xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision 206a81c1)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40 
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 						   bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 			       bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49 
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 				 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 					 struct drm_i915_fence_reg *fence,
54 					 bool enable);
55 
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57 					     struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59 					    struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 				 unsigned long event,
62 				 void *ptr);
63 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
64 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
65 
66 static bool cpu_cache_is_coherent(struct drm_device *dev,
67 				  enum i915_cache_level level)
68 {
69 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
70 }
71 
72 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
73 {
74 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
75 		return true;
76 
77 	return obj->pin_display;
78 }
79 
80 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
81 {
82 	if (obj->tiling_mode)
83 		i915_gem_release_mmap(obj);
84 
85 	/* As we do not have an associated fence register, we will force
86 	 * a tiling change if we ever need to acquire one.
87 	 */
88 	obj->fence_dirty = false;
89 	obj->fence_reg = I915_FENCE_REG_NONE;
90 }
91 
92 /* some bookkeeping */
93 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
94 				  size_t size)
95 {
96 	spin_lock(&dev_priv->mm.object_stat_lock);
97 	dev_priv->mm.object_count++;
98 	dev_priv->mm.object_memory += size;
99 	spin_unlock(&dev_priv->mm.object_stat_lock);
100 }
101 
102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103 				     size_t size)
104 {
105 	spin_lock(&dev_priv->mm.object_stat_lock);
106 	dev_priv->mm.object_count--;
107 	dev_priv->mm.object_memory -= size;
108 	spin_unlock(&dev_priv->mm.object_stat_lock);
109 }
110 
111 static int
112 i915_gem_wait_for_error(struct i915_gpu_error *error)
113 {
114 	int ret;
115 
116 #define EXIT_COND (!i915_reset_in_progress(error) || \
117 		   i915_terminally_wedged(error))
118 	if (EXIT_COND)
119 		return 0;
120 
121 	/*
122 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123 	 * userspace. If it takes that long something really bad is going on and
124 	 * we should simply try to bail out and fail as gracefully as possible.
125 	 */
126 	ret = wait_event_interruptible_timeout(error->reset_queue,
127 					       EXIT_COND,
128 					       10*HZ);
129 	if (ret == 0) {
130 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
131 		return -EIO;
132 	} else if (ret < 0) {
133 		return ret;
134 	}
135 #undef EXIT_COND
136 
137 	return 0;
138 }
139 
140 int i915_mutex_lock_interruptible(struct drm_device *dev)
141 {
142 	struct drm_i915_private *dev_priv = dev->dev_private;
143 	int ret;
144 
145 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
146 	if (ret)
147 		return ret;
148 
149 	ret = mutex_lock_interruptible(&dev->struct_mutex);
150 	if (ret)
151 		return ret;
152 
153 	WARN_ON(i915_verify_lists(dev));
154 	return 0;
155 }
156 
157 static inline bool
158 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
159 {
160 	return i915_gem_obj_bound_any(obj) && !obj->active;
161 }
162 
163 int
164 i915_gem_init_ioctl(struct drm_device *dev, void *data,
165 		    struct drm_file *file)
166 {
167 	struct drm_i915_private *dev_priv = dev->dev_private;
168 	struct drm_i915_gem_init *args = data;
169 
170 	if (drm_core_check_feature(dev, DRIVER_MODESET))
171 		return -ENODEV;
172 
173 	if (args->gtt_start >= args->gtt_end ||
174 	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
175 		return -EINVAL;
176 
177 	/* GEM with user mode setting was never supported on ilk and later. */
178 	if (INTEL_INFO(dev)->gen >= 5)
179 		return -ENODEV;
180 
181 	mutex_lock(&dev->struct_mutex);
182 	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
183 				  args->gtt_end);
184 	dev_priv->gtt.mappable_end = args->gtt_end;
185 	mutex_unlock(&dev->struct_mutex);
186 
187 	return 0;
188 }
189 
190 int
191 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
192 			    struct drm_file *file)
193 {
194 	struct drm_i915_private *dev_priv = dev->dev_private;
195 	struct drm_i915_gem_get_aperture *args = data;
196 	struct drm_i915_gem_object *obj;
197 	size_t pinned;
198 
199 	pinned = 0;
200 	mutex_lock(&dev->struct_mutex);
201 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
202 		if (i915_gem_obj_is_pinned(obj))
203 			pinned += i915_gem_obj_ggtt_size(obj);
204 	mutex_unlock(&dev->struct_mutex);
205 
206 	args->aper_size = dev_priv->gtt.base.total;
207 	args->aper_available_size = args->aper_size - pinned;
208 
209 	return 0;
210 }
211 
212 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
213 {
214 	drm_dma_handle_t *phys = obj->phys_handle;
215 
216 	if (!phys)
217 		return;
218 
219 	if (obj->madv == I915_MADV_WILLNEED) {
220 		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
221 		char *vaddr = phys->vaddr;
222 		int i;
223 
224 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
225 			struct page *page = shmem_read_mapping_page(mapping, i);
226 			if (!IS_ERR(page)) {
227 				char *dst = kmap_atomic(page);
228 				memcpy(dst, vaddr, PAGE_SIZE);
229 				drm_clflush_virt_range(dst, PAGE_SIZE);
230 				kunmap_atomic(dst);
231 
232 				set_page_dirty(page);
233 				mark_page_accessed(page);
234 				page_cache_release(page);
235 			}
236 			vaddr += PAGE_SIZE;
237 		}
238 		i915_gem_chipset_flush(obj->base.dev);
239 	}
240 
241 #ifdef CONFIG_X86
242 	set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
243 #endif
244 	drm_pci_free(obj->base.dev, phys);
245 	obj->phys_handle = NULL;
246 }
247 
248 int
249 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
250 			    int align)
251 {
252 	drm_dma_handle_t *phys;
253 	struct address_space *mapping;
254 	char *vaddr;
255 	int i;
256 
257 	if (obj->phys_handle) {
258 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
259 			return -EBUSY;
260 
261 		return 0;
262 	}
263 
264 	if (obj->madv != I915_MADV_WILLNEED)
265 		return -EFAULT;
266 
267 	if (obj->base.filp == NULL)
268 		return -EINVAL;
269 
270 	/* create a new object */
271 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
272 	if (!phys)
273 		return -ENOMEM;
274 
275 	vaddr = phys->vaddr;
276 #ifdef CONFIG_X86
277 	set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
278 #endif
279 	mapping = file_inode(obj->base.filp)->i_mapping;
280 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
281 		struct page *page;
282 		char *src;
283 
284 		page = shmem_read_mapping_page(mapping, i);
285 		if (IS_ERR(page)) {
286 #ifdef CONFIG_X86
287 			set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
288 #endif
289 			drm_pci_free(obj->base.dev, phys);
290 			return PTR_ERR(page);
291 		}
292 
293 		src = kmap_atomic(page);
294 		memcpy(vaddr, src, PAGE_SIZE);
295 		kunmap_atomic(src);
296 
297 		mark_page_accessed(page);
298 		page_cache_release(page);
299 
300 		vaddr += PAGE_SIZE;
301 	}
302 
303 	obj->phys_handle = phys;
304 	return 0;
305 }
306 
307 static int
308 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
309 		     struct drm_i915_gem_pwrite *args,
310 		     struct drm_file *file_priv)
311 {
312 	struct drm_device *dev = obj->base.dev;
313 	void *vaddr = obj->phys_handle->vaddr + args->offset;
314 	char __user *user_data = to_user_ptr(args->data_ptr);
315 
316 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
317 		unsigned long unwritten;
318 
319 		/* The physical object once assigned is fixed for the lifetime
320 		 * of the obj, so we can safely drop the lock and continue
321 		 * to access vaddr.
322 		 */
323 		mutex_unlock(&dev->struct_mutex);
324 		unwritten = copy_from_user(vaddr, user_data, args->size);
325 		mutex_lock(&dev->struct_mutex);
326 		if (unwritten)
327 			return -EFAULT;
328 	}
329 
330 	i915_gem_chipset_flush(dev);
331 	return 0;
332 }
333 
334 void *i915_gem_object_alloc(struct drm_device *dev)
335 {
336 	struct drm_i915_private *dev_priv = dev->dev_private;
337 	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
338 }
339 
340 void i915_gem_object_free(struct drm_i915_gem_object *obj)
341 {
342 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
343 	kmem_cache_free(dev_priv->slab, obj);
344 }
345 
346 static int
347 i915_gem_create(struct drm_file *file,
348 		struct drm_device *dev,
349 		uint64_t size,
350 		uint32_t *handle_p)
351 {
352 	struct drm_i915_gem_object *obj;
353 	int ret;
354 	u32 handle;
355 
356 	size = roundup(size, PAGE_SIZE);
357 	if (size == 0)
358 		return -EINVAL;
359 
360 	/* Allocate the new object */
361 	obj = i915_gem_alloc_object(dev, size);
362 	if (obj == NULL)
363 		return -ENOMEM;
364 
365 	ret = drm_gem_handle_create(file, &obj->base, &handle);
366 	/* drop reference from allocate - handle holds it now */
367 	drm_gem_object_unreference_unlocked(&obj->base);
368 	if (ret)
369 		return ret;
370 
371 	*handle_p = handle;
372 	return 0;
373 }
374 
375 int
376 i915_gem_dumb_create(struct drm_file *file,
377 		     struct drm_device *dev,
378 		     struct drm_mode_create_dumb *args)
379 {
380 	/* have to work out size/pitch and return them */
381 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
382 	args->size = args->pitch * args->height;
383 	return i915_gem_create(file, dev,
384 			       args->size, &args->handle);
385 }
386 
387 /**
388  * Creates a new mm object and returns a handle to it.
389  */
390 int
391 i915_gem_create_ioctl(struct drm_device *dev, void *data,
392 		      struct drm_file *file)
393 {
394 	struct drm_i915_gem_create *args = data;
395 
396 	return i915_gem_create(file, dev,
397 			       args->size, &args->handle);
398 }
399 
400 static inline int
401 __copy_to_user_swizzled(char __user *cpu_vaddr,
402 			const char *gpu_vaddr, int gpu_offset,
403 			int length)
404 {
405 	int ret, cpu_offset = 0;
406 
407 	while (length > 0) {
408 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
409 		int this_length = min(cacheline_end - gpu_offset, length);
410 		int swizzled_gpu_offset = gpu_offset ^ 64;
411 
412 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
413 				     gpu_vaddr + swizzled_gpu_offset,
414 				     this_length);
415 		if (ret)
416 			return ret + length;
417 
418 		cpu_offset += this_length;
419 		gpu_offset += this_length;
420 		length -= this_length;
421 	}
422 
423 	return 0;
424 }
425 
426 static inline int
427 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
428 			  const char __user *cpu_vaddr,
429 			  int length)
430 {
431 	int ret, cpu_offset = 0;
432 
433 	while (length > 0) {
434 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
435 		int this_length = min(cacheline_end - gpu_offset, length);
436 		int swizzled_gpu_offset = gpu_offset ^ 64;
437 
438 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
439 				       cpu_vaddr + cpu_offset,
440 				       this_length);
441 		if (ret)
442 			return ret + length;
443 
444 		cpu_offset += this_length;
445 		gpu_offset += this_length;
446 		length -= this_length;
447 	}
448 
449 	return 0;
450 }
451 
452 /*
453  * Pins the specified object's pages and synchronizes the object with
454  * GPU accesses. Sets needs_clflush to non-zero if the caller should
455  * flush the object from the CPU cache.
456  */
457 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
458 				    int *needs_clflush)
459 {
460 	int ret;
461 
462 	*needs_clflush = 0;
463 
464 	if (!obj->base.filp)
465 		return -EINVAL;
466 
467 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
468 		/* If we're not in the cpu read domain, set ourself into the gtt
469 		 * read domain and manually flush cachelines (if required). This
470 		 * optimizes for the case when the gpu will dirty the data
471 		 * anyway again before the next pread happens. */
472 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
473 							obj->cache_level);
474 		ret = i915_gem_object_wait_rendering(obj, true);
475 		if (ret)
476 			return ret;
477 
478 		i915_gem_object_retire(obj);
479 	}
480 
481 	ret = i915_gem_object_get_pages(obj);
482 	if (ret)
483 		return ret;
484 
485 	i915_gem_object_pin_pages(obj);
486 
487 	return ret;
488 }
489 
490 /* Per-page copy function for the shmem pread fastpath.
491  * Flushes invalid cachelines before reading the target if
492  * needs_clflush is set. */
493 static int
494 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
495 		 char __user *user_data,
496 		 bool page_do_bit17_swizzling, bool needs_clflush)
497 {
498 	char *vaddr;
499 	int ret;
500 
501 	if (unlikely(page_do_bit17_swizzling))
502 		return -EINVAL;
503 
504 	vaddr = kmap_atomic(page);
505 	if (needs_clflush)
506 		drm_clflush_virt_range(vaddr + shmem_page_offset,
507 				       page_length);
508 	ret = __copy_to_user_inatomic(user_data,
509 				      vaddr + shmem_page_offset,
510 				      page_length);
511 	kunmap_atomic(vaddr);
512 
513 	return ret ? -EFAULT : 0;
514 }
515 
516 static void
517 shmem_clflush_swizzled_range(char *addr, unsigned long length,
518 			     bool swizzled)
519 {
520 	if (unlikely(swizzled)) {
521 		unsigned long start = (unsigned long) addr;
522 		unsigned long end = (unsigned long) addr + length;
523 
524 		/* For swizzling simply ensure that we always flush both
525 		 * channels. Lame, but simple and it works. Swizzled
526 		 * pwrite/pread is far from a hotpath - current userspace
527 		 * doesn't use it at all. */
528 		start = round_down(start, 128);
529 		end = round_up(end, 128);
530 
531 		drm_clflush_virt_range((void *)start, end - start);
532 	} else {
533 		drm_clflush_virt_range(addr, length);
534 	}
535 
536 }
537 
538 /* Only difference to the fast-path function is that this can handle bit17
539  * and uses non-atomic copy and kmap functions. */
540 static int
541 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
542 		 char __user *user_data,
543 		 bool page_do_bit17_swizzling, bool needs_clflush)
544 {
545 	char *vaddr;
546 	int ret;
547 
548 	vaddr = kmap(page);
549 	if (needs_clflush)
550 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
551 					     page_length,
552 					     page_do_bit17_swizzling);
553 
554 	if (page_do_bit17_swizzling)
555 		ret = __copy_to_user_swizzled(user_data,
556 					      vaddr, shmem_page_offset,
557 					      page_length);
558 	else
559 		ret = __copy_to_user(user_data,
560 				     vaddr + shmem_page_offset,
561 				     page_length);
562 	kunmap(page);
563 
564 	return ret ? - EFAULT : 0;
565 }
566 
567 static int
568 i915_gem_shmem_pread(struct drm_device *dev,
569 		     struct drm_i915_gem_object *obj,
570 		     struct drm_i915_gem_pread *args,
571 		     struct drm_file *file)
572 {
573 	char __user *user_data;
574 	ssize_t remain;
575 	loff_t offset;
576 	int shmem_page_offset, page_length, ret = 0;
577 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
578 	int prefaulted = 0;
579 	int needs_clflush = 0;
580 	struct sg_page_iter sg_iter;
581 
582 	user_data = to_user_ptr(args->data_ptr);
583 	remain = args->size;
584 
585 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
586 
587 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
588 	if (ret)
589 		return ret;
590 
591 	offset = args->offset;
592 
593 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
594 			 offset >> PAGE_SHIFT) {
595 		struct page *page = sg_page_iter_page(&sg_iter);
596 
597 		if (remain <= 0)
598 			break;
599 
600 		/* Operation in this page
601 		 *
602 		 * shmem_page_offset = offset within page in shmem file
603 		 * page_length = bytes to copy for this page
604 		 */
605 		shmem_page_offset = offset_in_page(offset);
606 		page_length = remain;
607 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
608 			page_length = PAGE_SIZE - shmem_page_offset;
609 
610 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
611 			(page_to_phys(page) & (1 << 17)) != 0;
612 
613 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
614 				       user_data, page_do_bit17_swizzling,
615 				       needs_clflush);
616 		if (ret == 0)
617 			goto next_page;
618 
619 		mutex_unlock(&dev->struct_mutex);
620 
621 		if (likely(!i915.prefault_disable) && !prefaulted) {
622 			ret = fault_in_multipages_writeable(user_data, remain);
623 			/* Userspace is tricking us, but we've already clobbered
624 			 * its pages with the prefault and promised to write the
625 			 * data up to the first fault. Hence ignore any errors
626 			 * and just continue. */
627 			(void)ret;
628 			prefaulted = 1;
629 		}
630 
631 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
632 				       user_data, page_do_bit17_swizzling,
633 				       needs_clflush);
634 
635 		mutex_lock(&dev->struct_mutex);
636 
637 		if (ret)
638 			goto out;
639 
640 next_page:
641 		remain -= page_length;
642 		user_data += page_length;
643 		offset += page_length;
644 	}
645 
646 out:
647 	i915_gem_object_unpin_pages(obj);
648 
649 	return ret;
650 }
651 
652 /**
653  * Reads data from the object referenced by handle.
654  *
655  * On error, the contents of *data are undefined.
656  */
657 int
658 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
659 		     struct drm_file *file)
660 {
661 	struct drm_i915_gem_pread *args = data;
662 	struct drm_i915_gem_object *obj;
663 	int ret = 0;
664 
665 	if (args->size == 0)
666 		return 0;
667 
668 	if (!access_ok(VERIFY_WRITE,
669 		       to_user_ptr(args->data_ptr),
670 		       args->size))
671 		return -EFAULT;
672 
673 	ret = i915_mutex_lock_interruptible(dev);
674 	if (ret)
675 		return ret;
676 
677 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
678 	if (&obj->base == NULL) {
679 		ret = -ENOENT;
680 		goto unlock;
681 	}
682 
683 	/* Bounds check source.  */
684 	if (args->offset > obj->base.size ||
685 	    args->size > obj->base.size - args->offset) {
686 		ret = -EINVAL;
687 		goto out;
688 	}
689 
690 	/* prime objects have no backing filp to GEM pread/pwrite
691 	 * pages from.
692 	 */
693 	if (!obj->base.filp) {
694 		ret = -EINVAL;
695 		goto out;
696 	}
697 
698 	trace_i915_gem_object_pread(obj, args->offset, args->size);
699 
700 	ret = i915_gem_shmem_pread(dev, obj, args, file);
701 
702 out:
703 	drm_gem_object_unreference(&obj->base);
704 unlock:
705 	mutex_unlock(&dev->struct_mutex);
706 	return ret;
707 }
708 
709 /* This is the fast write path which cannot handle
710  * page faults in the source data
711  */
712 
713 static inline int
714 fast_user_write(struct io_mapping *mapping,
715 		loff_t page_base, int page_offset,
716 		char __user *user_data,
717 		int length)
718 {
719 	void __iomem *vaddr_atomic;
720 	void *vaddr;
721 	unsigned long unwritten;
722 
723 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
724 	/* We can use the cpu mem copy function because this is X86. */
725 	vaddr = (void __force*)vaddr_atomic + page_offset;
726 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
727 						      user_data, length);
728 	io_mapping_unmap_atomic(vaddr_atomic);
729 	return unwritten;
730 }
731 
732 /**
733  * This is the fast pwrite path, where we copy the data directly from the
734  * user into the GTT, uncached.
735  */
736 static int
737 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
738 			 struct drm_i915_gem_object *obj,
739 			 struct drm_i915_gem_pwrite *args,
740 			 struct drm_file *file)
741 {
742 	struct drm_i915_private *dev_priv = dev->dev_private;
743 	ssize_t remain;
744 	loff_t offset, page_base;
745 	char __user *user_data;
746 	int page_offset, page_length, ret;
747 
748 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
749 	if (ret)
750 		goto out;
751 
752 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
753 	if (ret)
754 		goto out_unpin;
755 
756 	ret = i915_gem_object_put_fence(obj);
757 	if (ret)
758 		goto out_unpin;
759 
760 	user_data = to_user_ptr(args->data_ptr);
761 	remain = args->size;
762 
763 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
764 
765 	while (remain > 0) {
766 		/* Operation in this page
767 		 *
768 		 * page_base = page offset within aperture
769 		 * page_offset = offset within page
770 		 * page_length = bytes to copy for this page
771 		 */
772 		page_base = offset & PAGE_MASK;
773 		page_offset = offset_in_page(offset);
774 		page_length = remain;
775 		if ((page_offset + remain) > PAGE_SIZE)
776 			page_length = PAGE_SIZE - page_offset;
777 
778 		/* If we get a fault while copying data, then (presumably) our
779 		 * source page isn't available.  Return the error and we'll
780 		 * retry in the slow path.
781 		 */
782 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
783 				    page_offset, user_data, page_length)) {
784 			ret = -EFAULT;
785 			goto out_unpin;
786 		}
787 
788 		remain -= page_length;
789 		user_data += page_length;
790 		offset += page_length;
791 	}
792 
793 out_unpin:
794 	i915_gem_object_ggtt_unpin(obj);
795 out:
796 	return ret;
797 }
798 
799 /* Per-page copy function for the shmem pwrite fastpath.
800  * Flushes invalid cachelines before writing to the target if
801  * needs_clflush_before is set and flushes out any written cachelines after
802  * writing if needs_clflush is set. */
803 static int
804 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
805 		  char __user *user_data,
806 		  bool page_do_bit17_swizzling,
807 		  bool needs_clflush_before,
808 		  bool needs_clflush_after)
809 {
810 	char *vaddr;
811 	int ret;
812 
813 	if (unlikely(page_do_bit17_swizzling))
814 		return -EINVAL;
815 
816 	vaddr = kmap_atomic(page);
817 	if (needs_clflush_before)
818 		drm_clflush_virt_range(vaddr + shmem_page_offset,
819 				       page_length);
820 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
821 					user_data, page_length);
822 	if (needs_clflush_after)
823 		drm_clflush_virt_range(vaddr + shmem_page_offset,
824 				       page_length);
825 	kunmap_atomic(vaddr);
826 
827 	return ret ? -EFAULT : 0;
828 }
829 
830 /* Only difference to the fast-path function is that this can handle bit17
831  * and uses non-atomic copy and kmap functions. */
832 static int
833 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
834 		  char __user *user_data,
835 		  bool page_do_bit17_swizzling,
836 		  bool needs_clflush_before,
837 		  bool needs_clflush_after)
838 {
839 	char *vaddr;
840 	int ret;
841 
842 	vaddr = kmap(page);
843 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
844 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
845 					     page_length,
846 					     page_do_bit17_swizzling);
847 	if (page_do_bit17_swizzling)
848 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
849 						user_data,
850 						page_length);
851 	else
852 		ret = __copy_from_user(vaddr + shmem_page_offset,
853 				       user_data,
854 				       page_length);
855 	if (needs_clflush_after)
856 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
857 					     page_length,
858 					     page_do_bit17_swizzling);
859 	kunmap(page);
860 
861 	return ret ? -EFAULT : 0;
862 }
863 
864 static int
865 i915_gem_shmem_pwrite(struct drm_device *dev,
866 		      struct drm_i915_gem_object *obj,
867 		      struct drm_i915_gem_pwrite *args,
868 		      struct drm_file *file)
869 {
870 	ssize_t remain;
871 	loff_t offset;
872 	char __user *user_data;
873 	int shmem_page_offset, page_length, ret = 0;
874 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
875 	int hit_slowpath = 0;
876 	int needs_clflush_after = 0;
877 	int needs_clflush_before = 0;
878 	struct sg_page_iter sg_iter;
879 
880 	user_data = to_user_ptr(args->data_ptr);
881 	remain = args->size;
882 
883 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
884 
885 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
886 		/* If we're not in the cpu write domain, set ourself into the gtt
887 		 * write domain and manually flush cachelines (if required). This
888 		 * optimizes for the case when the gpu will use the data
889 		 * right away and we therefore have to clflush anyway. */
890 		needs_clflush_after = cpu_write_needs_clflush(obj);
891 		ret = i915_gem_object_wait_rendering(obj, false);
892 		if (ret)
893 			return ret;
894 
895 		i915_gem_object_retire(obj);
896 	}
897 	/* Same trick applies to invalidate partially written cachelines read
898 	 * before writing. */
899 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
900 		needs_clflush_before =
901 			!cpu_cache_is_coherent(dev, obj->cache_level);
902 
903 	ret = i915_gem_object_get_pages(obj);
904 	if (ret)
905 		return ret;
906 
907 	i915_gem_object_pin_pages(obj);
908 
909 	offset = args->offset;
910 	obj->dirty = 1;
911 
912 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
913 			 offset >> PAGE_SHIFT) {
914 		struct page *page = sg_page_iter_page(&sg_iter);
915 		int partial_cacheline_write;
916 
917 		if (remain <= 0)
918 			break;
919 
920 		/* Operation in this page
921 		 *
922 		 * shmem_page_offset = offset within page in shmem file
923 		 * page_length = bytes to copy for this page
924 		 */
925 		shmem_page_offset = offset_in_page(offset);
926 
927 		page_length = remain;
928 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
929 			page_length = PAGE_SIZE - shmem_page_offset;
930 
931 		/* If we don't overwrite a cacheline completely we need to be
932 		 * careful to have up-to-date data by first clflushing. Don't
933 		 * overcomplicate things and flush the entire patch. */
934 		partial_cacheline_write = needs_clflush_before &&
935 			((shmem_page_offset | page_length)
936 				& (boot_cpu_data.x86_clflush_size - 1));
937 
938 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
939 			(page_to_phys(page) & (1 << 17)) != 0;
940 
941 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
942 					user_data, page_do_bit17_swizzling,
943 					partial_cacheline_write,
944 					needs_clflush_after);
945 		if (ret == 0)
946 			goto next_page;
947 
948 		hit_slowpath = 1;
949 		mutex_unlock(&dev->struct_mutex);
950 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
951 					user_data, page_do_bit17_swizzling,
952 					partial_cacheline_write,
953 					needs_clflush_after);
954 
955 		mutex_lock(&dev->struct_mutex);
956 
957 		if (ret)
958 			goto out;
959 
960 next_page:
961 		remain -= page_length;
962 		user_data += page_length;
963 		offset += page_length;
964 	}
965 
966 out:
967 	i915_gem_object_unpin_pages(obj);
968 
969 	if (hit_slowpath) {
970 		/*
971 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
972 		 * cachelines in-line while writing and the object moved
973 		 * out of the cpu write domain while we've dropped the lock.
974 		 */
975 		if (!needs_clflush_after &&
976 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
977 			if (i915_gem_clflush_object(obj, obj->pin_display))
978 				i915_gem_chipset_flush(dev);
979 		}
980 	}
981 
982 	if (needs_clflush_after)
983 		i915_gem_chipset_flush(dev);
984 
985 	return ret;
986 }
987 
988 /**
989  * Writes data to the object referenced by handle.
990  *
991  * On error, the contents of the buffer that were to be modified are undefined.
992  */
993 int
994 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
995 		      struct drm_file *file)
996 {
997 	struct drm_i915_gem_pwrite *args = data;
998 	struct drm_i915_gem_object *obj;
999 	int ret;
1000 
1001 	if (args->size == 0)
1002 		return 0;
1003 
1004 	if (!access_ok(VERIFY_READ,
1005 		       to_user_ptr(args->data_ptr),
1006 		       args->size))
1007 		return -EFAULT;
1008 
1009 	if (likely(!i915.prefault_disable)) {
1010 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1011 						   args->size);
1012 		if (ret)
1013 			return -EFAULT;
1014 	}
1015 
1016 	ret = i915_mutex_lock_interruptible(dev);
1017 	if (ret)
1018 		return ret;
1019 
1020 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1021 	if (&obj->base == NULL) {
1022 		ret = -ENOENT;
1023 		goto unlock;
1024 	}
1025 
1026 	/* Bounds check destination. */
1027 	if (args->offset > obj->base.size ||
1028 	    args->size > obj->base.size - args->offset) {
1029 		ret = -EINVAL;
1030 		goto out;
1031 	}
1032 
1033 	/* prime objects have no backing filp to GEM pread/pwrite
1034 	 * pages from.
1035 	 */
1036 	if (!obj->base.filp) {
1037 		ret = -EINVAL;
1038 		goto out;
1039 	}
1040 
1041 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1042 
1043 	ret = -EFAULT;
1044 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1045 	 * it would end up going through the fenced access, and we'll get
1046 	 * different detiling behavior between reading and writing.
1047 	 * pread/pwrite currently are reading and writing from the CPU
1048 	 * perspective, requiring manual detiling by the client.
1049 	 */
1050 	if (obj->phys_handle) {
1051 		ret = i915_gem_phys_pwrite(obj, args, file);
1052 		goto out;
1053 	}
1054 
1055 	if (obj->tiling_mode == I915_TILING_NONE &&
1056 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1057 	    cpu_write_needs_clflush(obj)) {
1058 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1059 		/* Note that the gtt paths might fail with non-page-backed user
1060 		 * pointers (e.g. gtt mappings when moving data between
1061 		 * textures). Fallback to the shmem path in that case. */
1062 	}
1063 
1064 	if (ret == -EFAULT || ret == -ENOSPC)
1065 		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1066 
1067 out:
1068 	drm_gem_object_unreference(&obj->base);
1069 unlock:
1070 	mutex_unlock(&dev->struct_mutex);
1071 	return ret;
1072 }
1073 
1074 int
1075 i915_gem_check_wedge(struct i915_gpu_error *error,
1076 		     bool interruptible)
1077 {
1078 	if (i915_reset_in_progress(error)) {
1079 		/* Non-interruptible callers can't handle -EAGAIN, hence return
1080 		 * -EIO unconditionally for these. */
1081 		if (!interruptible)
1082 			return -EIO;
1083 
1084 		/* Recovery complete, but the reset failed ... */
1085 		if (i915_terminally_wedged(error))
1086 			return -EIO;
1087 
1088 		return -EAGAIN;
1089 	}
1090 
1091 	return 0;
1092 }
1093 
1094 /*
1095  * Compare seqno against outstanding lazy request. Emit a request if they are
1096  * equal.
1097  */
1098 static int
1099 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1100 {
1101 	int ret;
1102 
1103 	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1104 
1105 	ret = 0;
1106 	if (seqno == ring->outstanding_lazy_seqno)
1107 		ret = i915_add_request(ring, NULL);
1108 
1109 	return ret;
1110 }
1111 
1112 static void fake_irq(unsigned long data)
1113 {
1114 	wake_up_process((struct task_struct *)data);
1115 }
1116 
1117 static bool missed_irq(struct drm_i915_private *dev_priv,
1118 		       struct intel_engine_cs *ring)
1119 {
1120 	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1121 }
1122 
1123 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1124 {
1125 	if (file_priv == NULL)
1126 		return true;
1127 
1128 	return !atomic_xchg(&file_priv->rps_wait_boost, true);
1129 }
1130 
1131 /**
1132  * __wait_seqno - wait until execution of seqno has finished
1133  * @ring: the ring expected to report seqno
1134  * @seqno: duh!
1135  * @reset_counter: reset sequence associated with the given seqno
1136  * @interruptible: do an interruptible wait (normally yes)
1137  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1138  *
1139  * Note: It is of utmost importance that the passed in seqno and reset_counter
1140  * values have been read by the caller in an smp safe manner. Where read-side
1141  * locks are involved, it is sufficient to read the reset_counter before
1142  * unlocking the lock that protects the seqno. For lockless tricks, the
1143  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1144  * inserted.
1145  *
1146  * Returns 0 if the seqno was found within the alloted time. Else returns the
1147  * errno with remaining time filled in timeout argument.
1148  */
1149 static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1150 			unsigned reset_counter,
1151 			bool interruptible,
1152 			struct timespec *timeout,
1153 			struct drm_i915_file_private *file_priv)
1154 {
1155 	struct drm_device *dev = ring->dev;
1156 	struct drm_i915_private *dev_priv = dev->dev_private;
1157 	const bool irq_test_in_progress =
1158 		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1159 	struct timespec before, now;
1160 	DEFINE_WAIT(wait);
1161 	unsigned long timeout_expire;
1162 	int ret;
1163 
1164 	WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
1165 
1166 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1167 		return 0;
1168 
1169 	timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1170 
1171 	if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1172 		gen6_rps_boost(dev_priv);
1173 		if (file_priv)
1174 			mod_delayed_work(dev_priv->wq,
1175 					 &file_priv->mm.idle_work,
1176 					 msecs_to_jiffies(100));
1177 	}
1178 
1179 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1180 		return -ENODEV;
1181 
1182 	/* Record current time in case interrupted by signal, or wedged */
1183 	trace_i915_gem_request_wait_begin(ring, seqno);
1184 	getrawmonotonic(&before);
1185 	for (;;) {
1186 		struct timer_list timer;
1187 
1188 		prepare_to_wait(&ring->irq_queue, &wait,
1189 				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1190 
1191 		/* We need to check whether any gpu reset happened in between
1192 		 * the caller grabbing the seqno and now ... */
1193 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1194 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
1195 			 * is truely gone. */
1196 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1197 			if (ret == 0)
1198 				ret = -EAGAIN;
1199 			break;
1200 		}
1201 
1202 		if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1203 			ret = 0;
1204 			break;
1205 		}
1206 
1207 		if (interruptible && signal_pending(current)) {
1208 			ret = -ERESTARTSYS;
1209 			break;
1210 		}
1211 
1212 		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1213 			ret = -ETIME;
1214 			break;
1215 		}
1216 
1217 		timer.function = NULL;
1218 		if (timeout || missed_irq(dev_priv, ring)) {
1219 			unsigned long expire;
1220 
1221 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1222 			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1223 			mod_timer(&timer, expire);
1224 		}
1225 
1226 		io_schedule();
1227 
1228 		if (timer.function) {
1229 			del_singleshot_timer_sync(&timer);
1230 			destroy_timer_on_stack(&timer);
1231 		}
1232 	}
1233 	getrawmonotonic(&now);
1234 	trace_i915_gem_request_wait_end(ring, seqno);
1235 
1236 	if (!irq_test_in_progress)
1237 		ring->irq_put(ring);
1238 
1239 	finish_wait(&ring->irq_queue, &wait);
1240 
1241 	if (timeout) {
1242 		struct timespec sleep_time = timespec_sub(now, before);
1243 		*timeout = timespec_sub(*timeout, sleep_time);
1244 		if (!timespec_valid(timeout)) /* i.e. negative time remains */
1245 			set_normalized_timespec(timeout, 0, 0);
1246 	}
1247 
1248 	return ret;
1249 }
1250 
1251 /**
1252  * Waits for a sequence number to be signaled, and cleans up the
1253  * request and object lists appropriately for that event.
1254  */
1255 int
1256 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1257 {
1258 	struct drm_device *dev = ring->dev;
1259 	struct drm_i915_private *dev_priv = dev->dev_private;
1260 	bool interruptible = dev_priv->mm.interruptible;
1261 	int ret;
1262 
1263 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1264 	BUG_ON(seqno == 0);
1265 
1266 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1267 	if (ret)
1268 		return ret;
1269 
1270 	ret = i915_gem_check_olr(ring, seqno);
1271 	if (ret)
1272 		return ret;
1273 
1274 	return __wait_seqno(ring, seqno,
1275 			    atomic_read(&dev_priv->gpu_error.reset_counter),
1276 			    interruptible, NULL, NULL);
1277 }
1278 
1279 static int
1280 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1281 				     struct intel_engine_cs *ring)
1282 {
1283 	if (!obj->active)
1284 		return 0;
1285 
1286 	/* Manually manage the write flush as we may have not yet
1287 	 * retired the buffer.
1288 	 *
1289 	 * Note that the last_write_seqno is always the earlier of
1290 	 * the two (read/write) seqno, so if we haved successfully waited,
1291 	 * we know we have passed the last write.
1292 	 */
1293 	obj->last_write_seqno = 0;
1294 
1295 	return 0;
1296 }
1297 
1298 /**
1299  * Ensures that all rendering to the object has completed and the object is
1300  * safe to unbind from the GTT or access from the CPU.
1301  */
1302 static __must_check int
1303 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1304 			       bool readonly)
1305 {
1306 	struct intel_engine_cs *ring = obj->ring;
1307 	u32 seqno;
1308 	int ret;
1309 
1310 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1311 	if (seqno == 0)
1312 		return 0;
1313 
1314 	ret = i915_wait_seqno(ring, seqno);
1315 	if (ret)
1316 		return ret;
1317 
1318 	return i915_gem_object_wait_rendering__tail(obj, ring);
1319 }
1320 
1321 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1322  * as the object state may change during this call.
1323  */
1324 static __must_check int
1325 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1326 					    struct drm_i915_file_private *file_priv,
1327 					    bool readonly)
1328 {
1329 	struct drm_device *dev = obj->base.dev;
1330 	struct drm_i915_private *dev_priv = dev->dev_private;
1331 	struct intel_engine_cs *ring = obj->ring;
1332 	unsigned reset_counter;
1333 	u32 seqno;
1334 	int ret;
1335 
1336 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1337 	BUG_ON(!dev_priv->mm.interruptible);
1338 
1339 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1340 	if (seqno == 0)
1341 		return 0;
1342 
1343 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1344 	if (ret)
1345 		return ret;
1346 
1347 	ret = i915_gem_check_olr(ring, seqno);
1348 	if (ret)
1349 		return ret;
1350 
1351 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1352 	mutex_unlock(&dev->struct_mutex);
1353 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1354 	mutex_lock(&dev->struct_mutex);
1355 	if (ret)
1356 		return ret;
1357 
1358 	return i915_gem_object_wait_rendering__tail(obj, ring);
1359 }
1360 
1361 /**
1362  * Called when user space prepares to use an object with the CPU, either
1363  * through the mmap ioctl's mapping or a GTT mapping.
1364  */
1365 int
1366 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1367 			  struct drm_file *file)
1368 {
1369 	struct drm_i915_gem_set_domain *args = data;
1370 	struct drm_i915_gem_object *obj;
1371 	uint32_t read_domains = args->read_domains;
1372 	uint32_t write_domain = args->write_domain;
1373 	int ret;
1374 
1375 	/* Only handle setting domains to types used by the CPU. */
1376 	if (write_domain & I915_GEM_GPU_DOMAINS)
1377 		return -EINVAL;
1378 
1379 	if (read_domains & I915_GEM_GPU_DOMAINS)
1380 		return -EINVAL;
1381 
1382 	/* Having something in the write domain implies it's in the read
1383 	 * domain, and only that read domain.  Enforce that in the request.
1384 	 */
1385 	if (write_domain != 0 && read_domains != write_domain)
1386 		return -EINVAL;
1387 
1388 	ret = i915_mutex_lock_interruptible(dev);
1389 	if (ret)
1390 		return ret;
1391 
1392 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1393 	if (&obj->base == NULL) {
1394 		ret = -ENOENT;
1395 		goto unlock;
1396 	}
1397 
1398 	/* Try to flush the object off the GPU without holding the lock.
1399 	 * We will repeat the flush holding the lock in the normal manner
1400 	 * to catch cases where we are gazumped.
1401 	 */
1402 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1403 							  file->driver_priv,
1404 							  !write_domain);
1405 	if (ret)
1406 		goto unref;
1407 
1408 	if (read_domains & I915_GEM_DOMAIN_GTT) {
1409 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1410 
1411 		/* Silently promote "you're not bound, there was nothing to do"
1412 		 * to success, since the client was just asking us to
1413 		 * make sure everything was done.
1414 		 */
1415 		if (ret == -EINVAL)
1416 			ret = 0;
1417 	} else {
1418 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1419 	}
1420 
1421 unref:
1422 	drm_gem_object_unreference(&obj->base);
1423 unlock:
1424 	mutex_unlock(&dev->struct_mutex);
1425 	return ret;
1426 }
1427 
1428 /**
1429  * Called when user space has done writes to this buffer
1430  */
1431 int
1432 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1433 			 struct drm_file *file)
1434 {
1435 	struct drm_i915_gem_sw_finish *args = data;
1436 	struct drm_i915_gem_object *obj;
1437 	int ret = 0;
1438 
1439 	ret = i915_mutex_lock_interruptible(dev);
1440 	if (ret)
1441 		return ret;
1442 
1443 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1444 	if (&obj->base == NULL) {
1445 		ret = -ENOENT;
1446 		goto unlock;
1447 	}
1448 
1449 	/* Pinned buffers may be scanout, so flush the cache */
1450 	if (obj->pin_display)
1451 		i915_gem_object_flush_cpu_write_domain(obj, true);
1452 
1453 	drm_gem_object_unreference(&obj->base);
1454 unlock:
1455 	mutex_unlock(&dev->struct_mutex);
1456 	return ret;
1457 }
1458 
1459 /**
1460  * Maps the contents of an object, returning the address it is mapped
1461  * into.
1462  *
1463  * While the mapping holds a reference on the contents of the object, it doesn't
1464  * imply a ref on the object itself.
1465  */
1466 int
1467 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1468 		    struct drm_file *file)
1469 {
1470 	struct drm_i915_gem_mmap *args = data;
1471 	struct drm_gem_object *obj;
1472 	unsigned long addr;
1473 
1474 	obj = drm_gem_object_lookup(dev, file, args->handle);
1475 	if (obj == NULL)
1476 		return -ENOENT;
1477 
1478 	/* prime objects have no backing filp to GEM mmap
1479 	 * pages from.
1480 	 */
1481 	if (!obj->filp) {
1482 		drm_gem_object_unreference_unlocked(obj);
1483 		return -EINVAL;
1484 	}
1485 
1486 	addr = vm_mmap(obj->filp, 0, args->size,
1487 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1488 		       args->offset);
1489 	drm_gem_object_unreference_unlocked(obj);
1490 	if (IS_ERR((void *)addr))
1491 		return addr;
1492 
1493 	args->addr_ptr = (uint64_t) addr;
1494 
1495 	return 0;
1496 }
1497 
1498 /**
1499  * i915_gem_fault - fault a page into the GTT
1500  * vma: VMA in question
1501  * vmf: fault info
1502  *
1503  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1504  * from userspace.  The fault handler takes care of binding the object to
1505  * the GTT (if needed), allocating and programming a fence register (again,
1506  * only if needed based on whether the old reg is still valid or the object
1507  * is tiled) and inserting a new PTE into the faulting process.
1508  *
1509  * Note that the faulting process may involve evicting existing objects
1510  * from the GTT and/or fence registers to make room.  So performance may
1511  * suffer if the GTT working set is large or there are few fence registers
1512  * left.
1513  */
1514 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1515 {
1516 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1517 	struct drm_device *dev = obj->base.dev;
1518 	struct drm_i915_private *dev_priv = dev->dev_private;
1519 	pgoff_t page_offset;
1520 	unsigned long pfn;
1521 	int ret = 0;
1522 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1523 
1524 	intel_runtime_pm_get(dev_priv);
1525 
1526 	/* We don't use vmf->pgoff since that has the fake offset */
1527 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1528 		PAGE_SHIFT;
1529 
1530 	ret = i915_mutex_lock_interruptible(dev);
1531 	if (ret)
1532 		goto out;
1533 
1534 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1535 
1536 	/* Try to flush the object off the GPU first without holding the lock.
1537 	 * Upon reacquiring the lock, we will perform our sanity checks and then
1538 	 * repeat the flush holding the lock in the normal manner to catch cases
1539 	 * where we are gazumped.
1540 	 */
1541 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1542 	if (ret)
1543 		goto unlock;
1544 
1545 	/* Access to snoopable pages through the GTT is incoherent. */
1546 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1547 		ret = -EFAULT;
1548 		goto unlock;
1549 	}
1550 
1551 	/* Now bind it into the GTT if needed */
1552 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1553 	if (ret)
1554 		goto unlock;
1555 
1556 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1557 	if (ret)
1558 		goto unpin;
1559 
1560 	ret = i915_gem_object_get_fence(obj);
1561 	if (ret)
1562 		goto unpin;
1563 
1564 	obj->fault_mappable = true;
1565 
1566 	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1567 	pfn >>= PAGE_SHIFT;
1568 	pfn += page_offset;
1569 
1570 	/* Finally, remap it using the new GTT offset */
1571 	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1572 unpin:
1573 	i915_gem_object_ggtt_unpin(obj);
1574 unlock:
1575 	mutex_unlock(&dev->struct_mutex);
1576 out:
1577 	switch (ret) {
1578 	case -EIO:
1579 		/* If this -EIO is due to a gpu hang, give the reset code a
1580 		 * chance to clean up the mess. Otherwise return the proper
1581 		 * SIGBUS. */
1582 		if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1583 			ret = VM_FAULT_SIGBUS;
1584 			break;
1585 		}
1586 	case -EAGAIN:
1587 		/*
1588 		 * EAGAIN means the gpu is hung and we'll wait for the error
1589 		 * handler to reset everything when re-faulting in
1590 		 * i915_mutex_lock_interruptible.
1591 		 */
1592 	case 0:
1593 	case -ERESTARTSYS:
1594 	case -EINTR:
1595 	case -EBUSY:
1596 		/*
1597 		 * EBUSY is ok: this just means that another thread
1598 		 * already did the job.
1599 		 */
1600 		ret = VM_FAULT_NOPAGE;
1601 		break;
1602 	case -ENOMEM:
1603 		ret = VM_FAULT_OOM;
1604 		break;
1605 	case -ENOSPC:
1606 	case -EFAULT:
1607 		ret = VM_FAULT_SIGBUS;
1608 		break;
1609 	default:
1610 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1611 		ret = VM_FAULT_SIGBUS;
1612 		break;
1613 	}
1614 
1615 	intel_runtime_pm_put(dev_priv);
1616 	return ret;
1617 }
1618 
1619 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1620 {
1621 	struct i915_vma *vma;
1622 
1623 	/*
1624 	 * Only the global gtt is relevant for gtt memory mappings, so restrict
1625 	 * list traversal to objects bound into the global address space. Note
1626 	 * that the active list should be empty, but better safe than sorry.
1627 	 */
1628 	WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1629 	list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1630 		i915_gem_release_mmap(vma->obj);
1631 	list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1632 		i915_gem_release_mmap(vma->obj);
1633 }
1634 
1635 /**
1636  * i915_gem_release_mmap - remove physical page mappings
1637  * @obj: obj in question
1638  *
1639  * Preserve the reservation of the mmapping with the DRM core code, but
1640  * relinquish ownership of the pages back to the system.
1641  *
1642  * It is vital that we remove the page mapping if we have mapped a tiled
1643  * object through the GTT and then lose the fence register due to
1644  * resource pressure. Similarly if the object has been moved out of the
1645  * aperture, than pages mapped into userspace must be revoked. Removing the
1646  * mapping will then trigger a page fault on the next user access, allowing
1647  * fixup by i915_gem_fault().
1648  */
1649 void
1650 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1651 {
1652 	if (!obj->fault_mappable)
1653 		return;
1654 
1655 	drm_vma_node_unmap(&obj->base.vma_node,
1656 			   obj->base.dev->anon_inode->i_mapping);
1657 	obj->fault_mappable = false;
1658 }
1659 
1660 uint32_t
1661 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1662 {
1663 	uint32_t gtt_size;
1664 
1665 	if (INTEL_INFO(dev)->gen >= 4 ||
1666 	    tiling_mode == I915_TILING_NONE)
1667 		return size;
1668 
1669 	/* Previous chips need a power-of-two fence region when tiling */
1670 	if (INTEL_INFO(dev)->gen == 3)
1671 		gtt_size = 1024*1024;
1672 	else
1673 		gtt_size = 512*1024;
1674 
1675 	while (gtt_size < size)
1676 		gtt_size <<= 1;
1677 
1678 	return gtt_size;
1679 }
1680 
1681 /**
1682  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1683  * @obj: object to check
1684  *
1685  * Return the required GTT alignment for an object, taking into account
1686  * potential fence register mapping.
1687  */
1688 uint32_t
1689 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1690 			   int tiling_mode, bool fenced)
1691 {
1692 	/*
1693 	 * Minimum alignment is 4k (GTT page size), but might be greater
1694 	 * if a fence register is needed for the object.
1695 	 */
1696 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1697 	    tiling_mode == I915_TILING_NONE)
1698 		return 4096;
1699 
1700 	/*
1701 	 * Previous chips need to be aligned to the size of the smallest
1702 	 * fence register that can contain the object.
1703 	 */
1704 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1705 }
1706 
1707 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1708 {
1709 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1710 	int ret;
1711 
1712 	if (drm_vma_node_has_offset(&obj->base.vma_node))
1713 		return 0;
1714 
1715 	dev_priv->mm.shrinker_no_lock_stealing = true;
1716 
1717 	ret = drm_gem_create_mmap_offset(&obj->base);
1718 	if (ret != -ENOSPC)
1719 		goto out;
1720 
1721 	/* Badly fragmented mmap space? The only way we can recover
1722 	 * space is by destroying unwanted objects. We can't randomly release
1723 	 * mmap_offsets as userspace expects them to be persistent for the
1724 	 * lifetime of the objects. The closest we can is to release the
1725 	 * offsets on purgeable objects by truncating it and marking it purged,
1726 	 * which prevents userspace from ever using that object again.
1727 	 */
1728 	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1729 	ret = drm_gem_create_mmap_offset(&obj->base);
1730 	if (ret != -ENOSPC)
1731 		goto out;
1732 
1733 	i915_gem_shrink_all(dev_priv);
1734 	ret = drm_gem_create_mmap_offset(&obj->base);
1735 out:
1736 	dev_priv->mm.shrinker_no_lock_stealing = false;
1737 
1738 	return ret;
1739 }
1740 
1741 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1742 {
1743 	drm_gem_free_mmap_offset(&obj->base);
1744 }
1745 
1746 int
1747 i915_gem_mmap_gtt(struct drm_file *file,
1748 		  struct drm_device *dev,
1749 		  uint32_t handle,
1750 		  uint64_t *offset)
1751 {
1752 	struct drm_i915_private *dev_priv = dev->dev_private;
1753 	struct drm_i915_gem_object *obj;
1754 	int ret;
1755 
1756 	ret = i915_mutex_lock_interruptible(dev);
1757 	if (ret)
1758 		return ret;
1759 
1760 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1761 	if (&obj->base == NULL) {
1762 		ret = -ENOENT;
1763 		goto unlock;
1764 	}
1765 
1766 	if (obj->base.size > dev_priv->gtt.mappable_end) {
1767 		ret = -E2BIG;
1768 		goto out;
1769 	}
1770 
1771 	if (obj->madv != I915_MADV_WILLNEED) {
1772 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1773 		ret = -EFAULT;
1774 		goto out;
1775 	}
1776 
1777 	ret = i915_gem_object_create_mmap_offset(obj);
1778 	if (ret)
1779 		goto out;
1780 
1781 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1782 
1783 out:
1784 	drm_gem_object_unreference(&obj->base);
1785 unlock:
1786 	mutex_unlock(&dev->struct_mutex);
1787 	return ret;
1788 }
1789 
1790 /**
1791  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1792  * @dev: DRM device
1793  * @data: GTT mapping ioctl data
1794  * @file: GEM object info
1795  *
1796  * Simply returns the fake offset to userspace so it can mmap it.
1797  * The mmap call will end up in drm_gem_mmap(), which will set things
1798  * up so we can get faults in the handler above.
1799  *
1800  * The fault handler will take care of binding the object into the GTT
1801  * (since it may have been evicted to make room for something), allocating
1802  * a fence register, and mapping the appropriate aperture address into
1803  * userspace.
1804  */
1805 int
1806 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1807 			struct drm_file *file)
1808 {
1809 	struct drm_i915_gem_mmap_gtt *args = data;
1810 
1811 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1812 }
1813 
1814 static inline int
1815 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1816 {
1817 	return obj->madv == I915_MADV_DONTNEED;
1818 }
1819 
1820 /* Immediately discard the backing storage */
1821 static void
1822 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1823 {
1824 	i915_gem_object_free_mmap_offset(obj);
1825 
1826 	if (obj->base.filp == NULL)
1827 		return;
1828 
1829 	/* Our goal here is to return as much of the memory as
1830 	 * is possible back to the system as we are called from OOM.
1831 	 * To do this we must instruct the shmfs to drop all of its
1832 	 * backing pages, *now*.
1833 	 */
1834 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1835 	obj->madv = __I915_MADV_PURGED;
1836 }
1837 
1838 /* Try to discard unwanted pages */
1839 static void
1840 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1841 {
1842 	struct address_space *mapping;
1843 
1844 	switch (obj->madv) {
1845 	case I915_MADV_DONTNEED:
1846 		i915_gem_object_truncate(obj);
1847 	case __I915_MADV_PURGED:
1848 		return;
1849 	}
1850 
1851 	if (obj->base.filp == NULL)
1852 		return;
1853 
1854 	mapping = file_inode(obj->base.filp)->i_mapping,
1855 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1856 }
1857 
1858 static void
1859 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1860 {
1861 	struct sg_page_iter sg_iter;
1862 	int ret;
1863 
1864 	BUG_ON(obj->madv == __I915_MADV_PURGED);
1865 
1866 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1867 	if (ret) {
1868 		/* In the event of a disaster, abandon all caches and
1869 		 * hope for the best.
1870 		 */
1871 		WARN_ON(ret != -EIO);
1872 		i915_gem_clflush_object(obj, true);
1873 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1874 	}
1875 
1876 	if (i915_gem_object_needs_bit17_swizzle(obj))
1877 		i915_gem_object_save_bit_17_swizzle(obj);
1878 
1879 	if (obj->madv == I915_MADV_DONTNEED)
1880 		obj->dirty = 0;
1881 
1882 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1883 		struct page *page = sg_page_iter_page(&sg_iter);
1884 
1885 		if (obj->dirty)
1886 			set_page_dirty(page);
1887 
1888 		if (obj->madv == I915_MADV_WILLNEED)
1889 			mark_page_accessed(page);
1890 
1891 		page_cache_release(page);
1892 	}
1893 	obj->dirty = 0;
1894 
1895 	sg_free_table(obj->pages);
1896 	kfree(obj->pages);
1897 }
1898 
1899 int
1900 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1901 {
1902 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1903 
1904 	if (obj->pages == NULL)
1905 		return 0;
1906 
1907 	if (obj->pages_pin_count)
1908 		return -EBUSY;
1909 
1910 	BUG_ON(i915_gem_obj_bound_any(obj));
1911 
1912 	/* ->put_pages might need to allocate memory for the bit17 swizzle
1913 	 * array, hence protect them from being reaped by removing them from gtt
1914 	 * lists early. */
1915 	list_del(&obj->global_list);
1916 
1917 	ops->put_pages(obj);
1918 	obj->pages = NULL;
1919 
1920 	i915_gem_object_invalidate(obj);
1921 
1922 	return 0;
1923 }
1924 
1925 static unsigned long
1926 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1927 		  bool purgeable_only)
1928 {
1929 	struct list_head still_in_list;
1930 	struct drm_i915_gem_object *obj;
1931 	unsigned long count = 0;
1932 
1933 	/*
1934 	 * As we may completely rewrite the (un)bound list whilst unbinding
1935 	 * (due to retiring requests) we have to strictly process only
1936 	 * one element of the list at the time, and recheck the list
1937 	 * on every iteration.
1938 	 *
1939 	 * In particular, we must hold a reference whilst removing the
1940 	 * object as we may end up waiting for and/or retiring the objects.
1941 	 * This might release the final reference (held by the active list)
1942 	 * and result in the object being freed from under us. This is
1943 	 * similar to the precautions the eviction code must take whilst
1944 	 * removing objects.
1945 	 *
1946 	 * Also note that although these lists do not hold a reference to
1947 	 * the object we can safely grab one here: The final object
1948 	 * unreferencing and the bound_list are both protected by the
1949 	 * dev->struct_mutex and so we won't ever be able to observe an
1950 	 * object on the bound_list with a reference count equals 0.
1951 	 */
1952 	INIT_LIST_HEAD(&still_in_list);
1953 	while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1954 		obj = list_first_entry(&dev_priv->mm.unbound_list,
1955 				       typeof(*obj), global_list);
1956 		list_move_tail(&obj->global_list, &still_in_list);
1957 
1958 		if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1959 			continue;
1960 
1961 		drm_gem_object_reference(&obj->base);
1962 
1963 		if (i915_gem_object_put_pages(obj) == 0)
1964 			count += obj->base.size >> PAGE_SHIFT;
1965 
1966 		drm_gem_object_unreference(&obj->base);
1967 	}
1968 	list_splice(&still_in_list, &dev_priv->mm.unbound_list);
1969 
1970 	INIT_LIST_HEAD(&still_in_list);
1971 	while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1972 		struct i915_vma *vma, *v;
1973 
1974 		obj = list_first_entry(&dev_priv->mm.bound_list,
1975 				       typeof(*obj), global_list);
1976 		list_move_tail(&obj->global_list, &still_in_list);
1977 
1978 		if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1979 			continue;
1980 
1981 		drm_gem_object_reference(&obj->base);
1982 
1983 		list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1984 			if (i915_vma_unbind(vma))
1985 				break;
1986 
1987 		if (i915_gem_object_put_pages(obj) == 0)
1988 			count += obj->base.size >> PAGE_SHIFT;
1989 
1990 		drm_gem_object_unreference(&obj->base);
1991 	}
1992 	list_splice(&still_in_list, &dev_priv->mm.bound_list);
1993 
1994 	return count;
1995 }
1996 
1997 static unsigned long
1998 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1999 {
2000 	return __i915_gem_shrink(dev_priv, target, true);
2001 }
2002 
2003 static unsigned long
2004 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2005 {
2006 	i915_gem_evict_everything(dev_priv->dev);
2007 	return __i915_gem_shrink(dev_priv, LONG_MAX, false);
2008 }
2009 
2010 static int
2011 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2012 {
2013 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2014 	int page_count, i;
2015 	struct address_space *mapping;
2016 	struct sg_table *st;
2017 	struct scatterlist *sg;
2018 	struct sg_page_iter sg_iter;
2019 	struct page *page;
2020 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2021 	gfp_t gfp;
2022 
2023 	/* Assert that the object is not currently in any GPU domain. As it
2024 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2025 	 * a GPU cache
2026 	 */
2027 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2028 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2029 
2030 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2031 	if (st == NULL)
2032 		return -ENOMEM;
2033 
2034 	page_count = obj->base.size / PAGE_SIZE;
2035 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2036 		kfree(st);
2037 		return -ENOMEM;
2038 	}
2039 
2040 	/* Get the list of pages out of our struct file.  They'll be pinned
2041 	 * at this point until we release them.
2042 	 *
2043 	 * Fail silently without starting the shrinker
2044 	 */
2045 	mapping = file_inode(obj->base.filp)->i_mapping;
2046 	gfp = mapping_gfp_mask(mapping);
2047 	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2048 	gfp &= ~(__GFP_IO | __GFP_WAIT);
2049 	sg = st->sgl;
2050 	st->nents = 0;
2051 	for (i = 0; i < page_count; i++) {
2052 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2053 		if (IS_ERR(page)) {
2054 			i915_gem_purge(dev_priv, page_count);
2055 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2056 		}
2057 		if (IS_ERR(page)) {
2058 			/* We've tried hard to allocate the memory by reaping
2059 			 * our own buffer, now let the real VM do its job and
2060 			 * go down in flames if truly OOM.
2061 			 */
2062 			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
2063 			gfp |= __GFP_IO | __GFP_WAIT;
2064 
2065 			i915_gem_shrink_all(dev_priv);
2066 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2067 			if (IS_ERR(page))
2068 				goto err_pages;
2069 
2070 			gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2071 			gfp &= ~(__GFP_IO | __GFP_WAIT);
2072 		}
2073 #ifdef CONFIG_SWIOTLB
2074 		if (swiotlb_nr_tbl()) {
2075 			st->nents++;
2076 			sg_set_page(sg, page, PAGE_SIZE, 0);
2077 			sg = sg_next(sg);
2078 			continue;
2079 		}
2080 #endif
2081 		if (!i || page_to_pfn(page) != last_pfn + 1) {
2082 			if (i)
2083 				sg = sg_next(sg);
2084 			st->nents++;
2085 			sg_set_page(sg, page, PAGE_SIZE, 0);
2086 		} else {
2087 			sg->length += PAGE_SIZE;
2088 		}
2089 		last_pfn = page_to_pfn(page);
2090 
2091 		/* Check that the i965g/gm workaround works. */
2092 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2093 	}
2094 #ifdef CONFIG_SWIOTLB
2095 	if (!swiotlb_nr_tbl())
2096 #endif
2097 		sg_mark_end(sg);
2098 	obj->pages = st;
2099 
2100 	if (i915_gem_object_needs_bit17_swizzle(obj))
2101 		i915_gem_object_do_bit_17_swizzle(obj);
2102 
2103 	return 0;
2104 
2105 err_pages:
2106 	sg_mark_end(sg);
2107 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2108 		page_cache_release(sg_page_iter_page(&sg_iter));
2109 	sg_free_table(st);
2110 	kfree(st);
2111 
2112 	/* shmemfs first checks if there is enough memory to allocate the page
2113 	 * and reports ENOSPC should there be insufficient, along with the usual
2114 	 * ENOMEM for a genuine allocation failure.
2115 	 *
2116 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2117 	 * space and so want to translate the error from shmemfs back to our
2118 	 * usual understanding of ENOMEM.
2119 	 */
2120 	if (PTR_ERR(page) == -ENOSPC)
2121 		return -ENOMEM;
2122 	else
2123 		return PTR_ERR(page);
2124 }
2125 
2126 /* Ensure that the associated pages are gathered from the backing storage
2127  * and pinned into our object. i915_gem_object_get_pages() may be called
2128  * multiple times before they are released by a single call to
2129  * i915_gem_object_put_pages() - once the pages are no longer referenced
2130  * either as a result of memory pressure (reaping pages under the shrinker)
2131  * or as the object is itself released.
2132  */
2133 int
2134 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2135 {
2136 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2137 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2138 	int ret;
2139 
2140 	if (obj->pages)
2141 		return 0;
2142 
2143 	if (obj->madv != I915_MADV_WILLNEED) {
2144 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2145 		return -EFAULT;
2146 	}
2147 
2148 	BUG_ON(obj->pages_pin_count);
2149 
2150 	ret = ops->get_pages(obj);
2151 	if (ret)
2152 		return ret;
2153 
2154 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2155 	return 0;
2156 }
2157 
2158 static void
2159 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2160 			       struct intel_engine_cs *ring)
2161 {
2162 	struct drm_device *dev = obj->base.dev;
2163 	struct drm_i915_private *dev_priv = dev->dev_private;
2164 	u32 seqno = intel_ring_get_seqno(ring);
2165 
2166 	BUG_ON(ring == NULL);
2167 	if (obj->ring != ring && obj->last_write_seqno) {
2168 		/* Keep the seqno relative to the current ring */
2169 		obj->last_write_seqno = seqno;
2170 	}
2171 	obj->ring = ring;
2172 
2173 	/* Add a reference if we're newly entering the active list. */
2174 	if (!obj->active) {
2175 		drm_gem_object_reference(&obj->base);
2176 		obj->active = 1;
2177 	}
2178 
2179 	list_move_tail(&obj->ring_list, &ring->active_list);
2180 
2181 	obj->last_read_seqno = seqno;
2182 
2183 	if (obj->fenced_gpu_access) {
2184 		obj->last_fenced_seqno = seqno;
2185 
2186 		/* Bump MRU to take account of the delayed flush */
2187 		if (obj->fence_reg != I915_FENCE_REG_NONE) {
2188 			struct drm_i915_fence_reg *reg;
2189 
2190 			reg = &dev_priv->fence_regs[obj->fence_reg];
2191 			list_move_tail(&reg->lru_list,
2192 				       &dev_priv->mm.fence_list);
2193 		}
2194 	}
2195 }
2196 
2197 void i915_vma_move_to_active(struct i915_vma *vma,
2198 			     struct intel_engine_cs *ring)
2199 {
2200 	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2201 	return i915_gem_object_move_to_active(vma->obj, ring);
2202 }
2203 
2204 static void
2205 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2206 {
2207 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2208 	struct i915_address_space *vm;
2209 	struct i915_vma *vma;
2210 
2211 	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2212 	BUG_ON(!obj->active);
2213 
2214 	list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2215 		vma = i915_gem_obj_to_vma(obj, vm);
2216 		if (vma && !list_empty(&vma->mm_list))
2217 			list_move_tail(&vma->mm_list, &vm->inactive_list);
2218 	}
2219 
2220 	list_del_init(&obj->ring_list);
2221 	obj->ring = NULL;
2222 
2223 	obj->last_read_seqno = 0;
2224 	obj->last_write_seqno = 0;
2225 	obj->base.write_domain = 0;
2226 
2227 	obj->last_fenced_seqno = 0;
2228 	obj->fenced_gpu_access = false;
2229 
2230 	obj->active = 0;
2231 	drm_gem_object_unreference(&obj->base);
2232 
2233 	WARN_ON(i915_verify_lists(dev));
2234 }
2235 
2236 static void
2237 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2238 {
2239 	struct intel_engine_cs *ring = obj->ring;
2240 
2241 	if (ring == NULL)
2242 		return;
2243 
2244 	if (i915_seqno_passed(ring->get_seqno(ring, true),
2245 			      obj->last_read_seqno))
2246 		i915_gem_object_move_to_inactive(obj);
2247 }
2248 
2249 static int
2250 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2251 {
2252 	struct drm_i915_private *dev_priv = dev->dev_private;
2253 	struct intel_engine_cs *ring;
2254 	int ret, i, j;
2255 
2256 	/* Carefully retire all requests without writing to the rings */
2257 	for_each_ring(ring, dev_priv, i) {
2258 		ret = intel_ring_idle(ring);
2259 		if (ret)
2260 			return ret;
2261 	}
2262 	i915_gem_retire_requests(dev);
2263 
2264 	/* Finally reset hw state */
2265 	for_each_ring(ring, dev_priv, i) {
2266 		intel_ring_init_seqno(ring, seqno);
2267 
2268 		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2269 			ring->semaphore.sync_seqno[j] = 0;
2270 	}
2271 
2272 	return 0;
2273 }
2274 
2275 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2276 {
2277 	struct drm_i915_private *dev_priv = dev->dev_private;
2278 	int ret;
2279 
2280 	if (seqno == 0)
2281 		return -EINVAL;
2282 
2283 	/* HWS page needs to be set less than what we
2284 	 * will inject to ring
2285 	 */
2286 	ret = i915_gem_init_seqno(dev, seqno - 1);
2287 	if (ret)
2288 		return ret;
2289 
2290 	/* Carefully set the last_seqno value so that wrap
2291 	 * detection still works
2292 	 */
2293 	dev_priv->next_seqno = seqno;
2294 	dev_priv->last_seqno = seqno - 1;
2295 	if (dev_priv->last_seqno == 0)
2296 		dev_priv->last_seqno--;
2297 
2298 	return 0;
2299 }
2300 
2301 int
2302 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2303 {
2304 	struct drm_i915_private *dev_priv = dev->dev_private;
2305 
2306 	/* reserve 0 for non-seqno */
2307 	if (dev_priv->next_seqno == 0) {
2308 		int ret = i915_gem_init_seqno(dev, 0);
2309 		if (ret)
2310 			return ret;
2311 
2312 		dev_priv->next_seqno = 1;
2313 	}
2314 
2315 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2316 	return 0;
2317 }
2318 
2319 int __i915_add_request(struct intel_engine_cs *ring,
2320 		       struct drm_file *file,
2321 		       struct drm_i915_gem_object *obj,
2322 		       u32 *out_seqno)
2323 {
2324 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2325 	struct drm_i915_gem_request *request;
2326 	u32 request_ring_position, request_start;
2327 	int ret;
2328 
2329 	request_start = intel_ring_get_tail(ring);
2330 	/*
2331 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2332 	 * after having emitted the batchbuffer command. Hence we need to fix
2333 	 * things up similar to emitting the lazy request. The difference here
2334 	 * is that the flush _must_ happen before the next request, no matter
2335 	 * what.
2336 	 */
2337 	ret = intel_ring_flush_all_caches(ring);
2338 	if (ret)
2339 		return ret;
2340 
2341 	request = ring->preallocated_lazy_request;
2342 	if (WARN_ON(request == NULL))
2343 		return -ENOMEM;
2344 
2345 	/* Record the position of the start of the request so that
2346 	 * should we detect the updated seqno part-way through the
2347 	 * GPU processing the request, we never over-estimate the
2348 	 * position of the head.
2349 	 */
2350 	request_ring_position = intel_ring_get_tail(ring);
2351 
2352 	ret = ring->add_request(ring);
2353 	if (ret)
2354 		return ret;
2355 
2356 	request->seqno = intel_ring_get_seqno(ring);
2357 	request->ring = ring;
2358 	request->head = request_start;
2359 	request->tail = request_ring_position;
2360 
2361 	/* Whilst this request exists, batch_obj will be on the
2362 	 * active_list, and so will hold the active reference. Only when this
2363 	 * request is retired will the the batch_obj be moved onto the
2364 	 * inactive_list and lose its active reference. Hence we do not need
2365 	 * to explicitly hold another reference here.
2366 	 */
2367 	request->batch_obj = obj;
2368 
2369 	/* Hold a reference to the current context so that we can inspect
2370 	 * it later in case a hangcheck error event fires.
2371 	 */
2372 	request->ctx = ring->last_context;
2373 	if (request->ctx)
2374 		i915_gem_context_reference(request->ctx);
2375 
2376 	request->emitted_jiffies = jiffies;
2377 	list_add_tail(&request->list, &ring->request_list);
2378 	request->file_priv = NULL;
2379 
2380 	if (file) {
2381 		struct drm_i915_file_private *file_priv = file->driver_priv;
2382 
2383 		spin_lock(&file_priv->mm.lock);
2384 		request->file_priv = file_priv;
2385 		list_add_tail(&request->client_list,
2386 			      &file_priv->mm.request_list);
2387 		spin_unlock(&file_priv->mm.lock);
2388 	}
2389 
2390 	trace_i915_gem_request_add(ring, request->seqno);
2391 	ring->outstanding_lazy_seqno = 0;
2392 	ring->preallocated_lazy_request = NULL;
2393 
2394 	if (!dev_priv->ums.mm_suspended) {
2395 		i915_queue_hangcheck(ring->dev);
2396 
2397 		cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2398 		queue_delayed_work(dev_priv->wq,
2399 				   &dev_priv->mm.retire_work,
2400 				   round_jiffies_up_relative(HZ));
2401 		intel_mark_busy(dev_priv->dev);
2402 	}
2403 
2404 	if (out_seqno)
2405 		*out_seqno = request->seqno;
2406 	return 0;
2407 }
2408 
2409 static inline void
2410 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2411 {
2412 	struct drm_i915_file_private *file_priv = request->file_priv;
2413 
2414 	if (!file_priv)
2415 		return;
2416 
2417 	spin_lock(&file_priv->mm.lock);
2418 	list_del(&request->client_list);
2419 	request->file_priv = NULL;
2420 	spin_unlock(&file_priv->mm.lock);
2421 }
2422 
2423 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2424 				   const struct intel_context *ctx)
2425 {
2426 	unsigned long elapsed;
2427 
2428 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2429 
2430 	if (ctx->hang_stats.banned)
2431 		return true;
2432 
2433 	if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2434 		if (!i915_gem_context_is_default(ctx)) {
2435 			DRM_DEBUG("context hanging too fast, banning!\n");
2436 			return true;
2437 		} else if (i915_stop_ring_allow_ban(dev_priv)) {
2438 			if (i915_stop_ring_allow_warn(dev_priv))
2439 				DRM_ERROR("gpu hanging too fast, banning!\n");
2440 			return true;
2441 		}
2442 	}
2443 
2444 	return false;
2445 }
2446 
2447 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2448 				  struct intel_context *ctx,
2449 				  const bool guilty)
2450 {
2451 	struct i915_ctx_hang_stats *hs;
2452 
2453 	if (WARN_ON(!ctx))
2454 		return;
2455 
2456 	hs = &ctx->hang_stats;
2457 
2458 	if (guilty) {
2459 		hs->banned = i915_context_is_banned(dev_priv, ctx);
2460 		hs->batch_active++;
2461 		hs->guilty_ts = get_seconds();
2462 	} else {
2463 		hs->batch_pending++;
2464 	}
2465 }
2466 
2467 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2468 {
2469 	list_del(&request->list);
2470 	i915_gem_request_remove_from_client(request);
2471 
2472 	if (request->ctx)
2473 		i915_gem_context_unreference(request->ctx);
2474 
2475 	kfree(request);
2476 }
2477 
2478 struct drm_i915_gem_request *
2479 i915_gem_find_active_request(struct intel_engine_cs *ring)
2480 {
2481 	struct drm_i915_gem_request *request;
2482 	u32 completed_seqno;
2483 
2484 	completed_seqno = ring->get_seqno(ring, false);
2485 
2486 	list_for_each_entry(request, &ring->request_list, list) {
2487 		if (i915_seqno_passed(completed_seqno, request->seqno))
2488 			continue;
2489 
2490 		return request;
2491 	}
2492 
2493 	return NULL;
2494 }
2495 
2496 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2497 				       struct intel_engine_cs *ring)
2498 {
2499 	struct drm_i915_gem_request *request;
2500 	bool ring_hung;
2501 
2502 	request = i915_gem_find_active_request(ring);
2503 
2504 	if (request == NULL)
2505 		return;
2506 
2507 	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2508 
2509 	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2510 
2511 	list_for_each_entry_continue(request, &ring->request_list, list)
2512 		i915_set_reset_status(dev_priv, request->ctx, false);
2513 }
2514 
2515 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2516 					struct intel_engine_cs *ring)
2517 {
2518 	while (!list_empty(&ring->active_list)) {
2519 		struct drm_i915_gem_object *obj;
2520 
2521 		obj = list_first_entry(&ring->active_list,
2522 				       struct drm_i915_gem_object,
2523 				       ring_list);
2524 
2525 		i915_gem_object_move_to_inactive(obj);
2526 	}
2527 
2528 	/*
2529 	 * We must free the requests after all the corresponding objects have
2530 	 * been moved off active lists. Which is the same order as the normal
2531 	 * retire_requests function does. This is important if object hold
2532 	 * implicit references on things like e.g. ppgtt address spaces through
2533 	 * the request.
2534 	 */
2535 	while (!list_empty(&ring->request_list)) {
2536 		struct drm_i915_gem_request *request;
2537 
2538 		request = list_first_entry(&ring->request_list,
2539 					   struct drm_i915_gem_request,
2540 					   list);
2541 
2542 		i915_gem_free_request(request);
2543 	}
2544 
2545 	/* These may not have been flush before the reset, do so now */
2546 	kfree(ring->preallocated_lazy_request);
2547 	ring->preallocated_lazy_request = NULL;
2548 	ring->outstanding_lazy_seqno = 0;
2549 }
2550 
2551 void i915_gem_restore_fences(struct drm_device *dev)
2552 {
2553 	struct drm_i915_private *dev_priv = dev->dev_private;
2554 	int i;
2555 
2556 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2557 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2558 
2559 		/*
2560 		 * Commit delayed tiling changes if we have an object still
2561 		 * attached to the fence, otherwise just clear the fence.
2562 		 */
2563 		if (reg->obj) {
2564 			i915_gem_object_update_fence(reg->obj, reg,
2565 						     reg->obj->tiling_mode);
2566 		} else {
2567 			i915_gem_write_fence(dev, i, NULL);
2568 		}
2569 	}
2570 }
2571 
2572 void i915_gem_reset(struct drm_device *dev)
2573 {
2574 	struct drm_i915_private *dev_priv = dev->dev_private;
2575 	struct intel_engine_cs *ring;
2576 	int i;
2577 
2578 	/*
2579 	 * Before we free the objects from the requests, we need to inspect
2580 	 * them for finding the guilty party. As the requests only borrow
2581 	 * their reference to the objects, the inspection must be done first.
2582 	 */
2583 	for_each_ring(ring, dev_priv, i)
2584 		i915_gem_reset_ring_status(dev_priv, ring);
2585 
2586 	for_each_ring(ring, dev_priv, i)
2587 		i915_gem_reset_ring_cleanup(dev_priv, ring);
2588 
2589 	i915_gem_context_reset(dev);
2590 
2591 	i915_gem_restore_fences(dev);
2592 }
2593 
2594 /**
2595  * This function clears the request list as sequence numbers are passed.
2596  */
2597 void
2598 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2599 {
2600 	uint32_t seqno;
2601 
2602 	if (list_empty(&ring->request_list))
2603 		return;
2604 
2605 	WARN_ON(i915_verify_lists(ring->dev));
2606 
2607 	seqno = ring->get_seqno(ring, true);
2608 
2609 	/* Move any buffers on the active list that are no longer referenced
2610 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
2611 	 * before we free the context associated with the requests.
2612 	 */
2613 	while (!list_empty(&ring->active_list)) {
2614 		struct drm_i915_gem_object *obj;
2615 
2616 		obj = list_first_entry(&ring->active_list,
2617 				      struct drm_i915_gem_object,
2618 				      ring_list);
2619 
2620 		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2621 			break;
2622 
2623 		i915_gem_object_move_to_inactive(obj);
2624 	}
2625 
2626 
2627 	while (!list_empty(&ring->request_list)) {
2628 		struct drm_i915_gem_request *request;
2629 
2630 		request = list_first_entry(&ring->request_list,
2631 					   struct drm_i915_gem_request,
2632 					   list);
2633 
2634 		if (!i915_seqno_passed(seqno, request->seqno))
2635 			break;
2636 
2637 		trace_i915_gem_request_retire(ring, request->seqno);
2638 		/* We know the GPU must have read the request to have
2639 		 * sent us the seqno + interrupt, so use the position
2640 		 * of tail of the request to update the last known position
2641 		 * of the GPU head.
2642 		 */
2643 		ring->buffer->last_retired_head = request->tail;
2644 
2645 		i915_gem_free_request(request);
2646 	}
2647 
2648 	if (unlikely(ring->trace_irq_seqno &&
2649 		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2650 		ring->irq_put(ring);
2651 		ring->trace_irq_seqno = 0;
2652 	}
2653 
2654 	WARN_ON(i915_verify_lists(ring->dev));
2655 }
2656 
2657 bool
2658 i915_gem_retire_requests(struct drm_device *dev)
2659 {
2660 	struct drm_i915_private *dev_priv = dev->dev_private;
2661 	struct intel_engine_cs *ring;
2662 	bool idle = true;
2663 	int i;
2664 
2665 	for_each_ring(ring, dev_priv, i) {
2666 		i915_gem_retire_requests_ring(ring);
2667 		idle &= list_empty(&ring->request_list);
2668 	}
2669 
2670 	if (idle)
2671 		mod_delayed_work(dev_priv->wq,
2672 				   &dev_priv->mm.idle_work,
2673 				   msecs_to_jiffies(100));
2674 
2675 	return idle;
2676 }
2677 
2678 static void
2679 i915_gem_retire_work_handler(struct work_struct *work)
2680 {
2681 	struct drm_i915_private *dev_priv =
2682 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
2683 	struct drm_device *dev = dev_priv->dev;
2684 	bool idle;
2685 
2686 	/* Come back later if the device is busy... */
2687 	idle = false;
2688 	if (mutex_trylock(&dev->struct_mutex)) {
2689 		idle = i915_gem_retire_requests(dev);
2690 		mutex_unlock(&dev->struct_mutex);
2691 	}
2692 	if (!idle)
2693 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2694 				   round_jiffies_up_relative(HZ));
2695 }
2696 
2697 static void
2698 i915_gem_idle_work_handler(struct work_struct *work)
2699 {
2700 	struct drm_i915_private *dev_priv =
2701 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2702 
2703 	intel_mark_idle(dev_priv->dev);
2704 }
2705 
2706 /**
2707  * Ensures that an object will eventually get non-busy by flushing any required
2708  * write domains, emitting any outstanding lazy request and retiring and
2709  * completed requests.
2710  */
2711 static int
2712 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2713 {
2714 	int ret;
2715 
2716 	if (obj->active) {
2717 		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2718 		if (ret)
2719 			return ret;
2720 
2721 		i915_gem_retire_requests_ring(obj->ring);
2722 	}
2723 
2724 	return 0;
2725 }
2726 
2727 /**
2728  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2729  * @DRM_IOCTL_ARGS: standard ioctl arguments
2730  *
2731  * Returns 0 if successful, else an error is returned with the remaining time in
2732  * the timeout parameter.
2733  *  -ETIME: object is still busy after timeout
2734  *  -ERESTARTSYS: signal interrupted the wait
2735  *  -ENONENT: object doesn't exist
2736  * Also possible, but rare:
2737  *  -EAGAIN: GPU wedged
2738  *  -ENOMEM: damn
2739  *  -ENODEV: Internal IRQ fail
2740  *  -E?: The add request failed
2741  *
2742  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2743  * non-zero timeout parameter the wait ioctl will wait for the given number of
2744  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2745  * without holding struct_mutex the object may become re-busied before this
2746  * function completes. A similar but shorter * race condition exists in the busy
2747  * ioctl
2748  */
2749 int
2750 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2751 {
2752 	struct drm_i915_private *dev_priv = dev->dev_private;
2753 	struct drm_i915_gem_wait *args = data;
2754 	struct drm_i915_gem_object *obj;
2755 	struct intel_engine_cs *ring = NULL;
2756 	struct timespec timeout_stack, *timeout = NULL;
2757 	unsigned reset_counter;
2758 	u32 seqno = 0;
2759 	int ret = 0;
2760 
2761 	if (args->timeout_ns >= 0) {
2762 		timeout_stack = ns_to_timespec(args->timeout_ns);
2763 		timeout = &timeout_stack;
2764 	}
2765 
2766 	ret = i915_mutex_lock_interruptible(dev);
2767 	if (ret)
2768 		return ret;
2769 
2770 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2771 	if (&obj->base == NULL) {
2772 		mutex_unlock(&dev->struct_mutex);
2773 		return -ENOENT;
2774 	}
2775 
2776 	/* Need to make sure the object gets inactive eventually. */
2777 	ret = i915_gem_object_flush_active(obj);
2778 	if (ret)
2779 		goto out;
2780 
2781 	if (obj->active) {
2782 		seqno = obj->last_read_seqno;
2783 		ring = obj->ring;
2784 	}
2785 
2786 	if (seqno == 0)
2787 		 goto out;
2788 
2789 	/* Do this after OLR check to make sure we make forward progress polling
2790 	 * on this IOCTL with a 0 timeout (like busy ioctl)
2791 	 */
2792 	if (!args->timeout_ns) {
2793 		ret = -ETIME;
2794 		goto out;
2795 	}
2796 
2797 	drm_gem_object_unreference(&obj->base);
2798 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2799 	mutex_unlock(&dev->struct_mutex);
2800 
2801 	ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2802 	if (timeout)
2803 		args->timeout_ns = timespec_to_ns(timeout);
2804 	return ret;
2805 
2806 out:
2807 	drm_gem_object_unreference(&obj->base);
2808 	mutex_unlock(&dev->struct_mutex);
2809 	return ret;
2810 }
2811 
2812 /**
2813  * i915_gem_object_sync - sync an object to a ring.
2814  *
2815  * @obj: object which may be in use on another ring.
2816  * @to: ring we wish to use the object on. May be NULL.
2817  *
2818  * This code is meant to abstract object synchronization with the GPU.
2819  * Calling with NULL implies synchronizing the object with the CPU
2820  * rather than a particular GPU ring.
2821  *
2822  * Returns 0 if successful, else propagates up the lower layer error.
2823  */
2824 int
2825 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2826 		     struct intel_engine_cs *to)
2827 {
2828 	struct intel_engine_cs *from = obj->ring;
2829 	u32 seqno;
2830 	int ret, idx;
2831 
2832 	if (from == NULL || to == from)
2833 		return 0;
2834 
2835 	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2836 		return i915_gem_object_wait_rendering(obj, false);
2837 
2838 	idx = intel_ring_sync_index(from, to);
2839 
2840 	seqno = obj->last_read_seqno;
2841 	if (seqno <= from->semaphore.sync_seqno[idx])
2842 		return 0;
2843 
2844 	ret = i915_gem_check_olr(obj->ring, seqno);
2845 	if (ret)
2846 		return ret;
2847 
2848 	trace_i915_gem_ring_sync_to(from, to, seqno);
2849 	ret = to->semaphore.sync_to(to, from, seqno);
2850 	if (!ret)
2851 		/* We use last_read_seqno because sync_to()
2852 		 * might have just caused seqno wrap under
2853 		 * the radar.
2854 		 */
2855 		from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2856 
2857 	return ret;
2858 }
2859 
2860 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2861 {
2862 	u32 old_write_domain, old_read_domains;
2863 
2864 	/* Force a pagefault for domain tracking on next user access */
2865 	i915_gem_release_mmap(obj);
2866 
2867 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2868 		return;
2869 
2870 	/* Wait for any direct GTT access to complete */
2871 	mb();
2872 
2873 	old_read_domains = obj->base.read_domains;
2874 	old_write_domain = obj->base.write_domain;
2875 
2876 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2877 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2878 
2879 	trace_i915_gem_object_change_domain(obj,
2880 					    old_read_domains,
2881 					    old_write_domain);
2882 }
2883 
2884 int i915_vma_unbind(struct i915_vma *vma)
2885 {
2886 	struct drm_i915_gem_object *obj = vma->obj;
2887 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2888 	int ret;
2889 
2890 	if (list_empty(&vma->vma_link))
2891 		return 0;
2892 
2893 	if (!drm_mm_node_allocated(&vma->node)) {
2894 		i915_gem_vma_destroy(vma);
2895 		return 0;
2896 	}
2897 
2898 	if (vma->pin_count)
2899 		return -EBUSY;
2900 
2901 	BUG_ON(obj->pages == NULL);
2902 
2903 	ret = i915_gem_object_finish_gpu(obj);
2904 	if (ret)
2905 		return ret;
2906 	/* Continue on if we fail due to EIO, the GPU is hung so we
2907 	 * should be safe and we need to cleanup or else we might
2908 	 * cause memory corruption through use-after-free.
2909 	 */
2910 
2911 	if (i915_is_ggtt(vma->vm)) {
2912 		i915_gem_object_finish_gtt(obj);
2913 
2914 		/* release the fence reg _after_ flushing */
2915 		ret = i915_gem_object_put_fence(obj);
2916 		if (ret)
2917 			return ret;
2918 	}
2919 
2920 	trace_i915_vma_unbind(vma);
2921 
2922 	vma->unbind_vma(vma);
2923 
2924 	i915_gem_gtt_finish_object(obj);
2925 
2926 	list_del_init(&vma->mm_list);
2927 	/* Avoid an unnecessary call to unbind on rebind. */
2928 	if (i915_is_ggtt(vma->vm))
2929 		obj->map_and_fenceable = true;
2930 
2931 	drm_mm_remove_node(&vma->node);
2932 	i915_gem_vma_destroy(vma);
2933 
2934 	/* Since the unbound list is global, only move to that list if
2935 	 * no more VMAs exist. */
2936 	if (list_empty(&obj->vma_list))
2937 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2938 
2939 	/* And finally now the object is completely decoupled from this vma,
2940 	 * we can drop its hold on the backing storage and allow it to be
2941 	 * reaped by the shrinker.
2942 	 */
2943 	i915_gem_object_unpin_pages(obj);
2944 
2945 	return 0;
2946 }
2947 
2948 int i915_gpu_idle(struct drm_device *dev)
2949 {
2950 	struct drm_i915_private *dev_priv = dev->dev_private;
2951 	struct intel_engine_cs *ring;
2952 	int ret, i;
2953 
2954 	/* Flush everything onto the inactive list. */
2955 	for_each_ring(ring, dev_priv, i) {
2956 		ret = i915_switch_context(ring, ring->default_context);
2957 		if (ret)
2958 			return ret;
2959 
2960 		ret = intel_ring_idle(ring);
2961 		if (ret)
2962 			return ret;
2963 	}
2964 
2965 	return 0;
2966 }
2967 
2968 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2969 				 struct drm_i915_gem_object *obj)
2970 {
2971 	struct drm_i915_private *dev_priv = dev->dev_private;
2972 	int fence_reg;
2973 	int fence_pitch_shift;
2974 
2975 	if (INTEL_INFO(dev)->gen >= 6) {
2976 		fence_reg = FENCE_REG_SANDYBRIDGE_0;
2977 		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2978 	} else {
2979 		fence_reg = FENCE_REG_965_0;
2980 		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2981 	}
2982 
2983 	fence_reg += reg * 8;
2984 
2985 	/* To w/a incoherency with non-atomic 64-bit register updates,
2986 	 * we split the 64-bit update into two 32-bit writes. In order
2987 	 * for a partial fence not to be evaluated between writes, we
2988 	 * precede the update with write to turn off the fence register,
2989 	 * and only enable the fence as the last step.
2990 	 *
2991 	 * For extra levels of paranoia, we make sure each step lands
2992 	 * before applying the next step.
2993 	 */
2994 	I915_WRITE(fence_reg, 0);
2995 	POSTING_READ(fence_reg);
2996 
2997 	if (obj) {
2998 		u32 size = i915_gem_obj_ggtt_size(obj);
2999 		uint64_t val;
3000 
3001 		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3002 				 0xfffff000) << 32;
3003 		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3004 		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3005 		if (obj->tiling_mode == I915_TILING_Y)
3006 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3007 		val |= I965_FENCE_REG_VALID;
3008 
3009 		I915_WRITE(fence_reg + 4, val >> 32);
3010 		POSTING_READ(fence_reg + 4);
3011 
3012 		I915_WRITE(fence_reg + 0, val);
3013 		POSTING_READ(fence_reg);
3014 	} else {
3015 		I915_WRITE(fence_reg + 4, 0);
3016 		POSTING_READ(fence_reg + 4);
3017 	}
3018 }
3019 
3020 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3021 				 struct drm_i915_gem_object *obj)
3022 {
3023 	struct drm_i915_private *dev_priv = dev->dev_private;
3024 	u32 val;
3025 
3026 	if (obj) {
3027 		u32 size = i915_gem_obj_ggtt_size(obj);
3028 		int pitch_val;
3029 		int tile_width;
3030 
3031 		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3032 		     (size & -size) != size ||
3033 		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3034 		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3035 		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3036 
3037 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3038 			tile_width = 128;
3039 		else
3040 			tile_width = 512;
3041 
3042 		/* Note: pitch better be a power of two tile widths */
3043 		pitch_val = obj->stride / tile_width;
3044 		pitch_val = ffs(pitch_val) - 1;
3045 
3046 		val = i915_gem_obj_ggtt_offset(obj);
3047 		if (obj->tiling_mode == I915_TILING_Y)
3048 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3049 		val |= I915_FENCE_SIZE_BITS(size);
3050 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3051 		val |= I830_FENCE_REG_VALID;
3052 	} else
3053 		val = 0;
3054 
3055 	if (reg < 8)
3056 		reg = FENCE_REG_830_0 + reg * 4;
3057 	else
3058 		reg = FENCE_REG_945_8 + (reg - 8) * 4;
3059 
3060 	I915_WRITE(reg, val);
3061 	POSTING_READ(reg);
3062 }
3063 
3064 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3065 				struct drm_i915_gem_object *obj)
3066 {
3067 	struct drm_i915_private *dev_priv = dev->dev_private;
3068 	uint32_t val;
3069 
3070 	if (obj) {
3071 		u32 size = i915_gem_obj_ggtt_size(obj);
3072 		uint32_t pitch_val;
3073 
3074 		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3075 		     (size & -size) != size ||
3076 		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3077 		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3078 		     i915_gem_obj_ggtt_offset(obj), size);
3079 
3080 		pitch_val = obj->stride / 128;
3081 		pitch_val = ffs(pitch_val) - 1;
3082 
3083 		val = i915_gem_obj_ggtt_offset(obj);
3084 		if (obj->tiling_mode == I915_TILING_Y)
3085 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3086 		val |= I830_FENCE_SIZE_BITS(size);
3087 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3088 		val |= I830_FENCE_REG_VALID;
3089 	} else
3090 		val = 0;
3091 
3092 	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3093 	POSTING_READ(FENCE_REG_830_0 + reg * 4);
3094 }
3095 
3096 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3097 {
3098 	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3099 }
3100 
3101 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3102 				 struct drm_i915_gem_object *obj)
3103 {
3104 	struct drm_i915_private *dev_priv = dev->dev_private;
3105 
3106 	/* Ensure that all CPU reads are completed before installing a fence
3107 	 * and all writes before removing the fence.
3108 	 */
3109 	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3110 		mb();
3111 
3112 	WARN(obj && (!obj->stride || !obj->tiling_mode),
3113 	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3114 	     obj->stride, obj->tiling_mode);
3115 
3116 	switch (INTEL_INFO(dev)->gen) {
3117 	case 8:
3118 	case 7:
3119 	case 6:
3120 	case 5:
3121 	case 4: i965_write_fence_reg(dev, reg, obj); break;
3122 	case 3: i915_write_fence_reg(dev, reg, obj); break;
3123 	case 2: i830_write_fence_reg(dev, reg, obj); break;
3124 	default: BUG();
3125 	}
3126 
3127 	/* And similarly be paranoid that no direct access to this region
3128 	 * is reordered to before the fence is installed.
3129 	 */
3130 	if (i915_gem_object_needs_mb(obj))
3131 		mb();
3132 }
3133 
3134 static inline int fence_number(struct drm_i915_private *dev_priv,
3135 			       struct drm_i915_fence_reg *fence)
3136 {
3137 	return fence - dev_priv->fence_regs;
3138 }
3139 
3140 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3141 					 struct drm_i915_fence_reg *fence,
3142 					 bool enable)
3143 {
3144 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3145 	int reg = fence_number(dev_priv, fence);
3146 
3147 	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3148 
3149 	if (enable) {
3150 		obj->fence_reg = reg;
3151 		fence->obj = obj;
3152 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3153 	} else {
3154 		obj->fence_reg = I915_FENCE_REG_NONE;
3155 		fence->obj = NULL;
3156 		list_del_init(&fence->lru_list);
3157 	}
3158 	obj->fence_dirty = false;
3159 }
3160 
3161 static int
3162 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3163 {
3164 	if (obj->last_fenced_seqno) {
3165 		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3166 		if (ret)
3167 			return ret;
3168 
3169 		obj->last_fenced_seqno = 0;
3170 	}
3171 
3172 	obj->fenced_gpu_access = false;
3173 	return 0;
3174 }
3175 
3176 int
3177 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3178 {
3179 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3180 	struct drm_i915_fence_reg *fence;
3181 	int ret;
3182 
3183 	ret = i915_gem_object_wait_fence(obj);
3184 	if (ret)
3185 		return ret;
3186 
3187 	if (obj->fence_reg == I915_FENCE_REG_NONE)
3188 		return 0;
3189 
3190 	fence = &dev_priv->fence_regs[obj->fence_reg];
3191 
3192 	if (WARN_ON(fence->pin_count))
3193 		return -EBUSY;
3194 
3195 	i915_gem_object_fence_lost(obj);
3196 	i915_gem_object_update_fence(obj, fence, false);
3197 
3198 	return 0;
3199 }
3200 
3201 static struct drm_i915_fence_reg *
3202 i915_find_fence_reg(struct drm_device *dev)
3203 {
3204 	struct drm_i915_private *dev_priv = dev->dev_private;
3205 	struct drm_i915_fence_reg *reg, *avail;
3206 	int i;
3207 
3208 	/* First try to find a free reg */
3209 	avail = NULL;
3210 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3211 		reg = &dev_priv->fence_regs[i];
3212 		if (!reg->obj)
3213 			return reg;
3214 
3215 		if (!reg->pin_count)
3216 			avail = reg;
3217 	}
3218 
3219 	if (avail == NULL)
3220 		goto deadlock;
3221 
3222 	/* None available, try to steal one or wait for a user to finish */
3223 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3224 		if (reg->pin_count)
3225 			continue;
3226 
3227 		return reg;
3228 	}
3229 
3230 deadlock:
3231 	/* Wait for completion of pending flips which consume fences */
3232 	if (intel_has_pending_fb_unpin(dev))
3233 		return ERR_PTR(-EAGAIN);
3234 
3235 	return ERR_PTR(-EDEADLK);
3236 }
3237 
3238 /**
3239  * i915_gem_object_get_fence - set up fencing for an object
3240  * @obj: object to map through a fence reg
3241  *
3242  * When mapping objects through the GTT, userspace wants to be able to write
3243  * to them without having to worry about swizzling if the object is tiled.
3244  * This function walks the fence regs looking for a free one for @obj,
3245  * stealing one if it can't find any.
3246  *
3247  * It then sets up the reg based on the object's properties: address, pitch
3248  * and tiling format.
3249  *
3250  * For an untiled surface, this removes any existing fence.
3251  */
3252 int
3253 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3254 {
3255 	struct drm_device *dev = obj->base.dev;
3256 	struct drm_i915_private *dev_priv = dev->dev_private;
3257 	bool enable = obj->tiling_mode != I915_TILING_NONE;
3258 	struct drm_i915_fence_reg *reg;
3259 	int ret;
3260 
3261 	/* Have we updated the tiling parameters upon the object and so
3262 	 * will need to serialise the write to the associated fence register?
3263 	 */
3264 	if (obj->fence_dirty) {
3265 		ret = i915_gem_object_wait_fence(obj);
3266 		if (ret)
3267 			return ret;
3268 	}
3269 
3270 	/* Just update our place in the LRU if our fence is getting reused. */
3271 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
3272 		reg = &dev_priv->fence_regs[obj->fence_reg];
3273 		if (!obj->fence_dirty) {
3274 			list_move_tail(&reg->lru_list,
3275 				       &dev_priv->mm.fence_list);
3276 			return 0;
3277 		}
3278 	} else if (enable) {
3279 		reg = i915_find_fence_reg(dev);
3280 		if (IS_ERR(reg))
3281 			return PTR_ERR(reg);
3282 
3283 		if (reg->obj) {
3284 			struct drm_i915_gem_object *old = reg->obj;
3285 
3286 			ret = i915_gem_object_wait_fence(old);
3287 			if (ret)
3288 				return ret;
3289 
3290 			i915_gem_object_fence_lost(old);
3291 		}
3292 	} else
3293 		return 0;
3294 
3295 	i915_gem_object_update_fence(obj, reg, enable);
3296 
3297 	return 0;
3298 }
3299 
3300 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3301 				     struct drm_mm_node *gtt_space,
3302 				     unsigned long cache_level)
3303 {
3304 	struct drm_mm_node *other;
3305 
3306 	/* On non-LLC machines we have to be careful when putting differing
3307 	 * types of snoopable memory together to avoid the prefetcher
3308 	 * crossing memory domains and dying.
3309 	 */
3310 	if (HAS_LLC(dev))
3311 		return true;
3312 
3313 	if (!drm_mm_node_allocated(gtt_space))
3314 		return true;
3315 
3316 	if (list_empty(&gtt_space->node_list))
3317 		return true;
3318 
3319 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3320 	if (other->allocated && !other->hole_follows && other->color != cache_level)
3321 		return false;
3322 
3323 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3324 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3325 		return false;
3326 
3327 	return true;
3328 }
3329 
3330 static void i915_gem_verify_gtt(struct drm_device *dev)
3331 {
3332 #if WATCH_GTT
3333 	struct drm_i915_private *dev_priv = dev->dev_private;
3334 	struct drm_i915_gem_object *obj;
3335 	int err = 0;
3336 
3337 	list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3338 		if (obj->gtt_space == NULL) {
3339 			printk(KERN_ERR "object found on GTT list with no space reserved\n");
3340 			err++;
3341 			continue;
3342 		}
3343 
3344 		if (obj->cache_level != obj->gtt_space->color) {
3345 			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3346 			       i915_gem_obj_ggtt_offset(obj),
3347 			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3348 			       obj->cache_level,
3349 			       obj->gtt_space->color);
3350 			err++;
3351 			continue;
3352 		}
3353 
3354 		if (!i915_gem_valid_gtt_space(dev,
3355 					      obj->gtt_space,
3356 					      obj->cache_level)) {
3357 			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3358 			       i915_gem_obj_ggtt_offset(obj),
3359 			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3360 			       obj->cache_level);
3361 			err++;
3362 			continue;
3363 		}
3364 	}
3365 
3366 	WARN_ON(err);
3367 #endif
3368 }
3369 
3370 /**
3371  * Finds free space in the GTT aperture and binds the object there.
3372  */
3373 static struct i915_vma *
3374 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3375 			   struct i915_address_space *vm,
3376 			   unsigned alignment,
3377 			   uint64_t flags)
3378 {
3379 	struct drm_device *dev = obj->base.dev;
3380 	struct drm_i915_private *dev_priv = dev->dev_private;
3381 	u32 size, fence_size, fence_alignment, unfenced_alignment;
3382 	unsigned long start =
3383 		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3384 	unsigned long end =
3385 		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3386 	struct i915_vma *vma;
3387 	int ret;
3388 
3389 	fence_size = i915_gem_get_gtt_size(dev,
3390 					   obj->base.size,
3391 					   obj->tiling_mode);
3392 	fence_alignment = i915_gem_get_gtt_alignment(dev,
3393 						     obj->base.size,
3394 						     obj->tiling_mode, true);
3395 	unfenced_alignment =
3396 		i915_gem_get_gtt_alignment(dev,
3397 					   obj->base.size,
3398 					   obj->tiling_mode, false);
3399 
3400 	if (alignment == 0)
3401 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3402 						unfenced_alignment;
3403 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3404 		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3405 		return ERR_PTR(-EINVAL);
3406 	}
3407 
3408 	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3409 
3410 	/* If the object is bigger than the entire aperture, reject it early
3411 	 * before evicting everything in a vain attempt to find space.
3412 	 */
3413 	if (obj->base.size > end) {
3414 		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3415 			  obj->base.size,
3416 			  flags & PIN_MAPPABLE ? "mappable" : "total",
3417 			  end);
3418 		return ERR_PTR(-E2BIG);
3419 	}
3420 
3421 	ret = i915_gem_object_get_pages(obj);
3422 	if (ret)
3423 		return ERR_PTR(ret);
3424 
3425 	i915_gem_object_pin_pages(obj);
3426 
3427 	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3428 	if (IS_ERR(vma))
3429 		goto err_unpin;
3430 
3431 search_free:
3432 	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3433 						  size, alignment,
3434 						  obj->cache_level,
3435 						  start, end,
3436 						  DRM_MM_SEARCH_DEFAULT,
3437 						  DRM_MM_CREATE_DEFAULT);
3438 	if (ret) {
3439 		ret = i915_gem_evict_something(dev, vm, size, alignment,
3440 					       obj->cache_level,
3441 					       start, end,
3442 					       flags);
3443 		if (ret == 0)
3444 			goto search_free;
3445 
3446 		goto err_free_vma;
3447 	}
3448 	if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3449 					      obj->cache_level))) {
3450 		ret = -EINVAL;
3451 		goto err_remove_node;
3452 	}
3453 
3454 	ret = i915_gem_gtt_prepare_object(obj);
3455 	if (ret)
3456 		goto err_remove_node;
3457 
3458 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3459 	list_add_tail(&vma->mm_list, &vm->inactive_list);
3460 
3461 	if (i915_is_ggtt(vm)) {
3462 		bool mappable, fenceable;
3463 
3464 		fenceable = (vma->node.size == fence_size &&
3465 			     (vma->node.start & (fence_alignment - 1)) == 0);
3466 
3467 		mappable = (vma->node.start + obj->base.size <=
3468 			    dev_priv->gtt.mappable_end);
3469 
3470 		obj->map_and_fenceable = mappable && fenceable;
3471 	}
3472 
3473 	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3474 
3475 	trace_i915_vma_bind(vma, flags);
3476 	vma->bind_vma(vma, obj->cache_level,
3477 		      flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3478 
3479 	i915_gem_verify_gtt(dev);
3480 	return vma;
3481 
3482 err_remove_node:
3483 	drm_mm_remove_node(&vma->node);
3484 err_free_vma:
3485 	i915_gem_vma_destroy(vma);
3486 	vma = ERR_PTR(ret);
3487 err_unpin:
3488 	i915_gem_object_unpin_pages(obj);
3489 	return vma;
3490 }
3491 
3492 bool
3493 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3494 			bool force)
3495 {
3496 	/* If we don't have a page list set up, then we're not pinned
3497 	 * to GPU, and we can ignore the cache flush because it'll happen
3498 	 * again at bind time.
3499 	 */
3500 	if (obj->pages == NULL)
3501 		return false;
3502 
3503 	/*
3504 	 * Stolen memory is always coherent with the GPU as it is explicitly
3505 	 * marked as wc by the system, or the system is cache-coherent.
3506 	 */
3507 	if (obj->stolen)
3508 		return false;
3509 
3510 	/* If the GPU is snooping the contents of the CPU cache,
3511 	 * we do not need to manually clear the CPU cache lines.  However,
3512 	 * the caches are only snooped when the render cache is
3513 	 * flushed/invalidated.  As we always have to emit invalidations
3514 	 * and flushes when moving into and out of the RENDER domain, correct
3515 	 * snooping behaviour occurs naturally as the result of our domain
3516 	 * tracking.
3517 	 */
3518 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3519 		return false;
3520 
3521 	trace_i915_gem_object_clflush(obj);
3522 	drm_clflush_sg(obj->pages);
3523 
3524 	return true;
3525 }
3526 
3527 /** Flushes the GTT write domain for the object if it's dirty. */
3528 static void
3529 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3530 {
3531 	uint32_t old_write_domain;
3532 
3533 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3534 		return;
3535 
3536 	/* No actual flushing is required for the GTT write domain.  Writes
3537 	 * to it immediately go to main memory as far as we know, so there's
3538 	 * no chipset flush.  It also doesn't land in render cache.
3539 	 *
3540 	 * However, we do have to enforce the order so that all writes through
3541 	 * the GTT land before any writes to the device, such as updates to
3542 	 * the GATT itself.
3543 	 */
3544 	wmb();
3545 
3546 	old_write_domain = obj->base.write_domain;
3547 	obj->base.write_domain = 0;
3548 
3549 	trace_i915_gem_object_change_domain(obj,
3550 					    obj->base.read_domains,
3551 					    old_write_domain);
3552 }
3553 
3554 /** Flushes the CPU write domain for the object if it's dirty. */
3555 static void
3556 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3557 				       bool force)
3558 {
3559 	uint32_t old_write_domain;
3560 
3561 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3562 		return;
3563 
3564 	if (i915_gem_clflush_object(obj, force))
3565 		i915_gem_chipset_flush(obj->base.dev);
3566 
3567 	old_write_domain = obj->base.write_domain;
3568 	obj->base.write_domain = 0;
3569 
3570 	trace_i915_gem_object_change_domain(obj,
3571 					    obj->base.read_domains,
3572 					    old_write_domain);
3573 }
3574 
3575 /**
3576  * Moves a single object to the GTT read, and possibly write domain.
3577  *
3578  * This function returns when the move is complete, including waiting on
3579  * flushes to occur.
3580  */
3581 int
3582 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3583 {
3584 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3585 	uint32_t old_write_domain, old_read_domains;
3586 	int ret;
3587 
3588 	/* Not valid to be called on unbound objects. */
3589 	if (!i915_gem_obj_bound_any(obj))
3590 		return -EINVAL;
3591 
3592 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3593 		return 0;
3594 
3595 	ret = i915_gem_object_wait_rendering(obj, !write);
3596 	if (ret)
3597 		return ret;
3598 
3599 	i915_gem_object_retire(obj);
3600 	i915_gem_object_flush_cpu_write_domain(obj, false);
3601 
3602 	/* Serialise direct access to this object with the barriers for
3603 	 * coherent writes from the GPU, by effectively invalidating the
3604 	 * GTT domain upon first access.
3605 	 */
3606 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3607 		mb();
3608 
3609 	old_write_domain = obj->base.write_domain;
3610 	old_read_domains = obj->base.read_domains;
3611 
3612 	/* It should now be out of any other write domains, and we can update
3613 	 * the domain values for our changes.
3614 	 */
3615 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3616 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3617 	if (write) {
3618 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3619 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3620 		obj->dirty = 1;
3621 	}
3622 
3623 	trace_i915_gem_object_change_domain(obj,
3624 					    old_read_domains,
3625 					    old_write_domain);
3626 
3627 	/* And bump the LRU for this access */
3628 	if (i915_gem_object_is_inactive(obj)) {
3629 		struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3630 		if (vma)
3631 			list_move_tail(&vma->mm_list,
3632 				       &dev_priv->gtt.base.inactive_list);
3633 
3634 	}
3635 
3636 	return 0;
3637 }
3638 
3639 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3640 				    enum i915_cache_level cache_level)
3641 {
3642 	struct drm_device *dev = obj->base.dev;
3643 	struct i915_vma *vma, *next;
3644 	int ret;
3645 
3646 	if (obj->cache_level == cache_level)
3647 		return 0;
3648 
3649 	if (i915_gem_obj_is_pinned(obj)) {
3650 		DRM_DEBUG("can not change the cache level of pinned objects\n");
3651 		return -EBUSY;
3652 	}
3653 
3654 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3655 		if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3656 			ret = i915_vma_unbind(vma);
3657 			if (ret)
3658 				return ret;
3659 		}
3660 	}
3661 
3662 	if (i915_gem_obj_bound_any(obj)) {
3663 		ret = i915_gem_object_finish_gpu(obj);
3664 		if (ret)
3665 			return ret;
3666 
3667 		i915_gem_object_finish_gtt(obj);
3668 
3669 		/* Before SandyBridge, you could not use tiling or fence
3670 		 * registers with snooped memory, so relinquish any fences
3671 		 * currently pointing to our region in the aperture.
3672 		 */
3673 		if (INTEL_INFO(dev)->gen < 6) {
3674 			ret = i915_gem_object_put_fence(obj);
3675 			if (ret)
3676 				return ret;
3677 		}
3678 
3679 		list_for_each_entry(vma, &obj->vma_list, vma_link)
3680 			if (drm_mm_node_allocated(&vma->node))
3681 				vma->bind_vma(vma, cache_level,
3682 					      obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3683 	}
3684 
3685 	list_for_each_entry(vma, &obj->vma_list, vma_link)
3686 		vma->node.color = cache_level;
3687 	obj->cache_level = cache_level;
3688 
3689 	if (cpu_write_needs_clflush(obj)) {
3690 		u32 old_read_domains, old_write_domain;
3691 
3692 		/* If we're coming from LLC cached, then we haven't
3693 		 * actually been tracking whether the data is in the
3694 		 * CPU cache or not, since we only allow one bit set
3695 		 * in obj->write_domain and have been skipping the clflushes.
3696 		 * Just set it to the CPU cache for now.
3697 		 */
3698 		i915_gem_object_retire(obj);
3699 		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3700 
3701 		old_read_domains = obj->base.read_domains;
3702 		old_write_domain = obj->base.write_domain;
3703 
3704 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3705 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3706 
3707 		trace_i915_gem_object_change_domain(obj,
3708 						    old_read_domains,
3709 						    old_write_domain);
3710 	}
3711 
3712 	i915_gem_verify_gtt(dev);
3713 	return 0;
3714 }
3715 
3716 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3717 			       struct drm_file *file)
3718 {
3719 	struct drm_i915_gem_caching *args = data;
3720 	struct drm_i915_gem_object *obj;
3721 	int ret;
3722 
3723 	ret = i915_mutex_lock_interruptible(dev);
3724 	if (ret)
3725 		return ret;
3726 
3727 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3728 	if (&obj->base == NULL) {
3729 		ret = -ENOENT;
3730 		goto unlock;
3731 	}
3732 
3733 	switch (obj->cache_level) {
3734 	case I915_CACHE_LLC:
3735 	case I915_CACHE_L3_LLC:
3736 		args->caching = I915_CACHING_CACHED;
3737 		break;
3738 
3739 	case I915_CACHE_WT:
3740 		args->caching = I915_CACHING_DISPLAY;
3741 		break;
3742 
3743 	default:
3744 		args->caching = I915_CACHING_NONE;
3745 		break;
3746 	}
3747 
3748 	drm_gem_object_unreference(&obj->base);
3749 unlock:
3750 	mutex_unlock(&dev->struct_mutex);
3751 	return ret;
3752 }
3753 
3754 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3755 			       struct drm_file *file)
3756 {
3757 	struct drm_i915_gem_caching *args = data;
3758 	struct drm_i915_gem_object *obj;
3759 	enum i915_cache_level level;
3760 	int ret;
3761 
3762 	switch (args->caching) {
3763 	case I915_CACHING_NONE:
3764 		level = I915_CACHE_NONE;
3765 		break;
3766 	case I915_CACHING_CACHED:
3767 		level = I915_CACHE_LLC;
3768 		break;
3769 	case I915_CACHING_DISPLAY:
3770 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3771 		break;
3772 	default:
3773 		return -EINVAL;
3774 	}
3775 
3776 	ret = i915_mutex_lock_interruptible(dev);
3777 	if (ret)
3778 		return ret;
3779 
3780 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3781 	if (&obj->base == NULL) {
3782 		ret = -ENOENT;
3783 		goto unlock;
3784 	}
3785 
3786 	ret = i915_gem_object_set_cache_level(obj, level);
3787 
3788 	drm_gem_object_unreference(&obj->base);
3789 unlock:
3790 	mutex_unlock(&dev->struct_mutex);
3791 	return ret;
3792 }
3793 
3794 static bool is_pin_display(struct drm_i915_gem_object *obj)
3795 {
3796 	struct i915_vma *vma;
3797 
3798 	if (list_empty(&obj->vma_list))
3799 		return false;
3800 
3801 	vma = i915_gem_obj_to_ggtt(obj);
3802 	if (!vma)
3803 		return false;
3804 
3805 	/* There are 3 sources that pin objects:
3806 	 *   1. The display engine (scanouts, sprites, cursors);
3807 	 *   2. Reservations for execbuffer;
3808 	 *   3. The user.
3809 	 *
3810 	 * We can ignore reservations as we hold the struct_mutex and
3811 	 * are only called outside of the reservation path.  The user
3812 	 * can only increment pin_count once, and so if after
3813 	 * subtracting the potential reference by the user, any pin_count
3814 	 * remains, it must be due to another use by the display engine.
3815 	 */
3816 	return vma->pin_count - !!obj->user_pin_count;
3817 }
3818 
3819 /*
3820  * Prepare buffer for display plane (scanout, cursors, etc).
3821  * Can be called from an uninterruptible phase (modesetting) and allows
3822  * any flushes to be pipelined (for pageflips).
3823  */
3824 int
3825 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3826 				     u32 alignment,
3827 				     struct intel_engine_cs *pipelined)
3828 {
3829 	u32 old_read_domains, old_write_domain;
3830 	bool was_pin_display;
3831 	int ret;
3832 
3833 	if (pipelined != obj->ring) {
3834 		ret = i915_gem_object_sync(obj, pipelined);
3835 		if (ret)
3836 			return ret;
3837 	}
3838 
3839 	/* Mark the pin_display early so that we account for the
3840 	 * display coherency whilst setting up the cache domains.
3841 	 */
3842 	was_pin_display = obj->pin_display;
3843 	obj->pin_display = true;
3844 
3845 	/* The display engine is not coherent with the LLC cache on gen6.  As
3846 	 * a result, we make sure that the pinning that is about to occur is
3847 	 * done with uncached PTEs. This is lowest common denominator for all
3848 	 * chipsets.
3849 	 *
3850 	 * However for gen6+, we could do better by using the GFDT bit instead
3851 	 * of uncaching, which would allow us to flush all the LLC-cached data
3852 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3853 	 */
3854 	ret = i915_gem_object_set_cache_level(obj,
3855 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3856 	if (ret)
3857 		goto err_unpin_display;
3858 
3859 	/* As the user may map the buffer once pinned in the display plane
3860 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3861 	 * always use map_and_fenceable for all scanout buffers.
3862 	 */
3863 	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3864 	if (ret)
3865 		goto err_unpin_display;
3866 
3867 	i915_gem_object_flush_cpu_write_domain(obj, true);
3868 
3869 	old_write_domain = obj->base.write_domain;
3870 	old_read_domains = obj->base.read_domains;
3871 
3872 	/* It should now be out of any other write domains, and we can update
3873 	 * the domain values for our changes.
3874 	 */
3875 	obj->base.write_domain = 0;
3876 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3877 
3878 	trace_i915_gem_object_change_domain(obj,
3879 					    old_read_domains,
3880 					    old_write_domain);
3881 
3882 	return 0;
3883 
3884 err_unpin_display:
3885 	WARN_ON(was_pin_display != is_pin_display(obj));
3886 	obj->pin_display = was_pin_display;
3887 	return ret;
3888 }
3889 
3890 void
3891 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3892 {
3893 	i915_gem_object_ggtt_unpin(obj);
3894 	obj->pin_display = is_pin_display(obj);
3895 }
3896 
3897 int
3898 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3899 {
3900 	int ret;
3901 
3902 	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3903 		return 0;
3904 
3905 	ret = i915_gem_object_wait_rendering(obj, false);
3906 	if (ret)
3907 		return ret;
3908 
3909 	/* Ensure that we invalidate the GPU's caches and TLBs. */
3910 	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3911 	return 0;
3912 }
3913 
3914 /**
3915  * Moves a single object to the CPU read, and possibly write domain.
3916  *
3917  * This function returns when the move is complete, including waiting on
3918  * flushes to occur.
3919  */
3920 int
3921 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3922 {
3923 	uint32_t old_write_domain, old_read_domains;
3924 	int ret;
3925 
3926 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3927 		return 0;
3928 
3929 	ret = i915_gem_object_wait_rendering(obj, !write);
3930 	if (ret)
3931 		return ret;
3932 
3933 	i915_gem_object_retire(obj);
3934 	i915_gem_object_flush_gtt_write_domain(obj);
3935 
3936 	old_write_domain = obj->base.write_domain;
3937 	old_read_domains = obj->base.read_domains;
3938 
3939 	/* Flush the CPU cache if it's still invalid. */
3940 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3941 		i915_gem_clflush_object(obj, false);
3942 
3943 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3944 	}
3945 
3946 	/* It should now be out of any other write domains, and we can update
3947 	 * the domain values for our changes.
3948 	 */
3949 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3950 
3951 	/* If we're writing through the CPU, then the GPU read domains will
3952 	 * need to be invalidated at next use.
3953 	 */
3954 	if (write) {
3955 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3956 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3957 	}
3958 
3959 	trace_i915_gem_object_change_domain(obj,
3960 					    old_read_domains,
3961 					    old_write_domain);
3962 
3963 	return 0;
3964 }
3965 
3966 /* Throttle our rendering by waiting until the ring has completed our requests
3967  * emitted over 20 msec ago.
3968  *
3969  * Note that if we were to use the current jiffies each time around the loop,
3970  * we wouldn't escape the function with any frames outstanding if the time to
3971  * render a frame was over 20ms.
3972  *
3973  * This should get us reasonable parallelism between CPU and GPU but also
3974  * relatively low latency when blocking on a particular request to finish.
3975  */
3976 static int
3977 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3978 {
3979 	struct drm_i915_private *dev_priv = dev->dev_private;
3980 	struct drm_i915_file_private *file_priv = file->driver_priv;
3981 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3982 	struct drm_i915_gem_request *request;
3983 	struct intel_engine_cs *ring = NULL;
3984 	unsigned reset_counter;
3985 	u32 seqno = 0;
3986 	int ret;
3987 
3988 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3989 	if (ret)
3990 		return ret;
3991 
3992 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3993 	if (ret)
3994 		return ret;
3995 
3996 	spin_lock(&file_priv->mm.lock);
3997 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3998 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3999 			break;
4000 
4001 		ring = request->ring;
4002 		seqno = request->seqno;
4003 	}
4004 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4005 	spin_unlock(&file_priv->mm.lock);
4006 
4007 	if (seqno == 0)
4008 		return 0;
4009 
4010 	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4011 	if (ret == 0)
4012 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4013 
4014 	return ret;
4015 }
4016 
4017 static bool
4018 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4019 {
4020 	struct drm_i915_gem_object *obj = vma->obj;
4021 
4022 	if (alignment &&
4023 	    vma->node.start & (alignment - 1))
4024 		return true;
4025 
4026 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4027 		return true;
4028 
4029 	if (flags & PIN_OFFSET_BIAS &&
4030 	    vma->node.start < (flags & PIN_OFFSET_MASK))
4031 		return true;
4032 
4033 	return false;
4034 }
4035 
4036 int
4037 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4038 		    struct i915_address_space *vm,
4039 		    uint32_t alignment,
4040 		    uint64_t flags)
4041 {
4042 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4043 	struct i915_vma *vma;
4044 	int ret;
4045 
4046 	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4047 		return -ENODEV;
4048 
4049 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4050 		return -EINVAL;
4051 
4052 	vma = i915_gem_obj_to_vma(obj, vm);
4053 	if (vma) {
4054 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4055 			return -EBUSY;
4056 
4057 		if (i915_vma_misplaced(vma, alignment, flags)) {
4058 			WARN(vma->pin_count,
4059 			     "bo is already pinned with incorrect alignment:"
4060 			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4061 			     " obj->map_and_fenceable=%d\n",
4062 			     i915_gem_obj_offset(obj, vm), alignment,
4063 			     !!(flags & PIN_MAPPABLE),
4064 			     obj->map_and_fenceable);
4065 			ret = i915_vma_unbind(vma);
4066 			if (ret)
4067 				return ret;
4068 
4069 			vma = NULL;
4070 		}
4071 	}
4072 
4073 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4074 		vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4075 		if (IS_ERR(vma))
4076 			return PTR_ERR(vma);
4077 	}
4078 
4079 	if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4080 		vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4081 
4082 	vma->pin_count++;
4083 	if (flags & PIN_MAPPABLE)
4084 		obj->pin_mappable |= true;
4085 
4086 	return 0;
4087 }
4088 
4089 void
4090 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4091 {
4092 	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4093 
4094 	BUG_ON(!vma);
4095 	BUG_ON(vma->pin_count == 0);
4096 	BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4097 
4098 	if (--vma->pin_count == 0)
4099 		obj->pin_mappable = false;
4100 }
4101 
4102 bool
4103 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4104 {
4105 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
4106 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4107 		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4108 
4109 		WARN_ON(!ggtt_vma ||
4110 			dev_priv->fence_regs[obj->fence_reg].pin_count >
4111 			ggtt_vma->pin_count);
4112 		dev_priv->fence_regs[obj->fence_reg].pin_count++;
4113 		return true;
4114 	} else
4115 		return false;
4116 }
4117 
4118 void
4119 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4120 {
4121 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
4122 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4123 		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4124 		dev_priv->fence_regs[obj->fence_reg].pin_count--;
4125 	}
4126 }
4127 
4128 int
4129 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4130 		   struct drm_file *file)
4131 {
4132 	struct drm_i915_gem_pin *args = data;
4133 	struct drm_i915_gem_object *obj;
4134 	int ret;
4135 
4136 	if (INTEL_INFO(dev)->gen >= 6)
4137 		return -ENODEV;
4138 
4139 	ret = i915_mutex_lock_interruptible(dev);
4140 	if (ret)
4141 		return ret;
4142 
4143 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4144 	if (&obj->base == NULL) {
4145 		ret = -ENOENT;
4146 		goto unlock;
4147 	}
4148 
4149 	if (obj->madv != I915_MADV_WILLNEED) {
4150 		DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4151 		ret = -EFAULT;
4152 		goto out;
4153 	}
4154 
4155 	if (obj->pin_filp != NULL && obj->pin_filp != file) {
4156 		DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4157 			  args->handle);
4158 		ret = -EINVAL;
4159 		goto out;
4160 	}
4161 
4162 	if (obj->user_pin_count == ULONG_MAX) {
4163 		ret = -EBUSY;
4164 		goto out;
4165 	}
4166 
4167 	if (obj->user_pin_count == 0) {
4168 		ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4169 		if (ret)
4170 			goto out;
4171 	}
4172 
4173 	obj->user_pin_count++;
4174 	obj->pin_filp = file;
4175 
4176 	args->offset = i915_gem_obj_ggtt_offset(obj);
4177 out:
4178 	drm_gem_object_unreference(&obj->base);
4179 unlock:
4180 	mutex_unlock(&dev->struct_mutex);
4181 	return ret;
4182 }
4183 
4184 int
4185 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4186 		     struct drm_file *file)
4187 {
4188 	struct drm_i915_gem_pin *args = data;
4189 	struct drm_i915_gem_object *obj;
4190 	int ret;
4191 
4192 	ret = i915_mutex_lock_interruptible(dev);
4193 	if (ret)
4194 		return ret;
4195 
4196 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4197 	if (&obj->base == NULL) {
4198 		ret = -ENOENT;
4199 		goto unlock;
4200 	}
4201 
4202 	if (obj->pin_filp != file) {
4203 		DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4204 			  args->handle);
4205 		ret = -EINVAL;
4206 		goto out;
4207 	}
4208 	obj->user_pin_count--;
4209 	if (obj->user_pin_count == 0) {
4210 		obj->pin_filp = NULL;
4211 		i915_gem_object_ggtt_unpin(obj);
4212 	}
4213 
4214 out:
4215 	drm_gem_object_unreference(&obj->base);
4216 unlock:
4217 	mutex_unlock(&dev->struct_mutex);
4218 	return ret;
4219 }
4220 
4221 int
4222 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4223 		    struct drm_file *file)
4224 {
4225 	struct drm_i915_gem_busy *args = data;
4226 	struct drm_i915_gem_object *obj;
4227 	int ret;
4228 
4229 	ret = i915_mutex_lock_interruptible(dev);
4230 	if (ret)
4231 		return ret;
4232 
4233 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4234 	if (&obj->base == NULL) {
4235 		ret = -ENOENT;
4236 		goto unlock;
4237 	}
4238 
4239 	/* Count all active objects as busy, even if they are currently not used
4240 	 * by the gpu. Users of this interface expect objects to eventually
4241 	 * become non-busy without any further actions, therefore emit any
4242 	 * necessary flushes here.
4243 	 */
4244 	ret = i915_gem_object_flush_active(obj);
4245 
4246 	args->busy = obj->active;
4247 	if (obj->ring) {
4248 		BUILD_BUG_ON(I915_NUM_RINGS > 16);
4249 		args->busy |= intel_ring_flag(obj->ring) << 16;
4250 	}
4251 
4252 	drm_gem_object_unreference(&obj->base);
4253 unlock:
4254 	mutex_unlock(&dev->struct_mutex);
4255 	return ret;
4256 }
4257 
4258 int
4259 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4260 			struct drm_file *file_priv)
4261 {
4262 	return i915_gem_ring_throttle(dev, file_priv);
4263 }
4264 
4265 int
4266 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4267 		       struct drm_file *file_priv)
4268 {
4269 	struct drm_i915_gem_madvise *args = data;
4270 	struct drm_i915_gem_object *obj;
4271 	int ret;
4272 
4273 	switch (args->madv) {
4274 	case I915_MADV_DONTNEED:
4275 	case I915_MADV_WILLNEED:
4276 	    break;
4277 	default:
4278 	    return -EINVAL;
4279 	}
4280 
4281 	ret = i915_mutex_lock_interruptible(dev);
4282 	if (ret)
4283 		return ret;
4284 
4285 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4286 	if (&obj->base == NULL) {
4287 		ret = -ENOENT;
4288 		goto unlock;
4289 	}
4290 
4291 	if (i915_gem_obj_is_pinned(obj)) {
4292 		ret = -EINVAL;
4293 		goto out;
4294 	}
4295 
4296 	if (obj->madv != __I915_MADV_PURGED)
4297 		obj->madv = args->madv;
4298 
4299 	/* if the object is no longer attached, discard its backing storage */
4300 	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4301 		i915_gem_object_truncate(obj);
4302 
4303 	args->retained = obj->madv != __I915_MADV_PURGED;
4304 
4305 out:
4306 	drm_gem_object_unreference(&obj->base);
4307 unlock:
4308 	mutex_unlock(&dev->struct_mutex);
4309 	return ret;
4310 }
4311 
4312 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4313 			  const struct drm_i915_gem_object_ops *ops)
4314 {
4315 	INIT_LIST_HEAD(&obj->global_list);
4316 	INIT_LIST_HEAD(&obj->ring_list);
4317 	INIT_LIST_HEAD(&obj->obj_exec_link);
4318 	INIT_LIST_HEAD(&obj->vma_list);
4319 
4320 	obj->ops = ops;
4321 
4322 	obj->fence_reg = I915_FENCE_REG_NONE;
4323 	obj->madv = I915_MADV_WILLNEED;
4324 	/* Avoid an unnecessary call to unbind on the first bind. */
4325 	obj->map_and_fenceable = true;
4326 
4327 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4328 }
4329 
4330 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4331 	.get_pages = i915_gem_object_get_pages_gtt,
4332 	.put_pages = i915_gem_object_put_pages_gtt,
4333 };
4334 
4335 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4336 						  size_t size)
4337 {
4338 	struct drm_i915_gem_object *obj;
4339 	struct address_space *mapping;
4340 	gfp_t mask;
4341 
4342 	obj = i915_gem_object_alloc(dev);
4343 	if (obj == NULL)
4344 		return NULL;
4345 
4346 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4347 		i915_gem_object_free(obj);
4348 		return NULL;
4349 	}
4350 
4351 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4352 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4353 		/* 965gm cannot relocate objects above 4GiB. */
4354 		mask &= ~__GFP_HIGHMEM;
4355 		mask |= __GFP_DMA32;
4356 	}
4357 
4358 	mapping = file_inode(obj->base.filp)->i_mapping;
4359 	mapping_set_gfp_mask(mapping, mask);
4360 
4361 	i915_gem_object_init(obj, &i915_gem_object_ops);
4362 
4363 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4364 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4365 
4366 	if (HAS_LLC(dev)) {
4367 		/* On some devices, we can have the GPU use the LLC (the CPU
4368 		 * cache) for about a 10% performance improvement
4369 		 * compared to uncached.  Graphics requests other than
4370 		 * display scanout are coherent with the CPU in
4371 		 * accessing this cache.  This means in this mode we
4372 		 * don't need to clflush on the CPU side, and on the
4373 		 * GPU side we only need to flush internal caches to
4374 		 * get data visible to the CPU.
4375 		 *
4376 		 * However, we maintain the display planes as UC, and so
4377 		 * need to rebind when first used as such.
4378 		 */
4379 		obj->cache_level = I915_CACHE_LLC;
4380 	} else
4381 		obj->cache_level = I915_CACHE_NONE;
4382 
4383 	trace_i915_gem_object_create(obj);
4384 
4385 	return obj;
4386 }
4387 
4388 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4389 {
4390 	/* If we are the last user of the backing storage (be it shmemfs
4391 	 * pages or stolen etc), we know that the pages are going to be
4392 	 * immediately released. In this case, we can then skip copying
4393 	 * back the contents from the GPU.
4394 	 */
4395 
4396 	if (obj->madv != I915_MADV_WILLNEED)
4397 		return false;
4398 
4399 	if (obj->base.filp == NULL)
4400 		return true;
4401 
4402 	/* At first glance, this looks racy, but then again so would be
4403 	 * userspace racing mmap against close. However, the first external
4404 	 * reference to the filp can only be obtained through the
4405 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4406 	 * acquiring such a reference whilst we are in the middle of
4407 	 * freeing the object.
4408 	 */
4409 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4410 }
4411 
4412 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4413 {
4414 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4415 	struct drm_device *dev = obj->base.dev;
4416 	struct drm_i915_private *dev_priv = dev->dev_private;
4417 	struct i915_vma *vma, *next;
4418 
4419 	intel_runtime_pm_get(dev_priv);
4420 
4421 	trace_i915_gem_object_destroy(obj);
4422 
4423 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4424 		int ret;
4425 
4426 		vma->pin_count = 0;
4427 		ret = i915_vma_unbind(vma);
4428 		if (WARN_ON(ret == -ERESTARTSYS)) {
4429 			bool was_interruptible;
4430 
4431 			was_interruptible = dev_priv->mm.interruptible;
4432 			dev_priv->mm.interruptible = false;
4433 
4434 			WARN_ON(i915_vma_unbind(vma));
4435 
4436 			dev_priv->mm.interruptible = was_interruptible;
4437 		}
4438 	}
4439 
4440 	i915_gem_object_detach_phys(obj);
4441 
4442 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4443 	 * before progressing. */
4444 	if (obj->stolen)
4445 		i915_gem_object_unpin_pages(obj);
4446 
4447 	if (WARN_ON(obj->pages_pin_count))
4448 		obj->pages_pin_count = 0;
4449 	if (discard_backing_storage(obj))
4450 		obj->madv = I915_MADV_DONTNEED;
4451 	i915_gem_object_put_pages(obj);
4452 	i915_gem_object_free_mmap_offset(obj);
4453 	i915_gem_object_release_stolen(obj);
4454 
4455 	BUG_ON(obj->pages);
4456 
4457 	if (obj->base.import_attach)
4458 		drm_prime_gem_destroy(&obj->base, NULL);
4459 
4460 	if (obj->ops->release)
4461 		obj->ops->release(obj);
4462 
4463 	drm_gem_object_release(&obj->base);
4464 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4465 
4466 	kfree(obj->bit_17);
4467 	i915_gem_object_free(obj);
4468 
4469 	intel_runtime_pm_put(dev_priv);
4470 }
4471 
4472 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4473 				     struct i915_address_space *vm)
4474 {
4475 	struct i915_vma *vma;
4476 	list_for_each_entry(vma, &obj->vma_list, vma_link)
4477 		if (vma->vm == vm)
4478 			return vma;
4479 
4480 	return NULL;
4481 }
4482 
4483 void i915_gem_vma_destroy(struct i915_vma *vma)
4484 {
4485 	WARN_ON(vma->node.allocated);
4486 
4487 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4488 	if (!list_empty(&vma->exec_list))
4489 		return;
4490 
4491 	list_del(&vma->vma_link);
4492 
4493 	kfree(vma);
4494 }
4495 
4496 static void
4497 i915_gem_stop_ringbuffers(struct drm_device *dev)
4498 {
4499 	struct drm_i915_private *dev_priv = dev->dev_private;
4500 	struct intel_engine_cs *ring;
4501 	int i;
4502 
4503 	for_each_ring(ring, dev_priv, i)
4504 		intel_stop_ring_buffer(ring);
4505 }
4506 
4507 int
4508 i915_gem_suspend(struct drm_device *dev)
4509 {
4510 	struct drm_i915_private *dev_priv = dev->dev_private;
4511 	int ret = 0;
4512 
4513 	mutex_lock(&dev->struct_mutex);
4514 	if (dev_priv->ums.mm_suspended)
4515 		goto err;
4516 
4517 	ret = i915_gpu_idle(dev);
4518 	if (ret)
4519 		goto err;
4520 
4521 	i915_gem_retire_requests(dev);
4522 
4523 	/* Under UMS, be paranoid and evict. */
4524 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4525 		i915_gem_evict_everything(dev);
4526 
4527 	i915_kernel_lost_context(dev);
4528 	i915_gem_stop_ringbuffers(dev);
4529 
4530 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
4531 	 * We need to replace this with a semaphore, or something.
4532 	 * And not confound ums.mm_suspended!
4533 	 */
4534 	dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4535 							     DRIVER_MODESET);
4536 	mutex_unlock(&dev->struct_mutex);
4537 
4538 	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4539 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4540 	cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4541 
4542 	return 0;
4543 
4544 err:
4545 	mutex_unlock(&dev->struct_mutex);
4546 	return ret;
4547 }
4548 
4549 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4550 {
4551 	struct drm_device *dev = ring->dev;
4552 	struct drm_i915_private *dev_priv = dev->dev_private;
4553 	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4554 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4555 	int i, ret;
4556 
4557 	if (!HAS_L3_DPF(dev) || !remap_info)
4558 		return 0;
4559 
4560 	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4561 	if (ret)
4562 		return ret;
4563 
4564 	/*
4565 	 * Note: We do not worry about the concurrent register cacheline hang
4566 	 * here because no other code should access these registers other than
4567 	 * at initialization time.
4568 	 */
4569 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4570 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4571 		intel_ring_emit(ring, reg_base + i);
4572 		intel_ring_emit(ring, remap_info[i/4]);
4573 	}
4574 
4575 	intel_ring_advance(ring);
4576 
4577 	return ret;
4578 }
4579 
4580 void i915_gem_init_swizzling(struct drm_device *dev)
4581 {
4582 	struct drm_i915_private *dev_priv = dev->dev_private;
4583 
4584 	if (INTEL_INFO(dev)->gen < 5 ||
4585 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4586 		return;
4587 
4588 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4589 				 DISP_TILE_SURFACE_SWIZZLING);
4590 
4591 	if (IS_GEN5(dev))
4592 		return;
4593 
4594 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4595 	if (IS_GEN6(dev))
4596 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4597 	else if (IS_GEN7(dev))
4598 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4599 	else if (IS_GEN8(dev))
4600 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4601 	else
4602 		BUG();
4603 }
4604 
4605 static bool
4606 intel_enable_blt(struct drm_device *dev)
4607 {
4608 	if (!HAS_BLT(dev))
4609 		return false;
4610 
4611 	/* The blitter was dysfunctional on early prototypes */
4612 	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4613 		DRM_INFO("BLT not supported on this pre-production hardware;"
4614 			 " graphics performance will be degraded.\n");
4615 		return false;
4616 	}
4617 
4618 	return true;
4619 }
4620 
4621 static int i915_gem_init_rings(struct drm_device *dev)
4622 {
4623 	struct drm_i915_private *dev_priv = dev->dev_private;
4624 	int ret;
4625 
4626 	ret = intel_init_render_ring_buffer(dev);
4627 	if (ret)
4628 		return ret;
4629 
4630 	if (HAS_BSD(dev)) {
4631 		ret = intel_init_bsd_ring_buffer(dev);
4632 		if (ret)
4633 			goto cleanup_render_ring;
4634 	}
4635 
4636 	if (intel_enable_blt(dev)) {
4637 		ret = intel_init_blt_ring_buffer(dev);
4638 		if (ret)
4639 			goto cleanup_bsd_ring;
4640 	}
4641 
4642 	if (HAS_VEBOX(dev)) {
4643 		ret = intel_init_vebox_ring_buffer(dev);
4644 		if (ret)
4645 			goto cleanup_blt_ring;
4646 	}
4647 
4648 	if (HAS_BSD2(dev)) {
4649 		ret = intel_init_bsd2_ring_buffer(dev);
4650 		if (ret)
4651 			goto cleanup_vebox_ring;
4652 	}
4653 
4654 	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4655 	if (ret)
4656 		goto cleanup_bsd2_ring;
4657 
4658 	return 0;
4659 
4660 cleanup_bsd2_ring:
4661 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4662 cleanup_vebox_ring:
4663 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4664 cleanup_blt_ring:
4665 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4666 cleanup_bsd_ring:
4667 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4668 cleanup_render_ring:
4669 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4670 
4671 	return ret;
4672 }
4673 
4674 int
4675 i915_gem_init_hw(struct drm_device *dev)
4676 {
4677 	struct drm_i915_private *dev_priv = dev->dev_private;
4678 	int ret, i;
4679 
4680 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4681 		return -EIO;
4682 
4683 	if (dev_priv->ellc_size)
4684 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4685 
4686 	if (IS_HASWELL(dev))
4687 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4688 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4689 
4690 	if (HAS_PCH_NOP(dev)) {
4691 		if (IS_IVYBRIDGE(dev)) {
4692 			u32 temp = I915_READ(GEN7_MSG_CTL);
4693 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4694 			I915_WRITE(GEN7_MSG_CTL, temp);
4695 		} else if (INTEL_INFO(dev)->gen >= 7) {
4696 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4697 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4698 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4699 		}
4700 	}
4701 
4702 	i915_gem_init_swizzling(dev);
4703 
4704 	ret = i915_gem_init_rings(dev);
4705 	if (ret)
4706 		return ret;
4707 
4708 	for (i = 0; i < NUM_L3_SLICES(dev); i++)
4709 		i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4710 
4711 	/*
4712 	 * XXX: Contexts should only be initialized once. Doing a switch to the
4713 	 * default context switch however is something we'd like to do after
4714 	 * reset or thaw (the latter may not actually be necessary for HW, but
4715 	 * goes with our code better). Context switching requires rings (for
4716 	 * the do_switch), but before enabling PPGTT. So don't move this.
4717 	 */
4718 	ret = i915_gem_context_enable(dev_priv);
4719 	if (ret && ret != -EIO) {
4720 		DRM_ERROR("Context enable failed %d\n", ret);
4721 		i915_gem_cleanup_ringbuffer(dev);
4722 	}
4723 
4724 	return ret;
4725 }
4726 
4727 int i915_gem_init(struct drm_device *dev)
4728 {
4729 	struct drm_i915_private *dev_priv = dev->dev_private;
4730 	int ret;
4731 
4732 	mutex_lock(&dev->struct_mutex);
4733 
4734 	if (IS_VALLEYVIEW(dev)) {
4735 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4736 		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4737 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4738 			      VLV_GTLC_ALLOWWAKEACK), 10))
4739 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4740 	}
4741 
4742 	i915_gem_init_userptr(dev);
4743 	i915_gem_init_global_gtt(dev);
4744 
4745 	ret = i915_gem_context_init(dev);
4746 	if (ret) {
4747 		mutex_unlock(&dev->struct_mutex);
4748 		return ret;
4749 	}
4750 
4751 	ret = i915_gem_init_hw(dev);
4752 	if (ret == -EIO) {
4753 		/* Allow ring initialisation to fail by marking the GPU as
4754 		 * wedged. But we only want to do this where the GPU is angry,
4755 		 * for all other failure, such as an allocation failure, bail.
4756 		 */
4757 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4758 		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4759 		ret = 0;
4760 	}
4761 	mutex_unlock(&dev->struct_mutex);
4762 
4763 	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4764 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4765 		dev_priv->dri1.allow_batchbuffer = 1;
4766 	return ret;
4767 }
4768 
4769 void
4770 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4771 {
4772 	struct drm_i915_private *dev_priv = dev->dev_private;
4773 	struct intel_engine_cs *ring;
4774 	int i;
4775 
4776 	for_each_ring(ring, dev_priv, i)
4777 		intel_cleanup_ring_buffer(ring);
4778 }
4779 
4780 int
4781 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4782 		       struct drm_file *file_priv)
4783 {
4784 	struct drm_i915_private *dev_priv = dev->dev_private;
4785 	int ret;
4786 
4787 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4788 		return 0;
4789 
4790 	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4791 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4792 		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4793 	}
4794 
4795 	mutex_lock(&dev->struct_mutex);
4796 	dev_priv->ums.mm_suspended = 0;
4797 
4798 	ret = i915_gem_init_hw(dev);
4799 	if (ret != 0) {
4800 		mutex_unlock(&dev->struct_mutex);
4801 		return ret;
4802 	}
4803 
4804 	BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4805 
4806 	ret = drm_irq_install(dev, dev->pdev->irq);
4807 	if (ret)
4808 		goto cleanup_ringbuffer;
4809 	mutex_unlock(&dev->struct_mutex);
4810 
4811 	return 0;
4812 
4813 cleanup_ringbuffer:
4814 	i915_gem_cleanup_ringbuffer(dev);
4815 	dev_priv->ums.mm_suspended = 1;
4816 	mutex_unlock(&dev->struct_mutex);
4817 
4818 	return ret;
4819 }
4820 
4821 int
4822 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4823 		       struct drm_file *file_priv)
4824 {
4825 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4826 		return 0;
4827 
4828 	mutex_lock(&dev->struct_mutex);
4829 	drm_irq_uninstall(dev);
4830 	mutex_unlock(&dev->struct_mutex);
4831 
4832 	return i915_gem_suspend(dev);
4833 }
4834 
4835 void
4836 i915_gem_lastclose(struct drm_device *dev)
4837 {
4838 	int ret;
4839 
4840 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4841 		return;
4842 
4843 	ret = i915_gem_suspend(dev);
4844 	if (ret)
4845 		DRM_ERROR("failed to idle hardware: %d\n", ret);
4846 }
4847 
4848 static void
4849 init_ring_lists(struct intel_engine_cs *ring)
4850 {
4851 	INIT_LIST_HEAD(&ring->active_list);
4852 	INIT_LIST_HEAD(&ring->request_list);
4853 }
4854 
4855 void i915_init_vm(struct drm_i915_private *dev_priv,
4856 		  struct i915_address_space *vm)
4857 {
4858 	if (!i915_is_ggtt(vm))
4859 		drm_mm_init(&vm->mm, vm->start, vm->total);
4860 	vm->dev = dev_priv->dev;
4861 	INIT_LIST_HEAD(&vm->active_list);
4862 	INIT_LIST_HEAD(&vm->inactive_list);
4863 	INIT_LIST_HEAD(&vm->global_link);
4864 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
4865 }
4866 
4867 void
4868 i915_gem_load(struct drm_device *dev)
4869 {
4870 	struct drm_i915_private *dev_priv = dev->dev_private;
4871 	int i;
4872 
4873 	dev_priv->slab =
4874 		kmem_cache_create("i915_gem_object",
4875 				  sizeof(struct drm_i915_gem_object), 0,
4876 				  SLAB_HWCACHE_ALIGN,
4877 				  NULL);
4878 
4879 	INIT_LIST_HEAD(&dev_priv->vm_list);
4880 	i915_init_vm(dev_priv, &dev_priv->gtt.base);
4881 
4882 	INIT_LIST_HEAD(&dev_priv->context_list);
4883 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4884 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4885 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4886 	for (i = 0; i < I915_NUM_RINGS; i++)
4887 		init_ring_lists(&dev_priv->ring[i]);
4888 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4889 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4890 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4891 			  i915_gem_retire_work_handler);
4892 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4893 			  i915_gem_idle_work_handler);
4894 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4895 
4896 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4897 	if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4898 		I915_WRITE(MI_ARB_STATE,
4899 			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4900 	}
4901 
4902 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4903 
4904 	/* Old X drivers will take 0-2 for front, back, depth buffers */
4905 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4906 		dev_priv->fence_reg_start = 3;
4907 
4908 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4909 		dev_priv->num_fence_regs = 32;
4910 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4911 		dev_priv->num_fence_regs = 16;
4912 	else
4913 		dev_priv->num_fence_regs = 8;
4914 
4915 	/* Initialize fence registers to zero */
4916 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4917 	i915_gem_restore_fences(dev);
4918 
4919 	i915_gem_detect_bit_6_swizzle(dev);
4920 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4921 
4922 	dev_priv->mm.interruptible = true;
4923 
4924 	dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4925 	dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4926 	dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4927 	register_shrinker(&dev_priv->mm.shrinker);
4928 
4929 	dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
4930 	register_oom_notifier(&dev_priv->mm.oom_notifier);
4931 }
4932 
4933 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4934 {
4935 	struct drm_i915_file_private *file_priv = file->driver_priv;
4936 
4937 	cancel_delayed_work_sync(&file_priv->mm.idle_work);
4938 
4939 	/* Clean up our request list when the client is going away, so that
4940 	 * later retire_requests won't dereference our soon-to-be-gone
4941 	 * file_priv.
4942 	 */
4943 	spin_lock(&file_priv->mm.lock);
4944 	while (!list_empty(&file_priv->mm.request_list)) {
4945 		struct drm_i915_gem_request *request;
4946 
4947 		request = list_first_entry(&file_priv->mm.request_list,
4948 					   struct drm_i915_gem_request,
4949 					   client_list);
4950 		list_del(&request->client_list);
4951 		request->file_priv = NULL;
4952 	}
4953 	spin_unlock(&file_priv->mm.lock);
4954 }
4955 
4956 static void
4957 i915_gem_file_idle_work_handler(struct work_struct *work)
4958 {
4959 	struct drm_i915_file_private *file_priv =
4960 		container_of(work, typeof(*file_priv), mm.idle_work.work);
4961 
4962 	atomic_set(&file_priv->rps_wait_boost, false);
4963 }
4964 
4965 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4966 {
4967 	struct drm_i915_file_private *file_priv;
4968 	int ret;
4969 
4970 	DRM_DEBUG_DRIVER("\n");
4971 
4972 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4973 	if (!file_priv)
4974 		return -ENOMEM;
4975 
4976 	file->driver_priv = file_priv;
4977 	file_priv->dev_priv = dev->dev_private;
4978 	file_priv->file = file;
4979 
4980 	spin_lock_init(&file_priv->mm.lock);
4981 	INIT_LIST_HEAD(&file_priv->mm.request_list);
4982 	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4983 			  i915_gem_file_idle_work_handler);
4984 
4985 	ret = i915_gem_context_open(dev, file);
4986 	if (ret)
4987 		kfree(file_priv);
4988 
4989 	return ret;
4990 }
4991 
4992 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4993 {
4994 	if (!mutex_is_locked(mutex))
4995 		return false;
4996 
4997 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4998 	return mutex->owner == task;
4999 #else
5000 	/* Since UP may be pre-empted, we cannot assume that we own the lock */
5001 	return false;
5002 #endif
5003 }
5004 
5005 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5006 {
5007 	if (!mutex_trylock(&dev->struct_mutex)) {
5008 		if (!mutex_is_locked_by(&dev->struct_mutex, current))
5009 			return false;
5010 
5011 		if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5012 			return false;
5013 
5014 		*unlock = false;
5015 	} else
5016 		*unlock = true;
5017 
5018 	return true;
5019 }
5020 
5021 static int num_vma_bound(struct drm_i915_gem_object *obj)
5022 {
5023 	struct i915_vma *vma;
5024 	int count = 0;
5025 
5026 	list_for_each_entry(vma, &obj->vma_list, vma_link)
5027 		if (drm_mm_node_allocated(&vma->node))
5028 			count++;
5029 
5030 	return count;
5031 }
5032 
5033 static unsigned long
5034 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5035 {
5036 	struct drm_i915_private *dev_priv =
5037 		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5038 	struct drm_device *dev = dev_priv->dev;
5039 	struct drm_i915_gem_object *obj;
5040 	unsigned long count;
5041 	bool unlock;
5042 
5043 	if (!i915_gem_shrinker_lock(dev, &unlock))
5044 		return 0;
5045 
5046 	count = 0;
5047 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5048 		if (obj->pages_pin_count == 0)
5049 			count += obj->base.size >> PAGE_SHIFT;
5050 
5051 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5052 		if (!i915_gem_obj_is_pinned(obj) &&
5053 		    obj->pages_pin_count == num_vma_bound(obj))
5054 			count += obj->base.size >> PAGE_SHIFT;
5055 	}
5056 
5057 	if (unlock)
5058 		mutex_unlock(&dev->struct_mutex);
5059 
5060 	return count;
5061 }
5062 
5063 /* All the new VM stuff */
5064 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5065 				  struct i915_address_space *vm)
5066 {
5067 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5068 	struct i915_vma *vma;
5069 
5070 	if (!dev_priv->mm.aliasing_ppgtt ||
5071 	    vm == &dev_priv->mm.aliasing_ppgtt->base)
5072 		vm = &dev_priv->gtt.base;
5073 
5074 	BUG_ON(list_empty(&o->vma_list));
5075 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5076 		if (vma->vm == vm)
5077 			return vma->node.start;
5078 
5079 	}
5080 	return -1;
5081 }
5082 
5083 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5084 			struct i915_address_space *vm)
5085 {
5086 	struct i915_vma *vma;
5087 
5088 	list_for_each_entry(vma, &o->vma_list, vma_link)
5089 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5090 			return true;
5091 
5092 	return false;
5093 }
5094 
5095 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5096 {
5097 	struct i915_vma *vma;
5098 
5099 	list_for_each_entry(vma, &o->vma_list, vma_link)
5100 		if (drm_mm_node_allocated(&vma->node))
5101 			return true;
5102 
5103 	return false;
5104 }
5105 
5106 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5107 				struct i915_address_space *vm)
5108 {
5109 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5110 	struct i915_vma *vma;
5111 
5112 	if (!dev_priv->mm.aliasing_ppgtt ||
5113 	    vm == &dev_priv->mm.aliasing_ppgtt->base)
5114 		vm = &dev_priv->gtt.base;
5115 
5116 	BUG_ON(list_empty(&o->vma_list));
5117 
5118 	list_for_each_entry(vma, &o->vma_list, vma_link)
5119 		if (vma->vm == vm)
5120 			return vma->node.size;
5121 
5122 	return 0;
5123 }
5124 
5125 static unsigned long
5126 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5127 {
5128 	struct drm_i915_private *dev_priv =
5129 		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5130 	struct drm_device *dev = dev_priv->dev;
5131 	unsigned long freed;
5132 	bool unlock;
5133 
5134 	if (!i915_gem_shrinker_lock(dev, &unlock))
5135 		return SHRINK_STOP;
5136 
5137 	freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5138 	if (freed < sc->nr_to_scan)
5139 		freed += __i915_gem_shrink(dev_priv,
5140 					   sc->nr_to_scan - freed,
5141 					   false);
5142 	if (unlock)
5143 		mutex_unlock(&dev->struct_mutex);
5144 
5145 	return freed;
5146 }
5147 
5148 static int
5149 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5150 {
5151 	struct drm_i915_private *dev_priv =
5152 		container_of(nb, struct drm_i915_private, mm.oom_notifier);
5153 	struct drm_device *dev = dev_priv->dev;
5154 	struct drm_i915_gem_object *obj;
5155 	unsigned long timeout = msecs_to_jiffies(5000) + 1;
5156 	unsigned long pinned, bound, unbound, freed;
5157 	bool was_interruptible;
5158 	bool unlock;
5159 
5160 	while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout)
5161 		schedule_timeout_killable(1);
5162 	if (timeout == 0) {
5163 		pr_err("Unable to purge GPU memory due lock contention.\n");
5164 		return NOTIFY_DONE;
5165 	}
5166 
5167 	was_interruptible = dev_priv->mm.interruptible;
5168 	dev_priv->mm.interruptible = false;
5169 
5170 	freed = i915_gem_shrink_all(dev_priv);
5171 
5172 	dev_priv->mm.interruptible = was_interruptible;
5173 
5174 	/* Because we may be allocating inside our own driver, we cannot
5175 	 * assert that there are no objects with pinned pages that are not
5176 	 * being pointed to by hardware.
5177 	 */
5178 	unbound = bound = pinned = 0;
5179 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5180 		if (!obj->base.filp) /* not backed by a freeable object */
5181 			continue;
5182 
5183 		if (obj->pages_pin_count)
5184 			pinned += obj->base.size;
5185 		else
5186 			unbound += obj->base.size;
5187 	}
5188 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5189 		if (!obj->base.filp)
5190 			continue;
5191 
5192 		if (obj->pages_pin_count)
5193 			pinned += obj->base.size;
5194 		else
5195 			bound += obj->base.size;
5196 	}
5197 
5198 	if (unlock)
5199 		mutex_unlock(&dev->struct_mutex);
5200 
5201 	pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5202 		freed, pinned);
5203 	if (unbound || bound)
5204 		pr_err("%lu and %lu bytes still available in the "
5205 		       "bound and unbound GPU page lists.\n",
5206 		       bound, unbound);
5207 
5208 	*(unsigned long *)ptr += freed;
5209 	return NOTIFY_DONE;
5210 }
5211 
5212 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5213 {
5214 	struct i915_vma *vma;
5215 
5216 	/* This WARN has probably outlived its usefulness (callers already
5217 	 * WARN if they don't find the GGTT vma they expect). When removing,
5218 	 * remember to remove the pre-check in is_pin_display() as well */
5219 	if (WARN_ON(list_empty(&obj->vma_list)))
5220 		return NULL;
5221 
5222 	vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5223 	if (vma->vm != obj_to_ggtt(obj))
5224 		return NULL;
5225 
5226 	return vma;
5227 }
5228