xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision 206e8c00752fbe9cc463184236ac64b2a532cda5)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40 
41 #define RQ_BUG_ON(expr)
42 
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49 
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51 				  enum i915_cache_level level)
52 {
53 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55 
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 		return true;
60 
61 	return obj->pin_display;
62 }
63 
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 				  size_t size)
67 {
68 	spin_lock(&dev_priv->mm.object_stat_lock);
69 	dev_priv->mm.object_count++;
70 	dev_priv->mm.object_memory += size;
71 	spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73 
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 				     size_t size)
76 {
77 	spin_lock(&dev_priv->mm.object_stat_lock);
78 	dev_priv->mm.object_count--;
79 	dev_priv->mm.object_memory -= size;
80 	spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82 
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86 	int ret;
87 
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89 		   i915_terminally_wedged(error))
90 	if (EXIT_COND)
91 		return 0;
92 
93 	/*
94 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 	 * userspace. If it takes that long something really bad is going on and
96 	 * we should simply try to bail out and fail as gracefully as possible.
97 	 */
98 	ret = wait_event_interruptible_timeout(error->reset_queue,
99 					       EXIT_COND,
100 					       10*HZ);
101 	if (ret == 0) {
102 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 		return -EIO;
104 	} else if (ret < 0) {
105 		return ret;
106 	}
107 #undef EXIT_COND
108 
109 	return 0;
110 }
111 
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114 	struct drm_i915_private *dev_priv = dev->dev_private;
115 	int ret;
116 
117 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 	if (ret)
119 		return ret;
120 
121 	ret = mutex_lock_interruptible(&dev->struct_mutex);
122 	if (ret)
123 		return ret;
124 
125 	WARN_ON(i915_verify_lists(dev));
126 	return 0;
127 }
128 
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131 			    struct drm_file *file)
132 {
133 	struct drm_i915_private *dev_priv = dev->dev_private;
134 	struct drm_i915_gem_get_aperture *args = data;
135 	struct i915_gtt *ggtt = &dev_priv->gtt;
136 	struct i915_vma *vma;
137 	size_t pinned;
138 
139 	pinned = 0;
140 	mutex_lock(&dev->struct_mutex);
141 	list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142 		if (vma->pin_count)
143 			pinned += vma->node.size;
144 	list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145 		if (vma->pin_count)
146 			pinned += vma->node.size;
147 	mutex_unlock(&dev->struct_mutex);
148 
149 	args->aper_size = dev_priv->gtt.base.total;
150 	args->aper_available_size = args->aper_size - pinned;
151 
152 	return 0;
153 }
154 
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 	char *vaddr = obj->phys_handle->vaddr;
160 	struct sg_table *st;
161 	struct scatterlist *sg;
162 	int i;
163 
164 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 		return -EINVAL;
166 
167 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 		struct page *page;
169 		char *src;
170 
171 		page = shmem_read_mapping_page(mapping, i);
172 		if (IS_ERR(page))
173 			return PTR_ERR(page);
174 
175 		src = kmap_atomic(page);
176 		memcpy(vaddr, src, PAGE_SIZE);
177 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 		kunmap_atomic(src);
179 
180 		page_cache_release(page);
181 		vaddr += PAGE_SIZE;
182 	}
183 
184 	i915_gem_chipset_flush(obj->base.dev);
185 
186 	st = kmalloc(sizeof(*st), GFP_KERNEL);
187 	if (st == NULL)
188 		return -ENOMEM;
189 
190 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 		kfree(st);
192 		return -ENOMEM;
193 	}
194 
195 	sg = st->sgl;
196 	sg->offset = 0;
197 	sg->length = obj->base.size;
198 
199 	sg_dma_address(sg) = obj->phys_handle->busaddr;
200 	sg_dma_len(sg) = obj->base.size;
201 
202 	obj->pages = st;
203 	return 0;
204 }
205 
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209 	int ret;
210 
211 	BUG_ON(obj->madv == __I915_MADV_PURGED);
212 
213 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 	if (ret) {
215 		/* In the event of a disaster, abandon all caches and
216 		 * hope for the best.
217 		 */
218 		WARN_ON(ret != -EIO);
219 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 	}
221 
222 	if (obj->madv == I915_MADV_DONTNEED)
223 		obj->dirty = 0;
224 
225 	if (obj->dirty) {
226 		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227 		char *vaddr = obj->phys_handle->vaddr;
228 		int i;
229 
230 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 			struct page *page;
232 			char *dst;
233 
234 			page = shmem_read_mapping_page(mapping, i);
235 			if (IS_ERR(page))
236 				continue;
237 
238 			dst = kmap_atomic(page);
239 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 			memcpy(dst, vaddr, PAGE_SIZE);
241 			kunmap_atomic(dst);
242 
243 			set_page_dirty(page);
244 			if (obj->madv == I915_MADV_WILLNEED)
245 				mark_page_accessed(page);
246 			page_cache_release(page);
247 			vaddr += PAGE_SIZE;
248 		}
249 		obj->dirty = 0;
250 	}
251 
252 	sg_free_table(obj->pages);
253 	kfree(obj->pages);
254 }
255 
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259 	drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261 
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 	.get_pages = i915_gem_object_get_pages_phys,
264 	.put_pages = i915_gem_object_put_pages_phys,
265 	.release = i915_gem_object_release_phys,
266 };
267 
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271 	struct i915_vma *vma, *next;
272 	int ret;
273 
274 	drm_gem_object_reference(&obj->base);
275 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276 		if (i915_vma_unbind(vma))
277 			break;
278 
279 	ret = i915_gem_object_put_pages(obj);
280 	drm_gem_object_unreference(&obj->base);
281 
282 	return ret;
283 }
284 
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 			    int align)
288 {
289 	drm_dma_handle_t *phys;
290 	int ret;
291 
292 	if (obj->phys_handle) {
293 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 			return -EBUSY;
295 
296 		return 0;
297 	}
298 
299 	if (obj->madv != I915_MADV_WILLNEED)
300 		return -EFAULT;
301 
302 	if (obj->base.filp == NULL)
303 		return -EINVAL;
304 
305 	ret = drop_pages(obj);
306 	if (ret)
307 		return ret;
308 
309 	/* create a new object */
310 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 	if (!phys)
312 		return -ENOMEM;
313 
314 	obj->phys_handle = phys;
315 	obj->ops = &i915_gem_phys_ops;
316 
317 	return i915_gem_object_get_pages(obj);
318 }
319 
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 		     struct drm_i915_gem_pwrite *args,
323 		     struct drm_file *file_priv)
324 {
325 	struct drm_device *dev = obj->base.dev;
326 	void *vaddr = obj->phys_handle->vaddr + args->offset;
327 	char __user *user_data = to_user_ptr(args->data_ptr);
328 	int ret = 0;
329 
330 	/* We manually control the domain here and pretend that it
331 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 	 */
333 	ret = i915_gem_object_wait_rendering(obj, false);
334 	if (ret)
335 		return ret;
336 
337 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 		unsigned long unwritten;
340 
341 		/* The physical object once assigned is fixed for the lifetime
342 		 * of the obj, so we can safely drop the lock and continue
343 		 * to access vaddr.
344 		 */
345 		mutex_unlock(&dev->struct_mutex);
346 		unwritten = copy_from_user(vaddr, user_data, args->size);
347 		mutex_lock(&dev->struct_mutex);
348 		if (unwritten) {
349 			ret = -EFAULT;
350 			goto out;
351 		}
352 	}
353 
354 	drm_clflush_virt_range(vaddr, args->size);
355 	i915_gem_chipset_flush(dev);
356 
357 out:
358 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359 	return ret;
360 }
361 
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364 	struct drm_i915_private *dev_priv = dev->dev_private;
365 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367 
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371 	kmem_cache_free(dev_priv->objects, obj);
372 }
373 
374 static int
375 i915_gem_create(struct drm_file *file,
376 		struct drm_device *dev,
377 		uint64_t size,
378 		uint32_t *handle_p)
379 {
380 	struct drm_i915_gem_object *obj;
381 	int ret;
382 	u32 handle;
383 
384 	size = roundup(size, PAGE_SIZE);
385 	if (size == 0)
386 		return -EINVAL;
387 
388 	/* Allocate the new object */
389 	obj = i915_gem_alloc_object(dev, size);
390 	if (obj == NULL)
391 		return -ENOMEM;
392 
393 	ret = drm_gem_handle_create(file, &obj->base, &handle);
394 	/* drop reference from allocate - handle holds it now */
395 	drm_gem_object_unreference_unlocked(&obj->base);
396 	if (ret)
397 		return ret;
398 
399 	*handle_p = handle;
400 	return 0;
401 }
402 
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405 		     struct drm_device *dev,
406 		     struct drm_mode_create_dumb *args)
407 {
408 	/* have to work out size/pitch and return them */
409 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 	args->size = args->pitch * args->height;
411 	return i915_gem_create(file, dev,
412 			       args->size, &args->handle);
413 }
414 
415 /**
416  * Creates a new mm object and returns a handle to it.
417  */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 		      struct drm_file *file)
421 {
422 	struct drm_i915_gem_create *args = data;
423 
424 	return i915_gem_create(file, dev,
425 			       args->size, &args->handle);
426 }
427 
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430 			const char *gpu_vaddr, int gpu_offset,
431 			int length)
432 {
433 	int ret, cpu_offset = 0;
434 
435 	while (length > 0) {
436 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 		int this_length = min(cacheline_end - gpu_offset, length);
438 		int swizzled_gpu_offset = gpu_offset ^ 64;
439 
440 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 				     gpu_vaddr + swizzled_gpu_offset,
442 				     this_length);
443 		if (ret)
444 			return ret + length;
445 
446 		cpu_offset += this_length;
447 		gpu_offset += this_length;
448 		length -= this_length;
449 	}
450 
451 	return 0;
452 }
453 
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 			  const char __user *cpu_vaddr,
457 			  int length)
458 {
459 	int ret, cpu_offset = 0;
460 
461 	while (length > 0) {
462 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 		int this_length = min(cacheline_end - gpu_offset, length);
464 		int swizzled_gpu_offset = gpu_offset ^ 64;
465 
466 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 				       cpu_vaddr + cpu_offset,
468 				       this_length);
469 		if (ret)
470 			return ret + length;
471 
472 		cpu_offset += this_length;
473 		gpu_offset += this_length;
474 		length -= this_length;
475 	}
476 
477 	return 0;
478 }
479 
480 /*
481  * Pins the specified object's pages and synchronizes the object with
482  * GPU accesses. Sets needs_clflush to non-zero if the caller should
483  * flush the object from the CPU cache.
484  */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 				    int *needs_clflush)
487 {
488 	int ret;
489 
490 	*needs_clflush = 0;
491 
492 	if (!obj->base.filp)
493 		return -EINVAL;
494 
495 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 		/* If we're not in the cpu read domain, set ourself into the gtt
497 		 * read domain and manually flush cachelines (if required). This
498 		 * optimizes for the case when the gpu will dirty the data
499 		 * anyway again before the next pread happens. */
500 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 							obj->cache_level);
502 		ret = i915_gem_object_wait_rendering(obj, true);
503 		if (ret)
504 			return ret;
505 	}
506 
507 	ret = i915_gem_object_get_pages(obj);
508 	if (ret)
509 		return ret;
510 
511 	i915_gem_object_pin_pages(obj);
512 
513 	return ret;
514 }
515 
516 /* Per-page copy function for the shmem pread fastpath.
517  * Flushes invalid cachelines before reading the target if
518  * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 		 char __user *user_data,
522 		 bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524 	char *vaddr;
525 	int ret;
526 
527 	if (unlikely(page_do_bit17_swizzling))
528 		return -EINVAL;
529 
530 	vaddr = kmap_atomic(page);
531 	if (needs_clflush)
532 		drm_clflush_virt_range(vaddr + shmem_page_offset,
533 				       page_length);
534 	ret = __copy_to_user_inatomic(user_data,
535 				      vaddr + shmem_page_offset,
536 				      page_length);
537 	kunmap_atomic(vaddr);
538 
539 	return ret ? -EFAULT : 0;
540 }
541 
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 			     bool swizzled)
545 {
546 	if (unlikely(swizzled)) {
547 		unsigned long start = (unsigned long) addr;
548 		unsigned long end = (unsigned long) addr + length;
549 
550 		/* For swizzling simply ensure that we always flush both
551 		 * channels. Lame, but simple and it works. Swizzled
552 		 * pwrite/pread is far from a hotpath - current userspace
553 		 * doesn't use it at all. */
554 		start = round_down(start, 128);
555 		end = round_up(end, 128);
556 
557 		drm_clflush_virt_range((void *)start, end - start);
558 	} else {
559 		drm_clflush_virt_range(addr, length);
560 	}
561 
562 }
563 
564 /* Only difference to the fast-path function is that this can handle bit17
565  * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 		 char __user *user_data,
569 		 bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571 	char *vaddr;
572 	int ret;
573 
574 	vaddr = kmap(page);
575 	if (needs_clflush)
576 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 					     page_length,
578 					     page_do_bit17_swizzling);
579 
580 	if (page_do_bit17_swizzling)
581 		ret = __copy_to_user_swizzled(user_data,
582 					      vaddr, shmem_page_offset,
583 					      page_length);
584 	else
585 		ret = __copy_to_user(user_data,
586 				     vaddr + shmem_page_offset,
587 				     page_length);
588 	kunmap(page);
589 
590 	return ret ? - EFAULT : 0;
591 }
592 
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595 		     struct drm_i915_gem_object *obj,
596 		     struct drm_i915_gem_pread *args,
597 		     struct drm_file *file)
598 {
599 	char __user *user_data;
600 	ssize_t remain;
601 	loff_t offset;
602 	int shmem_page_offset, page_length, ret = 0;
603 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604 	int prefaulted = 0;
605 	int needs_clflush = 0;
606 	struct sg_page_iter sg_iter;
607 
608 	user_data = to_user_ptr(args->data_ptr);
609 	remain = args->size;
610 
611 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612 
613 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 	if (ret)
615 		return ret;
616 
617 	offset = args->offset;
618 
619 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 			 offset >> PAGE_SHIFT) {
621 		struct page *page = sg_page_iter_page(&sg_iter);
622 
623 		if (remain <= 0)
624 			break;
625 
626 		/* Operation in this page
627 		 *
628 		 * shmem_page_offset = offset within page in shmem file
629 		 * page_length = bytes to copy for this page
630 		 */
631 		shmem_page_offset = offset_in_page(offset);
632 		page_length = remain;
633 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 			page_length = PAGE_SIZE - shmem_page_offset;
635 
636 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 			(page_to_phys(page) & (1 << 17)) != 0;
638 
639 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 				       user_data, page_do_bit17_swizzling,
641 				       needs_clflush);
642 		if (ret == 0)
643 			goto next_page;
644 
645 		mutex_unlock(&dev->struct_mutex);
646 
647 		if (likely(!i915.prefault_disable) && !prefaulted) {
648 			ret = fault_in_multipages_writeable(user_data, remain);
649 			/* Userspace is tricking us, but we've already clobbered
650 			 * its pages with the prefault and promised to write the
651 			 * data up to the first fault. Hence ignore any errors
652 			 * and just continue. */
653 			(void)ret;
654 			prefaulted = 1;
655 		}
656 
657 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 				       user_data, page_do_bit17_swizzling,
659 				       needs_clflush);
660 
661 		mutex_lock(&dev->struct_mutex);
662 
663 		if (ret)
664 			goto out;
665 
666 next_page:
667 		remain -= page_length;
668 		user_data += page_length;
669 		offset += page_length;
670 	}
671 
672 out:
673 	i915_gem_object_unpin_pages(obj);
674 
675 	return ret;
676 }
677 
678 /**
679  * Reads data from the object referenced by handle.
680  *
681  * On error, the contents of *data are undefined.
682  */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685 		     struct drm_file *file)
686 {
687 	struct drm_i915_gem_pread *args = data;
688 	struct drm_i915_gem_object *obj;
689 	int ret = 0;
690 
691 	if (args->size == 0)
692 		return 0;
693 
694 	if (!access_ok(VERIFY_WRITE,
695 		       to_user_ptr(args->data_ptr),
696 		       args->size))
697 		return -EFAULT;
698 
699 	ret = i915_mutex_lock_interruptible(dev);
700 	if (ret)
701 		return ret;
702 
703 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704 	if (&obj->base == NULL) {
705 		ret = -ENOENT;
706 		goto unlock;
707 	}
708 
709 	/* Bounds check source.  */
710 	if (args->offset > obj->base.size ||
711 	    args->size > obj->base.size - args->offset) {
712 		ret = -EINVAL;
713 		goto out;
714 	}
715 
716 	/* prime objects have no backing filp to GEM pread/pwrite
717 	 * pages from.
718 	 */
719 	if (!obj->base.filp) {
720 		ret = -EINVAL;
721 		goto out;
722 	}
723 
724 	trace_i915_gem_object_pread(obj, args->offset, args->size);
725 
726 	ret = i915_gem_shmem_pread(dev, obj, args, file);
727 
728 out:
729 	drm_gem_object_unreference(&obj->base);
730 unlock:
731 	mutex_unlock(&dev->struct_mutex);
732 	return ret;
733 }
734 
735 /* This is the fast write path which cannot handle
736  * page faults in the source data
737  */
738 
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741 		loff_t page_base, int page_offset,
742 		char __user *user_data,
743 		int length)
744 {
745 	void __iomem *vaddr_atomic;
746 	void *vaddr;
747 	unsigned long unwritten;
748 
749 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 	/* We can use the cpu mem copy function because this is X86. */
751 	vaddr = (void __force*)vaddr_atomic + page_offset;
752 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
753 						      user_data, length);
754 	io_mapping_unmap_atomic(vaddr_atomic);
755 	return unwritten;
756 }
757 
758 /**
759  * This is the fast pwrite path, where we copy the data directly from the
760  * user into the GTT, uncached.
761  */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 			 struct drm_i915_gem_object *obj,
765 			 struct drm_i915_gem_pwrite *args,
766 			 struct drm_file *file)
767 {
768 	struct drm_i915_private *dev_priv = dev->dev_private;
769 	ssize_t remain;
770 	loff_t offset, page_base;
771 	char __user *user_data;
772 	int page_offset, page_length, ret;
773 
774 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775 	if (ret)
776 		goto out;
777 
778 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 	if (ret)
780 		goto out_unpin;
781 
782 	ret = i915_gem_object_put_fence(obj);
783 	if (ret)
784 		goto out_unpin;
785 
786 	user_data = to_user_ptr(args->data_ptr);
787 	remain = args->size;
788 
789 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790 
791 	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792 
793 	while (remain > 0) {
794 		/* Operation in this page
795 		 *
796 		 * page_base = page offset within aperture
797 		 * page_offset = offset within page
798 		 * page_length = bytes to copy for this page
799 		 */
800 		page_base = offset & PAGE_MASK;
801 		page_offset = offset_in_page(offset);
802 		page_length = remain;
803 		if ((page_offset + remain) > PAGE_SIZE)
804 			page_length = PAGE_SIZE - page_offset;
805 
806 		/* If we get a fault while copying data, then (presumably) our
807 		 * source page isn't available.  Return the error and we'll
808 		 * retry in the slow path.
809 		 */
810 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
811 				    page_offset, user_data, page_length)) {
812 			ret = -EFAULT;
813 			goto out_flush;
814 		}
815 
816 		remain -= page_length;
817 		user_data += page_length;
818 		offset += page_length;
819 	}
820 
821 out_flush:
822 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824 	i915_gem_object_ggtt_unpin(obj);
825 out:
826 	return ret;
827 }
828 
829 /* Per-page copy function for the shmem pwrite fastpath.
830  * Flushes invalid cachelines before writing to the target if
831  * needs_clflush_before is set and flushes out any written cachelines after
832  * writing if needs_clflush is set. */
833 static int
834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 		  char __user *user_data,
836 		  bool page_do_bit17_swizzling,
837 		  bool needs_clflush_before,
838 		  bool needs_clflush_after)
839 {
840 	char *vaddr;
841 	int ret;
842 
843 	if (unlikely(page_do_bit17_swizzling))
844 		return -EINVAL;
845 
846 	vaddr = kmap_atomic(page);
847 	if (needs_clflush_before)
848 		drm_clflush_virt_range(vaddr + shmem_page_offset,
849 				       page_length);
850 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 					user_data, page_length);
852 	if (needs_clflush_after)
853 		drm_clflush_virt_range(vaddr + shmem_page_offset,
854 				       page_length);
855 	kunmap_atomic(vaddr);
856 
857 	return ret ? -EFAULT : 0;
858 }
859 
860 /* Only difference to the fast-path function is that this can handle bit17
861  * and uses non-atomic copy and kmap functions. */
862 static int
863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 		  char __user *user_data,
865 		  bool page_do_bit17_swizzling,
866 		  bool needs_clflush_before,
867 		  bool needs_clflush_after)
868 {
869 	char *vaddr;
870 	int ret;
871 
872 	vaddr = kmap(page);
873 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 					     page_length,
876 					     page_do_bit17_swizzling);
877 	if (page_do_bit17_swizzling)
878 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879 						user_data,
880 						page_length);
881 	else
882 		ret = __copy_from_user(vaddr + shmem_page_offset,
883 				       user_data,
884 				       page_length);
885 	if (needs_clflush_after)
886 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 					     page_length,
888 					     page_do_bit17_swizzling);
889 	kunmap(page);
890 
891 	return ret ? -EFAULT : 0;
892 }
893 
894 static int
895 i915_gem_shmem_pwrite(struct drm_device *dev,
896 		      struct drm_i915_gem_object *obj,
897 		      struct drm_i915_gem_pwrite *args,
898 		      struct drm_file *file)
899 {
900 	ssize_t remain;
901 	loff_t offset;
902 	char __user *user_data;
903 	int shmem_page_offset, page_length, ret = 0;
904 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905 	int hit_slowpath = 0;
906 	int needs_clflush_after = 0;
907 	int needs_clflush_before = 0;
908 	struct sg_page_iter sg_iter;
909 
910 	user_data = to_user_ptr(args->data_ptr);
911 	remain = args->size;
912 
913 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914 
915 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 		/* If we're not in the cpu write domain, set ourself into the gtt
917 		 * write domain and manually flush cachelines (if required). This
918 		 * optimizes for the case when the gpu will use the data
919 		 * right away and we therefore have to clflush anyway. */
920 		needs_clflush_after = cpu_write_needs_clflush(obj);
921 		ret = i915_gem_object_wait_rendering(obj, false);
922 		if (ret)
923 			return ret;
924 	}
925 	/* Same trick applies to invalidate partially written cachelines read
926 	 * before writing. */
927 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 		needs_clflush_before =
929 			!cpu_cache_is_coherent(dev, obj->cache_level);
930 
931 	ret = i915_gem_object_get_pages(obj);
932 	if (ret)
933 		return ret;
934 
935 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936 
937 	i915_gem_object_pin_pages(obj);
938 
939 	offset = args->offset;
940 	obj->dirty = 1;
941 
942 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 			 offset >> PAGE_SHIFT) {
944 		struct page *page = sg_page_iter_page(&sg_iter);
945 		int partial_cacheline_write;
946 
947 		if (remain <= 0)
948 			break;
949 
950 		/* Operation in this page
951 		 *
952 		 * shmem_page_offset = offset within page in shmem file
953 		 * page_length = bytes to copy for this page
954 		 */
955 		shmem_page_offset = offset_in_page(offset);
956 
957 		page_length = remain;
958 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 			page_length = PAGE_SIZE - shmem_page_offset;
960 
961 		/* If we don't overwrite a cacheline completely we need to be
962 		 * careful to have up-to-date data by first clflushing. Don't
963 		 * overcomplicate things and flush the entire patch. */
964 		partial_cacheline_write = needs_clflush_before &&
965 			((shmem_page_offset | page_length)
966 				& (boot_cpu_data.x86_clflush_size - 1));
967 
968 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 			(page_to_phys(page) & (1 << 17)) != 0;
970 
971 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 					user_data, page_do_bit17_swizzling,
973 					partial_cacheline_write,
974 					needs_clflush_after);
975 		if (ret == 0)
976 			goto next_page;
977 
978 		hit_slowpath = 1;
979 		mutex_unlock(&dev->struct_mutex);
980 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 					user_data, page_do_bit17_swizzling,
982 					partial_cacheline_write,
983 					needs_clflush_after);
984 
985 		mutex_lock(&dev->struct_mutex);
986 
987 		if (ret)
988 			goto out;
989 
990 next_page:
991 		remain -= page_length;
992 		user_data += page_length;
993 		offset += page_length;
994 	}
995 
996 out:
997 	i915_gem_object_unpin_pages(obj);
998 
999 	if (hit_slowpath) {
1000 		/*
1001 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 		 * cachelines in-line while writing and the object moved
1003 		 * out of the cpu write domain while we've dropped the lock.
1004 		 */
1005 		if (!needs_clflush_after &&
1006 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007 			if (i915_gem_clflush_object(obj, obj->pin_display))
1008 				i915_gem_chipset_flush(dev);
1009 		}
1010 	}
1011 
1012 	if (needs_clflush_after)
1013 		i915_gem_chipset_flush(dev);
1014 
1015 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1016 	return ret;
1017 }
1018 
1019 /**
1020  * Writes data to the object referenced by handle.
1021  *
1022  * On error, the contents of the buffer that were to be modified are undefined.
1023  */
1024 int
1025 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1026 		      struct drm_file *file)
1027 {
1028 	struct drm_i915_private *dev_priv = dev->dev_private;
1029 	struct drm_i915_gem_pwrite *args = data;
1030 	struct drm_i915_gem_object *obj;
1031 	int ret;
1032 
1033 	if (args->size == 0)
1034 		return 0;
1035 
1036 	if (!access_ok(VERIFY_READ,
1037 		       to_user_ptr(args->data_ptr),
1038 		       args->size))
1039 		return -EFAULT;
1040 
1041 	if (likely(!i915.prefault_disable)) {
1042 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1043 						   args->size);
1044 		if (ret)
1045 			return -EFAULT;
1046 	}
1047 
1048 	intel_runtime_pm_get(dev_priv);
1049 
1050 	ret = i915_mutex_lock_interruptible(dev);
1051 	if (ret)
1052 		goto put_rpm;
1053 
1054 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1055 	if (&obj->base == NULL) {
1056 		ret = -ENOENT;
1057 		goto unlock;
1058 	}
1059 
1060 	/* Bounds check destination. */
1061 	if (args->offset > obj->base.size ||
1062 	    args->size > obj->base.size - args->offset) {
1063 		ret = -EINVAL;
1064 		goto out;
1065 	}
1066 
1067 	/* prime objects have no backing filp to GEM pread/pwrite
1068 	 * pages from.
1069 	 */
1070 	if (!obj->base.filp) {
1071 		ret = -EINVAL;
1072 		goto out;
1073 	}
1074 
1075 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1076 
1077 	ret = -EFAULT;
1078 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1079 	 * it would end up going through the fenced access, and we'll get
1080 	 * different detiling behavior between reading and writing.
1081 	 * pread/pwrite currently are reading and writing from the CPU
1082 	 * perspective, requiring manual detiling by the client.
1083 	 */
1084 	if (obj->tiling_mode == I915_TILING_NONE &&
1085 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1086 	    cpu_write_needs_clflush(obj)) {
1087 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1088 		/* Note that the gtt paths might fail with non-page-backed user
1089 		 * pointers (e.g. gtt mappings when moving data between
1090 		 * textures). Fallback to the shmem path in that case. */
1091 	}
1092 
1093 	if (ret == -EFAULT || ret == -ENOSPC) {
1094 		if (obj->phys_handle)
1095 			ret = i915_gem_phys_pwrite(obj, args, file);
1096 		else
1097 			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1098 	}
1099 
1100 out:
1101 	drm_gem_object_unreference(&obj->base);
1102 unlock:
1103 	mutex_unlock(&dev->struct_mutex);
1104 put_rpm:
1105 	intel_runtime_pm_put(dev_priv);
1106 
1107 	return ret;
1108 }
1109 
1110 int
1111 i915_gem_check_wedge(struct i915_gpu_error *error,
1112 		     bool interruptible)
1113 {
1114 	if (i915_reset_in_progress(error)) {
1115 		/* Non-interruptible callers can't handle -EAGAIN, hence return
1116 		 * -EIO unconditionally for these. */
1117 		if (!interruptible)
1118 			return -EIO;
1119 
1120 		/* Recovery complete, but the reset failed ... */
1121 		if (i915_terminally_wedged(error))
1122 			return -EIO;
1123 
1124 		/*
1125 		 * Check if GPU Reset is in progress - we need intel_ring_begin
1126 		 * to work properly to reinit the hw state while the gpu is
1127 		 * still marked as reset-in-progress. Handle this with a flag.
1128 		 */
1129 		if (!error->reload_in_reset)
1130 			return -EAGAIN;
1131 	}
1132 
1133 	return 0;
1134 }
1135 
1136 static void fake_irq(unsigned long data)
1137 {
1138 	wake_up_process((struct task_struct *)data);
1139 }
1140 
1141 static bool missed_irq(struct drm_i915_private *dev_priv,
1142 		       struct intel_engine_cs *ring)
1143 {
1144 	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1145 }
1146 
1147 static int __i915_spin_request(struct drm_i915_gem_request *req)
1148 {
1149 	unsigned long timeout;
1150 
1151 	if (i915_gem_request_get_ring(req)->irq_refcount)
1152 		return -EBUSY;
1153 
1154 	timeout = jiffies + 1;
1155 	while (!need_resched()) {
1156 		if (i915_gem_request_completed(req, true))
1157 			return 0;
1158 
1159 		if (time_after_eq(jiffies, timeout))
1160 			break;
1161 
1162 		cpu_relax_lowlatency();
1163 	}
1164 	if (i915_gem_request_completed(req, false))
1165 		return 0;
1166 
1167 	return -EAGAIN;
1168 }
1169 
1170 /**
1171  * __i915_wait_request - wait until execution of request has finished
1172  * @req: duh!
1173  * @reset_counter: reset sequence associated with the given request
1174  * @interruptible: do an interruptible wait (normally yes)
1175  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1176  *
1177  * Note: It is of utmost importance that the passed in seqno and reset_counter
1178  * values have been read by the caller in an smp safe manner. Where read-side
1179  * locks are involved, it is sufficient to read the reset_counter before
1180  * unlocking the lock that protects the seqno. For lockless tricks, the
1181  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1182  * inserted.
1183  *
1184  * Returns 0 if the request was found within the alloted time. Else returns the
1185  * errno with remaining time filled in timeout argument.
1186  */
1187 int __i915_wait_request(struct drm_i915_gem_request *req,
1188 			unsigned reset_counter,
1189 			bool interruptible,
1190 			s64 *timeout,
1191 			struct intel_rps_client *rps)
1192 {
1193 	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1194 	struct drm_device *dev = ring->dev;
1195 	struct drm_i915_private *dev_priv = dev->dev_private;
1196 	const bool irq_test_in_progress =
1197 		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1198 	DEFINE_WAIT(wait);
1199 	unsigned long timeout_expire;
1200 	s64 before, now;
1201 	int ret;
1202 
1203 	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1204 
1205 	if (list_empty(&req->list))
1206 		return 0;
1207 
1208 	if (i915_gem_request_completed(req, true))
1209 		return 0;
1210 
1211 	timeout_expire = timeout ?
1212 		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1213 
1214 	if (INTEL_INFO(dev_priv)->gen >= 6)
1215 		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1216 
1217 	/* Record current time in case interrupted by signal, or wedged */
1218 	trace_i915_gem_request_wait_begin(req);
1219 	before = ktime_get_raw_ns();
1220 
1221 	/* Optimistic spin for the next jiffie before touching IRQs */
1222 	ret = __i915_spin_request(req);
1223 	if (ret == 0)
1224 		goto out;
1225 
1226 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1227 		ret = -ENODEV;
1228 		goto out;
1229 	}
1230 
1231 	for (;;) {
1232 		struct timer_list timer;
1233 
1234 		prepare_to_wait(&ring->irq_queue, &wait,
1235 				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1236 
1237 		/* We need to check whether any gpu reset happened in between
1238 		 * the caller grabbing the seqno and now ... */
1239 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1240 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
1241 			 * is truely gone. */
1242 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1243 			if (ret == 0)
1244 				ret = -EAGAIN;
1245 			break;
1246 		}
1247 
1248 		if (i915_gem_request_completed(req, false)) {
1249 			ret = 0;
1250 			break;
1251 		}
1252 
1253 		if (interruptible && signal_pending(current)) {
1254 			ret = -ERESTARTSYS;
1255 			break;
1256 		}
1257 
1258 		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1259 			ret = -ETIME;
1260 			break;
1261 		}
1262 
1263 		timer.function = NULL;
1264 		if (timeout || missed_irq(dev_priv, ring)) {
1265 			unsigned long expire;
1266 
1267 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1268 			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1269 			mod_timer(&timer, expire);
1270 		}
1271 
1272 		io_schedule();
1273 
1274 		if (timer.function) {
1275 			del_singleshot_timer_sync(&timer);
1276 			destroy_timer_on_stack(&timer);
1277 		}
1278 	}
1279 	if (!irq_test_in_progress)
1280 		ring->irq_put(ring);
1281 
1282 	finish_wait(&ring->irq_queue, &wait);
1283 
1284 out:
1285 	now = ktime_get_raw_ns();
1286 	trace_i915_gem_request_wait_end(req);
1287 
1288 	if (timeout) {
1289 		s64 tres = *timeout - (now - before);
1290 
1291 		*timeout = tres < 0 ? 0 : tres;
1292 
1293 		/*
1294 		 * Apparently ktime isn't accurate enough and occasionally has a
1295 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1296 		 * things up to make the test happy. We allow up to 1 jiffy.
1297 		 *
1298 		 * This is a regrssion from the timespec->ktime conversion.
1299 		 */
1300 		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1301 			*timeout = 0;
1302 	}
1303 
1304 	return ret;
1305 }
1306 
1307 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1308 				   struct drm_file *file)
1309 {
1310 	struct drm_i915_private *dev_private;
1311 	struct drm_i915_file_private *file_priv;
1312 
1313 	WARN_ON(!req || !file || req->file_priv);
1314 
1315 	if (!req || !file)
1316 		return -EINVAL;
1317 
1318 	if (req->file_priv)
1319 		return -EINVAL;
1320 
1321 	dev_private = req->ring->dev->dev_private;
1322 	file_priv = file->driver_priv;
1323 
1324 	spin_lock(&file_priv->mm.lock);
1325 	req->file_priv = file_priv;
1326 	list_add_tail(&req->client_list, &file_priv->mm.request_list);
1327 	spin_unlock(&file_priv->mm.lock);
1328 
1329 	req->pid = get_pid(task_pid(current));
1330 
1331 	return 0;
1332 }
1333 
1334 static inline void
1335 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1336 {
1337 	struct drm_i915_file_private *file_priv = request->file_priv;
1338 
1339 	if (!file_priv)
1340 		return;
1341 
1342 	spin_lock(&file_priv->mm.lock);
1343 	list_del(&request->client_list);
1344 	request->file_priv = NULL;
1345 	spin_unlock(&file_priv->mm.lock);
1346 
1347 	put_pid(request->pid);
1348 	request->pid = NULL;
1349 }
1350 
1351 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1352 {
1353 	trace_i915_gem_request_retire(request);
1354 
1355 	/* We know the GPU must have read the request to have
1356 	 * sent us the seqno + interrupt, so use the position
1357 	 * of tail of the request to update the last known position
1358 	 * of the GPU head.
1359 	 *
1360 	 * Note this requires that we are always called in request
1361 	 * completion order.
1362 	 */
1363 	request->ringbuf->last_retired_head = request->postfix;
1364 
1365 	list_del_init(&request->list);
1366 	i915_gem_request_remove_from_client(request);
1367 
1368 	i915_gem_request_unreference(request);
1369 }
1370 
1371 static void
1372 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1373 {
1374 	struct intel_engine_cs *engine = req->ring;
1375 	struct drm_i915_gem_request *tmp;
1376 
1377 	lockdep_assert_held(&engine->dev->struct_mutex);
1378 
1379 	if (list_empty(&req->list))
1380 		return;
1381 
1382 	do {
1383 		tmp = list_first_entry(&engine->request_list,
1384 				       typeof(*tmp), list);
1385 
1386 		i915_gem_request_retire(tmp);
1387 	} while (tmp != req);
1388 
1389 	WARN_ON(i915_verify_lists(engine->dev));
1390 }
1391 
1392 /**
1393  * Waits for a request to be signaled, and cleans up the
1394  * request and object lists appropriately for that event.
1395  */
1396 int
1397 i915_wait_request(struct drm_i915_gem_request *req)
1398 {
1399 	struct drm_device *dev;
1400 	struct drm_i915_private *dev_priv;
1401 	bool interruptible;
1402 	int ret;
1403 
1404 	BUG_ON(req == NULL);
1405 
1406 	dev = req->ring->dev;
1407 	dev_priv = dev->dev_private;
1408 	interruptible = dev_priv->mm.interruptible;
1409 
1410 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1411 
1412 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1413 	if (ret)
1414 		return ret;
1415 
1416 	ret = __i915_wait_request(req,
1417 				  atomic_read(&dev_priv->gpu_error.reset_counter),
1418 				  interruptible, NULL, NULL);
1419 	if (ret)
1420 		return ret;
1421 
1422 	__i915_gem_request_retire__upto(req);
1423 	return 0;
1424 }
1425 
1426 /**
1427  * Ensures that all rendering to the object has completed and the object is
1428  * safe to unbind from the GTT or access from the CPU.
1429  */
1430 int
1431 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1432 			       bool readonly)
1433 {
1434 	int ret, i;
1435 
1436 	if (!obj->active)
1437 		return 0;
1438 
1439 	if (readonly) {
1440 		if (obj->last_write_req != NULL) {
1441 			ret = i915_wait_request(obj->last_write_req);
1442 			if (ret)
1443 				return ret;
1444 
1445 			i = obj->last_write_req->ring->id;
1446 			if (obj->last_read_req[i] == obj->last_write_req)
1447 				i915_gem_object_retire__read(obj, i);
1448 			else
1449 				i915_gem_object_retire__write(obj);
1450 		}
1451 	} else {
1452 		for (i = 0; i < I915_NUM_RINGS; i++) {
1453 			if (obj->last_read_req[i] == NULL)
1454 				continue;
1455 
1456 			ret = i915_wait_request(obj->last_read_req[i]);
1457 			if (ret)
1458 				return ret;
1459 
1460 			i915_gem_object_retire__read(obj, i);
1461 		}
1462 		RQ_BUG_ON(obj->active);
1463 	}
1464 
1465 	return 0;
1466 }
1467 
1468 static void
1469 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1470 			       struct drm_i915_gem_request *req)
1471 {
1472 	int ring = req->ring->id;
1473 
1474 	if (obj->last_read_req[ring] == req)
1475 		i915_gem_object_retire__read(obj, ring);
1476 	else if (obj->last_write_req == req)
1477 		i915_gem_object_retire__write(obj);
1478 
1479 	__i915_gem_request_retire__upto(req);
1480 }
1481 
1482 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1483  * as the object state may change during this call.
1484  */
1485 static __must_check int
1486 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1487 					    struct intel_rps_client *rps,
1488 					    bool readonly)
1489 {
1490 	struct drm_device *dev = obj->base.dev;
1491 	struct drm_i915_private *dev_priv = dev->dev_private;
1492 	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1493 	unsigned reset_counter;
1494 	int ret, i, n = 0;
1495 
1496 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1497 	BUG_ON(!dev_priv->mm.interruptible);
1498 
1499 	if (!obj->active)
1500 		return 0;
1501 
1502 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1503 	if (ret)
1504 		return ret;
1505 
1506 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1507 
1508 	if (readonly) {
1509 		struct drm_i915_gem_request *req;
1510 
1511 		req = obj->last_write_req;
1512 		if (req == NULL)
1513 			return 0;
1514 
1515 		requests[n++] = i915_gem_request_reference(req);
1516 	} else {
1517 		for (i = 0; i < I915_NUM_RINGS; i++) {
1518 			struct drm_i915_gem_request *req;
1519 
1520 			req = obj->last_read_req[i];
1521 			if (req == NULL)
1522 				continue;
1523 
1524 			requests[n++] = i915_gem_request_reference(req);
1525 		}
1526 	}
1527 
1528 	mutex_unlock(&dev->struct_mutex);
1529 	for (i = 0; ret == 0 && i < n; i++)
1530 		ret = __i915_wait_request(requests[i], reset_counter, true,
1531 					  NULL, rps);
1532 	mutex_lock(&dev->struct_mutex);
1533 
1534 	for (i = 0; i < n; i++) {
1535 		if (ret == 0)
1536 			i915_gem_object_retire_request(obj, requests[i]);
1537 		i915_gem_request_unreference(requests[i]);
1538 	}
1539 
1540 	return ret;
1541 }
1542 
1543 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1544 {
1545 	struct drm_i915_file_private *fpriv = file->driver_priv;
1546 	return &fpriv->rps;
1547 }
1548 
1549 /**
1550  * Called when user space prepares to use an object with the CPU, either
1551  * through the mmap ioctl's mapping or a GTT mapping.
1552  */
1553 int
1554 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1555 			  struct drm_file *file)
1556 {
1557 	struct drm_i915_gem_set_domain *args = data;
1558 	struct drm_i915_gem_object *obj;
1559 	uint32_t read_domains = args->read_domains;
1560 	uint32_t write_domain = args->write_domain;
1561 	int ret;
1562 
1563 	/* Only handle setting domains to types used by the CPU. */
1564 	if (write_domain & I915_GEM_GPU_DOMAINS)
1565 		return -EINVAL;
1566 
1567 	if (read_domains & I915_GEM_GPU_DOMAINS)
1568 		return -EINVAL;
1569 
1570 	/* Having something in the write domain implies it's in the read
1571 	 * domain, and only that read domain.  Enforce that in the request.
1572 	 */
1573 	if (write_domain != 0 && read_domains != write_domain)
1574 		return -EINVAL;
1575 
1576 	ret = i915_mutex_lock_interruptible(dev);
1577 	if (ret)
1578 		return ret;
1579 
1580 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1581 	if (&obj->base == NULL) {
1582 		ret = -ENOENT;
1583 		goto unlock;
1584 	}
1585 
1586 	/* Try to flush the object off the GPU without holding the lock.
1587 	 * We will repeat the flush holding the lock in the normal manner
1588 	 * to catch cases where we are gazumped.
1589 	 */
1590 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1591 							  to_rps_client(file),
1592 							  !write_domain);
1593 	if (ret)
1594 		goto unref;
1595 
1596 	if (read_domains & I915_GEM_DOMAIN_GTT)
1597 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1598 	else
1599 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1600 
1601 	if (write_domain != 0)
1602 		intel_fb_obj_invalidate(obj,
1603 					write_domain == I915_GEM_DOMAIN_GTT ?
1604 					ORIGIN_GTT : ORIGIN_CPU);
1605 
1606 unref:
1607 	drm_gem_object_unreference(&obj->base);
1608 unlock:
1609 	mutex_unlock(&dev->struct_mutex);
1610 	return ret;
1611 }
1612 
1613 /**
1614  * Called when user space has done writes to this buffer
1615  */
1616 int
1617 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1618 			 struct drm_file *file)
1619 {
1620 	struct drm_i915_gem_sw_finish *args = data;
1621 	struct drm_i915_gem_object *obj;
1622 	int ret = 0;
1623 
1624 	ret = i915_mutex_lock_interruptible(dev);
1625 	if (ret)
1626 		return ret;
1627 
1628 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1629 	if (&obj->base == NULL) {
1630 		ret = -ENOENT;
1631 		goto unlock;
1632 	}
1633 
1634 	/* Pinned buffers may be scanout, so flush the cache */
1635 	if (obj->pin_display)
1636 		i915_gem_object_flush_cpu_write_domain(obj);
1637 
1638 	drm_gem_object_unreference(&obj->base);
1639 unlock:
1640 	mutex_unlock(&dev->struct_mutex);
1641 	return ret;
1642 }
1643 
1644 /**
1645  * Maps the contents of an object, returning the address it is mapped
1646  * into.
1647  *
1648  * While the mapping holds a reference on the contents of the object, it doesn't
1649  * imply a ref on the object itself.
1650  *
1651  * IMPORTANT:
1652  *
1653  * DRM driver writers who look a this function as an example for how to do GEM
1654  * mmap support, please don't implement mmap support like here. The modern way
1655  * to implement DRM mmap support is with an mmap offset ioctl (like
1656  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1657  * That way debug tooling like valgrind will understand what's going on, hiding
1658  * the mmap call in a driver private ioctl will break that. The i915 driver only
1659  * does cpu mmaps this way because we didn't know better.
1660  */
1661 int
1662 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1663 		    struct drm_file *file)
1664 {
1665 	struct drm_i915_gem_mmap *args = data;
1666 	struct drm_gem_object *obj;
1667 	unsigned long addr;
1668 
1669 	if (args->flags & ~(I915_MMAP_WC))
1670 		return -EINVAL;
1671 
1672 	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1673 		return -ENODEV;
1674 
1675 	obj = drm_gem_object_lookup(dev, file, args->handle);
1676 	if (obj == NULL)
1677 		return -ENOENT;
1678 
1679 	/* prime objects have no backing filp to GEM mmap
1680 	 * pages from.
1681 	 */
1682 	if (!obj->filp) {
1683 		drm_gem_object_unreference_unlocked(obj);
1684 		return -EINVAL;
1685 	}
1686 
1687 	addr = vm_mmap(obj->filp, 0, args->size,
1688 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1689 		       args->offset);
1690 	if (args->flags & I915_MMAP_WC) {
1691 		struct mm_struct *mm = current->mm;
1692 		struct vm_area_struct *vma;
1693 
1694 		down_write(&mm->mmap_sem);
1695 		vma = find_vma(mm, addr);
1696 		if (vma)
1697 			vma->vm_page_prot =
1698 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1699 		else
1700 			addr = -ENOMEM;
1701 		up_write(&mm->mmap_sem);
1702 	}
1703 	drm_gem_object_unreference_unlocked(obj);
1704 	if (IS_ERR((void *)addr))
1705 		return addr;
1706 
1707 	args->addr_ptr = (uint64_t) addr;
1708 
1709 	return 0;
1710 }
1711 
1712 /**
1713  * i915_gem_fault - fault a page into the GTT
1714  * vma: VMA in question
1715  * vmf: fault info
1716  *
1717  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1718  * from userspace.  The fault handler takes care of binding the object to
1719  * the GTT (if needed), allocating and programming a fence register (again,
1720  * only if needed based on whether the old reg is still valid or the object
1721  * is tiled) and inserting a new PTE into the faulting process.
1722  *
1723  * Note that the faulting process may involve evicting existing objects
1724  * from the GTT and/or fence registers to make room.  So performance may
1725  * suffer if the GTT working set is large or there are few fence registers
1726  * left.
1727  */
1728 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1729 {
1730 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1731 	struct drm_device *dev = obj->base.dev;
1732 	struct drm_i915_private *dev_priv = dev->dev_private;
1733 	struct i915_ggtt_view view = i915_ggtt_view_normal;
1734 	pgoff_t page_offset;
1735 	unsigned long pfn;
1736 	int ret = 0;
1737 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1738 
1739 	intel_runtime_pm_get(dev_priv);
1740 
1741 	/* We don't use vmf->pgoff since that has the fake offset */
1742 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1743 		PAGE_SHIFT;
1744 
1745 	ret = i915_mutex_lock_interruptible(dev);
1746 	if (ret)
1747 		goto out;
1748 
1749 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1750 
1751 	/* Try to flush the object off the GPU first without holding the lock.
1752 	 * Upon reacquiring the lock, we will perform our sanity checks and then
1753 	 * repeat the flush holding the lock in the normal manner to catch cases
1754 	 * where we are gazumped.
1755 	 */
1756 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1757 	if (ret)
1758 		goto unlock;
1759 
1760 	/* Access to snoopable pages through the GTT is incoherent. */
1761 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1762 		ret = -EFAULT;
1763 		goto unlock;
1764 	}
1765 
1766 	/* Use a partial view if the object is bigger than the aperture. */
1767 	if (obj->base.size >= dev_priv->gtt.mappable_end &&
1768 	    obj->tiling_mode == I915_TILING_NONE) {
1769 		static const unsigned int chunk_size = 256; // 1 MiB
1770 
1771 		memset(&view, 0, sizeof(view));
1772 		view.type = I915_GGTT_VIEW_PARTIAL;
1773 		view.params.partial.offset = rounddown(page_offset, chunk_size);
1774 		view.params.partial.size =
1775 			min_t(unsigned int,
1776 			      chunk_size,
1777 			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1778 			      view.params.partial.offset);
1779 	}
1780 
1781 	/* Now pin it into the GTT if needed */
1782 	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1783 	if (ret)
1784 		goto unlock;
1785 
1786 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1787 	if (ret)
1788 		goto unpin;
1789 
1790 	ret = i915_gem_object_get_fence(obj);
1791 	if (ret)
1792 		goto unpin;
1793 
1794 	/* Finally, remap it using the new GTT offset */
1795 	pfn = dev_priv->gtt.mappable_base +
1796 		i915_gem_obj_ggtt_offset_view(obj, &view);
1797 	pfn >>= PAGE_SHIFT;
1798 
1799 	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1800 		/* Overriding existing pages in partial view does not cause
1801 		 * us any trouble as TLBs are still valid because the fault
1802 		 * is due to userspace losing part of the mapping or never
1803 		 * having accessed it before (at this partials' range).
1804 		 */
1805 		unsigned long base = vma->vm_start +
1806 				     (view.params.partial.offset << PAGE_SHIFT);
1807 		unsigned int i;
1808 
1809 		for (i = 0; i < view.params.partial.size; i++) {
1810 			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1811 			if (ret)
1812 				break;
1813 		}
1814 
1815 		obj->fault_mappable = true;
1816 	} else {
1817 		if (!obj->fault_mappable) {
1818 			unsigned long size = min_t(unsigned long,
1819 						   vma->vm_end - vma->vm_start,
1820 						   obj->base.size);
1821 			int i;
1822 
1823 			for (i = 0; i < size >> PAGE_SHIFT; i++) {
1824 				ret = vm_insert_pfn(vma,
1825 						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
1826 						    pfn + i);
1827 				if (ret)
1828 					break;
1829 			}
1830 
1831 			obj->fault_mappable = true;
1832 		} else
1833 			ret = vm_insert_pfn(vma,
1834 					    (unsigned long)vmf->virtual_address,
1835 					    pfn + page_offset);
1836 	}
1837 unpin:
1838 	i915_gem_object_ggtt_unpin_view(obj, &view);
1839 unlock:
1840 	mutex_unlock(&dev->struct_mutex);
1841 out:
1842 	switch (ret) {
1843 	case -EIO:
1844 		/*
1845 		 * We eat errors when the gpu is terminally wedged to avoid
1846 		 * userspace unduly crashing (gl has no provisions for mmaps to
1847 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1848 		 * and so needs to be reported.
1849 		 */
1850 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1851 			ret = VM_FAULT_SIGBUS;
1852 			break;
1853 		}
1854 	case -EAGAIN:
1855 		/*
1856 		 * EAGAIN means the gpu is hung and we'll wait for the error
1857 		 * handler to reset everything when re-faulting in
1858 		 * i915_mutex_lock_interruptible.
1859 		 */
1860 	case 0:
1861 	case -ERESTARTSYS:
1862 	case -EINTR:
1863 	case -EBUSY:
1864 		/*
1865 		 * EBUSY is ok: this just means that another thread
1866 		 * already did the job.
1867 		 */
1868 		ret = VM_FAULT_NOPAGE;
1869 		break;
1870 	case -ENOMEM:
1871 		ret = VM_FAULT_OOM;
1872 		break;
1873 	case -ENOSPC:
1874 	case -EFAULT:
1875 		ret = VM_FAULT_SIGBUS;
1876 		break;
1877 	default:
1878 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1879 		ret = VM_FAULT_SIGBUS;
1880 		break;
1881 	}
1882 
1883 	intel_runtime_pm_put(dev_priv);
1884 	return ret;
1885 }
1886 
1887 /**
1888  * i915_gem_release_mmap - remove physical page mappings
1889  * @obj: obj in question
1890  *
1891  * Preserve the reservation of the mmapping with the DRM core code, but
1892  * relinquish ownership of the pages back to the system.
1893  *
1894  * It is vital that we remove the page mapping if we have mapped a tiled
1895  * object through the GTT and then lose the fence register due to
1896  * resource pressure. Similarly if the object has been moved out of the
1897  * aperture, than pages mapped into userspace must be revoked. Removing the
1898  * mapping will then trigger a page fault on the next user access, allowing
1899  * fixup by i915_gem_fault().
1900  */
1901 void
1902 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1903 {
1904 	if (!obj->fault_mappable)
1905 		return;
1906 
1907 	drm_vma_node_unmap(&obj->base.vma_node,
1908 			   obj->base.dev->anon_inode->i_mapping);
1909 	obj->fault_mappable = false;
1910 }
1911 
1912 void
1913 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1914 {
1915 	struct drm_i915_gem_object *obj;
1916 
1917 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1918 		i915_gem_release_mmap(obj);
1919 }
1920 
1921 uint32_t
1922 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1923 {
1924 	uint32_t gtt_size;
1925 
1926 	if (INTEL_INFO(dev)->gen >= 4 ||
1927 	    tiling_mode == I915_TILING_NONE)
1928 		return size;
1929 
1930 	/* Previous chips need a power-of-two fence region when tiling */
1931 	if (INTEL_INFO(dev)->gen == 3)
1932 		gtt_size = 1024*1024;
1933 	else
1934 		gtt_size = 512*1024;
1935 
1936 	while (gtt_size < size)
1937 		gtt_size <<= 1;
1938 
1939 	return gtt_size;
1940 }
1941 
1942 /**
1943  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1944  * @obj: object to check
1945  *
1946  * Return the required GTT alignment for an object, taking into account
1947  * potential fence register mapping.
1948  */
1949 uint32_t
1950 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1951 			   int tiling_mode, bool fenced)
1952 {
1953 	/*
1954 	 * Minimum alignment is 4k (GTT page size), but might be greater
1955 	 * if a fence register is needed for the object.
1956 	 */
1957 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1958 	    tiling_mode == I915_TILING_NONE)
1959 		return 4096;
1960 
1961 	/*
1962 	 * Previous chips need to be aligned to the size of the smallest
1963 	 * fence register that can contain the object.
1964 	 */
1965 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1966 }
1967 
1968 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1969 {
1970 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1971 	int ret;
1972 
1973 	if (drm_vma_node_has_offset(&obj->base.vma_node))
1974 		return 0;
1975 
1976 	dev_priv->mm.shrinker_no_lock_stealing = true;
1977 
1978 	ret = drm_gem_create_mmap_offset(&obj->base);
1979 	if (ret != -ENOSPC)
1980 		goto out;
1981 
1982 	/* Badly fragmented mmap space? The only way we can recover
1983 	 * space is by destroying unwanted objects. We can't randomly release
1984 	 * mmap_offsets as userspace expects them to be persistent for the
1985 	 * lifetime of the objects. The closest we can is to release the
1986 	 * offsets on purgeable objects by truncating it and marking it purged,
1987 	 * which prevents userspace from ever using that object again.
1988 	 */
1989 	i915_gem_shrink(dev_priv,
1990 			obj->base.size >> PAGE_SHIFT,
1991 			I915_SHRINK_BOUND |
1992 			I915_SHRINK_UNBOUND |
1993 			I915_SHRINK_PURGEABLE);
1994 	ret = drm_gem_create_mmap_offset(&obj->base);
1995 	if (ret != -ENOSPC)
1996 		goto out;
1997 
1998 	i915_gem_shrink_all(dev_priv);
1999 	ret = drm_gem_create_mmap_offset(&obj->base);
2000 out:
2001 	dev_priv->mm.shrinker_no_lock_stealing = false;
2002 
2003 	return ret;
2004 }
2005 
2006 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2007 {
2008 	drm_gem_free_mmap_offset(&obj->base);
2009 }
2010 
2011 int
2012 i915_gem_mmap_gtt(struct drm_file *file,
2013 		  struct drm_device *dev,
2014 		  uint32_t handle,
2015 		  uint64_t *offset)
2016 {
2017 	struct drm_i915_gem_object *obj;
2018 	int ret;
2019 
2020 	ret = i915_mutex_lock_interruptible(dev);
2021 	if (ret)
2022 		return ret;
2023 
2024 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2025 	if (&obj->base == NULL) {
2026 		ret = -ENOENT;
2027 		goto unlock;
2028 	}
2029 
2030 	if (obj->madv != I915_MADV_WILLNEED) {
2031 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2032 		ret = -EFAULT;
2033 		goto out;
2034 	}
2035 
2036 	ret = i915_gem_object_create_mmap_offset(obj);
2037 	if (ret)
2038 		goto out;
2039 
2040 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2041 
2042 out:
2043 	drm_gem_object_unreference(&obj->base);
2044 unlock:
2045 	mutex_unlock(&dev->struct_mutex);
2046 	return ret;
2047 }
2048 
2049 /**
2050  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2051  * @dev: DRM device
2052  * @data: GTT mapping ioctl data
2053  * @file: GEM object info
2054  *
2055  * Simply returns the fake offset to userspace so it can mmap it.
2056  * The mmap call will end up in drm_gem_mmap(), which will set things
2057  * up so we can get faults in the handler above.
2058  *
2059  * The fault handler will take care of binding the object into the GTT
2060  * (since it may have been evicted to make room for something), allocating
2061  * a fence register, and mapping the appropriate aperture address into
2062  * userspace.
2063  */
2064 int
2065 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2066 			struct drm_file *file)
2067 {
2068 	struct drm_i915_gem_mmap_gtt *args = data;
2069 
2070 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2071 }
2072 
2073 /* Immediately discard the backing storage */
2074 static void
2075 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2076 {
2077 	i915_gem_object_free_mmap_offset(obj);
2078 
2079 	if (obj->base.filp == NULL)
2080 		return;
2081 
2082 	/* Our goal here is to return as much of the memory as
2083 	 * is possible back to the system as we are called from OOM.
2084 	 * To do this we must instruct the shmfs to drop all of its
2085 	 * backing pages, *now*.
2086 	 */
2087 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2088 	obj->madv = __I915_MADV_PURGED;
2089 }
2090 
2091 /* Try to discard unwanted pages */
2092 static void
2093 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2094 {
2095 	struct address_space *mapping;
2096 
2097 	switch (obj->madv) {
2098 	case I915_MADV_DONTNEED:
2099 		i915_gem_object_truncate(obj);
2100 	case __I915_MADV_PURGED:
2101 		return;
2102 	}
2103 
2104 	if (obj->base.filp == NULL)
2105 		return;
2106 
2107 	mapping = file_inode(obj->base.filp)->i_mapping,
2108 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2109 }
2110 
2111 static void
2112 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2113 {
2114 	struct sg_page_iter sg_iter;
2115 	int ret;
2116 
2117 	BUG_ON(obj->madv == __I915_MADV_PURGED);
2118 
2119 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2120 	if (ret) {
2121 		/* In the event of a disaster, abandon all caches and
2122 		 * hope for the best.
2123 		 */
2124 		WARN_ON(ret != -EIO);
2125 		i915_gem_clflush_object(obj, true);
2126 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2127 	}
2128 
2129 	i915_gem_gtt_finish_object(obj);
2130 
2131 	if (i915_gem_object_needs_bit17_swizzle(obj))
2132 		i915_gem_object_save_bit_17_swizzle(obj);
2133 
2134 	if (obj->madv == I915_MADV_DONTNEED)
2135 		obj->dirty = 0;
2136 
2137 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2138 		struct page *page = sg_page_iter_page(&sg_iter);
2139 
2140 		if (obj->dirty)
2141 			set_page_dirty(page);
2142 
2143 		if (obj->madv == I915_MADV_WILLNEED)
2144 			mark_page_accessed(page);
2145 
2146 		page_cache_release(page);
2147 	}
2148 	obj->dirty = 0;
2149 
2150 	sg_free_table(obj->pages);
2151 	kfree(obj->pages);
2152 }
2153 
2154 int
2155 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2156 {
2157 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2158 
2159 	if (obj->pages == NULL)
2160 		return 0;
2161 
2162 	if (obj->pages_pin_count)
2163 		return -EBUSY;
2164 
2165 	BUG_ON(i915_gem_obj_bound_any(obj));
2166 
2167 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2168 	 * array, hence protect them from being reaped by removing them from gtt
2169 	 * lists early. */
2170 	list_del(&obj->global_list);
2171 
2172 	ops->put_pages(obj);
2173 	obj->pages = NULL;
2174 
2175 	i915_gem_object_invalidate(obj);
2176 
2177 	return 0;
2178 }
2179 
2180 static int
2181 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2182 {
2183 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2184 	int page_count, i;
2185 	struct address_space *mapping;
2186 	struct sg_table *st;
2187 	struct scatterlist *sg;
2188 	struct sg_page_iter sg_iter;
2189 	struct page *page;
2190 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2191 	int ret;
2192 	gfp_t gfp;
2193 
2194 	/* Assert that the object is not currently in any GPU domain. As it
2195 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2196 	 * a GPU cache
2197 	 */
2198 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2199 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2200 
2201 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2202 	if (st == NULL)
2203 		return -ENOMEM;
2204 
2205 	page_count = obj->base.size / PAGE_SIZE;
2206 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2207 		kfree(st);
2208 		return -ENOMEM;
2209 	}
2210 
2211 	/* Get the list of pages out of our struct file.  They'll be pinned
2212 	 * at this point until we release them.
2213 	 *
2214 	 * Fail silently without starting the shrinker
2215 	 */
2216 	mapping = file_inode(obj->base.filp)->i_mapping;
2217 	gfp = mapping_gfp_mask(mapping);
2218 	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2219 	gfp &= ~(__GFP_IO | __GFP_WAIT);
2220 	sg = st->sgl;
2221 	st->nents = 0;
2222 	for (i = 0; i < page_count; i++) {
2223 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2224 		if (IS_ERR(page)) {
2225 			i915_gem_shrink(dev_priv,
2226 					page_count,
2227 					I915_SHRINK_BOUND |
2228 					I915_SHRINK_UNBOUND |
2229 					I915_SHRINK_PURGEABLE);
2230 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2231 		}
2232 		if (IS_ERR(page)) {
2233 			/* We've tried hard to allocate the memory by reaping
2234 			 * our own buffer, now let the real VM do its job and
2235 			 * go down in flames if truly OOM.
2236 			 */
2237 			i915_gem_shrink_all(dev_priv);
2238 			page = shmem_read_mapping_page(mapping, i);
2239 			if (IS_ERR(page)) {
2240 				ret = PTR_ERR(page);
2241 				goto err_pages;
2242 			}
2243 		}
2244 #ifdef CONFIG_SWIOTLB
2245 		if (swiotlb_nr_tbl()) {
2246 			st->nents++;
2247 			sg_set_page(sg, page, PAGE_SIZE, 0);
2248 			sg = sg_next(sg);
2249 			continue;
2250 		}
2251 #endif
2252 		if (!i || page_to_pfn(page) != last_pfn + 1) {
2253 			if (i)
2254 				sg = sg_next(sg);
2255 			st->nents++;
2256 			sg_set_page(sg, page, PAGE_SIZE, 0);
2257 		} else {
2258 			sg->length += PAGE_SIZE;
2259 		}
2260 		last_pfn = page_to_pfn(page);
2261 
2262 		/* Check that the i965g/gm workaround works. */
2263 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2264 	}
2265 #ifdef CONFIG_SWIOTLB
2266 	if (!swiotlb_nr_tbl())
2267 #endif
2268 		sg_mark_end(sg);
2269 	obj->pages = st;
2270 
2271 	ret = i915_gem_gtt_prepare_object(obj);
2272 	if (ret)
2273 		goto err_pages;
2274 
2275 	if (i915_gem_object_needs_bit17_swizzle(obj))
2276 		i915_gem_object_do_bit_17_swizzle(obj);
2277 
2278 	if (obj->tiling_mode != I915_TILING_NONE &&
2279 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2280 		i915_gem_object_pin_pages(obj);
2281 
2282 	return 0;
2283 
2284 err_pages:
2285 	sg_mark_end(sg);
2286 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2287 		page_cache_release(sg_page_iter_page(&sg_iter));
2288 	sg_free_table(st);
2289 	kfree(st);
2290 
2291 	/* shmemfs first checks if there is enough memory to allocate the page
2292 	 * and reports ENOSPC should there be insufficient, along with the usual
2293 	 * ENOMEM for a genuine allocation failure.
2294 	 *
2295 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2296 	 * space and so want to translate the error from shmemfs back to our
2297 	 * usual understanding of ENOMEM.
2298 	 */
2299 	if (ret == -ENOSPC)
2300 		ret = -ENOMEM;
2301 
2302 	return ret;
2303 }
2304 
2305 /* Ensure that the associated pages are gathered from the backing storage
2306  * and pinned into our object. i915_gem_object_get_pages() may be called
2307  * multiple times before they are released by a single call to
2308  * i915_gem_object_put_pages() - once the pages are no longer referenced
2309  * either as a result of memory pressure (reaping pages under the shrinker)
2310  * or as the object is itself released.
2311  */
2312 int
2313 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2314 {
2315 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2316 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2317 	int ret;
2318 
2319 	if (obj->pages)
2320 		return 0;
2321 
2322 	if (obj->madv != I915_MADV_WILLNEED) {
2323 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2324 		return -EFAULT;
2325 	}
2326 
2327 	BUG_ON(obj->pages_pin_count);
2328 
2329 	ret = ops->get_pages(obj);
2330 	if (ret)
2331 		return ret;
2332 
2333 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2334 
2335 	obj->get_page.sg = obj->pages->sgl;
2336 	obj->get_page.last = 0;
2337 
2338 	return 0;
2339 }
2340 
2341 void i915_vma_move_to_active(struct i915_vma *vma,
2342 			     struct drm_i915_gem_request *req)
2343 {
2344 	struct drm_i915_gem_object *obj = vma->obj;
2345 	struct intel_engine_cs *ring;
2346 
2347 	ring = i915_gem_request_get_ring(req);
2348 
2349 	/* Add a reference if we're newly entering the active list. */
2350 	if (obj->active == 0)
2351 		drm_gem_object_reference(&obj->base);
2352 	obj->active |= intel_ring_flag(ring);
2353 
2354 	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2355 	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2356 
2357 	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2358 }
2359 
2360 static void
2361 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2362 {
2363 	RQ_BUG_ON(obj->last_write_req == NULL);
2364 	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2365 
2366 	i915_gem_request_assign(&obj->last_write_req, NULL);
2367 	intel_fb_obj_flush(obj, true, ORIGIN_CS);
2368 }
2369 
2370 static void
2371 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2372 {
2373 	struct i915_vma *vma;
2374 
2375 	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2376 	RQ_BUG_ON(!(obj->active & (1 << ring)));
2377 
2378 	list_del_init(&obj->ring_list[ring]);
2379 	i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2380 
2381 	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2382 		i915_gem_object_retire__write(obj);
2383 
2384 	obj->active &= ~(1 << ring);
2385 	if (obj->active)
2386 		return;
2387 
2388 	/* Bump our place on the bound list to keep it roughly in LRU order
2389 	 * so that we don't steal from recently used but inactive objects
2390 	 * (unless we are forced to ofc!)
2391 	 */
2392 	list_move_tail(&obj->global_list,
2393 		       &to_i915(obj->base.dev)->mm.bound_list);
2394 
2395 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
2396 		if (!list_empty(&vma->mm_list))
2397 			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2398 	}
2399 
2400 	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2401 	drm_gem_object_unreference(&obj->base);
2402 }
2403 
2404 static int
2405 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2406 {
2407 	struct drm_i915_private *dev_priv = dev->dev_private;
2408 	struct intel_engine_cs *ring;
2409 	int ret, i, j;
2410 
2411 	/* Carefully retire all requests without writing to the rings */
2412 	for_each_ring(ring, dev_priv, i) {
2413 		ret = intel_ring_idle(ring);
2414 		if (ret)
2415 			return ret;
2416 	}
2417 	i915_gem_retire_requests(dev);
2418 
2419 	/* Finally reset hw state */
2420 	for_each_ring(ring, dev_priv, i) {
2421 		intel_ring_init_seqno(ring, seqno);
2422 
2423 		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2424 			ring->semaphore.sync_seqno[j] = 0;
2425 	}
2426 
2427 	return 0;
2428 }
2429 
2430 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2431 {
2432 	struct drm_i915_private *dev_priv = dev->dev_private;
2433 	int ret;
2434 
2435 	if (seqno == 0)
2436 		return -EINVAL;
2437 
2438 	/* HWS page needs to be set less than what we
2439 	 * will inject to ring
2440 	 */
2441 	ret = i915_gem_init_seqno(dev, seqno - 1);
2442 	if (ret)
2443 		return ret;
2444 
2445 	/* Carefully set the last_seqno value so that wrap
2446 	 * detection still works
2447 	 */
2448 	dev_priv->next_seqno = seqno;
2449 	dev_priv->last_seqno = seqno - 1;
2450 	if (dev_priv->last_seqno == 0)
2451 		dev_priv->last_seqno--;
2452 
2453 	return 0;
2454 }
2455 
2456 int
2457 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2458 {
2459 	struct drm_i915_private *dev_priv = dev->dev_private;
2460 
2461 	/* reserve 0 for non-seqno */
2462 	if (dev_priv->next_seqno == 0) {
2463 		int ret = i915_gem_init_seqno(dev, 0);
2464 		if (ret)
2465 			return ret;
2466 
2467 		dev_priv->next_seqno = 1;
2468 	}
2469 
2470 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2471 	return 0;
2472 }
2473 
2474 /*
2475  * NB: This function is not allowed to fail. Doing so would mean the the
2476  * request is not being tracked for completion but the work itself is
2477  * going to happen on the hardware. This would be a Bad Thing(tm).
2478  */
2479 void __i915_add_request(struct drm_i915_gem_request *request,
2480 			struct drm_i915_gem_object *obj,
2481 			bool flush_caches)
2482 {
2483 	struct intel_engine_cs *ring;
2484 	struct drm_i915_private *dev_priv;
2485 	struct intel_ringbuffer *ringbuf;
2486 	u32 request_start;
2487 	int ret;
2488 
2489 	if (WARN_ON(request == NULL))
2490 		return;
2491 
2492 	ring = request->ring;
2493 	dev_priv = ring->dev->dev_private;
2494 	ringbuf = request->ringbuf;
2495 
2496 	/*
2497 	 * To ensure that this call will not fail, space for its emissions
2498 	 * should already have been reserved in the ring buffer. Let the ring
2499 	 * know that it is time to use that space up.
2500 	 */
2501 	intel_ring_reserved_space_use(ringbuf);
2502 
2503 	request_start = intel_ring_get_tail(ringbuf);
2504 	/*
2505 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2506 	 * after having emitted the batchbuffer command. Hence we need to fix
2507 	 * things up similar to emitting the lazy request. The difference here
2508 	 * is that the flush _must_ happen before the next request, no matter
2509 	 * what.
2510 	 */
2511 	if (flush_caches) {
2512 		if (i915.enable_execlists)
2513 			ret = logical_ring_flush_all_caches(request);
2514 		else
2515 			ret = intel_ring_flush_all_caches(request);
2516 		/* Not allowed to fail! */
2517 		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2518 	}
2519 
2520 	/* Record the position of the start of the request so that
2521 	 * should we detect the updated seqno part-way through the
2522 	 * GPU processing the request, we never over-estimate the
2523 	 * position of the head.
2524 	 */
2525 	request->postfix = intel_ring_get_tail(ringbuf);
2526 
2527 	if (i915.enable_execlists)
2528 		ret = ring->emit_request(request);
2529 	else {
2530 		ret = ring->add_request(request);
2531 
2532 		request->tail = intel_ring_get_tail(ringbuf);
2533 	}
2534 	/* Not allowed to fail! */
2535 	WARN(ret, "emit|add_request failed: %d!\n", ret);
2536 
2537 	request->head = request_start;
2538 
2539 	/* Whilst this request exists, batch_obj will be on the
2540 	 * active_list, and so will hold the active reference. Only when this
2541 	 * request is retired will the the batch_obj be moved onto the
2542 	 * inactive_list and lose its active reference. Hence we do not need
2543 	 * to explicitly hold another reference here.
2544 	 */
2545 	request->batch_obj = obj;
2546 
2547 	request->emitted_jiffies = jiffies;
2548 	ring->last_submitted_seqno = request->seqno;
2549 	list_add_tail(&request->list, &ring->request_list);
2550 
2551 	trace_i915_gem_request_add(request);
2552 
2553 	i915_queue_hangcheck(ring->dev);
2554 
2555 	queue_delayed_work(dev_priv->wq,
2556 			   &dev_priv->mm.retire_work,
2557 			   round_jiffies_up_relative(HZ));
2558 	intel_mark_busy(dev_priv->dev);
2559 
2560 	/* Sanity check that the reserved size was large enough. */
2561 	intel_ring_reserved_space_end(ringbuf);
2562 }
2563 
2564 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2565 				   const struct intel_context *ctx)
2566 {
2567 	unsigned long elapsed;
2568 
2569 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2570 
2571 	if (ctx->hang_stats.banned)
2572 		return true;
2573 
2574 	if (ctx->hang_stats.ban_period_seconds &&
2575 	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2576 		if (!i915_gem_context_is_default(ctx)) {
2577 			DRM_DEBUG("context hanging too fast, banning!\n");
2578 			return true;
2579 		} else if (i915_stop_ring_allow_ban(dev_priv)) {
2580 			if (i915_stop_ring_allow_warn(dev_priv))
2581 				DRM_ERROR("gpu hanging too fast, banning!\n");
2582 			return true;
2583 		}
2584 	}
2585 
2586 	return false;
2587 }
2588 
2589 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2590 				  struct intel_context *ctx,
2591 				  const bool guilty)
2592 {
2593 	struct i915_ctx_hang_stats *hs;
2594 
2595 	if (WARN_ON(!ctx))
2596 		return;
2597 
2598 	hs = &ctx->hang_stats;
2599 
2600 	if (guilty) {
2601 		hs->banned = i915_context_is_banned(dev_priv, ctx);
2602 		hs->batch_active++;
2603 		hs->guilty_ts = get_seconds();
2604 	} else {
2605 		hs->batch_pending++;
2606 	}
2607 }
2608 
2609 void i915_gem_request_free(struct kref *req_ref)
2610 {
2611 	struct drm_i915_gem_request *req = container_of(req_ref,
2612 						 typeof(*req), ref);
2613 	struct intel_context *ctx = req->ctx;
2614 
2615 	if (req->file_priv)
2616 		i915_gem_request_remove_from_client(req);
2617 
2618 	if (ctx) {
2619 		if (i915.enable_execlists) {
2620 			if (ctx != req->ring->default_context)
2621 				intel_lr_context_unpin(req);
2622 		}
2623 
2624 		i915_gem_context_unreference(ctx);
2625 	}
2626 
2627 	kmem_cache_free(req->i915->requests, req);
2628 }
2629 
2630 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2631 			   struct intel_context *ctx,
2632 			   struct drm_i915_gem_request **req_out)
2633 {
2634 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
2635 	struct drm_i915_gem_request *req;
2636 	int ret;
2637 
2638 	if (!req_out)
2639 		return -EINVAL;
2640 
2641 	*req_out = NULL;
2642 
2643 	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2644 	if (req == NULL)
2645 		return -ENOMEM;
2646 
2647 	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2648 	if (ret)
2649 		goto err;
2650 
2651 	kref_init(&req->ref);
2652 	req->i915 = dev_priv;
2653 	req->ring = ring;
2654 	req->ctx  = ctx;
2655 	i915_gem_context_reference(req->ctx);
2656 
2657 	if (i915.enable_execlists)
2658 		ret = intel_logical_ring_alloc_request_extras(req);
2659 	else
2660 		ret = intel_ring_alloc_request_extras(req);
2661 	if (ret) {
2662 		i915_gem_context_unreference(req->ctx);
2663 		goto err;
2664 	}
2665 
2666 	/*
2667 	 * Reserve space in the ring buffer for all the commands required to
2668 	 * eventually emit this request. This is to guarantee that the
2669 	 * i915_add_request() call can't fail. Note that the reserve may need
2670 	 * to be redone if the request is not actually submitted straight
2671 	 * away, e.g. because a GPU scheduler has deferred it.
2672 	 */
2673 	if (i915.enable_execlists)
2674 		ret = intel_logical_ring_reserve_space(req);
2675 	else
2676 		ret = intel_ring_reserve_space(req);
2677 	if (ret) {
2678 		/*
2679 		 * At this point, the request is fully allocated even if not
2680 		 * fully prepared. Thus it can be cleaned up using the proper
2681 		 * free code.
2682 		 */
2683 		i915_gem_request_cancel(req);
2684 		return ret;
2685 	}
2686 
2687 	*req_out = req;
2688 	return 0;
2689 
2690 err:
2691 	kmem_cache_free(dev_priv->requests, req);
2692 	return ret;
2693 }
2694 
2695 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2696 {
2697 	intel_ring_reserved_space_cancel(req->ringbuf);
2698 
2699 	i915_gem_request_unreference(req);
2700 }
2701 
2702 struct drm_i915_gem_request *
2703 i915_gem_find_active_request(struct intel_engine_cs *ring)
2704 {
2705 	struct drm_i915_gem_request *request;
2706 
2707 	list_for_each_entry(request, &ring->request_list, list) {
2708 		if (i915_gem_request_completed(request, false))
2709 			continue;
2710 
2711 		return request;
2712 	}
2713 
2714 	return NULL;
2715 }
2716 
2717 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2718 				       struct intel_engine_cs *ring)
2719 {
2720 	struct drm_i915_gem_request *request;
2721 	bool ring_hung;
2722 
2723 	request = i915_gem_find_active_request(ring);
2724 
2725 	if (request == NULL)
2726 		return;
2727 
2728 	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2729 
2730 	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2731 
2732 	list_for_each_entry_continue(request, &ring->request_list, list)
2733 		i915_set_reset_status(dev_priv, request->ctx, false);
2734 }
2735 
2736 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2737 					struct intel_engine_cs *ring)
2738 {
2739 	while (!list_empty(&ring->active_list)) {
2740 		struct drm_i915_gem_object *obj;
2741 
2742 		obj = list_first_entry(&ring->active_list,
2743 				       struct drm_i915_gem_object,
2744 				       ring_list[ring->id]);
2745 
2746 		i915_gem_object_retire__read(obj, ring->id);
2747 	}
2748 
2749 	/*
2750 	 * Clear the execlists queue up before freeing the requests, as those
2751 	 * are the ones that keep the context and ringbuffer backing objects
2752 	 * pinned in place.
2753 	 */
2754 	while (!list_empty(&ring->execlist_queue)) {
2755 		struct drm_i915_gem_request *submit_req;
2756 
2757 		submit_req = list_first_entry(&ring->execlist_queue,
2758 				struct drm_i915_gem_request,
2759 				execlist_link);
2760 		list_del(&submit_req->execlist_link);
2761 
2762 		if (submit_req->ctx != ring->default_context)
2763 			intel_lr_context_unpin(submit_req);
2764 
2765 		i915_gem_request_unreference(submit_req);
2766 	}
2767 
2768 	/*
2769 	 * We must free the requests after all the corresponding objects have
2770 	 * been moved off active lists. Which is the same order as the normal
2771 	 * retire_requests function does. This is important if object hold
2772 	 * implicit references on things like e.g. ppgtt address spaces through
2773 	 * the request.
2774 	 */
2775 	while (!list_empty(&ring->request_list)) {
2776 		struct drm_i915_gem_request *request;
2777 
2778 		request = list_first_entry(&ring->request_list,
2779 					   struct drm_i915_gem_request,
2780 					   list);
2781 
2782 		i915_gem_request_retire(request);
2783 	}
2784 }
2785 
2786 void i915_gem_reset(struct drm_device *dev)
2787 {
2788 	struct drm_i915_private *dev_priv = dev->dev_private;
2789 	struct intel_engine_cs *ring;
2790 	int i;
2791 
2792 	/*
2793 	 * Before we free the objects from the requests, we need to inspect
2794 	 * them for finding the guilty party. As the requests only borrow
2795 	 * their reference to the objects, the inspection must be done first.
2796 	 */
2797 	for_each_ring(ring, dev_priv, i)
2798 		i915_gem_reset_ring_status(dev_priv, ring);
2799 
2800 	for_each_ring(ring, dev_priv, i)
2801 		i915_gem_reset_ring_cleanup(dev_priv, ring);
2802 
2803 	i915_gem_context_reset(dev);
2804 
2805 	i915_gem_restore_fences(dev);
2806 
2807 	WARN_ON(i915_verify_lists(dev));
2808 }
2809 
2810 /**
2811  * This function clears the request list as sequence numbers are passed.
2812  */
2813 void
2814 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2815 {
2816 	WARN_ON(i915_verify_lists(ring->dev));
2817 
2818 	/* Retire requests first as we use it above for the early return.
2819 	 * If we retire requests last, we may use a later seqno and so clear
2820 	 * the requests lists without clearing the active list, leading to
2821 	 * confusion.
2822 	 */
2823 	while (!list_empty(&ring->request_list)) {
2824 		struct drm_i915_gem_request *request;
2825 
2826 		request = list_first_entry(&ring->request_list,
2827 					   struct drm_i915_gem_request,
2828 					   list);
2829 
2830 		if (!i915_gem_request_completed(request, true))
2831 			break;
2832 
2833 		i915_gem_request_retire(request);
2834 	}
2835 
2836 	/* Move any buffers on the active list that are no longer referenced
2837 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
2838 	 * before we free the context associated with the requests.
2839 	 */
2840 	while (!list_empty(&ring->active_list)) {
2841 		struct drm_i915_gem_object *obj;
2842 
2843 		obj = list_first_entry(&ring->active_list,
2844 				      struct drm_i915_gem_object,
2845 				      ring_list[ring->id]);
2846 
2847 		if (!list_empty(&obj->last_read_req[ring->id]->list))
2848 			break;
2849 
2850 		i915_gem_object_retire__read(obj, ring->id);
2851 	}
2852 
2853 	if (unlikely(ring->trace_irq_req &&
2854 		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2855 		ring->irq_put(ring);
2856 		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2857 	}
2858 
2859 	WARN_ON(i915_verify_lists(ring->dev));
2860 }
2861 
2862 bool
2863 i915_gem_retire_requests(struct drm_device *dev)
2864 {
2865 	struct drm_i915_private *dev_priv = dev->dev_private;
2866 	struct intel_engine_cs *ring;
2867 	bool idle = true;
2868 	int i;
2869 
2870 	for_each_ring(ring, dev_priv, i) {
2871 		i915_gem_retire_requests_ring(ring);
2872 		idle &= list_empty(&ring->request_list);
2873 		if (i915.enable_execlists) {
2874 			unsigned long flags;
2875 
2876 			spin_lock_irqsave(&ring->execlist_lock, flags);
2877 			idle &= list_empty(&ring->execlist_queue);
2878 			spin_unlock_irqrestore(&ring->execlist_lock, flags);
2879 
2880 			intel_execlists_retire_requests(ring);
2881 		}
2882 	}
2883 
2884 	if (idle)
2885 		mod_delayed_work(dev_priv->wq,
2886 				   &dev_priv->mm.idle_work,
2887 				   msecs_to_jiffies(100));
2888 
2889 	return idle;
2890 }
2891 
2892 static void
2893 i915_gem_retire_work_handler(struct work_struct *work)
2894 {
2895 	struct drm_i915_private *dev_priv =
2896 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
2897 	struct drm_device *dev = dev_priv->dev;
2898 	bool idle;
2899 
2900 	/* Come back later if the device is busy... */
2901 	idle = false;
2902 	if (mutex_trylock(&dev->struct_mutex)) {
2903 		idle = i915_gem_retire_requests(dev);
2904 		mutex_unlock(&dev->struct_mutex);
2905 	}
2906 	if (!idle)
2907 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2908 				   round_jiffies_up_relative(HZ));
2909 }
2910 
2911 static void
2912 i915_gem_idle_work_handler(struct work_struct *work)
2913 {
2914 	struct drm_i915_private *dev_priv =
2915 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2916 	struct drm_device *dev = dev_priv->dev;
2917 	struct intel_engine_cs *ring;
2918 	int i;
2919 
2920 	for_each_ring(ring, dev_priv, i)
2921 		if (!list_empty(&ring->request_list))
2922 			return;
2923 
2924 	intel_mark_idle(dev);
2925 
2926 	if (mutex_trylock(&dev->struct_mutex)) {
2927 		struct intel_engine_cs *ring;
2928 		int i;
2929 
2930 		for_each_ring(ring, dev_priv, i)
2931 			i915_gem_batch_pool_fini(&ring->batch_pool);
2932 
2933 		mutex_unlock(&dev->struct_mutex);
2934 	}
2935 }
2936 
2937 /**
2938  * Ensures that an object will eventually get non-busy by flushing any required
2939  * write domains, emitting any outstanding lazy request and retiring and
2940  * completed requests.
2941  */
2942 static int
2943 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2944 {
2945 	int i;
2946 
2947 	if (!obj->active)
2948 		return 0;
2949 
2950 	for (i = 0; i < I915_NUM_RINGS; i++) {
2951 		struct drm_i915_gem_request *req;
2952 
2953 		req = obj->last_read_req[i];
2954 		if (req == NULL)
2955 			continue;
2956 
2957 		if (list_empty(&req->list))
2958 			goto retire;
2959 
2960 		if (i915_gem_request_completed(req, true)) {
2961 			__i915_gem_request_retire__upto(req);
2962 retire:
2963 			i915_gem_object_retire__read(obj, i);
2964 		}
2965 	}
2966 
2967 	return 0;
2968 }
2969 
2970 /**
2971  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2972  * @DRM_IOCTL_ARGS: standard ioctl arguments
2973  *
2974  * Returns 0 if successful, else an error is returned with the remaining time in
2975  * the timeout parameter.
2976  *  -ETIME: object is still busy after timeout
2977  *  -ERESTARTSYS: signal interrupted the wait
2978  *  -ENONENT: object doesn't exist
2979  * Also possible, but rare:
2980  *  -EAGAIN: GPU wedged
2981  *  -ENOMEM: damn
2982  *  -ENODEV: Internal IRQ fail
2983  *  -E?: The add request failed
2984  *
2985  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2986  * non-zero timeout parameter the wait ioctl will wait for the given number of
2987  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2988  * without holding struct_mutex the object may become re-busied before this
2989  * function completes. A similar but shorter * race condition exists in the busy
2990  * ioctl
2991  */
2992 int
2993 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2994 {
2995 	struct drm_i915_private *dev_priv = dev->dev_private;
2996 	struct drm_i915_gem_wait *args = data;
2997 	struct drm_i915_gem_object *obj;
2998 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
2999 	unsigned reset_counter;
3000 	int i, n = 0;
3001 	int ret;
3002 
3003 	if (args->flags != 0)
3004 		return -EINVAL;
3005 
3006 	ret = i915_mutex_lock_interruptible(dev);
3007 	if (ret)
3008 		return ret;
3009 
3010 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3011 	if (&obj->base == NULL) {
3012 		mutex_unlock(&dev->struct_mutex);
3013 		return -ENOENT;
3014 	}
3015 
3016 	/* Need to make sure the object gets inactive eventually. */
3017 	ret = i915_gem_object_flush_active(obj);
3018 	if (ret)
3019 		goto out;
3020 
3021 	if (!obj->active)
3022 		goto out;
3023 
3024 	/* Do this after OLR check to make sure we make forward progress polling
3025 	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3026 	 */
3027 	if (args->timeout_ns == 0) {
3028 		ret = -ETIME;
3029 		goto out;
3030 	}
3031 
3032 	drm_gem_object_unreference(&obj->base);
3033 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3034 
3035 	for (i = 0; i < I915_NUM_RINGS; i++) {
3036 		if (obj->last_read_req[i] == NULL)
3037 			continue;
3038 
3039 		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3040 	}
3041 
3042 	mutex_unlock(&dev->struct_mutex);
3043 
3044 	for (i = 0; i < n; i++) {
3045 		if (ret == 0)
3046 			ret = __i915_wait_request(req[i], reset_counter, true,
3047 						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3048 						  file->driver_priv);
3049 		i915_gem_request_unreference__unlocked(req[i]);
3050 	}
3051 	return ret;
3052 
3053 out:
3054 	drm_gem_object_unreference(&obj->base);
3055 	mutex_unlock(&dev->struct_mutex);
3056 	return ret;
3057 }
3058 
3059 static int
3060 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3061 		       struct intel_engine_cs *to,
3062 		       struct drm_i915_gem_request *from_req,
3063 		       struct drm_i915_gem_request **to_req)
3064 {
3065 	struct intel_engine_cs *from;
3066 	int ret;
3067 
3068 	from = i915_gem_request_get_ring(from_req);
3069 	if (to == from)
3070 		return 0;
3071 
3072 	if (i915_gem_request_completed(from_req, true))
3073 		return 0;
3074 
3075 	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3076 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3077 		ret = __i915_wait_request(from_req,
3078 					  atomic_read(&i915->gpu_error.reset_counter),
3079 					  i915->mm.interruptible,
3080 					  NULL,
3081 					  &i915->rps.semaphores);
3082 		if (ret)
3083 			return ret;
3084 
3085 		i915_gem_object_retire_request(obj, from_req);
3086 	} else {
3087 		int idx = intel_ring_sync_index(from, to);
3088 		u32 seqno = i915_gem_request_get_seqno(from_req);
3089 
3090 		WARN_ON(!to_req);
3091 
3092 		if (seqno <= from->semaphore.sync_seqno[idx])
3093 			return 0;
3094 
3095 		if (*to_req == NULL) {
3096 			ret = i915_gem_request_alloc(to, to->default_context, to_req);
3097 			if (ret)
3098 				return ret;
3099 		}
3100 
3101 		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3102 		ret = to->semaphore.sync_to(*to_req, from, seqno);
3103 		if (ret)
3104 			return ret;
3105 
3106 		/* We use last_read_req because sync_to()
3107 		 * might have just caused seqno wrap under
3108 		 * the radar.
3109 		 */
3110 		from->semaphore.sync_seqno[idx] =
3111 			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3112 	}
3113 
3114 	return 0;
3115 }
3116 
3117 /**
3118  * i915_gem_object_sync - sync an object to a ring.
3119  *
3120  * @obj: object which may be in use on another ring.
3121  * @to: ring we wish to use the object on. May be NULL.
3122  * @to_req: request we wish to use the object for. See below.
3123  *          This will be allocated and returned if a request is
3124  *          required but not passed in.
3125  *
3126  * This code is meant to abstract object synchronization with the GPU.
3127  * Calling with NULL implies synchronizing the object with the CPU
3128  * rather than a particular GPU ring. Conceptually we serialise writes
3129  * between engines inside the GPU. We only allow one engine to write
3130  * into a buffer at any time, but multiple readers. To ensure each has
3131  * a coherent view of memory, we must:
3132  *
3133  * - If there is an outstanding write request to the object, the new
3134  *   request must wait for it to complete (either CPU or in hw, requests
3135  *   on the same ring will be naturally ordered).
3136  *
3137  * - If we are a write request (pending_write_domain is set), the new
3138  *   request must wait for outstanding read requests to complete.
3139  *
3140  * For CPU synchronisation (NULL to) no request is required. For syncing with
3141  * rings to_req must be non-NULL. However, a request does not have to be
3142  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3143  * request will be allocated automatically and returned through *to_req. Note
3144  * that it is not guaranteed that commands will be emitted (because the system
3145  * might already be idle). Hence there is no need to create a request that
3146  * might never have any work submitted. Note further that if a request is
3147  * returned in *to_req, it is the responsibility of the caller to submit
3148  * that request (after potentially adding more work to it).
3149  *
3150  * Returns 0 if successful, else propagates up the lower layer error.
3151  */
3152 int
3153 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3154 		     struct intel_engine_cs *to,
3155 		     struct drm_i915_gem_request **to_req)
3156 {
3157 	const bool readonly = obj->base.pending_write_domain == 0;
3158 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3159 	int ret, i, n;
3160 
3161 	if (!obj->active)
3162 		return 0;
3163 
3164 	if (to == NULL)
3165 		return i915_gem_object_wait_rendering(obj, readonly);
3166 
3167 	n = 0;
3168 	if (readonly) {
3169 		if (obj->last_write_req)
3170 			req[n++] = obj->last_write_req;
3171 	} else {
3172 		for (i = 0; i < I915_NUM_RINGS; i++)
3173 			if (obj->last_read_req[i])
3174 				req[n++] = obj->last_read_req[i];
3175 	}
3176 	for (i = 0; i < n; i++) {
3177 		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3178 		if (ret)
3179 			return ret;
3180 	}
3181 
3182 	return 0;
3183 }
3184 
3185 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3186 {
3187 	u32 old_write_domain, old_read_domains;
3188 
3189 	/* Force a pagefault for domain tracking on next user access */
3190 	i915_gem_release_mmap(obj);
3191 
3192 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3193 		return;
3194 
3195 	/* Wait for any direct GTT access to complete */
3196 	mb();
3197 
3198 	old_read_domains = obj->base.read_domains;
3199 	old_write_domain = obj->base.write_domain;
3200 
3201 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3202 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3203 
3204 	trace_i915_gem_object_change_domain(obj,
3205 					    old_read_domains,
3206 					    old_write_domain);
3207 }
3208 
3209 int i915_vma_unbind(struct i915_vma *vma)
3210 {
3211 	struct drm_i915_gem_object *obj = vma->obj;
3212 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3213 	int ret;
3214 
3215 	if (list_empty(&vma->vma_link))
3216 		return 0;
3217 
3218 	if (!drm_mm_node_allocated(&vma->node)) {
3219 		i915_gem_vma_destroy(vma);
3220 		return 0;
3221 	}
3222 
3223 	if (vma->pin_count)
3224 		return -EBUSY;
3225 
3226 	BUG_ON(obj->pages == NULL);
3227 
3228 	ret = i915_gem_object_wait_rendering(obj, false);
3229 	if (ret)
3230 		return ret;
3231 	/* Continue on if we fail due to EIO, the GPU is hung so we
3232 	 * should be safe and we need to cleanup or else we might
3233 	 * cause memory corruption through use-after-free.
3234 	 */
3235 
3236 	if (i915_is_ggtt(vma->vm) &&
3237 	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3238 		i915_gem_object_finish_gtt(obj);
3239 
3240 		/* release the fence reg _after_ flushing */
3241 		ret = i915_gem_object_put_fence(obj);
3242 		if (ret)
3243 			return ret;
3244 	}
3245 
3246 	trace_i915_vma_unbind(vma);
3247 
3248 	vma->vm->unbind_vma(vma);
3249 	vma->bound = 0;
3250 
3251 	list_del_init(&vma->mm_list);
3252 	if (i915_is_ggtt(vma->vm)) {
3253 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3254 			obj->map_and_fenceable = false;
3255 		} else if (vma->ggtt_view.pages) {
3256 			sg_free_table(vma->ggtt_view.pages);
3257 			kfree(vma->ggtt_view.pages);
3258 		}
3259 		vma->ggtt_view.pages = NULL;
3260 	}
3261 
3262 	drm_mm_remove_node(&vma->node);
3263 	i915_gem_vma_destroy(vma);
3264 
3265 	/* Since the unbound list is global, only move to that list if
3266 	 * no more VMAs exist. */
3267 	if (list_empty(&obj->vma_list))
3268 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3269 
3270 	/* And finally now the object is completely decoupled from this vma,
3271 	 * we can drop its hold on the backing storage and allow it to be
3272 	 * reaped by the shrinker.
3273 	 */
3274 	i915_gem_object_unpin_pages(obj);
3275 
3276 	return 0;
3277 }
3278 
3279 int i915_gpu_idle(struct drm_device *dev)
3280 {
3281 	struct drm_i915_private *dev_priv = dev->dev_private;
3282 	struct intel_engine_cs *ring;
3283 	int ret, i;
3284 
3285 	/* Flush everything onto the inactive list. */
3286 	for_each_ring(ring, dev_priv, i) {
3287 		if (!i915.enable_execlists) {
3288 			struct drm_i915_gem_request *req;
3289 
3290 			ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3291 			if (ret)
3292 				return ret;
3293 
3294 			ret = i915_switch_context(req);
3295 			if (ret) {
3296 				i915_gem_request_cancel(req);
3297 				return ret;
3298 			}
3299 
3300 			i915_add_request_no_flush(req);
3301 		}
3302 
3303 		ret = intel_ring_idle(ring);
3304 		if (ret)
3305 			return ret;
3306 	}
3307 
3308 	WARN_ON(i915_verify_lists(dev));
3309 	return 0;
3310 }
3311 
3312 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3313 				     unsigned long cache_level)
3314 {
3315 	struct drm_mm_node *gtt_space = &vma->node;
3316 	struct drm_mm_node *other;
3317 
3318 	/*
3319 	 * On some machines we have to be careful when putting differing types
3320 	 * of snoopable memory together to avoid the prefetcher crossing memory
3321 	 * domains and dying. During vm initialisation, we decide whether or not
3322 	 * these constraints apply and set the drm_mm.color_adjust
3323 	 * appropriately.
3324 	 */
3325 	if (vma->vm->mm.color_adjust == NULL)
3326 		return true;
3327 
3328 	if (!drm_mm_node_allocated(gtt_space))
3329 		return true;
3330 
3331 	if (list_empty(&gtt_space->node_list))
3332 		return true;
3333 
3334 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3335 	if (other->allocated && !other->hole_follows && other->color != cache_level)
3336 		return false;
3337 
3338 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3339 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3340 		return false;
3341 
3342 	return true;
3343 }
3344 
3345 /**
3346  * Finds free space in the GTT aperture and binds the object or a view of it
3347  * there.
3348  */
3349 static struct i915_vma *
3350 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3351 			   struct i915_address_space *vm,
3352 			   const struct i915_ggtt_view *ggtt_view,
3353 			   unsigned alignment,
3354 			   uint64_t flags)
3355 {
3356 	struct drm_device *dev = obj->base.dev;
3357 	struct drm_i915_private *dev_priv = dev->dev_private;
3358 	u32 size, fence_size, fence_alignment, unfenced_alignment;
3359 	u64 start =
3360 		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3361 	u64 end =
3362 		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3363 	struct i915_vma *vma;
3364 	int ret;
3365 
3366 	if (i915_is_ggtt(vm)) {
3367 		u32 view_size;
3368 
3369 		if (WARN_ON(!ggtt_view))
3370 			return ERR_PTR(-EINVAL);
3371 
3372 		view_size = i915_ggtt_view_size(obj, ggtt_view);
3373 
3374 		fence_size = i915_gem_get_gtt_size(dev,
3375 						   view_size,
3376 						   obj->tiling_mode);
3377 		fence_alignment = i915_gem_get_gtt_alignment(dev,
3378 							     view_size,
3379 							     obj->tiling_mode,
3380 							     true);
3381 		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3382 								view_size,
3383 								obj->tiling_mode,
3384 								false);
3385 		size = flags & PIN_MAPPABLE ? fence_size : view_size;
3386 	} else {
3387 		fence_size = i915_gem_get_gtt_size(dev,
3388 						   obj->base.size,
3389 						   obj->tiling_mode);
3390 		fence_alignment = i915_gem_get_gtt_alignment(dev,
3391 							     obj->base.size,
3392 							     obj->tiling_mode,
3393 							     true);
3394 		unfenced_alignment =
3395 			i915_gem_get_gtt_alignment(dev,
3396 						   obj->base.size,
3397 						   obj->tiling_mode,
3398 						   false);
3399 		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3400 	}
3401 
3402 	if (alignment == 0)
3403 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3404 						unfenced_alignment;
3405 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3406 		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3407 			  ggtt_view ? ggtt_view->type : 0,
3408 			  alignment);
3409 		return ERR_PTR(-EINVAL);
3410 	}
3411 
3412 	/* If binding the object/GGTT view requires more space than the entire
3413 	 * aperture has, reject it early before evicting everything in a vain
3414 	 * attempt to find space.
3415 	 */
3416 	if (size > end) {
3417 		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%llu\n",
3418 			  ggtt_view ? ggtt_view->type : 0,
3419 			  size,
3420 			  flags & PIN_MAPPABLE ? "mappable" : "total",
3421 			  end);
3422 		return ERR_PTR(-E2BIG);
3423 	}
3424 
3425 	ret = i915_gem_object_get_pages(obj);
3426 	if (ret)
3427 		return ERR_PTR(ret);
3428 
3429 	i915_gem_object_pin_pages(obj);
3430 
3431 	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3432 			  i915_gem_obj_lookup_or_create_vma(obj, vm);
3433 
3434 	if (IS_ERR(vma))
3435 		goto err_unpin;
3436 
3437 search_free:
3438 	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3439 						  size, alignment,
3440 						  obj->cache_level,
3441 						  start, end,
3442 						  DRM_MM_SEARCH_DEFAULT,
3443 						  DRM_MM_CREATE_DEFAULT);
3444 	if (ret) {
3445 		ret = i915_gem_evict_something(dev, vm, size, alignment,
3446 					       obj->cache_level,
3447 					       start, end,
3448 					       flags);
3449 		if (ret == 0)
3450 			goto search_free;
3451 
3452 		goto err_free_vma;
3453 	}
3454 	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3455 		ret = -EINVAL;
3456 		goto err_remove_node;
3457 	}
3458 
3459 	trace_i915_vma_bind(vma, flags);
3460 	ret = i915_vma_bind(vma, obj->cache_level, flags);
3461 	if (ret)
3462 		goto err_remove_node;
3463 
3464 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3465 	list_add_tail(&vma->mm_list, &vm->inactive_list);
3466 
3467 	return vma;
3468 
3469 err_remove_node:
3470 	drm_mm_remove_node(&vma->node);
3471 err_free_vma:
3472 	i915_gem_vma_destroy(vma);
3473 	vma = ERR_PTR(ret);
3474 err_unpin:
3475 	i915_gem_object_unpin_pages(obj);
3476 	return vma;
3477 }
3478 
3479 bool
3480 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3481 			bool force)
3482 {
3483 	/* If we don't have a page list set up, then we're not pinned
3484 	 * to GPU, and we can ignore the cache flush because it'll happen
3485 	 * again at bind time.
3486 	 */
3487 	if (obj->pages == NULL)
3488 		return false;
3489 
3490 	/*
3491 	 * Stolen memory is always coherent with the GPU as it is explicitly
3492 	 * marked as wc by the system, or the system is cache-coherent.
3493 	 */
3494 	if (obj->stolen || obj->phys_handle)
3495 		return false;
3496 
3497 	/* If the GPU is snooping the contents of the CPU cache,
3498 	 * we do not need to manually clear the CPU cache lines.  However,
3499 	 * the caches are only snooped when the render cache is
3500 	 * flushed/invalidated.  As we always have to emit invalidations
3501 	 * and flushes when moving into and out of the RENDER domain, correct
3502 	 * snooping behaviour occurs naturally as the result of our domain
3503 	 * tracking.
3504 	 */
3505 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3506 		obj->cache_dirty = true;
3507 		return false;
3508 	}
3509 
3510 	trace_i915_gem_object_clflush(obj);
3511 	drm_clflush_sg(obj->pages);
3512 	obj->cache_dirty = false;
3513 
3514 	return true;
3515 }
3516 
3517 /** Flushes the GTT write domain for the object if it's dirty. */
3518 static void
3519 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3520 {
3521 	uint32_t old_write_domain;
3522 
3523 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3524 		return;
3525 
3526 	/* No actual flushing is required for the GTT write domain.  Writes
3527 	 * to it immediately go to main memory as far as we know, so there's
3528 	 * no chipset flush.  It also doesn't land in render cache.
3529 	 *
3530 	 * However, we do have to enforce the order so that all writes through
3531 	 * the GTT land before any writes to the device, such as updates to
3532 	 * the GATT itself.
3533 	 */
3534 	wmb();
3535 
3536 	old_write_domain = obj->base.write_domain;
3537 	obj->base.write_domain = 0;
3538 
3539 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3540 
3541 	trace_i915_gem_object_change_domain(obj,
3542 					    obj->base.read_domains,
3543 					    old_write_domain);
3544 }
3545 
3546 /** Flushes the CPU write domain for the object if it's dirty. */
3547 static void
3548 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3549 {
3550 	uint32_t old_write_domain;
3551 
3552 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3553 		return;
3554 
3555 	if (i915_gem_clflush_object(obj, obj->pin_display))
3556 		i915_gem_chipset_flush(obj->base.dev);
3557 
3558 	old_write_domain = obj->base.write_domain;
3559 	obj->base.write_domain = 0;
3560 
3561 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3562 
3563 	trace_i915_gem_object_change_domain(obj,
3564 					    obj->base.read_domains,
3565 					    old_write_domain);
3566 }
3567 
3568 /**
3569  * Moves a single object to the GTT read, and possibly write domain.
3570  *
3571  * This function returns when the move is complete, including waiting on
3572  * flushes to occur.
3573  */
3574 int
3575 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3576 {
3577 	uint32_t old_write_domain, old_read_domains;
3578 	struct i915_vma *vma;
3579 	int ret;
3580 
3581 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3582 		return 0;
3583 
3584 	ret = i915_gem_object_wait_rendering(obj, !write);
3585 	if (ret)
3586 		return ret;
3587 
3588 	/* Flush and acquire obj->pages so that we are coherent through
3589 	 * direct access in memory with previous cached writes through
3590 	 * shmemfs and that our cache domain tracking remains valid.
3591 	 * For example, if the obj->filp was moved to swap without us
3592 	 * being notified and releasing the pages, we would mistakenly
3593 	 * continue to assume that the obj remained out of the CPU cached
3594 	 * domain.
3595 	 */
3596 	ret = i915_gem_object_get_pages(obj);
3597 	if (ret)
3598 		return ret;
3599 
3600 	i915_gem_object_flush_cpu_write_domain(obj);
3601 
3602 	/* Serialise direct access to this object with the barriers for
3603 	 * coherent writes from the GPU, by effectively invalidating the
3604 	 * GTT domain upon first access.
3605 	 */
3606 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3607 		mb();
3608 
3609 	old_write_domain = obj->base.write_domain;
3610 	old_read_domains = obj->base.read_domains;
3611 
3612 	/* It should now be out of any other write domains, and we can update
3613 	 * the domain values for our changes.
3614 	 */
3615 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3616 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3617 	if (write) {
3618 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3619 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3620 		obj->dirty = 1;
3621 	}
3622 
3623 	trace_i915_gem_object_change_domain(obj,
3624 					    old_read_domains,
3625 					    old_write_domain);
3626 
3627 	/* And bump the LRU for this access */
3628 	vma = i915_gem_obj_to_ggtt(obj);
3629 	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3630 		list_move_tail(&vma->mm_list,
3631 			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3632 
3633 	return 0;
3634 }
3635 
3636 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3637 				    enum i915_cache_level cache_level)
3638 {
3639 	struct drm_device *dev = obj->base.dev;
3640 	struct i915_vma *vma, *next;
3641 	int ret;
3642 
3643 	if (obj->cache_level == cache_level)
3644 		return 0;
3645 
3646 	if (i915_gem_obj_is_pinned(obj)) {
3647 		DRM_DEBUG("can not change the cache level of pinned objects\n");
3648 		return -EBUSY;
3649 	}
3650 
3651 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3652 		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3653 			ret = i915_vma_unbind(vma);
3654 			if (ret)
3655 				return ret;
3656 		}
3657 	}
3658 
3659 	if (i915_gem_obj_bound_any(obj)) {
3660 		ret = i915_gem_object_wait_rendering(obj, false);
3661 		if (ret)
3662 			return ret;
3663 
3664 		i915_gem_object_finish_gtt(obj);
3665 
3666 		/* Before SandyBridge, you could not use tiling or fence
3667 		 * registers with snooped memory, so relinquish any fences
3668 		 * currently pointing to our region in the aperture.
3669 		 */
3670 		if (INTEL_INFO(dev)->gen < 6) {
3671 			ret = i915_gem_object_put_fence(obj);
3672 			if (ret)
3673 				return ret;
3674 		}
3675 
3676 		list_for_each_entry(vma, &obj->vma_list, vma_link)
3677 			if (drm_mm_node_allocated(&vma->node)) {
3678 				ret = i915_vma_bind(vma, cache_level,
3679 						    PIN_UPDATE);
3680 				if (ret)
3681 					return ret;
3682 			}
3683 	}
3684 
3685 	list_for_each_entry(vma, &obj->vma_list, vma_link)
3686 		vma->node.color = cache_level;
3687 	obj->cache_level = cache_level;
3688 
3689 	if (obj->cache_dirty &&
3690 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3691 	    cpu_write_needs_clflush(obj)) {
3692 		if (i915_gem_clflush_object(obj, true))
3693 			i915_gem_chipset_flush(obj->base.dev);
3694 	}
3695 
3696 	return 0;
3697 }
3698 
3699 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3700 			       struct drm_file *file)
3701 {
3702 	struct drm_i915_gem_caching *args = data;
3703 	struct drm_i915_gem_object *obj;
3704 
3705 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3706 	if (&obj->base == NULL)
3707 		return -ENOENT;
3708 
3709 	switch (obj->cache_level) {
3710 	case I915_CACHE_LLC:
3711 	case I915_CACHE_L3_LLC:
3712 		args->caching = I915_CACHING_CACHED;
3713 		break;
3714 
3715 	case I915_CACHE_WT:
3716 		args->caching = I915_CACHING_DISPLAY;
3717 		break;
3718 
3719 	default:
3720 		args->caching = I915_CACHING_NONE;
3721 		break;
3722 	}
3723 
3724 	drm_gem_object_unreference_unlocked(&obj->base);
3725 	return 0;
3726 }
3727 
3728 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3729 			       struct drm_file *file)
3730 {
3731 	struct drm_i915_gem_caching *args = data;
3732 	struct drm_i915_gem_object *obj;
3733 	enum i915_cache_level level;
3734 	int ret;
3735 
3736 	switch (args->caching) {
3737 	case I915_CACHING_NONE:
3738 		level = I915_CACHE_NONE;
3739 		break;
3740 	case I915_CACHING_CACHED:
3741 		level = I915_CACHE_LLC;
3742 		break;
3743 	case I915_CACHING_DISPLAY:
3744 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3745 		break;
3746 	default:
3747 		return -EINVAL;
3748 	}
3749 
3750 	ret = i915_mutex_lock_interruptible(dev);
3751 	if (ret)
3752 		return ret;
3753 
3754 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3755 	if (&obj->base == NULL) {
3756 		ret = -ENOENT;
3757 		goto unlock;
3758 	}
3759 
3760 	ret = i915_gem_object_set_cache_level(obj, level);
3761 
3762 	drm_gem_object_unreference(&obj->base);
3763 unlock:
3764 	mutex_unlock(&dev->struct_mutex);
3765 	return ret;
3766 }
3767 
3768 /*
3769  * Prepare buffer for display plane (scanout, cursors, etc).
3770  * Can be called from an uninterruptible phase (modesetting) and allows
3771  * any flushes to be pipelined (for pageflips).
3772  */
3773 int
3774 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3775 				     u32 alignment,
3776 				     struct intel_engine_cs *pipelined,
3777 				     struct drm_i915_gem_request **pipelined_request,
3778 				     const struct i915_ggtt_view *view)
3779 {
3780 	u32 old_read_domains, old_write_domain;
3781 	int ret;
3782 
3783 	ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
3784 	if (ret)
3785 		return ret;
3786 
3787 	/* Mark the pin_display early so that we account for the
3788 	 * display coherency whilst setting up the cache domains.
3789 	 */
3790 	obj->pin_display++;
3791 
3792 	/* The display engine is not coherent with the LLC cache on gen6.  As
3793 	 * a result, we make sure that the pinning that is about to occur is
3794 	 * done with uncached PTEs. This is lowest common denominator for all
3795 	 * chipsets.
3796 	 *
3797 	 * However for gen6+, we could do better by using the GFDT bit instead
3798 	 * of uncaching, which would allow us to flush all the LLC-cached data
3799 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3800 	 */
3801 	ret = i915_gem_object_set_cache_level(obj,
3802 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3803 	if (ret)
3804 		goto err_unpin_display;
3805 
3806 	/* As the user may map the buffer once pinned in the display plane
3807 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3808 	 * always use map_and_fenceable for all scanout buffers.
3809 	 */
3810 	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3811 				       view->type == I915_GGTT_VIEW_NORMAL ?
3812 				       PIN_MAPPABLE : 0);
3813 	if (ret)
3814 		goto err_unpin_display;
3815 
3816 	i915_gem_object_flush_cpu_write_domain(obj);
3817 
3818 	old_write_domain = obj->base.write_domain;
3819 	old_read_domains = obj->base.read_domains;
3820 
3821 	/* It should now be out of any other write domains, and we can update
3822 	 * the domain values for our changes.
3823 	 */
3824 	obj->base.write_domain = 0;
3825 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3826 
3827 	trace_i915_gem_object_change_domain(obj,
3828 					    old_read_domains,
3829 					    old_write_domain);
3830 
3831 	return 0;
3832 
3833 err_unpin_display:
3834 	obj->pin_display--;
3835 	return ret;
3836 }
3837 
3838 void
3839 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3840 					 const struct i915_ggtt_view *view)
3841 {
3842 	if (WARN_ON(obj->pin_display == 0))
3843 		return;
3844 
3845 	i915_gem_object_ggtt_unpin_view(obj, view);
3846 
3847 	obj->pin_display--;
3848 }
3849 
3850 /**
3851  * Moves a single object to the CPU read, and possibly write domain.
3852  *
3853  * This function returns when the move is complete, including waiting on
3854  * flushes to occur.
3855  */
3856 int
3857 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3858 {
3859 	uint32_t old_write_domain, old_read_domains;
3860 	int ret;
3861 
3862 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3863 		return 0;
3864 
3865 	ret = i915_gem_object_wait_rendering(obj, !write);
3866 	if (ret)
3867 		return ret;
3868 
3869 	i915_gem_object_flush_gtt_write_domain(obj);
3870 
3871 	old_write_domain = obj->base.write_domain;
3872 	old_read_domains = obj->base.read_domains;
3873 
3874 	/* Flush the CPU cache if it's still invalid. */
3875 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3876 		i915_gem_clflush_object(obj, false);
3877 
3878 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3879 	}
3880 
3881 	/* It should now be out of any other write domains, and we can update
3882 	 * the domain values for our changes.
3883 	 */
3884 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3885 
3886 	/* If we're writing through the CPU, then the GPU read domains will
3887 	 * need to be invalidated at next use.
3888 	 */
3889 	if (write) {
3890 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3891 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3892 	}
3893 
3894 	trace_i915_gem_object_change_domain(obj,
3895 					    old_read_domains,
3896 					    old_write_domain);
3897 
3898 	return 0;
3899 }
3900 
3901 /* Throttle our rendering by waiting until the ring has completed our requests
3902  * emitted over 20 msec ago.
3903  *
3904  * Note that if we were to use the current jiffies each time around the loop,
3905  * we wouldn't escape the function with any frames outstanding if the time to
3906  * render a frame was over 20ms.
3907  *
3908  * This should get us reasonable parallelism between CPU and GPU but also
3909  * relatively low latency when blocking on a particular request to finish.
3910  */
3911 static int
3912 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3913 {
3914 	struct drm_i915_private *dev_priv = dev->dev_private;
3915 	struct drm_i915_file_private *file_priv = file->driver_priv;
3916 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3917 	struct drm_i915_gem_request *request, *target = NULL;
3918 	unsigned reset_counter;
3919 	int ret;
3920 
3921 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3922 	if (ret)
3923 		return ret;
3924 
3925 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3926 	if (ret)
3927 		return ret;
3928 
3929 	spin_lock(&file_priv->mm.lock);
3930 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3931 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3932 			break;
3933 
3934 		/*
3935 		 * Note that the request might not have been submitted yet.
3936 		 * In which case emitted_jiffies will be zero.
3937 		 */
3938 		if (!request->emitted_jiffies)
3939 			continue;
3940 
3941 		target = request;
3942 	}
3943 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3944 	if (target)
3945 		i915_gem_request_reference(target);
3946 	spin_unlock(&file_priv->mm.lock);
3947 
3948 	if (target == NULL)
3949 		return 0;
3950 
3951 	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
3952 	if (ret == 0)
3953 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3954 
3955 	i915_gem_request_unreference__unlocked(target);
3956 
3957 	return ret;
3958 }
3959 
3960 static bool
3961 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
3962 {
3963 	struct drm_i915_gem_object *obj = vma->obj;
3964 
3965 	if (alignment &&
3966 	    vma->node.start & (alignment - 1))
3967 		return true;
3968 
3969 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
3970 		return true;
3971 
3972 	if (flags & PIN_OFFSET_BIAS &&
3973 	    vma->node.start < (flags & PIN_OFFSET_MASK))
3974 		return true;
3975 
3976 	return false;
3977 }
3978 
3979 static int
3980 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
3981 		       struct i915_address_space *vm,
3982 		       const struct i915_ggtt_view *ggtt_view,
3983 		       uint32_t alignment,
3984 		       uint64_t flags)
3985 {
3986 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3987 	struct i915_vma *vma;
3988 	unsigned bound;
3989 	int ret;
3990 
3991 	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
3992 		return -ENODEV;
3993 
3994 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3995 		return -EINVAL;
3996 
3997 	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
3998 		return -EINVAL;
3999 
4000 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4001 		return -EINVAL;
4002 
4003 	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4004 			  i915_gem_obj_to_vma(obj, vm);
4005 
4006 	if (IS_ERR(vma))
4007 		return PTR_ERR(vma);
4008 
4009 	if (vma) {
4010 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4011 			return -EBUSY;
4012 
4013 		if (i915_vma_misplaced(vma, alignment, flags)) {
4014 			unsigned long offset;
4015 			offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4016 					     i915_gem_obj_offset(obj, vm);
4017 			WARN(vma->pin_count,
4018 			     "bo is already pinned in %s with incorrect alignment:"
4019 			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4020 			     " obj->map_and_fenceable=%d\n",
4021 			     ggtt_view ? "ggtt" : "ppgtt",
4022 			     offset,
4023 			     alignment,
4024 			     !!(flags & PIN_MAPPABLE),
4025 			     obj->map_and_fenceable);
4026 			ret = i915_vma_unbind(vma);
4027 			if (ret)
4028 				return ret;
4029 
4030 			vma = NULL;
4031 		}
4032 	}
4033 
4034 	bound = vma ? vma->bound : 0;
4035 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4036 		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4037 						 flags);
4038 		if (IS_ERR(vma))
4039 			return PTR_ERR(vma);
4040 	} else {
4041 		ret = i915_vma_bind(vma, obj->cache_level, flags);
4042 		if (ret)
4043 			return ret;
4044 	}
4045 
4046 	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4047 	    (bound ^ vma->bound) & GLOBAL_BIND) {
4048 		bool mappable, fenceable;
4049 		u32 fence_size, fence_alignment;
4050 
4051 		fence_size = i915_gem_get_gtt_size(obj->base.dev,
4052 						   obj->base.size,
4053 						   obj->tiling_mode);
4054 		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4055 							     obj->base.size,
4056 							     obj->tiling_mode,
4057 							     true);
4058 
4059 		fenceable = (vma->node.size == fence_size &&
4060 			     (vma->node.start & (fence_alignment - 1)) == 0);
4061 
4062 		mappable = (vma->node.start + fence_size <=
4063 			    dev_priv->gtt.mappable_end);
4064 
4065 		obj->map_and_fenceable = mappable && fenceable;
4066 
4067 		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4068 	}
4069 
4070 	vma->pin_count++;
4071 	return 0;
4072 }
4073 
4074 int
4075 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4076 		    struct i915_address_space *vm,
4077 		    uint32_t alignment,
4078 		    uint64_t flags)
4079 {
4080 	return i915_gem_object_do_pin(obj, vm,
4081 				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4082 				      alignment, flags);
4083 }
4084 
4085 int
4086 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4087 			 const struct i915_ggtt_view *view,
4088 			 uint32_t alignment,
4089 			 uint64_t flags)
4090 {
4091 	if (WARN_ONCE(!view, "no view specified"))
4092 		return -EINVAL;
4093 
4094 	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4095 				      alignment, flags | PIN_GLOBAL);
4096 }
4097 
4098 void
4099 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4100 				const struct i915_ggtt_view *view)
4101 {
4102 	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4103 
4104 	BUG_ON(!vma);
4105 	WARN_ON(vma->pin_count == 0);
4106 	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4107 
4108 	--vma->pin_count;
4109 }
4110 
4111 int
4112 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4113 		    struct drm_file *file)
4114 {
4115 	struct drm_i915_gem_busy *args = data;
4116 	struct drm_i915_gem_object *obj;
4117 	int ret;
4118 
4119 	ret = i915_mutex_lock_interruptible(dev);
4120 	if (ret)
4121 		return ret;
4122 
4123 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4124 	if (&obj->base == NULL) {
4125 		ret = -ENOENT;
4126 		goto unlock;
4127 	}
4128 
4129 	/* Count all active objects as busy, even if they are currently not used
4130 	 * by the gpu. Users of this interface expect objects to eventually
4131 	 * become non-busy without any further actions, therefore emit any
4132 	 * necessary flushes here.
4133 	 */
4134 	ret = i915_gem_object_flush_active(obj);
4135 	if (ret)
4136 		goto unref;
4137 
4138 	BUILD_BUG_ON(I915_NUM_RINGS > 16);
4139 	args->busy = obj->active << 16;
4140 	if (obj->last_write_req)
4141 		args->busy |= obj->last_write_req->ring->id;
4142 
4143 unref:
4144 	drm_gem_object_unreference(&obj->base);
4145 unlock:
4146 	mutex_unlock(&dev->struct_mutex);
4147 	return ret;
4148 }
4149 
4150 int
4151 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4152 			struct drm_file *file_priv)
4153 {
4154 	return i915_gem_ring_throttle(dev, file_priv);
4155 }
4156 
4157 int
4158 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4159 		       struct drm_file *file_priv)
4160 {
4161 	struct drm_i915_private *dev_priv = dev->dev_private;
4162 	struct drm_i915_gem_madvise *args = data;
4163 	struct drm_i915_gem_object *obj;
4164 	int ret;
4165 
4166 	switch (args->madv) {
4167 	case I915_MADV_DONTNEED:
4168 	case I915_MADV_WILLNEED:
4169 	    break;
4170 	default:
4171 	    return -EINVAL;
4172 	}
4173 
4174 	ret = i915_mutex_lock_interruptible(dev);
4175 	if (ret)
4176 		return ret;
4177 
4178 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4179 	if (&obj->base == NULL) {
4180 		ret = -ENOENT;
4181 		goto unlock;
4182 	}
4183 
4184 	if (i915_gem_obj_is_pinned(obj)) {
4185 		ret = -EINVAL;
4186 		goto out;
4187 	}
4188 
4189 	if (obj->pages &&
4190 	    obj->tiling_mode != I915_TILING_NONE &&
4191 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4192 		if (obj->madv == I915_MADV_WILLNEED)
4193 			i915_gem_object_unpin_pages(obj);
4194 		if (args->madv == I915_MADV_WILLNEED)
4195 			i915_gem_object_pin_pages(obj);
4196 	}
4197 
4198 	if (obj->madv != __I915_MADV_PURGED)
4199 		obj->madv = args->madv;
4200 
4201 	/* if the object is no longer attached, discard its backing storage */
4202 	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4203 		i915_gem_object_truncate(obj);
4204 
4205 	args->retained = obj->madv != __I915_MADV_PURGED;
4206 
4207 out:
4208 	drm_gem_object_unreference(&obj->base);
4209 unlock:
4210 	mutex_unlock(&dev->struct_mutex);
4211 	return ret;
4212 }
4213 
4214 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4215 			  const struct drm_i915_gem_object_ops *ops)
4216 {
4217 	int i;
4218 
4219 	INIT_LIST_HEAD(&obj->global_list);
4220 	for (i = 0; i < I915_NUM_RINGS; i++)
4221 		INIT_LIST_HEAD(&obj->ring_list[i]);
4222 	INIT_LIST_HEAD(&obj->obj_exec_link);
4223 	INIT_LIST_HEAD(&obj->vma_list);
4224 	INIT_LIST_HEAD(&obj->batch_pool_link);
4225 
4226 	obj->ops = ops;
4227 
4228 	obj->fence_reg = I915_FENCE_REG_NONE;
4229 	obj->madv = I915_MADV_WILLNEED;
4230 
4231 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4232 }
4233 
4234 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4235 	.get_pages = i915_gem_object_get_pages_gtt,
4236 	.put_pages = i915_gem_object_put_pages_gtt,
4237 };
4238 
4239 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4240 						  size_t size)
4241 {
4242 	struct drm_i915_gem_object *obj;
4243 	struct address_space *mapping;
4244 	gfp_t mask;
4245 
4246 	obj = i915_gem_object_alloc(dev);
4247 	if (obj == NULL)
4248 		return NULL;
4249 
4250 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4251 		i915_gem_object_free(obj);
4252 		return NULL;
4253 	}
4254 
4255 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4256 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4257 		/* 965gm cannot relocate objects above 4GiB. */
4258 		mask &= ~__GFP_HIGHMEM;
4259 		mask |= __GFP_DMA32;
4260 	}
4261 
4262 	mapping = file_inode(obj->base.filp)->i_mapping;
4263 	mapping_set_gfp_mask(mapping, mask);
4264 
4265 	i915_gem_object_init(obj, &i915_gem_object_ops);
4266 
4267 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4268 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4269 
4270 	if (HAS_LLC(dev)) {
4271 		/* On some devices, we can have the GPU use the LLC (the CPU
4272 		 * cache) for about a 10% performance improvement
4273 		 * compared to uncached.  Graphics requests other than
4274 		 * display scanout are coherent with the CPU in
4275 		 * accessing this cache.  This means in this mode we
4276 		 * don't need to clflush on the CPU side, and on the
4277 		 * GPU side we only need to flush internal caches to
4278 		 * get data visible to the CPU.
4279 		 *
4280 		 * However, we maintain the display planes as UC, and so
4281 		 * need to rebind when first used as such.
4282 		 */
4283 		obj->cache_level = I915_CACHE_LLC;
4284 	} else
4285 		obj->cache_level = I915_CACHE_NONE;
4286 
4287 	trace_i915_gem_object_create(obj);
4288 
4289 	return obj;
4290 }
4291 
4292 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4293 {
4294 	/* If we are the last user of the backing storage (be it shmemfs
4295 	 * pages or stolen etc), we know that the pages are going to be
4296 	 * immediately released. In this case, we can then skip copying
4297 	 * back the contents from the GPU.
4298 	 */
4299 
4300 	if (obj->madv != I915_MADV_WILLNEED)
4301 		return false;
4302 
4303 	if (obj->base.filp == NULL)
4304 		return true;
4305 
4306 	/* At first glance, this looks racy, but then again so would be
4307 	 * userspace racing mmap against close. However, the first external
4308 	 * reference to the filp can only be obtained through the
4309 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4310 	 * acquiring such a reference whilst we are in the middle of
4311 	 * freeing the object.
4312 	 */
4313 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4314 }
4315 
4316 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4317 {
4318 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4319 	struct drm_device *dev = obj->base.dev;
4320 	struct drm_i915_private *dev_priv = dev->dev_private;
4321 	struct i915_vma *vma, *next;
4322 
4323 	intel_runtime_pm_get(dev_priv);
4324 
4325 	trace_i915_gem_object_destroy(obj);
4326 
4327 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4328 		int ret;
4329 
4330 		vma->pin_count = 0;
4331 		ret = i915_vma_unbind(vma);
4332 		if (WARN_ON(ret == -ERESTARTSYS)) {
4333 			bool was_interruptible;
4334 
4335 			was_interruptible = dev_priv->mm.interruptible;
4336 			dev_priv->mm.interruptible = false;
4337 
4338 			WARN_ON(i915_vma_unbind(vma));
4339 
4340 			dev_priv->mm.interruptible = was_interruptible;
4341 		}
4342 	}
4343 
4344 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4345 	 * before progressing. */
4346 	if (obj->stolen)
4347 		i915_gem_object_unpin_pages(obj);
4348 
4349 	WARN_ON(obj->frontbuffer_bits);
4350 
4351 	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4352 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4353 	    obj->tiling_mode != I915_TILING_NONE)
4354 		i915_gem_object_unpin_pages(obj);
4355 
4356 	if (WARN_ON(obj->pages_pin_count))
4357 		obj->pages_pin_count = 0;
4358 	if (discard_backing_storage(obj))
4359 		obj->madv = I915_MADV_DONTNEED;
4360 	i915_gem_object_put_pages(obj);
4361 	i915_gem_object_free_mmap_offset(obj);
4362 
4363 	BUG_ON(obj->pages);
4364 
4365 	if (obj->base.import_attach)
4366 		drm_prime_gem_destroy(&obj->base, NULL);
4367 
4368 	if (obj->ops->release)
4369 		obj->ops->release(obj);
4370 
4371 	drm_gem_object_release(&obj->base);
4372 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4373 
4374 	kfree(obj->bit_17);
4375 	i915_gem_object_free(obj);
4376 
4377 	intel_runtime_pm_put(dev_priv);
4378 }
4379 
4380 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4381 				     struct i915_address_space *vm)
4382 {
4383 	struct i915_vma *vma;
4384 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
4385 		if (i915_is_ggtt(vma->vm) &&
4386 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4387 			continue;
4388 		if (vma->vm == vm)
4389 			return vma;
4390 	}
4391 	return NULL;
4392 }
4393 
4394 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4395 					   const struct i915_ggtt_view *view)
4396 {
4397 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4398 	struct i915_vma *vma;
4399 
4400 	if (WARN_ONCE(!view, "no view specified"))
4401 		return ERR_PTR(-EINVAL);
4402 
4403 	list_for_each_entry(vma, &obj->vma_list, vma_link)
4404 		if (vma->vm == ggtt &&
4405 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4406 			return vma;
4407 	return NULL;
4408 }
4409 
4410 void i915_gem_vma_destroy(struct i915_vma *vma)
4411 {
4412 	struct i915_address_space *vm = NULL;
4413 	WARN_ON(vma->node.allocated);
4414 
4415 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4416 	if (!list_empty(&vma->exec_list))
4417 		return;
4418 
4419 	vm = vma->vm;
4420 
4421 	if (!i915_is_ggtt(vm))
4422 		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4423 
4424 	list_del(&vma->vma_link);
4425 
4426 	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4427 }
4428 
4429 static void
4430 i915_gem_stop_ringbuffers(struct drm_device *dev)
4431 {
4432 	struct drm_i915_private *dev_priv = dev->dev_private;
4433 	struct intel_engine_cs *ring;
4434 	int i;
4435 
4436 	for_each_ring(ring, dev_priv, i)
4437 		dev_priv->gt.stop_ring(ring);
4438 }
4439 
4440 int
4441 i915_gem_suspend(struct drm_device *dev)
4442 {
4443 	struct drm_i915_private *dev_priv = dev->dev_private;
4444 	int ret = 0;
4445 
4446 	mutex_lock(&dev->struct_mutex);
4447 	ret = i915_gpu_idle(dev);
4448 	if (ret)
4449 		goto err;
4450 
4451 	i915_gem_retire_requests(dev);
4452 
4453 	i915_gem_stop_ringbuffers(dev);
4454 	mutex_unlock(&dev->struct_mutex);
4455 
4456 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4457 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4458 	flush_delayed_work(&dev_priv->mm.idle_work);
4459 
4460 	/* Assert that we sucessfully flushed all the work and
4461 	 * reset the GPU back to its idle, low power state.
4462 	 */
4463 	WARN_ON(dev_priv->mm.busy);
4464 
4465 	return 0;
4466 
4467 err:
4468 	mutex_unlock(&dev->struct_mutex);
4469 	return ret;
4470 }
4471 
4472 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4473 {
4474 	struct intel_engine_cs *ring = req->ring;
4475 	struct drm_device *dev = ring->dev;
4476 	struct drm_i915_private *dev_priv = dev->dev_private;
4477 	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4478 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4479 	int i, ret;
4480 
4481 	if (!HAS_L3_DPF(dev) || !remap_info)
4482 		return 0;
4483 
4484 	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4485 	if (ret)
4486 		return ret;
4487 
4488 	/*
4489 	 * Note: We do not worry about the concurrent register cacheline hang
4490 	 * here because no other code should access these registers other than
4491 	 * at initialization time.
4492 	 */
4493 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4494 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4495 		intel_ring_emit(ring, reg_base + i);
4496 		intel_ring_emit(ring, remap_info[i/4]);
4497 	}
4498 
4499 	intel_ring_advance(ring);
4500 
4501 	return ret;
4502 }
4503 
4504 void i915_gem_init_swizzling(struct drm_device *dev)
4505 {
4506 	struct drm_i915_private *dev_priv = dev->dev_private;
4507 
4508 	if (INTEL_INFO(dev)->gen < 5 ||
4509 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4510 		return;
4511 
4512 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4513 				 DISP_TILE_SURFACE_SWIZZLING);
4514 
4515 	if (IS_GEN5(dev))
4516 		return;
4517 
4518 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4519 	if (IS_GEN6(dev))
4520 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4521 	else if (IS_GEN7(dev))
4522 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4523 	else if (IS_GEN8(dev))
4524 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4525 	else
4526 		BUG();
4527 }
4528 
4529 static bool
4530 intel_enable_blt(struct drm_device *dev)
4531 {
4532 	if (!HAS_BLT(dev))
4533 		return false;
4534 
4535 	/* The blitter was dysfunctional on early prototypes */
4536 	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4537 		DRM_INFO("BLT not supported on this pre-production hardware;"
4538 			 " graphics performance will be degraded.\n");
4539 		return false;
4540 	}
4541 
4542 	return true;
4543 }
4544 
4545 static void init_unused_ring(struct drm_device *dev, u32 base)
4546 {
4547 	struct drm_i915_private *dev_priv = dev->dev_private;
4548 
4549 	I915_WRITE(RING_CTL(base), 0);
4550 	I915_WRITE(RING_HEAD(base), 0);
4551 	I915_WRITE(RING_TAIL(base), 0);
4552 	I915_WRITE(RING_START(base), 0);
4553 }
4554 
4555 static void init_unused_rings(struct drm_device *dev)
4556 {
4557 	if (IS_I830(dev)) {
4558 		init_unused_ring(dev, PRB1_BASE);
4559 		init_unused_ring(dev, SRB0_BASE);
4560 		init_unused_ring(dev, SRB1_BASE);
4561 		init_unused_ring(dev, SRB2_BASE);
4562 		init_unused_ring(dev, SRB3_BASE);
4563 	} else if (IS_GEN2(dev)) {
4564 		init_unused_ring(dev, SRB0_BASE);
4565 		init_unused_ring(dev, SRB1_BASE);
4566 	} else if (IS_GEN3(dev)) {
4567 		init_unused_ring(dev, PRB1_BASE);
4568 		init_unused_ring(dev, PRB2_BASE);
4569 	}
4570 }
4571 
4572 int i915_gem_init_rings(struct drm_device *dev)
4573 {
4574 	struct drm_i915_private *dev_priv = dev->dev_private;
4575 	int ret;
4576 
4577 	ret = intel_init_render_ring_buffer(dev);
4578 	if (ret)
4579 		return ret;
4580 
4581 	if (HAS_BSD(dev)) {
4582 		ret = intel_init_bsd_ring_buffer(dev);
4583 		if (ret)
4584 			goto cleanup_render_ring;
4585 	}
4586 
4587 	if (intel_enable_blt(dev)) {
4588 		ret = intel_init_blt_ring_buffer(dev);
4589 		if (ret)
4590 			goto cleanup_bsd_ring;
4591 	}
4592 
4593 	if (HAS_VEBOX(dev)) {
4594 		ret = intel_init_vebox_ring_buffer(dev);
4595 		if (ret)
4596 			goto cleanup_blt_ring;
4597 	}
4598 
4599 	if (HAS_BSD2(dev)) {
4600 		ret = intel_init_bsd2_ring_buffer(dev);
4601 		if (ret)
4602 			goto cleanup_vebox_ring;
4603 	}
4604 
4605 	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4606 	if (ret)
4607 		goto cleanup_bsd2_ring;
4608 
4609 	return 0;
4610 
4611 cleanup_bsd2_ring:
4612 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4613 cleanup_vebox_ring:
4614 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4615 cleanup_blt_ring:
4616 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4617 cleanup_bsd_ring:
4618 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4619 cleanup_render_ring:
4620 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4621 
4622 	return ret;
4623 }
4624 
4625 int
4626 i915_gem_init_hw(struct drm_device *dev)
4627 {
4628 	struct drm_i915_private *dev_priv = dev->dev_private;
4629 	struct intel_engine_cs *ring;
4630 	int ret, i, j;
4631 
4632 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4633 		return -EIO;
4634 
4635 	/* Double layer security blanket, see i915_gem_init() */
4636 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4637 
4638 	if (dev_priv->ellc_size)
4639 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4640 
4641 	if (IS_HASWELL(dev))
4642 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4643 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4644 
4645 	if (HAS_PCH_NOP(dev)) {
4646 		if (IS_IVYBRIDGE(dev)) {
4647 			u32 temp = I915_READ(GEN7_MSG_CTL);
4648 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4649 			I915_WRITE(GEN7_MSG_CTL, temp);
4650 		} else if (INTEL_INFO(dev)->gen >= 7) {
4651 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4652 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4653 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4654 		}
4655 	}
4656 
4657 	i915_gem_init_swizzling(dev);
4658 
4659 	/*
4660 	 * At least 830 can leave some of the unused rings
4661 	 * "active" (ie. head != tail) after resume which
4662 	 * will prevent c3 entry. Makes sure all unused rings
4663 	 * are totally idle.
4664 	 */
4665 	init_unused_rings(dev);
4666 
4667 	BUG_ON(!dev_priv->ring[RCS].default_context);
4668 
4669 	ret = i915_ppgtt_init_hw(dev);
4670 	if (ret) {
4671 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4672 		goto out;
4673 	}
4674 
4675 	/* Need to do basic initialisation of all rings first: */
4676 	for_each_ring(ring, dev_priv, i) {
4677 		ret = ring->init_hw(ring);
4678 		if (ret)
4679 			goto out;
4680 	}
4681 
4682 	/* Now it is safe to go back round and do everything else: */
4683 	for_each_ring(ring, dev_priv, i) {
4684 		struct drm_i915_gem_request *req;
4685 
4686 		WARN_ON(!ring->default_context);
4687 
4688 		ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4689 		if (ret) {
4690 			i915_gem_cleanup_ringbuffer(dev);
4691 			goto out;
4692 		}
4693 
4694 		if (ring->id == RCS) {
4695 			for (j = 0; j < NUM_L3_SLICES(dev); j++)
4696 				i915_gem_l3_remap(req, j);
4697 		}
4698 
4699 		ret = i915_ppgtt_init_ring(req);
4700 		if (ret && ret != -EIO) {
4701 			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4702 			i915_gem_request_cancel(req);
4703 			i915_gem_cleanup_ringbuffer(dev);
4704 			goto out;
4705 		}
4706 
4707 		ret = i915_gem_context_enable(req);
4708 		if (ret && ret != -EIO) {
4709 			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4710 			i915_gem_request_cancel(req);
4711 			i915_gem_cleanup_ringbuffer(dev);
4712 			goto out;
4713 		}
4714 
4715 		i915_add_request_no_flush(req);
4716 	}
4717 
4718 out:
4719 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4720 	return ret;
4721 }
4722 
4723 int i915_gem_init(struct drm_device *dev)
4724 {
4725 	struct drm_i915_private *dev_priv = dev->dev_private;
4726 	int ret;
4727 
4728 	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4729 			i915.enable_execlists);
4730 
4731 	mutex_lock(&dev->struct_mutex);
4732 
4733 	if (IS_VALLEYVIEW(dev)) {
4734 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4735 		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4736 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4737 			      VLV_GTLC_ALLOWWAKEACK), 10))
4738 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4739 	}
4740 
4741 	if (!i915.enable_execlists) {
4742 		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4743 		dev_priv->gt.init_rings = i915_gem_init_rings;
4744 		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4745 		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4746 	} else {
4747 		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4748 		dev_priv->gt.init_rings = intel_logical_rings_init;
4749 		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4750 		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4751 	}
4752 
4753 	/* This is just a security blanket to placate dragons.
4754 	 * On some systems, we very sporadically observe that the first TLBs
4755 	 * used by the CS may be stale, despite us poking the TLB reset. If
4756 	 * we hold the forcewake during initialisation these problems
4757 	 * just magically go away.
4758 	 */
4759 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4760 
4761 	ret = i915_gem_init_userptr(dev);
4762 	if (ret)
4763 		goto out_unlock;
4764 
4765 	i915_gem_init_global_gtt(dev);
4766 
4767 	ret = i915_gem_context_init(dev);
4768 	if (ret)
4769 		goto out_unlock;
4770 
4771 	ret = dev_priv->gt.init_rings(dev);
4772 	if (ret)
4773 		goto out_unlock;
4774 
4775 	ret = i915_gem_init_hw(dev);
4776 	if (ret == -EIO) {
4777 		/* Allow ring initialisation to fail by marking the GPU as
4778 		 * wedged. But we only want to do this where the GPU is angry,
4779 		 * for all other failure, such as an allocation failure, bail.
4780 		 */
4781 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4782 		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4783 		ret = 0;
4784 	}
4785 
4786 out_unlock:
4787 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4788 	mutex_unlock(&dev->struct_mutex);
4789 
4790 	return ret;
4791 }
4792 
4793 void
4794 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4795 {
4796 	struct drm_i915_private *dev_priv = dev->dev_private;
4797 	struct intel_engine_cs *ring;
4798 	int i;
4799 
4800 	for_each_ring(ring, dev_priv, i)
4801 		dev_priv->gt.cleanup_ring(ring);
4802 
4803     if (i915.enable_execlists)
4804             /*
4805              * Neither the BIOS, ourselves or any other kernel
4806              * expects the system to be in execlists mode on startup,
4807              * so we need to reset the GPU back to legacy mode.
4808              */
4809             intel_gpu_reset(dev);
4810 }
4811 
4812 static void
4813 init_ring_lists(struct intel_engine_cs *ring)
4814 {
4815 	INIT_LIST_HEAD(&ring->active_list);
4816 	INIT_LIST_HEAD(&ring->request_list);
4817 }
4818 
4819 void i915_init_vm(struct drm_i915_private *dev_priv,
4820 		  struct i915_address_space *vm)
4821 {
4822 	if (!i915_is_ggtt(vm))
4823 		drm_mm_init(&vm->mm, vm->start, vm->total);
4824 	vm->dev = dev_priv->dev;
4825 	INIT_LIST_HEAD(&vm->active_list);
4826 	INIT_LIST_HEAD(&vm->inactive_list);
4827 	INIT_LIST_HEAD(&vm->global_link);
4828 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
4829 }
4830 
4831 void
4832 i915_gem_load(struct drm_device *dev)
4833 {
4834 	struct drm_i915_private *dev_priv = dev->dev_private;
4835 	int i;
4836 
4837 	dev_priv->objects =
4838 		kmem_cache_create("i915_gem_object",
4839 				  sizeof(struct drm_i915_gem_object), 0,
4840 				  SLAB_HWCACHE_ALIGN,
4841 				  NULL);
4842 	dev_priv->vmas =
4843 		kmem_cache_create("i915_gem_vma",
4844 				  sizeof(struct i915_vma), 0,
4845 				  SLAB_HWCACHE_ALIGN,
4846 				  NULL);
4847 	dev_priv->requests =
4848 		kmem_cache_create("i915_gem_request",
4849 				  sizeof(struct drm_i915_gem_request), 0,
4850 				  SLAB_HWCACHE_ALIGN,
4851 				  NULL);
4852 
4853 	INIT_LIST_HEAD(&dev_priv->vm_list);
4854 	i915_init_vm(dev_priv, &dev_priv->gtt.base);
4855 
4856 	INIT_LIST_HEAD(&dev_priv->context_list);
4857 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4858 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4859 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4860 	for (i = 0; i < I915_NUM_RINGS; i++)
4861 		init_ring_lists(&dev_priv->ring[i]);
4862 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4863 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4864 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4865 			  i915_gem_retire_work_handler);
4866 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4867 			  i915_gem_idle_work_handler);
4868 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4869 
4870 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4871 
4872 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4873 		dev_priv->num_fence_regs = 32;
4874 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4875 		dev_priv->num_fence_regs = 16;
4876 	else
4877 		dev_priv->num_fence_regs = 8;
4878 
4879 	if (intel_vgpu_active(dev))
4880 		dev_priv->num_fence_regs =
4881 				I915_READ(vgtif_reg(avail_rs.fence_num));
4882 
4883 	/* Initialize fence registers to zero */
4884 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4885 	i915_gem_restore_fences(dev);
4886 
4887 	i915_gem_detect_bit_6_swizzle(dev);
4888 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4889 
4890 	dev_priv->mm.interruptible = true;
4891 
4892 	i915_gem_shrinker_init(dev_priv);
4893 
4894 	mutex_init(&dev_priv->fb_tracking.lock);
4895 }
4896 
4897 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4898 {
4899 	struct drm_i915_file_private *file_priv = file->driver_priv;
4900 
4901 	/* Clean up our request list when the client is going away, so that
4902 	 * later retire_requests won't dereference our soon-to-be-gone
4903 	 * file_priv.
4904 	 */
4905 	spin_lock(&file_priv->mm.lock);
4906 	while (!list_empty(&file_priv->mm.request_list)) {
4907 		struct drm_i915_gem_request *request;
4908 
4909 		request = list_first_entry(&file_priv->mm.request_list,
4910 					   struct drm_i915_gem_request,
4911 					   client_list);
4912 		list_del(&request->client_list);
4913 		request->file_priv = NULL;
4914 	}
4915 	spin_unlock(&file_priv->mm.lock);
4916 
4917 	if (!list_empty(&file_priv->rps.link)) {
4918 		spin_lock(&to_i915(dev)->rps.client_lock);
4919 		list_del(&file_priv->rps.link);
4920 		spin_unlock(&to_i915(dev)->rps.client_lock);
4921 	}
4922 }
4923 
4924 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4925 {
4926 	struct drm_i915_file_private *file_priv;
4927 	int ret;
4928 
4929 	DRM_DEBUG_DRIVER("\n");
4930 
4931 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4932 	if (!file_priv)
4933 		return -ENOMEM;
4934 
4935 	file->driver_priv = file_priv;
4936 	file_priv->dev_priv = dev->dev_private;
4937 	file_priv->file = file;
4938 	INIT_LIST_HEAD(&file_priv->rps.link);
4939 
4940 	spin_lock_init(&file_priv->mm.lock);
4941 	INIT_LIST_HEAD(&file_priv->mm.request_list);
4942 
4943 	ret = i915_gem_context_open(dev, file);
4944 	if (ret)
4945 		kfree(file_priv);
4946 
4947 	return ret;
4948 }
4949 
4950 /**
4951  * i915_gem_track_fb - update frontbuffer tracking
4952  * old: current GEM buffer for the frontbuffer slots
4953  * new: new GEM buffer for the frontbuffer slots
4954  * frontbuffer_bits: bitmask of frontbuffer slots
4955  *
4956  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4957  * from @old and setting them in @new. Both @old and @new can be NULL.
4958  */
4959 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4960 		       struct drm_i915_gem_object *new,
4961 		       unsigned frontbuffer_bits)
4962 {
4963 	if (old) {
4964 		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
4965 		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
4966 		old->frontbuffer_bits &= ~frontbuffer_bits;
4967 	}
4968 
4969 	if (new) {
4970 		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
4971 		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
4972 		new->frontbuffer_bits |= frontbuffer_bits;
4973 	}
4974 }
4975 
4976 /* All the new VM stuff */
4977 unsigned long
4978 i915_gem_obj_offset(struct drm_i915_gem_object *o,
4979 		    struct i915_address_space *vm)
4980 {
4981 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4982 	struct i915_vma *vma;
4983 
4984 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4985 
4986 	list_for_each_entry(vma, &o->vma_list, vma_link) {
4987 		if (i915_is_ggtt(vma->vm) &&
4988 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4989 			continue;
4990 		if (vma->vm == vm)
4991 			return vma->node.start;
4992 	}
4993 
4994 	WARN(1, "%s vma for this object not found.\n",
4995 	     i915_is_ggtt(vm) ? "global" : "ppgtt");
4996 	return -1;
4997 }
4998 
4999 unsigned long
5000 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5001 			      const struct i915_ggtt_view *view)
5002 {
5003 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5004 	struct i915_vma *vma;
5005 
5006 	list_for_each_entry(vma, &o->vma_list, vma_link)
5007 		if (vma->vm == ggtt &&
5008 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5009 			return vma->node.start;
5010 
5011 	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5012 	return -1;
5013 }
5014 
5015 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5016 			struct i915_address_space *vm)
5017 {
5018 	struct i915_vma *vma;
5019 
5020 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5021 		if (i915_is_ggtt(vma->vm) &&
5022 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5023 			continue;
5024 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5025 			return true;
5026 	}
5027 
5028 	return false;
5029 }
5030 
5031 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5032 				  const struct i915_ggtt_view *view)
5033 {
5034 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5035 	struct i915_vma *vma;
5036 
5037 	list_for_each_entry(vma, &o->vma_list, vma_link)
5038 		if (vma->vm == ggtt &&
5039 		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5040 		    drm_mm_node_allocated(&vma->node))
5041 			return true;
5042 
5043 	return false;
5044 }
5045 
5046 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5047 {
5048 	struct i915_vma *vma;
5049 
5050 	list_for_each_entry(vma, &o->vma_list, vma_link)
5051 		if (drm_mm_node_allocated(&vma->node))
5052 			return true;
5053 
5054 	return false;
5055 }
5056 
5057 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5058 				struct i915_address_space *vm)
5059 {
5060 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5061 	struct i915_vma *vma;
5062 
5063 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5064 
5065 	BUG_ON(list_empty(&o->vma_list));
5066 
5067 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5068 		if (i915_is_ggtt(vma->vm) &&
5069 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5070 			continue;
5071 		if (vma->vm == vm)
5072 			return vma->node.size;
5073 	}
5074 	return 0;
5075 }
5076 
5077 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5078 {
5079 	struct i915_vma *vma;
5080 	list_for_each_entry(vma, &obj->vma_list, vma_link)
5081 		if (vma->pin_count > 0)
5082 			return true;
5083 
5084 	return false;
5085 }
5086 
5087 /* Allocate a new GEM object and fill it with the supplied data */
5088 struct drm_i915_gem_object *
5089 i915_gem_object_create_from_data(struct drm_device *dev,
5090 			         const void *data, size_t size)
5091 {
5092 	struct drm_i915_gem_object *obj;
5093 	struct sg_table *sg;
5094 	size_t bytes;
5095 	int ret;
5096 
5097 	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5098 	if (IS_ERR_OR_NULL(obj))
5099 		return obj;
5100 
5101 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
5102 	if (ret)
5103 		goto fail;
5104 
5105 	ret = i915_gem_object_get_pages(obj);
5106 	if (ret)
5107 		goto fail;
5108 
5109 	i915_gem_object_pin_pages(obj);
5110 	sg = obj->pages;
5111 	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5112 	i915_gem_object_unpin_pages(obj);
5113 
5114 	if (WARN_ON(bytes != size)) {
5115 		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5116 		ret = -EFAULT;
5117 		goto fail;
5118 	}
5119 
5120 	return obj;
5121 
5122 fail:
5123 	drm_gem_object_unreference(&obj->base);
5124 	return ERR_PTR(ret);
5125 }
5126