xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision 1f9f6a78)
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40 
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 						   bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 			       bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49 
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 				 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 					 struct drm_i915_fence_reg *fence,
54 					 bool enable);
55 
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57 					     struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59 					    struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 				 unsigned long event,
62 				 void *ptr);
63 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64 
65 static bool cpu_cache_is_coherent(struct drm_device *dev,
66 				  enum i915_cache_level level)
67 {
68 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
69 }
70 
71 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72 {
73 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 		return true;
75 
76 	return obj->pin_display;
77 }
78 
79 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80 {
81 	if (obj->tiling_mode)
82 		i915_gem_release_mmap(obj);
83 
84 	/* As we do not have an associated fence register, we will force
85 	 * a tiling change if we ever need to acquire one.
86 	 */
87 	obj->fence_dirty = false;
88 	obj->fence_reg = I915_FENCE_REG_NONE;
89 }
90 
91 /* some bookkeeping */
92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 				  size_t size)
94 {
95 	spin_lock(&dev_priv->mm.object_stat_lock);
96 	dev_priv->mm.object_count++;
97 	dev_priv->mm.object_memory += size;
98 	spin_unlock(&dev_priv->mm.object_stat_lock);
99 }
100 
101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 				     size_t size)
103 {
104 	spin_lock(&dev_priv->mm.object_stat_lock);
105 	dev_priv->mm.object_count--;
106 	dev_priv->mm.object_memory -= size;
107 	spin_unlock(&dev_priv->mm.object_stat_lock);
108 }
109 
110 static int
111 i915_gem_wait_for_error(struct i915_gpu_error *error)
112 {
113 	int ret;
114 
115 #define EXIT_COND (!i915_reset_in_progress(error) || \
116 		   i915_terminally_wedged(error))
117 	if (EXIT_COND)
118 		return 0;
119 
120 	/*
121 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 	 * userspace. If it takes that long something really bad is going on and
123 	 * we should simply try to bail out and fail as gracefully as possible.
124 	 */
125 	ret = wait_event_interruptible_timeout(error->reset_queue,
126 					       EXIT_COND,
127 					       10*HZ);
128 	if (ret == 0) {
129 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 		return -EIO;
131 	} else if (ret < 0) {
132 		return ret;
133 	}
134 #undef EXIT_COND
135 
136 	return 0;
137 }
138 
139 int i915_mutex_lock_interruptible(struct drm_device *dev)
140 {
141 	struct drm_i915_private *dev_priv = dev->dev_private;
142 	int ret;
143 
144 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145 	if (ret)
146 		return ret;
147 
148 	ret = mutex_lock_interruptible(&dev->struct_mutex);
149 	if (ret)
150 		return ret;
151 
152 	WARN_ON(i915_verify_lists(dev));
153 	return 0;
154 }
155 
156 static inline bool
157 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
158 {
159 	return i915_gem_obj_bound_any(obj) && !obj->active;
160 }
161 
162 int
163 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
164 			    struct drm_file *file)
165 {
166 	struct drm_i915_private *dev_priv = dev->dev_private;
167 	struct drm_i915_gem_get_aperture *args = data;
168 	struct drm_i915_gem_object *obj;
169 	size_t pinned;
170 
171 	pinned = 0;
172 	mutex_lock(&dev->struct_mutex);
173 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
174 		if (i915_gem_obj_is_pinned(obj))
175 			pinned += i915_gem_obj_ggtt_size(obj);
176 	mutex_unlock(&dev->struct_mutex);
177 
178 	args->aper_size = dev_priv->gtt.base.total;
179 	args->aper_available_size = args->aper_size - pinned;
180 
181 	return 0;
182 }
183 
184 static int
185 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
186 {
187 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
188 	char *vaddr = obj->phys_handle->vaddr;
189 	struct sg_table *st;
190 	struct scatterlist *sg;
191 	int i;
192 
193 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
194 		return -EINVAL;
195 
196 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
197 		struct page *page;
198 		char *src;
199 
200 		page = shmem_read_mapping_page(mapping, i);
201 		if (IS_ERR(page))
202 			return PTR_ERR(page);
203 
204 		src = kmap_atomic(page);
205 		memcpy(vaddr, src, PAGE_SIZE);
206 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
207 		kunmap_atomic(src);
208 
209 		page_cache_release(page);
210 		vaddr += PAGE_SIZE;
211 	}
212 
213 	i915_gem_chipset_flush(obj->base.dev);
214 
215 	st = kmalloc(sizeof(*st), GFP_KERNEL);
216 	if (st == NULL)
217 		return -ENOMEM;
218 
219 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
220 		kfree(st);
221 		return -ENOMEM;
222 	}
223 
224 	sg = st->sgl;
225 	sg->offset = 0;
226 	sg->length = obj->base.size;
227 
228 	sg_dma_address(sg) = obj->phys_handle->busaddr;
229 	sg_dma_len(sg) = obj->base.size;
230 
231 	obj->pages = st;
232 	obj->has_dma_mapping = true;
233 	return 0;
234 }
235 
236 static void
237 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
238 {
239 	int ret;
240 
241 	BUG_ON(obj->madv == __I915_MADV_PURGED);
242 
243 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
244 	if (ret) {
245 		/* In the event of a disaster, abandon all caches and
246 		 * hope for the best.
247 		 */
248 		WARN_ON(ret != -EIO);
249 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
250 	}
251 
252 	if (obj->madv == I915_MADV_DONTNEED)
253 		obj->dirty = 0;
254 
255 	if (obj->dirty) {
256 		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
257 		char *vaddr = obj->phys_handle->vaddr;
258 		int i;
259 
260 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
261 			struct page *page;
262 			char *dst;
263 
264 			page = shmem_read_mapping_page(mapping, i);
265 			if (IS_ERR(page))
266 				continue;
267 
268 			dst = kmap_atomic(page);
269 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
270 			memcpy(dst, vaddr, PAGE_SIZE);
271 			kunmap_atomic(dst);
272 
273 			set_page_dirty(page);
274 			if (obj->madv == I915_MADV_WILLNEED)
275 				mark_page_accessed(page);
276 			page_cache_release(page);
277 			vaddr += PAGE_SIZE;
278 		}
279 		obj->dirty = 0;
280 	}
281 
282 	sg_free_table(obj->pages);
283 	kfree(obj->pages);
284 
285 	obj->has_dma_mapping = false;
286 }
287 
288 static void
289 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
290 {
291 	drm_pci_free(obj->base.dev, obj->phys_handle);
292 }
293 
294 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
295 	.get_pages = i915_gem_object_get_pages_phys,
296 	.put_pages = i915_gem_object_put_pages_phys,
297 	.release = i915_gem_object_release_phys,
298 };
299 
300 static int
301 drop_pages(struct drm_i915_gem_object *obj)
302 {
303 	struct i915_vma *vma, *next;
304 	int ret;
305 
306 	drm_gem_object_reference(&obj->base);
307 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
308 		if (i915_vma_unbind(vma))
309 			break;
310 
311 	ret = i915_gem_object_put_pages(obj);
312 	drm_gem_object_unreference(&obj->base);
313 
314 	return ret;
315 }
316 
317 int
318 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
319 			    int align)
320 {
321 	drm_dma_handle_t *phys;
322 	int ret;
323 
324 	if (obj->phys_handle) {
325 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
326 			return -EBUSY;
327 
328 		return 0;
329 	}
330 
331 	if (obj->madv != I915_MADV_WILLNEED)
332 		return -EFAULT;
333 
334 	if (obj->base.filp == NULL)
335 		return -EINVAL;
336 
337 	ret = drop_pages(obj);
338 	if (ret)
339 		return ret;
340 
341 	/* create a new object */
342 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
343 	if (!phys)
344 		return -ENOMEM;
345 
346 	obj->phys_handle = phys;
347 	obj->ops = &i915_gem_phys_ops;
348 
349 	return i915_gem_object_get_pages(obj);
350 }
351 
352 static int
353 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
354 		     struct drm_i915_gem_pwrite *args,
355 		     struct drm_file *file_priv)
356 {
357 	struct drm_device *dev = obj->base.dev;
358 	void *vaddr = obj->phys_handle->vaddr + args->offset;
359 	char __user *user_data = to_user_ptr(args->data_ptr);
360 	int ret;
361 
362 	/* We manually control the domain here and pretend that it
363 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
364 	 */
365 	ret = i915_gem_object_wait_rendering(obj, false);
366 	if (ret)
367 		return ret;
368 
369 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
370 		unsigned long unwritten;
371 
372 		/* The physical object once assigned is fixed for the lifetime
373 		 * of the obj, so we can safely drop the lock and continue
374 		 * to access vaddr.
375 		 */
376 		mutex_unlock(&dev->struct_mutex);
377 		unwritten = copy_from_user(vaddr, user_data, args->size);
378 		mutex_lock(&dev->struct_mutex);
379 		if (unwritten)
380 			return -EFAULT;
381 	}
382 
383 	drm_clflush_virt_range(vaddr, args->size);
384 	i915_gem_chipset_flush(dev);
385 	return 0;
386 }
387 
388 void *i915_gem_object_alloc(struct drm_device *dev)
389 {
390 	struct drm_i915_private *dev_priv = dev->dev_private;
391 	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
392 }
393 
394 void i915_gem_object_free(struct drm_i915_gem_object *obj)
395 {
396 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
397 	kmem_cache_free(dev_priv->slab, obj);
398 }
399 
400 static int
401 i915_gem_create(struct drm_file *file,
402 		struct drm_device *dev,
403 		uint64_t size,
404 		bool dumb,
405 		uint32_t *handle_p)
406 {
407 	struct drm_i915_gem_object *obj;
408 	int ret;
409 	u32 handle;
410 
411 	size = roundup(size, PAGE_SIZE);
412 	if (size == 0)
413 		return -EINVAL;
414 
415 	/* Allocate the new object */
416 	obj = i915_gem_alloc_object(dev, size);
417 	if (obj == NULL)
418 		return -ENOMEM;
419 
420 	obj->base.dumb = dumb;
421 	ret = drm_gem_handle_create(file, &obj->base, &handle);
422 	/* drop reference from allocate - handle holds it now */
423 	drm_gem_object_unreference_unlocked(&obj->base);
424 	if (ret)
425 		return ret;
426 
427 	*handle_p = handle;
428 	return 0;
429 }
430 
431 int
432 i915_gem_dumb_create(struct drm_file *file,
433 		     struct drm_device *dev,
434 		     struct drm_mode_create_dumb *args)
435 {
436 	/* have to work out size/pitch and return them */
437 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
438 	args->size = args->pitch * args->height;
439 	return i915_gem_create(file, dev,
440 			       args->size, true, &args->handle);
441 }
442 
443 /**
444  * Creates a new mm object and returns a handle to it.
445  */
446 int
447 i915_gem_create_ioctl(struct drm_device *dev, void *data,
448 		      struct drm_file *file)
449 {
450 	struct drm_i915_gem_create *args = data;
451 
452 	return i915_gem_create(file, dev,
453 			       args->size, false, &args->handle);
454 }
455 
456 static inline int
457 __copy_to_user_swizzled(char __user *cpu_vaddr,
458 			const char *gpu_vaddr, int gpu_offset,
459 			int length)
460 {
461 	int ret, cpu_offset = 0;
462 
463 	while (length > 0) {
464 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
465 		int this_length = min(cacheline_end - gpu_offset, length);
466 		int swizzled_gpu_offset = gpu_offset ^ 64;
467 
468 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
469 				     gpu_vaddr + swizzled_gpu_offset,
470 				     this_length);
471 		if (ret)
472 			return ret + length;
473 
474 		cpu_offset += this_length;
475 		gpu_offset += this_length;
476 		length -= this_length;
477 	}
478 
479 	return 0;
480 }
481 
482 static inline int
483 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
484 			  const char __user *cpu_vaddr,
485 			  int length)
486 {
487 	int ret, cpu_offset = 0;
488 
489 	while (length > 0) {
490 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
491 		int this_length = min(cacheline_end - gpu_offset, length);
492 		int swizzled_gpu_offset = gpu_offset ^ 64;
493 
494 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
495 				       cpu_vaddr + cpu_offset,
496 				       this_length);
497 		if (ret)
498 			return ret + length;
499 
500 		cpu_offset += this_length;
501 		gpu_offset += this_length;
502 		length -= this_length;
503 	}
504 
505 	return 0;
506 }
507 
508 /*
509  * Pins the specified object's pages and synchronizes the object with
510  * GPU accesses. Sets needs_clflush to non-zero if the caller should
511  * flush the object from the CPU cache.
512  */
513 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
514 				    int *needs_clflush)
515 {
516 	int ret;
517 
518 	*needs_clflush = 0;
519 
520 	if (!obj->base.filp)
521 		return -EINVAL;
522 
523 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
524 		/* If we're not in the cpu read domain, set ourself into the gtt
525 		 * read domain and manually flush cachelines (if required). This
526 		 * optimizes for the case when the gpu will dirty the data
527 		 * anyway again before the next pread happens. */
528 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
529 							obj->cache_level);
530 		ret = i915_gem_object_wait_rendering(obj, true);
531 		if (ret)
532 			return ret;
533 
534 		i915_gem_object_retire(obj);
535 	}
536 
537 	ret = i915_gem_object_get_pages(obj);
538 	if (ret)
539 		return ret;
540 
541 	i915_gem_object_pin_pages(obj);
542 
543 	return ret;
544 }
545 
546 /* Per-page copy function for the shmem pread fastpath.
547  * Flushes invalid cachelines before reading the target if
548  * needs_clflush is set. */
549 static int
550 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
551 		 char __user *user_data,
552 		 bool page_do_bit17_swizzling, bool needs_clflush)
553 {
554 	char *vaddr;
555 	int ret;
556 
557 	if (unlikely(page_do_bit17_swizzling))
558 		return -EINVAL;
559 
560 	vaddr = kmap_atomic(page);
561 	if (needs_clflush)
562 		drm_clflush_virt_range(vaddr + shmem_page_offset,
563 				       page_length);
564 	ret = __copy_to_user_inatomic(user_data,
565 				      vaddr + shmem_page_offset,
566 				      page_length);
567 	kunmap_atomic(vaddr);
568 
569 	return ret ? -EFAULT : 0;
570 }
571 
572 static void
573 shmem_clflush_swizzled_range(char *addr, unsigned long length,
574 			     bool swizzled)
575 {
576 	if (unlikely(swizzled)) {
577 		unsigned long start = (unsigned long) addr;
578 		unsigned long end = (unsigned long) addr + length;
579 
580 		/* For swizzling simply ensure that we always flush both
581 		 * channels. Lame, but simple and it works. Swizzled
582 		 * pwrite/pread is far from a hotpath - current userspace
583 		 * doesn't use it at all. */
584 		start = round_down(start, 128);
585 		end = round_up(end, 128);
586 
587 		drm_clflush_virt_range((void *)start, end - start);
588 	} else {
589 		drm_clflush_virt_range(addr, length);
590 	}
591 
592 }
593 
594 /* Only difference to the fast-path function is that this can handle bit17
595  * and uses non-atomic copy and kmap functions. */
596 static int
597 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
598 		 char __user *user_data,
599 		 bool page_do_bit17_swizzling, bool needs_clflush)
600 {
601 	char *vaddr;
602 	int ret;
603 
604 	vaddr = kmap(page);
605 	if (needs_clflush)
606 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
607 					     page_length,
608 					     page_do_bit17_swizzling);
609 
610 	if (page_do_bit17_swizzling)
611 		ret = __copy_to_user_swizzled(user_data,
612 					      vaddr, shmem_page_offset,
613 					      page_length);
614 	else
615 		ret = __copy_to_user(user_data,
616 				     vaddr + shmem_page_offset,
617 				     page_length);
618 	kunmap(page);
619 
620 	return ret ? - EFAULT : 0;
621 }
622 
623 static int
624 i915_gem_shmem_pread(struct drm_device *dev,
625 		     struct drm_i915_gem_object *obj,
626 		     struct drm_i915_gem_pread *args,
627 		     struct drm_file *file)
628 {
629 	char __user *user_data;
630 	ssize_t remain;
631 	loff_t offset;
632 	int shmem_page_offset, page_length, ret = 0;
633 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
634 	int prefaulted = 0;
635 	int needs_clflush = 0;
636 	struct sg_page_iter sg_iter;
637 
638 	user_data = to_user_ptr(args->data_ptr);
639 	remain = args->size;
640 
641 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
642 
643 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
644 	if (ret)
645 		return ret;
646 
647 	offset = args->offset;
648 
649 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
650 			 offset >> PAGE_SHIFT) {
651 		struct page *page = sg_page_iter_page(&sg_iter);
652 
653 		if (remain <= 0)
654 			break;
655 
656 		/* Operation in this page
657 		 *
658 		 * shmem_page_offset = offset within page in shmem file
659 		 * page_length = bytes to copy for this page
660 		 */
661 		shmem_page_offset = offset_in_page(offset);
662 		page_length = remain;
663 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
664 			page_length = PAGE_SIZE - shmem_page_offset;
665 
666 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
667 			(page_to_phys(page) & (1 << 17)) != 0;
668 
669 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
670 				       user_data, page_do_bit17_swizzling,
671 				       needs_clflush);
672 		if (ret == 0)
673 			goto next_page;
674 
675 		mutex_unlock(&dev->struct_mutex);
676 
677 		if (likely(!i915.prefault_disable) && !prefaulted) {
678 			ret = fault_in_multipages_writeable(user_data, remain);
679 			/* Userspace is tricking us, but we've already clobbered
680 			 * its pages with the prefault and promised to write the
681 			 * data up to the first fault. Hence ignore any errors
682 			 * and just continue. */
683 			(void)ret;
684 			prefaulted = 1;
685 		}
686 
687 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
688 				       user_data, page_do_bit17_swizzling,
689 				       needs_clflush);
690 
691 		mutex_lock(&dev->struct_mutex);
692 
693 		if (ret)
694 			goto out;
695 
696 next_page:
697 		remain -= page_length;
698 		user_data += page_length;
699 		offset += page_length;
700 	}
701 
702 out:
703 	i915_gem_object_unpin_pages(obj);
704 
705 	return ret;
706 }
707 
708 /**
709  * Reads data from the object referenced by handle.
710  *
711  * On error, the contents of *data are undefined.
712  */
713 int
714 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
715 		     struct drm_file *file)
716 {
717 	struct drm_i915_gem_pread *args = data;
718 	struct drm_i915_gem_object *obj;
719 	int ret = 0;
720 
721 	if (args->size == 0)
722 		return 0;
723 
724 	if (!access_ok(VERIFY_WRITE,
725 		       to_user_ptr(args->data_ptr),
726 		       args->size))
727 		return -EFAULT;
728 
729 	ret = i915_mutex_lock_interruptible(dev);
730 	if (ret)
731 		return ret;
732 
733 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
734 	if (&obj->base == NULL) {
735 		ret = -ENOENT;
736 		goto unlock;
737 	}
738 
739 	/* Bounds check source.  */
740 	if (args->offset > obj->base.size ||
741 	    args->size > obj->base.size - args->offset) {
742 		ret = -EINVAL;
743 		goto out;
744 	}
745 
746 	/* prime objects have no backing filp to GEM pread/pwrite
747 	 * pages from.
748 	 */
749 	if (!obj->base.filp) {
750 		ret = -EINVAL;
751 		goto out;
752 	}
753 
754 	trace_i915_gem_object_pread(obj, args->offset, args->size);
755 
756 	ret = i915_gem_shmem_pread(dev, obj, args, file);
757 
758 out:
759 	drm_gem_object_unreference(&obj->base);
760 unlock:
761 	mutex_unlock(&dev->struct_mutex);
762 	return ret;
763 }
764 
765 /* This is the fast write path which cannot handle
766  * page faults in the source data
767  */
768 
769 static inline int
770 fast_user_write(struct io_mapping *mapping,
771 		loff_t page_base, int page_offset,
772 		char __user *user_data,
773 		int length)
774 {
775 	void __iomem *vaddr_atomic;
776 	void *vaddr;
777 	unsigned long unwritten;
778 
779 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
780 	/* We can use the cpu mem copy function because this is X86. */
781 	vaddr = (void __force*)vaddr_atomic + page_offset;
782 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
783 						      user_data, length);
784 	io_mapping_unmap_atomic(vaddr_atomic);
785 	return unwritten;
786 }
787 
788 /**
789  * This is the fast pwrite path, where we copy the data directly from the
790  * user into the GTT, uncached.
791  */
792 static int
793 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
794 			 struct drm_i915_gem_object *obj,
795 			 struct drm_i915_gem_pwrite *args,
796 			 struct drm_file *file)
797 {
798 	struct drm_i915_private *dev_priv = dev->dev_private;
799 	ssize_t remain;
800 	loff_t offset, page_base;
801 	char __user *user_data;
802 	int page_offset, page_length, ret;
803 
804 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
805 	if (ret)
806 		goto out;
807 
808 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
809 	if (ret)
810 		goto out_unpin;
811 
812 	ret = i915_gem_object_put_fence(obj);
813 	if (ret)
814 		goto out_unpin;
815 
816 	user_data = to_user_ptr(args->data_ptr);
817 	remain = args->size;
818 
819 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
820 
821 	while (remain > 0) {
822 		/* Operation in this page
823 		 *
824 		 * page_base = page offset within aperture
825 		 * page_offset = offset within page
826 		 * page_length = bytes to copy for this page
827 		 */
828 		page_base = offset & PAGE_MASK;
829 		page_offset = offset_in_page(offset);
830 		page_length = remain;
831 		if ((page_offset + remain) > PAGE_SIZE)
832 			page_length = PAGE_SIZE - page_offset;
833 
834 		/* If we get a fault while copying data, then (presumably) our
835 		 * source page isn't available.  Return the error and we'll
836 		 * retry in the slow path.
837 		 */
838 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
839 				    page_offset, user_data, page_length)) {
840 			ret = -EFAULT;
841 			goto out_unpin;
842 		}
843 
844 		remain -= page_length;
845 		user_data += page_length;
846 		offset += page_length;
847 	}
848 
849 out_unpin:
850 	i915_gem_object_ggtt_unpin(obj);
851 out:
852 	return ret;
853 }
854 
855 /* Per-page copy function for the shmem pwrite fastpath.
856  * Flushes invalid cachelines before writing to the target if
857  * needs_clflush_before is set and flushes out any written cachelines after
858  * writing if needs_clflush is set. */
859 static int
860 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
861 		  char __user *user_data,
862 		  bool page_do_bit17_swizzling,
863 		  bool needs_clflush_before,
864 		  bool needs_clflush_after)
865 {
866 	char *vaddr;
867 	int ret;
868 
869 	if (unlikely(page_do_bit17_swizzling))
870 		return -EINVAL;
871 
872 	vaddr = kmap_atomic(page);
873 	if (needs_clflush_before)
874 		drm_clflush_virt_range(vaddr + shmem_page_offset,
875 				       page_length);
876 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
877 					user_data, page_length);
878 	if (needs_clflush_after)
879 		drm_clflush_virt_range(vaddr + shmem_page_offset,
880 				       page_length);
881 	kunmap_atomic(vaddr);
882 
883 	return ret ? -EFAULT : 0;
884 }
885 
886 /* Only difference to the fast-path function is that this can handle bit17
887  * and uses non-atomic copy and kmap functions. */
888 static int
889 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
890 		  char __user *user_data,
891 		  bool page_do_bit17_swizzling,
892 		  bool needs_clflush_before,
893 		  bool needs_clflush_after)
894 {
895 	char *vaddr;
896 	int ret;
897 
898 	vaddr = kmap(page);
899 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
900 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
901 					     page_length,
902 					     page_do_bit17_swizzling);
903 	if (page_do_bit17_swizzling)
904 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
905 						user_data,
906 						page_length);
907 	else
908 		ret = __copy_from_user(vaddr + shmem_page_offset,
909 				       user_data,
910 				       page_length);
911 	if (needs_clflush_after)
912 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
913 					     page_length,
914 					     page_do_bit17_swizzling);
915 	kunmap(page);
916 
917 	return ret ? -EFAULT : 0;
918 }
919 
920 static int
921 i915_gem_shmem_pwrite(struct drm_device *dev,
922 		      struct drm_i915_gem_object *obj,
923 		      struct drm_i915_gem_pwrite *args,
924 		      struct drm_file *file)
925 {
926 	ssize_t remain;
927 	loff_t offset;
928 	char __user *user_data;
929 	int shmem_page_offset, page_length, ret = 0;
930 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
931 	int hit_slowpath = 0;
932 	int needs_clflush_after = 0;
933 	int needs_clflush_before = 0;
934 	struct sg_page_iter sg_iter;
935 
936 	user_data = to_user_ptr(args->data_ptr);
937 	remain = args->size;
938 
939 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
940 
941 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
942 		/* If we're not in the cpu write domain, set ourself into the gtt
943 		 * write domain and manually flush cachelines (if required). This
944 		 * optimizes for the case when the gpu will use the data
945 		 * right away and we therefore have to clflush anyway. */
946 		needs_clflush_after = cpu_write_needs_clflush(obj);
947 		ret = i915_gem_object_wait_rendering(obj, false);
948 		if (ret)
949 			return ret;
950 
951 		i915_gem_object_retire(obj);
952 	}
953 	/* Same trick applies to invalidate partially written cachelines read
954 	 * before writing. */
955 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
956 		needs_clflush_before =
957 			!cpu_cache_is_coherent(dev, obj->cache_level);
958 
959 	ret = i915_gem_object_get_pages(obj);
960 	if (ret)
961 		return ret;
962 
963 	i915_gem_object_pin_pages(obj);
964 
965 	offset = args->offset;
966 	obj->dirty = 1;
967 
968 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
969 			 offset >> PAGE_SHIFT) {
970 		struct page *page = sg_page_iter_page(&sg_iter);
971 		int partial_cacheline_write;
972 
973 		if (remain <= 0)
974 			break;
975 
976 		/* Operation in this page
977 		 *
978 		 * shmem_page_offset = offset within page in shmem file
979 		 * page_length = bytes to copy for this page
980 		 */
981 		shmem_page_offset = offset_in_page(offset);
982 
983 		page_length = remain;
984 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
985 			page_length = PAGE_SIZE - shmem_page_offset;
986 
987 		/* If we don't overwrite a cacheline completely we need to be
988 		 * careful to have up-to-date data by first clflushing. Don't
989 		 * overcomplicate things and flush the entire patch. */
990 		partial_cacheline_write = needs_clflush_before &&
991 			((shmem_page_offset | page_length)
992 				& (boot_cpu_data.x86_clflush_size - 1));
993 
994 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
995 			(page_to_phys(page) & (1 << 17)) != 0;
996 
997 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
998 					user_data, page_do_bit17_swizzling,
999 					partial_cacheline_write,
1000 					needs_clflush_after);
1001 		if (ret == 0)
1002 			goto next_page;
1003 
1004 		hit_slowpath = 1;
1005 		mutex_unlock(&dev->struct_mutex);
1006 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1007 					user_data, page_do_bit17_swizzling,
1008 					partial_cacheline_write,
1009 					needs_clflush_after);
1010 
1011 		mutex_lock(&dev->struct_mutex);
1012 
1013 		if (ret)
1014 			goto out;
1015 
1016 next_page:
1017 		remain -= page_length;
1018 		user_data += page_length;
1019 		offset += page_length;
1020 	}
1021 
1022 out:
1023 	i915_gem_object_unpin_pages(obj);
1024 
1025 	if (hit_slowpath) {
1026 		/*
1027 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
1028 		 * cachelines in-line while writing and the object moved
1029 		 * out of the cpu write domain while we've dropped the lock.
1030 		 */
1031 		if (!needs_clflush_after &&
1032 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1033 			if (i915_gem_clflush_object(obj, obj->pin_display))
1034 				i915_gem_chipset_flush(dev);
1035 		}
1036 	}
1037 
1038 	if (needs_clflush_after)
1039 		i915_gem_chipset_flush(dev);
1040 
1041 	return ret;
1042 }
1043 
1044 /**
1045  * Writes data to the object referenced by handle.
1046  *
1047  * On error, the contents of the buffer that were to be modified are undefined.
1048  */
1049 int
1050 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1051 		      struct drm_file *file)
1052 {
1053 	struct drm_i915_gem_pwrite *args = data;
1054 	struct drm_i915_gem_object *obj;
1055 	int ret;
1056 
1057 	if (args->size == 0)
1058 		return 0;
1059 
1060 	if (!access_ok(VERIFY_READ,
1061 		       to_user_ptr(args->data_ptr),
1062 		       args->size))
1063 		return -EFAULT;
1064 
1065 	if (likely(!i915.prefault_disable)) {
1066 		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1067 						   args->size);
1068 		if (ret)
1069 			return -EFAULT;
1070 	}
1071 
1072 	ret = i915_mutex_lock_interruptible(dev);
1073 	if (ret)
1074 		return ret;
1075 
1076 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1077 	if (&obj->base == NULL) {
1078 		ret = -ENOENT;
1079 		goto unlock;
1080 	}
1081 
1082 	/* Bounds check destination. */
1083 	if (args->offset > obj->base.size ||
1084 	    args->size > obj->base.size - args->offset) {
1085 		ret = -EINVAL;
1086 		goto out;
1087 	}
1088 
1089 	/* prime objects have no backing filp to GEM pread/pwrite
1090 	 * pages from.
1091 	 */
1092 	if (!obj->base.filp) {
1093 		ret = -EINVAL;
1094 		goto out;
1095 	}
1096 
1097 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1098 
1099 	ret = -EFAULT;
1100 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1101 	 * it would end up going through the fenced access, and we'll get
1102 	 * different detiling behavior between reading and writing.
1103 	 * pread/pwrite currently are reading and writing from the CPU
1104 	 * perspective, requiring manual detiling by the client.
1105 	 */
1106 	if (obj->tiling_mode == I915_TILING_NONE &&
1107 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1108 	    cpu_write_needs_clflush(obj)) {
1109 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1110 		/* Note that the gtt paths might fail with non-page-backed user
1111 		 * pointers (e.g. gtt mappings when moving data between
1112 		 * textures). Fallback to the shmem path in that case. */
1113 	}
1114 
1115 	if (ret == -EFAULT || ret == -ENOSPC) {
1116 		if (obj->phys_handle)
1117 			ret = i915_gem_phys_pwrite(obj, args, file);
1118 		else
1119 			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1120 	}
1121 
1122 out:
1123 	drm_gem_object_unreference(&obj->base);
1124 unlock:
1125 	mutex_unlock(&dev->struct_mutex);
1126 	return ret;
1127 }
1128 
1129 int
1130 i915_gem_check_wedge(struct i915_gpu_error *error,
1131 		     bool interruptible)
1132 {
1133 	if (i915_reset_in_progress(error)) {
1134 		/* Non-interruptible callers can't handle -EAGAIN, hence return
1135 		 * -EIO unconditionally for these. */
1136 		if (!interruptible)
1137 			return -EIO;
1138 
1139 		/* Recovery complete, but the reset failed ... */
1140 		if (i915_terminally_wedged(error))
1141 			return -EIO;
1142 
1143 		/*
1144 		 * Check if GPU Reset is in progress - we need intel_ring_begin
1145 		 * to work properly to reinit the hw state while the gpu is
1146 		 * still marked as reset-in-progress. Handle this with a flag.
1147 		 */
1148 		if (!error->reload_in_reset)
1149 			return -EAGAIN;
1150 	}
1151 
1152 	return 0;
1153 }
1154 
1155 /*
1156  * Compare seqno against outstanding lazy request. Emit a request if they are
1157  * equal.
1158  */
1159 int
1160 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1161 {
1162 	int ret;
1163 
1164 	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1165 
1166 	ret = 0;
1167 	if (seqno == ring->outstanding_lazy_seqno)
1168 		ret = i915_add_request(ring, NULL);
1169 
1170 	return ret;
1171 }
1172 
1173 static void fake_irq(unsigned long data)
1174 {
1175 	wake_up_process((struct task_struct *)data);
1176 }
1177 
1178 static bool missed_irq(struct drm_i915_private *dev_priv,
1179 		       struct intel_engine_cs *ring)
1180 {
1181 	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1182 }
1183 
1184 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1185 {
1186 	if (file_priv == NULL)
1187 		return true;
1188 
1189 	return !atomic_xchg(&file_priv->rps_wait_boost, true);
1190 }
1191 
1192 /**
1193  * __i915_wait_seqno - wait until execution of seqno has finished
1194  * @ring: the ring expected to report seqno
1195  * @seqno: duh!
1196  * @reset_counter: reset sequence associated with the given seqno
1197  * @interruptible: do an interruptible wait (normally yes)
1198  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1199  *
1200  * Note: It is of utmost importance that the passed in seqno and reset_counter
1201  * values have been read by the caller in an smp safe manner. Where read-side
1202  * locks are involved, it is sufficient to read the reset_counter before
1203  * unlocking the lock that protects the seqno. For lockless tricks, the
1204  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1205  * inserted.
1206  *
1207  * Returns 0 if the seqno was found within the alloted time. Else returns the
1208  * errno with remaining time filled in timeout argument.
1209  */
1210 int __i915_wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1211 			unsigned reset_counter,
1212 			bool interruptible,
1213 			s64 *timeout,
1214 			struct drm_i915_file_private *file_priv)
1215 {
1216 	struct drm_device *dev = ring->dev;
1217 	struct drm_i915_private *dev_priv = dev->dev_private;
1218 	const bool irq_test_in_progress =
1219 		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1220 	DEFINE_WAIT(wait);
1221 	unsigned long timeout_expire;
1222 	s64 before, now;
1223 	int ret;
1224 
1225 	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1226 
1227 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1228 		return 0;
1229 
1230 	timeout_expire = timeout ?
1231 		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1232 
1233 	if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1234 		gen6_rps_boost(dev_priv);
1235 		if (file_priv)
1236 			mod_delayed_work(dev_priv->wq,
1237 					 &file_priv->mm.idle_work,
1238 					 msecs_to_jiffies(100));
1239 	}
1240 
1241 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1242 		return -ENODEV;
1243 
1244 	/* Record current time in case interrupted by signal, or wedged */
1245 	trace_i915_gem_request_wait_begin(ring, seqno);
1246 	before = ktime_get_raw_ns();
1247 	for (;;) {
1248 		struct timer_list timer;
1249 
1250 		prepare_to_wait(&ring->irq_queue, &wait,
1251 				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1252 
1253 		/* We need to check whether any gpu reset happened in between
1254 		 * the caller grabbing the seqno and now ... */
1255 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1256 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
1257 			 * is truely gone. */
1258 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1259 			if (ret == 0)
1260 				ret = -EAGAIN;
1261 			break;
1262 		}
1263 
1264 		if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1265 			ret = 0;
1266 			break;
1267 		}
1268 
1269 		if (interruptible && signal_pending(current)) {
1270 			ret = -ERESTARTSYS;
1271 			break;
1272 		}
1273 
1274 		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1275 			ret = -ETIME;
1276 			break;
1277 		}
1278 
1279 		timer.function = NULL;
1280 		if (timeout || missed_irq(dev_priv, ring)) {
1281 			unsigned long expire;
1282 
1283 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1284 			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1285 			mod_timer(&timer, expire);
1286 		}
1287 
1288 		io_schedule();
1289 
1290 		if (timer.function) {
1291 			del_singleshot_timer_sync(&timer);
1292 			destroy_timer_on_stack(&timer);
1293 		}
1294 	}
1295 	now = ktime_get_raw_ns();
1296 	trace_i915_gem_request_wait_end(ring, seqno);
1297 
1298 	if (!irq_test_in_progress)
1299 		ring->irq_put(ring);
1300 
1301 	finish_wait(&ring->irq_queue, &wait);
1302 
1303 	if (timeout) {
1304 		s64 tres = *timeout - (now - before);
1305 
1306 		*timeout = tres < 0 ? 0 : tres;
1307 
1308 		/*
1309 		 * Apparently ktime isn't accurate enough and occasionally has a
1310 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1311 		 * things up to make the test happy. We allow up to 1 jiffy.
1312 		 *
1313 		 * This is a regrssion from the timespec->ktime conversion.
1314 		 */
1315 		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1316 			*timeout = 0;
1317 	}
1318 
1319 	return ret;
1320 }
1321 
1322 /**
1323  * Waits for a sequence number to be signaled, and cleans up the
1324  * request and object lists appropriately for that event.
1325  */
1326 int
1327 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1328 {
1329 	struct drm_device *dev = ring->dev;
1330 	struct drm_i915_private *dev_priv = dev->dev_private;
1331 	bool interruptible = dev_priv->mm.interruptible;
1332 	unsigned reset_counter;
1333 	int ret;
1334 
1335 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1336 	BUG_ON(seqno == 0);
1337 
1338 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1339 	if (ret)
1340 		return ret;
1341 
1342 	ret = i915_gem_check_olr(ring, seqno);
1343 	if (ret)
1344 		return ret;
1345 
1346 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1347 	return __i915_wait_seqno(ring, seqno, reset_counter, interruptible,
1348 				 NULL, NULL);
1349 }
1350 
1351 static int
1352 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1353 {
1354 	if (!obj->active)
1355 		return 0;
1356 
1357 	/* Manually manage the write flush as we may have not yet
1358 	 * retired the buffer.
1359 	 *
1360 	 * Note that the last_write_seqno is always the earlier of
1361 	 * the two (read/write) seqno, so if we haved successfully waited,
1362 	 * we know we have passed the last write.
1363 	 */
1364 	obj->last_write_seqno = 0;
1365 
1366 	return 0;
1367 }
1368 
1369 /**
1370  * Ensures that all rendering to the object has completed and the object is
1371  * safe to unbind from the GTT or access from the CPU.
1372  */
1373 static __must_check int
1374 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1375 			       bool readonly)
1376 {
1377 	struct intel_engine_cs *ring = obj->ring;
1378 	u32 seqno;
1379 	int ret;
1380 
1381 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1382 	if (seqno == 0)
1383 		return 0;
1384 
1385 	ret = i915_wait_seqno(ring, seqno);
1386 	if (ret)
1387 		return ret;
1388 
1389 	return i915_gem_object_wait_rendering__tail(obj);
1390 }
1391 
1392 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1393  * as the object state may change during this call.
1394  */
1395 static __must_check int
1396 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1397 					    struct drm_i915_file_private *file_priv,
1398 					    bool readonly)
1399 {
1400 	struct drm_device *dev = obj->base.dev;
1401 	struct drm_i915_private *dev_priv = dev->dev_private;
1402 	struct intel_engine_cs *ring = obj->ring;
1403 	unsigned reset_counter;
1404 	u32 seqno;
1405 	int ret;
1406 
1407 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1408 	BUG_ON(!dev_priv->mm.interruptible);
1409 
1410 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1411 	if (seqno == 0)
1412 		return 0;
1413 
1414 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1415 	if (ret)
1416 		return ret;
1417 
1418 	ret = i915_gem_check_olr(ring, seqno);
1419 	if (ret)
1420 		return ret;
1421 
1422 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1423 	mutex_unlock(&dev->struct_mutex);
1424 	ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL,
1425 				file_priv);
1426 	mutex_lock(&dev->struct_mutex);
1427 	if (ret)
1428 		return ret;
1429 
1430 	return i915_gem_object_wait_rendering__tail(obj);
1431 }
1432 
1433 /**
1434  * Called when user space prepares to use an object with the CPU, either
1435  * through the mmap ioctl's mapping or a GTT mapping.
1436  */
1437 int
1438 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1439 			  struct drm_file *file)
1440 {
1441 	struct drm_i915_gem_set_domain *args = data;
1442 	struct drm_i915_gem_object *obj;
1443 	uint32_t read_domains = args->read_domains;
1444 	uint32_t write_domain = args->write_domain;
1445 	int ret;
1446 
1447 	/* Only handle setting domains to types used by the CPU. */
1448 	if (write_domain & I915_GEM_GPU_DOMAINS)
1449 		return -EINVAL;
1450 
1451 	if (read_domains & I915_GEM_GPU_DOMAINS)
1452 		return -EINVAL;
1453 
1454 	/* Having something in the write domain implies it's in the read
1455 	 * domain, and only that read domain.  Enforce that in the request.
1456 	 */
1457 	if (write_domain != 0 && read_domains != write_domain)
1458 		return -EINVAL;
1459 
1460 	ret = i915_mutex_lock_interruptible(dev);
1461 	if (ret)
1462 		return ret;
1463 
1464 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1465 	if (&obj->base == NULL) {
1466 		ret = -ENOENT;
1467 		goto unlock;
1468 	}
1469 
1470 	/* Try to flush the object off the GPU without holding the lock.
1471 	 * We will repeat the flush holding the lock in the normal manner
1472 	 * to catch cases where we are gazumped.
1473 	 */
1474 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1475 							  file->driver_priv,
1476 							  !write_domain);
1477 	if (ret)
1478 		goto unref;
1479 
1480 	if (read_domains & I915_GEM_DOMAIN_GTT) {
1481 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1482 
1483 		/* Silently promote "you're not bound, there was nothing to do"
1484 		 * to success, since the client was just asking us to
1485 		 * make sure everything was done.
1486 		 */
1487 		if (ret == -EINVAL)
1488 			ret = 0;
1489 	} else {
1490 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1491 	}
1492 
1493 unref:
1494 	drm_gem_object_unreference(&obj->base);
1495 unlock:
1496 	mutex_unlock(&dev->struct_mutex);
1497 	return ret;
1498 }
1499 
1500 /**
1501  * Called when user space has done writes to this buffer
1502  */
1503 int
1504 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1505 			 struct drm_file *file)
1506 {
1507 	struct drm_i915_gem_sw_finish *args = data;
1508 	struct drm_i915_gem_object *obj;
1509 	int ret = 0;
1510 
1511 	ret = i915_mutex_lock_interruptible(dev);
1512 	if (ret)
1513 		return ret;
1514 
1515 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1516 	if (&obj->base == NULL) {
1517 		ret = -ENOENT;
1518 		goto unlock;
1519 	}
1520 
1521 	/* Pinned buffers may be scanout, so flush the cache */
1522 	if (obj->pin_display)
1523 		i915_gem_object_flush_cpu_write_domain(obj, true);
1524 
1525 	drm_gem_object_unreference(&obj->base);
1526 unlock:
1527 	mutex_unlock(&dev->struct_mutex);
1528 	return ret;
1529 }
1530 
1531 /**
1532  * Maps the contents of an object, returning the address it is mapped
1533  * into.
1534  *
1535  * While the mapping holds a reference on the contents of the object, it doesn't
1536  * imply a ref on the object itself.
1537  *
1538  * IMPORTANT:
1539  *
1540  * DRM driver writers who look a this function as an example for how to do GEM
1541  * mmap support, please don't implement mmap support like here. The modern way
1542  * to implement DRM mmap support is with an mmap offset ioctl (like
1543  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1544  * That way debug tooling like valgrind will understand what's going on, hiding
1545  * the mmap call in a driver private ioctl will break that. The i915 driver only
1546  * does cpu mmaps this way because we didn't know better.
1547  */
1548 int
1549 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1550 		    struct drm_file *file)
1551 {
1552 	struct drm_i915_gem_mmap *args = data;
1553 	struct drm_gem_object *obj;
1554 	unsigned long addr;
1555 
1556 	obj = drm_gem_object_lookup(dev, file, args->handle);
1557 	if (obj == NULL)
1558 		return -ENOENT;
1559 
1560 	/* prime objects have no backing filp to GEM mmap
1561 	 * pages from.
1562 	 */
1563 	if (!obj->filp) {
1564 		drm_gem_object_unreference_unlocked(obj);
1565 		return -EINVAL;
1566 	}
1567 
1568 	addr = vm_mmap(obj->filp, 0, args->size,
1569 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1570 		       args->offset);
1571 	drm_gem_object_unreference_unlocked(obj);
1572 	if (IS_ERR((void *)addr))
1573 		return addr;
1574 
1575 	args->addr_ptr = (uint64_t) addr;
1576 
1577 	return 0;
1578 }
1579 
1580 /**
1581  * i915_gem_fault - fault a page into the GTT
1582  * vma: VMA in question
1583  * vmf: fault info
1584  *
1585  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1586  * from userspace.  The fault handler takes care of binding the object to
1587  * the GTT (if needed), allocating and programming a fence register (again,
1588  * only if needed based on whether the old reg is still valid or the object
1589  * is tiled) and inserting a new PTE into the faulting process.
1590  *
1591  * Note that the faulting process may involve evicting existing objects
1592  * from the GTT and/or fence registers to make room.  So performance may
1593  * suffer if the GTT working set is large or there are few fence registers
1594  * left.
1595  */
1596 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1597 {
1598 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1599 	struct drm_device *dev = obj->base.dev;
1600 	struct drm_i915_private *dev_priv = dev->dev_private;
1601 	pgoff_t page_offset;
1602 	unsigned long pfn;
1603 	int ret = 0;
1604 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1605 
1606 	intel_runtime_pm_get(dev_priv);
1607 
1608 	/* We don't use vmf->pgoff since that has the fake offset */
1609 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1610 		PAGE_SHIFT;
1611 
1612 	ret = i915_mutex_lock_interruptible(dev);
1613 	if (ret)
1614 		goto out;
1615 
1616 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1617 
1618 	/* Try to flush the object off the GPU first without holding the lock.
1619 	 * Upon reacquiring the lock, we will perform our sanity checks and then
1620 	 * repeat the flush holding the lock in the normal manner to catch cases
1621 	 * where we are gazumped.
1622 	 */
1623 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1624 	if (ret)
1625 		goto unlock;
1626 
1627 	/* Access to snoopable pages through the GTT is incoherent. */
1628 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1629 		ret = -EFAULT;
1630 		goto unlock;
1631 	}
1632 
1633 	/* Now bind it into the GTT if needed */
1634 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1635 	if (ret)
1636 		goto unlock;
1637 
1638 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1639 	if (ret)
1640 		goto unpin;
1641 
1642 	ret = i915_gem_object_get_fence(obj);
1643 	if (ret)
1644 		goto unpin;
1645 
1646 	/* Finally, remap it using the new GTT offset */
1647 	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1648 	pfn >>= PAGE_SHIFT;
1649 
1650 	if (!obj->fault_mappable) {
1651 		unsigned long size = min_t(unsigned long,
1652 					   vma->vm_end - vma->vm_start,
1653 					   obj->base.size);
1654 		int i;
1655 
1656 		for (i = 0; i < size >> PAGE_SHIFT; i++) {
1657 			ret = vm_insert_pfn(vma,
1658 					    (unsigned long)vma->vm_start + i * PAGE_SIZE,
1659 					    pfn + i);
1660 			if (ret)
1661 				break;
1662 		}
1663 
1664 		obj->fault_mappable = true;
1665 	} else
1666 		ret = vm_insert_pfn(vma,
1667 				    (unsigned long)vmf->virtual_address,
1668 				    pfn + page_offset);
1669 unpin:
1670 	i915_gem_object_ggtt_unpin(obj);
1671 unlock:
1672 	mutex_unlock(&dev->struct_mutex);
1673 out:
1674 	switch (ret) {
1675 	case -EIO:
1676 		/*
1677 		 * We eat errors when the gpu is terminally wedged to avoid
1678 		 * userspace unduly crashing (gl has no provisions for mmaps to
1679 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1680 		 * and so needs to be reported.
1681 		 */
1682 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1683 			ret = VM_FAULT_SIGBUS;
1684 			break;
1685 		}
1686 	case -EAGAIN:
1687 		/*
1688 		 * EAGAIN means the gpu is hung and we'll wait for the error
1689 		 * handler to reset everything when re-faulting in
1690 		 * i915_mutex_lock_interruptible.
1691 		 */
1692 	case 0:
1693 	case -ERESTARTSYS:
1694 	case -EINTR:
1695 	case -EBUSY:
1696 		/*
1697 		 * EBUSY is ok: this just means that another thread
1698 		 * already did the job.
1699 		 */
1700 		ret = VM_FAULT_NOPAGE;
1701 		break;
1702 	case -ENOMEM:
1703 		ret = VM_FAULT_OOM;
1704 		break;
1705 	case -ENOSPC:
1706 	case -EFAULT:
1707 		ret = VM_FAULT_SIGBUS;
1708 		break;
1709 	default:
1710 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1711 		ret = VM_FAULT_SIGBUS;
1712 		break;
1713 	}
1714 
1715 	intel_runtime_pm_put(dev_priv);
1716 	return ret;
1717 }
1718 
1719 /**
1720  * i915_gem_release_mmap - remove physical page mappings
1721  * @obj: obj in question
1722  *
1723  * Preserve the reservation of the mmapping with the DRM core code, but
1724  * relinquish ownership of the pages back to the system.
1725  *
1726  * It is vital that we remove the page mapping if we have mapped a tiled
1727  * object through the GTT and then lose the fence register due to
1728  * resource pressure. Similarly if the object has been moved out of the
1729  * aperture, than pages mapped into userspace must be revoked. Removing the
1730  * mapping will then trigger a page fault on the next user access, allowing
1731  * fixup by i915_gem_fault().
1732  */
1733 void
1734 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1735 {
1736 	if (!obj->fault_mappable)
1737 		return;
1738 
1739 	drm_vma_node_unmap(&obj->base.vma_node,
1740 			   obj->base.dev->anon_inode->i_mapping);
1741 	obj->fault_mappable = false;
1742 }
1743 
1744 void
1745 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1746 {
1747 	struct drm_i915_gem_object *obj;
1748 
1749 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1750 		i915_gem_release_mmap(obj);
1751 }
1752 
1753 uint32_t
1754 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1755 {
1756 	uint32_t gtt_size;
1757 
1758 	if (INTEL_INFO(dev)->gen >= 4 ||
1759 	    tiling_mode == I915_TILING_NONE)
1760 		return size;
1761 
1762 	/* Previous chips need a power-of-two fence region when tiling */
1763 	if (INTEL_INFO(dev)->gen == 3)
1764 		gtt_size = 1024*1024;
1765 	else
1766 		gtt_size = 512*1024;
1767 
1768 	while (gtt_size < size)
1769 		gtt_size <<= 1;
1770 
1771 	return gtt_size;
1772 }
1773 
1774 /**
1775  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1776  * @obj: object to check
1777  *
1778  * Return the required GTT alignment for an object, taking into account
1779  * potential fence register mapping.
1780  */
1781 uint32_t
1782 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1783 			   int tiling_mode, bool fenced)
1784 {
1785 	/*
1786 	 * Minimum alignment is 4k (GTT page size), but might be greater
1787 	 * if a fence register is needed for the object.
1788 	 */
1789 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1790 	    tiling_mode == I915_TILING_NONE)
1791 		return 4096;
1792 
1793 	/*
1794 	 * Previous chips need to be aligned to the size of the smallest
1795 	 * fence register that can contain the object.
1796 	 */
1797 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1798 }
1799 
1800 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1801 {
1802 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1803 	int ret;
1804 
1805 	if (drm_vma_node_has_offset(&obj->base.vma_node))
1806 		return 0;
1807 
1808 	dev_priv->mm.shrinker_no_lock_stealing = true;
1809 
1810 	ret = drm_gem_create_mmap_offset(&obj->base);
1811 	if (ret != -ENOSPC)
1812 		goto out;
1813 
1814 	/* Badly fragmented mmap space? The only way we can recover
1815 	 * space is by destroying unwanted objects. We can't randomly release
1816 	 * mmap_offsets as userspace expects them to be persistent for the
1817 	 * lifetime of the objects. The closest we can is to release the
1818 	 * offsets on purgeable objects by truncating it and marking it purged,
1819 	 * which prevents userspace from ever using that object again.
1820 	 */
1821 	i915_gem_shrink(dev_priv,
1822 			obj->base.size >> PAGE_SHIFT,
1823 			I915_SHRINK_BOUND |
1824 			I915_SHRINK_UNBOUND |
1825 			I915_SHRINK_PURGEABLE);
1826 	ret = drm_gem_create_mmap_offset(&obj->base);
1827 	if (ret != -ENOSPC)
1828 		goto out;
1829 
1830 	i915_gem_shrink_all(dev_priv);
1831 	ret = drm_gem_create_mmap_offset(&obj->base);
1832 out:
1833 	dev_priv->mm.shrinker_no_lock_stealing = false;
1834 
1835 	return ret;
1836 }
1837 
1838 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1839 {
1840 	drm_gem_free_mmap_offset(&obj->base);
1841 }
1842 
1843 static int
1844 i915_gem_mmap_gtt(struct drm_file *file,
1845 		  struct drm_device *dev,
1846 		  uint32_t handle, bool dumb,
1847 		  uint64_t *offset)
1848 {
1849 	struct drm_i915_private *dev_priv = dev->dev_private;
1850 	struct drm_i915_gem_object *obj;
1851 	int ret;
1852 
1853 	ret = i915_mutex_lock_interruptible(dev);
1854 	if (ret)
1855 		return ret;
1856 
1857 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1858 	if (&obj->base == NULL) {
1859 		ret = -ENOENT;
1860 		goto unlock;
1861 	}
1862 
1863 	/*
1864 	 * We don't allow dumb mmaps on objects created using another
1865 	 * interface.
1866 	 */
1867 	WARN_ONCE(dumb && !(obj->base.dumb || obj->base.import_attach),
1868 		  "Illegal dumb map of accelerated buffer.\n");
1869 
1870 	if (obj->base.size > dev_priv->gtt.mappable_end) {
1871 		ret = -E2BIG;
1872 		goto out;
1873 	}
1874 
1875 	if (obj->madv != I915_MADV_WILLNEED) {
1876 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1877 		ret = -EFAULT;
1878 		goto out;
1879 	}
1880 
1881 	ret = i915_gem_object_create_mmap_offset(obj);
1882 	if (ret)
1883 		goto out;
1884 
1885 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1886 
1887 out:
1888 	drm_gem_object_unreference(&obj->base);
1889 unlock:
1890 	mutex_unlock(&dev->struct_mutex);
1891 	return ret;
1892 }
1893 
1894 int
1895 i915_gem_dumb_map_offset(struct drm_file *file,
1896 			 struct drm_device *dev,
1897 			 uint32_t handle,
1898 			 uint64_t *offset)
1899 {
1900 	return i915_gem_mmap_gtt(file, dev, handle, true, offset);
1901 }
1902 
1903 /**
1904  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1905  * @dev: DRM device
1906  * @data: GTT mapping ioctl data
1907  * @file: GEM object info
1908  *
1909  * Simply returns the fake offset to userspace so it can mmap it.
1910  * The mmap call will end up in drm_gem_mmap(), which will set things
1911  * up so we can get faults in the handler above.
1912  *
1913  * The fault handler will take care of binding the object into the GTT
1914  * (since it may have been evicted to make room for something), allocating
1915  * a fence register, and mapping the appropriate aperture address into
1916  * userspace.
1917  */
1918 int
1919 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1920 			struct drm_file *file)
1921 {
1922 	struct drm_i915_gem_mmap_gtt *args = data;
1923 
1924 	return i915_gem_mmap_gtt(file, dev, args->handle, false, &args->offset);
1925 }
1926 
1927 static inline int
1928 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1929 {
1930 	return obj->madv == I915_MADV_DONTNEED;
1931 }
1932 
1933 /* Immediately discard the backing storage */
1934 static void
1935 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1936 {
1937 	i915_gem_object_free_mmap_offset(obj);
1938 
1939 	if (obj->base.filp == NULL)
1940 		return;
1941 
1942 	/* Our goal here is to return as much of the memory as
1943 	 * is possible back to the system as we are called from OOM.
1944 	 * To do this we must instruct the shmfs to drop all of its
1945 	 * backing pages, *now*.
1946 	 */
1947 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1948 	obj->madv = __I915_MADV_PURGED;
1949 }
1950 
1951 /* Try to discard unwanted pages */
1952 static void
1953 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1954 {
1955 	struct address_space *mapping;
1956 
1957 	switch (obj->madv) {
1958 	case I915_MADV_DONTNEED:
1959 		i915_gem_object_truncate(obj);
1960 	case __I915_MADV_PURGED:
1961 		return;
1962 	}
1963 
1964 	if (obj->base.filp == NULL)
1965 		return;
1966 
1967 	mapping = file_inode(obj->base.filp)->i_mapping,
1968 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1969 }
1970 
1971 static void
1972 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1973 {
1974 	struct sg_page_iter sg_iter;
1975 	int ret;
1976 
1977 	BUG_ON(obj->madv == __I915_MADV_PURGED);
1978 
1979 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1980 	if (ret) {
1981 		/* In the event of a disaster, abandon all caches and
1982 		 * hope for the best.
1983 		 */
1984 		WARN_ON(ret != -EIO);
1985 		i915_gem_clflush_object(obj, true);
1986 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1987 	}
1988 
1989 	if (i915_gem_object_needs_bit17_swizzle(obj))
1990 		i915_gem_object_save_bit_17_swizzle(obj);
1991 
1992 	if (obj->madv == I915_MADV_DONTNEED)
1993 		obj->dirty = 0;
1994 
1995 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1996 		struct page *page = sg_page_iter_page(&sg_iter);
1997 
1998 		if (obj->dirty)
1999 			set_page_dirty(page);
2000 
2001 		if (obj->madv == I915_MADV_WILLNEED)
2002 			mark_page_accessed(page);
2003 
2004 		page_cache_release(page);
2005 	}
2006 	obj->dirty = 0;
2007 
2008 	sg_free_table(obj->pages);
2009 	kfree(obj->pages);
2010 }
2011 
2012 int
2013 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2014 {
2015 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2016 
2017 	if (obj->pages == NULL)
2018 		return 0;
2019 
2020 	if (obj->pages_pin_count)
2021 		return -EBUSY;
2022 
2023 	BUG_ON(i915_gem_obj_bound_any(obj));
2024 
2025 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2026 	 * array, hence protect them from being reaped by removing them from gtt
2027 	 * lists early. */
2028 	list_del(&obj->global_list);
2029 
2030 	ops->put_pages(obj);
2031 	obj->pages = NULL;
2032 
2033 	i915_gem_object_invalidate(obj);
2034 
2035 	return 0;
2036 }
2037 
2038 unsigned long
2039 i915_gem_shrink(struct drm_i915_private *dev_priv,
2040 		long target, unsigned flags)
2041 {
2042 	const struct {
2043 		struct list_head *list;
2044 		unsigned int bit;
2045 	} phases[] = {
2046 		{ &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2047 		{ &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2048 		{ NULL, 0 },
2049 	}, *phase;
2050 	unsigned long count = 0;
2051 
2052 	/*
2053 	 * As we may completely rewrite the (un)bound list whilst unbinding
2054 	 * (due to retiring requests) we have to strictly process only
2055 	 * one element of the list at the time, and recheck the list
2056 	 * on every iteration.
2057 	 *
2058 	 * In particular, we must hold a reference whilst removing the
2059 	 * object as we may end up waiting for and/or retiring the objects.
2060 	 * This might release the final reference (held by the active list)
2061 	 * and result in the object being freed from under us. This is
2062 	 * similar to the precautions the eviction code must take whilst
2063 	 * removing objects.
2064 	 *
2065 	 * Also note that although these lists do not hold a reference to
2066 	 * the object we can safely grab one here: The final object
2067 	 * unreferencing and the bound_list are both protected by the
2068 	 * dev->struct_mutex and so we won't ever be able to observe an
2069 	 * object on the bound_list with a reference count equals 0.
2070 	 */
2071 	for (phase = phases; phase->list; phase++) {
2072 		struct list_head still_in_list;
2073 
2074 		if ((flags & phase->bit) == 0)
2075 			continue;
2076 
2077 		INIT_LIST_HEAD(&still_in_list);
2078 		while (count < target && !list_empty(phase->list)) {
2079 			struct drm_i915_gem_object *obj;
2080 			struct i915_vma *vma, *v;
2081 
2082 			obj = list_first_entry(phase->list,
2083 					       typeof(*obj), global_list);
2084 			list_move_tail(&obj->global_list, &still_in_list);
2085 
2086 			if (flags & I915_SHRINK_PURGEABLE &&
2087 			    !i915_gem_object_is_purgeable(obj))
2088 				continue;
2089 
2090 			drm_gem_object_reference(&obj->base);
2091 
2092 			/* For the unbound phase, this should be a no-op! */
2093 			list_for_each_entry_safe(vma, v,
2094 						 &obj->vma_list, vma_link)
2095 				if (i915_vma_unbind(vma))
2096 					break;
2097 
2098 			if (i915_gem_object_put_pages(obj) == 0)
2099 				count += obj->base.size >> PAGE_SHIFT;
2100 
2101 			drm_gem_object_unreference(&obj->base);
2102 		}
2103 		list_splice(&still_in_list, phase->list);
2104 	}
2105 
2106 	return count;
2107 }
2108 
2109 static unsigned long
2110 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2111 {
2112 	i915_gem_evict_everything(dev_priv->dev);
2113 	return i915_gem_shrink(dev_priv, LONG_MAX,
2114 			       I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2115 }
2116 
2117 static int
2118 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2119 {
2120 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2121 	int page_count, i;
2122 	struct address_space *mapping;
2123 	struct sg_table *st;
2124 	struct scatterlist *sg;
2125 	struct sg_page_iter sg_iter;
2126 	struct page *page;
2127 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2128 	gfp_t gfp;
2129 
2130 	/* Assert that the object is not currently in any GPU domain. As it
2131 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2132 	 * a GPU cache
2133 	 */
2134 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2135 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2136 
2137 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2138 	if (st == NULL)
2139 		return -ENOMEM;
2140 
2141 	page_count = obj->base.size / PAGE_SIZE;
2142 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2143 		kfree(st);
2144 		return -ENOMEM;
2145 	}
2146 
2147 	/* Get the list of pages out of our struct file.  They'll be pinned
2148 	 * at this point until we release them.
2149 	 *
2150 	 * Fail silently without starting the shrinker
2151 	 */
2152 	mapping = file_inode(obj->base.filp)->i_mapping;
2153 	gfp = mapping_gfp_mask(mapping);
2154 	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2155 	gfp &= ~(__GFP_IO | __GFP_WAIT);
2156 	sg = st->sgl;
2157 	st->nents = 0;
2158 	for (i = 0; i < page_count; i++) {
2159 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2160 		if (IS_ERR(page)) {
2161 			i915_gem_shrink(dev_priv,
2162 					page_count,
2163 					I915_SHRINK_BOUND |
2164 					I915_SHRINK_UNBOUND |
2165 					I915_SHRINK_PURGEABLE);
2166 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2167 		}
2168 		if (IS_ERR(page)) {
2169 			/* We've tried hard to allocate the memory by reaping
2170 			 * our own buffer, now let the real VM do its job and
2171 			 * go down in flames if truly OOM.
2172 			 */
2173 			i915_gem_shrink_all(dev_priv);
2174 			page = shmem_read_mapping_page(mapping, i);
2175 			if (IS_ERR(page))
2176 				goto err_pages;
2177 		}
2178 #ifdef CONFIG_SWIOTLB
2179 		if (swiotlb_nr_tbl()) {
2180 			st->nents++;
2181 			sg_set_page(sg, page, PAGE_SIZE, 0);
2182 			sg = sg_next(sg);
2183 			continue;
2184 		}
2185 #endif
2186 		if (!i || page_to_pfn(page) != last_pfn + 1) {
2187 			if (i)
2188 				sg = sg_next(sg);
2189 			st->nents++;
2190 			sg_set_page(sg, page, PAGE_SIZE, 0);
2191 		} else {
2192 			sg->length += PAGE_SIZE;
2193 		}
2194 		last_pfn = page_to_pfn(page);
2195 
2196 		/* Check that the i965g/gm workaround works. */
2197 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2198 	}
2199 #ifdef CONFIG_SWIOTLB
2200 	if (!swiotlb_nr_tbl())
2201 #endif
2202 		sg_mark_end(sg);
2203 	obj->pages = st;
2204 
2205 	if (i915_gem_object_needs_bit17_swizzle(obj))
2206 		i915_gem_object_do_bit_17_swizzle(obj);
2207 
2208 	if (obj->tiling_mode != I915_TILING_NONE &&
2209 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2210 		i915_gem_object_pin_pages(obj);
2211 
2212 	return 0;
2213 
2214 err_pages:
2215 	sg_mark_end(sg);
2216 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2217 		page_cache_release(sg_page_iter_page(&sg_iter));
2218 	sg_free_table(st);
2219 	kfree(st);
2220 
2221 	/* shmemfs first checks if there is enough memory to allocate the page
2222 	 * and reports ENOSPC should there be insufficient, along with the usual
2223 	 * ENOMEM for a genuine allocation failure.
2224 	 *
2225 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2226 	 * space and so want to translate the error from shmemfs back to our
2227 	 * usual understanding of ENOMEM.
2228 	 */
2229 	if (PTR_ERR(page) == -ENOSPC)
2230 		return -ENOMEM;
2231 	else
2232 		return PTR_ERR(page);
2233 }
2234 
2235 /* Ensure that the associated pages are gathered from the backing storage
2236  * and pinned into our object. i915_gem_object_get_pages() may be called
2237  * multiple times before they are released by a single call to
2238  * i915_gem_object_put_pages() - once the pages are no longer referenced
2239  * either as a result of memory pressure (reaping pages under the shrinker)
2240  * or as the object is itself released.
2241  */
2242 int
2243 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2244 {
2245 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2246 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2247 	int ret;
2248 
2249 	if (obj->pages)
2250 		return 0;
2251 
2252 	if (obj->madv != I915_MADV_WILLNEED) {
2253 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2254 		return -EFAULT;
2255 	}
2256 
2257 	BUG_ON(obj->pages_pin_count);
2258 
2259 	ret = ops->get_pages(obj);
2260 	if (ret)
2261 		return ret;
2262 
2263 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2264 	return 0;
2265 }
2266 
2267 static void
2268 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2269 			       struct intel_engine_cs *ring)
2270 {
2271 	u32 seqno = intel_ring_get_seqno(ring);
2272 
2273 	BUG_ON(ring == NULL);
2274 	if (obj->ring != ring && obj->last_write_seqno) {
2275 		/* Keep the seqno relative to the current ring */
2276 		obj->last_write_seqno = seqno;
2277 	}
2278 	obj->ring = ring;
2279 
2280 	/* Add a reference if we're newly entering the active list. */
2281 	if (!obj->active) {
2282 		drm_gem_object_reference(&obj->base);
2283 		obj->active = 1;
2284 	}
2285 
2286 	list_move_tail(&obj->ring_list, &ring->active_list);
2287 
2288 	obj->last_read_seqno = seqno;
2289 }
2290 
2291 void i915_vma_move_to_active(struct i915_vma *vma,
2292 			     struct intel_engine_cs *ring)
2293 {
2294 	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2295 	return i915_gem_object_move_to_active(vma->obj, ring);
2296 }
2297 
2298 static void
2299 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2300 {
2301 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2302 	struct i915_address_space *vm;
2303 	struct i915_vma *vma;
2304 
2305 	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2306 	BUG_ON(!obj->active);
2307 
2308 	list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2309 		vma = i915_gem_obj_to_vma(obj, vm);
2310 		if (vma && !list_empty(&vma->mm_list))
2311 			list_move_tail(&vma->mm_list, &vm->inactive_list);
2312 	}
2313 
2314 	intel_fb_obj_flush(obj, true);
2315 
2316 	list_del_init(&obj->ring_list);
2317 	obj->ring = NULL;
2318 
2319 	obj->last_read_seqno = 0;
2320 	obj->last_write_seqno = 0;
2321 	obj->base.write_domain = 0;
2322 
2323 	obj->last_fenced_seqno = 0;
2324 
2325 	obj->active = 0;
2326 	drm_gem_object_unreference(&obj->base);
2327 
2328 	WARN_ON(i915_verify_lists(dev));
2329 }
2330 
2331 static void
2332 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2333 {
2334 	struct intel_engine_cs *ring = obj->ring;
2335 
2336 	if (ring == NULL)
2337 		return;
2338 
2339 	if (i915_seqno_passed(ring->get_seqno(ring, true),
2340 			      obj->last_read_seqno))
2341 		i915_gem_object_move_to_inactive(obj);
2342 }
2343 
2344 static int
2345 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2346 {
2347 	struct drm_i915_private *dev_priv = dev->dev_private;
2348 	struct intel_engine_cs *ring;
2349 	int ret, i, j;
2350 
2351 	/* Carefully retire all requests without writing to the rings */
2352 	for_each_ring(ring, dev_priv, i) {
2353 		ret = intel_ring_idle(ring);
2354 		if (ret)
2355 			return ret;
2356 	}
2357 	i915_gem_retire_requests(dev);
2358 
2359 	/* Finally reset hw state */
2360 	for_each_ring(ring, dev_priv, i) {
2361 		intel_ring_init_seqno(ring, seqno);
2362 
2363 		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2364 			ring->semaphore.sync_seqno[j] = 0;
2365 	}
2366 
2367 	return 0;
2368 }
2369 
2370 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2371 {
2372 	struct drm_i915_private *dev_priv = dev->dev_private;
2373 	int ret;
2374 
2375 	if (seqno == 0)
2376 		return -EINVAL;
2377 
2378 	/* HWS page needs to be set less than what we
2379 	 * will inject to ring
2380 	 */
2381 	ret = i915_gem_init_seqno(dev, seqno - 1);
2382 	if (ret)
2383 		return ret;
2384 
2385 	/* Carefully set the last_seqno value so that wrap
2386 	 * detection still works
2387 	 */
2388 	dev_priv->next_seqno = seqno;
2389 	dev_priv->last_seqno = seqno - 1;
2390 	if (dev_priv->last_seqno == 0)
2391 		dev_priv->last_seqno--;
2392 
2393 	return 0;
2394 }
2395 
2396 int
2397 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2398 {
2399 	struct drm_i915_private *dev_priv = dev->dev_private;
2400 
2401 	/* reserve 0 for non-seqno */
2402 	if (dev_priv->next_seqno == 0) {
2403 		int ret = i915_gem_init_seqno(dev, 0);
2404 		if (ret)
2405 			return ret;
2406 
2407 		dev_priv->next_seqno = 1;
2408 	}
2409 
2410 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2411 	return 0;
2412 }
2413 
2414 int __i915_add_request(struct intel_engine_cs *ring,
2415 		       struct drm_file *file,
2416 		       struct drm_i915_gem_object *obj,
2417 		       u32 *out_seqno)
2418 {
2419 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2420 	struct drm_i915_gem_request *request;
2421 	struct intel_ringbuffer *ringbuf;
2422 	u32 request_ring_position, request_start;
2423 	int ret;
2424 
2425 	request = ring->preallocated_lazy_request;
2426 	if (WARN_ON(request == NULL))
2427 		return -ENOMEM;
2428 
2429 	if (i915.enable_execlists) {
2430 		struct intel_context *ctx = request->ctx;
2431 		ringbuf = ctx->engine[ring->id].ringbuf;
2432 	} else
2433 		ringbuf = ring->buffer;
2434 
2435 	request_start = intel_ring_get_tail(ringbuf);
2436 	/*
2437 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2438 	 * after having emitted the batchbuffer command. Hence we need to fix
2439 	 * things up similar to emitting the lazy request. The difference here
2440 	 * is that the flush _must_ happen before the next request, no matter
2441 	 * what.
2442 	 */
2443 	if (i915.enable_execlists) {
2444 		ret = logical_ring_flush_all_caches(ringbuf);
2445 		if (ret)
2446 			return ret;
2447 	} else {
2448 		ret = intel_ring_flush_all_caches(ring);
2449 		if (ret)
2450 			return ret;
2451 	}
2452 
2453 	/* Record the position of the start of the request so that
2454 	 * should we detect the updated seqno part-way through the
2455 	 * GPU processing the request, we never over-estimate the
2456 	 * position of the head.
2457 	 */
2458 	request_ring_position = intel_ring_get_tail(ringbuf);
2459 
2460 	if (i915.enable_execlists) {
2461 		ret = ring->emit_request(ringbuf);
2462 		if (ret)
2463 			return ret;
2464 	} else {
2465 		ret = ring->add_request(ring);
2466 		if (ret)
2467 			return ret;
2468 	}
2469 
2470 	request->seqno = intel_ring_get_seqno(ring);
2471 	request->ring = ring;
2472 	request->head = request_start;
2473 	request->tail = request_ring_position;
2474 
2475 	/* Whilst this request exists, batch_obj will be on the
2476 	 * active_list, and so will hold the active reference. Only when this
2477 	 * request is retired will the the batch_obj be moved onto the
2478 	 * inactive_list and lose its active reference. Hence we do not need
2479 	 * to explicitly hold another reference here.
2480 	 */
2481 	request->batch_obj = obj;
2482 
2483 	if (!i915.enable_execlists) {
2484 		/* Hold a reference to the current context so that we can inspect
2485 		 * it later in case a hangcheck error event fires.
2486 		 */
2487 		request->ctx = ring->last_context;
2488 		if (request->ctx)
2489 			i915_gem_context_reference(request->ctx);
2490 	}
2491 
2492 	request->emitted_jiffies = jiffies;
2493 	list_add_tail(&request->list, &ring->request_list);
2494 	request->file_priv = NULL;
2495 
2496 	if (file) {
2497 		struct drm_i915_file_private *file_priv = file->driver_priv;
2498 
2499 		spin_lock(&file_priv->mm.lock);
2500 		request->file_priv = file_priv;
2501 		list_add_tail(&request->client_list,
2502 			      &file_priv->mm.request_list);
2503 		spin_unlock(&file_priv->mm.lock);
2504 	}
2505 
2506 	trace_i915_gem_request_add(ring, request->seqno);
2507 	ring->outstanding_lazy_seqno = 0;
2508 	ring->preallocated_lazy_request = NULL;
2509 
2510 	i915_queue_hangcheck(ring->dev);
2511 
2512 	cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2513 	queue_delayed_work(dev_priv->wq,
2514 			   &dev_priv->mm.retire_work,
2515 			   round_jiffies_up_relative(HZ));
2516 	intel_mark_busy(dev_priv->dev);
2517 
2518 	if (out_seqno)
2519 		*out_seqno = request->seqno;
2520 	return 0;
2521 }
2522 
2523 static inline void
2524 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2525 {
2526 	struct drm_i915_file_private *file_priv = request->file_priv;
2527 
2528 	if (!file_priv)
2529 		return;
2530 
2531 	spin_lock(&file_priv->mm.lock);
2532 	list_del(&request->client_list);
2533 	request->file_priv = NULL;
2534 	spin_unlock(&file_priv->mm.lock);
2535 }
2536 
2537 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2538 				   const struct intel_context *ctx)
2539 {
2540 	unsigned long elapsed;
2541 
2542 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2543 
2544 	if (ctx->hang_stats.banned)
2545 		return true;
2546 
2547 	if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2548 		if (!i915_gem_context_is_default(ctx)) {
2549 			DRM_DEBUG("context hanging too fast, banning!\n");
2550 			return true;
2551 		} else if (i915_stop_ring_allow_ban(dev_priv)) {
2552 			if (i915_stop_ring_allow_warn(dev_priv))
2553 				DRM_ERROR("gpu hanging too fast, banning!\n");
2554 			return true;
2555 		}
2556 	}
2557 
2558 	return false;
2559 }
2560 
2561 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2562 				  struct intel_context *ctx,
2563 				  const bool guilty)
2564 {
2565 	struct i915_ctx_hang_stats *hs;
2566 
2567 	if (WARN_ON(!ctx))
2568 		return;
2569 
2570 	hs = &ctx->hang_stats;
2571 
2572 	if (guilty) {
2573 		hs->banned = i915_context_is_banned(dev_priv, ctx);
2574 		hs->batch_active++;
2575 		hs->guilty_ts = get_seconds();
2576 	} else {
2577 		hs->batch_pending++;
2578 	}
2579 }
2580 
2581 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2582 {
2583 	struct intel_context *ctx = request->ctx;
2584 
2585 	list_del(&request->list);
2586 	i915_gem_request_remove_from_client(request);
2587 
2588 	if (ctx) {
2589 		if (i915.enable_execlists) {
2590 			struct intel_engine_cs *ring = request->ring;
2591 
2592 			if (ctx != ring->default_context)
2593 				intel_lr_context_unpin(ring, ctx);
2594 		}
2595 		i915_gem_context_unreference(ctx);
2596 	}
2597 	kfree(request);
2598 }
2599 
2600 struct drm_i915_gem_request *
2601 i915_gem_find_active_request(struct intel_engine_cs *ring)
2602 {
2603 	struct drm_i915_gem_request *request;
2604 	u32 completed_seqno;
2605 
2606 	completed_seqno = ring->get_seqno(ring, false);
2607 
2608 	list_for_each_entry(request, &ring->request_list, list) {
2609 		if (i915_seqno_passed(completed_seqno, request->seqno))
2610 			continue;
2611 
2612 		return request;
2613 	}
2614 
2615 	return NULL;
2616 }
2617 
2618 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2619 				       struct intel_engine_cs *ring)
2620 {
2621 	struct drm_i915_gem_request *request;
2622 	bool ring_hung;
2623 
2624 	request = i915_gem_find_active_request(ring);
2625 
2626 	if (request == NULL)
2627 		return;
2628 
2629 	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2630 
2631 	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2632 
2633 	list_for_each_entry_continue(request, &ring->request_list, list)
2634 		i915_set_reset_status(dev_priv, request->ctx, false);
2635 }
2636 
2637 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2638 					struct intel_engine_cs *ring)
2639 {
2640 	while (!list_empty(&ring->active_list)) {
2641 		struct drm_i915_gem_object *obj;
2642 
2643 		obj = list_first_entry(&ring->active_list,
2644 				       struct drm_i915_gem_object,
2645 				       ring_list);
2646 
2647 		i915_gem_object_move_to_inactive(obj);
2648 	}
2649 
2650 	/*
2651 	 * Clear the execlists queue up before freeing the requests, as those
2652 	 * are the ones that keep the context and ringbuffer backing objects
2653 	 * pinned in place.
2654 	 */
2655 	while (!list_empty(&ring->execlist_queue)) {
2656 		struct intel_ctx_submit_request *submit_req;
2657 
2658 		submit_req = list_first_entry(&ring->execlist_queue,
2659 				struct intel_ctx_submit_request,
2660 				execlist_link);
2661 		list_del(&submit_req->execlist_link);
2662 		intel_runtime_pm_put(dev_priv);
2663 		i915_gem_context_unreference(submit_req->ctx);
2664 		kfree(submit_req);
2665 	}
2666 
2667 	/*
2668 	 * We must free the requests after all the corresponding objects have
2669 	 * been moved off active lists. Which is the same order as the normal
2670 	 * retire_requests function does. This is important if object hold
2671 	 * implicit references on things like e.g. ppgtt address spaces through
2672 	 * the request.
2673 	 */
2674 	while (!list_empty(&ring->request_list)) {
2675 		struct drm_i915_gem_request *request;
2676 
2677 		request = list_first_entry(&ring->request_list,
2678 					   struct drm_i915_gem_request,
2679 					   list);
2680 
2681 		i915_gem_free_request(request);
2682 	}
2683 
2684 	/* These may not have been flush before the reset, do so now */
2685 	kfree(ring->preallocated_lazy_request);
2686 	ring->preallocated_lazy_request = NULL;
2687 	ring->outstanding_lazy_seqno = 0;
2688 }
2689 
2690 void i915_gem_restore_fences(struct drm_device *dev)
2691 {
2692 	struct drm_i915_private *dev_priv = dev->dev_private;
2693 	int i;
2694 
2695 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2696 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2697 
2698 		/*
2699 		 * Commit delayed tiling changes if we have an object still
2700 		 * attached to the fence, otherwise just clear the fence.
2701 		 */
2702 		if (reg->obj) {
2703 			i915_gem_object_update_fence(reg->obj, reg,
2704 						     reg->obj->tiling_mode);
2705 		} else {
2706 			i915_gem_write_fence(dev, i, NULL);
2707 		}
2708 	}
2709 }
2710 
2711 void i915_gem_reset(struct drm_device *dev)
2712 {
2713 	struct drm_i915_private *dev_priv = dev->dev_private;
2714 	struct intel_engine_cs *ring;
2715 	int i;
2716 
2717 	/*
2718 	 * Before we free the objects from the requests, we need to inspect
2719 	 * them for finding the guilty party. As the requests only borrow
2720 	 * their reference to the objects, the inspection must be done first.
2721 	 */
2722 	for_each_ring(ring, dev_priv, i)
2723 		i915_gem_reset_ring_status(dev_priv, ring);
2724 
2725 	for_each_ring(ring, dev_priv, i)
2726 		i915_gem_reset_ring_cleanup(dev_priv, ring);
2727 
2728 	i915_gem_context_reset(dev);
2729 
2730 	i915_gem_restore_fences(dev);
2731 }
2732 
2733 /**
2734  * This function clears the request list as sequence numbers are passed.
2735  */
2736 void
2737 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2738 {
2739 	uint32_t seqno;
2740 
2741 	if (list_empty(&ring->request_list))
2742 		return;
2743 
2744 	WARN_ON(i915_verify_lists(ring->dev));
2745 
2746 	seqno = ring->get_seqno(ring, true);
2747 
2748 	/* Move any buffers on the active list that are no longer referenced
2749 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
2750 	 * before we free the context associated with the requests.
2751 	 */
2752 	while (!list_empty(&ring->active_list)) {
2753 		struct drm_i915_gem_object *obj;
2754 
2755 		obj = list_first_entry(&ring->active_list,
2756 				      struct drm_i915_gem_object,
2757 				      ring_list);
2758 
2759 		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2760 			break;
2761 
2762 		i915_gem_object_move_to_inactive(obj);
2763 	}
2764 
2765 
2766 	while (!list_empty(&ring->request_list)) {
2767 		struct drm_i915_gem_request *request;
2768 		struct intel_ringbuffer *ringbuf;
2769 
2770 		request = list_first_entry(&ring->request_list,
2771 					   struct drm_i915_gem_request,
2772 					   list);
2773 
2774 		if (!i915_seqno_passed(seqno, request->seqno))
2775 			break;
2776 
2777 		trace_i915_gem_request_retire(ring, request->seqno);
2778 
2779 		/* This is one of the few common intersection points
2780 		 * between legacy ringbuffer submission and execlists:
2781 		 * we need to tell them apart in order to find the correct
2782 		 * ringbuffer to which the request belongs to.
2783 		 */
2784 		if (i915.enable_execlists) {
2785 			struct intel_context *ctx = request->ctx;
2786 			ringbuf = ctx->engine[ring->id].ringbuf;
2787 		} else
2788 			ringbuf = ring->buffer;
2789 
2790 		/* We know the GPU must have read the request to have
2791 		 * sent us the seqno + interrupt, so use the position
2792 		 * of tail of the request to update the last known position
2793 		 * of the GPU head.
2794 		 */
2795 		ringbuf->last_retired_head = request->tail;
2796 
2797 		i915_gem_free_request(request);
2798 	}
2799 
2800 	if (unlikely(ring->trace_irq_seqno &&
2801 		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2802 		ring->irq_put(ring);
2803 		ring->trace_irq_seqno = 0;
2804 	}
2805 
2806 	WARN_ON(i915_verify_lists(ring->dev));
2807 }
2808 
2809 bool
2810 i915_gem_retire_requests(struct drm_device *dev)
2811 {
2812 	struct drm_i915_private *dev_priv = dev->dev_private;
2813 	struct intel_engine_cs *ring;
2814 	bool idle = true;
2815 	int i;
2816 
2817 	for_each_ring(ring, dev_priv, i) {
2818 		i915_gem_retire_requests_ring(ring);
2819 		idle &= list_empty(&ring->request_list);
2820 		if (i915.enable_execlists) {
2821 			unsigned long flags;
2822 
2823 			spin_lock_irqsave(&ring->execlist_lock, flags);
2824 			idle &= list_empty(&ring->execlist_queue);
2825 			spin_unlock_irqrestore(&ring->execlist_lock, flags);
2826 
2827 			intel_execlists_retire_requests(ring);
2828 		}
2829 	}
2830 
2831 	if (idle)
2832 		mod_delayed_work(dev_priv->wq,
2833 				   &dev_priv->mm.idle_work,
2834 				   msecs_to_jiffies(100));
2835 
2836 	return idle;
2837 }
2838 
2839 static void
2840 i915_gem_retire_work_handler(struct work_struct *work)
2841 {
2842 	struct drm_i915_private *dev_priv =
2843 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
2844 	struct drm_device *dev = dev_priv->dev;
2845 	bool idle;
2846 
2847 	/* Come back later if the device is busy... */
2848 	idle = false;
2849 	if (mutex_trylock(&dev->struct_mutex)) {
2850 		idle = i915_gem_retire_requests(dev);
2851 		mutex_unlock(&dev->struct_mutex);
2852 	}
2853 	if (!idle)
2854 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2855 				   round_jiffies_up_relative(HZ));
2856 }
2857 
2858 static void
2859 i915_gem_idle_work_handler(struct work_struct *work)
2860 {
2861 	struct drm_i915_private *dev_priv =
2862 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2863 
2864 	intel_mark_idle(dev_priv->dev);
2865 }
2866 
2867 /**
2868  * Ensures that an object will eventually get non-busy by flushing any required
2869  * write domains, emitting any outstanding lazy request and retiring and
2870  * completed requests.
2871  */
2872 static int
2873 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2874 {
2875 	int ret;
2876 
2877 	if (obj->active) {
2878 		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2879 		if (ret)
2880 			return ret;
2881 
2882 		i915_gem_retire_requests_ring(obj->ring);
2883 	}
2884 
2885 	return 0;
2886 }
2887 
2888 /**
2889  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2890  * @DRM_IOCTL_ARGS: standard ioctl arguments
2891  *
2892  * Returns 0 if successful, else an error is returned with the remaining time in
2893  * the timeout parameter.
2894  *  -ETIME: object is still busy after timeout
2895  *  -ERESTARTSYS: signal interrupted the wait
2896  *  -ENONENT: object doesn't exist
2897  * Also possible, but rare:
2898  *  -EAGAIN: GPU wedged
2899  *  -ENOMEM: damn
2900  *  -ENODEV: Internal IRQ fail
2901  *  -E?: The add request failed
2902  *
2903  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2904  * non-zero timeout parameter the wait ioctl will wait for the given number of
2905  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2906  * without holding struct_mutex the object may become re-busied before this
2907  * function completes. A similar but shorter * race condition exists in the busy
2908  * ioctl
2909  */
2910 int
2911 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2912 {
2913 	struct drm_i915_private *dev_priv = dev->dev_private;
2914 	struct drm_i915_gem_wait *args = data;
2915 	struct drm_i915_gem_object *obj;
2916 	struct intel_engine_cs *ring = NULL;
2917 	unsigned reset_counter;
2918 	u32 seqno = 0;
2919 	int ret = 0;
2920 
2921 	if (args->flags != 0)
2922 		return -EINVAL;
2923 
2924 	ret = i915_mutex_lock_interruptible(dev);
2925 	if (ret)
2926 		return ret;
2927 
2928 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2929 	if (&obj->base == NULL) {
2930 		mutex_unlock(&dev->struct_mutex);
2931 		return -ENOENT;
2932 	}
2933 
2934 	/* Need to make sure the object gets inactive eventually. */
2935 	ret = i915_gem_object_flush_active(obj);
2936 	if (ret)
2937 		goto out;
2938 
2939 	if (obj->active) {
2940 		seqno = obj->last_read_seqno;
2941 		ring = obj->ring;
2942 	}
2943 
2944 	if (seqno == 0)
2945 		 goto out;
2946 
2947 	/* Do this after OLR check to make sure we make forward progress polling
2948 	 * on this IOCTL with a timeout <=0 (like busy ioctl)
2949 	 */
2950 	if (args->timeout_ns <= 0) {
2951 		ret = -ETIME;
2952 		goto out;
2953 	}
2954 
2955 	drm_gem_object_unreference(&obj->base);
2956 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2957 	mutex_unlock(&dev->struct_mutex);
2958 
2959 	return __i915_wait_seqno(ring, seqno, reset_counter, true,
2960 				 &args->timeout_ns, file->driver_priv);
2961 
2962 out:
2963 	drm_gem_object_unreference(&obj->base);
2964 	mutex_unlock(&dev->struct_mutex);
2965 	return ret;
2966 }
2967 
2968 /**
2969  * i915_gem_object_sync - sync an object to a ring.
2970  *
2971  * @obj: object which may be in use on another ring.
2972  * @to: ring we wish to use the object on. May be NULL.
2973  *
2974  * This code is meant to abstract object synchronization with the GPU.
2975  * Calling with NULL implies synchronizing the object with the CPU
2976  * rather than a particular GPU ring.
2977  *
2978  * Returns 0 if successful, else propagates up the lower layer error.
2979  */
2980 int
2981 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2982 		     struct intel_engine_cs *to)
2983 {
2984 	struct intel_engine_cs *from = obj->ring;
2985 	u32 seqno;
2986 	int ret, idx;
2987 
2988 	if (from == NULL || to == from)
2989 		return 0;
2990 
2991 	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2992 		return i915_gem_object_wait_rendering(obj, false);
2993 
2994 	idx = intel_ring_sync_index(from, to);
2995 
2996 	seqno = obj->last_read_seqno;
2997 	/* Optimization: Avoid semaphore sync when we are sure we already
2998 	 * waited for an object with higher seqno */
2999 	if (seqno <= from->semaphore.sync_seqno[idx])
3000 		return 0;
3001 
3002 	ret = i915_gem_check_olr(obj->ring, seqno);
3003 	if (ret)
3004 		return ret;
3005 
3006 	trace_i915_gem_ring_sync_to(from, to, seqno);
3007 	ret = to->semaphore.sync_to(to, from, seqno);
3008 	if (!ret)
3009 		/* We use last_read_seqno because sync_to()
3010 		 * might have just caused seqno wrap under
3011 		 * the radar.
3012 		 */
3013 		from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
3014 
3015 	return ret;
3016 }
3017 
3018 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3019 {
3020 	u32 old_write_domain, old_read_domains;
3021 
3022 	/* Force a pagefault for domain tracking on next user access */
3023 	i915_gem_release_mmap(obj);
3024 
3025 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3026 		return;
3027 
3028 	/* Wait for any direct GTT access to complete */
3029 	mb();
3030 
3031 	old_read_domains = obj->base.read_domains;
3032 	old_write_domain = obj->base.write_domain;
3033 
3034 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3035 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3036 
3037 	trace_i915_gem_object_change_domain(obj,
3038 					    old_read_domains,
3039 					    old_write_domain);
3040 }
3041 
3042 int i915_vma_unbind(struct i915_vma *vma)
3043 {
3044 	struct drm_i915_gem_object *obj = vma->obj;
3045 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3046 	int ret;
3047 
3048 	if (list_empty(&vma->vma_link))
3049 		return 0;
3050 
3051 	if (!drm_mm_node_allocated(&vma->node)) {
3052 		i915_gem_vma_destroy(vma);
3053 		return 0;
3054 	}
3055 
3056 	if (vma->pin_count)
3057 		return -EBUSY;
3058 
3059 	BUG_ON(obj->pages == NULL);
3060 
3061 	ret = i915_gem_object_finish_gpu(obj);
3062 	if (ret)
3063 		return ret;
3064 	/* Continue on if we fail due to EIO, the GPU is hung so we
3065 	 * should be safe and we need to cleanup or else we might
3066 	 * cause memory corruption through use-after-free.
3067 	 */
3068 
3069 	/* Throw away the active reference before moving to the unbound list */
3070 	i915_gem_object_retire(obj);
3071 
3072 	if (i915_is_ggtt(vma->vm)) {
3073 		i915_gem_object_finish_gtt(obj);
3074 
3075 		/* release the fence reg _after_ flushing */
3076 		ret = i915_gem_object_put_fence(obj);
3077 		if (ret)
3078 			return ret;
3079 	}
3080 
3081 	trace_i915_vma_unbind(vma);
3082 
3083 	vma->unbind_vma(vma);
3084 
3085 	list_del_init(&vma->mm_list);
3086 	if (i915_is_ggtt(vma->vm))
3087 		obj->map_and_fenceable = false;
3088 
3089 	drm_mm_remove_node(&vma->node);
3090 	i915_gem_vma_destroy(vma);
3091 
3092 	/* Since the unbound list is global, only move to that list if
3093 	 * no more VMAs exist. */
3094 	if (list_empty(&obj->vma_list)) {
3095 		i915_gem_gtt_finish_object(obj);
3096 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3097 	}
3098 
3099 	/* And finally now the object is completely decoupled from this vma,
3100 	 * we can drop its hold on the backing storage and allow it to be
3101 	 * reaped by the shrinker.
3102 	 */
3103 	i915_gem_object_unpin_pages(obj);
3104 
3105 	return 0;
3106 }
3107 
3108 int i915_gpu_idle(struct drm_device *dev)
3109 {
3110 	struct drm_i915_private *dev_priv = dev->dev_private;
3111 	struct intel_engine_cs *ring;
3112 	int ret, i;
3113 
3114 	/* Flush everything onto the inactive list. */
3115 	for_each_ring(ring, dev_priv, i) {
3116 		if (!i915.enable_execlists) {
3117 			ret = i915_switch_context(ring, ring->default_context);
3118 			if (ret)
3119 				return ret;
3120 		}
3121 
3122 		ret = intel_ring_idle(ring);
3123 		if (ret)
3124 			return ret;
3125 	}
3126 
3127 	return 0;
3128 }
3129 
3130 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3131 				 struct drm_i915_gem_object *obj)
3132 {
3133 	struct drm_i915_private *dev_priv = dev->dev_private;
3134 	int fence_reg;
3135 	int fence_pitch_shift;
3136 
3137 	if (INTEL_INFO(dev)->gen >= 6) {
3138 		fence_reg = FENCE_REG_SANDYBRIDGE_0;
3139 		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3140 	} else {
3141 		fence_reg = FENCE_REG_965_0;
3142 		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3143 	}
3144 
3145 	fence_reg += reg * 8;
3146 
3147 	/* To w/a incoherency with non-atomic 64-bit register updates,
3148 	 * we split the 64-bit update into two 32-bit writes. In order
3149 	 * for a partial fence not to be evaluated between writes, we
3150 	 * precede the update with write to turn off the fence register,
3151 	 * and only enable the fence as the last step.
3152 	 *
3153 	 * For extra levels of paranoia, we make sure each step lands
3154 	 * before applying the next step.
3155 	 */
3156 	I915_WRITE(fence_reg, 0);
3157 	POSTING_READ(fence_reg);
3158 
3159 	if (obj) {
3160 		u32 size = i915_gem_obj_ggtt_size(obj);
3161 		uint64_t val;
3162 
3163 		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3164 				 0xfffff000) << 32;
3165 		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3166 		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3167 		if (obj->tiling_mode == I915_TILING_Y)
3168 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3169 		val |= I965_FENCE_REG_VALID;
3170 
3171 		I915_WRITE(fence_reg + 4, val >> 32);
3172 		POSTING_READ(fence_reg + 4);
3173 
3174 		I915_WRITE(fence_reg + 0, val);
3175 		POSTING_READ(fence_reg);
3176 	} else {
3177 		I915_WRITE(fence_reg + 4, 0);
3178 		POSTING_READ(fence_reg + 4);
3179 	}
3180 }
3181 
3182 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3183 				 struct drm_i915_gem_object *obj)
3184 {
3185 	struct drm_i915_private *dev_priv = dev->dev_private;
3186 	u32 val;
3187 
3188 	if (obj) {
3189 		u32 size = i915_gem_obj_ggtt_size(obj);
3190 		int pitch_val;
3191 		int tile_width;
3192 
3193 		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3194 		     (size & -size) != size ||
3195 		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3196 		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3197 		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3198 
3199 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3200 			tile_width = 128;
3201 		else
3202 			tile_width = 512;
3203 
3204 		/* Note: pitch better be a power of two tile widths */
3205 		pitch_val = obj->stride / tile_width;
3206 		pitch_val = ffs(pitch_val) - 1;
3207 
3208 		val = i915_gem_obj_ggtt_offset(obj);
3209 		if (obj->tiling_mode == I915_TILING_Y)
3210 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3211 		val |= I915_FENCE_SIZE_BITS(size);
3212 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3213 		val |= I830_FENCE_REG_VALID;
3214 	} else
3215 		val = 0;
3216 
3217 	if (reg < 8)
3218 		reg = FENCE_REG_830_0 + reg * 4;
3219 	else
3220 		reg = FENCE_REG_945_8 + (reg - 8) * 4;
3221 
3222 	I915_WRITE(reg, val);
3223 	POSTING_READ(reg);
3224 }
3225 
3226 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3227 				struct drm_i915_gem_object *obj)
3228 {
3229 	struct drm_i915_private *dev_priv = dev->dev_private;
3230 	uint32_t val;
3231 
3232 	if (obj) {
3233 		u32 size = i915_gem_obj_ggtt_size(obj);
3234 		uint32_t pitch_val;
3235 
3236 		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3237 		     (size & -size) != size ||
3238 		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3239 		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3240 		     i915_gem_obj_ggtt_offset(obj), size);
3241 
3242 		pitch_val = obj->stride / 128;
3243 		pitch_val = ffs(pitch_val) - 1;
3244 
3245 		val = i915_gem_obj_ggtt_offset(obj);
3246 		if (obj->tiling_mode == I915_TILING_Y)
3247 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3248 		val |= I830_FENCE_SIZE_BITS(size);
3249 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3250 		val |= I830_FENCE_REG_VALID;
3251 	} else
3252 		val = 0;
3253 
3254 	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3255 	POSTING_READ(FENCE_REG_830_0 + reg * 4);
3256 }
3257 
3258 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3259 {
3260 	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3261 }
3262 
3263 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3264 				 struct drm_i915_gem_object *obj)
3265 {
3266 	struct drm_i915_private *dev_priv = dev->dev_private;
3267 
3268 	/* Ensure that all CPU reads are completed before installing a fence
3269 	 * and all writes before removing the fence.
3270 	 */
3271 	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3272 		mb();
3273 
3274 	WARN(obj && (!obj->stride || !obj->tiling_mode),
3275 	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3276 	     obj->stride, obj->tiling_mode);
3277 
3278 	switch (INTEL_INFO(dev)->gen) {
3279 	case 9:
3280 	case 8:
3281 	case 7:
3282 	case 6:
3283 	case 5:
3284 	case 4: i965_write_fence_reg(dev, reg, obj); break;
3285 	case 3: i915_write_fence_reg(dev, reg, obj); break;
3286 	case 2: i830_write_fence_reg(dev, reg, obj); break;
3287 	default: BUG();
3288 	}
3289 
3290 	/* And similarly be paranoid that no direct access to this region
3291 	 * is reordered to before the fence is installed.
3292 	 */
3293 	if (i915_gem_object_needs_mb(obj))
3294 		mb();
3295 }
3296 
3297 static inline int fence_number(struct drm_i915_private *dev_priv,
3298 			       struct drm_i915_fence_reg *fence)
3299 {
3300 	return fence - dev_priv->fence_regs;
3301 }
3302 
3303 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3304 					 struct drm_i915_fence_reg *fence,
3305 					 bool enable)
3306 {
3307 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3308 	int reg = fence_number(dev_priv, fence);
3309 
3310 	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3311 
3312 	if (enable) {
3313 		obj->fence_reg = reg;
3314 		fence->obj = obj;
3315 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3316 	} else {
3317 		obj->fence_reg = I915_FENCE_REG_NONE;
3318 		fence->obj = NULL;
3319 		list_del_init(&fence->lru_list);
3320 	}
3321 	obj->fence_dirty = false;
3322 }
3323 
3324 static int
3325 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3326 {
3327 	if (obj->last_fenced_seqno) {
3328 		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3329 		if (ret)
3330 			return ret;
3331 
3332 		obj->last_fenced_seqno = 0;
3333 	}
3334 
3335 	return 0;
3336 }
3337 
3338 int
3339 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3340 {
3341 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3342 	struct drm_i915_fence_reg *fence;
3343 	int ret;
3344 
3345 	ret = i915_gem_object_wait_fence(obj);
3346 	if (ret)
3347 		return ret;
3348 
3349 	if (obj->fence_reg == I915_FENCE_REG_NONE)
3350 		return 0;
3351 
3352 	fence = &dev_priv->fence_regs[obj->fence_reg];
3353 
3354 	if (WARN_ON(fence->pin_count))
3355 		return -EBUSY;
3356 
3357 	i915_gem_object_fence_lost(obj);
3358 	i915_gem_object_update_fence(obj, fence, false);
3359 
3360 	return 0;
3361 }
3362 
3363 static struct drm_i915_fence_reg *
3364 i915_find_fence_reg(struct drm_device *dev)
3365 {
3366 	struct drm_i915_private *dev_priv = dev->dev_private;
3367 	struct drm_i915_fence_reg *reg, *avail;
3368 	int i;
3369 
3370 	/* First try to find a free reg */
3371 	avail = NULL;
3372 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3373 		reg = &dev_priv->fence_regs[i];
3374 		if (!reg->obj)
3375 			return reg;
3376 
3377 		if (!reg->pin_count)
3378 			avail = reg;
3379 	}
3380 
3381 	if (avail == NULL)
3382 		goto deadlock;
3383 
3384 	/* None available, try to steal one or wait for a user to finish */
3385 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3386 		if (reg->pin_count)
3387 			continue;
3388 
3389 		return reg;
3390 	}
3391 
3392 deadlock:
3393 	/* Wait for completion of pending flips which consume fences */
3394 	if (intel_has_pending_fb_unpin(dev))
3395 		return ERR_PTR(-EAGAIN);
3396 
3397 	return ERR_PTR(-EDEADLK);
3398 }
3399 
3400 /**
3401  * i915_gem_object_get_fence - set up fencing for an object
3402  * @obj: object to map through a fence reg
3403  *
3404  * When mapping objects through the GTT, userspace wants to be able to write
3405  * to them without having to worry about swizzling if the object is tiled.
3406  * This function walks the fence regs looking for a free one for @obj,
3407  * stealing one if it can't find any.
3408  *
3409  * It then sets up the reg based on the object's properties: address, pitch
3410  * and tiling format.
3411  *
3412  * For an untiled surface, this removes any existing fence.
3413  */
3414 int
3415 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3416 {
3417 	struct drm_device *dev = obj->base.dev;
3418 	struct drm_i915_private *dev_priv = dev->dev_private;
3419 	bool enable = obj->tiling_mode != I915_TILING_NONE;
3420 	struct drm_i915_fence_reg *reg;
3421 	int ret;
3422 
3423 	/* Have we updated the tiling parameters upon the object and so
3424 	 * will need to serialise the write to the associated fence register?
3425 	 */
3426 	if (obj->fence_dirty) {
3427 		ret = i915_gem_object_wait_fence(obj);
3428 		if (ret)
3429 			return ret;
3430 	}
3431 
3432 	/* Just update our place in the LRU if our fence is getting reused. */
3433 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
3434 		reg = &dev_priv->fence_regs[obj->fence_reg];
3435 		if (!obj->fence_dirty) {
3436 			list_move_tail(&reg->lru_list,
3437 				       &dev_priv->mm.fence_list);
3438 			return 0;
3439 		}
3440 	} else if (enable) {
3441 		if (WARN_ON(!obj->map_and_fenceable))
3442 			return -EINVAL;
3443 
3444 		reg = i915_find_fence_reg(dev);
3445 		if (IS_ERR(reg))
3446 			return PTR_ERR(reg);
3447 
3448 		if (reg->obj) {
3449 			struct drm_i915_gem_object *old = reg->obj;
3450 
3451 			ret = i915_gem_object_wait_fence(old);
3452 			if (ret)
3453 				return ret;
3454 
3455 			i915_gem_object_fence_lost(old);
3456 		}
3457 	} else
3458 		return 0;
3459 
3460 	i915_gem_object_update_fence(obj, reg, enable);
3461 
3462 	return 0;
3463 }
3464 
3465 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3466 				     unsigned long cache_level)
3467 {
3468 	struct drm_mm_node *gtt_space = &vma->node;
3469 	struct drm_mm_node *other;
3470 
3471 	/*
3472 	 * On some machines we have to be careful when putting differing types
3473 	 * of snoopable memory together to avoid the prefetcher crossing memory
3474 	 * domains and dying. During vm initialisation, we decide whether or not
3475 	 * these constraints apply and set the drm_mm.color_adjust
3476 	 * appropriately.
3477 	 */
3478 	if (vma->vm->mm.color_adjust == NULL)
3479 		return true;
3480 
3481 	if (!drm_mm_node_allocated(gtt_space))
3482 		return true;
3483 
3484 	if (list_empty(&gtt_space->node_list))
3485 		return true;
3486 
3487 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3488 	if (other->allocated && !other->hole_follows && other->color != cache_level)
3489 		return false;
3490 
3491 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3492 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3493 		return false;
3494 
3495 	return true;
3496 }
3497 
3498 /**
3499  * Finds free space in the GTT aperture and binds the object there.
3500  */
3501 static struct i915_vma *
3502 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3503 			   struct i915_address_space *vm,
3504 			   unsigned alignment,
3505 			   uint64_t flags)
3506 {
3507 	struct drm_device *dev = obj->base.dev;
3508 	struct drm_i915_private *dev_priv = dev->dev_private;
3509 	u32 size, fence_size, fence_alignment, unfenced_alignment;
3510 	unsigned long start =
3511 		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3512 	unsigned long end =
3513 		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3514 	struct i915_vma *vma;
3515 	int ret;
3516 
3517 	fence_size = i915_gem_get_gtt_size(dev,
3518 					   obj->base.size,
3519 					   obj->tiling_mode);
3520 	fence_alignment = i915_gem_get_gtt_alignment(dev,
3521 						     obj->base.size,
3522 						     obj->tiling_mode, true);
3523 	unfenced_alignment =
3524 		i915_gem_get_gtt_alignment(dev,
3525 					   obj->base.size,
3526 					   obj->tiling_mode, false);
3527 
3528 	if (alignment == 0)
3529 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3530 						unfenced_alignment;
3531 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3532 		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3533 		return ERR_PTR(-EINVAL);
3534 	}
3535 
3536 	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3537 
3538 	/* If the object is bigger than the entire aperture, reject it early
3539 	 * before evicting everything in a vain attempt to find space.
3540 	 */
3541 	if (obj->base.size > end) {
3542 		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3543 			  obj->base.size,
3544 			  flags & PIN_MAPPABLE ? "mappable" : "total",
3545 			  end);
3546 		return ERR_PTR(-E2BIG);
3547 	}
3548 
3549 	ret = i915_gem_object_get_pages(obj);
3550 	if (ret)
3551 		return ERR_PTR(ret);
3552 
3553 	i915_gem_object_pin_pages(obj);
3554 
3555 	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3556 	if (IS_ERR(vma))
3557 		goto err_unpin;
3558 
3559 search_free:
3560 	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3561 						  size, alignment,
3562 						  obj->cache_level,
3563 						  start, end,
3564 						  DRM_MM_SEARCH_DEFAULT,
3565 						  DRM_MM_CREATE_DEFAULT);
3566 	if (ret) {
3567 		ret = i915_gem_evict_something(dev, vm, size, alignment,
3568 					       obj->cache_level,
3569 					       start, end,
3570 					       flags);
3571 		if (ret == 0)
3572 			goto search_free;
3573 
3574 		goto err_free_vma;
3575 	}
3576 	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3577 		ret = -EINVAL;
3578 		goto err_remove_node;
3579 	}
3580 
3581 	ret = i915_gem_gtt_prepare_object(obj);
3582 	if (ret)
3583 		goto err_remove_node;
3584 
3585 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3586 	list_add_tail(&vma->mm_list, &vm->inactive_list);
3587 
3588 	trace_i915_vma_bind(vma, flags);
3589 	vma->bind_vma(vma, obj->cache_level,
3590 		      flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3591 
3592 	return vma;
3593 
3594 err_remove_node:
3595 	drm_mm_remove_node(&vma->node);
3596 err_free_vma:
3597 	i915_gem_vma_destroy(vma);
3598 	vma = ERR_PTR(ret);
3599 err_unpin:
3600 	i915_gem_object_unpin_pages(obj);
3601 	return vma;
3602 }
3603 
3604 bool
3605 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3606 			bool force)
3607 {
3608 	/* If we don't have a page list set up, then we're not pinned
3609 	 * to GPU, and we can ignore the cache flush because it'll happen
3610 	 * again at bind time.
3611 	 */
3612 	if (obj->pages == NULL)
3613 		return false;
3614 
3615 	/*
3616 	 * Stolen memory is always coherent with the GPU as it is explicitly
3617 	 * marked as wc by the system, or the system is cache-coherent.
3618 	 */
3619 	if (obj->stolen || obj->phys_handle)
3620 		return false;
3621 
3622 	/* If the GPU is snooping the contents of the CPU cache,
3623 	 * we do not need to manually clear the CPU cache lines.  However,
3624 	 * the caches are only snooped when the render cache is
3625 	 * flushed/invalidated.  As we always have to emit invalidations
3626 	 * and flushes when moving into and out of the RENDER domain, correct
3627 	 * snooping behaviour occurs naturally as the result of our domain
3628 	 * tracking.
3629 	 */
3630 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3631 		return false;
3632 
3633 	trace_i915_gem_object_clflush(obj);
3634 	drm_clflush_sg(obj->pages);
3635 
3636 	return true;
3637 }
3638 
3639 /** Flushes the GTT write domain for the object if it's dirty. */
3640 static void
3641 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3642 {
3643 	uint32_t old_write_domain;
3644 
3645 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3646 		return;
3647 
3648 	/* No actual flushing is required for the GTT write domain.  Writes
3649 	 * to it immediately go to main memory as far as we know, so there's
3650 	 * no chipset flush.  It also doesn't land in render cache.
3651 	 *
3652 	 * However, we do have to enforce the order so that all writes through
3653 	 * the GTT land before any writes to the device, such as updates to
3654 	 * the GATT itself.
3655 	 */
3656 	wmb();
3657 
3658 	old_write_domain = obj->base.write_domain;
3659 	obj->base.write_domain = 0;
3660 
3661 	intel_fb_obj_flush(obj, false);
3662 
3663 	trace_i915_gem_object_change_domain(obj,
3664 					    obj->base.read_domains,
3665 					    old_write_domain);
3666 }
3667 
3668 /** Flushes the CPU write domain for the object if it's dirty. */
3669 static void
3670 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3671 				       bool force)
3672 {
3673 	uint32_t old_write_domain;
3674 
3675 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3676 		return;
3677 
3678 	if (i915_gem_clflush_object(obj, force))
3679 		i915_gem_chipset_flush(obj->base.dev);
3680 
3681 	old_write_domain = obj->base.write_domain;
3682 	obj->base.write_domain = 0;
3683 
3684 	intel_fb_obj_flush(obj, false);
3685 
3686 	trace_i915_gem_object_change_domain(obj,
3687 					    obj->base.read_domains,
3688 					    old_write_domain);
3689 }
3690 
3691 /**
3692  * Moves a single object to the GTT read, and possibly write domain.
3693  *
3694  * This function returns when the move is complete, including waiting on
3695  * flushes to occur.
3696  */
3697 int
3698 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3699 {
3700 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3701 	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3702 	uint32_t old_write_domain, old_read_domains;
3703 	int ret;
3704 
3705 	/* Not valid to be called on unbound objects. */
3706 	if (vma == NULL)
3707 		return -EINVAL;
3708 
3709 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3710 		return 0;
3711 
3712 	ret = i915_gem_object_wait_rendering(obj, !write);
3713 	if (ret)
3714 		return ret;
3715 
3716 	i915_gem_object_retire(obj);
3717 	i915_gem_object_flush_cpu_write_domain(obj, false);
3718 
3719 	/* Serialise direct access to this object with the barriers for
3720 	 * coherent writes from the GPU, by effectively invalidating the
3721 	 * GTT domain upon first access.
3722 	 */
3723 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3724 		mb();
3725 
3726 	old_write_domain = obj->base.write_domain;
3727 	old_read_domains = obj->base.read_domains;
3728 
3729 	/* It should now be out of any other write domains, and we can update
3730 	 * the domain values for our changes.
3731 	 */
3732 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3733 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3734 	if (write) {
3735 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3736 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3737 		obj->dirty = 1;
3738 	}
3739 
3740 	if (write)
3741 		intel_fb_obj_invalidate(obj, NULL);
3742 
3743 	trace_i915_gem_object_change_domain(obj,
3744 					    old_read_domains,
3745 					    old_write_domain);
3746 
3747 	/* And bump the LRU for this access */
3748 	if (i915_gem_object_is_inactive(obj))
3749 		list_move_tail(&vma->mm_list,
3750 			       &dev_priv->gtt.base.inactive_list);
3751 
3752 	return 0;
3753 }
3754 
3755 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3756 				    enum i915_cache_level cache_level)
3757 {
3758 	struct drm_device *dev = obj->base.dev;
3759 	struct i915_vma *vma, *next;
3760 	int ret;
3761 
3762 	if (obj->cache_level == cache_level)
3763 		return 0;
3764 
3765 	if (i915_gem_obj_is_pinned(obj)) {
3766 		DRM_DEBUG("can not change the cache level of pinned objects\n");
3767 		return -EBUSY;
3768 	}
3769 
3770 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3771 		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3772 			ret = i915_vma_unbind(vma);
3773 			if (ret)
3774 				return ret;
3775 		}
3776 	}
3777 
3778 	if (i915_gem_obj_bound_any(obj)) {
3779 		ret = i915_gem_object_finish_gpu(obj);
3780 		if (ret)
3781 			return ret;
3782 
3783 		i915_gem_object_finish_gtt(obj);
3784 
3785 		/* Before SandyBridge, you could not use tiling or fence
3786 		 * registers with snooped memory, so relinquish any fences
3787 		 * currently pointing to our region in the aperture.
3788 		 */
3789 		if (INTEL_INFO(dev)->gen < 6) {
3790 			ret = i915_gem_object_put_fence(obj);
3791 			if (ret)
3792 				return ret;
3793 		}
3794 
3795 		list_for_each_entry(vma, &obj->vma_list, vma_link)
3796 			if (drm_mm_node_allocated(&vma->node))
3797 				vma->bind_vma(vma, cache_level,
3798 						vma->bound & GLOBAL_BIND);
3799 	}
3800 
3801 	list_for_each_entry(vma, &obj->vma_list, vma_link)
3802 		vma->node.color = cache_level;
3803 	obj->cache_level = cache_level;
3804 
3805 	if (cpu_write_needs_clflush(obj)) {
3806 		u32 old_read_domains, old_write_domain;
3807 
3808 		/* If we're coming from LLC cached, then we haven't
3809 		 * actually been tracking whether the data is in the
3810 		 * CPU cache or not, since we only allow one bit set
3811 		 * in obj->write_domain and have been skipping the clflushes.
3812 		 * Just set it to the CPU cache for now.
3813 		 */
3814 		i915_gem_object_retire(obj);
3815 		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3816 
3817 		old_read_domains = obj->base.read_domains;
3818 		old_write_domain = obj->base.write_domain;
3819 
3820 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3821 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3822 
3823 		trace_i915_gem_object_change_domain(obj,
3824 						    old_read_domains,
3825 						    old_write_domain);
3826 	}
3827 
3828 	return 0;
3829 }
3830 
3831 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3832 			       struct drm_file *file)
3833 {
3834 	struct drm_i915_gem_caching *args = data;
3835 	struct drm_i915_gem_object *obj;
3836 	int ret;
3837 
3838 	ret = i915_mutex_lock_interruptible(dev);
3839 	if (ret)
3840 		return ret;
3841 
3842 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3843 	if (&obj->base == NULL) {
3844 		ret = -ENOENT;
3845 		goto unlock;
3846 	}
3847 
3848 	switch (obj->cache_level) {
3849 	case I915_CACHE_LLC:
3850 	case I915_CACHE_L3_LLC:
3851 		args->caching = I915_CACHING_CACHED;
3852 		break;
3853 
3854 	case I915_CACHE_WT:
3855 		args->caching = I915_CACHING_DISPLAY;
3856 		break;
3857 
3858 	default:
3859 		args->caching = I915_CACHING_NONE;
3860 		break;
3861 	}
3862 
3863 	drm_gem_object_unreference(&obj->base);
3864 unlock:
3865 	mutex_unlock(&dev->struct_mutex);
3866 	return ret;
3867 }
3868 
3869 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3870 			       struct drm_file *file)
3871 {
3872 	struct drm_i915_gem_caching *args = data;
3873 	struct drm_i915_gem_object *obj;
3874 	enum i915_cache_level level;
3875 	int ret;
3876 
3877 	switch (args->caching) {
3878 	case I915_CACHING_NONE:
3879 		level = I915_CACHE_NONE;
3880 		break;
3881 	case I915_CACHING_CACHED:
3882 		level = I915_CACHE_LLC;
3883 		break;
3884 	case I915_CACHING_DISPLAY:
3885 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3886 		break;
3887 	default:
3888 		return -EINVAL;
3889 	}
3890 
3891 	ret = i915_mutex_lock_interruptible(dev);
3892 	if (ret)
3893 		return ret;
3894 
3895 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3896 	if (&obj->base == NULL) {
3897 		ret = -ENOENT;
3898 		goto unlock;
3899 	}
3900 
3901 	ret = i915_gem_object_set_cache_level(obj, level);
3902 
3903 	drm_gem_object_unreference(&obj->base);
3904 unlock:
3905 	mutex_unlock(&dev->struct_mutex);
3906 	return ret;
3907 }
3908 
3909 static bool is_pin_display(struct drm_i915_gem_object *obj)
3910 {
3911 	struct i915_vma *vma;
3912 
3913 	vma = i915_gem_obj_to_ggtt(obj);
3914 	if (!vma)
3915 		return false;
3916 
3917 	/* There are 3 sources that pin objects:
3918 	 *   1. The display engine (scanouts, sprites, cursors);
3919 	 *   2. Reservations for execbuffer;
3920 	 *   3. The user.
3921 	 *
3922 	 * We can ignore reservations as we hold the struct_mutex and
3923 	 * are only called outside of the reservation path.  The user
3924 	 * can only increment pin_count once, and so if after
3925 	 * subtracting the potential reference by the user, any pin_count
3926 	 * remains, it must be due to another use by the display engine.
3927 	 */
3928 	return vma->pin_count - !!obj->user_pin_count;
3929 }
3930 
3931 /*
3932  * Prepare buffer for display plane (scanout, cursors, etc).
3933  * Can be called from an uninterruptible phase (modesetting) and allows
3934  * any flushes to be pipelined (for pageflips).
3935  */
3936 int
3937 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3938 				     u32 alignment,
3939 				     struct intel_engine_cs *pipelined)
3940 {
3941 	u32 old_read_domains, old_write_domain;
3942 	bool was_pin_display;
3943 	int ret;
3944 
3945 	if (pipelined != obj->ring) {
3946 		ret = i915_gem_object_sync(obj, pipelined);
3947 		if (ret)
3948 			return ret;
3949 	}
3950 
3951 	/* Mark the pin_display early so that we account for the
3952 	 * display coherency whilst setting up the cache domains.
3953 	 */
3954 	was_pin_display = obj->pin_display;
3955 	obj->pin_display = true;
3956 
3957 	/* The display engine is not coherent with the LLC cache on gen6.  As
3958 	 * a result, we make sure that the pinning that is about to occur is
3959 	 * done with uncached PTEs. This is lowest common denominator for all
3960 	 * chipsets.
3961 	 *
3962 	 * However for gen6+, we could do better by using the GFDT bit instead
3963 	 * of uncaching, which would allow us to flush all the LLC-cached data
3964 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3965 	 */
3966 	ret = i915_gem_object_set_cache_level(obj,
3967 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3968 	if (ret)
3969 		goto err_unpin_display;
3970 
3971 	/* As the user may map the buffer once pinned in the display plane
3972 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3973 	 * always use map_and_fenceable for all scanout buffers.
3974 	 */
3975 	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3976 	if (ret)
3977 		goto err_unpin_display;
3978 
3979 	i915_gem_object_flush_cpu_write_domain(obj, true);
3980 
3981 	old_write_domain = obj->base.write_domain;
3982 	old_read_domains = obj->base.read_domains;
3983 
3984 	/* It should now be out of any other write domains, and we can update
3985 	 * the domain values for our changes.
3986 	 */
3987 	obj->base.write_domain = 0;
3988 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3989 
3990 	trace_i915_gem_object_change_domain(obj,
3991 					    old_read_domains,
3992 					    old_write_domain);
3993 
3994 	return 0;
3995 
3996 err_unpin_display:
3997 	WARN_ON(was_pin_display != is_pin_display(obj));
3998 	obj->pin_display = was_pin_display;
3999 	return ret;
4000 }
4001 
4002 void
4003 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
4004 {
4005 	i915_gem_object_ggtt_unpin(obj);
4006 	obj->pin_display = is_pin_display(obj);
4007 }
4008 
4009 int
4010 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4011 {
4012 	int ret;
4013 
4014 	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4015 		return 0;
4016 
4017 	ret = i915_gem_object_wait_rendering(obj, false);
4018 	if (ret)
4019 		return ret;
4020 
4021 	/* Ensure that we invalidate the GPU's caches and TLBs. */
4022 	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4023 	return 0;
4024 }
4025 
4026 /**
4027  * Moves a single object to the CPU read, and possibly write domain.
4028  *
4029  * This function returns when the move is complete, including waiting on
4030  * flushes to occur.
4031  */
4032 int
4033 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4034 {
4035 	uint32_t old_write_domain, old_read_domains;
4036 	int ret;
4037 
4038 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4039 		return 0;
4040 
4041 	ret = i915_gem_object_wait_rendering(obj, !write);
4042 	if (ret)
4043 		return ret;
4044 
4045 	i915_gem_object_retire(obj);
4046 	i915_gem_object_flush_gtt_write_domain(obj);
4047 
4048 	old_write_domain = obj->base.write_domain;
4049 	old_read_domains = obj->base.read_domains;
4050 
4051 	/* Flush the CPU cache if it's still invalid. */
4052 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4053 		i915_gem_clflush_object(obj, false);
4054 
4055 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4056 	}
4057 
4058 	/* It should now be out of any other write domains, and we can update
4059 	 * the domain values for our changes.
4060 	 */
4061 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4062 
4063 	/* If we're writing through the CPU, then the GPU read domains will
4064 	 * need to be invalidated at next use.
4065 	 */
4066 	if (write) {
4067 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4068 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4069 	}
4070 
4071 	if (write)
4072 		intel_fb_obj_invalidate(obj, NULL);
4073 
4074 	trace_i915_gem_object_change_domain(obj,
4075 					    old_read_domains,
4076 					    old_write_domain);
4077 
4078 	return 0;
4079 }
4080 
4081 /* Throttle our rendering by waiting until the ring has completed our requests
4082  * emitted over 20 msec ago.
4083  *
4084  * Note that if we were to use the current jiffies each time around the loop,
4085  * we wouldn't escape the function with any frames outstanding if the time to
4086  * render a frame was over 20ms.
4087  *
4088  * This should get us reasonable parallelism between CPU and GPU but also
4089  * relatively low latency when blocking on a particular request to finish.
4090  */
4091 static int
4092 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4093 {
4094 	struct drm_i915_private *dev_priv = dev->dev_private;
4095 	struct drm_i915_file_private *file_priv = file->driver_priv;
4096 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4097 	struct drm_i915_gem_request *request;
4098 	struct intel_engine_cs *ring = NULL;
4099 	unsigned reset_counter;
4100 	u32 seqno = 0;
4101 	int ret;
4102 
4103 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4104 	if (ret)
4105 		return ret;
4106 
4107 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4108 	if (ret)
4109 		return ret;
4110 
4111 	spin_lock(&file_priv->mm.lock);
4112 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4113 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4114 			break;
4115 
4116 		ring = request->ring;
4117 		seqno = request->seqno;
4118 	}
4119 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4120 	spin_unlock(&file_priv->mm.lock);
4121 
4122 	if (seqno == 0)
4123 		return 0;
4124 
4125 	ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4126 	if (ret == 0)
4127 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4128 
4129 	return ret;
4130 }
4131 
4132 static bool
4133 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4134 {
4135 	struct drm_i915_gem_object *obj = vma->obj;
4136 
4137 	if (alignment &&
4138 	    vma->node.start & (alignment - 1))
4139 		return true;
4140 
4141 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4142 		return true;
4143 
4144 	if (flags & PIN_OFFSET_BIAS &&
4145 	    vma->node.start < (flags & PIN_OFFSET_MASK))
4146 		return true;
4147 
4148 	return false;
4149 }
4150 
4151 int
4152 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4153 		    struct i915_address_space *vm,
4154 		    uint32_t alignment,
4155 		    uint64_t flags)
4156 {
4157 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4158 	struct i915_vma *vma;
4159 	unsigned bound;
4160 	int ret;
4161 
4162 	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4163 		return -ENODEV;
4164 
4165 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4166 		return -EINVAL;
4167 
4168 	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4169 		return -EINVAL;
4170 
4171 	vma = i915_gem_obj_to_vma(obj, vm);
4172 	if (vma) {
4173 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4174 			return -EBUSY;
4175 
4176 		if (i915_vma_misplaced(vma, alignment, flags)) {
4177 			WARN(vma->pin_count,
4178 			     "bo is already pinned with incorrect alignment:"
4179 			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4180 			     " obj->map_and_fenceable=%d\n",
4181 			     i915_gem_obj_offset(obj, vm), alignment,
4182 			     !!(flags & PIN_MAPPABLE),
4183 			     obj->map_and_fenceable);
4184 			ret = i915_vma_unbind(vma);
4185 			if (ret)
4186 				return ret;
4187 
4188 			vma = NULL;
4189 		}
4190 	}
4191 
4192 	bound = vma ? vma->bound : 0;
4193 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4194 		vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4195 		if (IS_ERR(vma))
4196 			return PTR_ERR(vma);
4197 	}
4198 
4199 	if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND))
4200 		vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4201 
4202 	if ((bound ^ vma->bound) & GLOBAL_BIND) {
4203 		bool mappable, fenceable;
4204 		u32 fence_size, fence_alignment;
4205 
4206 		fence_size = i915_gem_get_gtt_size(obj->base.dev,
4207 						   obj->base.size,
4208 						   obj->tiling_mode);
4209 		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4210 							     obj->base.size,
4211 							     obj->tiling_mode,
4212 							     true);
4213 
4214 		fenceable = (vma->node.size == fence_size &&
4215 			     (vma->node.start & (fence_alignment - 1)) == 0);
4216 
4217 		mappable = (vma->node.start + obj->base.size <=
4218 			    dev_priv->gtt.mappable_end);
4219 
4220 		obj->map_and_fenceable = mappable && fenceable;
4221 	}
4222 
4223 	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4224 
4225 	vma->pin_count++;
4226 	if (flags & PIN_MAPPABLE)
4227 		obj->pin_mappable |= true;
4228 
4229 	return 0;
4230 }
4231 
4232 void
4233 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4234 {
4235 	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4236 
4237 	BUG_ON(!vma);
4238 	BUG_ON(vma->pin_count == 0);
4239 	BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4240 
4241 	if (--vma->pin_count == 0)
4242 		obj->pin_mappable = false;
4243 }
4244 
4245 bool
4246 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4247 {
4248 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
4249 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4250 		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4251 
4252 		WARN_ON(!ggtt_vma ||
4253 			dev_priv->fence_regs[obj->fence_reg].pin_count >
4254 			ggtt_vma->pin_count);
4255 		dev_priv->fence_regs[obj->fence_reg].pin_count++;
4256 		return true;
4257 	} else
4258 		return false;
4259 }
4260 
4261 void
4262 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4263 {
4264 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
4265 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4266 		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4267 		dev_priv->fence_regs[obj->fence_reg].pin_count--;
4268 	}
4269 }
4270 
4271 int
4272 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4273 		   struct drm_file *file)
4274 {
4275 	struct drm_i915_gem_pin *args = data;
4276 	struct drm_i915_gem_object *obj;
4277 	int ret;
4278 
4279 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4280 		return -ENODEV;
4281 
4282 	ret = i915_mutex_lock_interruptible(dev);
4283 	if (ret)
4284 		return ret;
4285 
4286 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4287 	if (&obj->base == NULL) {
4288 		ret = -ENOENT;
4289 		goto unlock;
4290 	}
4291 
4292 	if (obj->madv != I915_MADV_WILLNEED) {
4293 		DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4294 		ret = -EFAULT;
4295 		goto out;
4296 	}
4297 
4298 	if (obj->pin_filp != NULL && obj->pin_filp != file) {
4299 		DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4300 			  args->handle);
4301 		ret = -EINVAL;
4302 		goto out;
4303 	}
4304 
4305 	if (obj->user_pin_count == ULONG_MAX) {
4306 		ret = -EBUSY;
4307 		goto out;
4308 	}
4309 
4310 	if (obj->user_pin_count == 0) {
4311 		ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4312 		if (ret)
4313 			goto out;
4314 	}
4315 
4316 	obj->user_pin_count++;
4317 	obj->pin_filp = file;
4318 
4319 	args->offset = i915_gem_obj_ggtt_offset(obj);
4320 out:
4321 	drm_gem_object_unreference(&obj->base);
4322 unlock:
4323 	mutex_unlock(&dev->struct_mutex);
4324 	return ret;
4325 }
4326 
4327 int
4328 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4329 		     struct drm_file *file)
4330 {
4331 	struct drm_i915_gem_pin *args = data;
4332 	struct drm_i915_gem_object *obj;
4333 	int ret;
4334 
4335 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4336 		return -ENODEV;
4337 
4338 	ret = i915_mutex_lock_interruptible(dev);
4339 	if (ret)
4340 		return ret;
4341 
4342 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4343 	if (&obj->base == NULL) {
4344 		ret = -ENOENT;
4345 		goto unlock;
4346 	}
4347 
4348 	if (obj->pin_filp != file) {
4349 		DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4350 			  args->handle);
4351 		ret = -EINVAL;
4352 		goto out;
4353 	}
4354 	obj->user_pin_count--;
4355 	if (obj->user_pin_count == 0) {
4356 		obj->pin_filp = NULL;
4357 		i915_gem_object_ggtt_unpin(obj);
4358 	}
4359 
4360 out:
4361 	drm_gem_object_unreference(&obj->base);
4362 unlock:
4363 	mutex_unlock(&dev->struct_mutex);
4364 	return ret;
4365 }
4366 
4367 int
4368 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4369 		    struct drm_file *file)
4370 {
4371 	struct drm_i915_gem_busy *args = data;
4372 	struct drm_i915_gem_object *obj;
4373 	int ret;
4374 
4375 	ret = i915_mutex_lock_interruptible(dev);
4376 	if (ret)
4377 		return ret;
4378 
4379 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4380 	if (&obj->base == NULL) {
4381 		ret = -ENOENT;
4382 		goto unlock;
4383 	}
4384 
4385 	/* Count all active objects as busy, even if they are currently not used
4386 	 * by the gpu. Users of this interface expect objects to eventually
4387 	 * become non-busy without any further actions, therefore emit any
4388 	 * necessary flushes here.
4389 	 */
4390 	ret = i915_gem_object_flush_active(obj);
4391 
4392 	args->busy = obj->active;
4393 	if (obj->ring) {
4394 		BUILD_BUG_ON(I915_NUM_RINGS > 16);
4395 		args->busy |= intel_ring_flag(obj->ring) << 16;
4396 	}
4397 
4398 	drm_gem_object_unreference(&obj->base);
4399 unlock:
4400 	mutex_unlock(&dev->struct_mutex);
4401 	return ret;
4402 }
4403 
4404 int
4405 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4406 			struct drm_file *file_priv)
4407 {
4408 	return i915_gem_ring_throttle(dev, file_priv);
4409 }
4410 
4411 int
4412 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4413 		       struct drm_file *file_priv)
4414 {
4415 	struct drm_i915_private *dev_priv = dev->dev_private;
4416 	struct drm_i915_gem_madvise *args = data;
4417 	struct drm_i915_gem_object *obj;
4418 	int ret;
4419 
4420 	switch (args->madv) {
4421 	case I915_MADV_DONTNEED:
4422 	case I915_MADV_WILLNEED:
4423 	    break;
4424 	default:
4425 	    return -EINVAL;
4426 	}
4427 
4428 	ret = i915_mutex_lock_interruptible(dev);
4429 	if (ret)
4430 		return ret;
4431 
4432 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4433 	if (&obj->base == NULL) {
4434 		ret = -ENOENT;
4435 		goto unlock;
4436 	}
4437 
4438 	if (i915_gem_obj_is_pinned(obj)) {
4439 		ret = -EINVAL;
4440 		goto out;
4441 	}
4442 
4443 	if (obj->pages &&
4444 	    obj->tiling_mode != I915_TILING_NONE &&
4445 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4446 		if (obj->madv == I915_MADV_WILLNEED)
4447 			i915_gem_object_unpin_pages(obj);
4448 		if (args->madv == I915_MADV_WILLNEED)
4449 			i915_gem_object_pin_pages(obj);
4450 	}
4451 
4452 	if (obj->madv != __I915_MADV_PURGED)
4453 		obj->madv = args->madv;
4454 
4455 	/* if the object is no longer attached, discard its backing storage */
4456 	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4457 		i915_gem_object_truncate(obj);
4458 
4459 	args->retained = obj->madv != __I915_MADV_PURGED;
4460 
4461 out:
4462 	drm_gem_object_unreference(&obj->base);
4463 unlock:
4464 	mutex_unlock(&dev->struct_mutex);
4465 	return ret;
4466 }
4467 
4468 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4469 			  const struct drm_i915_gem_object_ops *ops)
4470 {
4471 	INIT_LIST_HEAD(&obj->global_list);
4472 	INIT_LIST_HEAD(&obj->ring_list);
4473 	INIT_LIST_HEAD(&obj->obj_exec_link);
4474 	INIT_LIST_HEAD(&obj->vma_list);
4475 
4476 	obj->ops = ops;
4477 
4478 	obj->fence_reg = I915_FENCE_REG_NONE;
4479 	obj->madv = I915_MADV_WILLNEED;
4480 
4481 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4482 }
4483 
4484 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4485 	.get_pages = i915_gem_object_get_pages_gtt,
4486 	.put_pages = i915_gem_object_put_pages_gtt,
4487 };
4488 
4489 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4490 						  size_t size)
4491 {
4492 	struct drm_i915_gem_object *obj;
4493 	struct address_space *mapping;
4494 	gfp_t mask;
4495 
4496 	obj = i915_gem_object_alloc(dev);
4497 	if (obj == NULL)
4498 		return NULL;
4499 
4500 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4501 		i915_gem_object_free(obj);
4502 		return NULL;
4503 	}
4504 
4505 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4506 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4507 		/* 965gm cannot relocate objects above 4GiB. */
4508 		mask &= ~__GFP_HIGHMEM;
4509 		mask |= __GFP_DMA32;
4510 	}
4511 
4512 	mapping = file_inode(obj->base.filp)->i_mapping;
4513 	mapping_set_gfp_mask(mapping, mask);
4514 
4515 	i915_gem_object_init(obj, &i915_gem_object_ops);
4516 
4517 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4518 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4519 
4520 	if (HAS_LLC(dev)) {
4521 		/* On some devices, we can have the GPU use the LLC (the CPU
4522 		 * cache) for about a 10% performance improvement
4523 		 * compared to uncached.  Graphics requests other than
4524 		 * display scanout are coherent with the CPU in
4525 		 * accessing this cache.  This means in this mode we
4526 		 * don't need to clflush on the CPU side, and on the
4527 		 * GPU side we only need to flush internal caches to
4528 		 * get data visible to the CPU.
4529 		 *
4530 		 * However, we maintain the display planes as UC, and so
4531 		 * need to rebind when first used as such.
4532 		 */
4533 		obj->cache_level = I915_CACHE_LLC;
4534 	} else
4535 		obj->cache_level = I915_CACHE_NONE;
4536 
4537 	trace_i915_gem_object_create(obj);
4538 
4539 	return obj;
4540 }
4541 
4542 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4543 {
4544 	/* If we are the last user of the backing storage (be it shmemfs
4545 	 * pages or stolen etc), we know that the pages are going to be
4546 	 * immediately released. In this case, we can then skip copying
4547 	 * back the contents from the GPU.
4548 	 */
4549 
4550 	if (obj->madv != I915_MADV_WILLNEED)
4551 		return false;
4552 
4553 	if (obj->base.filp == NULL)
4554 		return true;
4555 
4556 	/* At first glance, this looks racy, but then again so would be
4557 	 * userspace racing mmap against close. However, the first external
4558 	 * reference to the filp can only be obtained through the
4559 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4560 	 * acquiring such a reference whilst we are in the middle of
4561 	 * freeing the object.
4562 	 */
4563 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4564 }
4565 
4566 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4567 {
4568 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4569 	struct drm_device *dev = obj->base.dev;
4570 	struct drm_i915_private *dev_priv = dev->dev_private;
4571 	struct i915_vma *vma, *next;
4572 
4573 	intel_runtime_pm_get(dev_priv);
4574 
4575 	trace_i915_gem_object_destroy(obj);
4576 
4577 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4578 		int ret;
4579 
4580 		vma->pin_count = 0;
4581 		ret = i915_vma_unbind(vma);
4582 		if (WARN_ON(ret == -ERESTARTSYS)) {
4583 			bool was_interruptible;
4584 
4585 			was_interruptible = dev_priv->mm.interruptible;
4586 			dev_priv->mm.interruptible = false;
4587 
4588 			WARN_ON(i915_vma_unbind(vma));
4589 
4590 			dev_priv->mm.interruptible = was_interruptible;
4591 		}
4592 	}
4593 
4594 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4595 	 * before progressing. */
4596 	if (obj->stolen)
4597 		i915_gem_object_unpin_pages(obj);
4598 
4599 	WARN_ON(obj->frontbuffer_bits);
4600 
4601 	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4602 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4603 	    obj->tiling_mode != I915_TILING_NONE)
4604 		i915_gem_object_unpin_pages(obj);
4605 
4606 	if (WARN_ON(obj->pages_pin_count))
4607 		obj->pages_pin_count = 0;
4608 	if (discard_backing_storage(obj))
4609 		obj->madv = I915_MADV_DONTNEED;
4610 	i915_gem_object_put_pages(obj);
4611 	i915_gem_object_free_mmap_offset(obj);
4612 
4613 	BUG_ON(obj->pages);
4614 
4615 	if (obj->base.import_attach)
4616 		drm_prime_gem_destroy(&obj->base, NULL);
4617 
4618 	if (obj->ops->release)
4619 		obj->ops->release(obj);
4620 
4621 	drm_gem_object_release(&obj->base);
4622 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4623 
4624 	kfree(obj->bit_17);
4625 	i915_gem_object_free(obj);
4626 
4627 	intel_runtime_pm_put(dev_priv);
4628 }
4629 
4630 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4631 				     struct i915_address_space *vm)
4632 {
4633 	struct i915_vma *vma;
4634 	list_for_each_entry(vma, &obj->vma_list, vma_link)
4635 		if (vma->vm == vm)
4636 			return vma;
4637 
4638 	return NULL;
4639 }
4640 
4641 void i915_gem_vma_destroy(struct i915_vma *vma)
4642 {
4643 	struct i915_address_space *vm = NULL;
4644 	WARN_ON(vma->node.allocated);
4645 
4646 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4647 	if (!list_empty(&vma->exec_list))
4648 		return;
4649 
4650 	vm = vma->vm;
4651 
4652 	if (!i915_is_ggtt(vm))
4653 		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4654 
4655 	list_del(&vma->vma_link);
4656 
4657 	kfree(vma);
4658 }
4659 
4660 static void
4661 i915_gem_stop_ringbuffers(struct drm_device *dev)
4662 {
4663 	struct drm_i915_private *dev_priv = dev->dev_private;
4664 	struct intel_engine_cs *ring;
4665 	int i;
4666 
4667 	for_each_ring(ring, dev_priv, i)
4668 		dev_priv->gt.stop_ring(ring);
4669 }
4670 
4671 int
4672 i915_gem_suspend(struct drm_device *dev)
4673 {
4674 	struct drm_i915_private *dev_priv = dev->dev_private;
4675 	int ret = 0;
4676 
4677 	mutex_lock(&dev->struct_mutex);
4678 	ret = i915_gpu_idle(dev);
4679 	if (ret)
4680 		goto err;
4681 
4682 	i915_gem_retire_requests(dev);
4683 
4684 	/* Under UMS, be paranoid and evict. */
4685 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4686 		i915_gem_evict_everything(dev);
4687 
4688 	i915_gem_stop_ringbuffers(dev);
4689 	mutex_unlock(&dev->struct_mutex);
4690 
4691 	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4692 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4693 	flush_delayed_work(&dev_priv->mm.idle_work);
4694 
4695 	return 0;
4696 
4697 err:
4698 	mutex_unlock(&dev->struct_mutex);
4699 	return ret;
4700 }
4701 
4702 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4703 {
4704 	struct drm_device *dev = ring->dev;
4705 	struct drm_i915_private *dev_priv = dev->dev_private;
4706 	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4707 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4708 	int i, ret;
4709 
4710 	if (!HAS_L3_DPF(dev) || !remap_info)
4711 		return 0;
4712 
4713 	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4714 	if (ret)
4715 		return ret;
4716 
4717 	/*
4718 	 * Note: We do not worry about the concurrent register cacheline hang
4719 	 * here because no other code should access these registers other than
4720 	 * at initialization time.
4721 	 */
4722 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4723 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4724 		intel_ring_emit(ring, reg_base + i);
4725 		intel_ring_emit(ring, remap_info[i/4]);
4726 	}
4727 
4728 	intel_ring_advance(ring);
4729 
4730 	return ret;
4731 }
4732 
4733 void i915_gem_init_swizzling(struct drm_device *dev)
4734 {
4735 	struct drm_i915_private *dev_priv = dev->dev_private;
4736 
4737 	if (INTEL_INFO(dev)->gen < 5 ||
4738 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4739 		return;
4740 
4741 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4742 				 DISP_TILE_SURFACE_SWIZZLING);
4743 
4744 	if (IS_GEN5(dev))
4745 		return;
4746 
4747 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4748 	if (IS_GEN6(dev))
4749 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4750 	else if (IS_GEN7(dev))
4751 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4752 	else if (IS_GEN8(dev))
4753 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4754 	else
4755 		BUG();
4756 }
4757 
4758 static bool
4759 intel_enable_blt(struct drm_device *dev)
4760 {
4761 	if (!HAS_BLT(dev))
4762 		return false;
4763 
4764 	/* The blitter was dysfunctional on early prototypes */
4765 	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4766 		DRM_INFO("BLT not supported on this pre-production hardware;"
4767 			 " graphics performance will be degraded.\n");
4768 		return false;
4769 	}
4770 
4771 	return true;
4772 }
4773 
4774 static void init_unused_ring(struct drm_device *dev, u32 base)
4775 {
4776 	struct drm_i915_private *dev_priv = dev->dev_private;
4777 
4778 	I915_WRITE(RING_CTL(base), 0);
4779 	I915_WRITE(RING_HEAD(base), 0);
4780 	I915_WRITE(RING_TAIL(base), 0);
4781 	I915_WRITE(RING_START(base), 0);
4782 }
4783 
4784 static void init_unused_rings(struct drm_device *dev)
4785 {
4786 	if (IS_I830(dev)) {
4787 		init_unused_ring(dev, PRB1_BASE);
4788 		init_unused_ring(dev, SRB0_BASE);
4789 		init_unused_ring(dev, SRB1_BASE);
4790 		init_unused_ring(dev, SRB2_BASE);
4791 		init_unused_ring(dev, SRB3_BASE);
4792 	} else if (IS_GEN2(dev)) {
4793 		init_unused_ring(dev, SRB0_BASE);
4794 		init_unused_ring(dev, SRB1_BASE);
4795 	} else if (IS_GEN3(dev)) {
4796 		init_unused_ring(dev, PRB1_BASE);
4797 		init_unused_ring(dev, PRB2_BASE);
4798 	}
4799 }
4800 
4801 int i915_gem_init_rings(struct drm_device *dev)
4802 {
4803 	struct drm_i915_private *dev_priv = dev->dev_private;
4804 	int ret;
4805 
4806 	/*
4807 	 * At least 830 can leave some of the unused rings
4808 	 * "active" (ie. head != tail) after resume which
4809 	 * will prevent c3 entry. Makes sure all unused rings
4810 	 * are totally idle.
4811 	 */
4812 	init_unused_rings(dev);
4813 
4814 	ret = intel_init_render_ring_buffer(dev);
4815 	if (ret)
4816 		return ret;
4817 
4818 	if (HAS_BSD(dev)) {
4819 		ret = intel_init_bsd_ring_buffer(dev);
4820 		if (ret)
4821 			goto cleanup_render_ring;
4822 	}
4823 
4824 	if (intel_enable_blt(dev)) {
4825 		ret = intel_init_blt_ring_buffer(dev);
4826 		if (ret)
4827 			goto cleanup_bsd_ring;
4828 	}
4829 
4830 	if (HAS_VEBOX(dev)) {
4831 		ret = intel_init_vebox_ring_buffer(dev);
4832 		if (ret)
4833 			goto cleanup_blt_ring;
4834 	}
4835 
4836 	if (HAS_BSD2(dev)) {
4837 		ret = intel_init_bsd2_ring_buffer(dev);
4838 		if (ret)
4839 			goto cleanup_vebox_ring;
4840 	}
4841 
4842 	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4843 	if (ret)
4844 		goto cleanup_bsd2_ring;
4845 
4846 	return 0;
4847 
4848 cleanup_bsd2_ring:
4849 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4850 cleanup_vebox_ring:
4851 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4852 cleanup_blt_ring:
4853 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4854 cleanup_bsd_ring:
4855 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4856 cleanup_render_ring:
4857 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4858 
4859 	return ret;
4860 }
4861 
4862 int
4863 i915_gem_init_hw(struct drm_device *dev)
4864 {
4865 	struct drm_i915_private *dev_priv = dev->dev_private;
4866 	int ret, i;
4867 
4868 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4869 		return -EIO;
4870 
4871 	if (dev_priv->ellc_size)
4872 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4873 
4874 	if (IS_HASWELL(dev))
4875 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4876 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4877 
4878 	if (HAS_PCH_NOP(dev)) {
4879 		if (IS_IVYBRIDGE(dev)) {
4880 			u32 temp = I915_READ(GEN7_MSG_CTL);
4881 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4882 			I915_WRITE(GEN7_MSG_CTL, temp);
4883 		} else if (INTEL_INFO(dev)->gen >= 7) {
4884 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4885 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4886 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4887 		}
4888 	}
4889 
4890 	i915_gem_init_swizzling(dev);
4891 
4892 	ret = dev_priv->gt.init_rings(dev);
4893 	if (ret)
4894 		return ret;
4895 
4896 	for (i = 0; i < NUM_L3_SLICES(dev); i++)
4897 		i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4898 
4899 	/*
4900 	 * XXX: Contexts should only be initialized once. Doing a switch to the
4901 	 * default context switch however is something we'd like to do after
4902 	 * reset or thaw (the latter may not actually be necessary for HW, but
4903 	 * goes with our code better). Context switching requires rings (for
4904 	 * the do_switch), but before enabling PPGTT. So don't move this.
4905 	 */
4906 	ret = i915_gem_context_enable(dev_priv);
4907 	if (ret && ret != -EIO) {
4908 		DRM_ERROR("Context enable failed %d\n", ret);
4909 		i915_gem_cleanup_ringbuffer(dev);
4910 
4911 		return ret;
4912 	}
4913 
4914 	ret = i915_ppgtt_init_hw(dev);
4915 	if (ret && ret != -EIO) {
4916 		DRM_ERROR("PPGTT enable failed %d\n", ret);
4917 		i915_gem_cleanup_ringbuffer(dev);
4918 	}
4919 
4920 	return ret;
4921 }
4922 
4923 int i915_gem_init(struct drm_device *dev)
4924 {
4925 	struct drm_i915_private *dev_priv = dev->dev_private;
4926 	int ret;
4927 
4928 	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4929 			i915.enable_execlists);
4930 
4931 	mutex_lock(&dev->struct_mutex);
4932 
4933 	if (IS_VALLEYVIEW(dev)) {
4934 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4935 		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4936 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4937 			      VLV_GTLC_ALLOWWAKEACK), 10))
4938 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4939 	}
4940 
4941 	if (!i915.enable_execlists) {
4942 		dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4943 		dev_priv->gt.init_rings = i915_gem_init_rings;
4944 		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4945 		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4946 	} else {
4947 		dev_priv->gt.do_execbuf = intel_execlists_submission;
4948 		dev_priv->gt.init_rings = intel_logical_rings_init;
4949 		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4950 		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4951 	}
4952 
4953 	ret = i915_gem_init_userptr(dev);
4954 	if (ret) {
4955 		mutex_unlock(&dev->struct_mutex);
4956 		return ret;
4957 	}
4958 
4959 	i915_gem_init_global_gtt(dev);
4960 
4961 	ret = i915_gem_context_init(dev);
4962 	if (ret) {
4963 		mutex_unlock(&dev->struct_mutex);
4964 		return ret;
4965 	}
4966 
4967 	ret = i915_gem_init_hw(dev);
4968 	if (ret == -EIO) {
4969 		/* Allow ring initialisation to fail by marking the GPU as
4970 		 * wedged. But we only want to do this where the GPU is angry,
4971 		 * for all other failure, such as an allocation failure, bail.
4972 		 */
4973 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4974 		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4975 		ret = 0;
4976 	}
4977 	mutex_unlock(&dev->struct_mutex);
4978 
4979 	return ret;
4980 }
4981 
4982 void
4983 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4984 {
4985 	struct drm_i915_private *dev_priv = dev->dev_private;
4986 	struct intel_engine_cs *ring;
4987 	int i;
4988 
4989 	for_each_ring(ring, dev_priv, i)
4990 		dev_priv->gt.cleanup_ring(ring);
4991 }
4992 
4993 static void
4994 init_ring_lists(struct intel_engine_cs *ring)
4995 {
4996 	INIT_LIST_HEAD(&ring->active_list);
4997 	INIT_LIST_HEAD(&ring->request_list);
4998 }
4999 
5000 void i915_init_vm(struct drm_i915_private *dev_priv,
5001 		  struct i915_address_space *vm)
5002 {
5003 	if (!i915_is_ggtt(vm))
5004 		drm_mm_init(&vm->mm, vm->start, vm->total);
5005 	vm->dev = dev_priv->dev;
5006 	INIT_LIST_HEAD(&vm->active_list);
5007 	INIT_LIST_HEAD(&vm->inactive_list);
5008 	INIT_LIST_HEAD(&vm->global_link);
5009 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
5010 }
5011 
5012 void
5013 i915_gem_load(struct drm_device *dev)
5014 {
5015 	struct drm_i915_private *dev_priv = dev->dev_private;
5016 	int i;
5017 
5018 	dev_priv->slab =
5019 		kmem_cache_create("i915_gem_object",
5020 				  sizeof(struct drm_i915_gem_object), 0,
5021 				  SLAB_HWCACHE_ALIGN,
5022 				  NULL);
5023 
5024 	INIT_LIST_HEAD(&dev_priv->vm_list);
5025 	i915_init_vm(dev_priv, &dev_priv->gtt.base);
5026 
5027 	INIT_LIST_HEAD(&dev_priv->context_list);
5028 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5029 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5030 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5031 	for (i = 0; i < I915_NUM_RINGS; i++)
5032 		init_ring_lists(&dev_priv->ring[i]);
5033 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5034 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5035 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5036 			  i915_gem_retire_work_handler);
5037 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5038 			  i915_gem_idle_work_handler);
5039 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5040 
5041 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5042 	if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
5043 		I915_WRITE(MI_ARB_STATE,
5044 			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5045 	}
5046 
5047 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5048 
5049 	/* Old X drivers will take 0-2 for front, back, depth buffers */
5050 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
5051 		dev_priv->fence_reg_start = 3;
5052 
5053 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5054 		dev_priv->num_fence_regs = 32;
5055 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5056 		dev_priv->num_fence_regs = 16;
5057 	else
5058 		dev_priv->num_fence_regs = 8;
5059 
5060 	/* Initialize fence registers to zero */
5061 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5062 	i915_gem_restore_fences(dev);
5063 
5064 	i915_gem_detect_bit_6_swizzle(dev);
5065 	init_waitqueue_head(&dev_priv->pending_flip_queue);
5066 
5067 	dev_priv->mm.interruptible = true;
5068 
5069 	dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5070 	dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5071 	dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5072 	register_shrinker(&dev_priv->mm.shrinker);
5073 
5074 	dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5075 	register_oom_notifier(&dev_priv->mm.oom_notifier);
5076 
5077 	mutex_init(&dev_priv->fb_tracking.lock);
5078 }
5079 
5080 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5081 {
5082 	struct drm_i915_file_private *file_priv = file->driver_priv;
5083 
5084 	cancel_delayed_work_sync(&file_priv->mm.idle_work);
5085 
5086 	/* Clean up our request list when the client is going away, so that
5087 	 * later retire_requests won't dereference our soon-to-be-gone
5088 	 * file_priv.
5089 	 */
5090 	spin_lock(&file_priv->mm.lock);
5091 	while (!list_empty(&file_priv->mm.request_list)) {
5092 		struct drm_i915_gem_request *request;
5093 
5094 		request = list_first_entry(&file_priv->mm.request_list,
5095 					   struct drm_i915_gem_request,
5096 					   client_list);
5097 		list_del(&request->client_list);
5098 		request->file_priv = NULL;
5099 	}
5100 	spin_unlock(&file_priv->mm.lock);
5101 }
5102 
5103 static void
5104 i915_gem_file_idle_work_handler(struct work_struct *work)
5105 {
5106 	struct drm_i915_file_private *file_priv =
5107 		container_of(work, typeof(*file_priv), mm.idle_work.work);
5108 
5109 	atomic_set(&file_priv->rps_wait_boost, false);
5110 }
5111 
5112 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5113 {
5114 	struct drm_i915_file_private *file_priv;
5115 	int ret;
5116 
5117 	DRM_DEBUG_DRIVER("\n");
5118 
5119 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5120 	if (!file_priv)
5121 		return -ENOMEM;
5122 
5123 	file->driver_priv = file_priv;
5124 	file_priv->dev_priv = dev->dev_private;
5125 	file_priv->file = file;
5126 
5127 	spin_lock_init(&file_priv->mm.lock);
5128 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5129 	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5130 			  i915_gem_file_idle_work_handler);
5131 
5132 	ret = i915_gem_context_open(dev, file);
5133 	if (ret)
5134 		kfree(file_priv);
5135 
5136 	return ret;
5137 }
5138 
5139 /**
5140  * i915_gem_track_fb - update frontbuffer tracking
5141  * old: current GEM buffer for the frontbuffer slots
5142  * new: new GEM buffer for the frontbuffer slots
5143  * frontbuffer_bits: bitmask of frontbuffer slots
5144  *
5145  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5146  * from @old and setting them in @new. Both @old and @new can be NULL.
5147  */
5148 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5149 		       struct drm_i915_gem_object *new,
5150 		       unsigned frontbuffer_bits)
5151 {
5152 	if (old) {
5153 		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5154 		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5155 		old->frontbuffer_bits &= ~frontbuffer_bits;
5156 	}
5157 
5158 	if (new) {
5159 		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5160 		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5161 		new->frontbuffer_bits |= frontbuffer_bits;
5162 	}
5163 }
5164 
5165 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5166 {
5167 	if (!mutex_is_locked(mutex))
5168 		return false;
5169 
5170 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5171 	return mutex->owner == task;
5172 #else
5173 	/* Since UP may be pre-empted, we cannot assume that we own the lock */
5174 	return false;
5175 #endif
5176 }
5177 
5178 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5179 {
5180 	if (!mutex_trylock(&dev->struct_mutex)) {
5181 		if (!mutex_is_locked_by(&dev->struct_mutex, current))
5182 			return false;
5183 
5184 		if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5185 			return false;
5186 
5187 		*unlock = false;
5188 	} else
5189 		*unlock = true;
5190 
5191 	return true;
5192 }
5193 
5194 static int num_vma_bound(struct drm_i915_gem_object *obj)
5195 {
5196 	struct i915_vma *vma;
5197 	int count = 0;
5198 
5199 	list_for_each_entry(vma, &obj->vma_list, vma_link)
5200 		if (drm_mm_node_allocated(&vma->node))
5201 			count++;
5202 
5203 	return count;
5204 }
5205 
5206 static unsigned long
5207 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5208 {
5209 	struct drm_i915_private *dev_priv =
5210 		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5211 	struct drm_device *dev = dev_priv->dev;
5212 	struct drm_i915_gem_object *obj;
5213 	unsigned long count;
5214 	bool unlock;
5215 
5216 	if (!i915_gem_shrinker_lock(dev, &unlock))
5217 		return 0;
5218 
5219 	count = 0;
5220 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5221 		if (obj->pages_pin_count == 0)
5222 			count += obj->base.size >> PAGE_SHIFT;
5223 
5224 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5225 		if (!i915_gem_obj_is_pinned(obj) &&
5226 		    obj->pages_pin_count == num_vma_bound(obj))
5227 			count += obj->base.size >> PAGE_SHIFT;
5228 	}
5229 
5230 	if (unlock)
5231 		mutex_unlock(&dev->struct_mutex);
5232 
5233 	return count;
5234 }
5235 
5236 /* All the new VM stuff */
5237 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5238 				  struct i915_address_space *vm)
5239 {
5240 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5241 	struct i915_vma *vma;
5242 
5243 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5244 
5245 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5246 		if (vma->vm == vm)
5247 			return vma->node.start;
5248 
5249 	}
5250 	WARN(1, "%s vma for this object not found.\n",
5251 	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5252 	return -1;
5253 }
5254 
5255 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5256 			struct i915_address_space *vm)
5257 {
5258 	struct i915_vma *vma;
5259 
5260 	list_for_each_entry(vma, &o->vma_list, vma_link)
5261 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5262 			return true;
5263 
5264 	return false;
5265 }
5266 
5267 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5268 {
5269 	struct i915_vma *vma;
5270 
5271 	list_for_each_entry(vma, &o->vma_list, vma_link)
5272 		if (drm_mm_node_allocated(&vma->node))
5273 			return true;
5274 
5275 	return false;
5276 }
5277 
5278 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5279 				struct i915_address_space *vm)
5280 {
5281 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5282 	struct i915_vma *vma;
5283 
5284 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5285 
5286 	BUG_ON(list_empty(&o->vma_list));
5287 
5288 	list_for_each_entry(vma, &o->vma_list, vma_link)
5289 		if (vma->vm == vm)
5290 			return vma->node.size;
5291 
5292 	return 0;
5293 }
5294 
5295 static unsigned long
5296 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5297 {
5298 	struct drm_i915_private *dev_priv =
5299 		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5300 	struct drm_device *dev = dev_priv->dev;
5301 	unsigned long freed;
5302 	bool unlock;
5303 
5304 	if (!i915_gem_shrinker_lock(dev, &unlock))
5305 		return SHRINK_STOP;
5306 
5307 	freed = i915_gem_shrink(dev_priv,
5308 				sc->nr_to_scan,
5309 				I915_SHRINK_BOUND |
5310 				I915_SHRINK_UNBOUND |
5311 				I915_SHRINK_PURGEABLE);
5312 	if (freed < sc->nr_to_scan)
5313 		freed += i915_gem_shrink(dev_priv,
5314 					 sc->nr_to_scan - freed,
5315 					 I915_SHRINK_BOUND |
5316 					 I915_SHRINK_UNBOUND);
5317 	if (unlock)
5318 		mutex_unlock(&dev->struct_mutex);
5319 
5320 	return freed;
5321 }
5322 
5323 static int
5324 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5325 {
5326 	struct drm_i915_private *dev_priv =
5327 		container_of(nb, struct drm_i915_private, mm.oom_notifier);
5328 	struct drm_device *dev = dev_priv->dev;
5329 	struct drm_i915_gem_object *obj;
5330 	unsigned long timeout = msecs_to_jiffies(5000) + 1;
5331 	unsigned long pinned, bound, unbound, freed_pages;
5332 	bool was_interruptible;
5333 	bool unlock;
5334 
5335 	while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5336 		schedule_timeout_killable(1);
5337 		if (fatal_signal_pending(current))
5338 			return NOTIFY_DONE;
5339 	}
5340 	if (timeout == 0) {
5341 		pr_err("Unable to purge GPU memory due lock contention.\n");
5342 		return NOTIFY_DONE;
5343 	}
5344 
5345 	was_interruptible = dev_priv->mm.interruptible;
5346 	dev_priv->mm.interruptible = false;
5347 
5348 	freed_pages = i915_gem_shrink_all(dev_priv);
5349 
5350 	dev_priv->mm.interruptible = was_interruptible;
5351 
5352 	/* Because we may be allocating inside our own driver, we cannot
5353 	 * assert that there are no objects with pinned pages that are not
5354 	 * being pointed to by hardware.
5355 	 */
5356 	unbound = bound = pinned = 0;
5357 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5358 		if (!obj->base.filp) /* not backed by a freeable object */
5359 			continue;
5360 
5361 		if (obj->pages_pin_count)
5362 			pinned += obj->base.size;
5363 		else
5364 			unbound += obj->base.size;
5365 	}
5366 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5367 		if (!obj->base.filp)
5368 			continue;
5369 
5370 		if (obj->pages_pin_count)
5371 			pinned += obj->base.size;
5372 		else
5373 			bound += obj->base.size;
5374 	}
5375 
5376 	if (unlock)
5377 		mutex_unlock(&dev->struct_mutex);
5378 
5379 	if (freed_pages || unbound || bound)
5380 		pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5381 			freed_pages << PAGE_SHIFT, pinned);
5382 	if (unbound || bound)
5383 		pr_err("%lu and %lu bytes still available in the "
5384 		       "bound and unbound GPU page lists.\n",
5385 		       bound, unbound);
5386 
5387 	*(unsigned long *)ptr += freed_pages;
5388 	return NOTIFY_DONE;
5389 }
5390 
5391 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5392 {
5393 	struct i915_vma *vma;
5394 
5395 	vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5396 	if (vma->vm != i915_obj_to_ggtt(obj))
5397 		return NULL;
5398 
5399 	return vma;
5400 }
5401