xref: /openbmc/linux/drivers/gpu/drm/i915/i915_drv.h (revision fed8b7e366e7c8f81e957ef91aa8f0a38e038c66)
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32 
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35 
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/mm_types.h>
44 #include <linux/perf_event.h>
45 #include <linux/pm_qos.h>
46 #include <linux/reservation.h>
47 #include <linux/shmem_fs.h>
48 
49 #include <drm/drmP.h>
50 #include <drm/intel-gtt.h>
51 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
52 #include <drm/drm_gem.h>
53 #include <drm/drm_auth.h>
54 #include <drm/drm_cache.h>
55 #include <drm/drm_util.h>
56 
57 #include "i915_params.h"
58 #include "i915_reg.h"
59 #include "i915_utils.h"
60 
61 #include "intel_bios.h"
62 #include "intel_device_info.h"
63 #include "intel_display.h"
64 #include "intel_dpll_mgr.h"
65 #include "intel_lrc.h"
66 #include "intel_opregion.h"
67 #include "intel_ringbuffer.h"
68 #include "intel_uncore.h"
69 #include "intel_wopcm.h"
70 #include "intel_uc.h"
71 
72 #include "i915_gem.h"
73 #include "i915_gem_context.h"
74 #include "i915_gem_fence_reg.h"
75 #include "i915_gem_object.h"
76 #include "i915_gem_gtt.h"
77 #include "i915_gpu_error.h"
78 #include "i915_request.h"
79 #include "i915_scheduler.h"
80 #include "i915_timeline.h"
81 #include "i915_vma.h"
82 
83 #include "intel_gvt.h"
84 
85 /* General customization:
86  */
87 
88 #define DRIVER_NAME		"i915"
89 #define DRIVER_DESC		"Intel Graphics"
90 #define DRIVER_DATE		"20180921"
91 #define DRIVER_TIMESTAMP	1537521997
92 
93 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
94  * WARN_ON()) for hw state sanity checks to check for unexpected conditions
95  * which may not necessarily be a user visible problem.  This will either
96  * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
97  * enable distros and users to tailor their preferred amount of i915 abrt
98  * spam.
99  */
100 #define I915_STATE_WARN(condition, format...) ({			\
101 	int __ret_warn_on = !!(condition);				\
102 	if (unlikely(__ret_warn_on))					\
103 		if (!WARN(i915_modparams.verbose_state_checks, format))	\
104 			DRM_ERROR(format);				\
105 	unlikely(__ret_warn_on);					\
106 })
107 
108 #define I915_STATE_WARN_ON(x)						\
109 	I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
110 
111 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
112 
113 bool __i915_inject_load_failure(const char *func, int line);
114 #define i915_inject_load_failure() \
115 	__i915_inject_load_failure(__func__, __LINE__)
116 
117 bool i915_error_injected(void);
118 
119 #else
120 
121 #define i915_inject_load_failure() false
122 #define i915_error_injected() false
123 
124 #endif
125 
126 #define i915_load_error(i915, fmt, ...)					 \
127 	__i915_printk(i915, i915_error_injected() ? KERN_DEBUG : KERN_ERR, \
128 		      fmt, ##__VA_ARGS__)
129 
130 typedef struct {
131 	uint32_t val;
132 } uint_fixed_16_16_t;
133 
134 #define FP_16_16_MAX ({ \
135 	uint_fixed_16_16_t fp; \
136 	fp.val = UINT_MAX; \
137 	fp; \
138 })
139 
140 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
141 {
142 	if (val.val == 0)
143 		return true;
144 	return false;
145 }
146 
147 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
148 {
149 	uint_fixed_16_16_t fp;
150 
151 	WARN_ON(val > U16_MAX);
152 
153 	fp.val = val << 16;
154 	return fp;
155 }
156 
157 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
158 {
159 	return DIV_ROUND_UP(fp.val, 1 << 16);
160 }
161 
162 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
163 {
164 	return fp.val >> 16;
165 }
166 
167 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
168 						 uint_fixed_16_16_t min2)
169 {
170 	uint_fixed_16_16_t min;
171 
172 	min.val = min(min1.val, min2.val);
173 	return min;
174 }
175 
176 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
177 						 uint_fixed_16_16_t max2)
178 {
179 	uint_fixed_16_16_t max;
180 
181 	max.val = max(max1.val, max2.val);
182 	return max;
183 }
184 
185 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
186 {
187 	uint_fixed_16_16_t fp;
188 	WARN_ON(val > U32_MAX);
189 	fp.val = (uint32_t) val;
190 	return fp;
191 }
192 
193 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
194 					    uint_fixed_16_16_t d)
195 {
196 	return DIV_ROUND_UP(val.val, d.val);
197 }
198 
199 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
200 						uint_fixed_16_16_t mul)
201 {
202 	uint64_t intermediate_val;
203 
204 	intermediate_val = (uint64_t) val * mul.val;
205 	intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
206 	WARN_ON(intermediate_val > U32_MAX);
207 	return (uint32_t) intermediate_val;
208 }
209 
210 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
211 					     uint_fixed_16_16_t mul)
212 {
213 	uint64_t intermediate_val;
214 
215 	intermediate_val = (uint64_t) val.val * mul.val;
216 	intermediate_val = intermediate_val >> 16;
217 	return clamp_u64_to_fixed16(intermediate_val);
218 }
219 
220 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
221 {
222 	uint64_t interm_val;
223 
224 	interm_val = (uint64_t)val << 16;
225 	interm_val = DIV_ROUND_UP_ULL(interm_val, d);
226 	return clamp_u64_to_fixed16(interm_val);
227 }
228 
229 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
230 						uint_fixed_16_16_t d)
231 {
232 	uint64_t interm_val;
233 
234 	interm_val = (uint64_t)val << 16;
235 	interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
236 	WARN_ON(interm_val > U32_MAX);
237 	return (uint32_t) interm_val;
238 }
239 
240 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
241 						     uint_fixed_16_16_t mul)
242 {
243 	uint64_t intermediate_val;
244 
245 	intermediate_val = (uint64_t) val * mul.val;
246 	return clamp_u64_to_fixed16(intermediate_val);
247 }
248 
249 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
250 					     uint_fixed_16_16_t add2)
251 {
252 	uint64_t interm_sum;
253 
254 	interm_sum = (uint64_t) add1.val + add2.val;
255 	return clamp_u64_to_fixed16(interm_sum);
256 }
257 
258 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
259 						 uint32_t add2)
260 {
261 	uint64_t interm_sum;
262 	uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
263 
264 	interm_sum = (uint64_t) add1.val + interm_add2.val;
265 	return clamp_u64_to_fixed16(interm_sum);
266 }
267 
268 enum hpd_pin {
269 	HPD_NONE = 0,
270 	HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
271 	HPD_CRT,
272 	HPD_SDVO_B,
273 	HPD_SDVO_C,
274 	HPD_PORT_A,
275 	HPD_PORT_B,
276 	HPD_PORT_C,
277 	HPD_PORT_D,
278 	HPD_PORT_E,
279 	HPD_PORT_F,
280 	HPD_NUM_PINS
281 };
282 
283 #define for_each_hpd_pin(__pin) \
284 	for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
285 
286 #define HPD_STORM_DEFAULT_THRESHOLD 5
287 
288 struct i915_hotplug {
289 	struct work_struct hotplug_work;
290 
291 	struct {
292 		unsigned long last_jiffies;
293 		int count;
294 		enum {
295 			HPD_ENABLED = 0,
296 			HPD_DISABLED = 1,
297 			HPD_MARK_DISABLED = 2
298 		} state;
299 	} stats[HPD_NUM_PINS];
300 	u32 event_bits;
301 	struct delayed_work reenable_work;
302 
303 	u32 long_port_mask;
304 	u32 short_port_mask;
305 	struct work_struct dig_port_work;
306 
307 	struct work_struct poll_init_work;
308 	bool poll_enabled;
309 
310 	unsigned int hpd_storm_threshold;
311 
312 	/*
313 	 * if we get a HPD irq from DP and a HPD irq from non-DP
314 	 * the non-DP HPD could block the workqueue on a mode config
315 	 * mutex getting, that userspace may have taken. However
316 	 * userspace is waiting on the DP workqueue to run which is
317 	 * blocked behind the non-DP one.
318 	 */
319 	struct workqueue_struct *dp_wq;
320 };
321 
322 #define I915_GEM_GPU_DOMAINS \
323 	(I915_GEM_DOMAIN_RENDER | \
324 	 I915_GEM_DOMAIN_SAMPLER | \
325 	 I915_GEM_DOMAIN_COMMAND | \
326 	 I915_GEM_DOMAIN_INSTRUCTION | \
327 	 I915_GEM_DOMAIN_VERTEX)
328 
329 struct drm_i915_private;
330 struct i915_mm_struct;
331 struct i915_mmu_object;
332 
333 struct drm_i915_file_private {
334 	struct drm_i915_private *dev_priv;
335 	struct drm_file *file;
336 
337 	struct {
338 		spinlock_t lock;
339 		struct list_head request_list;
340 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
341  * chosen to prevent the CPU getting more than a frame ahead of the GPU
342  * (when using lax throttling for the frontbuffer). We also use it to
343  * offer free GPU waitboosts for severely congested workloads.
344  */
345 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
346 	} mm;
347 	struct idr context_idr;
348 
349 	struct intel_rps_client {
350 		atomic_t boosts;
351 	} rps_client;
352 
353 	unsigned int bsd_engine;
354 
355 /*
356  * Every context ban increments per client ban score. Also
357  * hangs in short succession increments ban score. If ban threshold
358  * is reached, client is considered banned and submitting more work
359  * will fail. This is a stop gap measure to limit the badly behaving
360  * clients access to gpu. Note that unbannable contexts never increment
361  * the client ban score.
362  */
363 #define I915_CLIENT_SCORE_HANG_FAST	1
364 #define   I915_CLIENT_FAST_HANG_JIFFIES (60 * HZ)
365 #define I915_CLIENT_SCORE_CONTEXT_BAN   3
366 #define I915_CLIENT_SCORE_BANNED	9
367 	/** ban_score: Accumulated score of all ctx bans and fast hangs. */
368 	atomic_t ban_score;
369 	unsigned long hang_timestamp;
370 };
371 
372 /* Interface history:
373  *
374  * 1.1: Original.
375  * 1.2: Add Power Management
376  * 1.3: Add vblank support
377  * 1.4: Fix cmdbuffer path, add heap destroy
378  * 1.5: Add vblank pipe configuration
379  * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
380  *      - Support vertical blank on secondary display pipe
381  */
382 #define DRIVER_MAJOR		1
383 #define DRIVER_MINOR		6
384 #define DRIVER_PATCHLEVEL	0
385 
386 struct intel_overlay;
387 struct intel_overlay_error_state;
388 
389 struct sdvo_device_mapping {
390 	u8 initialized;
391 	u8 dvo_port;
392 	u8 slave_addr;
393 	u8 dvo_wiring;
394 	u8 i2c_pin;
395 	u8 ddc_pin;
396 };
397 
398 struct intel_connector;
399 struct intel_encoder;
400 struct intel_atomic_state;
401 struct intel_crtc_state;
402 struct intel_initial_plane_config;
403 struct intel_crtc;
404 struct intel_limit;
405 struct dpll;
406 struct intel_cdclk_state;
407 
408 struct drm_i915_display_funcs {
409 	void (*get_cdclk)(struct drm_i915_private *dev_priv,
410 			  struct intel_cdclk_state *cdclk_state);
411 	void (*set_cdclk)(struct drm_i915_private *dev_priv,
412 			  const struct intel_cdclk_state *cdclk_state);
413 	int (*get_fifo_size)(struct drm_i915_private *dev_priv,
414 			     enum i9xx_plane_id i9xx_plane);
415 	int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
416 	int (*compute_intermediate_wm)(struct drm_device *dev,
417 				       struct intel_crtc *intel_crtc,
418 				       struct intel_crtc_state *newstate);
419 	void (*initial_watermarks)(struct intel_atomic_state *state,
420 				   struct intel_crtc_state *cstate);
421 	void (*atomic_update_watermarks)(struct intel_atomic_state *state,
422 					 struct intel_crtc_state *cstate);
423 	void (*optimize_watermarks)(struct intel_atomic_state *state,
424 				    struct intel_crtc_state *cstate);
425 	int (*compute_global_watermarks)(struct drm_atomic_state *state);
426 	void (*update_wm)(struct intel_crtc *crtc);
427 	int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
428 	/* Returns the active state of the crtc, and if the crtc is active,
429 	 * fills out the pipe-config with the hw state. */
430 	bool (*get_pipe_config)(struct intel_crtc *,
431 				struct intel_crtc_state *);
432 	void (*get_initial_plane_config)(struct intel_crtc *,
433 					 struct intel_initial_plane_config *);
434 	int (*crtc_compute_clock)(struct intel_crtc *crtc,
435 				  struct intel_crtc_state *crtc_state);
436 	void (*crtc_enable)(struct intel_crtc_state *pipe_config,
437 			    struct drm_atomic_state *old_state);
438 	void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
439 			     struct drm_atomic_state *old_state);
440 	void (*update_crtcs)(struct drm_atomic_state *state);
441 	void (*audio_codec_enable)(struct intel_encoder *encoder,
442 				   const struct intel_crtc_state *crtc_state,
443 				   const struct drm_connector_state *conn_state);
444 	void (*audio_codec_disable)(struct intel_encoder *encoder,
445 				    const struct intel_crtc_state *old_crtc_state,
446 				    const struct drm_connector_state *old_conn_state);
447 	void (*fdi_link_train)(struct intel_crtc *crtc,
448 			       const struct intel_crtc_state *crtc_state);
449 	void (*init_clock_gating)(struct drm_i915_private *dev_priv);
450 	void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
451 	/* clock updates for mode set */
452 	/* cursor updates */
453 	/* render clock increase/decrease */
454 	/* display clock increase/decrease */
455 	/* pll clock increase/decrease */
456 
457 	void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
458 	void (*load_luts)(struct drm_crtc_state *crtc_state);
459 };
460 
461 #define CSR_VERSION(major, minor)	((major) << 16 | (minor))
462 #define CSR_VERSION_MAJOR(version)	((version) >> 16)
463 #define CSR_VERSION_MINOR(version)	((version) & 0xffff)
464 
465 struct intel_csr {
466 	struct work_struct work;
467 	const char *fw_path;
468 	uint32_t *dmc_payload;
469 	uint32_t dmc_fw_size;
470 	uint32_t version;
471 	uint32_t mmio_count;
472 	i915_reg_t mmioaddr[8];
473 	uint32_t mmiodata[8];
474 	uint32_t dc_state;
475 	uint32_t allowed_dc_mask;
476 };
477 
478 enum i915_cache_level {
479 	I915_CACHE_NONE = 0,
480 	I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
481 	I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
482 			      caches, eg sampler/render caches, and the
483 			      large Last-Level-Cache. LLC is coherent with
484 			      the CPU, but L3 is only visible to the GPU. */
485 	I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
486 };
487 
488 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
489 
490 enum fb_op_origin {
491 	ORIGIN_GTT,
492 	ORIGIN_CPU,
493 	ORIGIN_CS,
494 	ORIGIN_FLIP,
495 	ORIGIN_DIRTYFB,
496 };
497 
498 struct intel_fbc {
499 	/* This is always the inner lock when overlapping with struct_mutex and
500 	 * it's the outer lock when overlapping with stolen_lock. */
501 	struct mutex lock;
502 	unsigned threshold;
503 	unsigned int possible_framebuffer_bits;
504 	unsigned int busy_bits;
505 	unsigned int visible_pipes_mask;
506 	struct intel_crtc *crtc;
507 
508 	struct drm_mm_node compressed_fb;
509 	struct drm_mm_node *compressed_llb;
510 
511 	bool false_color;
512 
513 	bool enabled;
514 	bool active;
515 	bool flip_pending;
516 
517 	bool underrun_detected;
518 	struct work_struct underrun_work;
519 
520 	/*
521 	 * Due to the atomic rules we can't access some structures without the
522 	 * appropriate locking, so we cache information here in order to avoid
523 	 * these problems.
524 	 */
525 	struct intel_fbc_state_cache {
526 		struct i915_vma *vma;
527 		unsigned long flags;
528 
529 		struct {
530 			unsigned int mode_flags;
531 			uint32_t hsw_bdw_pixel_rate;
532 		} crtc;
533 
534 		struct {
535 			unsigned int rotation;
536 			int src_w;
537 			int src_h;
538 			bool visible;
539 			/*
540 			 * Display surface base address adjustement for
541 			 * pageflips. Note that on gen4+ this only adjusts up
542 			 * to a tile, offsets within a tile are handled in
543 			 * the hw itself (with the TILEOFF register).
544 			 */
545 			int adjusted_x;
546 			int adjusted_y;
547 
548 			int y;
549 		} plane;
550 
551 		struct {
552 			const struct drm_format_info *format;
553 			unsigned int stride;
554 		} fb;
555 	} state_cache;
556 
557 	/*
558 	 * This structure contains everything that's relevant to program the
559 	 * hardware registers. When we want to figure out if we need to disable
560 	 * and re-enable FBC for a new configuration we just check if there's
561 	 * something different in the struct. The genx_fbc_activate functions
562 	 * are supposed to read from it in order to program the registers.
563 	 */
564 	struct intel_fbc_reg_params {
565 		struct i915_vma *vma;
566 		unsigned long flags;
567 
568 		struct {
569 			enum pipe pipe;
570 			enum i9xx_plane_id i9xx_plane;
571 			unsigned int fence_y_offset;
572 		} crtc;
573 
574 		struct {
575 			const struct drm_format_info *format;
576 			unsigned int stride;
577 		} fb;
578 
579 		int cfb_size;
580 		unsigned int gen9_wa_cfb_stride;
581 	} params;
582 
583 	const char *no_fbc_reason;
584 };
585 
586 /*
587  * HIGH_RR is the highest eDP panel refresh rate read from EDID
588  * LOW_RR is the lowest eDP panel refresh rate found from EDID
589  * parsing for same resolution.
590  */
591 enum drrs_refresh_rate_type {
592 	DRRS_HIGH_RR,
593 	DRRS_LOW_RR,
594 	DRRS_MAX_RR, /* RR count */
595 };
596 
597 enum drrs_support_type {
598 	DRRS_NOT_SUPPORTED = 0,
599 	STATIC_DRRS_SUPPORT = 1,
600 	SEAMLESS_DRRS_SUPPORT = 2
601 };
602 
603 struct intel_dp;
604 struct i915_drrs {
605 	struct mutex mutex;
606 	struct delayed_work work;
607 	struct intel_dp *dp;
608 	unsigned busy_frontbuffer_bits;
609 	enum drrs_refresh_rate_type refresh_rate_type;
610 	enum drrs_support_type type;
611 };
612 
613 struct i915_psr {
614 	struct mutex lock;
615 
616 #define I915_PSR_DEBUG_MODE_MASK	0x0f
617 #define I915_PSR_DEBUG_DEFAULT		0x00
618 #define I915_PSR_DEBUG_DISABLE		0x01
619 #define I915_PSR_DEBUG_ENABLE		0x02
620 #define I915_PSR_DEBUG_FORCE_PSR1	0x03
621 #define I915_PSR_DEBUG_IRQ		0x10
622 
623 	u32 debug;
624 	bool sink_support;
625 	bool prepared, enabled;
626 	struct intel_dp *dp;
627 	bool active;
628 	struct work_struct work;
629 	unsigned busy_frontbuffer_bits;
630 	bool sink_psr2_support;
631 	bool link_standby;
632 	bool colorimetry_support;
633 	bool alpm;
634 	bool psr2_enabled;
635 	u8 sink_sync_latency;
636 	ktime_t last_entry_attempt;
637 	ktime_t last_exit;
638 };
639 
640 enum intel_pch {
641 	PCH_NONE = 0,	/* No PCH present */
642 	PCH_IBX,	/* Ibexpeak PCH */
643 	PCH_CPT,	/* Cougarpoint/Pantherpoint PCH */
644 	PCH_LPT,	/* Lynxpoint/Wildcatpoint PCH */
645 	PCH_SPT,        /* Sunrisepoint PCH */
646 	PCH_KBP,        /* Kaby Lake PCH */
647 	PCH_CNP,        /* Cannon Lake PCH */
648 	PCH_ICP,	/* Ice Lake PCH */
649 	PCH_NOP,	/* PCH without south display */
650 };
651 
652 enum intel_sbi_destination {
653 	SBI_ICLK,
654 	SBI_MPHY,
655 };
656 
657 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
658 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
659 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
660 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
661 #define QUIRK_INCREASE_T12_DELAY (1<<6)
662 #define QUIRK_INCREASE_DDI_DISABLED_TIME (1<<7)
663 
664 struct intel_fbdev;
665 struct intel_fbc_work;
666 
667 struct intel_gmbus {
668 	struct i2c_adapter adapter;
669 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
670 	u32 force_bit;
671 	u32 reg0;
672 	i915_reg_t gpio_reg;
673 	struct i2c_algo_bit_data bit_algo;
674 	struct drm_i915_private *dev_priv;
675 };
676 
677 struct i915_suspend_saved_registers {
678 	u32 saveDSPARB;
679 	u32 saveFBC_CONTROL;
680 	u32 saveCACHE_MODE_0;
681 	u32 saveMI_ARB_STATE;
682 	u32 saveSWF0[16];
683 	u32 saveSWF1[16];
684 	u32 saveSWF3[3];
685 	uint64_t saveFENCE[I915_MAX_NUM_FENCES];
686 	u32 savePCH_PORT_HOTPLUG;
687 	u16 saveGCDGMBUS;
688 };
689 
690 struct vlv_s0ix_state {
691 	/* GAM */
692 	u32 wr_watermark;
693 	u32 gfx_prio_ctrl;
694 	u32 arb_mode;
695 	u32 gfx_pend_tlb0;
696 	u32 gfx_pend_tlb1;
697 	u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
698 	u32 media_max_req_count;
699 	u32 gfx_max_req_count;
700 	u32 render_hwsp;
701 	u32 ecochk;
702 	u32 bsd_hwsp;
703 	u32 blt_hwsp;
704 	u32 tlb_rd_addr;
705 
706 	/* MBC */
707 	u32 g3dctl;
708 	u32 gsckgctl;
709 	u32 mbctl;
710 
711 	/* GCP */
712 	u32 ucgctl1;
713 	u32 ucgctl3;
714 	u32 rcgctl1;
715 	u32 rcgctl2;
716 	u32 rstctl;
717 	u32 misccpctl;
718 
719 	/* GPM */
720 	u32 gfxpause;
721 	u32 rpdeuhwtc;
722 	u32 rpdeuc;
723 	u32 ecobus;
724 	u32 pwrdwnupctl;
725 	u32 rp_down_timeout;
726 	u32 rp_deucsw;
727 	u32 rcubmabdtmr;
728 	u32 rcedata;
729 	u32 spare2gh;
730 
731 	/* Display 1 CZ domain */
732 	u32 gt_imr;
733 	u32 gt_ier;
734 	u32 pm_imr;
735 	u32 pm_ier;
736 	u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
737 
738 	/* GT SA CZ domain */
739 	u32 tilectl;
740 	u32 gt_fifoctl;
741 	u32 gtlc_wake_ctrl;
742 	u32 gtlc_survive;
743 	u32 pmwgicz;
744 
745 	/* Display 2 CZ domain */
746 	u32 gu_ctl0;
747 	u32 gu_ctl1;
748 	u32 pcbr;
749 	u32 clock_gate_dis2;
750 };
751 
752 struct intel_rps_ei {
753 	ktime_t ktime;
754 	u32 render_c0;
755 	u32 media_c0;
756 };
757 
758 struct intel_rps {
759 	/*
760 	 * work, interrupts_enabled and pm_iir are protected by
761 	 * dev_priv->irq_lock
762 	 */
763 	struct work_struct work;
764 	bool interrupts_enabled;
765 	u32 pm_iir;
766 
767 	/* PM interrupt bits that should never be masked */
768 	u32 pm_intrmsk_mbz;
769 
770 	/* Frequencies are stored in potentially platform dependent multiples.
771 	 * In other words, *_freq needs to be multiplied by X to be interesting.
772 	 * Soft limits are those which are used for the dynamic reclocking done
773 	 * by the driver (raise frequencies under heavy loads, and lower for
774 	 * lighter loads). Hard limits are those imposed by the hardware.
775 	 *
776 	 * A distinction is made for overclocking, which is never enabled by
777 	 * default, and is considered to be above the hard limit if it's
778 	 * possible at all.
779 	 */
780 	u8 cur_freq;		/* Current frequency (cached, may not == HW) */
781 	u8 min_freq_softlimit;	/* Minimum frequency permitted by the driver */
782 	u8 max_freq_softlimit;	/* Max frequency permitted by the driver */
783 	u8 max_freq;		/* Maximum frequency, RP0 if not overclocking */
784 	u8 min_freq;		/* AKA RPn. Minimum frequency */
785 	u8 boost_freq;		/* Frequency to request when wait boosting */
786 	u8 idle_freq;		/* Frequency to request when we are idle */
787 	u8 efficient_freq;	/* AKA RPe. Pre-determined balanced frequency */
788 	u8 rp1_freq;		/* "less than" RP0 power/freqency */
789 	u8 rp0_freq;		/* Non-overclocked max frequency. */
790 	u16 gpll_ref_freq;	/* vlv/chv GPLL reference frequency */
791 
792 	int last_adj;
793 
794 	struct {
795 		struct mutex mutex;
796 
797 		enum { LOW_POWER, BETWEEN, HIGH_POWER } mode;
798 		unsigned int interactive;
799 
800 		u8 up_threshold; /* Current %busy required to uplock */
801 		u8 down_threshold; /* Current %busy required to downclock */
802 	} power;
803 
804 	bool enabled;
805 	atomic_t num_waiters;
806 	atomic_t boosts;
807 
808 	/* manual wa residency calculations */
809 	struct intel_rps_ei ei;
810 };
811 
812 struct intel_rc6 {
813 	bool enabled;
814 	u64 prev_hw_residency[4];
815 	u64 cur_residency[4];
816 };
817 
818 struct intel_llc_pstate {
819 	bool enabled;
820 };
821 
822 struct intel_gen6_power_mgmt {
823 	struct intel_rps rps;
824 	struct intel_rc6 rc6;
825 	struct intel_llc_pstate llc_pstate;
826 };
827 
828 /* defined intel_pm.c */
829 extern spinlock_t mchdev_lock;
830 
831 struct intel_ilk_power_mgmt {
832 	u8 cur_delay;
833 	u8 min_delay;
834 	u8 max_delay;
835 	u8 fmax;
836 	u8 fstart;
837 
838 	u64 last_count1;
839 	unsigned long last_time1;
840 	unsigned long chipset_power;
841 	u64 last_count2;
842 	u64 last_time2;
843 	unsigned long gfx_power;
844 	u8 corr;
845 
846 	int c_m;
847 	int r_t;
848 };
849 
850 struct drm_i915_private;
851 struct i915_power_well;
852 
853 struct i915_power_well_ops {
854 	/*
855 	 * Synchronize the well's hw state to match the current sw state, for
856 	 * example enable/disable it based on the current refcount. Called
857 	 * during driver init and resume time, possibly after first calling
858 	 * the enable/disable handlers.
859 	 */
860 	void (*sync_hw)(struct drm_i915_private *dev_priv,
861 			struct i915_power_well *power_well);
862 	/*
863 	 * Enable the well and resources that depend on it (for example
864 	 * interrupts located on the well). Called after the 0->1 refcount
865 	 * transition.
866 	 */
867 	void (*enable)(struct drm_i915_private *dev_priv,
868 		       struct i915_power_well *power_well);
869 	/*
870 	 * Disable the well and resources that depend on it. Called after
871 	 * the 1->0 refcount transition.
872 	 */
873 	void (*disable)(struct drm_i915_private *dev_priv,
874 			struct i915_power_well *power_well);
875 	/* Returns the hw enabled state. */
876 	bool (*is_enabled)(struct drm_i915_private *dev_priv,
877 			   struct i915_power_well *power_well);
878 };
879 
880 struct i915_power_well_regs {
881 	i915_reg_t bios;
882 	i915_reg_t driver;
883 	i915_reg_t kvmr;
884 	i915_reg_t debug;
885 };
886 
887 /* Power well structure for haswell */
888 struct i915_power_well_desc {
889 	const char *name;
890 	bool always_on;
891 	u64 domains;
892 	/* unique identifier for this power well */
893 	enum i915_power_well_id id;
894 	/*
895 	 * Arbitraty data associated with this power well. Platform and power
896 	 * well specific.
897 	 */
898 	union {
899 		struct {
900 			/*
901 			 * request/status flag index in the PUNIT power well
902 			 * control/status registers.
903 			 */
904 			u8 idx;
905 		} vlv;
906 		struct {
907 			enum dpio_phy phy;
908 		} bxt;
909 		struct {
910 			const struct i915_power_well_regs *regs;
911 			/*
912 			 * request/status flag index in the power well
913 			 * constrol/status registers.
914 			 */
915 			u8 idx;
916 			/* Mask of pipes whose IRQ logic is backed by the pw */
917 			u8 irq_pipe_mask;
918 			/* The pw is backing the VGA functionality */
919 			bool has_vga:1;
920 			bool has_fuses:1;
921 		} hsw;
922 	};
923 	const struct i915_power_well_ops *ops;
924 };
925 
926 struct i915_power_well {
927 	const struct i915_power_well_desc *desc;
928 	/* power well enable/disable usage count */
929 	int count;
930 	/* cached hw enabled state */
931 	bool hw_enabled;
932 };
933 
934 struct i915_power_domains {
935 	/*
936 	 * Power wells needed for initialization at driver init and suspend
937 	 * time are on. They are kept on until after the first modeset.
938 	 */
939 	bool initializing;
940 	bool display_core_suspended;
941 	int power_well_count;
942 
943 	struct mutex lock;
944 	int domain_use_count[POWER_DOMAIN_NUM];
945 	struct i915_power_well *power_wells;
946 };
947 
948 #define MAX_L3_SLICES 2
949 struct intel_l3_parity {
950 	u32 *remap_info[MAX_L3_SLICES];
951 	struct work_struct error_work;
952 	int which_slice;
953 };
954 
955 struct i915_gem_mm {
956 	/** Memory allocator for GTT stolen memory */
957 	struct drm_mm stolen;
958 	/** Protects the usage of the GTT stolen memory allocator. This is
959 	 * always the inner lock when overlapping with struct_mutex. */
960 	struct mutex stolen_lock;
961 
962 	/* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */
963 	spinlock_t obj_lock;
964 
965 	/** List of all objects in gtt_space. Used to restore gtt
966 	 * mappings on resume */
967 	struct list_head bound_list;
968 	/**
969 	 * List of objects which are not bound to the GTT (thus
970 	 * are idle and not used by the GPU). These objects may or may
971 	 * not actually have any pages attached.
972 	 */
973 	struct list_head unbound_list;
974 
975 	/** List of all objects in gtt_space, currently mmaped by userspace.
976 	 * All objects within this list must also be on bound_list.
977 	 */
978 	struct list_head userfault_list;
979 
980 	/**
981 	 * List of objects which are pending destruction.
982 	 */
983 	struct llist_head free_list;
984 	struct work_struct free_work;
985 	spinlock_t free_lock;
986 	/**
987 	 * Count of objects pending destructions. Used to skip needlessly
988 	 * waiting on an RCU barrier if no objects are waiting to be freed.
989 	 */
990 	atomic_t free_count;
991 
992 	/**
993 	 * Small stash of WC pages
994 	 */
995 	struct pagestash wc_stash;
996 
997 	/**
998 	 * tmpfs instance used for shmem backed objects
999 	 */
1000 	struct vfsmount *gemfs;
1001 
1002 	/** PPGTT used for aliasing the PPGTT with the GTT */
1003 	struct i915_hw_ppgtt *aliasing_ppgtt;
1004 
1005 	struct notifier_block oom_notifier;
1006 	struct notifier_block vmap_notifier;
1007 	struct shrinker shrinker;
1008 
1009 	/** LRU list of objects with fence regs on them. */
1010 	struct list_head fence_list;
1011 
1012 	/**
1013 	 * Workqueue to fault in userptr pages, flushed by the execbuf
1014 	 * when required but otherwise left to userspace to try again
1015 	 * on EAGAIN.
1016 	 */
1017 	struct workqueue_struct *userptr_wq;
1018 
1019 	u64 unordered_timeline;
1020 
1021 	/* the indicator for dispatch video commands on two BSD rings */
1022 	atomic_t bsd_engine_dispatch_index;
1023 
1024 	/** Bit 6 swizzling required for X tiling */
1025 	uint32_t bit_6_swizzle_x;
1026 	/** Bit 6 swizzling required for Y tiling */
1027 	uint32_t bit_6_swizzle_y;
1028 
1029 	/* accounting, useful for userland debugging */
1030 	spinlock_t object_stat_lock;
1031 	u64 object_memory;
1032 	u32 object_count;
1033 };
1034 
1035 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */
1036 
1037 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1038 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1039 
1040 #define I915_ENGINE_DEAD_TIMEOUT  (4 * HZ)  /* Seqno, head and subunits dead */
1041 #define I915_SEQNO_DEAD_TIMEOUT   (12 * HZ) /* Seqno dead with active head */
1042 
1043 #define I915_ENGINE_WEDGED_TIMEOUT  (60 * HZ)  /* Reset but no recovery? */
1044 
1045 #define DP_AUX_A 0x40
1046 #define DP_AUX_B 0x10
1047 #define DP_AUX_C 0x20
1048 #define DP_AUX_D 0x30
1049 #define DP_AUX_E 0x50
1050 #define DP_AUX_F 0x60
1051 
1052 #define DDC_PIN_B  0x05
1053 #define DDC_PIN_C  0x04
1054 #define DDC_PIN_D  0x06
1055 
1056 struct ddi_vbt_port_info {
1057 	int max_tmds_clock;
1058 
1059 	/*
1060 	 * This is an index in the HDMI/DVI DDI buffer translation table.
1061 	 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1062 	 * populate this field.
1063 	 */
1064 #define HDMI_LEVEL_SHIFT_UNKNOWN	0xff
1065 	uint8_t hdmi_level_shift;
1066 
1067 	uint8_t supports_dvi:1;
1068 	uint8_t supports_hdmi:1;
1069 	uint8_t supports_dp:1;
1070 	uint8_t supports_edp:1;
1071 
1072 	uint8_t alternate_aux_channel;
1073 	uint8_t alternate_ddc_pin;
1074 
1075 	uint8_t dp_boost_level;
1076 	uint8_t hdmi_boost_level;
1077 	int dp_max_link_rate;		/* 0 for not limited by VBT */
1078 };
1079 
1080 enum psr_lines_to_wait {
1081 	PSR_0_LINES_TO_WAIT = 0,
1082 	PSR_1_LINE_TO_WAIT,
1083 	PSR_4_LINES_TO_WAIT,
1084 	PSR_8_LINES_TO_WAIT
1085 };
1086 
1087 struct intel_vbt_data {
1088 	struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1089 	struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1090 
1091 	/* Feature bits */
1092 	unsigned int int_tv_support:1;
1093 	unsigned int lvds_dither:1;
1094 	unsigned int int_crt_support:1;
1095 	unsigned int lvds_use_ssc:1;
1096 	unsigned int int_lvds_support:1;
1097 	unsigned int display_clock_mode:1;
1098 	unsigned int fdi_rx_polarity_inverted:1;
1099 	unsigned int panel_type:4;
1100 	int lvds_ssc_freq;
1101 	unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1102 
1103 	enum drrs_support_type drrs_type;
1104 
1105 	struct {
1106 		int rate;
1107 		int lanes;
1108 		int preemphasis;
1109 		int vswing;
1110 		bool low_vswing;
1111 		bool initialized;
1112 		int bpp;
1113 		struct edp_power_seq pps;
1114 	} edp;
1115 
1116 	struct {
1117 		bool enable;
1118 		bool full_link;
1119 		bool require_aux_wakeup;
1120 		int idle_frames;
1121 		enum psr_lines_to_wait lines_to_wait;
1122 		int tp1_wakeup_time_us;
1123 		int tp2_tp3_wakeup_time_us;
1124 	} psr;
1125 
1126 	struct {
1127 		u16 pwm_freq_hz;
1128 		bool present;
1129 		bool active_low_pwm;
1130 		u8 min_brightness;	/* min_brightness/255 of max */
1131 		u8 controller;		/* brightness controller number */
1132 		enum intel_backlight_type type;
1133 	} backlight;
1134 
1135 	/* MIPI DSI */
1136 	struct {
1137 		u16 panel_id;
1138 		struct mipi_config *config;
1139 		struct mipi_pps_data *pps;
1140 		u16 bl_ports;
1141 		u16 cabc_ports;
1142 		u8 seq_version;
1143 		u32 size;
1144 		u8 *data;
1145 		const u8 *sequence[MIPI_SEQ_MAX];
1146 		u8 *deassert_seq; /* Used by fixup_mipi_sequences() */
1147 	} dsi;
1148 
1149 	int crt_ddc_pin;
1150 
1151 	int child_dev_num;
1152 	struct child_device_config *child_dev;
1153 
1154 	struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1155 	struct sdvo_device_mapping sdvo_mappings[2];
1156 };
1157 
1158 enum intel_ddb_partitioning {
1159 	INTEL_DDB_PART_1_2,
1160 	INTEL_DDB_PART_5_6, /* IVB+ */
1161 };
1162 
1163 struct intel_wm_level {
1164 	bool enable;
1165 	uint32_t pri_val;
1166 	uint32_t spr_val;
1167 	uint32_t cur_val;
1168 	uint32_t fbc_val;
1169 };
1170 
1171 struct ilk_wm_values {
1172 	uint32_t wm_pipe[3];
1173 	uint32_t wm_lp[3];
1174 	uint32_t wm_lp_spr[3];
1175 	uint32_t wm_linetime[3];
1176 	bool enable_fbc_wm;
1177 	enum intel_ddb_partitioning partitioning;
1178 };
1179 
1180 struct g4x_pipe_wm {
1181 	uint16_t plane[I915_MAX_PLANES];
1182 	uint16_t fbc;
1183 };
1184 
1185 struct g4x_sr_wm {
1186 	uint16_t plane;
1187 	uint16_t cursor;
1188 	uint16_t fbc;
1189 };
1190 
1191 struct vlv_wm_ddl_values {
1192 	uint8_t plane[I915_MAX_PLANES];
1193 };
1194 
1195 struct vlv_wm_values {
1196 	struct g4x_pipe_wm pipe[3];
1197 	struct g4x_sr_wm sr;
1198 	struct vlv_wm_ddl_values ddl[3];
1199 	uint8_t level;
1200 	bool cxsr;
1201 };
1202 
1203 struct g4x_wm_values {
1204 	struct g4x_pipe_wm pipe[2];
1205 	struct g4x_sr_wm sr;
1206 	struct g4x_sr_wm hpll;
1207 	bool cxsr;
1208 	bool hpll_en;
1209 	bool fbc_en;
1210 };
1211 
1212 struct skl_ddb_entry {
1213 	uint16_t start, end;	/* in number of blocks, 'end' is exclusive */
1214 };
1215 
1216 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1217 {
1218 	return entry->end - entry->start;
1219 }
1220 
1221 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1222 				       const struct skl_ddb_entry *e2)
1223 {
1224 	if (e1->start == e2->start && e1->end == e2->end)
1225 		return true;
1226 
1227 	return false;
1228 }
1229 
1230 struct skl_ddb_allocation {
1231 	/* packed/y */
1232 	struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES];
1233 	struct skl_ddb_entry uv_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1234 	u8 enabled_slices; /* GEN11 has configurable 2 slices */
1235 };
1236 
1237 struct skl_ddb_values {
1238 	unsigned dirty_pipes;
1239 	struct skl_ddb_allocation ddb;
1240 };
1241 
1242 struct skl_wm_level {
1243 	bool plane_en;
1244 	uint16_t plane_res_b;
1245 	uint8_t plane_res_l;
1246 };
1247 
1248 /* Stores plane specific WM parameters */
1249 struct skl_wm_params {
1250 	bool x_tiled, y_tiled;
1251 	bool rc_surface;
1252 	bool is_planar;
1253 	uint32_t width;
1254 	uint8_t cpp;
1255 	uint32_t plane_pixel_rate;
1256 	uint32_t y_min_scanlines;
1257 	uint32_t plane_bytes_per_line;
1258 	uint_fixed_16_16_t plane_blocks_per_line;
1259 	uint_fixed_16_16_t y_tile_minimum;
1260 	uint32_t linetime_us;
1261 	uint32_t dbuf_block_size;
1262 };
1263 
1264 /*
1265  * This struct helps tracking the state needed for runtime PM, which puts the
1266  * device in PCI D3 state. Notice that when this happens, nothing on the
1267  * graphics device works, even register access, so we don't get interrupts nor
1268  * anything else.
1269  *
1270  * Every piece of our code that needs to actually touch the hardware needs to
1271  * either call intel_runtime_pm_get or call intel_display_power_get with the
1272  * appropriate power domain.
1273  *
1274  * Our driver uses the autosuspend delay feature, which means we'll only really
1275  * suspend if we stay with zero refcount for a certain amount of time. The
1276  * default value is currently very conservative (see intel_runtime_pm_enable), but
1277  * it can be changed with the standard runtime PM files from sysfs.
1278  *
1279  * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1280  * goes back to false exactly before we reenable the IRQs. We use this variable
1281  * to check if someone is trying to enable/disable IRQs while they're supposed
1282  * to be disabled. This shouldn't happen and we'll print some error messages in
1283  * case it happens.
1284  *
1285  * For more, read the Documentation/power/runtime_pm.txt.
1286  */
1287 struct i915_runtime_pm {
1288 	atomic_t wakeref_count;
1289 	bool suspended;
1290 	bool irqs_enabled;
1291 };
1292 
1293 enum intel_pipe_crc_source {
1294 	INTEL_PIPE_CRC_SOURCE_NONE,
1295 	INTEL_PIPE_CRC_SOURCE_PLANE1,
1296 	INTEL_PIPE_CRC_SOURCE_PLANE2,
1297 	INTEL_PIPE_CRC_SOURCE_PF,
1298 	INTEL_PIPE_CRC_SOURCE_PIPE,
1299 	/* TV/DP on pre-gen5/vlv can't use the pipe source. */
1300 	INTEL_PIPE_CRC_SOURCE_TV,
1301 	INTEL_PIPE_CRC_SOURCE_DP_B,
1302 	INTEL_PIPE_CRC_SOURCE_DP_C,
1303 	INTEL_PIPE_CRC_SOURCE_DP_D,
1304 	INTEL_PIPE_CRC_SOURCE_AUTO,
1305 	INTEL_PIPE_CRC_SOURCE_MAX,
1306 };
1307 
1308 #define INTEL_PIPE_CRC_ENTRIES_NR	128
1309 struct intel_pipe_crc {
1310 	spinlock_t lock;
1311 	int skipped;
1312 	enum intel_pipe_crc_source source;
1313 };
1314 
1315 struct i915_frontbuffer_tracking {
1316 	spinlock_t lock;
1317 
1318 	/*
1319 	 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1320 	 * scheduled flips.
1321 	 */
1322 	unsigned busy_bits;
1323 	unsigned flip_bits;
1324 };
1325 
1326 struct i915_wa_reg {
1327 	u32 addr;
1328 	u32 value;
1329 	/* bitmask representing WA bits */
1330 	u32 mask;
1331 };
1332 
1333 #define I915_MAX_WA_REGS 16
1334 
1335 struct i915_workarounds {
1336 	struct i915_wa_reg reg[I915_MAX_WA_REGS];
1337 	u32 count;
1338 };
1339 
1340 struct i915_virtual_gpu {
1341 	bool active;
1342 	u32 caps;
1343 };
1344 
1345 /* used in computing the new watermarks state */
1346 struct intel_wm_config {
1347 	unsigned int num_pipes_active;
1348 	bool sprites_enabled;
1349 	bool sprites_scaled;
1350 };
1351 
1352 struct i915_oa_format {
1353 	u32 format;
1354 	int size;
1355 };
1356 
1357 struct i915_oa_reg {
1358 	i915_reg_t addr;
1359 	u32 value;
1360 };
1361 
1362 struct i915_oa_config {
1363 	char uuid[UUID_STRING_LEN + 1];
1364 	int id;
1365 
1366 	const struct i915_oa_reg *mux_regs;
1367 	u32 mux_regs_len;
1368 	const struct i915_oa_reg *b_counter_regs;
1369 	u32 b_counter_regs_len;
1370 	const struct i915_oa_reg *flex_regs;
1371 	u32 flex_regs_len;
1372 
1373 	struct attribute_group sysfs_metric;
1374 	struct attribute *attrs[2];
1375 	struct device_attribute sysfs_metric_id;
1376 
1377 	atomic_t ref_count;
1378 };
1379 
1380 struct i915_perf_stream;
1381 
1382 /**
1383  * struct i915_perf_stream_ops - the OPs to support a specific stream type
1384  */
1385 struct i915_perf_stream_ops {
1386 	/**
1387 	 * @enable: Enables the collection of HW samples, either in response to
1388 	 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1389 	 * without `I915_PERF_FLAG_DISABLED`.
1390 	 */
1391 	void (*enable)(struct i915_perf_stream *stream);
1392 
1393 	/**
1394 	 * @disable: Disables the collection of HW samples, either in response
1395 	 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1396 	 * the stream.
1397 	 */
1398 	void (*disable)(struct i915_perf_stream *stream);
1399 
1400 	/**
1401 	 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1402 	 * once there is something ready to read() for the stream
1403 	 */
1404 	void (*poll_wait)(struct i915_perf_stream *stream,
1405 			  struct file *file,
1406 			  poll_table *wait);
1407 
1408 	/**
1409 	 * @wait_unlocked: For handling a blocking read, wait until there is
1410 	 * something to ready to read() for the stream. E.g. wait on the same
1411 	 * wait queue that would be passed to poll_wait().
1412 	 */
1413 	int (*wait_unlocked)(struct i915_perf_stream *stream);
1414 
1415 	/**
1416 	 * @read: Copy buffered metrics as records to userspace
1417 	 * **buf**: the userspace, destination buffer
1418 	 * **count**: the number of bytes to copy, requested by userspace
1419 	 * **offset**: zero at the start of the read, updated as the read
1420 	 * proceeds, it represents how many bytes have been copied so far and
1421 	 * the buffer offset for copying the next record.
1422 	 *
1423 	 * Copy as many buffered i915 perf samples and records for this stream
1424 	 * to userspace as will fit in the given buffer.
1425 	 *
1426 	 * Only write complete records; returning -%ENOSPC if there isn't room
1427 	 * for a complete record.
1428 	 *
1429 	 * Return any error condition that results in a short read such as
1430 	 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1431 	 * returning to userspace.
1432 	 */
1433 	int (*read)(struct i915_perf_stream *stream,
1434 		    char __user *buf,
1435 		    size_t count,
1436 		    size_t *offset);
1437 
1438 	/**
1439 	 * @destroy: Cleanup any stream specific resources.
1440 	 *
1441 	 * The stream will always be disabled before this is called.
1442 	 */
1443 	void (*destroy)(struct i915_perf_stream *stream);
1444 };
1445 
1446 /**
1447  * struct i915_perf_stream - state for a single open stream FD
1448  */
1449 struct i915_perf_stream {
1450 	/**
1451 	 * @dev_priv: i915 drm device
1452 	 */
1453 	struct drm_i915_private *dev_priv;
1454 
1455 	/**
1456 	 * @link: Links the stream into ``&drm_i915_private->streams``
1457 	 */
1458 	struct list_head link;
1459 
1460 	/**
1461 	 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
1462 	 * properties given when opening a stream, representing the contents
1463 	 * of a single sample as read() by userspace.
1464 	 */
1465 	u32 sample_flags;
1466 
1467 	/**
1468 	 * @sample_size: Considering the configured contents of a sample
1469 	 * combined with the required header size, this is the total size
1470 	 * of a single sample record.
1471 	 */
1472 	int sample_size;
1473 
1474 	/**
1475 	 * @ctx: %NULL if measuring system-wide across all contexts or a
1476 	 * specific context that is being monitored.
1477 	 */
1478 	struct i915_gem_context *ctx;
1479 
1480 	/**
1481 	 * @enabled: Whether the stream is currently enabled, considering
1482 	 * whether the stream was opened in a disabled state and based
1483 	 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
1484 	 */
1485 	bool enabled;
1486 
1487 	/**
1488 	 * @ops: The callbacks providing the implementation of this specific
1489 	 * type of configured stream.
1490 	 */
1491 	const struct i915_perf_stream_ops *ops;
1492 
1493 	/**
1494 	 * @oa_config: The OA configuration used by the stream.
1495 	 */
1496 	struct i915_oa_config *oa_config;
1497 };
1498 
1499 /**
1500  * struct i915_oa_ops - Gen specific implementation of an OA unit stream
1501  */
1502 struct i915_oa_ops {
1503 	/**
1504 	 * @is_valid_b_counter_reg: Validates register's address for
1505 	 * programming boolean counters for a particular platform.
1506 	 */
1507 	bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
1508 				       u32 addr);
1509 
1510 	/**
1511 	 * @is_valid_mux_reg: Validates register's address for programming mux
1512 	 * for a particular platform.
1513 	 */
1514 	bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
1515 
1516 	/**
1517 	 * @is_valid_flex_reg: Validates register's address for programming
1518 	 * flex EU filtering for a particular platform.
1519 	 */
1520 	bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
1521 
1522 	/**
1523 	 * @init_oa_buffer: Resets the head and tail pointers of the
1524 	 * circular buffer for periodic OA reports.
1525 	 *
1526 	 * Called when first opening a stream for OA metrics, but also may be
1527 	 * called in response to an OA buffer overflow or other error
1528 	 * condition.
1529 	 *
1530 	 * Note it may be necessary to clear the full OA buffer here as part of
1531 	 * maintaining the invariable that new reports must be written to
1532 	 * zeroed memory for us to be able to reliable detect if an expected
1533 	 * report has not yet landed in memory.  (At least on Haswell the OA
1534 	 * buffer tail pointer is not synchronized with reports being visible
1535 	 * to the CPU)
1536 	 */
1537 	void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
1538 
1539 	/**
1540 	 * @enable_metric_set: Selects and applies any MUX configuration to set
1541 	 * up the Boolean and Custom (B/C) counters that are part of the
1542 	 * counter reports being sampled. May apply system constraints such as
1543 	 * disabling EU clock gating as required.
1544 	 */
1545 	int (*enable_metric_set)(struct drm_i915_private *dev_priv,
1546 				 const struct i915_oa_config *oa_config);
1547 
1548 	/**
1549 	 * @disable_metric_set: Remove system constraints associated with using
1550 	 * the OA unit.
1551 	 */
1552 	void (*disable_metric_set)(struct drm_i915_private *dev_priv);
1553 
1554 	/**
1555 	 * @oa_enable: Enable periodic sampling
1556 	 */
1557 	void (*oa_enable)(struct drm_i915_private *dev_priv);
1558 
1559 	/**
1560 	 * @oa_disable: Disable periodic sampling
1561 	 */
1562 	void (*oa_disable)(struct drm_i915_private *dev_priv);
1563 
1564 	/**
1565 	 * @read: Copy data from the circular OA buffer into a given userspace
1566 	 * buffer.
1567 	 */
1568 	int (*read)(struct i915_perf_stream *stream,
1569 		    char __user *buf,
1570 		    size_t count,
1571 		    size_t *offset);
1572 
1573 	/**
1574 	 * @oa_hw_tail_read: read the OA tail pointer register
1575 	 *
1576 	 * In particular this enables us to share all the fiddly code for
1577 	 * handling the OA unit tail pointer race that affects multiple
1578 	 * generations.
1579 	 */
1580 	u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
1581 };
1582 
1583 struct intel_cdclk_state {
1584 	unsigned int cdclk, vco, ref, bypass;
1585 	u8 voltage_level;
1586 };
1587 
1588 struct drm_i915_private {
1589 	struct drm_device drm;
1590 
1591 	struct kmem_cache *objects;
1592 	struct kmem_cache *vmas;
1593 	struct kmem_cache *luts;
1594 	struct kmem_cache *requests;
1595 	struct kmem_cache *dependencies;
1596 	struct kmem_cache *priorities;
1597 
1598 	const struct intel_device_info info;
1599 	struct intel_driver_caps caps;
1600 
1601 	/**
1602 	 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and
1603 	 * end of stolen which we can optionally use to create GEM objects
1604 	 * backed by stolen memory. Note that stolen_usable_size tells us
1605 	 * exactly how much of this we are actually allowed to use, given that
1606 	 * some portion of it is in fact reserved for use by hardware functions.
1607 	 */
1608 	struct resource dsm;
1609 	/**
1610 	 * Reseved portion of Data Stolen Memory
1611 	 */
1612 	struct resource dsm_reserved;
1613 
1614 	/*
1615 	 * Stolen memory is segmented in hardware with different portions
1616 	 * offlimits to certain functions.
1617 	 *
1618 	 * The drm_mm is initialised to the total accessible range, as found
1619 	 * from the PCI config. On Broadwell+, this is further restricted to
1620 	 * avoid the first page! The upper end of stolen memory is reserved for
1621 	 * hardware functions and similarly removed from the accessible range.
1622 	 */
1623 	resource_size_t stolen_usable_size;	/* Total size minus reserved ranges */
1624 
1625 	void __iomem *regs;
1626 
1627 	struct intel_uncore uncore;
1628 
1629 	struct i915_virtual_gpu vgpu;
1630 
1631 	struct intel_gvt *gvt;
1632 
1633 	struct intel_wopcm wopcm;
1634 
1635 	struct intel_huc huc;
1636 	struct intel_guc guc;
1637 
1638 	struct intel_csr csr;
1639 
1640 	struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1641 
1642 	/** gmbus_mutex protects against concurrent usage of the single hw gmbus
1643 	 * controller on different i2c buses. */
1644 	struct mutex gmbus_mutex;
1645 
1646 	/**
1647 	 * Base address of where the gmbus and gpio blocks are located (either
1648 	 * on PCH or on SoC for platforms without PCH).
1649 	 */
1650 	uint32_t gpio_mmio_base;
1651 
1652 	/* MMIO base address for MIPI regs */
1653 	uint32_t mipi_mmio_base;
1654 
1655 	uint32_t psr_mmio_base;
1656 
1657 	uint32_t pps_mmio_base;
1658 
1659 	wait_queue_head_t gmbus_wait_queue;
1660 
1661 	struct pci_dev *bridge_dev;
1662 	struct intel_engine_cs *engine[I915_NUM_ENGINES];
1663 	/* Context used internally to idle the GPU and setup initial state */
1664 	struct i915_gem_context *kernel_context;
1665 	/* Context only to be used for injecting preemption commands */
1666 	struct i915_gem_context *preempt_context;
1667 	struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1]
1668 					    [MAX_ENGINE_INSTANCE + 1];
1669 
1670 	struct resource mch_res;
1671 
1672 	/* protects the irq masks */
1673 	spinlock_t irq_lock;
1674 
1675 	bool display_irqs_enabled;
1676 
1677 	/* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1678 	struct pm_qos_request pm_qos;
1679 
1680 	/* Sideband mailbox protection */
1681 	struct mutex sb_lock;
1682 
1683 	/** Cached value of IMR to avoid reads in updating the bitfield */
1684 	union {
1685 		u32 irq_mask;
1686 		u32 de_irq_mask[I915_MAX_PIPES];
1687 	};
1688 	u32 gt_irq_mask;
1689 	u32 pm_imr;
1690 	u32 pm_ier;
1691 	u32 pm_rps_events;
1692 	u32 pm_guc_events;
1693 	u32 pipestat_irq_mask[I915_MAX_PIPES];
1694 
1695 	struct i915_hotplug hotplug;
1696 	struct intel_fbc fbc;
1697 	struct i915_drrs drrs;
1698 	struct intel_opregion opregion;
1699 	struct intel_vbt_data vbt;
1700 
1701 	bool preserve_bios_swizzle;
1702 
1703 	/* overlay */
1704 	struct intel_overlay *overlay;
1705 
1706 	/* backlight registers and fields in struct intel_panel */
1707 	struct mutex backlight_lock;
1708 
1709 	/* LVDS info */
1710 	bool no_aux_handshake;
1711 
1712 	/* protects panel power sequencer state */
1713 	struct mutex pps_mutex;
1714 
1715 	struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1716 	int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1717 
1718 	unsigned int fsb_freq, mem_freq, is_ddr3;
1719 	unsigned int skl_preferred_vco_freq;
1720 	unsigned int max_cdclk_freq;
1721 
1722 	unsigned int max_dotclk_freq;
1723 	unsigned int rawclk_freq;
1724 	unsigned int hpll_freq;
1725 	unsigned int fdi_pll_freq;
1726 	unsigned int czclk_freq;
1727 
1728 	struct {
1729 		/*
1730 		 * The current logical cdclk state.
1731 		 * See intel_atomic_state.cdclk.logical
1732 		 *
1733 		 * For reading holding any crtc lock is sufficient,
1734 		 * for writing must hold all of them.
1735 		 */
1736 		struct intel_cdclk_state logical;
1737 		/*
1738 		 * The current actual cdclk state.
1739 		 * See intel_atomic_state.cdclk.actual
1740 		 */
1741 		struct intel_cdclk_state actual;
1742 		/* The current hardware cdclk state */
1743 		struct intel_cdclk_state hw;
1744 	} cdclk;
1745 
1746 	/**
1747 	 * wq - Driver workqueue for GEM.
1748 	 *
1749 	 * NOTE: Work items scheduled here are not allowed to grab any modeset
1750 	 * locks, for otherwise the flushing done in the pageflip code will
1751 	 * result in deadlocks.
1752 	 */
1753 	struct workqueue_struct *wq;
1754 
1755 	/* ordered wq for modesets */
1756 	struct workqueue_struct *modeset_wq;
1757 
1758 	/* Display functions */
1759 	struct drm_i915_display_funcs display;
1760 
1761 	/* PCH chipset type */
1762 	enum intel_pch pch_type;
1763 	unsigned short pch_id;
1764 
1765 	unsigned long quirks;
1766 
1767 	struct drm_atomic_state *modeset_restore_state;
1768 	struct drm_modeset_acquire_ctx reset_ctx;
1769 
1770 	struct i915_ggtt ggtt; /* VM representing the global address space */
1771 
1772 	struct i915_gem_mm mm;
1773 	DECLARE_HASHTABLE(mm_structs, 7);
1774 	struct mutex mm_lock;
1775 
1776 	struct intel_ppat ppat;
1777 
1778 	/* Kernel Modesetting */
1779 
1780 	struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1781 	struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1782 
1783 #ifdef CONFIG_DEBUG_FS
1784 	struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1785 #endif
1786 
1787 	/* dpll and cdclk state is protected by connection_mutex */
1788 	int num_shared_dpll;
1789 	struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1790 	const struct intel_dpll_mgr *dpll_mgr;
1791 
1792 	/*
1793 	 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1794 	 * Must be global rather than per dpll, because on some platforms
1795 	 * plls share registers.
1796 	 */
1797 	struct mutex dpll_lock;
1798 
1799 	unsigned int active_crtcs;
1800 	/* minimum acceptable cdclk for each pipe */
1801 	int min_cdclk[I915_MAX_PIPES];
1802 	/* minimum acceptable voltage level for each pipe */
1803 	u8 min_voltage_level[I915_MAX_PIPES];
1804 
1805 	int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1806 
1807 	struct i915_workarounds workarounds;
1808 
1809 	struct i915_frontbuffer_tracking fb_tracking;
1810 
1811 	struct intel_atomic_helper {
1812 		struct llist_head free_list;
1813 		struct work_struct free_work;
1814 	} atomic_helper;
1815 
1816 	u16 orig_clock;
1817 
1818 	bool mchbar_need_disable;
1819 
1820 	struct intel_l3_parity l3_parity;
1821 
1822 	/* Cannot be determined by PCIID. You must always read a register. */
1823 	u32 edram_cap;
1824 
1825 	/*
1826 	 * Protects RPS/RC6 register access and PCU communication.
1827 	 * Must be taken after struct_mutex if nested. Note that
1828 	 * this lock may be held for long periods of time when
1829 	 * talking to hw - so only take it when talking to hw!
1830 	 */
1831 	struct mutex pcu_lock;
1832 
1833 	/* gen6+ GT PM state */
1834 	struct intel_gen6_power_mgmt gt_pm;
1835 
1836 	/* ilk-only ips/rps state. Everything in here is protected by the global
1837 	 * mchdev_lock in intel_pm.c */
1838 	struct intel_ilk_power_mgmt ips;
1839 
1840 	struct i915_power_domains power_domains;
1841 
1842 	struct i915_psr psr;
1843 
1844 	struct i915_gpu_error gpu_error;
1845 
1846 	struct drm_i915_gem_object *vlv_pctx;
1847 
1848 	/* list of fbdev register on this device */
1849 	struct intel_fbdev *fbdev;
1850 	struct work_struct fbdev_suspend_work;
1851 
1852 	struct drm_property *broadcast_rgb_property;
1853 	struct drm_property *force_audio_property;
1854 
1855 	/* hda/i915 audio component */
1856 	struct i915_audio_component *audio_component;
1857 	bool audio_component_registered;
1858 	/**
1859 	 * av_mutex - mutex for audio/video sync
1860 	 *
1861 	 */
1862 	struct mutex av_mutex;
1863 
1864 	struct {
1865 		struct mutex mutex;
1866 		struct list_head list;
1867 		struct llist_head free_list;
1868 		struct work_struct free_work;
1869 
1870 		/* The hw wants to have a stable context identifier for the
1871 		 * lifetime of the context (for OA, PASID, faults, etc).
1872 		 * This is limited in execlists to 21 bits.
1873 		 */
1874 		struct ida hw_ida;
1875 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1876 #define MAX_GUC_CONTEXT_HW_ID (1 << 20) /* exclusive */
1877 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */
1878 		struct list_head hw_id_list;
1879 	} contexts;
1880 
1881 	u32 fdi_rx_config;
1882 
1883 	/* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1884 	u32 chv_phy_control;
1885 	/*
1886 	 * Shadows for CHV DPLL_MD regs to keep the state
1887 	 * checker somewhat working in the presence hardware
1888 	 * crappiness (can't read out DPLL_MD for pipes B & C).
1889 	 */
1890 	u32 chv_dpll_md[I915_MAX_PIPES];
1891 	u32 bxt_phy_grc;
1892 
1893 	u32 suspend_count;
1894 	bool power_domains_suspended;
1895 	struct i915_suspend_saved_registers regfile;
1896 	struct vlv_s0ix_state vlv_s0ix_state;
1897 
1898 	enum {
1899 		I915_SAGV_UNKNOWN = 0,
1900 		I915_SAGV_DISABLED,
1901 		I915_SAGV_ENABLED,
1902 		I915_SAGV_NOT_CONTROLLED
1903 	} sagv_status;
1904 
1905 	struct {
1906 		/*
1907 		 * Raw watermark latency values:
1908 		 * in 0.1us units for WM0,
1909 		 * in 0.5us units for WM1+.
1910 		 */
1911 		/* primary */
1912 		uint16_t pri_latency[5];
1913 		/* sprite */
1914 		uint16_t spr_latency[5];
1915 		/* cursor */
1916 		uint16_t cur_latency[5];
1917 		/*
1918 		 * Raw watermark memory latency values
1919 		 * for SKL for all 8 levels
1920 		 * in 1us units.
1921 		 */
1922 		uint16_t skl_latency[8];
1923 
1924 		/* current hardware state */
1925 		union {
1926 			struct ilk_wm_values hw;
1927 			struct skl_ddb_values skl_hw;
1928 			struct vlv_wm_values vlv;
1929 			struct g4x_wm_values g4x;
1930 		};
1931 
1932 		uint8_t max_level;
1933 
1934 		/*
1935 		 * Should be held around atomic WM register writing; also
1936 		 * protects * intel_crtc->wm.active and
1937 		 * cstate->wm.need_postvbl_update.
1938 		 */
1939 		struct mutex wm_mutex;
1940 
1941 		/*
1942 		 * Set during HW readout of watermarks/DDB.  Some platforms
1943 		 * need to know when we're still using BIOS-provided values
1944 		 * (which we don't fully trust).
1945 		 */
1946 		bool distrust_bios_wm;
1947 	} wm;
1948 
1949 	struct dram_info {
1950 		bool valid;
1951 		bool is_16gb_dimm;
1952 		u8 num_channels;
1953 		enum dram_rank {
1954 			I915_DRAM_RANK_INVALID = 0,
1955 			I915_DRAM_RANK_SINGLE,
1956 			I915_DRAM_RANK_DUAL
1957 		} rank;
1958 		u32 bandwidth_kbps;
1959 		bool symmetric_memory;
1960 	} dram_info;
1961 
1962 	struct i915_runtime_pm runtime_pm;
1963 
1964 	struct {
1965 		bool initialized;
1966 
1967 		struct kobject *metrics_kobj;
1968 		struct ctl_table_header *sysctl_header;
1969 
1970 		/*
1971 		 * Lock associated with adding/modifying/removing OA configs
1972 		 * in dev_priv->perf.metrics_idr.
1973 		 */
1974 		struct mutex metrics_lock;
1975 
1976 		/*
1977 		 * List of dynamic configurations, you need to hold
1978 		 * dev_priv->perf.metrics_lock to access it.
1979 		 */
1980 		struct idr metrics_idr;
1981 
1982 		/*
1983 		 * Lock associated with anything below within this structure
1984 		 * except exclusive_stream.
1985 		 */
1986 		struct mutex lock;
1987 		struct list_head streams;
1988 
1989 		struct {
1990 			/*
1991 			 * The stream currently using the OA unit. If accessed
1992 			 * outside a syscall associated to its file
1993 			 * descriptor, you need to hold
1994 			 * dev_priv->drm.struct_mutex.
1995 			 */
1996 			struct i915_perf_stream *exclusive_stream;
1997 
1998 			struct intel_context *pinned_ctx;
1999 			u32 specific_ctx_id;
2000 			u32 specific_ctx_id_mask;
2001 
2002 			struct hrtimer poll_check_timer;
2003 			wait_queue_head_t poll_wq;
2004 			bool pollin;
2005 
2006 			/**
2007 			 * For rate limiting any notifications of spurious
2008 			 * invalid OA reports
2009 			 */
2010 			struct ratelimit_state spurious_report_rs;
2011 
2012 			bool periodic;
2013 			int period_exponent;
2014 
2015 			struct i915_oa_config test_config;
2016 
2017 			struct {
2018 				struct i915_vma *vma;
2019 				u8 *vaddr;
2020 				u32 last_ctx_id;
2021 				int format;
2022 				int format_size;
2023 
2024 				/**
2025 				 * Locks reads and writes to all head/tail state
2026 				 *
2027 				 * Consider: the head and tail pointer state
2028 				 * needs to be read consistently from a hrtimer
2029 				 * callback (atomic context) and read() fop
2030 				 * (user context) with tail pointer updates
2031 				 * happening in atomic context and head updates
2032 				 * in user context and the (unlikely)
2033 				 * possibility of read() errors needing to
2034 				 * reset all head/tail state.
2035 				 *
2036 				 * Note: Contention or performance aren't
2037 				 * currently a significant concern here
2038 				 * considering the relatively low frequency of
2039 				 * hrtimer callbacks (5ms period) and that
2040 				 * reads typically only happen in response to a
2041 				 * hrtimer event and likely complete before the
2042 				 * next callback.
2043 				 *
2044 				 * Note: This lock is not held *while* reading
2045 				 * and copying data to userspace so the value
2046 				 * of head observed in htrimer callbacks won't
2047 				 * represent any partial consumption of data.
2048 				 */
2049 				spinlock_t ptr_lock;
2050 
2051 				/**
2052 				 * One 'aging' tail pointer and one 'aged'
2053 				 * tail pointer ready to used for reading.
2054 				 *
2055 				 * Initial values of 0xffffffff are invalid
2056 				 * and imply that an update is required
2057 				 * (and should be ignored by an attempted
2058 				 * read)
2059 				 */
2060 				struct {
2061 					u32 offset;
2062 				} tails[2];
2063 
2064 				/**
2065 				 * Index for the aged tail ready to read()
2066 				 * data up to.
2067 				 */
2068 				unsigned int aged_tail_idx;
2069 
2070 				/**
2071 				 * A monotonic timestamp for when the current
2072 				 * aging tail pointer was read; used to
2073 				 * determine when it is old enough to trust.
2074 				 */
2075 				u64 aging_timestamp;
2076 
2077 				/**
2078 				 * Although we can always read back the head
2079 				 * pointer register, we prefer to avoid
2080 				 * trusting the HW state, just to avoid any
2081 				 * risk that some hardware condition could
2082 				 * somehow bump the head pointer unpredictably
2083 				 * and cause us to forward the wrong OA buffer
2084 				 * data to userspace.
2085 				 */
2086 				u32 head;
2087 			} oa_buffer;
2088 
2089 			u32 gen7_latched_oastatus1;
2090 			u32 ctx_oactxctrl_offset;
2091 			u32 ctx_flexeu0_offset;
2092 
2093 			/**
2094 			 * The RPT_ID/reason field for Gen8+ includes a bit
2095 			 * to determine if the CTX ID in the report is valid
2096 			 * but the specific bit differs between Gen 8 and 9
2097 			 */
2098 			u32 gen8_valid_ctx_bit;
2099 
2100 			struct i915_oa_ops ops;
2101 			const struct i915_oa_format *oa_formats;
2102 		} oa;
2103 	} perf;
2104 
2105 	/* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2106 	struct {
2107 		void (*resume)(struct drm_i915_private *);
2108 		void (*cleanup_engine)(struct intel_engine_cs *engine);
2109 
2110 		struct list_head timelines;
2111 
2112 		struct list_head active_rings;
2113 		struct list_head closed_vma;
2114 		u32 active_requests;
2115 		u32 request_serial;
2116 
2117 		/**
2118 		 * Is the GPU currently considered idle, or busy executing
2119 		 * userspace requests? Whilst idle, we allow runtime power
2120 		 * management to power down the hardware and display clocks.
2121 		 * In order to reduce the effect on performance, there
2122 		 * is a slight delay before we do so.
2123 		 */
2124 		bool awake;
2125 
2126 		/**
2127 		 * The number of times we have woken up.
2128 		 */
2129 		unsigned int epoch;
2130 #define I915_EPOCH_INVALID 0
2131 
2132 		/**
2133 		 * We leave the user IRQ off as much as possible,
2134 		 * but this means that requests will finish and never
2135 		 * be retired once the system goes idle. Set a timer to
2136 		 * fire periodically while the ring is running. When it
2137 		 * fires, go retire requests.
2138 		 */
2139 		struct delayed_work retire_work;
2140 
2141 		/**
2142 		 * When we detect an idle GPU, we want to turn on
2143 		 * powersaving features. So once we see that there
2144 		 * are no more requests outstanding and no more
2145 		 * arrive within a small period of time, we fire
2146 		 * off the idle_work.
2147 		 */
2148 		struct delayed_work idle_work;
2149 
2150 		ktime_t last_init_time;
2151 	} gt;
2152 
2153 	/* perform PHY state sanity checks? */
2154 	bool chv_phy_assert[2];
2155 
2156 	bool ipc_enabled;
2157 
2158 	/* Used to save the pipe-to-encoder mapping for audio */
2159 	struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2160 
2161 	/* necessary resource sharing with HDMI LPE audio driver. */
2162 	struct {
2163 		struct platform_device *platdev;
2164 		int	irq;
2165 	} lpe_audio;
2166 
2167 	struct i915_pmu pmu;
2168 
2169 	/*
2170 	 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2171 	 * will be rejected. Instead look for a better place.
2172 	 */
2173 };
2174 
2175 struct dram_channel_info {
2176 	struct info {
2177 		u8 size, width;
2178 		enum dram_rank rank;
2179 	} l_info, s_info;
2180 	enum dram_rank rank;
2181 	bool is_16gb_dimm;
2182 };
2183 
2184 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2185 {
2186 	return container_of(dev, struct drm_i915_private, drm);
2187 }
2188 
2189 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2190 {
2191 	return to_i915(dev_get_drvdata(kdev));
2192 }
2193 
2194 static inline struct drm_i915_private *wopcm_to_i915(struct intel_wopcm *wopcm)
2195 {
2196 	return container_of(wopcm, struct drm_i915_private, wopcm);
2197 }
2198 
2199 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2200 {
2201 	return container_of(guc, struct drm_i915_private, guc);
2202 }
2203 
2204 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2205 {
2206 	return container_of(huc, struct drm_i915_private, huc);
2207 }
2208 
2209 /* Simple iterator over all initialised engines */
2210 #define for_each_engine(engine__, dev_priv__, id__) \
2211 	for ((id__) = 0; \
2212 	     (id__) < I915_NUM_ENGINES; \
2213 	     (id__)++) \
2214 		for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2215 
2216 /* Iterator over subset of engines selected by mask */
2217 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2218 	for ((tmp__) = (mask__) & INTEL_INFO(dev_priv__)->ring_mask; \
2219 	     (tmp__) ? \
2220 	     ((engine__) = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : \
2221 	     0;)
2222 
2223 enum hdmi_force_audio {
2224 	HDMI_AUDIO_OFF_DVI = -2,	/* no aux data for HDMI-DVI converter */
2225 	HDMI_AUDIO_OFF,			/* force turn off HDMI audio */
2226 	HDMI_AUDIO_AUTO,		/* trust EDID */
2227 	HDMI_AUDIO_ON,			/* force turn on HDMI audio */
2228 };
2229 
2230 #define I915_GTT_OFFSET_NONE ((u32)-1)
2231 
2232 /*
2233  * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2234  * considered to be the frontbuffer for the given plane interface-wise. This
2235  * doesn't mean that the hw necessarily already scans it out, but that any
2236  * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2237  *
2238  * We have one bit per pipe and per scanout plane type.
2239  */
2240 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2241 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \
2242 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \
2243 	BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \
2244 	BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \
2245 })
2246 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2247 	BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2248 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2249 	GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \
2250 		INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2251 
2252 /*
2253  * Optimised SGL iterator for GEM objects
2254  */
2255 static __always_inline struct sgt_iter {
2256 	struct scatterlist *sgp;
2257 	union {
2258 		unsigned long pfn;
2259 		dma_addr_t dma;
2260 	};
2261 	unsigned int curr;
2262 	unsigned int max;
2263 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2264 	struct sgt_iter s = { .sgp = sgl };
2265 
2266 	if (s.sgp) {
2267 		s.max = s.curr = s.sgp->offset;
2268 		s.max += s.sgp->length;
2269 		if (dma)
2270 			s.dma = sg_dma_address(s.sgp);
2271 		else
2272 			s.pfn = page_to_pfn(sg_page(s.sgp));
2273 	}
2274 
2275 	return s;
2276 }
2277 
2278 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2279 {
2280 	++sg;
2281 	if (unlikely(sg_is_chain(sg)))
2282 		sg = sg_chain_ptr(sg);
2283 	return sg;
2284 }
2285 
2286 /**
2287  * __sg_next - return the next scatterlist entry in a list
2288  * @sg:		The current sg entry
2289  *
2290  * Description:
2291  *   If the entry is the last, return NULL; otherwise, step to the next
2292  *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2293  *   otherwise just return the pointer to the current element.
2294  **/
2295 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2296 {
2297 	return sg_is_last(sg) ? NULL : ____sg_next(sg);
2298 }
2299 
2300 /**
2301  * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2302  * @__dmap:	DMA address (output)
2303  * @__iter:	'struct sgt_iter' (iterator state, internal)
2304  * @__sgt:	sg_table to iterate over (input)
2305  */
2306 #define for_each_sgt_dma(__dmap, __iter, __sgt)				\
2307 	for ((__iter) = __sgt_iter((__sgt)->sgl, true);			\
2308 	     ((__dmap) = (__iter).dma + (__iter).curr);			\
2309 	     (((__iter).curr += I915_GTT_PAGE_SIZE) >= (__iter).max) ?	\
2310 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0)
2311 
2312 /**
2313  * for_each_sgt_page - iterate over the pages of the given sg_table
2314  * @__pp:	page pointer (output)
2315  * @__iter:	'struct sgt_iter' (iterator state, internal)
2316  * @__sgt:	sg_table to iterate over (input)
2317  */
2318 #define for_each_sgt_page(__pp, __iter, __sgt)				\
2319 	for ((__iter) = __sgt_iter((__sgt)->sgl, false);		\
2320 	     ((__pp) = (__iter).pfn == 0 ? NULL :			\
2321 	      pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2322 	     (((__iter).curr += PAGE_SIZE) >= (__iter).max) ?		\
2323 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0)
2324 
2325 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg)
2326 {
2327 	unsigned int page_sizes;
2328 
2329 	page_sizes = 0;
2330 	while (sg) {
2331 		GEM_BUG_ON(sg->offset);
2332 		GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE));
2333 		page_sizes |= sg->length;
2334 		sg = __sg_next(sg);
2335 	}
2336 
2337 	return page_sizes;
2338 }
2339 
2340 static inline unsigned int i915_sg_segment_size(void)
2341 {
2342 	unsigned int size = swiotlb_max_segment();
2343 
2344 	if (size == 0)
2345 		return SCATTERLIST_MAX_SEGMENT;
2346 
2347 	size = rounddown(size, PAGE_SIZE);
2348 	/* swiotlb_max_segment_size can return 1 byte when it means one page. */
2349 	if (size < PAGE_SIZE)
2350 		size = PAGE_SIZE;
2351 
2352 	return size;
2353 }
2354 
2355 static inline const struct intel_device_info *
2356 intel_info(const struct drm_i915_private *dev_priv)
2357 {
2358 	return &dev_priv->info;
2359 }
2360 
2361 #define INTEL_INFO(dev_priv)	intel_info((dev_priv))
2362 #define DRIVER_CAPS(dev_priv)	(&(dev_priv)->caps)
2363 
2364 #define INTEL_GEN(dev_priv)	((dev_priv)->info.gen)
2365 #define INTEL_DEVID(dev_priv)	((dev_priv)->info.device_id)
2366 
2367 #define REVID_FOREVER		0xff
2368 #define INTEL_REVID(dev_priv)	((dev_priv)->drm.pdev->revision)
2369 
2370 #define GEN_FOREVER (0)
2371 
2372 #define INTEL_GEN_MASK(s, e) ( \
2373 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \
2374 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \
2375 	GENMASK((e) != GEN_FOREVER ? (e) - 1 : BITS_PER_LONG - 1, \
2376 		(s) != GEN_FOREVER ? (s) - 1 : 0) \
2377 )
2378 
2379 /*
2380  * Returns true if Gen is in inclusive range [Start, End].
2381  *
2382  * Use GEN_FOREVER for unbound start and or end.
2383  */
2384 #define IS_GEN(dev_priv, s, e) \
2385 	(!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e))))
2386 
2387 /*
2388  * Return true if revision is in range [since,until] inclusive.
2389  *
2390  * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2391  */
2392 #define IS_REVID(p, since, until) \
2393 	(INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2394 
2395 #define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p))
2396 
2397 #define IS_I830(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I830)
2398 #define IS_I845G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I845G)
2399 #define IS_I85X(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I85X)
2400 #define IS_I865G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I865G)
2401 #define IS_I915G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915G)
2402 #define IS_I915GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915GM)
2403 #define IS_I945G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945G)
2404 #define IS_I945GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945GM)
2405 #define IS_I965G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965G)
2406 #define IS_I965GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965GM)
2407 #define IS_G45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G45)
2408 #define IS_GM45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GM45)
2409 #define IS_G4X(dev_priv)	(IS_G45(dev_priv) || IS_GM45(dev_priv))
2410 #define IS_PINEVIEW_G(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa001)
2411 #define IS_PINEVIEW_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa011)
2412 #define IS_PINEVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_PINEVIEW)
2413 #define IS_G33(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G33)
2414 #define IS_IRONLAKE_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0046)
2415 #define IS_IVYBRIDGE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE)
2416 #define IS_IVB_GT1(dev_priv)	(IS_IVYBRIDGE(dev_priv) && \
2417 				 (dev_priv)->info.gt == 1)
2418 #define IS_VALLEYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW)
2419 #define IS_CHERRYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW)
2420 #define IS_HASWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_HASWELL)
2421 #define IS_BROADWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROADWELL)
2422 #define IS_SKYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_SKYLAKE)
2423 #define IS_BROXTON(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROXTON)
2424 #define IS_KABYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_KABYLAKE)
2425 #define IS_GEMINILAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GEMINILAKE)
2426 #define IS_COFFEELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_COFFEELAKE)
2427 #define IS_CANNONLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CANNONLAKE)
2428 #define IS_ICELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_ICELAKE)
2429 #define IS_MOBILE(dev_priv)	((dev_priv)->info.is_mobile)
2430 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2431 				    (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2432 #define IS_BDW_ULT(dev_priv)	(IS_BROADWELL(dev_priv) && \
2433 				 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 ||	\
2434 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xb ||	\
2435 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2436 /* ULX machines are also considered ULT. */
2437 #define IS_BDW_ULX(dev_priv)	(IS_BROADWELL(dev_priv) && \
2438 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2439 #define IS_BDW_GT3(dev_priv)	(IS_BROADWELL(dev_priv) && \
2440 				 (dev_priv)->info.gt == 3)
2441 #define IS_HSW_ULT(dev_priv)	(IS_HASWELL(dev_priv) && \
2442 				 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2443 #define IS_HSW_GT3(dev_priv)	(IS_HASWELL(dev_priv) && \
2444 				 (dev_priv)->info.gt == 3)
2445 /* ULX machines are also considered ULT. */
2446 #define IS_HSW_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0A0E || \
2447 				 INTEL_DEVID(dev_priv) == 0x0A1E)
2448 #define IS_SKL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x1906 || \
2449 				 INTEL_DEVID(dev_priv) == 0x1913 || \
2450 				 INTEL_DEVID(dev_priv) == 0x1916 || \
2451 				 INTEL_DEVID(dev_priv) == 0x1921 || \
2452 				 INTEL_DEVID(dev_priv) == 0x1926)
2453 #define IS_SKL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x190E || \
2454 				 INTEL_DEVID(dev_priv) == 0x1915 || \
2455 				 INTEL_DEVID(dev_priv) == 0x191E)
2456 #define IS_KBL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x5906 || \
2457 				 INTEL_DEVID(dev_priv) == 0x5913 || \
2458 				 INTEL_DEVID(dev_priv) == 0x5916 || \
2459 				 INTEL_DEVID(dev_priv) == 0x5921 || \
2460 				 INTEL_DEVID(dev_priv) == 0x5926)
2461 #define IS_KBL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x590E || \
2462 				 INTEL_DEVID(dev_priv) == 0x5915 || \
2463 				 INTEL_DEVID(dev_priv) == 0x591E)
2464 #define IS_SKL_GT2(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2465 				 (dev_priv)->info.gt == 2)
2466 #define IS_SKL_GT3(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2467 				 (dev_priv)->info.gt == 3)
2468 #define IS_SKL_GT4(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2469 				 (dev_priv)->info.gt == 4)
2470 #define IS_KBL_GT2(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2471 				 (dev_priv)->info.gt == 2)
2472 #define IS_KBL_GT3(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2473 				 (dev_priv)->info.gt == 3)
2474 #define IS_CFL_ULT(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2475 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2476 #define IS_CFL_GT2(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2477 				 (dev_priv)->info.gt == 2)
2478 #define IS_CFL_GT3(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2479 				 (dev_priv)->info.gt == 3)
2480 #define IS_CNL_WITH_PORT_F(dev_priv)   (IS_CANNONLAKE(dev_priv) && \
2481 					(INTEL_DEVID(dev_priv) & 0x0004) == 0x0004)
2482 
2483 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2484 
2485 #define SKL_REVID_A0		0x0
2486 #define SKL_REVID_B0		0x1
2487 #define SKL_REVID_C0		0x2
2488 #define SKL_REVID_D0		0x3
2489 #define SKL_REVID_E0		0x4
2490 #define SKL_REVID_F0		0x5
2491 #define SKL_REVID_G0		0x6
2492 #define SKL_REVID_H0		0x7
2493 
2494 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2495 
2496 #define BXT_REVID_A0		0x0
2497 #define BXT_REVID_A1		0x1
2498 #define BXT_REVID_B0		0x3
2499 #define BXT_REVID_B_LAST	0x8
2500 #define BXT_REVID_C0		0x9
2501 
2502 #define IS_BXT_REVID(dev_priv, since, until) \
2503 	(IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2504 
2505 #define KBL_REVID_A0		0x0
2506 #define KBL_REVID_B0		0x1
2507 #define KBL_REVID_C0		0x2
2508 #define KBL_REVID_D0		0x3
2509 #define KBL_REVID_E0		0x4
2510 
2511 #define IS_KBL_REVID(dev_priv, since, until) \
2512 	(IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2513 
2514 #define GLK_REVID_A0		0x0
2515 #define GLK_REVID_A1		0x1
2516 
2517 #define IS_GLK_REVID(dev_priv, since, until) \
2518 	(IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2519 
2520 #define CNL_REVID_A0		0x0
2521 #define CNL_REVID_B0		0x1
2522 #define CNL_REVID_C0		0x2
2523 
2524 #define IS_CNL_REVID(p, since, until) \
2525 	(IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2526 
2527 #define ICL_REVID_A0		0x0
2528 #define ICL_REVID_A2		0x1
2529 #define ICL_REVID_B0		0x3
2530 #define ICL_REVID_B2		0x4
2531 #define ICL_REVID_C0		0x5
2532 
2533 #define IS_ICL_REVID(p, since, until) \
2534 	(IS_ICELAKE(p) && IS_REVID(p, since, until))
2535 
2536 /*
2537  * The genX designation typically refers to the render engine, so render
2538  * capability related checks should use IS_GEN, while display and other checks
2539  * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2540  * chips, etc.).
2541  */
2542 #define IS_GEN2(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(1)))
2543 #define IS_GEN3(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(2)))
2544 #define IS_GEN4(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(3)))
2545 #define IS_GEN5(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(4)))
2546 #define IS_GEN6(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(5)))
2547 #define IS_GEN7(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(6)))
2548 #define IS_GEN8(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(7)))
2549 #define IS_GEN9(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(8)))
2550 #define IS_GEN10(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(9)))
2551 #define IS_GEN11(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(10)))
2552 
2553 #define IS_LP(dev_priv)	(INTEL_INFO(dev_priv)->is_lp)
2554 #define IS_GEN9_LP(dev_priv)	(IS_GEN9(dev_priv) && IS_LP(dev_priv))
2555 #define IS_GEN9_BC(dev_priv)	(IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2556 
2557 #define ENGINE_MASK(id)	BIT(id)
2558 #define RENDER_RING	ENGINE_MASK(RCS)
2559 #define BSD_RING	ENGINE_MASK(VCS)
2560 #define BLT_RING	ENGINE_MASK(BCS)
2561 #define VEBOX_RING	ENGINE_MASK(VECS)
2562 #define BSD2_RING	ENGINE_MASK(VCS2)
2563 #define BSD3_RING	ENGINE_MASK(VCS3)
2564 #define BSD4_RING	ENGINE_MASK(VCS4)
2565 #define VEBOX2_RING	ENGINE_MASK(VECS2)
2566 #define ALL_ENGINES	(~0)
2567 
2568 #define HAS_ENGINE(dev_priv, id) \
2569 	(!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2570 
2571 #define HAS_BSD(dev_priv)	HAS_ENGINE(dev_priv, VCS)
2572 #define HAS_BSD2(dev_priv)	HAS_ENGINE(dev_priv, VCS2)
2573 #define HAS_BLT(dev_priv)	HAS_ENGINE(dev_priv, BCS)
2574 #define HAS_VEBOX(dev_priv)	HAS_ENGINE(dev_priv, VECS)
2575 
2576 #define HAS_LEGACY_SEMAPHORES(dev_priv) IS_GEN7(dev_priv)
2577 
2578 #define HAS_LLC(dev_priv)	((dev_priv)->info.has_llc)
2579 #define HAS_SNOOP(dev_priv)	((dev_priv)->info.has_snoop)
2580 #define HAS_EDRAM(dev_priv)	(!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2581 #define HAS_WT(dev_priv)	((IS_HASWELL(dev_priv) || \
2582 				 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2583 
2584 #define HWS_NEEDS_PHYSICAL(dev_priv)	((dev_priv)->info.hws_needs_physical)
2585 
2586 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2587 		((dev_priv)->info.has_logical_ring_contexts)
2588 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \
2589 		((dev_priv)->info.has_logical_ring_elsq)
2590 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \
2591 		((dev_priv)->info.has_logical_ring_preemption)
2592 
2593 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv)
2594 
2595 #define USES_PPGTT(dev_priv)		(i915_modparams.enable_ppgtt)
2596 #define USES_FULL_PPGTT(dev_priv)	(i915_modparams.enable_ppgtt >= 2)
2597 #define USES_FULL_48BIT_PPGTT(dev_priv)	(i915_modparams.enable_ppgtt == 3)
2598 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \
2599 	GEM_BUG_ON((sizes) == 0); \
2600 	((sizes) & ~(dev_priv)->info.page_sizes) == 0; \
2601 })
2602 
2603 #define HAS_OVERLAY(dev_priv)		 ((dev_priv)->info.has_overlay)
2604 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2605 		((dev_priv)->info.overlay_needs_physical)
2606 
2607 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2608 #define HAS_BROKEN_CS_TLB(dev_priv)	(IS_I830(dev_priv) || IS_I845G(dev_priv))
2609 
2610 /* WaRsDisableCoarsePowerGating:skl,cnl */
2611 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2612 	(IS_CANNONLAKE(dev_priv) || \
2613 	 IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
2614 
2615 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
2616 #define HAS_GMBUS_BURST_READ(dev_priv) (INTEL_GEN(dev_priv) >= 10 || \
2617 					IS_GEMINILAKE(dev_priv) || \
2618 					IS_KABYLAKE(dev_priv))
2619 
2620 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2621  * rows, which changed the alignment requirements and fence programming.
2622  */
2623 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
2624 					 !(IS_I915G(dev_priv) || \
2625 					 IS_I915GM(dev_priv)))
2626 #define SUPPORTS_TV(dev_priv)		((dev_priv)->info.supports_tv)
2627 #define I915_HAS_HOTPLUG(dev_priv)	((dev_priv)->info.has_hotplug)
2628 
2629 #define HAS_FW_BLC(dev_priv) 	(INTEL_GEN(dev_priv) > 2)
2630 #define HAS_FBC(dev_priv)	((dev_priv)->info.has_fbc)
2631 #define HAS_CUR_FBC(dev_priv)	(!HAS_GMCH_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 7)
2632 
2633 #define HAS_IPS(dev_priv)	(IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2634 
2635 #define HAS_DP_MST(dev_priv)	((dev_priv)->info.has_dp_mst)
2636 
2637 #define HAS_DDI(dev_priv)		 ((dev_priv)->info.has_ddi)
2638 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
2639 #define HAS_PSR(dev_priv)		 ((dev_priv)->info.has_psr)
2640 
2641 #define HAS_RC6(dev_priv)		 ((dev_priv)->info.has_rc6)
2642 #define HAS_RC6p(dev_priv)		 ((dev_priv)->info.has_rc6p)
2643 #define HAS_RC6pp(dev_priv)		 (false) /* HW was never validated */
2644 
2645 #define HAS_CSR(dev_priv)	((dev_priv)->info.has_csr)
2646 
2647 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
2648 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
2649 
2650 #define HAS_IPC(dev_priv)		 ((dev_priv)->info.has_ipc)
2651 
2652 /*
2653  * For now, anything with a GuC requires uCode loading, and then supports
2654  * command submission once loaded. But these are logically independent
2655  * properties, so we have separate macros to test them.
2656  */
2657 #define HAS_GUC(dev_priv)	((dev_priv)->info.has_guc)
2658 #define HAS_GUC_CT(dev_priv)	((dev_priv)->info.has_guc_ct)
2659 #define HAS_GUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2660 #define HAS_GUC_SCHED(dev_priv)	(HAS_GUC(dev_priv))
2661 
2662 /* For now, anything with a GuC has also HuC */
2663 #define HAS_HUC(dev_priv)	(HAS_GUC(dev_priv))
2664 #define HAS_HUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2665 
2666 /* Having a GuC is not the same as using a GuC */
2667 #define USES_GUC(dev_priv)		intel_uc_is_using_guc()
2668 #define USES_GUC_SUBMISSION(dev_priv)	intel_uc_is_using_guc_submission()
2669 #define USES_HUC(dev_priv)		intel_uc_is_using_huc()
2670 
2671 #define HAS_POOLED_EU(dev_priv)	((dev_priv)->info.has_pooled_eu)
2672 
2673 #define INTEL_PCH_DEVICE_ID_MASK		0xff80
2674 #define INTEL_PCH_IBX_DEVICE_ID_TYPE		0x3b00
2675 #define INTEL_PCH_CPT_DEVICE_ID_TYPE		0x1c00
2676 #define INTEL_PCH_PPT_DEVICE_ID_TYPE		0x1e00
2677 #define INTEL_PCH_LPT_DEVICE_ID_TYPE		0x8c00
2678 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE		0x9c00
2679 #define INTEL_PCH_WPT_DEVICE_ID_TYPE		0x8c80
2680 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE		0x9c80
2681 #define INTEL_PCH_SPT_DEVICE_ID_TYPE		0xA100
2682 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE		0x9D00
2683 #define INTEL_PCH_KBP_DEVICE_ID_TYPE		0xA280
2684 #define INTEL_PCH_CNP_DEVICE_ID_TYPE		0xA300
2685 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE		0x9D80
2686 #define INTEL_PCH_ICP_DEVICE_ID_TYPE		0x3480
2687 #define INTEL_PCH_P2X_DEVICE_ID_TYPE		0x7100
2688 #define INTEL_PCH_P3X_DEVICE_ID_TYPE		0x7000
2689 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE		0x2900 /* qemu q35 has 2918 */
2690 
2691 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
2692 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id)
2693 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP)
2694 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
2695 #define HAS_PCH_CNP_LP(dev_priv) \
2696 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
2697 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
2698 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
2699 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
2700 #define HAS_PCH_LPT_LP(dev_priv) \
2701 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
2702 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
2703 #define HAS_PCH_LPT_H(dev_priv) \
2704 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
2705 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE)
2706 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
2707 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
2708 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
2709 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
2710 
2711 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
2712 
2713 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
2714 
2715 /* DPF == dynamic parity feature */
2716 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
2717 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
2718 				 2 : HAS_L3_DPF(dev_priv))
2719 
2720 #define GT_FREQUENCY_MULTIPLIER 50
2721 #define GEN9_FREQ_SCALER 3
2722 
2723 #include "i915_trace.h"
2724 
2725 static inline bool intel_vtd_active(void)
2726 {
2727 #ifdef CONFIG_INTEL_IOMMU
2728 	if (intel_iommu_gfx_mapped)
2729 		return true;
2730 #endif
2731 	return false;
2732 }
2733 
2734 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2735 {
2736 	return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
2737 }
2738 
2739 static inline bool
2740 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
2741 {
2742 	return IS_BROXTON(dev_priv) && intel_vtd_active();
2743 }
2744 
2745 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2746 				int enable_ppgtt);
2747 
2748 /* i915_drv.c */
2749 void __printf(3, 4)
2750 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2751 	      const char *fmt, ...);
2752 
2753 #define i915_report_error(dev_priv, fmt, ...)				   \
2754 	__i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2755 
2756 #ifdef CONFIG_COMPAT
2757 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2758 			      unsigned long arg);
2759 #else
2760 #define i915_compat_ioctl NULL
2761 #endif
2762 extern const struct dev_pm_ops i915_pm_ops;
2763 
2764 extern int i915_driver_load(struct pci_dev *pdev,
2765 			    const struct pci_device_id *ent);
2766 extern void i915_driver_unload(struct drm_device *dev);
2767 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2768 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2769 
2770 extern void i915_reset(struct drm_i915_private *i915,
2771 		       unsigned int stalled_mask,
2772 		       const char *reason);
2773 extern int i915_reset_engine(struct intel_engine_cs *engine,
2774 			     const char *reason);
2775 
2776 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
2777 extern int intel_reset_guc(struct drm_i915_private *dev_priv);
2778 extern int intel_guc_reset_engine(struct intel_guc *guc,
2779 				  struct intel_engine_cs *engine);
2780 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2781 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
2782 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2783 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2784 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2785 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2786 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2787 
2788 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
2789 int intel_engines_init(struct drm_i915_private *dev_priv);
2790 
2791 u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv);
2792 
2793 /* intel_hotplug.c */
2794 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2795 			   u32 pin_mask, u32 long_mask);
2796 void intel_hpd_init(struct drm_i915_private *dev_priv);
2797 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2798 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2799 enum hpd_pin intel_hpd_pin_default(struct drm_i915_private *dev_priv,
2800 				   enum port port);
2801 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2802 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2803 
2804 /* i915_irq.c */
2805 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2806 {
2807 	unsigned long delay;
2808 
2809 	if (unlikely(!i915_modparams.enable_hangcheck))
2810 		return;
2811 
2812 	/* Don't continually defer the hangcheck so that it is always run at
2813 	 * least once after work has been scheduled on any ring. Otherwise,
2814 	 * we will ignore a hung ring if a second ring is kept busy.
2815 	 */
2816 
2817 	delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2818 	queue_delayed_work(system_long_wq,
2819 			   &dev_priv->gpu_error.hangcheck_work, delay);
2820 }
2821 
2822 __printf(4, 5)
2823 void i915_handle_error(struct drm_i915_private *dev_priv,
2824 		       u32 engine_mask,
2825 		       unsigned long flags,
2826 		       const char *fmt, ...);
2827 #define I915_ERROR_CAPTURE BIT(0)
2828 
2829 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2830 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
2831 int intel_irq_install(struct drm_i915_private *dev_priv);
2832 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2833 
2834 void i915_clear_error_registers(struct drm_i915_private *dev_priv);
2835 
2836 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
2837 {
2838 	return dev_priv->gvt;
2839 }
2840 
2841 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
2842 {
2843 	return dev_priv->vgpu.active;
2844 }
2845 
2846 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
2847 			      enum pipe pipe);
2848 void
2849 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2850 		     u32 status_mask);
2851 
2852 void
2853 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2854 		      u32 status_mask);
2855 
2856 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2857 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2858 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
2859 				   uint32_t mask,
2860 				   uint32_t bits);
2861 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
2862 			    uint32_t interrupt_mask,
2863 			    uint32_t enabled_irq_mask);
2864 static inline void
2865 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2866 {
2867 	ilk_update_display_irq(dev_priv, bits, bits);
2868 }
2869 static inline void
2870 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2871 {
2872 	ilk_update_display_irq(dev_priv, bits, 0);
2873 }
2874 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
2875 			 enum pipe pipe,
2876 			 uint32_t interrupt_mask,
2877 			 uint32_t enabled_irq_mask);
2878 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
2879 				       enum pipe pipe, uint32_t bits)
2880 {
2881 	bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
2882 }
2883 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
2884 					enum pipe pipe, uint32_t bits)
2885 {
2886 	bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
2887 }
2888 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
2889 				  uint32_t interrupt_mask,
2890 				  uint32_t enabled_irq_mask);
2891 static inline void
2892 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2893 {
2894 	ibx_display_interrupt_update(dev_priv, bits, bits);
2895 }
2896 static inline void
2897 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2898 {
2899 	ibx_display_interrupt_update(dev_priv, bits, 0);
2900 }
2901 
2902 /* i915_gem.c */
2903 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
2904 			  struct drm_file *file_priv);
2905 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
2906 			 struct drm_file *file_priv);
2907 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
2908 			  struct drm_file *file_priv);
2909 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
2910 			struct drm_file *file_priv);
2911 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2912 			struct drm_file *file_priv);
2913 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
2914 			      struct drm_file *file_priv);
2915 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
2916 			     struct drm_file *file_priv);
2917 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2918 			      struct drm_file *file_priv);
2919 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2920 			       struct drm_file *file_priv);
2921 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2922 			struct drm_file *file_priv);
2923 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2924 			       struct drm_file *file);
2925 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2926 			       struct drm_file *file);
2927 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2928 			    struct drm_file *file_priv);
2929 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
2930 			   struct drm_file *file_priv);
2931 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
2932 			      struct drm_file *file_priv);
2933 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
2934 			      struct drm_file *file_priv);
2935 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
2936 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
2937 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
2938 			   struct drm_file *file);
2939 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
2940 				struct drm_file *file_priv);
2941 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
2942 			struct drm_file *file_priv);
2943 void i915_gem_sanitize(struct drm_i915_private *i915);
2944 int i915_gem_init_early(struct drm_i915_private *dev_priv);
2945 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv);
2946 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
2947 int i915_gem_freeze(struct drm_i915_private *dev_priv);
2948 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
2949 
2950 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
2951 void i915_gem_object_free(struct drm_i915_gem_object *obj);
2952 void i915_gem_object_init(struct drm_i915_gem_object *obj,
2953 			 const struct drm_i915_gem_object_ops *ops);
2954 struct drm_i915_gem_object *
2955 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
2956 struct drm_i915_gem_object *
2957 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
2958 				 const void *data, size_t size);
2959 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
2960 void i915_gem_free_object(struct drm_gem_object *obj);
2961 
2962 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
2963 {
2964 	if (!atomic_read(&i915->mm.free_count))
2965 		return;
2966 
2967 	/* A single pass should suffice to release all the freed objects (along
2968 	 * most call paths) , but be a little more paranoid in that freeing
2969 	 * the objects does take a little amount of time, during which the rcu
2970 	 * callbacks could have added new objects into the freed list, and
2971 	 * armed the work again.
2972 	 */
2973 	do {
2974 		rcu_barrier();
2975 	} while (flush_work(&i915->mm.free_work));
2976 }
2977 
2978 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
2979 {
2980 	/*
2981 	 * Similar to objects above (see i915_gem_drain_freed-objects), in
2982 	 * general we have workers that are armed by RCU and then rearm
2983 	 * themselves in their callbacks. To be paranoid, we need to
2984 	 * drain the workqueue a second time after waiting for the RCU
2985 	 * grace period so that we catch work queued via RCU from the first
2986 	 * pass. As neither drain_workqueue() nor flush_workqueue() report
2987 	 * a result, we make an assumption that we only don't require more
2988 	 * than 2 passes to catch all recursive RCU delayed work.
2989 	 *
2990 	 */
2991 	int pass = 2;
2992 	do {
2993 		rcu_barrier();
2994 		drain_workqueue(i915->wq);
2995 	} while (--pass);
2996 }
2997 
2998 struct i915_vma * __must_check
2999 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3000 			 const struct i915_ggtt_view *view,
3001 			 u64 size,
3002 			 u64 alignment,
3003 			 u64 flags);
3004 
3005 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3006 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3007 
3008 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3009 
3010 static inline int __sg_page_count(const struct scatterlist *sg)
3011 {
3012 	return sg->length >> PAGE_SHIFT;
3013 }
3014 
3015 struct scatterlist *
3016 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3017 		       unsigned int n, unsigned int *offset);
3018 
3019 struct page *
3020 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3021 			 unsigned int n);
3022 
3023 struct page *
3024 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3025 			       unsigned int n);
3026 
3027 dma_addr_t
3028 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3029 				unsigned long n);
3030 
3031 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3032 				 struct sg_table *pages,
3033 				 unsigned int sg_page_sizes);
3034 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3035 
3036 static inline int __must_check
3037 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3038 {
3039 	might_lock(&obj->mm.lock);
3040 
3041 	if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3042 		return 0;
3043 
3044 	return __i915_gem_object_get_pages(obj);
3045 }
3046 
3047 static inline bool
3048 i915_gem_object_has_pages(struct drm_i915_gem_object *obj)
3049 {
3050 	return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages));
3051 }
3052 
3053 static inline void
3054 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3055 {
3056 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3057 
3058 	atomic_inc(&obj->mm.pages_pin_count);
3059 }
3060 
3061 static inline bool
3062 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3063 {
3064 	return atomic_read(&obj->mm.pages_pin_count);
3065 }
3066 
3067 static inline void
3068 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3069 {
3070 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3071 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3072 
3073 	atomic_dec(&obj->mm.pages_pin_count);
3074 }
3075 
3076 static inline void
3077 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3078 {
3079 	__i915_gem_object_unpin_pages(obj);
3080 }
3081 
3082 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3083 	I915_MM_NORMAL = 0,
3084 	I915_MM_SHRINKER
3085 };
3086 
3087 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3088 				 enum i915_mm_subclass subclass);
3089 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3090 
3091 enum i915_map_type {
3092 	I915_MAP_WB = 0,
3093 	I915_MAP_WC,
3094 #define I915_MAP_OVERRIDE BIT(31)
3095 	I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3096 	I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3097 };
3098 
3099 static inline enum i915_map_type
3100 i915_coherent_map_type(struct drm_i915_private *i915)
3101 {
3102 	return HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
3103 }
3104 
3105 /**
3106  * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3107  * @obj: the object to map into kernel address space
3108  * @type: the type of mapping, used to select pgprot_t
3109  *
3110  * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3111  * pages and then returns a contiguous mapping of the backing storage into
3112  * the kernel address space. Based on the @type of mapping, the PTE will be
3113  * set to either WriteBack or WriteCombine (via pgprot_t).
3114  *
3115  * The caller is responsible for calling i915_gem_object_unpin_map() when the
3116  * mapping is no longer required.
3117  *
3118  * Returns the pointer through which to access the mapped object, or an
3119  * ERR_PTR() on error.
3120  */
3121 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3122 					   enum i915_map_type type);
3123 
3124 /**
3125  * i915_gem_object_unpin_map - releases an earlier mapping
3126  * @obj: the object to unmap
3127  *
3128  * After pinning the object and mapping its pages, once you are finished
3129  * with your access, call i915_gem_object_unpin_map() to release the pin
3130  * upon the mapping. Once the pin count reaches zero, that mapping may be
3131  * removed.
3132  */
3133 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3134 {
3135 	i915_gem_object_unpin_pages(obj);
3136 }
3137 
3138 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3139 				    unsigned int *needs_clflush);
3140 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3141 				     unsigned int *needs_clflush);
3142 #define CLFLUSH_BEFORE	BIT(0)
3143 #define CLFLUSH_AFTER	BIT(1)
3144 #define CLFLUSH_FLAGS	(CLFLUSH_BEFORE | CLFLUSH_AFTER)
3145 
3146 static inline void
3147 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3148 {
3149 	i915_gem_object_unpin_pages(obj);
3150 }
3151 
3152 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3153 int i915_gem_dumb_create(struct drm_file *file_priv,
3154 			 struct drm_device *dev,
3155 			 struct drm_mode_create_dumb *args);
3156 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3157 		      uint32_t handle, uint64_t *offset);
3158 int i915_gem_mmap_gtt_version(void);
3159 
3160 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3161 		       struct drm_i915_gem_object *new,
3162 		       unsigned frontbuffer_bits);
3163 
3164 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3165 
3166 struct i915_request *
3167 i915_gem_find_active_request(struct intel_engine_cs *engine);
3168 
3169 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3170 {
3171 	return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3172 }
3173 
3174 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3175 {
3176 	return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3177 }
3178 
3179 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3180 {
3181 	return unlikely(test_bit(I915_WEDGED, &error->flags));
3182 }
3183 
3184 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3185 {
3186 	return i915_reset_backoff(error) | i915_terminally_wedged(error);
3187 }
3188 
3189 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3190 {
3191 	return READ_ONCE(error->reset_count);
3192 }
3193 
3194 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3195 					  struct intel_engine_cs *engine)
3196 {
3197 	return READ_ONCE(error->reset_engine_count[engine->id]);
3198 }
3199 
3200 struct i915_request *
3201 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3202 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3203 void i915_gem_reset(struct drm_i915_private *dev_priv,
3204 		    unsigned int stalled_mask);
3205 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3206 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3207 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3208 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3209 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3210 			   struct i915_request *request,
3211 			   bool stalled);
3212 
3213 void i915_gem_init_mmio(struct drm_i915_private *i915);
3214 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3215 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3216 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3217 void i915_gem_fini(struct drm_i915_private *dev_priv);
3218 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3219 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3220 			   unsigned int flags, long timeout);
3221 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3222 void i915_gem_suspend_late(struct drm_i915_private *dev_priv);
3223 void i915_gem_resume(struct drm_i915_private *dev_priv);
3224 vm_fault_t i915_gem_fault(struct vm_fault *vmf);
3225 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3226 			 unsigned int flags,
3227 			 long timeout,
3228 			 struct intel_rps_client *rps);
3229 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3230 				  unsigned int flags,
3231 				  const struct i915_sched_attr *attr);
3232 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3233 
3234 int __must_check
3235 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3236 int __must_check
3237 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3238 int __must_check
3239 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3240 struct i915_vma * __must_check
3241 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3242 				     u32 alignment,
3243 				     const struct i915_ggtt_view *view,
3244 				     unsigned int flags);
3245 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3246 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3247 				int align);
3248 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3249 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3250 
3251 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3252 				    enum i915_cache_level cache_level);
3253 
3254 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3255 				struct dma_buf *dma_buf);
3256 
3257 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3258 				struct drm_gem_object *gem_obj, int flags);
3259 
3260 static inline struct i915_hw_ppgtt *
3261 i915_vm_to_ppgtt(struct i915_address_space *vm)
3262 {
3263 	return container_of(vm, struct i915_hw_ppgtt, vm);
3264 }
3265 
3266 /* i915_gem_fence_reg.c */
3267 struct drm_i915_fence_reg *
3268 i915_reserve_fence(struct drm_i915_private *dev_priv);
3269 void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3270 
3271 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3272 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3273 
3274 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3275 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3276 				       struct sg_table *pages);
3277 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3278 					 struct sg_table *pages);
3279 
3280 static inline struct i915_gem_context *
3281 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3282 {
3283 	return idr_find(&file_priv->context_idr, id);
3284 }
3285 
3286 static inline struct i915_gem_context *
3287 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3288 {
3289 	struct i915_gem_context *ctx;
3290 
3291 	rcu_read_lock();
3292 	ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3293 	if (ctx && !kref_get_unless_zero(&ctx->ref))
3294 		ctx = NULL;
3295 	rcu_read_unlock();
3296 
3297 	return ctx;
3298 }
3299 
3300 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3301 			 struct drm_file *file);
3302 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3303 			       struct drm_file *file);
3304 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3305 				  struct drm_file *file);
3306 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3307 			    struct i915_gem_context *ctx,
3308 			    uint32_t *reg_state);
3309 
3310 /* i915_gem_evict.c */
3311 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3312 					  u64 min_size, u64 alignment,
3313 					  unsigned cache_level,
3314 					  u64 start, u64 end,
3315 					  unsigned flags);
3316 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3317 					 struct drm_mm_node *node,
3318 					 unsigned int flags);
3319 int i915_gem_evict_vm(struct i915_address_space *vm);
3320 
3321 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv);
3322 
3323 /* belongs in i915_gem_gtt.h */
3324 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3325 {
3326 	wmb();
3327 	if (INTEL_GEN(dev_priv) < 6)
3328 		intel_gtt_chipset_flush();
3329 }
3330 
3331 /* i915_gem_stolen.c */
3332 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3333 				struct drm_mm_node *node, u64 size,
3334 				unsigned alignment);
3335 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3336 					 struct drm_mm_node *node, u64 size,
3337 					 unsigned alignment, u64 start,
3338 					 u64 end);
3339 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3340 				 struct drm_mm_node *node);
3341 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3342 void i915_gem_cleanup_stolen(struct drm_i915_private *dev_priv);
3343 struct drm_i915_gem_object *
3344 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv,
3345 			      resource_size_t size);
3346 struct drm_i915_gem_object *
3347 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3348 					       resource_size_t stolen_offset,
3349 					       resource_size_t gtt_offset,
3350 					       resource_size_t size);
3351 
3352 /* i915_gem_internal.c */
3353 struct drm_i915_gem_object *
3354 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3355 				phys_addr_t size);
3356 
3357 /* i915_gem_shrinker.c */
3358 unsigned long i915_gem_shrink(struct drm_i915_private *i915,
3359 			      unsigned long target,
3360 			      unsigned long *nr_scanned,
3361 			      unsigned flags);
3362 #define I915_SHRINK_PURGEABLE 0x1
3363 #define I915_SHRINK_UNBOUND 0x2
3364 #define I915_SHRINK_BOUND 0x4
3365 #define I915_SHRINK_ACTIVE 0x8
3366 #define I915_SHRINK_VMAPS 0x10
3367 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915);
3368 void i915_gem_shrinker_register(struct drm_i915_private *i915);
3369 void i915_gem_shrinker_unregister(struct drm_i915_private *i915);
3370 void i915_gem_shrinker_taints_mutex(struct mutex *mutex);
3371 
3372 /* i915_gem_tiling.c */
3373 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3374 {
3375 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3376 
3377 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3378 		i915_gem_object_is_tiled(obj);
3379 }
3380 
3381 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3382 			unsigned int tiling, unsigned int stride);
3383 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3384 			     unsigned int tiling, unsigned int stride);
3385 
3386 /* i915_debugfs.c */
3387 #ifdef CONFIG_DEBUG_FS
3388 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3389 int i915_debugfs_connector_add(struct drm_connector *connector);
3390 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3391 #else
3392 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3393 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3394 { return 0; }
3395 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3396 #endif
3397 
3398 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3399 
3400 /* i915_cmd_parser.c */
3401 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3402 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3403 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3404 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3405 			    struct drm_i915_gem_object *batch_obj,
3406 			    struct drm_i915_gem_object *shadow_batch_obj,
3407 			    u32 batch_start_offset,
3408 			    u32 batch_len,
3409 			    bool is_master);
3410 
3411 /* i915_perf.c */
3412 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3413 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3414 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3415 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3416 
3417 /* i915_suspend.c */
3418 extern int i915_save_state(struct drm_i915_private *dev_priv);
3419 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3420 
3421 /* i915_sysfs.c */
3422 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3423 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3424 
3425 /* intel_lpe_audio.c */
3426 int  intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3427 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3428 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3429 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3430 			    enum pipe pipe, enum port port,
3431 			    const void *eld, int ls_clock, bool dp_output);
3432 
3433 /* intel_i2c.c */
3434 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3435 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3436 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3437 				     unsigned int pin);
3438 extern int intel_gmbus_output_aksv(struct i2c_adapter *adapter);
3439 
3440 extern struct i2c_adapter *
3441 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3442 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3443 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3444 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3445 {
3446 	return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3447 }
3448 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3449 
3450 /* intel_bios.c */
3451 void intel_bios_init(struct drm_i915_private *dev_priv);
3452 void intel_bios_cleanup(struct drm_i915_private *dev_priv);
3453 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3454 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3455 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3456 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3457 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3458 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3459 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3460 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3461 				     enum port port);
3462 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3463 				enum port port);
3464 
3465 /* intel_acpi.c */
3466 #ifdef CONFIG_ACPI
3467 extern void intel_register_dsm_handler(void);
3468 extern void intel_unregister_dsm_handler(void);
3469 #else
3470 static inline void intel_register_dsm_handler(void) { return; }
3471 static inline void intel_unregister_dsm_handler(void) { return; }
3472 #endif /* CONFIG_ACPI */
3473 
3474 /* intel_device_info.c */
3475 static inline struct intel_device_info *
3476 mkwrite_device_info(struct drm_i915_private *dev_priv)
3477 {
3478 	return (struct intel_device_info *)&dev_priv->info;
3479 }
3480 
3481 /* modesetting */
3482 extern void intel_modeset_init_hw(struct drm_device *dev);
3483 extern int intel_modeset_init(struct drm_device *dev);
3484 extern void intel_modeset_cleanup(struct drm_device *dev);
3485 extern int intel_connector_register(struct drm_connector *);
3486 extern void intel_connector_unregister(struct drm_connector *);
3487 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3488 				       bool state);
3489 extern void intel_display_resume(struct drm_device *dev);
3490 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3491 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3492 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3493 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3494 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3495 extern void intel_rps_mark_interactive(struct drm_i915_private *i915,
3496 				       bool interactive);
3497 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3498 				  bool enable);
3499 
3500 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3501 			struct drm_file *file);
3502 
3503 /* overlay */
3504 extern struct intel_overlay_error_state *
3505 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3506 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3507 					    struct intel_overlay_error_state *error);
3508 
3509 extern struct intel_display_error_state *
3510 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3511 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3512 					    struct intel_display_error_state *error);
3513 
3514 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3515 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox,
3516 				    u32 val, int fast_timeout_us,
3517 				    int slow_timeout_ms);
3518 #define sandybridge_pcode_write(dev_priv, mbox, val)	\
3519 	sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500, 0)
3520 
3521 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3522 		      u32 reply_mask, u32 reply, int timeout_base_ms);
3523 
3524 /* intel_sideband.c */
3525 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3526 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3527 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3528 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3529 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3530 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3531 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3532 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3533 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3534 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3535 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3536 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3537 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3538 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3539 		   enum intel_sbi_destination destination);
3540 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3541 		     enum intel_sbi_destination destination);
3542 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3543 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3544 
3545 /* intel_dpio_phy.c */
3546 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3547 			     enum dpio_phy *phy, enum dpio_channel *ch);
3548 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3549 				  enum port port, u32 margin, u32 scale,
3550 				  u32 enable, u32 deemphasis);
3551 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3552 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3553 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3554 			    enum dpio_phy phy);
3555 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3556 			      enum dpio_phy phy);
3557 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count);
3558 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3559 				     uint8_t lane_lat_optim_mask);
3560 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3561 
3562 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3563 			      u32 deemph_reg_value, u32 margin_reg_value,
3564 			      bool uniq_trans_scale);
3565 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3566 			      const struct intel_crtc_state *crtc_state,
3567 			      bool reset);
3568 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
3569 			    const struct intel_crtc_state *crtc_state);
3570 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3571 				const struct intel_crtc_state *crtc_state);
3572 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3573 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
3574 			      const struct intel_crtc_state *old_crtc_state);
3575 
3576 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3577 			      u32 demph_reg_value, u32 preemph_reg_value,
3578 			      u32 uniqtranscale_reg_value, u32 tx3_demph);
3579 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
3580 			    const struct intel_crtc_state *crtc_state);
3581 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3582 				const struct intel_crtc_state *crtc_state);
3583 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
3584 			 const struct intel_crtc_state *old_crtc_state);
3585 
3586 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3587 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3588 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
3589 			   const i915_reg_t reg);
3590 
3591 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1);
3592 
3593 static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
3594 					 const i915_reg_t reg)
3595 {
3596 	return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000);
3597 }
3598 
3599 #define I915_READ8(reg)		dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3600 #define I915_WRITE8(reg, val)	dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3601 
3602 #define I915_READ16(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3603 #define I915_WRITE16(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3604 #define I915_READ16_NOTRACE(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3605 #define I915_WRITE16_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3606 
3607 #define I915_READ(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3608 #define I915_WRITE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3609 #define I915_READ_NOTRACE(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3610 #define I915_WRITE_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3611 
3612 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3613  * will be implemented using 2 32-bit writes in an arbitrary order with
3614  * an arbitrary delay between them. This can cause the hardware to
3615  * act upon the intermediate value, possibly leading to corruption and
3616  * machine death. For this reason we do not support I915_WRITE64, or
3617  * dev_priv->uncore.funcs.mmio_writeq.
3618  *
3619  * When reading a 64-bit value as two 32-bit values, the delay may cause
3620  * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3621  * occasionally a 64-bit register does not actualy support a full readq
3622  * and must be read using two 32-bit reads.
3623  *
3624  * You have been warned.
3625  */
3626 #define I915_READ64(reg)	dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3627 
3628 #define I915_READ64_2x32(lower_reg, upper_reg) ({			\
3629 	u32 upper, lower, old_upper, loop = 0;				\
3630 	upper = I915_READ(upper_reg);					\
3631 	do {								\
3632 		old_upper = upper;					\
3633 		lower = I915_READ(lower_reg);				\
3634 		upper = I915_READ(upper_reg);				\
3635 	} while (upper != old_upper && loop++ < 2);			\
3636 	(u64)upper << 32 | lower; })
3637 
3638 #define POSTING_READ(reg)	(void)I915_READ_NOTRACE(reg)
3639 #define POSTING_READ16(reg)	(void)I915_READ16_NOTRACE(reg)
3640 
3641 #define __raw_read(x, s) \
3642 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
3643 					     i915_reg_t reg) \
3644 { \
3645 	return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3646 }
3647 
3648 #define __raw_write(x, s) \
3649 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
3650 				       i915_reg_t reg, uint##x##_t val) \
3651 { \
3652 	write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3653 }
3654 __raw_read(8, b)
3655 __raw_read(16, w)
3656 __raw_read(32, l)
3657 __raw_read(64, q)
3658 
3659 __raw_write(8, b)
3660 __raw_write(16, w)
3661 __raw_write(32, l)
3662 __raw_write(64, q)
3663 
3664 #undef __raw_read
3665 #undef __raw_write
3666 
3667 /* These are untraced mmio-accessors that are only valid to be used inside
3668  * critical sections, such as inside IRQ handlers, where forcewake is explicitly
3669  * controlled.
3670  *
3671  * Think twice, and think again, before using these.
3672  *
3673  * As an example, these accessors can possibly be used between:
3674  *
3675  * spin_lock_irq(&dev_priv->uncore.lock);
3676  * intel_uncore_forcewake_get__locked();
3677  *
3678  * and
3679  *
3680  * intel_uncore_forcewake_put__locked();
3681  * spin_unlock_irq(&dev_priv->uncore.lock);
3682  *
3683  *
3684  * Note: some registers may not need forcewake held, so
3685  * intel_uncore_forcewake_{get,put} can be omitted, see
3686  * intel_uncore_forcewake_for_reg().
3687  *
3688  * Certain architectures will die if the same cacheline is concurrently accessed
3689  * by different clients (e.g. on Ivybridge). Access to registers should
3690  * therefore generally be serialised, by either the dev_priv->uncore.lock or
3691  * a more localised lock guarding all access to that bank of registers.
3692  */
3693 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3694 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3695 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3696 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3697 
3698 /* "Broadcast RGB" property */
3699 #define INTEL_BROADCAST_RGB_AUTO 0
3700 #define INTEL_BROADCAST_RGB_FULL 1
3701 #define INTEL_BROADCAST_RGB_LIMITED 2
3702 
3703 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
3704 {
3705 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3706 		return VLV_VGACNTRL;
3707 	else if (INTEL_GEN(dev_priv) >= 5)
3708 		return CPU_VGACNTRL;
3709 	else
3710 		return VGACNTRL;
3711 }
3712 
3713 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3714 {
3715 	unsigned long j = msecs_to_jiffies(m);
3716 
3717 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3718 }
3719 
3720 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3721 {
3722 	/* nsecs_to_jiffies64() does not guard against overflow */
3723 	if (NSEC_PER_SEC % HZ &&
3724 	    div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
3725 		return MAX_JIFFY_OFFSET;
3726 
3727         return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3728 }
3729 
3730 /*
3731  * If you need to wait X milliseconds between events A and B, but event B
3732  * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3733  * when event A happened, then just before event B you call this function and
3734  * pass the timestamp as the first argument, and X as the second argument.
3735  */
3736 static inline void
3737 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3738 {
3739 	unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3740 
3741 	/*
3742 	 * Don't re-read the value of "jiffies" every time since it may change
3743 	 * behind our back and break the math.
3744 	 */
3745 	tmp_jiffies = jiffies;
3746 	target_jiffies = timestamp_jiffies +
3747 			 msecs_to_jiffies_timeout(to_wait_ms);
3748 
3749 	if (time_after(target_jiffies, tmp_jiffies)) {
3750 		remaining_jiffies = target_jiffies - tmp_jiffies;
3751 		while (remaining_jiffies)
3752 			remaining_jiffies =
3753 			    schedule_timeout_uninterruptible(remaining_jiffies);
3754 	}
3755 }
3756 
3757 static inline bool
3758 __i915_request_irq_complete(const struct i915_request *rq)
3759 {
3760 	struct intel_engine_cs *engine = rq->engine;
3761 	u32 seqno;
3762 
3763 	/* Note that the engine may have wrapped around the seqno, and
3764 	 * so our request->global_seqno will be ahead of the hardware,
3765 	 * even though it completed the request before wrapping. We catch
3766 	 * this by kicking all the waiters before resetting the seqno
3767 	 * in hardware, and also signal the fence.
3768 	 */
3769 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
3770 		return true;
3771 
3772 	/* The request was dequeued before we were awoken. We check after
3773 	 * inspecting the hw to confirm that this was the same request
3774 	 * that generated the HWS update. The memory barriers within
3775 	 * the request execution are sufficient to ensure that a check
3776 	 * after reading the value from hw matches this request.
3777 	 */
3778 	seqno = i915_request_global_seqno(rq);
3779 	if (!seqno)
3780 		return false;
3781 
3782 	/* Before we do the heavier coherent read of the seqno,
3783 	 * check the value (hopefully) in the CPU cacheline.
3784 	 */
3785 	if (__i915_request_completed(rq, seqno))
3786 		return true;
3787 
3788 	/* Ensure our read of the seqno is coherent so that we
3789 	 * do not "miss an interrupt" (i.e. if this is the last
3790 	 * request and the seqno write from the GPU is not visible
3791 	 * by the time the interrupt fires, we will see that the
3792 	 * request is incomplete and go back to sleep awaiting
3793 	 * another interrupt that will never come.)
3794 	 *
3795 	 * Strictly, we only need to do this once after an interrupt,
3796 	 * but it is easier and safer to do it every time the waiter
3797 	 * is woken.
3798 	 */
3799 	if (engine->irq_seqno_barrier &&
3800 	    test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
3801 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
3802 
3803 		/* The ordering of irq_posted versus applying the barrier
3804 		 * is crucial. The clearing of the current irq_posted must
3805 		 * be visible before we perform the barrier operation,
3806 		 * such that if a subsequent interrupt arrives, irq_posted
3807 		 * is reasserted and our task rewoken (which causes us to
3808 		 * do another __i915_request_irq_complete() immediately
3809 		 * and reapply the barrier). Conversely, if the clear
3810 		 * occurs after the barrier, then an interrupt that arrived
3811 		 * whilst we waited on the barrier would not trigger a
3812 		 * barrier on the next pass, and the read may not see the
3813 		 * seqno update.
3814 		 */
3815 		engine->irq_seqno_barrier(engine);
3816 
3817 		/* If we consume the irq, but we are no longer the bottom-half,
3818 		 * the real bottom-half may not have serialised their own
3819 		 * seqno check with the irq-barrier (i.e. may have inspected
3820 		 * the seqno before we believe it coherent since they see
3821 		 * irq_posted == false but we are still running).
3822 		 */
3823 		spin_lock_irq(&b->irq_lock);
3824 		if (b->irq_wait && b->irq_wait->tsk != current)
3825 			/* Note that if the bottom-half is changed as we
3826 			 * are sending the wake-up, the new bottom-half will
3827 			 * be woken by whomever made the change. We only have
3828 			 * to worry about when we steal the irq-posted for
3829 			 * ourself.
3830 			 */
3831 			wake_up_process(b->irq_wait->tsk);
3832 		spin_unlock_irq(&b->irq_lock);
3833 
3834 		if (__i915_request_completed(rq, seqno))
3835 			return true;
3836 	}
3837 
3838 	return false;
3839 }
3840 
3841 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
3842 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
3843 
3844 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
3845  * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
3846  * perform the operation. To check beforehand, pass in the parameters to
3847  * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
3848  * you only need to pass in the minor offsets, page-aligned pointers are
3849  * always valid.
3850  *
3851  * For just checking for SSE4.1, in the foreknowledge that the future use
3852  * will be correctly aligned, just use i915_has_memcpy_from_wc().
3853  */
3854 #define i915_can_memcpy_from_wc(dst, src, len) \
3855 	i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
3856 
3857 #define i915_has_memcpy_from_wc() \
3858 	i915_memcpy_from_wc(NULL, NULL, 0)
3859 
3860 /* i915_mm.c */
3861 int remap_io_mapping(struct vm_area_struct *vma,
3862 		     unsigned long addr, unsigned long pfn, unsigned long size,
3863 		     struct io_mapping *iomap);
3864 
3865 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915)
3866 {
3867 	if (INTEL_GEN(i915) >= 10)
3868 		return CNL_HWS_CSB_WRITE_INDEX;
3869 	else
3870 		return I915_HWS_CSB_WRITE_INDEX;
3871 }
3872 
3873 #endif
3874