xref: /openbmc/linux/drivers/gpu/drm/i915/i915_drv.h (revision e5f586c763a079349398e2b0c7c271386193ac34)
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32 
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35 
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hashtable.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/reservation.h>
45 #include <linux/shmem_fs.h>
46 
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52 #include <drm/drm_cache.h>
53 
54 #include "i915_params.h"
55 #include "i915_reg.h"
56 #include "i915_utils.h"
57 
58 #include "intel_bios.h"
59 #include "intel_dpll_mgr.h"
60 #include "intel_uc.h"
61 #include "intel_lrc.h"
62 #include "intel_ringbuffer.h"
63 
64 #include "i915_gem.h"
65 #include "i915_gem_context.h"
66 #include "i915_gem_fence_reg.h"
67 #include "i915_gem_object.h"
68 #include "i915_gem_gtt.h"
69 #include "i915_gem_render_state.h"
70 #include "i915_gem_request.h"
71 #include "i915_gem_timeline.h"
72 
73 #include "i915_vma.h"
74 
75 #include "intel_gvt.h"
76 
77 /* General customization:
78  */
79 
80 #define DRIVER_NAME		"i915"
81 #define DRIVER_DESC		"Intel Graphics"
82 #define DRIVER_DATE		"20170320"
83 #define DRIVER_TIMESTAMP	1489994464
84 
85 #undef WARN_ON
86 /* Many gcc seem to no see through this and fall over :( */
87 #if 0
88 #define WARN_ON(x) ({ \
89 	bool __i915_warn_cond = (x); \
90 	if (__builtin_constant_p(__i915_warn_cond)) \
91 		BUILD_BUG_ON(__i915_warn_cond); \
92 	WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
93 #else
94 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
95 #endif
96 
97 #undef WARN_ON_ONCE
98 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")")
99 
100 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \
101 			     (long) (x), __func__);
102 
103 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
104  * WARN_ON()) for hw state sanity checks to check for unexpected conditions
105  * which may not necessarily be a user visible problem.  This will either
106  * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
107  * enable distros and users to tailor their preferred amount of i915 abrt
108  * spam.
109  */
110 #define I915_STATE_WARN(condition, format...) ({			\
111 	int __ret_warn_on = !!(condition);				\
112 	if (unlikely(__ret_warn_on))					\
113 		if (!WARN(i915.verbose_state_checks, format))		\
114 			DRM_ERROR(format);				\
115 	unlikely(__ret_warn_on);					\
116 })
117 
118 #define I915_STATE_WARN_ON(x)						\
119 	I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
120 
121 bool __i915_inject_load_failure(const char *func, int line);
122 #define i915_inject_load_failure() \
123 	__i915_inject_load_failure(__func__, __LINE__)
124 
125 typedef struct {
126 	uint32_t val;
127 } uint_fixed_16_16_t;
128 
129 #define FP_16_16_MAX ({ \
130 	uint_fixed_16_16_t fp; \
131 	fp.val = UINT_MAX; \
132 	fp; \
133 })
134 
135 static inline uint_fixed_16_16_t u32_to_fixed_16_16(uint32_t val)
136 {
137 	uint_fixed_16_16_t fp;
138 
139 	WARN_ON(val >> 16);
140 
141 	fp.val = val << 16;
142 	return fp;
143 }
144 
145 static inline uint32_t fixed_16_16_to_u32_round_up(uint_fixed_16_16_t fp)
146 {
147 	return DIV_ROUND_UP(fp.val, 1 << 16);
148 }
149 
150 static inline uint32_t fixed_16_16_to_u32(uint_fixed_16_16_t fp)
151 {
152 	return fp.val >> 16;
153 }
154 
155 static inline uint_fixed_16_16_t min_fixed_16_16(uint_fixed_16_16_t min1,
156 						 uint_fixed_16_16_t min2)
157 {
158 	uint_fixed_16_16_t min;
159 
160 	min.val = min(min1.val, min2.val);
161 	return min;
162 }
163 
164 static inline uint_fixed_16_16_t max_fixed_16_16(uint_fixed_16_16_t max1,
165 						 uint_fixed_16_16_t max2)
166 {
167 	uint_fixed_16_16_t max;
168 
169 	max.val = max(max1.val, max2.val);
170 	return max;
171 }
172 
173 static inline uint_fixed_16_16_t fixed_16_16_div_round_up(uint32_t val,
174 							  uint32_t d)
175 {
176 	uint_fixed_16_16_t fp, res;
177 
178 	fp = u32_to_fixed_16_16(val);
179 	res.val = DIV_ROUND_UP(fp.val, d);
180 	return res;
181 }
182 
183 static inline uint_fixed_16_16_t fixed_16_16_div_round_up_u64(uint32_t val,
184 							      uint32_t d)
185 {
186 	uint_fixed_16_16_t res;
187 	uint64_t interm_val;
188 
189 	interm_val = (uint64_t)val << 16;
190 	interm_val = DIV_ROUND_UP_ULL(interm_val, d);
191 	WARN_ON(interm_val >> 32);
192 	res.val = (uint32_t) interm_val;
193 
194 	return res;
195 }
196 
197 static inline uint_fixed_16_16_t mul_u32_fixed_16_16(uint32_t val,
198 						     uint_fixed_16_16_t mul)
199 {
200 	uint64_t intermediate_val;
201 	uint_fixed_16_16_t fp;
202 
203 	intermediate_val = (uint64_t) val * mul.val;
204 	WARN_ON(intermediate_val >> 32);
205 	fp.val = (uint32_t) intermediate_val;
206 	return fp;
207 }
208 
209 static inline const char *yesno(bool v)
210 {
211 	return v ? "yes" : "no";
212 }
213 
214 static inline const char *onoff(bool v)
215 {
216 	return v ? "on" : "off";
217 }
218 
219 static inline const char *enableddisabled(bool v)
220 {
221 	return v ? "enabled" : "disabled";
222 }
223 
224 enum pipe {
225 	INVALID_PIPE = -1,
226 	PIPE_A = 0,
227 	PIPE_B,
228 	PIPE_C,
229 	_PIPE_EDP,
230 	I915_MAX_PIPES = _PIPE_EDP
231 };
232 #define pipe_name(p) ((p) + 'A')
233 
234 enum transcoder {
235 	TRANSCODER_A = 0,
236 	TRANSCODER_B,
237 	TRANSCODER_C,
238 	TRANSCODER_EDP,
239 	TRANSCODER_DSI_A,
240 	TRANSCODER_DSI_C,
241 	I915_MAX_TRANSCODERS
242 };
243 
244 static inline const char *transcoder_name(enum transcoder transcoder)
245 {
246 	switch (transcoder) {
247 	case TRANSCODER_A:
248 		return "A";
249 	case TRANSCODER_B:
250 		return "B";
251 	case TRANSCODER_C:
252 		return "C";
253 	case TRANSCODER_EDP:
254 		return "EDP";
255 	case TRANSCODER_DSI_A:
256 		return "DSI A";
257 	case TRANSCODER_DSI_C:
258 		return "DSI C";
259 	default:
260 		return "<invalid>";
261 	}
262 }
263 
264 static inline bool transcoder_is_dsi(enum transcoder transcoder)
265 {
266 	return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
267 }
268 
269 /*
270  * Global legacy plane identifier. Valid only for primary/sprite
271  * planes on pre-g4x, and only for primary planes on g4x+.
272  */
273 enum plane {
274 	PLANE_A,
275 	PLANE_B,
276 	PLANE_C,
277 };
278 #define plane_name(p) ((p) + 'A')
279 
280 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
281 
282 /*
283  * Per-pipe plane identifier.
284  * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
285  * number of planes per CRTC.  Not all platforms really have this many planes,
286  * which means some arrays of size I915_MAX_PLANES may have unused entries
287  * between the topmost sprite plane and the cursor plane.
288  *
289  * This is expected to be passed to various register macros
290  * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
291  */
292 enum plane_id {
293 	PLANE_PRIMARY,
294 	PLANE_SPRITE0,
295 	PLANE_SPRITE1,
296 	PLANE_SPRITE2,
297 	PLANE_CURSOR,
298 	I915_MAX_PLANES,
299 };
300 
301 #define for_each_plane_id_on_crtc(__crtc, __p) \
302 	for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
303 		for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
304 
305 enum port {
306 	PORT_NONE = -1,
307 	PORT_A = 0,
308 	PORT_B,
309 	PORT_C,
310 	PORT_D,
311 	PORT_E,
312 	I915_MAX_PORTS
313 };
314 #define port_name(p) ((p) + 'A')
315 
316 #define I915_NUM_PHYS_VLV 2
317 
318 enum dpio_channel {
319 	DPIO_CH0,
320 	DPIO_CH1
321 };
322 
323 enum dpio_phy {
324 	DPIO_PHY0,
325 	DPIO_PHY1,
326 	DPIO_PHY2,
327 };
328 
329 enum intel_display_power_domain {
330 	POWER_DOMAIN_PIPE_A,
331 	POWER_DOMAIN_PIPE_B,
332 	POWER_DOMAIN_PIPE_C,
333 	POWER_DOMAIN_PIPE_A_PANEL_FITTER,
334 	POWER_DOMAIN_PIPE_B_PANEL_FITTER,
335 	POWER_DOMAIN_PIPE_C_PANEL_FITTER,
336 	POWER_DOMAIN_TRANSCODER_A,
337 	POWER_DOMAIN_TRANSCODER_B,
338 	POWER_DOMAIN_TRANSCODER_C,
339 	POWER_DOMAIN_TRANSCODER_EDP,
340 	POWER_DOMAIN_TRANSCODER_DSI_A,
341 	POWER_DOMAIN_TRANSCODER_DSI_C,
342 	POWER_DOMAIN_PORT_DDI_A_LANES,
343 	POWER_DOMAIN_PORT_DDI_B_LANES,
344 	POWER_DOMAIN_PORT_DDI_C_LANES,
345 	POWER_DOMAIN_PORT_DDI_D_LANES,
346 	POWER_DOMAIN_PORT_DDI_E_LANES,
347 	POWER_DOMAIN_PORT_DDI_A_IO,
348 	POWER_DOMAIN_PORT_DDI_B_IO,
349 	POWER_DOMAIN_PORT_DDI_C_IO,
350 	POWER_DOMAIN_PORT_DDI_D_IO,
351 	POWER_DOMAIN_PORT_DDI_E_IO,
352 	POWER_DOMAIN_PORT_DSI,
353 	POWER_DOMAIN_PORT_CRT,
354 	POWER_DOMAIN_PORT_OTHER,
355 	POWER_DOMAIN_VGA,
356 	POWER_DOMAIN_AUDIO,
357 	POWER_DOMAIN_PLLS,
358 	POWER_DOMAIN_AUX_A,
359 	POWER_DOMAIN_AUX_B,
360 	POWER_DOMAIN_AUX_C,
361 	POWER_DOMAIN_AUX_D,
362 	POWER_DOMAIN_GMBUS,
363 	POWER_DOMAIN_MODESET,
364 	POWER_DOMAIN_INIT,
365 
366 	POWER_DOMAIN_NUM,
367 };
368 
369 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
370 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
371 		((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
372 #define POWER_DOMAIN_TRANSCODER(tran) \
373 	((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
374 	 (tran) + POWER_DOMAIN_TRANSCODER_A)
375 
376 enum hpd_pin {
377 	HPD_NONE = 0,
378 	HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
379 	HPD_CRT,
380 	HPD_SDVO_B,
381 	HPD_SDVO_C,
382 	HPD_PORT_A,
383 	HPD_PORT_B,
384 	HPD_PORT_C,
385 	HPD_PORT_D,
386 	HPD_PORT_E,
387 	HPD_NUM_PINS
388 };
389 
390 #define for_each_hpd_pin(__pin) \
391 	for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
392 
393 #define HPD_STORM_DEFAULT_THRESHOLD 5
394 
395 struct i915_hotplug {
396 	struct work_struct hotplug_work;
397 
398 	struct {
399 		unsigned long last_jiffies;
400 		int count;
401 		enum {
402 			HPD_ENABLED = 0,
403 			HPD_DISABLED = 1,
404 			HPD_MARK_DISABLED = 2
405 		} state;
406 	} stats[HPD_NUM_PINS];
407 	u32 event_bits;
408 	struct delayed_work reenable_work;
409 
410 	struct intel_digital_port *irq_port[I915_MAX_PORTS];
411 	u32 long_port_mask;
412 	u32 short_port_mask;
413 	struct work_struct dig_port_work;
414 
415 	struct work_struct poll_init_work;
416 	bool poll_enabled;
417 
418 	unsigned int hpd_storm_threshold;
419 
420 	/*
421 	 * if we get a HPD irq from DP and a HPD irq from non-DP
422 	 * the non-DP HPD could block the workqueue on a mode config
423 	 * mutex getting, that userspace may have taken. However
424 	 * userspace is waiting on the DP workqueue to run which is
425 	 * blocked behind the non-DP one.
426 	 */
427 	struct workqueue_struct *dp_wq;
428 };
429 
430 #define I915_GEM_GPU_DOMAINS \
431 	(I915_GEM_DOMAIN_RENDER | \
432 	 I915_GEM_DOMAIN_SAMPLER | \
433 	 I915_GEM_DOMAIN_COMMAND | \
434 	 I915_GEM_DOMAIN_INSTRUCTION | \
435 	 I915_GEM_DOMAIN_VERTEX)
436 
437 #define for_each_pipe(__dev_priv, __p) \
438 	for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
439 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
440 	for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
441 		for_each_if ((__mask) & (1 << (__p)))
442 #define for_each_universal_plane(__dev_priv, __pipe, __p)		\
443 	for ((__p) = 0;							\
444 	     (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1;	\
445 	     (__p)++)
446 #define for_each_sprite(__dev_priv, __p, __s)				\
447 	for ((__s) = 0;							\
448 	     (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)];	\
449 	     (__s)++)
450 
451 #define for_each_port_masked(__port, __ports_mask) \
452 	for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++)	\
453 		for_each_if ((__ports_mask) & (1 << (__port)))
454 
455 #define for_each_crtc(dev, crtc) \
456 	list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
457 
458 #define for_each_intel_plane(dev, intel_plane) \
459 	list_for_each_entry(intel_plane,			\
460 			    &(dev)->mode_config.plane_list,	\
461 			    base.head)
462 
463 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask)		\
464 	list_for_each_entry(intel_plane,				\
465 			    &(dev)->mode_config.plane_list,		\
466 			    base.head)					\
467 		for_each_if ((plane_mask) &				\
468 			     (1 << drm_plane_index(&intel_plane->base)))
469 
470 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane)	\
471 	list_for_each_entry(intel_plane,				\
472 			    &(dev)->mode_config.plane_list,		\
473 			    base.head)					\
474 		for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
475 
476 #define for_each_intel_crtc(dev, intel_crtc)				\
477 	list_for_each_entry(intel_crtc,					\
478 			    &(dev)->mode_config.crtc_list,		\
479 			    base.head)
480 
481 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask)		\
482 	list_for_each_entry(intel_crtc,					\
483 			    &(dev)->mode_config.crtc_list,		\
484 			    base.head)					\
485 		for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
486 
487 #define for_each_intel_encoder(dev, intel_encoder)		\
488 	list_for_each_entry(intel_encoder,			\
489 			    &(dev)->mode_config.encoder_list,	\
490 			    base.head)
491 
492 #define for_each_intel_connector_iter(intel_connector, iter) \
493 	while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter))))
494 
495 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
496 	list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
497 		for_each_if ((intel_encoder)->base.crtc == (__crtc))
498 
499 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
500 	list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
501 		for_each_if ((intel_connector)->base.encoder == (__encoder))
502 
503 #define for_each_power_domain(domain, mask)				\
504 	for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)	\
505 		for_each_if (BIT_ULL(domain) & (mask))
506 
507 #define for_each_power_well(__dev_priv, __power_well)				\
508 	for ((__power_well) = (__dev_priv)->power_domains.power_wells;	\
509 	     (__power_well) - (__dev_priv)->power_domains.power_wells <	\
510 		(__dev_priv)->power_domains.power_well_count;		\
511 	     (__power_well)++)
512 
513 #define for_each_power_well_rev(__dev_priv, __power_well)			\
514 	for ((__power_well) = (__dev_priv)->power_domains.power_wells +		\
515 			      (__dev_priv)->power_domains.power_well_count - 1;	\
516 	     (__power_well) - (__dev_priv)->power_domains.power_wells >= 0;	\
517 	     (__power_well)--)
518 
519 #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask)	\
520 	for_each_power_well(__dev_priv, __power_well)				\
521 		for_each_if ((__power_well)->domains & (__domain_mask))
522 
523 #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \
524 	for_each_power_well_rev(__dev_priv, __power_well)		        \
525 		for_each_if ((__power_well)->domains & (__domain_mask))
526 
527 #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \
528 	for ((__i) = 0; \
529 	     (__i) < (__state)->base.dev->mode_config.num_total_plane && \
530 		     ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
531 		      (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \
532 	     (__i)++) \
533 		for_each_if (plane_state)
534 
535 struct drm_i915_private;
536 struct i915_mm_struct;
537 struct i915_mmu_object;
538 
539 struct drm_i915_file_private {
540 	struct drm_i915_private *dev_priv;
541 	struct drm_file *file;
542 
543 	struct {
544 		spinlock_t lock;
545 		struct list_head request_list;
546 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
547  * chosen to prevent the CPU getting more than a frame ahead of the GPU
548  * (when using lax throttling for the frontbuffer). We also use it to
549  * offer free GPU waitboosts for severely congested workloads.
550  */
551 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
552 	} mm;
553 	struct idr context_idr;
554 
555 	struct intel_rps_client {
556 		struct list_head link;
557 		unsigned boosts;
558 	} rps;
559 
560 	unsigned int bsd_engine;
561 
562 /* Client can have a maximum of 3 contexts banned before
563  * it is denied of creating new contexts. As one context
564  * ban needs 4 consecutive hangs, and more if there is
565  * progress in between, this is a last resort stop gap measure
566  * to limit the badly behaving clients access to gpu.
567  */
568 #define I915_MAX_CLIENT_CONTEXT_BANS 3
569 	int context_bans;
570 };
571 
572 /* Used by dp and fdi links */
573 struct intel_link_m_n {
574 	uint32_t	tu;
575 	uint32_t	gmch_m;
576 	uint32_t	gmch_n;
577 	uint32_t	link_m;
578 	uint32_t	link_n;
579 };
580 
581 void intel_link_compute_m_n(int bpp, int nlanes,
582 			    int pixel_clock, int link_clock,
583 			    struct intel_link_m_n *m_n);
584 
585 /* Interface history:
586  *
587  * 1.1: Original.
588  * 1.2: Add Power Management
589  * 1.3: Add vblank support
590  * 1.4: Fix cmdbuffer path, add heap destroy
591  * 1.5: Add vblank pipe configuration
592  * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
593  *      - Support vertical blank on secondary display pipe
594  */
595 #define DRIVER_MAJOR		1
596 #define DRIVER_MINOR		6
597 #define DRIVER_PATCHLEVEL	0
598 
599 struct opregion_header;
600 struct opregion_acpi;
601 struct opregion_swsci;
602 struct opregion_asle;
603 
604 struct intel_opregion {
605 	struct opregion_header *header;
606 	struct opregion_acpi *acpi;
607 	struct opregion_swsci *swsci;
608 	u32 swsci_gbda_sub_functions;
609 	u32 swsci_sbcb_sub_functions;
610 	struct opregion_asle *asle;
611 	void *rvda;
612 	const void *vbt;
613 	u32 vbt_size;
614 	u32 *lid_state;
615 	struct work_struct asle_work;
616 };
617 #define OPREGION_SIZE            (8*1024)
618 
619 struct intel_overlay;
620 struct intel_overlay_error_state;
621 
622 struct sdvo_device_mapping {
623 	u8 initialized;
624 	u8 dvo_port;
625 	u8 slave_addr;
626 	u8 dvo_wiring;
627 	u8 i2c_pin;
628 	u8 ddc_pin;
629 };
630 
631 struct intel_connector;
632 struct intel_encoder;
633 struct intel_atomic_state;
634 struct intel_crtc_state;
635 struct intel_initial_plane_config;
636 struct intel_crtc;
637 struct intel_limit;
638 struct dpll;
639 struct intel_cdclk_state;
640 
641 struct drm_i915_display_funcs {
642 	void (*get_cdclk)(struct drm_i915_private *dev_priv,
643 			  struct intel_cdclk_state *cdclk_state);
644 	void (*set_cdclk)(struct drm_i915_private *dev_priv,
645 			  const struct intel_cdclk_state *cdclk_state);
646 	int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
647 	int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
648 	int (*compute_intermediate_wm)(struct drm_device *dev,
649 				       struct intel_crtc *intel_crtc,
650 				       struct intel_crtc_state *newstate);
651 	void (*initial_watermarks)(struct intel_atomic_state *state,
652 				   struct intel_crtc_state *cstate);
653 	void (*atomic_update_watermarks)(struct intel_atomic_state *state,
654 					 struct intel_crtc_state *cstate);
655 	void (*optimize_watermarks)(struct intel_atomic_state *state,
656 				    struct intel_crtc_state *cstate);
657 	int (*compute_global_watermarks)(struct drm_atomic_state *state);
658 	void (*update_wm)(struct intel_crtc *crtc);
659 	int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
660 	/* Returns the active state of the crtc, and if the crtc is active,
661 	 * fills out the pipe-config with the hw state. */
662 	bool (*get_pipe_config)(struct intel_crtc *,
663 				struct intel_crtc_state *);
664 	void (*get_initial_plane_config)(struct intel_crtc *,
665 					 struct intel_initial_plane_config *);
666 	int (*crtc_compute_clock)(struct intel_crtc *crtc,
667 				  struct intel_crtc_state *crtc_state);
668 	void (*crtc_enable)(struct intel_crtc_state *pipe_config,
669 			    struct drm_atomic_state *old_state);
670 	void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
671 			     struct drm_atomic_state *old_state);
672 	void (*update_crtcs)(struct drm_atomic_state *state,
673 			     unsigned int *crtc_vblank_mask);
674 	void (*audio_codec_enable)(struct drm_connector *connector,
675 				   struct intel_encoder *encoder,
676 				   const struct drm_display_mode *adjusted_mode);
677 	void (*audio_codec_disable)(struct intel_encoder *encoder);
678 	void (*fdi_link_train)(struct intel_crtc *crtc,
679 			       const struct intel_crtc_state *crtc_state);
680 	void (*init_clock_gating)(struct drm_i915_private *dev_priv);
681 	int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
682 			  struct drm_framebuffer *fb,
683 			  struct drm_i915_gem_object *obj,
684 			  struct drm_i915_gem_request *req,
685 			  uint32_t flags);
686 	void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
687 	/* clock updates for mode set */
688 	/* cursor updates */
689 	/* render clock increase/decrease */
690 	/* display clock increase/decrease */
691 	/* pll clock increase/decrease */
692 
693 	void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
694 	void (*load_luts)(struct drm_crtc_state *crtc_state);
695 };
696 
697 enum forcewake_domain_id {
698 	FW_DOMAIN_ID_RENDER = 0,
699 	FW_DOMAIN_ID_BLITTER,
700 	FW_DOMAIN_ID_MEDIA,
701 
702 	FW_DOMAIN_ID_COUNT
703 };
704 
705 enum forcewake_domains {
706 	FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER),
707 	FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER),
708 	FORCEWAKE_MEDIA	= (1 << FW_DOMAIN_ID_MEDIA),
709 	FORCEWAKE_ALL = (FORCEWAKE_RENDER |
710 			 FORCEWAKE_BLITTER |
711 			 FORCEWAKE_MEDIA)
712 };
713 
714 #define FW_REG_READ  (1)
715 #define FW_REG_WRITE (2)
716 
717 enum decoupled_power_domain {
718 	GEN9_DECOUPLED_PD_BLITTER = 0,
719 	GEN9_DECOUPLED_PD_RENDER,
720 	GEN9_DECOUPLED_PD_MEDIA,
721 	GEN9_DECOUPLED_PD_ALL
722 };
723 
724 enum decoupled_ops {
725 	GEN9_DECOUPLED_OP_WRITE = 0,
726 	GEN9_DECOUPLED_OP_READ
727 };
728 
729 enum forcewake_domains
730 intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv,
731 			       i915_reg_t reg, unsigned int op);
732 
733 struct intel_uncore_funcs {
734 	void (*force_wake_get)(struct drm_i915_private *dev_priv,
735 							enum forcewake_domains domains);
736 	void (*force_wake_put)(struct drm_i915_private *dev_priv,
737 							enum forcewake_domains domains);
738 
739 	uint8_t  (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
740 	uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
741 	uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
742 	uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
743 
744 	void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r,
745 				uint8_t val, bool trace);
746 	void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r,
747 				uint16_t val, bool trace);
748 	void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r,
749 				uint32_t val, bool trace);
750 };
751 
752 struct intel_forcewake_range {
753 	u32 start;
754 	u32 end;
755 
756 	enum forcewake_domains domains;
757 };
758 
759 struct intel_uncore {
760 	spinlock_t lock; /** lock is also taken in irq contexts. */
761 
762 	const struct intel_forcewake_range *fw_domains_table;
763 	unsigned int fw_domains_table_entries;
764 
765 	struct notifier_block pmic_bus_access_nb;
766 	struct intel_uncore_funcs funcs;
767 
768 	unsigned fifo_count;
769 
770 	enum forcewake_domains fw_domains;
771 	enum forcewake_domains fw_domains_active;
772 
773 	struct intel_uncore_forcewake_domain {
774 		struct drm_i915_private *i915;
775 		enum forcewake_domain_id id;
776 		enum forcewake_domains mask;
777 		unsigned wake_count;
778 		struct hrtimer timer;
779 		i915_reg_t reg_set;
780 		u32 val_set;
781 		u32 val_clear;
782 		i915_reg_t reg_ack;
783 		i915_reg_t reg_post;
784 		u32 val_reset;
785 	} fw_domain[FW_DOMAIN_ID_COUNT];
786 
787 	int unclaimed_mmio_check;
788 };
789 
790 /* Iterate over initialised fw domains */
791 #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \
792 	for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \
793 	     (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \
794 	     (domain__)++) \
795 		for_each_if ((mask__) & (domain__)->mask)
796 
797 #define for_each_fw_domain(domain__, dev_priv__) \
798 	for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__)
799 
800 #define CSR_VERSION(major, minor)	((major) << 16 | (minor))
801 #define CSR_VERSION_MAJOR(version)	((version) >> 16)
802 #define CSR_VERSION_MINOR(version)	((version) & 0xffff)
803 
804 struct intel_csr {
805 	struct work_struct work;
806 	const char *fw_path;
807 	uint32_t *dmc_payload;
808 	uint32_t dmc_fw_size;
809 	uint32_t version;
810 	uint32_t mmio_count;
811 	i915_reg_t mmioaddr[8];
812 	uint32_t mmiodata[8];
813 	uint32_t dc_state;
814 	uint32_t allowed_dc_mask;
815 };
816 
817 #define DEV_INFO_FOR_EACH_FLAG(func) \
818 	func(is_mobile); \
819 	func(is_lp); \
820 	func(is_alpha_support); \
821 	/* Keep has_* in alphabetical order */ \
822 	func(has_64bit_reloc); \
823 	func(has_aliasing_ppgtt); \
824 	func(has_csr); \
825 	func(has_ddi); \
826 	func(has_decoupled_mmio); \
827 	func(has_dp_mst); \
828 	func(has_fbc); \
829 	func(has_fpga_dbg); \
830 	func(has_full_ppgtt); \
831 	func(has_full_48bit_ppgtt); \
832 	func(has_gmbus_irq); \
833 	func(has_gmch_display); \
834 	func(has_guc); \
835 	func(has_hotplug); \
836 	func(has_hw_contexts); \
837 	func(has_l3_dpf); \
838 	func(has_llc); \
839 	func(has_logical_ring_contexts); \
840 	func(has_overlay); \
841 	func(has_pipe_cxsr); \
842 	func(has_pooled_eu); \
843 	func(has_psr); \
844 	func(has_rc6); \
845 	func(has_rc6p); \
846 	func(has_resource_streamer); \
847 	func(has_runtime_pm); \
848 	func(has_snoop); \
849 	func(cursor_needs_physical); \
850 	func(hws_needs_physical); \
851 	func(overlay_needs_physical); \
852 	func(supports_tv);
853 
854 struct sseu_dev_info {
855 	u8 slice_mask;
856 	u8 subslice_mask;
857 	u8 eu_total;
858 	u8 eu_per_subslice;
859 	u8 min_eu_in_pool;
860 	/* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
861 	u8 subslice_7eu[3];
862 	u8 has_slice_pg:1;
863 	u8 has_subslice_pg:1;
864 	u8 has_eu_pg:1;
865 };
866 
867 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
868 {
869 	return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
870 }
871 
872 /* Keep in gen based order, and chronological order within a gen */
873 enum intel_platform {
874 	INTEL_PLATFORM_UNINITIALIZED = 0,
875 	INTEL_I830,
876 	INTEL_I845G,
877 	INTEL_I85X,
878 	INTEL_I865G,
879 	INTEL_I915G,
880 	INTEL_I915GM,
881 	INTEL_I945G,
882 	INTEL_I945GM,
883 	INTEL_G33,
884 	INTEL_PINEVIEW,
885 	INTEL_I965G,
886 	INTEL_I965GM,
887 	INTEL_G45,
888 	INTEL_GM45,
889 	INTEL_IRONLAKE,
890 	INTEL_SANDYBRIDGE,
891 	INTEL_IVYBRIDGE,
892 	INTEL_VALLEYVIEW,
893 	INTEL_HASWELL,
894 	INTEL_BROADWELL,
895 	INTEL_CHERRYVIEW,
896 	INTEL_SKYLAKE,
897 	INTEL_BROXTON,
898 	INTEL_KABYLAKE,
899 	INTEL_GEMINILAKE,
900 	INTEL_MAX_PLATFORMS
901 };
902 
903 struct intel_device_info {
904 	u32 display_mmio_offset;
905 	u16 device_id;
906 	u8 num_pipes;
907 	u8 num_sprites[I915_MAX_PIPES];
908 	u8 num_scalers[I915_MAX_PIPES];
909 	u8 gen;
910 	u16 gen_mask;
911 	enum intel_platform platform;
912 	u8 ring_mask; /* Rings supported by the HW */
913 	u8 num_rings;
914 #define DEFINE_FLAG(name) u8 name:1
915 	DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
916 #undef DEFINE_FLAG
917 	u16 ddb_size; /* in blocks */
918 	/* Register offsets for the various display pipes and transcoders */
919 	int pipe_offsets[I915_MAX_TRANSCODERS];
920 	int trans_offsets[I915_MAX_TRANSCODERS];
921 	int palette_offsets[I915_MAX_PIPES];
922 	int cursor_offsets[I915_MAX_PIPES];
923 
924 	/* Slice/subslice/EU info */
925 	struct sseu_dev_info sseu;
926 
927 	struct color_luts {
928 		u16 degamma_lut_size;
929 		u16 gamma_lut_size;
930 	} color;
931 };
932 
933 struct intel_display_error_state;
934 
935 struct i915_gpu_state {
936 	struct kref ref;
937 	struct timeval time;
938 	struct timeval boottime;
939 	struct timeval uptime;
940 
941 	struct drm_i915_private *i915;
942 
943 	char error_msg[128];
944 	bool simulated;
945 	bool awake;
946 	bool wakelock;
947 	bool suspended;
948 	int iommu;
949 	u32 reset_count;
950 	u32 suspend_count;
951 	struct intel_device_info device_info;
952 	struct i915_params params;
953 
954 	/* Generic register state */
955 	u32 eir;
956 	u32 pgtbl_er;
957 	u32 ier;
958 	u32 gtier[4], ngtier;
959 	u32 ccid;
960 	u32 derrmr;
961 	u32 forcewake;
962 	u32 error; /* gen6+ */
963 	u32 err_int; /* gen7 */
964 	u32 fault_data0; /* gen8, gen9 */
965 	u32 fault_data1; /* gen8, gen9 */
966 	u32 done_reg;
967 	u32 gac_eco;
968 	u32 gam_ecochk;
969 	u32 gab_ctl;
970 	u32 gfx_mode;
971 
972 	u32 nfence;
973 	u64 fence[I915_MAX_NUM_FENCES];
974 	struct intel_overlay_error_state *overlay;
975 	struct intel_display_error_state *display;
976 	struct drm_i915_error_object *semaphore;
977 	struct drm_i915_error_object *guc_log;
978 
979 	struct drm_i915_error_engine {
980 		int engine_id;
981 		/* Software tracked state */
982 		bool waiting;
983 		int num_waiters;
984 		unsigned long hangcheck_timestamp;
985 		bool hangcheck_stalled;
986 		enum intel_engine_hangcheck_action hangcheck_action;
987 		struct i915_address_space *vm;
988 		int num_requests;
989 
990 		/* position of active request inside the ring */
991 		u32 rq_head, rq_post, rq_tail;
992 
993 		/* our own tracking of ring head and tail */
994 		u32 cpu_ring_head;
995 		u32 cpu_ring_tail;
996 
997 		u32 last_seqno;
998 
999 		/* Register state */
1000 		u32 start;
1001 		u32 tail;
1002 		u32 head;
1003 		u32 ctl;
1004 		u32 mode;
1005 		u32 hws;
1006 		u32 ipeir;
1007 		u32 ipehr;
1008 		u32 bbstate;
1009 		u32 instpm;
1010 		u32 instps;
1011 		u32 seqno;
1012 		u64 bbaddr;
1013 		u64 acthd;
1014 		u32 fault_reg;
1015 		u64 faddr;
1016 		u32 rc_psmi; /* sleep state */
1017 		u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
1018 		struct intel_instdone instdone;
1019 
1020 		struct drm_i915_error_context {
1021 			char comm[TASK_COMM_LEN];
1022 			pid_t pid;
1023 			u32 handle;
1024 			u32 hw_id;
1025 			int ban_score;
1026 			int active;
1027 			int guilty;
1028 		} context;
1029 
1030 		struct drm_i915_error_object {
1031 			u64 gtt_offset;
1032 			u64 gtt_size;
1033 			int page_count;
1034 			int unused;
1035 			u32 *pages[0];
1036 		} *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
1037 
1038 		struct drm_i915_error_object *wa_ctx;
1039 
1040 		struct drm_i915_error_request {
1041 			long jiffies;
1042 			pid_t pid;
1043 			u32 context;
1044 			int ban_score;
1045 			u32 seqno;
1046 			u32 head;
1047 			u32 tail;
1048 		} *requests, execlist[2];
1049 
1050 		struct drm_i915_error_waiter {
1051 			char comm[TASK_COMM_LEN];
1052 			pid_t pid;
1053 			u32 seqno;
1054 		} *waiters;
1055 
1056 		struct {
1057 			u32 gfx_mode;
1058 			union {
1059 				u64 pdp[4];
1060 				u32 pp_dir_base;
1061 			};
1062 		} vm_info;
1063 	} engine[I915_NUM_ENGINES];
1064 
1065 	struct drm_i915_error_buffer {
1066 		u32 size;
1067 		u32 name;
1068 		u32 rseqno[I915_NUM_ENGINES], wseqno;
1069 		u64 gtt_offset;
1070 		u32 read_domains;
1071 		u32 write_domain;
1072 		s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1073 		u32 tiling:2;
1074 		u32 dirty:1;
1075 		u32 purgeable:1;
1076 		u32 userptr:1;
1077 		s32 engine:4;
1078 		u32 cache_level:3;
1079 	} *active_bo[I915_NUM_ENGINES], *pinned_bo;
1080 	u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1081 	struct i915_address_space *active_vm[I915_NUM_ENGINES];
1082 };
1083 
1084 enum i915_cache_level {
1085 	I915_CACHE_NONE = 0,
1086 	I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1087 	I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1088 			      caches, eg sampler/render caches, and the
1089 			      large Last-Level-Cache. LLC is coherent with
1090 			      the CPU, but L3 is only visible to the GPU. */
1091 	I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1092 };
1093 
1094 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1095 
1096 enum fb_op_origin {
1097 	ORIGIN_GTT,
1098 	ORIGIN_CPU,
1099 	ORIGIN_CS,
1100 	ORIGIN_FLIP,
1101 	ORIGIN_DIRTYFB,
1102 };
1103 
1104 struct intel_fbc {
1105 	/* This is always the inner lock when overlapping with struct_mutex and
1106 	 * it's the outer lock when overlapping with stolen_lock. */
1107 	struct mutex lock;
1108 	unsigned threshold;
1109 	unsigned int possible_framebuffer_bits;
1110 	unsigned int busy_bits;
1111 	unsigned int visible_pipes_mask;
1112 	struct intel_crtc *crtc;
1113 
1114 	struct drm_mm_node compressed_fb;
1115 	struct drm_mm_node *compressed_llb;
1116 
1117 	bool false_color;
1118 
1119 	bool enabled;
1120 	bool active;
1121 
1122 	bool underrun_detected;
1123 	struct work_struct underrun_work;
1124 
1125 	struct intel_fbc_state_cache {
1126 		struct i915_vma *vma;
1127 
1128 		struct {
1129 			unsigned int mode_flags;
1130 			uint32_t hsw_bdw_pixel_rate;
1131 		} crtc;
1132 
1133 		struct {
1134 			unsigned int rotation;
1135 			int src_w;
1136 			int src_h;
1137 			bool visible;
1138 		} plane;
1139 
1140 		struct {
1141 			const struct drm_format_info *format;
1142 			unsigned int stride;
1143 		} fb;
1144 	} state_cache;
1145 
1146 	struct intel_fbc_reg_params {
1147 		struct i915_vma *vma;
1148 
1149 		struct {
1150 			enum pipe pipe;
1151 			enum plane plane;
1152 			unsigned int fence_y_offset;
1153 		} crtc;
1154 
1155 		struct {
1156 			const struct drm_format_info *format;
1157 			unsigned int stride;
1158 		} fb;
1159 
1160 		int cfb_size;
1161 	} params;
1162 
1163 	struct intel_fbc_work {
1164 		bool scheduled;
1165 		u32 scheduled_vblank;
1166 		struct work_struct work;
1167 	} work;
1168 
1169 	const char *no_fbc_reason;
1170 };
1171 
1172 /*
1173  * HIGH_RR is the highest eDP panel refresh rate read from EDID
1174  * LOW_RR is the lowest eDP panel refresh rate found from EDID
1175  * parsing for same resolution.
1176  */
1177 enum drrs_refresh_rate_type {
1178 	DRRS_HIGH_RR,
1179 	DRRS_LOW_RR,
1180 	DRRS_MAX_RR, /* RR count */
1181 };
1182 
1183 enum drrs_support_type {
1184 	DRRS_NOT_SUPPORTED = 0,
1185 	STATIC_DRRS_SUPPORT = 1,
1186 	SEAMLESS_DRRS_SUPPORT = 2
1187 };
1188 
1189 struct intel_dp;
1190 struct i915_drrs {
1191 	struct mutex mutex;
1192 	struct delayed_work work;
1193 	struct intel_dp *dp;
1194 	unsigned busy_frontbuffer_bits;
1195 	enum drrs_refresh_rate_type refresh_rate_type;
1196 	enum drrs_support_type type;
1197 };
1198 
1199 struct i915_psr {
1200 	struct mutex lock;
1201 	bool sink_support;
1202 	bool source_ok;
1203 	struct intel_dp *enabled;
1204 	bool active;
1205 	struct delayed_work work;
1206 	unsigned busy_frontbuffer_bits;
1207 	bool psr2_support;
1208 	bool aux_frame_sync;
1209 	bool link_standby;
1210 	bool y_cord_support;
1211 	bool colorimetry_support;
1212 	bool alpm;
1213 };
1214 
1215 enum intel_pch {
1216 	PCH_NONE = 0,	/* No PCH present */
1217 	PCH_IBX,	/* Ibexpeak PCH */
1218 	PCH_CPT,	/* Cougarpoint PCH */
1219 	PCH_LPT,	/* Lynxpoint PCH */
1220 	PCH_SPT,        /* Sunrisepoint PCH */
1221 	PCH_KBP,        /* Kabypoint PCH */
1222 	PCH_NOP,
1223 };
1224 
1225 enum intel_sbi_destination {
1226 	SBI_ICLK,
1227 	SBI_MPHY,
1228 };
1229 
1230 #define QUIRK_PIPEA_FORCE (1<<0)
1231 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1232 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1233 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1234 #define QUIRK_PIPEB_FORCE (1<<4)
1235 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1236 
1237 struct intel_fbdev;
1238 struct intel_fbc_work;
1239 
1240 struct intel_gmbus {
1241 	struct i2c_adapter adapter;
1242 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1243 	u32 force_bit;
1244 	u32 reg0;
1245 	i915_reg_t gpio_reg;
1246 	struct i2c_algo_bit_data bit_algo;
1247 	struct drm_i915_private *dev_priv;
1248 };
1249 
1250 struct i915_suspend_saved_registers {
1251 	u32 saveDSPARB;
1252 	u32 saveFBC_CONTROL;
1253 	u32 saveCACHE_MODE_0;
1254 	u32 saveMI_ARB_STATE;
1255 	u32 saveSWF0[16];
1256 	u32 saveSWF1[16];
1257 	u32 saveSWF3[3];
1258 	uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1259 	u32 savePCH_PORT_HOTPLUG;
1260 	u16 saveGCDGMBUS;
1261 };
1262 
1263 struct vlv_s0ix_state {
1264 	/* GAM */
1265 	u32 wr_watermark;
1266 	u32 gfx_prio_ctrl;
1267 	u32 arb_mode;
1268 	u32 gfx_pend_tlb0;
1269 	u32 gfx_pend_tlb1;
1270 	u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1271 	u32 media_max_req_count;
1272 	u32 gfx_max_req_count;
1273 	u32 render_hwsp;
1274 	u32 ecochk;
1275 	u32 bsd_hwsp;
1276 	u32 blt_hwsp;
1277 	u32 tlb_rd_addr;
1278 
1279 	/* MBC */
1280 	u32 g3dctl;
1281 	u32 gsckgctl;
1282 	u32 mbctl;
1283 
1284 	/* GCP */
1285 	u32 ucgctl1;
1286 	u32 ucgctl3;
1287 	u32 rcgctl1;
1288 	u32 rcgctl2;
1289 	u32 rstctl;
1290 	u32 misccpctl;
1291 
1292 	/* GPM */
1293 	u32 gfxpause;
1294 	u32 rpdeuhwtc;
1295 	u32 rpdeuc;
1296 	u32 ecobus;
1297 	u32 pwrdwnupctl;
1298 	u32 rp_down_timeout;
1299 	u32 rp_deucsw;
1300 	u32 rcubmabdtmr;
1301 	u32 rcedata;
1302 	u32 spare2gh;
1303 
1304 	/* Display 1 CZ domain */
1305 	u32 gt_imr;
1306 	u32 gt_ier;
1307 	u32 pm_imr;
1308 	u32 pm_ier;
1309 	u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1310 
1311 	/* GT SA CZ domain */
1312 	u32 tilectl;
1313 	u32 gt_fifoctl;
1314 	u32 gtlc_wake_ctrl;
1315 	u32 gtlc_survive;
1316 	u32 pmwgicz;
1317 
1318 	/* Display 2 CZ domain */
1319 	u32 gu_ctl0;
1320 	u32 gu_ctl1;
1321 	u32 pcbr;
1322 	u32 clock_gate_dis2;
1323 };
1324 
1325 struct intel_rps_ei {
1326 	ktime_t ktime;
1327 	u32 render_c0;
1328 	u32 media_c0;
1329 };
1330 
1331 struct intel_gen6_power_mgmt {
1332 	/*
1333 	 * work, interrupts_enabled and pm_iir are protected by
1334 	 * dev_priv->irq_lock
1335 	 */
1336 	struct work_struct work;
1337 	bool interrupts_enabled;
1338 	u32 pm_iir;
1339 
1340 	/* PM interrupt bits that should never be masked */
1341 	u32 pm_intrmsk_mbz;
1342 
1343 	/* Frequencies are stored in potentially platform dependent multiples.
1344 	 * In other words, *_freq needs to be multiplied by X to be interesting.
1345 	 * Soft limits are those which are used for the dynamic reclocking done
1346 	 * by the driver (raise frequencies under heavy loads, and lower for
1347 	 * lighter loads). Hard limits are those imposed by the hardware.
1348 	 *
1349 	 * A distinction is made for overclocking, which is never enabled by
1350 	 * default, and is considered to be above the hard limit if it's
1351 	 * possible at all.
1352 	 */
1353 	u8 cur_freq;		/* Current frequency (cached, may not == HW) */
1354 	u8 min_freq_softlimit;	/* Minimum frequency permitted by the driver */
1355 	u8 max_freq_softlimit;	/* Max frequency permitted by the driver */
1356 	u8 max_freq;		/* Maximum frequency, RP0 if not overclocking */
1357 	u8 min_freq;		/* AKA RPn. Minimum frequency */
1358 	u8 boost_freq;		/* Frequency to request when wait boosting */
1359 	u8 idle_freq;		/* Frequency to request when we are idle */
1360 	u8 efficient_freq;	/* AKA RPe. Pre-determined balanced frequency */
1361 	u8 rp1_freq;		/* "less than" RP0 power/freqency */
1362 	u8 rp0_freq;		/* Non-overclocked max frequency. */
1363 	u16 gpll_ref_freq;	/* vlv/chv GPLL reference frequency */
1364 
1365 	u8 up_threshold; /* Current %busy required to uplock */
1366 	u8 down_threshold; /* Current %busy required to downclock */
1367 
1368 	int last_adj;
1369 	enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1370 
1371 	spinlock_t client_lock;
1372 	struct list_head clients;
1373 	bool client_boost;
1374 
1375 	bool enabled;
1376 	struct delayed_work autoenable_work;
1377 	unsigned boosts;
1378 
1379 	/* manual wa residency calculations */
1380 	struct intel_rps_ei ei;
1381 
1382 	/*
1383 	 * Protects RPS/RC6 register access and PCU communication.
1384 	 * Must be taken after struct_mutex if nested. Note that
1385 	 * this lock may be held for long periods of time when
1386 	 * talking to hw - so only take it when talking to hw!
1387 	 */
1388 	struct mutex hw_lock;
1389 };
1390 
1391 /* defined intel_pm.c */
1392 extern spinlock_t mchdev_lock;
1393 
1394 struct intel_ilk_power_mgmt {
1395 	u8 cur_delay;
1396 	u8 min_delay;
1397 	u8 max_delay;
1398 	u8 fmax;
1399 	u8 fstart;
1400 
1401 	u64 last_count1;
1402 	unsigned long last_time1;
1403 	unsigned long chipset_power;
1404 	u64 last_count2;
1405 	u64 last_time2;
1406 	unsigned long gfx_power;
1407 	u8 corr;
1408 
1409 	int c_m;
1410 	int r_t;
1411 };
1412 
1413 struct drm_i915_private;
1414 struct i915_power_well;
1415 
1416 struct i915_power_well_ops {
1417 	/*
1418 	 * Synchronize the well's hw state to match the current sw state, for
1419 	 * example enable/disable it based on the current refcount. Called
1420 	 * during driver init and resume time, possibly after first calling
1421 	 * the enable/disable handlers.
1422 	 */
1423 	void (*sync_hw)(struct drm_i915_private *dev_priv,
1424 			struct i915_power_well *power_well);
1425 	/*
1426 	 * Enable the well and resources that depend on it (for example
1427 	 * interrupts located on the well). Called after the 0->1 refcount
1428 	 * transition.
1429 	 */
1430 	void (*enable)(struct drm_i915_private *dev_priv,
1431 		       struct i915_power_well *power_well);
1432 	/*
1433 	 * Disable the well and resources that depend on it. Called after
1434 	 * the 1->0 refcount transition.
1435 	 */
1436 	void (*disable)(struct drm_i915_private *dev_priv,
1437 			struct i915_power_well *power_well);
1438 	/* Returns the hw enabled state. */
1439 	bool (*is_enabled)(struct drm_i915_private *dev_priv,
1440 			   struct i915_power_well *power_well);
1441 };
1442 
1443 /* Power well structure for haswell */
1444 struct i915_power_well {
1445 	const char *name;
1446 	bool always_on;
1447 	/* power well enable/disable usage count */
1448 	int count;
1449 	/* cached hw enabled state */
1450 	bool hw_enabled;
1451 	u64 domains;
1452 	/* unique identifier for this power well */
1453 	unsigned long id;
1454 	/*
1455 	 * Arbitraty data associated with this power well. Platform and power
1456 	 * well specific.
1457 	 */
1458 	unsigned long data;
1459 	const struct i915_power_well_ops *ops;
1460 };
1461 
1462 struct i915_power_domains {
1463 	/*
1464 	 * Power wells needed for initialization at driver init and suspend
1465 	 * time are on. They are kept on until after the first modeset.
1466 	 */
1467 	bool init_power_on;
1468 	bool initializing;
1469 	int power_well_count;
1470 
1471 	struct mutex lock;
1472 	int domain_use_count[POWER_DOMAIN_NUM];
1473 	struct i915_power_well *power_wells;
1474 };
1475 
1476 #define MAX_L3_SLICES 2
1477 struct intel_l3_parity {
1478 	u32 *remap_info[MAX_L3_SLICES];
1479 	struct work_struct error_work;
1480 	int which_slice;
1481 };
1482 
1483 struct i915_gem_mm {
1484 	/** Memory allocator for GTT stolen memory */
1485 	struct drm_mm stolen;
1486 	/** Protects the usage of the GTT stolen memory allocator. This is
1487 	 * always the inner lock when overlapping with struct_mutex. */
1488 	struct mutex stolen_lock;
1489 
1490 	/** List of all objects in gtt_space. Used to restore gtt
1491 	 * mappings on resume */
1492 	struct list_head bound_list;
1493 	/**
1494 	 * List of objects which are not bound to the GTT (thus
1495 	 * are idle and not used by the GPU). These objects may or may
1496 	 * not actually have any pages attached.
1497 	 */
1498 	struct list_head unbound_list;
1499 
1500 	/** List of all objects in gtt_space, currently mmaped by userspace.
1501 	 * All objects within this list must also be on bound_list.
1502 	 */
1503 	struct list_head userfault_list;
1504 
1505 	/**
1506 	 * List of objects which are pending destruction.
1507 	 */
1508 	struct llist_head free_list;
1509 	struct work_struct free_work;
1510 
1511 	/** Usable portion of the GTT for GEM */
1512 	dma_addr_t stolen_base; /* limited to low memory (32-bit) */
1513 
1514 	/** PPGTT used for aliasing the PPGTT with the GTT */
1515 	struct i915_hw_ppgtt *aliasing_ppgtt;
1516 
1517 	struct notifier_block oom_notifier;
1518 	struct notifier_block vmap_notifier;
1519 	struct shrinker shrinker;
1520 
1521 	/** LRU list of objects with fence regs on them. */
1522 	struct list_head fence_list;
1523 
1524 	/**
1525 	 * Are we in a non-interruptible section of code like
1526 	 * modesetting?
1527 	 */
1528 	bool interruptible;
1529 
1530 	/* the indicator for dispatch video commands on two BSD rings */
1531 	atomic_t bsd_engine_dispatch_index;
1532 
1533 	/** Bit 6 swizzling required for X tiling */
1534 	uint32_t bit_6_swizzle_x;
1535 	/** Bit 6 swizzling required for Y tiling */
1536 	uint32_t bit_6_swizzle_y;
1537 
1538 	/* accounting, useful for userland debugging */
1539 	spinlock_t object_stat_lock;
1540 	u64 object_memory;
1541 	u32 object_count;
1542 };
1543 
1544 struct drm_i915_error_state_buf {
1545 	struct drm_i915_private *i915;
1546 	unsigned bytes;
1547 	unsigned size;
1548 	int err;
1549 	u8 *buf;
1550 	loff_t start;
1551 	loff_t pos;
1552 };
1553 
1554 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1555 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1556 
1557 #define I915_ENGINE_DEAD_TIMEOUT  (4 * HZ)  /* Seqno, head and subunits dead */
1558 #define I915_SEQNO_DEAD_TIMEOUT   (12 * HZ) /* Seqno dead with active head */
1559 
1560 struct i915_gpu_error {
1561 	/* For hangcheck timer */
1562 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1563 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1564 
1565 	struct delayed_work hangcheck_work;
1566 
1567 	/* For reset and error_state handling. */
1568 	spinlock_t lock;
1569 	/* Protected by the above dev->gpu_error.lock. */
1570 	struct i915_gpu_state *first_error;
1571 
1572 	unsigned long missed_irq_rings;
1573 
1574 	/**
1575 	 * State variable controlling the reset flow and count
1576 	 *
1577 	 * This is a counter which gets incremented when reset is triggered,
1578 	 *
1579 	 * Before the reset commences, the I915_RESET_IN_PROGRESS bit is set
1580 	 * meaning that any waiters holding onto the struct_mutex should
1581 	 * relinquish the lock immediately in order for the reset to start.
1582 	 *
1583 	 * If reset is not completed succesfully, the I915_WEDGE bit is
1584 	 * set meaning that hardware is terminally sour and there is no
1585 	 * recovery. All waiters on the reset_queue will be woken when
1586 	 * that happens.
1587 	 *
1588 	 * This counter is used by the wait_seqno code to notice that reset
1589 	 * event happened and it needs to restart the entire ioctl (since most
1590 	 * likely the seqno it waited for won't ever signal anytime soon).
1591 	 *
1592 	 * This is important for lock-free wait paths, where no contended lock
1593 	 * naturally enforces the correct ordering between the bail-out of the
1594 	 * waiter and the gpu reset work code.
1595 	 */
1596 	unsigned long reset_count;
1597 
1598 	/**
1599 	 * flags: Control various stages of the GPU reset
1600 	 *
1601 	 * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1602 	 * other users acquiring the struct_mutex. To do this we set the
1603 	 * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1604 	 * and then check for that bit before acquiring the struct_mutex (in
1605 	 * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1606 	 * secondary role in preventing two concurrent global reset attempts.
1607 	 *
1608 	 * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1609 	 * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1610 	 * but it may be held by some long running waiter (that we cannot
1611 	 * interrupt without causing trouble). Once we are ready to do the GPU
1612 	 * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1613 	 * they already hold the struct_mutex and want to participate they can
1614 	 * inspect the bit and do the reset directly, otherwise the worker
1615 	 * waits for the struct_mutex.
1616 	 *
1617 	 * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1618 	 * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1619 	 * i915_gem_request_alloc(), this bit is checked and the sequence
1620 	 * aborted (with -EIO reported to userspace) if set.
1621 	 */
1622 	unsigned long flags;
1623 #define I915_RESET_BACKOFF	0
1624 #define I915_RESET_HANDOFF	1
1625 #define I915_WEDGED		(BITS_PER_LONG - 1)
1626 
1627 	/**
1628 	 * Waitqueue to signal when a hang is detected. Used to for waiters
1629 	 * to release the struct_mutex for the reset to procede.
1630 	 */
1631 	wait_queue_head_t wait_queue;
1632 
1633 	/**
1634 	 * Waitqueue to signal when the reset has completed. Used by clients
1635 	 * that wait for dev_priv->mm.wedged to settle.
1636 	 */
1637 	wait_queue_head_t reset_queue;
1638 
1639 	/* For missed irq/seqno simulation. */
1640 	unsigned long test_irq_rings;
1641 };
1642 
1643 enum modeset_restore {
1644 	MODESET_ON_LID_OPEN,
1645 	MODESET_DONE,
1646 	MODESET_SUSPENDED,
1647 };
1648 
1649 #define DP_AUX_A 0x40
1650 #define DP_AUX_B 0x10
1651 #define DP_AUX_C 0x20
1652 #define DP_AUX_D 0x30
1653 
1654 #define DDC_PIN_B  0x05
1655 #define DDC_PIN_C  0x04
1656 #define DDC_PIN_D  0x06
1657 
1658 struct ddi_vbt_port_info {
1659 	/*
1660 	 * This is an index in the HDMI/DVI DDI buffer translation table.
1661 	 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1662 	 * populate this field.
1663 	 */
1664 #define HDMI_LEVEL_SHIFT_UNKNOWN	0xff
1665 	uint8_t hdmi_level_shift;
1666 
1667 	uint8_t supports_dvi:1;
1668 	uint8_t supports_hdmi:1;
1669 	uint8_t supports_dp:1;
1670 	uint8_t supports_edp:1;
1671 
1672 	uint8_t alternate_aux_channel;
1673 	uint8_t alternate_ddc_pin;
1674 
1675 	uint8_t dp_boost_level;
1676 	uint8_t hdmi_boost_level;
1677 };
1678 
1679 enum psr_lines_to_wait {
1680 	PSR_0_LINES_TO_WAIT = 0,
1681 	PSR_1_LINE_TO_WAIT,
1682 	PSR_4_LINES_TO_WAIT,
1683 	PSR_8_LINES_TO_WAIT
1684 };
1685 
1686 struct intel_vbt_data {
1687 	struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1688 	struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1689 
1690 	/* Feature bits */
1691 	unsigned int int_tv_support:1;
1692 	unsigned int lvds_dither:1;
1693 	unsigned int lvds_vbt:1;
1694 	unsigned int int_crt_support:1;
1695 	unsigned int lvds_use_ssc:1;
1696 	unsigned int display_clock_mode:1;
1697 	unsigned int fdi_rx_polarity_inverted:1;
1698 	unsigned int panel_type:4;
1699 	int lvds_ssc_freq;
1700 	unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1701 
1702 	enum drrs_support_type drrs_type;
1703 
1704 	struct {
1705 		int rate;
1706 		int lanes;
1707 		int preemphasis;
1708 		int vswing;
1709 		bool low_vswing;
1710 		bool initialized;
1711 		bool support;
1712 		int bpp;
1713 		struct edp_power_seq pps;
1714 	} edp;
1715 
1716 	struct {
1717 		bool full_link;
1718 		bool require_aux_wakeup;
1719 		int idle_frames;
1720 		enum psr_lines_to_wait lines_to_wait;
1721 		int tp1_wakeup_time;
1722 		int tp2_tp3_wakeup_time;
1723 	} psr;
1724 
1725 	struct {
1726 		u16 pwm_freq_hz;
1727 		bool present;
1728 		bool active_low_pwm;
1729 		u8 min_brightness;	/* min_brightness/255 of max */
1730 		u8 controller;		/* brightness controller number */
1731 		enum intel_backlight_type type;
1732 	} backlight;
1733 
1734 	/* MIPI DSI */
1735 	struct {
1736 		u16 panel_id;
1737 		struct mipi_config *config;
1738 		struct mipi_pps_data *pps;
1739 		u8 seq_version;
1740 		u32 size;
1741 		u8 *data;
1742 		const u8 *sequence[MIPI_SEQ_MAX];
1743 	} dsi;
1744 
1745 	int crt_ddc_pin;
1746 
1747 	int child_dev_num;
1748 	union child_device_config *child_dev;
1749 
1750 	struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1751 	struct sdvo_device_mapping sdvo_mappings[2];
1752 };
1753 
1754 enum intel_ddb_partitioning {
1755 	INTEL_DDB_PART_1_2,
1756 	INTEL_DDB_PART_5_6, /* IVB+ */
1757 };
1758 
1759 struct intel_wm_level {
1760 	bool enable;
1761 	uint32_t pri_val;
1762 	uint32_t spr_val;
1763 	uint32_t cur_val;
1764 	uint32_t fbc_val;
1765 };
1766 
1767 struct ilk_wm_values {
1768 	uint32_t wm_pipe[3];
1769 	uint32_t wm_lp[3];
1770 	uint32_t wm_lp_spr[3];
1771 	uint32_t wm_linetime[3];
1772 	bool enable_fbc_wm;
1773 	enum intel_ddb_partitioning partitioning;
1774 };
1775 
1776 struct vlv_pipe_wm {
1777 	uint16_t plane[I915_MAX_PLANES];
1778 };
1779 
1780 struct vlv_sr_wm {
1781 	uint16_t plane;
1782 	uint16_t cursor;
1783 };
1784 
1785 struct vlv_wm_ddl_values {
1786 	uint8_t plane[I915_MAX_PLANES];
1787 };
1788 
1789 struct vlv_wm_values {
1790 	struct vlv_pipe_wm pipe[3];
1791 	struct vlv_sr_wm sr;
1792 	struct vlv_wm_ddl_values ddl[3];
1793 	uint8_t level;
1794 	bool cxsr;
1795 };
1796 
1797 struct skl_ddb_entry {
1798 	uint16_t start, end;	/* in number of blocks, 'end' is exclusive */
1799 };
1800 
1801 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1802 {
1803 	return entry->end - entry->start;
1804 }
1805 
1806 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1807 				       const struct skl_ddb_entry *e2)
1808 {
1809 	if (e1->start == e2->start && e1->end == e2->end)
1810 		return true;
1811 
1812 	return false;
1813 }
1814 
1815 struct skl_ddb_allocation {
1816 	struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1817 	struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1818 };
1819 
1820 struct skl_wm_values {
1821 	unsigned dirty_pipes;
1822 	struct skl_ddb_allocation ddb;
1823 };
1824 
1825 struct skl_wm_level {
1826 	bool plane_en;
1827 	uint16_t plane_res_b;
1828 	uint8_t plane_res_l;
1829 };
1830 
1831 /*
1832  * This struct helps tracking the state needed for runtime PM, which puts the
1833  * device in PCI D3 state. Notice that when this happens, nothing on the
1834  * graphics device works, even register access, so we don't get interrupts nor
1835  * anything else.
1836  *
1837  * Every piece of our code that needs to actually touch the hardware needs to
1838  * either call intel_runtime_pm_get or call intel_display_power_get with the
1839  * appropriate power domain.
1840  *
1841  * Our driver uses the autosuspend delay feature, which means we'll only really
1842  * suspend if we stay with zero refcount for a certain amount of time. The
1843  * default value is currently very conservative (see intel_runtime_pm_enable), but
1844  * it can be changed with the standard runtime PM files from sysfs.
1845  *
1846  * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1847  * goes back to false exactly before we reenable the IRQs. We use this variable
1848  * to check if someone is trying to enable/disable IRQs while they're supposed
1849  * to be disabled. This shouldn't happen and we'll print some error messages in
1850  * case it happens.
1851  *
1852  * For more, read the Documentation/power/runtime_pm.txt.
1853  */
1854 struct i915_runtime_pm {
1855 	atomic_t wakeref_count;
1856 	bool suspended;
1857 	bool irqs_enabled;
1858 };
1859 
1860 enum intel_pipe_crc_source {
1861 	INTEL_PIPE_CRC_SOURCE_NONE,
1862 	INTEL_PIPE_CRC_SOURCE_PLANE1,
1863 	INTEL_PIPE_CRC_SOURCE_PLANE2,
1864 	INTEL_PIPE_CRC_SOURCE_PF,
1865 	INTEL_PIPE_CRC_SOURCE_PIPE,
1866 	/* TV/DP on pre-gen5/vlv can't use the pipe source. */
1867 	INTEL_PIPE_CRC_SOURCE_TV,
1868 	INTEL_PIPE_CRC_SOURCE_DP_B,
1869 	INTEL_PIPE_CRC_SOURCE_DP_C,
1870 	INTEL_PIPE_CRC_SOURCE_DP_D,
1871 	INTEL_PIPE_CRC_SOURCE_AUTO,
1872 	INTEL_PIPE_CRC_SOURCE_MAX,
1873 };
1874 
1875 struct intel_pipe_crc_entry {
1876 	uint32_t frame;
1877 	uint32_t crc[5];
1878 };
1879 
1880 #define INTEL_PIPE_CRC_ENTRIES_NR	128
1881 struct intel_pipe_crc {
1882 	spinlock_t lock;
1883 	bool opened;		/* exclusive access to the result file */
1884 	struct intel_pipe_crc_entry *entries;
1885 	enum intel_pipe_crc_source source;
1886 	int head, tail;
1887 	wait_queue_head_t wq;
1888 	int skipped;
1889 };
1890 
1891 struct i915_frontbuffer_tracking {
1892 	spinlock_t lock;
1893 
1894 	/*
1895 	 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1896 	 * scheduled flips.
1897 	 */
1898 	unsigned busy_bits;
1899 	unsigned flip_bits;
1900 };
1901 
1902 struct i915_wa_reg {
1903 	i915_reg_t addr;
1904 	u32 value;
1905 	/* bitmask representing WA bits */
1906 	u32 mask;
1907 };
1908 
1909 /*
1910  * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1911  * allowing it for RCS as we don't foresee any requirement of having
1912  * a whitelist for other engines. When it is really required for
1913  * other engines then the limit need to be increased.
1914  */
1915 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1916 
1917 struct i915_workarounds {
1918 	struct i915_wa_reg reg[I915_MAX_WA_REGS];
1919 	u32 count;
1920 	u32 hw_whitelist_count[I915_NUM_ENGINES];
1921 };
1922 
1923 struct i915_virtual_gpu {
1924 	bool active;
1925 };
1926 
1927 /* used in computing the new watermarks state */
1928 struct intel_wm_config {
1929 	unsigned int num_pipes_active;
1930 	bool sprites_enabled;
1931 	bool sprites_scaled;
1932 };
1933 
1934 struct i915_oa_format {
1935 	u32 format;
1936 	int size;
1937 };
1938 
1939 struct i915_oa_reg {
1940 	i915_reg_t addr;
1941 	u32 value;
1942 };
1943 
1944 struct i915_perf_stream;
1945 
1946 /**
1947  * struct i915_perf_stream_ops - the OPs to support a specific stream type
1948  */
1949 struct i915_perf_stream_ops {
1950 	/**
1951 	 * @enable: Enables the collection of HW samples, either in response to
1952 	 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1953 	 * without `I915_PERF_FLAG_DISABLED`.
1954 	 */
1955 	void (*enable)(struct i915_perf_stream *stream);
1956 
1957 	/**
1958 	 * @disable: Disables the collection of HW samples, either in response
1959 	 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1960 	 * the stream.
1961 	 */
1962 	void (*disable)(struct i915_perf_stream *stream);
1963 
1964 	/**
1965 	 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1966 	 * once there is something ready to read() for the stream
1967 	 */
1968 	void (*poll_wait)(struct i915_perf_stream *stream,
1969 			  struct file *file,
1970 			  poll_table *wait);
1971 
1972 	/**
1973 	 * @wait_unlocked: For handling a blocking read, wait until there is
1974 	 * something to ready to read() for the stream. E.g. wait on the same
1975 	 * wait queue that would be passed to poll_wait().
1976 	 */
1977 	int (*wait_unlocked)(struct i915_perf_stream *stream);
1978 
1979 	/**
1980 	 * @read: Copy buffered metrics as records to userspace
1981 	 * **buf**: the userspace, destination buffer
1982 	 * **count**: the number of bytes to copy, requested by userspace
1983 	 * **offset**: zero at the start of the read, updated as the read
1984 	 * proceeds, it represents how many bytes have been copied so far and
1985 	 * the buffer offset for copying the next record.
1986 	 *
1987 	 * Copy as many buffered i915 perf samples and records for this stream
1988 	 * to userspace as will fit in the given buffer.
1989 	 *
1990 	 * Only write complete records; returning -%ENOSPC if there isn't room
1991 	 * for a complete record.
1992 	 *
1993 	 * Return any error condition that results in a short read such as
1994 	 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1995 	 * returning to userspace.
1996 	 */
1997 	int (*read)(struct i915_perf_stream *stream,
1998 		    char __user *buf,
1999 		    size_t count,
2000 		    size_t *offset);
2001 
2002 	/**
2003 	 * @destroy: Cleanup any stream specific resources.
2004 	 *
2005 	 * The stream will always be disabled before this is called.
2006 	 */
2007 	void (*destroy)(struct i915_perf_stream *stream);
2008 };
2009 
2010 /**
2011  * struct i915_perf_stream - state for a single open stream FD
2012  */
2013 struct i915_perf_stream {
2014 	/**
2015 	 * @dev_priv: i915 drm device
2016 	 */
2017 	struct drm_i915_private *dev_priv;
2018 
2019 	/**
2020 	 * @link: Links the stream into ``&drm_i915_private->streams``
2021 	 */
2022 	struct list_head link;
2023 
2024 	/**
2025 	 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
2026 	 * properties given when opening a stream, representing the contents
2027 	 * of a single sample as read() by userspace.
2028 	 */
2029 	u32 sample_flags;
2030 
2031 	/**
2032 	 * @sample_size: Considering the configured contents of a sample
2033 	 * combined with the required header size, this is the total size
2034 	 * of a single sample record.
2035 	 */
2036 	int sample_size;
2037 
2038 	/**
2039 	 * @ctx: %NULL if measuring system-wide across all contexts or a
2040 	 * specific context that is being monitored.
2041 	 */
2042 	struct i915_gem_context *ctx;
2043 
2044 	/**
2045 	 * @enabled: Whether the stream is currently enabled, considering
2046 	 * whether the stream was opened in a disabled state and based
2047 	 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
2048 	 */
2049 	bool enabled;
2050 
2051 	/**
2052 	 * @ops: The callbacks providing the implementation of this specific
2053 	 * type of configured stream.
2054 	 */
2055 	const struct i915_perf_stream_ops *ops;
2056 };
2057 
2058 /**
2059  * struct i915_oa_ops - Gen specific implementation of an OA unit stream
2060  */
2061 struct i915_oa_ops {
2062 	/**
2063 	 * @init_oa_buffer: Resets the head and tail pointers of the
2064 	 * circular buffer for periodic OA reports.
2065 	 *
2066 	 * Called when first opening a stream for OA metrics, but also may be
2067 	 * called in response to an OA buffer overflow or other error
2068 	 * condition.
2069 	 *
2070 	 * Note it may be necessary to clear the full OA buffer here as part of
2071 	 * maintaining the invariable that new reports must be written to
2072 	 * zeroed memory for us to be able to reliable detect if an expected
2073 	 * report has not yet landed in memory.  (At least on Haswell the OA
2074 	 * buffer tail pointer is not synchronized with reports being visible
2075 	 * to the CPU)
2076 	 */
2077 	void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2078 
2079 	/**
2080 	 * @enable_metric_set: Applies any MUX configuration to set up the
2081 	 * Boolean and Custom (B/C) counters that are part of the counter
2082 	 * reports being sampled. May apply system constraints such as
2083 	 * disabling EU clock gating as required.
2084 	 */
2085 	int (*enable_metric_set)(struct drm_i915_private *dev_priv);
2086 
2087 	/**
2088 	 * @disable_metric_set: Remove system constraints associated with using
2089 	 * the OA unit.
2090 	 */
2091 	void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2092 
2093 	/**
2094 	 * @oa_enable: Enable periodic sampling
2095 	 */
2096 	void (*oa_enable)(struct drm_i915_private *dev_priv);
2097 
2098 	/**
2099 	 * @oa_disable: Disable periodic sampling
2100 	 */
2101 	void (*oa_disable)(struct drm_i915_private *dev_priv);
2102 
2103 	/**
2104 	 * @read: Copy data from the circular OA buffer into a given userspace
2105 	 * buffer.
2106 	 */
2107 	int (*read)(struct i915_perf_stream *stream,
2108 		    char __user *buf,
2109 		    size_t count,
2110 		    size_t *offset);
2111 
2112 	/**
2113 	 * @oa_buffer_is_empty: Check if OA buffer empty (false positives OK)
2114 	 *
2115 	 * This is either called via fops or the poll check hrtimer (atomic
2116 	 * ctx) without any locks taken.
2117 	 *
2118 	 * It's safe to read OA config state here unlocked, assuming that this
2119 	 * is only called while the stream is enabled, while the global OA
2120 	 * configuration can't be modified.
2121 	 *
2122 	 * Efficiency is more important than avoiding some false positives
2123 	 * here, which will be handled gracefully - likely resulting in an
2124 	 * %EAGAIN error for userspace.
2125 	 */
2126 	bool (*oa_buffer_is_empty)(struct drm_i915_private *dev_priv);
2127 };
2128 
2129 struct intel_cdclk_state {
2130 	unsigned int cdclk, vco, ref;
2131 };
2132 
2133 struct drm_i915_private {
2134 	struct drm_device drm;
2135 
2136 	struct kmem_cache *objects;
2137 	struct kmem_cache *vmas;
2138 	struct kmem_cache *requests;
2139 	struct kmem_cache *dependencies;
2140 
2141 	const struct intel_device_info info;
2142 
2143 	void __iomem *regs;
2144 
2145 	struct intel_uncore uncore;
2146 
2147 	struct i915_virtual_gpu vgpu;
2148 
2149 	struct intel_gvt *gvt;
2150 
2151 	struct intel_huc huc;
2152 	struct intel_guc guc;
2153 
2154 	struct intel_csr csr;
2155 
2156 	struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2157 
2158 	/** gmbus_mutex protects against concurrent usage of the single hw gmbus
2159 	 * controller on different i2c buses. */
2160 	struct mutex gmbus_mutex;
2161 
2162 	/**
2163 	 * Base address of the gmbus and gpio block.
2164 	 */
2165 	uint32_t gpio_mmio_base;
2166 
2167 	/* MMIO base address for MIPI regs */
2168 	uint32_t mipi_mmio_base;
2169 
2170 	uint32_t psr_mmio_base;
2171 
2172 	uint32_t pps_mmio_base;
2173 
2174 	wait_queue_head_t gmbus_wait_queue;
2175 
2176 	struct pci_dev *bridge_dev;
2177 	struct i915_gem_context *kernel_context;
2178 	struct intel_engine_cs *engine[I915_NUM_ENGINES];
2179 	struct i915_vma *semaphore;
2180 
2181 	struct drm_dma_handle *status_page_dmah;
2182 	struct resource mch_res;
2183 
2184 	/* protects the irq masks */
2185 	spinlock_t irq_lock;
2186 
2187 	/* protects the mmio flip data */
2188 	spinlock_t mmio_flip_lock;
2189 
2190 	bool display_irqs_enabled;
2191 
2192 	/* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2193 	struct pm_qos_request pm_qos;
2194 
2195 	/* Sideband mailbox protection */
2196 	struct mutex sb_lock;
2197 
2198 	/** Cached value of IMR to avoid reads in updating the bitfield */
2199 	union {
2200 		u32 irq_mask;
2201 		u32 de_irq_mask[I915_MAX_PIPES];
2202 	};
2203 	u32 gt_irq_mask;
2204 	u32 pm_imr;
2205 	u32 pm_ier;
2206 	u32 pm_rps_events;
2207 	u32 pm_guc_events;
2208 	u32 pipestat_irq_mask[I915_MAX_PIPES];
2209 
2210 	struct i915_hotplug hotplug;
2211 	struct intel_fbc fbc;
2212 	struct i915_drrs drrs;
2213 	struct intel_opregion opregion;
2214 	struct intel_vbt_data vbt;
2215 
2216 	bool preserve_bios_swizzle;
2217 
2218 	/* overlay */
2219 	struct intel_overlay *overlay;
2220 
2221 	/* backlight registers and fields in struct intel_panel */
2222 	struct mutex backlight_lock;
2223 
2224 	/* LVDS info */
2225 	bool no_aux_handshake;
2226 
2227 	/* protects panel power sequencer state */
2228 	struct mutex pps_mutex;
2229 
2230 	struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2231 	int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2232 
2233 	unsigned int fsb_freq, mem_freq, is_ddr3;
2234 	unsigned int skl_preferred_vco_freq;
2235 	unsigned int max_cdclk_freq;
2236 
2237 	unsigned int max_dotclk_freq;
2238 	unsigned int rawclk_freq;
2239 	unsigned int hpll_freq;
2240 	unsigned int czclk_freq;
2241 
2242 	struct {
2243 		/*
2244 		 * The current logical cdclk state.
2245 		 * See intel_atomic_state.cdclk.logical
2246 		 *
2247 		 * For reading holding any crtc lock is sufficient,
2248 		 * for writing must hold all of them.
2249 		 */
2250 		struct intel_cdclk_state logical;
2251 		/*
2252 		 * The current actual cdclk state.
2253 		 * See intel_atomic_state.cdclk.actual
2254 		 */
2255 		struct intel_cdclk_state actual;
2256 		/* The current hardware cdclk state */
2257 		struct intel_cdclk_state hw;
2258 	} cdclk;
2259 
2260 	/**
2261 	 * wq - Driver workqueue for GEM.
2262 	 *
2263 	 * NOTE: Work items scheduled here are not allowed to grab any modeset
2264 	 * locks, for otherwise the flushing done in the pageflip code will
2265 	 * result in deadlocks.
2266 	 */
2267 	struct workqueue_struct *wq;
2268 
2269 	/* Display functions */
2270 	struct drm_i915_display_funcs display;
2271 
2272 	/* PCH chipset type */
2273 	enum intel_pch pch_type;
2274 	unsigned short pch_id;
2275 
2276 	unsigned long quirks;
2277 
2278 	enum modeset_restore modeset_restore;
2279 	struct mutex modeset_restore_lock;
2280 	struct drm_atomic_state *modeset_restore_state;
2281 	struct drm_modeset_acquire_ctx reset_ctx;
2282 
2283 	struct list_head vm_list; /* Global list of all address spaces */
2284 	struct i915_ggtt ggtt; /* VM representing the global address space */
2285 
2286 	struct i915_gem_mm mm;
2287 	DECLARE_HASHTABLE(mm_structs, 7);
2288 	struct mutex mm_lock;
2289 
2290 	/* The hw wants to have a stable context identifier for the lifetime
2291 	 * of the context (for OA, PASID, faults, etc). This is limited
2292 	 * in execlists to 21 bits.
2293 	 */
2294 	struct ida context_hw_ida;
2295 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2296 
2297 	/* Kernel Modesetting */
2298 
2299 	struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2300 	struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2301 	wait_queue_head_t pending_flip_queue;
2302 
2303 #ifdef CONFIG_DEBUG_FS
2304 	struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2305 #endif
2306 
2307 	/* dpll and cdclk state is protected by connection_mutex */
2308 	int num_shared_dpll;
2309 	struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2310 	const struct intel_dpll_mgr *dpll_mgr;
2311 
2312 	/*
2313 	 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2314 	 * Must be global rather than per dpll, because on some platforms
2315 	 * plls share registers.
2316 	 */
2317 	struct mutex dpll_lock;
2318 
2319 	unsigned int active_crtcs;
2320 	unsigned int min_pixclk[I915_MAX_PIPES];
2321 
2322 	int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2323 
2324 	struct i915_workarounds workarounds;
2325 
2326 	struct i915_frontbuffer_tracking fb_tracking;
2327 
2328 	struct intel_atomic_helper {
2329 		struct llist_head free_list;
2330 		struct work_struct free_work;
2331 	} atomic_helper;
2332 
2333 	u16 orig_clock;
2334 
2335 	bool mchbar_need_disable;
2336 
2337 	struct intel_l3_parity l3_parity;
2338 
2339 	/* Cannot be determined by PCIID. You must always read a register. */
2340 	u32 edram_cap;
2341 
2342 	/* gen6+ rps state */
2343 	struct intel_gen6_power_mgmt rps;
2344 
2345 	/* ilk-only ips/rps state. Everything in here is protected by the global
2346 	 * mchdev_lock in intel_pm.c */
2347 	struct intel_ilk_power_mgmt ips;
2348 
2349 	struct i915_power_domains power_domains;
2350 
2351 	struct i915_psr psr;
2352 
2353 	struct i915_gpu_error gpu_error;
2354 
2355 	struct drm_i915_gem_object *vlv_pctx;
2356 
2357 #ifdef CONFIG_DRM_FBDEV_EMULATION
2358 	/* list of fbdev register on this device */
2359 	struct intel_fbdev *fbdev;
2360 	struct work_struct fbdev_suspend_work;
2361 #endif
2362 
2363 	struct drm_property *broadcast_rgb_property;
2364 	struct drm_property *force_audio_property;
2365 
2366 	/* hda/i915 audio component */
2367 	struct i915_audio_component *audio_component;
2368 	bool audio_component_registered;
2369 	/**
2370 	 * av_mutex - mutex for audio/video sync
2371 	 *
2372 	 */
2373 	struct mutex av_mutex;
2374 
2375 	uint32_t hw_context_size;
2376 	struct list_head context_list;
2377 
2378 	u32 fdi_rx_config;
2379 
2380 	/* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2381 	u32 chv_phy_control;
2382 	/*
2383 	 * Shadows for CHV DPLL_MD regs to keep the state
2384 	 * checker somewhat working in the presence hardware
2385 	 * crappiness (can't read out DPLL_MD for pipes B & C).
2386 	 */
2387 	u32 chv_dpll_md[I915_MAX_PIPES];
2388 	u32 bxt_phy_grc;
2389 
2390 	u32 suspend_count;
2391 	bool suspended_to_idle;
2392 	struct i915_suspend_saved_registers regfile;
2393 	struct vlv_s0ix_state vlv_s0ix_state;
2394 
2395 	enum {
2396 		I915_SAGV_UNKNOWN = 0,
2397 		I915_SAGV_DISABLED,
2398 		I915_SAGV_ENABLED,
2399 		I915_SAGV_NOT_CONTROLLED
2400 	} sagv_status;
2401 
2402 	struct {
2403 		/*
2404 		 * Raw watermark latency values:
2405 		 * in 0.1us units for WM0,
2406 		 * in 0.5us units for WM1+.
2407 		 */
2408 		/* primary */
2409 		uint16_t pri_latency[5];
2410 		/* sprite */
2411 		uint16_t spr_latency[5];
2412 		/* cursor */
2413 		uint16_t cur_latency[5];
2414 		/*
2415 		 * Raw watermark memory latency values
2416 		 * for SKL for all 8 levels
2417 		 * in 1us units.
2418 		 */
2419 		uint16_t skl_latency[8];
2420 
2421 		/* current hardware state */
2422 		union {
2423 			struct ilk_wm_values hw;
2424 			struct skl_wm_values skl_hw;
2425 			struct vlv_wm_values vlv;
2426 		};
2427 
2428 		uint8_t max_level;
2429 
2430 		/*
2431 		 * Should be held around atomic WM register writing; also
2432 		 * protects * intel_crtc->wm.active and
2433 		 * cstate->wm.need_postvbl_update.
2434 		 */
2435 		struct mutex wm_mutex;
2436 
2437 		/*
2438 		 * Set during HW readout of watermarks/DDB.  Some platforms
2439 		 * need to know when we're still using BIOS-provided values
2440 		 * (which we don't fully trust).
2441 		 */
2442 		bool distrust_bios_wm;
2443 	} wm;
2444 
2445 	struct i915_runtime_pm pm;
2446 
2447 	struct {
2448 		bool initialized;
2449 
2450 		struct kobject *metrics_kobj;
2451 		struct ctl_table_header *sysctl_header;
2452 
2453 		struct mutex lock;
2454 		struct list_head streams;
2455 
2456 		spinlock_t hook_lock;
2457 
2458 		struct {
2459 			struct i915_perf_stream *exclusive_stream;
2460 
2461 			u32 specific_ctx_id;
2462 
2463 			struct hrtimer poll_check_timer;
2464 			wait_queue_head_t poll_wq;
2465 			bool pollin;
2466 
2467 			bool periodic;
2468 			int period_exponent;
2469 			int timestamp_frequency;
2470 
2471 			int tail_margin;
2472 
2473 			int metrics_set;
2474 
2475 			const struct i915_oa_reg *mux_regs;
2476 			int mux_regs_len;
2477 			const struct i915_oa_reg *b_counter_regs;
2478 			int b_counter_regs_len;
2479 
2480 			struct {
2481 				struct i915_vma *vma;
2482 				u8 *vaddr;
2483 				int format;
2484 				int format_size;
2485 			} oa_buffer;
2486 
2487 			u32 gen7_latched_oastatus1;
2488 
2489 			struct i915_oa_ops ops;
2490 			const struct i915_oa_format *oa_formats;
2491 			int n_builtin_sets;
2492 		} oa;
2493 	} perf;
2494 
2495 	/* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2496 	struct {
2497 		void (*resume)(struct drm_i915_private *);
2498 		void (*cleanup_engine)(struct intel_engine_cs *engine);
2499 
2500 		struct list_head timelines;
2501 		struct i915_gem_timeline global_timeline;
2502 		u32 active_requests;
2503 
2504 		/**
2505 		 * Is the GPU currently considered idle, or busy executing
2506 		 * userspace requests? Whilst idle, we allow runtime power
2507 		 * management to power down the hardware and display clocks.
2508 		 * In order to reduce the effect on performance, there
2509 		 * is a slight delay before we do so.
2510 		 */
2511 		bool awake;
2512 
2513 		/**
2514 		 * We leave the user IRQ off as much as possible,
2515 		 * but this means that requests will finish and never
2516 		 * be retired once the system goes idle. Set a timer to
2517 		 * fire periodically while the ring is running. When it
2518 		 * fires, go retire requests.
2519 		 */
2520 		struct delayed_work retire_work;
2521 
2522 		/**
2523 		 * When we detect an idle GPU, we want to turn on
2524 		 * powersaving features. So once we see that there
2525 		 * are no more requests outstanding and no more
2526 		 * arrive within a small period of time, we fire
2527 		 * off the idle_work.
2528 		 */
2529 		struct delayed_work idle_work;
2530 
2531 		ktime_t last_init_time;
2532 	} gt;
2533 
2534 	/* perform PHY state sanity checks? */
2535 	bool chv_phy_assert[2];
2536 
2537 	bool ipc_enabled;
2538 
2539 	/* Used to save the pipe-to-encoder mapping for audio */
2540 	struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2541 
2542 	/* necessary resource sharing with HDMI LPE audio driver. */
2543 	struct {
2544 		struct platform_device *platdev;
2545 		int	irq;
2546 	} lpe_audio;
2547 
2548 	/*
2549 	 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2550 	 * will be rejected. Instead look for a better place.
2551 	 */
2552 };
2553 
2554 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2555 {
2556 	return container_of(dev, struct drm_i915_private, drm);
2557 }
2558 
2559 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2560 {
2561 	return to_i915(dev_get_drvdata(kdev));
2562 }
2563 
2564 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2565 {
2566 	return container_of(guc, struct drm_i915_private, guc);
2567 }
2568 
2569 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2570 {
2571 	return container_of(huc, struct drm_i915_private, huc);
2572 }
2573 
2574 /* Simple iterator over all initialised engines */
2575 #define for_each_engine(engine__, dev_priv__, id__) \
2576 	for ((id__) = 0; \
2577 	     (id__) < I915_NUM_ENGINES; \
2578 	     (id__)++) \
2579 		for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2580 
2581 #define __mask_next_bit(mask) ({					\
2582 	int __idx = ffs(mask) - 1;					\
2583 	mask &= ~BIT(__idx);						\
2584 	__idx;								\
2585 })
2586 
2587 /* Iterator over subset of engines selected by mask */
2588 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2589 	for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask;	\
2590 	     tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2591 
2592 enum hdmi_force_audio {
2593 	HDMI_AUDIO_OFF_DVI = -2,	/* no aux data for HDMI-DVI converter */
2594 	HDMI_AUDIO_OFF,			/* force turn off HDMI audio */
2595 	HDMI_AUDIO_AUTO,		/* trust EDID */
2596 	HDMI_AUDIO_ON,			/* force turn on HDMI audio */
2597 };
2598 
2599 #define I915_GTT_OFFSET_NONE ((u32)-1)
2600 
2601 /*
2602  * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2603  * considered to be the frontbuffer for the given plane interface-wise. This
2604  * doesn't mean that the hw necessarily already scans it out, but that any
2605  * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2606  *
2607  * We have one bit per pipe and per scanout plane type.
2608  */
2609 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2610 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2611 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2612 	(1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2613 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2614 	(1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2615 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2616 	(1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2617 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2618 	(1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2619 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2620 	(0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2621 
2622 /*
2623  * Optimised SGL iterator for GEM objects
2624  */
2625 static __always_inline struct sgt_iter {
2626 	struct scatterlist *sgp;
2627 	union {
2628 		unsigned long pfn;
2629 		dma_addr_t dma;
2630 	};
2631 	unsigned int curr;
2632 	unsigned int max;
2633 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2634 	struct sgt_iter s = { .sgp = sgl };
2635 
2636 	if (s.sgp) {
2637 		s.max = s.curr = s.sgp->offset;
2638 		s.max += s.sgp->length;
2639 		if (dma)
2640 			s.dma = sg_dma_address(s.sgp);
2641 		else
2642 			s.pfn = page_to_pfn(sg_page(s.sgp));
2643 	}
2644 
2645 	return s;
2646 }
2647 
2648 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2649 {
2650 	++sg;
2651 	if (unlikely(sg_is_chain(sg)))
2652 		sg = sg_chain_ptr(sg);
2653 	return sg;
2654 }
2655 
2656 /**
2657  * __sg_next - return the next scatterlist entry in a list
2658  * @sg:		The current sg entry
2659  *
2660  * Description:
2661  *   If the entry is the last, return NULL; otherwise, step to the next
2662  *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2663  *   otherwise just return the pointer to the current element.
2664  **/
2665 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2666 {
2667 #ifdef CONFIG_DEBUG_SG
2668 	BUG_ON(sg->sg_magic != SG_MAGIC);
2669 #endif
2670 	return sg_is_last(sg) ? NULL : ____sg_next(sg);
2671 }
2672 
2673 /**
2674  * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2675  * @__dmap:	DMA address (output)
2676  * @__iter:	'struct sgt_iter' (iterator state, internal)
2677  * @__sgt:	sg_table to iterate over (input)
2678  */
2679 #define for_each_sgt_dma(__dmap, __iter, __sgt)				\
2680 	for ((__iter) = __sgt_iter((__sgt)->sgl, true);			\
2681 	     ((__dmap) = (__iter).dma + (__iter).curr);			\
2682 	     (((__iter).curr += PAGE_SIZE) < (__iter).max) ||		\
2683 	     ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2684 
2685 /**
2686  * for_each_sgt_page - iterate over the pages of the given sg_table
2687  * @__pp:	page pointer (output)
2688  * @__iter:	'struct sgt_iter' (iterator state, internal)
2689  * @__sgt:	sg_table to iterate over (input)
2690  */
2691 #define for_each_sgt_page(__pp, __iter, __sgt)				\
2692 	for ((__iter) = __sgt_iter((__sgt)->sgl, false);		\
2693 	     ((__pp) = (__iter).pfn == 0 ? NULL :			\
2694 	      pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2695 	     (((__iter).curr += PAGE_SIZE) < (__iter).max) ||		\
2696 	     ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2697 
2698 static inline const struct intel_device_info *
2699 intel_info(const struct drm_i915_private *dev_priv)
2700 {
2701 	return &dev_priv->info;
2702 }
2703 
2704 #define INTEL_INFO(dev_priv)	intel_info((dev_priv))
2705 
2706 #define INTEL_GEN(dev_priv)	((dev_priv)->info.gen)
2707 #define INTEL_DEVID(dev_priv)	((dev_priv)->info.device_id)
2708 
2709 #define REVID_FOREVER		0xff
2710 #define INTEL_REVID(dev_priv)	((dev_priv)->drm.pdev->revision)
2711 
2712 #define GEN_FOREVER (0)
2713 /*
2714  * Returns true if Gen is in inclusive range [Start, End].
2715  *
2716  * Use GEN_FOREVER for unbound start and or end.
2717  */
2718 #define IS_GEN(dev_priv, s, e) ({ \
2719 	unsigned int __s = (s), __e = (e); \
2720 	BUILD_BUG_ON(!__builtin_constant_p(s)); \
2721 	BUILD_BUG_ON(!__builtin_constant_p(e)); \
2722 	if ((__s) != GEN_FOREVER) \
2723 		__s = (s) - 1; \
2724 	if ((__e) == GEN_FOREVER) \
2725 		__e = BITS_PER_LONG - 1; \
2726 	else \
2727 		__e = (e) - 1; \
2728 	!!((dev_priv)->info.gen_mask & GENMASK((__e), (__s))); \
2729 })
2730 
2731 /*
2732  * Return true if revision is in range [since,until] inclusive.
2733  *
2734  * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2735  */
2736 #define IS_REVID(p, since, until) \
2737 	(INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2738 
2739 #define IS_I830(dev_priv)	((dev_priv)->info.platform == INTEL_I830)
2740 #define IS_I845G(dev_priv)	((dev_priv)->info.platform == INTEL_I845G)
2741 #define IS_I85X(dev_priv)	((dev_priv)->info.platform == INTEL_I85X)
2742 #define IS_I865G(dev_priv)	((dev_priv)->info.platform == INTEL_I865G)
2743 #define IS_I915G(dev_priv)	((dev_priv)->info.platform == INTEL_I915G)
2744 #define IS_I915GM(dev_priv)	((dev_priv)->info.platform == INTEL_I915GM)
2745 #define IS_I945G(dev_priv)	((dev_priv)->info.platform == INTEL_I945G)
2746 #define IS_I945GM(dev_priv)	((dev_priv)->info.platform == INTEL_I945GM)
2747 #define IS_I965G(dev_priv)	((dev_priv)->info.platform == INTEL_I965G)
2748 #define IS_I965GM(dev_priv)	((dev_priv)->info.platform == INTEL_I965GM)
2749 #define IS_G45(dev_priv)	((dev_priv)->info.platform == INTEL_G45)
2750 #define IS_GM45(dev_priv)	((dev_priv)->info.platform == INTEL_GM45)
2751 #define IS_G4X(dev_priv)	(IS_G45(dev_priv) || IS_GM45(dev_priv))
2752 #define IS_PINEVIEW_G(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa001)
2753 #define IS_PINEVIEW_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa011)
2754 #define IS_PINEVIEW(dev_priv)	((dev_priv)->info.platform == INTEL_PINEVIEW)
2755 #define IS_G33(dev_priv)	((dev_priv)->info.platform == INTEL_G33)
2756 #define IS_IRONLAKE_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0046)
2757 #define IS_IVYBRIDGE(dev_priv)	((dev_priv)->info.platform == INTEL_IVYBRIDGE)
2758 #define IS_IVB_GT1(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0156 || \
2759 				 INTEL_DEVID(dev_priv) == 0x0152 || \
2760 				 INTEL_DEVID(dev_priv) == 0x015a)
2761 #define IS_VALLEYVIEW(dev_priv)	((dev_priv)->info.platform == INTEL_VALLEYVIEW)
2762 #define IS_CHERRYVIEW(dev_priv)	((dev_priv)->info.platform == INTEL_CHERRYVIEW)
2763 #define IS_HASWELL(dev_priv)	((dev_priv)->info.platform == INTEL_HASWELL)
2764 #define IS_BROADWELL(dev_priv)	((dev_priv)->info.platform == INTEL_BROADWELL)
2765 #define IS_SKYLAKE(dev_priv)	((dev_priv)->info.platform == INTEL_SKYLAKE)
2766 #define IS_BROXTON(dev_priv)	((dev_priv)->info.platform == INTEL_BROXTON)
2767 #define IS_KABYLAKE(dev_priv)	((dev_priv)->info.platform == INTEL_KABYLAKE)
2768 #define IS_GEMINILAKE(dev_priv)	((dev_priv)->info.platform == INTEL_GEMINILAKE)
2769 #define IS_MOBILE(dev_priv)	((dev_priv)->info.is_mobile)
2770 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2771 				    (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2772 #define IS_BDW_ULT(dev_priv)	(IS_BROADWELL(dev_priv) && \
2773 				 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 ||	\
2774 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xb ||	\
2775 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2776 /* ULX machines are also considered ULT. */
2777 #define IS_BDW_ULX(dev_priv)	(IS_BROADWELL(dev_priv) && \
2778 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2779 #define IS_BDW_GT3(dev_priv)	(IS_BROADWELL(dev_priv) && \
2780 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2781 #define IS_HSW_ULT(dev_priv)	(IS_HASWELL(dev_priv) && \
2782 				 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2783 #define IS_HSW_GT3(dev_priv)	(IS_HASWELL(dev_priv) && \
2784 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2785 /* ULX machines are also considered ULT. */
2786 #define IS_HSW_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0A0E || \
2787 				 INTEL_DEVID(dev_priv) == 0x0A1E)
2788 #define IS_SKL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x1906 || \
2789 				 INTEL_DEVID(dev_priv) == 0x1913 || \
2790 				 INTEL_DEVID(dev_priv) == 0x1916 || \
2791 				 INTEL_DEVID(dev_priv) == 0x1921 || \
2792 				 INTEL_DEVID(dev_priv) == 0x1926)
2793 #define IS_SKL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x190E || \
2794 				 INTEL_DEVID(dev_priv) == 0x1915 || \
2795 				 INTEL_DEVID(dev_priv) == 0x191E)
2796 #define IS_KBL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x5906 || \
2797 				 INTEL_DEVID(dev_priv) == 0x5913 || \
2798 				 INTEL_DEVID(dev_priv) == 0x5916 || \
2799 				 INTEL_DEVID(dev_priv) == 0x5921 || \
2800 				 INTEL_DEVID(dev_priv) == 0x5926)
2801 #define IS_KBL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x590E || \
2802 				 INTEL_DEVID(dev_priv) == 0x5915 || \
2803 				 INTEL_DEVID(dev_priv) == 0x591E)
2804 #define IS_SKL_GT3(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2805 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2806 #define IS_SKL_GT4(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2807 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0030)
2808 
2809 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2810 
2811 #define SKL_REVID_A0		0x0
2812 #define SKL_REVID_B0		0x1
2813 #define SKL_REVID_C0		0x2
2814 #define SKL_REVID_D0		0x3
2815 #define SKL_REVID_E0		0x4
2816 #define SKL_REVID_F0		0x5
2817 #define SKL_REVID_G0		0x6
2818 #define SKL_REVID_H0		0x7
2819 
2820 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2821 
2822 #define BXT_REVID_A0		0x0
2823 #define BXT_REVID_A1		0x1
2824 #define BXT_REVID_B0		0x3
2825 #define BXT_REVID_B_LAST	0x8
2826 #define BXT_REVID_C0		0x9
2827 
2828 #define IS_BXT_REVID(dev_priv, since, until) \
2829 	(IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2830 
2831 #define KBL_REVID_A0		0x0
2832 #define KBL_REVID_B0		0x1
2833 #define KBL_REVID_C0		0x2
2834 #define KBL_REVID_D0		0x3
2835 #define KBL_REVID_E0		0x4
2836 
2837 #define IS_KBL_REVID(dev_priv, since, until) \
2838 	(IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2839 
2840 #define GLK_REVID_A0		0x0
2841 #define GLK_REVID_A1		0x1
2842 
2843 #define IS_GLK_REVID(dev_priv, since, until) \
2844 	(IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2845 
2846 /*
2847  * The genX designation typically refers to the render engine, so render
2848  * capability related checks should use IS_GEN, while display and other checks
2849  * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2850  * chips, etc.).
2851  */
2852 #define IS_GEN2(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(1)))
2853 #define IS_GEN3(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(2)))
2854 #define IS_GEN4(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(3)))
2855 #define IS_GEN5(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(4)))
2856 #define IS_GEN6(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(5)))
2857 #define IS_GEN7(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(6)))
2858 #define IS_GEN8(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(7)))
2859 #define IS_GEN9(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(8)))
2860 
2861 #define IS_LP(dev_priv)	(INTEL_INFO(dev_priv)->is_lp)
2862 #define IS_GEN9_LP(dev_priv)	(IS_GEN9(dev_priv) && IS_LP(dev_priv))
2863 #define IS_GEN9_BC(dev_priv)	(IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2864 
2865 #define ENGINE_MASK(id)	BIT(id)
2866 #define RENDER_RING	ENGINE_MASK(RCS)
2867 #define BSD_RING	ENGINE_MASK(VCS)
2868 #define BLT_RING	ENGINE_MASK(BCS)
2869 #define VEBOX_RING	ENGINE_MASK(VECS)
2870 #define BSD2_RING	ENGINE_MASK(VCS2)
2871 #define ALL_ENGINES	(~0)
2872 
2873 #define HAS_ENGINE(dev_priv, id) \
2874 	(!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2875 
2876 #define HAS_BSD(dev_priv)	HAS_ENGINE(dev_priv, VCS)
2877 #define HAS_BSD2(dev_priv)	HAS_ENGINE(dev_priv, VCS2)
2878 #define HAS_BLT(dev_priv)	HAS_ENGINE(dev_priv, BCS)
2879 #define HAS_VEBOX(dev_priv)	HAS_ENGINE(dev_priv, VECS)
2880 
2881 #define HAS_LLC(dev_priv)	((dev_priv)->info.has_llc)
2882 #define HAS_SNOOP(dev_priv)	((dev_priv)->info.has_snoop)
2883 #define HAS_EDRAM(dev_priv)	(!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2884 #define HAS_WT(dev_priv)	((IS_HASWELL(dev_priv) || \
2885 				 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2886 
2887 #define HWS_NEEDS_PHYSICAL(dev_priv)	((dev_priv)->info.hws_needs_physical)
2888 
2889 #define HAS_HW_CONTEXTS(dev_priv)	    ((dev_priv)->info.has_hw_contexts)
2890 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2891 		((dev_priv)->info.has_logical_ring_contexts)
2892 #define USES_PPGTT(dev_priv)		(i915.enable_ppgtt)
2893 #define USES_FULL_PPGTT(dev_priv)	(i915.enable_ppgtt >= 2)
2894 #define USES_FULL_48BIT_PPGTT(dev_priv)	(i915.enable_ppgtt == 3)
2895 
2896 #define HAS_OVERLAY(dev_priv)		 ((dev_priv)->info.has_overlay)
2897 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2898 		((dev_priv)->info.overlay_needs_physical)
2899 
2900 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2901 #define HAS_BROKEN_CS_TLB(dev_priv)	(IS_I830(dev_priv) || IS_I845G(dev_priv))
2902 
2903 /* WaRsDisableCoarsePowerGating:skl,bxt */
2904 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2905 	(IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
2906 
2907 /*
2908  * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2909  * even when in MSI mode. This results in spurious interrupt warnings if the
2910  * legacy irq no. is shared with another device. The kernel then disables that
2911  * interrupt source and so prevents the other device from working properly.
2912  */
2913 #define HAS_AUX_IRQ(dev_priv)   ((dev_priv)->info.gen >= 5)
2914 #define HAS_GMBUS_IRQ(dev_priv) ((dev_priv)->info.has_gmbus_irq)
2915 
2916 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2917  * rows, which changed the alignment requirements and fence programming.
2918  */
2919 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
2920 					 !(IS_I915G(dev_priv) || \
2921 					 IS_I915GM(dev_priv)))
2922 #define SUPPORTS_TV(dev_priv)		((dev_priv)->info.supports_tv)
2923 #define I915_HAS_HOTPLUG(dev_priv)	((dev_priv)->info.has_hotplug)
2924 
2925 #define HAS_FW_BLC(dev_priv) 	(INTEL_GEN(dev_priv) > 2)
2926 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr)
2927 #define HAS_FBC(dev_priv)	((dev_priv)->info.has_fbc)
2928 
2929 #define HAS_IPS(dev_priv)	(IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2930 
2931 #define HAS_DP_MST(dev_priv)	((dev_priv)->info.has_dp_mst)
2932 
2933 #define HAS_DDI(dev_priv)		 ((dev_priv)->info.has_ddi)
2934 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
2935 #define HAS_PSR(dev_priv)		 ((dev_priv)->info.has_psr)
2936 #define HAS_RC6(dev_priv)		 ((dev_priv)->info.has_rc6)
2937 #define HAS_RC6p(dev_priv)		 ((dev_priv)->info.has_rc6p)
2938 
2939 #define HAS_CSR(dev_priv)	((dev_priv)->info.has_csr)
2940 
2941 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
2942 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
2943 
2944 /*
2945  * For now, anything with a GuC requires uCode loading, and then supports
2946  * command submission once loaded. But these are logically independent
2947  * properties, so we have separate macros to test them.
2948  */
2949 #define HAS_GUC(dev_priv)	((dev_priv)->info.has_guc)
2950 #define HAS_GUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2951 #define HAS_GUC_SCHED(dev_priv)	(HAS_GUC(dev_priv))
2952 #define HAS_HUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2953 
2954 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
2955 
2956 #define HAS_POOLED_EU(dev_priv)	((dev_priv)->info.has_pooled_eu)
2957 
2958 #define INTEL_PCH_DEVICE_ID_MASK		0xff00
2959 #define INTEL_PCH_IBX_DEVICE_ID_TYPE		0x3b00
2960 #define INTEL_PCH_CPT_DEVICE_ID_TYPE		0x1c00
2961 #define INTEL_PCH_PPT_DEVICE_ID_TYPE		0x1e00
2962 #define INTEL_PCH_LPT_DEVICE_ID_TYPE		0x8c00
2963 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE		0x9c00
2964 #define INTEL_PCH_SPT_DEVICE_ID_TYPE		0xA100
2965 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE		0x9D00
2966 #define INTEL_PCH_KBP_DEVICE_ID_TYPE		0xA200
2967 #define INTEL_PCH_P2X_DEVICE_ID_TYPE		0x7100
2968 #define INTEL_PCH_P3X_DEVICE_ID_TYPE		0x7000
2969 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE		0x2900 /* qemu q35 has 2918 */
2970 
2971 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
2972 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
2973 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
2974 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
2975 #define HAS_PCH_LPT_LP(dev_priv) \
2976 	((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
2977 #define HAS_PCH_LPT_H(dev_priv) \
2978 	((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE)
2979 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
2980 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
2981 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
2982 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
2983 
2984 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
2985 
2986 #define HAS_LSPCON(dev_priv) (IS_GEN9(dev_priv))
2987 
2988 /* DPF == dynamic parity feature */
2989 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
2990 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
2991 				 2 : HAS_L3_DPF(dev_priv))
2992 
2993 #define GT_FREQUENCY_MULTIPLIER 50
2994 #define GEN9_FREQ_SCALER 3
2995 
2996 #define HAS_DECOUPLED_MMIO(dev_priv) (INTEL_INFO(dev_priv)->has_decoupled_mmio)
2997 
2998 #include "i915_trace.h"
2999 
3000 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
3001 {
3002 #ifdef CONFIG_INTEL_IOMMU
3003 	if (INTEL_GEN(dev_priv) >= 6 && intel_iommu_gfx_mapped)
3004 		return true;
3005 #endif
3006 	return false;
3007 }
3008 
3009 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
3010 				int enable_ppgtt);
3011 
3012 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
3013 
3014 /* i915_drv.c */
3015 void __printf(3, 4)
3016 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
3017 	      const char *fmt, ...);
3018 
3019 #define i915_report_error(dev_priv, fmt, ...)				   \
3020 	__i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
3021 
3022 #ifdef CONFIG_COMPAT
3023 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
3024 			      unsigned long arg);
3025 #else
3026 #define i915_compat_ioctl NULL
3027 #endif
3028 extern const struct dev_pm_ops i915_pm_ops;
3029 
3030 extern int i915_driver_load(struct pci_dev *pdev,
3031 			    const struct pci_device_id *ent);
3032 extern void i915_driver_unload(struct drm_device *dev);
3033 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
3034 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
3035 extern void i915_reset(struct drm_i915_private *dev_priv);
3036 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
3037 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
3038 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
3039 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
3040 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
3041 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
3042 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
3043 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
3044 
3045 int intel_engines_init_early(struct drm_i915_private *dev_priv);
3046 int intel_engines_init(struct drm_i915_private *dev_priv);
3047 
3048 /* intel_hotplug.c */
3049 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
3050 			   u32 pin_mask, u32 long_mask);
3051 void intel_hpd_init(struct drm_i915_private *dev_priv);
3052 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
3053 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
3054 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
3055 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3056 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3057 
3058 /* i915_irq.c */
3059 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3060 {
3061 	unsigned long delay;
3062 
3063 	if (unlikely(!i915.enable_hangcheck))
3064 		return;
3065 
3066 	/* Don't continually defer the hangcheck so that it is always run at
3067 	 * least once after work has been scheduled on any ring. Otherwise,
3068 	 * we will ignore a hung ring if a second ring is kept busy.
3069 	 */
3070 
3071 	delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3072 	queue_delayed_work(system_long_wq,
3073 			   &dev_priv->gpu_error.hangcheck_work, delay);
3074 }
3075 
3076 __printf(3, 4)
3077 void i915_handle_error(struct drm_i915_private *dev_priv,
3078 		       u32 engine_mask,
3079 		       const char *fmt, ...);
3080 
3081 extern void intel_irq_init(struct drm_i915_private *dev_priv);
3082 int intel_irq_install(struct drm_i915_private *dev_priv);
3083 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3084 
3085 extern void intel_uncore_sanitize(struct drm_i915_private *dev_priv);
3086 extern void intel_uncore_init(struct drm_i915_private *dev_priv);
3087 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv);
3088 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv);
3089 extern void intel_uncore_fini(struct drm_i915_private *dev_priv);
3090 extern void intel_uncore_suspend(struct drm_i915_private *dev_priv);
3091 extern void intel_uncore_resume_early(struct drm_i915_private *dev_priv);
3092 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id);
3093 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv,
3094 				enum forcewake_domains domains);
3095 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv,
3096 				enum forcewake_domains domains);
3097 /* Like above but the caller must manage the uncore.lock itself.
3098  * Must be used with I915_READ_FW and friends.
3099  */
3100 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv,
3101 					enum forcewake_domains domains);
3102 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv,
3103 					enum forcewake_domains domains);
3104 u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv);
3105 
3106 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv);
3107 
3108 int intel_wait_for_register(struct drm_i915_private *dev_priv,
3109 			    i915_reg_t reg,
3110 			    const u32 mask,
3111 			    const u32 value,
3112 			    const unsigned long timeout_ms);
3113 int intel_wait_for_register_fw(struct drm_i915_private *dev_priv,
3114 			       i915_reg_t reg,
3115 			       const u32 mask,
3116 			       const u32 value,
3117 			       const unsigned long timeout_ms);
3118 
3119 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3120 {
3121 	return dev_priv->gvt;
3122 }
3123 
3124 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3125 {
3126 	return dev_priv->vgpu.active;
3127 }
3128 
3129 void
3130 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3131 		     u32 status_mask);
3132 
3133 void
3134 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3135 		      u32 status_mask);
3136 
3137 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3138 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3139 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3140 				   uint32_t mask,
3141 				   uint32_t bits);
3142 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3143 			    uint32_t interrupt_mask,
3144 			    uint32_t enabled_irq_mask);
3145 static inline void
3146 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3147 {
3148 	ilk_update_display_irq(dev_priv, bits, bits);
3149 }
3150 static inline void
3151 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3152 {
3153 	ilk_update_display_irq(dev_priv, bits, 0);
3154 }
3155 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3156 			 enum pipe pipe,
3157 			 uint32_t interrupt_mask,
3158 			 uint32_t enabled_irq_mask);
3159 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3160 				       enum pipe pipe, uint32_t bits)
3161 {
3162 	bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3163 }
3164 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3165 					enum pipe pipe, uint32_t bits)
3166 {
3167 	bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3168 }
3169 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3170 				  uint32_t interrupt_mask,
3171 				  uint32_t enabled_irq_mask);
3172 static inline void
3173 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3174 {
3175 	ibx_display_interrupt_update(dev_priv, bits, bits);
3176 }
3177 static inline void
3178 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3179 {
3180 	ibx_display_interrupt_update(dev_priv, bits, 0);
3181 }
3182 
3183 /* i915_gem.c */
3184 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3185 			  struct drm_file *file_priv);
3186 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3187 			 struct drm_file *file_priv);
3188 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3189 			  struct drm_file *file_priv);
3190 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3191 			struct drm_file *file_priv);
3192 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3193 			struct drm_file *file_priv);
3194 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3195 			      struct drm_file *file_priv);
3196 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3197 			     struct drm_file *file_priv);
3198 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3199 			struct drm_file *file_priv);
3200 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3201 			 struct drm_file *file_priv);
3202 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3203 			struct drm_file *file_priv);
3204 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3205 			       struct drm_file *file);
3206 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3207 			       struct drm_file *file);
3208 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3209 			    struct drm_file *file_priv);
3210 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3211 			   struct drm_file *file_priv);
3212 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3213 			      struct drm_file *file_priv);
3214 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3215 			      struct drm_file *file_priv);
3216 void i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3217 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3218 			   struct drm_file *file);
3219 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3220 				struct drm_file *file_priv);
3221 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3222 			struct drm_file *file_priv);
3223 void i915_gem_sanitize(struct drm_i915_private *i915);
3224 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3225 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3226 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3227 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3228 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3229 
3230 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3231 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3232 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3233 			 const struct drm_i915_gem_object_ops *ops);
3234 struct drm_i915_gem_object *
3235 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3236 struct drm_i915_gem_object *
3237 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3238 				 const void *data, size_t size);
3239 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3240 void i915_gem_free_object(struct drm_gem_object *obj);
3241 
3242 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3243 {
3244 	/* A single pass should suffice to release all the freed objects (along
3245 	 * most call paths) , but be a little more paranoid in that freeing
3246 	 * the objects does take a little amount of time, during which the rcu
3247 	 * callbacks could have added new objects into the freed list, and
3248 	 * armed the work again.
3249 	 */
3250 	do {
3251 		rcu_barrier();
3252 	} while (flush_work(&i915->mm.free_work));
3253 }
3254 
3255 struct i915_vma * __must_check
3256 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3257 			 const struct i915_ggtt_view *view,
3258 			 u64 size,
3259 			 u64 alignment,
3260 			 u64 flags);
3261 
3262 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3263 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3264 
3265 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3266 
3267 static inline int __sg_page_count(const struct scatterlist *sg)
3268 {
3269 	return sg->length >> PAGE_SHIFT;
3270 }
3271 
3272 struct scatterlist *
3273 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3274 		       unsigned int n, unsigned int *offset);
3275 
3276 struct page *
3277 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3278 			 unsigned int n);
3279 
3280 struct page *
3281 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3282 			       unsigned int n);
3283 
3284 dma_addr_t
3285 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3286 				unsigned long n);
3287 
3288 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3289 				 struct sg_table *pages);
3290 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3291 
3292 static inline int __must_check
3293 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3294 {
3295 	might_lock(&obj->mm.lock);
3296 
3297 	if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3298 		return 0;
3299 
3300 	return __i915_gem_object_get_pages(obj);
3301 }
3302 
3303 static inline void
3304 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3305 {
3306 	GEM_BUG_ON(!obj->mm.pages);
3307 
3308 	atomic_inc(&obj->mm.pages_pin_count);
3309 }
3310 
3311 static inline bool
3312 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3313 {
3314 	return atomic_read(&obj->mm.pages_pin_count);
3315 }
3316 
3317 static inline void
3318 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3319 {
3320 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3321 	GEM_BUG_ON(!obj->mm.pages);
3322 
3323 	atomic_dec(&obj->mm.pages_pin_count);
3324 }
3325 
3326 static inline void
3327 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3328 {
3329 	__i915_gem_object_unpin_pages(obj);
3330 }
3331 
3332 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3333 	I915_MM_NORMAL = 0,
3334 	I915_MM_SHRINKER
3335 };
3336 
3337 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3338 				 enum i915_mm_subclass subclass);
3339 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3340 
3341 enum i915_map_type {
3342 	I915_MAP_WB = 0,
3343 	I915_MAP_WC,
3344 };
3345 
3346 /**
3347  * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3348  * @obj: the object to map into kernel address space
3349  * @type: the type of mapping, used to select pgprot_t
3350  *
3351  * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3352  * pages and then returns a contiguous mapping of the backing storage into
3353  * the kernel address space. Based on the @type of mapping, the PTE will be
3354  * set to either WriteBack or WriteCombine (via pgprot_t).
3355  *
3356  * The caller is responsible for calling i915_gem_object_unpin_map() when the
3357  * mapping is no longer required.
3358  *
3359  * Returns the pointer through which to access the mapped object, or an
3360  * ERR_PTR() on error.
3361  */
3362 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3363 					   enum i915_map_type type);
3364 
3365 /**
3366  * i915_gem_object_unpin_map - releases an earlier mapping
3367  * @obj: the object to unmap
3368  *
3369  * After pinning the object and mapping its pages, once you are finished
3370  * with your access, call i915_gem_object_unpin_map() to release the pin
3371  * upon the mapping. Once the pin count reaches zero, that mapping may be
3372  * removed.
3373  */
3374 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3375 {
3376 	i915_gem_object_unpin_pages(obj);
3377 }
3378 
3379 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3380 				    unsigned int *needs_clflush);
3381 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3382 				     unsigned int *needs_clflush);
3383 #define CLFLUSH_BEFORE	BIT(0)
3384 #define CLFLUSH_AFTER	BIT(1)
3385 #define CLFLUSH_FLAGS	(CLFLUSH_BEFORE | CLFLUSH_AFTER)
3386 
3387 static inline void
3388 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3389 {
3390 	i915_gem_object_unpin_pages(obj);
3391 }
3392 
3393 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3394 void i915_vma_move_to_active(struct i915_vma *vma,
3395 			     struct drm_i915_gem_request *req,
3396 			     unsigned int flags);
3397 int i915_gem_dumb_create(struct drm_file *file_priv,
3398 			 struct drm_device *dev,
3399 			 struct drm_mode_create_dumb *args);
3400 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3401 		      uint32_t handle, uint64_t *offset);
3402 int i915_gem_mmap_gtt_version(void);
3403 
3404 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3405 		       struct drm_i915_gem_object *new,
3406 		       unsigned frontbuffer_bits);
3407 
3408 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3409 
3410 struct drm_i915_gem_request *
3411 i915_gem_find_active_request(struct intel_engine_cs *engine);
3412 
3413 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3414 
3415 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3416 {
3417 	return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3418 }
3419 
3420 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3421 {
3422 	return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3423 }
3424 
3425 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3426 {
3427 	return unlikely(test_bit(I915_WEDGED, &error->flags));
3428 }
3429 
3430 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3431 {
3432 	return i915_reset_backoff(error) | i915_terminally_wedged(error);
3433 }
3434 
3435 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3436 {
3437 	return READ_ONCE(error->reset_count);
3438 }
3439 
3440 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3441 void i915_gem_reset(struct drm_i915_private *dev_priv);
3442 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3443 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3444 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3445 
3446 void i915_gem_init_mmio(struct drm_i915_private *i915);
3447 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3448 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3449 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3450 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3451 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3452 			   unsigned int flags);
3453 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3454 void i915_gem_resume(struct drm_i915_private *dev_priv);
3455 int i915_gem_fault(struct vm_fault *vmf);
3456 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3457 			 unsigned int flags,
3458 			 long timeout,
3459 			 struct intel_rps_client *rps);
3460 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3461 				  unsigned int flags,
3462 				  int priority);
3463 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3464 
3465 int __must_check
3466 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj,
3467 				  bool write);
3468 int __must_check
3469 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3470 struct i915_vma * __must_check
3471 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3472 				     u32 alignment,
3473 				     const struct i915_ggtt_view *view);
3474 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3475 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3476 				int align);
3477 int i915_gem_open(struct drm_device *dev, struct drm_file *file);
3478 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3479 
3480 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3481 				    enum i915_cache_level cache_level);
3482 
3483 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3484 				struct dma_buf *dma_buf);
3485 
3486 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3487 				struct drm_gem_object *gem_obj, int flags);
3488 
3489 static inline struct i915_hw_ppgtt *
3490 i915_vm_to_ppgtt(struct i915_address_space *vm)
3491 {
3492 	return container_of(vm, struct i915_hw_ppgtt, base);
3493 }
3494 
3495 /* i915_gem_fence_reg.c */
3496 int __must_check i915_vma_get_fence(struct i915_vma *vma);
3497 int __must_check i915_vma_put_fence(struct i915_vma *vma);
3498 
3499 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3500 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3501 
3502 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3503 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3504 				       struct sg_table *pages);
3505 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3506 					 struct sg_table *pages);
3507 
3508 static inline struct i915_gem_context *
3509 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3510 {
3511 	struct i915_gem_context *ctx;
3512 
3513 	lockdep_assert_held(&file_priv->dev_priv->drm.struct_mutex);
3514 
3515 	ctx = idr_find(&file_priv->context_idr, id);
3516 	if (!ctx)
3517 		return ERR_PTR(-ENOENT);
3518 
3519 	return ctx;
3520 }
3521 
3522 static inline struct i915_gem_context *
3523 i915_gem_context_get(struct i915_gem_context *ctx)
3524 {
3525 	kref_get(&ctx->ref);
3526 	return ctx;
3527 }
3528 
3529 static inline void i915_gem_context_put(struct i915_gem_context *ctx)
3530 {
3531 	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
3532 	kref_put(&ctx->ref, i915_gem_context_free);
3533 }
3534 
3535 static inline void i915_gem_context_put_unlocked(struct i915_gem_context *ctx)
3536 {
3537 	struct mutex *lock = &ctx->i915->drm.struct_mutex;
3538 
3539 	if (kref_put_mutex(&ctx->ref, i915_gem_context_free, lock))
3540 		mutex_unlock(lock);
3541 }
3542 
3543 static inline struct intel_timeline *
3544 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3545 				 struct intel_engine_cs *engine)
3546 {
3547 	struct i915_address_space *vm;
3548 
3549 	vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3550 	return &vm->timeline.engine[engine->id];
3551 }
3552 
3553 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3554 			 struct drm_file *file);
3555 
3556 /* i915_gem_evict.c */
3557 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3558 					  u64 min_size, u64 alignment,
3559 					  unsigned cache_level,
3560 					  u64 start, u64 end,
3561 					  unsigned flags);
3562 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3563 					 struct drm_mm_node *node,
3564 					 unsigned int flags);
3565 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
3566 
3567 /* belongs in i915_gem_gtt.h */
3568 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3569 {
3570 	wmb();
3571 	if (INTEL_GEN(dev_priv) < 6)
3572 		intel_gtt_chipset_flush();
3573 }
3574 
3575 /* i915_gem_stolen.c */
3576 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3577 				struct drm_mm_node *node, u64 size,
3578 				unsigned alignment);
3579 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3580 					 struct drm_mm_node *node, u64 size,
3581 					 unsigned alignment, u64 start,
3582 					 u64 end);
3583 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3584 				 struct drm_mm_node *node);
3585 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3586 void i915_gem_cleanup_stolen(struct drm_device *dev);
3587 struct drm_i915_gem_object *
3588 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3589 struct drm_i915_gem_object *
3590 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3591 					       u32 stolen_offset,
3592 					       u32 gtt_offset,
3593 					       u32 size);
3594 
3595 /* i915_gem_internal.c */
3596 struct drm_i915_gem_object *
3597 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3598 				phys_addr_t size);
3599 
3600 /* i915_gem_shrinker.c */
3601 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3602 			      unsigned long target,
3603 			      unsigned flags);
3604 #define I915_SHRINK_PURGEABLE 0x1
3605 #define I915_SHRINK_UNBOUND 0x2
3606 #define I915_SHRINK_BOUND 0x4
3607 #define I915_SHRINK_ACTIVE 0x8
3608 #define I915_SHRINK_VMAPS 0x10
3609 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3610 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3611 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3612 
3613 
3614 /* i915_gem_tiling.c */
3615 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3616 {
3617 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3618 
3619 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3620 		i915_gem_object_is_tiled(obj);
3621 }
3622 
3623 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3624 			unsigned int tiling, unsigned int stride);
3625 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3626 			     unsigned int tiling, unsigned int stride);
3627 
3628 /* i915_debugfs.c */
3629 #ifdef CONFIG_DEBUG_FS
3630 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3631 int i915_debugfs_connector_add(struct drm_connector *connector);
3632 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3633 #else
3634 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3635 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3636 { return 0; }
3637 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3638 #endif
3639 
3640 /* i915_gpu_error.c */
3641 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3642 
3643 __printf(2, 3)
3644 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3645 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3646 			    const struct i915_gpu_state *gpu);
3647 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3648 			      struct drm_i915_private *i915,
3649 			      size_t count, loff_t pos);
3650 static inline void i915_error_state_buf_release(
3651 	struct drm_i915_error_state_buf *eb)
3652 {
3653 	kfree(eb->buf);
3654 }
3655 
3656 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3657 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3658 			      u32 engine_mask,
3659 			      const char *error_msg);
3660 
3661 static inline struct i915_gpu_state *
3662 i915_gpu_state_get(struct i915_gpu_state *gpu)
3663 {
3664 	kref_get(&gpu->ref);
3665 	return gpu;
3666 }
3667 
3668 void __i915_gpu_state_free(struct kref *kref);
3669 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3670 {
3671 	if (gpu)
3672 		kref_put(&gpu->ref, __i915_gpu_state_free);
3673 }
3674 
3675 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3676 void i915_reset_error_state(struct drm_i915_private *i915);
3677 
3678 #else
3679 
3680 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3681 					    u32 engine_mask,
3682 					    const char *error_msg)
3683 {
3684 }
3685 
3686 static inline struct i915_gpu_state *
3687 i915_first_error_state(struct drm_i915_private *i915)
3688 {
3689 	return NULL;
3690 }
3691 
3692 static inline void i915_reset_error_state(struct drm_i915_private *i915)
3693 {
3694 }
3695 
3696 #endif
3697 
3698 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3699 
3700 /* i915_cmd_parser.c */
3701 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3702 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3703 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3704 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3705 			    struct drm_i915_gem_object *batch_obj,
3706 			    struct drm_i915_gem_object *shadow_batch_obj,
3707 			    u32 batch_start_offset,
3708 			    u32 batch_len,
3709 			    bool is_master);
3710 
3711 /* i915_perf.c */
3712 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3713 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3714 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3715 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3716 
3717 /* i915_suspend.c */
3718 extern int i915_save_state(struct drm_i915_private *dev_priv);
3719 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3720 
3721 /* i915_sysfs.c */
3722 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3723 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3724 
3725 /* intel_lpe_audio.c */
3726 int  intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3727 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3728 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3729 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3730 			    void *eld, int port, int pipe, int tmds_clk_speed,
3731 			    bool dp_output, int link_rate);
3732 
3733 /* intel_i2c.c */
3734 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3735 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3736 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3737 				     unsigned int pin);
3738 
3739 extern struct i2c_adapter *
3740 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3741 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3742 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3743 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3744 {
3745 	return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3746 }
3747 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3748 
3749 /* intel_bios.c */
3750 void intel_bios_init(struct drm_i915_private *dev_priv);
3751 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3752 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3753 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3754 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3755 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3756 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3757 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3758 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3759 				     enum port port);
3760 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3761 				enum port port);
3762 
3763 
3764 /* intel_opregion.c */
3765 #ifdef CONFIG_ACPI
3766 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3767 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3768 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3769 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3770 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3771 					 bool enable);
3772 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3773 					 pci_power_t state);
3774 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3775 #else
3776 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3777 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3778 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3779 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3780 {
3781 }
3782 static inline int
3783 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3784 {
3785 	return 0;
3786 }
3787 static inline int
3788 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3789 {
3790 	return 0;
3791 }
3792 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3793 {
3794 	return -ENODEV;
3795 }
3796 #endif
3797 
3798 /* intel_acpi.c */
3799 #ifdef CONFIG_ACPI
3800 extern void intel_register_dsm_handler(void);
3801 extern void intel_unregister_dsm_handler(void);
3802 #else
3803 static inline void intel_register_dsm_handler(void) { return; }
3804 static inline void intel_unregister_dsm_handler(void) { return; }
3805 #endif /* CONFIG_ACPI */
3806 
3807 /* intel_device_info.c */
3808 static inline struct intel_device_info *
3809 mkwrite_device_info(struct drm_i915_private *dev_priv)
3810 {
3811 	return (struct intel_device_info *)&dev_priv->info;
3812 }
3813 
3814 const char *intel_platform_name(enum intel_platform platform);
3815 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3816 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3817 
3818 /* modesetting */
3819 extern void intel_modeset_init_hw(struct drm_device *dev);
3820 extern int intel_modeset_init(struct drm_device *dev);
3821 extern void intel_modeset_gem_init(struct drm_device *dev);
3822 extern void intel_modeset_cleanup(struct drm_device *dev);
3823 extern int intel_connector_register(struct drm_connector *);
3824 extern void intel_connector_unregister(struct drm_connector *);
3825 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3826 				       bool state);
3827 extern void intel_display_resume(struct drm_device *dev);
3828 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3829 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3830 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3831 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3832 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3833 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3834 				  bool enable);
3835 
3836 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3837 			struct drm_file *file);
3838 
3839 /* overlay */
3840 extern struct intel_overlay_error_state *
3841 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3842 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3843 					    struct intel_overlay_error_state *error);
3844 
3845 extern struct intel_display_error_state *
3846 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3847 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3848 					    struct intel_display_error_state *error);
3849 
3850 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3851 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3852 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3853 		      u32 reply_mask, u32 reply, int timeout_base_ms);
3854 
3855 /* intel_sideband.c */
3856 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3857 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3858 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3859 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3860 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3861 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3862 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3863 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3864 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3865 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3866 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3867 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3868 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3869 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3870 		   enum intel_sbi_destination destination);
3871 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3872 		     enum intel_sbi_destination destination);
3873 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3874 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3875 
3876 /* intel_dpio_phy.c */
3877 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3878 			     enum dpio_phy *phy, enum dpio_channel *ch);
3879 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3880 				  enum port port, u32 margin, u32 scale,
3881 				  u32 enable, u32 deemphasis);
3882 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3883 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3884 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3885 			    enum dpio_phy phy);
3886 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3887 			      enum dpio_phy phy);
3888 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
3889 					     uint8_t lane_count);
3890 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3891 				     uint8_t lane_lat_optim_mask);
3892 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3893 
3894 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3895 			      u32 deemph_reg_value, u32 margin_reg_value,
3896 			      bool uniq_trans_scale);
3897 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3898 			      bool reset);
3899 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
3900 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3901 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3902 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
3903 
3904 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3905 			      u32 demph_reg_value, u32 preemph_reg_value,
3906 			      u32 uniqtranscale_reg_value, u32 tx3_demph);
3907 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
3908 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3909 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
3910 
3911 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3912 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3913 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
3914 			   const i915_reg_t reg);
3915 
3916 #define I915_READ8(reg)		dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3917 #define I915_WRITE8(reg, val)	dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3918 
3919 #define I915_READ16(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3920 #define I915_WRITE16(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3921 #define I915_READ16_NOTRACE(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3922 #define I915_WRITE16_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3923 
3924 #define I915_READ(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3925 #define I915_WRITE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3926 #define I915_READ_NOTRACE(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3927 #define I915_WRITE_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3928 
3929 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3930  * will be implemented using 2 32-bit writes in an arbitrary order with
3931  * an arbitrary delay between them. This can cause the hardware to
3932  * act upon the intermediate value, possibly leading to corruption and
3933  * machine death. For this reason we do not support I915_WRITE64, or
3934  * dev_priv->uncore.funcs.mmio_writeq.
3935  *
3936  * When reading a 64-bit value as two 32-bit values, the delay may cause
3937  * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3938  * occasionally a 64-bit register does not actualy support a full readq
3939  * and must be read using two 32-bit reads.
3940  *
3941  * You have been warned.
3942  */
3943 #define I915_READ64(reg)	dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3944 
3945 #define I915_READ64_2x32(lower_reg, upper_reg) ({			\
3946 	u32 upper, lower, old_upper, loop = 0;				\
3947 	upper = I915_READ(upper_reg);					\
3948 	do {								\
3949 		old_upper = upper;					\
3950 		lower = I915_READ(lower_reg);				\
3951 		upper = I915_READ(upper_reg);				\
3952 	} while (upper != old_upper && loop++ < 2);			\
3953 	(u64)upper << 32 | lower; })
3954 
3955 #define POSTING_READ(reg)	(void)I915_READ_NOTRACE(reg)
3956 #define POSTING_READ16(reg)	(void)I915_READ16_NOTRACE(reg)
3957 
3958 #define __raw_read(x, s) \
3959 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \
3960 					     i915_reg_t reg) \
3961 { \
3962 	return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3963 }
3964 
3965 #define __raw_write(x, s) \
3966 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \
3967 				       i915_reg_t reg, uint##x##_t val) \
3968 { \
3969 	write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3970 }
3971 __raw_read(8, b)
3972 __raw_read(16, w)
3973 __raw_read(32, l)
3974 __raw_read(64, q)
3975 
3976 __raw_write(8, b)
3977 __raw_write(16, w)
3978 __raw_write(32, l)
3979 __raw_write(64, q)
3980 
3981 #undef __raw_read
3982 #undef __raw_write
3983 
3984 /* These are untraced mmio-accessors that are only valid to be used inside
3985  * critical sections, such as inside IRQ handlers, where forcewake is explicitly
3986  * controlled.
3987  *
3988  * Think twice, and think again, before using these.
3989  *
3990  * As an example, these accessors can possibly be used between:
3991  *
3992  * spin_lock_irq(&dev_priv->uncore.lock);
3993  * intel_uncore_forcewake_get__locked();
3994  *
3995  * and
3996  *
3997  * intel_uncore_forcewake_put__locked();
3998  * spin_unlock_irq(&dev_priv->uncore.lock);
3999  *
4000  *
4001  * Note: some registers may not need forcewake held, so
4002  * intel_uncore_forcewake_{get,put} can be omitted, see
4003  * intel_uncore_forcewake_for_reg().
4004  *
4005  * Certain architectures will die if the same cacheline is concurrently accessed
4006  * by different clients (e.g. on Ivybridge). Access to registers should
4007  * therefore generally be serialised, by either the dev_priv->uncore.lock or
4008  * a more localised lock guarding all access to that bank of registers.
4009  */
4010 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
4011 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
4012 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
4013 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
4014 
4015 /* "Broadcast RGB" property */
4016 #define INTEL_BROADCAST_RGB_AUTO 0
4017 #define INTEL_BROADCAST_RGB_FULL 1
4018 #define INTEL_BROADCAST_RGB_LIMITED 2
4019 
4020 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
4021 {
4022 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4023 		return VLV_VGACNTRL;
4024 	else if (INTEL_GEN(dev_priv) >= 5)
4025 		return CPU_VGACNTRL;
4026 	else
4027 		return VGACNTRL;
4028 }
4029 
4030 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
4031 {
4032 	unsigned long j = msecs_to_jiffies(m);
4033 
4034 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4035 }
4036 
4037 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
4038 {
4039         return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
4040 }
4041 
4042 static inline unsigned long
4043 timespec_to_jiffies_timeout(const struct timespec *value)
4044 {
4045 	unsigned long j = timespec_to_jiffies(value);
4046 
4047 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4048 }
4049 
4050 /*
4051  * If you need to wait X milliseconds between events A and B, but event B
4052  * doesn't happen exactly after event A, you record the timestamp (jiffies) of
4053  * when event A happened, then just before event B you call this function and
4054  * pass the timestamp as the first argument, and X as the second argument.
4055  */
4056 static inline void
4057 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
4058 {
4059 	unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
4060 
4061 	/*
4062 	 * Don't re-read the value of "jiffies" every time since it may change
4063 	 * behind our back and break the math.
4064 	 */
4065 	tmp_jiffies = jiffies;
4066 	target_jiffies = timestamp_jiffies +
4067 			 msecs_to_jiffies_timeout(to_wait_ms);
4068 
4069 	if (time_after(target_jiffies, tmp_jiffies)) {
4070 		remaining_jiffies = target_jiffies - tmp_jiffies;
4071 		while (remaining_jiffies)
4072 			remaining_jiffies =
4073 			    schedule_timeout_uninterruptible(remaining_jiffies);
4074 	}
4075 }
4076 
4077 static inline bool
4078 __i915_request_irq_complete(const struct drm_i915_gem_request *req)
4079 {
4080 	struct intel_engine_cs *engine = req->engine;
4081 	u32 seqno;
4082 
4083 	/* Note that the engine may have wrapped around the seqno, and
4084 	 * so our request->global_seqno will be ahead of the hardware,
4085 	 * even though it completed the request before wrapping. We catch
4086 	 * this by kicking all the waiters before resetting the seqno
4087 	 * in hardware, and also signal the fence.
4088 	 */
4089 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags))
4090 		return true;
4091 
4092 	/* The request was dequeued before we were awoken. We check after
4093 	 * inspecting the hw to confirm that this was the same request
4094 	 * that generated the HWS update. The memory barriers within
4095 	 * the request execution are sufficient to ensure that a check
4096 	 * after reading the value from hw matches this request.
4097 	 */
4098 	seqno = i915_gem_request_global_seqno(req);
4099 	if (!seqno)
4100 		return false;
4101 
4102 	/* Before we do the heavier coherent read of the seqno,
4103 	 * check the value (hopefully) in the CPU cacheline.
4104 	 */
4105 	if (__i915_gem_request_completed(req, seqno))
4106 		return true;
4107 
4108 	/* Ensure our read of the seqno is coherent so that we
4109 	 * do not "miss an interrupt" (i.e. if this is the last
4110 	 * request and the seqno write from the GPU is not visible
4111 	 * by the time the interrupt fires, we will see that the
4112 	 * request is incomplete and go back to sleep awaiting
4113 	 * another interrupt that will never come.)
4114 	 *
4115 	 * Strictly, we only need to do this once after an interrupt,
4116 	 * but it is easier and safer to do it every time the waiter
4117 	 * is woken.
4118 	 */
4119 	if (engine->irq_seqno_barrier &&
4120 	    test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4121 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
4122 
4123 		/* The ordering of irq_posted versus applying the barrier
4124 		 * is crucial. The clearing of the current irq_posted must
4125 		 * be visible before we perform the barrier operation,
4126 		 * such that if a subsequent interrupt arrives, irq_posted
4127 		 * is reasserted and our task rewoken (which causes us to
4128 		 * do another __i915_request_irq_complete() immediately
4129 		 * and reapply the barrier). Conversely, if the clear
4130 		 * occurs after the barrier, then an interrupt that arrived
4131 		 * whilst we waited on the barrier would not trigger a
4132 		 * barrier on the next pass, and the read may not see the
4133 		 * seqno update.
4134 		 */
4135 		engine->irq_seqno_barrier(engine);
4136 
4137 		/* If we consume the irq, but we are no longer the bottom-half,
4138 		 * the real bottom-half may not have serialised their own
4139 		 * seqno check with the irq-barrier (i.e. may have inspected
4140 		 * the seqno before we believe it coherent since they see
4141 		 * irq_posted == false but we are still running).
4142 		 */
4143 		spin_lock_irq(&b->irq_lock);
4144 		if (b->irq_wait && b->irq_wait->tsk != current)
4145 			/* Note that if the bottom-half is changed as we
4146 			 * are sending the wake-up, the new bottom-half will
4147 			 * be woken by whomever made the change. We only have
4148 			 * to worry about when we steal the irq-posted for
4149 			 * ourself.
4150 			 */
4151 			wake_up_process(b->irq_wait->tsk);
4152 		spin_unlock_irq(&b->irq_lock);
4153 
4154 		if (__i915_gem_request_completed(req, seqno))
4155 			return true;
4156 	}
4157 
4158 	return false;
4159 }
4160 
4161 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4162 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4163 
4164 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4165  * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4166  * perform the operation. To check beforehand, pass in the parameters to
4167  * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4168  * you only need to pass in the minor offsets, page-aligned pointers are
4169  * always valid.
4170  *
4171  * For just checking for SSE4.1, in the foreknowledge that the future use
4172  * will be correctly aligned, just use i915_has_memcpy_from_wc().
4173  */
4174 #define i915_can_memcpy_from_wc(dst, src, len) \
4175 	i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4176 
4177 #define i915_has_memcpy_from_wc() \
4178 	i915_memcpy_from_wc(NULL, NULL, 0)
4179 
4180 /* i915_mm.c */
4181 int remap_io_mapping(struct vm_area_struct *vma,
4182 		     unsigned long addr, unsigned long pfn, unsigned long size,
4183 		     struct io_mapping *iomap);
4184 
4185 static inline bool i915_gem_object_is_coherent(struct drm_i915_gem_object *obj)
4186 {
4187 	return (obj->cache_level != I915_CACHE_NONE ||
4188 		HAS_LLC(to_i915(obj->base.dev)));
4189 }
4190 
4191 #endif
4192