1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*- 2 */ 3 /* 4 * 5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 6 * All Rights Reserved. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a 9 * copy of this software and associated documentation files (the 10 * "Software"), to deal in the Software without restriction, including 11 * without limitation the rights to use, copy, modify, merge, publish, 12 * distribute, sub license, and/or sell copies of the Software, and to 13 * permit persons to whom the Software is furnished to do so, subject to 14 * the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the 17 * next paragraph) shall be included in all copies or substantial portions 18 * of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 27 * 28 */ 29 30 #ifndef _I915_DRV_H_ 31 #define _I915_DRV_H_ 32 33 #include <uapi/drm/i915_drm.h> 34 #include <uapi/drm/drm_fourcc.h> 35 36 #include <linux/io-mapping.h> 37 #include <linux/i2c.h> 38 #include <linux/i2c-algo-bit.h> 39 #include <linux/backlight.h> 40 #include <linux/hashtable.h> 41 #include <linux/intel-iommu.h> 42 #include <linux/kref.h> 43 #include <linux/pm_qos.h> 44 #include <linux/reservation.h> 45 #include <linux/shmem_fs.h> 46 47 #include <drm/drmP.h> 48 #include <drm/intel-gtt.h> 49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */ 50 #include <drm/drm_gem.h> 51 #include <drm/drm_auth.h> 52 #include <drm/drm_cache.h> 53 54 #include "i915_params.h" 55 #include "i915_reg.h" 56 #include "i915_utils.h" 57 58 #include "intel_bios.h" 59 #include "intel_dpll_mgr.h" 60 #include "intel_uc.h" 61 #include "intel_lrc.h" 62 #include "intel_ringbuffer.h" 63 64 #include "i915_gem.h" 65 #include "i915_gem_context.h" 66 #include "i915_gem_fence_reg.h" 67 #include "i915_gem_object.h" 68 #include "i915_gem_gtt.h" 69 #include "i915_gem_render_state.h" 70 #include "i915_gem_request.h" 71 #include "i915_gem_timeline.h" 72 73 #include "i915_vma.h" 74 75 #include "intel_gvt.h" 76 77 /* General customization: 78 */ 79 80 #define DRIVER_NAME "i915" 81 #define DRIVER_DESC "Intel Graphics" 82 #define DRIVER_DATE "20170320" 83 #define DRIVER_TIMESTAMP 1489994464 84 85 #undef WARN_ON 86 /* Many gcc seem to no see through this and fall over :( */ 87 #if 0 88 #define WARN_ON(x) ({ \ 89 bool __i915_warn_cond = (x); \ 90 if (__builtin_constant_p(__i915_warn_cond)) \ 91 BUILD_BUG_ON(__i915_warn_cond); \ 92 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); }) 93 #else 94 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")") 95 #endif 96 97 #undef WARN_ON_ONCE 98 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")") 99 100 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \ 101 (long) (x), __func__); 102 103 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and 104 * WARN_ON()) for hw state sanity checks to check for unexpected conditions 105 * which may not necessarily be a user visible problem. This will either 106 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to 107 * enable distros and users to tailor their preferred amount of i915 abrt 108 * spam. 109 */ 110 #define I915_STATE_WARN(condition, format...) ({ \ 111 int __ret_warn_on = !!(condition); \ 112 if (unlikely(__ret_warn_on)) \ 113 if (!WARN(i915.verbose_state_checks, format)) \ 114 DRM_ERROR(format); \ 115 unlikely(__ret_warn_on); \ 116 }) 117 118 #define I915_STATE_WARN_ON(x) \ 119 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")") 120 121 bool __i915_inject_load_failure(const char *func, int line); 122 #define i915_inject_load_failure() \ 123 __i915_inject_load_failure(__func__, __LINE__) 124 125 typedef struct { 126 uint32_t val; 127 } uint_fixed_16_16_t; 128 129 #define FP_16_16_MAX ({ \ 130 uint_fixed_16_16_t fp; \ 131 fp.val = UINT_MAX; \ 132 fp; \ 133 }) 134 135 static inline uint_fixed_16_16_t u32_to_fixed_16_16(uint32_t val) 136 { 137 uint_fixed_16_16_t fp; 138 139 WARN_ON(val >> 16); 140 141 fp.val = val << 16; 142 return fp; 143 } 144 145 static inline uint32_t fixed_16_16_to_u32_round_up(uint_fixed_16_16_t fp) 146 { 147 return DIV_ROUND_UP(fp.val, 1 << 16); 148 } 149 150 static inline uint32_t fixed_16_16_to_u32(uint_fixed_16_16_t fp) 151 { 152 return fp.val >> 16; 153 } 154 155 static inline uint_fixed_16_16_t min_fixed_16_16(uint_fixed_16_16_t min1, 156 uint_fixed_16_16_t min2) 157 { 158 uint_fixed_16_16_t min; 159 160 min.val = min(min1.val, min2.val); 161 return min; 162 } 163 164 static inline uint_fixed_16_16_t max_fixed_16_16(uint_fixed_16_16_t max1, 165 uint_fixed_16_16_t max2) 166 { 167 uint_fixed_16_16_t max; 168 169 max.val = max(max1.val, max2.val); 170 return max; 171 } 172 173 static inline uint_fixed_16_16_t fixed_16_16_div_round_up(uint32_t val, 174 uint32_t d) 175 { 176 uint_fixed_16_16_t fp, res; 177 178 fp = u32_to_fixed_16_16(val); 179 res.val = DIV_ROUND_UP(fp.val, d); 180 return res; 181 } 182 183 static inline uint_fixed_16_16_t fixed_16_16_div_round_up_u64(uint32_t val, 184 uint32_t d) 185 { 186 uint_fixed_16_16_t res; 187 uint64_t interm_val; 188 189 interm_val = (uint64_t)val << 16; 190 interm_val = DIV_ROUND_UP_ULL(interm_val, d); 191 WARN_ON(interm_val >> 32); 192 res.val = (uint32_t) interm_val; 193 194 return res; 195 } 196 197 static inline uint_fixed_16_16_t mul_u32_fixed_16_16(uint32_t val, 198 uint_fixed_16_16_t mul) 199 { 200 uint64_t intermediate_val; 201 uint_fixed_16_16_t fp; 202 203 intermediate_val = (uint64_t) val * mul.val; 204 WARN_ON(intermediate_val >> 32); 205 fp.val = (uint32_t) intermediate_val; 206 return fp; 207 } 208 209 static inline const char *yesno(bool v) 210 { 211 return v ? "yes" : "no"; 212 } 213 214 static inline const char *onoff(bool v) 215 { 216 return v ? "on" : "off"; 217 } 218 219 static inline const char *enableddisabled(bool v) 220 { 221 return v ? "enabled" : "disabled"; 222 } 223 224 enum pipe { 225 INVALID_PIPE = -1, 226 PIPE_A = 0, 227 PIPE_B, 228 PIPE_C, 229 _PIPE_EDP, 230 I915_MAX_PIPES = _PIPE_EDP 231 }; 232 #define pipe_name(p) ((p) + 'A') 233 234 enum transcoder { 235 TRANSCODER_A = 0, 236 TRANSCODER_B, 237 TRANSCODER_C, 238 TRANSCODER_EDP, 239 TRANSCODER_DSI_A, 240 TRANSCODER_DSI_C, 241 I915_MAX_TRANSCODERS 242 }; 243 244 static inline const char *transcoder_name(enum transcoder transcoder) 245 { 246 switch (transcoder) { 247 case TRANSCODER_A: 248 return "A"; 249 case TRANSCODER_B: 250 return "B"; 251 case TRANSCODER_C: 252 return "C"; 253 case TRANSCODER_EDP: 254 return "EDP"; 255 case TRANSCODER_DSI_A: 256 return "DSI A"; 257 case TRANSCODER_DSI_C: 258 return "DSI C"; 259 default: 260 return "<invalid>"; 261 } 262 } 263 264 static inline bool transcoder_is_dsi(enum transcoder transcoder) 265 { 266 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C; 267 } 268 269 /* 270 * Global legacy plane identifier. Valid only for primary/sprite 271 * planes on pre-g4x, and only for primary planes on g4x+. 272 */ 273 enum plane { 274 PLANE_A, 275 PLANE_B, 276 PLANE_C, 277 }; 278 #define plane_name(p) ((p) + 'A') 279 280 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A') 281 282 /* 283 * Per-pipe plane identifier. 284 * I915_MAX_PLANES in the enum below is the maximum (across all platforms) 285 * number of planes per CRTC. Not all platforms really have this many planes, 286 * which means some arrays of size I915_MAX_PLANES may have unused entries 287 * between the topmost sprite plane and the cursor plane. 288 * 289 * This is expected to be passed to various register macros 290 * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care. 291 */ 292 enum plane_id { 293 PLANE_PRIMARY, 294 PLANE_SPRITE0, 295 PLANE_SPRITE1, 296 PLANE_SPRITE2, 297 PLANE_CURSOR, 298 I915_MAX_PLANES, 299 }; 300 301 #define for_each_plane_id_on_crtc(__crtc, __p) \ 302 for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \ 303 for_each_if ((__crtc)->plane_ids_mask & BIT(__p)) 304 305 enum port { 306 PORT_NONE = -1, 307 PORT_A = 0, 308 PORT_B, 309 PORT_C, 310 PORT_D, 311 PORT_E, 312 I915_MAX_PORTS 313 }; 314 #define port_name(p) ((p) + 'A') 315 316 #define I915_NUM_PHYS_VLV 2 317 318 enum dpio_channel { 319 DPIO_CH0, 320 DPIO_CH1 321 }; 322 323 enum dpio_phy { 324 DPIO_PHY0, 325 DPIO_PHY1, 326 DPIO_PHY2, 327 }; 328 329 enum intel_display_power_domain { 330 POWER_DOMAIN_PIPE_A, 331 POWER_DOMAIN_PIPE_B, 332 POWER_DOMAIN_PIPE_C, 333 POWER_DOMAIN_PIPE_A_PANEL_FITTER, 334 POWER_DOMAIN_PIPE_B_PANEL_FITTER, 335 POWER_DOMAIN_PIPE_C_PANEL_FITTER, 336 POWER_DOMAIN_TRANSCODER_A, 337 POWER_DOMAIN_TRANSCODER_B, 338 POWER_DOMAIN_TRANSCODER_C, 339 POWER_DOMAIN_TRANSCODER_EDP, 340 POWER_DOMAIN_TRANSCODER_DSI_A, 341 POWER_DOMAIN_TRANSCODER_DSI_C, 342 POWER_DOMAIN_PORT_DDI_A_LANES, 343 POWER_DOMAIN_PORT_DDI_B_LANES, 344 POWER_DOMAIN_PORT_DDI_C_LANES, 345 POWER_DOMAIN_PORT_DDI_D_LANES, 346 POWER_DOMAIN_PORT_DDI_E_LANES, 347 POWER_DOMAIN_PORT_DDI_A_IO, 348 POWER_DOMAIN_PORT_DDI_B_IO, 349 POWER_DOMAIN_PORT_DDI_C_IO, 350 POWER_DOMAIN_PORT_DDI_D_IO, 351 POWER_DOMAIN_PORT_DDI_E_IO, 352 POWER_DOMAIN_PORT_DSI, 353 POWER_DOMAIN_PORT_CRT, 354 POWER_DOMAIN_PORT_OTHER, 355 POWER_DOMAIN_VGA, 356 POWER_DOMAIN_AUDIO, 357 POWER_DOMAIN_PLLS, 358 POWER_DOMAIN_AUX_A, 359 POWER_DOMAIN_AUX_B, 360 POWER_DOMAIN_AUX_C, 361 POWER_DOMAIN_AUX_D, 362 POWER_DOMAIN_GMBUS, 363 POWER_DOMAIN_MODESET, 364 POWER_DOMAIN_INIT, 365 366 POWER_DOMAIN_NUM, 367 }; 368 369 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A) 370 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \ 371 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER) 372 #define POWER_DOMAIN_TRANSCODER(tran) \ 373 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \ 374 (tran) + POWER_DOMAIN_TRANSCODER_A) 375 376 enum hpd_pin { 377 HPD_NONE = 0, 378 HPD_TV = HPD_NONE, /* TV is known to be unreliable */ 379 HPD_CRT, 380 HPD_SDVO_B, 381 HPD_SDVO_C, 382 HPD_PORT_A, 383 HPD_PORT_B, 384 HPD_PORT_C, 385 HPD_PORT_D, 386 HPD_PORT_E, 387 HPD_NUM_PINS 388 }; 389 390 #define for_each_hpd_pin(__pin) \ 391 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++) 392 393 #define HPD_STORM_DEFAULT_THRESHOLD 5 394 395 struct i915_hotplug { 396 struct work_struct hotplug_work; 397 398 struct { 399 unsigned long last_jiffies; 400 int count; 401 enum { 402 HPD_ENABLED = 0, 403 HPD_DISABLED = 1, 404 HPD_MARK_DISABLED = 2 405 } state; 406 } stats[HPD_NUM_PINS]; 407 u32 event_bits; 408 struct delayed_work reenable_work; 409 410 struct intel_digital_port *irq_port[I915_MAX_PORTS]; 411 u32 long_port_mask; 412 u32 short_port_mask; 413 struct work_struct dig_port_work; 414 415 struct work_struct poll_init_work; 416 bool poll_enabled; 417 418 unsigned int hpd_storm_threshold; 419 420 /* 421 * if we get a HPD irq from DP and a HPD irq from non-DP 422 * the non-DP HPD could block the workqueue on a mode config 423 * mutex getting, that userspace may have taken. However 424 * userspace is waiting on the DP workqueue to run which is 425 * blocked behind the non-DP one. 426 */ 427 struct workqueue_struct *dp_wq; 428 }; 429 430 #define I915_GEM_GPU_DOMAINS \ 431 (I915_GEM_DOMAIN_RENDER | \ 432 I915_GEM_DOMAIN_SAMPLER | \ 433 I915_GEM_DOMAIN_COMMAND | \ 434 I915_GEM_DOMAIN_INSTRUCTION | \ 435 I915_GEM_DOMAIN_VERTEX) 436 437 #define for_each_pipe(__dev_priv, __p) \ 438 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) 439 #define for_each_pipe_masked(__dev_priv, __p, __mask) \ 440 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \ 441 for_each_if ((__mask) & (1 << (__p))) 442 #define for_each_universal_plane(__dev_priv, __pipe, __p) \ 443 for ((__p) = 0; \ 444 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \ 445 (__p)++) 446 #define for_each_sprite(__dev_priv, __p, __s) \ 447 for ((__s) = 0; \ 448 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \ 449 (__s)++) 450 451 #define for_each_port_masked(__port, __ports_mask) \ 452 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \ 453 for_each_if ((__ports_mask) & (1 << (__port))) 454 455 #define for_each_crtc(dev, crtc) \ 456 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head) 457 458 #define for_each_intel_plane(dev, intel_plane) \ 459 list_for_each_entry(intel_plane, \ 460 &(dev)->mode_config.plane_list, \ 461 base.head) 462 463 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \ 464 list_for_each_entry(intel_plane, \ 465 &(dev)->mode_config.plane_list, \ 466 base.head) \ 467 for_each_if ((plane_mask) & \ 468 (1 << drm_plane_index(&intel_plane->base))) 469 470 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \ 471 list_for_each_entry(intel_plane, \ 472 &(dev)->mode_config.plane_list, \ 473 base.head) \ 474 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe) 475 476 #define for_each_intel_crtc(dev, intel_crtc) \ 477 list_for_each_entry(intel_crtc, \ 478 &(dev)->mode_config.crtc_list, \ 479 base.head) 480 481 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \ 482 list_for_each_entry(intel_crtc, \ 483 &(dev)->mode_config.crtc_list, \ 484 base.head) \ 485 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base))) 486 487 #define for_each_intel_encoder(dev, intel_encoder) \ 488 list_for_each_entry(intel_encoder, \ 489 &(dev)->mode_config.encoder_list, \ 490 base.head) 491 492 #define for_each_intel_connector_iter(intel_connector, iter) \ 493 while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter)))) 494 495 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \ 496 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \ 497 for_each_if ((intel_encoder)->base.crtc == (__crtc)) 498 499 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \ 500 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \ 501 for_each_if ((intel_connector)->base.encoder == (__encoder)) 502 503 #define for_each_power_domain(domain, mask) \ 504 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \ 505 for_each_if (BIT_ULL(domain) & (mask)) 506 507 #define for_each_power_well(__dev_priv, __power_well) \ 508 for ((__power_well) = (__dev_priv)->power_domains.power_wells; \ 509 (__power_well) - (__dev_priv)->power_domains.power_wells < \ 510 (__dev_priv)->power_domains.power_well_count; \ 511 (__power_well)++) 512 513 #define for_each_power_well_rev(__dev_priv, __power_well) \ 514 for ((__power_well) = (__dev_priv)->power_domains.power_wells + \ 515 (__dev_priv)->power_domains.power_well_count - 1; \ 516 (__power_well) - (__dev_priv)->power_domains.power_wells >= 0; \ 517 (__power_well)--) 518 519 #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask) \ 520 for_each_power_well(__dev_priv, __power_well) \ 521 for_each_if ((__power_well)->domains & (__domain_mask)) 522 523 #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \ 524 for_each_power_well_rev(__dev_priv, __power_well) \ 525 for_each_if ((__power_well)->domains & (__domain_mask)) 526 527 #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \ 528 for ((__i) = 0; \ 529 (__i) < (__state)->base.dev->mode_config.num_total_plane && \ 530 ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \ 531 (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \ 532 (__i)++) \ 533 for_each_if (plane_state) 534 535 struct drm_i915_private; 536 struct i915_mm_struct; 537 struct i915_mmu_object; 538 539 struct drm_i915_file_private { 540 struct drm_i915_private *dev_priv; 541 struct drm_file *file; 542 543 struct { 544 spinlock_t lock; 545 struct list_head request_list; 546 /* 20ms is a fairly arbitrary limit (greater than the average frame time) 547 * chosen to prevent the CPU getting more than a frame ahead of the GPU 548 * (when using lax throttling for the frontbuffer). We also use it to 549 * offer free GPU waitboosts for severely congested workloads. 550 */ 551 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20) 552 } mm; 553 struct idr context_idr; 554 555 struct intel_rps_client { 556 struct list_head link; 557 unsigned boosts; 558 } rps; 559 560 unsigned int bsd_engine; 561 562 /* Client can have a maximum of 3 contexts banned before 563 * it is denied of creating new contexts. As one context 564 * ban needs 4 consecutive hangs, and more if there is 565 * progress in between, this is a last resort stop gap measure 566 * to limit the badly behaving clients access to gpu. 567 */ 568 #define I915_MAX_CLIENT_CONTEXT_BANS 3 569 int context_bans; 570 }; 571 572 /* Used by dp and fdi links */ 573 struct intel_link_m_n { 574 uint32_t tu; 575 uint32_t gmch_m; 576 uint32_t gmch_n; 577 uint32_t link_m; 578 uint32_t link_n; 579 }; 580 581 void intel_link_compute_m_n(int bpp, int nlanes, 582 int pixel_clock, int link_clock, 583 struct intel_link_m_n *m_n); 584 585 /* Interface history: 586 * 587 * 1.1: Original. 588 * 1.2: Add Power Management 589 * 1.3: Add vblank support 590 * 1.4: Fix cmdbuffer path, add heap destroy 591 * 1.5: Add vblank pipe configuration 592 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank 593 * - Support vertical blank on secondary display pipe 594 */ 595 #define DRIVER_MAJOR 1 596 #define DRIVER_MINOR 6 597 #define DRIVER_PATCHLEVEL 0 598 599 struct opregion_header; 600 struct opregion_acpi; 601 struct opregion_swsci; 602 struct opregion_asle; 603 604 struct intel_opregion { 605 struct opregion_header *header; 606 struct opregion_acpi *acpi; 607 struct opregion_swsci *swsci; 608 u32 swsci_gbda_sub_functions; 609 u32 swsci_sbcb_sub_functions; 610 struct opregion_asle *asle; 611 void *rvda; 612 const void *vbt; 613 u32 vbt_size; 614 u32 *lid_state; 615 struct work_struct asle_work; 616 }; 617 #define OPREGION_SIZE (8*1024) 618 619 struct intel_overlay; 620 struct intel_overlay_error_state; 621 622 struct sdvo_device_mapping { 623 u8 initialized; 624 u8 dvo_port; 625 u8 slave_addr; 626 u8 dvo_wiring; 627 u8 i2c_pin; 628 u8 ddc_pin; 629 }; 630 631 struct intel_connector; 632 struct intel_encoder; 633 struct intel_atomic_state; 634 struct intel_crtc_state; 635 struct intel_initial_plane_config; 636 struct intel_crtc; 637 struct intel_limit; 638 struct dpll; 639 struct intel_cdclk_state; 640 641 struct drm_i915_display_funcs { 642 void (*get_cdclk)(struct drm_i915_private *dev_priv, 643 struct intel_cdclk_state *cdclk_state); 644 void (*set_cdclk)(struct drm_i915_private *dev_priv, 645 const struct intel_cdclk_state *cdclk_state); 646 int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane); 647 int (*compute_pipe_wm)(struct intel_crtc_state *cstate); 648 int (*compute_intermediate_wm)(struct drm_device *dev, 649 struct intel_crtc *intel_crtc, 650 struct intel_crtc_state *newstate); 651 void (*initial_watermarks)(struct intel_atomic_state *state, 652 struct intel_crtc_state *cstate); 653 void (*atomic_update_watermarks)(struct intel_atomic_state *state, 654 struct intel_crtc_state *cstate); 655 void (*optimize_watermarks)(struct intel_atomic_state *state, 656 struct intel_crtc_state *cstate); 657 int (*compute_global_watermarks)(struct drm_atomic_state *state); 658 void (*update_wm)(struct intel_crtc *crtc); 659 int (*modeset_calc_cdclk)(struct drm_atomic_state *state); 660 /* Returns the active state of the crtc, and if the crtc is active, 661 * fills out the pipe-config with the hw state. */ 662 bool (*get_pipe_config)(struct intel_crtc *, 663 struct intel_crtc_state *); 664 void (*get_initial_plane_config)(struct intel_crtc *, 665 struct intel_initial_plane_config *); 666 int (*crtc_compute_clock)(struct intel_crtc *crtc, 667 struct intel_crtc_state *crtc_state); 668 void (*crtc_enable)(struct intel_crtc_state *pipe_config, 669 struct drm_atomic_state *old_state); 670 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state, 671 struct drm_atomic_state *old_state); 672 void (*update_crtcs)(struct drm_atomic_state *state, 673 unsigned int *crtc_vblank_mask); 674 void (*audio_codec_enable)(struct drm_connector *connector, 675 struct intel_encoder *encoder, 676 const struct drm_display_mode *adjusted_mode); 677 void (*audio_codec_disable)(struct intel_encoder *encoder); 678 void (*fdi_link_train)(struct intel_crtc *crtc, 679 const struct intel_crtc_state *crtc_state); 680 void (*init_clock_gating)(struct drm_i915_private *dev_priv); 681 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc, 682 struct drm_framebuffer *fb, 683 struct drm_i915_gem_object *obj, 684 struct drm_i915_gem_request *req, 685 uint32_t flags); 686 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv); 687 /* clock updates for mode set */ 688 /* cursor updates */ 689 /* render clock increase/decrease */ 690 /* display clock increase/decrease */ 691 /* pll clock increase/decrease */ 692 693 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state); 694 void (*load_luts)(struct drm_crtc_state *crtc_state); 695 }; 696 697 enum forcewake_domain_id { 698 FW_DOMAIN_ID_RENDER = 0, 699 FW_DOMAIN_ID_BLITTER, 700 FW_DOMAIN_ID_MEDIA, 701 702 FW_DOMAIN_ID_COUNT 703 }; 704 705 enum forcewake_domains { 706 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER), 707 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER), 708 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA), 709 FORCEWAKE_ALL = (FORCEWAKE_RENDER | 710 FORCEWAKE_BLITTER | 711 FORCEWAKE_MEDIA) 712 }; 713 714 #define FW_REG_READ (1) 715 #define FW_REG_WRITE (2) 716 717 enum decoupled_power_domain { 718 GEN9_DECOUPLED_PD_BLITTER = 0, 719 GEN9_DECOUPLED_PD_RENDER, 720 GEN9_DECOUPLED_PD_MEDIA, 721 GEN9_DECOUPLED_PD_ALL 722 }; 723 724 enum decoupled_ops { 725 GEN9_DECOUPLED_OP_WRITE = 0, 726 GEN9_DECOUPLED_OP_READ 727 }; 728 729 enum forcewake_domains 730 intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv, 731 i915_reg_t reg, unsigned int op); 732 733 struct intel_uncore_funcs { 734 void (*force_wake_get)(struct drm_i915_private *dev_priv, 735 enum forcewake_domains domains); 736 void (*force_wake_put)(struct drm_i915_private *dev_priv, 737 enum forcewake_domains domains); 738 739 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 740 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 741 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 742 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 743 744 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r, 745 uint8_t val, bool trace); 746 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r, 747 uint16_t val, bool trace); 748 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r, 749 uint32_t val, bool trace); 750 }; 751 752 struct intel_forcewake_range { 753 u32 start; 754 u32 end; 755 756 enum forcewake_domains domains; 757 }; 758 759 struct intel_uncore { 760 spinlock_t lock; /** lock is also taken in irq contexts. */ 761 762 const struct intel_forcewake_range *fw_domains_table; 763 unsigned int fw_domains_table_entries; 764 765 struct notifier_block pmic_bus_access_nb; 766 struct intel_uncore_funcs funcs; 767 768 unsigned fifo_count; 769 770 enum forcewake_domains fw_domains; 771 enum forcewake_domains fw_domains_active; 772 773 struct intel_uncore_forcewake_domain { 774 struct drm_i915_private *i915; 775 enum forcewake_domain_id id; 776 enum forcewake_domains mask; 777 unsigned wake_count; 778 struct hrtimer timer; 779 i915_reg_t reg_set; 780 u32 val_set; 781 u32 val_clear; 782 i915_reg_t reg_ack; 783 i915_reg_t reg_post; 784 u32 val_reset; 785 } fw_domain[FW_DOMAIN_ID_COUNT]; 786 787 int unclaimed_mmio_check; 788 }; 789 790 /* Iterate over initialised fw domains */ 791 #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \ 792 for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \ 793 (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \ 794 (domain__)++) \ 795 for_each_if ((mask__) & (domain__)->mask) 796 797 #define for_each_fw_domain(domain__, dev_priv__) \ 798 for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__) 799 800 #define CSR_VERSION(major, minor) ((major) << 16 | (minor)) 801 #define CSR_VERSION_MAJOR(version) ((version) >> 16) 802 #define CSR_VERSION_MINOR(version) ((version) & 0xffff) 803 804 struct intel_csr { 805 struct work_struct work; 806 const char *fw_path; 807 uint32_t *dmc_payload; 808 uint32_t dmc_fw_size; 809 uint32_t version; 810 uint32_t mmio_count; 811 i915_reg_t mmioaddr[8]; 812 uint32_t mmiodata[8]; 813 uint32_t dc_state; 814 uint32_t allowed_dc_mask; 815 }; 816 817 #define DEV_INFO_FOR_EACH_FLAG(func) \ 818 func(is_mobile); \ 819 func(is_lp); \ 820 func(is_alpha_support); \ 821 /* Keep has_* in alphabetical order */ \ 822 func(has_64bit_reloc); \ 823 func(has_aliasing_ppgtt); \ 824 func(has_csr); \ 825 func(has_ddi); \ 826 func(has_decoupled_mmio); \ 827 func(has_dp_mst); \ 828 func(has_fbc); \ 829 func(has_fpga_dbg); \ 830 func(has_full_ppgtt); \ 831 func(has_full_48bit_ppgtt); \ 832 func(has_gmbus_irq); \ 833 func(has_gmch_display); \ 834 func(has_guc); \ 835 func(has_hotplug); \ 836 func(has_hw_contexts); \ 837 func(has_l3_dpf); \ 838 func(has_llc); \ 839 func(has_logical_ring_contexts); \ 840 func(has_overlay); \ 841 func(has_pipe_cxsr); \ 842 func(has_pooled_eu); \ 843 func(has_psr); \ 844 func(has_rc6); \ 845 func(has_rc6p); \ 846 func(has_resource_streamer); \ 847 func(has_runtime_pm); \ 848 func(has_snoop); \ 849 func(cursor_needs_physical); \ 850 func(hws_needs_physical); \ 851 func(overlay_needs_physical); \ 852 func(supports_tv); 853 854 struct sseu_dev_info { 855 u8 slice_mask; 856 u8 subslice_mask; 857 u8 eu_total; 858 u8 eu_per_subslice; 859 u8 min_eu_in_pool; 860 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */ 861 u8 subslice_7eu[3]; 862 u8 has_slice_pg:1; 863 u8 has_subslice_pg:1; 864 u8 has_eu_pg:1; 865 }; 866 867 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu) 868 { 869 return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask); 870 } 871 872 /* Keep in gen based order, and chronological order within a gen */ 873 enum intel_platform { 874 INTEL_PLATFORM_UNINITIALIZED = 0, 875 INTEL_I830, 876 INTEL_I845G, 877 INTEL_I85X, 878 INTEL_I865G, 879 INTEL_I915G, 880 INTEL_I915GM, 881 INTEL_I945G, 882 INTEL_I945GM, 883 INTEL_G33, 884 INTEL_PINEVIEW, 885 INTEL_I965G, 886 INTEL_I965GM, 887 INTEL_G45, 888 INTEL_GM45, 889 INTEL_IRONLAKE, 890 INTEL_SANDYBRIDGE, 891 INTEL_IVYBRIDGE, 892 INTEL_VALLEYVIEW, 893 INTEL_HASWELL, 894 INTEL_BROADWELL, 895 INTEL_CHERRYVIEW, 896 INTEL_SKYLAKE, 897 INTEL_BROXTON, 898 INTEL_KABYLAKE, 899 INTEL_GEMINILAKE, 900 INTEL_MAX_PLATFORMS 901 }; 902 903 struct intel_device_info { 904 u32 display_mmio_offset; 905 u16 device_id; 906 u8 num_pipes; 907 u8 num_sprites[I915_MAX_PIPES]; 908 u8 num_scalers[I915_MAX_PIPES]; 909 u8 gen; 910 u16 gen_mask; 911 enum intel_platform platform; 912 u8 ring_mask; /* Rings supported by the HW */ 913 u8 num_rings; 914 #define DEFINE_FLAG(name) u8 name:1 915 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG); 916 #undef DEFINE_FLAG 917 u16 ddb_size; /* in blocks */ 918 /* Register offsets for the various display pipes and transcoders */ 919 int pipe_offsets[I915_MAX_TRANSCODERS]; 920 int trans_offsets[I915_MAX_TRANSCODERS]; 921 int palette_offsets[I915_MAX_PIPES]; 922 int cursor_offsets[I915_MAX_PIPES]; 923 924 /* Slice/subslice/EU info */ 925 struct sseu_dev_info sseu; 926 927 struct color_luts { 928 u16 degamma_lut_size; 929 u16 gamma_lut_size; 930 } color; 931 }; 932 933 struct intel_display_error_state; 934 935 struct i915_gpu_state { 936 struct kref ref; 937 struct timeval time; 938 struct timeval boottime; 939 struct timeval uptime; 940 941 struct drm_i915_private *i915; 942 943 char error_msg[128]; 944 bool simulated; 945 bool awake; 946 bool wakelock; 947 bool suspended; 948 int iommu; 949 u32 reset_count; 950 u32 suspend_count; 951 struct intel_device_info device_info; 952 struct i915_params params; 953 954 /* Generic register state */ 955 u32 eir; 956 u32 pgtbl_er; 957 u32 ier; 958 u32 gtier[4], ngtier; 959 u32 ccid; 960 u32 derrmr; 961 u32 forcewake; 962 u32 error; /* gen6+ */ 963 u32 err_int; /* gen7 */ 964 u32 fault_data0; /* gen8, gen9 */ 965 u32 fault_data1; /* gen8, gen9 */ 966 u32 done_reg; 967 u32 gac_eco; 968 u32 gam_ecochk; 969 u32 gab_ctl; 970 u32 gfx_mode; 971 972 u32 nfence; 973 u64 fence[I915_MAX_NUM_FENCES]; 974 struct intel_overlay_error_state *overlay; 975 struct intel_display_error_state *display; 976 struct drm_i915_error_object *semaphore; 977 struct drm_i915_error_object *guc_log; 978 979 struct drm_i915_error_engine { 980 int engine_id; 981 /* Software tracked state */ 982 bool waiting; 983 int num_waiters; 984 unsigned long hangcheck_timestamp; 985 bool hangcheck_stalled; 986 enum intel_engine_hangcheck_action hangcheck_action; 987 struct i915_address_space *vm; 988 int num_requests; 989 990 /* position of active request inside the ring */ 991 u32 rq_head, rq_post, rq_tail; 992 993 /* our own tracking of ring head and tail */ 994 u32 cpu_ring_head; 995 u32 cpu_ring_tail; 996 997 u32 last_seqno; 998 999 /* Register state */ 1000 u32 start; 1001 u32 tail; 1002 u32 head; 1003 u32 ctl; 1004 u32 mode; 1005 u32 hws; 1006 u32 ipeir; 1007 u32 ipehr; 1008 u32 bbstate; 1009 u32 instpm; 1010 u32 instps; 1011 u32 seqno; 1012 u64 bbaddr; 1013 u64 acthd; 1014 u32 fault_reg; 1015 u64 faddr; 1016 u32 rc_psmi; /* sleep state */ 1017 u32 semaphore_mboxes[I915_NUM_ENGINES - 1]; 1018 struct intel_instdone instdone; 1019 1020 struct drm_i915_error_context { 1021 char comm[TASK_COMM_LEN]; 1022 pid_t pid; 1023 u32 handle; 1024 u32 hw_id; 1025 int ban_score; 1026 int active; 1027 int guilty; 1028 } context; 1029 1030 struct drm_i915_error_object { 1031 u64 gtt_offset; 1032 u64 gtt_size; 1033 int page_count; 1034 int unused; 1035 u32 *pages[0]; 1036 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page; 1037 1038 struct drm_i915_error_object *wa_ctx; 1039 1040 struct drm_i915_error_request { 1041 long jiffies; 1042 pid_t pid; 1043 u32 context; 1044 int ban_score; 1045 u32 seqno; 1046 u32 head; 1047 u32 tail; 1048 } *requests, execlist[2]; 1049 1050 struct drm_i915_error_waiter { 1051 char comm[TASK_COMM_LEN]; 1052 pid_t pid; 1053 u32 seqno; 1054 } *waiters; 1055 1056 struct { 1057 u32 gfx_mode; 1058 union { 1059 u64 pdp[4]; 1060 u32 pp_dir_base; 1061 }; 1062 } vm_info; 1063 } engine[I915_NUM_ENGINES]; 1064 1065 struct drm_i915_error_buffer { 1066 u32 size; 1067 u32 name; 1068 u32 rseqno[I915_NUM_ENGINES], wseqno; 1069 u64 gtt_offset; 1070 u32 read_domains; 1071 u32 write_domain; 1072 s32 fence_reg:I915_MAX_NUM_FENCE_BITS; 1073 u32 tiling:2; 1074 u32 dirty:1; 1075 u32 purgeable:1; 1076 u32 userptr:1; 1077 s32 engine:4; 1078 u32 cache_level:3; 1079 } *active_bo[I915_NUM_ENGINES], *pinned_bo; 1080 u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count; 1081 struct i915_address_space *active_vm[I915_NUM_ENGINES]; 1082 }; 1083 1084 enum i915_cache_level { 1085 I915_CACHE_NONE = 0, 1086 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */ 1087 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc 1088 caches, eg sampler/render caches, and the 1089 large Last-Level-Cache. LLC is coherent with 1090 the CPU, but L3 is only visible to the GPU. */ 1091 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */ 1092 }; 1093 1094 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */ 1095 1096 enum fb_op_origin { 1097 ORIGIN_GTT, 1098 ORIGIN_CPU, 1099 ORIGIN_CS, 1100 ORIGIN_FLIP, 1101 ORIGIN_DIRTYFB, 1102 }; 1103 1104 struct intel_fbc { 1105 /* This is always the inner lock when overlapping with struct_mutex and 1106 * it's the outer lock when overlapping with stolen_lock. */ 1107 struct mutex lock; 1108 unsigned threshold; 1109 unsigned int possible_framebuffer_bits; 1110 unsigned int busy_bits; 1111 unsigned int visible_pipes_mask; 1112 struct intel_crtc *crtc; 1113 1114 struct drm_mm_node compressed_fb; 1115 struct drm_mm_node *compressed_llb; 1116 1117 bool false_color; 1118 1119 bool enabled; 1120 bool active; 1121 1122 bool underrun_detected; 1123 struct work_struct underrun_work; 1124 1125 struct intel_fbc_state_cache { 1126 struct i915_vma *vma; 1127 1128 struct { 1129 unsigned int mode_flags; 1130 uint32_t hsw_bdw_pixel_rate; 1131 } crtc; 1132 1133 struct { 1134 unsigned int rotation; 1135 int src_w; 1136 int src_h; 1137 bool visible; 1138 } plane; 1139 1140 struct { 1141 const struct drm_format_info *format; 1142 unsigned int stride; 1143 } fb; 1144 } state_cache; 1145 1146 struct intel_fbc_reg_params { 1147 struct i915_vma *vma; 1148 1149 struct { 1150 enum pipe pipe; 1151 enum plane plane; 1152 unsigned int fence_y_offset; 1153 } crtc; 1154 1155 struct { 1156 const struct drm_format_info *format; 1157 unsigned int stride; 1158 } fb; 1159 1160 int cfb_size; 1161 } params; 1162 1163 struct intel_fbc_work { 1164 bool scheduled; 1165 u32 scheduled_vblank; 1166 struct work_struct work; 1167 } work; 1168 1169 const char *no_fbc_reason; 1170 }; 1171 1172 /* 1173 * HIGH_RR is the highest eDP panel refresh rate read from EDID 1174 * LOW_RR is the lowest eDP panel refresh rate found from EDID 1175 * parsing for same resolution. 1176 */ 1177 enum drrs_refresh_rate_type { 1178 DRRS_HIGH_RR, 1179 DRRS_LOW_RR, 1180 DRRS_MAX_RR, /* RR count */ 1181 }; 1182 1183 enum drrs_support_type { 1184 DRRS_NOT_SUPPORTED = 0, 1185 STATIC_DRRS_SUPPORT = 1, 1186 SEAMLESS_DRRS_SUPPORT = 2 1187 }; 1188 1189 struct intel_dp; 1190 struct i915_drrs { 1191 struct mutex mutex; 1192 struct delayed_work work; 1193 struct intel_dp *dp; 1194 unsigned busy_frontbuffer_bits; 1195 enum drrs_refresh_rate_type refresh_rate_type; 1196 enum drrs_support_type type; 1197 }; 1198 1199 struct i915_psr { 1200 struct mutex lock; 1201 bool sink_support; 1202 bool source_ok; 1203 struct intel_dp *enabled; 1204 bool active; 1205 struct delayed_work work; 1206 unsigned busy_frontbuffer_bits; 1207 bool psr2_support; 1208 bool aux_frame_sync; 1209 bool link_standby; 1210 bool y_cord_support; 1211 bool colorimetry_support; 1212 bool alpm; 1213 }; 1214 1215 enum intel_pch { 1216 PCH_NONE = 0, /* No PCH present */ 1217 PCH_IBX, /* Ibexpeak PCH */ 1218 PCH_CPT, /* Cougarpoint PCH */ 1219 PCH_LPT, /* Lynxpoint PCH */ 1220 PCH_SPT, /* Sunrisepoint PCH */ 1221 PCH_KBP, /* Kabypoint PCH */ 1222 PCH_NOP, 1223 }; 1224 1225 enum intel_sbi_destination { 1226 SBI_ICLK, 1227 SBI_MPHY, 1228 }; 1229 1230 #define QUIRK_PIPEA_FORCE (1<<0) 1231 #define QUIRK_LVDS_SSC_DISABLE (1<<1) 1232 #define QUIRK_INVERT_BRIGHTNESS (1<<2) 1233 #define QUIRK_BACKLIGHT_PRESENT (1<<3) 1234 #define QUIRK_PIPEB_FORCE (1<<4) 1235 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5) 1236 1237 struct intel_fbdev; 1238 struct intel_fbc_work; 1239 1240 struct intel_gmbus { 1241 struct i2c_adapter adapter; 1242 #define GMBUS_FORCE_BIT_RETRY (1U << 31) 1243 u32 force_bit; 1244 u32 reg0; 1245 i915_reg_t gpio_reg; 1246 struct i2c_algo_bit_data bit_algo; 1247 struct drm_i915_private *dev_priv; 1248 }; 1249 1250 struct i915_suspend_saved_registers { 1251 u32 saveDSPARB; 1252 u32 saveFBC_CONTROL; 1253 u32 saveCACHE_MODE_0; 1254 u32 saveMI_ARB_STATE; 1255 u32 saveSWF0[16]; 1256 u32 saveSWF1[16]; 1257 u32 saveSWF3[3]; 1258 uint64_t saveFENCE[I915_MAX_NUM_FENCES]; 1259 u32 savePCH_PORT_HOTPLUG; 1260 u16 saveGCDGMBUS; 1261 }; 1262 1263 struct vlv_s0ix_state { 1264 /* GAM */ 1265 u32 wr_watermark; 1266 u32 gfx_prio_ctrl; 1267 u32 arb_mode; 1268 u32 gfx_pend_tlb0; 1269 u32 gfx_pend_tlb1; 1270 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM]; 1271 u32 media_max_req_count; 1272 u32 gfx_max_req_count; 1273 u32 render_hwsp; 1274 u32 ecochk; 1275 u32 bsd_hwsp; 1276 u32 blt_hwsp; 1277 u32 tlb_rd_addr; 1278 1279 /* MBC */ 1280 u32 g3dctl; 1281 u32 gsckgctl; 1282 u32 mbctl; 1283 1284 /* GCP */ 1285 u32 ucgctl1; 1286 u32 ucgctl3; 1287 u32 rcgctl1; 1288 u32 rcgctl2; 1289 u32 rstctl; 1290 u32 misccpctl; 1291 1292 /* GPM */ 1293 u32 gfxpause; 1294 u32 rpdeuhwtc; 1295 u32 rpdeuc; 1296 u32 ecobus; 1297 u32 pwrdwnupctl; 1298 u32 rp_down_timeout; 1299 u32 rp_deucsw; 1300 u32 rcubmabdtmr; 1301 u32 rcedata; 1302 u32 spare2gh; 1303 1304 /* Display 1 CZ domain */ 1305 u32 gt_imr; 1306 u32 gt_ier; 1307 u32 pm_imr; 1308 u32 pm_ier; 1309 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM]; 1310 1311 /* GT SA CZ domain */ 1312 u32 tilectl; 1313 u32 gt_fifoctl; 1314 u32 gtlc_wake_ctrl; 1315 u32 gtlc_survive; 1316 u32 pmwgicz; 1317 1318 /* Display 2 CZ domain */ 1319 u32 gu_ctl0; 1320 u32 gu_ctl1; 1321 u32 pcbr; 1322 u32 clock_gate_dis2; 1323 }; 1324 1325 struct intel_rps_ei { 1326 ktime_t ktime; 1327 u32 render_c0; 1328 u32 media_c0; 1329 }; 1330 1331 struct intel_gen6_power_mgmt { 1332 /* 1333 * work, interrupts_enabled and pm_iir are protected by 1334 * dev_priv->irq_lock 1335 */ 1336 struct work_struct work; 1337 bool interrupts_enabled; 1338 u32 pm_iir; 1339 1340 /* PM interrupt bits that should never be masked */ 1341 u32 pm_intrmsk_mbz; 1342 1343 /* Frequencies are stored in potentially platform dependent multiples. 1344 * In other words, *_freq needs to be multiplied by X to be interesting. 1345 * Soft limits are those which are used for the dynamic reclocking done 1346 * by the driver (raise frequencies under heavy loads, and lower for 1347 * lighter loads). Hard limits are those imposed by the hardware. 1348 * 1349 * A distinction is made for overclocking, which is never enabled by 1350 * default, and is considered to be above the hard limit if it's 1351 * possible at all. 1352 */ 1353 u8 cur_freq; /* Current frequency (cached, may not == HW) */ 1354 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */ 1355 u8 max_freq_softlimit; /* Max frequency permitted by the driver */ 1356 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */ 1357 u8 min_freq; /* AKA RPn. Minimum frequency */ 1358 u8 boost_freq; /* Frequency to request when wait boosting */ 1359 u8 idle_freq; /* Frequency to request when we are idle */ 1360 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */ 1361 u8 rp1_freq; /* "less than" RP0 power/freqency */ 1362 u8 rp0_freq; /* Non-overclocked max frequency. */ 1363 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */ 1364 1365 u8 up_threshold; /* Current %busy required to uplock */ 1366 u8 down_threshold; /* Current %busy required to downclock */ 1367 1368 int last_adj; 1369 enum { LOW_POWER, BETWEEN, HIGH_POWER } power; 1370 1371 spinlock_t client_lock; 1372 struct list_head clients; 1373 bool client_boost; 1374 1375 bool enabled; 1376 struct delayed_work autoenable_work; 1377 unsigned boosts; 1378 1379 /* manual wa residency calculations */ 1380 struct intel_rps_ei ei; 1381 1382 /* 1383 * Protects RPS/RC6 register access and PCU communication. 1384 * Must be taken after struct_mutex if nested. Note that 1385 * this lock may be held for long periods of time when 1386 * talking to hw - so only take it when talking to hw! 1387 */ 1388 struct mutex hw_lock; 1389 }; 1390 1391 /* defined intel_pm.c */ 1392 extern spinlock_t mchdev_lock; 1393 1394 struct intel_ilk_power_mgmt { 1395 u8 cur_delay; 1396 u8 min_delay; 1397 u8 max_delay; 1398 u8 fmax; 1399 u8 fstart; 1400 1401 u64 last_count1; 1402 unsigned long last_time1; 1403 unsigned long chipset_power; 1404 u64 last_count2; 1405 u64 last_time2; 1406 unsigned long gfx_power; 1407 u8 corr; 1408 1409 int c_m; 1410 int r_t; 1411 }; 1412 1413 struct drm_i915_private; 1414 struct i915_power_well; 1415 1416 struct i915_power_well_ops { 1417 /* 1418 * Synchronize the well's hw state to match the current sw state, for 1419 * example enable/disable it based on the current refcount. Called 1420 * during driver init and resume time, possibly after first calling 1421 * the enable/disable handlers. 1422 */ 1423 void (*sync_hw)(struct drm_i915_private *dev_priv, 1424 struct i915_power_well *power_well); 1425 /* 1426 * Enable the well and resources that depend on it (for example 1427 * interrupts located on the well). Called after the 0->1 refcount 1428 * transition. 1429 */ 1430 void (*enable)(struct drm_i915_private *dev_priv, 1431 struct i915_power_well *power_well); 1432 /* 1433 * Disable the well and resources that depend on it. Called after 1434 * the 1->0 refcount transition. 1435 */ 1436 void (*disable)(struct drm_i915_private *dev_priv, 1437 struct i915_power_well *power_well); 1438 /* Returns the hw enabled state. */ 1439 bool (*is_enabled)(struct drm_i915_private *dev_priv, 1440 struct i915_power_well *power_well); 1441 }; 1442 1443 /* Power well structure for haswell */ 1444 struct i915_power_well { 1445 const char *name; 1446 bool always_on; 1447 /* power well enable/disable usage count */ 1448 int count; 1449 /* cached hw enabled state */ 1450 bool hw_enabled; 1451 u64 domains; 1452 /* unique identifier for this power well */ 1453 unsigned long id; 1454 /* 1455 * Arbitraty data associated with this power well. Platform and power 1456 * well specific. 1457 */ 1458 unsigned long data; 1459 const struct i915_power_well_ops *ops; 1460 }; 1461 1462 struct i915_power_domains { 1463 /* 1464 * Power wells needed for initialization at driver init and suspend 1465 * time are on. They are kept on until after the first modeset. 1466 */ 1467 bool init_power_on; 1468 bool initializing; 1469 int power_well_count; 1470 1471 struct mutex lock; 1472 int domain_use_count[POWER_DOMAIN_NUM]; 1473 struct i915_power_well *power_wells; 1474 }; 1475 1476 #define MAX_L3_SLICES 2 1477 struct intel_l3_parity { 1478 u32 *remap_info[MAX_L3_SLICES]; 1479 struct work_struct error_work; 1480 int which_slice; 1481 }; 1482 1483 struct i915_gem_mm { 1484 /** Memory allocator for GTT stolen memory */ 1485 struct drm_mm stolen; 1486 /** Protects the usage of the GTT stolen memory allocator. This is 1487 * always the inner lock when overlapping with struct_mutex. */ 1488 struct mutex stolen_lock; 1489 1490 /** List of all objects in gtt_space. Used to restore gtt 1491 * mappings on resume */ 1492 struct list_head bound_list; 1493 /** 1494 * List of objects which are not bound to the GTT (thus 1495 * are idle and not used by the GPU). These objects may or may 1496 * not actually have any pages attached. 1497 */ 1498 struct list_head unbound_list; 1499 1500 /** List of all objects in gtt_space, currently mmaped by userspace. 1501 * All objects within this list must also be on bound_list. 1502 */ 1503 struct list_head userfault_list; 1504 1505 /** 1506 * List of objects which are pending destruction. 1507 */ 1508 struct llist_head free_list; 1509 struct work_struct free_work; 1510 1511 /** Usable portion of the GTT for GEM */ 1512 dma_addr_t stolen_base; /* limited to low memory (32-bit) */ 1513 1514 /** PPGTT used for aliasing the PPGTT with the GTT */ 1515 struct i915_hw_ppgtt *aliasing_ppgtt; 1516 1517 struct notifier_block oom_notifier; 1518 struct notifier_block vmap_notifier; 1519 struct shrinker shrinker; 1520 1521 /** LRU list of objects with fence regs on them. */ 1522 struct list_head fence_list; 1523 1524 /** 1525 * Are we in a non-interruptible section of code like 1526 * modesetting? 1527 */ 1528 bool interruptible; 1529 1530 /* the indicator for dispatch video commands on two BSD rings */ 1531 atomic_t bsd_engine_dispatch_index; 1532 1533 /** Bit 6 swizzling required for X tiling */ 1534 uint32_t bit_6_swizzle_x; 1535 /** Bit 6 swizzling required for Y tiling */ 1536 uint32_t bit_6_swizzle_y; 1537 1538 /* accounting, useful for userland debugging */ 1539 spinlock_t object_stat_lock; 1540 u64 object_memory; 1541 u32 object_count; 1542 }; 1543 1544 struct drm_i915_error_state_buf { 1545 struct drm_i915_private *i915; 1546 unsigned bytes; 1547 unsigned size; 1548 int err; 1549 u8 *buf; 1550 loff_t start; 1551 loff_t pos; 1552 }; 1553 1554 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */ 1555 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */ 1556 1557 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */ 1558 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */ 1559 1560 struct i915_gpu_error { 1561 /* For hangcheck timer */ 1562 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */ 1563 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD) 1564 1565 struct delayed_work hangcheck_work; 1566 1567 /* For reset and error_state handling. */ 1568 spinlock_t lock; 1569 /* Protected by the above dev->gpu_error.lock. */ 1570 struct i915_gpu_state *first_error; 1571 1572 unsigned long missed_irq_rings; 1573 1574 /** 1575 * State variable controlling the reset flow and count 1576 * 1577 * This is a counter which gets incremented when reset is triggered, 1578 * 1579 * Before the reset commences, the I915_RESET_IN_PROGRESS bit is set 1580 * meaning that any waiters holding onto the struct_mutex should 1581 * relinquish the lock immediately in order for the reset to start. 1582 * 1583 * If reset is not completed succesfully, the I915_WEDGE bit is 1584 * set meaning that hardware is terminally sour and there is no 1585 * recovery. All waiters on the reset_queue will be woken when 1586 * that happens. 1587 * 1588 * This counter is used by the wait_seqno code to notice that reset 1589 * event happened and it needs to restart the entire ioctl (since most 1590 * likely the seqno it waited for won't ever signal anytime soon). 1591 * 1592 * This is important for lock-free wait paths, where no contended lock 1593 * naturally enforces the correct ordering between the bail-out of the 1594 * waiter and the gpu reset work code. 1595 */ 1596 unsigned long reset_count; 1597 1598 /** 1599 * flags: Control various stages of the GPU reset 1600 * 1601 * #I915_RESET_BACKOFF - When we start a reset, we want to stop any 1602 * other users acquiring the struct_mutex. To do this we set the 1603 * #I915_RESET_BACKOFF bit in the error flags when we detect a reset 1604 * and then check for that bit before acquiring the struct_mutex (in 1605 * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a 1606 * secondary role in preventing two concurrent global reset attempts. 1607 * 1608 * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the 1609 * struct_mutex. We try to acquire the struct_mutex in the reset worker, 1610 * but it may be held by some long running waiter (that we cannot 1611 * interrupt without causing trouble). Once we are ready to do the GPU 1612 * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If 1613 * they already hold the struct_mutex and want to participate they can 1614 * inspect the bit and do the reset directly, otherwise the worker 1615 * waits for the struct_mutex. 1616 * 1617 * #I915_WEDGED - If reset fails and we can no longer use the GPU, 1618 * we set the #I915_WEDGED bit. Prior to command submission, e.g. 1619 * i915_gem_request_alloc(), this bit is checked and the sequence 1620 * aborted (with -EIO reported to userspace) if set. 1621 */ 1622 unsigned long flags; 1623 #define I915_RESET_BACKOFF 0 1624 #define I915_RESET_HANDOFF 1 1625 #define I915_WEDGED (BITS_PER_LONG - 1) 1626 1627 /** 1628 * Waitqueue to signal when a hang is detected. Used to for waiters 1629 * to release the struct_mutex for the reset to procede. 1630 */ 1631 wait_queue_head_t wait_queue; 1632 1633 /** 1634 * Waitqueue to signal when the reset has completed. Used by clients 1635 * that wait for dev_priv->mm.wedged to settle. 1636 */ 1637 wait_queue_head_t reset_queue; 1638 1639 /* For missed irq/seqno simulation. */ 1640 unsigned long test_irq_rings; 1641 }; 1642 1643 enum modeset_restore { 1644 MODESET_ON_LID_OPEN, 1645 MODESET_DONE, 1646 MODESET_SUSPENDED, 1647 }; 1648 1649 #define DP_AUX_A 0x40 1650 #define DP_AUX_B 0x10 1651 #define DP_AUX_C 0x20 1652 #define DP_AUX_D 0x30 1653 1654 #define DDC_PIN_B 0x05 1655 #define DDC_PIN_C 0x04 1656 #define DDC_PIN_D 0x06 1657 1658 struct ddi_vbt_port_info { 1659 /* 1660 * This is an index in the HDMI/DVI DDI buffer translation table. 1661 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't 1662 * populate this field. 1663 */ 1664 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff 1665 uint8_t hdmi_level_shift; 1666 1667 uint8_t supports_dvi:1; 1668 uint8_t supports_hdmi:1; 1669 uint8_t supports_dp:1; 1670 uint8_t supports_edp:1; 1671 1672 uint8_t alternate_aux_channel; 1673 uint8_t alternate_ddc_pin; 1674 1675 uint8_t dp_boost_level; 1676 uint8_t hdmi_boost_level; 1677 }; 1678 1679 enum psr_lines_to_wait { 1680 PSR_0_LINES_TO_WAIT = 0, 1681 PSR_1_LINE_TO_WAIT, 1682 PSR_4_LINES_TO_WAIT, 1683 PSR_8_LINES_TO_WAIT 1684 }; 1685 1686 struct intel_vbt_data { 1687 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */ 1688 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */ 1689 1690 /* Feature bits */ 1691 unsigned int int_tv_support:1; 1692 unsigned int lvds_dither:1; 1693 unsigned int lvds_vbt:1; 1694 unsigned int int_crt_support:1; 1695 unsigned int lvds_use_ssc:1; 1696 unsigned int display_clock_mode:1; 1697 unsigned int fdi_rx_polarity_inverted:1; 1698 unsigned int panel_type:4; 1699 int lvds_ssc_freq; 1700 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */ 1701 1702 enum drrs_support_type drrs_type; 1703 1704 struct { 1705 int rate; 1706 int lanes; 1707 int preemphasis; 1708 int vswing; 1709 bool low_vswing; 1710 bool initialized; 1711 bool support; 1712 int bpp; 1713 struct edp_power_seq pps; 1714 } edp; 1715 1716 struct { 1717 bool full_link; 1718 bool require_aux_wakeup; 1719 int idle_frames; 1720 enum psr_lines_to_wait lines_to_wait; 1721 int tp1_wakeup_time; 1722 int tp2_tp3_wakeup_time; 1723 } psr; 1724 1725 struct { 1726 u16 pwm_freq_hz; 1727 bool present; 1728 bool active_low_pwm; 1729 u8 min_brightness; /* min_brightness/255 of max */ 1730 u8 controller; /* brightness controller number */ 1731 enum intel_backlight_type type; 1732 } backlight; 1733 1734 /* MIPI DSI */ 1735 struct { 1736 u16 panel_id; 1737 struct mipi_config *config; 1738 struct mipi_pps_data *pps; 1739 u8 seq_version; 1740 u32 size; 1741 u8 *data; 1742 const u8 *sequence[MIPI_SEQ_MAX]; 1743 } dsi; 1744 1745 int crt_ddc_pin; 1746 1747 int child_dev_num; 1748 union child_device_config *child_dev; 1749 1750 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS]; 1751 struct sdvo_device_mapping sdvo_mappings[2]; 1752 }; 1753 1754 enum intel_ddb_partitioning { 1755 INTEL_DDB_PART_1_2, 1756 INTEL_DDB_PART_5_6, /* IVB+ */ 1757 }; 1758 1759 struct intel_wm_level { 1760 bool enable; 1761 uint32_t pri_val; 1762 uint32_t spr_val; 1763 uint32_t cur_val; 1764 uint32_t fbc_val; 1765 }; 1766 1767 struct ilk_wm_values { 1768 uint32_t wm_pipe[3]; 1769 uint32_t wm_lp[3]; 1770 uint32_t wm_lp_spr[3]; 1771 uint32_t wm_linetime[3]; 1772 bool enable_fbc_wm; 1773 enum intel_ddb_partitioning partitioning; 1774 }; 1775 1776 struct vlv_pipe_wm { 1777 uint16_t plane[I915_MAX_PLANES]; 1778 }; 1779 1780 struct vlv_sr_wm { 1781 uint16_t plane; 1782 uint16_t cursor; 1783 }; 1784 1785 struct vlv_wm_ddl_values { 1786 uint8_t plane[I915_MAX_PLANES]; 1787 }; 1788 1789 struct vlv_wm_values { 1790 struct vlv_pipe_wm pipe[3]; 1791 struct vlv_sr_wm sr; 1792 struct vlv_wm_ddl_values ddl[3]; 1793 uint8_t level; 1794 bool cxsr; 1795 }; 1796 1797 struct skl_ddb_entry { 1798 uint16_t start, end; /* in number of blocks, 'end' is exclusive */ 1799 }; 1800 1801 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry) 1802 { 1803 return entry->end - entry->start; 1804 } 1805 1806 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1, 1807 const struct skl_ddb_entry *e2) 1808 { 1809 if (e1->start == e2->start && e1->end == e2->end) 1810 return true; 1811 1812 return false; 1813 } 1814 1815 struct skl_ddb_allocation { 1816 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */ 1817 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES]; 1818 }; 1819 1820 struct skl_wm_values { 1821 unsigned dirty_pipes; 1822 struct skl_ddb_allocation ddb; 1823 }; 1824 1825 struct skl_wm_level { 1826 bool plane_en; 1827 uint16_t plane_res_b; 1828 uint8_t plane_res_l; 1829 }; 1830 1831 /* 1832 * This struct helps tracking the state needed for runtime PM, which puts the 1833 * device in PCI D3 state. Notice that when this happens, nothing on the 1834 * graphics device works, even register access, so we don't get interrupts nor 1835 * anything else. 1836 * 1837 * Every piece of our code that needs to actually touch the hardware needs to 1838 * either call intel_runtime_pm_get or call intel_display_power_get with the 1839 * appropriate power domain. 1840 * 1841 * Our driver uses the autosuspend delay feature, which means we'll only really 1842 * suspend if we stay with zero refcount for a certain amount of time. The 1843 * default value is currently very conservative (see intel_runtime_pm_enable), but 1844 * it can be changed with the standard runtime PM files from sysfs. 1845 * 1846 * The irqs_disabled variable becomes true exactly after we disable the IRQs and 1847 * goes back to false exactly before we reenable the IRQs. We use this variable 1848 * to check if someone is trying to enable/disable IRQs while they're supposed 1849 * to be disabled. This shouldn't happen and we'll print some error messages in 1850 * case it happens. 1851 * 1852 * For more, read the Documentation/power/runtime_pm.txt. 1853 */ 1854 struct i915_runtime_pm { 1855 atomic_t wakeref_count; 1856 bool suspended; 1857 bool irqs_enabled; 1858 }; 1859 1860 enum intel_pipe_crc_source { 1861 INTEL_PIPE_CRC_SOURCE_NONE, 1862 INTEL_PIPE_CRC_SOURCE_PLANE1, 1863 INTEL_PIPE_CRC_SOURCE_PLANE2, 1864 INTEL_PIPE_CRC_SOURCE_PF, 1865 INTEL_PIPE_CRC_SOURCE_PIPE, 1866 /* TV/DP on pre-gen5/vlv can't use the pipe source. */ 1867 INTEL_PIPE_CRC_SOURCE_TV, 1868 INTEL_PIPE_CRC_SOURCE_DP_B, 1869 INTEL_PIPE_CRC_SOURCE_DP_C, 1870 INTEL_PIPE_CRC_SOURCE_DP_D, 1871 INTEL_PIPE_CRC_SOURCE_AUTO, 1872 INTEL_PIPE_CRC_SOURCE_MAX, 1873 }; 1874 1875 struct intel_pipe_crc_entry { 1876 uint32_t frame; 1877 uint32_t crc[5]; 1878 }; 1879 1880 #define INTEL_PIPE_CRC_ENTRIES_NR 128 1881 struct intel_pipe_crc { 1882 spinlock_t lock; 1883 bool opened; /* exclusive access to the result file */ 1884 struct intel_pipe_crc_entry *entries; 1885 enum intel_pipe_crc_source source; 1886 int head, tail; 1887 wait_queue_head_t wq; 1888 int skipped; 1889 }; 1890 1891 struct i915_frontbuffer_tracking { 1892 spinlock_t lock; 1893 1894 /* 1895 * Tracking bits for delayed frontbuffer flushing du to gpu activity or 1896 * scheduled flips. 1897 */ 1898 unsigned busy_bits; 1899 unsigned flip_bits; 1900 }; 1901 1902 struct i915_wa_reg { 1903 i915_reg_t addr; 1904 u32 value; 1905 /* bitmask representing WA bits */ 1906 u32 mask; 1907 }; 1908 1909 /* 1910 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only 1911 * allowing it for RCS as we don't foresee any requirement of having 1912 * a whitelist for other engines. When it is really required for 1913 * other engines then the limit need to be increased. 1914 */ 1915 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS) 1916 1917 struct i915_workarounds { 1918 struct i915_wa_reg reg[I915_MAX_WA_REGS]; 1919 u32 count; 1920 u32 hw_whitelist_count[I915_NUM_ENGINES]; 1921 }; 1922 1923 struct i915_virtual_gpu { 1924 bool active; 1925 }; 1926 1927 /* used in computing the new watermarks state */ 1928 struct intel_wm_config { 1929 unsigned int num_pipes_active; 1930 bool sprites_enabled; 1931 bool sprites_scaled; 1932 }; 1933 1934 struct i915_oa_format { 1935 u32 format; 1936 int size; 1937 }; 1938 1939 struct i915_oa_reg { 1940 i915_reg_t addr; 1941 u32 value; 1942 }; 1943 1944 struct i915_perf_stream; 1945 1946 /** 1947 * struct i915_perf_stream_ops - the OPs to support a specific stream type 1948 */ 1949 struct i915_perf_stream_ops { 1950 /** 1951 * @enable: Enables the collection of HW samples, either in response to 1952 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened 1953 * without `I915_PERF_FLAG_DISABLED`. 1954 */ 1955 void (*enable)(struct i915_perf_stream *stream); 1956 1957 /** 1958 * @disable: Disables the collection of HW samples, either in response 1959 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying 1960 * the stream. 1961 */ 1962 void (*disable)(struct i915_perf_stream *stream); 1963 1964 /** 1965 * @poll_wait: Call poll_wait, passing a wait queue that will be woken 1966 * once there is something ready to read() for the stream 1967 */ 1968 void (*poll_wait)(struct i915_perf_stream *stream, 1969 struct file *file, 1970 poll_table *wait); 1971 1972 /** 1973 * @wait_unlocked: For handling a blocking read, wait until there is 1974 * something to ready to read() for the stream. E.g. wait on the same 1975 * wait queue that would be passed to poll_wait(). 1976 */ 1977 int (*wait_unlocked)(struct i915_perf_stream *stream); 1978 1979 /** 1980 * @read: Copy buffered metrics as records to userspace 1981 * **buf**: the userspace, destination buffer 1982 * **count**: the number of bytes to copy, requested by userspace 1983 * **offset**: zero at the start of the read, updated as the read 1984 * proceeds, it represents how many bytes have been copied so far and 1985 * the buffer offset for copying the next record. 1986 * 1987 * Copy as many buffered i915 perf samples and records for this stream 1988 * to userspace as will fit in the given buffer. 1989 * 1990 * Only write complete records; returning -%ENOSPC if there isn't room 1991 * for a complete record. 1992 * 1993 * Return any error condition that results in a short read such as 1994 * -%ENOSPC or -%EFAULT, even though these may be squashed before 1995 * returning to userspace. 1996 */ 1997 int (*read)(struct i915_perf_stream *stream, 1998 char __user *buf, 1999 size_t count, 2000 size_t *offset); 2001 2002 /** 2003 * @destroy: Cleanup any stream specific resources. 2004 * 2005 * The stream will always be disabled before this is called. 2006 */ 2007 void (*destroy)(struct i915_perf_stream *stream); 2008 }; 2009 2010 /** 2011 * struct i915_perf_stream - state for a single open stream FD 2012 */ 2013 struct i915_perf_stream { 2014 /** 2015 * @dev_priv: i915 drm device 2016 */ 2017 struct drm_i915_private *dev_priv; 2018 2019 /** 2020 * @link: Links the stream into ``&drm_i915_private->streams`` 2021 */ 2022 struct list_head link; 2023 2024 /** 2025 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*` 2026 * properties given when opening a stream, representing the contents 2027 * of a single sample as read() by userspace. 2028 */ 2029 u32 sample_flags; 2030 2031 /** 2032 * @sample_size: Considering the configured contents of a sample 2033 * combined with the required header size, this is the total size 2034 * of a single sample record. 2035 */ 2036 int sample_size; 2037 2038 /** 2039 * @ctx: %NULL if measuring system-wide across all contexts or a 2040 * specific context that is being monitored. 2041 */ 2042 struct i915_gem_context *ctx; 2043 2044 /** 2045 * @enabled: Whether the stream is currently enabled, considering 2046 * whether the stream was opened in a disabled state and based 2047 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls. 2048 */ 2049 bool enabled; 2050 2051 /** 2052 * @ops: The callbacks providing the implementation of this specific 2053 * type of configured stream. 2054 */ 2055 const struct i915_perf_stream_ops *ops; 2056 }; 2057 2058 /** 2059 * struct i915_oa_ops - Gen specific implementation of an OA unit stream 2060 */ 2061 struct i915_oa_ops { 2062 /** 2063 * @init_oa_buffer: Resets the head and tail pointers of the 2064 * circular buffer for periodic OA reports. 2065 * 2066 * Called when first opening a stream for OA metrics, but also may be 2067 * called in response to an OA buffer overflow or other error 2068 * condition. 2069 * 2070 * Note it may be necessary to clear the full OA buffer here as part of 2071 * maintaining the invariable that new reports must be written to 2072 * zeroed memory for us to be able to reliable detect if an expected 2073 * report has not yet landed in memory. (At least on Haswell the OA 2074 * buffer tail pointer is not synchronized with reports being visible 2075 * to the CPU) 2076 */ 2077 void (*init_oa_buffer)(struct drm_i915_private *dev_priv); 2078 2079 /** 2080 * @enable_metric_set: Applies any MUX configuration to set up the 2081 * Boolean and Custom (B/C) counters that are part of the counter 2082 * reports being sampled. May apply system constraints such as 2083 * disabling EU clock gating as required. 2084 */ 2085 int (*enable_metric_set)(struct drm_i915_private *dev_priv); 2086 2087 /** 2088 * @disable_metric_set: Remove system constraints associated with using 2089 * the OA unit. 2090 */ 2091 void (*disable_metric_set)(struct drm_i915_private *dev_priv); 2092 2093 /** 2094 * @oa_enable: Enable periodic sampling 2095 */ 2096 void (*oa_enable)(struct drm_i915_private *dev_priv); 2097 2098 /** 2099 * @oa_disable: Disable periodic sampling 2100 */ 2101 void (*oa_disable)(struct drm_i915_private *dev_priv); 2102 2103 /** 2104 * @read: Copy data from the circular OA buffer into a given userspace 2105 * buffer. 2106 */ 2107 int (*read)(struct i915_perf_stream *stream, 2108 char __user *buf, 2109 size_t count, 2110 size_t *offset); 2111 2112 /** 2113 * @oa_buffer_is_empty: Check if OA buffer empty (false positives OK) 2114 * 2115 * This is either called via fops or the poll check hrtimer (atomic 2116 * ctx) without any locks taken. 2117 * 2118 * It's safe to read OA config state here unlocked, assuming that this 2119 * is only called while the stream is enabled, while the global OA 2120 * configuration can't be modified. 2121 * 2122 * Efficiency is more important than avoiding some false positives 2123 * here, which will be handled gracefully - likely resulting in an 2124 * %EAGAIN error for userspace. 2125 */ 2126 bool (*oa_buffer_is_empty)(struct drm_i915_private *dev_priv); 2127 }; 2128 2129 struct intel_cdclk_state { 2130 unsigned int cdclk, vco, ref; 2131 }; 2132 2133 struct drm_i915_private { 2134 struct drm_device drm; 2135 2136 struct kmem_cache *objects; 2137 struct kmem_cache *vmas; 2138 struct kmem_cache *requests; 2139 struct kmem_cache *dependencies; 2140 2141 const struct intel_device_info info; 2142 2143 void __iomem *regs; 2144 2145 struct intel_uncore uncore; 2146 2147 struct i915_virtual_gpu vgpu; 2148 2149 struct intel_gvt *gvt; 2150 2151 struct intel_huc huc; 2152 struct intel_guc guc; 2153 2154 struct intel_csr csr; 2155 2156 struct intel_gmbus gmbus[GMBUS_NUM_PINS]; 2157 2158 /** gmbus_mutex protects against concurrent usage of the single hw gmbus 2159 * controller on different i2c buses. */ 2160 struct mutex gmbus_mutex; 2161 2162 /** 2163 * Base address of the gmbus and gpio block. 2164 */ 2165 uint32_t gpio_mmio_base; 2166 2167 /* MMIO base address for MIPI regs */ 2168 uint32_t mipi_mmio_base; 2169 2170 uint32_t psr_mmio_base; 2171 2172 uint32_t pps_mmio_base; 2173 2174 wait_queue_head_t gmbus_wait_queue; 2175 2176 struct pci_dev *bridge_dev; 2177 struct i915_gem_context *kernel_context; 2178 struct intel_engine_cs *engine[I915_NUM_ENGINES]; 2179 struct i915_vma *semaphore; 2180 2181 struct drm_dma_handle *status_page_dmah; 2182 struct resource mch_res; 2183 2184 /* protects the irq masks */ 2185 spinlock_t irq_lock; 2186 2187 /* protects the mmio flip data */ 2188 spinlock_t mmio_flip_lock; 2189 2190 bool display_irqs_enabled; 2191 2192 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */ 2193 struct pm_qos_request pm_qos; 2194 2195 /* Sideband mailbox protection */ 2196 struct mutex sb_lock; 2197 2198 /** Cached value of IMR to avoid reads in updating the bitfield */ 2199 union { 2200 u32 irq_mask; 2201 u32 de_irq_mask[I915_MAX_PIPES]; 2202 }; 2203 u32 gt_irq_mask; 2204 u32 pm_imr; 2205 u32 pm_ier; 2206 u32 pm_rps_events; 2207 u32 pm_guc_events; 2208 u32 pipestat_irq_mask[I915_MAX_PIPES]; 2209 2210 struct i915_hotplug hotplug; 2211 struct intel_fbc fbc; 2212 struct i915_drrs drrs; 2213 struct intel_opregion opregion; 2214 struct intel_vbt_data vbt; 2215 2216 bool preserve_bios_swizzle; 2217 2218 /* overlay */ 2219 struct intel_overlay *overlay; 2220 2221 /* backlight registers and fields in struct intel_panel */ 2222 struct mutex backlight_lock; 2223 2224 /* LVDS info */ 2225 bool no_aux_handshake; 2226 2227 /* protects panel power sequencer state */ 2228 struct mutex pps_mutex; 2229 2230 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */ 2231 int num_fence_regs; /* 8 on pre-965, 16 otherwise */ 2232 2233 unsigned int fsb_freq, mem_freq, is_ddr3; 2234 unsigned int skl_preferred_vco_freq; 2235 unsigned int max_cdclk_freq; 2236 2237 unsigned int max_dotclk_freq; 2238 unsigned int rawclk_freq; 2239 unsigned int hpll_freq; 2240 unsigned int czclk_freq; 2241 2242 struct { 2243 /* 2244 * The current logical cdclk state. 2245 * See intel_atomic_state.cdclk.logical 2246 * 2247 * For reading holding any crtc lock is sufficient, 2248 * for writing must hold all of them. 2249 */ 2250 struct intel_cdclk_state logical; 2251 /* 2252 * The current actual cdclk state. 2253 * See intel_atomic_state.cdclk.actual 2254 */ 2255 struct intel_cdclk_state actual; 2256 /* The current hardware cdclk state */ 2257 struct intel_cdclk_state hw; 2258 } cdclk; 2259 2260 /** 2261 * wq - Driver workqueue for GEM. 2262 * 2263 * NOTE: Work items scheduled here are not allowed to grab any modeset 2264 * locks, for otherwise the flushing done in the pageflip code will 2265 * result in deadlocks. 2266 */ 2267 struct workqueue_struct *wq; 2268 2269 /* Display functions */ 2270 struct drm_i915_display_funcs display; 2271 2272 /* PCH chipset type */ 2273 enum intel_pch pch_type; 2274 unsigned short pch_id; 2275 2276 unsigned long quirks; 2277 2278 enum modeset_restore modeset_restore; 2279 struct mutex modeset_restore_lock; 2280 struct drm_atomic_state *modeset_restore_state; 2281 struct drm_modeset_acquire_ctx reset_ctx; 2282 2283 struct list_head vm_list; /* Global list of all address spaces */ 2284 struct i915_ggtt ggtt; /* VM representing the global address space */ 2285 2286 struct i915_gem_mm mm; 2287 DECLARE_HASHTABLE(mm_structs, 7); 2288 struct mutex mm_lock; 2289 2290 /* The hw wants to have a stable context identifier for the lifetime 2291 * of the context (for OA, PASID, faults, etc). This is limited 2292 * in execlists to 21 bits. 2293 */ 2294 struct ida context_hw_ida; 2295 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */ 2296 2297 /* Kernel Modesetting */ 2298 2299 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES]; 2300 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES]; 2301 wait_queue_head_t pending_flip_queue; 2302 2303 #ifdef CONFIG_DEBUG_FS 2304 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES]; 2305 #endif 2306 2307 /* dpll and cdclk state is protected by connection_mutex */ 2308 int num_shared_dpll; 2309 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS]; 2310 const struct intel_dpll_mgr *dpll_mgr; 2311 2312 /* 2313 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll. 2314 * Must be global rather than per dpll, because on some platforms 2315 * plls share registers. 2316 */ 2317 struct mutex dpll_lock; 2318 2319 unsigned int active_crtcs; 2320 unsigned int min_pixclk[I915_MAX_PIPES]; 2321 2322 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV]; 2323 2324 struct i915_workarounds workarounds; 2325 2326 struct i915_frontbuffer_tracking fb_tracking; 2327 2328 struct intel_atomic_helper { 2329 struct llist_head free_list; 2330 struct work_struct free_work; 2331 } atomic_helper; 2332 2333 u16 orig_clock; 2334 2335 bool mchbar_need_disable; 2336 2337 struct intel_l3_parity l3_parity; 2338 2339 /* Cannot be determined by PCIID. You must always read a register. */ 2340 u32 edram_cap; 2341 2342 /* gen6+ rps state */ 2343 struct intel_gen6_power_mgmt rps; 2344 2345 /* ilk-only ips/rps state. Everything in here is protected by the global 2346 * mchdev_lock in intel_pm.c */ 2347 struct intel_ilk_power_mgmt ips; 2348 2349 struct i915_power_domains power_domains; 2350 2351 struct i915_psr psr; 2352 2353 struct i915_gpu_error gpu_error; 2354 2355 struct drm_i915_gem_object *vlv_pctx; 2356 2357 #ifdef CONFIG_DRM_FBDEV_EMULATION 2358 /* list of fbdev register on this device */ 2359 struct intel_fbdev *fbdev; 2360 struct work_struct fbdev_suspend_work; 2361 #endif 2362 2363 struct drm_property *broadcast_rgb_property; 2364 struct drm_property *force_audio_property; 2365 2366 /* hda/i915 audio component */ 2367 struct i915_audio_component *audio_component; 2368 bool audio_component_registered; 2369 /** 2370 * av_mutex - mutex for audio/video sync 2371 * 2372 */ 2373 struct mutex av_mutex; 2374 2375 uint32_t hw_context_size; 2376 struct list_head context_list; 2377 2378 u32 fdi_rx_config; 2379 2380 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */ 2381 u32 chv_phy_control; 2382 /* 2383 * Shadows for CHV DPLL_MD regs to keep the state 2384 * checker somewhat working in the presence hardware 2385 * crappiness (can't read out DPLL_MD for pipes B & C). 2386 */ 2387 u32 chv_dpll_md[I915_MAX_PIPES]; 2388 u32 bxt_phy_grc; 2389 2390 u32 suspend_count; 2391 bool suspended_to_idle; 2392 struct i915_suspend_saved_registers regfile; 2393 struct vlv_s0ix_state vlv_s0ix_state; 2394 2395 enum { 2396 I915_SAGV_UNKNOWN = 0, 2397 I915_SAGV_DISABLED, 2398 I915_SAGV_ENABLED, 2399 I915_SAGV_NOT_CONTROLLED 2400 } sagv_status; 2401 2402 struct { 2403 /* 2404 * Raw watermark latency values: 2405 * in 0.1us units for WM0, 2406 * in 0.5us units for WM1+. 2407 */ 2408 /* primary */ 2409 uint16_t pri_latency[5]; 2410 /* sprite */ 2411 uint16_t spr_latency[5]; 2412 /* cursor */ 2413 uint16_t cur_latency[5]; 2414 /* 2415 * Raw watermark memory latency values 2416 * for SKL for all 8 levels 2417 * in 1us units. 2418 */ 2419 uint16_t skl_latency[8]; 2420 2421 /* current hardware state */ 2422 union { 2423 struct ilk_wm_values hw; 2424 struct skl_wm_values skl_hw; 2425 struct vlv_wm_values vlv; 2426 }; 2427 2428 uint8_t max_level; 2429 2430 /* 2431 * Should be held around atomic WM register writing; also 2432 * protects * intel_crtc->wm.active and 2433 * cstate->wm.need_postvbl_update. 2434 */ 2435 struct mutex wm_mutex; 2436 2437 /* 2438 * Set during HW readout of watermarks/DDB. Some platforms 2439 * need to know when we're still using BIOS-provided values 2440 * (which we don't fully trust). 2441 */ 2442 bool distrust_bios_wm; 2443 } wm; 2444 2445 struct i915_runtime_pm pm; 2446 2447 struct { 2448 bool initialized; 2449 2450 struct kobject *metrics_kobj; 2451 struct ctl_table_header *sysctl_header; 2452 2453 struct mutex lock; 2454 struct list_head streams; 2455 2456 spinlock_t hook_lock; 2457 2458 struct { 2459 struct i915_perf_stream *exclusive_stream; 2460 2461 u32 specific_ctx_id; 2462 2463 struct hrtimer poll_check_timer; 2464 wait_queue_head_t poll_wq; 2465 bool pollin; 2466 2467 bool periodic; 2468 int period_exponent; 2469 int timestamp_frequency; 2470 2471 int tail_margin; 2472 2473 int metrics_set; 2474 2475 const struct i915_oa_reg *mux_regs; 2476 int mux_regs_len; 2477 const struct i915_oa_reg *b_counter_regs; 2478 int b_counter_regs_len; 2479 2480 struct { 2481 struct i915_vma *vma; 2482 u8 *vaddr; 2483 int format; 2484 int format_size; 2485 } oa_buffer; 2486 2487 u32 gen7_latched_oastatus1; 2488 2489 struct i915_oa_ops ops; 2490 const struct i915_oa_format *oa_formats; 2491 int n_builtin_sets; 2492 } oa; 2493 } perf; 2494 2495 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */ 2496 struct { 2497 void (*resume)(struct drm_i915_private *); 2498 void (*cleanup_engine)(struct intel_engine_cs *engine); 2499 2500 struct list_head timelines; 2501 struct i915_gem_timeline global_timeline; 2502 u32 active_requests; 2503 2504 /** 2505 * Is the GPU currently considered idle, or busy executing 2506 * userspace requests? Whilst idle, we allow runtime power 2507 * management to power down the hardware and display clocks. 2508 * In order to reduce the effect on performance, there 2509 * is a slight delay before we do so. 2510 */ 2511 bool awake; 2512 2513 /** 2514 * We leave the user IRQ off as much as possible, 2515 * but this means that requests will finish and never 2516 * be retired once the system goes idle. Set a timer to 2517 * fire periodically while the ring is running. When it 2518 * fires, go retire requests. 2519 */ 2520 struct delayed_work retire_work; 2521 2522 /** 2523 * When we detect an idle GPU, we want to turn on 2524 * powersaving features. So once we see that there 2525 * are no more requests outstanding and no more 2526 * arrive within a small period of time, we fire 2527 * off the idle_work. 2528 */ 2529 struct delayed_work idle_work; 2530 2531 ktime_t last_init_time; 2532 } gt; 2533 2534 /* perform PHY state sanity checks? */ 2535 bool chv_phy_assert[2]; 2536 2537 bool ipc_enabled; 2538 2539 /* Used to save the pipe-to-encoder mapping for audio */ 2540 struct intel_encoder *av_enc_map[I915_MAX_PIPES]; 2541 2542 /* necessary resource sharing with HDMI LPE audio driver. */ 2543 struct { 2544 struct platform_device *platdev; 2545 int irq; 2546 } lpe_audio; 2547 2548 /* 2549 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch 2550 * will be rejected. Instead look for a better place. 2551 */ 2552 }; 2553 2554 static inline struct drm_i915_private *to_i915(const struct drm_device *dev) 2555 { 2556 return container_of(dev, struct drm_i915_private, drm); 2557 } 2558 2559 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev) 2560 { 2561 return to_i915(dev_get_drvdata(kdev)); 2562 } 2563 2564 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc) 2565 { 2566 return container_of(guc, struct drm_i915_private, guc); 2567 } 2568 2569 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc) 2570 { 2571 return container_of(huc, struct drm_i915_private, huc); 2572 } 2573 2574 /* Simple iterator over all initialised engines */ 2575 #define for_each_engine(engine__, dev_priv__, id__) \ 2576 for ((id__) = 0; \ 2577 (id__) < I915_NUM_ENGINES; \ 2578 (id__)++) \ 2579 for_each_if ((engine__) = (dev_priv__)->engine[(id__)]) 2580 2581 #define __mask_next_bit(mask) ({ \ 2582 int __idx = ffs(mask) - 1; \ 2583 mask &= ~BIT(__idx); \ 2584 __idx; \ 2585 }) 2586 2587 /* Iterator over subset of engines selected by mask */ 2588 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \ 2589 for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask; \ 2590 tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; ) 2591 2592 enum hdmi_force_audio { 2593 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */ 2594 HDMI_AUDIO_OFF, /* force turn off HDMI audio */ 2595 HDMI_AUDIO_AUTO, /* trust EDID */ 2596 HDMI_AUDIO_ON, /* force turn on HDMI audio */ 2597 }; 2598 2599 #define I915_GTT_OFFSET_NONE ((u32)-1) 2600 2601 /* 2602 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is 2603 * considered to be the frontbuffer for the given plane interface-wise. This 2604 * doesn't mean that the hw necessarily already scans it out, but that any 2605 * rendering (by the cpu or gpu) will land in the frontbuffer eventually. 2606 * 2607 * We have one bit per pipe and per scanout plane type. 2608 */ 2609 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5 2610 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8 2611 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \ 2612 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))) 2613 #define INTEL_FRONTBUFFER_CURSOR(pipe) \ 2614 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2615 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \ 2616 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2617 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \ 2618 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2619 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \ 2620 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))) 2621 2622 /* 2623 * Optimised SGL iterator for GEM objects 2624 */ 2625 static __always_inline struct sgt_iter { 2626 struct scatterlist *sgp; 2627 union { 2628 unsigned long pfn; 2629 dma_addr_t dma; 2630 }; 2631 unsigned int curr; 2632 unsigned int max; 2633 } __sgt_iter(struct scatterlist *sgl, bool dma) { 2634 struct sgt_iter s = { .sgp = sgl }; 2635 2636 if (s.sgp) { 2637 s.max = s.curr = s.sgp->offset; 2638 s.max += s.sgp->length; 2639 if (dma) 2640 s.dma = sg_dma_address(s.sgp); 2641 else 2642 s.pfn = page_to_pfn(sg_page(s.sgp)); 2643 } 2644 2645 return s; 2646 } 2647 2648 static inline struct scatterlist *____sg_next(struct scatterlist *sg) 2649 { 2650 ++sg; 2651 if (unlikely(sg_is_chain(sg))) 2652 sg = sg_chain_ptr(sg); 2653 return sg; 2654 } 2655 2656 /** 2657 * __sg_next - return the next scatterlist entry in a list 2658 * @sg: The current sg entry 2659 * 2660 * Description: 2661 * If the entry is the last, return NULL; otherwise, step to the next 2662 * element in the array (@sg@+1). If that's a chain pointer, follow it; 2663 * otherwise just return the pointer to the current element. 2664 **/ 2665 static inline struct scatterlist *__sg_next(struct scatterlist *sg) 2666 { 2667 #ifdef CONFIG_DEBUG_SG 2668 BUG_ON(sg->sg_magic != SG_MAGIC); 2669 #endif 2670 return sg_is_last(sg) ? NULL : ____sg_next(sg); 2671 } 2672 2673 /** 2674 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table 2675 * @__dmap: DMA address (output) 2676 * @__iter: 'struct sgt_iter' (iterator state, internal) 2677 * @__sgt: sg_table to iterate over (input) 2678 */ 2679 #define for_each_sgt_dma(__dmap, __iter, __sgt) \ 2680 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \ 2681 ((__dmap) = (__iter).dma + (__iter).curr); \ 2682 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \ 2683 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0)) 2684 2685 /** 2686 * for_each_sgt_page - iterate over the pages of the given sg_table 2687 * @__pp: page pointer (output) 2688 * @__iter: 'struct sgt_iter' (iterator state, internal) 2689 * @__sgt: sg_table to iterate over (input) 2690 */ 2691 #define for_each_sgt_page(__pp, __iter, __sgt) \ 2692 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \ 2693 ((__pp) = (__iter).pfn == 0 ? NULL : \ 2694 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \ 2695 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \ 2696 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0)) 2697 2698 static inline const struct intel_device_info * 2699 intel_info(const struct drm_i915_private *dev_priv) 2700 { 2701 return &dev_priv->info; 2702 } 2703 2704 #define INTEL_INFO(dev_priv) intel_info((dev_priv)) 2705 2706 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen) 2707 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id) 2708 2709 #define REVID_FOREVER 0xff 2710 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision) 2711 2712 #define GEN_FOREVER (0) 2713 /* 2714 * Returns true if Gen is in inclusive range [Start, End]. 2715 * 2716 * Use GEN_FOREVER for unbound start and or end. 2717 */ 2718 #define IS_GEN(dev_priv, s, e) ({ \ 2719 unsigned int __s = (s), __e = (e); \ 2720 BUILD_BUG_ON(!__builtin_constant_p(s)); \ 2721 BUILD_BUG_ON(!__builtin_constant_p(e)); \ 2722 if ((__s) != GEN_FOREVER) \ 2723 __s = (s) - 1; \ 2724 if ((__e) == GEN_FOREVER) \ 2725 __e = BITS_PER_LONG - 1; \ 2726 else \ 2727 __e = (e) - 1; \ 2728 !!((dev_priv)->info.gen_mask & GENMASK((__e), (__s))); \ 2729 }) 2730 2731 /* 2732 * Return true if revision is in range [since,until] inclusive. 2733 * 2734 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until. 2735 */ 2736 #define IS_REVID(p, since, until) \ 2737 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until)) 2738 2739 #define IS_I830(dev_priv) ((dev_priv)->info.platform == INTEL_I830) 2740 #define IS_I845G(dev_priv) ((dev_priv)->info.platform == INTEL_I845G) 2741 #define IS_I85X(dev_priv) ((dev_priv)->info.platform == INTEL_I85X) 2742 #define IS_I865G(dev_priv) ((dev_priv)->info.platform == INTEL_I865G) 2743 #define IS_I915G(dev_priv) ((dev_priv)->info.platform == INTEL_I915G) 2744 #define IS_I915GM(dev_priv) ((dev_priv)->info.platform == INTEL_I915GM) 2745 #define IS_I945G(dev_priv) ((dev_priv)->info.platform == INTEL_I945G) 2746 #define IS_I945GM(dev_priv) ((dev_priv)->info.platform == INTEL_I945GM) 2747 #define IS_I965G(dev_priv) ((dev_priv)->info.platform == INTEL_I965G) 2748 #define IS_I965GM(dev_priv) ((dev_priv)->info.platform == INTEL_I965GM) 2749 #define IS_G45(dev_priv) ((dev_priv)->info.platform == INTEL_G45) 2750 #define IS_GM45(dev_priv) ((dev_priv)->info.platform == INTEL_GM45) 2751 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv)) 2752 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001) 2753 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011) 2754 #define IS_PINEVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_PINEVIEW) 2755 #define IS_G33(dev_priv) ((dev_priv)->info.platform == INTEL_G33) 2756 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046) 2757 #define IS_IVYBRIDGE(dev_priv) ((dev_priv)->info.platform == INTEL_IVYBRIDGE) 2758 #define IS_IVB_GT1(dev_priv) (INTEL_DEVID(dev_priv) == 0x0156 || \ 2759 INTEL_DEVID(dev_priv) == 0x0152 || \ 2760 INTEL_DEVID(dev_priv) == 0x015a) 2761 #define IS_VALLEYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_VALLEYVIEW) 2762 #define IS_CHERRYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_CHERRYVIEW) 2763 #define IS_HASWELL(dev_priv) ((dev_priv)->info.platform == INTEL_HASWELL) 2764 #define IS_BROADWELL(dev_priv) ((dev_priv)->info.platform == INTEL_BROADWELL) 2765 #define IS_SKYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_SKYLAKE) 2766 #define IS_BROXTON(dev_priv) ((dev_priv)->info.platform == INTEL_BROXTON) 2767 #define IS_KABYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_KABYLAKE) 2768 #define IS_GEMINILAKE(dev_priv) ((dev_priv)->info.platform == INTEL_GEMINILAKE) 2769 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile) 2770 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \ 2771 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00) 2772 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \ 2773 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \ 2774 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \ 2775 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)) 2776 /* ULX machines are also considered ULT. */ 2777 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \ 2778 (INTEL_DEVID(dev_priv) & 0xf) == 0xe) 2779 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \ 2780 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020) 2781 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \ 2782 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00) 2783 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \ 2784 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020) 2785 /* ULX machines are also considered ULT. */ 2786 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \ 2787 INTEL_DEVID(dev_priv) == 0x0A1E) 2788 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \ 2789 INTEL_DEVID(dev_priv) == 0x1913 || \ 2790 INTEL_DEVID(dev_priv) == 0x1916 || \ 2791 INTEL_DEVID(dev_priv) == 0x1921 || \ 2792 INTEL_DEVID(dev_priv) == 0x1926) 2793 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \ 2794 INTEL_DEVID(dev_priv) == 0x1915 || \ 2795 INTEL_DEVID(dev_priv) == 0x191E) 2796 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \ 2797 INTEL_DEVID(dev_priv) == 0x5913 || \ 2798 INTEL_DEVID(dev_priv) == 0x5916 || \ 2799 INTEL_DEVID(dev_priv) == 0x5921 || \ 2800 INTEL_DEVID(dev_priv) == 0x5926) 2801 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \ 2802 INTEL_DEVID(dev_priv) == 0x5915 || \ 2803 INTEL_DEVID(dev_priv) == 0x591E) 2804 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2805 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020) 2806 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2807 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0030) 2808 2809 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support) 2810 2811 #define SKL_REVID_A0 0x0 2812 #define SKL_REVID_B0 0x1 2813 #define SKL_REVID_C0 0x2 2814 #define SKL_REVID_D0 0x3 2815 #define SKL_REVID_E0 0x4 2816 #define SKL_REVID_F0 0x5 2817 #define SKL_REVID_G0 0x6 2818 #define SKL_REVID_H0 0x7 2819 2820 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until)) 2821 2822 #define BXT_REVID_A0 0x0 2823 #define BXT_REVID_A1 0x1 2824 #define BXT_REVID_B0 0x3 2825 #define BXT_REVID_B_LAST 0x8 2826 #define BXT_REVID_C0 0x9 2827 2828 #define IS_BXT_REVID(dev_priv, since, until) \ 2829 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until)) 2830 2831 #define KBL_REVID_A0 0x0 2832 #define KBL_REVID_B0 0x1 2833 #define KBL_REVID_C0 0x2 2834 #define KBL_REVID_D0 0x3 2835 #define KBL_REVID_E0 0x4 2836 2837 #define IS_KBL_REVID(dev_priv, since, until) \ 2838 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 2839 2840 #define GLK_REVID_A0 0x0 2841 #define GLK_REVID_A1 0x1 2842 2843 #define IS_GLK_REVID(dev_priv, since, until) \ 2844 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 2845 2846 /* 2847 * The genX designation typically refers to the render engine, so render 2848 * capability related checks should use IS_GEN, while display and other checks 2849 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular 2850 * chips, etc.). 2851 */ 2852 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1))) 2853 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2))) 2854 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3))) 2855 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4))) 2856 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5))) 2857 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6))) 2858 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7))) 2859 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8))) 2860 2861 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp) 2862 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv)) 2863 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv)) 2864 2865 #define ENGINE_MASK(id) BIT(id) 2866 #define RENDER_RING ENGINE_MASK(RCS) 2867 #define BSD_RING ENGINE_MASK(VCS) 2868 #define BLT_RING ENGINE_MASK(BCS) 2869 #define VEBOX_RING ENGINE_MASK(VECS) 2870 #define BSD2_RING ENGINE_MASK(VCS2) 2871 #define ALL_ENGINES (~0) 2872 2873 #define HAS_ENGINE(dev_priv, id) \ 2874 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id))) 2875 2876 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS) 2877 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2) 2878 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS) 2879 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS) 2880 2881 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc) 2882 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop) 2883 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED)) 2884 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \ 2885 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv)) 2886 2887 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical) 2888 2889 #define HAS_HW_CONTEXTS(dev_priv) ((dev_priv)->info.has_hw_contexts) 2890 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \ 2891 ((dev_priv)->info.has_logical_ring_contexts) 2892 #define USES_PPGTT(dev_priv) (i915.enable_ppgtt) 2893 #define USES_FULL_PPGTT(dev_priv) (i915.enable_ppgtt >= 2) 2894 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915.enable_ppgtt == 3) 2895 2896 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay) 2897 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \ 2898 ((dev_priv)->info.overlay_needs_physical) 2899 2900 /* Early gen2 have a totally busted CS tlb and require pinned batches. */ 2901 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv)) 2902 2903 /* WaRsDisableCoarsePowerGating:skl,bxt */ 2904 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \ 2905 (IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv)) 2906 2907 /* 2908 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts 2909 * even when in MSI mode. This results in spurious interrupt warnings if the 2910 * legacy irq no. is shared with another device. The kernel then disables that 2911 * interrupt source and so prevents the other device from working properly. 2912 */ 2913 #define HAS_AUX_IRQ(dev_priv) ((dev_priv)->info.gen >= 5) 2914 #define HAS_GMBUS_IRQ(dev_priv) ((dev_priv)->info.has_gmbus_irq) 2915 2916 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte 2917 * rows, which changed the alignment requirements and fence programming. 2918 */ 2919 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \ 2920 !(IS_I915G(dev_priv) || \ 2921 IS_I915GM(dev_priv))) 2922 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv) 2923 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug) 2924 2925 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2) 2926 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr) 2927 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc) 2928 2929 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv)) 2930 2931 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst) 2932 2933 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi) 2934 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg) 2935 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr) 2936 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6) 2937 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p) 2938 2939 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr) 2940 2941 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm) 2942 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc) 2943 2944 /* 2945 * For now, anything with a GuC requires uCode loading, and then supports 2946 * command submission once loaded. But these are logically independent 2947 * properties, so we have separate macros to test them. 2948 */ 2949 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc) 2950 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 2951 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv)) 2952 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 2953 2954 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer) 2955 2956 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu) 2957 2958 #define INTEL_PCH_DEVICE_ID_MASK 0xff00 2959 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00 2960 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00 2961 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00 2962 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00 2963 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00 2964 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100 2965 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00 2966 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA200 2967 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100 2968 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000 2969 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */ 2970 2971 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type) 2972 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP) 2973 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT) 2974 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT) 2975 #define HAS_PCH_LPT_LP(dev_priv) \ 2976 ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) 2977 #define HAS_PCH_LPT_H(dev_priv) \ 2978 ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) 2979 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT) 2980 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX) 2981 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP) 2982 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE) 2983 2984 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display) 2985 2986 #define HAS_LSPCON(dev_priv) (IS_GEN9(dev_priv)) 2987 2988 /* DPF == dynamic parity feature */ 2989 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf) 2990 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \ 2991 2 : HAS_L3_DPF(dev_priv)) 2992 2993 #define GT_FREQUENCY_MULTIPLIER 50 2994 #define GEN9_FREQ_SCALER 3 2995 2996 #define HAS_DECOUPLED_MMIO(dev_priv) (INTEL_INFO(dev_priv)->has_decoupled_mmio) 2997 2998 #include "i915_trace.h" 2999 3000 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv) 3001 { 3002 #ifdef CONFIG_INTEL_IOMMU 3003 if (INTEL_GEN(dev_priv) >= 6 && intel_iommu_gfx_mapped) 3004 return true; 3005 #endif 3006 return false; 3007 } 3008 3009 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv, 3010 int enable_ppgtt); 3011 3012 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value); 3013 3014 /* i915_drv.c */ 3015 void __printf(3, 4) 3016 __i915_printk(struct drm_i915_private *dev_priv, const char *level, 3017 const char *fmt, ...); 3018 3019 #define i915_report_error(dev_priv, fmt, ...) \ 3020 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__) 3021 3022 #ifdef CONFIG_COMPAT 3023 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd, 3024 unsigned long arg); 3025 #else 3026 #define i915_compat_ioctl NULL 3027 #endif 3028 extern const struct dev_pm_ops i915_pm_ops; 3029 3030 extern int i915_driver_load(struct pci_dev *pdev, 3031 const struct pci_device_id *ent); 3032 extern void i915_driver_unload(struct drm_device *dev); 3033 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask); 3034 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv); 3035 extern void i915_reset(struct drm_i915_private *dev_priv); 3036 extern int intel_guc_reset(struct drm_i915_private *dev_priv); 3037 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine); 3038 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv); 3039 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv); 3040 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv); 3041 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv); 3042 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv); 3043 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on); 3044 3045 int intel_engines_init_early(struct drm_i915_private *dev_priv); 3046 int intel_engines_init(struct drm_i915_private *dev_priv); 3047 3048 /* intel_hotplug.c */ 3049 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv, 3050 u32 pin_mask, u32 long_mask); 3051 void intel_hpd_init(struct drm_i915_private *dev_priv); 3052 void intel_hpd_init_work(struct drm_i915_private *dev_priv); 3053 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv); 3054 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port); 3055 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 3056 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 3057 3058 /* i915_irq.c */ 3059 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv) 3060 { 3061 unsigned long delay; 3062 3063 if (unlikely(!i915.enable_hangcheck)) 3064 return; 3065 3066 /* Don't continually defer the hangcheck so that it is always run at 3067 * least once after work has been scheduled on any ring. Otherwise, 3068 * we will ignore a hung ring if a second ring is kept busy. 3069 */ 3070 3071 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES); 3072 queue_delayed_work(system_long_wq, 3073 &dev_priv->gpu_error.hangcheck_work, delay); 3074 } 3075 3076 __printf(3, 4) 3077 void i915_handle_error(struct drm_i915_private *dev_priv, 3078 u32 engine_mask, 3079 const char *fmt, ...); 3080 3081 extern void intel_irq_init(struct drm_i915_private *dev_priv); 3082 int intel_irq_install(struct drm_i915_private *dev_priv); 3083 void intel_irq_uninstall(struct drm_i915_private *dev_priv); 3084 3085 extern void intel_uncore_sanitize(struct drm_i915_private *dev_priv); 3086 extern void intel_uncore_init(struct drm_i915_private *dev_priv); 3087 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv); 3088 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv); 3089 extern void intel_uncore_fini(struct drm_i915_private *dev_priv); 3090 extern void intel_uncore_suspend(struct drm_i915_private *dev_priv); 3091 extern void intel_uncore_resume_early(struct drm_i915_private *dev_priv); 3092 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id); 3093 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv, 3094 enum forcewake_domains domains); 3095 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv, 3096 enum forcewake_domains domains); 3097 /* Like above but the caller must manage the uncore.lock itself. 3098 * Must be used with I915_READ_FW and friends. 3099 */ 3100 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv, 3101 enum forcewake_domains domains); 3102 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv, 3103 enum forcewake_domains domains); 3104 u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv); 3105 3106 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv); 3107 3108 int intel_wait_for_register(struct drm_i915_private *dev_priv, 3109 i915_reg_t reg, 3110 const u32 mask, 3111 const u32 value, 3112 const unsigned long timeout_ms); 3113 int intel_wait_for_register_fw(struct drm_i915_private *dev_priv, 3114 i915_reg_t reg, 3115 const u32 mask, 3116 const u32 value, 3117 const unsigned long timeout_ms); 3118 3119 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv) 3120 { 3121 return dev_priv->gvt; 3122 } 3123 3124 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv) 3125 { 3126 return dev_priv->vgpu.active; 3127 } 3128 3129 void 3130 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 3131 u32 status_mask); 3132 3133 void 3134 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 3135 u32 status_mask); 3136 3137 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv); 3138 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv); 3139 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 3140 uint32_t mask, 3141 uint32_t bits); 3142 void ilk_update_display_irq(struct drm_i915_private *dev_priv, 3143 uint32_t interrupt_mask, 3144 uint32_t enabled_irq_mask); 3145 static inline void 3146 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 3147 { 3148 ilk_update_display_irq(dev_priv, bits, bits); 3149 } 3150 static inline void 3151 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 3152 { 3153 ilk_update_display_irq(dev_priv, bits, 0); 3154 } 3155 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 3156 enum pipe pipe, 3157 uint32_t interrupt_mask, 3158 uint32_t enabled_irq_mask); 3159 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv, 3160 enum pipe pipe, uint32_t bits) 3161 { 3162 bdw_update_pipe_irq(dev_priv, pipe, bits, bits); 3163 } 3164 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv, 3165 enum pipe pipe, uint32_t bits) 3166 { 3167 bdw_update_pipe_irq(dev_priv, pipe, bits, 0); 3168 } 3169 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 3170 uint32_t interrupt_mask, 3171 uint32_t enabled_irq_mask); 3172 static inline void 3173 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 3174 { 3175 ibx_display_interrupt_update(dev_priv, bits, bits); 3176 } 3177 static inline void 3178 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 3179 { 3180 ibx_display_interrupt_update(dev_priv, bits, 0); 3181 } 3182 3183 /* i915_gem.c */ 3184 int i915_gem_create_ioctl(struct drm_device *dev, void *data, 3185 struct drm_file *file_priv); 3186 int i915_gem_pread_ioctl(struct drm_device *dev, void *data, 3187 struct drm_file *file_priv); 3188 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 3189 struct drm_file *file_priv); 3190 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 3191 struct drm_file *file_priv); 3192 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 3193 struct drm_file *file_priv); 3194 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 3195 struct drm_file *file_priv); 3196 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 3197 struct drm_file *file_priv); 3198 int i915_gem_execbuffer(struct drm_device *dev, void *data, 3199 struct drm_file *file_priv); 3200 int i915_gem_execbuffer2(struct drm_device *dev, void *data, 3201 struct drm_file *file_priv); 3202 int i915_gem_busy_ioctl(struct drm_device *dev, void *data, 3203 struct drm_file *file_priv); 3204 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3205 struct drm_file *file); 3206 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3207 struct drm_file *file); 3208 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 3209 struct drm_file *file_priv); 3210 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 3211 struct drm_file *file_priv); 3212 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data, 3213 struct drm_file *file_priv); 3214 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data, 3215 struct drm_file *file_priv); 3216 void i915_gem_init_userptr(struct drm_i915_private *dev_priv); 3217 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data, 3218 struct drm_file *file); 3219 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 3220 struct drm_file *file_priv); 3221 int i915_gem_wait_ioctl(struct drm_device *dev, void *data, 3222 struct drm_file *file_priv); 3223 void i915_gem_sanitize(struct drm_i915_private *i915); 3224 int i915_gem_load_init(struct drm_i915_private *dev_priv); 3225 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv); 3226 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv); 3227 int i915_gem_freeze(struct drm_i915_private *dev_priv); 3228 int i915_gem_freeze_late(struct drm_i915_private *dev_priv); 3229 3230 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv); 3231 void i915_gem_object_free(struct drm_i915_gem_object *obj); 3232 void i915_gem_object_init(struct drm_i915_gem_object *obj, 3233 const struct drm_i915_gem_object_ops *ops); 3234 struct drm_i915_gem_object * 3235 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size); 3236 struct drm_i915_gem_object * 3237 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv, 3238 const void *data, size_t size); 3239 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file); 3240 void i915_gem_free_object(struct drm_gem_object *obj); 3241 3242 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915) 3243 { 3244 /* A single pass should suffice to release all the freed objects (along 3245 * most call paths) , but be a little more paranoid in that freeing 3246 * the objects does take a little amount of time, during which the rcu 3247 * callbacks could have added new objects into the freed list, and 3248 * armed the work again. 3249 */ 3250 do { 3251 rcu_barrier(); 3252 } while (flush_work(&i915->mm.free_work)); 3253 } 3254 3255 struct i915_vma * __must_check 3256 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 3257 const struct i915_ggtt_view *view, 3258 u64 size, 3259 u64 alignment, 3260 u64 flags); 3261 3262 int i915_gem_object_unbind(struct drm_i915_gem_object *obj); 3263 void i915_gem_release_mmap(struct drm_i915_gem_object *obj); 3264 3265 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv); 3266 3267 static inline int __sg_page_count(const struct scatterlist *sg) 3268 { 3269 return sg->length >> PAGE_SHIFT; 3270 } 3271 3272 struct scatterlist * 3273 i915_gem_object_get_sg(struct drm_i915_gem_object *obj, 3274 unsigned int n, unsigned int *offset); 3275 3276 struct page * 3277 i915_gem_object_get_page(struct drm_i915_gem_object *obj, 3278 unsigned int n); 3279 3280 struct page * 3281 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, 3282 unsigned int n); 3283 3284 dma_addr_t 3285 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, 3286 unsigned long n); 3287 3288 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, 3289 struct sg_table *pages); 3290 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj); 3291 3292 static inline int __must_check 3293 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 3294 { 3295 might_lock(&obj->mm.lock); 3296 3297 if (atomic_inc_not_zero(&obj->mm.pages_pin_count)) 3298 return 0; 3299 3300 return __i915_gem_object_get_pages(obj); 3301 } 3302 3303 static inline void 3304 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 3305 { 3306 GEM_BUG_ON(!obj->mm.pages); 3307 3308 atomic_inc(&obj->mm.pages_pin_count); 3309 } 3310 3311 static inline bool 3312 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj) 3313 { 3314 return atomic_read(&obj->mm.pages_pin_count); 3315 } 3316 3317 static inline void 3318 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 3319 { 3320 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 3321 GEM_BUG_ON(!obj->mm.pages); 3322 3323 atomic_dec(&obj->mm.pages_pin_count); 3324 } 3325 3326 static inline void 3327 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 3328 { 3329 __i915_gem_object_unpin_pages(obj); 3330 } 3331 3332 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */ 3333 I915_MM_NORMAL = 0, 3334 I915_MM_SHRINKER 3335 }; 3336 3337 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj, 3338 enum i915_mm_subclass subclass); 3339 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj); 3340 3341 enum i915_map_type { 3342 I915_MAP_WB = 0, 3343 I915_MAP_WC, 3344 }; 3345 3346 /** 3347 * i915_gem_object_pin_map - return a contiguous mapping of the entire object 3348 * @obj: the object to map into kernel address space 3349 * @type: the type of mapping, used to select pgprot_t 3350 * 3351 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's 3352 * pages and then returns a contiguous mapping of the backing storage into 3353 * the kernel address space. Based on the @type of mapping, the PTE will be 3354 * set to either WriteBack or WriteCombine (via pgprot_t). 3355 * 3356 * The caller is responsible for calling i915_gem_object_unpin_map() when the 3357 * mapping is no longer required. 3358 * 3359 * Returns the pointer through which to access the mapped object, or an 3360 * ERR_PTR() on error. 3361 */ 3362 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj, 3363 enum i915_map_type type); 3364 3365 /** 3366 * i915_gem_object_unpin_map - releases an earlier mapping 3367 * @obj: the object to unmap 3368 * 3369 * After pinning the object and mapping its pages, once you are finished 3370 * with your access, call i915_gem_object_unpin_map() to release the pin 3371 * upon the mapping. Once the pin count reaches zero, that mapping may be 3372 * removed. 3373 */ 3374 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj) 3375 { 3376 i915_gem_object_unpin_pages(obj); 3377 } 3378 3379 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 3380 unsigned int *needs_clflush); 3381 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, 3382 unsigned int *needs_clflush); 3383 #define CLFLUSH_BEFORE BIT(0) 3384 #define CLFLUSH_AFTER BIT(1) 3385 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER) 3386 3387 static inline void 3388 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj) 3389 { 3390 i915_gem_object_unpin_pages(obj); 3391 } 3392 3393 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev); 3394 void i915_vma_move_to_active(struct i915_vma *vma, 3395 struct drm_i915_gem_request *req, 3396 unsigned int flags); 3397 int i915_gem_dumb_create(struct drm_file *file_priv, 3398 struct drm_device *dev, 3399 struct drm_mode_create_dumb *args); 3400 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev, 3401 uint32_t handle, uint64_t *offset); 3402 int i915_gem_mmap_gtt_version(void); 3403 3404 void i915_gem_track_fb(struct drm_i915_gem_object *old, 3405 struct drm_i915_gem_object *new, 3406 unsigned frontbuffer_bits); 3407 3408 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno); 3409 3410 struct drm_i915_gem_request * 3411 i915_gem_find_active_request(struct intel_engine_cs *engine); 3412 3413 void i915_gem_retire_requests(struct drm_i915_private *dev_priv); 3414 3415 static inline bool i915_reset_backoff(struct i915_gpu_error *error) 3416 { 3417 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags)); 3418 } 3419 3420 static inline bool i915_reset_handoff(struct i915_gpu_error *error) 3421 { 3422 return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags)); 3423 } 3424 3425 static inline bool i915_terminally_wedged(struct i915_gpu_error *error) 3426 { 3427 return unlikely(test_bit(I915_WEDGED, &error->flags)); 3428 } 3429 3430 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error) 3431 { 3432 return i915_reset_backoff(error) | i915_terminally_wedged(error); 3433 } 3434 3435 static inline u32 i915_reset_count(struct i915_gpu_error *error) 3436 { 3437 return READ_ONCE(error->reset_count); 3438 } 3439 3440 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv); 3441 void i915_gem_reset(struct drm_i915_private *dev_priv); 3442 void i915_gem_reset_finish(struct drm_i915_private *dev_priv); 3443 void i915_gem_set_wedged(struct drm_i915_private *dev_priv); 3444 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv); 3445 3446 void i915_gem_init_mmio(struct drm_i915_private *i915); 3447 int __must_check i915_gem_init(struct drm_i915_private *dev_priv); 3448 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv); 3449 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv); 3450 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv); 3451 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv, 3452 unsigned int flags); 3453 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv); 3454 void i915_gem_resume(struct drm_i915_private *dev_priv); 3455 int i915_gem_fault(struct vm_fault *vmf); 3456 int i915_gem_object_wait(struct drm_i915_gem_object *obj, 3457 unsigned int flags, 3458 long timeout, 3459 struct intel_rps_client *rps); 3460 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj, 3461 unsigned int flags, 3462 int priority); 3463 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX 3464 3465 int __must_check 3466 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, 3467 bool write); 3468 int __must_check 3469 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write); 3470 struct i915_vma * __must_check 3471 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3472 u32 alignment, 3473 const struct i915_ggtt_view *view); 3474 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma); 3475 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 3476 int align); 3477 int i915_gem_open(struct drm_device *dev, struct drm_file *file); 3478 void i915_gem_release(struct drm_device *dev, struct drm_file *file); 3479 3480 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3481 enum i915_cache_level cache_level); 3482 3483 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev, 3484 struct dma_buf *dma_buf); 3485 3486 struct dma_buf *i915_gem_prime_export(struct drm_device *dev, 3487 struct drm_gem_object *gem_obj, int flags); 3488 3489 static inline struct i915_hw_ppgtt * 3490 i915_vm_to_ppgtt(struct i915_address_space *vm) 3491 { 3492 return container_of(vm, struct i915_hw_ppgtt, base); 3493 } 3494 3495 /* i915_gem_fence_reg.c */ 3496 int __must_check i915_vma_get_fence(struct i915_vma *vma); 3497 int __must_check i915_vma_put_fence(struct i915_vma *vma); 3498 3499 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv); 3500 void i915_gem_restore_fences(struct drm_i915_private *dev_priv); 3501 3502 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv); 3503 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj, 3504 struct sg_table *pages); 3505 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj, 3506 struct sg_table *pages); 3507 3508 static inline struct i915_gem_context * 3509 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id) 3510 { 3511 struct i915_gem_context *ctx; 3512 3513 lockdep_assert_held(&file_priv->dev_priv->drm.struct_mutex); 3514 3515 ctx = idr_find(&file_priv->context_idr, id); 3516 if (!ctx) 3517 return ERR_PTR(-ENOENT); 3518 3519 return ctx; 3520 } 3521 3522 static inline struct i915_gem_context * 3523 i915_gem_context_get(struct i915_gem_context *ctx) 3524 { 3525 kref_get(&ctx->ref); 3526 return ctx; 3527 } 3528 3529 static inline void i915_gem_context_put(struct i915_gem_context *ctx) 3530 { 3531 lockdep_assert_held(&ctx->i915->drm.struct_mutex); 3532 kref_put(&ctx->ref, i915_gem_context_free); 3533 } 3534 3535 static inline void i915_gem_context_put_unlocked(struct i915_gem_context *ctx) 3536 { 3537 struct mutex *lock = &ctx->i915->drm.struct_mutex; 3538 3539 if (kref_put_mutex(&ctx->ref, i915_gem_context_free, lock)) 3540 mutex_unlock(lock); 3541 } 3542 3543 static inline struct intel_timeline * 3544 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx, 3545 struct intel_engine_cs *engine) 3546 { 3547 struct i915_address_space *vm; 3548 3549 vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base; 3550 return &vm->timeline.engine[engine->id]; 3551 } 3552 3553 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3554 struct drm_file *file); 3555 3556 /* i915_gem_evict.c */ 3557 int __must_check i915_gem_evict_something(struct i915_address_space *vm, 3558 u64 min_size, u64 alignment, 3559 unsigned cache_level, 3560 u64 start, u64 end, 3561 unsigned flags); 3562 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm, 3563 struct drm_mm_node *node, 3564 unsigned int flags); 3565 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle); 3566 3567 /* belongs in i915_gem_gtt.h */ 3568 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv) 3569 { 3570 wmb(); 3571 if (INTEL_GEN(dev_priv) < 6) 3572 intel_gtt_chipset_flush(); 3573 } 3574 3575 /* i915_gem_stolen.c */ 3576 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv, 3577 struct drm_mm_node *node, u64 size, 3578 unsigned alignment); 3579 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv, 3580 struct drm_mm_node *node, u64 size, 3581 unsigned alignment, u64 start, 3582 u64 end); 3583 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv, 3584 struct drm_mm_node *node); 3585 int i915_gem_init_stolen(struct drm_i915_private *dev_priv); 3586 void i915_gem_cleanup_stolen(struct drm_device *dev); 3587 struct drm_i915_gem_object * 3588 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size); 3589 struct drm_i915_gem_object * 3590 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv, 3591 u32 stolen_offset, 3592 u32 gtt_offset, 3593 u32 size); 3594 3595 /* i915_gem_internal.c */ 3596 struct drm_i915_gem_object * 3597 i915_gem_object_create_internal(struct drm_i915_private *dev_priv, 3598 phys_addr_t size); 3599 3600 /* i915_gem_shrinker.c */ 3601 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv, 3602 unsigned long target, 3603 unsigned flags); 3604 #define I915_SHRINK_PURGEABLE 0x1 3605 #define I915_SHRINK_UNBOUND 0x2 3606 #define I915_SHRINK_BOUND 0x4 3607 #define I915_SHRINK_ACTIVE 0x8 3608 #define I915_SHRINK_VMAPS 0x10 3609 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv); 3610 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv); 3611 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv); 3612 3613 3614 /* i915_gem_tiling.c */ 3615 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) 3616 { 3617 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 3618 3619 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && 3620 i915_gem_object_is_tiled(obj); 3621 } 3622 3623 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size, 3624 unsigned int tiling, unsigned int stride); 3625 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size, 3626 unsigned int tiling, unsigned int stride); 3627 3628 /* i915_debugfs.c */ 3629 #ifdef CONFIG_DEBUG_FS 3630 int i915_debugfs_register(struct drm_i915_private *dev_priv); 3631 int i915_debugfs_connector_add(struct drm_connector *connector); 3632 void intel_display_crc_init(struct drm_i915_private *dev_priv); 3633 #else 3634 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;} 3635 static inline int i915_debugfs_connector_add(struct drm_connector *connector) 3636 { return 0; } 3637 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {} 3638 #endif 3639 3640 /* i915_gpu_error.c */ 3641 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 3642 3643 __printf(2, 3) 3644 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...); 3645 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr, 3646 const struct i915_gpu_state *gpu); 3647 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb, 3648 struct drm_i915_private *i915, 3649 size_t count, loff_t pos); 3650 static inline void i915_error_state_buf_release( 3651 struct drm_i915_error_state_buf *eb) 3652 { 3653 kfree(eb->buf); 3654 } 3655 3656 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915); 3657 void i915_capture_error_state(struct drm_i915_private *dev_priv, 3658 u32 engine_mask, 3659 const char *error_msg); 3660 3661 static inline struct i915_gpu_state * 3662 i915_gpu_state_get(struct i915_gpu_state *gpu) 3663 { 3664 kref_get(&gpu->ref); 3665 return gpu; 3666 } 3667 3668 void __i915_gpu_state_free(struct kref *kref); 3669 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu) 3670 { 3671 if (gpu) 3672 kref_put(&gpu->ref, __i915_gpu_state_free); 3673 } 3674 3675 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915); 3676 void i915_reset_error_state(struct drm_i915_private *i915); 3677 3678 #else 3679 3680 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv, 3681 u32 engine_mask, 3682 const char *error_msg) 3683 { 3684 } 3685 3686 static inline struct i915_gpu_state * 3687 i915_first_error_state(struct drm_i915_private *i915) 3688 { 3689 return NULL; 3690 } 3691 3692 static inline void i915_reset_error_state(struct drm_i915_private *i915) 3693 { 3694 } 3695 3696 #endif 3697 3698 const char *i915_cache_level_str(struct drm_i915_private *i915, int type); 3699 3700 /* i915_cmd_parser.c */ 3701 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv); 3702 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine); 3703 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine); 3704 int intel_engine_cmd_parser(struct intel_engine_cs *engine, 3705 struct drm_i915_gem_object *batch_obj, 3706 struct drm_i915_gem_object *shadow_batch_obj, 3707 u32 batch_start_offset, 3708 u32 batch_len, 3709 bool is_master); 3710 3711 /* i915_perf.c */ 3712 extern void i915_perf_init(struct drm_i915_private *dev_priv); 3713 extern void i915_perf_fini(struct drm_i915_private *dev_priv); 3714 extern void i915_perf_register(struct drm_i915_private *dev_priv); 3715 extern void i915_perf_unregister(struct drm_i915_private *dev_priv); 3716 3717 /* i915_suspend.c */ 3718 extern int i915_save_state(struct drm_i915_private *dev_priv); 3719 extern int i915_restore_state(struct drm_i915_private *dev_priv); 3720 3721 /* i915_sysfs.c */ 3722 void i915_setup_sysfs(struct drm_i915_private *dev_priv); 3723 void i915_teardown_sysfs(struct drm_i915_private *dev_priv); 3724 3725 /* intel_lpe_audio.c */ 3726 int intel_lpe_audio_init(struct drm_i915_private *dev_priv); 3727 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv); 3728 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv); 3729 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv, 3730 void *eld, int port, int pipe, int tmds_clk_speed, 3731 bool dp_output, int link_rate); 3732 3733 /* intel_i2c.c */ 3734 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv); 3735 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv); 3736 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv, 3737 unsigned int pin); 3738 3739 extern struct i2c_adapter * 3740 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin); 3741 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed); 3742 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit); 3743 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter) 3744 { 3745 return container_of(adapter, struct intel_gmbus, adapter)->force_bit; 3746 } 3747 extern void intel_i2c_reset(struct drm_i915_private *dev_priv); 3748 3749 /* intel_bios.c */ 3750 void intel_bios_init(struct drm_i915_private *dev_priv); 3751 bool intel_bios_is_valid_vbt(const void *buf, size_t size); 3752 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv); 3753 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin); 3754 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port); 3755 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port); 3756 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port); 3757 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port); 3758 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv, 3759 enum port port); 3760 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv, 3761 enum port port); 3762 3763 3764 /* intel_opregion.c */ 3765 #ifdef CONFIG_ACPI 3766 extern int intel_opregion_setup(struct drm_i915_private *dev_priv); 3767 extern void intel_opregion_register(struct drm_i915_private *dev_priv); 3768 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv); 3769 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv); 3770 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, 3771 bool enable); 3772 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv, 3773 pci_power_t state); 3774 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv); 3775 #else 3776 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; } 3777 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { } 3778 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { } 3779 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv) 3780 { 3781 } 3782 static inline int 3783 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable) 3784 { 3785 return 0; 3786 } 3787 static inline int 3788 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state) 3789 { 3790 return 0; 3791 } 3792 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev) 3793 { 3794 return -ENODEV; 3795 } 3796 #endif 3797 3798 /* intel_acpi.c */ 3799 #ifdef CONFIG_ACPI 3800 extern void intel_register_dsm_handler(void); 3801 extern void intel_unregister_dsm_handler(void); 3802 #else 3803 static inline void intel_register_dsm_handler(void) { return; } 3804 static inline void intel_unregister_dsm_handler(void) { return; } 3805 #endif /* CONFIG_ACPI */ 3806 3807 /* intel_device_info.c */ 3808 static inline struct intel_device_info * 3809 mkwrite_device_info(struct drm_i915_private *dev_priv) 3810 { 3811 return (struct intel_device_info *)&dev_priv->info; 3812 } 3813 3814 const char *intel_platform_name(enum intel_platform platform); 3815 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv); 3816 void intel_device_info_dump(struct drm_i915_private *dev_priv); 3817 3818 /* modesetting */ 3819 extern void intel_modeset_init_hw(struct drm_device *dev); 3820 extern int intel_modeset_init(struct drm_device *dev); 3821 extern void intel_modeset_gem_init(struct drm_device *dev); 3822 extern void intel_modeset_cleanup(struct drm_device *dev); 3823 extern int intel_connector_register(struct drm_connector *); 3824 extern void intel_connector_unregister(struct drm_connector *); 3825 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, 3826 bool state); 3827 extern void intel_display_resume(struct drm_device *dev); 3828 extern void i915_redisable_vga(struct drm_i915_private *dev_priv); 3829 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv); 3830 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val); 3831 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv); 3832 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val); 3833 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, 3834 bool enable); 3835 3836 int i915_reg_read_ioctl(struct drm_device *dev, void *data, 3837 struct drm_file *file); 3838 3839 /* overlay */ 3840 extern struct intel_overlay_error_state * 3841 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv); 3842 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e, 3843 struct intel_overlay_error_state *error); 3844 3845 extern struct intel_display_error_state * 3846 intel_display_capture_error_state(struct drm_i915_private *dev_priv); 3847 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e, 3848 struct intel_display_error_state *error); 3849 3850 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val); 3851 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val); 3852 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request, 3853 u32 reply_mask, u32 reply, int timeout_base_ms); 3854 3855 /* intel_sideband.c */ 3856 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr); 3857 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val); 3858 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr); 3859 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg); 3860 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val); 3861 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg); 3862 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3863 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg); 3864 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3865 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg); 3866 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3867 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg); 3868 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val); 3869 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg, 3870 enum intel_sbi_destination destination); 3871 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value, 3872 enum intel_sbi_destination destination); 3873 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg); 3874 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3875 3876 /* intel_dpio_phy.c */ 3877 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port, 3878 enum dpio_phy *phy, enum dpio_channel *ch); 3879 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv, 3880 enum port port, u32 margin, u32 scale, 3881 u32 enable, u32 deemphasis); 3882 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy); 3883 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy); 3884 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv, 3885 enum dpio_phy phy); 3886 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv, 3887 enum dpio_phy phy); 3888 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder, 3889 uint8_t lane_count); 3890 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder, 3891 uint8_t lane_lat_optim_mask); 3892 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder); 3893 3894 void chv_set_phy_signal_level(struct intel_encoder *encoder, 3895 u32 deemph_reg_value, u32 margin_reg_value, 3896 bool uniq_trans_scale); 3897 void chv_data_lane_soft_reset(struct intel_encoder *encoder, 3898 bool reset); 3899 void chv_phy_pre_pll_enable(struct intel_encoder *encoder); 3900 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder); 3901 void chv_phy_release_cl2_override(struct intel_encoder *encoder); 3902 void chv_phy_post_pll_disable(struct intel_encoder *encoder); 3903 3904 void vlv_set_phy_signal_level(struct intel_encoder *encoder, 3905 u32 demph_reg_value, u32 preemph_reg_value, 3906 u32 uniqtranscale_reg_value, u32 tx3_demph); 3907 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder); 3908 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder); 3909 void vlv_phy_reset_lanes(struct intel_encoder *encoder); 3910 3911 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val); 3912 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val); 3913 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv, 3914 const i915_reg_t reg); 3915 3916 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true) 3917 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true) 3918 3919 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true) 3920 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true) 3921 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false) 3922 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false) 3923 3924 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true) 3925 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true) 3926 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false) 3927 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false) 3928 3929 /* Be very careful with read/write 64-bit values. On 32-bit machines, they 3930 * will be implemented using 2 32-bit writes in an arbitrary order with 3931 * an arbitrary delay between them. This can cause the hardware to 3932 * act upon the intermediate value, possibly leading to corruption and 3933 * machine death. For this reason we do not support I915_WRITE64, or 3934 * dev_priv->uncore.funcs.mmio_writeq. 3935 * 3936 * When reading a 64-bit value as two 32-bit values, the delay may cause 3937 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that 3938 * occasionally a 64-bit register does not actualy support a full readq 3939 * and must be read using two 32-bit reads. 3940 * 3941 * You have been warned. 3942 */ 3943 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true) 3944 3945 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \ 3946 u32 upper, lower, old_upper, loop = 0; \ 3947 upper = I915_READ(upper_reg); \ 3948 do { \ 3949 old_upper = upper; \ 3950 lower = I915_READ(lower_reg); \ 3951 upper = I915_READ(upper_reg); \ 3952 } while (upper != old_upper && loop++ < 2); \ 3953 (u64)upper << 32 | lower; }) 3954 3955 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg) 3956 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg) 3957 3958 #define __raw_read(x, s) \ 3959 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \ 3960 i915_reg_t reg) \ 3961 { \ 3962 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3963 } 3964 3965 #define __raw_write(x, s) \ 3966 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \ 3967 i915_reg_t reg, uint##x##_t val) \ 3968 { \ 3969 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3970 } 3971 __raw_read(8, b) 3972 __raw_read(16, w) 3973 __raw_read(32, l) 3974 __raw_read(64, q) 3975 3976 __raw_write(8, b) 3977 __raw_write(16, w) 3978 __raw_write(32, l) 3979 __raw_write(64, q) 3980 3981 #undef __raw_read 3982 #undef __raw_write 3983 3984 /* These are untraced mmio-accessors that are only valid to be used inside 3985 * critical sections, such as inside IRQ handlers, where forcewake is explicitly 3986 * controlled. 3987 * 3988 * Think twice, and think again, before using these. 3989 * 3990 * As an example, these accessors can possibly be used between: 3991 * 3992 * spin_lock_irq(&dev_priv->uncore.lock); 3993 * intel_uncore_forcewake_get__locked(); 3994 * 3995 * and 3996 * 3997 * intel_uncore_forcewake_put__locked(); 3998 * spin_unlock_irq(&dev_priv->uncore.lock); 3999 * 4000 * 4001 * Note: some registers may not need forcewake held, so 4002 * intel_uncore_forcewake_{get,put} can be omitted, see 4003 * intel_uncore_forcewake_for_reg(). 4004 * 4005 * Certain architectures will die if the same cacheline is concurrently accessed 4006 * by different clients (e.g. on Ivybridge). Access to registers should 4007 * therefore generally be serialised, by either the dev_priv->uncore.lock or 4008 * a more localised lock guarding all access to that bank of registers. 4009 */ 4010 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__)) 4011 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__)) 4012 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__)) 4013 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__) 4014 4015 /* "Broadcast RGB" property */ 4016 #define INTEL_BROADCAST_RGB_AUTO 0 4017 #define INTEL_BROADCAST_RGB_FULL 1 4018 #define INTEL_BROADCAST_RGB_LIMITED 2 4019 4020 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv) 4021 { 4022 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 4023 return VLV_VGACNTRL; 4024 else if (INTEL_GEN(dev_priv) >= 5) 4025 return CPU_VGACNTRL; 4026 else 4027 return VGACNTRL; 4028 } 4029 4030 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m) 4031 { 4032 unsigned long j = msecs_to_jiffies(m); 4033 4034 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 4035 } 4036 4037 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n) 4038 { 4039 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1); 4040 } 4041 4042 static inline unsigned long 4043 timespec_to_jiffies_timeout(const struct timespec *value) 4044 { 4045 unsigned long j = timespec_to_jiffies(value); 4046 4047 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 4048 } 4049 4050 /* 4051 * If you need to wait X milliseconds between events A and B, but event B 4052 * doesn't happen exactly after event A, you record the timestamp (jiffies) of 4053 * when event A happened, then just before event B you call this function and 4054 * pass the timestamp as the first argument, and X as the second argument. 4055 */ 4056 static inline void 4057 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms) 4058 { 4059 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies; 4060 4061 /* 4062 * Don't re-read the value of "jiffies" every time since it may change 4063 * behind our back and break the math. 4064 */ 4065 tmp_jiffies = jiffies; 4066 target_jiffies = timestamp_jiffies + 4067 msecs_to_jiffies_timeout(to_wait_ms); 4068 4069 if (time_after(target_jiffies, tmp_jiffies)) { 4070 remaining_jiffies = target_jiffies - tmp_jiffies; 4071 while (remaining_jiffies) 4072 remaining_jiffies = 4073 schedule_timeout_uninterruptible(remaining_jiffies); 4074 } 4075 } 4076 4077 static inline bool 4078 __i915_request_irq_complete(const struct drm_i915_gem_request *req) 4079 { 4080 struct intel_engine_cs *engine = req->engine; 4081 u32 seqno; 4082 4083 /* Note that the engine may have wrapped around the seqno, and 4084 * so our request->global_seqno will be ahead of the hardware, 4085 * even though it completed the request before wrapping. We catch 4086 * this by kicking all the waiters before resetting the seqno 4087 * in hardware, and also signal the fence. 4088 */ 4089 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags)) 4090 return true; 4091 4092 /* The request was dequeued before we were awoken. We check after 4093 * inspecting the hw to confirm that this was the same request 4094 * that generated the HWS update. The memory barriers within 4095 * the request execution are sufficient to ensure that a check 4096 * after reading the value from hw matches this request. 4097 */ 4098 seqno = i915_gem_request_global_seqno(req); 4099 if (!seqno) 4100 return false; 4101 4102 /* Before we do the heavier coherent read of the seqno, 4103 * check the value (hopefully) in the CPU cacheline. 4104 */ 4105 if (__i915_gem_request_completed(req, seqno)) 4106 return true; 4107 4108 /* Ensure our read of the seqno is coherent so that we 4109 * do not "miss an interrupt" (i.e. if this is the last 4110 * request and the seqno write from the GPU is not visible 4111 * by the time the interrupt fires, we will see that the 4112 * request is incomplete and go back to sleep awaiting 4113 * another interrupt that will never come.) 4114 * 4115 * Strictly, we only need to do this once after an interrupt, 4116 * but it is easier and safer to do it every time the waiter 4117 * is woken. 4118 */ 4119 if (engine->irq_seqno_barrier && 4120 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) { 4121 struct intel_breadcrumbs *b = &engine->breadcrumbs; 4122 4123 /* The ordering of irq_posted versus applying the barrier 4124 * is crucial. The clearing of the current irq_posted must 4125 * be visible before we perform the barrier operation, 4126 * such that if a subsequent interrupt arrives, irq_posted 4127 * is reasserted and our task rewoken (which causes us to 4128 * do another __i915_request_irq_complete() immediately 4129 * and reapply the barrier). Conversely, if the clear 4130 * occurs after the barrier, then an interrupt that arrived 4131 * whilst we waited on the barrier would not trigger a 4132 * barrier on the next pass, and the read may not see the 4133 * seqno update. 4134 */ 4135 engine->irq_seqno_barrier(engine); 4136 4137 /* If we consume the irq, but we are no longer the bottom-half, 4138 * the real bottom-half may not have serialised their own 4139 * seqno check with the irq-barrier (i.e. may have inspected 4140 * the seqno before we believe it coherent since they see 4141 * irq_posted == false but we are still running). 4142 */ 4143 spin_lock_irq(&b->irq_lock); 4144 if (b->irq_wait && b->irq_wait->tsk != current) 4145 /* Note that if the bottom-half is changed as we 4146 * are sending the wake-up, the new bottom-half will 4147 * be woken by whomever made the change. We only have 4148 * to worry about when we steal the irq-posted for 4149 * ourself. 4150 */ 4151 wake_up_process(b->irq_wait->tsk); 4152 spin_unlock_irq(&b->irq_lock); 4153 4154 if (__i915_gem_request_completed(req, seqno)) 4155 return true; 4156 } 4157 4158 return false; 4159 } 4160 4161 void i915_memcpy_init_early(struct drm_i915_private *dev_priv); 4162 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len); 4163 4164 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment, 4165 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot 4166 * perform the operation. To check beforehand, pass in the parameters to 4167 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits, 4168 * you only need to pass in the minor offsets, page-aligned pointers are 4169 * always valid. 4170 * 4171 * For just checking for SSE4.1, in the foreknowledge that the future use 4172 * will be correctly aligned, just use i915_has_memcpy_from_wc(). 4173 */ 4174 #define i915_can_memcpy_from_wc(dst, src, len) \ 4175 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0) 4176 4177 #define i915_has_memcpy_from_wc() \ 4178 i915_memcpy_from_wc(NULL, NULL, 0) 4179 4180 /* i915_mm.c */ 4181 int remap_io_mapping(struct vm_area_struct *vma, 4182 unsigned long addr, unsigned long pfn, unsigned long size, 4183 struct io_mapping *iomap); 4184 4185 static inline bool i915_gem_object_is_coherent(struct drm_i915_gem_object *obj) 4186 { 4187 return (obj->cache_level != I915_CACHE_NONE || 4188 HAS_LLC(to_i915(obj->base.dev))); 4189 } 4190 4191 #endif 4192