1 /* 2 * Copyright © 2008 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <drm/drmP.h> 29 #include <drm/drm_vma_manager.h> 30 #include <drm/i915_drm.h> 31 #include "i915_drv.h" 32 #include "i915_trace.h" 33 #include "intel_drv.h" 34 #include <linux/oom.h> 35 #include <linux/shmem_fs.h> 36 #include <linux/slab.h> 37 #include <linux/swap.h> 38 #include <linux/pci.h> 39 #include <linux/dma-buf.h> 40 41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); 42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj, 43 bool force); 44 static __must_check int 45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 46 bool readonly); 47 static void 48 i915_gem_object_retire(struct drm_i915_gem_object *obj); 49 50 static void i915_gem_write_fence(struct drm_device *dev, int reg, 51 struct drm_i915_gem_object *obj); 52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 53 struct drm_i915_fence_reg *fence, 54 bool enable); 55 56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker, 57 struct shrink_control *sc); 58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker, 59 struct shrink_control *sc); 60 static int i915_gem_shrinker_oom(struct notifier_block *nb, 61 unsigned long event, 62 void *ptr); 63 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target); 64 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv); 65 66 static bool cpu_cache_is_coherent(struct drm_device *dev, 67 enum i915_cache_level level) 68 { 69 return HAS_LLC(dev) || level != I915_CACHE_NONE; 70 } 71 72 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj) 73 { 74 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) 75 return true; 76 77 return obj->pin_display; 78 } 79 80 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj) 81 { 82 if (obj->tiling_mode) 83 i915_gem_release_mmap(obj); 84 85 /* As we do not have an associated fence register, we will force 86 * a tiling change if we ever need to acquire one. 87 */ 88 obj->fence_dirty = false; 89 obj->fence_reg = I915_FENCE_REG_NONE; 90 } 91 92 /* some bookkeeping */ 93 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, 94 size_t size) 95 { 96 spin_lock(&dev_priv->mm.object_stat_lock); 97 dev_priv->mm.object_count++; 98 dev_priv->mm.object_memory += size; 99 spin_unlock(&dev_priv->mm.object_stat_lock); 100 } 101 102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, 103 size_t size) 104 { 105 spin_lock(&dev_priv->mm.object_stat_lock); 106 dev_priv->mm.object_count--; 107 dev_priv->mm.object_memory -= size; 108 spin_unlock(&dev_priv->mm.object_stat_lock); 109 } 110 111 static int 112 i915_gem_wait_for_error(struct i915_gpu_error *error) 113 { 114 int ret; 115 116 #define EXIT_COND (!i915_reset_in_progress(error) || \ 117 i915_terminally_wedged(error)) 118 if (EXIT_COND) 119 return 0; 120 121 /* 122 * Only wait 10 seconds for the gpu reset to complete to avoid hanging 123 * userspace. If it takes that long something really bad is going on and 124 * we should simply try to bail out and fail as gracefully as possible. 125 */ 126 ret = wait_event_interruptible_timeout(error->reset_queue, 127 EXIT_COND, 128 10*HZ); 129 if (ret == 0) { 130 DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); 131 return -EIO; 132 } else if (ret < 0) { 133 return ret; 134 } 135 #undef EXIT_COND 136 137 return 0; 138 } 139 140 int i915_mutex_lock_interruptible(struct drm_device *dev) 141 { 142 struct drm_i915_private *dev_priv = dev->dev_private; 143 int ret; 144 145 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 146 if (ret) 147 return ret; 148 149 ret = mutex_lock_interruptible(&dev->struct_mutex); 150 if (ret) 151 return ret; 152 153 WARN_ON(i915_verify_lists(dev)); 154 return 0; 155 } 156 157 static inline bool 158 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj) 159 { 160 return i915_gem_obj_bound_any(obj) && !obj->active; 161 } 162 163 int 164 i915_gem_init_ioctl(struct drm_device *dev, void *data, 165 struct drm_file *file) 166 { 167 struct drm_i915_private *dev_priv = dev->dev_private; 168 struct drm_i915_gem_init *args = data; 169 170 if (drm_core_check_feature(dev, DRIVER_MODESET)) 171 return -ENODEV; 172 173 if (args->gtt_start >= args->gtt_end || 174 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1)) 175 return -EINVAL; 176 177 /* GEM with user mode setting was never supported on ilk and later. */ 178 if (INTEL_INFO(dev)->gen >= 5) 179 return -ENODEV; 180 181 mutex_lock(&dev->struct_mutex); 182 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end, 183 args->gtt_end); 184 dev_priv->gtt.mappable_end = args->gtt_end; 185 mutex_unlock(&dev->struct_mutex); 186 187 return 0; 188 } 189 190 int 191 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 192 struct drm_file *file) 193 { 194 struct drm_i915_private *dev_priv = dev->dev_private; 195 struct drm_i915_gem_get_aperture *args = data; 196 struct drm_i915_gem_object *obj; 197 size_t pinned; 198 199 pinned = 0; 200 mutex_lock(&dev->struct_mutex); 201 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) 202 if (i915_gem_obj_is_pinned(obj)) 203 pinned += i915_gem_obj_ggtt_size(obj); 204 mutex_unlock(&dev->struct_mutex); 205 206 args->aper_size = dev_priv->gtt.base.total; 207 args->aper_available_size = args->aper_size - pinned; 208 209 return 0; 210 } 211 212 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj) 213 { 214 drm_dma_handle_t *phys = obj->phys_handle; 215 216 if (!phys) 217 return; 218 219 if (obj->madv == I915_MADV_WILLNEED) { 220 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping; 221 char *vaddr = phys->vaddr; 222 int i; 223 224 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 225 struct page *page = shmem_read_mapping_page(mapping, i); 226 if (!IS_ERR(page)) { 227 char *dst = kmap_atomic(page); 228 memcpy(dst, vaddr, PAGE_SIZE); 229 drm_clflush_virt_range(dst, PAGE_SIZE); 230 kunmap_atomic(dst); 231 232 set_page_dirty(page); 233 mark_page_accessed(page); 234 page_cache_release(page); 235 } 236 vaddr += PAGE_SIZE; 237 } 238 i915_gem_chipset_flush(obj->base.dev); 239 } 240 241 #ifdef CONFIG_X86 242 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE); 243 #endif 244 drm_pci_free(obj->base.dev, phys); 245 obj->phys_handle = NULL; 246 } 247 248 int 249 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 250 int align) 251 { 252 drm_dma_handle_t *phys; 253 struct address_space *mapping; 254 char *vaddr; 255 int i; 256 257 if (obj->phys_handle) { 258 if ((unsigned long)obj->phys_handle->vaddr & (align -1)) 259 return -EBUSY; 260 261 return 0; 262 } 263 264 if (obj->madv != I915_MADV_WILLNEED) 265 return -EFAULT; 266 267 if (obj->base.filp == NULL) 268 return -EINVAL; 269 270 /* create a new object */ 271 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align); 272 if (!phys) 273 return -ENOMEM; 274 275 vaddr = phys->vaddr; 276 #ifdef CONFIG_X86 277 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE); 278 #endif 279 mapping = file_inode(obj->base.filp)->i_mapping; 280 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { 281 struct page *page; 282 char *src; 283 284 page = shmem_read_mapping_page(mapping, i); 285 if (IS_ERR(page)) { 286 #ifdef CONFIG_X86 287 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE); 288 #endif 289 drm_pci_free(obj->base.dev, phys); 290 return PTR_ERR(page); 291 } 292 293 src = kmap_atomic(page); 294 memcpy(vaddr, src, PAGE_SIZE); 295 kunmap_atomic(src); 296 297 mark_page_accessed(page); 298 page_cache_release(page); 299 300 vaddr += PAGE_SIZE; 301 } 302 303 obj->phys_handle = phys; 304 return 0; 305 } 306 307 static int 308 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj, 309 struct drm_i915_gem_pwrite *args, 310 struct drm_file *file_priv) 311 { 312 struct drm_device *dev = obj->base.dev; 313 void *vaddr = obj->phys_handle->vaddr + args->offset; 314 char __user *user_data = to_user_ptr(args->data_ptr); 315 316 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) { 317 unsigned long unwritten; 318 319 /* The physical object once assigned is fixed for the lifetime 320 * of the obj, so we can safely drop the lock and continue 321 * to access vaddr. 322 */ 323 mutex_unlock(&dev->struct_mutex); 324 unwritten = copy_from_user(vaddr, user_data, args->size); 325 mutex_lock(&dev->struct_mutex); 326 if (unwritten) 327 return -EFAULT; 328 } 329 330 i915_gem_chipset_flush(dev); 331 return 0; 332 } 333 334 void *i915_gem_object_alloc(struct drm_device *dev) 335 { 336 struct drm_i915_private *dev_priv = dev->dev_private; 337 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL); 338 } 339 340 void i915_gem_object_free(struct drm_i915_gem_object *obj) 341 { 342 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 343 kmem_cache_free(dev_priv->slab, obj); 344 } 345 346 static int 347 i915_gem_create(struct drm_file *file, 348 struct drm_device *dev, 349 uint64_t size, 350 uint32_t *handle_p) 351 { 352 struct drm_i915_gem_object *obj; 353 int ret; 354 u32 handle; 355 356 size = roundup(size, PAGE_SIZE); 357 if (size == 0) 358 return -EINVAL; 359 360 /* Allocate the new object */ 361 obj = i915_gem_alloc_object(dev, size); 362 if (obj == NULL) 363 return -ENOMEM; 364 365 ret = drm_gem_handle_create(file, &obj->base, &handle); 366 /* drop reference from allocate - handle holds it now */ 367 drm_gem_object_unreference_unlocked(&obj->base); 368 if (ret) 369 return ret; 370 371 *handle_p = handle; 372 return 0; 373 } 374 375 int 376 i915_gem_dumb_create(struct drm_file *file, 377 struct drm_device *dev, 378 struct drm_mode_create_dumb *args) 379 { 380 /* have to work out size/pitch and return them */ 381 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64); 382 args->size = args->pitch * args->height; 383 return i915_gem_create(file, dev, 384 args->size, &args->handle); 385 } 386 387 /** 388 * Creates a new mm object and returns a handle to it. 389 */ 390 int 391 i915_gem_create_ioctl(struct drm_device *dev, void *data, 392 struct drm_file *file) 393 { 394 struct drm_i915_gem_create *args = data; 395 396 return i915_gem_create(file, dev, 397 args->size, &args->handle); 398 } 399 400 static inline int 401 __copy_to_user_swizzled(char __user *cpu_vaddr, 402 const char *gpu_vaddr, int gpu_offset, 403 int length) 404 { 405 int ret, cpu_offset = 0; 406 407 while (length > 0) { 408 int cacheline_end = ALIGN(gpu_offset + 1, 64); 409 int this_length = min(cacheline_end - gpu_offset, length); 410 int swizzled_gpu_offset = gpu_offset ^ 64; 411 412 ret = __copy_to_user(cpu_vaddr + cpu_offset, 413 gpu_vaddr + swizzled_gpu_offset, 414 this_length); 415 if (ret) 416 return ret + length; 417 418 cpu_offset += this_length; 419 gpu_offset += this_length; 420 length -= this_length; 421 } 422 423 return 0; 424 } 425 426 static inline int 427 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, 428 const char __user *cpu_vaddr, 429 int length) 430 { 431 int ret, cpu_offset = 0; 432 433 while (length > 0) { 434 int cacheline_end = ALIGN(gpu_offset + 1, 64); 435 int this_length = min(cacheline_end - gpu_offset, length); 436 int swizzled_gpu_offset = gpu_offset ^ 64; 437 438 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, 439 cpu_vaddr + cpu_offset, 440 this_length); 441 if (ret) 442 return ret + length; 443 444 cpu_offset += this_length; 445 gpu_offset += this_length; 446 length -= this_length; 447 } 448 449 return 0; 450 } 451 452 /* 453 * Pins the specified object's pages and synchronizes the object with 454 * GPU accesses. Sets needs_clflush to non-zero if the caller should 455 * flush the object from the CPU cache. 456 */ 457 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 458 int *needs_clflush) 459 { 460 int ret; 461 462 *needs_clflush = 0; 463 464 if (!obj->base.filp) 465 return -EINVAL; 466 467 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) { 468 /* If we're not in the cpu read domain, set ourself into the gtt 469 * read domain and manually flush cachelines (if required). This 470 * optimizes for the case when the gpu will dirty the data 471 * anyway again before the next pread happens. */ 472 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev, 473 obj->cache_level); 474 ret = i915_gem_object_wait_rendering(obj, true); 475 if (ret) 476 return ret; 477 478 i915_gem_object_retire(obj); 479 } 480 481 ret = i915_gem_object_get_pages(obj); 482 if (ret) 483 return ret; 484 485 i915_gem_object_pin_pages(obj); 486 487 return ret; 488 } 489 490 /* Per-page copy function for the shmem pread fastpath. 491 * Flushes invalid cachelines before reading the target if 492 * needs_clflush is set. */ 493 static int 494 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length, 495 char __user *user_data, 496 bool page_do_bit17_swizzling, bool needs_clflush) 497 { 498 char *vaddr; 499 int ret; 500 501 if (unlikely(page_do_bit17_swizzling)) 502 return -EINVAL; 503 504 vaddr = kmap_atomic(page); 505 if (needs_clflush) 506 drm_clflush_virt_range(vaddr + shmem_page_offset, 507 page_length); 508 ret = __copy_to_user_inatomic(user_data, 509 vaddr + shmem_page_offset, 510 page_length); 511 kunmap_atomic(vaddr); 512 513 return ret ? -EFAULT : 0; 514 } 515 516 static void 517 shmem_clflush_swizzled_range(char *addr, unsigned long length, 518 bool swizzled) 519 { 520 if (unlikely(swizzled)) { 521 unsigned long start = (unsigned long) addr; 522 unsigned long end = (unsigned long) addr + length; 523 524 /* For swizzling simply ensure that we always flush both 525 * channels. Lame, but simple and it works. Swizzled 526 * pwrite/pread is far from a hotpath - current userspace 527 * doesn't use it at all. */ 528 start = round_down(start, 128); 529 end = round_up(end, 128); 530 531 drm_clflush_virt_range((void *)start, end - start); 532 } else { 533 drm_clflush_virt_range(addr, length); 534 } 535 536 } 537 538 /* Only difference to the fast-path function is that this can handle bit17 539 * and uses non-atomic copy and kmap functions. */ 540 static int 541 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length, 542 char __user *user_data, 543 bool page_do_bit17_swizzling, bool needs_clflush) 544 { 545 char *vaddr; 546 int ret; 547 548 vaddr = kmap(page); 549 if (needs_clflush) 550 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 551 page_length, 552 page_do_bit17_swizzling); 553 554 if (page_do_bit17_swizzling) 555 ret = __copy_to_user_swizzled(user_data, 556 vaddr, shmem_page_offset, 557 page_length); 558 else 559 ret = __copy_to_user(user_data, 560 vaddr + shmem_page_offset, 561 page_length); 562 kunmap(page); 563 564 return ret ? - EFAULT : 0; 565 } 566 567 static int 568 i915_gem_shmem_pread(struct drm_device *dev, 569 struct drm_i915_gem_object *obj, 570 struct drm_i915_gem_pread *args, 571 struct drm_file *file) 572 { 573 char __user *user_data; 574 ssize_t remain; 575 loff_t offset; 576 int shmem_page_offset, page_length, ret = 0; 577 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 578 int prefaulted = 0; 579 int needs_clflush = 0; 580 struct sg_page_iter sg_iter; 581 582 user_data = to_user_ptr(args->data_ptr); 583 remain = args->size; 584 585 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 586 587 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush); 588 if (ret) 589 return ret; 590 591 offset = args->offset; 592 593 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 594 offset >> PAGE_SHIFT) { 595 struct page *page = sg_page_iter_page(&sg_iter); 596 597 if (remain <= 0) 598 break; 599 600 /* Operation in this page 601 * 602 * shmem_page_offset = offset within page in shmem file 603 * page_length = bytes to copy for this page 604 */ 605 shmem_page_offset = offset_in_page(offset); 606 page_length = remain; 607 if ((shmem_page_offset + page_length) > PAGE_SIZE) 608 page_length = PAGE_SIZE - shmem_page_offset; 609 610 page_do_bit17_swizzling = obj_do_bit17_swizzling && 611 (page_to_phys(page) & (1 << 17)) != 0; 612 613 ret = shmem_pread_fast(page, shmem_page_offset, page_length, 614 user_data, page_do_bit17_swizzling, 615 needs_clflush); 616 if (ret == 0) 617 goto next_page; 618 619 mutex_unlock(&dev->struct_mutex); 620 621 if (likely(!i915.prefault_disable) && !prefaulted) { 622 ret = fault_in_multipages_writeable(user_data, remain); 623 /* Userspace is tricking us, but we've already clobbered 624 * its pages with the prefault and promised to write the 625 * data up to the first fault. Hence ignore any errors 626 * and just continue. */ 627 (void)ret; 628 prefaulted = 1; 629 } 630 631 ret = shmem_pread_slow(page, shmem_page_offset, page_length, 632 user_data, page_do_bit17_swizzling, 633 needs_clflush); 634 635 mutex_lock(&dev->struct_mutex); 636 637 if (ret) 638 goto out; 639 640 next_page: 641 remain -= page_length; 642 user_data += page_length; 643 offset += page_length; 644 } 645 646 out: 647 i915_gem_object_unpin_pages(obj); 648 649 return ret; 650 } 651 652 /** 653 * Reads data from the object referenced by handle. 654 * 655 * On error, the contents of *data are undefined. 656 */ 657 int 658 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 659 struct drm_file *file) 660 { 661 struct drm_i915_gem_pread *args = data; 662 struct drm_i915_gem_object *obj; 663 int ret = 0; 664 665 if (args->size == 0) 666 return 0; 667 668 if (!access_ok(VERIFY_WRITE, 669 to_user_ptr(args->data_ptr), 670 args->size)) 671 return -EFAULT; 672 673 ret = i915_mutex_lock_interruptible(dev); 674 if (ret) 675 return ret; 676 677 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 678 if (&obj->base == NULL) { 679 ret = -ENOENT; 680 goto unlock; 681 } 682 683 /* Bounds check source. */ 684 if (args->offset > obj->base.size || 685 args->size > obj->base.size - args->offset) { 686 ret = -EINVAL; 687 goto out; 688 } 689 690 /* prime objects have no backing filp to GEM pread/pwrite 691 * pages from. 692 */ 693 if (!obj->base.filp) { 694 ret = -EINVAL; 695 goto out; 696 } 697 698 trace_i915_gem_object_pread(obj, args->offset, args->size); 699 700 ret = i915_gem_shmem_pread(dev, obj, args, file); 701 702 out: 703 drm_gem_object_unreference(&obj->base); 704 unlock: 705 mutex_unlock(&dev->struct_mutex); 706 return ret; 707 } 708 709 /* This is the fast write path which cannot handle 710 * page faults in the source data 711 */ 712 713 static inline int 714 fast_user_write(struct io_mapping *mapping, 715 loff_t page_base, int page_offset, 716 char __user *user_data, 717 int length) 718 { 719 void __iomem *vaddr_atomic; 720 void *vaddr; 721 unsigned long unwritten; 722 723 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base); 724 /* We can use the cpu mem copy function because this is X86. */ 725 vaddr = (void __force*)vaddr_atomic + page_offset; 726 unwritten = __copy_from_user_inatomic_nocache(vaddr, 727 user_data, length); 728 io_mapping_unmap_atomic(vaddr_atomic); 729 return unwritten; 730 } 731 732 /** 733 * This is the fast pwrite path, where we copy the data directly from the 734 * user into the GTT, uncached. 735 */ 736 static int 737 i915_gem_gtt_pwrite_fast(struct drm_device *dev, 738 struct drm_i915_gem_object *obj, 739 struct drm_i915_gem_pwrite *args, 740 struct drm_file *file) 741 { 742 struct drm_i915_private *dev_priv = dev->dev_private; 743 ssize_t remain; 744 loff_t offset, page_base; 745 char __user *user_data; 746 int page_offset, page_length, ret; 747 748 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK); 749 if (ret) 750 goto out; 751 752 ret = i915_gem_object_set_to_gtt_domain(obj, true); 753 if (ret) 754 goto out_unpin; 755 756 ret = i915_gem_object_put_fence(obj); 757 if (ret) 758 goto out_unpin; 759 760 user_data = to_user_ptr(args->data_ptr); 761 remain = args->size; 762 763 offset = i915_gem_obj_ggtt_offset(obj) + args->offset; 764 765 while (remain > 0) { 766 /* Operation in this page 767 * 768 * page_base = page offset within aperture 769 * page_offset = offset within page 770 * page_length = bytes to copy for this page 771 */ 772 page_base = offset & PAGE_MASK; 773 page_offset = offset_in_page(offset); 774 page_length = remain; 775 if ((page_offset + remain) > PAGE_SIZE) 776 page_length = PAGE_SIZE - page_offset; 777 778 /* If we get a fault while copying data, then (presumably) our 779 * source page isn't available. Return the error and we'll 780 * retry in the slow path. 781 */ 782 if (fast_user_write(dev_priv->gtt.mappable, page_base, 783 page_offset, user_data, page_length)) { 784 ret = -EFAULT; 785 goto out_unpin; 786 } 787 788 remain -= page_length; 789 user_data += page_length; 790 offset += page_length; 791 } 792 793 out_unpin: 794 i915_gem_object_ggtt_unpin(obj); 795 out: 796 return ret; 797 } 798 799 /* Per-page copy function for the shmem pwrite fastpath. 800 * Flushes invalid cachelines before writing to the target if 801 * needs_clflush_before is set and flushes out any written cachelines after 802 * writing if needs_clflush is set. */ 803 static int 804 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length, 805 char __user *user_data, 806 bool page_do_bit17_swizzling, 807 bool needs_clflush_before, 808 bool needs_clflush_after) 809 { 810 char *vaddr; 811 int ret; 812 813 if (unlikely(page_do_bit17_swizzling)) 814 return -EINVAL; 815 816 vaddr = kmap_atomic(page); 817 if (needs_clflush_before) 818 drm_clflush_virt_range(vaddr + shmem_page_offset, 819 page_length); 820 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset, 821 user_data, page_length); 822 if (needs_clflush_after) 823 drm_clflush_virt_range(vaddr + shmem_page_offset, 824 page_length); 825 kunmap_atomic(vaddr); 826 827 return ret ? -EFAULT : 0; 828 } 829 830 /* Only difference to the fast-path function is that this can handle bit17 831 * and uses non-atomic copy and kmap functions. */ 832 static int 833 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length, 834 char __user *user_data, 835 bool page_do_bit17_swizzling, 836 bool needs_clflush_before, 837 bool needs_clflush_after) 838 { 839 char *vaddr; 840 int ret; 841 842 vaddr = kmap(page); 843 if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) 844 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 845 page_length, 846 page_do_bit17_swizzling); 847 if (page_do_bit17_swizzling) 848 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset, 849 user_data, 850 page_length); 851 else 852 ret = __copy_from_user(vaddr + shmem_page_offset, 853 user_data, 854 page_length); 855 if (needs_clflush_after) 856 shmem_clflush_swizzled_range(vaddr + shmem_page_offset, 857 page_length, 858 page_do_bit17_swizzling); 859 kunmap(page); 860 861 return ret ? -EFAULT : 0; 862 } 863 864 static int 865 i915_gem_shmem_pwrite(struct drm_device *dev, 866 struct drm_i915_gem_object *obj, 867 struct drm_i915_gem_pwrite *args, 868 struct drm_file *file) 869 { 870 ssize_t remain; 871 loff_t offset; 872 char __user *user_data; 873 int shmem_page_offset, page_length, ret = 0; 874 int obj_do_bit17_swizzling, page_do_bit17_swizzling; 875 int hit_slowpath = 0; 876 int needs_clflush_after = 0; 877 int needs_clflush_before = 0; 878 struct sg_page_iter sg_iter; 879 880 user_data = to_user_ptr(args->data_ptr); 881 remain = args->size; 882 883 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj); 884 885 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 886 /* If we're not in the cpu write domain, set ourself into the gtt 887 * write domain and manually flush cachelines (if required). This 888 * optimizes for the case when the gpu will use the data 889 * right away and we therefore have to clflush anyway. */ 890 needs_clflush_after = cpu_write_needs_clflush(obj); 891 ret = i915_gem_object_wait_rendering(obj, false); 892 if (ret) 893 return ret; 894 895 i915_gem_object_retire(obj); 896 } 897 /* Same trick applies to invalidate partially written cachelines read 898 * before writing. */ 899 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) 900 needs_clflush_before = 901 !cpu_cache_is_coherent(dev, obj->cache_level); 902 903 ret = i915_gem_object_get_pages(obj); 904 if (ret) 905 return ret; 906 907 i915_gem_object_pin_pages(obj); 908 909 offset = args->offset; 910 obj->dirty = 1; 911 912 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 913 offset >> PAGE_SHIFT) { 914 struct page *page = sg_page_iter_page(&sg_iter); 915 int partial_cacheline_write; 916 917 if (remain <= 0) 918 break; 919 920 /* Operation in this page 921 * 922 * shmem_page_offset = offset within page in shmem file 923 * page_length = bytes to copy for this page 924 */ 925 shmem_page_offset = offset_in_page(offset); 926 927 page_length = remain; 928 if ((shmem_page_offset + page_length) > PAGE_SIZE) 929 page_length = PAGE_SIZE - shmem_page_offset; 930 931 /* If we don't overwrite a cacheline completely we need to be 932 * careful to have up-to-date data by first clflushing. Don't 933 * overcomplicate things and flush the entire patch. */ 934 partial_cacheline_write = needs_clflush_before && 935 ((shmem_page_offset | page_length) 936 & (boot_cpu_data.x86_clflush_size - 1)); 937 938 page_do_bit17_swizzling = obj_do_bit17_swizzling && 939 (page_to_phys(page) & (1 << 17)) != 0; 940 941 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length, 942 user_data, page_do_bit17_swizzling, 943 partial_cacheline_write, 944 needs_clflush_after); 945 if (ret == 0) 946 goto next_page; 947 948 hit_slowpath = 1; 949 mutex_unlock(&dev->struct_mutex); 950 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length, 951 user_data, page_do_bit17_swizzling, 952 partial_cacheline_write, 953 needs_clflush_after); 954 955 mutex_lock(&dev->struct_mutex); 956 957 if (ret) 958 goto out; 959 960 next_page: 961 remain -= page_length; 962 user_data += page_length; 963 offset += page_length; 964 } 965 966 out: 967 i915_gem_object_unpin_pages(obj); 968 969 if (hit_slowpath) { 970 /* 971 * Fixup: Flush cpu caches in case we didn't flush the dirty 972 * cachelines in-line while writing and the object moved 973 * out of the cpu write domain while we've dropped the lock. 974 */ 975 if (!needs_clflush_after && 976 obj->base.write_domain != I915_GEM_DOMAIN_CPU) { 977 if (i915_gem_clflush_object(obj, obj->pin_display)) 978 i915_gem_chipset_flush(dev); 979 } 980 } 981 982 if (needs_clflush_after) 983 i915_gem_chipset_flush(dev); 984 985 return ret; 986 } 987 988 /** 989 * Writes data to the object referenced by handle. 990 * 991 * On error, the contents of the buffer that were to be modified are undefined. 992 */ 993 int 994 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 995 struct drm_file *file) 996 { 997 struct drm_i915_gem_pwrite *args = data; 998 struct drm_i915_gem_object *obj; 999 int ret; 1000 1001 if (args->size == 0) 1002 return 0; 1003 1004 if (!access_ok(VERIFY_READ, 1005 to_user_ptr(args->data_ptr), 1006 args->size)) 1007 return -EFAULT; 1008 1009 if (likely(!i915.prefault_disable)) { 1010 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr), 1011 args->size); 1012 if (ret) 1013 return -EFAULT; 1014 } 1015 1016 ret = i915_mutex_lock_interruptible(dev); 1017 if (ret) 1018 return ret; 1019 1020 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1021 if (&obj->base == NULL) { 1022 ret = -ENOENT; 1023 goto unlock; 1024 } 1025 1026 /* Bounds check destination. */ 1027 if (args->offset > obj->base.size || 1028 args->size > obj->base.size - args->offset) { 1029 ret = -EINVAL; 1030 goto out; 1031 } 1032 1033 /* prime objects have no backing filp to GEM pread/pwrite 1034 * pages from. 1035 */ 1036 if (!obj->base.filp) { 1037 ret = -EINVAL; 1038 goto out; 1039 } 1040 1041 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 1042 1043 ret = -EFAULT; 1044 /* We can only do the GTT pwrite on untiled buffers, as otherwise 1045 * it would end up going through the fenced access, and we'll get 1046 * different detiling behavior between reading and writing. 1047 * pread/pwrite currently are reading and writing from the CPU 1048 * perspective, requiring manual detiling by the client. 1049 */ 1050 if (obj->phys_handle) { 1051 ret = i915_gem_phys_pwrite(obj, args, file); 1052 goto out; 1053 } 1054 1055 if (obj->tiling_mode == I915_TILING_NONE && 1056 obj->base.write_domain != I915_GEM_DOMAIN_CPU && 1057 cpu_write_needs_clflush(obj)) { 1058 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file); 1059 /* Note that the gtt paths might fail with non-page-backed user 1060 * pointers (e.g. gtt mappings when moving data between 1061 * textures). Fallback to the shmem path in that case. */ 1062 } 1063 1064 if (ret == -EFAULT || ret == -ENOSPC) 1065 ret = i915_gem_shmem_pwrite(dev, obj, args, file); 1066 1067 out: 1068 drm_gem_object_unreference(&obj->base); 1069 unlock: 1070 mutex_unlock(&dev->struct_mutex); 1071 return ret; 1072 } 1073 1074 int 1075 i915_gem_check_wedge(struct i915_gpu_error *error, 1076 bool interruptible) 1077 { 1078 if (i915_reset_in_progress(error)) { 1079 /* Non-interruptible callers can't handle -EAGAIN, hence return 1080 * -EIO unconditionally for these. */ 1081 if (!interruptible) 1082 return -EIO; 1083 1084 /* Recovery complete, but the reset failed ... */ 1085 if (i915_terminally_wedged(error)) 1086 return -EIO; 1087 1088 return -EAGAIN; 1089 } 1090 1091 return 0; 1092 } 1093 1094 /* 1095 * Compare seqno against outstanding lazy request. Emit a request if they are 1096 * equal. 1097 */ 1098 static int 1099 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno) 1100 { 1101 int ret; 1102 1103 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex)); 1104 1105 ret = 0; 1106 if (seqno == ring->outstanding_lazy_seqno) 1107 ret = i915_add_request(ring, NULL); 1108 1109 return ret; 1110 } 1111 1112 static void fake_irq(unsigned long data) 1113 { 1114 wake_up_process((struct task_struct *)data); 1115 } 1116 1117 static bool missed_irq(struct drm_i915_private *dev_priv, 1118 struct intel_engine_cs *ring) 1119 { 1120 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings); 1121 } 1122 1123 static bool can_wait_boost(struct drm_i915_file_private *file_priv) 1124 { 1125 if (file_priv == NULL) 1126 return true; 1127 1128 return !atomic_xchg(&file_priv->rps_wait_boost, true); 1129 } 1130 1131 /** 1132 * __wait_seqno - wait until execution of seqno has finished 1133 * @ring: the ring expected to report seqno 1134 * @seqno: duh! 1135 * @reset_counter: reset sequence associated with the given seqno 1136 * @interruptible: do an interruptible wait (normally yes) 1137 * @timeout: in - how long to wait (NULL forever); out - how much time remaining 1138 * 1139 * Note: It is of utmost importance that the passed in seqno and reset_counter 1140 * values have been read by the caller in an smp safe manner. Where read-side 1141 * locks are involved, it is sufficient to read the reset_counter before 1142 * unlocking the lock that protects the seqno. For lockless tricks, the 1143 * reset_counter _must_ be read before, and an appropriate smp_rmb must be 1144 * inserted. 1145 * 1146 * Returns 0 if the seqno was found within the alloted time. Else returns the 1147 * errno with remaining time filled in timeout argument. 1148 */ 1149 static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno, 1150 unsigned reset_counter, 1151 bool interruptible, 1152 struct timespec *timeout, 1153 struct drm_i915_file_private *file_priv) 1154 { 1155 struct drm_device *dev = ring->dev; 1156 struct drm_i915_private *dev_priv = dev->dev_private; 1157 const bool irq_test_in_progress = 1158 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring); 1159 struct timespec before, now; 1160 DEFINE_WAIT(wait); 1161 unsigned long timeout_expire; 1162 int ret; 1163 1164 WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n"); 1165 1166 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno)) 1167 return 0; 1168 1169 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0; 1170 1171 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) { 1172 gen6_rps_boost(dev_priv); 1173 if (file_priv) 1174 mod_delayed_work(dev_priv->wq, 1175 &file_priv->mm.idle_work, 1176 msecs_to_jiffies(100)); 1177 } 1178 1179 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) 1180 return -ENODEV; 1181 1182 /* Record current time in case interrupted by signal, or wedged */ 1183 trace_i915_gem_request_wait_begin(ring, seqno); 1184 getrawmonotonic(&before); 1185 for (;;) { 1186 struct timer_list timer; 1187 1188 prepare_to_wait(&ring->irq_queue, &wait, 1189 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE); 1190 1191 /* We need to check whether any gpu reset happened in between 1192 * the caller grabbing the seqno and now ... */ 1193 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) { 1194 /* ... but upgrade the -EAGAIN to an -EIO if the gpu 1195 * is truely gone. */ 1196 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1197 if (ret == 0) 1198 ret = -EAGAIN; 1199 break; 1200 } 1201 1202 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) { 1203 ret = 0; 1204 break; 1205 } 1206 1207 if (interruptible && signal_pending(current)) { 1208 ret = -ERESTARTSYS; 1209 break; 1210 } 1211 1212 if (timeout && time_after_eq(jiffies, timeout_expire)) { 1213 ret = -ETIME; 1214 break; 1215 } 1216 1217 timer.function = NULL; 1218 if (timeout || missed_irq(dev_priv, ring)) { 1219 unsigned long expire; 1220 1221 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current); 1222 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire; 1223 mod_timer(&timer, expire); 1224 } 1225 1226 io_schedule(); 1227 1228 if (timer.function) { 1229 del_singleshot_timer_sync(&timer); 1230 destroy_timer_on_stack(&timer); 1231 } 1232 } 1233 getrawmonotonic(&now); 1234 trace_i915_gem_request_wait_end(ring, seqno); 1235 1236 if (!irq_test_in_progress) 1237 ring->irq_put(ring); 1238 1239 finish_wait(&ring->irq_queue, &wait); 1240 1241 if (timeout) { 1242 struct timespec sleep_time = timespec_sub(now, before); 1243 *timeout = timespec_sub(*timeout, sleep_time); 1244 if (!timespec_valid(timeout)) /* i.e. negative time remains */ 1245 set_normalized_timespec(timeout, 0, 0); 1246 } 1247 1248 return ret; 1249 } 1250 1251 /** 1252 * Waits for a sequence number to be signaled, and cleans up the 1253 * request and object lists appropriately for that event. 1254 */ 1255 int 1256 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno) 1257 { 1258 struct drm_device *dev = ring->dev; 1259 struct drm_i915_private *dev_priv = dev->dev_private; 1260 bool interruptible = dev_priv->mm.interruptible; 1261 int ret; 1262 1263 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1264 BUG_ON(seqno == 0); 1265 1266 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible); 1267 if (ret) 1268 return ret; 1269 1270 ret = i915_gem_check_olr(ring, seqno); 1271 if (ret) 1272 return ret; 1273 1274 return __wait_seqno(ring, seqno, 1275 atomic_read(&dev_priv->gpu_error.reset_counter), 1276 interruptible, NULL, NULL); 1277 } 1278 1279 static int 1280 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj, 1281 struct intel_engine_cs *ring) 1282 { 1283 if (!obj->active) 1284 return 0; 1285 1286 /* Manually manage the write flush as we may have not yet 1287 * retired the buffer. 1288 * 1289 * Note that the last_write_seqno is always the earlier of 1290 * the two (read/write) seqno, so if we haved successfully waited, 1291 * we know we have passed the last write. 1292 */ 1293 obj->last_write_seqno = 0; 1294 1295 return 0; 1296 } 1297 1298 /** 1299 * Ensures that all rendering to the object has completed and the object is 1300 * safe to unbind from the GTT or access from the CPU. 1301 */ 1302 static __must_check int 1303 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 1304 bool readonly) 1305 { 1306 struct intel_engine_cs *ring = obj->ring; 1307 u32 seqno; 1308 int ret; 1309 1310 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1311 if (seqno == 0) 1312 return 0; 1313 1314 ret = i915_wait_seqno(ring, seqno); 1315 if (ret) 1316 return ret; 1317 1318 return i915_gem_object_wait_rendering__tail(obj, ring); 1319 } 1320 1321 /* A nonblocking variant of the above wait. This is a highly dangerous routine 1322 * as the object state may change during this call. 1323 */ 1324 static __must_check int 1325 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj, 1326 struct drm_i915_file_private *file_priv, 1327 bool readonly) 1328 { 1329 struct drm_device *dev = obj->base.dev; 1330 struct drm_i915_private *dev_priv = dev->dev_private; 1331 struct intel_engine_cs *ring = obj->ring; 1332 unsigned reset_counter; 1333 u32 seqno; 1334 int ret; 1335 1336 BUG_ON(!mutex_is_locked(&dev->struct_mutex)); 1337 BUG_ON(!dev_priv->mm.interruptible); 1338 1339 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno; 1340 if (seqno == 0) 1341 return 0; 1342 1343 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true); 1344 if (ret) 1345 return ret; 1346 1347 ret = i915_gem_check_olr(ring, seqno); 1348 if (ret) 1349 return ret; 1350 1351 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 1352 mutex_unlock(&dev->struct_mutex); 1353 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv); 1354 mutex_lock(&dev->struct_mutex); 1355 if (ret) 1356 return ret; 1357 1358 return i915_gem_object_wait_rendering__tail(obj, ring); 1359 } 1360 1361 /** 1362 * Called when user space prepares to use an object with the CPU, either 1363 * through the mmap ioctl's mapping or a GTT mapping. 1364 */ 1365 int 1366 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 1367 struct drm_file *file) 1368 { 1369 struct drm_i915_gem_set_domain *args = data; 1370 struct drm_i915_gem_object *obj; 1371 uint32_t read_domains = args->read_domains; 1372 uint32_t write_domain = args->write_domain; 1373 int ret; 1374 1375 /* Only handle setting domains to types used by the CPU. */ 1376 if (write_domain & I915_GEM_GPU_DOMAINS) 1377 return -EINVAL; 1378 1379 if (read_domains & I915_GEM_GPU_DOMAINS) 1380 return -EINVAL; 1381 1382 /* Having something in the write domain implies it's in the read 1383 * domain, and only that read domain. Enforce that in the request. 1384 */ 1385 if (write_domain != 0 && read_domains != write_domain) 1386 return -EINVAL; 1387 1388 ret = i915_mutex_lock_interruptible(dev); 1389 if (ret) 1390 return ret; 1391 1392 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1393 if (&obj->base == NULL) { 1394 ret = -ENOENT; 1395 goto unlock; 1396 } 1397 1398 /* Try to flush the object off the GPU without holding the lock. 1399 * We will repeat the flush holding the lock in the normal manner 1400 * to catch cases where we are gazumped. 1401 */ 1402 ret = i915_gem_object_wait_rendering__nonblocking(obj, 1403 file->driver_priv, 1404 !write_domain); 1405 if (ret) 1406 goto unref; 1407 1408 if (read_domains & I915_GEM_DOMAIN_GTT) { 1409 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); 1410 1411 /* Silently promote "you're not bound, there was nothing to do" 1412 * to success, since the client was just asking us to 1413 * make sure everything was done. 1414 */ 1415 if (ret == -EINVAL) 1416 ret = 0; 1417 } else { 1418 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); 1419 } 1420 1421 unref: 1422 drm_gem_object_unreference(&obj->base); 1423 unlock: 1424 mutex_unlock(&dev->struct_mutex); 1425 return ret; 1426 } 1427 1428 /** 1429 * Called when user space has done writes to this buffer 1430 */ 1431 int 1432 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 1433 struct drm_file *file) 1434 { 1435 struct drm_i915_gem_sw_finish *args = data; 1436 struct drm_i915_gem_object *obj; 1437 int ret = 0; 1438 1439 ret = i915_mutex_lock_interruptible(dev); 1440 if (ret) 1441 return ret; 1442 1443 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 1444 if (&obj->base == NULL) { 1445 ret = -ENOENT; 1446 goto unlock; 1447 } 1448 1449 /* Pinned buffers may be scanout, so flush the cache */ 1450 if (obj->pin_display) 1451 i915_gem_object_flush_cpu_write_domain(obj, true); 1452 1453 drm_gem_object_unreference(&obj->base); 1454 unlock: 1455 mutex_unlock(&dev->struct_mutex); 1456 return ret; 1457 } 1458 1459 /** 1460 * Maps the contents of an object, returning the address it is mapped 1461 * into. 1462 * 1463 * While the mapping holds a reference on the contents of the object, it doesn't 1464 * imply a ref on the object itself. 1465 */ 1466 int 1467 i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 1468 struct drm_file *file) 1469 { 1470 struct drm_i915_gem_mmap *args = data; 1471 struct drm_gem_object *obj; 1472 unsigned long addr; 1473 1474 obj = drm_gem_object_lookup(dev, file, args->handle); 1475 if (obj == NULL) 1476 return -ENOENT; 1477 1478 /* prime objects have no backing filp to GEM mmap 1479 * pages from. 1480 */ 1481 if (!obj->filp) { 1482 drm_gem_object_unreference_unlocked(obj); 1483 return -EINVAL; 1484 } 1485 1486 addr = vm_mmap(obj->filp, 0, args->size, 1487 PROT_READ | PROT_WRITE, MAP_SHARED, 1488 args->offset); 1489 drm_gem_object_unreference_unlocked(obj); 1490 if (IS_ERR((void *)addr)) 1491 return addr; 1492 1493 args->addr_ptr = (uint64_t) addr; 1494 1495 return 0; 1496 } 1497 1498 /** 1499 * i915_gem_fault - fault a page into the GTT 1500 * vma: VMA in question 1501 * vmf: fault info 1502 * 1503 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped 1504 * from userspace. The fault handler takes care of binding the object to 1505 * the GTT (if needed), allocating and programming a fence register (again, 1506 * only if needed based on whether the old reg is still valid or the object 1507 * is tiled) and inserting a new PTE into the faulting process. 1508 * 1509 * Note that the faulting process may involve evicting existing objects 1510 * from the GTT and/or fence registers to make room. So performance may 1511 * suffer if the GTT working set is large or there are few fence registers 1512 * left. 1513 */ 1514 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1515 { 1516 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data); 1517 struct drm_device *dev = obj->base.dev; 1518 struct drm_i915_private *dev_priv = dev->dev_private; 1519 pgoff_t page_offset; 1520 unsigned long pfn; 1521 int ret = 0; 1522 bool write = !!(vmf->flags & FAULT_FLAG_WRITE); 1523 1524 intel_runtime_pm_get(dev_priv); 1525 1526 /* We don't use vmf->pgoff since that has the fake offset */ 1527 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >> 1528 PAGE_SHIFT; 1529 1530 ret = i915_mutex_lock_interruptible(dev); 1531 if (ret) 1532 goto out; 1533 1534 trace_i915_gem_object_fault(obj, page_offset, true, write); 1535 1536 /* Try to flush the object off the GPU first without holding the lock. 1537 * Upon reacquiring the lock, we will perform our sanity checks and then 1538 * repeat the flush holding the lock in the normal manner to catch cases 1539 * where we are gazumped. 1540 */ 1541 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write); 1542 if (ret) 1543 goto unlock; 1544 1545 /* Access to snoopable pages through the GTT is incoherent. */ 1546 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) { 1547 ret = -EFAULT; 1548 goto unlock; 1549 } 1550 1551 /* Now bind it into the GTT if needed */ 1552 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE); 1553 if (ret) 1554 goto unlock; 1555 1556 ret = i915_gem_object_set_to_gtt_domain(obj, write); 1557 if (ret) 1558 goto unpin; 1559 1560 ret = i915_gem_object_get_fence(obj); 1561 if (ret) 1562 goto unpin; 1563 1564 obj->fault_mappable = true; 1565 1566 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj); 1567 pfn >>= PAGE_SHIFT; 1568 pfn += page_offset; 1569 1570 /* Finally, remap it using the new GTT offset */ 1571 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn); 1572 unpin: 1573 i915_gem_object_ggtt_unpin(obj); 1574 unlock: 1575 mutex_unlock(&dev->struct_mutex); 1576 out: 1577 switch (ret) { 1578 case -EIO: 1579 /* If this -EIO is due to a gpu hang, give the reset code a 1580 * chance to clean up the mess. Otherwise return the proper 1581 * SIGBUS. */ 1582 if (i915_terminally_wedged(&dev_priv->gpu_error)) { 1583 ret = VM_FAULT_SIGBUS; 1584 break; 1585 } 1586 case -EAGAIN: 1587 /* 1588 * EAGAIN means the gpu is hung and we'll wait for the error 1589 * handler to reset everything when re-faulting in 1590 * i915_mutex_lock_interruptible. 1591 */ 1592 case 0: 1593 case -ERESTARTSYS: 1594 case -EINTR: 1595 case -EBUSY: 1596 /* 1597 * EBUSY is ok: this just means that another thread 1598 * already did the job. 1599 */ 1600 ret = VM_FAULT_NOPAGE; 1601 break; 1602 case -ENOMEM: 1603 ret = VM_FAULT_OOM; 1604 break; 1605 case -ENOSPC: 1606 case -EFAULT: 1607 ret = VM_FAULT_SIGBUS; 1608 break; 1609 default: 1610 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); 1611 ret = VM_FAULT_SIGBUS; 1612 break; 1613 } 1614 1615 intel_runtime_pm_put(dev_priv); 1616 return ret; 1617 } 1618 1619 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv) 1620 { 1621 struct i915_vma *vma; 1622 1623 /* 1624 * Only the global gtt is relevant for gtt memory mappings, so restrict 1625 * list traversal to objects bound into the global address space. Note 1626 * that the active list should be empty, but better safe than sorry. 1627 */ 1628 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list)); 1629 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list) 1630 i915_gem_release_mmap(vma->obj); 1631 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list) 1632 i915_gem_release_mmap(vma->obj); 1633 } 1634 1635 /** 1636 * i915_gem_release_mmap - remove physical page mappings 1637 * @obj: obj in question 1638 * 1639 * Preserve the reservation of the mmapping with the DRM core code, but 1640 * relinquish ownership of the pages back to the system. 1641 * 1642 * It is vital that we remove the page mapping if we have mapped a tiled 1643 * object through the GTT and then lose the fence register due to 1644 * resource pressure. Similarly if the object has been moved out of the 1645 * aperture, than pages mapped into userspace must be revoked. Removing the 1646 * mapping will then trigger a page fault on the next user access, allowing 1647 * fixup by i915_gem_fault(). 1648 */ 1649 void 1650 i915_gem_release_mmap(struct drm_i915_gem_object *obj) 1651 { 1652 if (!obj->fault_mappable) 1653 return; 1654 1655 drm_vma_node_unmap(&obj->base.vma_node, 1656 obj->base.dev->anon_inode->i_mapping); 1657 obj->fault_mappable = false; 1658 } 1659 1660 uint32_t 1661 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode) 1662 { 1663 uint32_t gtt_size; 1664 1665 if (INTEL_INFO(dev)->gen >= 4 || 1666 tiling_mode == I915_TILING_NONE) 1667 return size; 1668 1669 /* Previous chips need a power-of-two fence region when tiling */ 1670 if (INTEL_INFO(dev)->gen == 3) 1671 gtt_size = 1024*1024; 1672 else 1673 gtt_size = 512*1024; 1674 1675 while (gtt_size < size) 1676 gtt_size <<= 1; 1677 1678 return gtt_size; 1679 } 1680 1681 /** 1682 * i915_gem_get_gtt_alignment - return required GTT alignment for an object 1683 * @obj: object to check 1684 * 1685 * Return the required GTT alignment for an object, taking into account 1686 * potential fence register mapping. 1687 */ 1688 uint32_t 1689 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size, 1690 int tiling_mode, bool fenced) 1691 { 1692 /* 1693 * Minimum alignment is 4k (GTT page size), but might be greater 1694 * if a fence register is needed for the object. 1695 */ 1696 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) || 1697 tiling_mode == I915_TILING_NONE) 1698 return 4096; 1699 1700 /* 1701 * Previous chips need to be aligned to the size of the smallest 1702 * fence register that can contain the object. 1703 */ 1704 return i915_gem_get_gtt_size(dev, size, tiling_mode); 1705 } 1706 1707 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) 1708 { 1709 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 1710 int ret; 1711 1712 if (drm_vma_node_has_offset(&obj->base.vma_node)) 1713 return 0; 1714 1715 dev_priv->mm.shrinker_no_lock_stealing = true; 1716 1717 ret = drm_gem_create_mmap_offset(&obj->base); 1718 if (ret != -ENOSPC) 1719 goto out; 1720 1721 /* Badly fragmented mmap space? The only way we can recover 1722 * space is by destroying unwanted objects. We can't randomly release 1723 * mmap_offsets as userspace expects them to be persistent for the 1724 * lifetime of the objects. The closest we can is to release the 1725 * offsets on purgeable objects by truncating it and marking it purged, 1726 * which prevents userspace from ever using that object again. 1727 */ 1728 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT); 1729 ret = drm_gem_create_mmap_offset(&obj->base); 1730 if (ret != -ENOSPC) 1731 goto out; 1732 1733 i915_gem_shrink_all(dev_priv); 1734 ret = drm_gem_create_mmap_offset(&obj->base); 1735 out: 1736 dev_priv->mm.shrinker_no_lock_stealing = false; 1737 1738 return ret; 1739 } 1740 1741 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) 1742 { 1743 drm_gem_free_mmap_offset(&obj->base); 1744 } 1745 1746 int 1747 i915_gem_mmap_gtt(struct drm_file *file, 1748 struct drm_device *dev, 1749 uint32_t handle, 1750 uint64_t *offset) 1751 { 1752 struct drm_i915_private *dev_priv = dev->dev_private; 1753 struct drm_i915_gem_object *obj; 1754 int ret; 1755 1756 ret = i915_mutex_lock_interruptible(dev); 1757 if (ret) 1758 return ret; 1759 1760 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle)); 1761 if (&obj->base == NULL) { 1762 ret = -ENOENT; 1763 goto unlock; 1764 } 1765 1766 if (obj->base.size > dev_priv->gtt.mappable_end) { 1767 ret = -E2BIG; 1768 goto out; 1769 } 1770 1771 if (obj->madv != I915_MADV_WILLNEED) { 1772 DRM_DEBUG("Attempting to mmap a purgeable buffer\n"); 1773 ret = -EFAULT; 1774 goto out; 1775 } 1776 1777 ret = i915_gem_object_create_mmap_offset(obj); 1778 if (ret) 1779 goto out; 1780 1781 *offset = drm_vma_node_offset_addr(&obj->base.vma_node); 1782 1783 out: 1784 drm_gem_object_unreference(&obj->base); 1785 unlock: 1786 mutex_unlock(&dev->struct_mutex); 1787 return ret; 1788 } 1789 1790 /** 1791 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing 1792 * @dev: DRM device 1793 * @data: GTT mapping ioctl data 1794 * @file: GEM object info 1795 * 1796 * Simply returns the fake offset to userspace so it can mmap it. 1797 * The mmap call will end up in drm_gem_mmap(), which will set things 1798 * up so we can get faults in the handler above. 1799 * 1800 * The fault handler will take care of binding the object into the GTT 1801 * (since it may have been evicted to make room for something), allocating 1802 * a fence register, and mapping the appropriate aperture address into 1803 * userspace. 1804 */ 1805 int 1806 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 1807 struct drm_file *file) 1808 { 1809 struct drm_i915_gem_mmap_gtt *args = data; 1810 1811 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); 1812 } 1813 1814 static inline int 1815 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj) 1816 { 1817 return obj->madv == I915_MADV_DONTNEED; 1818 } 1819 1820 /* Immediately discard the backing storage */ 1821 static void 1822 i915_gem_object_truncate(struct drm_i915_gem_object *obj) 1823 { 1824 i915_gem_object_free_mmap_offset(obj); 1825 1826 if (obj->base.filp == NULL) 1827 return; 1828 1829 /* Our goal here is to return as much of the memory as 1830 * is possible back to the system as we are called from OOM. 1831 * To do this we must instruct the shmfs to drop all of its 1832 * backing pages, *now*. 1833 */ 1834 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1); 1835 obj->madv = __I915_MADV_PURGED; 1836 } 1837 1838 /* Try to discard unwanted pages */ 1839 static void 1840 i915_gem_object_invalidate(struct drm_i915_gem_object *obj) 1841 { 1842 struct address_space *mapping; 1843 1844 switch (obj->madv) { 1845 case I915_MADV_DONTNEED: 1846 i915_gem_object_truncate(obj); 1847 case __I915_MADV_PURGED: 1848 return; 1849 } 1850 1851 if (obj->base.filp == NULL) 1852 return; 1853 1854 mapping = file_inode(obj->base.filp)->i_mapping, 1855 invalidate_mapping_pages(mapping, 0, (loff_t)-1); 1856 } 1857 1858 static void 1859 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj) 1860 { 1861 struct sg_page_iter sg_iter; 1862 int ret; 1863 1864 BUG_ON(obj->madv == __I915_MADV_PURGED); 1865 1866 ret = i915_gem_object_set_to_cpu_domain(obj, true); 1867 if (ret) { 1868 /* In the event of a disaster, abandon all caches and 1869 * hope for the best. 1870 */ 1871 WARN_ON(ret != -EIO); 1872 i915_gem_clflush_object(obj, true); 1873 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU; 1874 } 1875 1876 if (i915_gem_object_needs_bit17_swizzle(obj)) 1877 i915_gem_object_save_bit_17_swizzle(obj); 1878 1879 if (obj->madv == I915_MADV_DONTNEED) 1880 obj->dirty = 0; 1881 1882 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) { 1883 struct page *page = sg_page_iter_page(&sg_iter); 1884 1885 if (obj->dirty) 1886 set_page_dirty(page); 1887 1888 if (obj->madv == I915_MADV_WILLNEED) 1889 mark_page_accessed(page); 1890 1891 page_cache_release(page); 1892 } 1893 obj->dirty = 0; 1894 1895 sg_free_table(obj->pages); 1896 kfree(obj->pages); 1897 } 1898 1899 int 1900 i915_gem_object_put_pages(struct drm_i915_gem_object *obj) 1901 { 1902 const struct drm_i915_gem_object_ops *ops = obj->ops; 1903 1904 if (obj->pages == NULL) 1905 return 0; 1906 1907 if (obj->pages_pin_count) 1908 return -EBUSY; 1909 1910 BUG_ON(i915_gem_obj_bound_any(obj)); 1911 1912 /* ->put_pages might need to allocate memory for the bit17 swizzle 1913 * array, hence protect them from being reaped by removing them from gtt 1914 * lists early. */ 1915 list_del(&obj->global_list); 1916 1917 ops->put_pages(obj); 1918 obj->pages = NULL; 1919 1920 i915_gem_object_invalidate(obj); 1921 1922 return 0; 1923 } 1924 1925 static unsigned long 1926 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target, 1927 bool purgeable_only) 1928 { 1929 struct list_head still_in_list; 1930 struct drm_i915_gem_object *obj; 1931 unsigned long count = 0; 1932 1933 /* 1934 * As we may completely rewrite the (un)bound list whilst unbinding 1935 * (due to retiring requests) we have to strictly process only 1936 * one element of the list at the time, and recheck the list 1937 * on every iteration. 1938 * 1939 * In particular, we must hold a reference whilst removing the 1940 * object as we may end up waiting for and/or retiring the objects. 1941 * This might release the final reference (held by the active list) 1942 * and result in the object being freed from under us. This is 1943 * similar to the precautions the eviction code must take whilst 1944 * removing objects. 1945 * 1946 * Also note that although these lists do not hold a reference to 1947 * the object we can safely grab one here: The final object 1948 * unreferencing and the bound_list are both protected by the 1949 * dev->struct_mutex and so we won't ever be able to observe an 1950 * object on the bound_list with a reference count equals 0. 1951 */ 1952 INIT_LIST_HEAD(&still_in_list); 1953 while (count < target && !list_empty(&dev_priv->mm.unbound_list)) { 1954 obj = list_first_entry(&dev_priv->mm.unbound_list, 1955 typeof(*obj), global_list); 1956 list_move_tail(&obj->global_list, &still_in_list); 1957 1958 if (!i915_gem_object_is_purgeable(obj) && purgeable_only) 1959 continue; 1960 1961 drm_gem_object_reference(&obj->base); 1962 1963 if (i915_gem_object_put_pages(obj) == 0) 1964 count += obj->base.size >> PAGE_SHIFT; 1965 1966 drm_gem_object_unreference(&obj->base); 1967 } 1968 list_splice(&still_in_list, &dev_priv->mm.unbound_list); 1969 1970 INIT_LIST_HEAD(&still_in_list); 1971 while (count < target && !list_empty(&dev_priv->mm.bound_list)) { 1972 struct i915_vma *vma, *v; 1973 1974 obj = list_first_entry(&dev_priv->mm.bound_list, 1975 typeof(*obj), global_list); 1976 list_move_tail(&obj->global_list, &still_in_list); 1977 1978 if (!i915_gem_object_is_purgeable(obj) && purgeable_only) 1979 continue; 1980 1981 drm_gem_object_reference(&obj->base); 1982 1983 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link) 1984 if (i915_vma_unbind(vma)) 1985 break; 1986 1987 if (i915_gem_object_put_pages(obj) == 0) 1988 count += obj->base.size >> PAGE_SHIFT; 1989 1990 drm_gem_object_unreference(&obj->base); 1991 } 1992 list_splice(&still_in_list, &dev_priv->mm.bound_list); 1993 1994 return count; 1995 } 1996 1997 static unsigned long 1998 i915_gem_purge(struct drm_i915_private *dev_priv, long target) 1999 { 2000 return __i915_gem_shrink(dev_priv, target, true); 2001 } 2002 2003 static unsigned long 2004 i915_gem_shrink_all(struct drm_i915_private *dev_priv) 2005 { 2006 i915_gem_evict_everything(dev_priv->dev); 2007 return __i915_gem_shrink(dev_priv, LONG_MAX, false); 2008 } 2009 2010 static int 2011 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) 2012 { 2013 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2014 int page_count, i; 2015 struct address_space *mapping; 2016 struct sg_table *st; 2017 struct scatterlist *sg; 2018 struct sg_page_iter sg_iter; 2019 struct page *page; 2020 unsigned long last_pfn = 0; /* suppress gcc warning */ 2021 gfp_t gfp; 2022 2023 /* Assert that the object is not currently in any GPU domain. As it 2024 * wasn't in the GTT, there shouldn't be any way it could have been in 2025 * a GPU cache 2026 */ 2027 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); 2028 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); 2029 2030 st = kmalloc(sizeof(*st), GFP_KERNEL); 2031 if (st == NULL) 2032 return -ENOMEM; 2033 2034 page_count = obj->base.size / PAGE_SIZE; 2035 if (sg_alloc_table(st, page_count, GFP_KERNEL)) { 2036 kfree(st); 2037 return -ENOMEM; 2038 } 2039 2040 /* Get the list of pages out of our struct file. They'll be pinned 2041 * at this point until we release them. 2042 * 2043 * Fail silently without starting the shrinker 2044 */ 2045 mapping = file_inode(obj->base.filp)->i_mapping; 2046 gfp = mapping_gfp_mask(mapping); 2047 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD; 2048 gfp &= ~(__GFP_IO | __GFP_WAIT); 2049 sg = st->sgl; 2050 st->nents = 0; 2051 for (i = 0; i < page_count; i++) { 2052 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 2053 if (IS_ERR(page)) { 2054 i915_gem_purge(dev_priv, page_count); 2055 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 2056 } 2057 if (IS_ERR(page)) { 2058 /* We've tried hard to allocate the memory by reaping 2059 * our own buffer, now let the real VM do its job and 2060 * go down in flames if truly OOM. 2061 */ 2062 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD); 2063 gfp |= __GFP_IO | __GFP_WAIT; 2064 2065 i915_gem_shrink_all(dev_priv); 2066 page = shmem_read_mapping_page_gfp(mapping, i, gfp); 2067 if (IS_ERR(page)) 2068 goto err_pages; 2069 2070 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD; 2071 gfp &= ~(__GFP_IO | __GFP_WAIT); 2072 } 2073 #ifdef CONFIG_SWIOTLB 2074 if (swiotlb_nr_tbl()) { 2075 st->nents++; 2076 sg_set_page(sg, page, PAGE_SIZE, 0); 2077 sg = sg_next(sg); 2078 continue; 2079 } 2080 #endif 2081 if (!i || page_to_pfn(page) != last_pfn + 1) { 2082 if (i) 2083 sg = sg_next(sg); 2084 st->nents++; 2085 sg_set_page(sg, page, PAGE_SIZE, 0); 2086 } else { 2087 sg->length += PAGE_SIZE; 2088 } 2089 last_pfn = page_to_pfn(page); 2090 2091 /* Check that the i965g/gm workaround works. */ 2092 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL)); 2093 } 2094 #ifdef CONFIG_SWIOTLB 2095 if (!swiotlb_nr_tbl()) 2096 #endif 2097 sg_mark_end(sg); 2098 obj->pages = st; 2099 2100 if (i915_gem_object_needs_bit17_swizzle(obj)) 2101 i915_gem_object_do_bit_17_swizzle(obj); 2102 2103 return 0; 2104 2105 err_pages: 2106 sg_mark_end(sg); 2107 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) 2108 page_cache_release(sg_page_iter_page(&sg_iter)); 2109 sg_free_table(st); 2110 kfree(st); 2111 2112 /* shmemfs first checks if there is enough memory to allocate the page 2113 * and reports ENOSPC should there be insufficient, along with the usual 2114 * ENOMEM for a genuine allocation failure. 2115 * 2116 * We use ENOSPC in our driver to mean that we have run out of aperture 2117 * space and so want to translate the error from shmemfs back to our 2118 * usual understanding of ENOMEM. 2119 */ 2120 if (PTR_ERR(page) == -ENOSPC) 2121 return -ENOMEM; 2122 else 2123 return PTR_ERR(page); 2124 } 2125 2126 /* Ensure that the associated pages are gathered from the backing storage 2127 * and pinned into our object. i915_gem_object_get_pages() may be called 2128 * multiple times before they are released by a single call to 2129 * i915_gem_object_put_pages() - once the pages are no longer referenced 2130 * either as a result of memory pressure (reaping pages under the shrinker) 2131 * or as the object is itself released. 2132 */ 2133 int 2134 i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 2135 { 2136 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2137 const struct drm_i915_gem_object_ops *ops = obj->ops; 2138 int ret; 2139 2140 if (obj->pages) 2141 return 0; 2142 2143 if (obj->madv != I915_MADV_WILLNEED) { 2144 DRM_DEBUG("Attempting to obtain a purgeable object\n"); 2145 return -EFAULT; 2146 } 2147 2148 BUG_ON(obj->pages_pin_count); 2149 2150 ret = ops->get_pages(obj); 2151 if (ret) 2152 return ret; 2153 2154 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list); 2155 return 0; 2156 } 2157 2158 static void 2159 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj, 2160 struct intel_engine_cs *ring) 2161 { 2162 struct drm_device *dev = obj->base.dev; 2163 struct drm_i915_private *dev_priv = dev->dev_private; 2164 u32 seqno = intel_ring_get_seqno(ring); 2165 2166 BUG_ON(ring == NULL); 2167 if (obj->ring != ring && obj->last_write_seqno) { 2168 /* Keep the seqno relative to the current ring */ 2169 obj->last_write_seqno = seqno; 2170 } 2171 obj->ring = ring; 2172 2173 /* Add a reference if we're newly entering the active list. */ 2174 if (!obj->active) { 2175 drm_gem_object_reference(&obj->base); 2176 obj->active = 1; 2177 } 2178 2179 list_move_tail(&obj->ring_list, &ring->active_list); 2180 2181 obj->last_read_seqno = seqno; 2182 2183 if (obj->fenced_gpu_access) { 2184 obj->last_fenced_seqno = seqno; 2185 2186 /* Bump MRU to take account of the delayed flush */ 2187 if (obj->fence_reg != I915_FENCE_REG_NONE) { 2188 struct drm_i915_fence_reg *reg; 2189 2190 reg = &dev_priv->fence_regs[obj->fence_reg]; 2191 list_move_tail(®->lru_list, 2192 &dev_priv->mm.fence_list); 2193 } 2194 } 2195 } 2196 2197 void i915_vma_move_to_active(struct i915_vma *vma, 2198 struct intel_engine_cs *ring) 2199 { 2200 list_move_tail(&vma->mm_list, &vma->vm->active_list); 2201 return i915_gem_object_move_to_active(vma->obj, ring); 2202 } 2203 2204 static void 2205 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj) 2206 { 2207 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2208 struct i915_address_space *vm; 2209 struct i915_vma *vma; 2210 2211 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS); 2212 BUG_ON(!obj->active); 2213 2214 list_for_each_entry(vm, &dev_priv->vm_list, global_link) { 2215 vma = i915_gem_obj_to_vma(obj, vm); 2216 if (vma && !list_empty(&vma->mm_list)) 2217 list_move_tail(&vma->mm_list, &vm->inactive_list); 2218 } 2219 2220 list_del_init(&obj->ring_list); 2221 obj->ring = NULL; 2222 2223 obj->last_read_seqno = 0; 2224 obj->last_write_seqno = 0; 2225 obj->base.write_domain = 0; 2226 2227 obj->last_fenced_seqno = 0; 2228 obj->fenced_gpu_access = false; 2229 2230 obj->active = 0; 2231 drm_gem_object_unreference(&obj->base); 2232 2233 WARN_ON(i915_verify_lists(dev)); 2234 } 2235 2236 static void 2237 i915_gem_object_retire(struct drm_i915_gem_object *obj) 2238 { 2239 struct intel_engine_cs *ring = obj->ring; 2240 2241 if (ring == NULL) 2242 return; 2243 2244 if (i915_seqno_passed(ring->get_seqno(ring, true), 2245 obj->last_read_seqno)) 2246 i915_gem_object_move_to_inactive(obj); 2247 } 2248 2249 static int 2250 i915_gem_init_seqno(struct drm_device *dev, u32 seqno) 2251 { 2252 struct drm_i915_private *dev_priv = dev->dev_private; 2253 struct intel_engine_cs *ring; 2254 int ret, i, j; 2255 2256 /* Carefully retire all requests without writing to the rings */ 2257 for_each_ring(ring, dev_priv, i) { 2258 ret = intel_ring_idle(ring); 2259 if (ret) 2260 return ret; 2261 } 2262 i915_gem_retire_requests(dev); 2263 2264 /* Finally reset hw state */ 2265 for_each_ring(ring, dev_priv, i) { 2266 intel_ring_init_seqno(ring, seqno); 2267 2268 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++) 2269 ring->semaphore.sync_seqno[j] = 0; 2270 } 2271 2272 return 0; 2273 } 2274 2275 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno) 2276 { 2277 struct drm_i915_private *dev_priv = dev->dev_private; 2278 int ret; 2279 2280 if (seqno == 0) 2281 return -EINVAL; 2282 2283 /* HWS page needs to be set less than what we 2284 * will inject to ring 2285 */ 2286 ret = i915_gem_init_seqno(dev, seqno - 1); 2287 if (ret) 2288 return ret; 2289 2290 /* Carefully set the last_seqno value so that wrap 2291 * detection still works 2292 */ 2293 dev_priv->next_seqno = seqno; 2294 dev_priv->last_seqno = seqno - 1; 2295 if (dev_priv->last_seqno == 0) 2296 dev_priv->last_seqno--; 2297 2298 return 0; 2299 } 2300 2301 int 2302 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno) 2303 { 2304 struct drm_i915_private *dev_priv = dev->dev_private; 2305 2306 /* reserve 0 for non-seqno */ 2307 if (dev_priv->next_seqno == 0) { 2308 int ret = i915_gem_init_seqno(dev, 0); 2309 if (ret) 2310 return ret; 2311 2312 dev_priv->next_seqno = 1; 2313 } 2314 2315 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++; 2316 return 0; 2317 } 2318 2319 int __i915_add_request(struct intel_engine_cs *ring, 2320 struct drm_file *file, 2321 struct drm_i915_gem_object *obj, 2322 u32 *out_seqno) 2323 { 2324 struct drm_i915_private *dev_priv = ring->dev->dev_private; 2325 struct drm_i915_gem_request *request; 2326 u32 request_ring_position, request_start; 2327 int ret; 2328 2329 request_start = intel_ring_get_tail(ring); 2330 /* 2331 * Emit any outstanding flushes - execbuf can fail to emit the flush 2332 * after having emitted the batchbuffer command. Hence we need to fix 2333 * things up similar to emitting the lazy request. The difference here 2334 * is that the flush _must_ happen before the next request, no matter 2335 * what. 2336 */ 2337 ret = intel_ring_flush_all_caches(ring); 2338 if (ret) 2339 return ret; 2340 2341 request = ring->preallocated_lazy_request; 2342 if (WARN_ON(request == NULL)) 2343 return -ENOMEM; 2344 2345 /* Record the position of the start of the request so that 2346 * should we detect the updated seqno part-way through the 2347 * GPU processing the request, we never over-estimate the 2348 * position of the head. 2349 */ 2350 request_ring_position = intel_ring_get_tail(ring); 2351 2352 ret = ring->add_request(ring); 2353 if (ret) 2354 return ret; 2355 2356 request->seqno = intel_ring_get_seqno(ring); 2357 request->ring = ring; 2358 request->head = request_start; 2359 request->tail = request_ring_position; 2360 2361 /* Whilst this request exists, batch_obj will be on the 2362 * active_list, and so will hold the active reference. Only when this 2363 * request is retired will the the batch_obj be moved onto the 2364 * inactive_list and lose its active reference. Hence we do not need 2365 * to explicitly hold another reference here. 2366 */ 2367 request->batch_obj = obj; 2368 2369 /* Hold a reference to the current context so that we can inspect 2370 * it later in case a hangcheck error event fires. 2371 */ 2372 request->ctx = ring->last_context; 2373 if (request->ctx) 2374 i915_gem_context_reference(request->ctx); 2375 2376 request->emitted_jiffies = jiffies; 2377 list_add_tail(&request->list, &ring->request_list); 2378 request->file_priv = NULL; 2379 2380 if (file) { 2381 struct drm_i915_file_private *file_priv = file->driver_priv; 2382 2383 spin_lock(&file_priv->mm.lock); 2384 request->file_priv = file_priv; 2385 list_add_tail(&request->client_list, 2386 &file_priv->mm.request_list); 2387 spin_unlock(&file_priv->mm.lock); 2388 } 2389 2390 trace_i915_gem_request_add(ring, request->seqno); 2391 ring->outstanding_lazy_seqno = 0; 2392 ring->preallocated_lazy_request = NULL; 2393 2394 if (!dev_priv->ums.mm_suspended) { 2395 i915_queue_hangcheck(ring->dev); 2396 2397 cancel_delayed_work_sync(&dev_priv->mm.idle_work); 2398 queue_delayed_work(dev_priv->wq, 2399 &dev_priv->mm.retire_work, 2400 round_jiffies_up_relative(HZ)); 2401 intel_mark_busy(dev_priv->dev); 2402 } 2403 2404 if (out_seqno) 2405 *out_seqno = request->seqno; 2406 return 0; 2407 } 2408 2409 static inline void 2410 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request) 2411 { 2412 struct drm_i915_file_private *file_priv = request->file_priv; 2413 2414 if (!file_priv) 2415 return; 2416 2417 spin_lock(&file_priv->mm.lock); 2418 list_del(&request->client_list); 2419 request->file_priv = NULL; 2420 spin_unlock(&file_priv->mm.lock); 2421 } 2422 2423 static bool i915_context_is_banned(struct drm_i915_private *dev_priv, 2424 const struct intel_context *ctx) 2425 { 2426 unsigned long elapsed; 2427 2428 elapsed = get_seconds() - ctx->hang_stats.guilty_ts; 2429 2430 if (ctx->hang_stats.banned) 2431 return true; 2432 2433 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) { 2434 if (!i915_gem_context_is_default(ctx)) { 2435 DRM_DEBUG("context hanging too fast, banning!\n"); 2436 return true; 2437 } else if (i915_stop_ring_allow_ban(dev_priv)) { 2438 if (i915_stop_ring_allow_warn(dev_priv)) 2439 DRM_ERROR("gpu hanging too fast, banning!\n"); 2440 return true; 2441 } 2442 } 2443 2444 return false; 2445 } 2446 2447 static void i915_set_reset_status(struct drm_i915_private *dev_priv, 2448 struct intel_context *ctx, 2449 const bool guilty) 2450 { 2451 struct i915_ctx_hang_stats *hs; 2452 2453 if (WARN_ON(!ctx)) 2454 return; 2455 2456 hs = &ctx->hang_stats; 2457 2458 if (guilty) { 2459 hs->banned = i915_context_is_banned(dev_priv, ctx); 2460 hs->batch_active++; 2461 hs->guilty_ts = get_seconds(); 2462 } else { 2463 hs->batch_pending++; 2464 } 2465 } 2466 2467 static void i915_gem_free_request(struct drm_i915_gem_request *request) 2468 { 2469 list_del(&request->list); 2470 i915_gem_request_remove_from_client(request); 2471 2472 if (request->ctx) 2473 i915_gem_context_unreference(request->ctx); 2474 2475 kfree(request); 2476 } 2477 2478 struct drm_i915_gem_request * 2479 i915_gem_find_active_request(struct intel_engine_cs *ring) 2480 { 2481 struct drm_i915_gem_request *request; 2482 u32 completed_seqno; 2483 2484 completed_seqno = ring->get_seqno(ring, false); 2485 2486 list_for_each_entry(request, &ring->request_list, list) { 2487 if (i915_seqno_passed(completed_seqno, request->seqno)) 2488 continue; 2489 2490 return request; 2491 } 2492 2493 return NULL; 2494 } 2495 2496 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv, 2497 struct intel_engine_cs *ring) 2498 { 2499 struct drm_i915_gem_request *request; 2500 bool ring_hung; 2501 2502 request = i915_gem_find_active_request(ring); 2503 2504 if (request == NULL) 2505 return; 2506 2507 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG; 2508 2509 i915_set_reset_status(dev_priv, request->ctx, ring_hung); 2510 2511 list_for_each_entry_continue(request, &ring->request_list, list) 2512 i915_set_reset_status(dev_priv, request->ctx, false); 2513 } 2514 2515 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv, 2516 struct intel_engine_cs *ring) 2517 { 2518 while (!list_empty(&ring->active_list)) { 2519 struct drm_i915_gem_object *obj; 2520 2521 obj = list_first_entry(&ring->active_list, 2522 struct drm_i915_gem_object, 2523 ring_list); 2524 2525 i915_gem_object_move_to_inactive(obj); 2526 } 2527 2528 /* 2529 * We must free the requests after all the corresponding objects have 2530 * been moved off active lists. Which is the same order as the normal 2531 * retire_requests function does. This is important if object hold 2532 * implicit references on things like e.g. ppgtt address spaces through 2533 * the request. 2534 */ 2535 while (!list_empty(&ring->request_list)) { 2536 struct drm_i915_gem_request *request; 2537 2538 request = list_first_entry(&ring->request_list, 2539 struct drm_i915_gem_request, 2540 list); 2541 2542 i915_gem_free_request(request); 2543 } 2544 2545 /* These may not have been flush before the reset, do so now */ 2546 kfree(ring->preallocated_lazy_request); 2547 ring->preallocated_lazy_request = NULL; 2548 ring->outstanding_lazy_seqno = 0; 2549 } 2550 2551 void i915_gem_restore_fences(struct drm_device *dev) 2552 { 2553 struct drm_i915_private *dev_priv = dev->dev_private; 2554 int i; 2555 2556 for (i = 0; i < dev_priv->num_fence_regs; i++) { 2557 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; 2558 2559 /* 2560 * Commit delayed tiling changes if we have an object still 2561 * attached to the fence, otherwise just clear the fence. 2562 */ 2563 if (reg->obj) { 2564 i915_gem_object_update_fence(reg->obj, reg, 2565 reg->obj->tiling_mode); 2566 } else { 2567 i915_gem_write_fence(dev, i, NULL); 2568 } 2569 } 2570 } 2571 2572 void i915_gem_reset(struct drm_device *dev) 2573 { 2574 struct drm_i915_private *dev_priv = dev->dev_private; 2575 struct intel_engine_cs *ring; 2576 int i; 2577 2578 /* 2579 * Before we free the objects from the requests, we need to inspect 2580 * them for finding the guilty party. As the requests only borrow 2581 * their reference to the objects, the inspection must be done first. 2582 */ 2583 for_each_ring(ring, dev_priv, i) 2584 i915_gem_reset_ring_status(dev_priv, ring); 2585 2586 for_each_ring(ring, dev_priv, i) 2587 i915_gem_reset_ring_cleanup(dev_priv, ring); 2588 2589 i915_gem_context_reset(dev); 2590 2591 i915_gem_restore_fences(dev); 2592 } 2593 2594 /** 2595 * This function clears the request list as sequence numbers are passed. 2596 */ 2597 void 2598 i915_gem_retire_requests_ring(struct intel_engine_cs *ring) 2599 { 2600 uint32_t seqno; 2601 2602 if (list_empty(&ring->request_list)) 2603 return; 2604 2605 WARN_ON(i915_verify_lists(ring->dev)); 2606 2607 seqno = ring->get_seqno(ring, true); 2608 2609 /* Move any buffers on the active list that are no longer referenced 2610 * by the ringbuffer to the flushing/inactive lists as appropriate, 2611 * before we free the context associated with the requests. 2612 */ 2613 while (!list_empty(&ring->active_list)) { 2614 struct drm_i915_gem_object *obj; 2615 2616 obj = list_first_entry(&ring->active_list, 2617 struct drm_i915_gem_object, 2618 ring_list); 2619 2620 if (!i915_seqno_passed(seqno, obj->last_read_seqno)) 2621 break; 2622 2623 i915_gem_object_move_to_inactive(obj); 2624 } 2625 2626 2627 while (!list_empty(&ring->request_list)) { 2628 struct drm_i915_gem_request *request; 2629 2630 request = list_first_entry(&ring->request_list, 2631 struct drm_i915_gem_request, 2632 list); 2633 2634 if (!i915_seqno_passed(seqno, request->seqno)) 2635 break; 2636 2637 trace_i915_gem_request_retire(ring, request->seqno); 2638 /* We know the GPU must have read the request to have 2639 * sent us the seqno + interrupt, so use the position 2640 * of tail of the request to update the last known position 2641 * of the GPU head. 2642 */ 2643 ring->buffer->last_retired_head = request->tail; 2644 2645 i915_gem_free_request(request); 2646 } 2647 2648 if (unlikely(ring->trace_irq_seqno && 2649 i915_seqno_passed(seqno, ring->trace_irq_seqno))) { 2650 ring->irq_put(ring); 2651 ring->trace_irq_seqno = 0; 2652 } 2653 2654 WARN_ON(i915_verify_lists(ring->dev)); 2655 } 2656 2657 bool 2658 i915_gem_retire_requests(struct drm_device *dev) 2659 { 2660 struct drm_i915_private *dev_priv = dev->dev_private; 2661 struct intel_engine_cs *ring; 2662 bool idle = true; 2663 int i; 2664 2665 for_each_ring(ring, dev_priv, i) { 2666 i915_gem_retire_requests_ring(ring); 2667 idle &= list_empty(&ring->request_list); 2668 } 2669 2670 if (idle) 2671 mod_delayed_work(dev_priv->wq, 2672 &dev_priv->mm.idle_work, 2673 msecs_to_jiffies(100)); 2674 2675 return idle; 2676 } 2677 2678 static void 2679 i915_gem_retire_work_handler(struct work_struct *work) 2680 { 2681 struct drm_i915_private *dev_priv = 2682 container_of(work, typeof(*dev_priv), mm.retire_work.work); 2683 struct drm_device *dev = dev_priv->dev; 2684 bool idle; 2685 2686 /* Come back later if the device is busy... */ 2687 idle = false; 2688 if (mutex_trylock(&dev->struct_mutex)) { 2689 idle = i915_gem_retire_requests(dev); 2690 mutex_unlock(&dev->struct_mutex); 2691 } 2692 if (!idle) 2693 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 2694 round_jiffies_up_relative(HZ)); 2695 } 2696 2697 static void 2698 i915_gem_idle_work_handler(struct work_struct *work) 2699 { 2700 struct drm_i915_private *dev_priv = 2701 container_of(work, typeof(*dev_priv), mm.idle_work.work); 2702 2703 intel_mark_idle(dev_priv->dev); 2704 } 2705 2706 /** 2707 * Ensures that an object will eventually get non-busy by flushing any required 2708 * write domains, emitting any outstanding lazy request and retiring and 2709 * completed requests. 2710 */ 2711 static int 2712 i915_gem_object_flush_active(struct drm_i915_gem_object *obj) 2713 { 2714 int ret; 2715 2716 if (obj->active) { 2717 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno); 2718 if (ret) 2719 return ret; 2720 2721 i915_gem_retire_requests_ring(obj->ring); 2722 } 2723 2724 return 0; 2725 } 2726 2727 /** 2728 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT 2729 * @DRM_IOCTL_ARGS: standard ioctl arguments 2730 * 2731 * Returns 0 if successful, else an error is returned with the remaining time in 2732 * the timeout parameter. 2733 * -ETIME: object is still busy after timeout 2734 * -ERESTARTSYS: signal interrupted the wait 2735 * -ENONENT: object doesn't exist 2736 * Also possible, but rare: 2737 * -EAGAIN: GPU wedged 2738 * -ENOMEM: damn 2739 * -ENODEV: Internal IRQ fail 2740 * -E?: The add request failed 2741 * 2742 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any 2743 * non-zero timeout parameter the wait ioctl will wait for the given number of 2744 * nanoseconds on an object becoming unbusy. Since the wait itself does so 2745 * without holding struct_mutex the object may become re-busied before this 2746 * function completes. A similar but shorter * race condition exists in the busy 2747 * ioctl 2748 */ 2749 int 2750 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 2751 { 2752 struct drm_i915_private *dev_priv = dev->dev_private; 2753 struct drm_i915_gem_wait *args = data; 2754 struct drm_i915_gem_object *obj; 2755 struct intel_engine_cs *ring = NULL; 2756 struct timespec timeout_stack, *timeout = NULL; 2757 unsigned reset_counter; 2758 u32 seqno = 0; 2759 int ret = 0; 2760 2761 if (args->timeout_ns >= 0) { 2762 timeout_stack = ns_to_timespec(args->timeout_ns); 2763 timeout = &timeout_stack; 2764 } 2765 2766 ret = i915_mutex_lock_interruptible(dev); 2767 if (ret) 2768 return ret; 2769 2770 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle)); 2771 if (&obj->base == NULL) { 2772 mutex_unlock(&dev->struct_mutex); 2773 return -ENOENT; 2774 } 2775 2776 /* Need to make sure the object gets inactive eventually. */ 2777 ret = i915_gem_object_flush_active(obj); 2778 if (ret) 2779 goto out; 2780 2781 if (obj->active) { 2782 seqno = obj->last_read_seqno; 2783 ring = obj->ring; 2784 } 2785 2786 if (seqno == 0) 2787 goto out; 2788 2789 /* Do this after OLR check to make sure we make forward progress polling 2790 * on this IOCTL with a 0 timeout (like busy ioctl) 2791 */ 2792 if (!args->timeout_ns) { 2793 ret = -ETIME; 2794 goto out; 2795 } 2796 2797 drm_gem_object_unreference(&obj->base); 2798 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 2799 mutex_unlock(&dev->struct_mutex); 2800 2801 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv); 2802 if (timeout) 2803 args->timeout_ns = timespec_to_ns(timeout); 2804 return ret; 2805 2806 out: 2807 drm_gem_object_unreference(&obj->base); 2808 mutex_unlock(&dev->struct_mutex); 2809 return ret; 2810 } 2811 2812 /** 2813 * i915_gem_object_sync - sync an object to a ring. 2814 * 2815 * @obj: object which may be in use on another ring. 2816 * @to: ring we wish to use the object on. May be NULL. 2817 * 2818 * This code is meant to abstract object synchronization with the GPU. 2819 * Calling with NULL implies synchronizing the object with the CPU 2820 * rather than a particular GPU ring. 2821 * 2822 * Returns 0 if successful, else propagates up the lower layer error. 2823 */ 2824 int 2825 i915_gem_object_sync(struct drm_i915_gem_object *obj, 2826 struct intel_engine_cs *to) 2827 { 2828 struct intel_engine_cs *from = obj->ring; 2829 u32 seqno; 2830 int ret, idx; 2831 2832 if (from == NULL || to == from) 2833 return 0; 2834 2835 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev)) 2836 return i915_gem_object_wait_rendering(obj, false); 2837 2838 idx = intel_ring_sync_index(from, to); 2839 2840 seqno = obj->last_read_seqno; 2841 if (seqno <= from->semaphore.sync_seqno[idx]) 2842 return 0; 2843 2844 ret = i915_gem_check_olr(obj->ring, seqno); 2845 if (ret) 2846 return ret; 2847 2848 trace_i915_gem_ring_sync_to(from, to, seqno); 2849 ret = to->semaphore.sync_to(to, from, seqno); 2850 if (!ret) 2851 /* We use last_read_seqno because sync_to() 2852 * might have just caused seqno wrap under 2853 * the radar. 2854 */ 2855 from->semaphore.sync_seqno[idx] = obj->last_read_seqno; 2856 2857 return ret; 2858 } 2859 2860 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj) 2861 { 2862 u32 old_write_domain, old_read_domains; 2863 2864 /* Force a pagefault for domain tracking on next user access */ 2865 i915_gem_release_mmap(obj); 2866 2867 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 2868 return; 2869 2870 /* Wait for any direct GTT access to complete */ 2871 mb(); 2872 2873 old_read_domains = obj->base.read_domains; 2874 old_write_domain = obj->base.write_domain; 2875 2876 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT; 2877 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT; 2878 2879 trace_i915_gem_object_change_domain(obj, 2880 old_read_domains, 2881 old_write_domain); 2882 } 2883 2884 int i915_vma_unbind(struct i915_vma *vma) 2885 { 2886 struct drm_i915_gem_object *obj = vma->obj; 2887 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 2888 int ret; 2889 2890 if (list_empty(&vma->vma_link)) 2891 return 0; 2892 2893 if (!drm_mm_node_allocated(&vma->node)) { 2894 i915_gem_vma_destroy(vma); 2895 return 0; 2896 } 2897 2898 if (vma->pin_count) 2899 return -EBUSY; 2900 2901 BUG_ON(obj->pages == NULL); 2902 2903 ret = i915_gem_object_finish_gpu(obj); 2904 if (ret) 2905 return ret; 2906 /* Continue on if we fail due to EIO, the GPU is hung so we 2907 * should be safe and we need to cleanup or else we might 2908 * cause memory corruption through use-after-free. 2909 */ 2910 2911 if (i915_is_ggtt(vma->vm)) { 2912 i915_gem_object_finish_gtt(obj); 2913 2914 /* release the fence reg _after_ flushing */ 2915 ret = i915_gem_object_put_fence(obj); 2916 if (ret) 2917 return ret; 2918 } 2919 2920 trace_i915_vma_unbind(vma); 2921 2922 vma->unbind_vma(vma); 2923 2924 i915_gem_gtt_finish_object(obj); 2925 2926 list_del_init(&vma->mm_list); 2927 /* Avoid an unnecessary call to unbind on rebind. */ 2928 if (i915_is_ggtt(vma->vm)) 2929 obj->map_and_fenceable = true; 2930 2931 drm_mm_remove_node(&vma->node); 2932 i915_gem_vma_destroy(vma); 2933 2934 /* Since the unbound list is global, only move to that list if 2935 * no more VMAs exist. */ 2936 if (list_empty(&obj->vma_list)) 2937 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list); 2938 2939 /* And finally now the object is completely decoupled from this vma, 2940 * we can drop its hold on the backing storage and allow it to be 2941 * reaped by the shrinker. 2942 */ 2943 i915_gem_object_unpin_pages(obj); 2944 2945 return 0; 2946 } 2947 2948 int i915_gpu_idle(struct drm_device *dev) 2949 { 2950 struct drm_i915_private *dev_priv = dev->dev_private; 2951 struct intel_engine_cs *ring; 2952 int ret, i; 2953 2954 /* Flush everything onto the inactive list. */ 2955 for_each_ring(ring, dev_priv, i) { 2956 ret = i915_switch_context(ring, ring->default_context); 2957 if (ret) 2958 return ret; 2959 2960 ret = intel_ring_idle(ring); 2961 if (ret) 2962 return ret; 2963 } 2964 2965 return 0; 2966 } 2967 2968 static void i965_write_fence_reg(struct drm_device *dev, int reg, 2969 struct drm_i915_gem_object *obj) 2970 { 2971 struct drm_i915_private *dev_priv = dev->dev_private; 2972 int fence_reg; 2973 int fence_pitch_shift; 2974 2975 if (INTEL_INFO(dev)->gen >= 6) { 2976 fence_reg = FENCE_REG_SANDYBRIDGE_0; 2977 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT; 2978 } else { 2979 fence_reg = FENCE_REG_965_0; 2980 fence_pitch_shift = I965_FENCE_PITCH_SHIFT; 2981 } 2982 2983 fence_reg += reg * 8; 2984 2985 /* To w/a incoherency with non-atomic 64-bit register updates, 2986 * we split the 64-bit update into two 32-bit writes. In order 2987 * for a partial fence not to be evaluated between writes, we 2988 * precede the update with write to turn off the fence register, 2989 * and only enable the fence as the last step. 2990 * 2991 * For extra levels of paranoia, we make sure each step lands 2992 * before applying the next step. 2993 */ 2994 I915_WRITE(fence_reg, 0); 2995 POSTING_READ(fence_reg); 2996 2997 if (obj) { 2998 u32 size = i915_gem_obj_ggtt_size(obj); 2999 uint64_t val; 3000 3001 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) & 3002 0xfffff000) << 32; 3003 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000; 3004 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift; 3005 if (obj->tiling_mode == I915_TILING_Y) 3006 val |= 1 << I965_FENCE_TILING_Y_SHIFT; 3007 val |= I965_FENCE_REG_VALID; 3008 3009 I915_WRITE(fence_reg + 4, val >> 32); 3010 POSTING_READ(fence_reg + 4); 3011 3012 I915_WRITE(fence_reg + 0, val); 3013 POSTING_READ(fence_reg); 3014 } else { 3015 I915_WRITE(fence_reg + 4, 0); 3016 POSTING_READ(fence_reg + 4); 3017 } 3018 } 3019 3020 static void i915_write_fence_reg(struct drm_device *dev, int reg, 3021 struct drm_i915_gem_object *obj) 3022 { 3023 struct drm_i915_private *dev_priv = dev->dev_private; 3024 u32 val; 3025 3026 if (obj) { 3027 u32 size = i915_gem_obj_ggtt_size(obj); 3028 int pitch_val; 3029 int tile_width; 3030 3031 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) || 3032 (size & -size) != size || 3033 (i915_gem_obj_ggtt_offset(obj) & (size - 1)), 3034 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n", 3035 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size); 3036 3037 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)) 3038 tile_width = 128; 3039 else 3040 tile_width = 512; 3041 3042 /* Note: pitch better be a power of two tile widths */ 3043 pitch_val = obj->stride / tile_width; 3044 pitch_val = ffs(pitch_val) - 1; 3045 3046 val = i915_gem_obj_ggtt_offset(obj); 3047 if (obj->tiling_mode == I915_TILING_Y) 3048 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 3049 val |= I915_FENCE_SIZE_BITS(size); 3050 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 3051 val |= I830_FENCE_REG_VALID; 3052 } else 3053 val = 0; 3054 3055 if (reg < 8) 3056 reg = FENCE_REG_830_0 + reg * 4; 3057 else 3058 reg = FENCE_REG_945_8 + (reg - 8) * 4; 3059 3060 I915_WRITE(reg, val); 3061 POSTING_READ(reg); 3062 } 3063 3064 static void i830_write_fence_reg(struct drm_device *dev, int reg, 3065 struct drm_i915_gem_object *obj) 3066 { 3067 struct drm_i915_private *dev_priv = dev->dev_private; 3068 uint32_t val; 3069 3070 if (obj) { 3071 u32 size = i915_gem_obj_ggtt_size(obj); 3072 uint32_t pitch_val; 3073 3074 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) || 3075 (size & -size) != size || 3076 (i915_gem_obj_ggtt_offset(obj) & (size - 1)), 3077 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n", 3078 i915_gem_obj_ggtt_offset(obj), size); 3079 3080 pitch_val = obj->stride / 128; 3081 pitch_val = ffs(pitch_val) - 1; 3082 3083 val = i915_gem_obj_ggtt_offset(obj); 3084 if (obj->tiling_mode == I915_TILING_Y) 3085 val |= 1 << I830_FENCE_TILING_Y_SHIFT; 3086 val |= I830_FENCE_SIZE_BITS(size); 3087 val |= pitch_val << I830_FENCE_PITCH_SHIFT; 3088 val |= I830_FENCE_REG_VALID; 3089 } else 3090 val = 0; 3091 3092 I915_WRITE(FENCE_REG_830_0 + reg * 4, val); 3093 POSTING_READ(FENCE_REG_830_0 + reg * 4); 3094 } 3095 3096 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj) 3097 { 3098 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT; 3099 } 3100 3101 static void i915_gem_write_fence(struct drm_device *dev, int reg, 3102 struct drm_i915_gem_object *obj) 3103 { 3104 struct drm_i915_private *dev_priv = dev->dev_private; 3105 3106 /* Ensure that all CPU reads are completed before installing a fence 3107 * and all writes before removing the fence. 3108 */ 3109 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj)) 3110 mb(); 3111 3112 WARN(obj && (!obj->stride || !obj->tiling_mode), 3113 "bogus fence setup with stride: 0x%x, tiling mode: %i\n", 3114 obj->stride, obj->tiling_mode); 3115 3116 switch (INTEL_INFO(dev)->gen) { 3117 case 8: 3118 case 7: 3119 case 6: 3120 case 5: 3121 case 4: i965_write_fence_reg(dev, reg, obj); break; 3122 case 3: i915_write_fence_reg(dev, reg, obj); break; 3123 case 2: i830_write_fence_reg(dev, reg, obj); break; 3124 default: BUG(); 3125 } 3126 3127 /* And similarly be paranoid that no direct access to this region 3128 * is reordered to before the fence is installed. 3129 */ 3130 if (i915_gem_object_needs_mb(obj)) 3131 mb(); 3132 } 3133 3134 static inline int fence_number(struct drm_i915_private *dev_priv, 3135 struct drm_i915_fence_reg *fence) 3136 { 3137 return fence - dev_priv->fence_regs; 3138 } 3139 3140 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj, 3141 struct drm_i915_fence_reg *fence, 3142 bool enable) 3143 { 3144 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3145 int reg = fence_number(dev_priv, fence); 3146 3147 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL); 3148 3149 if (enable) { 3150 obj->fence_reg = reg; 3151 fence->obj = obj; 3152 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list); 3153 } else { 3154 obj->fence_reg = I915_FENCE_REG_NONE; 3155 fence->obj = NULL; 3156 list_del_init(&fence->lru_list); 3157 } 3158 obj->fence_dirty = false; 3159 } 3160 3161 static int 3162 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj) 3163 { 3164 if (obj->last_fenced_seqno) { 3165 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno); 3166 if (ret) 3167 return ret; 3168 3169 obj->last_fenced_seqno = 0; 3170 } 3171 3172 obj->fenced_gpu_access = false; 3173 return 0; 3174 } 3175 3176 int 3177 i915_gem_object_put_fence(struct drm_i915_gem_object *obj) 3178 { 3179 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3180 struct drm_i915_fence_reg *fence; 3181 int ret; 3182 3183 ret = i915_gem_object_wait_fence(obj); 3184 if (ret) 3185 return ret; 3186 3187 if (obj->fence_reg == I915_FENCE_REG_NONE) 3188 return 0; 3189 3190 fence = &dev_priv->fence_regs[obj->fence_reg]; 3191 3192 if (WARN_ON(fence->pin_count)) 3193 return -EBUSY; 3194 3195 i915_gem_object_fence_lost(obj); 3196 i915_gem_object_update_fence(obj, fence, false); 3197 3198 return 0; 3199 } 3200 3201 static struct drm_i915_fence_reg * 3202 i915_find_fence_reg(struct drm_device *dev) 3203 { 3204 struct drm_i915_private *dev_priv = dev->dev_private; 3205 struct drm_i915_fence_reg *reg, *avail; 3206 int i; 3207 3208 /* First try to find a free reg */ 3209 avail = NULL; 3210 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) { 3211 reg = &dev_priv->fence_regs[i]; 3212 if (!reg->obj) 3213 return reg; 3214 3215 if (!reg->pin_count) 3216 avail = reg; 3217 } 3218 3219 if (avail == NULL) 3220 goto deadlock; 3221 3222 /* None available, try to steal one or wait for a user to finish */ 3223 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) { 3224 if (reg->pin_count) 3225 continue; 3226 3227 return reg; 3228 } 3229 3230 deadlock: 3231 /* Wait for completion of pending flips which consume fences */ 3232 if (intel_has_pending_fb_unpin(dev)) 3233 return ERR_PTR(-EAGAIN); 3234 3235 return ERR_PTR(-EDEADLK); 3236 } 3237 3238 /** 3239 * i915_gem_object_get_fence - set up fencing for an object 3240 * @obj: object to map through a fence reg 3241 * 3242 * When mapping objects through the GTT, userspace wants to be able to write 3243 * to them without having to worry about swizzling if the object is tiled. 3244 * This function walks the fence regs looking for a free one for @obj, 3245 * stealing one if it can't find any. 3246 * 3247 * It then sets up the reg based on the object's properties: address, pitch 3248 * and tiling format. 3249 * 3250 * For an untiled surface, this removes any existing fence. 3251 */ 3252 int 3253 i915_gem_object_get_fence(struct drm_i915_gem_object *obj) 3254 { 3255 struct drm_device *dev = obj->base.dev; 3256 struct drm_i915_private *dev_priv = dev->dev_private; 3257 bool enable = obj->tiling_mode != I915_TILING_NONE; 3258 struct drm_i915_fence_reg *reg; 3259 int ret; 3260 3261 /* Have we updated the tiling parameters upon the object and so 3262 * will need to serialise the write to the associated fence register? 3263 */ 3264 if (obj->fence_dirty) { 3265 ret = i915_gem_object_wait_fence(obj); 3266 if (ret) 3267 return ret; 3268 } 3269 3270 /* Just update our place in the LRU if our fence is getting reused. */ 3271 if (obj->fence_reg != I915_FENCE_REG_NONE) { 3272 reg = &dev_priv->fence_regs[obj->fence_reg]; 3273 if (!obj->fence_dirty) { 3274 list_move_tail(®->lru_list, 3275 &dev_priv->mm.fence_list); 3276 return 0; 3277 } 3278 } else if (enable) { 3279 reg = i915_find_fence_reg(dev); 3280 if (IS_ERR(reg)) 3281 return PTR_ERR(reg); 3282 3283 if (reg->obj) { 3284 struct drm_i915_gem_object *old = reg->obj; 3285 3286 ret = i915_gem_object_wait_fence(old); 3287 if (ret) 3288 return ret; 3289 3290 i915_gem_object_fence_lost(old); 3291 } 3292 } else 3293 return 0; 3294 3295 i915_gem_object_update_fence(obj, reg, enable); 3296 3297 return 0; 3298 } 3299 3300 static bool i915_gem_valid_gtt_space(struct drm_device *dev, 3301 struct drm_mm_node *gtt_space, 3302 unsigned long cache_level) 3303 { 3304 struct drm_mm_node *other; 3305 3306 /* On non-LLC machines we have to be careful when putting differing 3307 * types of snoopable memory together to avoid the prefetcher 3308 * crossing memory domains and dying. 3309 */ 3310 if (HAS_LLC(dev)) 3311 return true; 3312 3313 if (!drm_mm_node_allocated(gtt_space)) 3314 return true; 3315 3316 if (list_empty(>t_space->node_list)) 3317 return true; 3318 3319 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list); 3320 if (other->allocated && !other->hole_follows && other->color != cache_level) 3321 return false; 3322 3323 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list); 3324 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level) 3325 return false; 3326 3327 return true; 3328 } 3329 3330 static void i915_gem_verify_gtt(struct drm_device *dev) 3331 { 3332 #if WATCH_GTT 3333 struct drm_i915_private *dev_priv = dev->dev_private; 3334 struct drm_i915_gem_object *obj; 3335 int err = 0; 3336 3337 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) { 3338 if (obj->gtt_space == NULL) { 3339 printk(KERN_ERR "object found on GTT list with no space reserved\n"); 3340 err++; 3341 continue; 3342 } 3343 3344 if (obj->cache_level != obj->gtt_space->color) { 3345 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n", 3346 i915_gem_obj_ggtt_offset(obj), 3347 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj), 3348 obj->cache_level, 3349 obj->gtt_space->color); 3350 err++; 3351 continue; 3352 } 3353 3354 if (!i915_gem_valid_gtt_space(dev, 3355 obj->gtt_space, 3356 obj->cache_level)) { 3357 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n", 3358 i915_gem_obj_ggtt_offset(obj), 3359 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj), 3360 obj->cache_level); 3361 err++; 3362 continue; 3363 } 3364 } 3365 3366 WARN_ON(err); 3367 #endif 3368 } 3369 3370 /** 3371 * Finds free space in the GTT aperture and binds the object there. 3372 */ 3373 static struct i915_vma * 3374 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj, 3375 struct i915_address_space *vm, 3376 unsigned alignment, 3377 uint64_t flags) 3378 { 3379 struct drm_device *dev = obj->base.dev; 3380 struct drm_i915_private *dev_priv = dev->dev_private; 3381 u32 size, fence_size, fence_alignment, unfenced_alignment; 3382 unsigned long start = 3383 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0; 3384 unsigned long end = 3385 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total; 3386 struct i915_vma *vma; 3387 int ret; 3388 3389 fence_size = i915_gem_get_gtt_size(dev, 3390 obj->base.size, 3391 obj->tiling_mode); 3392 fence_alignment = i915_gem_get_gtt_alignment(dev, 3393 obj->base.size, 3394 obj->tiling_mode, true); 3395 unfenced_alignment = 3396 i915_gem_get_gtt_alignment(dev, 3397 obj->base.size, 3398 obj->tiling_mode, false); 3399 3400 if (alignment == 0) 3401 alignment = flags & PIN_MAPPABLE ? fence_alignment : 3402 unfenced_alignment; 3403 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) { 3404 DRM_DEBUG("Invalid object alignment requested %u\n", alignment); 3405 return ERR_PTR(-EINVAL); 3406 } 3407 3408 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size; 3409 3410 /* If the object is bigger than the entire aperture, reject it early 3411 * before evicting everything in a vain attempt to find space. 3412 */ 3413 if (obj->base.size > end) { 3414 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n", 3415 obj->base.size, 3416 flags & PIN_MAPPABLE ? "mappable" : "total", 3417 end); 3418 return ERR_PTR(-E2BIG); 3419 } 3420 3421 ret = i915_gem_object_get_pages(obj); 3422 if (ret) 3423 return ERR_PTR(ret); 3424 3425 i915_gem_object_pin_pages(obj); 3426 3427 vma = i915_gem_obj_lookup_or_create_vma(obj, vm); 3428 if (IS_ERR(vma)) 3429 goto err_unpin; 3430 3431 search_free: 3432 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node, 3433 size, alignment, 3434 obj->cache_level, 3435 start, end, 3436 DRM_MM_SEARCH_DEFAULT, 3437 DRM_MM_CREATE_DEFAULT); 3438 if (ret) { 3439 ret = i915_gem_evict_something(dev, vm, size, alignment, 3440 obj->cache_level, 3441 start, end, 3442 flags); 3443 if (ret == 0) 3444 goto search_free; 3445 3446 goto err_free_vma; 3447 } 3448 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node, 3449 obj->cache_level))) { 3450 ret = -EINVAL; 3451 goto err_remove_node; 3452 } 3453 3454 ret = i915_gem_gtt_prepare_object(obj); 3455 if (ret) 3456 goto err_remove_node; 3457 3458 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list); 3459 list_add_tail(&vma->mm_list, &vm->inactive_list); 3460 3461 if (i915_is_ggtt(vm)) { 3462 bool mappable, fenceable; 3463 3464 fenceable = (vma->node.size == fence_size && 3465 (vma->node.start & (fence_alignment - 1)) == 0); 3466 3467 mappable = (vma->node.start + obj->base.size <= 3468 dev_priv->gtt.mappable_end); 3469 3470 obj->map_and_fenceable = mappable && fenceable; 3471 } 3472 3473 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable); 3474 3475 trace_i915_vma_bind(vma, flags); 3476 vma->bind_vma(vma, obj->cache_level, 3477 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0); 3478 3479 i915_gem_verify_gtt(dev); 3480 return vma; 3481 3482 err_remove_node: 3483 drm_mm_remove_node(&vma->node); 3484 err_free_vma: 3485 i915_gem_vma_destroy(vma); 3486 vma = ERR_PTR(ret); 3487 err_unpin: 3488 i915_gem_object_unpin_pages(obj); 3489 return vma; 3490 } 3491 3492 bool 3493 i915_gem_clflush_object(struct drm_i915_gem_object *obj, 3494 bool force) 3495 { 3496 /* If we don't have a page list set up, then we're not pinned 3497 * to GPU, and we can ignore the cache flush because it'll happen 3498 * again at bind time. 3499 */ 3500 if (obj->pages == NULL) 3501 return false; 3502 3503 /* 3504 * Stolen memory is always coherent with the GPU as it is explicitly 3505 * marked as wc by the system, or the system is cache-coherent. 3506 */ 3507 if (obj->stolen) 3508 return false; 3509 3510 /* If the GPU is snooping the contents of the CPU cache, 3511 * we do not need to manually clear the CPU cache lines. However, 3512 * the caches are only snooped when the render cache is 3513 * flushed/invalidated. As we always have to emit invalidations 3514 * and flushes when moving into and out of the RENDER domain, correct 3515 * snooping behaviour occurs naturally as the result of our domain 3516 * tracking. 3517 */ 3518 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) 3519 return false; 3520 3521 trace_i915_gem_object_clflush(obj); 3522 drm_clflush_sg(obj->pages); 3523 3524 return true; 3525 } 3526 3527 /** Flushes the GTT write domain for the object if it's dirty. */ 3528 static void 3529 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj) 3530 { 3531 uint32_t old_write_domain; 3532 3533 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT) 3534 return; 3535 3536 /* No actual flushing is required for the GTT write domain. Writes 3537 * to it immediately go to main memory as far as we know, so there's 3538 * no chipset flush. It also doesn't land in render cache. 3539 * 3540 * However, we do have to enforce the order so that all writes through 3541 * the GTT land before any writes to the device, such as updates to 3542 * the GATT itself. 3543 */ 3544 wmb(); 3545 3546 old_write_domain = obj->base.write_domain; 3547 obj->base.write_domain = 0; 3548 3549 trace_i915_gem_object_change_domain(obj, 3550 obj->base.read_domains, 3551 old_write_domain); 3552 } 3553 3554 /** Flushes the CPU write domain for the object if it's dirty. */ 3555 static void 3556 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj, 3557 bool force) 3558 { 3559 uint32_t old_write_domain; 3560 3561 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) 3562 return; 3563 3564 if (i915_gem_clflush_object(obj, force)) 3565 i915_gem_chipset_flush(obj->base.dev); 3566 3567 old_write_domain = obj->base.write_domain; 3568 obj->base.write_domain = 0; 3569 3570 trace_i915_gem_object_change_domain(obj, 3571 obj->base.read_domains, 3572 old_write_domain); 3573 } 3574 3575 /** 3576 * Moves a single object to the GTT read, and possibly write domain. 3577 * 3578 * This function returns when the move is complete, including waiting on 3579 * flushes to occur. 3580 */ 3581 int 3582 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) 3583 { 3584 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 3585 uint32_t old_write_domain, old_read_domains; 3586 int ret; 3587 3588 /* Not valid to be called on unbound objects. */ 3589 if (!i915_gem_obj_bound_any(obj)) 3590 return -EINVAL; 3591 3592 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) 3593 return 0; 3594 3595 ret = i915_gem_object_wait_rendering(obj, !write); 3596 if (ret) 3597 return ret; 3598 3599 i915_gem_object_retire(obj); 3600 i915_gem_object_flush_cpu_write_domain(obj, false); 3601 3602 /* Serialise direct access to this object with the barriers for 3603 * coherent writes from the GPU, by effectively invalidating the 3604 * GTT domain upon first access. 3605 */ 3606 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) 3607 mb(); 3608 3609 old_write_domain = obj->base.write_domain; 3610 old_read_domains = obj->base.read_domains; 3611 3612 /* It should now be out of any other write domains, and we can update 3613 * the domain values for our changes. 3614 */ 3615 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); 3616 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3617 if (write) { 3618 obj->base.read_domains = I915_GEM_DOMAIN_GTT; 3619 obj->base.write_domain = I915_GEM_DOMAIN_GTT; 3620 obj->dirty = 1; 3621 } 3622 3623 trace_i915_gem_object_change_domain(obj, 3624 old_read_domains, 3625 old_write_domain); 3626 3627 /* And bump the LRU for this access */ 3628 if (i915_gem_object_is_inactive(obj)) { 3629 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj); 3630 if (vma) 3631 list_move_tail(&vma->mm_list, 3632 &dev_priv->gtt.base.inactive_list); 3633 3634 } 3635 3636 return 0; 3637 } 3638 3639 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3640 enum i915_cache_level cache_level) 3641 { 3642 struct drm_device *dev = obj->base.dev; 3643 struct i915_vma *vma, *next; 3644 int ret; 3645 3646 if (obj->cache_level == cache_level) 3647 return 0; 3648 3649 if (i915_gem_obj_is_pinned(obj)) { 3650 DRM_DEBUG("can not change the cache level of pinned objects\n"); 3651 return -EBUSY; 3652 } 3653 3654 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) { 3655 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) { 3656 ret = i915_vma_unbind(vma); 3657 if (ret) 3658 return ret; 3659 } 3660 } 3661 3662 if (i915_gem_obj_bound_any(obj)) { 3663 ret = i915_gem_object_finish_gpu(obj); 3664 if (ret) 3665 return ret; 3666 3667 i915_gem_object_finish_gtt(obj); 3668 3669 /* Before SandyBridge, you could not use tiling or fence 3670 * registers with snooped memory, so relinquish any fences 3671 * currently pointing to our region in the aperture. 3672 */ 3673 if (INTEL_INFO(dev)->gen < 6) { 3674 ret = i915_gem_object_put_fence(obj); 3675 if (ret) 3676 return ret; 3677 } 3678 3679 list_for_each_entry(vma, &obj->vma_list, vma_link) 3680 if (drm_mm_node_allocated(&vma->node)) 3681 vma->bind_vma(vma, cache_level, 3682 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0); 3683 } 3684 3685 list_for_each_entry(vma, &obj->vma_list, vma_link) 3686 vma->node.color = cache_level; 3687 obj->cache_level = cache_level; 3688 3689 if (cpu_write_needs_clflush(obj)) { 3690 u32 old_read_domains, old_write_domain; 3691 3692 /* If we're coming from LLC cached, then we haven't 3693 * actually been tracking whether the data is in the 3694 * CPU cache or not, since we only allow one bit set 3695 * in obj->write_domain and have been skipping the clflushes. 3696 * Just set it to the CPU cache for now. 3697 */ 3698 i915_gem_object_retire(obj); 3699 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU); 3700 3701 old_read_domains = obj->base.read_domains; 3702 old_write_domain = obj->base.write_domain; 3703 3704 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3705 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3706 3707 trace_i915_gem_object_change_domain(obj, 3708 old_read_domains, 3709 old_write_domain); 3710 } 3711 3712 i915_gem_verify_gtt(dev); 3713 return 0; 3714 } 3715 3716 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3717 struct drm_file *file) 3718 { 3719 struct drm_i915_gem_caching *args = data; 3720 struct drm_i915_gem_object *obj; 3721 int ret; 3722 3723 ret = i915_mutex_lock_interruptible(dev); 3724 if (ret) 3725 return ret; 3726 3727 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3728 if (&obj->base == NULL) { 3729 ret = -ENOENT; 3730 goto unlock; 3731 } 3732 3733 switch (obj->cache_level) { 3734 case I915_CACHE_LLC: 3735 case I915_CACHE_L3_LLC: 3736 args->caching = I915_CACHING_CACHED; 3737 break; 3738 3739 case I915_CACHE_WT: 3740 args->caching = I915_CACHING_DISPLAY; 3741 break; 3742 3743 default: 3744 args->caching = I915_CACHING_NONE; 3745 break; 3746 } 3747 3748 drm_gem_object_unreference(&obj->base); 3749 unlock: 3750 mutex_unlock(&dev->struct_mutex); 3751 return ret; 3752 } 3753 3754 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3755 struct drm_file *file) 3756 { 3757 struct drm_i915_gem_caching *args = data; 3758 struct drm_i915_gem_object *obj; 3759 enum i915_cache_level level; 3760 int ret; 3761 3762 switch (args->caching) { 3763 case I915_CACHING_NONE: 3764 level = I915_CACHE_NONE; 3765 break; 3766 case I915_CACHING_CACHED: 3767 level = I915_CACHE_LLC; 3768 break; 3769 case I915_CACHING_DISPLAY: 3770 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE; 3771 break; 3772 default: 3773 return -EINVAL; 3774 } 3775 3776 ret = i915_mutex_lock_interruptible(dev); 3777 if (ret) 3778 return ret; 3779 3780 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 3781 if (&obj->base == NULL) { 3782 ret = -ENOENT; 3783 goto unlock; 3784 } 3785 3786 ret = i915_gem_object_set_cache_level(obj, level); 3787 3788 drm_gem_object_unreference(&obj->base); 3789 unlock: 3790 mutex_unlock(&dev->struct_mutex); 3791 return ret; 3792 } 3793 3794 static bool is_pin_display(struct drm_i915_gem_object *obj) 3795 { 3796 struct i915_vma *vma; 3797 3798 if (list_empty(&obj->vma_list)) 3799 return false; 3800 3801 vma = i915_gem_obj_to_ggtt(obj); 3802 if (!vma) 3803 return false; 3804 3805 /* There are 3 sources that pin objects: 3806 * 1. The display engine (scanouts, sprites, cursors); 3807 * 2. Reservations for execbuffer; 3808 * 3. The user. 3809 * 3810 * We can ignore reservations as we hold the struct_mutex and 3811 * are only called outside of the reservation path. The user 3812 * can only increment pin_count once, and so if after 3813 * subtracting the potential reference by the user, any pin_count 3814 * remains, it must be due to another use by the display engine. 3815 */ 3816 return vma->pin_count - !!obj->user_pin_count; 3817 } 3818 3819 /* 3820 * Prepare buffer for display plane (scanout, cursors, etc). 3821 * Can be called from an uninterruptible phase (modesetting) and allows 3822 * any flushes to be pipelined (for pageflips). 3823 */ 3824 int 3825 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3826 u32 alignment, 3827 struct intel_engine_cs *pipelined) 3828 { 3829 u32 old_read_domains, old_write_domain; 3830 bool was_pin_display; 3831 int ret; 3832 3833 if (pipelined != obj->ring) { 3834 ret = i915_gem_object_sync(obj, pipelined); 3835 if (ret) 3836 return ret; 3837 } 3838 3839 /* Mark the pin_display early so that we account for the 3840 * display coherency whilst setting up the cache domains. 3841 */ 3842 was_pin_display = obj->pin_display; 3843 obj->pin_display = true; 3844 3845 /* The display engine is not coherent with the LLC cache on gen6. As 3846 * a result, we make sure that the pinning that is about to occur is 3847 * done with uncached PTEs. This is lowest common denominator for all 3848 * chipsets. 3849 * 3850 * However for gen6+, we could do better by using the GFDT bit instead 3851 * of uncaching, which would allow us to flush all the LLC-cached data 3852 * with that bit in the PTE to main memory with just one PIPE_CONTROL. 3853 */ 3854 ret = i915_gem_object_set_cache_level(obj, 3855 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE); 3856 if (ret) 3857 goto err_unpin_display; 3858 3859 /* As the user may map the buffer once pinned in the display plane 3860 * (e.g. libkms for the bootup splash), we have to ensure that we 3861 * always use map_and_fenceable for all scanout buffers. 3862 */ 3863 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE); 3864 if (ret) 3865 goto err_unpin_display; 3866 3867 i915_gem_object_flush_cpu_write_domain(obj, true); 3868 3869 old_write_domain = obj->base.write_domain; 3870 old_read_domains = obj->base.read_domains; 3871 3872 /* It should now be out of any other write domains, and we can update 3873 * the domain values for our changes. 3874 */ 3875 obj->base.write_domain = 0; 3876 obj->base.read_domains |= I915_GEM_DOMAIN_GTT; 3877 3878 trace_i915_gem_object_change_domain(obj, 3879 old_read_domains, 3880 old_write_domain); 3881 3882 return 0; 3883 3884 err_unpin_display: 3885 WARN_ON(was_pin_display != is_pin_display(obj)); 3886 obj->pin_display = was_pin_display; 3887 return ret; 3888 } 3889 3890 void 3891 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj) 3892 { 3893 i915_gem_object_ggtt_unpin(obj); 3894 obj->pin_display = is_pin_display(obj); 3895 } 3896 3897 int 3898 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj) 3899 { 3900 int ret; 3901 3902 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0) 3903 return 0; 3904 3905 ret = i915_gem_object_wait_rendering(obj, false); 3906 if (ret) 3907 return ret; 3908 3909 /* Ensure that we invalidate the GPU's caches and TLBs. */ 3910 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS; 3911 return 0; 3912 } 3913 3914 /** 3915 * Moves a single object to the CPU read, and possibly write domain. 3916 * 3917 * This function returns when the move is complete, including waiting on 3918 * flushes to occur. 3919 */ 3920 int 3921 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) 3922 { 3923 uint32_t old_write_domain, old_read_domains; 3924 int ret; 3925 3926 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) 3927 return 0; 3928 3929 ret = i915_gem_object_wait_rendering(obj, !write); 3930 if (ret) 3931 return ret; 3932 3933 i915_gem_object_retire(obj); 3934 i915_gem_object_flush_gtt_write_domain(obj); 3935 3936 old_write_domain = obj->base.write_domain; 3937 old_read_domains = obj->base.read_domains; 3938 3939 /* Flush the CPU cache if it's still invalid. */ 3940 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { 3941 i915_gem_clflush_object(obj, false); 3942 3943 obj->base.read_domains |= I915_GEM_DOMAIN_CPU; 3944 } 3945 3946 /* It should now be out of any other write domains, and we can update 3947 * the domain values for our changes. 3948 */ 3949 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); 3950 3951 /* If we're writing through the CPU, then the GPU read domains will 3952 * need to be invalidated at next use. 3953 */ 3954 if (write) { 3955 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 3956 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 3957 } 3958 3959 trace_i915_gem_object_change_domain(obj, 3960 old_read_domains, 3961 old_write_domain); 3962 3963 return 0; 3964 } 3965 3966 /* Throttle our rendering by waiting until the ring has completed our requests 3967 * emitted over 20 msec ago. 3968 * 3969 * Note that if we were to use the current jiffies each time around the loop, 3970 * we wouldn't escape the function with any frames outstanding if the time to 3971 * render a frame was over 20ms. 3972 * 3973 * This should get us reasonable parallelism between CPU and GPU but also 3974 * relatively low latency when blocking on a particular request to finish. 3975 */ 3976 static int 3977 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) 3978 { 3979 struct drm_i915_private *dev_priv = dev->dev_private; 3980 struct drm_i915_file_private *file_priv = file->driver_priv; 3981 unsigned long recent_enough = jiffies - msecs_to_jiffies(20); 3982 struct drm_i915_gem_request *request; 3983 struct intel_engine_cs *ring = NULL; 3984 unsigned reset_counter; 3985 u32 seqno = 0; 3986 int ret; 3987 3988 ret = i915_gem_wait_for_error(&dev_priv->gpu_error); 3989 if (ret) 3990 return ret; 3991 3992 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false); 3993 if (ret) 3994 return ret; 3995 3996 spin_lock(&file_priv->mm.lock); 3997 list_for_each_entry(request, &file_priv->mm.request_list, client_list) { 3998 if (time_after_eq(request->emitted_jiffies, recent_enough)) 3999 break; 4000 4001 ring = request->ring; 4002 seqno = request->seqno; 4003 } 4004 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); 4005 spin_unlock(&file_priv->mm.lock); 4006 4007 if (seqno == 0) 4008 return 0; 4009 4010 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL); 4011 if (ret == 0) 4012 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0); 4013 4014 return ret; 4015 } 4016 4017 static bool 4018 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags) 4019 { 4020 struct drm_i915_gem_object *obj = vma->obj; 4021 4022 if (alignment && 4023 vma->node.start & (alignment - 1)) 4024 return true; 4025 4026 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable) 4027 return true; 4028 4029 if (flags & PIN_OFFSET_BIAS && 4030 vma->node.start < (flags & PIN_OFFSET_MASK)) 4031 return true; 4032 4033 return false; 4034 } 4035 4036 int 4037 i915_gem_object_pin(struct drm_i915_gem_object *obj, 4038 struct i915_address_space *vm, 4039 uint32_t alignment, 4040 uint64_t flags) 4041 { 4042 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 4043 struct i915_vma *vma; 4044 int ret; 4045 4046 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base)) 4047 return -ENODEV; 4048 4049 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm))) 4050 return -EINVAL; 4051 4052 vma = i915_gem_obj_to_vma(obj, vm); 4053 if (vma) { 4054 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT)) 4055 return -EBUSY; 4056 4057 if (i915_vma_misplaced(vma, alignment, flags)) { 4058 WARN(vma->pin_count, 4059 "bo is already pinned with incorrect alignment:" 4060 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d," 4061 " obj->map_and_fenceable=%d\n", 4062 i915_gem_obj_offset(obj, vm), alignment, 4063 !!(flags & PIN_MAPPABLE), 4064 obj->map_and_fenceable); 4065 ret = i915_vma_unbind(vma); 4066 if (ret) 4067 return ret; 4068 4069 vma = NULL; 4070 } 4071 } 4072 4073 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) { 4074 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags); 4075 if (IS_ERR(vma)) 4076 return PTR_ERR(vma); 4077 } 4078 4079 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping) 4080 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND); 4081 4082 vma->pin_count++; 4083 if (flags & PIN_MAPPABLE) 4084 obj->pin_mappable |= true; 4085 4086 return 0; 4087 } 4088 4089 void 4090 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj) 4091 { 4092 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj); 4093 4094 BUG_ON(!vma); 4095 BUG_ON(vma->pin_count == 0); 4096 BUG_ON(!i915_gem_obj_ggtt_bound(obj)); 4097 4098 if (--vma->pin_count == 0) 4099 obj->pin_mappable = false; 4100 } 4101 4102 bool 4103 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj) 4104 { 4105 if (obj->fence_reg != I915_FENCE_REG_NONE) { 4106 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 4107 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj); 4108 4109 WARN_ON(!ggtt_vma || 4110 dev_priv->fence_regs[obj->fence_reg].pin_count > 4111 ggtt_vma->pin_count); 4112 dev_priv->fence_regs[obj->fence_reg].pin_count++; 4113 return true; 4114 } else 4115 return false; 4116 } 4117 4118 void 4119 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj) 4120 { 4121 if (obj->fence_reg != I915_FENCE_REG_NONE) { 4122 struct drm_i915_private *dev_priv = obj->base.dev->dev_private; 4123 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0); 4124 dev_priv->fence_regs[obj->fence_reg].pin_count--; 4125 } 4126 } 4127 4128 int 4129 i915_gem_pin_ioctl(struct drm_device *dev, void *data, 4130 struct drm_file *file) 4131 { 4132 struct drm_i915_gem_pin *args = data; 4133 struct drm_i915_gem_object *obj; 4134 int ret; 4135 4136 if (INTEL_INFO(dev)->gen >= 6) 4137 return -ENODEV; 4138 4139 ret = i915_mutex_lock_interruptible(dev); 4140 if (ret) 4141 return ret; 4142 4143 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 4144 if (&obj->base == NULL) { 4145 ret = -ENOENT; 4146 goto unlock; 4147 } 4148 4149 if (obj->madv != I915_MADV_WILLNEED) { 4150 DRM_DEBUG("Attempting to pin a purgeable buffer\n"); 4151 ret = -EFAULT; 4152 goto out; 4153 } 4154 4155 if (obj->pin_filp != NULL && obj->pin_filp != file) { 4156 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n", 4157 args->handle); 4158 ret = -EINVAL; 4159 goto out; 4160 } 4161 4162 if (obj->user_pin_count == ULONG_MAX) { 4163 ret = -EBUSY; 4164 goto out; 4165 } 4166 4167 if (obj->user_pin_count == 0) { 4168 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE); 4169 if (ret) 4170 goto out; 4171 } 4172 4173 obj->user_pin_count++; 4174 obj->pin_filp = file; 4175 4176 args->offset = i915_gem_obj_ggtt_offset(obj); 4177 out: 4178 drm_gem_object_unreference(&obj->base); 4179 unlock: 4180 mutex_unlock(&dev->struct_mutex); 4181 return ret; 4182 } 4183 4184 int 4185 i915_gem_unpin_ioctl(struct drm_device *dev, void *data, 4186 struct drm_file *file) 4187 { 4188 struct drm_i915_gem_pin *args = data; 4189 struct drm_i915_gem_object *obj; 4190 int ret; 4191 4192 ret = i915_mutex_lock_interruptible(dev); 4193 if (ret) 4194 return ret; 4195 4196 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 4197 if (&obj->base == NULL) { 4198 ret = -ENOENT; 4199 goto unlock; 4200 } 4201 4202 if (obj->pin_filp != file) { 4203 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n", 4204 args->handle); 4205 ret = -EINVAL; 4206 goto out; 4207 } 4208 obj->user_pin_count--; 4209 if (obj->user_pin_count == 0) { 4210 obj->pin_filp = NULL; 4211 i915_gem_object_ggtt_unpin(obj); 4212 } 4213 4214 out: 4215 drm_gem_object_unreference(&obj->base); 4216 unlock: 4217 mutex_unlock(&dev->struct_mutex); 4218 return ret; 4219 } 4220 4221 int 4222 i915_gem_busy_ioctl(struct drm_device *dev, void *data, 4223 struct drm_file *file) 4224 { 4225 struct drm_i915_gem_busy *args = data; 4226 struct drm_i915_gem_object *obj; 4227 int ret; 4228 4229 ret = i915_mutex_lock_interruptible(dev); 4230 if (ret) 4231 return ret; 4232 4233 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle)); 4234 if (&obj->base == NULL) { 4235 ret = -ENOENT; 4236 goto unlock; 4237 } 4238 4239 /* Count all active objects as busy, even if they are currently not used 4240 * by the gpu. Users of this interface expect objects to eventually 4241 * become non-busy without any further actions, therefore emit any 4242 * necessary flushes here. 4243 */ 4244 ret = i915_gem_object_flush_active(obj); 4245 4246 args->busy = obj->active; 4247 if (obj->ring) { 4248 BUILD_BUG_ON(I915_NUM_RINGS > 16); 4249 args->busy |= intel_ring_flag(obj->ring) << 16; 4250 } 4251 4252 drm_gem_object_unreference(&obj->base); 4253 unlock: 4254 mutex_unlock(&dev->struct_mutex); 4255 return ret; 4256 } 4257 4258 int 4259 i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 4260 struct drm_file *file_priv) 4261 { 4262 return i915_gem_ring_throttle(dev, file_priv); 4263 } 4264 4265 int 4266 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 4267 struct drm_file *file_priv) 4268 { 4269 struct drm_i915_gem_madvise *args = data; 4270 struct drm_i915_gem_object *obj; 4271 int ret; 4272 4273 switch (args->madv) { 4274 case I915_MADV_DONTNEED: 4275 case I915_MADV_WILLNEED: 4276 break; 4277 default: 4278 return -EINVAL; 4279 } 4280 4281 ret = i915_mutex_lock_interruptible(dev); 4282 if (ret) 4283 return ret; 4284 4285 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle)); 4286 if (&obj->base == NULL) { 4287 ret = -ENOENT; 4288 goto unlock; 4289 } 4290 4291 if (i915_gem_obj_is_pinned(obj)) { 4292 ret = -EINVAL; 4293 goto out; 4294 } 4295 4296 if (obj->madv != __I915_MADV_PURGED) 4297 obj->madv = args->madv; 4298 4299 /* if the object is no longer attached, discard its backing storage */ 4300 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL) 4301 i915_gem_object_truncate(obj); 4302 4303 args->retained = obj->madv != __I915_MADV_PURGED; 4304 4305 out: 4306 drm_gem_object_unreference(&obj->base); 4307 unlock: 4308 mutex_unlock(&dev->struct_mutex); 4309 return ret; 4310 } 4311 4312 void i915_gem_object_init(struct drm_i915_gem_object *obj, 4313 const struct drm_i915_gem_object_ops *ops) 4314 { 4315 INIT_LIST_HEAD(&obj->global_list); 4316 INIT_LIST_HEAD(&obj->ring_list); 4317 INIT_LIST_HEAD(&obj->obj_exec_link); 4318 INIT_LIST_HEAD(&obj->vma_list); 4319 4320 obj->ops = ops; 4321 4322 obj->fence_reg = I915_FENCE_REG_NONE; 4323 obj->madv = I915_MADV_WILLNEED; 4324 /* Avoid an unnecessary call to unbind on the first bind. */ 4325 obj->map_and_fenceable = true; 4326 4327 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size); 4328 } 4329 4330 static const struct drm_i915_gem_object_ops i915_gem_object_ops = { 4331 .get_pages = i915_gem_object_get_pages_gtt, 4332 .put_pages = i915_gem_object_put_pages_gtt, 4333 }; 4334 4335 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev, 4336 size_t size) 4337 { 4338 struct drm_i915_gem_object *obj; 4339 struct address_space *mapping; 4340 gfp_t mask; 4341 4342 obj = i915_gem_object_alloc(dev); 4343 if (obj == NULL) 4344 return NULL; 4345 4346 if (drm_gem_object_init(dev, &obj->base, size) != 0) { 4347 i915_gem_object_free(obj); 4348 return NULL; 4349 } 4350 4351 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 4352 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) { 4353 /* 965gm cannot relocate objects above 4GiB. */ 4354 mask &= ~__GFP_HIGHMEM; 4355 mask |= __GFP_DMA32; 4356 } 4357 4358 mapping = file_inode(obj->base.filp)->i_mapping; 4359 mapping_set_gfp_mask(mapping, mask); 4360 4361 i915_gem_object_init(obj, &i915_gem_object_ops); 4362 4363 obj->base.write_domain = I915_GEM_DOMAIN_CPU; 4364 obj->base.read_domains = I915_GEM_DOMAIN_CPU; 4365 4366 if (HAS_LLC(dev)) { 4367 /* On some devices, we can have the GPU use the LLC (the CPU 4368 * cache) for about a 10% performance improvement 4369 * compared to uncached. Graphics requests other than 4370 * display scanout are coherent with the CPU in 4371 * accessing this cache. This means in this mode we 4372 * don't need to clflush on the CPU side, and on the 4373 * GPU side we only need to flush internal caches to 4374 * get data visible to the CPU. 4375 * 4376 * However, we maintain the display planes as UC, and so 4377 * need to rebind when first used as such. 4378 */ 4379 obj->cache_level = I915_CACHE_LLC; 4380 } else 4381 obj->cache_level = I915_CACHE_NONE; 4382 4383 trace_i915_gem_object_create(obj); 4384 4385 return obj; 4386 } 4387 4388 static bool discard_backing_storage(struct drm_i915_gem_object *obj) 4389 { 4390 /* If we are the last user of the backing storage (be it shmemfs 4391 * pages or stolen etc), we know that the pages are going to be 4392 * immediately released. In this case, we can then skip copying 4393 * back the contents from the GPU. 4394 */ 4395 4396 if (obj->madv != I915_MADV_WILLNEED) 4397 return false; 4398 4399 if (obj->base.filp == NULL) 4400 return true; 4401 4402 /* At first glance, this looks racy, but then again so would be 4403 * userspace racing mmap against close. However, the first external 4404 * reference to the filp can only be obtained through the 4405 * i915_gem_mmap_ioctl() which safeguards us against the user 4406 * acquiring such a reference whilst we are in the middle of 4407 * freeing the object. 4408 */ 4409 return atomic_long_read(&obj->base.filp->f_count) == 1; 4410 } 4411 4412 void i915_gem_free_object(struct drm_gem_object *gem_obj) 4413 { 4414 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); 4415 struct drm_device *dev = obj->base.dev; 4416 struct drm_i915_private *dev_priv = dev->dev_private; 4417 struct i915_vma *vma, *next; 4418 4419 intel_runtime_pm_get(dev_priv); 4420 4421 trace_i915_gem_object_destroy(obj); 4422 4423 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) { 4424 int ret; 4425 4426 vma->pin_count = 0; 4427 ret = i915_vma_unbind(vma); 4428 if (WARN_ON(ret == -ERESTARTSYS)) { 4429 bool was_interruptible; 4430 4431 was_interruptible = dev_priv->mm.interruptible; 4432 dev_priv->mm.interruptible = false; 4433 4434 WARN_ON(i915_vma_unbind(vma)); 4435 4436 dev_priv->mm.interruptible = was_interruptible; 4437 } 4438 } 4439 4440 i915_gem_object_detach_phys(obj); 4441 4442 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up 4443 * before progressing. */ 4444 if (obj->stolen) 4445 i915_gem_object_unpin_pages(obj); 4446 4447 if (WARN_ON(obj->pages_pin_count)) 4448 obj->pages_pin_count = 0; 4449 if (discard_backing_storage(obj)) 4450 obj->madv = I915_MADV_DONTNEED; 4451 i915_gem_object_put_pages(obj); 4452 i915_gem_object_free_mmap_offset(obj); 4453 i915_gem_object_release_stolen(obj); 4454 4455 BUG_ON(obj->pages); 4456 4457 if (obj->base.import_attach) 4458 drm_prime_gem_destroy(&obj->base, NULL); 4459 4460 if (obj->ops->release) 4461 obj->ops->release(obj); 4462 4463 drm_gem_object_release(&obj->base); 4464 i915_gem_info_remove_obj(dev_priv, obj->base.size); 4465 4466 kfree(obj->bit_17); 4467 i915_gem_object_free(obj); 4468 4469 intel_runtime_pm_put(dev_priv); 4470 } 4471 4472 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj, 4473 struct i915_address_space *vm) 4474 { 4475 struct i915_vma *vma; 4476 list_for_each_entry(vma, &obj->vma_list, vma_link) 4477 if (vma->vm == vm) 4478 return vma; 4479 4480 return NULL; 4481 } 4482 4483 void i915_gem_vma_destroy(struct i915_vma *vma) 4484 { 4485 WARN_ON(vma->node.allocated); 4486 4487 /* Keep the vma as a placeholder in the execbuffer reservation lists */ 4488 if (!list_empty(&vma->exec_list)) 4489 return; 4490 4491 list_del(&vma->vma_link); 4492 4493 kfree(vma); 4494 } 4495 4496 static void 4497 i915_gem_stop_ringbuffers(struct drm_device *dev) 4498 { 4499 struct drm_i915_private *dev_priv = dev->dev_private; 4500 struct intel_engine_cs *ring; 4501 int i; 4502 4503 for_each_ring(ring, dev_priv, i) 4504 intel_stop_ring_buffer(ring); 4505 } 4506 4507 int 4508 i915_gem_suspend(struct drm_device *dev) 4509 { 4510 struct drm_i915_private *dev_priv = dev->dev_private; 4511 int ret = 0; 4512 4513 mutex_lock(&dev->struct_mutex); 4514 if (dev_priv->ums.mm_suspended) 4515 goto err; 4516 4517 ret = i915_gpu_idle(dev); 4518 if (ret) 4519 goto err; 4520 4521 i915_gem_retire_requests(dev); 4522 4523 /* Under UMS, be paranoid and evict. */ 4524 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4525 i915_gem_evict_everything(dev); 4526 4527 i915_kernel_lost_context(dev); 4528 i915_gem_stop_ringbuffers(dev); 4529 4530 /* Hack! Don't let anybody do execbuf while we don't control the chip. 4531 * We need to replace this with a semaphore, or something. 4532 * And not confound ums.mm_suspended! 4533 */ 4534 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev, 4535 DRIVER_MODESET); 4536 mutex_unlock(&dev->struct_mutex); 4537 4538 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer); 4539 cancel_delayed_work_sync(&dev_priv->mm.retire_work); 4540 cancel_delayed_work_sync(&dev_priv->mm.idle_work); 4541 4542 return 0; 4543 4544 err: 4545 mutex_unlock(&dev->struct_mutex); 4546 return ret; 4547 } 4548 4549 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice) 4550 { 4551 struct drm_device *dev = ring->dev; 4552 struct drm_i915_private *dev_priv = dev->dev_private; 4553 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200); 4554 u32 *remap_info = dev_priv->l3_parity.remap_info[slice]; 4555 int i, ret; 4556 4557 if (!HAS_L3_DPF(dev) || !remap_info) 4558 return 0; 4559 4560 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3); 4561 if (ret) 4562 return ret; 4563 4564 /* 4565 * Note: We do not worry about the concurrent register cacheline hang 4566 * here because no other code should access these registers other than 4567 * at initialization time. 4568 */ 4569 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) { 4570 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); 4571 intel_ring_emit(ring, reg_base + i); 4572 intel_ring_emit(ring, remap_info[i/4]); 4573 } 4574 4575 intel_ring_advance(ring); 4576 4577 return ret; 4578 } 4579 4580 void i915_gem_init_swizzling(struct drm_device *dev) 4581 { 4582 struct drm_i915_private *dev_priv = dev->dev_private; 4583 4584 if (INTEL_INFO(dev)->gen < 5 || 4585 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 4586 return; 4587 4588 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | 4589 DISP_TILE_SURFACE_SWIZZLING); 4590 4591 if (IS_GEN5(dev)) 4592 return; 4593 4594 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); 4595 if (IS_GEN6(dev)) 4596 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 4597 else if (IS_GEN7(dev)) 4598 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 4599 else if (IS_GEN8(dev)) 4600 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW)); 4601 else 4602 BUG(); 4603 } 4604 4605 static bool 4606 intel_enable_blt(struct drm_device *dev) 4607 { 4608 if (!HAS_BLT(dev)) 4609 return false; 4610 4611 /* The blitter was dysfunctional on early prototypes */ 4612 if (IS_GEN6(dev) && dev->pdev->revision < 8) { 4613 DRM_INFO("BLT not supported on this pre-production hardware;" 4614 " graphics performance will be degraded.\n"); 4615 return false; 4616 } 4617 4618 return true; 4619 } 4620 4621 static int i915_gem_init_rings(struct drm_device *dev) 4622 { 4623 struct drm_i915_private *dev_priv = dev->dev_private; 4624 int ret; 4625 4626 ret = intel_init_render_ring_buffer(dev); 4627 if (ret) 4628 return ret; 4629 4630 if (HAS_BSD(dev)) { 4631 ret = intel_init_bsd_ring_buffer(dev); 4632 if (ret) 4633 goto cleanup_render_ring; 4634 } 4635 4636 if (intel_enable_blt(dev)) { 4637 ret = intel_init_blt_ring_buffer(dev); 4638 if (ret) 4639 goto cleanup_bsd_ring; 4640 } 4641 4642 if (HAS_VEBOX(dev)) { 4643 ret = intel_init_vebox_ring_buffer(dev); 4644 if (ret) 4645 goto cleanup_blt_ring; 4646 } 4647 4648 if (HAS_BSD2(dev)) { 4649 ret = intel_init_bsd2_ring_buffer(dev); 4650 if (ret) 4651 goto cleanup_vebox_ring; 4652 } 4653 4654 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000)); 4655 if (ret) 4656 goto cleanup_bsd2_ring; 4657 4658 return 0; 4659 4660 cleanup_bsd2_ring: 4661 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]); 4662 cleanup_vebox_ring: 4663 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]); 4664 cleanup_blt_ring: 4665 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]); 4666 cleanup_bsd_ring: 4667 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]); 4668 cleanup_render_ring: 4669 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]); 4670 4671 return ret; 4672 } 4673 4674 int 4675 i915_gem_init_hw(struct drm_device *dev) 4676 { 4677 struct drm_i915_private *dev_priv = dev->dev_private; 4678 int ret, i; 4679 4680 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt()) 4681 return -EIO; 4682 4683 if (dev_priv->ellc_size) 4684 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf)); 4685 4686 if (IS_HASWELL(dev)) 4687 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ? 4688 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 4689 4690 if (HAS_PCH_NOP(dev)) { 4691 if (IS_IVYBRIDGE(dev)) { 4692 u32 temp = I915_READ(GEN7_MSG_CTL); 4693 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK); 4694 I915_WRITE(GEN7_MSG_CTL, temp); 4695 } else if (INTEL_INFO(dev)->gen >= 7) { 4696 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT); 4697 temp &= ~RESET_PCH_HANDSHAKE_ENABLE; 4698 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp); 4699 } 4700 } 4701 4702 i915_gem_init_swizzling(dev); 4703 4704 ret = i915_gem_init_rings(dev); 4705 if (ret) 4706 return ret; 4707 4708 for (i = 0; i < NUM_L3_SLICES(dev); i++) 4709 i915_gem_l3_remap(&dev_priv->ring[RCS], i); 4710 4711 /* 4712 * XXX: Contexts should only be initialized once. Doing a switch to the 4713 * default context switch however is something we'd like to do after 4714 * reset or thaw (the latter may not actually be necessary for HW, but 4715 * goes with our code better). Context switching requires rings (for 4716 * the do_switch), but before enabling PPGTT. So don't move this. 4717 */ 4718 ret = i915_gem_context_enable(dev_priv); 4719 if (ret && ret != -EIO) { 4720 DRM_ERROR("Context enable failed %d\n", ret); 4721 i915_gem_cleanup_ringbuffer(dev); 4722 } 4723 4724 return ret; 4725 } 4726 4727 int i915_gem_init(struct drm_device *dev) 4728 { 4729 struct drm_i915_private *dev_priv = dev->dev_private; 4730 int ret; 4731 4732 mutex_lock(&dev->struct_mutex); 4733 4734 if (IS_VALLEYVIEW(dev)) { 4735 /* VLVA0 (potential hack), BIOS isn't actually waking us */ 4736 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ); 4737 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 4738 VLV_GTLC_ALLOWWAKEACK), 10)) 4739 DRM_DEBUG_DRIVER("allow wake ack timed out\n"); 4740 } 4741 4742 i915_gem_init_userptr(dev); 4743 i915_gem_init_global_gtt(dev); 4744 4745 ret = i915_gem_context_init(dev); 4746 if (ret) { 4747 mutex_unlock(&dev->struct_mutex); 4748 return ret; 4749 } 4750 4751 ret = i915_gem_init_hw(dev); 4752 if (ret == -EIO) { 4753 /* Allow ring initialisation to fail by marking the GPU as 4754 * wedged. But we only want to do this where the GPU is angry, 4755 * for all other failure, such as an allocation failure, bail. 4756 */ 4757 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n"); 4758 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter); 4759 ret = 0; 4760 } 4761 mutex_unlock(&dev->struct_mutex); 4762 4763 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */ 4764 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4765 dev_priv->dri1.allow_batchbuffer = 1; 4766 return ret; 4767 } 4768 4769 void 4770 i915_gem_cleanup_ringbuffer(struct drm_device *dev) 4771 { 4772 struct drm_i915_private *dev_priv = dev->dev_private; 4773 struct intel_engine_cs *ring; 4774 int i; 4775 4776 for_each_ring(ring, dev_priv, i) 4777 intel_cleanup_ring_buffer(ring); 4778 } 4779 4780 int 4781 i915_gem_entervt_ioctl(struct drm_device *dev, void *data, 4782 struct drm_file *file_priv) 4783 { 4784 struct drm_i915_private *dev_priv = dev->dev_private; 4785 int ret; 4786 4787 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4788 return 0; 4789 4790 if (i915_reset_in_progress(&dev_priv->gpu_error)) { 4791 DRM_ERROR("Reenabling wedged hardware, good luck\n"); 4792 atomic_set(&dev_priv->gpu_error.reset_counter, 0); 4793 } 4794 4795 mutex_lock(&dev->struct_mutex); 4796 dev_priv->ums.mm_suspended = 0; 4797 4798 ret = i915_gem_init_hw(dev); 4799 if (ret != 0) { 4800 mutex_unlock(&dev->struct_mutex); 4801 return ret; 4802 } 4803 4804 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list)); 4805 4806 ret = drm_irq_install(dev, dev->pdev->irq); 4807 if (ret) 4808 goto cleanup_ringbuffer; 4809 mutex_unlock(&dev->struct_mutex); 4810 4811 return 0; 4812 4813 cleanup_ringbuffer: 4814 i915_gem_cleanup_ringbuffer(dev); 4815 dev_priv->ums.mm_suspended = 1; 4816 mutex_unlock(&dev->struct_mutex); 4817 4818 return ret; 4819 } 4820 4821 int 4822 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data, 4823 struct drm_file *file_priv) 4824 { 4825 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4826 return 0; 4827 4828 mutex_lock(&dev->struct_mutex); 4829 drm_irq_uninstall(dev); 4830 mutex_unlock(&dev->struct_mutex); 4831 4832 return i915_gem_suspend(dev); 4833 } 4834 4835 void 4836 i915_gem_lastclose(struct drm_device *dev) 4837 { 4838 int ret; 4839 4840 if (drm_core_check_feature(dev, DRIVER_MODESET)) 4841 return; 4842 4843 ret = i915_gem_suspend(dev); 4844 if (ret) 4845 DRM_ERROR("failed to idle hardware: %d\n", ret); 4846 } 4847 4848 static void 4849 init_ring_lists(struct intel_engine_cs *ring) 4850 { 4851 INIT_LIST_HEAD(&ring->active_list); 4852 INIT_LIST_HEAD(&ring->request_list); 4853 } 4854 4855 void i915_init_vm(struct drm_i915_private *dev_priv, 4856 struct i915_address_space *vm) 4857 { 4858 if (!i915_is_ggtt(vm)) 4859 drm_mm_init(&vm->mm, vm->start, vm->total); 4860 vm->dev = dev_priv->dev; 4861 INIT_LIST_HEAD(&vm->active_list); 4862 INIT_LIST_HEAD(&vm->inactive_list); 4863 INIT_LIST_HEAD(&vm->global_link); 4864 list_add_tail(&vm->global_link, &dev_priv->vm_list); 4865 } 4866 4867 void 4868 i915_gem_load(struct drm_device *dev) 4869 { 4870 struct drm_i915_private *dev_priv = dev->dev_private; 4871 int i; 4872 4873 dev_priv->slab = 4874 kmem_cache_create("i915_gem_object", 4875 sizeof(struct drm_i915_gem_object), 0, 4876 SLAB_HWCACHE_ALIGN, 4877 NULL); 4878 4879 INIT_LIST_HEAD(&dev_priv->vm_list); 4880 i915_init_vm(dev_priv, &dev_priv->gtt.base); 4881 4882 INIT_LIST_HEAD(&dev_priv->context_list); 4883 INIT_LIST_HEAD(&dev_priv->mm.unbound_list); 4884 INIT_LIST_HEAD(&dev_priv->mm.bound_list); 4885 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4886 for (i = 0; i < I915_NUM_RINGS; i++) 4887 init_ring_lists(&dev_priv->ring[i]); 4888 for (i = 0; i < I915_MAX_NUM_FENCES; i++) 4889 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list); 4890 INIT_DELAYED_WORK(&dev_priv->mm.retire_work, 4891 i915_gem_retire_work_handler); 4892 INIT_DELAYED_WORK(&dev_priv->mm.idle_work, 4893 i915_gem_idle_work_handler); 4894 init_waitqueue_head(&dev_priv->gpu_error.reset_queue); 4895 4896 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ 4897 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) { 4898 I915_WRITE(MI_ARB_STATE, 4899 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE)); 4900 } 4901 4902 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL; 4903 4904 /* Old X drivers will take 0-2 for front, back, depth buffers */ 4905 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 4906 dev_priv->fence_reg_start = 3; 4907 4908 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev)) 4909 dev_priv->num_fence_regs = 32; 4910 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) 4911 dev_priv->num_fence_regs = 16; 4912 else 4913 dev_priv->num_fence_regs = 8; 4914 4915 /* Initialize fence registers to zero */ 4916 INIT_LIST_HEAD(&dev_priv->mm.fence_list); 4917 i915_gem_restore_fences(dev); 4918 4919 i915_gem_detect_bit_6_swizzle(dev); 4920 init_waitqueue_head(&dev_priv->pending_flip_queue); 4921 4922 dev_priv->mm.interruptible = true; 4923 4924 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan; 4925 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count; 4926 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS; 4927 register_shrinker(&dev_priv->mm.shrinker); 4928 4929 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom; 4930 register_oom_notifier(&dev_priv->mm.oom_notifier); 4931 } 4932 4933 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 4934 { 4935 struct drm_i915_file_private *file_priv = file->driver_priv; 4936 4937 cancel_delayed_work_sync(&file_priv->mm.idle_work); 4938 4939 /* Clean up our request list when the client is going away, so that 4940 * later retire_requests won't dereference our soon-to-be-gone 4941 * file_priv. 4942 */ 4943 spin_lock(&file_priv->mm.lock); 4944 while (!list_empty(&file_priv->mm.request_list)) { 4945 struct drm_i915_gem_request *request; 4946 4947 request = list_first_entry(&file_priv->mm.request_list, 4948 struct drm_i915_gem_request, 4949 client_list); 4950 list_del(&request->client_list); 4951 request->file_priv = NULL; 4952 } 4953 spin_unlock(&file_priv->mm.lock); 4954 } 4955 4956 static void 4957 i915_gem_file_idle_work_handler(struct work_struct *work) 4958 { 4959 struct drm_i915_file_private *file_priv = 4960 container_of(work, typeof(*file_priv), mm.idle_work.work); 4961 4962 atomic_set(&file_priv->rps_wait_boost, false); 4963 } 4964 4965 int i915_gem_open(struct drm_device *dev, struct drm_file *file) 4966 { 4967 struct drm_i915_file_private *file_priv; 4968 int ret; 4969 4970 DRM_DEBUG_DRIVER("\n"); 4971 4972 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); 4973 if (!file_priv) 4974 return -ENOMEM; 4975 4976 file->driver_priv = file_priv; 4977 file_priv->dev_priv = dev->dev_private; 4978 file_priv->file = file; 4979 4980 spin_lock_init(&file_priv->mm.lock); 4981 INIT_LIST_HEAD(&file_priv->mm.request_list); 4982 INIT_DELAYED_WORK(&file_priv->mm.idle_work, 4983 i915_gem_file_idle_work_handler); 4984 4985 ret = i915_gem_context_open(dev, file); 4986 if (ret) 4987 kfree(file_priv); 4988 4989 return ret; 4990 } 4991 4992 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task) 4993 { 4994 if (!mutex_is_locked(mutex)) 4995 return false; 4996 4997 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES) 4998 return mutex->owner == task; 4999 #else 5000 /* Since UP may be pre-empted, we cannot assume that we own the lock */ 5001 return false; 5002 #endif 5003 } 5004 5005 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock) 5006 { 5007 if (!mutex_trylock(&dev->struct_mutex)) { 5008 if (!mutex_is_locked_by(&dev->struct_mutex, current)) 5009 return false; 5010 5011 if (to_i915(dev)->mm.shrinker_no_lock_stealing) 5012 return false; 5013 5014 *unlock = false; 5015 } else 5016 *unlock = true; 5017 5018 return true; 5019 } 5020 5021 static int num_vma_bound(struct drm_i915_gem_object *obj) 5022 { 5023 struct i915_vma *vma; 5024 int count = 0; 5025 5026 list_for_each_entry(vma, &obj->vma_list, vma_link) 5027 if (drm_mm_node_allocated(&vma->node)) 5028 count++; 5029 5030 return count; 5031 } 5032 5033 static unsigned long 5034 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc) 5035 { 5036 struct drm_i915_private *dev_priv = 5037 container_of(shrinker, struct drm_i915_private, mm.shrinker); 5038 struct drm_device *dev = dev_priv->dev; 5039 struct drm_i915_gem_object *obj; 5040 unsigned long count; 5041 bool unlock; 5042 5043 if (!i915_gem_shrinker_lock(dev, &unlock)) 5044 return 0; 5045 5046 count = 0; 5047 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) 5048 if (obj->pages_pin_count == 0) 5049 count += obj->base.size >> PAGE_SHIFT; 5050 5051 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { 5052 if (!i915_gem_obj_is_pinned(obj) && 5053 obj->pages_pin_count == num_vma_bound(obj)) 5054 count += obj->base.size >> PAGE_SHIFT; 5055 } 5056 5057 if (unlock) 5058 mutex_unlock(&dev->struct_mutex); 5059 5060 return count; 5061 } 5062 5063 /* All the new VM stuff */ 5064 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o, 5065 struct i915_address_space *vm) 5066 { 5067 struct drm_i915_private *dev_priv = o->base.dev->dev_private; 5068 struct i915_vma *vma; 5069 5070 if (!dev_priv->mm.aliasing_ppgtt || 5071 vm == &dev_priv->mm.aliasing_ppgtt->base) 5072 vm = &dev_priv->gtt.base; 5073 5074 BUG_ON(list_empty(&o->vma_list)); 5075 list_for_each_entry(vma, &o->vma_list, vma_link) { 5076 if (vma->vm == vm) 5077 return vma->node.start; 5078 5079 } 5080 return -1; 5081 } 5082 5083 bool i915_gem_obj_bound(struct drm_i915_gem_object *o, 5084 struct i915_address_space *vm) 5085 { 5086 struct i915_vma *vma; 5087 5088 list_for_each_entry(vma, &o->vma_list, vma_link) 5089 if (vma->vm == vm && drm_mm_node_allocated(&vma->node)) 5090 return true; 5091 5092 return false; 5093 } 5094 5095 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o) 5096 { 5097 struct i915_vma *vma; 5098 5099 list_for_each_entry(vma, &o->vma_list, vma_link) 5100 if (drm_mm_node_allocated(&vma->node)) 5101 return true; 5102 5103 return false; 5104 } 5105 5106 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o, 5107 struct i915_address_space *vm) 5108 { 5109 struct drm_i915_private *dev_priv = o->base.dev->dev_private; 5110 struct i915_vma *vma; 5111 5112 if (!dev_priv->mm.aliasing_ppgtt || 5113 vm == &dev_priv->mm.aliasing_ppgtt->base) 5114 vm = &dev_priv->gtt.base; 5115 5116 BUG_ON(list_empty(&o->vma_list)); 5117 5118 list_for_each_entry(vma, &o->vma_list, vma_link) 5119 if (vma->vm == vm) 5120 return vma->node.size; 5121 5122 return 0; 5123 } 5124 5125 static unsigned long 5126 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc) 5127 { 5128 struct drm_i915_private *dev_priv = 5129 container_of(shrinker, struct drm_i915_private, mm.shrinker); 5130 struct drm_device *dev = dev_priv->dev; 5131 unsigned long freed; 5132 bool unlock; 5133 5134 if (!i915_gem_shrinker_lock(dev, &unlock)) 5135 return SHRINK_STOP; 5136 5137 freed = i915_gem_purge(dev_priv, sc->nr_to_scan); 5138 if (freed < sc->nr_to_scan) 5139 freed += __i915_gem_shrink(dev_priv, 5140 sc->nr_to_scan - freed, 5141 false); 5142 if (unlock) 5143 mutex_unlock(&dev->struct_mutex); 5144 5145 return freed; 5146 } 5147 5148 static int 5149 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr) 5150 { 5151 struct drm_i915_private *dev_priv = 5152 container_of(nb, struct drm_i915_private, mm.oom_notifier); 5153 struct drm_device *dev = dev_priv->dev; 5154 struct drm_i915_gem_object *obj; 5155 unsigned long timeout = msecs_to_jiffies(5000) + 1; 5156 unsigned long pinned, bound, unbound, freed; 5157 bool was_interruptible; 5158 bool unlock; 5159 5160 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) 5161 schedule_timeout_killable(1); 5162 if (timeout == 0) { 5163 pr_err("Unable to purge GPU memory due lock contention.\n"); 5164 return NOTIFY_DONE; 5165 } 5166 5167 was_interruptible = dev_priv->mm.interruptible; 5168 dev_priv->mm.interruptible = false; 5169 5170 freed = i915_gem_shrink_all(dev_priv); 5171 5172 dev_priv->mm.interruptible = was_interruptible; 5173 5174 /* Because we may be allocating inside our own driver, we cannot 5175 * assert that there are no objects with pinned pages that are not 5176 * being pointed to by hardware. 5177 */ 5178 unbound = bound = pinned = 0; 5179 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) { 5180 if (!obj->base.filp) /* not backed by a freeable object */ 5181 continue; 5182 5183 if (obj->pages_pin_count) 5184 pinned += obj->base.size; 5185 else 5186 unbound += obj->base.size; 5187 } 5188 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { 5189 if (!obj->base.filp) 5190 continue; 5191 5192 if (obj->pages_pin_count) 5193 pinned += obj->base.size; 5194 else 5195 bound += obj->base.size; 5196 } 5197 5198 if (unlock) 5199 mutex_unlock(&dev->struct_mutex); 5200 5201 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n", 5202 freed, pinned); 5203 if (unbound || bound) 5204 pr_err("%lu and %lu bytes still available in the " 5205 "bound and unbound GPU page lists.\n", 5206 bound, unbound); 5207 5208 *(unsigned long *)ptr += freed; 5209 return NOTIFY_DONE; 5210 } 5211 5212 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj) 5213 { 5214 struct i915_vma *vma; 5215 5216 /* This WARN has probably outlived its usefulness (callers already 5217 * WARN if they don't find the GGTT vma they expect). When removing, 5218 * remember to remove the pre-check in is_pin_display() as well */ 5219 if (WARN_ON(list_empty(&obj->vma_list))) 5220 return NULL; 5221 5222 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link); 5223 if (vma->vm != obj_to_ggtt(obj)) 5224 return NULL; 5225 5226 return vma; 5227 } 5228