1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*- 2 */ 3 /* 4 * 5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 6 * All Rights Reserved. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a 9 * copy of this software and associated documentation files (the 10 * "Software"), to deal in the Software without restriction, including 11 * without limitation the rights to use, copy, modify, merge, publish, 12 * distribute, sub license, and/or sell copies of the Software, and to 13 * permit persons to whom the Software is furnished to do so, subject to 14 * the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the 17 * next paragraph) shall be included in all copies or substantial portions 18 * of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 27 * 28 */ 29 30 #ifndef _I915_DRV_H_ 31 #define _I915_DRV_H_ 32 33 #include <uapi/drm/i915_drm.h> 34 #include <uapi/drm/drm_fourcc.h> 35 36 #include <linux/io-mapping.h> 37 #include <linux/i2c.h> 38 #include <linux/i2c-algo-bit.h> 39 #include <linux/backlight.h> 40 #include <linux/hashtable.h> 41 #include <linux/intel-iommu.h> 42 #include <linux/kref.h> 43 #include <linux/pm_qos.h> 44 #include <linux/shmem_fs.h> 45 46 #include <drm/drmP.h> 47 #include <drm/intel-gtt.h> 48 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */ 49 #include <drm/drm_gem.h> 50 #include <drm/drm_auth.h> 51 52 #include "i915_params.h" 53 #include "i915_reg.h" 54 55 #include "intel_bios.h" 56 #include "intel_dpll_mgr.h" 57 #include "intel_guc.h" 58 #include "intel_lrc.h" 59 #include "intel_ringbuffer.h" 60 61 #include "i915_gem.h" 62 #include "i915_gem_gtt.h" 63 #include "i915_gem_render_state.h" 64 65 #include "intel_gvt.h" 66 67 /* General customization: 68 */ 69 70 #define DRIVER_NAME "i915" 71 #define DRIVER_DESC "Intel Graphics" 72 #define DRIVER_DATE "20160711" 73 74 #undef WARN_ON 75 /* Many gcc seem to no see through this and fall over :( */ 76 #if 0 77 #define WARN_ON(x) ({ \ 78 bool __i915_warn_cond = (x); \ 79 if (__builtin_constant_p(__i915_warn_cond)) \ 80 BUILD_BUG_ON(__i915_warn_cond); \ 81 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); }) 82 #else 83 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")") 84 #endif 85 86 #undef WARN_ON_ONCE 87 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")") 88 89 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \ 90 (long) (x), __func__); 91 92 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and 93 * WARN_ON()) for hw state sanity checks to check for unexpected conditions 94 * which may not necessarily be a user visible problem. This will either 95 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to 96 * enable distros and users to tailor their preferred amount of i915 abrt 97 * spam. 98 */ 99 #define I915_STATE_WARN(condition, format...) ({ \ 100 int __ret_warn_on = !!(condition); \ 101 if (unlikely(__ret_warn_on)) \ 102 if (!WARN(i915.verbose_state_checks, format)) \ 103 DRM_ERROR(format); \ 104 unlikely(__ret_warn_on); \ 105 }) 106 107 #define I915_STATE_WARN_ON(x) \ 108 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")") 109 110 bool __i915_inject_load_failure(const char *func, int line); 111 #define i915_inject_load_failure() \ 112 __i915_inject_load_failure(__func__, __LINE__) 113 114 static inline const char *yesno(bool v) 115 { 116 return v ? "yes" : "no"; 117 } 118 119 static inline const char *onoff(bool v) 120 { 121 return v ? "on" : "off"; 122 } 123 124 enum pipe { 125 INVALID_PIPE = -1, 126 PIPE_A = 0, 127 PIPE_B, 128 PIPE_C, 129 _PIPE_EDP, 130 I915_MAX_PIPES = _PIPE_EDP 131 }; 132 #define pipe_name(p) ((p) + 'A') 133 134 enum transcoder { 135 TRANSCODER_A = 0, 136 TRANSCODER_B, 137 TRANSCODER_C, 138 TRANSCODER_EDP, 139 TRANSCODER_DSI_A, 140 TRANSCODER_DSI_C, 141 I915_MAX_TRANSCODERS 142 }; 143 144 static inline const char *transcoder_name(enum transcoder transcoder) 145 { 146 switch (transcoder) { 147 case TRANSCODER_A: 148 return "A"; 149 case TRANSCODER_B: 150 return "B"; 151 case TRANSCODER_C: 152 return "C"; 153 case TRANSCODER_EDP: 154 return "EDP"; 155 case TRANSCODER_DSI_A: 156 return "DSI A"; 157 case TRANSCODER_DSI_C: 158 return "DSI C"; 159 default: 160 return "<invalid>"; 161 } 162 } 163 164 static inline bool transcoder_is_dsi(enum transcoder transcoder) 165 { 166 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C; 167 } 168 169 /* 170 * I915_MAX_PLANES in the enum below is the maximum (across all platforms) 171 * number of planes per CRTC. Not all platforms really have this many planes, 172 * which means some arrays of size I915_MAX_PLANES may have unused entries 173 * between the topmost sprite plane and the cursor plane. 174 */ 175 enum plane { 176 PLANE_A = 0, 177 PLANE_B, 178 PLANE_C, 179 PLANE_CURSOR, 180 I915_MAX_PLANES, 181 }; 182 #define plane_name(p) ((p) + 'A') 183 184 #define sprite_name(p, s) ((p) * INTEL_INFO(dev)->num_sprites[(p)] + (s) + 'A') 185 186 enum port { 187 PORT_A = 0, 188 PORT_B, 189 PORT_C, 190 PORT_D, 191 PORT_E, 192 I915_MAX_PORTS 193 }; 194 #define port_name(p) ((p) + 'A') 195 196 #define I915_NUM_PHYS_VLV 2 197 198 enum dpio_channel { 199 DPIO_CH0, 200 DPIO_CH1 201 }; 202 203 enum dpio_phy { 204 DPIO_PHY0, 205 DPIO_PHY1 206 }; 207 208 enum intel_display_power_domain { 209 POWER_DOMAIN_PIPE_A, 210 POWER_DOMAIN_PIPE_B, 211 POWER_DOMAIN_PIPE_C, 212 POWER_DOMAIN_PIPE_A_PANEL_FITTER, 213 POWER_DOMAIN_PIPE_B_PANEL_FITTER, 214 POWER_DOMAIN_PIPE_C_PANEL_FITTER, 215 POWER_DOMAIN_TRANSCODER_A, 216 POWER_DOMAIN_TRANSCODER_B, 217 POWER_DOMAIN_TRANSCODER_C, 218 POWER_DOMAIN_TRANSCODER_EDP, 219 POWER_DOMAIN_TRANSCODER_DSI_A, 220 POWER_DOMAIN_TRANSCODER_DSI_C, 221 POWER_DOMAIN_PORT_DDI_A_LANES, 222 POWER_DOMAIN_PORT_DDI_B_LANES, 223 POWER_DOMAIN_PORT_DDI_C_LANES, 224 POWER_DOMAIN_PORT_DDI_D_LANES, 225 POWER_DOMAIN_PORT_DDI_E_LANES, 226 POWER_DOMAIN_PORT_DSI, 227 POWER_DOMAIN_PORT_CRT, 228 POWER_DOMAIN_PORT_OTHER, 229 POWER_DOMAIN_VGA, 230 POWER_DOMAIN_AUDIO, 231 POWER_DOMAIN_PLLS, 232 POWER_DOMAIN_AUX_A, 233 POWER_DOMAIN_AUX_B, 234 POWER_DOMAIN_AUX_C, 235 POWER_DOMAIN_AUX_D, 236 POWER_DOMAIN_GMBUS, 237 POWER_DOMAIN_MODESET, 238 POWER_DOMAIN_INIT, 239 240 POWER_DOMAIN_NUM, 241 }; 242 243 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A) 244 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \ 245 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER) 246 #define POWER_DOMAIN_TRANSCODER(tran) \ 247 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \ 248 (tran) + POWER_DOMAIN_TRANSCODER_A) 249 250 enum hpd_pin { 251 HPD_NONE = 0, 252 HPD_TV = HPD_NONE, /* TV is known to be unreliable */ 253 HPD_CRT, 254 HPD_SDVO_B, 255 HPD_SDVO_C, 256 HPD_PORT_A, 257 HPD_PORT_B, 258 HPD_PORT_C, 259 HPD_PORT_D, 260 HPD_PORT_E, 261 HPD_NUM_PINS 262 }; 263 264 #define for_each_hpd_pin(__pin) \ 265 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++) 266 267 struct i915_hotplug { 268 struct work_struct hotplug_work; 269 270 struct { 271 unsigned long last_jiffies; 272 int count; 273 enum { 274 HPD_ENABLED = 0, 275 HPD_DISABLED = 1, 276 HPD_MARK_DISABLED = 2 277 } state; 278 } stats[HPD_NUM_PINS]; 279 u32 event_bits; 280 struct delayed_work reenable_work; 281 282 struct intel_digital_port *irq_port[I915_MAX_PORTS]; 283 u32 long_port_mask; 284 u32 short_port_mask; 285 struct work_struct dig_port_work; 286 287 struct work_struct poll_init_work; 288 bool poll_enabled; 289 290 /* 291 * if we get a HPD irq from DP and a HPD irq from non-DP 292 * the non-DP HPD could block the workqueue on a mode config 293 * mutex getting, that userspace may have taken. However 294 * userspace is waiting on the DP workqueue to run which is 295 * blocked behind the non-DP one. 296 */ 297 struct workqueue_struct *dp_wq; 298 }; 299 300 #define I915_GEM_GPU_DOMAINS \ 301 (I915_GEM_DOMAIN_RENDER | \ 302 I915_GEM_DOMAIN_SAMPLER | \ 303 I915_GEM_DOMAIN_COMMAND | \ 304 I915_GEM_DOMAIN_INSTRUCTION | \ 305 I915_GEM_DOMAIN_VERTEX) 306 307 #define for_each_pipe(__dev_priv, __p) \ 308 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) 309 #define for_each_pipe_masked(__dev_priv, __p, __mask) \ 310 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \ 311 for_each_if ((__mask) & (1 << (__p))) 312 #define for_each_plane(__dev_priv, __pipe, __p) \ 313 for ((__p) = 0; \ 314 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \ 315 (__p)++) 316 #define for_each_sprite(__dev_priv, __p, __s) \ 317 for ((__s) = 0; \ 318 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \ 319 (__s)++) 320 321 #define for_each_port_masked(__port, __ports_mask) \ 322 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \ 323 for_each_if ((__ports_mask) & (1 << (__port))) 324 325 #define for_each_crtc(dev, crtc) \ 326 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head) 327 328 #define for_each_intel_plane(dev, intel_plane) \ 329 list_for_each_entry(intel_plane, \ 330 &(dev)->mode_config.plane_list, \ 331 base.head) 332 333 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \ 334 list_for_each_entry(intel_plane, \ 335 &(dev)->mode_config.plane_list, \ 336 base.head) \ 337 for_each_if ((plane_mask) & \ 338 (1 << drm_plane_index(&intel_plane->base))) 339 340 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \ 341 list_for_each_entry(intel_plane, \ 342 &(dev)->mode_config.plane_list, \ 343 base.head) \ 344 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe) 345 346 #define for_each_intel_crtc(dev, intel_crtc) \ 347 list_for_each_entry(intel_crtc, \ 348 &(dev)->mode_config.crtc_list, \ 349 base.head) 350 351 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \ 352 list_for_each_entry(intel_crtc, \ 353 &(dev)->mode_config.crtc_list, \ 354 base.head) \ 355 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base))) 356 357 #define for_each_intel_encoder(dev, intel_encoder) \ 358 list_for_each_entry(intel_encoder, \ 359 &(dev)->mode_config.encoder_list, \ 360 base.head) 361 362 #define for_each_intel_connector(dev, intel_connector) \ 363 list_for_each_entry(intel_connector, \ 364 &(dev)->mode_config.connector_list, \ 365 base.head) 366 367 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \ 368 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \ 369 for_each_if ((intel_encoder)->base.crtc == (__crtc)) 370 371 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \ 372 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \ 373 for_each_if ((intel_connector)->base.encoder == (__encoder)) 374 375 #define for_each_power_domain(domain, mask) \ 376 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \ 377 for_each_if ((1 << (domain)) & (mask)) 378 379 struct drm_i915_private; 380 struct i915_mm_struct; 381 struct i915_mmu_object; 382 383 struct drm_i915_file_private { 384 struct drm_i915_private *dev_priv; 385 struct drm_file *file; 386 387 struct { 388 spinlock_t lock; 389 struct list_head request_list; 390 /* 20ms is a fairly arbitrary limit (greater than the average frame time) 391 * chosen to prevent the CPU getting more than a frame ahead of the GPU 392 * (when using lax throttling for the frontbuffer). We also use it to 393 * offer free GPU waitboosts for severely congested workloads. 394 */ 395 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20) 396 } mm; 397 struct idr context_idr; 398 399 struct intel_rps_client { 400 struct list_head link; 401 unsigned boosts; 402 } rps; 403 404 unsigned int bsd_ring; 405 }; 406 407 /* Used by dp and fdi links */ 408 struct intel_link_m_n { 409 uint32_t tu; 410 uint32_t gmch_m; 411 uint32_t gmch_n; 412 uint32_t link_m; 413 uint32_t link_n; 414 }; 415 416 void intel_link_compute_m_n(int bpp, int nlanes, 417 int pixel_clock, int link_clock, 418 struct intel_link_m_n *m_n); 419 420 /* Interface history: 421 * 422 * 1.1: Original. 423 * 1.2: Add Power Management 424 * 1.3: Add vblank support 425 * 1.4: Fix cmdbuffer path, add heap destroy 426 * 1.5: Add vblank pipe configuration 427 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank 428 * - Support vertical blank on secondary display pipe 429 */ 430 #define DRIVER_MAJOR 1 431 #define DRIVER_MINOR 6 432 #define DRIVER_PATCHLEVEL 0 433 434 #define WATCH_LISTS 0 435 436 struct opregion_header; 437 struct opregion_acpi; 438 struct opregion_swsci; 439 struct opregion_asle; 440 441 struct intel_opregion { 442 struct opregion_header *header; 443 struct opregion_acpi *acpi; 444 struct opregion_swsci *swsci; 445 u32 swsci_gbda_sub_functions; 446 u32 swsci_sbcb_sub_functions; 447 struct opregion_asle *asle; 448 void *rvda; 449 const void *vbt; 450 u32 vbt_size; 451 u32 *lid_state; 452 struct work_struct asle_work; 453 }; 454 #define OPREGION_SIZE (8*1024) 455 456 struct intel_overlay; 457 struct intel_overlay_error_state; 458 459 #define I915_FENCE_REG_NONE -1 460 #define I915_MAX_NUM_FENCES 32 461 /* 32 fences + sign bit for FENCE_REG_NONE */ 462 #define I915_MAX_NUM_FENCE_BITS 6 463 464 struct drm_i915_fence_reg { 465 struct list_head lru_list; 466 struct drm_i915_gem_object *obj; 467 int pin_count; 468 }; 469 470 struct sdvo_device_mapping { 471 u8 initialized; 472 u8 dvo_port; 473 u8 slave_addr; 474 u8 dvo_wiring; 475 u8 i2c_pin; 476 u8 ddc_pin; 477 }; 478 479 struct intel_display_error_state; 480 481 struct drm_i915_error_state { 482 struct kref ref; 483 struct timeval time; 484 485 char error_msg[128]; 486 bool simulated; 487 int iommu; 488 u32 reset_count; 489 u32 suspend_count; 490 491 /* Generic register state */ 492 u32 eir; 493 u32 pgtbl_er; 494 u32 ier; 495 u32 gtier[4]; 496 u32 ccid; 497 u32 derrmr; 498 u32 forcewake; 499 u32 error; /* gen6+ */ 500 u32 err_int; /* gen7 */ 501 u32 fault_data0; /* gen8, gen9 */ 502 u32 fault_data1; /* gen8, gen9 */ 503 u32 done_reg; 504 u32 gac_eco; 505 u32 gam_ecochk; 506 u32 gab_ctl; 507 u32 gfx_mode; 508 u32 extra_instdone[I915_NUM_INSTDONE_REG]; 509 u64 fence[I915_MAX_NUM_FENCES]; 510 struct intel_overlay_error_state *overlay; 511 struct intel_display_error_state *display; 512 struct drm_i915_error_object *semaphore_obj; 513 514 struct drm_i915_error_ring { 515 bool valid; 516 /* Software tracked state */ 517 bool waiting; 518 int num_waiters; 519 int hangcheck_score; 520 enum intel_ring_hangcheck_action hangcheck_action; 521 int num_requests; 522 523 /* our own tracking of ring head and tail */ 524 u32 cpu_ring_head; 525 u32 cpu_ring_tail; 526 527 u32 last_seqno; 528 u32 semaphore_seqno[I915_NUM_ENGINES - 1]; 529 530 /* Register state */ 531 u32 start; 532 u32 tail; 533 u32 head; 534 u32 ctl; 535 u32 hws; 536 u32 ipeir; 537 u32 ipehr; 538 u32 instdone; 539 u32 bbstate; 540 u32 instpm; 541 u32 instps; 542 u32 seqno; 543 u64 bbaddr; 544 u64 acthd; 545 u32 fault_reg; 546 u64 faddr; 547 u32 rc_psmi; /* sleep state */ 548 u32 semaphore_mboxes[I915_NUM_ENGINES - 1]; 549 550 struct drm_i915_error_object { 551 int page_count; 552 u64 gtt_offset; 553 u32 *pages[0]; 554 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page; 555 556 struct drm_i915_error_object *wa_ctx; 557 558 struct drm_i915_error_request { 559 long jiffies; 560 u32 seqno; 561 u32 tail; 562 } *requests; 563 564 struct drm_i915_error_waiter { 565 char comm[TASK_COMM_LEN]; 566 pid_t pid; 567 u32 seqno; 568 } *waiters; 569 570 struct { 571 u32 gfx_mode; 572 union { 573 u64 pdp[4]; 574 u32 pp_dir_base; 575 }; 576 } vm_info; 577 578 pid_t pid; 579 char comm[TASK_COMM_LEN]; 580 } ring[I915_NUM_ENGINES]; 581 582 struct drm_i915_error_buffer { 583 u32 size; 584 u32 name; 585 u32 rseqno[I915_NUM_ENGINES], wseqno; 586 u64 gtt_offset; 587 u32 read_domains; 588 u32 write_domain; 589 s32 fence_reg:I915_MAX_NUM_FENCE_BITS; 590 s32 pinned:2; 591 u32 tiling:2; 592 u32 dirty:1; 593 u32 purgeable:1; 594 u32 userptr:1; 595 s32 ring:4; 596 u32 cache_level:3; 597 } **active_bo, **pinned_bo; 598 599 u32 *active_bo_count, *pinned_bo_count; 600 u32 vm_count; 601 }; 602 603 struct intel_connector; 604 struct intel_encoder; 605 struct intel_crtc_state; 606 struct intel_initial_plane_config; 607 struct intel_crtc; 608 struct intel_limit; 609 struct dpll; 610 611 struct drm_i915_display_funcs { 612 int (*get_display_clock_speed)(struct drm_device *dev); 613 int (*get_fifo_size)(struct drm_device *dev, int plane); 614 int (*compute_pipe_wm)(struct intel_crtc_state *cstate); 615 int (*compute_intermediate_wm)(struct drm_device *dev, 616 struct intel_crtc *intel_crtc, 617 struct intel_crtc_state *newstate); 618 void (*initial_watermarks)(struct intel_crtc_state *cstate); 619 void (*optimize_watermarks)(struct intel_crtc_state *cstate); 620 int (*compute_global_watermarks)(struct drm_atomic_state *state); 621 void (*update_wm)(struct drm_crtc *crtc); 622 int (*modeset_calc_cdclk)(struct drm_atomic_state *state); 623 void (*modeset_commit_cdclk)(struct drm_atomic_state *state); 624 /* Returns the active state of the crtc, and if the crtc is active, 625 * fills out the pipe-config with the hw state. */ 626 bool (*get_pipe_config)(struct intel_crtc *, 627 struct intel_crtc_state *); 628 void (*get_initial_plane_config)(struct intel_crtc *, 629 struct intel_initial_plane_config *); 630 int (*crtc_compute_clock)(struct intel_crtc *crtc, 631 struct intel_crtc_state *crtc_state); 632 void (*crtc_enable)(struct drm_crtc *crtc); 633 void (*crtc_disable)(struct drm_crtc *crtc); 634 void (*audio_codec_enable)(struct drm_connector *connector, 635 struct intel_encoder *encoder, 636 const struct drm_display_mode *adjusted_mode); 637 void (*audio_codec_disable)(struct intel_encoder *encoder); 638 void (*fdi_link_train)(struct drm_crtc *crtc); 639 void (*init_clock_gating)(struct drm_device *dev); 640 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc, 641 struct drm_framebuffer *fb, 642 struct drm_i915_gem_object *obj, 643 struct drm_i915_gem_request *req, 644 uint32_t flags); 645 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv); 646 /* clock updates for mode set */ 647 /* cursor updates */ 648 /* render clock increase/decrease */ 649 /* display clock increase/decrease */ 650 /* pll clock increase/decrease */ 651 652 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state); 653 void (*load_luts)(struct drm_crtc_state *crtc_state); 654 }; 655 656 enum forcewake_domain_id { 657 FW_DOMAIN_ID_RENDER = 0, 658 FW_DOMAIN_ID_BLITTER, 659 FW_DOMAIN_ID_MEDIA, 660 661 FW_DOMAIN_ID_COUNT 662 }; 663 664 enum forcewake_domains { 665 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER), 666 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER), 667 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA), 668 FORCEWAKE_ALL = (FORCEWAKE_RENDER | 669 FORCEWAKE_BLITTER | 670 FORCEWAKE_MEDIA) 671 }; 672 673 #define FW_REG_READ (1) 674 #define FW_REG_WRITE (2) 675 676 enum forcewake_domains 677 intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv, 678 i915_reg_t reg, unsigned int op); 679 680 struct intel_uncore_funcs { 681 void (*force_wake_get)(struct drm_i915_private *dev_priv, 682 enum forcewake_domains domains); 683 void (*force_wake_put)(struct drm_i915_private *dev_priv, 684 enum forcewake_domains domains); 685 686 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 687 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 688 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 689 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); 690 691 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r, 692 uint8_t val, bool trace); 693 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r, 694 uint16_t val, bool trace); 695 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r, 696 uint32_t val, bool trace); 697 void (*mmio_writeq)(struct drm_i915_private *dev_priv, i915_reg_t r, 698 uint64_t val, bool trace); 699 }; 700 701 struct intel_uncore { 702 spinlock_t lock; /** lock is also taken in irq contexts. */ 703 704 struct intel_uncore_funcs funcs; 705 706 unsigned fifo_count; 707 enum forcewake_domains fw_domains; 708 709 struct intel_uncore_forcewake_domain { 710 struct drm_i915_private *i915; 711 enum forcewake_domain_id id; 712 enum forcewake_domains mask; 713 unsigned wake_count; 714 struct hrtimer timer; 715 i915_reg_t reg_set; 716 u32 val_set; 717 u32 val_clear; 718 i915_reg_t reg_ack; 719 i915_reg_t reg_post; 720 u32 val_reset; 721 } fw_domain[FW_DOMAIN_ID_COUNT]; 722 723 int unclaimed_mmio_check; 724 }; 725 726 /* Iterate over initialised fw domains */ 727 #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \ 728 for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \ 729 (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \ 730 (domain__)++) \ 731 for_each_if ((mask__) & (domain__)->mask) 732 733 #define for_each_fw_domain(domain__, dev_priv__) \ 734 for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__) 735 736 #define CSR_VERSION(major, minor) ((major) << 16 | (minor)) 737 #define CSR_VERSION_MAJOR(version) ((version) >> 16) 738 #define CSR_VERSION_MINOR(version) ((version) & 0xffff) 739 740 struct intel_csr { 741 struct work_struct work; 742 const char *fw_path; 743 uint32_t *dmc_payload; 744 uint32_t dmc_fw_size; 745 uint32_t version; 746 uint32_t mmio_count; 747 i915_reg_t mmioaddr[8]; 748 uint32_t mmiodata[8]; 749 uint32_t dc_state; 750 uint32_t allowed_dc_mask; 751 }; 752 753 #define DEV_INFO_FOR_EACH_FLAG(func, sep) \ 754 func(is_mobile) sep \ 755 func(is_i85x) sep \ 756 func(is_i915g) sep \ 757 func(is_i945gm) sep \ 758 func(is_g33) sep \ 759 func(need_gfx_hws) sep \ 760 func(is_g4x) sep \ 761 func(is_pineview) sep \ 762 func(is_broadwater) sep \ 763 func(is_crestline) sep \ 764 func(is_ivybridge) sep \ 765 func(is_valleyview) sep \ 766 func(is_cherryview) sep \ 767 func(is_haswell) sep \ 768 func(is_broadwell) sep \ 769 func(is_skylake) sep \ 770 func(is_broxton) sep \ 771 func(is_kabylake) sep \ 772 func(is_preliminary) sep \ 773 func(has_fbc) sep \ 774 func(has_pipe_cxsr) sep \ 775 func(has_hotplug) sep \ 776 func(cursor_needs_physical) sep \ 777 func(has_overlay) sep \ 778 func(overlay_needs_physical) sep \ 779 func(supports_tv) sep \ 780 func(has_llc) sep \ 781 func(has_snoop) sep \ 782 func(has_ddi) sep \ 783 func(has_fpga_dbg) sep \ 784 func(has_pooled_eu) 785 786 #define DEFINE_FLAG(name) u8 name:1 787 #define SEP_SEMICOLON ; 788 789 struct intel_device_info { 790 u32 display_mmio_offset; 791 u16 device_id; 792 u8 num_pipes; 793 u8 num_sprites[I915_MAX_PIPES]; 794 u8 gen; 795 u16 gen_mask; 796 u8 ring_mask; /* Rings supported by the HW */ 797 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG, SEP_SEMICOLON); 798 /* Register offsets for the various display pipes and transcoders */ 799 int pipe_offsets[I915_MAX_TRANSCODERS]; 800 int trans_offsets[I915_MAX_TRANSCODERS]; 801 int palette_offsets[I915_MAX_PIPES]; 802 int cursor_offsets[I915_MAX_PIPES]; 803 804 /* Slice/subslice/EU info */ 805 u8 slice_total; 806 u8 subslice_total; 807 u8 subslice_per_slice; 808 u8 eu_total; 809 u8 eu_per_subslice; 810 u8 min_eu_in_pool; 811 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */ 812 u8 subslice_7eu[3]; 813 u8 has_slice_pg:1; 814 u8 has_subslice_pg:1; 815 u8 has_eu_pg:1; 816 817 struct color_luts { 818 u16 degamma_lut_size; 819 u16 gamma_lut_size; 820 } color; 821 }; 822 823 #undef DEFINE_FLAG 824 #undef SEP_SEMICOLON 825 826 enum i915_cache_level { 827 I915_CACHE_NONE = 0, 828 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */ 829 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc 830 caches, eg sampler/render caches, and the 831 large Last-Level-Cache. LLC is coherent with 832 the CPU, but L3 is only visible to the GPU. */ 833 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */ 834 }; 835 836 struct i915_ctx_hang_stats { 837 /* This context had batch pending when hang was declared */ 838 unsigned batch_pending; 839 840 /* This context had batch active when hang was declared */ 841 unsigned batch_active; 842 843 /* Time when this context was last blamed for a GPU reset */ 844 unsigned long guilty_ts; 845 846 /* If the contexts causes a second GPU hang within this time, 847 * it is permanently banned from submitting any more work. 848 */ 849 unsigned long ban_period_seconds; 850 851 /* This context is banned to submit more work */ 852 bool banned; 853 }; 854 855 /* This must match up with the value previously used for execbuf2.rsvd1. */ 856 #define DEFAULT_CONTEXT_HANDLE 0 857 858 /** 859 * struct i915_gem_context - as the name implies, represents a context. 860 * @ref: reference count. 861 * @user_handle: userspace tracking identity for this context. 862 * @remap_slice: l3 row remapping information. 863 * @flags: context specific flags: 864 * CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0. 865 * @file_priv: filp associated with this context (NULL for global default 866 * context). 867 * @hang_stats: information about the role of this context in possible GPU 868 * hangs. 869 * @ppgtt: virtual memory space used by this context. 870 * @legacy_hw_ctx: render context backing object and whether it is correctly 871 * initialized (legacy ring submission mechanism only). 872 * @link: link in the global list of contexts. 873 * 874 * Contexts are memory images used by the hardware to store copies of their 875 * internal state. 876 */ 877 struct i915_gem_context { 878 struct kref ref; 879 struct drm_i915_private *i915; 880 struct drm_i915_file_private *file_priv; 881 struct i915_hw_ppgtt *ppgtt; 882 883 struct i915_ctx_hang_stats hang_stats; 884 885 /* Unique identifier for this context, used by the hw for tracking */ 886 unsigned long flags; 887 #define CONTEXT_NO_ZEROMAP BIT(0) 888 #define CONTEXT_NO_ERROR_CAPTURE BIT(1) 889 unsigned hw_id; 890 u32 user_handle; 891 892 u32 ggtt_alignment; 893 894 struct intel_context { 895 struct drm_i915_gem_object *state; 896 struct intel_ringbuffer *ringbuf; 897 struct i915_vma *lrc_vma; 898 uint32_t *lrc_reg_state; 899 u64 lrc_desc; 900 int pin_count; 901 bool initialised; 902 } engine[I915_NUM_ENGINES]; 903 u32 ring_size; 904 u32 desc_template; 905 struct atomic_notifier_head status_notifier; 906 bool execlists_force_single_submission; 907 908 struct list_head link; 909 910 u8 remap_slice; 911 }; 912 913 enum fb_op_origin { 914 ORIGIN_GTT, 915 ORIGIN_CPU, 916 ORIGIN_CS, 917 ORIGIN_FLIP, 918 ORIGIN_DIRTYFB, 919 }; 920 921 struct intel_fbc { 922 /* This is always the inner lock when overlapping with struct_mutex and 923 * it's the outer lock when overlapping with stolen_lock. */ 924 struct mutex lock; 925 unsigned threshold; 926 unsigned int possible_framebuffer_bits; 927 unsigned int busy_bits; 928 unsigned int visible_pipes_mask; 929 struct intel_crtc *crtc; 930 931 struct drm_mm_node compressed_fb; 932 struct drm_mm_node *compressed_llb; 933 934 bool false_color; 935 936 bool enabled; 937 bool active; 938 939 struct intel_fbc_state_cache { 940 struct { 941 unsigned int mode_flags; 942 uint32_t hsw_bdw_pixel_rate; 943 } crtc; 944 945 struct { 946 unsigned int rotation; 947 int src_w; 948 int src_h; 949 bool visible; 950 } plane; 951 952 struct { 953 u64 ilk_ggtt_offset; 954 uint32_t pixel_format; 955 unsigned int stride; 956 int fence_reg; 957 unsigned int tiling_mode; 958 } fb; 959 } state_cache; 960 961 struct intel_fbc_reg_params { 962 struct { 963 enum pipe pipe; 964 enum plane plane; 965 unsigned int fence_y_offset; 966 } crtc; 967 968 struct { 969 u64 ggtt_offset; 970 uint32_t pixel_format; 971 unsigned int stride; 972 int fence_reg; 973 } fb; 974 975 int cfb_size; 976 } params; 977 978 struct intel_fbc_work { 979 bool scheduled; 980 u32 scheduled_vblank; 981 struct work_struct work; 982 } work; 983 984 const char *no_fbc_reason; 985 }; 986 987 /** 988 * HIGH_RR is the highest eDP panel refresh rate read from EDID 989 * LOW_RR is the lowest eDP panel refresh rate found from EDID 990 * parsing for same resolution. 991 */ 992 enum drrs_refresh_rate_type { 993 DRRS_HIGH_RR, 994 DRRS_LOW_RR, 995 DRRS_MAX_RR, /* RR count */ 996 }; 997 998 enum drrs_support_type { 999 DRRS_NOT_SUPPORTED = 0, 1000 STATIC_DRRS_SUPPORT = 1, 1001 SEAMLESS_DRRS_SUPPORT = 2 1002 }; 1003 1004 struct intel_dp; 1005 struct i915_drrs { 1006 struct mutex mutex; 1007 struct delayed_work work; 1008 struct intel_dp *dp; 1009 unsigned busy_frontbuffer_bits; 1010 enum drrs_refresh_rate_type refresh_rate_type; 1011 enum drrs_support_type type; 1012 }; 1013 1014 struct i915_psr { 1015 struct mutex lock; 1016 bool sink_support; 1017 bool source_ok; 1018 struct intel_dp *enabled; 1019 bool active; 1020 struct delayed_work work; 1021 unsigned busy_frontbuffer_bits; 1022 bool psr2_support; 1023 bool aux_frame_sync; 1024 bool link_standby; 1025 }; 1026 1027 enum intel_pch { 1028 PCH_NONE = 0, /* No PCH present */ 1029 PCH_IBX, /* Ibexpeak PCH */ 1030 PCH_CPT, /* Cougarpoint PCH */ 1031 PCH_LPT, /* Lynxpoint PCH */ 1032 PCH_SPT, /* Sunrisepoint PCH */ 1033 PCH_KBP, /* Kabypoint PCH */ 1034 PCH_NOP, 1035 }; 1036 1037 enum intel_sbi_destination { 1038 SBI_ICLK, 1039 SBI_MPHY, 1040 }; 1041 1042 #define QUIRK_PIPEA_FORCE (1<<0) 1043 #define QUIRK_LVDS_SSC_DISABLE (1<<1) 1044 #define QUIRK_INVERT_BRIGHTNESS (1<<2) 1045 #define QUIRK_BACKLIGHT_PRESENT (1<<3) 1046 #define QUIRK_PIPEB_FORCE (1<<4) 1047 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5) 1048 1049 struct intel_fbdev; 1050 struct intel_fbc_work; 1051 1052 struct intel_gmbus { 1053 struct i2c_adapter adapter; 1054 #define GMBUS_FORCE_BIT_RETRY (1U << 31) 1055 u32 force_bit; 1056 u32 reg0; 1057 i915_reg_t gpio_reg; 1058 struct i2c_algo_bit_data bit_algo; 1059 struct drm_i915_private *dev_priv; 1060 }; 1061 1062 struct i915_suspend_saved_registers { 1063 u32 saveDSPARB; 1064 u32 saveLVDS; 1065 u32 savePP_ON_DELAYS; 1066 u32 savePP_OFF_DELAYS; 1067 u32 savePP_ON; 1068 u32 savePP_OFF; 1069 u32 savePP_CONTROL; 1070 u32 savePP_DIVISOR; 1071 u32 saveFBC_CONTROL; 1072 u32 saveCACHE_MODE_0; 1073 u32 saveMI_ARB_STATE; 1074 u32 saveSWF0[16]; 1075 u32 saveSWF1[16]; 1076 u32 saveSWF3[3]; 1077 uint64_t saveFENCE[I915_MAX_NUM_FENCES]; 1078 u32 savePCH_PORT_HOTPLUG; 1079 u16 saveGCDGMBUS; 1080 }; 1081 1082 struct vlv_s0ix_state { 1083 /* GAM */ 1084 u32 wr_watermark; 1085 u32 gfx_prio_ctrl; 1086 u32 arb_mode; 1087 u32 gfx_pend_tlb0; 1088 u32 gfx_pend_tlb1; 1089 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM]; 1090 u32 media_max_req_count; 1091 u32 gfx_max_req_count; 1092 u32 render_hwsp; 1093 u32 ecochk; 1094 u32 bsd_hwsp; 1095 u32 blt_hwsp; 1096 u32 tlb_rd_addr; 1097 1098 /* MBC */ 1099 u32 g3dctl; 1100 u32 gsckgctl; 1101 u32 mbctl; 1102 1103 /* GCP */ 1104 u32 ucgctl1; 1105 u32 ucgctl3; 1106 u32 rcgctl1; 1107 u32 rcgctl2; 1108 u32 rstctl; 1109 u32 misccpctl; 1110 1111 /* GPM */ 1112 u32 gfxpause; 1113 u32 rpdeuhwtc; 1114 u32 rpdeuc; 1115 u32 ecobus; 1116 u32 pwrdwnupctl; 1117 u32 rp_down_timeout; 1118 u32 rp_deucsw; 1119 u32 rcubmabdtmr; 1120 u32 rcedata; 1121 u32 spare2gh; 1122 1123 /* Display 1 CZ domain */ 1124 u32 gt_imr; 1125 u32 gt_ier; 1126 u32 pm_imr; 1127 u32 pm_ier; 1128 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM]; 1129 1130 /* GT SA CZ domain */ 1131 u32 tilectl; 1132 u32 gt_fifoctl; 1133 u32 gtlc_wake_ctrl; 1134 u32 gtlc_survive; 1135 u32 pmwgicz; 1136 1137 /* Display 2 CZ domain */ 1138 u32 gu_ctl0; 1139 u32 gu_ctl1; 1140 u32 pcbr; 1141 u32 clock_gate_dis2; 1142 }; 1143 1144 struct intel_rps_ei { 1145 u32 cz_clock; 1146 u32 render_c0; 1147 u32 media_c0; 1148 }; 1149 1150 struct intel_gen6_power_mgmt { 1151 /* 1152 * work, interrupts_enabled and pm_iir are protected by 1153 * dev_priv->irq_lock 1154 */ 1155 struct work_struct work; 1156 bool interrupts_enabled; 1157 u32 pm_iir; 1158 1159 u32 pm_intr_keep; 1160 1161 /* Frequencies are stored in potentially platform dependent multiples. 1162 * In other words, *_freq needs to be multiplied by X to be interesting. 1163 * Soft limits are those which are used for the dynamic reclocking done 1164 * by the driver (raise frequencies under heavy loads, and lower for 1165 * lighter loads). Hard limits are those imposed by the hardware. 1166 * 1167 * A distinction is made for overclocking, which is never enabled by 1168 * default, and is considered to be above the hard limit if it's 1169 * possible at all. 1170 */ 1171 u8 cur_freq; /* Current frequency (cached, may not == HW) */ 1172 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */ 1173 u8 max_freq_softlimit; /* Max frequency permitted by the driver */ 1174 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */ 1175 u8 min_freq; /* AKA RPn. Minimum frequency */ 1176 u8 idle_freq; /* Frequency to request when we are idle */ 1177 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */ 1178 u8 rp1_freq; /* "less than" RP0 power/freqency */ 1179 u8 rp0_freq; /* Non-overclocked max frequency. */ 1180 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */ 1181 1182 u8 up_threshold; /* Current %busy required to uplock */ 1183 u8 down_threshold; /* Current %busy required to downclock */ 1184 1185 int last_adj; 1186 enum { LOW_POWER, BETWEEN, HIGH_POWER } power; 1187 1188 spinlock_t client_lock; 1189 struct list_head clients; 1190 bool client_boost; 1191 1192 bool enabled; 1193 struct delayed_work delayed_resume_work; 1194 unsigned boosts; 1195 1196 struct intel_rps_client semaphores, mmioflips; 1197 1198 /* manual wa residency calculations */ 1199 struct intel_rps_ei up_ei, down_ei; 1200 1201 /* 1202 * Protects RPS/RC6 register access and PCU communication. 1203 * Must be taken after struct_mutex if nested. Note that 1204 * this lock may be held for long periods of time when 1205 * talking to hw - so only take it when talking to hw! 1206 */ 1207 struct mutex hw_lock; 1208 }; 1209 1210 /* defined intel_pm.c */ 1211 extern spinlock_t mchdev_lock; 1212 1213 struct intel_ilk_power_mgmt { 1214 u8 cur_delay; 1215 u8 min_delay; 1216 u8 max_delay; 1217 u8 fmax; 1218 u8 fstart; 1219 1220 u64 last_count1; 1221 unsigned long last_time1; 1222 unsigned long chipset_power; 1223 u64 last_count2; 1224 u64 last_time2; 1225 unsigned long gfx_power; 1226 u8 corr; 1227 1228 int c_m; 1229 int r_t; 1230 }; 1231 1232 struct drm_i915_private; 1233 struct i915_power_well; 1234 1235 struct i915_power_well_ops { 1236 /* 1237 * Synchronize the well's hw state to match the current sw state, for 1238 * example enable/disable it based on the current refcount. Called 1239 * during driver init and resume time, possibly after first calling 1240 * the enable/disable handlers. 1241 */ 1242 void (*sync_hw)(struct drm_i915_private *dev_priv, 1243 struct i915_power_well *power_well); 1244 /* 1245 * Enable the well and resources that depend on it (for example 1246 * interrupts located on the well). Called after the 0->1 refcount 1247 * transition. 1248 */ 1249 void (*enable)(struct drm_i915_private *dev_priv, 1250 struct i915_power_well *power_well); 1251 /* 1252 * Disable the well and resources that depend on it. Called after 1253 * the 1->0 refcount transition. 1254 */ 1255 void (*disable)(struct drm_i915_private *dev_priv, 1256 struct i915_power_well *power_well); 1257 /* Returns the hw enabled state. */ 1258 bool (*is_enabled)(struct drm_i915_private *dev_priv, 1259 struct i915_power_well *power_well); 1260 }; 1261 1262 /* Power well structure for haswell */ 1263 struct i915_power_well { 1264 const char *name; 1265 bool always_on; 1266 /* power well enable/disable usage count */ 1267 int count; 1268 /* cached hw enabled state */ 1269 bool hw_enabled; 1270 unsigned long domains; 1271 unsigned long data; 1272 const struct i915_power_well_ops *ops; 1273 }; 1274 1275 struct i915_power_domains { 1276 /* 1277 * Power wells needed for initialization at driver init and suspend 1278 * time are on. They are kept on until after the first modeset. 1279 */ 1280 bool init_power_on; 1281 bool initializing; 1282 int power_well_count; 1283 1284 struct mutex lock; 1285 int domain_use_count[POWER_DOMAIN_NUM]; 1286 struct i915_power_well *power_wells; 1287 }; 1288 1289 #define MAX_L3_SLICES 2 1290 struct intel_l3_parity { 1291 u32 *remap_info[MAX_L3_SLICES]; 1292 struct work_struct error_work; 1293 int which_slice; 1294 }; 1295 1296 struct i915_gem_mm { 1297 /** Memory allocator for GTT stolen memory */ 1298 struct drm_mm stolen; 1299 /** Protects the usage of the GTT stolen memory allocator. This is 1300 * always the inner lock when overlapping with struct_mutex. */ 1301 struct mutex stolen_lock; 1302 1303 /** List of all objects in gtt_space. Used to restore gtt 1304 * mappings on resume */ 1305 struct list_head bound_list; 1306 /** 1307 * List of objects which are not bound to the GTT (thus 1308 * are idle and not used by the GPU) but still have 1309 * (presumably uncached) pages still attached. 1310 */ 1311 struct list_head unbound_list; 1312 1313 /** Usable portion of the GTT for GEM */ 1314 unsigned long stolen_base; /* limited to low memory (32-bit) */ 1315 1316 /** PPGTT used for aliasing the PPGTT with the GTT */ 1317 struct i915_hw_ppgtt *aliasing_ppgtt; 1318 1319 struct notifier_block oom_notifier; 1320 struct notifier_block vmap_notifier; 1321 struct shrinker shrinker; 1322 bool shrinker_no_lock_stealing; 1323 1324 /** LRU list of objects with fence regs on them. */ 1325 struct list_head fence_list; 1326 1327 /** 1328 * Are we in a non-interruptible section of code like 1329 * modesetting? 1330 */ 1331 bool interruptible; 1332 1333 /* the indicator for dispatch video commands on two BSD rings */ 1334 unsigned int bsd_ring_dispatch_index; 1335 1336 /** Bit 6 swizzling required for X tiling */ 1337 uint32_t bit_6_swizzle_x; 1338 /** Bit 6 swizzling required for Y tiling */ 1339 uint32_t bit_6_swizzle_y; 1340 1341 /* accounting, useful for userland debugging */ 1342 spinlock_t object_stat_lock; 1343 size_t object_memory; 1344 u32 object_count; 1345 }; 1346 1347 struct drm_i915_error_state_buf { 1348 struct drm_i915_private *i915; 1349 unsigned bytes; 1350 unsigned size; 1351 int err; 1352 u8 *buf; 1353 loff_t start; 1354 loff_t pos; 1355 }; 1356 1357 struct i915_error_state_file_priv { 1358 struct drm_device *dev; 1359 struct drm_i915_error_state *error; 1360 }; 1361 1362 struct i915_gpu_error { 1363 /* For hangcheck timer */ 1364 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */ 1365 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD) 1366 /* Hang gpu twice in this window and your context gets banned */ 1367 #define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000) 1368 1369 struct delayed_work hangcheck_work; 1370 1371 /* For reset and error_state handling. */ 1372 spinlock_t lock; 1373 /* Protected by the above dev->gpu_error.lock. */ 1374 struct drm_i915_error_state *first_error; 1375 1376 unsigned long missed_irq_rings; 1377 1378 /** 1379 * State variable controlling the reset flow and count 1380 * 1381 * This is a counter which gets incremented when reset is triggered, 1382 * and again when reset has been handled. So odd values (lowest bit set) 1383 * means that reset is in progress and even values that 1384 * (reset_counter >> 1):th reset was successfully completed. 1385 * 1386 * If reset is not completed succesfully, the I915_WEDGE bit is 1387 * set meaning that hardware is terminally sour and there is no 1388 * recovery. All waiters on the reset_queue will be woken when 1389 * that happens. 1390 * 1391 * This counter is used by the wait_seqno code to notice that reset 1392 * event happened and it needs to restart the entire ioctl (since most 1393 * likely the seqno it waited for won't ever signal anytime soon). 1394 * 1395 * This is important for lock-free wait paths, where no contended lock 1396 * naturally enforces the correct ordering between the bail-out of the 1397 * waiter and the gpu reset work code. 1398 */ 1399 atomic_t reset_counter; 1400 1401 #define I915_RESET_IN_PROGRESS_FLAG 1 1402 #define I915_WEDGED (1 << 31) 1403 1404 /** 1405 * Waitqueue to signal when a hang is detected. Used to for waiters 1406 * to release the struct_mutex for the reset to procede. 1407 */ 1408 wait_queue_head_t wait_queue; 1409 1410 /** 1411 * Waitqueue to signal when the reset has completed. Used by clients 1412 * that wait for dev_priv->mm.wedged to settle. 1413 */ 1414 wait_queue_head_t reset_queue; 1415 1416 /* For missed irq/seqno simulation. */ 1417 unsigned long test_irq_rings; 1418 }; 1419 1420 enum modeset_restore { 1421 MODESET_ON_LID_OPEN, 1422 MODESET_DONE, 1423 MODESET_SUSPENDED, 1424 }; 1425 1426 #define DP_AUX_A 0x40 1427 #define DP_AUX_B 0x10 1428 #define DP_AUX_C 0x20 1429 #define DP_AUX_D 0x30 1430 1431 #define DDC_PIN_B 0x05 1432 #define DDC_PIN_C 0x04 1433 #define DDC_PIN_D 0x06 1434 1435 struct ddi_vbt_port_info { 1436 /* 1437 * This is an index in the HDMI/DVI DDI buffer translation table. 1438 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't 1439 * populate this field. 1440 */ 1441 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff 1442 uint8_t hdmi_level_shift; 1443 1444 uint8_t supports_dvi:1; 1445 uint8_t supports_hdmi:1; 1446 uint8_t supports_dp:1; 1447 1448 uint8_t alternate_aux_channel; 1449 uint8_t alternate_ddc_pin; 1450 1451 uint8_t dp_boost_level; 1452 uint8_t hdmi_boost_level; 1453 }; 1454 1455 enum psr_lines_to_wait { 1456 PSR_0_LINES_TO_WAIT = 0, 1457 PSR_1_LINE_TO_WAIT, 1458 PSR_4_LINES_TO_WAIT, 1459 PSR_8_LINES_TO_WAIT 1460 }; 1461 1462 struct intel_vbt_data { 1463 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */ 1464 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */ 1465 1466 /* Feature bits */ 1467 unsigned int int_tv_support:1; 1468 unsigned int lvds_dither:1; 1469 unsigned int lvds_vbt:1; 1470 unsigned int int_crt_support:1; 1471 unsigned int lvds_use_ssc:1; 1472 unsigned int display_clock_mode:1; 1473 unsigned int fdi_rx_polarity_inverted:1; 1474 unsigned int panel_type:4; 1475 int lvds_ssc_freq; 1476 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */ 1477 1478 enum drrs_support_type drrs_type; 1479 1480 struct { 1481 int rate; 1482 int lanes; 1483 int preemphasis; 1484 int vswing; 1485 bool low_vswing; 1486 bool initialized; 1487 bool support; 1488 int bpp; 1489 struct edp_power_seq pps; 1490 } edp; 1491 1492 struct { 1493 bool full_link; 1494 bool require_aux_wakeup; 1495 int idle_frames; 1496 enum psr_lines_to_wait lines_to_wait; 1497 int tp1_wakeup_time; 1498 int tp2_tp3_wakeup_time; 1499 } psr; 1500 1501 struct { 1502 u16 pwm_freq_hz; 1503 bool present; 1504 bool active_low_pwm; 1505 u8 min_brightness; /* min_brightness/255 of max */ 1506 enum intel_backlight_type type; 1507 } backlight; 1508 1509 /* MIPI DSI */ 1510 struct { 1511 u16 panel_id; 1512 struct mipi_config *config; 1513 struct mipi_pps_data *pps; 1514 u8 seq_version; 1515 u32 size; 1516 u8 *data; 1517 const u8 *sequence[MIPI_SEQ_MAX]; 1518 } dsi; 1519 1520 int crt_ddc_pin; 1521 1522 int child_dev_num; 1523 union child_device_config *child_dev; 1524 1525 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS]; 1526 struct sdvo_device_mapping sdvo_mappings[2]; 1527 }; 1528 1529 enum intel_ddb_partitioning { 1530 INTEL_DDB_PART_1_2, 1531 INTEL_DDB_PART_5_6, /* IVB+ */ 1532 }; 1533 1534 struct intel_wm_level { 1535 bool enable; 1536 uint32_t pri_val; 1537 uint32_t spr_val; 1538 uint32_t cur_val; 1539 uint32_t fbc_val; 1540 }; 1541 1542 struct ilk_wm_values { 1543 uint32_t wm_pipe[3]; 1544 uint32_t wm_lp[3]; 1545 uint32_t wm_lp_spr[3]; 1546 uint32_t wm_linetime[3]; 1547 bool enable_fbc_wm; 1548 enum intel_ddb_partitioning partitioning; 1549 }; 1550 1551 struct vlv_pipe_wm { 1552 uint16_t primary; 1553 uint16_t sprite[2]; 1554 uint8_t cursor; 1555 }; 1556 1557 struct vlv_sr_wm { 1558 uint16_t plane; 1559 uint8_t cursor; 1560 }; 1561 1562 struct vlv_wm_values { 1563 struct vlv_pipe_wm pipe[3]; 1564 struct vlv_sr_wm sr; 1565 struct { 1566 uint8_t cursor; 1567 uint8_t sprite[2]; 1568 uint8_t primary; 1569 } ddl[3]; 1570 uint8_t level; 1571 bool cxsr; 1572 }; 1573 1574 struct skl_ddb_entry { 1575 uint16_t start, end; /* in number of blocks, 'end' is exclusive */ 1576 }; 1577 1578 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry) 1579 { 1580 return entry->end - entry->start; 1581 } 1582 1583 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1, 1584 const struct skl_ddb_entry *e2) 1585 { 1586 if (e1->start == e2->start && e1->end == e2->end) 1587 return true; 1588 1589 return false; 1590 } 1591 1592 struct skl_ddb_allocation { 1593 struct skl_ddb_entry pipe[I915_MAX_PIPES]; 1594 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */ 1595 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES]; 1596 }; 1597 1598 struct skl_wm_values { 1599 unsigned dirty_pipes; 1600 struct skl_ddb_allocation ddb; 1601 uint32_t wm_linetime[I915_MAX_PIPES]; 1602 uint32_t plane[I915_MAX_PIPES][I915_MAX_PLANES][8]; 1603 uint32_t plane_trans[I915_MAX_PIPES][I915_MAX_PLANES]; 1604 }; 1605 1606 struct skl_wm_level { 1607 bool plane_en[I915_MAX_PLANES]; 1608 uint16_t plane_res_b[I915_MAX_PLANES]; 1609 uint8_t plane_res_l[I915_MAX_PLANES]; 1610 }; 1611 1612 /* 1613 * This struct helps tracking the state needed for runtime PM, which puts the 1614 * device in PCI D3 state. Notice that when this happens, nothing on the 1615 * graphics device works, even register access, so we don't get interrupts nor 1616 * anything else. 1617 * 1618 * Every piece of our code that needs to actually touch the hardware needs to 1619 * either call intel_runtime_pm_get or call intel_display_power_get with the 1620 * appropriate power domain. 1621 * 1622 * Our driver uses the autosuspend delay feature, which means we'll only really 1623 * suspend if we stay with zero refcount for a certain amount of time. The 1624 * default value is currently very conservative (see intel_runtime_pm_enable), but 1625 * it can be changed with the standard runtime PM files from sysfs. 1626 * 1627 * The irqs_disabled variable becomes true exactly after we disable the IRQs and 1628 * goes back to false exactly before we reenable the IRQs. We use this variable 1629 * to check if someone is trying to enable/disable IRQs while they're supposed 1630 * to be disabled. This shouldn't happen and we'll print some error messages in 1631 * case it happens. 1632 * 1633 * For more, read the Documentation/power/runtime_pm.txt. 1634 */ 1635 struct i915_runtime_pm { 1636 atomic_t wakeref_count; 1637 atomic_t atomic_seq; 1638 bool suspended; 1639 bool irqs_enabled; 1640 }; 1641 1642 enum intel_pipe_crc_source { 1643 INTEL_PIPE_CRC_SOURCE_NONE, 1644 INTEL_PIPE_CRC_SOURCE_PLANE1, 1645 INTEL_PIPE_CRC_SOURCE_PLANE2, 1646 INTEL_PIPE_CRC_SOURCE_PF, 1647 INTEL_PIPE_CRC_SOURCE_PIPE, 1648 /* TV/DP on pre-gen5/vlv can't use the pipe source. */ 1649 INTEL_PIPE_CRC_SOURCE_TV, 1650 INTEL_PIPE_CRC_SOURCE_DP_B, 1651 INTEL_PIPE_CRC_SOURCE_DP_C, 1652 INTEL_PIPE_CRC_SOURCE_DP_D, 1653 INTEL_PIPE_CRC_SOURCE_AUTO, 1654 INTEL_PIPE_CRC_SOURCE_MAX, 1655 }; 1656 1657 struct intel_pipe_crc_entry { 1658 uint32_t frame; 1659 uint32_t crc[5]; 1660 }; 1661 1662 #define INTEL_PIPE_CRC_ENTRIES_NR 128 1663 struct intel_pipe_crc { 1664 spinlock_t lock; 1665 bool opened; /* exclusive access to the result file */ 1666 struct intel_pipe_crc_entry *entries; 1667 enum intel_pipe_crc_source source; 1668 int head, tail; 1669 wait_queue_head_t wq; 1670 }; 1671 1672 struct i915_frontbuffer_tracking { 1673 struct mutex lock; 1674 1675 /* 1676 * Tracking bits for delayed frontbuffer flushing du to gpu activity or 1677 * scheduled flips. 1678 */ 1679 unsigned busy_bits; 1680 unsigned flip_bits; 1681 }; 1682 1683 struct i915_wa_reg { 1684 i915_reg_t addr; 1685 u32 value; 1686 /* bitmask representing WA bits */ 1687 u32 mask; 1688 }; 1689 1690 /* 1691 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only 1692 * allowing it for RCS as we don't foresee any requirement of having 1693 * a whitelist for other engines. When it is really required for 1694 * other engines then the limit need to be increased. 1695 */ 1696 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS) 1697 1698 struct i915_workarounds { 1699 struct i915_wa_reg reg[I915_MAX_WA_REGS]; 1700 u32 count; 1701 u32 hw_whitelist_count[I915_NUM_ENGINES]; 1702 }; 1703 1704 struct i915_virtual_gpu { 1705 bool active; 1706 }; 1707 1708 struct i915_execbuffer_params { 1709 struct drm_device *dev; 1710 struct drm_file *file; 1711 uint32_t dispatch_flags; 1712 uint32_t args_batch_start_offset; 1713 uint64_t batch_obj_vm_offset; 1714 struct intel_engine_cs *engine; 1715 struct drm_i915_gem_object *batch_obj; 1716 struct i915_gem_context *ctx; 1717 struct drm_i915_gem_request *request; 1718 }; 1719 1720 /* used in computing the new watermarks state */ 1721 struct intel_wm_config { 1722 unsigned int num_pipes_active; 1723 bool sprites_enabled; 1724 bool sprites_scaled; 1725 }; 1726 1727 struct drm_i915_private { 1728 struct drm_device drm; 1729 1730 struct kmem_cache *objects; 1731 struct kmem_cache *vmas; 1732 struct kmem_cache *requests; 1733 1734 const struct intel_device_info info; 1735 1736 int relative_constants_mode; 1737 1738 void __iomem *regs; 1739 1740 struct intel_uncore uncore; 1741 1742 struct i915_virtual_gpu vgpu; 1743 1744 struct intel_gvt gvt; 1745 1746 struct intel_guc guc; 1747 1748 struct intel_csr csr; 1749 1750 struct intel_gmbus gmbus[GMBUS_NUM_PINS]; 1751 1752 /** gmbus_mutex protects against concurrent usage of the single hw gmbus 1753 * controller on different i2c buses. */ 1754 struct mutex gmbus_mutex; 1755 1756 /** 1757 * Base address of the gmbus and gpio block. 1758 */ 1759 uint32_t gpio_mmio_base; 1760 1761 /* MMIO base address for MIPI regs */ 1762 uint32_t mipi_mmio_base; 1763 1764 uint32_t psr_mmio_base; 1765 1766 wait_queue_head_t gmbus_wait_queue; 1767 1768 struct pci_dev *bridge_dev; 1769 struct i915_gem_context *kernel_context; 1770 struct intel_engine_cs engine[I915_NUM_ENGINES]; 1771 struct drm_i915_gem_object *semaphore_obj; 1772 uint32_t last_seqno, next_seqno; 1773 1774 struct drm_dma_handle *status_page_dmah; 1775 struct resource mch_res; 1776 1777 /* protects the irq masks */ 1778 spinlock_t irq_lock; 1779 1780 /* protects the mmio flip data */ 1781 spinlock_t mmio_flip_lock; 1782 1783 bool display_irqs_enabled; 1784 1785 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */ 1786 struct pm_qos_request pm_qos; 1787 1788 /* Sideband mailbox protection */ 1789 struct mutex sb_lock; 1790 1791 /** Cached value of IMR to avoid reads in updating the bitfield */ 1792 union { 1793 u32 irq_mask; 1794 u32 de_irq_mask[I915_MAX_PIPES]; 1795 }; 1796 u32 gt_irq_mask; 1797 u32 pm_irq_mask; 1798 u32 pm_rps_events; 1799 u32 pipestat_irq_mask[I915_MAX_PIPES]; 1800 1801 struct i915_hotplug hotplug; 1802 struct intel_fbc fbc; 1803 struct i915_drrs drrs; 1804 struct intel_opregion opregion; 1805 struct intel_vbt_data vbt; 1806 1807 bool preserve_bios_swizzle; 1808 1809 /* overlay */ 1810 struct intel_overlay *overlay; 1811 1812 /* backlight registers and fields in struct intel_panel */ 1813 struct mutex backlight_lock; 1814 1815 /* LVDS info */ 1816 bool no_aux_handshake; 1817 1818 /* protects panel power sequencer state */ 1819 struct mutex pps_mutex; 1820 1821 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */ 1822 int num_fence_regs; /* 8 on pre-965, 16 otherwise */ 1823 1824 unsigned int fsb_freq, mem_freq, is_ddr3; 1825 unsigned int skl_preferred_vco_freq; 1826 unsigned int cdclk_freq, max_cdclk_freq, atomic_cdclk_freq; 1827 unsigned int max_dotclk_freq; 1828 unsigned int rawclk_freq; 1829 unsigned int hpll_freq; 1830 unsigned int czclk_freq; 1831 1832 struct { 1833 unsigned int vco, ref; 1834 } cdclk_pll; 1835 1836 /** 1837 * wq - Driver workqueue for GEM. 1838 * 1839 * NOTE: Work items scheduled here are not allowed to grab any modeset 1840 * locks, for otherwise the flushing done in the pageflip code will 1841 * result in deadlocks. 1842 */ 1843 struct workqueue_struct *wq; 1844 1845 /* Display functions */ 1846 struct drm_i915_display_funcs display; 1847 1848 /* PCH chipset type */ 1849 enum intel_pch pch_type; 1850 unsigned short pch_id; 1851 1852 unsigned long quirks; 1853 1854 enum modeset_restore modeset_restore; 1855 struct mutex modeset_restore_lock; 1856 struct drm_atomic_state *modeset_restore_state; 1857 1858 struct list_head vm_list; /* Global list of all address spaces */ 1859 struct i915_ggtt ggtt; /* VM representing the global address space */ 1860 1861 struct i915_gem_mm mm; 1862 DECLARE_HASHTABLE(mm_structs, 7); 1863 struct mutex mm_lock; 1864 1865 /* The hw wants to have a stable context identifier for the lifetime 1866 * of the context (for OA, PASID, faults, etc). This is limited 1867 * in execlists to 21 bits. 1868 */ 1869 struct ida context_hw_ida; 1870 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */ 1871 1872 /* Kernel Modesetting */ 1873 1874 struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES]; 1875 struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES]; 1876 wait_queue_head_t pending_flip_queue; 1877 1878 #ifdef CONFIG_DEBUG_FS 1879 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES]; 1880 #endif 1881 1882 /* dpll and cdclk state is protected by connection_mutex */ 1883 int num_shared_dpll; 1884 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS]; 1885 const struct intel_dpll_mgr *dpll_mgr; 1886 1887 /* 1888 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll. 1889 * Must be global rather than per dpll, because on some platforms 1890 * plls share registers. 1891 */ 1892 struct mutex dpll_lock; 1893 1894 unsigned int active_crtcs; 1895 unsigned int min_pixclk[I915_MAX_PIPES]; 1896 1897 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV]; 1898 1899 struct i915_workarounds workarounds; 1900 1901 struct i915_frontbuffer_tracking fb_tracking; 1902 1903 u16 orig_clock; 1904 1905 bool mchbar_need_disable; 1906 1907 struct intel_l3_parity l3_parity; 1908 1909 /* Cannot be determined by PCIID. You must always read a register. */ 1910 u32 edram_cap; 1911 1912 /* gen6+ rps state */ 1913 struct intel_gen6_power_mgmt rps; 1914 1915 /* ilk-only ips/rps state. Everything in here is protected by the global 1916 * mchdev_lock in intel_pm.c */ 1917 struct intel_ilk_power_mgmt ips; 1918 1919 struct i915_power_domains power_domains; 1920 1921 struct i915_psr psr; 1922 1923 struct i915_gpu_error gpu_error; 1924 1925 struct drm_i915_gem_object *vlv_pctx; 1926 1927 #ifdef CONFIG_DRM_FBDEV_EMULATION 1928 /* list of fbdev register on this device */ 1929 struct intel_fbdev *fbdev; 1930 struct work_struct fbdev_suspend_work; 1931 #endif 1932 1933 struct drm_property *broadcast_rgb_property; 1934 struct drm_property *force_audio_property; 1935 1936 /* hda/i915 audio component */ 1937 struct i915_audio_component *audio_component; 1938 bool audio_component_registered; 1939 /** 1940 * av_mutex - mutex for audio/video sync 1941 * 1942 */ 1943 struct mutex av_mutex; 1944 1945 uint32_t hw_context_size; 1946 struct list_head context_list; 1947 1948 u32 fdi_rx_config; 1949 1950 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */ 1951 u32 chv_phy_control; 1952 /* 1953 * Shadows for CHV DPLL_MD regs to keep the state 1954 * checker somewhat working in the presence hardware 1955 * crappiness (can't read out DPLL_MD for pipes B & C). 1956 */ 1957 u32 chv_dpll_md[I915_MAX_PIPES]; 1958 u32 bxt_phy_grc; 1959 1960 u32 suspend_count; 1961 bool suspended_to_idle; 1962 struct i915_suspend_saved_registers regfile; 1963 struct vlv_s0ix_state vlv_s0ix_state; 1964 1965 struct { 1966 /* 1967 * Raw watermark latency values: 1968 * in 0.1us units for WM0, 1969 * in 0.5us units for WM1+. 1970 */ 1971 /* primary */ 1972 uint16_t pri_latency[5]; 1973 /* sprite */ 1974 uint16_t spr_latency[5]; 1975 /* cursor */ 1976 uint16_t cur_latency[5]; 1977 /* 1978 * Raw watermark memory latency values 1979 * for SKL for all 8 levels 1980 * in 1us units. 1981 */ 1982 uint16_t skl_latency[8]; 1983 1984 /* 1985 * The skl_wm_values structure is a bit too big for stack 1986 * allocation, so we keep the staging struct where we store 1987 * intermediate results here instead. 1988 */ 1989 struct skl_wm_values skl_results; 1990 1991 /* current hardware state */ 1992 union { 1993 struct ilk_wm_values hw; 1994 struct skl_wm_values skl_hw; 1995 struct vlv_wm_values vlv; 1996 }; 1997 1998 uint8_t max_level; 1999 2000 /* 2001 * Should be held around atomic WM register writing; also 2002 * protects * intel_crtc->wm.active and 2003 * cstate->wm.need_postvbl_update. 2004 */ 2005 struct mutex wm_mutex; 2006 2007 /* 2008 * Set during HW readout of watermarks/DDB. Some platforms 2009 * need to know when we're still using BIOS-provided values 2010 * (which we don't fully trust). 2011 */ 2012 bool distrust_bios_wm; 2013 } wm; 2014 2015 struct i915_runtime_pm pm; 2016 2017 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */ 2018 struct { 2019 int (*execbuf_submit)(struct i915_execbuffer_params *params, 2020 struct drm_i915_gem_execbuffer2 *args, 2021 struct list_head *vmas); 2022 int (*init_engines)(struct drm_device *dev); 2023 void (*cleanup_engine)(struct intel_engine_cs *engine); 2024 void (*stop_engine)(struct intel_engine_cs *engine); 2025 2026 /** 2027 * Is the GPU currently considered idle, or busy executing 2028 * userspace requests? Whilst idle, we allow runtime power 2029 * management to power down the hardware and display clocks. 2030 * In order to reduce the effect on performance, there 2031 * is a slight delay before we do so. 2032 */ 2033 unsigned int active_engines; 2034 bool awake; 2035 2036 /** 2037 * We leave the user IRQ off as much as possible, 2038 * but this means that requests will finish and never 2039 * be retired once the system goes idle. Set a timer to 2040 * fire periodically while the ring is running. When it 2041 * fires, go retire requests. 2042 */ 2043 struct delayed_work retire_work; 2044 2045 /** 2046 * When we detect an idle GPU, we want to turn on 2047 * powersaving features. So once we see that there 2048 * are no more requests outstanding and no more 2049 * arrive within a small period of time, we fire 2050 * off the idle_work. 2051 */ 2052 struct delayed_work idle_work; 2053 } gt; 2054 2055 /* perform PHY state sanity checks? */ 2056 bool chv_phy_assert[2]; 2057 2058 struct intel_encoder *dig_port_map[I915_MAX_PORTS]; 2059 2060 /* 2061 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch 2062 * will be rejected. Instead look for a better place. 2063 */ 2064 }; 2065 2066 static inline struct drm_i915_private *to_i915(const struct drm_device *dev) 2067 { 2068 return container_of(dev, struct drm_i915_private, drm); 2069 } 2070 2071 static inline struct drm_i915_private *dev_to_i915(struct device *dev) 2072 { 2073 return to_i915(dev_get_drvdata(dev)); 2074 } 2075 2076 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc) 2077 { 2078 return container_of(guc, struct drm_i915_private, guc); 2079 } 2080 2081 /* Simple iterator over all initialised engines */ 2082 #define for_each_engine(engine__, dev_priv__) \ 2083 for ((engine__) = &(dev_priv__)->engine[0]; \ 2084 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \ 2085 (engine__)++) \ 2086 for_each_if (intel_engine_initialized(engine__)) 2087 2088 /* Iterator with engine_id */ 2089 #define for_each_engine_id(engine__, dev_priv__, id__) \ 2090 for ((engine__) = &(dev_priv__)->engine[0], (id__) = 0; \ 2091 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \ 2092 (engine__)++) \ 2093 for_each_if (((id__) = (engine__)->id, \ 2094 intel_engine_initialized(engine__))) 2095 2096 /* Iterator over subset of engines selected by mask */ 2097 #define for_each_engine_masked(engine__, dev_priv__, mask__) \ 2098 for ((engine__) = &(dev_priv__)->engine[0]; \ 2099 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \ 2100 (engine__)++) \ 2101 for_each_if (((mask__) & intel_engine_flag(engine__)) && \ 2102 intel_engine_initialized(engine__)) 2103 2104 enum hdmi_force_audio { 2105 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */ 2106 HDMI_AUDIO_OFF, /* force turn off HDMI audio */ 2107 HDMI_AUDIO_AUTO, /* trust EDID */ 2108 HDMI_AUDIO_ON, /* force turn on HDMI audio */ 2109 }; 2110 2111 #define I915_GTT_OFFSET_NONE ((u32)-1) 2112 2113 struct drm_i915_gem_object_ops { 2114 unsigned int flags; 2115 #define I915_GEM_OBJECT_HAS_STRUCT_PAGE 0x1 2116 2117 /* Interface between the GEM object and its backing storage. 2118 * get_pages() is called once prior to the use of the associated set 2119 * of pages before to binding them into the GTT, and put_pages() is 2120 * called after we no longer need them. As we expect there to be 2121 * associated cost with migrating pages between the backing storage 2122 * and making them available for the GPU (e.g. clflush), we may hold 2123 * onto the pages after they are no longer referenced by the GPU 2124 * in case they may be used again shortly (for example migrating the 2125 * pages to a different memory domain within the GTT). put_pages() 2126 * will therefore most likely be called when the object itself is 2127 * being released or under memory pressure (where we attempt to 2128 * reap pages for the shrinker). 2129 */ 2130 int (*get_pages)(struct drm_i915_gem_object *); 2131 void (*put_pages)(struct drm_i915_gem_object *); 2132 2133 int (*dmabuf_export)(struct drm_i915_gem_object *); 2134 void (*release)(struct drm_i915_gem_object *); 2135 }; 2136 2137 /* 2138 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is 2139 * considered to be the frontbuffer for the given plane interface-wise. This 2140 * doesn't mean that the hw necessarily already scans it out, but that any 2141 * rendering (by the cpu or gpu) will land in the frontbuffer eventually. 2142 * 2143 * We have one bit per pipe and per scanout plane type. 2144 */ 2145 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5 2146 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8 2147 #define INTEL_FRONTBUFFER_BITS \ 2148 (INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES) 2149 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \ 2150 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))) 2151 #define INTEL_FRONTBUFFER_CURSOR(pipe) \ 2152 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2153 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \ 2154 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2155 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \ 2156 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) 2157 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \ 2158 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))) 2159 2160 struct drm_i915_gem_object { 2161 struct drm_gem_object base; 2162 2163 const struct drm_i915_gem_object_ops *ops; 2164 2165 /** List of VMAs backed by this object */ 2166 struct list_head vma_list; 2167 2168 /** Stolen memory for this object, instead of being backed by shmem. */ 2169 struct drm_mm_node *stolen; 2170 struct list_head global_list; 2171 2172 struct list_head engine_list[I915_NUM_ENGINES]; 2173 /** Used in execbuf to temporarily hold a ref */ 2174 struct list_head obj_exec_link; 2175 2176 struct list_head batch_pool_link; 2177 2178 /** 2179 * This is set if the object is on the active lists (has pending 2180 * rendering and so a non-zero seqno), and is not set if it i s on 2181 * inactive (ready to be unbound) list. 2182 */ 2183 unsigned int active:I915_NUM_ENGINES; 2184 2185 /** 2186 * This is set if the object has been written to since last bound 2187 * to the GTT 2188 */ 2189 unsigned int dirty:1; 2190 2191 /** 2192 * Fence register bits (if any) for this object. Will be set 2193 * as needed when mapped into the GTT. 2194 * Protected by dev->struct_mutex. 2195 */ 2196 signed int fence_reg:I915_MAX_NUM_FENCE_BITS; 2197 2198 /** 2199 * Advice: are the backing pages purgeable? 2200 */ 2201 unsigned int madv:2; 2202 2203 /** 2204 * Current tiling mode for the object. 2205 */ 2206 unsigned int tiling_mode:2; 2207 /** 2208 * Whether the tiling parameters for the currently associated fence 2209 * register have changed. Note that for the purposes of tracking 2210 * tiling changes we also treat the unfenced register, the register 2211 * slot that the object occupies whilst it executes a fenced 2212 * command (such as BLT on gen2/3), as a "fence". 2213 */ 2214 unsigned int fence_dirty:1; 2215 2216 /** 2217 * Is the object at the current location in the gtt mappable and 2218 * fenceable? Used to avoid costly recalculations. 2219 */ 2220 unsigned int map_and_fenceable:1; 2221 2222 /** 2223 * Whether the current gtt mapping needs to be mappable (and isn't just 2224 * mappable by accident). Track pin and fault separate for a more 2225 * accurate mappable working set. 2226 */ 2227 unsigned int fault_mappable:1; 2228 2229 /* 2230 * Is the object to be mapped as read-only to the GPU 2231 * Only honoured if hardware has relevant pte bit 2232 */ 2233 unsigned long gt_ro:1; 2234 unsigned int cache_level:3; 2235 unsigned int cache_dirty:1; 2236 2237 unsigned int frontbuffer_bits:INTEL_FRONTBUFFER_BITS; 2238 2239 unsigned int has_wc_mmap; 2240 unsigned int pin_display; 2241 2242 struct sg_table *pages; 2243 int pages_pin_count; 2244 struct get_page { 2245 struct scatterlist *sg; 2246 int last; 2247 } get_page; 2248 void *mapping; 2249 2250 /** Breadcrumb of last rendering to the buffer. 2251 * There can only be one writer, but we allow for multiple readers. 2252 * If there is a writer that necessarily implies that all other 2253 * read requests are complete - but we may only be lazily clearing 2254 * the read requests. A read request is naturally the most recent 2255 * request on a ring, so we may have two different write and read 2256 * requests on one ring where the write request is older than the 2257 * read request. This allows for the CPU to read from an active 2258 * buffer by only waiting for the write to complete. 2259 * */ 2260 struct drm_i915_gem_request *last_read_req[I915_NUM_ENGINES]; 2261 struct drm_i915_gem_request *last_write_req; 2262 /** Breadcrumb of last fenced GPU access to the buffer. */ 2263 struct drm_i915_gem_request *last_fenced_req; 2264 2265 /** Current tiling stride for the object, if it's tiled. */ 2266 uint32_t stride; 2267 2268 /** References from framebuffers, locks out tiling changes. */ 2269 unsigned long framebuffer_references; 2270 2271 /** Record of address bit 17 of each page at last unbind. */ 2272 unsigned long *bit_17; 2273 2274 union { 2275 /** for phy allocated objects */ 2276 struct drm_dma_handle *phys_handle; 2277 2278 struct i915_gem_userptr { 2279 uintptr_t ptr; 2280 unsigned read_only :1; 2281 unsigned workers :4; 2282 #define I915_GEM_USERPTR_MAX_WORKERS 15 2283 2284 struct i915_mm_struct *mm; 2285 struct i915_mmu_object *mmu_object; 2286 struct work_struct *work; 2287 } userptr; 2288 }; 2289 }; 2290 #define to_intel_bo(x) container_of(x, struct drm_i915_gem_object, base) 2291 2292 static inline bool 2293 i915_gem_object_has_struct_page(const struct drm_i915_gem_object *obj) 2294 { 2295 return obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE; 2296 } 2297 2298 /* 2299 * Optimised SGL iterator for GEM objects 2300 */ 2301 static __always_inline struct sgt_iter { 2302 struct scatterlist *sgp; 2303 union { 2304 unsigned long pfn; 2305 dma_addr_t dma; 2306 }; 2307 unsigned int curr; 2308 unsigned int max; 2309 } __sgt_iter(struct scatterlist *sgl, bool dma) { 2310 struct sgt_iter s = { .sgp = sgl }; 2311 2312 if (s.sgp) { 2313 s.max = s.curr = s.sgp->offset; 2314 s.max += s.sgp->length; 2315 if (dma) 2316 s.dma = sg_dma_address(s.sgp); 2317 else 2318 s.pfn = page_to_pfn(sg_page(s.sgp)); 2319 } 2320 2321 return s; 2322 } 2323 2324 /** 2325 * __sg_next - return the next scatterlist entry in a list 2326 * @sg: The current sg entry 2327 * 2328 * Description: 2329 * If the entry is the last, return NULL; otherwise, step to the next 2330 * element in the array (@sg@+1). If that's a chain pointer, follow it; 2331 * otherwise just return the pointer to the current element. 2332 **/ 2333 static inline struct scatterlist *__sg_next(struct scatterlist *sg) 2334 { 2335 #ifdef CONFIG_DEBUG_SG 2336 BUG_ON(sg->sg_magic != SG_MAGIC); 2337 #endif 2338 return sg_is_last(sg) ? NULL : 2339 likely(!sg_is_chain(++sg)) ? sg : 2340 sg_chain_ptr(sg); 2341 } 2342 2343 /** 2344 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table 2345 * @__dmap: DMA address (output) 2346 * @__iter: 'struct sgt_iter' (iterator state, internal) 2347 * @__sgt: sg_table to iterate over (input) 2348 */ 2349 #define for_each_sgt_dma(__dmap, __iter, __sgt) \ 2350 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \ 2351 ((__dmap) = (__iter).dma + (__iter).curr); \ 2352 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \ 2353 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0)) 2354 2355 /** 2356 * for_each_sgt_page - iterate over the pages of the given sg_table 2357 * @__pp: page pointer (output) 2358 * @__iter: 'struct sgt_iter' (iterator state, internal) 2359 * @__sgt: sg_table to iterate over (input) 2360 */ 2361 #define for_each_sgt_page(__pp, __iter, __sgt) \ 2362 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \ 2363 ((__pp) = (__iter).pfn == 0 ? NULL : \ 2364 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \ 2365 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \ 2366 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0)) 2367 2368 /** 2369 * Request queue structure. 2370 * 2371 * The request queue allows us to note sequence numbers that have been emitted 2372 * and may be associated with active buffers to be retired. 2373 * 2374 * By keeping this list, we can avoid having to do questionable sequence 2375 * number comparisons on buffer last_read|write_seqno. It also allows an 2376 * emission time to be associated with the request for tracking how far ahead 2377 * of the GPU the submission is. 2378 * 2379 * The requests are reference counted, so upon creation they should have an 2380 * initial reference taken using kref_init 2381 */ 2382 struct drm_i915_gem_request { 2383 struct kref ref; 2384 2385 /** On Which ring this request was generated */ 2386 struct drm_i915_private *i915; 2387 struct intel_engine_cs *engine; 2388 struct intel_signal_node signaling; 2389 2390 /** GEM sequence number associated with the previous request, 2391 * when the HWS breadcrumb is equal to this the GPU is processing 2392 * this request. 2393 */ 2394 u32 previous_seqno; 2395 2396 /** GEM sequence number associated with this request, 2397 * when the HWS breadcrumb is equal or greater than this the GPU 2398 * has finished processing this request. 2399 */ 2400 u32 seqno; 2401 2402 /** Position in the ringbuffer of the start of the request */ 2403 u32 head; 2404 2405 /** 2406 * Position in the ringbuffer of the start of the postfix. 2407 * This is required to calculate the maximum available ringbuffer 2408 * space without overwriting the postfix. 2409 */ 2410 u32 postfix; 2411 2412 /** Position in the ringbuffer of the end of the whole request */ 2413 u32 tail; 2414 2415 /** Preallocate space in the ringbuffer for the emitting the request */ 2416 u32 reserved_space; 2417 2418 /** 2419 * Context and ring buffer related to this request 2420 * Contexts are refcounted, so when this request is associated with a 2421 * context, we must increment the context's refcount, to guarantee that 2422 * it persists while any request is linked to it. Requests themselves 2423 * are also refcounted, so the request will only be freed when the last 2424 * reference to it is dismissed, and the code in 2425 * i915_gem_request_free() will then decrement the refcount on the 2426 * context. 2427 */ 2428 struct i915_gem_context *ctx; 2429 struct intel_ringbuffer *ringbuf; 2430 2431 /** 2432 * Context related to the previous request. 2433 * As the contexts are accessed by the hardware until the switch is 2434 * completed to a new context, the hardware may still be writing 2435 * to the context object after the breadcrumb is visible. We must 2436 * not unpin/unbind/prune that object whilst still active and so 2437 * we keep the previous context pinned until the following (this) 2438 * request is retired. 2439 */ 2440 struct i915_gem_context *previous_context; 2441 2442 /** Batch buffer related to this request if any (used for 2443 error state dump only) */ 2444 struct drm_i915_gem_object *batch_obj; 2445 2446 /** Time at which this request was emitted, in jiffies. */ 2447 unsigned long emitted_jiffies; 2448 2449 /** global list entry for this request */ 2450 struct list_head list; 2451 2452 struct drm_i915_file_private *file_priv; 2453 /** file_priv list entry for this request */ 2454 struct list_head client_list; 2455 2456 /** process identifier submitting this request */ 2457 struct pid *pid; 2458 2459 /** 2460 * The ELSP only accepts two elements at a time, so we queue 2461 * context/tail pairs on a given queue (ring->execlist_queue) until the 2462 * hardware is available. The queue serves a double purpose: we also use 2463 * it to keep track of the up to 2 contexts currently in the hardware 2464 * (usually one in execution and the other queued up by the GPU): We 2465 * only remove elements from the head of the queue when the hardware 2466 * informs us that an element has been completed. 2467 * 2468 * All accesses to the queue are mediated by a spinlock 2469 * (ring->execlist_lock). 2470 */ 2471 2472 /** Execlist link in the submission queue.*/ 2473 struct list_head execlist_link; 2474 2475 /** Execlists no. of times this request has been sent to the ELSP */ 2476 int elsp_submitted; 2477 2478 /** Execlists context hardware id. */ 2479 unsigned ctx_hw_id; 2480 }; 2481 2482 struct drm_i915_gem_request * __must_check 2483 i915_gem_request_alloc(struct intel_engine_cs *engine, 2484 struct i915_gem_context *ctx); 2485 void i915_gem_request_free(struct kref *req_ref); 2486 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req, 2487 struct drm_file *file); 2488 2489 static inline uint32_t 2490 i915_gem_request_get_seqno(struct drm_i915_gem_request *req) 2491 { 2492 return req ? req->seqno : 0; 2493 } 2494 2495 static inline struct intel_engine_cs * 2496 i915_gem_request_get_engine(struct drm_i915_gem_request *req) 2497 { 2498 return req ? req->engine : NULL; 2499 } 2500 2501 static inline struct drm_i915_gem_request * 2502 i915_gem_request_reference(struct drm_i915_gem_request *req) 2503 { 2504 if (req) 2505 kref_get(&req->ref); 2506 return req; 2507 } 2508 2509 static inline void 2510 i915_gem_request_unreference(struct drm_i915_gem_request *req) 2511 { 2512 kref_put(&req->ref, i915_gem_request_free); 2513 } 2514 2515 static inline void i915_gem_request_assign(struct drm_i915_gem_request **pdst, 2516 struct drm_i915_gem_request *src) 2517 { 2518 if (src) 2519 i915_gem_request_reference(src); 2520 2521 if (*pdst) 2522 i915_gem_request_unreference(*pdst); 2523 2524 *pdst = src; 2525 } 2526 2527 /* 2528 * XXX: i915_gem_request_completed should be here but currently needs the 2529 * definition of i915_seqno_passed() which is below. It will be moved in 2530 * a later patch when the call to i915_seqno_passed() is obsoleted... 2531 */ 2532 2533 /* 2534 * A command that requires special handling by the command parser. 2535 */ 2536 struct drm_i915_cmd_descriptor { 2537 /* 2538 * Flags describing how the command parser processes the command. 2539 * 2540 * CMD_DESC_FIXED: The command has a fixed length if this is set, 2541 * a length mask if not set 2542 * CMD_DESC_SKIP: The command is allowed but does not follow the 2543 * standard length encoding for the opcode range in 2544 * which it falls 2545 * CMD_DESC_REJECT: The command is never allowed 2546 * CMD_DESC_REGISTER: The command should be checked against the 2547 * register whitelist for the appropriate ring 2548 * CMD_DESC_MASTER: The command is allowed if the submitting process 2549 * is the DRM master 2550 */ 2551 u32 flags; 2552 #define CMD_DESC_FIXED (1<<0) 2553 #define CMD_DESC_SKIP (1<<1) 2554 #define CMD_DESC_REJECT (1<<2) 2555 #define CMD_DESC_REGISTER (1<<3) 2556 #define CMD_DESC_BITMASK (1<<4) 2557 #define CMD_DESC_MASTER (1<<5) 2558 2559 /* 2560 * The command's unique identification bits and the bitmask to get them. 2561 * This isn't strictly the opcode field as defined in the spec and may 2562 * also include type, subtype, and/or subop fields. 2563 */ 2564 struct { 2565 u32 value; 2566 u32 mask; 2567 } cmd; 2568 2569 /* 2570 * The command's length. The command is either fixed length (i.e. does 2571 * not include a length field) or has a length field mask. The flag 2572 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has 2573 * a length mask. All command entries in a command table must include 2574 * length information. 2575 */ 2576 union { 2577 u32 fixed; 2578 u32 mask; 2579 } length; 2580 2581 /* 2582 * Describes where to find a register address in the command to check 2583 * against the ring's register whitelist. Only valid if flags has the 2584 * CMD_DESC_REGISTER bit set. 2585 * 2586 * A non-zero step value implies that the command may access multiple 2587 * registers in sequence (e.g. LRI), in that case step gives the 2588 * distance in dwords between individual offset fields. 2589 */ 2590 struct { 2591 u32 offset; 2592 u32 mask; 2593 u32 step; 2594 } reg; 2595 2596 #define MAX_CMD_DESC_BITMASKS 3 2597 /* 2598 * Describes command checks where a particular dword is masked and 2599 * compared against an expected value. If the command does not match 2600 * the expected value, the parser rejects it. Only valid if flags has 2601 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero 2602 * are valid. 2603 * 2604 * If the check specifies a non-zero condition_mask then the parser 2605 * only performs the check when the bits specified by condition_mask 2606 * are non-zero. 2607 */ 2608 struct { 2609 u32 offset; 2610 u32 mask; 2611 u32 expected; 2612 u32 condition_offset; 2613 u32 condition_mask; 2614 } bits[MAX_CMD_DESC_BITMASKS]; 2615 }; 2616 2617 /* 2618 * A table of commands requiring special handling by the command parser. 2619 * 2620 * Each ring has an array of tables. Each table consists of an array of command 2621 * descriptors, which must be sorted with command opcodes in ascending order. 2622 */ 2623 struct drm_i915_cmd_table { 2624 const struct drm_i915_cmd_descriptor *table; 2625 int count; 2626 }; 2627 2628 /* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */ 2629 #define __I915__(p) ({ \ 2630 struct drm_i915_private *__p; \ 2631 if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \ 2632 __p = (struct drm_i915_private *)p; \ 2633 else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \ 2634 __p = to_i915((struct drm_device *)p); \ 2635 else \ 2636 BUILD_BUG(); \ 2637 __p; \ 2638 }) 2639 #define INTEL_INFO(p) (&__I915__(p)->info) 2640 #define INTEL_GEN(p) (INTEL_INFO(p)->gen) 2641 #define INTEL_DEVID(p) (INTEL_INFO(p)->device_id) 2642 2643 #define REVID_FOREVER 0xff 2644 #define INTEL_REVID(p) (__I915__(p)->drm.pdev->revision) 2645 2646 #define GEN_FOREVER (0) 2647 /* 2648 * Returns true if Gen is in inclusive range [Start, End]. 2649 * 2650 * Use GEN_FOREVER for unbound start and or end. 2651 */ 2652 #define IS_GEN(p, s, e) ({ \ 2653 unsigned int __s = (s), __e = (e); \ 2654 BUILD_BUG_ON(!__builtin_constant_p(s)); \ 2655 BUILD_BUG_ON(!__builtin_constant_p(e)); \ 2656 if ((__s) != GEN_FOREVER) \ 2657 __s = (s) - 1; \ 2658 if ((__e) == GEN_FOREVER) \ 2659 __e = BITS_PER_LONG - 1; \ 2660 else \ 2661 __e = (e) - 1; \ 2662 !!(INTEL_INFO(p)->gen_mask & GENMASK((__e), (__s))); \ 2663 }) 2664 2665 /* 2666 * Return true if revision is in range [since,until] inclusive. 2667 * 2668 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until. 2669 */ 2670 #define IS_REVID(p, since, until) \ 2671 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until)) 2672 2673 #define IS_I830(dev) (INTEL_DEVID(dev) == 0x3577) 2674 #define IS_845G(dev) (INTEL_DEVID(dev) == 0x2562) 2675 #define IS_I85X(dev) (INTEL_INFO(dev)->is_i85x) 2676 #define IS_I865G(dev) (INTEL_DEVID(dev) == 0x2572) 2677 #define IS_I915G(dev) (INTEL_INFO(dev)->is_i915g) 2678 #define IS_I915GM(dev) (INTEL_DEVID(dev) == 0x2592) 2679 #define IS_I945G(dev) (INTEL_DEVID(dev) == 0x2772) 2680 #define IS_I945GM(dev) (INTEL_INFO(dev)->is_i945gm) 2681 #define IS_BROADWATER(dev) (INTEL_INFO(dev)->is_broadwater) 2682 #define IS_CRESTLINE(dev) (INTEL_INFO(dev)->is_crestline) 2683 #define IS_GM45(dev) (INTEL_DEVID(dev) == 0x2A42) 2684 #define IS_G4X(dev) (INTEL_INFO(dev)->is_g4x) 2685 #define IS_PINEVIEW_G(dev) (INTEL_DEVID(dev) == 0xa001) 2686 #define IS_PINEVIEW_M(dev) (INTEL_DEVID(dev) == 0xa011) 2687 #define IS_PINEVIEW(dev) (INTEL_INFO(dev)->is_pineview) 2688 #define IS_G33(dev) (INTEL_INFO(dev)->is_g33) 2689 #define IS_IRONLAKE_M(dev) (INTEL_DEVID(dev) == 0x0046) 2690 #define IS_IVYBRIDGE(dev) (INTEL_INFO(dev)->is_ivybridge) 2691 #define IS_IVB_GT1(dev) (INTEL_DEVID(dev) == 0x0156 || \ 2692 INTEL_DEVID(dev) == 0x0152 || \ 2693 INTEL_DEVID(dev) == 0x015a) 2694 #define IS_VALLEYVIEW(dev) (INTEL_INFO(dev)->is_valleyview) 2695 #define IS_CHERRYVIEW(dev) (INTEL_INFO(dev)->is_cherryview) 2696 #define IS_HASWELL(dev) (INTEL_INFO(dev)->is_haswell) 2697 #define IS_BROADWELL(dev) (INTEL_INFO(dev)->is_broadwell) 2698 #define IS_SKYLAKE(dev) (INTEL_INFO(dev)->is_skylake) 2699 #define IS_BROXTON(dev) (INTEL_INFO(dev)->is_broxton) 2700 #define IS_KABYLAKE(dev) (INTEL_INFO(dev)->is_kabylake) 2701 #define IS_MOBILE(dev) (INTEL_INFO(dev)->is_mobile) 2702 #define IS_HSW_EARLY_SDV(dev) (IS_HASWELL(dev) && \ 2703 (INTEL_DEVID(dev) & 0xFF00) == 0x0C00) 2704 #define IS_BDW_ULT(dev) (IS_BROADWELL(dev) && \ 2705 ((INTEL_DEVID(dev) & 0xf) == 0x6 || \ 2706 (INTEL_DEVID(dev) & 0xf) == 0xb || \ 2707 (INTEL_DEVID(dev) & 0xf) == 0xe)) 2708 /* ULX machines are also considered ULT. */ 2709 #define IS_BDW_ULX(dev) (IS_BROADWELL(dev) && \ 2710 (INTEL_DEVID(dev) & 0xf) == 0xe) 2711 #define IS_BDW_GT3(dev) (IS_BROADWELL(dev) && \ 2712 (INTEL_DEVID(dev) & 0x00F0) == 0x0020) 2713 #define IS_HSW_ULT(dev) (IS_HASWELL(dev) && \ 2714 (INTEL_DEVID(dev) & 0xFF00) == 0x0A00) 2715 #define IS_HSW_GT3(dev) (IS_HASWELL(dev) && \ 2716 (INTEL_DEVID(dev) & 0x00F0) == 0x0020) 2717 /* ULX machines are also considered ULT. */ 2718 #define IS_HSW_ULX(dev) (INTEL_DEVID(dev) == 0x0A0E || \ 2719 INTEL_DEVID(dev) == 0x0A1E) 2720 #define IS_SKL_ULT(dev) (INTEL_DEVID(dev) == 0x1906 || \ 2721 INTEL_DEVID(dev) == 0x1913 || \ 2722 INTEL_DEVID(dev) == 0x1916 || \ 2723 INTEL_DEVID(dev) == 0x1921 || \ 2724 INTEL_DEVID(dev) == 0x1926) 2725 #define IS_SKL_ULX(dev) (INTEL_DEVID(dev) == 0x190E || \ 2726 INTEL_DEVID(dev) == 0x1915 || \ 2727 INTEL_DEVID(dev) == 0x191E) 2728 #define IS_KBL_ULT(dev) (INTEL_DEVID(dev) == 0x5906 || \ 2729 INTEL_DEVID(dev) == 0x5913 || \ 2730 INTEL_DEVID(dev) == 0x5916 || \ 2731 INTEL_DEVID(dev) == 0x5921 || \ 2732 INTEL_DEVID(dev) == 0x5926) 2733 #define IS_KBL_ULX(dev) (INTEL_DEVID(dev) == 0x590E || \ 2734 INTEL_DEVID(dev) == 0x5915 || \ 2735 INTEL_DEVID(dev) == 0x591E) 2736 #define IS_SKL_GT3(dev) (IS_SKYLAKE(dev) && \ 2737 (INTEL_DEVID(dev) & 0x00F0) == 0x0020) 2738 #define IS_SKL_GT4(dev) (IS_SKYLAKE(dev) && \ 2739 (INTEL_DEVID(dev) & 0x00F0) == 0x0030) 2740 2741 #define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary) 2742 2743 #define SKL_REVID_A0 0x0 2744 #define SKL_REVID_B0 0x1 2745 #define SKL_REVID_C0 0x2 2746 #define SKL_REVID_D0 0x3 2747 #define SKL_REVID_E0 0x4 2748 #define SKL_REVID_F0 0x5 2749 #define SKL_REVID_G0 0x6 2750 #define SKL_REVID_H0 0x7 2751 2752 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until)) 2753 2754 #define BXT_REVID_A0 0x0 2755 #define BXT_REVID_A1 0x1 2756 #define BXT_REVID_B0 0x3 2757 #define BXT_REVID_C0 0x9 2758 2759 #define IS_BXT_REVID(p, since, until) (IS_BROXTON(p) && IS_REVID(p, since, until)) 2760 2761 #define KBL_REVID_A0 0x0 2762 #define KBL_REVID_B0 0x1 2763 #define KBL_REVID_C0 0x2 2764 #define KBL_REVID_D0 0x3 2765 #define KBL_REVID_E0 0x4 2766 2767 #define IS_KBL_REVID(p, since, until) \ 2768 (IS_KABYLAKE(p) && IS_REVID(p, since, until)) 2769 2770 /* 2771 * The genX designation typically refers to the render engine, so render 2772 * capability related checks should use IS_GEN, while display and other checks 2773 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular 2774 * chips, etc.). 2775 */ 2776 #define IS_GEN2(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(1))) 2777 #define IS_GEN3(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(2))) 2778 #define IS_GEN4(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(3))) 2779 #define IS_GEN5(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(4))) 2780 #define IS_GEN6(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(5))) 2781 #define IS_GEN7(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(6))) 2782 #define IS_GEN8(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(7))) 2783 #define IS_GEN9(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(8))) 2784 2785 #define ENGINE_MASK(id) BIT(id) 2786 #define RENDER_RING ENGINE_MASK(RCS) 2787 #define BSD_RING ENGINE_MASK(VCS) 2788 #define BLT_RING ENGINE_MASK(BCS) 2789 #define VEBOX_RING ENGINE_MASK(VECS) 2790 #define BSD2_RING ENGINE_MASK(VCS2) 2791 #define ALL_ENGINES (~0) 2792 2793 #define HAS_ENGINE(dev_priv, id) \ 2794 (!!(INTEL_INFO(dev_priv)->ring_mask & ENGINE_MASK(id))) 2795 2796 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS) 2797 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2) 2798 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS) 2799 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS) 2800 2801 #define HAS_LLC(dev) (INTEL_INFO(dev)->has_llc) 2802 #define HAS_SNOOP(dev) (INTEL_INFO(dev)->has_snoop) 2803 #define HAS_EDRAM(dev) (!!(__I915__(dev)->edram_cap & EDRAM_ENABLED)) 2804 #define HAS_WT(dev) ((IS_HASWELL(dev) || IS_BROADWELL(dev)) && \ 2805 HAS_EDRAM(dev)) 2806 #define I915_NEED_GFX_HWS(dev) (INTEL_INFO(dev)->need_gfx_hws) 2807 2808 #define HAS_HW_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 6) 2809 #define HAS_LOGICAL_RING_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 8) 2810 #define USES_PPGTT(dev) (i915.enable_ppgtt) 2811 #define USES_FULL_PPGTT(dev) (i915.enable_ppgtt >= 2) 2812 #define USES_FULL_48BIT_PPGTT(dev) (i915.enable_ppgtt == 3) 2813 2814 #define HAS_OVERLAY(dev) (INTEL_INFO(dev)->has_overlay) 2815 #define OVERLAY_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->overlay_needs_physical) 2816 2817 /* Early gen2 have a totally busted CS tlb and require pinned batches. */ 2818 #define HAS_BROKEN_CS_TLB(dev) (IS_I830(dev) || IS_845G(dev)) 2819 2820 /* WaRsDisableCoarsePowerGating:skl,bxt */ 2821 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \ 2822 (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) || \ 2823 IS_SKL_GT3(dev_priv) || \ 2824 IS_SKL_GT4(dev_priv)) 2825 2826 /* 2827 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts 2828 * even when in MSI mode. This results in spurious interrupt warnings if the 2829 * legacy irq no. is shared with another device. The kernel then disables that 2830 * interrupt source and so prevents the other device from working properly. 2831 */ 2832 #define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5) 2833 #define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->gen >= 5) 2834 2835 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte 2836 * rows, which changed the alignment requirements and fence programming. 2837 */ 2838 #define HAS_128_BYTE_Y_TILING(dev) (!IS_GEN2(dev) && !(IS_I915G(dev) || \ 2839 IS_I915GM(dev))) 2840 #define SUPPORTS_TV(dev) (INTEL_INFO(dev)->supports_tv) 2841 #define I915_HAS_HOTPLUG(dev) (INTEL_INFO(dev)->has_hotplug) 2842 2843 #define HAS_FW_BLC(dev) (INTEL_INFO(dev)->gen > 2) 2844 #define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr) 2845 #define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc) 2846 2847 #define HAS_IPS(dev) (IS_HSW_ULT(dev) || IS_BROADWELL(dev)) 2848 2849 #define HAS_DP_MST(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \ 2850 INTEL_INFO(dev)->gen >= 9) 2851 2852 #define HAS_DDI(dev) (INTEL_INFO(dev)->has_ddi) 2853 #define HAS_FPGA_DBG_UNCLAIMED(dev) (INTEL_INFO(dev)->has_fpga_dbg) 2854 #define HAS_PSR(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \ 2855 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || \ 2856 IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) 2857 #define HAS_RUNTIME_PM(dev) (IS_GEN6(dev) || IS_HASWELL(dev) || \ 2858 IS_BROADWELL(dev) || IS_VALLEYVIEW(dev) || \ 2859 IS_CHERRYVIEW(dev) || IS_SKYLAKE(dev) || \ 2860 IS_KABYLAKE(dev) || IS_BROXTON(dev)) 2861 #define HAS_RC6(dev) (INTEL_INFO(dev)->gen >= 6) 2862 #define HAS_RC6p(dev) (IS_GEN6(dev) || IS_IVYBRIDGE(dev)) 2863 2864 #define HAS_CSR(dev) (IS_GEN9(dev)) 2865 2866 /* 2867 * For now, anything with a GuC requires uCode loading, and then supports 2868 * command submission once loaded. But these are logically independent 2869 * properties, so we have separate macros to test them. 2870 */ 2871 #define HAS_GUC(dev) (IS_GEN9(dev)) 2872 #define HAS_GUC_UCODE(dev) (HAS_GUC(dev)) 2873 #define HAS_GUC_SCHED(dev) (HAS_GUC(dev)) 2874 2875 #define HAS_RESOURCE_STREAMER(dev) (IS_HASWELL(dev) || \ 2876 INTEL_INFO(dev)->gen >= 8) 2877 2878 #define HAS_CORE_RING_FREQ(dev) (INTEL_INFO(dev)->gen >= 6 && \ 2879 !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && \ 2880 !IS_BROXTON(dev)) 2881 2882 #define HAS_POOLED_EU(dev) (INTEL_INFO(dev)->has_pooled_eu) 2883 2884 #define INTEL_PCH_DEVICE_ID_MASK 0xff00 2885 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00 2886 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00 2887 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00 2888 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00 2889 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00 2890 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100 2891 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00 2892 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA200 2893 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100 2894 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000 2895 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */ 2896 2897 #define INTEL_PCH_TYPE(dev) (__I915__(dev)->pch_type) 2898 #define HAS_PCH_KBP(dev) (INTEL_PCH_TYPE(dev) == PCH_KBP) 2899 #define HAS_PCH_SPT(dev) (INTEL_PCH_TYPE(dev) == PCH_SPT) 2900 #define HAS_PCH_LPT(dev) (INTEL_PCH_TYPE(dev) == PCH_LPT) 2901 #define HAS_PCH_LPT_LP(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) 2902 #define HAS_PCH_LPT_H(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) 2903 #define HAS_PCH_CPT(dev) (INTEL_PCH_TYPE(dev) == PCH_CPT) 2904 #define HAS_PCH_IBX(dev) (INTEL_PCH_TYPE(dev) == PCH_IBX) 2905 #define HAS_PCH_NOP(dev) (INTEL_PCH_TYPE(dev) == PCH_NOP) 2906 #define HAS_PCH_SPLIT(dev) (INTEL_PCH_TYPE(dev) != PCH_NONE) 2907 2908 #define HAS_GMCH_DISPLAY(dev) (INTEL_INFO(dev)->gen < 5 || \ 2909 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) 2910 2911 /* DPF == dynamic parity feature */ 2912 #define HAS_L3_DPF(dev) (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) 2913 #define NUM_L3_SLICES(dev) (IS_HSW_GT3(dev) ? 2 : HAS_L3_DPF(dev)) 2914 2915 #define GT_FREQUENCY_MULTIPLIER 50 2916 #define GEN9_FREQ_SCALER 3 2917 2918 #include "i915_trace.h" 2919 2920 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv) 2921 { 2922 #ifdef CONFIG_INTEL_IOMMU 2923 if (INTEL_GEN(dev_priv) >= 6 && intel_iommu_gfx_mapped) 2924 return true; 2925 #endif 2926 return false; 2927 } 2928 2929 extern int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state); 2930 extern int i915_resume_switcheroo(struct drm_device *dev); 2931 2932 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv, 2933 int enable_ppgtt); 2934 2935 /* i915_drv.c */ 2936 void __printf(3, 4) 2937 __i915_printk(struct drm_i915_private *dev_priv, const char *level, 2938 const char *fmt, ...); 2939 2940 #define i915_report_error(dev_priv, fmt, ...) \ 2941 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__) 2942 2943 #ifdef CONFIG_COMPAT 2944 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd, 2945 unsigned long arg); 2946 #endif 2947 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask); 2948 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv); 2949 extern int i915_reset(struct drm_i915_private *dev_priv); 2950 extern int intel_guc_reset(struct drm_i915_private *dev_priv); 2951 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine); 2952 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv); 2953 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv); 2954 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv); 2955 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv); 2956 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on); 2957 2958 /* intel_hotplug.c */ 2959 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv, 2960 u32 pin_mask, u32 long_mask); 2961 void intel_hpd_init(struct drm_i915_private *dev_priv); 2962 void intel_hpd_init_work(struct drm_i915_private *dev_priv); 2963 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv); 2964 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port); 2965 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2966 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2967 2968 /* i915_irq.c */ 2969 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv) 2970 { 2971 unsigned long delay; 2972 2973 if (unlikely(!i915.enable_hangcheck)) 2974 return; 2975 2976 /* Don't continually defer the hangcheck so that it is always run at 2977 * least once after work has been scheduled on any ring. Otherwise, 2978 * we will ignore a hung ring if a second ring is kept busy. 2979 */ 2980 2981 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES); 2982 queue_delayed_work(system_long_wq, 2983 &dev_priv->gpu_error.hangcheck_work, delay); 2984 } 2985 2986 __printf(3, 4) 2987 void i915_handle_error(struct drm_i915_private *dev_priv, 2988 u32 engine_mask, 2989 const char *fmt, ...); 2990 2991 extern void intel_irq_init(struct drm_i915_private *dev_priv); 2992 int intel_irq_install(struct drm_i915_private *dev_priv); 2993 void intel_irq_uninstall(struct drm_i915_private *dev_priv); 2994 2995 extern void intel_uncore_sanitize(struct drm_i915_private *dev_priv); 2996 extern void intel_uncore_early_sanitize(struct drm_i915_private *dev_priv, 2997 bool restore_forcewake); 2998 extern void intel_uncore_init(struct drm_i915_private *dev_priv); 2999 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv); 3000 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv); 3001 extern void intel_uncore_fini(struct drm_i915_private *dev_priv); 3002 extern void intel_uncore_forcewake_reset(struct drm_i915_private *dev_priv, 3003 bool restore); 3004 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id); 3005 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv, 3006 enum forcewake_domains domains); 3007 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv, 3008 enum forcewake_domains domains); 3009 /* Like above but the caller must manage the uncore.lock itself. 3010 * Must be used with I915_READ_FW and friends. 3011 */ 3012 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv, 3013 enum forcewake_domains domains); 3014 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv, 3015 enum forcewake_domains domains); 3016 u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv); 3017 3018 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv); 3019 3020 int intel_wait_for_register(struct drm_i915_private *dev_priv, 3021 i915_reg_t reg, 3022 const u32 mask, 3023 const u32 value, 3024 const unsigned long timeout_ms); 3025 int intel_wait_for_register_fw(struct drm_i915_private *dev_priv, 3026 i915_reg_t reg, 3027 const u32 mask, 3028 const u32 value, 3029 const unsigned long timeout_ms); 3030 3031 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv) 3032 { 3033 return dev_priv->gvt.initialized; 3034 } 3035 3036 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv) 3037 { 3038 return dev_priv->vgpu.active; 3039 } 3040 3041 void 3042 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 3043 u32 status_mask); 3044 3045 void 3046 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 3047 u32 status_mask); 3048 3049 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv); 3050 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv); 3051 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 3052 uint32_t mask, 3053 uint32_t bits); 3054 void ilk_update_display_irq(struct drm_i915_private *dev_priv, 3055 uint32_t interrupt_mask, 3056 uint32_t enabled_irq_mask); 3057 static inline void 3058 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 3059 { 3060 ilk_update_display_irq(dev_priv, bits, bits); 3061 } 3062 static inline void 3063 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 3064 { 3065 ilk_update_display_irq(dev_priv, bits, 0); 3066 } 3067 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 3068 enum pipe pipe, 3069 uint32_t interrupt_mask, 3070 uint32_t enabled_irq_mask); 3071 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv, 3072 enum pipe pipe, uint32_t bits) 3073 { 3074 bdw_update_pipe_irq(dev_priv, pipe, bits, bits); 3075 } 3076 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv, 3077 enum pipe pipe, uint32_t bits) 3078 { 3079 bdw_update_pipe_irq(dev_priv, pipe, bits, 0); 3080 } 3081 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 3082 uint32_t interrupt_mask, 3083 uint32_t enabled_irq_mask); 3084 static inline void 3085 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 3086 { 3087 ibx_display_interrupt_update(dev_priv, bits, bits); 3088 } 3089 static inline void 3090 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 3091 { 3092 ibx_display_interrupt_update(dev_priv, bits, 0); 3093 } 3094 3095 /* i915_gem.c */ 3096 int i915_gem_create_ioctl(struct drm_device *dev, void *data, 3097 struct drm_file *file_priv); 3098 int i915_gem_pread_ioctl(struct drm_device *dev, void *data, 3099 struct drm_file *file_priv); 3100 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 3101 struct drm_file *file_priv); 3102 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 3103 struct drm_file *file_priv); 3104 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 3105 struct drm_file *file_priv); 3106 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 3107 struct drm_file *file_priv); 3108 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 3109 struct drm_file *file_priv); 3110 void i915_gem_execbuffer_move_to_active(struct list_head *vmas, 3111 struct drm_i915_gem_request *req); 3112 int i915_gem_ringbuffer_submission(struct i915_execbuffer_params *params, 3113 struct drm_i915_gem_execbuffer2 *args, 3114 struct list_head *vmas); 3115 int i915_gem_execbuffer(struct drm_device *dev, void *data, 3116 struct drm_file *file_priv); 3117 int i915_gem_execbuffer2(struct drm_device *dev, void *data, 3118 struct drm_file *file_priv); 3119 int i915_gem_busy_ioctl(struct drm_device *dev, void *data, 3120 struct drm_file *file_priv); 3121 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 3122 struct drm_file *file); 3123 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 3124 struct drm_file *file); 3125 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 3126 struct drm_file *file_priv); 3127 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 3128 struct drm_file *file_priv); 3129 int i915_gem_set_tiling(struct drm_device *dev, void *data, 3130 struct drm_file *file_priv); 3131 int i915_gem_get_tiling(struct drm_device *dev, void *data, 3132 struct drm_file *file_priv); 3133 void i915_gem_init_userptr(struct drm_i915_private *dev_priv); 3134 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data, 3135 struct drm_file *file); 3136 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 3137 struct drm_file *file_priv); 3138 int i915_gem_wait_ioctl(struct drm_device *dev, void *data, 3139 struct drm_file *file_priv); 3140 void i915_gem_load_init(struct drm_device *dev); 3141 void i915_gem_load_cleanup(struct drm_device *dev); 3142 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv); 3143 int i915_gem_freeze_late(struct drm_i915_private *dev_priv); 3144 3145 void *i915_gem_object_alloc(struct drm_device *dev); 3146 void i915_gem_object_free(struct drm_i915_gem_object *obj); 3147 void i915_gem_object_init(struct drm_i915_gem_object *obj, 3148 const struct drm_i915_gem_object_ops *ops); 3149 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev, 3150 size_t size); 3151 struct drm_i915_gem_object *i915_gem_object_create_from_data( 3152 struct drm_device *dev, const void *data, size_t size); 3153 void i915_gem_free_object(struct drm_gem_object *obj); 3154 void i915_gem_vma_destroy(struct i915_vma *vma); 3155 3156 /* Flags used by pin/bind&friends. */ 3157 #define PIN_MAPPABLE (1<<0) 3158 #define PIN_NONBLOCK (1<<1) 3159 #define PIN_GLOBAL (1<<2) 3160 #define PIN_OFFSET_BIAS (1<<3) 3161 #define PIN_USER (1<<4) 3162 #define PIN_UPDATE (1<<5) 3163 #define PIN_ZONE_4G (1<<6) 3164 #define PIN_HIGH (1<<7) 3165 #define PIN_OFFSET_FIXED (1<<8) 3166 #define PIN_OFFSET_MASK (~4095) 3167 int __must_check 3168 i915_gem_object_pin(struct drm_i915_gem_object *obj, 3169 struct i915_address_space *vm, 3170 uint32_t alignment, 3171 uint64_t flags); 3172 int __must_check 3173 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 3174 const struct i915_ggtt_view *view, 3175 uint32_t alignment, 3176 uint64_t flags); 3177 3178 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level, 3179 u32 flags); 3180 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma); 3181 int __must_check i915_vma_unbind(struct i915_vma *vma); 3182 /* 3183 * BEWARE: Do not use the function below unless you can _absolutely_ 3184 * _guarantee_ VMA in question is _not in use_ anywhere. 3185 */ 3186 int __must_check __i915_vma_unbind_no_wait(struct i915_vma *vma); 3187 int i915_gem_object_put_pages(struct drm_i915_gem_object *obj); 3188 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv); 3189 void i915_gem_release_mmap(struct drm_i915_gem_object *obj); 3190 3191 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 3192 int *needs_clflush); 3193 3194 int __must_check i915_gem_object_get_pages(struct drm_i915_gem_object *obj); 3195 3196 static inline int __sg_page_count(struct scatterlist *sg) 3197 { 3198 return sg->length >> PAGE_SHIFT; 3199 } 3200 3201 struct page * 3202 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n); 3203 3204 static inline dma_addr_t 3205 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, int n) 3206 { 3207 if (n < obj->get_page.last) { 3208 obj->get_page.sg = obj->pages->sgl; 3209 obj->get_page.last = 0; 3210 } 3211 3212 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) { 3213 obj->get_page.last += __sg_page_count(obj->get_page.sg++); 3214 if (unlikely(sg_is_chain(obj->get_page.sg))) 3215 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg); 3216 } 3217 3218 return sg_dma_address(obj->get_page.sg) + ((n - obj->get_page.last) << PAGE_SHIFT); 3219 } 3220 3221 static inline struct page * 3222 i915_gem_object_get_page(struct drm_i915_gem_object *obj, int n) 3223 { 3224 if (WARN_ON(n >= obj->base.size >> PAGE_SHIFT)) 3225 return NULL; 3226 3227 if (n < obj->get_page.last) { 3228 obj->get_page.sg = obj->pages->sgl; 3229 obj->get_page.last = 0; 3230 } 3231 3232 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) { 3233 obj->get_page.last += __sg_page_count(obj->get_page.sg++); 3234 if (unlikely(sg_is_chain(obj->get_page.sg))) 3235 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg); 3236 } 3237 3238 return nth_page(sg_page(obj->get_page.sg), n - obj->get_page.last); 3239 } 3240 3241 static inline void i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 3242 { 3243 BUG_ON(obj->pages == NULL); 3244 obj->pages_pin_count++; 3245 } 3246 3247 static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 3248 { 3249 BUG_ON(obj->pages_pin_count == 0); 3250 obj->pages_pin_count--; 3251 } 3252 3253 /** 3254 * i915_gem_object_pin_map - return a contiguous mapping of the entire object 3255 * @obj - the object to map into kernel address space 3256 * 3257 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's 3258 * pages and then returns a contiguous mapping of the backing storage into 3259 * the kernel address space. 3260 * 3261 * The caller must hold the struct_mutex, and is responsible for calling 3262 * i915_gem_object_unpin_map() when the mapping is no longer required. 3263 * 3264 * Returns the pointer through which to access the mapped object, or an 3265 * ERR_PTR() on error. 3266 */ 3267 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj); 3268 3269 /** 3270 * i915_gem_object_unpin_map - releases an earlier mapping 3271 * @obj - the object to unmap 3272 * 3273 * After pinning the object and mapping its pages, once you are finished 3274 * with your access, call i915_gem_object_unpin_map() to release the pin 3275 * upon the mapping. Once the pin count reaches zero, that mapping may be 3276 * removed. 3277 * 3278 * The caller must hold the struct_mutex. 3279 */ 3280 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj) 3281 { 3282 lockdep_assert_held(&obj->base.dev->struct_mutex); 3283 i915_gem_object_unpin_pages(obj); 3284 } 3285 3286 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev); 3287 int i915_gem_object_sync(struct drm_i915_gem_object *obj, 3288 struct intel_engine_cs *to, 3289 struct drm_i915_gem_request **to_req); 3290 void i915_vma_move_to_active(struct i915_vma *vma, 3291 struct drm_i915_gem_request *req); 3292 int i915_gem_dumb_create(struct drm_file *file_priv, 3293 struct drm_device *dev, 3294 struct drm_mode_create_dumb *args); 3295 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev, 3296 uint32_t handle, uint64_t *offset); 3297 3298 void i915_gem_track_fb(struct drm_i915_gem_object *old, 3299 struct drm_i915_gem_object *new, 3300 unsigned frontbuffer_bits); 3301 3302 /** 3303 * Returns true if seq1 is later than seq2. 3304 */ 3305 static inline bool 3306 i915_seqno_passed(uint32_t seq1, uint32_t seq2) 3307 { 3308 return (int32_t)(seq1 - seq2) >= 0; 3309 } 3310 3311 static inline bool i915_gem_request_started(const struct drm_i915_gem_request *req) 3312 { 3313 return i915_seqno_passed(intel_engine_get_seqno(req->engine), 3314 req->previous_seqno); 3315 } 3316 3317 static inline bool i915_gem_request_completed(const struct drm_i915_gem_request *req) 3318 { 3319 return i915_seqno_passed(intel_engine_get_seqno(req->engine), 3320 req->seqno); 3321 } 3322 3323 bool __i915_spin_request(const struct drm_i915_gem_request *request, 3324 int state, unsigned long timeout_us); 3325 static inline bool i915_spin_request(const struct drm_i915_gem_request *request, 3326 int state, unsigned long timeout_us) 3327 { 3328 return (i915_gem_request_started(request) && 3329 __i915_spin_request(request, state, timeout_us)); 3330 } 3331 3332 int __must_check i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno); 3333 int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno); 3334 3335 struct drm_i915_gem_request * 3336 i915_gem_find_active_request(struct intel_engine_cs *engine); 3337 3338 void i915_gem_retire_requests(struct drm_i915_private *dev_priv); 3339 void i915_gem_retire_requests_ring(struct intel_engine_cs *engine); 3340 3341 static inline u32 i915_reset_counter(struct i915_gpu_error *error) 3342 { 3343 return atomic_read(&error->reset_counter); 3344 } 3345 3346 static inline bool __i915_reset_in_progress(u32 reset) 3347 { 3348 return unlikely(reset & I915_RESET_IN_PROGRESS_FLAG); 3349 } 3350 3351 static inline bool __i915_reset_in_progress_or_wedged(u32 reset) 3352 { 3353 return unlikely(reset & (I915_RESET_IN_PROGRESS_FLAG | I915_WEDGED)); 3354 } 3355 3356 static inline bool __i915_terminally_wedged(u32 reset) 3357 { 3358 return unlikely(reset & I915_WEDGED); 3359 } 3360 3361 static inline bool i915_reset_in_progress(struct i915_gpu_error *error) 3362 { 3363 return __i915_reset_in_progress(i915_reset_counter(error)); 3364 } 3365 3366 static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error) 3367 { 3368 return __i915_reset_in_progress_or_wedged(i915_reset_counter(error)); 3369 } 3370 3371 static inline bool i915_terminally_wedged(struct i915_gpu_error *error) 3372 { 3373 return __i915_terminally_wedged(i915_reset_counter(error)); 3374 } 3375 3376 static inline u32 i915_reset_count(struct i915_gpu_error *error) 3377 { 3378 return ((i915_reset_counter(error) & ~I915_WEDGED) + 1) / 2; 3379 } 3380 3381 void i915_gem_reset(struct drm_device *dev); 3382 bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force); 3383 int __must_check i915_gem_init(struct drm_device *dev); 3384 int i915_gem_init_engines(struct drm_device *dev); 3385 int __must_check i915_gem_init_hw(struct drm_device *dev); 3386 void i915_gem_init_swizzling(struct drm_device *dev); 3387 void i915_gem_cleanup_engines(struct drm_device *dev); 3388 int __must_check i915_gem_wait_for_idle(struct drm_i915_private *dev_priv); 3389 int __must_check i915_gem_suspend(struct drm_device *dev); 3390 void __i915_add_request(struct drm_i915_gem_request *req, 3391 struct drm_i915_gem_object *batch_obj, 3392 bool flush_caches); 3393 #define i915_add_request(req) \ 3394 __i915_add_request(req, NULL, true) 3395 #define i915_add_request_no_flush(req) \ 3396 __i915_add_request(req, NULL, false) 3397 int __i915_wait_request(struct drm_i915_gem_request *req, 3398 bool interruptible, 3399 s64 *timeout, 3400 struct intel_rps_client *rps); 3401 int __must_check i915_wait_request(struct drm_i915_gem_request *req); 3402 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf); 3403 int __must_check 3404 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, 3405 bool readonly); 3406 int __must_check 3407 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, 3408 bool write); 3409 int __must_check 3410 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write); 3411 int __must_check 3412 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3413 u32 alignment, 3414 const struct i915_ggtt_view *view); 3415 void i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj, 3416 const struct i915_ggtt_view *view); 3417 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 3418 int align); 3419 int i915_gem_open(struct drm_device *dev, struct drm_file *file); 3420 void i915_gem_release(struct drm_device *dev, struct drm_file *file); 3421 3422 uint32_t 3423 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode); 3424 uint32_t 3425 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size, 3426 int tiling_mode, bool fenced); 3427 3428 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3429 enum i915_cache_level cache_level); 3430 3431 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev, 3432 struct dma_buf *dma_buf); 3433 3434 struct dma_buf *i915_gem_prime_export(struct drm_device *dev, 3435 struct drm_gem_object *gem_obj, int flags); 3436 3437 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o, 3438 const struct i915_ggtt_view *view); 3439 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o, 3440 struct i915_address_space *vm); 3441 static inline u64 3442 i915_gem_obj_ggtt_offset(struct drm_i915_gem_object *o) 3443 { 3444 return i915_gem_obj_ggtt_offset_view(o, &i915_ggtt_view_normal); 3445 } 3446 3447 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o); 3448 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o, 3449 const struct i915_ggtt_view *view); 3450 bool i915_gem_obj_bound(struct drm_i915_gem_object *o, 3451 struct i915_address_space *vm); 3452 3453 struct i915_vma * 3454 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj, 3455 struct i915_address_space *vm); 3456 struct i915_vma * 3457 i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj, 3458 const struct i915_ggtt_view *view); 3459 3460 struct i915_vma * 3461 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj, 3462 struct i915_address_space *vm); 3463 struct i915_vma * 3464 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj, 3465 const struct i915_ggtt_view *view); 3466 3467 static inline struct i915_vma * 3468 i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj) 3469 { 3470 return i915_gem_obj_to_ggtt_view(obj, &i915_ggtt_view_normal); 3471 } 3472 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj); 3473 3474 /* Some GGTT VM helpers */ 3475 static inline struct i915_hw_ppgtt * 3476 i915_vm_to_ppgtt(struct i915_address_space *vm) 3477 { 3478 return container_of(vm, struct i915_hw_ppgtt, base); 3479 } 3480 3481 3482 static inline bool i915_gem_obj_ggtt_bound(struct drm_i915_gem_object *obj) 3483 { 3484 return i915_gem_obj_ggtt_bound_view(obj, &i915_ggtt_view_normal); 3485 } 3486 3487 unsigned long 3488 i915_gem_obj_ggtt_size(struct drm_i915_gem_object *obj); 3489 3490 static inline int __must_check 3491 i915_gem_obj_ggtt_pin(struct drm_i915_gem_object *obj, 3492 uint32_t alignment, 3493 unsigned flags) 3494 { 3495 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 3496 struct i915_ggtt *ggtt = &dev_priv->ggtt; 3497 3498 return i915_gem_object_pin(obj, &ggtt->base, 3499 alignment, flags | PIN_GLOBAL); 3500 } 3501 3502 void i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj, 3503 const struct i915_ggtt_view *view); 3504 static inline void 3505 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj) 3506 { 3507 i915_gem_object_ggtt_unpin_view(obj, &i915_ggtt_view_normal); 3508 } 3509 3510 /* i915_gem_fence.c */ 3511 int __must_check i915_gem_object_get_fence(struct drm_i915_gem_object *obj); 3512 int __must_check i915_gem_object_put_fence(struct drm_i915_gem_object *obj); 3513 3514 bool i915_gem_object_pin_fence(struct drm_i915_gem_object *obj); 3515 void i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj); 3516 3517 void i915_gem_restore_fences(struct drm_device *dev); 3518 3519 void i915_gem_detect_bit_6_swizzle(struct drm_device *dev); 3520 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj); 3521 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj); 3522 3523 /* i915_gem_context.c */ 3524 int __must_check i915_gem_context_init(struct drm_device *dev); 3525 void i915_gem_context_lost(struct drm_i915_private *dev_priv); 3526 void i915_gem_context_fini(struct drm_device *dev); 3527 void i915_gem_context_reset(struct drm_device *dev); 3528 int i915_gem_context_open(struct drm_device *dev, struct drm_file *file); 3529 void i915_gem_context_close(struct drm_device *dev, struct drm_file *file); 3530 int i915_switch_context(struct drm_i915_gem_request *req); 3531 void i915_gem_context_free(struct kref *ctx_ref); 3532 struct drm_i915_gem_object * 3533 i915_gem_alloc_context_obj(struct drm_device *dev, size_t size); 3534 struct i915_gem_context * 3535 i915_gem_context_create_gvt(struct drm_device *dev); 3536 3537 static inline struct i915_gem_context * 3538 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id) 3539 { 3540 struct i915_gem_context *ctx; 3541 3542 lockdep_assert_held(&file_priv->dev_priv->drm.struct_mutex); 3543 3544 ctx = idr_find(&file_priv->context_idr, id); 3545 if (!ctx) 3546 return ERR_PTR(-ENOENT); 3547 3548 return ctx; 3549 } 3550 3551 static inline void i915_gem_context_reference(struct i915_gem_context *ctx) 3552 { 3553 kref_get(&ctx->ref); 3554 } 3555 3556 static inline void i915_gem_context_unreference(struct i915_gem_context *ctx) 3557 { 3558 lockdep_assert_held(&ctx->i915->drm.struct_mutex); 3559 kref_put(&ctx->ref, i915_gem_context_free); 3560 } 3561 3562 static inline bool i915_gem_context_is_default(const struct i915_gem_context *c) 3563 { 3564 return c->user_handle == DEFAULT_CONTEXT_HANDLE; 3565 } 3566 3567 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data, 3568 struct drm_file *file); 3569 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data, 3570 struct drm_file *file); 3571 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data, 3572 struct drm_file *file_priv); 3573 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data, 3574 struct drm_file *file_priv); 3575 int i915_gem_context_reset_stats_ioctl(struct drm_device *dev, void *data, 3576 struct drm_file *file); 3577 3578 /* i915_gem_evict.c */ 3579 int __must_check i915_gem_evict_something(struct drm_device *dev, 3580 struct i915_address_space *vm, 3581 int min_size, 3582 unsigned alignment, 3583 unsigned cache_level, 3584 unsigned long start, 3585 unsigned long end, 3586 unsigned flags); 3587 int __must_check i915_gem_evict_for_vma(struct i915_vma *target); 3588 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle); 3589 3590 /* belongs in i915_gem_gtt.h */ 3591 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv) 3592 { 3593 if (INTEL_GEN(dev_priv) < 6) 3594 intel_gtt_chipset_flush(); 3595 } 3596 3597 /* i915_gem_stolen.c */ 3598 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv, 3599 struct drm_mm_node *node, u64 size, 3600 unsigned alignment); 3601 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv, 3602 struct drm_mm_node *node, u64 size, 3603 unsigned alignment, u64 start, 3604 u64 end); 3605 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv, 3606 struct drm_mm_node *node); 3607 int i915_gem_init_stolen(struct drm_device *dev); 3608 void i915_gem_cleanup_stolen(struct drm_device *dev); 3609 struct drm_i915_gem_object * 3610 i915_gem_object_create_stolen(struct drm_device *dev, u32 size); 3611 struct drm_i915_gem_object * 3612 i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev, 3613 u32 stolen_offset, 3614 u32 gtt_offset, 3615 u32 size); 3616 3617 /* i915_gem_shrinker.c */ 3618 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv, 3619 unsigned long target, 3620 unsigned flags); 3621 #define I915_SHRINK_PURGEABLE 0x1 3622 #define I915_SHRINK_UNBOUND 0x2 3623 #define I915_SHRINK_BOUND 0x4 3624 #define I915_SHRINK_ACTIVE 0x8 3625 #define I915_SHRINK_VMAPS 0x10 3626 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv); 3627 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv); 3628 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv); 3629 3630 3631 /* i915_gem_tiling.c */ 3632 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) 3633 { 3634 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 3635 3636 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && 3637 obj->tiling_mode != I915_TILING_NONE; 3638 } 3639 3640 /* i915_gem_debug.c */ 3641 #if WATCH_LISTS 3642 int i915_verify_lists(struct drm_device *dev); 3643 #else 3644 #define i915_verify_lists(dev) 0 3645 #endif 3646 3647 /* i915_debugfs.c */ 3648 #ifdef CONFIG_DEBUG_FS 3649 int i915_debugfs_register(struct drm_i915_private *dev_priv); 3650 void i915_debugfs_unregister(struct drm_i915_private *dev_priv); 3651 int i915_debugfs_connector_add(struct drm_connector *connector); 3652 void intel_display_crc_init(struct drm_device *dev); 3653 #else 3654 static inline int i915_debugfs_register(struct drm_i915_private *) {return 0;} 3655 static inline void i915_debugfs_unregister(struct drm_i915_private *) {} 3656 static inline int i915_debugfs_connector_add(struct drm_connector *connector) 3657 { return 0; } 3658 static inline void intel_display_crc_init(struct drm_device *dev) {} 3659 #endif 3660 3661 /* i915_gpu_error.c */ 3662 __printf(2, 3) 3663 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...); 3664 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr, 3665 const struct i915_error_state_file_priv *error); 3666 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb, 3667 struct drm_i915_private *i915, 3668 size_t count, loff_t pos); 3669 static inline void i915_error_state_buf_release( 3670 struct drm_i915_error_state_buf *eb) 3671 { 3672 kfree(eb->buf); 3673 } 3674 void i915_capture_error_state(struct drm_i915_private *dev_priv, 3675 u32 engine_mask, 3676 const char *error_msg); 3677 void i915_error_state_get(struct drm_device *dev, 3678 struct i915_error_state_file_priv *error_priv); 3679 void i915_error_state_put(struct i915_error_state_file_priv *error_priv); 3680 void i915_destroy_error_state(struct drm_device *dev); 3681 3682 void i915_get_extra_instdone(struct drm_i915_private *dev_priv, uint32_t *instdone); 3683 const char *i915_cache_level_str(struct drm_i915_private *i915, int type); 3684 3685 /* i915_cmd_parser.c */ 3686 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv); 3687 int i915_cmd_parser_init_ring(struct intel_engine_cs *engine); 3688 void i915_cmd_parser_fini_ring(struct intel_engine_cs *engine); 3689 bool i915_needs_cmd_parser(struct intel_engine_cs *engine); 3690 int i915_parse_cmds(struct intel_engine_cs *engine, 3691 struct drm_i915_gem_object *batch_obj, 3692 struct drm_i915_gem_object *shadow_batch_obj, 3693 u32 batch_start_offset, 3694 u32 batch_len, 3695 bool is_master); 3696 3697 /* i915_suspend.c */ 3698 extern int i915_save_state(struct drm_device *dev); 3699 extern int i915_restore_state(struct drm_device *dev); 3700 3701 /* i915_sysfs.c */ 3702 void i915_setup_sysfs(struct drm_device *dev_priv); 3703 void i915_teardown_sysfs(struct drm_device *dev_priv); 3704 3705 /* intel_i2c.c */ 3706 extern int intel_setup_gmbus(struct drm_device *dev); 3707 extern void intel_teardown_gmbus(struct drm_device *dev); 3708 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv, 3709 unsigned int pin); 3710 3711 extern struct i2c_adapter * 3712 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin); 3713 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed); 3714 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit); 3715 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter) 3716 { 3717 return container_of(adapter, struct intel_gmbus, adapter)->force_bit; 3718 } 3719 extern void intel_i2c_reset(struct drm_device *dev); 3720 3721 /* intel_bios.c */ 3722 int intel_bios_init(struct drm_i915_private *dev_priv); 3723 bool intel_bios_is_valid_vbt(const void *buf, size_t size); 3724 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv); 3725 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin); 3726 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port); 3727 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port); 3728 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port); 3729 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port); 3730 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv, 3731 enum port port); 3732 3733 /* intel_opregion.c */ 3734 #ifdef CONFIG_ACPI 3735 extern int intel_opregion_setup(struct drm_i915_private *dev_priv); 3736 extern void intel_opregion_register(struct drm_i915_private *dev_priv); 3737 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv); 3738 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv); 3739 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, 3740 bool enable); 3741 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv, 3742 pci_power_t state); 3743 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv); 3744 #else 3745 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; } 3746 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { } 3747 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { } 3748 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv) 3749 { 3750 } 3751 static inline int 3752 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable) 3753 { 3754 return 0; 3755 } 3756 static inline int 3757 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state) 3758 { 3759 return 0; 3760 } 3761 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev) 3762 { 3763 return -ENODEV; 3764 } 3765 #endif 3766 3767 /* intel_acpi.c */ 3768 #ifdef CONFIG_ACPI 3769 extern void intel_register_dsm_handler(void); 3770 extern void intel_unregister_dsm_handler(void); 3771 #else 3772 static inline void intel_register_dsm_handler(void) { return; } 3773 static inline void intel_unregister_dsm_handler(void) { return; } 3774 #endif /* CONFIG_ACPI */ 3775 3776 /* intel_device_info.c */ 3777 static inline struct intel_device_info * 3778 mkwrite_device_info(struct drm_i915_private *dev_priv) 3779 { 3780 return (struct intel_device_info *)&dev_priv->info; 3781 } 3782 3783 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv); 3784 void intel_device_info_dump(struct drm_i915_private *dev_priv); 3785 3786 /* modesetting */ 3787 extern void intel_modeset_init_hw(struct drm_device *dev); 3788 extern void intel_modeset_init(struct drm_device *dev); 3789 extern void intel_modeset_gem_init(struct drm_device *dev); 3790 extern void intel_modeset_cleanup(struct drm_device *dev); 3791 extern int intel_connector_register(struct drm_connector *); 3792 extern void intel_connector_unregister(struct drm_connector *); 3793 extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state); 3794 extern void intel_display_resume(struct drm_device *dev); 3795 extern void i915_redisable_vga(struct drm_device *dev); 3796 extern void i915_redisable_vga_power_on(struct drm_device *dev); 3797 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val); 3798 extern void intel_init_pch_refclk(struct drm_device *dev); 3799 extern void intel_set_rps(struct drm_i915_private *dev_priv, u8 val); 3800 extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, 3801 bool enable); 3802 3803 extern bool i915_semaphore_is_enabled(struct drm_i915_private *dev_priv); 3804 int i915_reg_read_ioctl(struct drm_device *dev, void *data, 3805 struct drm_file *file); 3806 3807 /* overlay */ 3808 extern struct intel_overlay_error_state * 3809 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv); 3810 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e, 3811 struct intel_overlay_error_state *error); 3812 3813 extern struct intel_display_error_state * 3814 intel_display_capture_error_state(struct drm_i915_private *dev_priv); 3815 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e, 3816 struct drm_device *dev, 3817 struct intel_display_error_state *error); 3818 3819 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val); 3820 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val); 3821 3822 /* intel_sideband.c */ 3823 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr); 3824 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val); 3825 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr); 3826 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg); 3827 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val); 3828 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg); 3829 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3830 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg); 3831 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3832 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg); 3833 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3834 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg); 3835 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val); 3836 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg, 3837 enum intel_sbi_destination destination); 3838 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value, 3839 enum intel_sbi_destination destination); 3840 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg); 3841 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3842 3843 /* intel_dpio_phy.c */ 3844 void chv_set_phy_signal_level(struct intel_encoder *encoder, 3845 u32 deemph_reg_value, u32 margin_reg_value, 3846 bool uniq_trans_scale); 3847 void chv_data_lane_soft_reset(struct intel_encoder *encoder, 3848 bool reset); 3849 void chv_phy_pre_pll_enable(struct intel_encoder *encoder); 3850 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder); 3851 void chv_phy_release_cl2_override(struct intel_encoder *encoder); 3852 void chv_phy_post_pll_disable(struct intel_encoder *encoder); 3853 3854 void vlv_set_phy_signal_level(struct intel_encoder *encoder, 3855 u32 demph_reg_value, u32 preemph_reg_value, 3856 u32 uniqtranscale_reg_value, u32 tx3_demph); 3857 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder); 3858 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder); 3859 void vlv_phy_reset_lanes(struct intel_encoder *encoder); 3860 3861 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val); 3862 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val); 3863 3864 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true) 3865 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true) 3866 3867 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true) 3868 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true) 3869 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false) 3870 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false) 3871 3872 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true) 3873 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true) 3874 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false) 3875 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false) 3876 3877 /* Be very careful with read/write 64-bit values. On 32-bit machines, they 3878 * will be implemented using 2 32-bit writes in an arbitrary order with 3879 * an arbitrary delay between them. This can cause the hardware to 3880 * act upon the intermediate value, possibly leading to corruption and 3881 * machine death. You have been warned. 3882 */ 3883 #define I915_WRITE64(reg, val) dev_priv->uncore.funcs.mmio_writeq(dev_priv, (reg), (val), true) 3884 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true) 3885 3886 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \ 3887 u32 upper, lower, old_upper, loop = 0; \ 3888 upper = I915_READ(upper_reg); \ 3889 do { \ 3890 old_upper = upper; \ 3891 lower = I915_READ(lower_reg); \ 3892 upper = I915_READ(upper_reg); \ 3893 } while (upper != old_upper && loop++ < 2); \ 3894 (u64)upper << 32 | lower; }) 3895 3896 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg) 3897 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg) 3898 3899 #define __raw_read(x, s) \ 3900 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \ 3901 i915_reg_t reg) \ 3902 { \ 3903 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3904 } 3905 3906 #define __raw_write(x, s) \ 3907 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \ 3908 i915_reg_t reg, uint##x##_t val) \ 3909 { \ 3910 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3911 } 3912 __raw_read(8, b) 3913 __raw_read(16, w) 3914 __raw_read(32, l) 3915 __raw_read(64, q) 3916 3917 __raw_write(8, b) 3918 __raw_write(16, w) 3919 __raw_write(32, l) 3920 __raw_write(64, q) 3921 3922 #undef __raw_read 3923 #undef __raw_write 3924 3925 /* These are untraced mmio-accessors that are only valid to be used inside 3926 * criticial sections inside IRQ handlers where forcewake is explicitly 3927 * controlled. 3928 * Think twice, and think again, before using these. 3929 * Note: Should only be used between intel_uncore_forcewake_irqlock() and 3930 * intel_uncore_forcewake_irqunlock(). 3931 */ 3932 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__)) 3933 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__)) 3934 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__)) 3935 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__) 3936 3937 /* "Broadcast RGB" property */ 3938 #define INTEL_BROADCAST_RGB_AUTO 0 3939 #define INTEL_BROADCAST_RGB_FULL 1 3940 #define INTEL_BROADCAST_RGB_LIMITED 2 3941 3942 static inline i915_reg_t i915_vgacntrl_reg(struct drm_device *dev) 3943 { 3944 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) 3945 return VLV_VGACNTRL; 3946 else if (INTEL_INFO(dev)->gen >= 5) 3947 return CPU_VGACNTRL; 3948 else 3949 return VGACNTRL; 3950 } 3951 3952 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m) 3953 { 3954 unsigned long j = msecs_to_jiffies(m); 3955 3956 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 3957 } 3958 3959 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n) 3960 { 3961 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1); 3962 } 3963 3964 static inline unsigned long 3965 timespec_to_jiffies_timeout(const struct timespec *value) 3966 { 3967 unsigned long j = timespec_to_jiffies(value); 3968 3969 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 3970 } 3971 3972 /* 3973 * If you need to wait X milliseconds between events A and B, but event B 3974 * doesn't happen exactly after event A, you record the timestamp (jiffies) of 3975 * when event A happened, then just before event B you call this function and 3976 * pass the timestamp as the first argument, and X as the second argument. 3977 */ 3978 static inline void 3979 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms) 3980 { 3981 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies; 3982 3983 /* 3984 * Don't re-read the value of "jiffies" every time since it may change 3985 * behind our back and break the math. 3986 */ 3987 tmp_jiffies = jiffies; 3988 target_jiffies = timestamp_jiffies + 3989 msecs_to_jiffies_timeout(to_wait_ms); 3990 3991 if (time_after(target_jiffies, tmp_jiffies)) { 3992 remaining_jiffies = target_jiffies - tmp_jiffies; 3993 while (remaining_jiffies) 3994 remaining_jiffies = 3995 schedule_timeout_uninterruptible(remaining_jiffies); 3996 } 3997 } 3998 static inline bool __i915_request_irq_complete(struct drm_i915_gem_request *req) 3999 { 4000 struct intel_engine_cs *engine = req->engine; 4001 4002 /* Before we do the heavier coherent read of the seqno, 4003 * check the value (hopefully) in the CPU cacheline. 4004 */ 4005 if (i915_gem_request_completed(req)) 4006 return true; 4007 4008 /* Ensure our read of the seqno is coherent so that we 4009 * do not "miss an interrupt" (i.e. if this is the last 4010 * request and the seqno write from the GPU is not visible 4011 * by the time the interrupt fires, we will see that the 4012 * request is incomplete and go back to sleep awaiting 4013 * another interrupt that will never come.) 4014 * 4015 * Strictly, we only need to do this once after an interrupt, 4016 * but it is easier and safer to do it every time the waiter 4017 * is woken. 4018 */ 4019 if (engine->irq_seqno_barrier && 4020 READ_ONCE(engine->breadcrumbs.irq_seqno_bh) == current && 4021 cmpxchg_relaxed(&engine->breadcrumbs.irq_posted, 1, 0)) { 4022 struct task_struct *tsk; 4023 4024 /* The ordering of irq_posted versus applying the barrier 4025 * is crucial. The clearing of the current irq_posted must 4026 * be visible before we perform the barrier operation, 4027 * such that if a subsequent interrupt arrives, irq_posted 4028 * is reasserted and our task rewoken (which causes us to 4029 * do another __i915_request_irq_complete() immediately 4030 * and reapply the barrier). Conversely, if the clear 4031 * occurs after the barrier, then an interrupt that arrived 4032 * whilst we waited on the barrier would not trigger a 4033 * barrier on the next pass, and the read may not see the 4034 * seqno update. 4035 */ 4036 engine->irq_seqno_barrier(engine); 4037 4038 /* If we consume the irq, but we are no longer the bottom-half, 4039 * the real bottom-half may not have serialised their own 4040 * seqno check with the irq-barrier (i.e. may have inspected 4041 * the seqno before we believe it coherent since they see 4042 * irq_posted == false but we are still running). 4043 */ 4044 rcu_read_lock(); 4045 tsk = READ_ONCE(engine->breadcrumbs.irq_seqno_bh); 4046 if (tsk && tsk != current) 4047 /* Note that if the bottom-half is changed as we 4048 * are sending the wake-up, the new bottom-half will 4049 * be woken by whomever made the change. We only have 4050 * to worry about when we steal the irq-posted for 4051 * ourself. 4052 */ 4053 wake_up_process(tsk); 4054 rcu_read_unlock(); 4055 4056 if (i915_gem_request_completed(req)) 4057 return true; 4058 } 4059 4060 /* We need to check whether any gpu reset happened in between 4061 * the request being submitted and now. If a reset has occurred, 4062 * the seqno will have been advance past ours and our request 4063 * is complete. If we are in the process of handling a reset, 4064 * the request is effectively complete as the rendering will 4065 * be discarded, but we need to return in order to drop the 4066 * struct_mutex. 4067 */ 4068 if (i915_reset_in_progress(&req->i915->gpu_error)) 4069 return true; 4070 4071 return false; 4072 } 4073 4074 #endif 4075