xref: /openbmc/linux/drivers/gpu/drm/i915/i915_gem.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "intel_workarounds.h"
39 #include "i915_gemfs.h"
40 #include <linux/dma-fence-array.h>
41 #include <linux/kthread.h>
42 #include <linux/reservation.h>
43 #include <linux/shmem_fs.h>
44 #include <linux/slab.h>
45 #include <linux/stop_machine.h>
46 #include <linux/swap.h>
47 #include <linux/pci.h>
48 #include <linux/dma-buf.h>
49 
50 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51 
52 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53 {
54 	if (obj->cache_dirty)
55 		return false;
56 
57 	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58 		return true;
59 
60 	return obj->pin_global; /* currently in use by HW, keep flushed */
61 }
62 
63 static int
64 insert_mappable_node(struct i915_ggtt *ggtt,
65                      struct drm_mm_node *node, u32 size)
66 {
67 	memset(node, 0, sizeof(*node));
68 	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
69 					   size, 0, I915_COLOR_UNEVICTABLE,
70 					   0, ggtt->mappable_end,
71 					   DRM_MM_INSERT_LOW);
72 }
73 
74 static void
75 remove_mappable_node(struct drm_mm_node *node)
76 {
77 	drm_mm_remove_node(node);
78 }
79 
80 /* some bookkeeping */
81 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82 				  u64 size)
83 {
84 	spin_lock(&dev_priv->mm.object_stat_lock);
85 	dev_priv->mm.object_count++;
86 	dev_priv->mm.object_memory += size;
87 	spin_unlock(&dev_priv->mm.object_stat_lock);
88 }
89 
90 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91 				     u64 size)
92 {
93 	spin_lock(&dev_priv->mm.object_stat_lock);
94 	dev_priv->mm.object_count--;
95 	dev_priv->mm.object_memory -= size;
96 	spin_unlock(&dev_priv->mm.object_stat_lock);
97 }
98 
99 static int
100 i915_gem_wait_for_error(struct i915_gpu_error *error)
101 {
102 	int ret;
103 
104 	might_sleep();
105 
106 	/*
107 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108 	 * userspace. If it takes that long something really bad is going on and
109 	 * we should simply try to bail out and fail as gracefully as possible.
110 	 */
111 	ret = wait_event_interruptible_timeout(error->reset_queue,
112 					       !i915_reset_backoff(error),
113 					       I915_RESET_TIMEOUT);
114 	if (ret == 0) {
115 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116 		return -EIO;
117 	} else if (ret < 0) {
118 		return ret;
119 	} else {
120 		return 0;
121 	}
122 }
123 
124 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 {
126 	struct drm_i915_private *dev_priv = to_i915(dev);
127 	int ret;
128 
129 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 	if (ret)
131 		return ret;
132 
133 	ret = mutex_lock_interruptible(&dev->struct_mutex);
134 	if (ret)
135 		return ret;
136 
137 	return 0;
138 }
139 
140 static u32 __i915_gem_park(struct drm_i915_private *i915)
141 {
142 	GEM_TRACE("\n");
143 
144 	lockdep_assert_held(&i915->drm.struct_mutex);
145 	GEM_BUG_ON(i915->gt.active_requests);
146 	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
147 
148 	if (!i915->gt.awake)
149 		return I915_EPOCH_INVALID;
150 
151 	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);
152 
153 	/*
154 	 * Be paranoid and flush a concurrent interrupt to make sure
155 	 * we don't reactivate any irq tasklets after parking.
156 	 *
157 	 * FIXME: Note that even though we have waited for execlists to be idle,
158 	 * there may still be an in-flight interrupt even though the CSB
159 	 * is now empty. synchronize_irq() makes sure that a residual interrupt
160 	 * is completed before we continue, but it doesn't prevent the HW from
161 	 * raising a spurious interrupt later. To complete the shield we should
162 	 * coordinate disabling the CS irq with flushing the interrupts.
163 	 */
164 	synchronize_irq(i915->drm.irq);
165 
166 	intel_engines_park(i915);
167 	i915_timelines_park(i915);
168 
169 	i915_pmu_gt_parked(i915);
170 	i915_vma_parked(i915);
171 
172 	i915->gt.awake = false;
173 
174 	if (INTEL_GEN(i915) >= 6)
175 		gen6_rps_idle(i915);
176 
177 	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);
178 
179 	intel_runtime_pm_put(i915);
180 
181 	return i915->gt.epoch;
182 }
183 
184 void i915_gem_park(struct drm_i915_private *i915)
185 {
186 	GEM_TRACE("\n");
187 
188 	lockdep_assert_held(&i915->drm.struct_mutex);
189 	GEM_BUG_ON(i915->gt.active_requests);
190 
191 	if (!i915->gt.awake)
192 		return;
193 
194 	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
195 	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
196 }
197 
198 void i915_gem_unpark(struct drm_i915_private *i915)
199 {
200 	GEM_TRACE("\n");
201 
202 	lockdep_assert_held(&i915->drm.struct_mutex);
203 	GEM_BUG_ON(!i915->gt.active_requests);
204 
205 	if (i915->gt.awake)
206 		return;
207 
208 	intel_runtime_pm_get_noresume(i915);
209 
210 	/*
211 	 * It seems that the DMC likes to transition between the DC states a lot
212 	 * when there are no connected displays (no active power domains) during
213 	 * command submission.
214 	 *
215 	 * This activity has negative impact on the performance of the chip with
216 	 * huge latencies observed in the interrupt handler and elsewhere.
217 	 *
218 	 * Work around it by grabbing a GT IRQ power domain whilst there is any
219 	 * GT activity, preventing any DC state transitions.
220 	 */
221 	intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
222 
223 	i915->gt.awake = true;
224 	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
225 		i915->gt.epoch = 1;
226 
227 	intel_enable_gt_powersave(i915);
228 	i915_update_gfx_val(i915);
229 	if (INTEL_GEN(i915) >= 6)
230 		gen6_rps_busy(i915);
231 	i915_pmu_gt_unparked(i915);
232 
233 	intel_engines_unpark(i915);
234 
235 	i915_queue_hangcheck(i915);
236 
237 	queue_delayed_work(i915->wq,
238 			   &i915->gt.retire_work,
239 			   round_jiffies_up_relative(HZ));
240 }
241 
242 int
243 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
244 			    struct drm_file *file)
245 {
246 	struct drm_i915_private *dev_priv = to_i915(dev);
247 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
248 	struct drm_i915_gem_get_aperture *args = data;
249 	struct i915_vma *vma;
250 	u64 pinned;
251 
252 	pinned = ggtt->vm.reserved;
253 	mutex_lock(&dev->struct_mutex);
254 	list_for_each_entry(vma, &ggtt->vm.active_list, vm_link)
255 		if (i915_vma_is_pinned(vma))
256 			pinned += vma->node.size;
257 	list_for_each_entry(vma, &ggtt->vm.inactive_list, vm_link)
258 		if (i915_vma_is_pinned(vma))
259 			pinned += vma->node.size;
260 	mutex_unlock(&dev->struct_mutex);
261 
262 	args->aper_size = ggtt->vm.total;
263 	args->aper_available_size = args->aper_size - pinned;
264 
265 	return 0;
266 }
267 
268 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
269 {
270 	struct address_space *mapping = obj->base.filp->f_mapping;
271 	drm_dma_handle_t *phys;
272 	struct sg_table *st;
273 	struct scatterlist *sg;
274 	char *vaddr;
275 	int i;
276 	int err;
277 
278 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
279 		return -EINVAL;
280 
281 	/* Always aligning to the object size, allows a single allocation
282 	 * to handle all possible callers, and given typical object sizes,
283 	 * the alignment of the buddy allocation will naturally match.
284 	 */
285 	phys = drm_pci_alloc(obj->base.dev,
286 			     roundup_pow_of_two(obj->base.size),
287 			     roundup_pow_of_two(obj->base.size));
288 	if (!phys)
289 		return -ENOMEM;
290 
291 	vaddr = phys->vaddr;
292 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
293 		struct page *page;
294 		char *src;
295 
296 		page = shmem_read_mapping_page(mapping, i);
297 		if (IS_ERR(page)) {
298 			err = PTR_ERR(page);
299 			goto err_phys;
300 		}
301 
302 		src = kmap_atomic(page);
303 		memcpy(vaddr, src, PAGE_SIZE);
304 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
305 		kunmap_atomic(src);
306 
307 		put_page(page);
308 		vaddr += PAGE_SIZE;
309 	}
310 
311 	i915_gem_chipset_flush(to_i915(obj->base.dev));
312 
313 	st = kmalloc(sizeof(*st), GFP_KERNEL);
314 	if (!st) {
315 		err = -ENOMEM;
316 		goto err_phys;
317 	}
318 
319 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
320 		kfree(st);
321 		err = -ENOMEM;
322 		goto err_phys;
323 	}
324 
325 	sg = st->sgl;
326 	sg->offset = 0;
327 	sg->length = obj->base.size;
328 
329 	sg_dma_address(sg) = phys->busaddr;
330 	sg_dma_len(sg) = obj->base.size;
331 
332 	obj->phys_handle = phys;
333 
334 	__i915_gem_object_set_pages(obj, st, sg->length);
335 
336 	return 0;
337 
338 err_phys:
339 	drm_pci_free(obj->base.dev, phys);
340 
341 	return err;
342 }
343 
344 static void __start_cpu_write(struct drm_i915_gem_object *obj)
345 {
346 	obj->read_domains = I915_GEM_DOMAIN_CPU;
347 	obj->write_domain = I915_GEM_DOMAIN_CPU;
348 	if (cpu_write_needs_clflush(obj))
349 		obj->cache_dirty = true;
350 }
351 
352 static void
353 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
354 				struct sg_table *pages,
355 				bool needs_clflush)
356 {
357 	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
358 
359 	if (obj->mm.madv == I915_MADV_DONTNEED)
360 		obj->mm.dirty = false;
361 
362 	if (needs_clflush &&
363 	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
364 	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
365 		drm_clflush_sg(pages);
366 
367 	__start_cpu_write(obj);
368 }
369 
370 static void
371 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
372 			       struct sg_table *pages)
373 {
374 	__i915_gem_object_release_shmem(obj, pages, false);
375 
376 	if (obj->mm.dirty) {
377 		struct address_space *mapping = obj->base.filp->f_mapping;
378 		char *vaddr = obj->phys_handle->vaddr;
379 		int i;
380 
381 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
382 			struct page *page;
383 			char *dst;
384 
385 			page = shmem_read_mapping_page(mapping, i);
386 			if (IS_ERR(page))
387 				continue;
388 
389 			dst = kmap_atomic(page);
390 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
391 			memcpy(dst, vaddr, PAGE_SIZE);
392 			kunmap_atomic(dst);
393 
394 			set_page_dirty(page);
395 			if (obj->mm.madv == I915_MADV_WILLNEED)
396 				mark_page_accessed(page);
397 			put_page(page);
398 			vaddr += PAGE_SIZE;
399 		}
400 		obj->mm.dirty = false;
401 	}
402 
403 	sg_free_table(pages);
404 	kfree(pages);
405 
406 	drm_pci_free(obj->base.dev, obj->phys_handle);
407 }
408 
409 static void
410 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
411 {
412 	i915_gem_object_unpin_pages(obj);
413 }
414 
415 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
416 	.get_pages = i915_gem_object_get_pages_phys,
417 	.put_pages = i915_gem_object_put_pages_phys,
418 	.release = i915_gem_object_release_phys,
419 };
420 
421 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
422 
423 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
424 {
425 	struct i915_vma *vma;
426 	LIST_HEAD(still_in_list);
427 	int ret;
428 
429 	lockdep_assert_held(&obj->base.dev->struct_mutex);
430 
431 	/* Closed vma are removed from the obj->vma_list - but they may
432 	 * still have an active binding on the object. To remove those we
433 	 * must wait for all rendering to complete to the object (as unbinding
434 	 * must anyway), and retire the requests.
435 	 */
436 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
437 	if (ret)
438 		return ret;
439 
440 	while ((vma = list_first_entry_or_null(&obj->vma_list,
441 					       struct i915_vma,
442 					       obj_link))) {
443 		list_move_tail(&vma->obj_link, &still_in_list);
444 		ret = i915_vma_unbind(vma);
445 		if (ret)
446 			break;
447 	}
448 	list_splice(&still_in_list, &obj->vma_list);
449 
450 	return ret;
451 }
452 
453 static long
454 i915_gem_object_wait_fence(struct dma_fence *fence,
455 			   unsigned int flags,
456 			   long timeout,
457 			   struct intel_rps_client *rps_client)
458 {
459 	struct i915_request *rq;
460 
461 	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
462 
463 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
464 		return timeout;
465 
466 	if (!dma_fence_is_i915(fence))
467 		return dma_fence_wait_timeout(fence,
468 					      flags & I915_WAIT_INTERRUPTIBLE,
469 					      timeout);
470 
471 	rq = to_request(fence);
472 	if (i915_request_completed(rq))
473 		goto out;
474 
475 	/*
476 	 * This client is about to stall waiting for the GPU. In many cases
477 	 * this is undesirable and limits the throughput of the system, as
478 	 * many clients cannot continue processing user input/output whilst
479 	 * blocked. RPS autotuning may take tens of milliseconds to respond
480 	 * to the GPU load and thus incurs additional latency for the client.
481 	 * We can circumvent that by promoting the GPU frequency to maximum
482 	 * before we wait. This makes the GPU throttle up much more quickly
483 	 * (good for benchmarks and user experience, e.g. window animations),
484 	 * but at a cost of spending more power processing the workload
485 	 * (bad for battery). Not all clients even want their results
486 	 * immediately and for them we should just let the GPU select its own
487 	 * frequency to maximise efficiency. To prevent a single client from
488 	 * forcing the clocks too high for the whole system, we only allow
489 	 * each client to waitboost once in a busy period.
490 	 */
491 	if (rps_client && !i915_request_started(rq)) {
492 		if (INTEL_GEN(rq->i915) >= 6)
493 			gen6_rps_boost(rq, rps_client);
494 	}
495 
496 	timeout = i915_request_wait(rq, flags, timeout);
497 
498 out:
499 	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
500 		i915_request_retire_upto(rq);
501 
502 	return timeout;
503 }
504 
505 static long
506 i915_gem_object_wait_reservation(struct reservation_object *resv,
507 				 unsigned int flags,
508 				 long timeout,
509 				 struct intel_rps_client *rps_client)
510 {
511 	unsigned int seq = __read_seqcount_begin(&resv->seq);
512 	struct dma_fence *excl;
513 	bool prune_fences = false;
514 
515 	if (flags & I915_WAIT_ALL) {
516 		struct dma_fence **shared;
517 		unsigned int count, i;
518 		int ret;
519 
520 		ret = reservation_object_get_fences_rcu(resv,
521 							&excl, &count, &shared);
522 		if (ret)
523 			return ret;
524 
525 		for (i = 0; i < count; i++) {
526 			timeout = i915_gem_object_wait_fence(shared[i],
527 							     flags, timeout,
528 							     rps_client);
529 			if (timeout < 0)
530 				break;
531 
532 			dma_fence_put(shared[i]);
533 		}
534 
535 		for (; i < count; i++)
536 			dma_fence_put(shared[i]);
537 		kfree(shared);
538 
539 		/*
540 		 * If both shared fences and an exclusive fence exist,
541 		 * then by construction the shared fences must be later
542 		 * than the exclusive fence. If we successfully wait for
543 		 * all the shared fences, we know that the exclusive fence
544 		 * must all be signaled. If all the shared fences are
545 		 * signaled, we can prune the array and recover the
546 		 * floating references on the fences/requests.
547 		 */
548 		prune_fences = count && timeout >= 0;
549 	} else {
550 		excl = reservation_object_get_excl_rcu(resv);
551 	}
552 
553 	if (excl && timeout >= 0)
554 		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
555 						     rps_client);
556 
557 	dma_fence_put(excl);
558 
559 	/*
560 	 * Opportunistically prune the fences iff we know they have *all* been
561 	 * signaled and that the reservation object has not been changed (i.e.
562 	 * no new fences have been added).
563 	 */
564 	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
565 		if (reservation_object_trylock(resv)) {
566 			if (!__read_seqcount_retry(&resv->seq, seq))
567 				reservation_object_add_excl_fence(resv, NULL);
568 			reservation_object_unlock(resv);
569 		}
570 	}
571 
572 	return timeout;
573 }
574 
575 static void __fence_set_priority(struct dma_fence *fence,
576 				 const struct i915_sched_attr *attr)
577 {
578 	struct i915_request *rq;
579 	struct intel_engine_cs *engine;
580 
581 	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
582 		return;
583 
584 	rq = to_request(fence);
585 	engine = rq->engine;
586 
587 	local_bh_disable();
588 	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
589 	if (engine->schedule)
590 		engine->schedule(rq, attr);
591 	rcu_read_unlock();
592 	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
593 }
594 
595 static void fence_set_priority(struct dma_fence *fence,
596 			       const struct i915_sched_attr *attr)
597 {
598 	/* Recurse once into a fence-array */
599 	if (dma_fence_is_array(fence)) {
600 		struct dma_fence_array *array = to_dma_fence_array(fence);
601 		int i;
602 
603 		for (i = 0; i < array->num_fences; i++)
604 			__fence_set_priority(array->fences[i], attr);
605 	} else {
606 		__fence_set_priority(fence, attr);
607 	}
608 }
609 
610 int
611 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
612 			      unsigned int flags,
613 			      const struct i915_sched_attr *attr)
614 {
615 	struct dma_fence *excl;
616 
617 	if (flags & I915_WAIT_ALL) {
618 		struct dma_fence **shared;
619 		unsigned int count, i;
620 		int ret;
621 
622 		ret = reservation_object_get_fences_rcu(obj->resv,
623 							&excl, &count, &shared);
624 		if (ret)
625 			return ret;
626 
627 		for (i = 0; i < count; i++) {
628 			fence_set_priority(shared[i], attr);
629 			dma_fence_put(shared[i]);
630 		}
631 
632 		kfree(shared);
633 	} else {
634 		excl = reservation_object_get_excl_rcu(obj->resv);
635 	}
636 
637 	if (excl) {
638 		fence_set_priority(excl, attr);
639 		dma_fence_put(excl);
640 	}
641 	return 0;
642 }
643 
644 /**
645  * Waits for rendering to the object to be completed
646  * @obj: i915 gem object
647  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
648  * @timeout: how long to wait
649  * @rps_client: client (user process) to charge for any waitboosting
650  */
651 int
652 i915_gem_object_wait(struct drm_i915_gem_object *obj,
653 		     unsigned int flags,
654 		     long timeout,
655 		     struct intel_rps_client *rps_client)
656 {
657 	might_sleep();
658 #if IS_ENABLED(CONFIG_LOCKDEP)
659 	GEM_BUG_ON(debug_locks &&
660 		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
661 		   !!(flags & I915_WAIT_LOCKED));
662 #endif
663 	GEM_BUG_ON(timeout < 0);
664 
665 	timeout = i915_gem_object_wait_reservation(obj->resv,
666 						   flags, timeout,
667 						   rps_client);
668 	return timeout < 0 ? timeout : 0;
669 }
670 
671 static struct intel_rps_client *to_rps_client(struct drm_file *file)
672 {
673 	struct drm_i915_file_private *fpriv = file->driver_priv;
674 
675 	return &fpriv->rps_client;
676 }
677 
678 static int
679 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
680 		     struct drm_i915_gem_pwrite *args,
681 		     struct drm_file *file)
682 {
683 	void *vaddr = obj->phys_handle->vaddr + args->offset;
684 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
685 
686 	/* We manually control the domain here and pretend that it
687 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
688 	 */
689 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
690 	if (copy_from_user(vaddr, user_data, args->size))
691 		return -EFAULT;
692 
693 	drm_clflush_virt_range(vaddr, args->size);
694 	i915_gem_chipset_flush(to_i915(obj->base.dev));
695 
696 	intel_fb_obj_flush(obj, ORIGIN_CPU);
697 	return 0;
698 }
699 
700 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
701 {
702 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
703 }
704 
705 void i915_gem_object_free(struct drm_i915_gem_object *obj)
706 {
707 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
708 	kmem_cache_free(dev_priv->objects, obj);
709 }
710 
711 static int
712 i915_gem_create(struct drm_file *file,
713 		struct drm_i915_private *dev_priv,
714 		uint64_t size,
715 		uint32_t *handle_p)
716 {
717 	struct drm_i915_gem_object *obj;
718 	int ret;
719 	u32 handle;
720 
721 	size = roundup(size, PAGE_SIZE);
722 	if (size == 0)
723 		return -EINVAL;
724 
725 	/* Allocate the new object */
726 	obj = i915_gem_object_create(dev_priv, size);
727 	if (IS_ERR(obj))
728 		return PTR_ERR(obj);
729 
730 	ret = drm_gem_handle_create(file, &obj->base, &handle);
731 	/* drop reference from allocate - handle holds it now */
732 	i915_gem_object_put(obj);
733 	if (ret)
734 		return ret;
735 
736 	*handle_p = handle;
737 	return 0;
738 }
739 
740 int
741 i915_gem_dumb_create(struct drm_file *file,
742 		     struct drm_device *dev,
743 		     struct drm_mode_create_dumb *args)
744 {
745 	/* have to work out size/pitch and return them */
746 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
747 	args->size = args->pitch * args->height;
748 	return i915_gem_create(file, to_i915(dev),
749 			       args->size, &args->handle);
750 }
751 
752 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
753 {
754 	return !(obj->cache_level == I915_CACHE_NONE ||
755 		 obj->cache_level == I915_CACHE_WT);
756 }
757 
758 /**
759  * Creates a new mm object and returns a handle to it.
760  * @dev: drm device pointer
761  * @data: ioctl data blob
762  * @file: drm file pointer
763  */
764 int
765 i915_gem_create_ioctl(struct drm_device *dev, void *data,
766 		      struct drm_file *file)
767 {
768 	struct drm_i915_private *dev_priv = to_i915(dev);
769 	struct drm_i915_gem_create *args = data;
770 
771 	i915_gem_flush_free_objects(dev_priv);
772 
773 	return i915_gem_create(file, dev_priv,
774 			       args->size, &args->handle);
775 }
776 
777 static inline enum fb_op_origin
778 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
779 {
780 	return (domain == I915_GEM_DOMAIN_GTT ?
781 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
782 }
783 
784 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
785 {
786 	/*
787 	 * No actual flushing is required for the GTT write domain for reads
788 	 * from the GTT domain. Writes to it "immediately" go to main memory
789 	 * as far as we know, so there's no chipset flush. It also doesn't
790 	 * land in the GPU render cache.
791 	 *
792 	 * However, we do have to enforce the order so that all writes through
793 	 * the GTT land before any writes to the device, such as updates to
794 	 * the GATT itself.
795 	 *
796 	 * We also have to wait a bit for the writes to land from the GTT.
797 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
798 	 * timing. This issue has only been observed when switching quickly
799 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
800 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
801 	 * system agents we cannot reproduce this behaviour, until Cannonlake
802 	 * that was!).
803 	 */
804 
805 	wmb();
806 
807 	if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
808 		return;
809 
810 	i915_gem_chipset_flush(dev_priv);
811 
812 	intel_runtime_pm_get(dev_priv);
813 	spin_lock_irq(&dev_priv->uncore.lock);
814 
815 	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
816 
817 	spin_unlock_irq(&dev_priv->uncore.lock);
818 	intel_runtime_pm_put(dev_priv);
819 }
820 
821 static void
822 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
823 {
824 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
825 	struct i915_vma *vma;
826 
827 	if (!(obj->write_domain & flush_domains))
828 		return;
829 
830 	switch (obj->write_domain) {
831 	case I915_GEM_DOMAIN_GTT:
832 		i915_gem_flush_ggtt_writes(dev_priv);
833 
834 		intel_fb_obj_flush(obj,
835 				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
836 
837 		for_each_ggtt_vma(vma, obj) {
838 			if (vma->iomap)
839 				continue;
840 
841 			i915_vma_unset_ggtt_write(vma);
842 		}
843 		break;
844 
845 	case I915_GEM_DOMAIN_WC:
846 		wmb();
847 		break;
848 
849 	case I915_GEM_DOMAIN_CPU:
850 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
851 		break;
852 
853 	case I915_GEM_DOMAIN_RENDER:
854 		if (gpu_write_needs_clflush(obj))
855 			obj->cache_dirty = true;
856 		break;
857 	}
858 
859 	obj->write_domain = 0;
860 }
861 
862 static inline int
863 __copy_to_user_swizzled(char __user *cpu_vaddr,
864 			const char *gpu_vaddr, int gpu_offset,
865 			int length)
866 {
867 	int ret, cpu_offset = 0;
868 
869 	while (length > 0) {
870 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
871 		int this_length = min(cacheline_end - gpu_offset, length);
872 		int swizzled_gpu_offset = gpu_offset ^ 64;
873 
874 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
875 				     gpu_vaddr + swizzled_gpu_offset,
876 				     this_length);
877 		if (ret)
878 			return ret + length;
879 
880 		cpu_offset += this_length;
881 		gpu_offset += this_length;
882 		length -= this_length;
883 	}
884 
885 	return 0;
886 }
887 
888 static inline int
889 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
890 			  const char __user *cpu_vaddr,
891 			  int length)
892 {
893 	int ret, cpu_offset = 0;
894 
895 	while (length > 0) {
896 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
897 		int this_length = min(cacheline_end - gpu_offset, length);
898 		int swizzled_gpu_offset = gpu_offset ^ 64;
899 
900 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
901 				       cpu_vaddr + cpu_offset,
902 				       this_length);
903 		if (ret)
904 			return ret + length;
905 
906 		cpu_offset += this_length;
907 		gpu_offset += this_length;
908 		length -= this_length;
909 	}
910 
911 	return 0;
912 }
913 
914 /*
915  * Pins the specified object's pages and synchronizes the object with
916  * GPU accesses. Sets needs_clflush to non-zero if the caller should
917  * flush the object from the CPU cache.
918  */
919 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
920 				    unsigned int *needs_clflush)
921 {
922 	int ret;
923 
924 	lockdep_assert_held(&obj->base.dev->struct_mutex);
925 
926 	*needs_clflush = 0;
927 	if (!i915_gem_object_has_struct_page(obj))
928 		return -ENODEV;
929 
930 	ret = i915_gem_object_wait(obj,
931 				   I915_WAIT_INTERRUPTIBLE |
932 				   I915_WAIT_LOCKED,
933 				   MAX_SCHEDULE_TIMEOUT,
934 				   NULL);
935 	if (ret)
936 		return ret;
937 
938 	ret = i915_gem_object_pin_pages(obj);
939 	if (ret)
940 		return ret;
941 
942 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
943 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
944 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
945 		if (ret)
946 			goto err_unpin;
947 		else
948 			goto out;
949 	}
950 
951 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
952 
953 	/* If we're not in the cpu read domain, set ourself into the gtt
954 	 * read domain and manually flush cachelines (if required). This
955 	 * optimizes for the case when the gpu will dirty the data
956 	 * anyway again before the next pread happens.
957 	 */
958 	if (!obj->cache_dirty &&
959 	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
960 		*needs_clflush = CLFLUSH_BEFORE;
961 
962 out:
963 	/* return with the pages pinned */
964 	return 0;
965 
966 err_unpin:
967 	i915_gem_object_unpin_pages(obj);
968 	return ret;
969 }
970 
971 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
972 				     unsigned int *needs_clflush)
973 {
974 	int ret;
975 
976 	lockdep_assert_held(&obj->base.dev->struct_mutex);
977 
978 	*needs_clflush = 0;
979 	if (!i915_gem_object_has_struct_page(obj))
980 		return -ENODEV;
981 
982 	ret = i915_gem_object_wait(obj,
983 				   I915_WAIT_INTERRUPTIBLE |
984 				   I915_WAIT_LOCKED |
985 				   I915_WAIT_ALL,
986 				   MAX_SCHEDULE_TIMEOUT,
987 				   NULL);
988 	if (ret)
989 		return ret;
990 
991 	ret = i915_gem_object_pin_pages(obj);
992 	if (ret)
993 		return ret;
994 
995 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
996 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
997 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
998 		if (ret)
999 			goto err_unpin;
1000 		else
1001 			goto out;
1002 	}
1003 
1004 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
1005 
1006 	/* If we're not in the cpu write domain, set ourself into the
1007 	 * gtt write domain and manually flush cachelines (as required).
1008 	 * This optimizes for the case when the gpu will use the data
1009 	 * right away and we therefore have to clflush anyway.
1010 	 */
1011 	if (!obj->cache_dirty) {
1012 		*needs_clflush |= CLFLUSH_AFTER;
1013 
1014 		/*
1015 		 * Same trick applies to invalidate partially written
1016 		 * cachelines read before writing.
1017 		 */
1018 		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1019 			*needs_clflush |= CLFLUSH_BEFORE;
1020 	}
1021 
1022 out:
1023 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1024 	obj->mm.dirty = true;
1025 	/* return with the pages pinned */
1026 	return 0;
1027 
1028 err_unpin:
1029 	i915_gem_object_unpin_pages(obj);
1030 	return ret;
1031 }
1032 
1033 static void
1034 shmem_clflush_swizzled_range(char *addr, unsigned long length,
1035 			     bool swizzled)
1036 {
1037 	if (unlikely(swizzled)) {
1038 		unsigned long start = (unsigned long) addr;
1039 		unsigned long end = (unsigned long) addr + length;
1040 
1041 		/* For swizzling simply ensure that we always flush both
1042 		 * channels. Lame, but simple and it works. Swizzled
1043 		 * pwrite/pread is far from a hotpath - current userspace
1044 		 * doesn't use it at all. */
1045 		start = round_down(start, 128);
1046 		end = round_up(end, 128);
1047 
1048 		drm_clflush_virt_range((void *)start, end - start);
1049 	} else {
1050 		drm_clflush_virt_range(addr, length);
1051 	}
1052 
1053 }
1054 
1055 /* Only difference to the fast-path function is that this can handle bit17
1056  * and uses non-atomic copy and kmap functions. */
1057 static int
1058 shmem_pread_slow(struct page *page, int offset, int length,
1059 		 char __user *user_data,
1060 		 bool page_do_bit17_swizzling, bool needs_clflush)
1061 {
1062 	char *vaddr;
1063 	int ret;
1064 
1065 	vaddr = kmap(page);
1066 	if (needs_clflush)
1067 		shmem_clflush_swizzled_range(vaddr + offset, length,
1068 					     page_do_bit17_swizzling);
1069 
1070 	if (page_do_bit17_swizzling)
1071 		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1072 	else
1073 		ret = __copy_to_user(user_data, vaddr + offset, length);
1074 	kunmap(page);
1075 
1076 	return ret ? - EFAULT : 0;
1077 }
1078 
1079 static int
1080 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
1081 	    bool page_do_bit17_swizzling, bool needs_clflush)
1082 {
1083 	int ret;
1084 
1085 	ret = -ENODEV;
1086 	if (!page_do_bit17_swizzling) {
1087 		char *vaddr = kmap_atomic(page);
1088 
1089 		if (needs_clflush)
1090 			drm_clflush_virt_range(vaddr + offset, length);
1091 		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1092 		kunmap_atomic(vaddr);
1093 	}
1094 	if (ret == 0)
1095 		return 0;
1096 
1097 	return shmem_pread_slow(page, offset, length, user_data,
1098 				page_do_bit17_swizzling, needs_clflush);
1099 }
1100 
1101 static int
1102 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
1103 		     struct drm_i915_gem_pread *args)
1104 {
1105 	char __user *user_data;
1106 	u64 remain;
1107 	unsigned int obj_do_bit17_swizzling;
1108 	unsigned int needs_clflush;
1109 	unsigned int idx, offset;
1110 	int ret;
1111 
1112 	obj_do_bit17_swizzling = 0;
1113 	if (i915_gem_object_needs_bit17_swizzle(obj))
1114 		obj_do_bit17_swizzling = BIT(17);
1115 
1116 	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1117 	if (ret)
1118 		return ret;
1119 
1120 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1121 	mutex_unlock(&obj->base.dev->struct_mutex);
1122 	if (ret)
1123 		return ret;
1124 
1125 	remain = args->size;
1126 	user_data = u64_to_user_ptr(args->data_ptr);
1127 	offset = offset_in_page(args->offset);
1128 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1129 		struct page *page = i915_gem_object_get_page(obj, idx);
1130 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1131 
1132 		ret = shmem_pread(page, offset, length, user_data,
1133 				  page_to_phys(page) & obj_do_bit17_swizzling,
1134 				  needs_clflush);
1135 		if (ret)
1136 			break;
1137 
1138 		remain -= length;
1139 		user_data += length;
1140 		offset = 0;
1141 	}
1142 
1143 	i915_gem_obj_finish_shmem_access(obj);
1144 	return ret;
1145 }
1146 
1147 static inline bool
1148 gtt_user_read(struct io_mapping *mapping,
1149 	      loff_t base, int offset,
1150 	      char __user *user_data, int length)
1151 {
1152 	void __iomem *vaddr;
1153 	unsigned long unwritten;
1154 
1155 	/* We can use the cpu mem copy function because this is X86. */
1156 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1157 	unwritten = __copy_to_user_inatomic(user_data,
1158 					    (void __force *)vaddr + offset,
1159 					    length);
1160 	io_mapping_unmap_atomic(vaddr);
1161 	if (unwritten) {
1162 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1163 		unwritten = copy_to_user(user_data,
1164 					 (void __force *)vaddr + offset,
1165 					 length);
1166 		io_mapping_unmap(vaddr);
1167 	}
1168 	return unwritten;
1169 }
1170 
1171 static int
1172 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1173 		   const struct drm_i915_gem_pread *args)
1174 {
1175 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1176 	struct i915_ggtt *ggtt = &i915->ggtt;
1177 	struct drm_mm_node node;
1178 	struct i915_vma *vma;
1179 	void __user *user_data;
1180 	u64 remain, offset;
1181 	int ret;
1182 
1183 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1184 	if (ret)
1185 		return ret;
1186 
1187 	intel_runtime_pm_get(i915);
1188 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1189 				       PIN_MAPPABLE |
1190 				       PIN_NONFAULT |
1191 				       PIN_NONBLOCK);
1192 	if (!IS_ERR(vma)) {
1193 		node.start = i915_ggtt_offset(vma);
1194 		node.allocated = false;
1195 		ret = i915_vma_put_fence(vma);
1196 		if (ret) {
1197 			i915_vma_unpin(vma);
1198 			vma = ERR_PTR(ret);
1199 		}
1200 	}
1201 	if (IS_ERR(vma)) {
1202 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1203 		if (ret)
1204 			goto out_unlock;
1205 		GEM_BUG_ON(!node.allocated);
1206 	}
1207 
1208 	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1209 	if (ret)
1210 		goto out_unpin;
1211 
1212 	mutex_unlock(&i915->drm.struct_mutex);
1213 
1214 	user_data = u64_to_user_ptr(args->data_ptr);
1215 	remain = args->size;
1216 	offset = args->offset;
1217 
1218 	while (remain > 0) {
1219 		/* Operation in this page
1220 		 *
1221 		 * page_base = page offset within aperture
1222 		 * page_offset = offset within page
1223 		 * page_length = bytes to copy for this page
1224 		 */
1225 		u32 page_base = node.start;
1226 		unsigned page_offset = offset_in_page(offset);
1227 		unsigned page_length = PAGE_SIZE - page_offset;
1228 		page_length = remain < page_length ? remain : page_length;
1229 		if (node.allocated) {
1230 			wmb();
1231 			ggtt->vm.insert_page(&ggtt->vm,
1232 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1233 					     node.start, I915_CACHE_NONE, 0);
1234 			wmb();
1235 		} else {
1236 			page_base += offset & PAGE_MASK;
1237 		}
1238 
1239 		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1240 				  user_data, page_length)) {
1241 			ret = -EFAULT;
1242 			break;
1243 		}
1244 
1245 		remain -= page_length;
1246 		user_data += page_length;
1247 		offset += page_length;
1248 	}
1249 
1250 	mutex_lock(&i915->drm.struct_mutex);
1251 out_unpin:
1252 	if (node.allocated) {
1253 		wmb();
1254 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1255 		remove_mappable_node(&node);
1256 	} else {
1257 		i915_vma_unpin(vma);
1258 	}
1259 out_unlock:
1260 	intel_runtime_pm_put(i915);
1261 	mutex_unlock(&i915->drm.struct_mutex);
1262 
1263 	return ret;
1264 }
1265 
1266 /**
1267  * Reads data from the object referenced by handle.
1268  * @dev: drm device pointer
1269  * @data: ioctl data blob
1270  * @file: drm file pointer
1271  *
1272  * On error, the contents of *data are undefined.
1273  */
1274 int
1275 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1276 		     struct drm_file *file)
1277 {
1278 	struct drm_i915_gem_pread *args = data;
1279 	struct drm_i915_gem_object *obj;
1280 	int ret;
1281 
1282 	if (args->size == 0)
1283 		return 0;
1284 
1285 	if (!access_ok(VERIFY_WRITE,
1286 		       u64_to_user_ptr(args->data_ptr),
1287 		       args->size))
1288 		return -EFAULT;
1289 
1290 	obj = i915_gem_object_lookup(file, args->handle);
1291 	if (!obj)
1292 		return -ENOENT;
1293 
1294 	/* Bounds check source.  */
1295 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1296 		ret = -EINVAL;
1297 		goto out;
1298 	}
1299 
1300 	trace_i915_gem_object_pread(obj, args->offset, args->size);
1301 
1302 	ret = i915_gem_object_wait(obj,
1303 				   I915_WAIT_INTERRUPTIBLE,
1304 				   MAX_SCHEDULE_TIMEOUT,
1305 				   to_rps_client(file));
1306 	if (ret)
1307 		goto out;
1308 
1309 	ret = i915_gem_object_pin_pages(obj);
1310 	if (ret)
1311 		goto out;
1312 
1313 	ret = i915_gem_shmem_pread(obj, args);
1314 	if (ret == -EFAULT || ret == -ENODEV)
1315 		ret = i915_gem_gtt_pread(obj, args);
1316 
1317 	i915_gem_object_unpin_pages(obj);
1318 out:
1319 	i915_gem_object_put(obj);
1320 	return ret;
1321 }
1322 
1323 /* This is the fast write path which cannot handle
1324  * page faults in the source data
1325  */
1326 
1327 static inline bool
1328 ggtt_write(struct io_mapping *mapping,
1329 	   loff_t base, int offset,
1330 	   char __user *user_data, int length)
1331 {
1332 	void __iomem *vaddr;
1333 	unsigned long unwritten;
1334 
1335 	/* We can use the cpu mem copy function because this is X86. */
1336 	vaddr = io_mapping_map_atomic_wc(mapping, base);
1337 	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1338 						      user_data, length);
1339 	io_mapping_unmap_atomic(vaddr);
1340 	if (unwritten) {
1341 		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1342 		unwritten = copy_from_user((void __force *)vaddr + offset,
1343 					   user_data, length);
1344 		io_mapping_unmap(vaddr);
1345 	}
1346 
1347 	return unwritten;
1348 }
1349 
1350 /**
1351  * This is the fast pwrite path, where we copy the data directly from the
1352  * user into the GTT, uncached.
1353  * @obj: i915 GEM object
1354  * @args: pwrite arguments structure
1355  */
1356 static int
1357 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1358 			 const struct drm_i915_gem_pwrite *args)
1359 {
1360 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1361 	struct i915_ggtt *ggtt = &i915->ggtt;
1362 	struct drm_mm_node node;
1363 	struct i915_vma *vma;
1364 	u64 remain, offset;
1365 	void __user *user_data;
1366 	int ret;
1367 
1368 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1369 	if (ret)
1370 		return ret;
1371 
1372 	if (i915_gem_object_has_struct_page(obj)) {
1373 		/*
1374 		 * Avoid waking the device up if we can fallback, as
1375 		 * waking/resuming is very slow (worst-case 10-100 ms
1376 		 * depending on PCI sleeps and our own resume time).
1377 		 * This easily dwarfs any performance advantage from
1378 		 * using the cache bypass of indirect GGTT access.
1379 		 */
1380 		if (!intel_runtime_pm_get_if_in_use(i915)) {
1381 			ret = -EFAULT;
1382 			goto out_unlock;
1383 		}
1384 	} else {
1385 		/* No backing pages, no fallback, we must force GGTT access */
1386 		intel_runtime_pm_get(i915);
1387 	}
1388 
1389 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1390 				       PIN_MAPPABLE |
1391 				       PIN_NONFAULT |
1392 				       PIN_NONBLOCK);
1393 	if (!IS_ERR(vma)) {
1394 		node.start = i915_ggtt_offset(vma);
1395 		node.allocated = false;
1396 		ret = i915_vma_put_fence(vma);
1397 		if (ret) {
1398 			i915_vma_unpin(vma);
1399 			vma = ERR_PTR(ret);
1400 		}
1401 	}
1402 	if (IS_ERR(vma)) {
1403 		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1404 		if (ret)
1405 			goto out_rpm;
1406 		GEM_BUG_ON(!node.allocated);
1407 	}
1408 
1409 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1410 	if (ret)
1411 		goto out_unpin;
1412 
1413 	mutex_unlock(&i915->drm.struct_mutex);
1414 
1415 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1416 
1417 	user_data = u64_to_user_ptr(args->data_ptr);
1418 	offset = args->offset;
1419 	remain = args->size;
1420 	while (remain) {
1421 		/* Operation in this page
1422 		 *
1423 		 * page_base = page offset within aperture
1424 		 * page_offset = offset within page
1425 		 * page_length = bytes to copy for this page
1426 		 */
1427 		u32 page_base = node.start;
1428 		unsigned int page_offset = offset_in_page(offset);
1429 		unsigned int page_length = PAGE_SIZE - page_offset;
1430 		page_length = remain < page_length ? remain : page_length;
1431 		if (node.allocated) {
1432 			wmb(); /* flush the write before we modify the GGTT */
1433 			ggtt->vm.insert_page(&ggtt->vm,
1434 					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1435 					     node.start, I915_CACHE_NONE, 0);
1436 			wmb(); /* flush modifications to the GGTT (insert_page) */
1437 		} else {
1438 			page_base += offset & PAGE_MASK;
1439 		}
1440 		/* If we get a fault while copying data, then (presumably) our
1441 		 * source page isn't available.  Return the error and we'll
1442 		 * retry in the slow path.
1443 		 * If the object is non-shmem backed, we retry again with the
1444 		 * path that handles page fault.
1445 		 */
1446 		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1447 			       user_data, page_length)) {
1448 			ret = -EFAULT;
1449 			break;
1450 		}
1451 
1452 		remain -= page_length;
1453 		user_data += page_length;
1454 		offset += page_length;
1455 	}
1456 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1457 
1458 	mutex_lock(&i915->drm.struct_mutex);
1459 out_unpin:
1460 	if (node.allocated) {
1461 		wmb();
1462 		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1463 		remove_mappable_node(&node);
1464 	} else {
1465 		i915_vma_unpin(vma);
1466 	}
1467 out_rpm:
1468 	intel_runtime_pm_put(i915);
1469 out_unlock:
1470 	mutex_unlock(&i915->drm.struct_mutex);
1471 	return ret;
1472 }
1473 
1474 static int
1475 shmem_pwrite_slow(struct page *page, int offset, int length,
1476 		  char __user *user_data,
1477 		  bool page_do_bit17_swizzling,
1478 		  bool needs_clflush_before,
1479 		  bool needs_clflush_after)
1480 {
1481 	char *vaddr;
1482 	int ret;
1483 
1484 	vaddr = kmap(page);
1485 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1486 		shmem_clflush_swizzled_range(vaddr + offset, length,
1487 					     page_do_bit17_swizzling);
1488 	if (page_do_bit17_swizzling)
1489 		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1490 						length);
1491 	else
1492 		ret = __copy_from_user(vaddr + offset, user_data, length);
1493 	if (needs_clflush_after)
1494 		shmem_clflush_swizzled_range(vaddr + offset, length,
1495 					     page_do_bit17_swizzling);
1496 	kunmap(page);
1497 
1498 	return ret ? -EFAULT : 0;
1499 }
1500 
1501 /* Per-page copy function for the shmem pwrite fastpath.
1502  * Flushes invalid cachelines before writing to the target if
1503  * needs_clflush_before is set and flushes out any written cachelines after
1504  * writing if needs_clflush is set.
1505  */
1506 static int
1507 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1508 	     bool page_do_bit17_swizzling,
1509 	     bool needs_clflush_before,
1510 	     bool needs_clflush_after)
1511 {
1512 	int ret;
1513 
1514 	ret = -ENODEV;
1515 	if (!page_do_bit17_swizzling) {
1516 		char *vaddr = kmap_atomic(page);
1517 
1518 		if (needs_clflush_before)
1519 			drm_clflush_virt_range(vaddr + offset, len);
1520 		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1521 		if (needs_clflush_after)
1522 			drm_clflush_virt_range(vaddr + offset, len);
1523 
1524 		kunmap_atomic(vaddr);
1525 	}
1526 	if (ret == 0)
1527 		return ret;
1528 
1529 	return shmem_pwrite_slow(page, offset, len, user_data,
1530 				 page_do_bit17_swizzling,
1531 				 needs_clflush_before,
1532 				 needs_clflush_after);
1533 }
1534 
1535 static int
1536 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1537 		      const struct drm_i915_gem_pwrite *args)
1538 {
1539 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1540 	void __user *user_data;
1541 	u64 remain;
1542 	unsigned int obj_do_bit17_swizzling;
1543 	unsigned int partial_cacheline_write;
1544 	unsigned int needs_clflush;
1545 	unsigned int offset, idx;
1546 	int ret;
1547 
1548 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1549 	if (ret)
1550 		return ret;
1551 
1552 	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1553 	mutex_unlock(&i915->drm.struct_mutex);
1554 	if (ret)
1555 		return ret;
1556 
1557 	obj_do_bit17_swizzling = 0;
1558 	if (i915_gem_object_needs_bit17_swizzle(obj))
1559 		obj_do_bit17_swizzling = BIT(17);
1560 
1561 	/* If we don't overwrite a cacheline completely we need to be
1562 	 * careful to have up-to-date data by first clflushing. Don't
1563 	 * overcomplicate things and flush the entire patch.
1564 	 */
1565 	partial_cacheline_write = 0;
1566 	if (needs_clflush & CLFLUSH_BEFORE)
1567 		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1568 
1569 	user_data = u64_to_user_ptr(args->data_ptr);
1570 	remain = args->size;
1571 	offset = offset_in_page(args->offset);
1572 	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1573 		struct page *page = i915_gem_object_get_page(obj, idx);
1574 		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1575 
1576 		ret = shmem_pwrite(page, offset, length, user_data,
1577 				   page_to_phys(page) & obj_do_bit17_swizzling,
1578 				   (offset | length) & partial_cacheline_write,
1579 				   needs_clflush & CLFLUSH_AFTER);
1580 		if (ret)
1581 			break;
1582 
1583 		remain -= length;
1584 		user_data += length;
1585 		offset = 0;
1586 	}
1587 
1588 	intel_fb_obj_flush(obj, ORIGIN_CPU);
1589 	i915_gem_obj_finish_shmem_access(obj);
1590 	return ret;
1591 }
1592 
1593 /**
1594  * Writes data to the object referenced by handle.
1595  * @dev: drm device
1596  * @data: ioctl data blob
1597  * @file: drm file
1598  *
1599  * On error, the contents of the buffer that were to be modified are undefined.
1600  */
1601 int
1602 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1603 		      struct drm_file *file)
1604 {
1605 	struct drm_i915_gem_pwrite *args = data;
1606 	struct drm_i915_gem_object *obj;
1607 	int ret;
1608 
1609 	if (args->size == 0)
1610 		return 0;
1611 
1612 	if (!access_ok(VERIFY_READ,
1613 		       u64_to_user_ptr(args->data_ptr),
1614 		       args->size))
1615 		return -EFAULT;
1616 
1617 	obj = i915_gem_object_lookup(file, args->handle);
1618 	if (!obj)
1619 		return -ENOENT;
1620 
1621 	/* Bounds check destination. */
1622 	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1623 		ret = -EINVAL;
1624 		goto err;
1625 	}
1626 
1627 	/* Writes not allowed into this read-only object */
1628 	if (i915_gem_object_is_readonly(obj)) {
1629 		ret = -EINVAL;
1630 		goto err;
1631 	}
1632 
1633 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1634 
1635 	ret = -ENODEV;
1636 	if (obj->ops->pwrite)
1637 		ret = obj->ops->pwrite(obj, args);
1638 	if (ret != -ENODEV)
1639 		goto err;
1640 
1641 	ret = i915_gem_object_wait(obj,
1642 				   I915_WAIT_INTERRUPTIBLE |
1643 				   I915_WAIT_ALL,
1644 				   MAX_SCHEDULE_TIMEOUT,
1645 				   to_rps_client(file));
1646 	if (ret)
1647 		goto err;
1648 
1649 	ret = i915_gem_object_pin_pages(obj);
1650 	if (ret)
1651 		goto err;
1652 
1653 	ret = -EFAULT;
1654 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1655 	 * it would end up going through the fenced access, and we'll get
1656 	 * different detiling behavior between reading and writing.
1657 	 * pread/pwrite currently are reading and writing from the CPU
1658 	 * perspective, requiring manual detiling by the client.
1659 	 */
1660 	if (!i915_gem_object_has_struct_page(obj) ||
1661 	    cpu_write_needs_clflush(obj))
1662 		/* Note that the gtt paths might fail with non-page-backed user
1663 		 * pointers (e.g. gtt mappings when moving data between
1664 		 * textures). Fallback to the shmem path in that case.
1665 		 */
1666 		ret = i915_gem_gtt_pwrite_fast(obj, args);
1667 
1668 	if (ret == -EFAULT || ret == -ENOSPC) {
1669 		if (obj->phys_handle)
1670 			ret = i915_gem_phys_pwrite(obj, args, file);
1671 		else
1672 			ret = i915_gem_shmem_pwrite(obj, args);
1673 	}
1674 
1675 	i915_gem_object_unpin_pages(obj);
1676 err:
1677 	i915_gem_object_put(obj);
1678 	return ret;
1679 }
1680 
1681 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1682 {
1683 	struct drm_i915_private *i915;
1684 	struct list_head *list;
1685 	struct i915_vma *vma;
1686 
1687 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1688 
1689 	for_each_ggtt_vma(vma, obj) {
1690 		if (i915_vma_is_active(vma))
1691 			continue;
1692 
1693 		if (!drm_mm_node_allocated(&vma->node))
1694 			continue;
1695 
1696 		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1697 	}
1698 
1699 	i915 = to_i915(obj->base.dev);
1700 	spin_lock(&i915->mm.obj_lock);
1701 	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1702 	list_move_tail(&obj->mm.link, list);
1703 	spin_unlock(&i915->mm.obj_lock);
1704 }
1705 
1706 /**
1707  * Called when user space prepares to use an object with the CPU, either
1708  * through the mmap ioctl's mapping or a GTT mapping.
1709  * @dev: drm device
1710  * @data: ioctl data blob
1711  * @file: drm file
1712  */
1713 int
1714 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1715 			  struct drm_file *file)
1716 {
1717 	struct drm_i915_gem_set_domain *args = data;
1718 	struct drm_i915_gem_object *obj;
1719 	uint32_t read_domains = args->read_domains;
1720 	uint32_t write_domain = args->write_domain;
1721 	int err;
1722 
1723 	/* Only handle setting domains to types used by the CPU. */
1724 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1725 		return -EINVAL;
1726 
1727 	/* Having something in the write domain implies it's in the read
1728 	 * domain, and only that read domain.  Enforce that in the request.
1729 	 */
1730 	if (write_domain != 0 && read_domains != write_domain)
1731 		return -EINVAL;
1732 
1733 	obj = i915_gem_object_lookup(file, args->handle);
1734 	if (!obj)
1735 		return -ENOENT;
1736 
1737 	/* Try to flush the object off the GPU without holding the lock.
1738 	 * We will repeat the flush holding the lock in the normal manner
1739 	 * to catch cases where we are gazumped.
1740 	 */
1741 	err = i915_gem_object_wait(obj,
1742 				   I915_WAIT_INTERRUPTIBLE |
1743 				   (write_domain ? I915_WAIT_ALL : 0),
1744 				   MAX_SCHEDULE_TIMEOUT,
1745 				   to_rps_client(file));
1746 	if (err)
1747 		goto out;
1748 
1749 	/*
1750 	 * Proxy objects do not control access to the backing storage, ergo
1751 	 * they cannot be used as a means to manipulate the cache domain
1752 	 * tracking for that backing storage. The proxy object is always
1753 	 * considered to be outside of any cache domain.
1754 	 */
1755 	if (i915_gem_object_is_proxy(obj)) {
1756 		err = -ENXIO;
1757 		goto out;
1758 	}
1759 
1760 	/*
1761 	 * Flush and acquire obj->pages so that we are coherent through
1762 	 * direct access in memory with previous cached writes through
1763 	 * shmemfs and that our cache domain tracking remains valid.
1764 	 * For example, if the obj->filp was moved to swap without us
1765 	 * being notified and releasing the pages, we would mistakenly
1766 	 * continue to assume that the obj remained out of the CPU cached
1767 	 * domain.
1768 	 */
1769 	err = i915_gem_object_pin_pages(obj);
1770 	if (err)
1771 		goto out;
1772 
1773 	err = i915_mutex_lock_interruptible(dev);
1774 	if (err)
1775 		goto out_unpin;
1776 
1777 	if (read_domains & I915_GEM_DOMAIN_WC)
1778 		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1779 	else if (read_domains & I915_GEM_DOMAIN_GTT)
1780 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1781 	else
1782 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1783 
1784 	/* And bump the LRU for this access */
1785 	i915_gem_object_bump_inactive_ggtt(obj);
1786 
1787 	mutex_unlock(&dev->struct_mutex);
1788 
1789 	if (write_domain != 0)
1790 		intel_fb_obj_invalidate(obj,
1791 					fb_write_origin(obj, write_domain));
1792 
1793 out_unpin:
1794 	i915_gem_object_unpin_pages(obj);
1795 out:
1796 	i915_gem_object_put(obj);
1797 	return err;
1798 }
1799 
1800 /**
1801  * Called when user space has done writes to this buffer
1802  * @dev: drm device
1803  * @data: ioctl data blob
1804  * @file: drm file
1805  */
1806 int
1807 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1808 			 struct drm_file *file)
1809 {
1810 	struct drm_i915_gem_sw_finish *args = data;
1811 	struct drm_i915_gem_object *obj;
1812 
1813 	obj = i915_gem_object_lookup(file, args->handle);
1814 	if (!obj)
1815 		return -ENOENT;
1816 
1817 	/*
1818 	 * Proxy objects are barred from CPU access, so there is no
1819 	 * need to ban sw_finish as it is a nop.
1820 	 */
1821 
1822 	/* Pinned buffers may be scanout, so flush the cache */
1823 	i915_gem_object_flush_if_display(obj);
1824 	i915_gem_object_put(obj);
1825 
1826 	return 0;
1827 }
1828 
1829 /**
1830  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1831  *			 it is mapped to.
1832  * @dev: drm device
1833  * @data: ioctl data blob
1834  * @file: drm file
1835  *
1836  * While the mapping holds a reference on the contents of the object, it doesn't
1837  * imply a ref on the object itself.
1838  *
1839  * IMPORTANT:
1840  *
1841  * DRM driver writers who look a this function as an example for how to do GEM
1842  * mmap support, please don't implement mmap support like here. The modern way
1843  * to implement DRM mmap support is with an mmap offset ioctl (like
1844  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1845  * That way debug tooling like valgrind will understand what's going on, hiding
1846  * the mmap call in a driver private ioctl will break that. The i915 driver only
1847  * does cpu mmaps this way because we didn't know better.
1848  */
1849 int
1850 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1851 		    struct drm_file *file)
1852 {
1853 	struct drm_i915_gem_mmap *args = data;
1854 	struct drm_i915_gem_object *obj;
1855 	unsigned long addr;
1856 
1857 	if (args->flags & ~(I915_MMAP_WC))
1858 		return -EINVAL;
1859 
1860 	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1861 		return -ENODEV;
1862 
1863 	obj = i915_gem_object_lookup(file, args->handle);
1864 	if (!obj)
1865 		return -ENOENT;
1866 
1867 	/* prime objects have no backing filp to GEM mmap
1868 	 * pages from.
1869 	 */
1870 	if (!obj->base.filp) {
1871 		i915_gem_object_put(obj);
1872 		return -ENXIO;
1873 	}
1874 
1875 	addr = vm_mmap(obj->base.filp, 0, args->size,
1876 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1877 		       args->offset);
1878 	if (args->flags & I915_MMAP_WC) {
1879 		struct mm_struct *mm = current->mm;
1880 		struct vm_area_struct *vma;
1881 
1882 		if (down_write_killable(&mm->mmap_sem)) {
1883 			i915_gem_object_put(obj);
1884 			return -EINTR;
1885 		}
1886 		vma = find_vma(mm, addr);
1887 		if (vma)
1888 			vma->vm_page_prot =
1889 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1890 		else
1891 			addr = -ENOMEM;
1892 		up_write(&mm->mmap_sem);
1893 
1894 		/* This may race, but that's ok, it only gets set */
1895 		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1896 	}
1897 	i915_gem_object_put(obj);
1898 	if (IS_ERR((void *)addr))
1899 		return addr;
1900 
1901 	args->addr_ptr = (uint64_t) addr;
1902 
1903 	return 0;
1904 }
1905 
1906 static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
1907 {
1908 	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1909 }
1910 
1911 /**
1912  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1913  *
1914  * A history of the GTT mmap interface:
1915  *
1916  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1917  *     aligned and suitable for fencing, and still fit into the available
1918  *     mappable space left by the pinned display objects. A classic problem
1919  *     we called the page-fault-of-doom where we would ping-pong between
1920  *     two objects that could not fit inside the GTT and so the memcpy
1921  *     would page one object in at the expense of the other between every
1922  *     single byte.
1923  *
1924  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1925  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1926  *     object is too large for the available space (or simply too large
1927  *     for the mappable aperture!), a view is created instead and faulted
1928  *     into userspace. (This view is aligned and sized appropriately for
1929  *     fenced access.)
1930  *
1931  * 2 - Recognise WC as a separate cache domain so that we can flush the
1932  *     delayed writes via GTT before performing direct access via WC.
1933  *
1934  * Restrictions:
1935  *
1936  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1937  *    hangs on some architectures, corruption on others. An attempt to service
1938  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1939  *
1940  *  * the object must be able to fit into RAM (physical memory, though no
1941  *    limited to the mappable aperture).
1942  *
1943  *
1944  * Caveats:
1945  *
1946  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1947  *    all data to system memory. Subsequent access will not be synchronized.
1948  *
1949  *  * all mappings are revoked on runtime device suspend.
1950  *
1951  *  * there are only 8, 16 or 32 fence registers to share between all users
1952  *    (older machines require fence register for display and blitter access
1953  *    as well). Contention of the fence registers will cause the previous users
1954  *    to be unmapped and any new access will generate new page faults.
1955  *
1956  *  * running out of memory while servicing a fault may generate a SIGBUS,
1957  *    rather than the expected SIGSEGV.
1958  */
1959 int i915_gem_mmap_gtt_version(void)
1960 {
1961 	return 2;
1962 }
1963 
1964 static inline struct i915_ggtt_view
1965 compute_partial_view(const struct drm_i915_gem_object *obj,
1966 		     pgoff_t page_offset,
1967 		     unsigned int chunk)
1968 {
1969 	struct i915_ggtt_view view;
1970 
1971 	if (i915_gem_object_is_tiled(obj))
1972 		chunk = roundup(chunk, tile_row_pages(obj));
1973 
1974 	view.type = I915_GGTT_VIEW_PARTIAL;
1975 	view.partial.offset = rounddown(page_offset, chunk);
1976 	view.partial.size =
1977 		min_t(unsigned int, chunk,
1978 		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1979 
1980 	/* If the partial covers the entire object, just create a normal VMA. */
1981 	if (chunk >= obj->base.size >> PAGE_SHIFT)
1982 		view.type = I915_GGTT_VIEW_NORMAL;
1983 
1984 	return view;
1985 }
1986 
1987 /**
1988  * i915_gem_fault - fault a page into the GTT
1989  * @vmf: fault info
1990  *
1991  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1992  * from userspace.  The fault handler takes care of binding the object to
1993  * the GTT (if needed), allocating and programming a fence register (again,
1994  * only if needed based on whether the old reg is still valid or the object
1995  * is tiled) and inserting a new PTE into the faulting process.
1996  *
1997  * Note that the faulting process may involve evicting existing objects
1998  * from the GTT and/or fence registers to make room.  So performance may
1999  * suffer if the GTT working set is large or there are few fence registers
2000  * left.
2001  *
2002  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
2003  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
2004  */
2005 vm_fault_t i915_gem_fault(struct vm_fault *vmf)
2006 {
2007 #define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
2008 	struct vm_area_struct *area = vmf->vma;
2009 	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
2010 	struct drm_device *dev = obj->base.dev;
2011 	struct drm_i915_private *dev_priv = to_i915(dev);
2012 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2013 	bool write = area->vm_flags & VM_WRITE;
2014 	struct i915_vma *vma;
2015 	pgoff_t page_offset;
2016 	int ret;
2017 
2018 	/* Sanity check that we allow writing into this object */
2019 	if (i915_gem_object_is_readonly(obj) && write)
2020 		return VM_FAULT_SIGBUS;
2021 
2022 	/* We don't use vmf->pgoff since that has the fake offset */
2023 	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2024 
2025 	trace_i915_gem_object_fault(obj, page_offset, true, write);
2026 
2027 	/* Try to flush the object off the GPU first without holding the lock.
2028 	 * Upon acquiring the lock, we will perform our sanity checks and then
2029 	 * repeat the flush holding the lock in the normal manner to catch cases
2030 	 * where we are gazumped.
2031 	 */
2032 	ret = i915_gem_object_wait(obj,
2033 				   I915_WAIT_INTERRUPTIBLE,
2034 				   MAX_SCHEDULE_TIMEOUT,
2035 				   NULL);
2036 	if (ret)
2037 		goto err;
2038 
2039 	ret = i915_gem_object_pin_pages(obj);
2040 	if (ret)
2041 		goto err;
2042 
2043 	intel_runtime_pm_get(dev_priv);
2044 
2045 	ret = i915_mutex_lock_interruptible(dev);
2046 	if (ret)
2047 		goto err_rpm;
2048 
2049 	/* Access to snoopable pages through the GTT is incoherent. */
2050 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2051 		ret = -EFAULT;
2052 		goto err_unlock;
2053 	}
2054 
2055 
2056 	/* Now pin it into the GTT as needed */
2057 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
2058 				       PIN_MAPPABLE |
2059 				       PIN_NONBLOCK |
2060 				       PIN_NONFAULT);
2061 	if (IS_ERR(vma)) {
2062 		/* Use a partial view if it is bigger than available space */
2063 		struct i915_ggtt_view view =
2064 			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2065 		unsigned int flags;
2066 
2067 		flags = PIN_MAPPABLE;
2068 		if (view.type == I915_GGTT_VIEW_NORMAL)
2069 			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */
2070 
2071 		/*
2072 		 * Userspace is now writing through an untracked VMA, abandon
2073 		 * all hope that the hardware is able to track future writes.
2074 		 */
2075 		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
2076 
2077 		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2078 		if (IS_ERR(vma) && !view.type) {
2079 			flags = PIN_MAPPABLE;
2080 			view.type = I915_GGTT_VIEW_PARTIAL;
2081 			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2082 		}
2083 	}
2084 	if (IS_ERR(vma)) {
2085 		ret = PTR_ERR(vma);
2086 		goto err_unlock;
2087 	}
2088 
2089 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
2090 	if (ret)
2091 		goto err_unpin;
2092 
2093 	ret = i915_vma_pin_fence(vma);
2094 	if (ret)
2095 		goto err_unpin;
2096 
2097 	/* Finally, remap it using the new GTT offset */
2098 	ret = remap_io_mapping(area,
2099 			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2100 			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2101 			       min_t(u64, vma->size, area->vm_end - area->vm_start),
2102 			       &ggtt->iomap);
2103 	if (ret)
2104 		goto err_fence;
2105 
2106 	/* Mark as being mmapped into userspace for later revocation */
2107 	assert_rpm_wakelock_held(dev_priv);
2108 	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
2109 		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
2110 	GEM_BUG_ON(!obj->userfault_count);
2111 
2112 	i915_vma_set_ggtt_write(vma);
2113 
2114 err_fence:
2115 	i915_vma_unpin_fence(vma);
2116 err_unpin:
2117 	__i915_vma_unpin(vma);
2118 err_unlock:
2119 	mutex_unlock(&dev->struct_mutex);
2120 err_rpm:
2121 	intel_runtime_pm_put(dev_priv);
2122 	i915_gem_object_unpin_pages(obj);
2123 err:
2124 	switch (ret) {
2125 	case -EIO:
2126 		/*
2127 		 * We eat errors when the gpu is terminally wedged to avoid
2128 		 * userspace unduly crashing (gl has no provisions for mmaps to
2129 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2130 		 * and so needs to be reported.
2131 		 */
2132 		if (!i915_terminally_wedged(&dev_priv->gpu_error))
2133 			return VM_FAULT_SIGBUS;
2134 		/* else: fall through */
2135 	case -EAGAIN:
2136 		/*
2137 		 * EAGAIN means the gpu is hung and we'll wait for the error
2138 		 * handler to reset everything when re-faulting in
2139 		 * i915_mutex_lock_interruptible.
2140 		 */
2141 	case 0:
2142 	case -ERESTARTSYS:
2143 	case -EINTR:
2144 	case -EBUSY:
2145 		/*
2146 		 * EBUSY is ok: this just means that another thread
2147 		 * already did the job.
2148 		 */
2149 		return VM_FAULT_NOPAGE;
2150 	case -ENOMEM:
2151 		return VM_FAULT_OOM;
2152 	case -ENOSPC:
2153 	case -EFAULT:
2154 		return VM_FAULT_SIGBUS;
2155 	default:
2156 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2157 		return VM_FAULT_SIGBUS;
2158 	}
2159 }
2160 
2161 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2162 {
2163 	struct i915_vma *vma;
2164 
2165 	GEM_BUG_ON(!obj->userfault_count);
2166 
2167 	obj->userfault_count = 0;
2168 	list_del(&obj->userfault_link);
2169 	drm_vma_node_unmap(&obj->base.vma_node,
2170 			   obj->base.dev->anon_inode->i_mapping);
2171 
2172 	for_each_ggtt_vma(vma, obj)
2173 		i915_vma_unset_userfault(vma);
2174 }
2175 
2176 /**
2177  * i915_gem_release_mmap - remove physical page mappings
2178  * @obj: obj in question
2179  *
2180  * Preserve the reservation of the mmapping with the DRM core code, but
2181  * relinquish ownership of the pages back to the system.
2182  *
2183  * It is vital that we remove the page mapping if we have mapped a tiled
2184  * object through the GTT and then lose the fence register due to
2185  * resource pressure. Similarly if the object has been moved out of the
2186  * aperture, than pages mapped into userspace must be revoked. Removing the
2187  * mapping will then trigger a page fault on the next user access, allowing
2188  * fixup by i915_gem_fault().
2189  */
2190 void
2191 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2192 {
2193 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2194 
2195 	/* Serialisation between user GTT access and our code depends upon
2196 	 * revoking the CPU's PTE whilst the mutex is held. The next user
2197 	 * pagefault then has to wait until we release the mutex.
2198 	 *
2199 	 * Note that RPM complicates somewhat by adding an additional
2200 	 * requirement that operations to the GGTT be made holding the RPM
2201 	 * wakeref.
2202 	 */
2203 	lockdep_assert_held(&i915->drm.struct_mutex);
2204 	intel_runtime_pm_get(i915);
2205 
2206 	if (!obj->userfault_count)
2207 		goto out;
2208 
2209 	__i915_gem_object_release_mmap(obj);
2210 
2211 	/* Ensure that the CPU's PTE are revoked and there are not outstanding
2212 	 * memory transactions from userspace before we return. The TLB
2213 	 * flushing implied above by changing the PTE above *should* be
2214 	 * sufficient, an extra barrier here just provides us with a bit
2215 	 * of paranoid documentation about our requirement to serialise
2216 	 * memory writes before touching registers / GSM.
2217 	 */
2218 	wmb();
2219 
2220 out:
2221 	intel_runtime_pm_put(i915);
2222 }
2223 
2224 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2225 {
2226 	struct drm_i915_gem_object *obj, *on;
2227 	int i;
2228 
2229 	/*
2230 	 * Only called during RPM suspend. All users of the userfault_list
2231 	 * must be holding an RPM wakeref to ensure that this can not
2232 	 * run concurrently with themselves (and use the struct_mutex for
2233 	 * protection between themselves).
2234 	 */
2235 
2236 	list_for_each_entry_safe(obj, on,
2237 				 &dev_priv->mm.userfault_list, userfault_link)
2238 		__i915_gem_object_release_mmap(obj);
2239 
2240 	/* The fence will be lost when the device powers down. If any were
2241 	 * in use by hardware (i.e. they are pinned), we should not be powering
2242 	 * down! All other fences will be reacquired by the user upon waking.
2243 	 */
2244 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2245 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2246 
2247 		/* Ideally we want to assert that the fence register is not
2248 		 * live at this point (i.e. that no piece of code will be
2249 		 * trying to write through fence + GTT, as that both violates
2250 		 * our tracking of activity and associated locking/barriers,
2251 		 * but also is illegal given that the hw is powered down).
2252 		 *
2253 		 * Previously we used reg->pin_count as a "liveness" indicator.
2254 		 * That is not sufficient, and we need a more fine-grained
2255 		 * tool if we want to have a sanity check here.
2256 		 */
2257 
2258 		if (!reg->vma)
2259 			continue;
2260 
2261 		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2262 		reg->dirty = true;
2263 	}
2264 }
2265 
2266 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2267 {
2268 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2269 	int err;
2270 
2271 	err = drm_gem_create_mmap_offset(&obj->base);
2272 	if (likely(!err))
2273 		return 0;
2274 
2275 	/* Attempt to reap some mmap space from dead objects */
2276 	do {
2277 		err = i915_gem_wait_for_idle(dev_priv,
2278 					     I915_WAIT_INTERRUPTIBLE,
2279 					     MAX_SCHEDULE_TIMEOUT);
2280 		if (err)
2281 			break;
2282 
2283 		i915_gem_drain_freed_objects(dev_priv);
2284 		err = drm_gem_create_mmap_offset(&obj->base);
2285 		if (!err)
2286 			break;
2287 
2288 	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2289 
2290 	return err;
2291 }
2292 
2293 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2294 {
2295 	drm_gem_free_mmap_offset(&obj->base);
2296 }
2297 
2298 int
2299 i915_gem_mmap_gtt(struct drm_file *file,
2300 		  struct drm_device *dev,
2301 		  uint32_t handle,
2302 		  uint64_t *offset)
2303 {
2304 	struct drm_i915_gem_object *obj;
2305 	int ret;
2306 
2307 	obj = i915_gem_object_lookup(file, handle);
2308 	if (!obj)
2309 		return -ENOENT;
2310 
2311 	ret = i915_gem_object_create_mmap_offset(obj);
2312 	if (ret == 0)
2313 		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2314 
2315 	i915_gem_object_put(obj);
2316 	return ret;
2317 }
2318 
2319 /**
2320  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2321  * @dev: DRM device
2322  * @data: GTT mapping ioctl data
2323  * @file: GEM object info
2324  *
2325  * Simply returns the fake offset to userspace so it can mmap it.
2326  * The mmap call will end up in drm_gem_mmap(), which will set things
2327  * up so we can get faults in the handler above.
2328  *
2329  * The fault handler will take care of binding the object into the GTT
2330  * (since it may have been evicted to make room for something), allocating
2331  * a fence register, and mapping the appropriate aperture address into
2332  * userspace.
2333  */
2334 int
2335 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2336 			struct drm_file *file)
2337 {
2338 	struct drm_i915_gem_mmap_gtt *args = data;
2339 
2340 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2341 }
2342 
2343 /* Immediately discard the backing storage */
2344 static void
2345 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2346 {
2347 	i915_gem_object_free_mmap_offset(obj);
2348 
2349 	if (obj->base.filp == NULL)
2350 		return;
2351 
2352 	/* Our goal here is to return as much of the memory as
2353 	 * is possible back to the system as we are called from OOM.
2354 	 * To do this we must instruct the shmfs to drop all of its
2355 	 * backing pages, *now*.
2356 	 */
2357 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2358 	obj->mm.madv = __I915_MADV_PURGED;
2359 	obj->mm.pages = ERR_PTR(-EFAULT);
2360 }
2361 
2362 /* Try to discard unwanted pages */
2363 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2364 {
2365 	struct address_space *mapping;
2366 
2367 	lockdep_assert_held(&obj->mm.lock);
2368 	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2369 
2370 	switch (obj->mm.madv) {
2371 	case I915_MADV_DONTNEED:
2372 		i915_gem_object_truncate(obj);
2373 	case __I915_MADV_PURGED:
2374 		return;
2375 	}
2376 
2377 	if (obj->base.filp == NULL)
2378 		return;
2379 
2380 	mapping = obj->base.filp->f_mapping,
2381 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2382 }
2383 
2384 static void
2385 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2386 			      struct sg_table *pages)
2387 {
2388 	struct sgt_iter sgt_iter;
2389 	struct page *page;
2390 
2391 	__i915_gem_object_release_shmem(obj, pages, true);
2392 
2393 	i915_gem_gtt_finish_pages(obj, pages);
2394 
2395 	if (i915_gem_object_needs_bit17_swizzle(obj))
2396 		i915_gem_object_save_bit_17_swizzle(obj, pages);
2397 
2398 	for_each_sgt_page(page, sgt_iter, pages) {
2399 		if (obj->mm.dirty)
2400 			set_page_dirty(page);
2401 
2402 		if (obj->mm.madv == I915_MADV_WILLNEED)
2403 			mark_page_accessed(page);
2404 
2405 		put_page(page);
2406 	}
2407 	obj->mm.dirty = false;
2408 
2409 	sg_free_table(pages);
2410 	kfree(pages);
2411 }
2412 
2413 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2414 {
2415 	struct radix_tree_iter iter;
2416 	void __rcu **slot;
2417 
2418 	rcu_read_lock();
2419 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2420 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2421 	rcu_read_unlock();
2422 }
2423 
2424 static struct sg_table *
2425 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2426 {
2427 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2428 	struct sg_table *pages;
2429 
2430 	pages = fetch_and_zero(&obj->mm.pages);
2431 	if (!pages)
2432 		return NULL;
2433 
2434 	spin_lock(&i915->mm.obj_lock);
2435 	list_del(&obj->mm.link);
2436 	spin_unlock(&i915->mm.obj_lock);
2437 
2438 	if (obj->mm.mapping) {
2439 		void *ptr;
2440 
2441 		ptr = page_mask_bits(obj->mm.mapping);
2442 		if (is_vmalloc_addr(ptr))
2443 			vunmap(ptr);
2444 		else
2445 			kunmap(kmap_to_page(ptr));
2446 
2447 		obj->mm.mapping = NULL;
2448 	}
2449 
2450 	__i915_gem_object_reset_page_iter(obj);
2451 	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2452 
2453 	return pages;
2454 }
2455 
2456 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2457 				 enum i915_mm_subclass subclass)
2458 {
2459 	struct sg_table *pages;
2460 
2461 	if (i915_gem_object_has_pinned_pages(obj))
2462 		return;
2463 
2464 	GEM_BUG_ON(obj->bind_count);
2465 	if (!i915_gem_object_has_pages(obj))
2466 		return;
2467 
2468 	/* May be called by shrinker from within get_pages() (on another bo) */
2469 	mutex_lock_nested(&obj->mm.lock, subclass);
2470 	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2471 		goto unlock;
2472 
2473 	/*
2474 	 * ->put_pages might need to allocate memory for the bit17 swizzle
2475 	 * array, hence protect them from being reaped by removing them from gtt
2476 	 * lists early.
2477 	 */
2478 	pages = __i915_gem_object_unset_pages(obj);
2479 	if (!IS_ERR(pages))
2480 		obj->ops->put_pages(obj, pages);
2481 
2482 unlock:
2483 	mutex_unlock(&obj->mm.lock);
2484 }
2485 
2486 static bool i915_sg_trim(struct sg_table *orig_st)
2487 {
2488 	struct sg_table new_st;
2489 	struct scatterlist *sg, *new_sg;
2490 	unsigned int i;
2491 
2492 	if (orig_st->nents == orig_st->orig_nents)
2493 		return false;
2494 
2495 	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2496 		return false;
2497 
2498 	new_sg = new_st.sgl;
2499 	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2500 		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2501 		sg_dma_address(new_sg) = sg_dma_address(sg);
2502 		sg_dma_len(new_sg) = sg_dma_len(sg);
2503 
2504 		new_sg = sg_next(new_sg);
2505 	}
2506 	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2507 
2508 	sg_free_table(orig_st);
2509 
2510 	*orig_st = new_st;
2511 	return true;
2512 }
2513 
2514 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2515 {
2516 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2517 	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2518 	unsigned long i;
2519 	struct address_space *mapping;
2520 	struct sg_table *st;
2521 	struct scatterlist *sg;
2522 	struct sgt_iter sgt_iter;
2523 	struct page *page;
2524 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2525 	unsigned int max_segment = i915_sg_segment_size();
2526 	unsigned int sg_page_sizes;
2527 	gfp_t noreclaim;
2528 	int ret;
2529 
2530 	/*
2531 	 * Assert that the object is not currently in any GPU domain. As it
2532 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2533 	 * a GPU cache
2534 	 */
2535 	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2536 	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2537 
2538 	/*
2539 	 * If there's no chance of allocating enough pages for the whole
2540 	 * object, bail early.
2541 	 */
2542 	if (page_count > totalram_pages)
2543 		return -ENOMEM;
2544 
2545 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2546 	if (st == NULL)
2547 		return -ENOMEM;
2548 
2549 rebuild_st:
2550 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2551 		kfree(st);
2552 		return -ENOMEM;
2553 	}
2554 
2555 	/*
2556 	 * Get the list of pages out of our struct file.  They'll be pinned
2557 	 * at this point until we release them.
2558 	 *
2559 	 * Fail silently without starting the shrinker
2560 	 */
2561 	mapping = obj->base.filp->f_mapping;
2562 	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2563 	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2564 
2565 	sg = st->sgl;
2566 	st->nents = 0;
2567 	sg_page_sizes = 0;
2568 	for (i = 0; i < page_count; i++) {
2569 		const unsigned int shrink[] = {
2570 			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2571 			0,
2572 		}, *s = shrink;
2573 		gfp_t gfp = noreclaim;
2574 
2575 		do {
2576 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2577 			if (likely(!IS_ERR(page)))
2578 				break;
2579 
2580 			if (!*s) {
2581 				ret = PTR_ERR(page);
2582 				goto err_sg;
2583 			}
2584 
2585 			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2586 			cond_resched();
2587 
2588 			/*
2589 			 * We've tried hard to allocate the memory by reaping
2590 			 * our own buffer, now let the real VM do its job and
2591 			 * go down in flames if truly OOM.
2592 			 *
2593 			 * However, since graphics tend to be disposable,
2594 			 * defer the oom here by reporting the ENOMEM back
2595 			 * to userspace.
2596 			 */
2597 			if (!*s) {
2598 				/* reclaim and warn, but no oom */
2599 				gfp = mapping_gfp_mask(mapping);
2600 
2601 				/*
2602 				 * Our bo are always dirty and so we require
2603 				 * kswapd to reclaim our pages (direct reclaim
2604 				 * does not effectively begin pageout of our
2605 				 * buffers on its own). However, direct reclaim
2606 				 * only waits for kswapd when under allocation
2607 				 * congestion. So as a result __GFP_RECLAIM is
2608 				 * unreliable and fails to actually reclaim our
2609 				 * dirty pages -- unless you try over and over
2610 				 * again with !__GFP_NORETRY. However, we still
2611 				 * want to fail this allocation rather than
2612 				 * trigger the out-of-memory killer and for
2613 				 * this we want __GFP_RETRY_MAYFAIL.
2614 				 */
2615 				gfp |= __GFP_RETRY_MAYFAIL;
2616 			}
2617 		} while (1);
2618 
2619 		if (!i ||
2620 		    sg->length >= max_segment ||
2621 		    page_to_pfn(page) != last_pfn + 1) {
2622 			if (i) {
2623 				sg_page_sizes |= sg->length;
2624 				sg = sg_next(sg);
2625 			}
2626 			st->nents++;
2627 			sg_set_page(sg, page, PAGE_SIZE, 0);
2628 		} else {
2629 			sg->length += PAGE_SIZE;
2630 		}
2631 		last_pfn = page_to_pfn(page);
2632 
2633 		/* Check that the i965g/gm workaround works. */
2634 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2635 	}
2636 	if (sg) { /* loop terminated early; short sg table */
2637 		sg_page_sizes |= sg->length;
2638 		sg_mark_end(sg);
2639 	}
2640 
2641 	/* Trim unused sg entries to avoid wasting memory. */
2642 	i915_sg_trim(st);
2643 
2644 	ret = i915_gem_gtt_prepare_pages(obj, st);
2645 	if (ret) {
2646 		/*
2647 		 * DMA remapping failed? One possible cause is that
2648 		 * it could not reserve enough large entries, asking
2649 		 * for PAGE_SIZE chunks instead may be helpful.
2650 		 */
2651 		if (max_segment > PAGE_SIZE) {
2652 			for_each_sgt_page(page, sgt_iter, st)
2653 				put_page(page);
2654 			sg_free_table(st);
2655 
2656 			max_segment = PAGE_SIZE;
2657 			goto rebuild_st;
2658 		} else {
2659 			dev_warn(&dev_priv->drm.pdev->dev,
2660 				 "Failed to DMA remap %lu pages\n",
2661 				 page_count);
2662 			goto err_pages;
2663 		}
2664 	}
2665 
2666 	if (i915_gem_object_needs_bit17_swizzle(obj))
2667 		i915_gem_object_do_bit_17_swizzle(obj, st);
2668 
2669 	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2670 
2671 	return 0;
2672 
2673 err_sg:
2674 	sg_mark_end(sg);
2675 err_pages:
2676 	for_each_sgt_page(page, sgt_iter, st)
2677 		put_page(page);
2678 	sg_free_table(st);
2679 	kfree(st);
2680 
2681 	/*
2682 	 * shmemfs first checks if there is enough memory to allocate the page
2683 	 * and reports ENOSPC should there be insufficient, along with the usual
2684 	 * ENOMEM for a genuine allocation failure.
2685 	 *
2686 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2687 	 * space and so want to translate the error from shmemfs back to our
2688 	 * usual understanding of ENOMEM.
2689 	 */
2690 	if (ret == -ENOSPC)
2691 		ret = -ENOMEM;
2692 
2693 	return ret;
2694 }
2695 
2696 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2697 				 struct sg_table *pages,
2698 				 unsigned int sg_page_sizes)
2699 {
2700 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2701 	unsigned long supported = INTEL_INFO(i915)->page_sizes;
2702 	int i;
2703 
2704 	lockdep_assert_held(&obj->mm.lock);
2705 
2706 	obj->mm.get_page.sg_pos = pages->sgl;
2707 	obj->mm.get_page.sg_idx = 0;
2708 
2709 	obj->mm.pages = pages;
2710 
2711 	if (i915_gem_object_is_tiled(obj) &&
2712 	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2713 		GEM_BUG_ON(obj->mm.quirked);
2714 		__i915_gem_object_pin_pages(obj);
2715 		obj->mm.quirked = true;
2716 	}
2717 
2718 	GEM_BUG_ON(!sg_page_sizes);
2719 	obj->mm.page_sizes.phys = sg_page_sizes;
2720 
2721 	/*
2722 	 * Calculate the supported page-sizes which fit into the given
2723 	 * sg_page_sizes. This will give us the page-sizes which we may be able
2724 	 * to use opportunistically when later inserting into the GTT. For
2725 	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2726 	 * 64K or 4K pages, although in practice this will depend on a number of
2727 	 * other factors.
2728 	 */
2729 	obj->mm.page_sizes.sg = 0;
2730 	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2731 		if (obj->mm.page_sizes.phys & ~0u << i)
2732 			obj->mm.page_sizes.sg |= BIT(i);
2733 	}
2734 	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2735 
2736 	spin_lock(&i915->mm.obj_lock);
2737 	list_add(&obj->mm.link, &i915->mm.unbound_list);
2738 	spin_unlock(&i915->mm.obj_lock);
2739 }
2740 
2741 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2742 {
2743 	int err;
2744 
2745 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2746 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2747 		return -EFAULT;
2748 	}
2749 
2750 	err = obj->ops->get_pages(obj);
2751 	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2752 
2753 	return err;
2754 }
2755 
2756 /* Ensure that the associated pages are gathered from the backing storage
2757  * and pinned into our object. i915_gem_object_pin_pages() may be called
2758  * multiple times before they are released by a single call to
2759  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2760  * either as a result of memory pressure (reaping pages under the shrinker)
2761  * or as the object is itself released.
2762  */
2763 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2764 {
2765 	int err;
2766 
2767 	err = mutex_lock_interruptible(&obj->mm.lock);
2768 	if (err)
2769 		return err;
2770 
2771 	if (unlikely(!i915_gem_object_has_pages(obj))) {
2772 		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2773 
2774 		err = ____i915_gem_object_get_pages(obj);
2775 		if (err)
2776 			goto unlock;
2777 
2778 		smp_mb__before_atomic();
2779 	}
2780 	atomic_inc(&obj->mm.pages_pin_count);
2781 
2782 unlock:
2783 	mutex_unlock(&obj->mm.lock);
2784 	return err;
2785 }
2786 
2787 /* The 'mapping' part of i915_gem_object_pin_map() below */
2788 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2789 				 enum i915_map_type type)
2790 {
2791 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2792 	struct sg_table *sgt = obj->mm.pages;
2793 	struct sgt_iter sgt_iter;
2794 	struct page *page;
2795 	struct page *stack_pages[32];
2796 	struct page **pages = stack_pages;
2797 	unsigned long i = 0;
2798 	pgprot_t pgprot;
2799 	void *addr;
2800 
2801 	/* A single page can always be kmapped */
2802 	if (n_pages == 1 && type == I915_MAP_WB)
2803 		return kmap(sg_page(sgt->sgl));
2804 
2805 	if (n_pages > ARRAY_SIZE(stack_pages)) {
2806 		/* Too big for stack -- allocate temporary array instead */
2807 		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2808 		if (!pages)
2809 			return NULL;
2810 	}
2811 
2812 	for_each_sgt_page(page, sgt_iter, sgt)
2813 		pages[i++] = page;
2814 
2815 	/* Check that we have the expected number of pages */
2816 	GEM_BUG_ON(i != n_pages);
2817 
2818 	switch (type) {
2819 	default:
2820 		MISSING_CASE(type);
2821 		/* fallthrough to use PAGE_KERNEL anyway */
2822 	case I915_MAP_WB:
2823 		pgprot = PAGE_KERNEL;
2824 		break;
2825 	case I915_MAP_WC:
2826 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2827 		break;
2828 	}
2829 	addr = vmap(pages, n_pages, 0, pgprot);
2830 
2831 	if (pages != stack_pages)
2832 		kvfree(pages);
2833 
2834 	return addr;
2835 }
2836 
2837 /* get, pin, and map the pages of the object into kernel space */
2838 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2839 			      enum i915_map_type type)
2840 {
2841 	enum i915_map_type has_type;
2842 	bool pinned;
2843 	void *ptr;
2844 	int ret;
2845 
2846 	if (unlikely(!i915_gem_object_has_struct_page(obj)))
2847 		return ERR_PTR(-ENXIO);
2848 
2849 	ret = mutex_lock_interruptible(&obj->mm.lock);
2850 	if (ret)
2851 		return ERR_PTR(ret);
2852 
2853 	pinned = !(type & I915_MAP_OVERRIDE);
2854 	type &= ~I915_MAP_OVERRIDE;
2855 
2856 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2857 		if (unlikely(!i915_gem_object_has_pages(obj))) {
2858 			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2859 
2860 			ret = ____i915_gem_object_get_pages(obj);
2861 			if (ret)
2862 				goto err_unlock;
2863 
2864 			smp_mb__before_atomic();
2865 		}
2866 		atomic_inc(&obj->mm.pages_pin_count);
2867 		pinned = false;
2868 	}
2869 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2870 
2871 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2872 	if (ptr && has_type != type) {
2873 		if (pinned) {
2874 			ret = -EBUSY;
2875 			goto err_unpin;
2876 		}
2877 
2878 		if (is_vmalloc_addr(ptr))
2879 			vunmap(ptr);
2880 		else
2881 			kunmap(kmap_to_page(ptr));
2882 
2883 		ptr = obj->mm.mapping = NULL;
2884 	}
2885 
2886 	if (!ptr) {
2887 		ptr = i915_gem_object_map(obj, type);
2888 		if (!ptr) {
2889 			ret = -ENOMEM;
2890 			goto err_unpin;
2891 		}
2892 
2893 		obj->mm.mapping = page_pack_bits(ptr, type);
2894 	}
2895 
2896 out_unlock:
2897 	mutex_unlock(&obj->mm.lock);
2898 	return ptr;
2899 
2900 err_unpin:
2901 	atomic_dec(&obj->mm.pages_pin_count);
2902 err_unlock:
2903 	ptr = ERR_PTR(ret);
2904 	goto out_unlock;
2905 }
2906 
2907 static int
2908 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2909 			   const struct drm_i915_gem_pwrite *arg)
2910 {
2911 	struct address_space *mapping = obj->base.filp->f_mapping;
2912 	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2913 	u64 remain, offset;
2914 	unsigned int pg;
2915 
2916 	/* Before we instantiate/pin the backing store for our use, we
2917 	 * can prepopulate the shmemfs filp efficiently using a write into
2918 	 * the pagecache. We avoid the penalty of instantiating all the
2919 	 * pages, important if the user is just writing to a few and never
2920 	 * uses the object on the GPU, and using a direct write into shmemfs
2921 	 * allows it to avoid the cost of retrieving a page (either swapin
2922 	 * or clearing-before-use) before it is overwritten.
2923 	 */
2924 	if (i915_gem_object_has_pages(obj))
2925 		return -ENODEV;
2926 
2927 	if (obj->mm.madv != I915_MADV_WILLNEED)
2928 		return -EFAULT;
2929 
2930 	/* Before the pages are instantiated the object is treated as being
2931 	 * in the CPU domain. The pages will be clflushed as required before
2932 	 * use, and we can freely write into the pages directly. If userspace
2933 	 * races pwrite with any other operation; corruption will ensue -
2934 	 * that is userspace's prerogative!
2935 	 */
2936 
2937 	remain = arg->size;
2938 	offset = arg->offset;
2939 	pg = offset_in_page(offset);
2940 
2941 	do {
2942 		unsigned int len, unwritten;
2943 		struct page *page;
2944 		void *data, *vaddr;
2945 		int err;
2946 
2947 		len = PAGE_SIZE - pg;
2948 		if (len > remain)
2949 			len = remain;
2950 
2951 		err = pagecache_write_begin(obj->base.filp, mapping,
2952 					    offset, len, 0,
2953 					    &page, &data);
2954 		if (err < 0)
2955 			return err;
2956 
2957 		vaddr = kmap(page);
2958 		unwritten = copy_from_user(vaddr + pg, user_data, len);
2959 		kunmap(page);
2960 
2961 		err = pagecache_write_end(obj->base.filp, mapping,
2962 					  offset, len, len - unwritten,
2963 					  page, data);
2964 		if (err < 0)
2965 			return err;
2966 
2967 		if (unwritten)
2968 			return -EFAULT;
2969 
2970 		remain -= len;
2971 		user_data += len;
2972 		offset += len;
2973 		pg = 0;
2974 	} while (remain);
2975 
2976 	return 0;
2977 }
2978 
2979 static void i915_gem_client_mark_guilty(struct drm_i915_file_private *file_priv,
2980 					const struct i915_gem_context *ctx)
2981 {
2982 	unsigned int score;
2983 	unsigned long prev_hang;
2984 
2985 	if (i915_gem_context_is_banned(ctx))
2986 		score = I915_CLIENT_SCORE_CONTEXT_BAN;
2987 	else
2988 		score = 0;
2989 
2990 	prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
2991 	if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
2992 		score += I915_CLIENT_SCORE_HANG_FAST;
2993 
2994 	if (score) {
2995 		atomic_add(score, &file_priv->ban_score);
2996 
2997 		DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
2998 				 ctx->name, score,
2999 				 atomic_read(&file_priv->ban_score));
3000 	}
3001 }
3002 
3003 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
3004 {
3005 	unsigned int score;
3006 	bool banned, bannable;
3007 
3008 	atomic_inc(&ctx->guilty_count);
3009 
3010 	bannable = i915_gem_context_is_bannable(ctx);
3011 	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
3012 	banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
3013 
3014 	/* Cool contexts don't accumulate client ban score */
3015 	if (!bannable)
3016 		return;
3017 
3018 	if (banned) {
3019 		DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, banned\n",
3020 				 ctx->name, atomic_read(&ctx->guilty_count),
3021 				 score);
3022 		i915_gem_context_set_banned(ctx);
3023 	}
3024 
3025 	if (!IS_ERR_OR_NULL(ctx->file_priv))
3026 		i915_gem_client_mark_guilty(ctx->file_priv, ctx);
3027 }
3028 
3029 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
3030 {
3031 	atomic_inc(&ctx->active_count);
3032 }
3033 
3034 struct i915_request *
3035 i915_gem_find_active_request(struct intel_engine_cs *engine)
3036 {
3037 	struct i915_request *request, *active = NULL;
3038 	unsigned long flags;
3039 
3040 	/*
3041 	 * We are called by the error capture, reset and to dump engine
3042 	 * state at random points in time. In particular, note that neither is
3043 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
3044 	 * and we assume that no more writes can happen (we waited long enough
3045 	 * for all writes that were in transaction to be flushed) - adding an
3046 	 * extra delay for a recent interrupt is pointless. Hence, we do
3047 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
3048 	 * At all other times, we must assume the GPU is still running, but
3049 	 * we only care about the snapshot of this moment.
3050 	 */
3051 	spin_lock_irqsave(&engine->timeline.lock, flags);
3052 	list_for_each_entry(request, &engine->timeline.requests, link) {
3053 		if (__i915_request_completed(request, request->global_seqno))
3054 			continue;
3055 
3056 		active = request;
3057 		break;
3058 	}
3059 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3060 
3061 	return active;
3062 }
3063 
3064 /*
3065  * Ensure irq handler finishes, and not run again.
3066  * Also return the active request so that we only search for it once.
3067  */
3068 struct i915_request *
3069 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
3070 {
3071 	struct i915_request *request;
3072 
3073 	/*
3074 	 * During the reset sequence, we must prevent the engine from
3075 	 * entering RC6. As the context state is undefined until we restart
3076 	 * the engine, if it does enter RC6 during the reset, the state
3077 	 * written to the powercontext is undefined and so we may lose
3078 	 * GPU state upon resume, i.e. fail to restart after a reset.
3079 	 */
3080 	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
3081 
3082 	request = engine->reset.prepare(engine);
3083 	if (request && request->fence.error == -EIO)
3084 		request = ERR_PTR(-EIO); /* Previous reset failed! */
3085 
3086 	return request;
3087 }
3088 
3089 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3090 {
3091 	struct intel_engine_cs *engine;
3092 	struct i915_request *request;
3093 	enum intel_engine_id id;
3094 	int err = 0;
3095 
3096 	for_each_engine(engine, dev_priv, id) {
3097 		request = i915_gem_reset_prepare_engine(engine);
3098 		if (IS_ERR(request)) {
3099 			err = PTR_ERR(request);
3100 			continue;
3101 		}
3102 
3103 		engine->hangcheck.active_request = request;
3104 	}
3105 
3106 	i915_gem_revoke_fences(dev_priv);
3107 	intel_uc_sanitize(dev_priv);
3108 
3109 	return err;
3110 }
3111 
3112 static void engine_skip_context(struct i915_request *request)
3113 {
3114 	struct intel_engine_cs *engine = request->engine;
3115 	struct i915_gem_context *hung_ctx = request->gem_context;
3116 	struct i915_timeline *timeline = request->timeline;
3117 	unsigned long flags;
3118 
3119 	GEM_BUG_ON(timeline == &engine->timeline);
3120 
3121 	spin_lock_irqsave(&engine->timeline.lock, flags);
3122 	spin_lock(&timeline->lock);
3123 
3124 	list_for_each_entry_continue(request, &engine->timeline.requests, link)
3125 		if (request->gem_context == hung_ctx)
3126 			i915_request_skip(request, -EIO);
3127 
3128 	list_for_each_entry(request, &timeline->requests, link)
3129 		i915_request_skip(request, -EIO);
3130 
3131 	spin_unlock(&timeline->lock);
3132 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3133 }
3134 
3135 /* Returns the request if it was guilty of the hang */
3136 static struct i915_request *
3137 i915_gem_reset_request(struct intel_engine_cs *engine,
3138 		       struct i915_request *request,
3139 		       bool stalled)
3140 {
3141 	/* The guilty request will get skipped on a hung engine.
3142 	 *
3143 	 * Users of client default contexts do not rely on logical
3144 	 * state preserved between batches so it is safe to execute
3145 	 * queued requests following the hang. Non default contexts
3146 	 * rely on preserved state, so skipping a batch loses the
3147 	 * evolution of the state and it needs to be considered corrupted.
3148 	 * Executing more queued batches on top of corrupted state is
3149 	 * risky. But we take the risk by trying to advance through
3150 	 * the queued requests in order to make the client behaviour
3151 	 * more predictable around resets, by not throwing away random
3152 	 * amount of batches it has prepared for execution. Sophisticated
3153 	 * clients can use gem_reset_stats_ioctl and dma fence status
3154 	 * (exported via sync_file info ioctl on explicit fences) to observe
3155 	 * when it loses the context state and should rebuild accordingly.
3156 	 *
3157 	 * The context ban, and ultimately the client ban, mechanism are safety
3158 	 * valves if client submission ends up resulting in nothing more than
3159 	 * subsequent hangs.
3160 	 */
3161 
3162 	if (i915_request_completed(request)) {
3163 		GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
3164 			  engine->name, request->global_seqno,
3165 			  request->fence.context, request->fence.seqno,
3166 			  intel_engine_get_seqno(engine));
3167 		stalled = false;
3168 	}
3169 
3170 	if (stalled) {
3171 		i915_gem_context_mark_guilty(request->gem_context);
3172 		i915_request_skip(request, -EIO);
3173 
3174 		/* If this context is now banned, skip all pending requests. */
3175 		if (i915_gem_context_is_banned(request->gem_context))
3176 			engine_skip_context(request);
3177 	} else {
3178 		/*
3179 		 * Since this is not the hung engine, it may have advanced
3180 		 * since the hang declaration. Double check by refinding
3181 		 * the active request at the time of the reset.
3182 		 */
3183 		request = i915_gem_find_active_request(engine);
3184 		if (request) {
3185 			unsigned long flags;
3186 
3187 			i915_gem_context_mark_innocent(request->gem_context);
3188 			dma_fence_set_error(&request->fence, -EAGAIN);
3189 
3190 			/* Rewind the engine to replay the incomplete rq */
3191 			spin_lock_irqsave(&engine->timeline.lock, flags);
3192 			request = list_prev_entry(request, link);
3193 			if (&request->link == &engine->timeline.requests)
3194 				request = NULL;
3195 			spin_unlock_irqrestore(&engine->timeline.lock, flags);
3196 		}
3197 	}
3198 
3199 	return request;
3200 }
3201 
3202 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3203 			   struct i915_request *request,
3204 			   bool stalled)
3205 {
3206 	/*
3207 	 * Make sure this write is visible before we re-enable the interrupt
3208 	 * handlers on another CPU, as tasklet_enable() resolves to just
3209 	 * a compiler barrier which is insufficient for our purpose here.
3210 	 */
3211 	smp_store_mb(engine->irq_posted, 0);
3212 
3213 	if (request)
3214 		request = i915_gem_reset_request(engine, request, stalled);
3215 
3216 	/* Setup the CS to resume from the breadcrumb of the hung request */
3217 	engine->reset.reset(engine, request);
3218 }
3219 
3220 void i915_gem_reset(struct drm_i915_private *dev_priv,
3221 		    unsigned int stalled_mask)
3222 {
3223 	struct intel_engine_cs *engine;
3224 	enum intel_engine_id id;
3225 
3226 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3227 
3228 	i915_retire_requests(dev_priv);
3229 
3230 	for_each_engine(engine, dev_priv, id) {
3231 		struct intel_context *ce;
3232 
3233 		i915_gem_reset_engine(engine,
3234 				      engine->hangcheck.active_request,
3235 				      stalled_mask & ENGINE_MASK(id));
3236 		ce = fetch_and_zero(&engine->last_retired_context);
3237 		if (ce)
3238 			intel_context_unpin(ce);
3239 
3240 		/*
3241 		 * Ostensibily, we always want a context loaded for powersaving,
3242 		 * so if the engine is idle after the reset, send a request
3243 		 * to load our scratch kernel_context.
3244 		 *
3245 		 * More mysteriously, if we leave the engine idle after a reset,
3246 		 * the next userspace batch may hang, with what appears to be
3247 		 * an incoherent read by the CS (presumably stale TLB). An
3248 		 * empty request appears sufficient to paper over the glitch.
3249 		 */
3250 		if (intel_engine_is_idle(engine)) {
3251 			struct i915_request *rq;
3252 
3253 			rq = i915_request_alloc(engine,
3254 						dev_priv->kernel_context);
3255 			if (!IS_ERR(rq))
3256 				i915_request_add(rq);
3257 		}
3258 	}
3259 
3260 	i915_gem_restore_fences(dev_priv);
3261 }
3262 
3263 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3264 {
3265 	engine->reset.finish(engine);
3266 
3267 	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3268 }
3269 
3270 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3271 {
3272 	struct intel_engine_cs *engine;
3273 	enum intel_engine_id id;
3274 
3275 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3276 
3277 	for_each_engine(engine, dev_priv, id) {
3278 		engine->hangcheck.active_request = NULL;
3279 		i915_gem_reset_finish_engine(engine);
3280 	}
3281 }
3282 
3283 static void nop_submit_request(struct i915_request *request)
3284 {
3285 	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3286 		  request->engine->name,
3287 		  request->fence.context, request->fence.seqno);
3288 	dma_fence_set_error(&request->fence, -EIO);
3289 
3290 	i915_request_submit(request);
3291 }
3292 
3293 static void nop_complete_submit_request(struct i915_request *request)
3294 {
3295 	unsigned long flags;
3296 
3297 	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3298 		  request->engine->name,
3299 		  request->fence.context, request->fence.seqno);
3300 	dma_fence_set_error(&request->fence, -EIO);
3301 
3302 	spin_lock_irqsave(&request->engine->timeline.lock, flags);
3303 	__i915_request_submit(request);
3304 	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3305 	spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3306 }
3307 
3308 void i915_gem_set_wedged(struct drm_i915_private *i915)
3309 {
3310 	struct intel_engine_cs *engine;
3311 	enum intel_engine_id id;
3312 
3313 	GEM_TRACE("start\n");
3314 
3315 	if (GEM_SHOW_DEBUG()) {
3316 		struct drm_printer p = drm_debug_printer(__func__);
3317 
3318 		for_each_engine(engine, i915, id)
3319 			intel_engine_dump(engine, &p, "%s\n", engine->name);
3320 	}
3321 
3322 	if (test_and_set_bit(I915_WEDGED, &i915->gpu_error.flags))
3323 		goto out;
3324 
3325 	/*
3326 	 * First, stop submission to hw, but do not yet complete requests by
3327 	 * rolling the global seqno forward (since this would complete requests
3328 	 * for which we haven't set the fence error to EIO yet).
3329 	 */
3330 	for_each_engine(engine, i915, id) {
3331 		i915_gem_reset_prepare_engine(engine);
3332 
3333 		engine->submit_request = nop_submit_request;
3334 		engine->schedule = NULL;
3335 	}
3336 	i915->caps.scheduler = 0;
3337 
3338 	/* Even if the GPU reset fails, it should still stop the engines */
3339 	if (INTEL_GEN(i915) >= 5)
3340 		intel_gpu_reset(i915, ALL_ENGINES);
3341 
3342 	/*
3343 	 * Make sure no one is running the old callback before we proceed with
3344 	 * cancelling requests and resetting the completion tracking. Otherwise
3345 	 * we might submit a request to the hardware which never completes.
3346 	 */
3347 	synchronize_rcu();
3348 
3349 	for_each_engine(engine, i915, id) {
3350 		/* Mark all executing requests as skipped */
3351 		engine->cancel_requests(engine);
3352 
3353 		/*
3354 		 * Only once we've force-cancelled all in-flight requests can we
3355 		 * start to complete all requests.
3356 		 */
3357 		engine->submit_request = nop_complete_submit_request;
3358 	}
3359 
3360 	/*
3361 	 * Make sure no request can slip through without getting completed by
3362 	 * either this call here to intel_engine_init_global_seqno, or the one
3363 	 * in nop_complete_submit_request.
3364 	 */
3365 	synchronize_rcu();
3366 
3367 	for_each_engine(engine, i915, id) {
3368 		unsigned long flags;
3369 
3370 		/*
3371 		 * Mark all pending requests as complete so that any concurrent
3372 		 * (lockless) lookup doesn't try and wait upon the request as we
3373 		 * reset it.
3374 		 */
3375 		spin_lock_irqsave(&engine->timeline.lock, flags);
3376 		intel_engine_init_global_seqno(engine,
3377 					       intel_engine_last_submit(engine));
3378 		spin_unlock_irqrestore(&engine->timeline.lock, flags);
3379 
3380 		i915_gem_reset_finish_engine(engine);
3381 	}
3382 
3383 out:
3384 	GEM_TRACE("end\n");
3385 
3386 	wake_up_all(&i915->gpu_error.reset_queue);
3387 }
3388 
3389 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3390 {
3391 	struct i915_timeline *tl;
3392 
3393 	lockdep_assert_held(&i915->drm.struct_mutex);
3394 	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3395 		return true;
3396 
3397 	GEM_TRACE("start\n");
3398 
3399 	/*
3400 	 * Before unwedging, make sure that all pending operations
3401 	 * are flushed and errored out - we may have requests waiting upon
3402 	 * third party fences. We marked all inflight requests as EIO, and
3403 	 * every execbuf since returned EIO, for consistency we want all
3404 	 * the currently pending requests to also be marked as EIO, which
3405 	 * is done inside our nop_submit_request - and so we must wait.
3406 	 *
3407 	 * No more can be submitted until we reset the wedged bit.
3408 	 */
3409 	list_for_each_entry(tl, &i915->gt.timelines, link) {
3410 		struct i915_request *rq;
3411 
3412 		rq = i915_gem_active_peek(&tl->last_request,
3413 					  &i915->drm.struct_mutex);
3414 		if (!rq)
3415 			continue;
3416 
3417 		/*
3418 		 * We can't use our normal waiter as we want to
3419 		 * avoid recursively trying to handle the current
3420 		 * reset. The basic dma_fence_default_wait() installs
3421 		 * a callback for dma_fence_signal(), which is
3422 		 * triggered by our nop handler (indirectly, the
3423 		 * callback enables the signaler thread which is
3424 		 * woken by the nop_submit_request() advancing the seqno
3425 		 * and when the seqno passes the fence, the signaler
3426 		 * then signals the fence waking us up).
3427 		 */
3428 		if (dma_fence_default_wait(&rq->fence, true,
3429 					   MAX_SCHEDULE_TIMEOUT) < 0)
3430 			return false;
3431 	}
3432 	i915_retire_requests(i915);
3433 	GEM_BUG_ON(i915->gt.active_requests);
3434 
3435 	if (!intel_gpu_reset(i915, ALL_ENGINES))
3436 		intel_engines_sanitize(i915);
3437 
3438 	/*
3439 	 * Undo nop_submit_request. We prevent all new i915 requests from
3440 	 * being queued (by disallowing execbuf whilst wedged) so having
3441 	 * waited for all active requests above, we know the system is idle
3442 	 * and do not have to worry about a thread being inside
3443 	 * engine->submit_request() as we swap over. So unlike installing
3444 	 * the nop_submit_request on reset, we can do this from normal
3445 	 * context and do not require stop_machine().
3446 	 */
3447 	intel_engines_reset_default_submission(i915);
3448 	i915_gem_contexts_lost(i915);
3449 
3450 	GEM_TRACE("end\n");
3451 
3452 	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3453 	clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3454 
3455 	return true;
3456 }
3457 
3458 static void
3459 i915_gem_retire_work_handler(struct work_struct *work)
3460 {
3461 	struct drm_i915_private *dev_priv =
3462 		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3463 	struct drm_device *dev = &dev_priv->drm;
3464 
3465 	/* Come back later if the device is busy... */
3466 	if (mutex_trylock(&dev->struct_mutex)) {
3467 		i915_retire_requests(dev_priv);
3468 		mutex_unlock(&dev->struct_mutex);
3469 	}
3470 
3471 	/*
3472 	 * Keep the retire handler running until we are finally idle.
3473 	 * We do not need to do this test under locking as in the worst-case
3474 	 * we queue the retire worker once too often.
3475 	 */
3476 	if (READ_ONCE(dev_priv->gt.awake))
3477 		queue_delayed_work(dev_priv->wq,
3478 				   &dev_priv->gt.retire_work,
3479 				   round_jiffies_up_relative(HZ));
3480 }
3481 
3482 static void shrink_caches(struct drm_i915_private *i915)
3483 {
3484 	/*
3485 	 * kmem_cache_shrink() discards empty slabs and reorders partially
3486 	 * filled slabs to prioritise allocating from the mostly full slabs,
3487 	 * with the aim of reducing fragmentation.
3488 	 */
3489 	kmem_cache_shrink(i915->priorities);
3490 	kmem_cache_shrink(i915->dependencies);
3491 	kmem_cache_shrink(i915->requests);
3492 	kmem_cache_shrink(i915->luts);
3493 	kmem_cache_shrink(i915->vmas);
3494 	kmem_cache_shrink(i915->objects);
3495 }
3496 
3497 struct sleep_rcu_work {
3498 	union {
3499 		struct rcu_head rcu;
3500 		struct work_struct work;
3501 	};
3502 	struct drm_i915_private *i915;
3503 	unsigned int epoch;
3504 };
3505 
3506 static inline bool
3507 same_epoch(struct drm_i915_private *i915, unsigned int epoch)
3508 {
3509 	/*
3510 	 * There is a small chance that the epoch wrapped since we started
3511 	 * sleeping. If we assume that epoch is at least a u32, then it will
3512 	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
3513 	 */
3514 	return epoch == READ_ONCE(i915->gt.epoch);
3515 }
3516 
3517 static void __sleep_work(struct work_struct *work)
3518 {
3519 	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
3520 	struct drm_i915_private *i915 = s->i915;
3521 	unsigned int epoch = s->epoch;
3522 
3523 	kfree(s);
3524 	if (same_epoch(i915, epoch))
3525 		shrink_caches(i915);
3526 }
3527 
3528 static void __sleep_rcu(struct rcu_head *rcu)
3529 {
3530 	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
3531 	struct drm_i915_private *i915 = s->i915;
3532 
3533 	if (same_epoch(i915, s->epoch)) {
3534 		INIT_WORK(&s->work, __sleep_work);
3535 		queue_work(i915->wq, &s->work);
3536 	} else {
3537 		kfree(s);
3538 	}
3539 }
3540 
3541 static inline bool
3542 new_requests_since_last_retire(const struct drm_i915_private *i915)
3543 {
3544 	return (READ_ONCE(i915->gt.active_requests) ||
3545 		work_pending(&i915->gt.idle_work.work));
3546 }
3547 
3548 static void assert_kernel_context_is_current(struct drm_i915_private *i915)
3549 {
3550 	struct intel_engine_cs *engine;
3551 	enum intel_engine_id id;
3552 
3553 	if (i915_terminally_wedged(&i915->gpu_error))
3554 		return;
3555 
3556 	GEM_BUG_ON(i915->gt.active_requests);
3557 	for_each_engine(engine, i915, id) {
3558 		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
3559 		GEM_BUG_ON(engine->last_retired_context !=
3560 			   to_intel_context(i915->kernel_context, engine));
3561 	}
3562 }
3563 
3564 static void
3565 i915_gem_idle_work_handler(struct work_struct *work)
3566 {
3567 	struct drm_i915_private *dev_priv =
3568 		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3569 	unsigned int epoch = I915_EPOCH_INVALID;
3570 	bool rearm_hangcheck;
3571 
3572 	if (!READ_ONCE(dev_priv->gt.awake))
3573 		return;
3574 
3575 	if (READ_ONCE(dev_priv->gt.active_requests))
3576 		return;
3577 
3578 	/*
3579 	 * Flush out the last user context, leaving only the pinned
3580 	 * kernel context resident. When we are idling on the kernel_context,
3581 	 * no more new requests (with a context switch) are emitted and we
3582 	 * can finally rest. A consequence is that the idle work handler is
3583 	 * always called at least twice before idling (and if the system is
3584 	 * idle that implies a round trip through the retire worker).
3585 	 */
3586 	mutex_lock(&dev_priv->drm.struct_mutex);
3587 	i915_gem_switch_to_kernel_context(dev_priv);
3588 	mutex_unlock(&dev_priv->drm.struct_mutex);
3589 
3590 	GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
3591 		  READ_ONCE(dev_priv->gt.active_requests));
3592 
3593 	/*
3594 	 * Wait for last execlists context complete, but bail out in case a
3595 	 * new request is submitted. As we don't trust the hardware, we
3596 	 * continue on if the wait times out. This is necessary to allow
3597 	 * the machine to suspend even if the hardware dies, and we will
3598 	 * try to recover in resume (after depriving the hardware of power,
3599 	 * it may be in a better mmod).
3600 	 */
3601 	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
3602 		   intel_engines_are_idle(dev_priv),
3603 		   I915_IDLE_ENGINES_TIMEOUT * 1000,
3604 		   10, 500);
3605 
3606 	rearm_hangcheck =
3607 		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3608 
3609 	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3610 		/* Currently busy, come back later */
3611 		mod_delayed_work(dev_priv->wq,
3612 				 &dev_priv->gt.idle_work,
3613 				 msecs_to_jiffies(50));
3614 		goto out_rearm;
3615 	}
3616 
3617 	/*
3618 	 * New request retired after this work handler started, extend active
3619 	 * period until next instance of the work.
3620 	 */
3621 	if (new_requests_since_last_retire(dev_priv))
3622 		goto out_unlock;
3623 
3624 	epoch = __i915_gem_park(dev_priv);
3625 
3626 	assert_kernel_context_is_current(dev_priv);
3627 
3628 	rearm_hangcheck = false;
3629 out_unlock:
3630 	mutex_unlock(&dev_priv->drm.struct_mutex);
3631 
3632 out_rearm:
3633 	if (rearm_hangcheck) {
3634 		GEM_BUG_ON(!dev_priv->gt.awake);
3635 		i915_queue_hangcheck(dev_priv);
3636 	}
3637 
3638 	/*
3639 	 * When we are idle, it is an opportune time to reap our caches.
3640 	 * However, we have many objects that utilise RCU and the ordered
3641 	 * i915->wq that this work is executing on. To try and flush any
3642 	 * pending frees now we are idle, we first wait for an RCU grace
3643 	 * period, and then queue a task (that will run last on the wq) to
3644 	 * shrink and re-optimize the caches.
3645 	 */
3646 	if (same_epoch(dev_priv, epoch)) {
3647 		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
3648 		if (s) {
3649 			s->i915 = dev_priv;
3650 			s->epoch = epoch;
3651 			call_rcu(&s->rcu, __sleep_rcu);
3652 		}
3653 	}
3654 }
3655 
3656 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3657 {
3658 	struct drm_i915_private *i915 = to_i915(gem->dev);
3659 	struct drm_i915_gem_object *obj = to_intel_bo(gem);
3660 	struct drm_i915_file_private *fpriv = file->driver_priv;
3661 	struct i915_lut_handle *lut, *ln;
3662 
3663 	mutex_lock(&i915->drm.struct_mutex);
3664 
3665 	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3666 		struct i915_gem_context *ctx = lut->ctx;
3667 		struct i915_vma *vma;
3668 
3669 		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3670 		if (ctx->file_priv != fpriv)
3671 			continue;
3672 
3673 		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3674 		GEM_BUG_ON(vma->obj != obj);
3675 
3676 		/* We allow the process to have multiple handles to the same
3677 		 * vma, in the same fd namespace, by virtue of flink/open.
3678 		 */
3679 		GEM_BUG_ON(!vma->open_count);
3680 		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3681 			i915_vma_close(vma);
3682 
3683 		list_del(&lut->obj_link);
3684 		list_del(&lut->ctx_link);
3685 
3686 		kmem_cache_free(i915->luts, lut);
3687 		__i915_gem_object_release_unless_active(obj);
3688 	}
3689 
3690 	mutex_unlock(&i915->drm.struct_mutex);
3691 }
3692 
3693 static unsigned long to_wait_timeout(s64 timeout_ns)
3694 {
3695 	if (timeout_ns < 0)
3696 		return MAX_SCHEDULE_TIMEOUT;
3697 
3698 	if (timeout_ns == 0)
3699 		return 0;
3700 
3701 	return nsecs_to_jiffies_timeout(timeout_ns);
3702 }
3703 
3704 /**
3705  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3706  * @dev: drm device pointer
3707  * @data: ioctl data blob
3708  * @file: drm file pointer
3709  *
3710  * Returns 0 if successful, else an error is returned with the remaining time in
3711  * the timeout parameter.
3712  *  -ETIME: object is still busy after timeout
3713  *  -ERESTARTSYS: signal interrupted the wait
3714  *  -ENONENT: object doesn't exist
3715  * Also possible, but rare:
3716  *  -EAGAIN: incomplete, restart syscall
3717  *  -ENOMEM: damn
3718  *  -ENODEV: Internal IRQ fail
3719  *  -E?: The add request failed
3720  *
3721  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3722  * non-zero timeout parameter the wait ioctl will wait for the given number of
3723  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3724  * without holding struct_mutex the object may become re-busied before this
3725  * function completes. A similar but shorter * race condition exists in the busy
3726  * ioctl
3727  */
3728 int
3729 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3730 {
3731 	struct drm_i915_gem_wait *args = data;
3732 	struct drm_i915_gem_object *obj;
3733 	ktime_t start;
3734 	long ret;
3735 
3736 	if (args->flags != 0)
3737 		return -EINVAL;
3738 
3739 	obj = i915_gem_object_lookup(file, args->bo_handle);
3740 	if (!obj)
3741 		return -ENOENT;
3742 
3743 	start = ktime_get();
3744 
3745 	ret = i915_gem_object_wait(obj,
3746 				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3747 				   to_wait_timeout(args->timeout_ns),
3748 				   to_rps_client(file));
3749 
3750 	if (args->timeout_ns > 0) {
3751 		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3752 		if (args->timeout_ns < 0)
3753 			args->timeout_ns = 0;
3754 
3755 		/*
3756 		 * Apparently ktime isn't accurate enough and occasionally has a
3757 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3758 		 * things up to make the test happy. We allow up to 1 jiffy.
3759 		 *
3760 		 * This is a regression from the timespec->ktime conversion.
3761 		 */
3762 		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3763 			args->timeout_ns = 0;
3764 
3765 		/* Asked to wait beyond the jiffie/scheduler precision? */
3766 		if (ret == -ETIME && args->timeout_ns)
3767 			ret = -EAGAIN;
3768 	}
3769 
3770 	i915_gem_object_put(obj);
3771 	return ret;
3772 }
3773 
3774 static long wait_for_timeline(struct i915_timeline *tl,
3775 			      unsigned int flags, long timeout)
3776 {
3777 	struct i915_request *rq;
3778 
3779 	rq = i915_gem_active_get_unlocked(&tl->last_request);
3780 	if (!rq)
3781 		return timeout;
3782 
3783 	/*
3784 	 * "Race-to-idle".
3785 	 *
3786 	 * Switching to the kernel context is often used a synchronous
3787 	 * step prior to idling, e.g. in suspend for flushing all
3788 	 * current operations to memory before sleeping. These we
3789 	 * want to complete as quickly as possible to avoid prolonged
3790 	 * stalls, so allow the gpu to boost to maximum clocks.
3791 	 */
3792 	if (flags & I915_WAIT_FOR_IDLE_BOOST)
3793 		gen6_rps_boost(rq, NULL);
3794 
3795 	timeout = i915_request_wait(rq, flags, timeout);
3796 	i915_request_put(rq);
3797 
3798 	return timeout;
3799 }
3800 
3801 static int wait_for_engines(struct drm_i915_private *i915)
3802 {
3803 	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3804 		dev_err(i915->drm.dev,
3805 			"Failed to idle engines, declaring wedged!\n");
3806 		GEM_TRACE_DUMP();
3807 		i915_gem_set_wedged(i915);
3808 		return -EIO;
3809 	}
3810 
3811 	return 0;
3812 }
3813 
3814 int i915_gem_wait_for_idle(struct drm_i915_private *i915,
3815 			   unsigned int flags, long timeout)
3816 {
3817 	GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
3818 		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
3819 		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3820 
3821 	/* If the device is asleep, we have no requests outstanding */
3822 	if (!READ_ONCE(i915->gt.awake))
3823 		return 0;
3824 
3825 	if (flags & I915_WAIT_LOCKED) {
3826 		struct i915_timeline *tl;
3827 		int err;
3828 
3829 		lockdep_assert_held(&i915->drm.struct_mutex);
3830 
3831 		list_for_each_entry(tl, &i915->gt.timelines, link) {
3832 			timeout = wait_for_timeline(tl, flags, timeout);
3833 			if (timeout < 0)
3834 				return timeout;
3835 		}
3836 		if (GEM_SHOW_DEBUG() && !timeout) {
3837 			/* Presume that timeout was non-zero to begin with! */
3838 			dev_warn(&i915->drm.pdev->dev,
3839 				 "Missed idle-completion interrupt!\n");
3840 			GEM_TRACE_DUMP();
3841 		}
3842 
3843 		err = wait_for_engines(i915);
3844 		if (err)
3845 			return err;
3846 
3847 		i915_retire_requests(i915);
3848 		GEM_BUG_ON(i915->gt.active_requests);
3849 	} else {
3850 		struct intel_engine_cs *engine;
3851 		enum intel_engine_id id;
3852 
3853 		for_each_engine(engine, i915, id) {
3854 			struct i915_timeline *tl = &engine->timeline;
3855 
3856 			timeout = wait_for_timeline(tl, flags, timeout);
3857 			if (timeout < 0)
3858 				return timeout;
3859 		}
3860 	}
3861 
3862 	return 0;
3863 }
3864 
3865 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3866 {
3867 	/*
3868 	 * We manually flush the CPU domain so that we can override and
3869 	 * force the flush for the display, and perform it asyncrhonously.
3870 	 */
3871 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3872 	if (obj->cache_dirty)
3873 		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3874 	obj->write_domain = 0;
3875 }
3876 
3877 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3878 {
3879 	if (!READ_ONCE(obj->pin_global))
3880 		return;
3881 
3882 	mutex_lock(&obj->base.dev->struct_mutex);
3883 	__i915_gem_object_flush_for_display(obj);
3884 	mutex_unlock(&obj->base.dev->struct_mutex);
3885 }
3886 
3887 /**
3888  * Moves a single object to the WC read, and possibly write domain.
3889  * @obj: object to act on
3890  * @write: ask for write access or read only
3891  *
3892  * This function returns when the move is complete, including waiting on
3893  * flushes to occur.
3894  */
3895 int
3896 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3897 {
3898 	int ret;
3899 
3900 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3901 
3902 	ret = i915_gem_object_wait(obj,
3903 				   I915_WAIT_INTERRUPTIBLE |
3904 				   I915_WAIT_LOCKED |
3905 				   (write ? I915_WAIT_ALL : 0),
3906 				   MAX_SCHEDULE_TIMEOUT,
3907 				   NULL);
3908 	if (ret)
3909 		return ret;
3910 
3911 	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3912 		return 0;
3913 
3914 	/* Flush and acquire obj->pages so that we are coherent through
3915 	 * direct access in memory with previous cached writes through
3916 	 * shmemfs and that our cache domain tracking remains valid.
3917 	 * For example, if the obj->filp was moved to swap without us
3918 	 * being notified and releasing the pages, we would mistakenly
3919 	 * continue to assume that the obj remained out of the CPU cached
3920 	 * domain.
3921 	 */
3922 	ret = i915_gem_object_pin_pages(obj);
3923 	if (ret)
3924 		return ret;
3925 
3926 	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3927 
3928 	/* Serialise direct access to this object with the barriers for
3929 	 * coherent writes from the GPU, by effectively invalidating the
3930 	 * WC domain upon first access.
3931 	 */
3932 	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3933 		mb();
3934 
3935 	/* It should now be out of any other write domains, and we can update
3936 	 * the domain values for our changes.
3937 	 */
3938 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3939 	obj->read_domains |= I915_GEM_DOMAIN_WC;
3940 	if (write) {
3941 		obj->read_domains = I915_GEM_DOMAIN_WC;
3942 		obj->write_domain = I915_GEM_DOMAIN_WC;
3943 		obj->mm.dirty = true;
3944 	}
3945 
3946 	i915_gem_object_unpin_pages(obj);
3947 	return 0;
3948 }
3949 
3950 /**
3951  * Moves a single object to the GTT read, and possibly write domain.
3952  * @obj: object to act on
3953  * @write: ask for write access or read only
3954  *
3955  * This function returns when the move is complete, including waiting on
3956  * flushes to occur.
3957  */
3958 int
3959 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3960 {
3961 	int ret;
3962 
3963 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3964 
3965 	ret = i915_gem_object_wait(obj,
3966 				   I915_WAIT_INTERRUPTIBLE |
3967 				   I915_WAIT_LOCKED |
3968 				   (write ? I915_WAIT_ALL : 0),
3969 				   MAX_SCHEDULE_TIMEOUT,
3970 				   NULL);
3971 	if (ret)
3972 		return ret;
3973 
3974 	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3975 		return 0;
3976 
3977 	/* Flush and acquire obj->pages so that we are coherent through
3978 	 * direct access in memory with previous cached writes through
3979 	 * shmemfs and that our cache domain tracking remains valid.
3980 	 * For example, if the obj->filp was moved to swap without us
3981 	 * being notified and releasing the pages, we would mistakenly
3982 	 * continue to assume that the obj remained out of the CPU cached
3983 	 * domain.
3984 	 */
3985 	ret = i915_gem_object_pin_pages(obj);
3986 	if (ret)
3987 		return ret;
3988 
3989 	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3990 
3991 	/* Serialise direct access to this object with the barriers for
3992 	 * coherent writes from the GPU, by effectively invalidating the
3993 	 * GTT domain upon first access.
3994 	 */
3995 	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3996 		mb();
3997 
3998 	/* It should now be out of any other write domains, and we can update
3999 	 * the domain values for our changes.
4000 	 */
4001 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4002 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4003 	if (write) {
4004 		obj->read_domains = I915_GEM_DOMAIN_GTT;
4005 		obj->write_domain = I915_GEM_DOMAIN_GTT;
4006 		obj->mm.dirty = true;
4007 	}
4008 
4009 	i915_gem_object_unpin_pages(obj);
4010 	return 0;
4011 }
4012 
4013 /**
4014  * Changes the cache-level of an object across all VMA.
4015  * @obj: object to act on
4016  * @cache_level: new cache level to set for the object
4017  *
4018  * After this function returns, the object will be in the new cache-level
4019  * across all GTT and the contents of the backing storage will be coherent,
4020  * with respect to the new cache-level. In order to keep the backing storage
4021  * coherent for all users, we only allow a single cache level to be set
4022  * globally on the object and prevent it from being changed whilst the
4023  * hardware is reading from the object. That is if the object is currently
4024  * on the scanout it will be set to uncached (or equivalent display
4025  * cache coherency) and all non-MOCS GPU access will also be uncached so
4026  * that all direct access to the scanout remains coherent.
4027  */
4028 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4029 				    enum i915_cache_level cache_level)
4030 {
4031 	struct i915_vma *vma;
4032 	int ret;
4033 
4034 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4035 
4036 	if (obj->cache_level == cache_level)
4037 		return 0;
4038 
4039 	/* Inspect the list of currently bound VMA and unbind any that would
4040 	 * be invalid given the new cache-level. This is principally to
4041 	 * catch the issue of the CS prefetch crossing page boundaries and
4042 	 * reading an invalid PTE on older architectures.
4043 	 */
4044 restart:
4045 	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4046 		if (!drm_mm_node_allocated(&vma->node))
4047 			continue;
4048 
4049 		if (i915_vma_is_pinned(vma)) {
4050 			DRM_DEBUG("can not change the cache level of pinned objects\n");
4051 			return -EBUSY;
4052 		}
4053 
4054 		if (!i915_vma_is_closed(vma) &&
4055 		    i915_gem_valid_gtt_space(vma, cache_level))
4056 			continue;
4057 
4058 		ret = i915_vma_unbind(vma);
4059 		if (ret)
4060 			return ret;
4061 
4062 		/* As unbinding may affect other elements in the
4063 		 * obj->vma_list (due to side-effects from retiring
4064 		 * an active vma), play safe and restart the iterator.
4065 		 */
4066 		goto restart;
4067 	}
4068 
4069 	/* We can reuse the existing drm_mm nodes but need to change the
4070 	 * cache-level on the PTE. We could simply unbind them all and
4071 	 * rebind with the correct cache-level on next use. However since
4072 	 * we already have a valid slot, dma mapping, pages etc, we may as
4073 	 * rewrite the PTE in the belief that doing so tramples upon less
4074 	 * state and so involves less work.
4075 	 */
4076 	if (obj->bind_count) {
4077 		/* Before we change the PTE, the GPU must not be accessing it.
4078 		 * If we wait upon the object, we know that all the bound
4079 		 * VMA are no longer active.
4080 		 */
4081 		ret = i915_gem_object_wait(obj,
4082 					   I915_WAIT_INTERRUPTIBLE |
4083 					   I915_WAIT_LOCKED |
4084 					   I915_WAIT_ALL,
4085 					   MAX_SCHEDULE_TIMEOUT,
4086 					   NULL);
4087 		if (ret)
4088 			return ret;
4089 
4090 		if (!HAS_LLC(to_i915(obj->base.dev)) &&
4091 		    cache_level != I915_CACHE_NONE) {
4092 			/* Access to snoopable pages through the GTT is
4093 			 * incoherent and on some machines causes a hard
4094 			 * lockup. Relinquish the CPU mmaping to force
4095 			 * userspace to refault in the pages and we can
4096 			 * then double check if the GTT mapping is still
4097 			 * valid for that pointer access.
4098 			 */
4099 			i915_gem_release_mmap(obj);
4100 
4101 			/* As we no longer need a fence for GTT access,
4102 			 * we can relinquish it now (and so prevent having
4103 			 * to steal a fence from someone else on the next
4104 			 * fence request). Note GPU activity would have
4105 			 * dropped the fence as all snoopable access is
4106 			 * supposed to be linear.
4107 			 */
4108 			for_each_ggtt_vma(vma, obj) {
4109 				ret = i915_vma_put_fence(vma);
4110 				if (ret)
4111 					return ret;
4112 			}
4113 		} else {
4114 			/* We either have incoherent backing store and
4115 			 * so no GTT access or the architecture is fully
4116 			 * coherent. In such cases, existing GTT mmaps
4117 			 * ignore the cache bit in the PTE and we can
4118 			 * rewrite it without confusing the GPU or having
4119 			 * to force userspace to fault back in its mmaps.
4120 			 */
4121 		}
4122 
4123 		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4124 			if (!drm_mm_node_allocated(&vma->node))
4125 				continue;
4126 
4127 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4128 			if (ret)
4129 				return ret;
4130 		}
4131 	}
4132 
4133 	list_for_each_entry(vma, &obj->vma_list, obj_link)
4134 		vma->node.color = cache_level;
4135 	i915_gem_object_set_cache_coherency(obj, cache_level);
4136 	obj->cache_dirty = true; /* Always invalidate stale cachelines */
4137 
4138 	return 0;
4139 }
4140 
4141 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4142 			       struct drm_file *file)
4143 {
4144 	struct drm_i915_gem_caching *args = data;
4145 	struct drm_i915_gem_object *obj;
4146 	int err = 0;
4147 
4148 	rcu_read_lock();
4149 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4150 	if (!obj) {
4151 		err = -ENOENT;
4152 		goto out;
4153 	}
4154 
4155 	switch (obj->cache_level) {
4156 	case I915_CACHE_LLC:
4157 	case I915_CACHE_L3_LLC:
4158 		args->caching = I915_CACHING_CACHED;
4159 		break;
4160 
4161 	case I915_CACHE_WT:
4162 		args->caching = I915_CACHING_DISPLAY;
4163 		break;
4164 
4165 	default:
4166 		args->caching = I915_CACHING_NONE;
4167 		break;
4168 	}
4169 out:
4170 	rcu_read_unlock();
4171 	return err;
4172 }
4173 
4174 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4175 			       struct drm_file *file)
4176 {
4177 	struct drm_i915_private *i915 = to_i915(dev);
4178 	struct drm_i915_gem_caching *args = data;
4179 	struct drm_i915_gem_object *obj;
4180 	enum i915_cache_level level;
4181 	int ret = 0;
4182 
4183 	switch (args->caching) {
4184 	case I915_CACHING_NONE:
4185 		level = I915_CACHE_NONE;
4186 		break;
4187 	case I915_CACHING_CACHED:
4188 		/*
4189 		 * Due to a HW issue on BXT A stepping, GPU stores via a
4190 		 * snooped mapping may leave stale data in a corresponding CPU
4191 		 * cacheline, whereas normally such cachelines would get
4192 		 * invalidated.
4193 		 */
4194 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4195 			return -ENODEV;
4196 
4197 		level = I915_CACHE_LLC;
4198 		break;
4199 	case I915_CACHING_DISPLAY:
4200 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4201 		break;
4202 	default:
4203 		return -EINVAL;
4204 	}
4205 
4206 	obj = i915_gem_object_lookup(file, args->handle);
4207 	if (!obj)
4208 		return -ENOENT;
4209 
4210 	/*
4211 	 * The caching mode of proxy object is handled by its generator, and
4212 	 * not allowed to be changed by userspace.
4213 	 */
4214 	if (i915_gem_object_is_proxy(obj)) {
4215 		ret = -ENXIO;
4216 		goto out;
4217 	}
4218 
4219 	if (obj->cache_level == level)
4220 		goto out;
4221 
4222 	ret = i915_gem_object_wait(obj,
4223 				   I915_WAIT_INTERRUPTIBLE,
4224 				   MAX_SCHEDULE_TIMEOUT,
4225 				   to_rps_client(file));
4226 	if (ret)
4227 		goto out;
4228 
4229 	ret = i915_mutex_lock_interruptible(dev);
4230 	if (ret)
4231 		goto out;
4232 
4233 	ret = i915_gem_object_set_cache_level(obj, level);
4234 	mutex_unlock(&dev->struct_mutex);
4235 
4236 out:
4237 	i915_gem_object_put(obj);
4238 	return ret;
4239 }
4240 
4241 /*
4242  * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
4243  * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
4244  * (for pageflips). We only flush the caches while preparing the buffer for
4245  * display, the callers are responsible for frontbuffer flush.
4246  */
4247 struct i915_vma *
4248 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4249 				     u32 alignment,
4250 				     const struct i915_ggtt_view *view,
4251 				     unsigned int flags)
4252 {
4253 	struct i915_vma *vma;
4254 	int ret;
4255 
4256 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4257 
4258 	/* Mark the global pin early so that we account for the
4259 	 * display coherency whilst setting up the cache domains.
4260 	 */
4261 	obj->pin_global++;
4262 
4263 	/* The display engine is not coherent with the LLC cache on gen6.  As
4264 	 * a result, we make sure that the pinning that is about to occur is
4265 	 * done with uncached PTEs. This is lowest common denominator for all
4266 	 * chipsets.
4267 	 *
4268 	 * However for gen6+, we could do better by using the GFDT bit instead
4269 	 * of uncaching, which would allow us to flush all the LLC-cached data
4270 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4271 	 */
4272 	ret = i915_gem_object_set_cache_level(obj,
4273 					      HAS_WT(to_i915(obj->base.dev)) ?
4274 					      I915_CACHE_WT : I915_CACHE_NONE);
4275 	if (ret) {
4276 		vma = ERR_PTR(ret);
4277 		goto err_unpin_global;
4278 	}
4279 
4280 	/* As the user may map the buffer once pinned in the display plane
4281 	 * (e.g. libkms for the bootup splash), we have to ensure that we
4282 	 * always use map_and_fenceable for all scanout buffers. However,
4283 	 * it may simply be too big to fit into mappable, in which case
4284 	 * put it anyway and hope that userspace can cope (but always first
4285 	 * try to preserve the existing ABI).
4286 	 */
4287 	vma = ERR_PTR(-ENOSPC);
4288 	if ((flags & PIN_MAPPABLE) == 0 &&
4289 	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4290 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4291 					       flags |
4292 					       PIN_MAPPABLE |
4293 					       PIN_NONBLOCK);
4294 	if (IS_ERR(vma))
4295 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4296 	if (IS_ERR(vma))
4297 		goto err_unpin_global;
4298 
4299 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4300 
4301 	__i915_gem_object_flush_for_display(obj);
4302 
4303 	/* It should now be out of any other write domains, and we can update
4304 	 * the domain values for our changes.
4305 	 */
4306 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4307 
4308 	return vma;
4309 
4310 err_unpin_global:
4311 	obj->pin_global--;
4312 	return vma;
4313 }
4314 
4315 void
4316 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4317 {
4318 	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4319 
4320 	if (WARN_ON(vma->obj->pin_global == 0))
4321 		return;
4322 
4323 	if (--vma->obj->pin_global == 0)
4324 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4325 
4326 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4327 	i915_gem_object_bump_inactive_ggtt(vma->obj);
4328 
4329 	i915_vma_unpin(vma);
4330 }
4331 
4332 /**
4333  * Moves a single object to the CPU read, and possibly write domain.
4334  * @obj: object to act on
4335  * @write: requesting write or read-only access
4336  *
4337  * This function returns when the move is complete, including waiting on
4338  * flushes to occur.
4339  */
4340 int
4341 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4342 {
4343 	int ret;
4344 
4345 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4346 
4347 	ret = i915_gem_object_wait(obj,
4348 				   I915_WAIT_INTERRUPTIBLE |
4349 				   I915_WAIT_LOCKED |
4350 				   (write ? I915_WAIT_ALL : 0),
4351 				   MAX_SCHEDULE_TIMEOUT,
4352 				   NULL);
4353 	if (ret)
4354 		return ret;
4355 
4356 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4357 
4358 	/* Flush the CPU cache if it's still invalid. */
4359 	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4360 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4361 		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4362 	}
4363 
4364 	/* It should now be out of any other write domains, and we can update
4365 	 * the domain values for our changes.
4366 	 */
4367 	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4368 
4369 	/* If we're writing through the CPU, then the GPU read domains will
4370 	 * need to be invalidated at next use.
4371 	 */
4372 	if (write)
4373 		__start_cpu_write(obj);
4374 
4375 	return 0;
4376 }
4377 
4378 /* Throttle our rendering by waiting until the ring has completed our requests
4379  * emitted over 20 msec ago.
4380  *
4381  * Note that if we were to use the current jiffies each time around the loop,
4382  * we wouldn't escape the function with any frames outstanding if the time to
4383  * render a frame was over 20ms.
4384  *
4385  * This should get us reasonable parallelism between CPU and GPU but also
4386  * relatively low latency when blocking on a particular request to finish.
4387  */
4388 static int
4389 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4390 {
4391 	struct drm_i915_private *dev_priv = to_i915(dev);
4392 	struct drm_i915_file_private *file_priv = file->driver_priv;
4393 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4394 	struct i915_request *request, *target = NULL;
4395 	long ret;
4396 
4397 	/* ABI: return -EIO if already wedged */
4398 	if (i915_terminally_wedged(&dev_priv->gpu_error))
4399 		return -EIO;
4400 
4401 	spin_lock(&file_priv->mm.lock);
4402 	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4403 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4404 			break;
4405 
4406 		if (target) {
4407 			list_del(&target->client_link);
4408 			target->file_priv = NULL;
4409 		}
4410 
4411 		target = request;
4412 	}
4413 	if (target)
4414 		i915_request_get(target);
4415 	spin_unlock(&file_priv->mm.lock);
4416 
4417 	if (target == NULL)
4418 		return 0;
4419 
4420 	ret = i915_request_wait(target,
4421 				I915_WAIT_INTERRUPTIBLE,
4422 				MAX_SCHEDULE_TIMEOUT);
4423 	i915_request_put(target);
4424 
4425 	return ret < 0 ? ret : 0;
4426 }
4427 
4428 struct i915_vma *
4429 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4430 			 const struct i915_ggtt_view *view,
4431 			 u64 size,
4432 			 u64 alignment,
4433 			 u64 flags)
4434 {
4435 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4436 	struct i915_address_space *vm = &dev_priv->ggtt.vm;
4437 	struct i915_vma *vma;
4438 	int ret;
4439 
4440 	lockdep_assert_held(&obj->base.dev->struct_mutex);
4441 
4442 	if (flags & PIN_MAPPABLE &&
4443 	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4444 		/* If the required space is larger than the available
4445 		 * aperture, we will not able to find a slot for the
4446 		 * object and unbinding the object now will be in
4447 		 * vain. Worse, doing so may cause us to ping-pong
4448 		 * the object in and out of the Global GTT and
4449 		 * waste a lot of cycles under the mutex.
4450 		 */
4451 		if (obj->base.size > dev_priv->ggtt.mappable_end)
4452 			return ERR_PTR(-E2BIG);
4453 
4454 		/* If NONBLOCK is set the caller is optimistically
4455 		 * trying to cache the full object within the mappable
4456 		 * aperture, and *must* have a fallback in place for
4457 		 * situations where we cannot bind the object. We
4458 		 * can be a little more lax here and use the fallback
4459 		 * more often to avoid costly migrations of ourselves
4460 		 * and other objects within the aperture.
4461 		 *
4462 		 * Half-the-aperture is used as a simple heuristic.
4463 		 * More interesting would to do search for a free
4464 		 * block prior to making the commitment to unbind.
4465 		 * That caters for the self-harm case, and with a
4466 		 * little more heuristics (e.g. NOFAULT, NOEVICT)
4467 		 * we could try to minimise harm to others.
4468 		 */
4469 		if (flags & PIN_NONBLOCK &&
4470 		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
4471 			return ERR_PTR(-ENOSPC);
4472 	}
4473 
4474 	vma = i915_vma_instance(obj, vm, view);
4475 	if (unlikely(IS_ERR(vma)))
4476 		return vma;
4477 
4478 	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4479 		if (flags & PIN_NONBLOCK) {
4480 			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4481 				return ERR_PTR(-ENOSPC);
4482 
4483 			if (flags & PIN_MAPPABLE &&
4484 			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4485 				return ERR_PTR(-ENOSPC);
4486 		}
4487 
4488 		WARN(i915_vma_is_pinned(vma),
4489 		     "bo is already pinned in ggtt with incorrect alignment:"
4490 		     " offset=%08x, req.alignment=%llx,"
4491 		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4492 		     i915_ggtt_offset(vma), alignment,
4493 		     !!(flags & PIN_MAPPABLE),
4494 		     i915_vma_is_map_and_fenceable(vma));
4495 		ret = i915_vma_unbind(vma);
4496 		if (ret)
4497 			return ERR_PTR(ret);
4498 	}
4499 
4500 	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4501 	if (ret)
4502 		return ERR_PTR(ret);
4503 
4504 	return vma;
4505 }
4506 
4507 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4508 {
4509 	/* Note that we could alias engines in the execbuf API, but
4510 	 * that would be very unwise as it prevents userspace from
4511 	 * fine control over engine selection. Ahem.
4512 	 *
4513 	 * This should be something like EXEC_MAX_ENGINE instead of
4514 	 * I915_NUM_ENGINES.
4515 	 */
4516 	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4517 	return 0x10000 << id;
4518 }
4519 
4520 static __always_inline unsigned int __busy_write_id(unsigned int id)
4521 {
4522 	/* The uABI guarantees an active writer is also amongst the read
4523 	 * engines. This would be true if we accessed the activity tracking
4524 	 * under the lock, but as we perform the lookup of the object and
4525 	 * its activity locklessly we can not guarantee that the last_write
4526 	 * being active implies that we have set the same engine flag from
4527 	 * last_read - hence we always set both read and write busy for
4528 	 * last_write.
4529 	 */
4530 	return id | __busy_read_flag(id);
4531 }
4532 
4533 static __always_inline unsigned int
4534 __busy_set_if_active(const struct dma_fence *fence,
4535 		     unsigned int (*flag)(unsigned int id))
4536 {
4537 	struct i915_request *rq;
4538 
4539 	/* We have to check the current hw status of the fence as the uABI
4540 	 * guarantees forward progress. We could rely on the idle worker
4541 	 * to eventually flush us, but to minimise latency just ask the
4542 	 * hardware.
4543 	 *
4544 	 * Note we only report on the status of native fences.
4545 	 */
4546 	if (!dma_fence_is_i915(fence))
4547 		return 0;
4548 
4549 	/* opencode to_request() in order to avoid const warnings */
4550 	rq = container_of(fence, struct i915_request, fence);
4551 	if (i915_request_completed(rq))
4552 		return 0;
4553 
4554 	return flag(rq->engine->uabi_id);
4555 }
4556 
4557 static __always_inline unsigned int
4558 busy_check_reader(const struct dma_fence *fence)
4559 {
4560 	return __busy_set_if_active(fence, __busy_read_flag);
4561 }
4562 
4563 static __always_inline unsigned int
4564 busy_check_writer(const struct dma_fence *fence)
4565 {
4566 	if (!fence)
4567 		return 0;
4568 
4569 	return __busy_set_if_active(fence, __busy_write_id);
4570 }
4571 
4572 int
4573 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4574 		    struct drm_file *file)
4575 {
4576 	struct drm_i915_gem_busy *args = data;
4577 	struct drm_i915_gem_object *obj;
4578 	struct reservation_object_list *list;
4579 	unsigned int seq;
4580 	int err;
4581 
4582 	err = -ENOENT;
4583 	rcu_read_lock();
4584 	obj = i915_gem_object_lookup_rcu(file, args->handle);
4585 	if (!obj)
4586 		goto out;
4587 
4588 	/* A discrepancy here is that we do not report the status of
4589 	 * non-i915 fences, i.e. even though we may report the object as idle,
4590 	 * a call to set-domain may still stall waiting for foreign rendering.
4591 	 * This also means that wait-ioctl may report an object as busy,
4592 	 * where busy-ioctl considers it idle.
4593 	 *
4594 	 * We trade the ability to warn of foreign fences to report on which
4595 	 * i915 engines are active for the object.
4596 	 *
4597 	 * Alternatively, we can trade that extra information on read/write
4598 	 * activity with
4599 	 *	args->busy =
4600 	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
4601 	 * to report the overall busyness. This is what the wait-ioctl does.
4602 	 *
4603 	 */
4604 retry:
4605 	seq = raw_read_seqcount(&obj->resv->seq);
4606 
4607 	/* Translate the exclusive fence to the READ *and* WRITE engine */
4608 	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4609 
4610 	/* Translate shared fences to READ set of engines */
4611 	list = rcu_dereference(obj->resv->fence);
4612 	if (list) {
4613 		unsigned int shared_count = list->shared_count, i;
4614 
4615 		for (i = 0; i < shared_count; ++i) {
4616 			struct dma_fence *fence =
4617 				rcu_dereference(list->shared[i]);
4618 
4619 			args->busy |= busy_check_reader(fence);
4620 		}
4621 	}
4622 
4623 	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4624 		goto retry;
4625 
4626 	err = 0;
4627 out:
4628 	rcu_read_unlock();
4629 	return err;
4630 }
4631 
4632 int
4633 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4634 			struct drm_file *file_priv)
4635 {
4636 	return i915_gem_ring_throttle(dev, file_priv);
4637 }
4638 
4639 int
4640 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4641 		       struct drm_file *file_priv)
4642 {
4643 	struct drm_i915_private *dev_priv = to_i915(dev);
4644 	struct drm_i915_gem_madvise *args = data;
4645 	struct drm_i915_gem_object *obj;
4646 	int err;
4647 
4648 	switch (args->madv) {
4649 	case I915_MADV_DONTNEED:
4650 	case I915_MADV_WILLNEED:
4651 	    break;
4652 	default:
4653 	    return -EINVAL;
4654 	}
4655 
4656 	obj = i915_gem_object_lookup(file_priv, args->handle);
4657 	if (!obj)
4658 		return -ENOENT;
4659 
4660 	err = mutex_lock_interruptible(&obj->mm.lock);
4661 	if (err)
4662 		goto out;
4663 
4664 	if (i915_gem_object_has_pages(obj) &&
4665 	    i915_gem_object_is_tiled(obj) &&
4666 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4667 		if (obj->mm.madv == I915_MADV_WILLNEED) {
4668 			GEM_BUG_ON(!obj->mm.quirked);
4669 			__i915_gem_object_unpin_pages(obj);
4670 			obj->mm.quirked = false;
4671 		}
4672 		if (args->madv == I915_MADV_WILLNEED) {
4673 			GEM_BUG_ON(obj->mm.quirked);
4674 			__i915_gem_object_pin_pages(obj);
4675 			obj->mm.quirked = true;
4676 		}
4677 	}
4678 
4679 	if (obj->mm.madv != __I915_MADV_PURGED)
4680 		obj->mm.madv = args->madv;
4681 
4682 	/* if the object is no longer attached, discard its backing storage */
4683 	if (obj->mm.madv == I915_MADV_DONTNEED &&
4684 	    !i915_gem_object_has_pages(obj))
4685 		i915_gem_object_truncate(obj);
4686 
4687 	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4688 	mutex_unlock(&obj->mm.lock);
4689 
4690 out:
4691 	i915_gem_object_put(obj);
4692 	return err;
4693 }
4694 
4695 static void
4696 frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4697 {
4698 	struct drm_i915_gem_object *obj =
4699 		container_of(active, typeof(*obj), frontbuffer_write);
4700 
4701 	intel_fb_obj_flush(obj, ORIGIN_CS);
4702 }
4703 
4704 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4705 			  const struct drm_i915_gem_object_ops *ops)
4706 {
4707 	mutex_init(&obj->mm.lock);
4708 
4709 	INIT_LIST_HEAD(&obj->vma_list);
4710 	INIT_LIST_HEAD(&obj->lut_list);
4711 	INIT_LIST_HEAD(&obj->batch_pool_link);
4712 
4713 	obj->ops = ops;
4714 
4715 	reservation_object_init(&obj->__builtin_resv);
4716 	obj->resv = &obj->__builtin_resv;
4717 
4718 	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4719 	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4720 
4721 	obj->mm.madv = I915_MADV_WILLNEED;
4722 	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4723 	mutex_init(&obj->mm.get_page.lock);
4724 
4725 	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4726 }
4727 
4728 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4729 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4730 		 I915_GEM_OBJECT_IS_SHRINKABLE,
4731 
4732 	.get_pages = i915_gem_object_get_pages_gtt,
4733 	.put_pages = i915_gem_object_put_pages_gtt,
4734 
4735 	.pwrite = i915_gem_object_pwrite_gtt,
4736 };
4737 
4738 static int i915_gem_object_create_shmem(struct drm_device *dev,
4739 					struct drm_gem_object *obj,
4740 					size_t size)
4741 {
4742 	struct drm_i915_private *i915 = to_i915(dev);
4743 	unsigned long flags = VM_NORESERVE;
4744 	struct file *filp;
4745 
4746 	drm_gem_private_object_init(dev, obj, size);
4747 
4748 	if (i915->mm.gemfs)
4749 		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4750 						 flags);
4751 	else
4752 		filp = shmem_file_setup("i915", size, flags);
4753 
4754 	if (IS_ERR(filp))
4755 		return PTR_ERR(filp);
4756 
4757 	obj->filp = filp;
4758 
4759 	return 0;
4760 }
4761 
4762 struct drm_i915_gem_object *
4763 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4764 {
4765 	struct drm_i915_gem_object *obj;
4766 	struct address_space *mapping;
4767 	unsigned int cache_level;
4768 	gfp_t mask;
4769 	int ret;
4770 
4771 	/* There is a prevalence of the assumption that we fit the object's
4772 	 * page count inside a 32bit _signed_ variable. Let's document this and
4773 	 * catch if we ever need to fix it. In the meantime, if you do spot
4774 	 * such a local variable, please consider fixing!
4775 	 */
4776 	if (size >> PAGE_SHIFT > INT_MAX)
4777 		return ERR_PTR(-E2BIG);
4778 
4779 	if (overflows_type(size, obj->base.size))
4780 		return ERR_PTR(-E2BIG);
4781 
4782 	obj = i915_gem_object_alloc(dev_priv);
4783 	if (obj == NULL)
4784 		return ERR_PTR(-ENOMEM);
4785 
4786 	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4787 	if (ret)
4788 		goto fail;
4789 
4790 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4791 	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4792 		/* 965gm cannot relocate objects above 4GiB. */
4793 		mask &= ~__GFP_HIGHMEM;
4794 		mask |= __GFP_DMA32;
4795 	}
4796 
4797 	mapping = obj->base.filp->f_mapping;
4798 	mapping_set_gfp_mask(mapping, mask);
4799 	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4800 
4801 	i915_gem_object_init(obj, &i915_gem_object_ops);
4802 
4803 	obj->write_domain = I915_GEM_DOMAIN_CPU;
4804 	obj->read_domains = I915_GEM_DOMAIN_CPU;
4805 
4806 	if (HAS_LLC(dev_priv))
4807 		/* On some devices, we can have the GPU use the LLC (the CPU
4808 		 * cache) for about a 10% performance improvement
4809 		 * compared to uncached.  Graphics requests other than
4810 		 * display scanout are coherent with the CPU in
4811 		 * accessing this cache.  This means in this mode we
4812 		 * don't need to clflush on the CPU side, and on the
4813 		 * GPU side we only need to flush internal caches to
4814 		 * get data visible to the CPU.
4815 		 *
4816 		 * However, we maintain the display planes as UC, and so
4817 		 * need to rebind when first used as such.
4818 		 */
4819 		cache_level = I915_CACHE_LLC;
4820 	else
4821 		cache_level = I915_CACHE_NONE;
4822 
4823 	i915_gem_object_set_cache_coherency(obj, cache_level);
4824 
4825 	trace_i915_gem_object_create(obj);
4826 
4827 	return obj;
4828 
4829 fail:
4830 	i915_gem_object_free(obj);
4831 	return ERR_PTR(ret);
4832 }
4833 
4834 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4835 {
4836 	/* If we are the last user of the backing storage (be it shmemfs
4837 	 * pages or stolen etc), we know that the pages are going to be
4838 	 * immediately released. In this case, we can then skip copying
4839 	 * back the contents from the GPU.
4840 	 */
4841 
4842 	if (obj->mm.madv != I915_MADV_WILLNEED)
4843 		return false;
4844 
4845 	if (obj->base.filp == NULL)
4846 		return true;
4847 
4848 	/* At first glance, this looks racy, but then again so would be
4849 	 * userspace racing mmap against close. However, the first external
4850 	 * reference to the filp can only be obtained through the
4851 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4852 	 * acquiring such a reference whilst we are in the middle of
4853 	 * freeing the object.
4854 	 */
4855 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4856 }
4857 
4858 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4859 				    struct llist_node *freed)
4860 {
4861 	struct drm_i915_gem_object *obj, *on;
4862 
4863 	intel_runtime_pm_get(i915);
4864 	llist_for_each_entry_safe(obj, on, freed, freed) {
4865 		struct i915_vma *vma, *vn;
4866 
4867 		trace_i915_gem_object_destroy(obj);
4868 
4869 		mutex_lock(&i915->drm.struct_mutex);
4870 
4871 		GEM_BUG_ON(i915_gem_object_is_active(obj));
4872 		list_for_each_entry_safe(vma, vn,
4873 					 &obj->vma_list, obj_link) {
4874 			GEM_BUG_ON(i915_vma_is_active(vma));
4875 			vma->flags &= ~I915_VMA_PIN_MASK;
4876 			i915_vma_destroy(vma);
4877 		}
4878 		GEM_BUG_ON(!list_empty(&obj->vma_list));
4879 		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4880 
4881 		/* This serializes freeing with the shrinker. Since the free
4882 		 * is delayed, first by RCU then by the workqueue, we want the
4883 		 * shrinker to be able to free pages of unreferenced objects,
4884 		 * or else we may oom whilst there are plenty of deferred
4885 		 * freed objects.
4886 		 */
4887 		if (i915_gem_object_has_pages(obj)) {
4888 			spin_lock(&i915->mm.obj_lock);
4889 			list_del_init(&obj->mm.link);
4890 			spin_unlock(&i915->mm.obj_lock);
4891 		}
4892 
4893 		mutex_unlock(&i915->drm.struct_mutex);
4894 
4895 		GEM_BUG_ON(obj->bind_count);
4896 		GEM_BUG_ON(obj->userfault_count);
4897 		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4898 		GEM_BUG_ON(!list_empty(&obj->lut_list));
4899 
4900 		if (obj->ops->release)
4901 			obj->ops->release(obj);
4902 
4903 		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4904 			atomic_set(&obj->mm.pages_pin_count, 0);
4905 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4906 		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4907 
4908 		if (obj->base.import_attach)
4909 			drm_prime_gem_destroy(&obj->base, NULL);
4910 
4911 		reservation_object_fini(&obj->__builtin_resv);
4912 		drm_gem_object_release(&obj->base);
4913 		i915_gem_info_remove_obj(i915, obj->base.size);
4914 
4915 		kfree(obj->bit_17);
4916 		i915_gem_object_free(obj);
4917 
4918 		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
4919 		atomic_dec(&i915->mm.free_count);
4920 
4921 		if (on)
4922 			cond_resched();
4923 	}
4924 	intel_runtime_pm_put(i915);
4925 }
4926 
4927 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4928 {
4929 	struct llist_node *freed;
4930 
4931 	/* Free the oldest, most stale object to keep the free_list short */
4932 	freed = NULL;
4933 	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4934 		/* Only one consumer of llist_del_first() allowed */
4935 		spin_lock(&i915->mm.free_lock);
4936 		freed = llist_del_first(&i915->mm.free_list);
4937 		spin_unlock(&i915->mm.free_lock);
4938 	}
4939 	if (unlikely(freed)) {
4940 		freed->next = NULL;
4941 		__i915_gem_free_objects(i915, freed);
4942 	}
4943 }
4944 
4945 static void __i915_gem_free_work(struct work_struct *work)
4946 {
4947 	struct drm_i915_private *i915 =
4948 		container_of(work, struct drm_i915_private, mm.free_work);
4949 	struct llist_node *freed;
4950 
4951 	/*
4952 	 * All file-owned VMA should have been released by this point through
4953 	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4954 	 * However, the object may also be bound into the global GTT (e.g.
4955 	 * older GPUs without per-process support, or for direct access through
4956 	 * the GTT either for the user or for scanout). Those VMA still need to
4957 	 * unbound now.
4958 	 */
4959 
4960 	spin_lock(&i915->mm.free_lock);
4961 	while ((freed = llist_del_all(&i915->mm.free_list))) {
4962 		spin_unlock(&i915->mm.free_lock);
4963 
4964 		__i915_gem_free_objects(i915, freed);
4965 		if (need_resched())
4966 			return;
4967 
4968 		spin_lock(&i915->mm.free_lock);
4969 	}
4970 	spin_unlock(&i915->mm.free_lock);
4971 }
4972 
4973 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4974 {
4975 	struct drm_i915_gem_object *obj =
4976 		container_of(head, typeof(*obj), rcu);
4977 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4978 
4979 	/*
4980 	 * Since we require blocking on struct_mutex to unbind the freed
4981 	 * object from the GPU before releasing resources back to the
4982 	 * system, we can not do that directly from the RCU callback (which may
4983 	 * be a softirq context), but must instead then defer that work onto a
4984 	 * kthread. We use the RCU callback rather than move the freed object
4985 	 * directly onto the work queue so that we can mix between using the
4986 	 * worker and performing frees directly from subsequent allocations for
4987 	 * crude but effective memory throttling.
4988 	 */
4989 	if (llist_add(&obj->freed, &i915->mm.free_list))
4990 		queue_work(i915->wq, &i915->mm.free_work);
4991 }
4992 
4993 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4994 {
4995 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4996 
4997 	if (obj->mm.quirked)
4998 		__i915_gem_object_unpin_pages(obj);
4999 
5000 	if (discard_backing_storage(obj))
5001 		obj->mm.madv = I915_MADV_DONTNEED;
5002 
5003 	/*
5004 	 * Before we free the object, make sure any pure RCU-only
5005 	 * read-side critical sections are complete, e.g.
5006 	 * i915_gem_busy_ioctl(). For the corresponding synchronized
5007 	 * lookup see i915_gem_object_lookup_rcu().
5008 	 */
5009 	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
5010 	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
5011 }
5012 
5013 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
5014 {
5015 	lockdep_assert_held(&obj->base.dev->struct_mutex);
5016 
5017 	if (!i915_gem_object_has_active_reference(obj) &&
5018 	    i915_gem_object_is_active(obj))
5019 		i915_gem_object_set_active_reference(obj);
5020 	else
5021 		i915_gem_object_put(obj);
5022 }
5023 
5024 void i915_gem_sanitize(struct drm_i915_private *i915)
5025 {
5026 	int err;
5027 
5028 	GEM_TRACE("\n");
5029 
5030 	mutex_lock(&i915->drm.struct_mutex);
5031 
5032 	intel_runtime_pm_get(i915);
5033 	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5034 
5035 	/*
5036 	 * As we have just resumed the machine and woken the device up from
5037 	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
5038 	 * back to defaults, recovering from whatever wedged state we left it
5039 	 * in and so worth trying to use the device once more.
5040 	 */
5041 	if (i915_terminally_wedged(&i915->gpu_error))
5042 		i915_gem_unset_wedged(i915);
5043 
5044 	/*
5045 	 * If we inherit context state from the BIOS or earlier occupants
5046 	 * of the GPU, the GPU may be in an inconsistent state when we
5047 	 * try to take over. The only way to remove the earlier state
5048 	 * is by resetting. However, resetting on earlier gen is tricky as
5049 	 * it may impact the display and we are uncertain about the stability
5050 	 * of the reset, so this could be applied to even earlier gen.
5051 	 */
5052 	err = -ENODEV;
5053 	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
5054 		err = WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
5055 	if (!err)
5056 		intel_engines_sanitize(i915);
5057 
5058 	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5059 	intel_runtime_pm_put(i915);
5060 
5061 	i915_gem_contexts_lost(i915);
5062 	mutex_unlock(&i915->drm.struct_mutex);
5063 }
5064 
5065 int i915_gem_suspend(struct drm_i915_private *i915)
5066 {
5067 	int ret;
5068 
5069 	GEM_TRACE("\n");
5070 
5071 	intel_runtime_pm_get(i915);
5072 	intel_suspend_gt_powersave(i915);
5073 
5074 	mutex_lock(&i915->drm.struct_mutex);
5075 
5076 	/*
5077 	 * We have to flush all the executing contexts to main memory so
5078 	 * that they can saved in the hibernation image. To ensure the last
5079 	 * context image is coherent, we have to switch away from it. That
5080 	 * leaves the i915->kernel_context still active when
5081 	 * we actually suspend, and its image in memory may not match the GPU
5082 	 * state. Fortunately, the kernel_context is disposable and we do
5083 	 * not rely on its state.
5084 	 */
5085 	if (!i915_terminally_wedged(&i915->gpu_error)) {
5086 		ret = i915_gem_switch_to_kernel_context(i915);
5087 		if (ret)
5088 			goto err_unlock;
5089 
5090 		ret = i915_gem_wait_for_idle(i915,
5091 					     I915_WAIT_INTERRUPTIBLE |
5092 					     I915_WAIT_LOCKED |
5093 					     I915_WAIT_FOR_IDLE_BOOST,
5094 					     MAX_SCHEDULE_TIMEOUT);
5095 		if (ret && ret != -EIO)
5096 			goto err_unlock;
5097 
5098 		assert_kernel_context_is_current(i915);
5099 	}
5100 	i915_retire_requests(i915); /* ensure we flush after wedging */
5101 
5102 	mutex_unlock(&i915->drm.struct_mutex);
5103 
5104 	intel_uc_suspend(i915);
5105 
5106 	cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
5107 	cancel_delayed_work_sync(&i915->gt.retire_work);
5108 
5109 	/*
5110 	 * As the idle_work is rearming if it detects a race, play safe and
5111 	 * repeat the flush until it is definitely idle.
5112 	 */
5113 	drain_delayed_work(&i915->gt.idle_work);
5114 
5115 	/*
5116 	 * Assert that we successfully flushed all the work and
5117 	 * reset the GPU back to its idle, low power state.
5118 	 */
5119 	WARN_ON(i915->gt.awake);
5120 	if (WARN_ON(!intel_engines_are_idle(i915)))
5121 		i915_gem_set_wedged(i915); /* no hope, discard everything */
5122 
5123 	intel_runtime_pm_put(i915);
5124 	return 0;
5125 
5126 err_unlock:
5127 	mutex_unlock(&i915->drm.struct_mutex);
5128 	intel_runtime_pm_put(i915);
5129 	return ret;
5130 }
5131 
5132 void i915_gem_suspend_late(struct drm_i915_private *i915)
5133 {
5134 	struct drm_i915_gem_object *obj;
5135 	struct list_head *phases[] = {
5136 		&i915->mm.unbound_list,
5137 		&i915->mm.bound_list,
5138 		NULL
5139 	}, **phase;
5140 
5141 	/*
5142 	 * Neither the BIOS, ourselves or any other kernel
5143 	 * expects the system to be in execlists mode on startup,
5144 	 * so we need to reset the GPU back to legacy mode. And the only
5145 	 * known way to disable logical contexts is through a GPU reset.
5146 	 *
5147 	 * So in order to leave the system in a known default configuration,
5148 	 * always reset the GPU upon unload and suspend. Afterwards we then
5149 	 * clean up the GEM state tracking, flushing off the requests and
5150 	 * leaving the system in a known idle state.
5151 	 *
5152 	 * Note that is of the upmost importance that the GPU is idle and
5153 	 * all stray writes are flushed *before* we dismantle the backing
5154 	 * storage for the pinned objects.
5155 	 *
5156 	 * However, since we are uncertain that resetting the GPU on older
5157 	 * machines is a good idea, we don't - just in case it leaves the
5158 	 * machine in an unusable condition.
5159 	 */
5160 
5161 	mutex_lock(&i915->drm.struct_mutex);
5162 	for (phase = phases; *phase; phase++) {
5163 		list_for_each_entry(obj, *phase, mm.link)
5164 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
5165 	}
5166 	mutex_unlock(&i915->drm.struct_mutex);
5167 
5168 	intel_uc_sanitize(i915);
5169 	i915_gem_sanitize(i915);
5170 }
5171 
5172 void i915_gem_resume(struct drm_i915_private *i915)
5173 {
5174 	GEM_TRACE("\n");
5175 
5176 	WARN_ON(i915->gt.awake);
5177 
5178 	mutex_lock(&i915->drm.struct_mutex);
5179 	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5180 
5181 	i915_gem_restore_gtt_mappings(i915);
5182 	i915_gem_restore_fences(i915);
5183 
5184 	/*
5185 	 * As we didn't flush the kernel context before suspend, we cannot
5186 	 * guarantee that the context image is complete. So let's just reset
5187 	 * it and start again.
5188 	 */
5189 	i915->gt.resume(i915);
5190 
5191 	if (i915_gem_init_hw(i915))
5192 		goto err_wedged;
5193 
5194 	intel_uc_resume(i915);
5195 
5196 	/* Always reload a context for powersaving. */
5197 	if (i915_gem_switch_to_kernel_context(i915))
5198 		goto err_wedged;
5199 
5200 out_unlock:
5201 	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5202 	mutex_unlock(&i915->drm.struct_mutex);
5203 	return;
5204 
5205 err_wedged:
5206 	if (!i915_terminally_wedged(&i915->gpu_error)) {
5207 		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
5208 		i915_gem_set_wedged(i915);
5209 	}
5210 	goto out_unlock;
5211 }
5212 
5213 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5214 {
5215 	if (INTEL_GEN(dev_priv) < 5 ||
5216 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5217 		return;
5218 
5219 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5220 				 DISP_TILE_SURFACE_SWIZZLING);
5221 
5222 	if (IS_GEN5(dev_priv))
5223 		return;
5224 
5225 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5226 	if (IS_GEN6(dev_priv))
5227 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5228 	else if (IS_GEN7(dev_priv))
5229 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5230 	else if (IS_GEN8(dev_priv))
5231 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5232 	else
5233 		BUG();
5234 }
5235 
5236 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5237 {
5238 	I915_WRITE(RING_CTL(base), 0);
5239 	I915_WRITE(RING_HEAD(base), 0);
5240 	I915_WRITE(RING_TAIL(base), 0);
5241 	I915_WRITE(RING_START(base), 0);
5242 }
5243 
5244 static void init_unused_rings(struct drm_i915_private *dev_priv)
5245 {
5246 	if (IS_I830(dev_priv)) {
5247 		init_unused_ring(dev_priv, PRB1_BASE);
5248 		init_unused_ring(dev_priv, SRB0_BASE);
5249 		init_unused_ring(dev_priv, SRB1_BASE);
5250 		init_unused_ring(dev_priv, SRB2_BASE);
5251 		init_unused_ring(dev_priv, SRB3_BASE);
5252 	} else if (IS_GEN2(dev_priv)) {
5253 		init_unused_ring(dev_priv, SRB0_BASE);
5254 		init_unused_ring(dev_priv, SRB1_BASE);
5255 	} else if (IS_GEN3(dev_priv)) {
5256 		init_unused_ring(dev_priv, PRB1_BASE);
5257 		init_unused_ring(dev_priv, PRB2_BASE);
5258 	}
5259 }
5260 
5261 static int __i915_gem_restart_engines(void *data)
5262 {
5263 	struct drm_i915_private *i915 = data;
5264 	struct intel_engine_cs *engine;
5265 	enum intel_engine_id id;
5266 	int err;
5267 
5268 	for_each_engine(engine, i915, id) {
5269 		err = engine->init_hw(engine);
5270 		if (err) {
5271 			DRM_ERROR("Failed to restart %s (%d)\n",
5272 				  engine->name, err);
5273 			return err;
5274 		}
5275 	}
5276 
5277 	return 0;
5278 }
5279 
5280 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
5281 {
5282 	int ret;
5283 
5284 	dev_priv->gt.last_init_time = ktime_get();
5285 
5286 	/* Double layer security blanket, see i915_gem_init() */
5287 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5288 
5289 	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5290 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5291 
5292 	if (IS_HASWELL(dev_priv))
5293 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5294 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5295 
5296 	if (HAS_PCH_NOP(dev_priv)) {
5297 		if (IS_IVYBRIDGE(dev_priv)) {
5298 			u32 temp = I915_READ(GEN7_MSG_CTL);
5299 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5300 			I915_WRITE(GEN7_MSG_CTL, temp);
5301 		} else if (INTEL_GEN(dev_priv) >= 7) {
5302 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5303 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5304 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5305 		}
5306 	}
5307 
5308 	intel_gt_workarounds_apply(dev_priv);
5309 
5310 	i915_gem_init_swizzling(dev_priv);
5311 
5312 	/*
5313 	 * At least 830 can leave some of the unused rings
5314 	 * "active" (ie. head != tail) after resume which
5315 	 * will prevent c3 entry. Makes sure all unused rings
5316 	 * are totally idle.
5317 	 */
5318 	init_unused_rings(dev_priv);
5319 
5320 	BUG_ON(!dev_priv->kernel_context);
5321 	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5322 		ret = -EIO;
5323 		goto out;
5324 	}
5325 
5326 	ret = i915_ppgtt_init_hw(dev_priv);
5327 	if (ret) {
5328 		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5329 		goto out;
5330 	}
5331 
5332 	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
5333 	if (ret) {
5334 		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
5335 		goto out;
5336 	}
5337 
5338 	/* We can't enable contexts until all firmware is loaded */
5339 	ret = intel_uc_init_hw(dev_priv);
5340 	if (ret) {
5341 		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5342 		goto out;
5343 	}
5344 
5345 	intel_mocs_init_l3cc_table(dev_priv);
5346 
5347 	/* Only when the HW is re-initialised, can we replay the requests */
5348 	ret = __i915_gem_restart_engines(dev_priv);
5349 	if (ret)
5350 		goto cleanup_uc;
5351 
5352 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5353 
5354 	return 0;
5355 
5356 cleanup_uc:
5357 	intel_uc_fini_hw(dev_priv);
5358 out:
5359 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5360 
5361 	return ret;
5362 }
5363 
5364 static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5365 {
5366 	struct i915_gem_context *ctx;
5367 	struct intel_engine_cs *engine;
5368 	enum intel_engine_id id;
5369 	int err;
5370 
5371 	/*
5372 	 * As we reset the gpu during very early sanitisation, the current
5373 	 * register state on the GPU should reflect its defaults values.
5374 	 * We load a context onto the hw (with restore-inhibit), then switch
5375 	 * over to a second context to save that default register state. We
5376 	 * can then prime every new context with that state so they all start
5377 	 * from the same default HW values.
5378 	 */
5379 
5380 	ctx = i915_gem_context_create_kernel(i915, 0);
5381 	if (IS_ERR(ctx))
5382 		return PTR_ERR(ctx);
5383 
5384 	for_each_engine(engine, i915, id) {
5385 		struct i915_request *rq;
5386 
5387 		rq = i915_request_alloc(engine, ctx);
5388 		if (IS_ERR(rq)) {
5389 			err = PTR_ERR(rq);
5390 			goto out_ctx;
5391 		}
5392 
5393 		err = 0;
5394 		if (engine->init_context)
5395 			err = engine->init_context(rq);
5396 
5397 		i915_request_add(rq);
5398 		if (err)
5399 			goto err_active;
5400 	}
5401 
5402 	err = i915_gem_switch_to_kernel_context(i915);
5403 	if (err)
5404 		goto err_active;
5405 
5406 	if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
5407 		i915_gem_set_wedged(i915);
5408 		err = -EIO; /* Caller will declare us wedged */
5409 		goto err_active;
5410 	}
5411 
5412 	assert_kernel_context_is_current(i915);
5413 
5414 	/*
5415 	 * Immediately park the GPU so that we enable powersaving and
5416 	 * treat it as idle. The next time we issue a request, we will
5417 	 * unpark and start using the engine->pinned_default_state, otherwise
5418 	 * it is in limbo and an early reset may fail.
5419 	 */
5420 	__i915_gem_park(i915);
5421 
5422 	for_each_engine(engine, i915, id) {
5423 		struct i915_vma *state;
5424 		void *vaddr;
5425 
5426 		GEM_BUG_ON(to_intel_context(ctx, engine)->pin_count);
5427 
5428 		state = to_intel_context(ctx, engine)->state;
5429 		if (!state)
5430 			continue;
5431 
5432 		/*
5433 		 * As we will hold a reference to the logical state, it will
5434 		 * not be torn down with the context, and importantly the
5435 		 * object will hold onto its vma (making it possible for a
5436 		 * stray GTT write to corrupt our defaults). Unmap the vma
5437 		 * from the GTT to prevent such accidents and reclaim the
5438 		 * space.
5439 		 */
5440 		err = i915_vma_unbind(state);
5441 		if (err)
5442 			goto err_active;
5443 
5444 		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5445 		if (err)
5446 			goto err_active;
5447 
5448 		engine->default_state = i915_gem_object_get(state->obj);
5449 
5450 		/* Check we can acquire the image of the context state */
5451 		vaddr = i915_gem_object_pin_map(engine->default_state,
5452 						I915_MAP_FORCE_WB);
5453 		if (IS_ERR(vaddr)) {
5454 			err = PTR_ERR(vaddr);
5455 			goto err_active;
5456 		}
5457 
5458 		i915_gem_object_unpin_map(engine->default_state);
5459 	}
5460 
5461 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5462 		unsigned int found = intel_engines_has_context_isolation(i915);
5463 
5464 		/*
5465 		 * Make sure that classes with multiple engine instances all
5466 		 * share the same basic configuration.
5467 		 */
5468 		for_each_engine(engine, i915, id) {
5469 			unsigned int bit = BIT(engine->uabi_class);
5470 			unsigned int expected = engine->default_state ? bit : 0;
5471 
5472 			if ((found & bit) != expected) {
5473 				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5474 					  engine->uabi_class, engine->name);
5475 			}
5476 		}
5477 	}
5478 
5479 out_ctx:
5480 	i915_gem_context_set_closed(ctx);
5481 	i915_gem_context_put(ctx);
5482 	return err;
5483 
5484 err_active:
5485 	/*
5486 	 * If we have to abandon now, we expect the engines to be idle
5487 	 * and ready to be torn-down. First try to flush any remaining
5488 	 * request, ensure we are pointing at the kernel context and
5489 	 * then remove it.
5490 	 */
5491 	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5492 		goto out_ctx;
5493 
5494 	if (WARN_ON(i915_gem_wait_for_idle(i915,
5495 					   I915_WAIT_LOCKED,
5496 					   MAX_SCHEDULE_TIMEOUT)))
5497 		goto out_ctx;
5498 
5499 	i915_gem_contexts_lost(i915);
5500 	goto out_ctx;
5501 }
5502 
5503 int i915_gem_init(struct drm_i915_private *dev_priv)
5504 {
5505 	int ret;
5506 
5507 	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
5508 	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
5509 		mkwrite_device_info(dev_priv)->page_sizes =
5510 			I915_GTT_PAGE_SIZE_4K;
5511 
5512 	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5513 
5514 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5515 		dev_priv->gt.resume = intel_lr_context_resume;
5516 		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5517 	} else {
5518 		dev_priv->gt.resume = intel_legacy_submission_resume;
5519 		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5520 	}
5521 
5522 	ret = i915_gem_init_userptr(dev_priv);
5523 	if (ret)
5524 		return ret;
5525 
5526 	ret = intel_uc_init_misc(dev_priv);
5527 	if (ret)
5528 		return ret;
5529 
5530 	ret = intel_wopcm_init(&dev_priv->wopcm);
5531 	if (ret)
5532 		goto err_uc_misc;
5533 
5534 	/* This is just a security blanket to placate dragons.
5535 	 * On some systems, we very sporadically observe that the first TLBs
5536 	 * used by the CS may be stale, despite us poking the TLB reset. If
5537 	 * we hold the forcewake during initialisation these problems
5538 	 * just magically go away.
5539 	 */
5540 	mutex_lock(&dev_priv->drm.struct_mutex);
5541 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5542 
5543 	ret = i915_gem_init_ggtt(dev_priv);
5544 	if (ret) {
5545 		GEM_BUG_ON(ret == -EIO);
5546 		goto err_unlock;
5547 	}
5548 
5549 	ret = i915_gem_contexts_init(dev_priv);
5550 	if (ret) {
5551 		GEM_BUG_ON(ret == -EIO);
5552 		goto err_ggtt;
5553 	}
5554 
5555 	ret = intel_engines_init(dev_priv);
5556 	if (ret) {
5557 		GEM_BUG_ON(ret == -EIO);
5558 		goto err_context;
5559 	}
5560 
5561 	intel_init_gt_powersave(dev_priv);
5562 
5563 	ret = intel_uc_init(dev_priv);
5564 	if (ret)
5565 		goto err_pm;
5566 
5567 	ret = i915_gem_init_hw(dev_priv);
5568 	if (ret)
5569 		goto err_uc_init;
5570 
5571 	/*
5572 	 * Despite its name intel_init_clock_gating applies both display
5573 	 * clock gating workarounds; GT mmio workarounds and the occasional
5574 	 * GT power context workaround. Worse, sometimes it includes a context
5575 	 * register workaround which we need to apply before we record the
5576 	 * default HW state for all contexts.
5577 	 *
5578 	 * FIXME: break up the workarounds and apply them at the right time!
5579 	 */
5580 	intel_init_clock_gating(dev_priv);
5581 
5582 	ret = __intel_engines_record_defaults(dev_priv);
5583 	if (ret)
5584 		goto err_init_hw;
5585 
5586 	if (i915_inject_load_failure()) {
5587 		ret = -ENODEV;
5588 		goto err_init_hw;
5589 	}
5590 
5591 	if (i915_inject_load_failure()) {
5592 		ret = -EIO;
5593 		goto err_init_hw;
5594 	}
5595 
5596 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5597 	mutex_unlock(&dev_priv->drm.struct_mutex);
5598 
5599 	return 0;
5600 
5601 	/*
5602 	 * Unwinding is complicated by that we want to handle -EIO to mean
5603 	 * disable GPU submission but keep KMS alive. We want to mark the
5604 	 * HW as irrevisibly wedged, but keep enough state around that the
5605 	 * driver doesn't explode during runtime.
5606 	 */
5607 err_init_hw:
5608 	mutex_unlock(&dev_priv->drm.struct_mutex);
5609 
5610 	WARN_ON(i915_gem_suspend(dev_priv));
5611 	i915_gem_suspend_late(dev_priv);
5612 
5613 	i915_gem_drain_workqueue(dev_priv);
5614 
5615 	mutex_lock(&dev_priv->drm.struct_mutex);
5616 	intel_uc_fini_hw(dev_priv);
5617 err_uc_init:
5618 	intel_uc_fini(dev_priv);
5619 err_pm:
5620 	if (ret != -EIO) {
5621 		intel_cleanup_gt_powersave(dev_priv);
5622 		i915_gem_cleanup_engines(dev_priv);
5623 	}
5624 err_context:
5625 	if (ret != -EIO)
5626 		i915_gem_contexts_fini(dev_priv);
5627 err_ggtt:
5628 err_unlock:
5629 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5630 	mutex_unlock(&dev_priv->drm.struct_mutex);
5631 
5632 err_uc_misc:
5633 	intel_uc_fini_misc(dev_priv);
5634 
5635 	if (ret != -EIO)
5636 		i915_gem_cleanup_userptr(dev_priv);
5637 
5638 	if (ret == -EIO) {
5639 		mutex_lock(&dev_priv->drm.struct_mutex);
5640 
5641 		/*
5642 		 * Allow engine initialisation to fail by marking the GPU as
5643 		 * wedged. But we only want to do this where the GPU is angry,
5644 		 * for all other failure, such as an allocation failure, bail.
5645 		 */
5646 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5647 			i915_load_error(dev_priv,
5648 					"Failed to initialize GPU, declaring it wedged!\n");
5649 			i915_gem_set_wedged(dev_priv);
5650 		}
5651 
5652 		/* Minimal basic recovery for KMS */
5653 		ret = i915_ggtt_enable_hw(dev_priv);
5654 		i915_gem_restore_gtt_mappings(dev_priv);
5655 		i915_gem_restore_fences(dev_priv);
5656 		intel_init_clock_gating(dev_priv);
5657 
5658 		mutex_unlock(&dev_priv->drm.struct_mutex);
5659 	}
5660 
5661 	i915_gem_drain_freed_objects(dev_priv);
5662 	return ret;
5663 }
5664 
5665 void i915_gem_fini(struct drm_i915_private *dev_priv)
5666 {
5667 	i915_gem_suspend_late(dev_priv);
5668 	intel_disable_gt_powersave(dev_priv);
5669 
5670 	/* Flush any outstanding unpin_work. */
5671 	i915_gem_drain_workqueue(dev_priv);
5672 
5673 	mutex_lock(&dev_priv->drm.struct_mutex);
5674 	intel_uc_fini_hw(dev_priv);
5675 	intel_uc_fini(dev_priv);
5676 	i915_gem_cleanup_engines(dev_priv);
5677 	i915_gem_contexts_fini(dev_priv);
5678 	mutex_unlock(&dev_priv->drm.struct_mutex);
5679 
5680 	intel_cleanup_gt_powersave(dev_priv);
5681 
5682 	intel_uc_fini_misc(dev_priv);
5683 	i915_gem_cleanup_userptr(dev_priv);
5684 
5685 	i915_gem_drain_freed_objects(dev_priv);
5686 
5687 	WARN_ON(!list_empty(&dev_priv->contexts.list));
5688 }
5689 
5690 void i915_gem_init_mmio(struct drm_i915_private *i915)
5691 {
5692 	i915_gem_sanitize(i915);
5693 }
5694 
5695 void
5696 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5697 {
5698 	struct intel_engine_cs *engine;
5699 	enum intel_engine_id id;
5700 
5701 	for_each_engine(engine, dev_priv, id)
5702 		dev_priv->gt.cleanup_engine(engine);
5703 }
5704 
5705 void
5706 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5707 {
5708 	int i;
5709 
5710 	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5711 	    !IS_CHERRYVIEW(dev_priv))
5712 		dev_priv->num_fence_regs = 32;
5713 	else if (INTEL_GEN(dev_priv) >= 4 ||
5714 		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5715 		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5716 		dev_priv->num_fence_regs = 16;
5717 	else
5718 		dev_priv->num_fence_regs = 8;
5719 
5720 	if (intel_vgpu_active(dev_priv))
5721 		dev_priv->num_fence_regs =
5722 				I915_READ(vgtif_reg(avail_rs.fence_num));
5723 
5724 	/* Initialize fence registers to zero */
5725 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
5726 		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5727 
5728 		fence->i915 = dev_priv;
5729 		fence->id = i;
5730 		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5731 	}
5732 	i915_gem_restore_fences(dev_priv);
5733 
5734 	i915_gem_detect_bit_6_swizzle(dev_priv);
5735 }
5736 
5737 static void i915_gem_init__mm(struct drm_i915_private *i915)
5738 {
5739 	spin_lock_init(&i915->mm.object_stat_lock);
5740 	spin_lock_init(&i915->mm.obj_lock);
5741 	spin_lock_init(&i915->mm.free_lock);
5742 
5743 	init_llist_head(&i915->mm.free_list);
5744 
5745 	INIT_LIST_HEAD(&i915->mm.unbound_list);
5746 	INIT_LIST_HEAD(&i915->mm.bound_list);
5747 	INIT_LIST_HEAD(&i915->mm.fence_list);
5748 	INIT_LIST_HEAD(&i915->mm.userfault_list);
5749 
5750 	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5751 }
5752 
5753 int i915_gem_init_early(struct drm_i915_private *dev_priv)
5754 {
5755 	int err = -ENOMEM;
5756 
5757 	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5758 	if (!dev_priv->objects)
5759 		goto err_out;
5760 
5761 	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5762 	if (!dev_priv->vmas)
5763 		goto err_objects;
5764 
5765 	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5766 	if (!dev_priv->luts)
5767 		goto err_vmas;
5768 
5769 	dev_priv->requests = KMEM_CACHE(i915_request,
5770 					SLAB_HWCACHE_ALIGN |
5771 					SLAB_RECLAIM_ACCOUNT |
5772 					SLAB_TYPESAFE_BY_RCU);
5773 	if (!dev_priv->requests)
5774 		goto err_luts;
5775 
5776 	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5777 					    SLAB_HWCACHE_ALIGN |
5778 					    SLAB_RECLAIM_ACCOUNT);
5779 	if (!dev_priv->dependencies)
5780 		goto err_requests;
5781 
5782 	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5783 	if (!dev_priv->priorities)
5784 		goto err_dependencies;
5785 
5786 	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5787 	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5788 	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5789 
5790 	i915_gem_init__mm(dev_priv);
5791 
5792 	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5793 			  i915_gem_retire_work_handler);
5794 	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5795 			  i915_gem_idle_work_handler);
5796 	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5797 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5798 
5799 	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5800 
5801 	spin_lock_init(&dev_priv->fb_tracking.lock);
5802 
5803 	err = i915_gemfs_init(dev_priv);
5804 	if (err)
5805 		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5806 
5807 	return 0;
5808 
5809 err_dependencies:
5810 	kmem_cache_destroy(dev_priv->dependencies);
5811 err_requests:
5812 	kmem_cache_destroy(dev_priv->requests);
5813 err_luts:
5814 	kmem_cache_destroy(dev_priv->luts);
5815 err_vmas:
5816 	kmem_cache_destroy(dev_priv->vmas);
5817 err_objects:
5818 	kmem_cache_destroy(dev_priv->objects);
5819 err_out:
5820 	return err;
5821 }
5822 
5823 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5824 {
5825 	i915_gem_drain_freed_objects(dev_priv);
5826 	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
5827 	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5828 	WARN_ON(dev_priv->mm.object_count);
5829 	WARN_ON(!list_empty(&dev_priv->gt.timelines));
5830 
5831 	kmem_cache_destroy(dev_priv->priorities);
5832 	kmem_cache_destroy(dev_priv->dependencies);
5833 	kmem_cache_destroy(dev_priv->requests);
5834 	kmem_cache_destroy(dev_priv->luts);
5835 	kmem_cache_destroy(dev_priv->vmas);
5836 	kmem_cache_destroy(dev_priv->objects);
5837 
5838 	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5839 	rcu_barrier();
5840 
5841 	i915_gemfs_fini(dev_priv);
5842 }
5843 
5844 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5845 {
5846 	/* Discard all purgeable objects, let userspace recover those as
5847 	 * required after resuming.
5848 	 */
5849 	i915_gem_shrink_all(dev_priv);
5850 
5851 	return 0;
5852 }
5853 
5854 int i915_gem_freeze_late(struct drm_i915_private *i915)
5855 {
5856 	struct drm_i915_gem_object *obj;
5857 	struct list_head *phases[] = {
5858 		&i915->mm.unbound_list,
5859 		&i915->mm.bound_list,
5860 		NULL
5861 	}, **phase;
5862 
5863 	/*
5864 	 * Called just before we write the hibernation image.
5865 	 *
5866 	 * We need to update the domain tracking to reflect that the CPU
5867 	 * will be accessing all the pages to create and restore from the
5868 	 * hibernation, and so upon restoration those pages will be in the
5869 	 * CPU domain.
5870 	 *
5871 	 * To make sure the hibernation image contains the latest state,
5872 	 * we update that state just before writing out the image.
5873 	 *
5874 	 * To try and reduce the hibernation image, we manually shrink
5875 	 * the objects as well, see i915_gem_freeze()
5876 	 */
5877 
5878 	i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
5879 	i915_gem_drain_freed_objects(i915);
5880 
5881 	mutex_lock(&i915->drm.struct_mutex);
5882 	for (phase = phases; *phase; phase++) {
5883 		list_for_each_entry(obj, *phase, mm.link)
5884 			WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5885 	}
5886 	mutex_unlock(&i915->drm.struct_mutex);
5887 
5888 	return 0;
5889 }
5890 
5891 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5892 {
5893 	struct drm_i915_file_private *file_priv = file->driver_priv;
5894 	struct i915_request *request;
5895 
5896 	/* Clean up our request list when the client is going away, so that
5897 	 * later retire_requests won't dereference our soon-to-be-gone
5898 	 * file_priv.
5899 	 */
5900 	spin_lock(&file_priv->mm.lock);
5901 	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5902 		request->file_priv = NULL;
5903 	spin_unlock(&file_priv->mm.lock);
5904 }
5905 
5906 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5907 {
5908 	struct drm_i915_file_private *file_priv;
5909 	int ret;
5910 
5911 	DRM_DEBUG("\n");
5912 
5913 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5914 	if (!file_priv)
5915 		return -ENOMEM;
5916 
5917 	file->driver_priv = file_priv;
5918 	file_priv->dev_priv = i915;
5919 	file_priv->file = file;
5920 
5921 	spin_lock_init(&file_priv->mm.lock);
5922 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5923 
5924 	file_priv->bsd_engine = -1;
5925 	file_priv->hang_timestamp = jiffies;
5926 
5927 	ret = i915_gem_context_open(i915, file);
5928 	if (ret)
5929 		kfree(file_priv);
5930 
5931 	return ret;
5932 }
5933 
5934 /**
5935  * i915_gem_track_fb - update frontbuffer tracking
5936  * @old: current GEM buffer for the frontbuffer slots
5937  * @new: new GEM buffer for the frontbuffer slots
5938  * @frontbuffer_bits: bitmask of frontbuffer slots
5939  *
5940  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5941  * from @old and setting them in @new. Both @old and @new can be NULL.
5942  */
5943 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5944 		       struct drm_i915_gem_object *new,
5945 		       unsigned frontbuffer_bits)
5946 {
5947 	/* Control of individual bits within the mask are guarded by
5948 	 * the owning plane->mutex, i.e. we can never see concurrent
5949 	 * manipulation of individual bits. But since the bitfield as a whole
5950 	 * is updated using RMW, we need to use atomics in order to update
5951 	 * the bits.
5952 	 */
5953 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5954 		     sizeof(atomic_t) * BITS_PER_BYTE);
5955 
5956 	if (old) {
5957 		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5958 		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5959 	}
5960 
5961 	if (new) {
5962 		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5963 		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5964 	}
5965 }
5966 
5967 /* Allocate a new GEM object and fill it with the supplied data */
5968 struct drm_i915_gem_object *
5969 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5970 			         const void *data, size_t size)
5971 {
5972 	struct drm_i915_gem_object *obj;
5973 	struct file *file;
5974 	size_t offset;
5975 	int err;
5976 
5977 	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5978 	if (IS_ERR(obj))
5979 		return obj;
5980 
5981 	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5982 
5983 	file = obj->base.filp;
5984 	offset = 0;
5985 	do {
5986 		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5987 		struct page *page;
5988 		void *pgdata, *vaddr;
5989 
5990 		err = pagecache_write_begin(file, file->f_mapping,
5991 					    offset, len, 0,
5992 					    &page, &pgdata);
5993 		if (err < 0)
5994 			goto fail;
5995 
5996 		vaddr = kmap(page);
5997 		memcpy(vaddr, data, len);
5998 		kunmap(page);
5999 
6000 		err = pagecache_write_end(file, file->f_mapping,
6001 					  offset, len, len,
6002 					  page, pgdata);
6003 		if (err < 0)
6004 			goto fail;
6005 
6006 		size -= len;
6007 		data += len;
6008 		offset += len;
6009 	} while (size);
6010 
6011 	return obj;
6012 
6013 fail:
6014 	i915_gem_object_put(obj);
6015 	return ERR_PTR(err);
6016 }
6017 
6018 struct scatterlist *
6019 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
6020 		       unsigned int n,
6021 		       unsigned int *offset)
6022 {
6023 	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
6024 	struct scatterlist *sg;
6025 	unsigned int idx, count;
6026 
6027 	might_sleep();
6028 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
6029 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
6030 
6031 	/* As we iterate forward through the sg, we record each entry in a
6032 	 * radixtree for quick repeated (backwards) lookups. If we have seen
6033 	 * this index previously, we will have an entry for it.
6034 	 *
6035 	 * Initial lookup is O(N), but this is amortized to O(1) for
6036 	 * sequential page access (where each new request is consecutive
6037 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
6038 	 * i.e. O(1) with a large constant!
6039 	 */
6040 	if (n < READ_ONCE(iter->sg_idx))
6041 		goto lookup;
6042 
6043 	mutex_lock(&iter->lock);
6044 
6045 	/* We prefer to reuse the last sg so that repeated lookup of this
6046 	 * (or the subsequent) sg are fast - comparing against the last
6047 	 * sg is faster than going through the radixtree.
6048 	 */
6049 
6050 	sg = iter->sg_pos;
6051 	idx = iter->sg_idx;
6052 	count = __sg_page_count(sg);
6053 
6054 	while (idx + count <= n) {
6055 		void *entry;
6056 		unsigned long i;
6057 		int ret;
6058 
6059 		/* If we cannot allocate and insert this entry, or the
6060 		 * individual pages from this range, cancel updating the
6061 		 * sg_idx so that on this lookup we are forced to linearly
6062 		 * scan onwards, but on future lookups we will try the
6063 		 * insertion again (in which case we need to be careful of
6064 		 * the error return reporting that we have already inserted
6065 		 * this index).
6066 		 */
6067 		ret = radix_tree_insert(&iter->radix, idx, sg);
6068 		if (ret && ret != -EEXIST)
6069 			goto scan;
6070 
6071 		entry = xa_mk_value(idx);
6072 		for (i = 1; i < count; i++) {
6073 			ret = radix_tree_insert(&iter->radix, idx + i, entry);
6074 			if (ret && ret != -EEXIST)
6075 				goto scan;
6076 		}
6077 
6078 		idx += count;
6079 		sg = ____sg_next(sg);
6080 		count = __sg_page_count(sg);
6081 	}
6082 
6083 scan:
6084 	iter->sg_pos = sg;
6085 	iter->sg_idx = idx;
6086 
6087 	mutex_unlock(&iter->lock);
6088 
6089 	if (unlikely(n < idx)) /* insertion completed by another thread */
6090 		goto lookup;
6091 
6092 	/* In case we failed to insert the entry into the radixtree, we need
6093 	 * to look beyond the current sg.
6094 	 */
6095 	while (idx + count <= n) {
6096 		idx += count;
6097 		sg = ____sg_next(sg);
6098 		count = __sg_page_count(sg);
6099 	}
6100 
6101 	*offset = n - idx;
6102 	return sg;
6103 
6104 lookup:
6105 	rcu_read_lock();
6106 
6107 	sg = radix_tree_lookup(&iter->radix, n);
6108 	GEM_BUG_ON(!sg);
6109 
6110 	/* If this index is in the middle of multi-page sg entry,
6111 	 * the radix tree will contain a value entry that points
6112 	 * to the start of that range. We will return the pointer to
6113 	 * the base page and the offset of this page within the
6114 	 * sg entry's range.
6115 	 */
6116 	*offset = 0;
6117 	if (unlikely(xa_is_value(sg))) {
6118 		unsigned long base = xa_to_value(sg);
6119 
6120 		sg = radix_tree_lookup(&iter->radix, base);
6121 		GEM_BUG_ON(!sg);
6122 
6123 		*offset = n - base;
6124 	}
6125 
6126 	rcu_read_unlock();
6127 
6128 	return sg;
6129 }
6130 
6131 struct page *
6132 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
6133 {
6134 	struct scatterlist *sg;
6135 	unsigned int offset;
6136 
6137 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
6138 
6139 	sg = i915_gem_object_get_sg(obj, n, &offset);
6140 	return nth_page(sg_page(sg), offset);
6141 }
6142 
6143 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
6144 struct page *
6145 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
6146 			       unsigned int n)
6147 {
6148 	struct page *page;
6149 
6150 	page = i915_gem_object_get_page(obj, n);
6151 	if (!obj->mm.dirty)
6152 		set_page_dirty(page);
6153 
6154 	return page;
6155 }
6156 
6157 dma_addr_t
6158 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
6159 				unsigned long n)
6160 {
6161 	struct scatterlist *sg;
6162 	unsigned int offset;
6163 
6164 	sg = i915_gem_object_get_sg(obj, n, &offset);
6165 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
6166 }
6167 
6168 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
6169 {
6170 	struct sg_table *pages;
6171 	int err;
6172 
6173 	if (align > obj->base.size)
6174 		return -EINVAL;
6175 
6176 	if (obj->ops == &i915_gem_phys_ops)
6177 		return 0;
6178 
6179 	if (obj->ops != &i915_gem_object_ops)
6180 		return -EINVAL;
6181 
6182 	err = i915_gem_object_unbind(obj);
6183 	if (err)
6184 		return err;
6185 
6186 	mutex_lock(&obj->mm.lock);
6187 
6188 	if (obj->mm.madv != I915_MADV_WILLNEED) {
6189 		err = -EFAULT;
6190 		goto err_unlock;
6191 	}
6192 
6193 	if (obj->mm.quirked) {
6194 		err = -EFAULT;
6195 		goto err_unlock;
6196 	}
6197 
6198 	if (obj->mm.mapping) {
6199 		err = -EBUSY;
6200 		goto err_unlock;
6201 	}
6202 
6203 	pages = __i915_gem_object_unset_pages(obj);
6204 
6205 	obj->ops = &i915_gem_phys_ops;
6206 
6207 	err = ____i915_gem_object_get_pages(obj);
6208 	if (err)
6209 		goto err_xfer;
6210 
6211 	/* Perma-pin (until release) the physical set of pages */
6212 	__i915_gem_object_pin_pages(obj);
6213 
6214 	if (!IS_ERR_OR_NULL(pages))
6215 		i915_gem_object_ops.put_pages(obj, pages);
6216 	mutex_unlock(&obj->mm.lock);
6217 	return 0;
6218 
6219 err_xfer:
6220 	obj->ops = &i915_gem_object_ops;
6221 	if (!IS_ERR_OR_NULL(pages)) {
6222 		unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);
6223 
6224 		__i915_gem_object_set_pages(obj, pages, sg_page_sizes);
6225 	}
6226 err_unlock:
6227 	mutex_unlock(&obj->mm.lock);
6228 	return err;
6229 }
6230 
6231 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6232 #include "selftests/scatterlist.c"
6233 #include "selftests/mock_gem_device.c"
6234 #include "selftests/huge_gem_object.c"
6235 #include "selftests/huge_pages.c"
6236 #include "selftests/i915_gem_object.c"
6237 #include "selftests/i915_gem_coherency.c"
6238 #include "selftests/i915_gem.c"
6239 #endif
6240