1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * 26 */ 27 28 #include <linux/dma-fence-array.h> 29 #include <linux/kthread.h> 30 #include <linux/dma-resv.h> 31 #include <linux/shmem_fs.h> 32 #include <linux/slab.h> 33 #include <linux/stop_machine.h> 34 #include <linux/swap.h> 35 #include <linux/pci.h> 36 #include <linux/dma-buf.h> 37 #include <linux/mman.h> 38 39 #include <drm/drm_cache.h> 40 #include <drm/drm_vma_manager.h> 41 42 #include "display/intel_display.h" 43 #include "display/intel_frontbuffer.h" 44 45 #include "gem/i915_gem_clflush.h" 46 #include "gem/i915_gem_context.h" 47 #include "gem/i915_gem_ioctls.h" 48 #include "gem/i915_gem_mman.h" 49 #include "gem/i915_gem_pm.h" 50 #include "gem/i915_gem_region.h" 51 #include "gem/i915_gem_userptr.h" 52 #include "gt/intel_engine_user.h" 53 #include "gt/intel_gt.h" 54 #include "gt/intel_gt_pm.h" 55 #include "gt/intel_workarounds.h" 56 57 #include "i915_drv.h" 58 #include "i915_file_private.h" 59 #include "i915_trace.h" 60 #include "i915_vgpu.h" 61 #include "intel_clock_gating.h" 62 63 static int 64 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size) 65 { 66 int err; 67 68 err = mutex_lock_interruptible(&ggtt->vm.mutex); 69 if (err) 70 return err; 71 72 memset(node, 0, sizeof(*node)); 73 err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node, 74 size, 0, I915_COLOR_UNEVICTABLE, 75 0, ggtt->mappable_end, 76 DRM_MM_INSERT_LOW); 77 78 mutex_unlock(&ggtt->vm.mutex); 79 80 return err; 81 } 82 83 static void 84 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node) 85 { 86 mutex_lock(&ggtt->vm.mutex); 87 drm_mm_remove_node(node); 88 mutex_unlock(&ggtt->vm.mutex); 89 } 90 91 int 92 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 93 struct drm_file *file) 94 { 95 struct drm_i915_private *i915 = to_i915(dev); 96 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 97 struct drm_i915_gem_get_aperture *args = data; 98 struct i915_vma *vma; 99 u64 pinned; 100 101 if (mutex_lock_interruptible(&ggtt->vm.mutex)) 102 return -EINTR; 103 104 pinned = ggtt->vm.reserved; 105 list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link) 106 if (i915_vma_is_pinned(vma)) 107 pinned += vma->node.size; 108 109 mutex_unlock(&ggtt->vm.mutex); 110 111 args->aper_size = ggtt->vm.total; 112 args->aper_available_size = args->aper_size - pinned; 113 114 return 0; 115 } 116 117 int i915_gem_object_unbind(struct drm_i915_gem_object *obj, 118 unsigned long flags) 119 { 120 struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm; 121 bool vm_trylock = !!(flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK); 122 LIST_HEAD(still_in_list); 123 intel_wakeref_t wakeref; 124 struct i915_vma *vma; 125 int ret; 126 127 assert_object_held(obj); 128 129 if (list_empty(&obj->vma.list)) 130 return 0; 131 132 /* 133 * As some machines use ACPI to handle runtime-resume callbacks, and 134 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex 135 * as they are required by the shrinker. Ergo, we wake the device up 136 * first just in case. 137 */ 138 wakeref = intel_runtime_pm_get(rpm); 139 140 try_again: 141 ret = 0; 142 spin_lock(&obj->vma.lock); 143 while (!ret && (vma = list_first_entry_or_null(&obj->vma.list, 144 struct i915_vma, 145 obj_link))) { 146 list_move_tail(&vma->obj_link, &still_in_list); 147 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) 148 continue; 149 150 if (flags & I915_GEM_OBJECT_UNBIND_TEST) { 151 ret = -EBUSY; 152 break; 153 } 154 155 /* 156 * Requiring the vm destructor to take the object lock 157 * before destroying a vma would help us eliminate the 158 * i915_vm_tryget() here, AND thus also the barrier stuff 159 * at the end. That's an easy fix, but sleeping locks in 160 * a kthread should generally be avoided. 161 */ 162 ret = -EAGAIN; 163 if (!i915_vm_tryget(vma->vm)) 164 break; 165 166 spin_unlock(&obj->vma.lock); 167 168 /* 169 * Since i915_vma_parked() takes the object lock 170 * before vma destruction, it won't race us here, 171 * and destroy the vma from under us. 172 */ 173 174 ret = -EBUSY; 175 if (flags & I915_GEM_OBJECT_UNBIND_ASYNC) { 176 assert_object_held(vma->obj); 177 ret = i915_vma_unbind_async(vma, vm_trylock); 178 } 179 180 if (ret == -EBUSY && (flags & I915_GEM_OBJECT_UNBIND_ACTIVE || 181 !i915_vma_is_active(vma))) { 182 if (vm_trylock) { 183 if (mutex_trylock(&vma->vm->mutex)) { 184 ret = __i915_vma_unbind(vma); 185 mutex_unlock(&vma->vm->mutex); 186 } 187 } else { 188 ret = i915_vma_unbind(vma); 189 } 190 } 191 192 i915_vm_put(vma->vm); 193 spin_lock(&obj->vma.lock); 194 } 195 list_splice_init(&still_in_list, &obj->vma.list); 196 spin_unlock(&obj->vma.lock); 197 198 if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) { 199 rcu_barrier(); /* flush the i915_vm_release() */ 200 goto try_again; 201 } 202 203 intel_runtime_pm_put(rpm, wakeref); 204 205 return ret; 206 } 207 208 static int 209 shmem_pread(struct page *page, int offset, int len, char __user *user_data, 210 bool needs_clflush) 211 { 212 char *vaddr; 213 int ret; 214 215 vaddr = kmap(page); 216 217 if (needs_clflush) 218 drm_clflush_virt_range(vaddr + offset, len); 219 220 ret = __copy_to_user(user_data, vaddr + offset, len); 221 222 kunmap(page); 223 224 return ret ? -EFAULT : 0; 225 } 226 227 static int 228 i915_gem_shmem_pread(struct drm_i915_gem_object *obj, 229 struct drm_i915_gem_pread *args) 230 { 231 unsigned int needs_clflush; 232 char __user *user_data; 233 unsigned long offset; 234 pgoff_t idx; 235 u64 remain; 236 int ret; 237 238 ret = i915_gem_object_lock_interruptible(obj, NULL); 239 if (ret) 240 return ret; 241 242 ret = i915_gem_object_pin_pages(obj); 243 if (ret) 244 goto err_unlock; 245 246 ret = i915_gem_object_prepare_read(obj, &needs_clflush); 247 if (ret) 248 goto err_unpin; 249 250 i915_gem_object_finish_access(obj); 251 i915_gem_object_unlock(obj); 252 253 remain = args->size; 254 user_data = u64_to_user_ptr(args->data_ptr); 255 offset = offset_in_page(args->offset); 256 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { 257 struct page *page = i915_gem_object_get_page(obj, idx); 258 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset); 259 260 ret = shmem_pread(page, offset, length, user_data, 261 needs_clflush); 262 if (ret) 263 break; 264 265 remain -= length; 266 user_data += length; 267 offset = 0; 268 } 269 270 i915_gem_object_unpin_pages(obj); 271 return ret; 272 273 err_unpin: 274 i915_gem_object_unpin_pages(obj); 275 err_unlock: 276 i915_gem_object_unlock(obj); 277 return ret; 278 } 279 280 static inline bool 281 gtt_user_read(struct io_mapping *mapping, 282 loff_t base, int offset, 283 char __user *user_data, int length) 284 { 285 void __iomem *vaddr; 286 unsigned long unwritten; 287 288 /* We can use the cpu mem copy function because this is X86. */ 289 vaddr = io_mapping_map_atomic_wc(mapping, base); 290 unwritten = __copy_to_user_inatomic(user_data, 291 (void __force *)vaddr + offset, 292 length); 293 io_mapping_unmap_atomic(vaddr); 294 if (unwritten) { 295 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); 296 unwritten = copy_to_user(user_data, 297 (void __force *)vaddr + offset, 298 length); 299 io_mapping_unmap(vaddr); 300 } 301 return unwritten; 302 } 303 304 static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj, 305 struct drm_mm_node *node, 306 bool write) 307 { 308 struct drm_i915_private *i915 = to_i915(obj->base.dev); 309 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 310 struct i915_vma *vma; 311 struct i915_gem_ww_ctx ww; 312 int ret; 313 314 i915_gem_ww_ctx_init(&ww, true); 315 retry: 316 vma = ERR_PTR(-ENODEV); 317 ret = i915_gem_object_lock(obj, &ww); 318 if (ret) 319 goto err_ww; 320 321 ret = i915_gem_object_set_to_gtt_domain(obj, write); 322 if (ret) 323 goto err_ww; 324 325 if (!i915_gem_object_is_tiled(obj)) 326 vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0, 327 PIN_MAPPABLE | 328 PIN_NONBLOCK /* NOWARN */ | 329 PIN_NOEVICT); 330 if (vma == ERR_PTR(-EDEADLK)) { 331 ret = -EDEADLK; 332 goto err_ww; 333 } else if (!IS_ERR(vma)) { 334 node->start = i915_ggtt_offset(vma); 335 node->flags = 0; 336 } else { 337 ret = insert_mappable_node(ggtt, node, PAGE_SIZE); 338 if (ret) 339 goto err_ww; 340 GEM_BUG_ON(!drm_mm_node_allocated(node)); 341 vma = NULL; 342 } 343 344 ret = i915_gem_object_pin_pages(obj); 345 if (ret) { 346 if (drm_mm_node_allocated(node)) { 347 ggtt->vm.clear_range(&ggtt->vm, node->start, node->size); 348 remove_mappable_node(ggtt, node); 349 } else { 350 i915_vma_unpin(vma); 351 } 352 } 353 354 err_ww: 355 if (ret == -EDEADLK) { 356 ret = i915_gem_ww_ctx_backoff(&ww); 357 if (!ret) 358 goto retry; 359 } 360 i915_gem_ww_ctx_fini(&ww); 361 362 return ret ? ERR_PTR(ret) : vma; 363 } 364 365 static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj, 366 struct drm_mm_node *node, 367 struct i915_vma *vma) 368 { 369 struct drm_i915_private *i915 = to_i915(obj->base.dev); 370 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 371 372 i915_gem_object_unpin_pages(obj); 373 if (drm_mm_node_allocated(node)) { 374 ggtt->vm.clear_range(&ggtt->vm, node->start, node->size); 375 remove_mappable_node(ggtt, node); 376 } else { 377 i915_vma_unpin(vma); 378 } 379 } 380 381 static int 382 i915_gem_gtt_pread(struct drm_i915_gem_object *obj, 383 const struct drm_i915_gem_pread *args) 384 { 385 struct drm_i915_private *i915 = to_i915(obj->base.dev); 386 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 387 unsigned long remain, offset; 388 intel_wakeref_t wakeref; 389 struct drm_mm_node node; 390 void __user *user_data; 391 struct i915_vma *vma; 392 int ret = 0; 393 394 if (overflows_type(args->size, remain) || 395 overflows_type(args->offset, offset)) 396 return -EINVAL; 397 398 wakeref = intel_runtime_pm_get(&i915->runtime_pm); 399 400 vma = i915_gem_gtt_prepare(obj, &node, false); 401 if (IS_ERR(vma)) { 402 ret = PTR_ERR(vma); 403 goto out_rpm; 404 } 405 406 user_data = u64_to_user_ptr(args->data_ptr); 407 remain = args->size; 408 offset = args->offset; 409 410 while (remain > 0) { 411 /* Operation in this page 412 * 413 * page_base = page offset within aperture 414 * page_offset = offset within page 415 * page_length = bytes to copy for this page 416 */ 417 u32 page_base = node.start; 418 unsigned page_offset = offset_in_page(offset); 419 unsigned page_length = PAGE_SIZE - page_offset; 420 page_length = remain < page_length ? remain : page_length; 421 if (drm_mm_node_allocated(&node)) { 422 ggtt->vm.insert_page(&ggtt->vm, 423 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), 424 node.start, I915_CACHE_NONE, 0); 425 } else { 426 page_base += offset & PAGE_MASK; 427 } 428 429 if (gtt_user_read(&ggtt->iomap, page_base, page_offset, 430 user_data, page_length)) { 431 ret = -EFAULT; 432 break; 433 } 434 435 remain -= page_length; 436 user_data += page_length; 437 offset += page_length; 438 } 439 440 i915_gem_gtt_cleanup(obj, &node, vma); 441 out_rpm: 442 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 443 return ret; 444 } 445 446 /** 447 * i915_gem_pread_ioctl - Reads data from the object referenced by handle. 448 * @dev: drm device pointer 449 * @data: ioctl data blob 450 * @file: drm file pointer 451 * 452 * On error, the contents of *data are undefined. 453 */ 454 int 455 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 456 struct drm_file *file) 457 { 458 struct drm_i915_private *i915 = to_i915(dev); 459 struct drm_i915_gem_pread *args = data; 460 struct drm_i915_gem_object *obj; 461 int ret; 462 463 /* PREAD is disallowed for all platforms after TGL-LP. This also 464 * covers all platforms with local memory. 465 */ 466 if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915)) 467 return -EOPNOTSUPP; 468 469 if (args->size == 0) 470 return 0; 471 472 if (!access_ok(u64_to_user_ptr(args->data_ptr), 473 args->size)) 474 return -EFAULT; 475 476 obj = i915_gem_object_lookup(file, args->handle); 477 if (!obj) 478 return -ENOENT; 479 480 /* Bounds check source. */ 481 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { 482 ret = -EINVAL; 483 goto out; 484 } 485 486 trace_i915_gem_object_pread(obj, args->offset, args->size); 487 ret = -ENODEV; 488 if (obj->ops->pread) 489 ret = obj->ops->pread(obj, args); 490 if (ret != -ENODEV) 491 goto out; 492 493 ret = i915_gem_object_wait(obj, 494 I915_WAIT_INTERRUPTIBLE, 495 MAX_SCHEDULE_TIMEOUT); 496 if (ret) 497 goto out; 498 499 ret = i915_gem_shmem_pread(obj, args); 500 if (ret == -EFAULT || ret == -ENODEV) 501 ret = i915_gem_gtt_pread(obj, args); 502 503 out: 504 i915_gem_object_put(obj); 505 return ret; 506 } 507 508 /* This is the fast write path which cannot handle 509 * page faults in the source data 510 */ 511 512 static inline bool 513 ggtt_write(struct io_mapping *mapping, 514 loff_t base, int offset, 515 char __user *user_data, int length) 516 { 517 void __iomem *vaddr; 518 unsigned long unwritten; 519 520 /* We can use the cpu mem copy function because this is X86. */ 521 vaddr = io_mapping_map_atomic_wc(mapping, base); 522 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset, 523 user_data, length); 524 io_mapping_unmap_atomic(vaddr); 525 if (unwritten) { 526 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); 527 unwritten = copy_from_user((void __force *)vaddr + offset, 528 user_data, length); 529 io_mapping_unmap(vaddr); 530 } 531 532 return unwritten; 533 } 534 535 /** 536 * i915_gem_gtt_pwrite_fast - This is the fast pwrite path, where we copy the data directly from the 537 * user into the GTT, uncached. 538 * @obj: i915 GEM object 539 * @args: pwrite arguments structure 540 */ 541 static int 542 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj, 543 const struct drm_i915_gem_pwrite *args) 544 { 545 struct drm_i915_private *i915 = to_i915(obj->base.dev); 546 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 547 struct intel_runtime_pm *rpm = &i915->runtime_pm; 548 unsigned long remain, offset; 549 intel_wakeref_t wakeref; 550 struct drm_mm_node node; 551 struct i915_vma *vma; 552 void __user *user_data; 553 int ret = 0; 554 555 if (overflows_type(args->size, remain) || 556 overflows_type(args->offset, offset)) 557 return -EINVAL; 558 559 if (i915_gem_object_has_struct_page(obj)) { 560 /* 561 * Avoid waking the device up if we can fallback, as 562 * waking/resuming is very slow (worst-case 10-100 ms 563 * depending on PCI sleeps and our own resume time). 564 * This easily dwarfs any performance advantage from 565 * using the cache bypass of indirect GGTT access. 566 */ 567 wakeref = intel_runtime_pm_get_if_in_use(rpm); 568 if (!wakeref) 569 return -EFAULT; 570 } else { 571 /* No backing pages, no fallback, we must force GGTT access */ 572 wakeref = intel_runtime_pm_get(rpm); 573 } 574 575 vma = i915_gem_gtt_prepare(obj, &node, true); 576 if (IS_ERR(vma)) { 577 ret = PTR_ERR(vma); 578 goto out_rpm; 579 } 580 581 i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU); 582 583 user_data = u64_to_user_ptr(args->data_ptr); 584 offset = args->offset; 585 remain = args->size; 586 while (remain) { 587 /* Operation in this page 588 * 589 * page_base = page offset within aperture 590 * page_offset = offset within page 591 * page_length = bytes to copy for this page 592 */ 593 u32 page_base = node.start; 594 unsigned int page_offset = offset_in_page(offset); 595 unsigned int page_length = PAGE_SIZE - page_offset; 596 page_length = remain < page_length ? remain : page_length; 597 if (drm_mm_node_allocated(&node)) { 598 /* flush the write before we modify the GGTT */ 599 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 600 ggtt->vm.insert_page(&ggtt->vm, 601 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), 602 node.start, I915_CACHE_NONE, 0); 603 wmb(); /* flush modifications to the GGTT (insert_page) */ 604 } else { 605 page_base += offset & PAGE_MASK; 606 } 607 /* If we get a fault while copying data, then (presumably) our 608 * source page isn't available. Return the error and we'll 609 * retry in the slow path. 610 * If the object is non-shmem backed, we retry again with the 611 * path that handles page fault. 612 */ 613 if (ggtt_write(&ggtt->iomap, page_base, page_offset, 614 user_data, page_length)) { 615 ret = -EFAULT; 616 break; 617 } 618 619 remain -= page_length; 620 user_data += page_length; 621 offset += page_length; 622 } 623 624 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 625 i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU); 626 627 i915_gem_gtt_cleanup(obj, &node, vma); 628 out_rpm: 629 intel_runtime_pm_put(rpm, wakeref); 630 return ret; 631 } 632 633 /* Per-page copy function for the shmem pwrite fastpath. 634 * Flushes invalid cachelines before writing to the target if 635 * needs_clflush_before is set and flushes out any written cachelines after 636 * writing if needs_clflush is set. 637 */ 638 static int 639 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data, 640 bool needs_clflush_before, 641 bool needs_clflush_after) 642 { 643 char *vaddr; 644 int ret; 645 646 vaddr = kmap(page); 647 648 if (needs_clflush_before) 649 drm_clflush_virt_range(vaddr + offset, len); 650 651 ret = __copy_from_user(vaddr + offset, user_data, len); 652 if (!ret && needs_clflush_after) 653 drm_clflush_virt_range(vaddr + offset, len); 654 655 kunmap(page); 656 657 return ret ? -EFAULT : 0; 658 } 659 660 static int 661 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj, 662 const struct drm_i915_gem_pwrite *args) 663 { 664 unsigned int partial_cacheline_write; 665 unsigned int needs_clflush; 666 void __user *user_data; 667 unsigned long offset; 668 pgoff_t idx; 669 u64 remain; 670 int ret; 671 672 ret = i915_gem_object_lock_interruptible(obj, NULL); 673 if (ret) 674 return ret; 675 676 ret = i915_gem_object_pin_pages(obj); 677 if (ret) 678 goto err_unlock; 679 680 ret = i915_gem_object_prepare_write(obj, &needs_clflush); 681 if (ret) 682 goto err_unpin; 683 684 i915_gem_object_finish_access(obj); 685 i915_gem_object_unlock(obj); 686 687 /* If we don't overwrite a cacheline completely we need to be 688 * careful to have up-to-date data by first clflushing. Don't 689 * overcomplicate things and flush the entire patch. 690 */ 691 partial_cacheline_write = 0; 692 if (needs_clflush & CLFLUSH_BEFORE) 693 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1; 694 695 user_data = u64_to_user_ptr(args->data_ptr); 696 remain = args->size; 697 offset = offset_in_page(args->offset); 698 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { 699 struct page *page = i915_gem_object_get_page(obj, idx); 700 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset); 701 702 ret = shmem_pwrite(page, offset, length, user_data, 703 (offset | length) & partial_cacheline_write, 704 needs_clflush & CLFLUSH_AFTER); 705 if (ret) 706 break; 707 708 remain -= length; 709 user_data += length; 710 offset = 0; 711 } 712 713 i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU); 714 715 i915_gem_object_unpin_pages(obj); 716 return ret; 717 718 err_unpin: 719 i915_gem_object_unpin_pages(obj); 720 err_unlock: 721 i915_gem_object_unlock(obj); 722 return ret; 723 } 724 725 /** 726 * i915_gem_pwrite_ioctl - Writes data to the object referenced by handle. 727 * @dev: drm device 728 * @data: ioctl data blob 729 * @file: drm file 730 * 731 * On error, the contents of the buffer that were to be modified are undefined. 732 */ 733 int 734 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 735 struct drm_file *file) 736 { 737 struct drm_i915_private *i915 = to_i915(dev); 738 struct drm_i915_gem_pwrite *args = data; 739 struct drm_i915_gem_object *obj; 740 int ret; 741 742 /* PWRITE is disallowed for all platforms after TGL-LP. This also 743 * covers all platforms with local memory. 744 */ 745 if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915)) 746 return -EOPNOTSUPP; 747 748 if (args->size == 0) 749 return 0; 750 751 if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size)) 752 return -EFAULT; 753 754 obj = i915_gem_object_lookup(file, args->handle); 755 if (!obj) 756 return -ENOENT; 757 758 /* Bounds check destination. */ 759 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { 760 ret = -EINVAL; 761 goto err; 762 } 763 764 /* Writes not allowed into this read-only object */ 765 if (i915_gem_object_is_readonly(obj)) { 766 ret = -EINVAL; 767 goto err; 768 } 769 770 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 771 772 ret = -ENODEV; 773 if (obj->ops->pwrite) 774 ret = obj->ops->pwrite(obj, args); 775 if (ret != -ENODEV) 776 goto err; 777 778 ret = i915_gem_object_wait(obj, 779 I915_WAIT_INTERRUPTIBLE | 780 I915_WAIT_ALL, 781 MAX_SCHEDULE_TIMEOUT); 782 if (ret) 783 goto err; 784 785 ret = -EFAULT; 786 /* We can only do the GTT pwrite on untiled buffers, as otherwise 787 * it would end up going through the fenced access, and we'll get 788 * different detiling behavior between reading and writing. 789 * pread/pwrite currently are reading and writing from the CPU 790 * perspective, requiring manual detiling by the client. 791 */ 792 if (!i915_gem_object_has_struct_page(obj) || 793 i915_gem_cpu_write_needs_clflush(obj)) 794 /* Note that the gtt paths might fail with non-page-backed user 795 * pointers (e.g. gtt mappings when moving data between 796 * textures). Fallback to the shmem path in that case. 797 */ 798 ret = i915_gem_gtt_pwrite_fast(obj, args); 799 800 if (ret == -EFAULT || ret == -ENOSPC) { 801 if (i915_gem_object_has_struct_page(obj)) 802 ret = i915_gem_shmem_pwrite(obj, args); 803 } 804 805 err: 806 i915_gem_object_put(obj); 807 return ret; 808 } 809 810 /** 811 * i915_gem_sw_finish_ioctl - Called when user space has done writes to this buffer 812 * @dev: drm device 813 * @data: ioctl data blob 814 * @file: drm file 815 */ 816 int 817 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 818 struct drm_file *file) 819 { 820 struct drm_i915_gem_sw_finish *args = data; 821 struct drm_i915_gem_object *obj; 822 823 obj = i915_gem_object_lookup(file, args->handle); 824 if (!obj) 825 return -ENOENT; 826 827 /* 828 * Proxy objects are barred from CPU access, so there is no 829 * need to ban sw_finish as it is a nop. 830 */ 831 832 /* Pinned buffers may be scanout, so flush the cache */ 833 i915_gem_object_flush_if_display(obj); 834 i915_gem_object_put(obj); 835 836 return 0; 837 } 838 839 void i915_gem_runtime_suspend(struct drm_i915_private *i915) 840 { 841 struct drm_i915_gem_object *obj, *on; 842 int i; 843 844 /* 845 * Only called during RPM suspend. All users of the userfault_list 846 * must be holding an RPM wakeref to ensure that this can not 847 * run concurrently with themselves (and use the struct_mutex for 848 * protection between themselves). 849 */ 850 851 list_for_each_entry_safe(obj, on, 852 &to_gt(i915)->ggtt->userfault_list, userfault_link) 853 __i915_gem_object_release_mmap_gtt(obj); 854 855 list_for_each_entry_safe(obj, on, 856 &i915->runtime_pm.lmem_userfault_list, userfault_link) 857 i915_gem_object_runtime_pm_release_mmap_offset(obj); 858 859 /* 860 * The fence will be lost when the device powers down. If any were 861 * in use by hardware (i.e. they are pinned), we should not be powering 862 * down! All other fences will be reacquired by the user upon waking. 863 */ 864 for (i = 0; i < to_gt(i915)->ggtt->num_fences; i++) { 865 struct i915_fence_reg *reg = &to_gt(i915)->ggtt->fence_regs[i]; 866 867 /* 868 * Ideally we want to assert that the fence register is not 869 * live at this point (i.e. that no piece of code will be 870 * trying to write through fence + GTT, as that both violates 871 * our tracking of activity and associated locking/barriers, 872 * but also is illegal given that the hw is powered down). 873 * 874 * Previously we used reg->pin_count as a "liveness" indicator. 875 * That is not sufficient, and we need a more fine-grained 876 * tool if we want to have a sanity check here. 877 */ 878 879 if (!reg->vma) 880 continue; 881 882 GEM_BUG_ON(i915_vma_has_userfault(reg->vma)); 883 reg->dirty = true; 884 } 885 } 886 887 static void discard_ggtt_vma(struct i915_vma *vma) 888 { 889 struct drm_i915_gem_object *obj = vma->obj; 890 891 spin_lock(&obj->vma.lock); 892 if (!RB_EMPTY_NODE(&vma->obj_node)) { 893 rb_erase(&vma->obj_node, &obj->vma.tree); 894 RB_CLEAR_NODE(&vma->obj_node); 895 } 896 spin_unlock(&obj->vma.lock); 897 } 898 899 struct i915_vma * 900 i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj, 901 struct i915_gem_ww_ctx *ww, 902 const struct i915_gtt_view *view, 903 u64 size, u64 alignment, u64 flags) 904 { 905 struct drm_i915_private *i915 = to_i915(obj->base.dev); 906 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 907 struct i915_vma *vma; 908 int ret; 909 910 GEM_WARN_ON(!ww); 911 912 if (flags & PIN_MAPPABLE && 913 (!view || view->type == I915_GTT_VIEW_NORMAL)) { 914 /* 915 * If the required space is larger than the available 916 * aperture, we will not able to find a slot for the 917 * object and unbinding the object now will be in 918 * vain. Worse, doing so may cause us to ping-pong 919 * the object in and out of the Global GTT and 920 * waste a lot of cycles under the mutex. 921 */ 922 if (obj->base.size > ggtt->mappable_end) 923 return ERR_PTR(-E2BIG); 924 925 /* 926 * If NONBLOCK is set the caller is optimistically 927 * trying to cache the full object within the mappable 928 * aperture, and *must* have a fallback in place for 929 * situations where we cannot bind the object. We 930 * can be a little more lax here and use the fallback 931 * more often to avoid costly migrations of ourselves 932 * and other objects within the aperture. 933 * 934 * Half-the-aperture is used as a simple heuristic. 935 * More interesting would to do search for a free 936 * block prior to making the commitment to unbind. 937 * That caters for the self-harm case, and with a 938 * little more heuristics (e.g. NOFAULT, NOEVICT) 939 * we could try to minimise harm to others. 940 */ 941 if (flags & PIN_NONBLOCK && 942 obj->base.size > ggtt->mappable_end / 2) 943 return ERR_PTR(-ENOSPC); 944 } 945 946 new_vma: 947 vma = i915_vma_instance(obj, &ggtt->vm, view); 948 if (IS_ERR(vma)) 949 return vma; 950 951 if (i915_vma_misplaced(vma, size, alignment, flags)) { 952 if (flags & PIN_NONBLOCK) { 953 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) 954 return ERR_PTR(-ENOSPC); 955 956 /* 957 * If this misplaced vma is too big (i.e, at-least 958 * half the size of aperture) or hasn't been pinned 959 * mappable before, we ignore the misplacement when 960 * PIN_NONBLOCK is set in order to avoid the ping-pong 961 * issue described above. In other words, we try to 962 * avoid the costly operation of unbinding this vma 963 * from the GGTT and rebinding it back because there 964 * may not be enough space for this vma in the aperture. 965 */ 966 if (flags & PIN_MAPPABLE && 967 (vma->fence_size > ggtt->mappable_end / 2 || 968 !i915_vma_is_map_and_fenceable(vma))) 969 return ERR_PTR(-ENOSPC); 970 } 971 972 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) { 973 discard_ggtt_vma(vma); 974 goto new_vma; 975 } 976 977 ret = i915_vma_unbind(vma); 978 if (ret) 979 return ERR_PTR(ret); 980 } 981 982 ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL); 983 984 if (ret) 985 return ERR_PTR(ret); 986 987 if (vma->fence && !i915_gem_object_is_tiled(obj)) { 988 mutex_lock(&ggtt->vm.mutex); 989 i915_vma_revoke_fence(vma); 990 mutex_unlock(&ggtt->vm.mutex); 991 } 992 993 ret = i915_vma_wait_for_bind(vma); 994 if (ret) { 995 i915_vma_unpin(vma); 996 return ERR_PTR(ret); 997 } 998 999 return vma; 1000 } 1001 1002 struct i915_vma * __must_check 1003 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 1004 const struct i915_gtt_view *view, 1005 u64 size, u64 alignment, u64 flags) 1006 { 1007 struct i915_gem_ww_ctx ww; 1008 struct i915_vma *ret; 1009 int err; 1010 1011 for_i915_gem_ww(&ww, err, true) { 1012 err = i915_gem_object_lock(obj, &ww); 1013 if (err) 1014 continue; 1015 1016 ret = i915_gem_object_ggtt_pin_ww(obj, &ww, view, size, 1017 alignment, flags); 1018 if (IS_ERR(ret)) 1019 err = PTR_ERR(ret); 1020 } 1021 1022 return err ? ERR_PTR(err) : ret; 1023 } 1024 1025 int 1026 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 1027 struct drm_file *file_priv) 1028 { 1029 struct drm_i915_private *i915 = to_i915(dev); 1030 struct drm_i915_gem_madvise *args = data; 1031 struct drm_i915_gem_object *obj; 1032 int err; 1033 1034 switch (args->madv) { 1035 case I915_MADV_DONTNEED: 1036 case I915_MADV_WILLNEED: 1037 break; 1038 default: 1039 return -EINVAL; 1040 } 1041 1042 obj = i915_gem_object_lookup(file_priv, args->handle); 1043 if (!obj) 1044 return -ENOENT; 1045 1046 err = i915_gem_object_lock_interruptible(obj, NULL); 1047 if (err) 1048 goto out; 1049 1050 if (i915_gem_object_has_pages(obj) && 1051 i915_gem_object_is_tiled(obj) && 1052 i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) { 1053 if (obj->mm.madv == I915_MADV_WILLNEED) { 1054 GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj)); 1055 i915_gem_object_clear_tiling_quirk(obj); 1056 i915_gem_object_make_shrinkable(obj); 1057 } 1058 if (args->madv == I915_MADV_WILLNEED) { 1059 GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj)); 1060 i915_gem_object_make_unshrinkable(obj); 1061 i915_gem_object_set_tiling_quirk(obj); 1062 } 1063 } 1064 1065 if (obj->mm.madv != __I915_MADV_PURGED) { 1066 obj->mm.madv = args->madv; 1067 if (obj->ops->adjust_lru) 1068 obj->ops->adjust_lru(obj); 1069 } 1070 1071 if (i915_gem_object_has_pages(obj) || 1072 i915_gem_object_has_self_managed_shrink_list(obj)) { 1073 unsigned long flags; 1074 1075 spin_lock_irqsave(&i915->mm.obj_lock, flags); 1076 if (!list_empty(&obj->mm.link)) { 1077 struct list_head *list; 1078 1079 if (obj->mm.madv != I915_MADV_WILLNEED) 1080 list = &i915->mm.purge_list; 1081 else 1082 list = &i915->mm.shrink_list; 1083 list_move_tail(&obj->mm.link, list); 1084 1085 } 1086 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 1087 } 1088 1089 /* if the object is no longer attached, discard its backing storage */ 1090 if (obj->mm.madv == I915_MADV_DONTNEED && 1091 !i915_gem_object_has_pages(obj)) 1092 i915_gem_object_truncate(obj); 1093 1094 args->retained = obj->mm.madv != __I915_MADV_PURGED; 1095 1096 i915_gem_object_unlock(obj); 1097 out: 1098 i915_gem_object_put(obj); 1099 return err; 1100 } 1101 1102 /* 1103 * A single pass should suffice to release all the freed objects (along most 1104 * call paths), but be a little more paranoid in that freeing the objects does 1105 * take a little amount of time, during which the rcu callbacks could have added 1106 * new objects into the freed list, and armed the work again. 1107 */ 1108 void i915_gem_drain_freed_objects(struct drm_i915_private *i915) 1109 { 1110 while (atomic_read(&i915->mm.free_count)) { 1111 flush_work(&i915->mm.free_work); 1112 drain_workqueue(i915->bdev.wq); 1113 rcu_barrier(); 1114 } 1115 } 1116 1117 /* 1118 * Similar to objects above (see i915_gem_drain_freed-objects), in general we 1119 * have workers that are armed by RCU and then rearm themselves in their 1120 * callbacks. To be paranoid, we need to drain the workqueue a second time after 1121 * waiting for the RCU grace period so that we catch work queued via RCU from 1122 * the first pass. As neither drain_workqueue() nor flush_workqueue() report a 1123 * result, we make an assumption that we only don't require more than 3 passes 1124 * to catch all _recursive_ RCU delayed work. 1125 */ 1126 void i915_gem_drain_workqueue(struct drm_i915_private *i915) 1127 { 1128 int i; 1129 1130 for (i = 0; i < 3; i++) { 1131 flush_workqueue(i915->wq); 1132 rcu_barrier(); 1133 i915_gem_drain_freed_objects(i915); 1134 } 1135 1136 drain_workqueue(i915->wq); 1137 } 1138 1139 int i915_gem_init(struct drm_i915_private *dev_priv) 1140 { 1141 struct intel_gt *gt; 1142 unsigned int i; 1143 int ret; 1144 1145 /* We need to fallback to 4K pages if host doesn't support huge gtt. */ 1146 if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv)) 1147 RUNTIME_INFO(dev_priv)->page_sizes = I915_GTT_PAGE_SIZE_4K; 1148 1149 ret = i915_gem_init_userptr(dev_priv); 1150 if (ret) 1151 return ret; 1152 1153 for_each_gt(gt, dev_priv, i) { 1154 intel_uc_fetch_firmwares(>->uc); 1155 intel_wopcm_init(>->wopcm); 1156 if (GRAPHICS_VER(dev_priv) >= 8) 1157 setup_private_pat(gt); 1158 } 1159 1160 ret = i915_init_ggtt(dev_priv); 1161 if (ret) { 1162 GEM_BUG_ON(ret == -EIO); 1163 goto err_unlock; 1164 } 1165 1166 /* 1167 * Despite its name intel_clock_gating_init applies both display 1168 * clock gating workarounds; GT mmio workarounds and the occasional 1169 * GT power context workaround. Worse, sometimes it includes a context 1170 * register workaround which we need to apply before we record the 1171 * default HW state for all contexts. 1172 * 1173 * FIXME: break up the workarounds and apply them at the right time! 1174 */ 1175 intel_clock_gating_init(dev_priv); 1176 1177 for_each_gt(gt, dev_priv, i) { 1178 ret = intel_gt_init(gt); 1179 if (ret) 1180 goto err_unlock; 1181 } 1182 1183 return 0; 1184 1185 /* 1186 * Unwinding is complicated by that we want to handle -EIO to mean 1187 * disable GPU submission but keep KMS alive. We want to mark the 1188 * HW as irrevisibly wedged, but keep enough state around that the 1189 * driver doesn't explode during runtime. 1190 */ 1191 err_unlock: 1192 i915_gem_drain_workqueue(dev_priv); 1193 1194 if (ret != -EIO) { 1195 for_each_gt(gt, dev_priv, i) { 1196 intel_gt_driver_remove(gt); 1197 intel_gt_driver_release(gt); 1198 intel_uc_cleanup_firmwares(>->uc); 1199 } 1200 } 1201 1202 if (ret == -EIO) { 1203 /* 1204 * Allow engines or uC initialisation to fail by marking the GPU 1205 * as wedged. But we only want to do this when the GPU is angry, 1206 * for all other failure, such as an allocation failure, bail. 1207 */ 1208 for_each_gt(gt, dev_priv, i) { 1209 if (!intel_gt_is_wedged(gt)) { 1210 i915_probe_error(dev_priv, 1211 "Failed to initialize GPU, declaring it wedged!\n"); 1212 intel_gt_set_wedged(gt); 1213 } 1214 } 1215 1216 /* Minimal basic recovery for KMS */ 1217 ret = i915_ggtt_enable_hw(dev_priv); 1218 i915_ggtt_resume(to_gt(dev_priv)->ggtt); 1219 intel_clock_gating_init(dev_priv); 1220 } 1221 1222 i915_gem_drain_freed_objects(dev_priv); 1223 1224 return ret; 1225 } 1226 1227 void i915_gem_driver_register(struct drm_i915_private *i915) 1228 { 1229 i915_gem_driver_register__shrinker(i915); 1230 1231 intel_engines_driver_register(i915); 1232 } 1233 1234 void i915_gem_driver_unregister(struct drm_i915_private *i915) 1235 { 1236 i915_gem_driver_unregister__shrinker(i915); 1237 } 1238 1239 void i915_gem_driver_remove(struct drm_i915_private *dev_priv) 1240 { 1241 struct intel_gt *gt; 1242 unsigned int i; 1243 1244 i915_gem_suspend_late(dev_priv); 1245 for_each_gt(gt, dev_priv, i) 1246 intel_gt_driver_remove(gt); 1247 dev_priv->uabi_engines = RB_ROOT; 1248 1249 /* Flush any outstanding unpin_work. */ 1250 i915_gem_drain_workqueue(dev_priv); 1251 } 1252 1253 void i915_gem_driver_release(struct drm_i915_private *dev_priv) 1254 { 1255 struct intel_gt *gt; 1256 unsigned int i; 1257 1258 for_each_gt(gt, dev_priv, i) { 1259 intel_gt_driver_release(gt); 1260 intel_uc_cleanup_firmwares(>->uc); 1261 } 1262 1263 /* Flush any outstanding work, including i915_gem_context.release_work. */ 1264 i915_gem_drain_workqueue(dev_priv); 1265 1266 drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list)); 1267 } 1268 1269 static void i915_gem_init__mm(struct drm_i915_private *i915) 1270 { 1271 spin_lock_init(&i915->mm.obj_lock); 1272 1273 init_llist_head(&i915->mm.free_list); 1274 1275 INIT_LIST_HEAD(&i915->mm.purge_list); 1276 INIT_LIST_HEAD(&i915->mm.shrink_list); 1277 1278 i915_gem_init__objects(i915); 1279 } 1280 1281 void i915_gem_init_early(struct drm_i915_private *dev_priv) 1282 { 1283 i915_gem_init__mm(dev_priv); 1284 i915_gem_init__contexts(dev_priv); 1285 1286 spin_lock_init(&dev_priv->display.fb_tracking.lock); 1287 } 1288 1289 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv) 1290 { 1291 i915_gem_drain_workqueue(dev_priv); 1292 GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list)); 1293 GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count)); 1294 drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count); 1295 } 1296 1297 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file) 1298 { 1299 struct drm_i915_file_private *file_priv; 1300 struct i915_drm_client *client; 1301 int ret = -ENOMEM; 1302 1303 drm_dbg(&i915->drm, "\n"); 1304 1305 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); 1306 if (!file_priv) 1307 goto err_alloc; 1308 1309 client = i915_drm_client_add(&i915->clients); 1310 if (IS_ERR(client)) { 1311 ret = PTR_ERR(client); 1312 goto err_client; 1313 } 1314 1315 file->driver_priv = file_priv; 1316 file_priv->i915 = i915; 1317 file_priv->file = file; 1318 file_priv->client = client; 1319 1320 file_priv->bsd_engine = -1; 1321 file_priv->hang_timestamp = jiffies; 1322 1323 ret = i915_gem_context_open(i915, file); 1324 if (ret) 1325 goto err_context; 1326 1327 return 0; 1328 1329 err_context: 1330 i915_drm_client_put(client); 1331 err_client: 1332 kfree(file_priv); 1333 err_alloc: 1334 return ret; 1335 } 1336 1337 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1338 #include "selftests/mock_gem_device.c" 1339 #include "selftests/i915_gem.c" 1340 #endif 1341