling format.
3246  *
3247  * For an untiled surface, this removes any existing fence.
3248  */
3249 int
3250 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3251 {
3252 	struct drm_device *dev = obj->base.dev;
3253 	struct drm_i915_private *dev_priv = dev->dev_private;
3254 	bool enable = obj->tiling_mode != I915_TILING_NONE;
3255 	struct drm_i915_fence_reg *reg;
3256 	int ret;
3257 
3258 	/* Have we updated the tiling parameters upon the object and so
3259 	 * will need to serialise the write to the associated fence register?
3260 	 */
3261 	if (obj->fence_dirty) {
3262 		ret = i915_gem_object_wait_fence(obj);
3263 		if (ret)
3264 			return ret;
3265 	}
3266 
3267 	/* Just update our place in the LRU if our fence is getting reused. */
3268 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
3269 		reg = &dev_priv->fence_regs[obj->fence_reg];
3270 		if (!obj->fence_dirty) {
3271 			list_move_tail(&reg->lru_list,
3272 				       &dev_priv->mm.fence_list);
3273 			return 0;
3274 		}
3275 	} else if (enable) {
3276 		reg = i915_find_fence_reg(dev);
3277 		if (IS_ERR(reg))
3278 			return PTR_ERR(reg);
3279 
3280 		if (reg->obj) {
3281 			struct drm_i915_gem_object *old = reg->obj;
3282 
3283 			ret = i915_gem_object_wait_fence(old);
3284 			if (ret)
3285 				return ret;
3286 
3287 			i915_gem_object_fence_lost(old);
3288 		}
3289 	} else
3290 		return 0;
3291 
3292 	i915_gem_object_update_fence(obj, reg, enable);
3293 
3294 	return 0;
3295 }
3296 
3297 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3298 				     struct drm_mm_node *gtt_space,
3299 				     unsigned long cache_level)
3300 {
3301 	struct drm_mm_node *other;
3302 
3303 	/* On non-LLC machines we have to be careful when putting differing
3304 	 * types of snoopable memory together to avoid the prefetcher
3305 	 * crossing memory domains and dying.
3306 	 */
3307 	if (HAS_LLC(dev))
3308 		return true;
3309 
3310 	if (!drm_mm_node_allocated(gtt_space))
3311 		return true;
3312 
3313 	if (list_empty(&gtt_space->node_list))
3314 		return true;
3315 
3316 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3317 	if (other->allocated && !other->hole_follows && other->color != cache_level)
3318 		return false;
3319 
3320 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3321 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3322 		return false;
3323 
3324 	return true;
3325 }
3326 
3327 static void i915_gem_verify_gtt(struct drm_device *dev)
3328 {
3329 #if WATCH_GTT
3330 	struct drm_i915_private *dev_priv = dev->dev_private;
3331 	struct drm_i915_gem_object *obj;
3332 	int err = 0;
3333 
3334 	list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3335 		if (obj->gtt_space == NULL) {
3336 			printk(KERN_ERR "object found on GTT list with no space reserved\n");
3337 			err++;
3338 			continue;
3339 		}
3340 
3341 		if (obj->cache_level != obj->gtt_space->color) {
3342 			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3343 			       i915_gem_obj_ggtt_offset(obj),
3344 			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3345 			       obj->cache_level,
3346 			       obj->gtt_space->color);
3347 			err++;
3348 			continue;
3349 		}
3350 
3351 		if (!i915_gem_valid_gtt_space(dev,
3352 					      obj->gtt_space,
3353 					      obj->cache_level)) {
3354 			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3355 			       i915_gem_obj_ggtt_offset(obj),
3356 			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3357 			       obj->cache_level);
3358 			err++;
3359 			continue;
3360 		}
3361 	}
3362 
3363 	WARN_ON(err);
3364 #endif
3365 }
3366 
3367 /**
3368  * Finds free space in the GTT aperture and binds the object there.
3369  */
3370 static struct i915_vma *
3371 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3372 			   struct i915_address_space *vm,
3373 			   unsigned alignment,
3374 			   uint64_t flags)
3375 {
3376 	struct drm_device *dev = obj->base.dev;
3377 	struct drm_i915_private *dev_priv = dev->dev_private;
3378 	u32 size, fence_size, fence_alignment, unfenced_alignment;
3379 	unsigned long start =
3380 		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3381 	unsigned long end =
3382 		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3383 	struct i915_vma *vma;
3384 	int ret;
3385 
3386 	fence_size = i915_gem_get_gtt_size(dev,
3387 					   obj->base.size,
3388 					   obj->tiling_mode);
3389 	fence_alignment = i915_gem_get_gtt_alignment(dev,
3390 						     obj->base.size,
3391 						     obj->tiling_mode, true);
3392 	unfenced_alignment =
3393 		i915_gem_get_gtt_alignment(dev,
3394 					   obj->base.size,
3395 					   obj->tiling_mode, false);
3396 
3397 	if (alignment == 0)
3398 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3399 						unfenced_alignment;
3400 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3401 		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3402 		return ERR_PTR(-EINVAL);
3403 	}
3404 
3405 	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3406 
3407 	/* If the object is bigger than the entire aperture, reject it early
3408 	 * before evicting everything in a vain attempt to find space.
3409 	 */
3410 	if (obj->base.size > end) {
3411 		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3412 			  obj->base.size,
3413 			  flags & PIN_MAPPABLE ? "mappable" : "total",
3414 			  end);
3415 		return ERR_PTR(-E2BIG);
3416 	}
3417 
3418 	ret = i915_gem_object_get_pages(obj);
3419 	if (ret)
3420 		return ERR_PTR(ret);
3421 
3422 	i915_gem_object_pin_pages(obj);
3423 
3424 	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3425 	if (IS_ERR(vma))
3426 		goto err_unpin;
3427 
3428 search_free:
3429 	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3430 						  size, alignment,
3431 						  obj->cache_level,
3432 						  start, end,
3433 						  DRM_MM_SEARCH_DEFAULT,
3434 						  DRM_MM_CREATE_DEFAULT);
3435 	if (ret) {
3436 		ret = i915_gem_evict_something(dev, vm, size, alignment,
3437 					       obj->cache_level,
3438 					       start, end,
3439 					       flags);
3440 		if (ret == 0)
3441 			goto search_free;
3442 
3443 		goto err_free_vma;
3444 	}
3445 	if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3446 					      obj->cache_level))) {
3447 		ret = -EINVAL;
3448 		goto err_remove_node;
3449 	}
3450 
3451 	ret = i915_gem_gtt_prepare_object(obj);
3452 	if (ret)
3453 		goto err_remove_node;
3454 
3455 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3456 	list_add_tail(&vma->mm_list, &vm->inactive_list);
3457 
3458 	if (i915_is_ggtt(vm)) {
3459 		bool mappable, fenceable;
3460 
3461 		fenceable = (vma->node.size == fence_size &&
3462 			     (vma->node.start & (fence_alignment - 1)) == 0);
3463 
3464 		mappable = (vma->node.start + obj->base.size <=
3465 			    dev_priv->gtt.mappable_end);
3466 
3467 		obj->map_and_fenceable = mappable && fenceable;
3468 	}
3469 
3470 	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3471 
3472 	trace_i915_vma_bind(vma, flags);
3473 	vma->bind_vma(vma, obj->cache_level,
3474 		      flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3475 
3476 	i915_gem_verify_gtt(dev);
3477 	return vma;
3478 
3479 err_remove_node:
3480 	drm_mm_remove_node(&vma->node);
3481 err_free_vma:
3482 	i915_gem_vma_destroy(vma);
3483 	vma = ERR_PTR(ret);
3484 err_unpin:
3485 	i915_gem_object_unpin_pages(obj);
3486 	return vma;
3487 }
3488 
3489 bool
3490 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3491 			bool force)
3492 {
3493 	/* If we don't have a page list set up, then we're not pinned
3494 	 * to GPU, and we can ignore the cache flush because it'll happen
3495 	 * again at bind time.
3496 	 */
3497 	if (obj->pages == NULL)
3498 		return false;
3499 
3500 	/*
3501 	 * Stolen memory is always coherent with the GPU as it is explicitly
3502 	 * marked as wc by the system, or the system is cache-coherent.
3503 	 */
3504 	if (obj->stolen)
3505 		return false;
3506 
3507 	/* If the GPU is snooping the contents of the CPU cache,
3508 	 * we do not need to manually clear the CPU cache lines.  However,
3509 	 * the caches are only snooped when the render cache is
3510 	 * flushed/invalidated.  As we always have to emit invalidations
3511 	 * and flushes when moving into and out of the RENDER domain, correct
3512 	 * snooping behaviour occurs naturally as the result of our domain
3513 	 * tracking.
3514 	 */
3515 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3516 		return false;
3517 
3518 	trace_i915_gem_object_clflush(obj);
3519 	drm_clflush_sg(obj->pages);
3520 
3521 	return true;
3522 }
3523 
3524 /** Flushes the GTT write domain for the object if it's dirty. */
3525 static void
3526 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3527 {
3528 	uint32_t old_write_domain;
3529 
3530 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3531 		return;
3532 
3533 	/* No actual flushing is required for the GTT write domain.  Writes
3534 	 * to it immediately go to main memory as far as we know, so there's
3535 	 * no chipset flush.  It also doesn't land in render cache.
3536 	 *
3537 	 * However, we do have to enforce the order so that all writes through
3538 	 * the GTT land before any writes to the device, such as updates to
3539 	 * the GATT itself.
3540 	 */
3541 	wmb();
3542 
3543 	old_write_domain = obj->base.write_domain;
3544 	obj->base.write_domain = 0;
3545 
3546 	intel_fb_obj_flush(obj, false);
3547 
3548 	trace_i915_gem_object_change_domain(obj,
3549 					    obj->base.read_domains,
3550 					    old_write_domain);
3551 }
3552 
3553 /** Flushes the CPU write domain for the object if it's dirty. */
3554 static void
3555 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3556 				       bool force)
3557 {
3558 	uint32_t old_write_domain;
3559 
3560 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3561 		return;
3562 
3563 	if (i915_gem_clflush_object(obj, force))
3564 		i915_gem_chipset_flush(obj->base.dev);
3565 
3566 	old_write_domain = obj->base.write_domain;
3567 	obj->base.write_domain = 0;
3568 
3569 	intel_fb_obj_flush(obj, false);
3570 
3571 	trace_i915_gem_object_change_domain(obj,
3572 					    obj->base.read_domains,
3573 					    old_write_domain);
3574 }
3575 
3576 /**
3577  * Moves a single object to the GTT read, and possibly write domain.
3578  *
3579  * This function returns when the move is complete, including waiting on
3580  * flushes to occur.
3581  */
3582 int
3583 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3584 {
3585 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3586 	uint32_t old_write_domain, old_read_domains;
3587 	int ret;
3588 
3589 	/* Not valid to be called on unbound objects. */
3590 	if (!i915_gem_obj_bound_any(obj))
3591 		return -EINVAL;
3592 
3593 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3594 		return 0;
3595 
3596 	ret = i915_gem_object_wait_rendering(obj, !write);
3597 	if (ret)
3598 		return ret;
3599 
3600 	i915_gem_object_retire(obj);
3601 	i915_gem_object_flush_cpu_write_domain(obj, false);
3602 
3603 	/* Serialise direct access to this object with the barriers for
3604 	 * coherent writes from the GPU, by effectively invalidating the
3605 	 * GTT domain upon first access.
3606 	 */
3607 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3608 		mb();
3609 
3610 	old_write_domain = obj->base.write_domain;
3611 	old_read_domains = obj->base.read_domains;
3612 
3613 	/* It should now be out of any other write domains, and we can update
3614 	 * the domain values for our changes.
3615 	 */
3616 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3617 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3618 	if (write) {
3619 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3620 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3621 		obj->dirty = 1;
3622 	}
3623 
3624 	if (write)
3625 		intel_fb_obj_invalidate(obj, NULL);
3626 
3627 	trace_i915_gem_object_change_domain(obj,
3628 					    old_read_domains,
3629 					    old_write_domain);
3630 
3631 	/* And bump the LRU for this access */
3632 	if (i915_gem_object_is_inactive(obj)) {
3633 		struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3634 		if (vma)
3635 			list_move_tail(&vma->mm_list,
3636 				       &dev_priv->gtt.base.inactive_list);
3637 
3638 	}
3639 
3640 	return 0;
3641 }
3642 
3643 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3644 				    enum i915_cache_level cache_level)
3645 {
3646 	struct drm_device *dev = obj->base.dev;
3647 	struct i915_vma *vma, *next;
3648 	int ret;
3649 
3650 	if (obj->cache_level == cache_level)
3651 		return 0;
3652 
3653 	if (i915_gem_obj_is_pinned(obj)) {
3654 		DRM_DEBUG("can not change the cache level of pinned objects\n");
3655 		return -EBUSY;
3656 	}
3657 
3658 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3659 		if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3660 			ret = i915_vma_unbind(vma);
3661 			if (ret)
3662 				return ret;
3663 		}
3664 	}
3665 
3666 	if (i915_gem_obj_bound_any(obj)) {
3667 		ret = i915_gem_object_finish_gpu(obj);
3668 		if (ret)
3669 			return ret;
3670 
3671 		i915_gem_object_finish_gtt(obj);
3672 
3673 		/* Before SandyBridge, you could not use tiling or fence
3674 		 * registers with snooped memory, so relinquish any fences
3675 		 * currently pointing to our region in the aperture.
3676 		 */
3677 		if (INTEL_INFO(dev)->gen < 6) {
3678 			ret = i915_gem_object_put_fence(obj);
3679 			if (ret)
3680 				return ret;
3681 		}
3682 
3683 		list_for_each_entry(vma, &obj->vma_list, vma_link)
3684 			if (drm_mm_node_allocated(&vma->node))
3685 				vma->bind_vma(vma, cache_level,
3686 					      obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3687 	}
3688 
3689 	list_for_each_entry(vma, &obj->vma_list, vma_link)
3690 		vma->node.color = cache_level;
3691 	obj->cache_level = cache_level;
3692 
3693 	if (cpu_write_needs_clflush(obj)) {
3694 		u32 old_read_domains, old_write_domain;
3695 
3696 		/* If we're coming from LLC cached, then we haven't
3697 		 * actually been tracking whether the data is in the
3698 		 * CPU cache or not, since we only allow one bit set
3699 		 * in obj->write_domain and have been skipping the clflushes.
3700 		 * Just set it to the CPU cache for now.
3701 		 */
3702 		i915_gem_object_retire(obj);
3703 		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3704 
3705 		old_read_domains = obj->base.read_domains;
3706 		old_write_domain = obj->base.write_domain;
3707 
3708 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3709 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3710 
3711 		trace_i915_gem_object_change_domain(obj,
3712 						    old_read_domains,
3713 						    old_write_domain);
3714 	}
3715 
3716 	i915_gem_verify_gtt(dev);
3717 	return 0;
3718 }
3719 
3720 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3721 			       struct drm_file *file)
3722 {
3723 	struct drm_i915_gem_caching *args = data;
3724 	struct drm_i915_gem_object *obj;
3725 	int ret;
3726 
3727 	ret = i915_mutex_lock_interruptible(dev);
3728 	if (ret)
3729 		return ret;
3730 
3731 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3732 	if (&obj->base == NULL) {
3733 		ret = -ENOENT;
3734 		goto unlock;
3735 	}
3736 
3737 	switch (obj->cache_level) {
3738 	case I915_CACHE_LLC:
3739 	case I915_CACHE_L3_LLC:
3740 		args->caching = I915_CACHING_CACHED;
3741 		break;
3742 
3743 	case I915_CACHE_WT:
3744 		args->caching = I915_CACHING_DISPLAY;
3745 		break;
3746 
3747 	default:
3748 		args->caching = I915_CACHING_NONE;
3749 		break;
3750 	}
3751 
3752 	drm_gem_object_unreference(&obj->base);
3753 unlock:
3754 	mutex_unlock(&dev->struct_mutex);
3755 	return ret;
3756 }
3757 
3758 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3759 			       struct drm_file *file)
3760 {
3761 	struct drm_i915_gem_caching *args = data;
3762 	struct drm_i915_gem_object *obj;
3763 	enum i915_cache_level level;
3764 	int ret;
3765 
3766 	switch (args->caching) {
3767 	case I915_CACHING_NONE:
3768 		level = I915_CACHE_NONE;
3769 		break;
3770 	case I915_CACHING_CACHED:
3771 		level = I915_CACHE_LLC;
3772 		break;
3773 	case I915_CACHING_DISPLAY:
3774 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3775 		break;
3776 	default:
3777 		return -EINVAL;
3778 	}
3779 
3780 	ret = i915_mutex_lock_interruptible(dev);
3781 	if (ret)
3782 		return ret;
3783 
3784 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3785 	if (&obj->base == NULL) {
3786 		ret = -ENOENT;
3787 		goto unlock;
3788 	}
3789 
3790 	ret = i915_gem_object_set_cache_level(obj, level);
3791 
3792 	drm_gem_object_unreference(&obj->base);
3793 unlock:
3794 	mutex_unlock(&dev->struct_mutex);
3795 	return ret;
3796 }
3797 
3798 static bool is_pin_display(struct drm_i915_gem_object *obj)
3799 {
3800 	struct i915_vma *vma;
3801 
3802 	if (list_empty(&obj->vma_list))
3803 		return false;
3804 
3805 	vma = i915_gem_obj_to_ggtt(obj);
3806 	if (!vma)
3807 		return false;
3808 
3809 	/* There are 3 sources that pin objects:
3810 	 *   1. The display engine (scanouts, sprites, cursors);
3811 	 *   2. Reservations for execbuffer;
3812 	 *   3. The user.
3813 	 *
3814 	 * We can ignore reservations as we hold the struct_mutex and
3815 	 * are only called outside of the reservation path.  The user
3816 	 * can only increment pin_count once, and so if after
3817 	 * subtracting the potential reference by the user, any pin_count
3818 	 * remains, it must be due to another use by the display engine.
3819 	 */
3820 	return vma->pin_count - !!obj->user_pin_count;
3821 }
3822 
3823 /*
3824  * Prepare buffer for display plane (scanout, cursors, etc).
3825  * Can be called from an uninterruptible phase (modesetting) and allows
3826  * any flushes to be pipelined (for pageflips).
3827  */
3828 int
3829 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3830 				     u32 alignment,
3831 				     struct intel_engine_cs *pipelined)
3832 {
3833 	u32 old_read_domains, old_write_domain;
3834 	bool was_pin_display;
3835 	int ret;
3836 
3837 	if (pipelined != obj->ring) {
3838 		ret = i915_gem_object_sync(obj, pipelined);
3839 		if (ret)
3840 			return ret;
3841 	}
3842 
3843 	/* Mark the pin_display early so that we account for the
3844 	 * display coherency whilst setting up the cache domains.
3845 	 */
3846 	was_pin_display = obj->pin_display;
3847 	obj->pin_display = true;
3848 
3849 	/* The display engine is not coherent with the LLC cache on gen6.  As
3850 	 * a result, we make sure that the pinning that is about to occur is
3851 	 * done with uncached PTEs. This is lowest common denominator for all
3852 	 * chipsets.
3853 	 *
3854 	 * However for gen6+, we could do better by using the GFDT bit instead
3855 	 * of uncaching, which would allow us to flush all the LLC-cached data
3856 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3857 	 */
3858 	ret = i915_gem_object_set_cache_level(obj,
3859 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3860 	if (ret)
3861 		goto err_unpin_display;
3862 
3863 	/* As the user may map the buffer once pinned in the display plane
3864 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3865 	 * always use map_and_fenceable for all scanout buffers.
3866 	 */
3867 	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3868 	if (ret)
3869 		goto err_unpin_display;
3870 
3871 	i915_gem_object_flush_cpu_write_domain(obj, true);
3872 
3873 	old_write_domain = obj->base.write_domain;
3874 	old_read_domains = obj->base.read_domains;
3875 
3876 	/* It should now be out of any other write domains, and we can update
3877 	 * the domain values for our changes.
3878 	 */
3879 	obj->base.write_domain = 0;
3880 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3881 
3882 	trace_i915_gem_object_change_domain(obj,
3883 					    old_read_domains,
3884 					    old_write_domain);
3885 
3886 	return 0;
3887 
3888 err_unpin_display:
3889 	WARN_ON(was_pin_display != is_pin_display(obj));
3890 	obj->pin_display = was_pin_display;
3891 	return ret;
3892 }
3893 
3894 void
3895 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3896 {
3897 	i915_gem_object_ggtt_unpin(obj);
3898 	obj->pin_display = is_pin_display(obj);
3899 }
3900 
3901 int
3902 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3903 {
3904 	int ret;
3905 
3906 	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3907 		return 0;
3908 
3909 	ret = i915_gem_object_wait_rendering(obj, false);
3910 	if (ret)
3911 		return ret;
3912 
3913 	/* Ensure that we invalidate the GPU's caches and TLBs. */
3914 	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3915 	return 0;
3916 }
3917 
3918 /**
3919  * Moves a single object to the CPU read, and possibly write domain.
3920  *
3921  * This function returns when the move is complete, including waiting on
3922  * flushes to occur.
3923  */
3924 int
3925 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3926 {
3927 	uint32_t old_write_domain, old_read_domains;
3928 	int ret;
3929 
3930 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3931 		return 0;
3932 
3933 	ret = i915_gem_object_wait_rendering(obj, !write);
3934 	if (ret)
3935 		return ret;
3936 
3937 	i915_gem_object_retire(obj);
3938 	i915_gem_object_flush_gtt_write_domain(obj);
3939 
3940 	old_write_domain = obj->base.write_domain;
3941 	old_read_domains = obj->base.read_domains;
3942 
3943 	/* Flush the CPU cache if it's still invalid. */
3944 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3945 		i915_gem_clflush_object(obj, false);
3946 
3947 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3948 	}
3949 
3950 	/* It should now be out of any other write domains, and we can update
3951 	 * the domain values for our changes.
3952 	 */
3953 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3954 
3955 	/* If we're writing through the CPU, then the GPU read domains will
3956 	 * need to be invalidated at next use.
3957 	 */
3958 	if (write) {
3959 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3960 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3961 	}
3962 
3963 	if (write)
3964 		intel_fb_obj_invalidate(obj, NULL);
3965 
3966 	trace_i915_gem_object_change_domain(obj,
3967 					    old_read_domains,
3968 					    old_write_domain);
3969 
3970 	return 0;
3971 }
3972 
3973 /* Throttle our rendering by waiting until the ring has completed our requests
3974  * emitted over 20 msec ago.
3975  *
3976  * Note that if we were to use the current jiffies each time around the loop,
3977  * we wouldn't escape the function with any frames outstanding if the time to
3978  * render a frame was over 20ms.
3979  *
3980  * This should get us reasonable parallelism between CPU and GPU but also
3981  * relatively low latency when blocking on a particular request to finish.
3982  */
3983 static int
3984 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3985 {
3986 	struct drm_i915_private *dev_priv = dev->dev_private;
3987 	struct drm_i915_file_private *file_priv = file->driver_priv;
3988 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3989 	struct drm_i915_gem_request *request;
3990 	struct intel_engine_cs *ring = NULL;
3991 	unsigned reset_counter;
3992 	u32 seqno = 0;
3993 	int ret;
3994 
3995 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3996 	if (ret)
3997 		return ret;
3998 
3999 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4000 	if (ret)
4001 		return ret;
4002 
4003 	spin_lock(&file_priv->mm.lock);
4004 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4005 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4006 			break;
4007 
4008 		ring = request->ring;
4009 		seqno = request->seqno;
4010 	}
4011 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4012 	spin_unlock(&file_priv->mm.lock);
4013 
4014 	if (seqno == 0)
4015 		return 0;
4016 
4017 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4018 	if (ret == 0)
4019 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4020 
4021 	return ret;
4022 }
4023 
4024 static bool
4025 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4026 {
4027 	struct drm_i915_gem_object *obj = vma->obj;
4028 
4029 	if (alignment &&
4030 	    vma->node.start & (alignment - 1))
4031 		return true;
4032 
4033 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4034 		return true;
4035 
4036 	if (flags & PIN_OFFSET_BIAS &&
4037 	    vma->node.start < (flags & PIN_OFFSET_MASK))
4038 		return true;
4039 
4040 	return false;
4041 }
4042 
4043 int
4044 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4045 		    struct i915_address_space *vm,
4046 		    uint32_t alignment,
4047 		    uint64_t flags)
4048 {
4049 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4050 	struct i915_vma *vma;
4051 	int ret;
4052 
4053 	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4054 		return -ENODEV;
4055 
4056 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4057 		return -EINVAL;
4058 
4059 	vma = i915_gem_obj_to_vma(obj, vm);
4060 	if (vma) {
4061 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4062 			return -EBUSY;
4063 
4064 		if (i915_vma_misplaced(vma, alignment, flags)) {
4065 			WARN(vma->pin_count,
4066 			     "bo is already pinned with incorrect alignment:"
4067 			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4068 			     " obj->map_and_fenceable=%d\n",
4069 			     i915_gem_obj_offset(obj, vm), alignment,
4070 			     !!(flags & PIN_MAPPABLE),
4071 			     obj->map_and_fenceable);
4072 			ret = i915_vma_unbind(vma);
4073 			if (ret)
4074 				return ret;
4075 
4076 			vma = NULL;
4077 		}
4078 	}
4079 
4080 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4081 		vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4082 		if (IS_ERR(vma))
4083 			return PTR_ERR(vma);
4084 	}
4085 
4086 	if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4087 		vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4088 
4089 	vma->pin_count++;
4090 	if (flags & PIN_MAPPABLE)
4091 		obj->pin_mappable |= true;
4092 
4093 	return 0;
4094 }
4095 
4096 void
4097 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4098 {
4099 	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4100 
4101 	BUG_ON(!vma);
4102 	BUG_ON(vma->pin_count == 0);
4103 	BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4104 
4105 	if (--vma->pin_count == 0)
4106 		obj->pin_mappable = false;
4107 }
4108 
4109 bool
4110 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4111 {
4112 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
4113 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4114 		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4115 
4116 		WARN_ON(!ggtt_vma ||
4117 			dev_priv->fence_regs[obj->fence_reg].pin_count >
4118 			ggtt_vma->pin_count);
4119 		dev_priv->fence_regs[obj->fence_reg].pin_count++;
4120 		return true;
4121 	} else
4122 		return false;
4123 }
4124 
4125 void
4126 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4127 {
4128 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
4129 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4130 		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4131 		dev_priv->fence_regs[obj->fence_reg].pin_count--;
4132 	}
4133 }
4134 
4135 int
4136 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4137 		   struct drm_file *file)
4138 {
4139 	struct drm_i915_gem_pin *args = data;
4140 	struct drm_i915_gem_object *obj;
4141 	int ret;
4142 
4143 	if (INTEL_INFO(dev)->gen >= 6)
4144 		return -ENODEV;
4145 
4146 	ret = i915_mutex_lock_interruptible(dev);
4147 	if (ret)
4148 		return ret;
4149 
4150 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4151 	if (&obj->base == NULL) {
4152 		ret = -ENOENT;
4153 		goto unlock;
4154 	}
4155 
4156 	if (obj->madv != I915_MADV_WILLNEED) {
4157 		DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4158 		ret = -EFAULT;
4159 		goto out;
4160 	}
4161 
4162 	if (obj->pin_filp != NULL && obj->pin_filp != file) {
4163 		DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4164 			  args->handle);
4165 		ret = -EINVAL;
4166 		goto out;
4167 	}
4168 
4169 	if (obj->user_pin_count == ULONG_MAX) {
4170 		ret = -EBUSY;
4171 		goto out;
4172 	}
4173 
4174 	if (obj->user_pin_count == 0) {
4175 		ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4176 		if (ret)
4177 			goto out;
4178 	}
4179 
4180 	obj->user_pin_count++;
4181 	obj->pin_filp = file;
4182 
4183 	args->offset = i915_gem_obj_ggtt_offset(obj);
4184 out:
4185 	drm_gem_object_unreference(&obj->base);
4186 unlock:
4187 	mutex_unlock(&dev->struct_mutex);
4188 	return ret;
4189 }
4190 
4191 int
4192 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4193 		     struct drm_file *file)
4194 {
4195 	struct drm_i915_gem_pin *args = data;
4196 	struct drm_i915_gem_object *obj;
4197 	int ret;
4198 
4199 	ret = i915_mutex_lock_interruptible(dev);
4200 	if (ret)
4201 		return ret;
4202 
4203 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4204 	if (&obj->base == NULL) {
4205 		ret = -ENOENT;
4206 		goto unlock;
4207 	}
4208 
4209 	if (obj->pin_filp != file) {
4210 		DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4211 			  args->handle);
4212 		ret = -EINVAL;
4213 		goto out;
4214 	}
4215 	obj->user_pin_count--;
4216 	if (obj->user_pin_count == 0) {
4217 		obj->pin_filp = NULL;
4218 		i915_gem_object_ggtt_unpin(obj);
4219 	}
4220 
4221 out:
4222 	drm_gem_object_unreference(&obj->base);
4223 unlock:
4224 	mutex_unlock(&dev->struct_mutex);
4225 	return ret;
4226 }
4227 
4228 int
4229 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4230 		    struct drm_file *file)
4231 {
4232 	struct drm_i915_gem_busy *args = data;
4233 	struct drm_i915_gem_object *obj;
4234 	int ret;
4235 
4236 	ret = i915_mutex_lock_interruptible(dev);
4237 	if (ret)
4238 		return ret;
4239 
4240 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4241 	if (&obj->base == NULL) {
4242 		ret = -ENOENT;
4243 		goto unlock;
4244 	}
4245 
4246 	/* Count all active objects as busy, even if they are currently not used
4247 	 * by the gpu. Users of this interface expect objects to eventually
4248 	 * become non-busy without any further actions, therefore emit any
4249 	 * necessary flushes here.
4250 	 */
4251 	ret = i915_gem_object_flush_active(obj);
4252 
4253 	args->busy = obj->active;
4254 	if (obj->ring) {
4255 		BUILD_BUG_ON(I915_NUM_RINGS > 16);
4256 		args->busy |= intel_ring_flag(obj->ring) << 16;
4257 	}
4258 
4259 	drm_gem_object_unreference(&obj->base);
4260 unlock:
4261 	mutex_unlock(&dev->struct_mutex);
4262 	return ret;
4263 }
4264 
4265 int
4266 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4267 			struct drm_file *file_priv)
4268 {
4269 	return i915_gem_ring_throttle(dev, file_priv);
4270 }
4271 
4272 int
4273 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4274 		       struct drm_file *file_priv)
4275 {
4276 	struct drm_i915_gem_madvise *args = data;
4277 	struct drm_i915_gem_object *obj;
4278 	int ret;
4279 
4280 	switch (args->madv) {
4281 	case I915_MADV_DONTNEED:
4282 	case I915_MADV_WILLNEED:
4283 	    break;
4284 	default:
4285 	    return -EINVAL;
4286 	}
4287 
4288 	ret = i915_mutex_lock_interruptible(dev);
4289 	if (ret)
4290 		return ret;
4291 
4292 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4293 	if (&obj->base == NULL) {
4294 		ret = -ENOENT;
4295 		goto unlock;
4296 	}
4297 
4298 	if (i915_gem_obj_is_pinned(obj)) {
4299 		ret = -EINVAL;
4300 		goto out;
4301 	}
4302 
4303 	if (obj->madv != __I915_MADV_PURGED)
4304 		obj->madv = args->madv;
4305 
4306 	/* if the object is no longer attached, discard its backing storage */
4307 	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4308 		i915_gem_object_truncate(obj);
4309 
4310 	args->retained = obj->madv != __I915_MADV_PURGED;
4311 
4312 out:
4313 	drm_gem_object_unreference(&obj->base);
4314 unlock:
4315 	mutex_unlock(&dev->struct_mutex);
4316 	return ret;
4317 }
4318 
4319 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4320 			  const struct drm_i915_gem_object_ops *ops)
4321 {
4322 	INIT_LIST_HEAD(&obj->global_list);
4323 	INIT_LIST_HEAD(&obj->ring_list);
4324 	INIT_LIST_HEAD(&obj->obj_exec_link);
4325 	INIT_LIST_HEAD(&obj->vma_list);
4326 
4327 	obj->ops = ops;
4328 
4329 	obj->fence_reg = I915_FENCE_REG_NONE;
4330 	obj->madv = I915_MADV_WILLNEED;
4331 	/* Avoid an unnecessary call to unbind on the first bind. */
4332 	obj->map_and_fenceable = true;
4333 
4334 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4335 }
4336 
4337 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4338 	.get_pages = i915_gem_object_get_pages_gtt,
4339 	.put_pages = i915_gem_object_put_pages_gtt,
4340 };
4341 
4342 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4343 						  size_t size)
4344 {
4345 	struct drm_i915_gem_object *obj;
4346 	struct address_space *mapping;
4347 	gfp_t mask;
4348 
4349 	obj = i915_gem_object_alloc(dev);
4350 	if (obj == NULL)
4351 		return NULL;
4352 
4353 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4354 		i915_gem_object_free(obj);
4355 		return NULL;
4356 	}
4357 
4358 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4359 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4360 		/* 965gm cannot relocate objects above 4GiB. */
4361 		mask &= ~__GFP_HIGHMEM;
4362 		mask |= __GFP_DMA32;
4363 	}
4364 
4365 	mapping = file_inode(obj->base.filp)->i_mapping;
4366 	mapping_set_gfp_mask(mapping, mask);
4367 
4368 	i915_gem_object_init(obj, &i915_gem_object_ops);
4369 
4370 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4371 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4372 
4373 	if (HAS_LLC(dev)) {
4374 		/* On some devices, we can have the GPU use the LLC (the CPU
4375 		 * cache) for about a 10% performance improvement
4376 		 * compared to uncached.  Graphics requests other than
4377 		 * display scanout are coherent with the CPU in
4378 		 * accessing this cache.  This means in this mode we
4379 		 * don't need to clflush on the CPU side, and on the
4380 		 * GPU side we only need to flush internal caches to
4381 		 * get data visible to the CPU.
4382 		 *
4383 		 * However, we maintain the display planes as UC, and so
4384 		 * need to rebind when first used as such.
4385 		 */
4386 		obj->cache_level = I915_CACHE_LLC;
4387 	} else
4388 		obj->cache_level = I915_CACHE_NONE;
4389 
4390 	trace_i915_gem_object_create(obj);
4391 
4392 	return obj;
4393 }
4394 
4395 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4396 {
4397 	/* If we are the last user of the backing storage (be it shmemfs
4398 	 * pages or stolen etc), we know that the pages are going to be
4399 	 * immediately released. In this case, we can then skip copying
4400 	 * back the contents from the GPU.
4401 	 */
4402 
4403 	if (obj->madv != I915_MADV_WILLNEED)
4404 		return false;
4405 
4406 	if (obj->base.filp == NULL)
4407 		return true;
4408 
4409 	/* At first glance, this looks racy, but then again so would be
4410 	 * userspace racing mmap against close. However, the first external
4411 	 * reference to the filp can only be obtained through the
4412 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4413 	 * acquiring such a reference whilst we are in the middle of
4414 	 * freeing the object.
4415 	 */
4416 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4417 }
4418 
4419 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4420 {
4421 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4422 	struct drm_device *dev = obj->base.dev;
4423 	struct drm_i915_private *dev_priv = dev->dev_private;
4424 	struct i915_vma *vma, *next;
4425 
4426 	intel_runtime_pm_get(dev_priv);
4427 
4428 	trace_i915_gem_object_destroy(obj);
4429 
4430 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4431 		int ret;
4432 
4433 		vma->pin_count = 0;
4434 		ret = i915_vma_unbind(vma);
4435 		if (WARN_ON(ret == -ERESTARTSYS)) {
4436 			bool was_interruptible;
4437 
4438 			was_interruptible = dev_priv->mm.interruptible;
4439 			dev_priv->mm.interruptible = false;
4440 
4441 			WARN_ON(i915_vma_unbind(vma));
4442 
4443 			dev_priv->mm.interruptible = was_interruptible;
4444 		}
4445 	}
4446 
4447 	i915_gem_object_detach_phys(obj);
4448 
4449 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4450 	 * before progressing. */
4451 	if (obj->stolen)
4452 		i915_gem_object_unpin_pages(obj);
4453 
4454 	WARN_ON(obj->frontbuffer_bits);
4455 
4456 	if (WARN_ON(obj->pages_pin_count))
4457 		obj->pages_pin_count = 0;
4458 	if (discard_backing_storage(obj))
4459 		obj->madv = I915_MADV_DONTNEED;
4460 	i915_gem_object_put_pages(obj);
4461 	i915_gem_object_free_mmap_offset(obj);
4462 
4463 	BUG_ON(obj->pages);
4464 
4465 	if (obj->base.import_attach)
4466 		drm_prime_gem_destroy(&obj->base, NULL);
4467 
4468 	if (obj->ops->release)
4469 		obj->ops->release(obj);
4470 
4471 	drm_gem_object_release(&obj->base);
4472 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4473 
4474 	kfree(obj->bit_17);
4475 	i915_gem_object_free(obj);
4476 
4477 	intel_runtime_pm_put(dev_priv);
4478 }
4479 
4480 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4481 				     struct i915_address_space *vm)
4482 {
4483 	struct i915_vma *vma;
4484 	list_for_each_entry(vma, &obj->vma_list, vma_link)
4485 		if (vma->vm == vm)
4486 			return vma;
4487 
4488 	return NULL;
4489 }
4490 
4491 void i915_gem_vma_destroy(struct i915_vma *vma)
4492 {
4493 	WARN_ON(vma->node.allocated);
4494 
4495 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4496 	if (!list_empty(&vma->exec_list))
4497 		return;
4498 
4499 	list_del(&vma->vma_link);
4500 
4501 	kfree(vma);
4502 }
4503 
4504 static void
4505 i915_gem_stop_ringbuffers(struct drm_device *dev)
4506 {
4507 	struct drm_i915_private *dev_priv = dev->dev_private;
4508 	struct intel_engine_cs *ring;
4509 	int i;
4510 
4511 	for_each_ring(ring, dev_priv, i)
4512 		intel_stop_ring_buffer(ring);
4513 }
4514 
4515 int
4516 i915_gem_suspend(struct drm_device *dev)
4517 {
4518 	struct drm_i915_private *dev_priv = dev->dev_private;
4519 	int ret = 0;
4520 
4521 	mutex_lock(&dev->struct_mutex);
4522 	if (dev_priv->ums.mm_suspended)
4523 		goto err;
4524 
4525 	ret = i915_gpu_idle(dev);
4526 	if (ret)
4527 		goto err;
4528 
4529 	i915_gem_retire_requests(dev);
4530 
4531 	/* Under UMS, be paranoid and evict. */
4532 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4533 		i915_gem_evict_everything(dev);
4534 
4535 	i915_kernel_lost_context(dev);
4536 	i915_gem_stop_ringbuffers(dev);
4537 
4538 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
4539 	 * We need to replace this with a semaphore, or something.
4540 	 * And not confound ums.mm_suspended!
4541 	 */
4542 	dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4543 							     DRIVER_MODESET);
4544 	mutex_unlock(&dev->struct_mutex);
4545 
4546 	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4547 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4548 	flush_delayed_work(&dev_priv->mm.idle_work);
4549 
4550 	return 0;
4551 
4552 err:
4553 	mutex_unlock(&dev->struct_mutex);
4554 	return ret;
4555 }
4556 
4557 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4558 {
4559 	struct drm_device *dev = ring->dev;
4560 	struct drm_i915_private *dev_priv = dev->dev_private;
4561 	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4562 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4563 	int i, ret;
4564 
4565 	if (!HAS_L3_DPF(dev) || !remap_info)
4566 		return 0;
4567 
4568 	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4569 	if (ret)
4570 		return ret;
4571 
4572 	/*
4573 	 * Note: We do not worry about the concurrent register cacheline hang
4574 	 * here because no other code should access these registers other than
4575 	 * at initialization time.
4576 	 */
4577 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4578 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4579 		intel_ring_emit(ring, reg_base + i);
4580 		intel_ring_emit(ring, remap_info[i/4]);
4581 	}
4582 
4583 	intel_ring_advance(ring);
4584 
4585 	return ret;
4586 }
4587 
4588 void i915_gem_init_swizzling(struct drm_device *dev)
4589 {
4590 	struct drm_i915_private *dev_priv = dev->dev_private;
4591 
4592 	if (INTEL_INFO(dev)->gen < 5 ||
4593 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4594 		return;
4595 
4596 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4597 				 DISP_TILE_SURFACE_SWIZZLING);
4598 
4599 	if (IS_GEN5(dev))
4600 		return;
4601 
4602 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4603 	if (IS_GEN6(dev))
4604 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4605 	else if (IS_GEN7(dev))
4606 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4607 	else if (IS_GEN8(dev))
4608 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4609 	else
4610 		BUG();
4611 }
4612 
4613 static bool
4614 intel_enable_blt(struct drm_device *dev)
4615 {
4616 	if (!HAS_BLT(dev))
4617 		return false;
4618 
4619 	/* The blitter was dysfunctional on early prototypes */
4620 	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4621 		DRM_INFO("BLT not supported on this pre-production hardware;"
4622 			 " graphics performance will be degraded.\n");
4623 		return false;
4624 	}
4625 
4626 	return true;
4627 }
4628 
4629 static int i915_gem_init_rings(struct drm_device *dev)
4630 {
4631 	struct drm_i915_private *dev_priv = dev->dev_private;
4632 	int ret;
4633 
4634 	ret = intel_init_render_ring_buffer(dev);
4635 	if (ret)
4636 		return ret;
4637 
4638 	if (HAS_BSD(dev)) {
4639 		ret = intel_init_bsd_ring_buffer(dev);
4640 		if (ret)
4641 			goto cleanup_render_ring;
4642 	}
4643 
4644 	if (intel_enable_blt(dev)) {
4645 		ret = intel_init_blt_ring_buffer(dev);
4646 		if (ret)
4647 			goto cleanup_bsd_ring;
4648 	}
4649 
4650 	if (HAS_VEBOX(dev)) {
4651 		ret = intel_init_vebox_ring_buffer(dev);
4652 		if (ret)
4653 			goto cleanup_blt_ring;
4654 	}
4655 
4656 	if (HAS_BSD2(dev)) {
4657 		ret = intel_init_bsd2_ring_buffer(dev);
4658 		if (ret)
4659 			goto cleanup_vebox_ring;
4660 	}
4661 
4662 	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4663 	if (ret)
4664 		goto cleanup_bsd2_ring;
4665 
4666 	return 0;
4667 
4668 cleanup_bsd2_ring:
4669 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4670 cleanup_vebox_ring:
4671 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4672 cleanup_blt_ring:
4673 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4674 cleanup_bsd_ring:
4675 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4676 cleanup_render_ring:
4677 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4678 
4679 	return ret;
4680 }
4681 
4682 int
4683 i915_gem_init_hw(struct drm_device *dev)
4684 {
4685 	struct drm_i915_private *dev_priv = dev->dev_private;
4686 	int ret, i;
4687 
4688 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4689 		return -EIO;
4690 
4691 	if (dev_priv->ellc_size)
4692 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4693 
4694 	if (IS_HASWELL(dev))
4695 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4696 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4697 
4698 	if (HAS_PCH_NOP(dev)) {
4699 		if (IS_IVYBRIDGE(dev)) {
4700 			u32 temp = I915_READ(GEN7_MSG_CTL);
4701 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4702 			I915_WRITE(GEN7_MSG_CTL, temp);
4703 		} else if (INTEL_INFO(dev)->gen >= 7) {
4704 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4705 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4706 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4707 		}
4708 	}
4709 
4710 	i915_gem_init_swizzling(dev);
4711 
4712 	ret = i915_gem_init_rings(dev);
4713 	if (ret)
4714 		return ret;
4715 
4716 	for (i = 0; i < NUM_L3_SLICES(dev); i++)
4717 		i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4718 
4719 	/*
4720 	 * XXX: Contexts should only be initialized once. Doing a switch to the
4721 	 * default context switch however is something we'd like to do after
4722 	 * reset or thaw (the latter may not actually be necessary for HW, but
4723 	 * goes with our code better). Context switching requires rings (for
4724 	 * the do_switch), but before enabling PPGTT. So don't move this.
4725 	 */
4726 	ret = i915_gem_context_enable(dev_priv);
4727 	if (ret && ret != -EIO) {
4728 		DRM_ERROR("Context enable failed %d\n", ret);
4729 		i915_gem_cleanup_ringbuffer(dev);
4730 	}
4731 
4732 	return ret;
4733 }
4734 
4735 int i915_gem_init(struct drm_device *dev)
4736 {
4737 	struct drm_i915_private *dev_priv = dev->dev_private;
4738 	int ret;
4739 
4740 	mutex_lock(&dev->struct_mutex);
4741 
4742 	if (IS_VALLEYVIEW(dev)) {
4743 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4744 		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4745 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4746 			      VLV_GTLC_ALLOWWAKEACK), 10))
4747 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4748 	}
4749 
4750 	i915_gem_init_userptr(dev);
4751 	i915_gem_init_global_gtt(dev);
4752 
4753 	ret = i915_gem_context_init(dev);
4754 	if (ret) {
4755 		mutex_unlock(&dev->struct_mutex);
4756 		return ret;
4757 	}
4758 
4759 	ret = i915_gem_init_hw(dev);
4760 	if (ret == -EIO) {
4761 		/* Allow ring initialisation to fail by marking the GPU as
4762 		 * wedged. But we only want to do this where the GPU is angry,
4763 		 * for all other failure, such as an allocation failure, bail.
4764 		 */
4765 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4766 		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4767 		ret = 0;
4768 	}
4769 	mutex_unlock(&dev->struct_mutex);
4770 
4771 	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4772 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4773 		dev_priv->dri1.allow_batchbuffer = 1;
4774 	return ret;
4775 }
4776 
4777 void
4778 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4779 {
4780 	struct drm_i915_private *dev_priv = dev->dev_private;
4781 	struct intel_engine_cs *ring;
4782 	int i;
4783 
4784 	for_each_ring(ring, dev_priv, i)
4785 		intel_cleanup_ring_buffer(ring);
4786 }
4787 
4788 int
4789 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4790 		       struct drm_file *file_priv)
4791 {
4792 	struct drm_i915_private *dev_priv = dev->dev_private;
4793 	int ret;
4794 
4795 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4796 		return 0;
4797 
4798 	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4799 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4800 		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4801 	}
4802 
4803 	mutex_lock(&dev->struct_mutex);
4804 	dev_priv->ums.mm_suspended = 0;
4805 
4806 	ret = i915_gem_init_hw(dev);
4807 	if (ret != 0) {
4808 		mutex_unlock(&dev->struct_mutex);
4809 		return ret;
4810 	}
4811 
4812 	BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4813 
4814 	ret = drm_irq_install(dev, dev->pdev->irq);
4815 	if (ret)
4816 		goto cleanup_ringbuffer;
4817 	mutex_unlock(&dev->struct_mutex);
4818 
4819 	return 0;
4820 
4821 cleanup_ringbuffer:
4822 	i915_gem_cleanup_ringbuffer(dev);
4823 	dev_priv->ums.mm_suspended = 1;
4824 	mutex_unlock(&dev->struct_mutex);
4825 
4826 	return ret;
4827 }
4828 
4829 int
4830 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4831 		       struct drm_file *file_priv)
4832 {
4833 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4834 		return 0;
4835 
4836 	mutex_lock(&dev->struct_mutex);
4837 	drm_irq_uninstall(dev);
4838 	mutex_unlock(&dev->struct_mutex);
4839 
4840 	return i915_gem_suspend(dev);
4841 }
4842 
4843 void
4844 i915_gem_lastclose(struct drm_device *dev)
4845 {
4846 	int ret;
4847 
4848 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4849 		return;
4850 
4851 	ret = i915_gem_suspend(dev);
4852 	if (ret)
4853 		DRM_ERROR("failed to idle hardware: %d\n", ret);
4854 }
4855 
4856 static void
4857 init_ring_lists(struct intel_engine_cs *ring)
4858 {
4859 	INIT_LIST_HEAD(&ring->active_list);
4860 	INIT_LIST_HEAD(&ring->request_list);
4861 }
4862 
4863 void i915_init_vm(struct drm_i915_private *dev_priv,
4864 		  struct i915_address_space *vm)
4865 {
4866 	if (!i915_is_ggtt(vm))
4867 		drm_mm_init(&vm->mm, vm->start, vm->total);
4868 	vm->dev = dev_priv->dev;
4869 	INIT_LIST_HEAD(&vm->active_list);
4870 	INIT_LIST_HEAD(&vm->inactive_list);
4871 	INIT_LIST_HEAD(&vm->global_link);
4872 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
4873 }
4874 
4875 void
4876 i915_gem_load(struct drm_device *dev)
4877 {
4878 	struct drm_i915_private *dev_priv = dev->dev_private;
4879 	int i;
4880 
4881 	dev_priv->slab =
4882 		kmem_cache_create("i915_gem_object",
4883 				  sizeof(struct drm_i915_gem_object), 0,
4884 				  SLAB_HWCACHE_ALIGN,
4885 				  NULL);
4886 
4887 	INIT_LIST_HEAD(&dev_priv->vm_list);
4888 	i915_init_vm(dev_priv, &dev_priv->gtt.base);
4889 
4890 	INIT_LIST_HEAD(&dev_priv->context_list);
4891 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4892 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4893 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4894 	for (i = 0; i < I915_NUM_RINGS; i++)
4895 		init_ring_lists(&dev_priv->ring[i]);
4896 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4897 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4898 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4899 			  i915_gem_retire_work_handler);
4900 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4901 			  i915_gem_idle_work_handler);
4902 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4903 
4904 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4905 	if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4906 		I915_WRITE(MI_ARB_STATE,
4907 			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4908 	}
4909 
4910 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4911 
4912 	/* Old X drivers will take 0-2 for front, back, depth buffers */
4913 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4914 		dev_priv->fence_reg_start = 3;
4915 
4916 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4917 		dev_priv->num_fence_regs = 32;
4918 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4919 		dev_priv->num_fence_regs = 16;
4920 	else
4921 		dev_priv->num_fence_regs = 8;
4922 
4923 	/* Initialize fence registers to zero */
4924 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4925 	i915_gem_restore_fences(dev);
4926 
4927 	i915_gem_detect_bit_6_swizzle(dev);
4928 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4929 
4930 	dev_priv->mm.interruptible = true;
4931 
4932 	dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4933 	dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4934 	dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4935 	register_shrinker(&dev_priv->mm.shrinker);
4936 
4937 	dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
4938 	register_oom_notifier(&dev_priv->mm.oom_notifier);
4939 
4940 	mutex_init(&dev_priv->fb_tracking.lock);
4941 }
4942 
4943 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4944 {
4945 	struct drm_i915_file_private *file_priv = file->driver_priv;
4946 
4947 	cancel_delayed_work_sync(&file_priv->mm.idle_work);
4948 
4949 	/* Clean up our request list when the client is going away, so that
4950 	 * later retire_requests won't dereference our soon-to-be-gone
4951 	 * file_priv.
4952 	 */
4953 	spin_lock(&file_priv->mm.lock);
4954 	while (!list_empty(&file_priv->mm.request_list)) {
4955 		struct drm_i915_gem_request *request;
4956 
4957 		request = list_first_entry(&file_priv->mm.request_list,
4958 					   struct drm_i915_gem_request,
4959 					   client_list);
4960 		list_del(&request->client_list);
4961 		request->file_priv = NULL;
4962 	}
4963 	spin_unlock(&file_priv->mm.lock);
4964 }
4965 
4966 static void
4967 i915_gem_file_idle_work_handler(struct work_struct *work)
4968 {
4969 	struct drm_i915_file_private *file_priv =
4970 		container_of(work, typeof(*file_priv), mm.idle_work.work);
4971 
4972 	atomic_set(&file_priv->rps_wait_boost, false);
4973 }
4974 
4975 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4976 {
4977 	struct drm_i915_file_private *file_priv;
4978 	int ret;
4979 
4980 	DRM_DEBUG_DRIVER("\n");
4981 
4982 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4983 	if (!file_priv)
4984 		return -ENOMEM;
4985 
4986 	file->driver_priv = file_priv;
4987 	file_priv->dev_priv = dev->dev_private;
4988 	file_priv->file = file;
4989 
4990 	spin_lock_init(&file_priv->mm.lock);
4991 	INIT_LIST_HEAD(&file_priv->mm.request_list);
4992 	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4993 			  i915_gem_file_idle_work_handler);
4994 
4995 	ret = i915_gem_context_open(dev, file);
4996 	if (ret)
4997 		kfree(file_priv);
4998 
4999 	return ret;
5000 }
5001 
5002 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5003 		       struct drm_i915_gem_object *new,
5004 		       unsigned frontbuffer_bits)
5005 {
5006 	if (old) {
5007 		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5008 		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5009 		old->frontbuffer_bits &= ~frontbuffer_bits;
5010 	}
5011 
5012 	if (new) {
5013 		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5014 		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5015 		new->frontbuffer_bits |= frontbuffer_bits;
5016 	}
5017 }
5018 
5019 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5020 {
5021 	if (!mutex_is_locked(mutex))
5022 		return false;
5023 
5024 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5025 	return mutex->owner == task;
5026 #else
5027 	/* Since UP may be pre-empted, we cannot assume that we own the lock */
5028 	return false;
5029 #endif
5030 }
5031 
5032 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5033 {
5034 	if (!mutex_trylock(&dev->struct_mutex)) {
5035 		if (!mutex_is_locked_by(&dev->struct_mutex, current))
5036 			return false;
5037 
5038 		if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5039 			return false;
5040 
5041 		*unlock = false;
5042 	} else
5043 		*unlock = true;
5044 
5045 	return true;
5046 }
5047 
5048 static int num_vma_bound(struct drm_i915_gem_object *obj)
5049 {
5050 	struct i915_vma *vma;
5051 	int count = 0;
5052 
5053 	list_for_each_entry(vma, &obj->vma_list, vma_link)
5054 		if (drm_mm_node_allocated(&vma->node))
5055 			count++;
5056 
5057 	return count;
5058 }
5059 
5060 static unsigned long
5061 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5062 {
5063 	struct drm_i915_private *dev_priv =
5064 		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5065 	struct drm_device *dev = dev_priv->dev;
5066 	struct drm_i915_gem_object *obj;
5067 	unsigned long count;
5068 	bool unlock;
5069 
5070 	if (!i915_gem_shrinker_lock(dev, &unlock))
5071 		return 0;
5072 
5073 	count = 0;
5074 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5075 		if (obj->pages_pin_count == 0)
5076 			count += obj->base.size >> PAGE_SHIFT;
5077 
5078 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5079 		if (!i915_gem_obj_is_pinned(obj) &&
5080 		    obj->pages_pin_count == num_vma_bound(obj))
5081 			count += obj->base.size >> PAGE_SHIFT;
5082 	}
5083 
5084 	if (unlock)
5085 		mutex_unlock(&dev->struct_mutex);
5086 
5087 	return count;
5088 }
5089 
5090 /* All the new VM stuff */
5091 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5092 				  struct i915_address_space *vm)
5093 {
5094 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5095 	struct i915_vma *vma;
5096 
5097 	if (!dev_priv->mm.aliasing_ppgtt ||
5098 	    vm == &dev_priv->mm.aliasing_ppgtt->base)
5099 		vm = &dev_priv->gtt.base;
5100 
5101 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5102 		if (vma->vm == vm)
5103 			return vma->node.start;
5104 
5105 	}
5106 	WARN(1, "%s vma for this object not found.\n",
5107 	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5108 	return -1;
5109 }
5110 
5111 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5112 			struct i915_address_space *vm)
5113 {
5114 	struct i915_vma *vma;
5115 
5116 	list_for_each_entry(vma, &o->vma_list, vma_link)
5117 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5118 			return true;
5119 
5120 	return false;
5121 }
5122 
5123 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5124 {
5125 	struct i915_vma *vma;
5126 
5127 	list_for_each_entry(vma, &o->vma_list, vma_link)
5128 		if (drm_mm_node_allocated(&vma->node))
5129 			return true;
5130 
5131 	return false;
5132 }
5133 
5134 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5135 				struct i915_address_space *vm)
5136 {
5137 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5138 	struct i915_vma *vma;
5139 
5140 	if (!dev_priv->mm.aliasing_ppgtt ||
5141 	    vm == &dev_priv->mm.aliasing_ppgtt->base)
5142 		vm = &dev_priv->gtt.base;
5143 
5144 	BUG_ON(list_empty(&o->vma_list));
5145 
5146 	list_for_each_entry(vma, &o->vma_list, vma_link)
5147 		if (vma->vm == vm)
5148 			return vma->node.size;
5149 
5150 	return 0;
5151 }
5152 
5153 static unsigned long
5154 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5155 {
5156 	struct drm_i915_private *dev_priv =
5157 		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5158 	struct drm_device *dev = dev_priv->dev;
5159 	unsigned long freed;
5160 	bool unlock;
5161 
5162 	if (!i915_gem_shrinker_lock(dev, &unlock))
5163 		return SHRINK_STOP;
5164 
5165 	freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5166 	if (freed < sc->nr_to_scan)
5167 		freed += __i915_gem_shrink(dev_priv,
5168 					   sc->nr_to_scan - freed,
5169 					   false);
5170 	if (unlock)
5171 		mutex_unlock(&dev->struct_mutex);
5172 
5173 	return freed;
5174 }
5175 
5176 static int
5177 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5178 {
5179 	struct drm_i915_private *dev_priv =
5180 		container_of(nb, struct drm_i915_private, mm.oom_notifier);
5181 	struct drm_device *dev = dev_priv->dev;
5182 	struct drm_i915_gem_object *obj;
5183 	unsigned long timeout = msecs_to_jiffies(5000) + 1;
5184 	unsigned long pinned, bound, unbound, freed;
5185 	bool was_interruptible;
5186 	bool unlock;
5187 
5188 	while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5189 		schedule_timeout_killable(1);
5190 		if (fatal_signal_pending(current))
5191 			return NOTIFY_DONE;
5192 	}
5193 	if (timeout == 0) {
5194 		pr_err("Unable to purge GPU memory due lock contention.\n");
5195 		return NOTIFY_DONE;
5196 	}
5197 
5198 	was_interruptible = dev_priv->mm.interruptible;
5199 	dev_priv->mm.interruptible = false;
5200 
5201 	freed = i915_gem_shrink_all(dev_priv);
5202 
5203 	dev_priv->mm.interruptible = was_interruptible;
5204 
5205 	/* Because we may be allocating inside our own driver, we cannot
5206 	 * assert that there are no objects with pinned pages that are not
5207 	 * being pointed to by hardware.
5208 	 */
5209 	unbound = bound = pinned = 0;
5210 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5211 		if (!obj->base.filp) /* not backed by a freeable object */
5212 			continue;
5213 
5214 		if (obj->pages_pin_count)
5215 			pinned += obj->base.size;
5216 		else
5217 			unbound += obj->base.size;
5218 	}
5219 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5220 		if (!obj->base.filp)
5221 			continue;
5222 
5223 		if (obj->pages_pin_count)
5224 			pinned += obj->base.size;
5225 		else
5226 			bound += obj->base.size;
5227 	}
5228 
5229 	if (unlock)
5230 		mutex_unlock(&dev->struct_mutex);
5231 
5232 	pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5233 		freed, pinned);
5234 	if (unbound || bound)
5235 		pr_err("%lu and %lu bytes still available in the "
5236 		       "bound and unbound GPU page lists.\n",
5237 		       bound, unbound);
5238 
5239 	*(unsigned long *)ptr += freed;
5240 	return NOTIFY_DONE;
5241 }
5242 
5243 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5244 {
5245 	struct i915_vma *vma;
5246 
5247 	/* This WARN has probably outlived its usefulness (callers already
5248 	 * WARN if they don't find the GGTT vma they expect). When removing,
5249 	 * remember to remove the pre-check in is_pin_display() as well */
5250 	if (WARN_ON(list_empty(&obj->vma_list)))
5251 		return NULL;
5252 
5253 	vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5254 	if (vma->vm != obj_to_ggtt(obj))
5255 		return NULL;
5256 
5257 	return vma;
5258 }
5259