xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision 0b26ca68)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drm_vma_manager.h>
29 #include <linux/dma-fence-array.h>
30 #include <linux/kthread.h>
31 #include <linux/dma-resv.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/slab.h>
34 #include <linux/stop_machine.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38 #include <linux/mman.h>
39 
40 #include "display/intel_display.h"
41 #include "display/intel_frontbuffer.h"
42 
43 #include "gem/i915_gem_clflush.h"
44 #include "gem/i915_gem_context.h"
45 #include "gem/i915_gem_ioctls.h"
46 #include "gem/i915_gem_mman.h"
47 #include "gem/i915_gem_region.h"
48 #include "gt/intel_engine_user.h"
49 #include "gt/intel_gt.h"
50 #include "gt/intel_gt_pm.h"
51 #include "gt/intel_workarounds.h"
52 
53 #include "i915_drv.h"
54 #include "i915_trace.h"
55 #include "i915_vgpu.h"
56 
57 #include "intel_pm.h"
58 
59 static int
60 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
61 {
62 	int err;
63 
64 	err = mutex_lock_interruptible(&ggtt->vm.mutex);
65 	if (err)
66 		return err;
67 
68 	memset(node, 0, sizeof(*node));
69 	err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
70 					  size, 0, I915_COLOR_UNEVICTABLE,
71 					  0, ggtt->mappable_end,
72 					  DRM_MM_INSERT_LOW);
73 
74 	mutex_unlock(&ggtt->vm.mutex);
75 
76 	return err;
77 }
78 
79 static void
80 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
81 {
82 	mutex_lock(&ggtt->vm.mutex);
83 	drm_mm_remove_node(node);
84 	mutex_unlock(&ggtt->vm.mutex);
85 }
86 
87 int
88 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
89 			    struct drm_file *file)
90 {
91 	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
92 	struct drm_i915_gem_get_aperture *args = data;
93 	struct i915_vma *vma;
94 	u64 pinned;
95 
96 	if (mutex_lock_interruptible(&ggtt->vm.mutex))
97 		return -EINTR;
98 
99 	pinned = ggtt->vm.reserved;
100 	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
101 		if (i915_vma_is_pinned(vma))
102 			pinned += vma->node.size;
103 
104 	mutex_unlock(&ggtt->vm.mutex);
105 
106 	args->aper_size = ggtt->vm.total;
107 	args->aper_available_size = args->aper_size - pinned;
108 
109 	return 0;
110 }
111 
112 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
113 			   unsigned long flags)
114 {
115 	struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
116 	LIST_HEAD(still_in_list);
117 	intel_wakeref_t wakeref;
118 	struct i915_vma *vma;
119 	int ret;
120 
121 	if (list_empty(&obj->vma.list))
122 		return 0;
123 
124 	/*
125 	 * As some machines use ACPI to handle runtime-resume callbacks, and
126 	 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
127 	 * as they are required by the shrinker. Ergo, we wake the device up
128 	 * first just in case.
129 	 */
130 	wakeref = intel_runtime_pm_get(rpm);
131 
132 try_again:
133 	ret = 0;
134 	spin_lock(&obj->vma.lock);
135 	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
136 						       struct i915_vma,
137 						       obj_link))) {
138 		struct i915_address_space *vm = vma->vm;
139 
140 		list_move_tail(&vma->obj_link, &still_in_list);
141 		if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
142 			continue;
143 
144 		if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
145 			ret = -EBUSY;
146 			break;
147 		}
148 
149 		ret = -EAGAIN;
150 		if (!i915_vm_tryopen(vm))
151 			break;
152 
153 		/* Prevent vma being freed by i915_vma_parked as we unbind */
154 		vma = __i915_vma_get(vma);
155 		spin_unlock(&obj->vma.lock);
156 
157 		if (vma) {
158 			ret = -EBUSY;
159 			if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
160 			    !i915_vma_is_active(vma))
161 				ret = i915_vma_unbind(vma);
162 
163 			__i915_vma_put(vma);
164 		}
165 
166 		i915_vm_close(vm);
167 		spin_lock(&obj->vma.lock);
168 	}
169 	list_splice_init(&still_in_list, &obj->vma.list);
170 	spin_unlock(&obj->vma.lock);
171 
172 	if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
173 		rcu_barrier(); /* flush the i915_vm_release() */
174 		goto try_again;
175 	}
176 
177 	intel_runtime_pm_put(rpm, wakeref);
178 
179 	return ret;
180 }
181 
182 static int
183 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
184 	    bool needs_clflush)
185 {
186 	char *vaddr;
187 	int ret;
188 
189 	vaddr = kmap(page);
190 
191 	if (needs_clflush)
192 		drm_clflush_virt_range(vaddr + offset, len);
193 
194 	ret = __copy_to_user(user_data, vaddr + offset, len);
195 
196 	kunmap(page);
197 
198 	return ret ? -EFAULT : 0;
199 }
200 
201 static int
202 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
203 		     struct drm_i915_gem_pread *args)
204 {
205 	unsigned int needs_clflush;
206 	unsigned int idx, offset;
207 	struct dma_fence *fence;
208 	char __user *user_data;
209 	u64 remain;
210 	int ret;
211 
212 	ret = i915_gem_object_lock_interruptible(obj, NULL);
213 	if (ret)
214 		return ret;
215 
216 	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
217 	if (ret) {
218 		i915_gem_object_unlock(obj);
219 		return ret;
220 	}
221 
222 	fence = i915_gem_object_lock_fence(obj);
223 	i915_gem_object_finish_access(obj);
224 	i915_gem_object_unlock(obj);
225 
226 	if (!fence)
227 		return -ENOMEM;
228 
229 	remain = args->size;
230 	user_data = u64_to_user_ptr(args->data_ptr);
231 	offset = offset_in_page(args->offset);
232 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
233 		struct page *page = i915_gem_object_get_page(obj, idx);
234 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
235 
236 		ret = shmem_pread(page, offset, length, user_data,
237 				  needs_clflush);
238 		if (ret)
239 			break;
240 
241 		remain -= length;
242 		user_data += length;
243 		offset = 0;
244 	}
245 
246 	i915_gem_object_unlock_fence(obj, fence);
247 	return ret;
248 }
249 
250 static inline bool
251 gtt_user_read(struct io_mapping *mapping,
252 	      loff_t base, int offset,
253 	      char __user *user_data, int length)
254 {
255 	void __iomem *vaddr;
256 	unsigned long unwritten;
257 
258 	/* We can use the cpu mem copy function because this is X86. */
259 	vaddr = io_mapping_map_atomic_wc(mapping, base);
260 	unwritten = __copy_to_user_inatomic(user_data,
261 					    (void __force *)vaddr + offset,
262 					    length);
263 	io_mapping_unmap_atomic(vaddr);
264 	if (unwritten) {
265 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
266 		unwritten = copy_to_user(user_data,
267 					 (void __force *)vaddr + offset,
268 					 length);
269 		io_mapping_unmap(vaddr);
270 	}
271 	return unwritten;
272 }
273 
274 static int
275 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
276 		   const struct drm_i915_gem_pread *args)
277 {
278 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
279 	struct i915_ggtt *ggtt = &i915->ggtt;
280 	intel_wakeref_t wakeref;
281 	struct drm_mm_node node;
282 	struct dma_fence *fence;
283 	void __user *user_data;
284 	struct i915_vma *vma;
285 	u64 remain, offset;
286 	int ret;
287 
288 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
289 	vma = ERR_PTR(-ENODEV);
290 	if (!i915_gem_object_is_tiled(obj))
291 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
292 					       PIN_MAPPABLE |
293 					       PIN_NONBLOCK /* NOWARN */ |
294 					       PIN_NOEVICT);
295 	if (!IS_ERR(vma)) {
296 		node.start = i915_ggtt_offset(vma);
297 		node.flags = 0;
298 	} else {
299 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
300 		if (ret)
301 			goto out_rpm;
302 		GEM_BUG_ON(!drm_mm_node_allocated(&node));
303 	}
304 
305 	ret = i915_gem_object_lock_interruptible(obj, NULL);
306 	if (ret)
307 		goto out_unpin;
308 
309 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
310 	if (ret) {
311 		i915_gem_object_unlock(obj);
312 		goto out_unpin;
313 	}
314 
315 	fence = i915_gem_object_lock_fence(obj);
316 	i915_gem_object_unlock(obj);
317 	if (!fence) {
318 		ret = -ENOMEM;
319 		goto out_unpin;
320 	}
321 
322 	user_data = u64_to_user_ptr(args->data_ptr);
323 	remain = args->size;
324 	offset = args->offset;
325 
326 	while (remain > 0) {
327 		/* Operation in this page
328 		 *
329 		 * page_base = page offset within aperture
330 		 * page_offset = offset within page
331 		 * page_length = bytes to copy for this page
332 		 */
333 		u32 page_base = node.start;
334 		unsigned page_offset = offset_in_page(offset);
335 		unsigned page_length = PAGE_SIZE - page_offset;
336 		page_length = remain < page_length ? remain : page_length;
337 		if (drm_mm_node_allocated(&node)) {
338 			ggtt->vm.insert_page(&ggtt->vm,
339 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
340 					     node.start, I915_CACHE_NONE, 0);
341 		} else {
342 			page_base += offset & PAGE_MASK;
343 		}
344 
345 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
346 				  user_data, page_length)) {
347 			ret = -EFAULT;
348 			break;
349 		}
350 
351 		remain -= page_length;
352 		user_data += page_length;
353 		offset += page_length;
354 	}
355 
356 	i915_gem_object_unlock_fence(obj, fence);
357 out_unpin:
358 	if (drm_mm_node_allocated(&node)) {
359 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
360 		remove_mappable_node(ggtt, &node);
361 	} else {
362 		i915_vma_unpin(vma);
363 	}
364 out_rpm:
365 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
366 	return ret;
367 }
368 
369 /**
370  * Reads data from the object referenced by handle.
371  * @dev: drm device pointer
372  * @data: ioctl data blob
373  * @file: drm file pointer
374  *
375  * On error, the contents of *data are undefined.
376  */
377 int
378 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
379 		     struct drm_file *file)
380 {
381 	struct drm_i915_gem_pread *args = data;
382 	struct drm_i915_gem_object *obj;
383 	int ret;
384 
385 	if (args->size == 0)
386 		return 0;
387 
388 	if (!access_ok(u64_to_user_ptr(args->data_ptr),
389 		       args->size))
390 		return -EFAULT;
391 
392 	obj = i915_gem_object_lookup(file, args->handle);
393 	if (!obj)
394 		return -ENOENT;
395 
396 	/* Bounds check source.  */
397 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
398 		ret = -EINVAL;
399 		goto out;
400 	}
401 
402 	trace_i915_gem_object_pread(obj, args->offset, args->size);
403 
404 	ret = -ENODEV;
405 	if (obj->ops->pread)
406 		ret = obj->ops->pread(obj, args);
407 	if (ret != -ENODEV)
408 		goto out;
409 
410 	ret = i915_gem_object_wait(obj,
411 				   I915_WAIT_INTERRUPTIBLE,
412 				   MAX_SCHEDULE_TIMEOUT);
413 	if (ret)
414 		goto out;
415 
416 	ret = i915_gem_object_pin_pages(obj);
417 	if (ret)
418 		goto out;
419 
420 	ret = i915_gem_shmem_pread(obj, args);
421 	if (ret == -EFAULT || ret == -ENODEV)
422 		ret = i915_gem_gtt_pread(obj, args);
423 
424 	i915_gem_object_unpin_pages(obj);
425 out:
426 	i915_gem_object_put(obj);
427 	return ret;
428 }
429 
430 /* This is the fast write path which cannot handle
431  * page faults in the source data
432  */
433 
434 static inline bool
435 ggtt_write(struct io_mapping *mapping,
436 	   loff_t base, int offset,
437 	   char __user *user_data, int length)
438 {
439 	void __iomem *vaddr;
440 	unsigned long unwritten;
441 
442 	/* We can use the cpu mem copy function because this is X86. */
443 	vaddr = io_mapping_map_atomic_wc(mapping, base);
444 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
445 						      user_data, length);
446 	io_mapping_unmap_atomic(vaddr);
447 	if (unwritten) {
448 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
449 		unwritten = copy_from_user((void __force *)vaddr + offset,
450 					   user_data, length);
451 		io_mapping_unmap(vaddr);
452 	}
453 
454 	return unwritten;
455 }
456 
457 /**
458  * This is the fast pwrite path, where we copy the data directly from the
459  * user into the GTT, uncached.
460  * @obj: i915 GEM object
461  * @args: pwrite arguments structure
462  */
463 static int
464 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
465 			 const struct drm_i915_gem_pwrite *args)
466 {
467 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
468 	struct i915_ggtt *ggtt = &i915->ggtt;
469 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
470 	intel_wakeref_t wakeref;
471 	struct drm_mm_node node;
472 	struct dma_fence *fence;
473 	struct i915_vma *vma;
474 	u64 remain, offset;
475 	void __user *user_data;
476 	int ret;
477 
478 	if (i915_gem_object_has_struct_page(obj)) {
479 		/*
480 		 * Avoid waking the device up if we can fallback, as
481 		 * waking/resuming is very slow (worst-case 10-100 ms
482 		 * depending on PCI sleeps and our own resume time).
483 		 * This easily dwarfs any performance advantage from
484 		 * using the cache bypass of indirect GGTT access.
485 		 */
486 		wakeref = intel_runtime_pm_get_if_in_use(rpm);
487 		if (!wakeref)
488 			return -EFAULT;
489 	} else {
490 		/* No backing pages, no fallback, we must force GGTT access */
491 		wakeref = intel_runtime_pm_get(rpm);
492 	}
493 
494 	vma = ERR_PTR(-ENODEV);
495 	if (!i915_gem_object_is_tiled(obj))
496 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
497 					       PIN_MAPPABLE |
498 					       PIN_NONBLOCK /* NOWARN */ |
499 					       PIN_NOEVICT);
500 	if (!IS_ERR(vma)) {
501 		node.start = i915_ggtt_offset(vma);
502 		node.flags = 0;
503 	} else {
504 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
505 		if (ret)
506 			goto out_rpm;
507 		GEM_BUG_ON(!drm_mm_node_allocated(&node));
508 	}
509 
510 	ret = i915_gem_object_lock_interruptible(obj, NULL);
511 	if (ret)
512 		goto out_unpin;
513 
514 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
515 	if (ret) {
516 		i915_gem_object_unlock(obj);
517 		goto out_unpin;
518 	}
519 
520 	fence = i915_gem_object_lock_fence(obj);
521 	i915_gem_object_unlock(obj);
522 	if (!fence) {
523 		ret = -ENOMEM;
524 		goto out_unpin;
525 	}
526 
527 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
528 
529 	user_data = u64_to_user_ptr(args->data_ptr);
530 	offset = args->offset;
531 	remain = args->size;
532 	while (remain) {
533 		/* Operation in this page
534 		 *
535 		 * page_base = page offset within aperture
536 		 * page_offset = offset within page
537 		 * page_length = bytes to copy for this page
538 		 */
539 		u32 page_base = node.start;
540 		unsigned int page_offset = offset_in_page(offset);
541 		unsigned int page_length = PAGE_SIZE - page_offset;
542 		page_length = remain < page_length ? remain : page_length;
543 		if (drm_mm_node_allocated(&node)) {
544 			/* flush the write before we modify the GGTT */
545 			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
546 			ggtt->vm.insert_page(&ggtt->vm,
547 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
548 					     node.start, I915_CACHE_NONE, 0);
549 			wmb(); /* flush modifications to the GGTT (insert_page) */
550 		} else {
551 			page_base += offset & PAGE_MASK;
552 		}
553 		/* If we get a fault while copying data, then (presumably) our
554 		 * source page isn't available.  Return the error and we'll
555 		 * retry in the slow path.
556 		 * If the object is non-shmem backed, we retry again with the
557 		 * path that handles page fault.
558 		 */
559 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
560 			       user_data, page_length)) {
561 			ret = -EFAULT;
562 			break;
563 		}
564 
565 		remain -= page_length;
566 		user_data += page_length;
567 		offset += page_length;
568 	}
569 
570 	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
571 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
572 
573 	i915_gem_object_unlock_fence(obj, fence);
574 out_unpin:
575 	if (drm_mm_node_allocated(&node)) {
576 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
577 		remove_mappable_node(ggtt, &node);
578 	} else {
579 		i915_vma_unpin(vma);
580 	}
581 out_rpm:
582 	intel_runtime_pm_put(rpm, wakeref);
583 	return ret;
584 }
585 
586 /* Per-page copy function for the shmem pwrite fastpath.
587  * Flushes invalid cachelines before writing to the target if
588  * needs_clflush_before is set and flushes out any written cachelines after
589  * writing if needs_clflush is set.
590  */
591 static int
592 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
593 	     bool needs_clflush_before,
594 	     bool needs_clflush_after)
595 {
596 	char *vaddr;
597 	int ret;
598 
599 	vaddr = kmap(page);
600 
601 	if (needs_clflush_before)
602 		drm_clflush_virt_range(vaddr + offset, len);
603 
604 	ret = __copy_from_user(vaddr + offset, user_data, len);
605 	if (!ret && needs_clflush_after)
606 		drm_clflush_virt_range(vaddr + offset, len);
607 
608 	kunmap(page);
609 
610 	return ret ? -EFAULT : 0;
611 }
612 
613 static int
614 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
615 		      const struct drm_i915_gem_pwrite *args)
616 {
617 	unsigned int partial_cacheline_write;
618 	unsigned int needs_clflush;
619 	unsigned int offset, idx;
620 	struct dma_fence *fence;
621 	void __user *user_data;
622 	u64 remain;
623 	int ret;
624 
625 	ret = i915_gem_object_lock_interruptible(obj, NULL);
626 	if (ret)
627 		return ret;
628 
629 	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
630 	if (ret) {
631 		i915_gem_object_unlock(obj);
632 		return ret;
633 	}
634 
635 	fence = i915_gem_object_lock_fence(obj);
636 	i915_gem_object_finish_access(obj);
637 	i915_gem_object_unlock(obj);
638 
639 	if (!fence)
640 		return -ENOMEM;
641 
642 	/* If we don't overwrite a cacheline completely we need to be
643 	 * careful to have up-to-date data by first clflushing. Don't
644 	 * overcomplicate things and flush the entire patch.
645 	 */
646 	partial_cacheline_write = 0;
647 	if (needs_clflush & CLFLUSH_BEFORE)
648 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
649 
650 	user_data = u64_to_user_ptr(args->data_ptr);
651 	remain = args->size;
652 	offset = offset_in_page(args->offset);
653 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
654 		struct page *page = i915_gem_object_get_page(obj, idx);
655 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
656 
657 		ret = shmem_pwrite(page, offset, length, user_data,
658 				   (offset | length) & partial_cacheline_write,
659 				   needs_clflush & CLFLUSH_AFTER);
660 		if (ret)
661 			break;
662 
663 		remain -= length;
664 		user_data += length;
665 		offset = 0;
666 	}
667 
668 	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
669 	i915_gem_object_unlock_fence(obj, fence);
670 
671 	return ret;
672 }
673 
674 /**
675  * Writes data to the object referenced by handle.
676  * @dev: drm device
677  * @data: ioctl data blob
678  * @file: drm file
679  *
680  * On error, the contents of the buffer that were to be modified are undefined.
681  */
682 int
683 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
684 		      struct drm_file *file)
685 {
686 	struct drm_i915_gem_pwrite *args = data;
687 	struct drm_i915_gem_object *obj;
688 	int ret;
689 
690 	if (args->size == 0)
691 		return 0;
692 
693 	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
694 		return -EFAULT;
695 
696 	obj = i915_gem_object_lookup(file, args->handle);
697 	if (!obj)
698 		return -ENOENT;
699 
700 	/* Bounds check destination. */
701 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
702 		ret = -EINVAL;
703 		goto err;
704 	}
705 
706 	/* Writes not allowed into this read-only object */
707 	if (i915_gem_object_is_readonly(obj)) {
708 		ret = -EINVAL;
709 		goto err;
710 	}
711 
712 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
713 
714 	ret = -ENODEV;
715 	if (obj->ops->pwrite)
716 		ret = obj->ops->pwrite(obj, args);
717 	if (ret != -ENODEV)
718 		goto err;
719 
720 	ret = i915_gem_object_wait(obj,
721 				   I915_WAIT_INTERRUPTIBLE |
722 				   I915_WAIT_ALL,
723 				   MAX_SCHEDULE_TIMEOUT);
724 	if (ret)
725 		goto err;
726 
727 	ret = i915_gem_object_pin_pages(obj);
728 	if (ret)
729 		goto err;
730 
731 	ret = -EFAULT;
732 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
733 	 * it would end up going through the fenced access, and we'll get
734 	 * different detiling behavior between reading and writing.
735 	 * pread/pwrite currently are reading and writing from the CPU
736 	 * perspective, requiring manual detiling by the client.
737 	 */
738 	if (!i915_gem_object_has_struct_page(obj) ||
739 	    cpu_write_needs_clflush(obj))
740 		/* Note that the gtt paths might fail with non-page-backed user
741 		 * pointers (e.g. gtt mappings when moving data between
742 		 * textures). Fallback to the shmem path in that case.
743 		 */
744 		ret = i915_gem_gtt_pwrite_fast(obj, args);
745 
746 	if (ret == -EFAULT || ret == -ENOSPC) {
747 		if (i915_gem_object_has_struct_page(obj))
748 			ret = i915_gem_shmem_pwrite(obj, args);
749 	}
750 
751 	i915_gem_object_unpin_pages(obj);
752 err:
753 	i915_gem_object_put(obj);
754 	return ret;
755 }
756 
757 /**
758  * Called when user space has done writes to this buffer
759  * @dev: drm device
760  * @data: ioctl data blob
761  * @file: drm file
762  */
763 int
764 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
765 			 struct drm_file *file)
766 {
767 	struct drm_i915_gem_sw_finish *args = data;
768 	struct drm_i915_gem_object *obj;
769 
770 	obj = i915_gem_object_lookup(file, args->handle);
771 	if (!obj)
772 		return -ENOENT;
773 
774 	/*
775 	 * Proxy objects are barred from CPU access, so there is no
776 	 * need to ban sw_finish as it is a nop.
777 	 */
778 
779 	/* Pinned buffers may be scanout, so flush the cache */
780 	i915_gem_object_flush_if_display(obj);
781 	i915_gem_object_put(obj);
782 
783 	return 0;
784 }
785 
786 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
787 {
788 	struct drm_i915_gem_object *obj, *on;
789 	int i;
790 
791 	/*
792 	 * Only called during RPM suspend. All users of the userfault_list
793 	 * must be holding an RPM wakeref to ensure that this can not
794 	 * run concurrently with themselves (and use the struct_mutex for
795 	 * protection between themselves).
796 	 */
797 
798 	list_for_each_entry_safe(obj, on,
799 				 &i915->ggtt.userfault_list, userfault_link)
800 		__i915_gem_object_release_mmap_gtt(obj);
801 
802 	/*
803 	 * The fence will be lost when the device powers down. If any were
804 	 * in use by hardware (i.e. they are pinned), we should not be powering
805 	 * down! All other fences will be reacquired by the user upon waking.
806 	 */
807 	for (i = 0; i < i915->ggtt.num_fences; i++) {
808 		struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
809 
810 		/*
811 		 * Ideally we want to assert that the fence register is not
812 		 * live at this point (i.e. that no piece of code will be
813 		 * trying to write through fence + GTT, as that both violates
814 		 * our tracking of activity and associated locking/barriers,
815 		 * but also is illegal given that the hw is powered down).
816 		 *
817 		 * Previously we used reg->pin_count as a "liveness" indicator.
818 		 * That is not sufficient, and we need a more fine-grained
819 		 * tool if we want to have a sanity check here.
820 		 */
821 
822 		if (!reg->vma)
823 			continue;
824 
825 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
826 		reg->dirty = true;
827 	}
828 }
829 
830 static void discard_ggtt_vma(struct i915_vma *vma)
831 {
832 	struct drm_i915_gem_object *obj = vma->obj;
833 
834 	spin_lock(&obj->vma.lock);
835 	if (!RB_EMPTY_NODE(&vma->obj_node)) {
836 		rb_erase(&vma->obj_node, &obj->vma.tree);
837 		RB_CLEAR_NODE(&vma->obj_node);
838 	}
839 	spin_unlock(&obj->vma.lock);
840 }
841 
842 struct i915_vma *
843 i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
844 			    struct i915_gem_ww_ctx *ww,
845 			    const struct i915_ggtt_view *view,
846 			    u64 size, u64 alignment, u64 flags)
847 {
848 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
849 	struct i915_ggtt *ggtt = &i915->ggtt;
850 	struct i915_vma *vma;
851 	int ret;
852 
853 	if (flags & PIN_MAPPABLE &&
854 	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
855 		/*
856 		 * If the required space is larger than the available
857 		 * aperture, we will not able to find a slot for the
858 		 * object and unbinding the object now will be in
859 		 * vain. Worse, doing so may cause us to ping-pong
860 		 * the object in and out of the Global GTT and
861 		 * waste a lot of cycles under the mutex.
862 		 */
863 		if (obj->base.size > ggtt->mappable_end)
864 			return ERR_PTR(-E2BIG);
865 
866 		/*
867 		 * If NONBLOCK is set the caller is optimistically
868 		 * trying to cache the full object within the mappable
869 		 * aperture, and *must* have a fallback in place for
870 		 * situations where we cannot bind the object. We
871 		 * can be a little more lax here and use the fallback
872 		 * more often to avoid costly migrations of ourselves
873 		 * and other objects within the aperture.
874 		 *
875 		 * Half-the-aperture is used as a simple heuristic.
876 		 * More interesting would to do search for a free
877 		 * block prior to making the commitment to unbind.
878 		 * That caters for the self-harm case, and with a
879 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
880 		 * we could try to minimise harm to others.
881 		 */
882 		if (flags & PIN_NONBLOCK &&
883 		    obj->base.size > ggtt->mappable_end / 2)
884 			return ERR_PTR(-ENOSPC);
885 	}
886 
887 new_vma:
888 	vma = i915_vma_instance(obj, &ggtt->vm, view);
889 	if (IS_ERR(vma))
890 		return vma;
891 
892 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
893 		if (flags & PIN_NONBLOCK) {
894 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
895 				return ERR_PTR(-ENOSPC);
896 
897 			if (flags & PIN_MAPPABLE &&
898 			    vma->fence_size > ggtt->mappable_end / 2)
899 				return ERR_PTR(-ENOSPC);
900 		}
901 
902 		if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
903 			discard_ggtt_vma(vma);
904 			goto new_vma;
905 		}
906 
907 		ret = i915_vma_unbind(vma);
908 		if (ret)
909 			return ERR_PTR(ret);
910 	}
911 
912 	ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
913 	if (ret)
914 		return ERR_PTR(ret);
915 
916 	if (vma->fence && !i915_gem_object_is_tiled(obj)) {
917 		mutex_lock(&ggtt->vm.mutex);
918 		i915_vma_revoke_fence(vma);
919 		mutex_unlock(&ggtt->vm.mutex);
920 	}
921 
922 	ret = i915_vma_wait_for_bind(vma);
923 	if (ret) {
924 		i915_vma_unpin(vma);
925 		return ERR_PTR(ret);
926 	}
927 
928 	return vma;
929 }
930 
931 int
932 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
933 		       struct drm_file *file_priv)
934 {
935 	struct drm_i915_private *i915 = to_i915(dev);
936 	struct drm_i915_gem_madvise *args = data;
937 	struct drm_i915_gem_object *obj;
938 	int err;
939 
940 	switch (args->madv) {
941 	case I915_MADV_DONTNEED:
942 	case I915_MADV_WILLNEED:
943 	    break;
944 	default:
945 	    return -EINVAL;
946 	}
947 
948 	obj = i915_gem_object_lookup(file_priv, args->handle);
949 	if (!obj)
950 		return -ENOENT;
951 
952 	err = mutex_lock_interruptible(&obj->mm.lock);
953 	if (err)
954 		goto out;
955 
956 	if (i915_gem_object_has_pages(obj) &&
957 	    i915_gem_object_is_tiled(obj) &&
958 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
959 		if (obj->mm.madv == I915_MADV_WILLNEED) {
960 			GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
961 			i915_gem_object_clear_tiling_quirk(obj);
962 			i915_gem_object_make_shrinkable(obj);
963 		}
964 		if (args->madv == I915_MADV_WILLNEED) {
965 			GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
966 			i915_gem_object_make_unshrinkable(obj);
967 			i915_gem_object_set_tiling_quirk(obj);
968 		}
969 	}
970 
971 	if (obj->mm.madv != __I915_MADV_PURGED)
972 		obj->mm.madv = args->madv;
973 
974 	if (i915_gem_object_has_pages(obj)) {
975 		struct list_head *list;
976 
977 		if (i915_gem_object_is_shrinkable(obj)) {
978 			unsigned long flags;
979 
980 			spin_lock_irqsave(&i915->mm.obj_lock, flags);
981 
982 			if (obj->mm.madv != I915_MADV_WILLNEED)
983 				list = &i915->mm.purge_list;
984 			else
985 				list = &i915->mm.shrink_list;
986 			list_move_tail(&obj->mm.link, list);
987 
988 			spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
989 		}
990 	}
991 
992 	/* if the object is no longer attached, discard its backing storage */
993 	if (obj->mm.madv == I915_MADV_DONTNEED &&
994 	    !i915_gem_object_has_pages(obj))
995 		i915_gem_object_truncate(obj);
996 
997 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
998 	mutex_unlock(&obj->mm.lock);
999 
1000 out:
1001 	i915_gem_object_put(obj);
1002 	return err;
1003 }
1004 
1005 int i915_gem_init(struct drm_i915_private *dev_priv)
1006 {
1007 	int ret;
1008 
1009 	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
1010 	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1011 		mkwrite_device_info(dev_priv)->page_sizes =
1012 			I915_GTT_PAGE_SIZE_4K;
1013 
1014 	ret = i915_gem_init_userptr(dev_priv);
1015 	if (ret)
1016 		return ret;
1017 
1018 	intel_uc_fetch_firmwares(&dev_priv->gt.uc);
1019 	intel_wopcm_init(&dev_priv->wopcm);
1020 
1021 	ret = i915_init_ggtt(dev_priv);
1022 	if (ret) {
1023 		GEM_BUG_ON(ret == -EIO);
1024 		goto err_unlock;
1025 	}
1026 
1027 	/*
1028 	 * Despite its name intel_init_clock_gating applies both display
1029 	 * clock gating workarounds; GT mmio workarounds and the occasional
1030 	 * GT power context workaround. Worse, sometimes it includes a context
1031 	 * register workaround which we need to apply before we record the
1032 	 * default HW state for all contexts.
1033 	 *
1034 	 * FIXME: break up the workarounds and apply them at the right time!
1035 	 */
1036 	intel_init_clock_gating(dev_priv);
1037 
1038 	ret = intel_gt_init(&dev_priv->gt);
1039 	if (ret)
1040 		goto err_unlock;
1041 
1042 	return 0;
1043 
1044 	/*
1045 	 * Unwinding is complicated by that we want to handle -EIO to mean
1046 	 * disable GPU submission but keep KMS alive. We want to mark the
1047 	 * HW as irrevisibly wedged, but keep enough state around that the
1048 	 * driver doesn't explode during runtime.
1049 	 */
1050 err_unlock:
1051 	i915_gem_drain_workqueue(dev_priv);
1052 
1053 	if (ret != -EIO) {
1054 		intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1055 		i915_gem_cleanup_userptr(dev_priv);
1056 	}
1057 
1058 	if (ret == -EIO) {
1059 		/*
1060 		 * Allow engines or uC initialisation to fail by marking the GPU
1061 		 * as wedged. But we only want to do this when the GPU is angry,
1062 		 * for all other failure, such as an allocation failure, bail.
1063 		 */
1064 		if (!intel_gt_is_wedged(&dev_priv->gt)) {
1065 			i915_probe_error(dev_priv,
1066 					 "Failed to initialize GPU, declaring it wedged!\n");
1067 			intel_gt_set_wedged(&dev_priv->gt);
1068 		}
1069 
1070 		/* Minimal basic recovery for KMS */
1071 		ret = i915_ggtt_enable_hw(dev_priv);
1072 		i915_ggtt_resume(&dev_priv->ggtt);
1073 		intel_init_clock_gating(dev_priv);
1074 	}
1075 
1076 	i915_gem_drain_freed_objects(dev_priv);
1077 	return ret;
1078 }
1079 
1080 void i915_gem_driver_register(struct drm_i915_private *i915)
1081 {
1082 	i915_gem_driver_register__shrinker(i915);
1083 
1084 	intel_engines_driver_register(i915);
1085 }
1086 
1087 void i915_gem_driver_unregister(struct drm_i915_private *i915)
1088 {
1089 	i915_gem_driver_unregister__shrinker(i915);
1090 }
1091 
1092 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1093 {
1094 	intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1095 
1096 	i915_gem_suspend_late(dev_priv);
1097 	intel_gt_driver_remove(&dev_priv->gt);
1098 	dev_priv->uabi_engines = RB_ROOT;
1099 
1100 	/* Flush any outstanding unpin_work. */
1101 	i915_gem_drain_workqueue(dev_priv);
1102 
1103 	i915_gem_drain_freed_objects(dev_priv);
1104 }
1105 
1106 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1107 {
1108 	intel_gt_driver_release(&dev_priv->gt);
1109 
1110 	intel_wa_list_free(&dev_priv->gt_wa_list);
1111 
1112 	intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1113 	i915_gem_cleanup_userptr(dev_priv);
1114 
1115 	i915_gem_drain_freed_objects(dev_priv);
1116 
1117 	drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1118 }
1119 
1120 static void i915_gem_init__mm(struct drm_i915_private *i915)
1121 {
1122 	spin_lock_init(&i915->mm.obj_lock);
1123 
1124 	init_llist_head(&i915->mm.free_list);
1125 
1126 	INIT_LIST_HEAD(&i915->mm.purge_list);
1127 	INIT_LIST_HEAD(&i915->mm.shrink_list);
1128 
1129 	i915_gem_init__objects(i915);
1130 }
1131 
1132 void i915_gem_init_early(struct drm_i915_private *dev_priv)
1133 {
1134 	i915_gem_init__mm(dev_priv);
1135 	i915_gem_init__contexts(dev_priv);
1136 
1137 	spin_lock_init(&dev_priv->fb_tracking.lock);
1138 }
1139 
1140 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1141 {
1142 	i915_gem_drain_freed_objects(dev_priv);
1143 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1144 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1145 	drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1146 }
1147 
1148 int i915_gem_freeze(struct drm_i915_private *dev_priv)
1149 {
1150 	/* Discard all purgeable objects, let userspace recover those as
1151 	 * required after resuming.
1152 	 */
1153 	i915_gem_shrink_all(dev_priv);
1154 
1155 	return 0;
1156 }
1157 
1158 int i915_gem_freeze_late(struct drm_i915_private *i915)
1159 {
1160 	struct drm_i915_gem_object *obj;
1161 	intel_wakeref_t wakeref;
1162 
1163 	/*
1164 	 * Called just before we write the hibernation image.
1165 	 *
1166 	 * We need to update the domain tracking to reflect that the CPU
1167 	 * will be accessing all the pages to create and restore from the
1168 	 * hibernation, and so upon restoration those pages will be in the
1169 	 * CPU domain.
1170 	 *
1171 	 * To make sure the hibernation image contains the latest state,
1172 	 * we update that state just before writing out the image.
1173 	 *
1174 	 * To try and reduce the hibernation image, we manually shrink
1175 	 * the objects as well, see i915_gem_freeze()
1176 	 */
1177 
1178 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
1179 		i915_gem_shrink(i915, -1UL, NULL, ~0);
1180 	i915_gem_drain_freed_objects(i915);
1181 
1182 	wbinvd_on_all_cpus();
1183 	list_for_each_entry(obj, &i915->mm.shrink_list, mm.link)
1184 		__start_cpu_write(obj);
1185 
1186 	return 0;
1187 }
1188 
1189 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1190 {
1191 	struct drm_i915_file_private *file_priv;
1192 	int ret;
1193 
1194 	DRM_DEBUG("\n");
1195 
1196 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1197 	if (!file_priv)
1198 		return -ENOMEM;
1199 
1200 	file->driver_priv = file_priv;
1201 	file_priv->dev_priv = i915;
1202 	file_priv->file = file;
1203 
1204 	file_priv->bsd_engine = -1;
1205 	file_priv->hang_timestamp = jiffies;
1206 
1207 	ret = i915_gem_context_open(i915, file);
1208 	if (ret)
1209 		kfree(file_priv);
1210 
1211 	return ret;
1212 }
1213 
1214 void i915_gem_ww_ctx_init(struct i915_gem_ww_ctx *ww, bool intr)
1215 {
1216 	ww_acquire_init(&ww->ctx, &reservation_ww_class);
1217 	INIT_LIST_HEAD(&ww->obj_list);
1218 	ww->intr = intr;
1219 	ww->contended = NULL;
1220 }
1221 
1222 static void i915_gem_ww_ctx_unlock_all(struct i915_gem_ww_ctx *ww)
1223 {
1224 	struct drm_i915_gem_object *obj;
1225 
1226 	while ((obj = list_first_entry_or_null(&ww->obj_list, struct drm_i915_gem_object, obj_link))) {
1227 		list_del(&obj->obj_link);
1228 		i915_gem_object_unlock(obj);
1229 	}
1230 }
1231 
1232 void i915_gem_ww_unlock_single(struct drm_i915_gem_object *obj)
1233 {
1234 	list_del(&obj->obj_link);
1235 	i915_gem_object_unlock(obj);
1236 }
1237 
1238 void i915_gem_ww_ctx_fini(struct i915_gem_ww_ctx *ww)
1239 {
1240 	i915_gem_ww_ctx_unlock_all(ww);
1241 	WARN_ON(ww->contended);
1242 	ww_acquire_fini(&ww->ctx);
1243 }
1244 
1245 int __must_check i915_gem_ww_ctx_backoff(struct i915_gem_ww_ctx *ww)
1246 {
1247 	int ret = 0;
1248 
1249 	if (WARN_ON(!ww->contended))
1250 		return -EINVAL;
1251 
1252 	i915_gem_ww_ctx_unlock_all(ww);
1253 	if (ww->intr)
1254 		ret = dma_resv_lock_slow_interruptible(ww->contended->base.resv, &ww->ctx);
1255 	else
1256 		dma_resv_lock_slow(ww->contended->base.resv, &ww->ctx);
1257 
1258 	if (!ret)
1259 		list_add_tail(&ww->contended->obj_link, &ww->obj_list);
1260 
1261 	ww->contended = NULL;
1262 
1263 	return ret;
1264 }
1265 
1266 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1267 #include "selftests/mock_gem_device.c"
1268 #include "selftests/i915_gem.c"
1269 #endif
1270