1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*- 2 */ 3 /* 4 * 5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 6 * All Rights Reserved. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a 9 * copy of this software and associated documentation files (the 10 * "Software"), to deal in the Software without restriction, including 11 * without limitation the rights to use, copy, modify, merge, publish, 12 * distribute, sub license, and/or sell copies of the Software, and to 13 * permit persons to whom the Software is furnished to do so, subject to 14 * the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the 17 * next paragraph) shall be included in all copies or substantial portions 18 * of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 27 * 28 */ 29 30 #ifndef _I915_DRV_H_ 31 #define _I915_DRV_H_ 32 33 #include <uapi/drm/i915_drm.h> 34 #include <uapi/drm/drm_fourcc.h> 35 36 #include <linux/io-mapping.h> 37 #include <linux/i2c.h> 38 #include <linux/i2c-algo-bit.h> 39 #include <linux/backlight.h> 40 #include <linux/hash.h> 41 #include <linux/intel-iommu.h> 42 #include <linux/kref.h> 43 #include <linux/perf_event.h> 44 #include <linux/pm_qos.h> 45 #include <linux/reservation.h> 46 #include <linux/shmem_fs.h> 47 48 #include <drm/drmP.h> 49 #include <drm/intel-gtt.h> 50 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */ 51 #include <drm/drm_gem.h> 52 #include <drm/drm_auth.h> 53 #include <drm/drm_cache.h> 54 55 #include "i915_params.h" 56 #include "i915_reg.h" 57 #include "i915_utils.h" 58 59 #include "intel_bios.h" 60 #include "intel_device_info.h" 61 #include "intel_display.h" 62 #include "intel_dpll_mgr.h" 63 #include "intel_lrc.h" 64 #include "intel_opregion.h" 65 #include "intel_ringbuffer.h" 66 #include "intel_uncore.h" 67 #include "intel_wopcm.h" 68 #include "intel_uc.h" 69 70 #include "i915_gem.h" 71 #include "i915_gem_context.h" 72 #include "i915_gem_fence_reg.h" 73 #include "i915_gem_object.h" 74 #include "i915_gem_gtt.h" 75 #include "i915_gpu_error.h" 76 #include "i915_request.h" 77 #include "i915_scheduler.h" 78 #include "i915_timeline.h" 79 #include "i915_vma.h" 80 81 #include "intel_gvt.h" 82 83 /* General customization: 84 */ 85 86 #define DRIVER_NAME "i915" 87 #define DRIVER_DESC "Intel Graphics" 88 #define DRIVER_DATE "20180514" 89 #define DRIVER_TIMESTAMP 1526300884 90 91 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and 92 * WARN_ON()) for hw state sanity checks to check for unexpected conditions 93 * which may not necessarily be a user visible problem. This will either 94 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to 95 * enable distros and users to tailor their preferred amount of i915 abrt 96 * spam. 97 */ 98 #define I915_STATE_WARN(condition, format...) ({ \ 99 int __ret_warn_on = !!(condition); \ 100 if (unlikely(__ret_warn_on)) \ 101 if (!WARN(i915_modparams.verbose_state_checks, format)) \ 102 DRM_ERROR(format); \ 103 unlikely(__ret_warn_on); \ 104 }) 105 106 #define I915_STATE_WARN_ON(x) \ 107 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")") 108 109 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG) 110 bool __i915_inject_load_failure(const char *func, int line); 111 #define i915_inject_load_failure() \ 112 __i915_inject_load_failure(__func__, __LINE__) 113 #else 114 #define i915_inject_load_failure() false 115 #endif 116 117 typedef struct { 118 uint32_t val; 119 } uint_fixed_16_16_t; 120 121 #define FP_16_16_MAX ({ \ 122 uint_fixed_16_16_t fp; \ 123 fp.val = UINT_MAX; \ 124 fp; \ 125 }) 126 127 static inline bool is_fixed16_zero(uint_fixed_16_16_t val) 128 { 129 if (val.val == 0) 130 return true; 131 return false; 132 } 133 134 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val) 135 { 136 uint_fixed_16_16_t fp; 137 138 WARN_ON(val > U16_MAX); 139 140 fp.val = val << 16; 141 return fp; 142 } 143 144 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp) 145 { 146 return DIV_ROUND_UP(fp.val, 1 << 16); 147 } 148 149 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp) 150 { 151 return fp.val >> 16; 152 } 153 154 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1, 155 uint_fixed_16_16_t min2) 156 { 157 uint_fixed_16_16_t min; 158 159 min.val = min(min1.val, min2.val); 160 return min; 161 } 162 163 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1, 164 uint_fixed_16_16_t max2) 165 { 166 uint_fixed_16_16_t max; 167 168 max.val = max(max1.val, max2.val); 169 return max; 170 } 171 172 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val) 173 { 174 uint_fixed_16_16_t fp; 175 WARN_ON(val > U32_MAX); 176 fp.val = (uint32_t) val; 177 return fp; 178 } 179 180 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val, 181 uint_fixed_16_16_t d) 182 { 183 return DIV_ROUND_UP(val.val, d.val); 184 } 185 186 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val, 187 uint_fixed_16_16_t mul) 188 { 189 uint64_t intermediate_val; 190 191 intermediate_val = (uint64_t) val * mul.val; 192 intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16); 193 WARN_ON(intermediate_val > U32_MAX); 194 return (uint32_t) intermediate_val; 195 } 196 197 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val, 198 uint_fixed_16_16_t mul) 199 { 200 uint64_t intermediate_val; 201 202 intermediate_val = (uint64_t) val.val * mul.val; 203 intermediate_val = intermediate_val >> 16; 204 return clamp_u64_to_fixed16(intermediate_val); 205 } 206 207 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d) 208 { 209 uint64_t interm_val; 210 211 interm_val = (uint64_t)val << 16; 212 interm_val = DIV_ROUND_UP_ULL(interm_val, d); 213 return clamp_u64_to_fixed16(interm_val); 214 } 215 216 static inline uint32_t div_round_up_u32_fixed16(uint32_t val, 217 uint_fixed_16_16_t d) 218 { 219 uint64_t interm_val; 220 221 interm_val = (uint64_t)val << 16; 222 interm_val = DIV_ROUND_UP_ULL(interm_val, d.val); 223 WARN_ON(interm_val > U32_MAX); 224 return (uint32_t) interm_val; 225 } 226 227 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val, 228 uint_fixed_16_16_t mul) 229 { 230 uint64_t intermediate_val; 231 232 intermediate_val = (uint64_t) val * mul.val; 233 return clamp_u64_to_fixed16(intermediate_val); 234 } 235 236 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1, 237 uint_fixed_16_16_t add2) 238 { 239 uint64_t interm_sum; 240 241 interm_sum = (uint64_t) add1.val + add2.val; 242 return clamp_u64_to_fixed16(interm_sum); 243 } 244 245 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1, 246 uint32_t add2) 247 { 248 uint64_t interm_sum; 249 uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2); 250 251 interm_sum = (uint64_t) add1.val + interm_add2.val; 252 return clamp_u64_to_fixed16(interm_sum); 253 } 254 255 enum hpd_pin { 256 HPD_NONE = 0, 257 HPD_TV = HPD_NONE, /* TV is known to be unreliable */ 258 HPD_CRT, 259 HPD_SDVO_B, 260 HPD_SDVO_C, 261 HPD_PORT_A, 262 HPD_PORT_B, 263 HPD_PORT_C, 264 HPD_PORT_D, 265 HPD_PORT_E, 266 HPD_PORT_F, 267 HPD_NUM_PINS 268 }; 269 270 #define for_each_hpd_pin(__pin) \ 271 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++) 272 273 #define HPD_STORM_DEFAULT_THRESHOLD 5 274 275 struct i915_hotplug { 276 struct work_struct hotplug_work; 277 278 struct { 279 unsigned long last_jiffies; 280 int count; 281 enum { 282 HPD_ENABLED = 0, 283 HPD_DISABLED = 1, 284 HPD_MARK_DISABLED = 2 285 } state; 286 } stats[HPD_NUM_PINS]; 287 u32 event_bits; 288 struct delayed_work reenable_work; 289 290 struct intel_digital_port *irq_port[I915_MAX_PORTS]; 291 u32 long_port_mask; 292 u32 short_port_mask; 293 struct work_struct dig_port_work; 294 295 struct work_struct poll_init_work; 296 bool poll_enabled; 297 298 unsigned int hpd_storm_threshold; 299 300 /* 301 * if we get a HPD irq from DP and a HPD irq from non-DP 302 * the non-DP HPD could block the workqueue on a mode config 303 * mutex getting, that userspace may have taken. However 304 * userspace is waiting on the DP workqueue to run which is 305 * blocked behind the non-DP one. 306 */ 307 struct workqueue_struct *dp_wq; 308 }; 309 310 #define I915_GEM_GPU_DOMAINS \ 311 (I915_GEM_DOMAIN_RENDER | \ 312 I915_GEM_DOMAIN_SAMPLER | \ 313 I915_GEM_DOMAIN_COMMAND | \ 314 I915_GEM_DOMAIN_INSTRUCTION | \ 315 I915_GEM_DOMAIN_VERTEX) 316 317 struct drm_i915_private; 318 struct i915_mm_struct; 319 struct i915_mmu_object; 320 321 struct drm_i915_file_private { 322 struct drm_i915_private *dev_priv; 323 struct drm_file *file; 324 325 struct { 326 spinlock_t lock; 327 struct list_head request_list; 328 /* 20ms is a fairly arbitrary limit (greater than the average frame time) 329 * chosen to prevent the CPU getting more than a frame ahead of the GPU 330 * (when using lax throttling for the frontbuffer). We also use it to 331 * offer free GPU waitboosts for severely congested workloads. 332 */ 333 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20) 334 } mm; 335 struct idr context_idr; 336 337 struct intel_rps_client { 338 atomic_t boosts; 339 } rps_client; 340 341 unsigned int bsd_engine; 342 343 /* Client can have a maximum of 3 contexts banned before 344 * it is denied of creating new contexts. As one context 345 * ban needs 4 consecutive hangs, and more if there is 346 * progress in between, this is a last resort stop gap measure 347 * to limit the badly behaving clients access to gpu. 348 */ 349 #define I915_MAX_CLIENT_CONTEXT_BANS 3 350 atomic_t context_bans; 351 }; 352 353 /* Interface history: 354 * 355 * 1.1: Original. 356 * 1.2: Add Power Management 357 * 1.3: Add vblank support 358 * 1.4: Fix cmdbuffer path, add heap destroy 359 * 1.5: Add vblank pipe configuration 360 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank 361 * - Support vertical blank on secondary display pipe 362 */ 363 #define DRIVER_MAJOR 1 364 #define DRIVER_MINOR 6 365 #define DRIVER_PATCHLEVEL 0 366 367 struct intel_overlay; 368 struct intel_overlay_error_state; 369 370 struct sdvo_device_mapping { 371 u8 initialized; 372 u8 dvo_port; 373 u8 slave_addr; 374 u8 dvo_wiring; 375 u8 i2c_pin; 376 u8 ddc_pin; 377 }; 378 379 struct intel_connector; 380 struct intel_encoder; 381 struct intel_atomic_state; 382 struct intel_crtc_state; 383 struct intel_initial_plane_config; 384 struct intel_crtc; 385 struct intel_limit; 386 struct dpll; 387 struct intel_cdclk_state; 388 389 struct drm_i915_display_funcs { 390 void (*get_cdclk)(struct drm_i915_private *dev_priv, 391 struct intel_cdclk_state *cdclk_state); 392 void (*set_cdclk)(struct drm_i915_private *dev_priv, 393 const struct intel_cdclk_state *cdclk_state); 394 int (*get_fifo_size)(struct drm_i915_private *dev_priv, 395 enum i9xx_plane_id i9xx_plane); 396 int (*compute_pipe_wm)(struct intel_crtc_state *cstate); 397 int (*compute_intermediate_wm)(struct drm_device *dev, 398 struct intel_crtc *intel_crtc, 399 struct intel_crtc_state *newstate); 400 void (*initial_watermarks)(struct intel_atomic_state *state, 401 struct intel_crtc_state *cstate); 402 void (*atomic_update_watermarks)(struct intel_atomic_state *state, 403 struct intel_crtc_state *cstate); 404 void (*optimize_watermarks)(struct intel_atomic_state *state, 405 struct intel_crtc_state *cstate); 406 int (*compute_global_watermarks)(struct drm_atomic_state *state); 407 void (*update_wm)(struct intel_crtc *crtc); 408 int (*modeset_calc_cdclk)(struct drm_atomic_state *state); 409 /* Returns the active state of the crtc, and if the crtc is active, 410 * fills out the pipe-config with the hw state. */ 411 bool (*get_pipe_config)(struct intel_crtc *, 412 struct intel_crtc_state *); 413 void (*get_initial_plane_config)(struct intel_crtc *, 414 struct intel_initial_plane_config *); 415 int (*crtc_compute_clock)(struct intel_crtc *crtc, 416 struct intel_crtc_state *crtc_state); 417 void (*crtc_enable)(struct intel_crtc_state *pipe_config, 418 struct drm_atomic_state *old_state); 419 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state, 420 struct drm_atomic_state *old_state); 421 void (*update_crtcs)(struct drm_atomic_state *state); 422 void (*audio_codec_enable)(struct intel_encoder *encoder, 423 const struct intel_crtc_state *crtc_state, 424 const struct drm_connector_state *conn_state); 425 void (*audio_codec_disable)(struct intel_encoder *encoder, 426 const struct intel_crtc_state *old_crtc_state, 427 const struct drm_connector_state *old_conn_state); 428 void (*fdi_link_train)(struct intel_crtc *crtc, 429 const struct intel_crtc_state *crtc_state); 430 void (*init_clock_gating)(struct drm_i915_private *dev_priv); 431 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv); 432 /* clock updates for mode set */ 433 /* cursor updates */ 434 /* render clock increase/decrease */ 435 /* display clock increase/decrease */ 436 /* pll clock increase/decrease */ 437 438 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state); 439 void (*load_luts)(struct drm_crtc_state *crtc_state); 440 }; 441 442 #define CSR_VERSION(major, minor) ((major) << 16 | (minor)) 443 #define CSR_VERSION_MAJOR(version) ((version) >> 16) 444 #define CSR_VERSION_MINOR(version) ((version) & 0xffff) 445 446 struct intel_csr { 447 struct work_struct work; 448 const char *fw_path; 449 uint32_t *dmc_payload; 450 uint32_t dmc_fw_size; 451 uint32_t version; 452 uint32_t mmio_count; 453 i915_reg_t mmioaddr[8]; 454 uint32_t mmiodata[8]; 455 uint32_t dc_state; 456 uint32_t allowed_dc_mask; 457 }; 458 459 enum i915_cache_level { 460 I915_CACHE_NONE = 0, 461 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */ 462 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc 463 caches, eg sampler/render caches, and the 464 large Last-Level-Cache. LLC is coherent with 465 the CPU, but L3 is only visible to the GPU. */ 466 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */ 467 }; 468 469 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */ 470 471 enum fb_op_origin { 472 ORIGIN_GTT, 473 ORIGIN_CPU, 474 ORIGIN_CS, 475 ORIGIN_FLIP, 476 ORIGIN_DIRTYFB, 477 }; 478 479 struct intel_fbc { 480 /* This is always the inner lock when overlapping with struct_mutex and 481 * it's the outer lock when overlapping with stolen_lock. */ 482 struct mutex lock; 483 unsigned threshold; 484 unsigned int possible_framebuffer_bits; 485 unsigned int busy_bits; 486 unsigned int visible_pipes_mask; 487 struct intel_crtc *crtc; 488 489 struct drm_mm_node compressed_fb; 490 struct drm_mm_node *compressed_llb; 491 492 bool false_color; 493 494 bool enabled; 495 bool active; 496 497 bool underrun_detected; 498 struct work_struct underrun_work; 499 500 /* 501 * Due to the atomic rules we can't access some structures without the 502 * appropriate locking, so we cache information here in order to avoid 503 * these problems. 504 */ 505 struct intel_fbc_state_cache { 506 struct i915_vma *vma; 507 unsigned long flags; 508 509 struct { 510 unsigned int mode_flags; 511 uint32_t hsw_bdw_pixel_rate; 512 } crtc; 513 514 struct { 515 unsigned int rotation; 516 int src_w; 517 int src_h; 518 bool visible; 519 /* 520 * Display surface base address adjustement for 521 * pageflips. Note that on gen4+ this only adjusts up 522 * to a tile, offsets within a tile are handled in 523 * the hw itself (with the TILEOFF register). 524 */ 525 int adjusted_x; 526 int adjusted_y; 527 528 int y; 529 } plane; 530 531 struct { 532 const struct drm_format_info *format; 533 unsigned int stride; 534 } fb; 535 } state_cache; 536 537 /* 538 * This structure contains everything that's relevant to program the 539 * hardware registers. When we want to figure out if we need to disable 540 * and re-enable FBC for a new configuration we just check if there's 541 * something different in the struct. The genx_fbc_activate functions 542 * are supposed to read from it in order to program the registers. 543 */ 544 struct intel_fbc_reg_params { 545 struct i915_vma *vma; 546 unsigned long flags; 547 548 struct { 549 enum pipe pipe; 550 enum i9xx_plane_id i9xx_plane; 551 unsigned int fence_y_offset; 552 } crtc; 553 554 struct { 555 const struct drm_format_info *format; 556 unsigned int stride; 557 } fb; 558 559 int cfb_size; 560 unsigned int gen9_wa_cfb_stride; 561 } params; 562 563 struct intel_fbc_work { 564 bool scheduled; 565 u64 scheduled_vblank; 566 struct work_struct work; 567 } work; 568 569 const char *no_fbc_reason; 570 }; 571 572 /* 573 * HIGH_RR is the highest eDP panel refresh rate read from EDID 574 * LOW_RR is the lowest eDP panel refresh rate found from EDID 575 * parsing for same resolution. 576 */ 577 enum drrs_refresh_rate_type { 578 DRRS_HIGH_RR, 579 DRRS_LOW_RR, 580 DRRS_MAX_RR, /* RR count */ 581 }; 582 583 enum drrs_support_type { 584 DRRS_NOT_SUPPORTED = 0, 585 STATIC_DRRS_SUPPORT = 1, 586 SEAMLESS_DRRS_SUPPORT = 2 587 }; 588 589 struct intel_dp; 590 struct i915_drrs { 591 struct mutex mutex; 592 struct delayed_work work; 593 struct intel_dp *dp; 594 unsigned busy_frontbuffer_bits; 595 enum drrs_refresh_rate_type refresh_rate_type; 596 enum drrs_support_type type; 597 }; 598 599 struct i915_psr { 600 struct mutex lock; 601 bool sink_support; 602 struct intel_dp *enabled; 603 bool active; 604 struct delayed_work work; 605 unsigned busy_frontbuffer_bits; 606 bool sink_psr2_support; 607 bool link_standby; 608 bool colorimetry_support; 609 bool alpm; 610 bool has_hw_tracking; 611 bool psr2_enabled; 612 u8 sink_sync_latency; 613 bool debug; 614 ktime_t last_entry_attempt; 615 ktime_t last_exit; 616 617 void (*enable_source)(struct intel_dp *, 618 const struct intel_crtc_state *); 619 void (*disable_source)(struct intel_dp *, 620 const struct intel_crtc_state *); 621 void (*enable_sink)(struct intel_dp *); 622 void (*activate)(struct intel_dp *); 623 void (*setup_vsc)(struct intel_dp *, const struct intel_crtc_state *); 624 }; 625 626 enum intel_pch { 627 PCH_NONE = 0, /* No PCH present */ 628 PCH_IBX, /* Ibexpeak PCH */ 629 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */ 630 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */ 631 PCH_SPT, /* Sunrisepoint PCH */ 632 PCH_KBP, /* Kaby Lake PCH */ 633 PCH_CNP, /* Cannon Lake PCH */ 634 PCH_ICP, /* Ice Lake PCH */ 635 PCH_NOP, 636 }; 637 638 enum intel_sbi_destination { 639 SBI_ICLK, 640 SBI_MPHY, 641 }; 642 643 #define QUIRK_LVDS_SSC_DISABLE (1<<1) 644 #define QUIRK_INVERT_BRIGHTNESS (1<<2) 645 #define QUIRK_BACKLIGHT_PRESENT (1<<3) 646 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5) 647 #define QUIRK_INCREASE_T12_DELAY (1<<6) 648 649 struct intel_fbdev; 650 struct intel_fbc_work; 651 652 struct intel_gmbus { 653 struct i2c_adapter adapter; 654 #define GMBUS_FORCE_BIT_RETRY (1U << 31) 655 u32 force_bit; 656 u32 reg0; 657 i915_reg_t gpio_reg; 658 struct i2c_algo_bit_data bit_algo; 659 struct drm_i915_private *dev_priv; 660 }; 661 662 struct i915_suspend_saved_registers { 663 u32 saveDSPARB; 664 u32 saveFBC_CONTROL; 665 u32 saveCACHE_MODE_0; 666 u32 saveMI_ARB_STATE; 667 u32 saveSWF0[16]; 668 u32 saveSWF1[16]; 669 u32 saveSWF3[3]; 670 uint64_t saveFENCE[I915_MAX_NUM_FENCES]; 671 u32 savePCH_PORT_HOTPLUG; 672 u16 saveGCDGMBUS; 673 }; 674 675 struct vlv_s0ix_state { 676 /* GAM */ 677 u32 wr_watermark; 678 u32 gfx_prio_ctrl; 679 u32 arb_mode; 680 u32 gfx_pend_tlb0; 681 u32 gfx_pend_tlb1; 682 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM]; 683 u32 media_max_req_count; 684 u32 gfx_max_req_count; 685 u32 render_hwsp; 686 u32 ecochk; 687 u32 bsd_hwsp; 688 u32 blt_hwsp; 689 u32 tlb_rd_addr; 690 691 /* MBC */ 692 u32 g3dctl; 693 u32 gsckgctl; 694 u32 mbctl; 695 696 /* GCP */ 697 u32 ucgctl1; 698 u32 ucgctl3; 699 u32 rcgctl1; 700 u32 rcgctl2; 701 u32 rstctl; 702 u32 misccpctl; 703 704 /* GPM */ 705 u32 gfxpause; 706 u32 rpdeuhwtc; 707 u32 rpdeuc; 708 u32 ecobus; 709 u32 pwrdwnupctl; 710 u32 rp_down_timeout; 711 u32 rp_deucsw; 712 u32 rcubmabdtmr; 713 u32 rcedata; 714 u32 spare2gh; 715 716 /* Display 1 CZ domain */ 717 u32 gt_imr; 718 u32 gt_ier; 719 u32 pm_imr; 720 u32 pm_ier; 721 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM]; 722 723 /* GT SA CZ domain */ 724 u32 tilectl; 725 u32 gt_fifoctl; 726 u32 gtlc_wake_ctrl; 727 u32 gtlc_survive; 728 u32 pmwgicz; 729 730 /* Display 2 CZ domain */ 731 u32 gu_ctl0; 732 u32 gu_ctl1; 733 u32 pcbr; 734 u32 clock_gate_dis2; 735 }; 736 737 struct intel_rps_ei { 738 ktime_t ktime; 739 u32 render_c0; 740 u32 media_c0; 741 }; 742 743 struct intel_rps { 744 /* 745 * work, interrupts_enabled and pm_iir are protected by 746 * dev_priv->irq_lock 747 */ 748 struct work_struct work; 749 bool interrupts_enabled; 750 u32 pm_iir; 751 752 /* PM interrupt bits that should never be masked */ 753 u32 pm_intrmsk_mbz; 754 755 /* Frequencies are stored in potentially platform dependent multiples. 756 * In other words, *_freq needs to be multiplied by X to be interesting. 757 * Soft limits are those which are used for the dynamic reclocking done 758 * by the driver (raise frequencies under heavy loads, and lower for 759 * lighter loads). Hard limits are those imposed by the hardware. 760 * 761 * A distinction is made for overclocking, which is never enabled by 762 * default, and is considered to be above the hard limit if it's 763 * possible at all. 764 */ 765 u8 cur_freq; /* Current frequency (cached, may not == HW) */ 766 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */ 767 u8 max_freq_softlimit; /* Max frequency permitted by the driver */ 768 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */ 769 u8 min_freq; /* AKA RPn. Minimum frequency */ 770 u8 boost_freq; /* Frequency to request when wait boosting */ 771 u8 idle_freq; /* Frequency to request when we are idle */ 772 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */ 773 u8 rp1_freq; /* "less than" RP0 power/freqency */ 774 u8 rp0_freq; /* Non-overclocked max frequency. */ 775 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */ 776 777 u8 up_threshold; /* Current %busy required to uplock */ 778 u8 down_threshold; /* Current %busy required to downclock */ 779 780 int last_adj; 781 enum { LOW_POWER, BETWEEN, HIGH_POWER } power; 782 783 bool enabled; 784 atomic_t num_waiters; 785 atomic_t boosts; 786 787 /* manual wa residency calculations */ 788 struct intel_rps_ei ei; 789 }; 790 791 struct intel_rc6 { 792 bool enabled; 793 u64 prev_hw_residency[4]; 794 u64 cur_residency[4]; 795 }; 796 797 struct intel_llc_pstate { 798 bool enabled; 799 }; 800 801 struct intel_gen6_power_mgmt { 802 struct intel_rps rps; 803 struct intel_rc6 rc6; 804 struct intel_llc_pstate llc_pstate; 805 }; 806 807 /* defined intel_pm.c */ 808 extern spinlock_t mchdev_lock; 809 810 struct intel_ilk_power_mgmt { 811 u8 cur_delay; 812 u8 min_delay; 813 u8 max_delay; 814 u8 fmax; 815 u8 fstart; 816 817 u64 last_count1; 818 unsigned long last_time1; 819 unsigned long chipset_power; 820 u64 last_count2; 821 u64 last_time2; 822 unsigned long gfx_power; 823 u8 corr; 824 825 int c_m; 826 int r_t; 827 }; 828 829 struct drm_i915_private; 830 struct i915_power_well; 831 832 struct i915_power_well_ops { 833 /* 834 * Synchronize the well's hw state to match the current sw state, for 835 * example enable/disable it based on the current refcount. Called 836 * during driver init and resume time, possibly after first calling 837 * the enable/disable handlers. 838 */ 839 void (*sync_hw)(struct drm_i915_private *dev_priv, 840 struct i915_power_well *power_well); 841 /* 842 * Enable the well and resources that depend on it (for example 843 * interrupts located on the well). Called after the 0->1 refcount 844 * transition. 845 */ 846 void (*enable)(struct drm_i915_private *dev_priv, 847 struct i915_power_well *power_well); 848 /* 849 * Disable the well and resources that depend on it. Called after 850 * the 1->0 refcount transition. 851 */ 852 void (*disable)(struct drm_i915_private *dev_priv, 853 struct i915_power_well *power_well); 854 /* Returns the hw enabled state. */ 855 bool (*is_enabled)(struct drm_i915_private *dev_priv, 856 struct i915_power_well *power_well); 857 }; 858 859 /* Power well structure for haswell */ 860 struct i915_power_well { 861 const char *name; 862 bool always_on; 863 /* power well enable/disable usage count */ 864 int count; 865 /* cached hw enabled state */ 866 bool hw_enabled; 867 u64 domains; 868 /* unique identifier for this power well */ 869 enum i915_power_well_id id; 870 /* 871 * Arbitraty data associated with this power well. Platform and power 872 * well specific. 873 */ 874 union { 875 struct { 876 enum dpio_phy phy; 877 } bxt; 878 struct { 879 /* Mask of pipes whose IRQ logic is backed by the pw */ 880 u8 irq_pipe_mask; 881 /* The pw is backing the VGA functionality */ 882 bool has_vga:1; 883 bool has_fuses:1; 884 } hsw; 885 }; 886 const struct i915_power_well_ops *ops; 887 }; 888 889 struct i915_power_domains { 890 /* 891 * Power wells needed for initialization at driver init and suspend 892 * time are on. They are kept on until after the first modeset. 893 */ 894 bool init_power_on; 895 bool initializing; 896 int power_well_count; 897 898 struct mutex lock; 899 int domain_use_count[POWER_DOMAIN_NUM]; 900 struct i915_power_well *power_wells; 901 }; 902 903 #define MAX_L3_SLICES 2 904 struct intel_l3_parity { 905 u32 *remap_info[MAX_L3_SLICES]; 906 struct work_struct error_work; 907 int which_slice; 908 }; 909 910 struct i915_gem_mm { 911 /** Memory allocator for GTT stolen memory */ 912 struct drm_mm stolen; 913 /** Protects the usage of the GTT stolen memory allocator. This is 914 * always the inner lock when overlapping with struct_mutex. */ 915 struct mutex stolen_lock; 916 917 /* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */ 918 spinlock_t obj_lock; 919 920 /** List of all objects in gtt_space. Used to restore gtt 921 * mappings on resume */ 922 struct list_head bound_list; 923 /** 924 * List of objects which are not bound to the GTT (thus 925 * are idle and not used by the GPU). These objects may or may 926 * not actually have any pages attached. 927 */ 928 struct list_head unbound_list; 929 930 /** List of all objects in gtt_space, currently mmaped by userspace. 931 * All objects within this list must also be on bound_list. 932 */ 933 struct list_head userfault_list; 934 935 /** 936 * List of objects which are pending destruction. 937 */ 938 struct llist_head free_list; 939 struct work_struct free_work; 940 spinlock_t free_lock; 941 /** 942 * Count of objects pending destructions. Used to skip needlessly 943 * waiting on an RCU barrier if no objects are waiting to be freed. 944 */ 945 atomic_t free_count; 946 947 /** 948 * Small stash of WC pages 949 */ 950 struct pagevec wc_stash; 951 952 /** 953 * tmpfs instance used for shmem backed objects 954 */ 955 struct vfsmount *gemfs; 956 957 /** PPGTT used for aliasing the PPGTT with the GTT */ 958 struct i915_hw_ppgtt *aliasing_ppgtt; 959 960 struct notifier_block oom_notifier; 961 struct notifier_block vmap_notifier; 962 struct shrinker shrinker; 963 964 /** LRU list of objects with fence regs on them. */ 965 struct list_head fence_list; 966 967 /** 968 * Workqueue to fault in userptr pages, flushed by the execbuf 969 * when required but otherwise left to userspace to try again 970 * on EAGAIN. 971 */ 972 struct workqueue_struct *userptr_wq; 973 974 u64 unordered_timeline; 975 976 /* the indicator for dispatch video commands on two BSD rings */ 977 atomic_t bsd_engine_dispatch_index; 978 979 /** Bit 6 swizzling required for X tiling */ 980 uint32_t bit_6_swizzle_x; 981 /** Bit 6 swizzling required for Y tiling */ 982 uint32_t bit_6_swizzle_y; 983 984 /* accounting, useful for userland debugging */ 985 spinlock_t object_stat_lock; 986 u64 object_memory; 987 u32 object_count; 988 }; 989 990 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */ 991 992 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */ 993 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */ 994 995 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */ 996 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */ 997 998 enum modeset_restore { 999 MODESET_ON_LID_OPEN, 1000 MODESET_DONE, 1001 MODESET_SUSPENDED, 1002 }; 1003 1004 #define DP_AUX_A 0x40 1005 #define DP_AUX_B 0x10 1006 #define DP_AUX_C 0x20 1007 #define DP_AUX_D 0x30 1008 #define DP_AUX_F 0x60 1009 1010 #define DDC_PIN_B 0x05 1011 #define DDC_PIN_C 0x04 1012 #define DDC_PIN_D 0x06 1013 1014 struct ddi_vbt_port_info { 1015 int max_tmds_clock; 1016 1017 /* 1018 * This is an index in the HDMI/DVI DDI buffer translation table. 1019 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't 1020 * populate this field. 1021 */ 1022 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff 1023 uint8_t hdmi_level_shift; 1024 1025 uint8_t supports_dvi:1; 1026 uint8_t supports_hdmi:1; 1027 uint8_t supports_dp:1; 1028 uint8_t supports_edp:1; 1029 1030 uint8_t alternate_aux_channel; 1031 uint8_t alternate_ddc_pin; 1032 1033 uint8_t dp_boost_level; 1034 uint8_t hdmi_boost_level; 1035 int dp_max_link_rate; /* 0 for not limited by VBT */ 1036 }; 1037 1038 enum psr_lines_to_wait { 1039 PSR_0_LINES_TO_WAIT = 0, 1040 PSR_1_LINE_TO_WAIT, 1041 PSR_4_LINES_TO_WAIT, 1042 PSR_8_LINES_TO_WAIT 1043 }; 1044 1045 struct intel_vbt_data { 1046 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */ 1047 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */ 1048 1049 /* Feature bits */ 1050 unsigned int int_tv_support:1; 1051 unsigned int lvds_dither:1; 1052 unsigned int lvds_vbt:1; 1053 unsigned int int_crt_support:1; 1054 unsigned int lvds_use_ssc:1; 1055 unsigned int display_clock_mode:1; 1056 unsigned int fdi_rx_polarity_inverted:1; 1057 unsigned int panel_type:4; 1058 int lvds_ssc_freq; 1059 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */ 1060 1061 enum drrs_support_type drrs_type; 1062 1063 struct { 1064 int rate; 1065 int lanes; 1066 int preemphasis; 1067 int vswing; 1068 bool low_vswing; 1069 bool initialized; 1070 bool support; 1071 int bpp; 1072 struct edp_power_seq pps; 1073 } edp; 1074 1075 struct { 1076 bool enable; 1077 bool full_link; 1078 bool require_aux_wakeup; 1079 int idle_frames; 1080 enum psr_lines_to_wait lines_to_wait; 1081 int tp1_wakeup_time; 1082 int tp2_tp3_wakeup_time; 1083 } psr; 1084 1085 struct { 1086 u16 pwm_freq_hz; 1087 bool present; 1088 bool active_low_pwm; 1089 u8 min_brightness; /* min_brightness/255 of max */ 1090 u8 controller; /* brightness controller number */ 1091 enum intel_backlight_type type; 1092 } backlight; 1093 1094 /* MIPI DSI */ 1095 struct { 1096 u16 panel_id; 1097 struct mipi_config *config; 1098 struct mipi_pps_data *pps; 1099 u16 bl_ports; 1100 u16 cabc_ports; 1101 u8 seq_version; 1102 u32 size; 1103 u8 *data; 1104 const u8 *sequence[MIPI_SEQ_MAX]; 1105 u8 *deassert_seq; /* Used by fixup_mipi_sequences() */ 1106 } dsi; 1107 1108 int crt_ddc_pin; 1109 1110 int child_dev_num; 1111 struct child_device_config *child_dev; 1112 1113 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS]; 1114 struct sdvo_device_mapping sdvo_mappings[2]; 1115 }; 1116 1117 enum intel_ddb_partitioning { 1118 INTEL_DDB_PART_1_2, 1119 INTEL_DDB_PART_5_6, /* IVB+ */ 1120 }; 1121 1122 struct intel_wm_level { 1123 bool enable; 1124 uint32_t pri_val; 1125 uint32_t spr_val; 1126 uint32_t cur_val; 1127 uint32_t fbc_val; 1128 }; 1129 1130 struct ilk_wm_values { 1131 uint32_t wm_pipe[3]; 1132 uint32_t wm_lp[3]; 1133 uint32_t wm_lp_spr[3]; 1134 uint32_t wm_linetime[3]; 1135 bool enable_fbc_wm; 1136 enum intel_ddb_partitioning partitioning; 1137 }; 1138 1139 struct g4x_pipe_wm { 1140 uint16_t plane[I915_MAX_PLANES]; 1141 uint16_t fbc; 1142 }; 1143 1144 struct g4x_sr_wm { 1145 uint16_t plane; 1146 uint16_t cursor; 1147 uint16_t fbc; 1148 }; 1149 1150 struct vlv_wm_ddl_values { 1151 uint8_t plane[I915_MAX_PLANES]; 1152 }; 1153 1154 struct vlv_wm_values { 1155 struct g4x_pipe_wm pipe[3]; 1156 struct g4x_sr_wm sr; 1157 struct vlv_wm_ddl_values ddl[3]; 1158 uint8_t level; 1159 bool cxsr; 1160 }; 1161 1162 struct g4x_wm_values { 1163 struct g4x_pipe_wm pipe[2]; 1164 struct g4x_sr_wm sr; 1165 struct g4x_sr_wm hpll; 1166 bool cxsr; 1167 bool hpll_en; 1168 bool fbc_en; 1169 }; 1170 1171 struct skl_ddb_entry { 1172 uint16_t start, end; /* in number of blocks, 'end' is exclusive */ 1173 }; 1174 1175 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry) 1176 { 1177 return entry->end - entry->start; 1178 } 1179 1180 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1, 1181 const struct skl_ddb_entry *e2) 1182 { 1183 if (e1->start == e2->start && e1->end == e2->end) 1184 return true; 1185 1186 return false; 1187 } 1188 1189 struct skl_ddb_allocation { 1190 /* packed/y */ 1191 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; 1192 struct skl_ddb_entry uv_plane[I915_MAX_PIPES][I915_MAX_PLANES]; 1193 u8 enabled_slices; /* GEN11 has configurable 2 slices */ 1194 }; 1195 1196 struct skl_ddb_values { 1197 unsigned dirty_pipes; 1198 struct skl_ddb_allocation ddb; 1199 }; 1200 1201 struct skl_wm_level { 1202 bool plane_en; 1203 uint16_t plane_res_b; 1204 uint8_t plane_res_l; 1205 }; 1206 1207 /* Stores plane specific WM parameters */ 1208 struct skl_wm_params { 1209 bool x_tiled, y_tiled; 1210 bool rc_surface; 1211 bool is_planar; 1212 uint32_t width; 1213 uint8_t cpp; 1214 uint32_t plane_pixel_rate; 1215 uint32_t y_min_scanlines; 1216 uint32_t plane_bytes_per_line; 1217 uint_fixed_16_16_t plane_blocks_per_line; 1218 uint_fixed_16_16_t y_tile_minimum; 1219 uint32_t linetime_us; 1220 uint32_t dbuf_block_size; 1221 }; 1222 1223 /* 1224 * This struct helps tracking the state needed for runtime PM, which puts the 1225 * device in PCI D3 state. Notice that when this happens, nothing on the 1226 * graphics device works, even register access, so we don't get interrupts nor 1227 * anything else. 1228 * 1229 * Every piece of our code that needs to actually touch the hardware needs to 1230 * either call intel_runtime_pm_get or call intel_display_power_get with the 1231 * appropriate power domain. 1232 * 1233 * Our driver uses the autosuspend delay feature, which means we'll only really 1234 * suspend if we stay with zero refcount for a certain amount of time. The 1235 * default value is currently very conservative (see intel_runtime_pm_enable), but 1236 * it can be changed with the standard runtime PM files from sysfs. 1237 * 1238 * The irqs_disabled variable becomes true exactly after we disable the IRQs and 1239 * goes back to false exactly before we reenable the IRQs. We use this variable 1240 * to check if someone is trying to enable/disable IRQs while they're supposed 1241 * to be disabled. This shouldn't happen and we'll print some error messages in 1242 * case it happens. 1243 * 1244 * For more, read the Documentation/power/runtime_pm.txt. 1245 */ 1246 struct i915_runtime_pm { 1247 atomic_t wakeref_count; 1248 bool suspended; 1249 bool irqs_enabled; 1250 }; 1251 1252 enum intel_pipe_crc_source { 1253 INTEL_PIPE_CRC_SOURCE_NONE, 1254 INTEL_PIPE_CRC_SOURCE_PLANE1, 1255 INTEL_PIPE_CRC_SOURCE_PLANE2, 1256 INTEL_PIPE_CRC_SOURCE_PF, 1257 INTEL_PIPE_CRC_SOURCE_PIPE, 1258 /* TV/DP on pre-gen5/vlv can't use the pipe source. */ 1259 INTEL_PIPE_CRC_SOURCE_TV, 1260 INTEL_PIPE_CRC_SOURCE_DP_B, 1261 INTEL_PIPE_CRC_SOURCE_DP_C, 1262 INTEL_PIPE_CRC_SOURCE_DP_D, 1263 INTEL_PIPE_CRC_SOURCE_AUTO, 1264 INTEL_PIPE_CRC_SOURCE_MAX, 1265 }; 1266 1267 struct intel_pipe_crc_entry { 1268 uint32_t frame; 1269 uint32_t crc[5]; 1270 }; 1271 1272 #define INTEL_PIPE_CRC_ENTRIES_NR 128 1273 struct intel_pipe_crc { 1274 spinlock_t lock; 1275 bool opened; /* exclusive access to the result file */ 1276 struct intel_pipe_crc_entry *entries; 1277 enum intel_pipe_crc_source source; 1278 int head, tail; 1279 wait_queue_head_t wq; 1280 int skipped; 1281 }; 1282 1283 struct i915_frontbuffer_tracking { 1284 spinlock_t lock; 1285 1286 /* 1287 * Tracking bits for delayed frontbuffer flushing du to gpu activity or 1288 * scheduled flips. 1289 */ 1290 unsigned busy_bits; 1291 unsigned flip_bits; 1292 }; 1293 1294 struct i915_wa_reg { 1295 i915_reg_t addr; 1296 u32 value; 1297 /* bitmask representing WA bits */ 1298 u32 mask; 1299 }; 1300 1301 #define I915_MAX_WA_REGS 16 1302 1303 struct i915_workarounds { 1304 struct i915_wa_reg reg[I915_MAX_WA_REGS]; 1305 u32 count; 1306 }; 1307 1308 struct i915_virtual_gpu { 1309 bool active; 1310 u32 caps; 1311 }; 1312 1313 /* used in computing the new watermarks state */ 1314 struct intel_wm_config { 1315 unsigned int num_pipes_active; 1316 bool sprites_enabled; 1317 bool sprites_scaled; 1318 }; 1319 1320 struct i915_oa_format { 1321 u32 format; 1322 int size; 1323 }; 1324 1325 struct i915_oa_reg { 1326 i915_reg_t addr; 1327 u32 value; 1328 }; 1329 1330 struct i915_oa_config { 1331 char uuid[UUID_STRING_LEN + 1]; 1332 int id; 1333 1334 const struct i915_oa_reg *mux_regs; 1335 u32 mux_regs_len; 1336 const struct i915_oa_reg *b_counter_regs; 1337 u32 b_counter_regs_len; 1338 const struct i915_oa_reg *flex_regs; 1339 u32 flex_regs_len; 1340 1341 struct attribute_group sysfs_metric; 1342 struct attribute *attrs[2]; 1343 struct device_attribute sysfs_metric_id; 1344 1345 atomic_t ref_count; 1346 }; 1347 1348 struct i915_perf_stream; 1349 1350 /** 1351 * struct i915_perf_stream_ops - the OPs to support a specific stream type 1352 */ 1353 struct i915_perf_stream_ops { 1354 /** 1355 * @enable: Enables the collection of HW samples, either in response to 1356 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened 1357 * without `I915_PERF_FLAG_DISABLED`. 1358 */ 1359 void (*enable)(struct i915_perf_stream *stream); 1360 1361 /** 1362 * @disable: Disables the collection of HW samples, either in response 1363 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying 1364 * the stream. 1365 */ 1366 void (*disable)(struct i915_perf_stream *stream); 1367 1368 /** 1369 * @poll_wait: Call poll_wait, passing a wait queue that will be woken 1370 * once there is something ready to read() for the stream 1371 */ 1372 void (*poll_wait)(struct i915_perf_stream *stream, 1373 struct file *file, 1374 poll_table *wait); 1375 1376 /** 1377 * @wait_unlocked: For handling a blocking read, wait until there is 1378 * something to ready to read() for the stream. E.g. wait on the same 1379 * wait queue that would be passed to poll_wait(). 1380 */ 1381 int (*wait_unlocked)(struct i915_perf_stream *stream); 1382 1383 /** 1384 * @read: Copy buffered metrics as records to userspace 1385 * **buf**: the userspace, destination buffer 1386 * **count**: the number of bytes to copy, requested by userspace 1387 * **offset**: zero at the start of the read, updated as the read 1388 * proceeds, it represents how many bytes have been copied so far and 1389 * the buffer offset for copying the next record. 1390 * 1391 * Copy as many buffered i915 perf samples and records for this stream 1392 * to userspace as will fit in the given buffer. 1393 * 1394 * Only write complete records; returning -%ENOSPC if there isn't room 1395 * for a complete record. 1396 * 1397 * Return any error condition that results in a short read such as 1398 * -%ENOSPC or -%EFAULT, even though these may be squashed before 1399 * returning to userspace. 1400 */ 1401 int (*read)(struct i915_perf_stream *stream, 1402 char __user *buf, 1403 size_t count, 1404 size_t *offset); 1405 1406 /** 1407 * @destroy: Cleanup any stream specific resources. 1408 * 1409 * The stream will always be disabled before this is called. 1410 */ 1411 void (*destroy)(struct i915_perf_stream *stream); 1412 }; 1413 1414 /** 1415 * struct i915_perf_stream - state for a single open stream FD 1416 */ 1417 struct i915_perf_stream { 1418 /** 1419 * @dev_priv: i915 drm device 1420 */ 1421 struct drm_i915_private *dev_priv; 1422 1423 /** 1424 * @link: Links the stream into ``&drm_i915_private->streams`` 1425 */ 1426 struct list_head link; 1427 1428 /** 1429 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*` 1430 * properties given when opening a stream, representing the contents 1431 * of a single sample as read() by userspace. 1432 */ 1433 u32 sample_flags; 1434 1435 /** 1436 * @sample_size: Considering the configured contents of a sample 1437 * combined with the required header size, this is the total size 1438 * of a single sample record. 1439 */ 1440 int sample_size; 1441 1442 /** 1443 * @ctx: %NULL if measuring system-wide across all contexts or a 1444 * specific context that is being monitored. 1445 */ 1446 struct i915_gem_context *ctx; 1447 1448 /** 1449 * @enabled: Whether the stream is currently enabled, considering 1450 * whether the stream was opened in a disabled state and based 1451 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls. 1452 */ 1453 bool enabled; 1454 1455 /** 1456 * @ops: The callbacks providing the implementation of this specific 1457 * type of configured stream. 1458 */ 1459 const struct i915_perf_stream_ops *ops; 1460 1461 /** 1462 * @oa_config: The OA configuration used by the stream. 1463 */ 1464 struct i915_oa_config *oa_config; 1465 }; 1466 1467 /** 1468 * struct i915_oa_ops - Gen specific implementation of an OA unit stream 1469 */ 1470 struct i915_oa_ops { 1471 /** 1472 * @is_valid_b_counter_reg: Validates register's address for 1473 * programming boolean counters for a particular platform. 1474 */ 1475 bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv, 1476 u32 addr); 1477 1478 /** 1479 * @is_valid_mux_reg: Validates register's address for programming mux 1480 * for a particular platform. 1481 */ 1482 bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr); 1483 1484 /** 1485 * @is_valid_flex_reg: Validates register's address for programming 1486 * flex EU filtering for a particular platform. 1487 */ 1488 bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr); 1489 1490 /** 1491 * @init_oa_buffer: Resets the head and tail pointers of the 1492 * circular buffer for periodic OA reports. 1493 * 1494 * Called when first opening a stream for OA metrics, but also may be 1495 * called in response to an OA buffer overflow or other error 1496 * condition. 1497 * 1498 * Note it may be necessary to clear the full OA buffer here as part of 1499 * maintaining the invariable that new reports must be written to 1500 * zeroed memory for us to be able to reliable detect if an expected 1501 * report has not yet landed in memory. (At least on Haswell the OA 1502 * buffer tail pointer is not synchronized with reports being visible 1503 * to the CPU) 1504 */ 1505 void (*init_oa_buffer)(struct drm_i915_private *dev_priv); 1506 1507 /** 1508 * @enable_metric_set: Selects and applies any MUX configuration to set 1509 * up the Boolean and Custom (B/C) counters that are part of the 1510 * counter reports being sampled. May apply system constraints such as 1511 * disabling EU clock gating as required. 1512 */ 1513 int (*enable_metric_set)(struct drm_i915_private *dev_priv, 1514 const struct i915_oa_config *oa_config); 1515 1516 /** 1517 * @disable_metric_set: Remove system constraints associated with using 1518 * the OA unit. 1519 */ 1520 void (*disable_metric_set)(struct drm_i915_private *dev_priv); 1521 1522 /** 1523 * @oa_enable: Enable periodic sampling 1524 */ 1525 void (*oa_enable)(struct drm_i915_private *dev_priv); 1526 1527 /** 1528 * @oa_disable: Disable periodic sampling 1529 */ 1530 void (*oa_disable)(struct drm_i915_private *dev_priv); 1531 1532 /** 1533 * @read: Copy data from the circular OA buffer into a given userspace 1534 * buffer. 1535 */ 1536 int (*read)(struct i915_perf_stream *stream, 1537 char __user *buf, 1538 size_t count, 1539 size_t *offset); 1540 1541 /** 1542 * @oa_hw_tail_read: read the OA tail pointer register 1543 * 1544 * In particular this enables us to share all the fiddly code for 1545 * handling the OA unit tail pointer race that affects multiple 1546 * generations. 1547 */ 1548 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv); 1549 }; 1550 1551 struct intel_cdclk_state { 1552 unsigned int cdclk, vco, ref, bypass; 1553 u8 voltage_level; 1554 }; 1555 1556 struct drm_i915_private { 1557 struct drm_device drm; 1558 1559 struct kmem_cache *objects; 1560 struct kmem_cache *vmas; 1561 struct kmem_cache *luts; 1562 struct kmem_cache *requests; 1563 struct kmem_cache *dependencies; 1564 struct kmem_cache *priorities; 1565 1566 const struct intel_device_info info; 1567 struct intel_driver_caps caps; 1568 1569 /** 1570 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and 1571 * end of stolen which we can optionally use to create GEM objects 1572 * backed by stolen memory. Note that stolen_usable_size tells us 1573 * exactly how much of this we are actually allowed to use, given that 1574 * some portion of it is in fact reserved for use by hardware functions. 1575 */ 1576 struct resource dsm; 1577 /** 1578 * Reseved portion of Data Stolen Memory 1579 */ 1580 struct resource dsm_reserved; 1581 1582 /* 1583 * Stolen memory is segmented in hardware with different portions 1584 * offlimits to certain functions. 1585 * 1586 * The drm_mm is initialised to the total accessible range, as found 1587 * from the PCI config. On Broadwell+, this is further restricted to 1588 * avoid the first page! The upper end of stolen memory is reserved for 1589 * hardware functions and similarly removed from the accessible range. 1590 */ 1591 resource_size_t stolen_usable_size; /* Total size minus reserved ranges */ 1592 1593 void __iomem *regs; 1594 1595 struct intel_uncore uncore; 1596 1597 struct i915_virtual_gpu vgpu; 1598 1599 struct intel_gvt *gvt; 1600 1601 struct intel_wopcm wopcm; 1602 1603 struct intel_huc huc; 1604 struct intel_guc guc; 1605 1606 struct intel_csr csr; 1607 1608 struct intel_gmbus gmbus[GMBUS_NUM_PINS]; 1609 1610 /** gmbus_mutex protects against concurrent usage of the single hw gmbus 1611 * controller on different i2c buses. */ 1612 struct mutex gmbus_mutex; 1613 1614 /** 1615 * Base address of the gmbus and gpio block. 1616 */ 1617 uint32_t gpio_mmio_base; 1618 1619 /* MMIO base address for MIPI regs */ 1620 uint32_t mipi_mmio_base; 1621 1622 uint32_t psr_mmio_base; 1623 1624 uint32_t pps_mmio_base; 1625 1626 wait_queue_head_t gmbus_wait_queue; 1627 1628 struct pci_dev *bridge_dev; 1629 struct intel_engine_cs *engine[I915_NUM_ENGINES]; 1630 /* Context used internally to idle the GPU and setup initial state */ 1631 struct i915_gem_context *kernel_context; 1632 /* Context only to be used for injecting preemption commands */ 1633 struct i915_gem_context *preempt_context; 1634 struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1] 1635 [MAX_ENGINE_INSTANCE + 1]; 1636 1637 struct drm_dma_handle *status_page_dmah; 1638 struct resource mch_res; 1639 1640 /* protects the irq masks */ 1641 spinlock_t irq_lock; 1642 1643 bool display_irqs_enabled; 1644 1645 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */ 1646 struct pm_qos_request pm_qos; 1647 1648 /* Sideband mailbox protection */ 1649 struct mutex sb_lock; 1650 1651 /** Cached value of IMR to avoid reads in updating the bitfield */ 1652 union { 1653 u32 irq_mask; 1654 u32 de_irq_mask[I915_MAX_PIPES]; 1655 }; 1656 u32 gt_irq_mask; 1657 u32 pm_imr; 1658 u32 pm_ier; 1659 u32 pm_rps_events; 1660 u32 pm_guc_events; 1661 u32 pipestat_irq_mask[I915_MAX_PIPES]; 1662 1663 struct i915_hotplug hotplug; 1664 struct intel_fbc fbc; 1665 struct i915_drrs drrs; 1666 struct intel_opregion opregion; 1667 struct intel_vbt_data vbt; 1668 1669 bool preserve_bios_swizzle; 1670 1671 /* overlay */ 1672 struct intel_overlay *overlay; 1673 1674 /* backlight registers and fields in struct intel_panel */ 1675 struct mutex backlight_lock; 1676 1677 /* LVDS info */ 1678 bool no_aux_handshake; 1679 1680 /* protects panel power sequencer state */ 1681 struct mutex pps_mutex; 1682 1683 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */ 1684 int num_fence_regs; /* 8 on pre-965, 16 otherwise */ 1685 1686 unsigned int fsb_freq, mem_freq, is_ddr3; 1687 unsigned int skl_preferred_vco_freq; 1688 unsigned int max_cdclk_freq; 1689 1690 unsigned int max_dotclk_freq; 1691 unsigned int rawclk_freq; 1692 unsigned int hpll_freq; 1693 unsigned int fdi_pll_freq; 1694 unsigned int czclk_freq; 1695 1696 struct { 1697 /* 1698 * The current logical cdclk state. 1699 * See intel_atomic_state.cdclk.logical 1700 * 1701 * For reading holding any crtc lock is sufficient, 1702 * for writing must hold all of them. 1703 */ 1704 struct intel_cdclk_state logical; 1705 /* 1706 * The current actual cdclk state. 1707 * See intel_atomic_state.cdclk.actual 1708 */ 1709 struct intel_cdclk_state actual; 1710 /* The current hardware cdclk state */ 1711 struct intel_cdclk_state hw; 1712 } cdclk; 1713 1714 /** 1715 * wq - Driver workqueue for GEM. 1716 * 1717 * NOTE: Work items scheduled here are not allowed to grab any modeset 1718 * locks, for otherwise the flushing done in the pageflip code will 1719 * result in deadlocks. 1720 */ 1721 struct workqueue_struct *wq; 1722 1723 /* ordered wq for modesets */ 1724 struct workqueue_struct *modeset_wq; 1725 1726 /* Display functions */ 1727 struct drm_i915_display_funcs display; 1728 1729 /* PCH chipset type */ 1730 enum intel_pch pch_type; 1731 unsigned short pch_id; 1732 1733 unsigned long quirks; 1734 1735 enum modeset_restore modeset_restore; 1736 struct mutex modeset_restore_lock; 1737 struct drm_atomic_state *modeset_restore_state; 1738 struct drm_modeset_acquire_ctx reset_ctx; 1739 1740 struct list_head vm_list; /* Global list of all address spaces */ 1741 struct i915_ggtt ggtt; /* VM representing the global address space */ 1742 1743 struct i915_gem_mm mm; 1744 DECLARE_HASHTABLE(mm_structs, 7); 1745 struct mutex mm_lock; 1746 1747 struct intel_ppat ppat; 1748 1749 /* Kernel Modesetting */ 1750 1751 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES]; 1752 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES]; 1753 1754 #ifdef CONFIG_DEBUG_FS 1755 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES]; 1756 #endif 1757 1758 /* dpll and cdclk state is protected by connection_mutex */ 1759 int num_shared_dpll; 1760 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS]; 1761 const struct intel_dpll_mgr *dpll_mgr; 1762 1763 /* 1764 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll. 1765 * Must be global rather than per dpll, because on some platforms 1766 * plls share registers. 1767 */ 1768 struct mutex dpll_lock; 1769 1770 unsigned int active_crtcs; 1771 /* minimum acceptable cdclk for each pipe */ 1772 int min_cdclk[I915_MAX_PIPES]; 1773 /* minimum acceptable voltage level for each pipe */ 1774 u8 min_voltage_level[I915_MAX_PIPES]; 1775 1776 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV]; 1777 1778 struct i915_workarounds workarounds; 1779 1780 struct i915_frontbuffer_tracking fb_tracking; 1781 1782 struct intel_atomic_helper { 1783 struct llist_head free_list; 1784 struct work_struct free_work; 1785 } atomic_helper; 1786 1787 u16 orig_clock; 1788 1789 bool mchbar_need_disable; 1790 1791 struct intel_l3_parity l3_parity; 1792 1793 /* Cannot be determined by PCIID. You must always read a register. */ 1794 u32 edram_cap; 1795 1796 /* 1797 * Protects RPS/RC6 register access and PCU communication. 1798 * Must be taken after struct_mutex if nested. Note that 1799 * this lock may be held for long periods of time when 1800 * talking to hw - so only take it when talking to hw! 1801 */ 1802 struct mutex pcu_lock; 1803 1804 /* gen6+ GT PM state */ 1805 struct intel_gen6_power_mgmt gt_pm; 1806 1807 /* ilk-only ips/rps state. Everything in here is protected by the global 1808 * mchdev_lock in intel_pm.c */ 1809 struct intel_ilk_power_mgmt ips; 1810 1811 struct i915_power_domains power_domains; 1812 1813 struct i915_psr psr; 1814 1815 struct i915_gpu_error gpu_error; 1816 1817 struct drm_i915_gem_object *vlv_pctx; 1818 1819 /* list of fbdev register on this device */ 1820 struct intel_fbdev *fbdev; 1821 struct work_struct fbdev_suspend_work; 1822 1823 struct drm_property *broadcast_rgb_property; 1824 struct drm_property *force_audio_property; 1825 1826 /* hda/i915 audio component */ 1827 struct i915_audio_component *audio_component; 1828 bool audio_component_registered; 1829 /** 1830 * av_mutex - mutex for audio/video sync 1831 * 1832 */ 1833 struct mutex av_mutex; 1834 1835 struct { 1836 struct list_head list; 1837 struct llist_head free_list; 1838 struct work_struct free_work; 1839 1840 /* The hw wants to have a stable context identifier for the 1841 * lifetime of the context (for OA, PASID, faults, etc). 1842 * This is limited in execlists to 21 bits. 1843 */ 1844 struct ida hw_ida; 1845 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */ 1846 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */ 1847 } contexts; 1848 1849 u32 fdi_rx_config; 1850 1851 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */ 1852 u32 chv_phy_control; 1853 /* 1854 * Shadows for CHV DPLL_MD regs to keep the state 1855 * checker somewhat working in the presence hardware 1856 * crappiness (can't read out DPLL_MD for pipes B & C). 1857 */ 1858 u32 chv_dpll_md[I915_MAX_PIPES]; 1859 u32 bxt_phy_grc; 1860 1861 u32 suspend_count; 1862 bool power_domains_suspended; 1863 struct i915_suspend_saved_registers regfile; 1864 struct vlv_s0ix_state vlv_s0ix_state; 1865 1866 enum { 1867 I915_SAGV_UNKNOWN = 0, 1868 I915_SAGV_DISABLED, 1869 I915_SAGV_ENABLED, 1870 I915_SAGV_NOT_CONTROLLED 1871 } sagv_status; 1872 1873 struct { 1874 /* 1875 * Raw watermark latency values: 1876 * in 0.1us units for WM0, 1877 * in 0.5us units for WM1+. 1878 */ 1879 /* primary */ 1880 uint16_t pri_latency[5]; 1881 /* sprite */ 1882 uint16_t spr_latency[5]; 1883 /* cursor */ 1884 uint16_t cur_latency[5]; 1885 /* 1886 * Raw watermark memory latency values 1887 * for SKL for all 8 levels 1888 * in 1us units. 1889 */ 1890 uint16_t skl_latency[8]; 1891 1892 /* current hardware state */ 1893 union { 1894 struct ilk_wm_values hw; 1895 struct skl_ddb_values skl_hw; 1896 struct vlv_wm_values vlv; 1897 struct g4x_wm_values g4x; 1898 }; 1899 1900 uint8_t max_level; 1901 1902 /* 1903 * Should be held around atomic WM register writing; also 1904 * protects * intel_crtc->wm.active and 1905 * cstate->wm.need_postvbl_update. 1906 */ 1907 struct mutex wm_mutex; 1908 1909 /* 1910 * Set during HW readout of watermarks/DDB. Some platforms 1911 * need to know when we're still using BIOS-provided values 1912 * (which we don't fully trust). 1913 */ 1914 bool distrust_bios_wm; 1915 } wm; 1916 1917 struct i915_runtime_pm runtime_pm; 1918 1919 struct { 1920 bool initialized; 1921 1922 struct kobject *metrics_kobj; 1923 struct ctl_table_header *sysctl_header; 1924 1925 /* 1926 * Lock associated with adding/modifying/removing OA configs 1927 * in dev_priv->perf.metrics_idr. 1928 */ 1929 struct mutex metrics_lock; 1930 1931 /* 1932 * List of dynamic configurations, you need to hold 1933 * dev_priv->perf.metrics_lock to access it. 1934 */ 1935 struct idr metrics_idr; 1936 1937 /* 1938 * Lock associated with anything below within this structure 1939 * except exclusive_stream. 1940 */ 1941 struct mutex lock; 1942 struct list_head streams; 1943 1944 struct { 1945 /* 1946 * The stream currently using the OA unit. If accessed 1947 * outside a syscall associated to its file 1948 * descriptor, you need to hold 1949 * dev_priv->drm.struct_mutex. 1950 */ 1951 struct i915_perf_stream *exclusive_stream; 1952 1953 u32 specific_ctx_id; 1954 1955 struct hrtimer poll_check_timer; 1956 wait_queue_head_t poll_wq; 1957 bool pollin; 1958 1959 /** 1960 * For rate limiting any notifications of spurious 1961 * invalid OA reports 1962 */ 1963 struct ratelimit_state spurious_report_rs; 1964 1965 bool periodic; 1966 int period_exponent; 1967 1968 struct i915_oa_config test_config; 1969 1970 struct { 1971 struct i915_vma *vma; 1972 u8 *vaddr; 1973 u32 last_ctx_id; 1974 int format; 1975 int format_size; 1976 1977 /** 1978 * Locks reads and writes to all head/tail state 1979 * 1980 * Consider: the head and tail pointer state 1981 * needs to be read consistently from a hrtimer 1982 * callback (atomic context) and read() fop 1983 * (user context) with tail pointer updates 1984 * happening in atomic context and head updates 1985 * in user context and the (unlikely) 1986 * possibility of read() errors needing to 1987 * reset all head/tail state. 1988 * 1989 * Note: Contention or performance aren't 1990 * currently a significant concern here 1991 * considering the relatively low frequency of 1992 * hrtimer callbacks (5ms period) and that 1993 * reads typically only happen in response to a 1994 * hrtimer event and likely complete before the 1995 * next callback. 1996 * 1997 * Note: This lock is not held *while* reading 1998 * and copying data to userspace so the value 1999 * of head observed in htrimer callbacks won't 2000 * represent any partial consumption of data. 2001 */ 2002 spinlock_t ptr_lock; 2003 2004 /** 2005 * One 'aging' tail pointer and one 'aged' 2006 * tail pointer ready to used for reading. 2007 * 2008 * Initial values of 0xffffffff are invalid 2009 * and imply that an update is required 2010 * (and should be ignored by an attempted 2011 * read) 2012 */ 2013 struct { 2014 u32 offset; 2015 } tails[2]; 2016 2017 /** 2018 * Index for the aged tail ready to read() 2019 * data up to. 2020 */ 2021 unsigned int aged_tail_idx; 2022 2023 /** 2024 * A monotonic timestamp for when the current 2025 * aging tail pointer was read; used to 2026 * determine when it is old enough to trust. 2027 */ 2028 u64 aging_timestamp; 2029 2030 /** 2031 * Although we can always read back the head 2032 * pointer register, we prefer to avoid 2033 * trusting the HW state, just to avoid any 2034 * risk that some hardware condition could 2035 * somehow bump the head pointer unpredictably 2036 * and cause us to forward the wrong OA buffer 2037 * data to userspace. 2038 */ 2039 u32 head; 2040 } oa_buffer; 2041 2042 u32 gen7_latched_oastatus1; 2043 u32 ctx_oactxctrl_offset; 2044 u32 ctx_flexeu0_offset; 2045 2046 /** 2047 * The RPT_ID/reason field for Gen8+ includes a bit 2048 * to determine if the CTX ID in the report is valid 2049 * but the specific bit differs between Gen 8 and 9 2050 */ 2051 u32 gen8_valid_ctx_bit; 2052 2053 struct i915_oa_ops ops; 2054 const struct i915_oa_format *oa_formats; 2055 } oa; 2056 } perf; 2057 2058 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */ 2059 struct { 2060 void (*resume)(struct drm_i915_private *); 2061 void (*cleanup_engine)(struct intel_engine_cs *engine); 2062 2063 struct list_head timelines; 2064 2065 struct list_head active_rings; 2066 struct list_head closed_vma; 2067 u32 active_requests; 2068 u32 request_serial; 2069 2070 /** 2071 * Is the GPU currently considered idle, or busy executing 2072 * userspace requests? Whilst idle, we allow runtime power 2073 * management to power down the hardware and display clocks. 2074 * In order to reduce the effect on performance, there 2075 * is a slight delay before we do so. 2076 */ 2077 bool awake; 2078 2079 /** 2080 * The number of times we have woken up. 2081 */ 2082 unsigned int epoch; 2083 #define I915_EPOCH_INVALID 0 2084 2085 /** 2086 * We leave the user IRQ off as much as possible, 2087 * but this means that requests will finish and never 2088 * be retired once the system goes idle. Set a timer to 2089 * fire periodically while the ring is running. When it 2090 * fires, go retire requests. 2091 */ 2092 struct delayed_work retire_work; 2093 2094 /** 2095 * When we detect an idle GPU, we want to turn on 2096 * powersaving features. So once we see that there 2097 * are no more requests outstanding and no more 2098 * arrive within a small period of time, we fire 2099 * off the idle_work. 2100 */ 2101 struct delayed_work idle_work; 2102 2103 ktime_t last_init_time; 2104 } gt; 2105 2106 /* perform PHY state sanity checks? */ 2107 bool chv_phy_assert[2]; 2108 2109 bool ipc_enabled; 2110 2111 /* Used to save the pipe-to-encoder mapping for audio */ 2112 struct intel_encoder *av_enc_map[I915_MAX_PIPES]; 2113 2114 /* necessary resource sharing with HDMI LPE audio driver. */ 2115 struct { 2116 struct platform_device *platdev; 2117 int irq; 2118 } lpe_audio; 2119 2120 struct i915_pmu pmu; 2121 2122 /* 2123 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch 2124 * will be rejected. Instead look for a better place. 2125 */ 2126 }; 2127 2128 static inline struct drm_i915_private *to_i915(const struct drm_device *dev) 2129 { 2130 return container_of(dev, struct drm_i915_private, drm); 2131 } 2132 2133 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev) 2134 { 2135 return to_i915(dev_get_drvdata(kdev)); 2136 } 2137 2138 static inline struct drm_i915_private *wopcm_to_i915(struct intel_wopcm *wopcm) 2139 { 2140 return container_of(wopcm, struct drm_i915_private, wopcm); 2141 } 2142 2143 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc) 2144 { 2145 return container_of(guc, struct drm_i915_private, guc); 2146 } 2147 2148 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc) 2149 { 2150 return container_of(huc, struct drm_i915_private, huc); 2151 } 2152 2153 /* Simple iterator over all initialised engines */ 2154 #define for_each_engine(engine__, dev_priv__, id__) \ 2155 for ((id__) = 0; \ 2156 (id__) < I915_NUM_ENGINES; \ 2157 (id__)++) \ 2158 for_each_if ((engine__) = (dev_priv__)->engine[(id__)]) 2159 2160 /* Iterator over subset of engines selected by mask */ 2161 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \ 2162 for ((tmp__) = (mask__) & INTEL_INFO(dev_priv__)->ring_mask; \ 2163 (tmp__) ? \ 2164 ((engine__) = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : \ 2165 0;) 2166 2167 enum hdmi_force_audio { 2168 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */ 2169 HDMI_AUDIO_OFF, /* force turn off HDMI audio */ 2170 HDMI_AUDIO_AUTO, /* trust EDID */ 2171 HDMI_AUDIO_ON, /* force turn on HDMI audio */ 2172 }; 2173 2174 #define I915_GTT_OFFSET_NONE ((u32)-1) 2175 2176 /* 2177 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is 2178 * considered to be the frontbuffer for the given plane interface-wise. This 2179 * doesn't mean that the hw necessarily already scans it out, but that any 2180 * rendering (by the cpu or gpu) will land in the frontbuffer eventually. 2181 * 2182 * We have one bit per pipe and per scanout plane type. 2183 */ 2184 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8 2185 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \ 2186 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \ 2187 BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \ 2188 BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \ 2189 }) 2190 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \ 2191 BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)) 2192 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \ 2193 GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \ 2194 INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)) 2195 2196 /* 2197 * Optimised SGL iterator for GEM objects 2198 */ 2199 static __always_inline struct sgt_iter { 2200 struct scatterlist *sgp; 2201 union { 2202 unsigned long pfn; 2203 dma_addr_t dma; 2204 }; 2205 unsigned int curr; 2206 unsigned int max; 2207 } __sgt_iter(struct scatterlist *sgl, bool dma) { 2208 struct sgt_iter s = { .sgp = sgl }; 2209 2210 if (s.sgp) { 2211 s.max = s.curr = s.sgp->offset; 2212 s.max += s.sgp->length; 2213 if (dma) 2214 s.dma = sg_dma_address(s.sgp); 2215 else 2216 s.pfn = page_to_pfn(sg_page(s.sgp)); 2217 } 2218 2219 return s; 2220 } 2221 2222 static inline struct scatterlist *____sg_next(struct scatterlist *sg) 2223 { 2224 ++sg; 2225 if (unlikely(sg_is_chain(sg))) 2226 sg = sg_chain_ptr(sg); 2227 return sg; 2228 } 2229 2230 /** 2231 * __sg_next - return the next scatterlist entry in a list 2232 * @sg: The current sg entry 2233 * 2234 * Description: 2235 * If the entry is the last, return NULL; otherwise, step to the next 2236 * element in the array (@sg@+1). If that's a chain pointer, follow it; 2237 * otherwise just return the pointer to the current element. 2238 **/ 2239 static inline struct scatterlist *__sg_next(struct scatterlist *sg) 2240 { 2241 #ifdef CONFIG_DEBUG_SG 2242 BUG_ON(sg->sg_magic != SG_MAGIC); 2243 #endif 2244 return sg_is_last(sg) ? NULL : ____sg_next(sg); 2245 } 2246 2247 /** 2248 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table 2249 * @__dmap: DMA address (output) 2250 * @__iter: 'struct sgt_iter' (iterator state, internal) 2251 * @__sgt: sg_table to iterate over (input) 2252 */ 2253 #define for_each_sgt_dma(__dmap, __iter, __sgt) \ 2254 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \ 2255 ((__dmap) = (__iter).dma + (__iter).curr); \ 2256 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \ 2257 (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0) 2258 2259 /** 2260 * for_each_sgt_page - iterate over the pages of the given sg_table 2261 * @__pp: page pointer (output) 2262 * @__iter: 'struct sgt_iter' (iterator state, internal) 2263 * @__sgt: sg_table to iterate over (input) 2264 */ 2265 #define for_each_sgt_page(__pp, __iter, __sgt) \ 2266 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \ 2267 ((__pp) = (__iter).pfn == 0 ? NULL : \ 2268 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \ 2269 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \ 2270 (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0) 2271 2272 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg) 2273 { 2274 unsigned int page_sizes; 2275 2276 page_sizes = 0; 2277 while (sg) { 2278 GEM_BUG_ON(sg->offset); 2279 GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE)); 2280 page_sizes |= sg->length; 2281 sg = __sg_next(sg); 2282 } 2283 2284 return page_sizes; 2285 } 2286 2287 static inline unsigned int i915_sg_segment_size(void) 2288 { 2289 unsigned int size = swiotlb_max_segment(); 2290 2291 if (size == 0) 2292 return SCATTERLIST_MAX_SEGMENT; 2293 2294 size = rounddown(size, PAGE_SIZE); 2295 /* swiotlb_max_segment_size can return 1 byte when it means one page. */ 2296 if (size < PAGE_SIZE) 2297 size = PAGE_SIZE; 2298 2299 return size; 2300 } 2301 2302 static inline const struct intel_device_info * 2303 intel_info(const struct drm_i915_private *dev_priv) 2304 { 2305 return &dev_priv->info; 2306 } 2307 2308 #define INTEL_INFO(dev_priv) intel_info((dev_priv)) 2309 2310 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen) 2311 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id) 2312 2313 #define REVID_FOREVER 0xff 2314 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision) 2315 2316 #define GEN_FOREVER (0) 2317 2318 #define INTEL_GEN_MASK(s, e) ( \ 2319 BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \ 2320 BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \ 2321 GENMASK((e) != GEN_FOREVER ? (e) - 1 : BITS_PER_LONG - 1, \ 2322 (s) != GEN_FOREVER ? (s) - 1 : 0) \ 2323 ) 2324 2325 /* 2326 * Returns true if Gen is in inclusive range [Start, End]. 2327 * 2328 * Use GEN_FOREVER for unbound start and or end. 2329 */ 2330 #define IS_GEN(dev_priv, s, e) \ 2331 (!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e)))) 2332 2333 /* 2334 * Return true if revision is in range [since,until] inclusive. 2335 * 2336 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until. 2337 */ 2338 #define IS_REVID(p, since, until) \ 2339 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until)) 2340 2341 #define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p)) 2342 2343 #define IS_I830(dev_priv) IS_PLATFORM(dev_priv, INTEL_I830) 2344 #define IS_I845G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I845G) 2345 #define IS_I85X(dev_priv) IS_PLATFORM(dev_priv, INTEL_I85X) 2346 #define IS_I865G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I865G) 2347 #define IS_I915G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915G) 2348 #define IS_I915GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915GM) 2349 #define IS_I945G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945G) 2350 #define IS_I945GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945GM) 2351 #define IS_I965G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965G) 2352 #define IS_I965GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965GM) 2353 #define IS_G45(dev_priv) IS_PLATFORM(dev_priv, INTEL_G45) 2354 #define IS_GM45(dev_priv) IS_PLATFORM(dev_priv, INTEL_GM45) 2355 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv)) 2356 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001) 2357 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011) 2358 #define IS_PINEVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_PINEVIEW) 2359 #define IS_G33(dev_priv) IS_PLATFORM(dev_priv, INTEL_G33) 2360 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046) 2361 #define IS_IVYBRIDGE(dev_priv) IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE) 2362 #define IS_IVB_GT1(dev_priv) (IS_IVYBRIDGE(dev_priv) && \ 2363 (dev_priv)->info.gt == 1) 2364 #define IS_VALLEYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW) 2365 #define IS_CHERRYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW) 2366 #define IS_HASWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_HASWELL) 2367 #define IS_BROADWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROADWELL) 2368 #define IS_SKYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_SKYLAKE) 2369 #define IS_BROXTON(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROXTON) 2370 #define IS_KABYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_KABYLAKE) 2371 #define IS_GEMINILAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_GEMINILAKE) 2372 #define IS_COFFEELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_COFFEELAKE) 2373 #define IS_CANNONLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_CANNONLAKE) 2374 #define IS_ICELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_ICELAKE) 2375 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile) 2376 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \ 2377 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00) 2378 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \ 2379 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \ 2380 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \ 2381 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)) 2382 /* ULX machines are also considered ULT. */ 2383 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \ 2384 (INTEL_DEVID(dev_priv) & 0xf) == 0xe) 2385 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \ 2386 (dev_priv)->info.gt == 3) 2387 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \ 2388 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00) 2389 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \ 2390 (dev_priv)->info.gt == 3) 2391 /* ULX machines are also considered ULT. */ 2392 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \ 2393 INTEL_DEVID(dev_priv) == 0x0A1E) 2394 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \ 2395 INTEL_DEVID(dev_priv) == 0x1913 || \ 2396 INTEL_DEVID(dev_priv) == 0x1916 || \ 2397 INTEL_DEVID(dev_priv) == 0x1921 || \ 2398 INTEL_DEVID(dev_priv) == 0x1926) 2399 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \ 2400 INTEL_DEVID(dev_priv) == 0x1915 || \ 2401 INTEL_DEVID(dev_priv) == 0x191E) 2402 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \ 2403 INTEL_DEVID(dev_priv) == 0x5913 || \ 2404 INTEL_DEVID(dev_priv) == 0x5916 || \ 2405 INTEL_DEVID(dev_priv) == 0x5921 || \ 2406 INTEL_DEVID(dev_priv) == 0x5926) 2407 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \ 2408 INTEL_DEVID(dev_priv) == 0x5915 || \ 2409 INTEL_DEVID(dev_priv) == 0x591E) 2410 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2411 (dev_priv)->info.gt == 2) 2412 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2413 (dev_priv)->info.gt == 3) 2414 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2415 (dev_priv)->info.gt == 4) 2416 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \ 2417 (dev_priv)->info.gt == 2) 2418 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \ 2419 (dev_priv)->info.gt == 3) 2420 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2421 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0) 2422 #define IS_CFL_GT2(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2423 (dev_priv)->info.gt == 2) 2424 #define IS_CFL_GT3(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2425 (dev_priv)->info.gt == 3) 2426 #define IS_CNL_WITH_PORT_F(dev_priv) (IS_CANNONLAKE(dev_priv) && \ 2427 (INTEL_DEVID(dev_priv) & 0x0004) == 0x0004) 2428 2429 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support) 2430 2431 #define SKL_REVID_A0 0x0 2432 #define SKL_REVID_B0 0x1 2433 #define SKL_REVID_C0 0x2 2434 #define SKL_REVID_D0 0x3 2435 #define SKL_REVID_E0 0x4 2436 #define SKL_REVID_F0 0x5 2437 #define SKL_REVID_G0 0x6 2438 #define SKL_REVID_H0 0x7 2439 2440 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until)) 2441 2442 #define BXT_REVID_A0 0x0 2443 #define BXT_REVID_A1 0x1 2444 #define BXT_REVID_B0 0x3 2445 #define BXT_REVID_B_LAST 0x8 2446 #define BXT_REVID_C0 0x9 2447 2448 #define IS_BXT_REVID(dev_priv, since, until) \ 2449 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until)) 2450 2451 #define KBL_REVID_A0 0x0 2452 #define KBL_REVID_B0 0x1 2453 #define KBL_REVID_C0 0x2 2454 #define KBL_REVID_D0 0x3 2455 #define KBL_REVID_E0 0x4 2456 2457 #define IS_KBL_REVID(dev_priv, since, until) \ 2458 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 2459 2460 #define GLK_REVID_A0 0x0 2461 #define GLK_REVID_A1 0x1 2462 2463 #define IS_GLK_REVID(dev_priv, since, until) \ 2464 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 2465 2466 #define CNL_REVID_A0 0x0 2467 #define CNL_REVID_B0 0x1 2468 #define CNL_REVID_C0 0x2 2469 2470 #define IS_CNL_REVID(p, since, until) \ 2471 (IS_CANNONLAKE(p) && IS_REVID(p, since, until)) 2472 2473 #define ICL_REVID_A0 0x0 2474 #define ICL_REVID_A2 0x1 2475 #define ICL_REVID_B0 0x3 2476 #define ICL_REVID_B2 0x4 2477 #define ICL_REVID_C0 0x5 2478 2479 #define IS_ICL_REVID(p, since, until) \ 2480 (IS_ICELAKE(p) && IS_REVID(p, since, until)) 2481 2482 /* 2483 * The genX designation typically refers to the render engine, so render 2484 * capability related checks should use IS_GEN, while display and other checks 2485 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular 2486 * chips, etc.). 2487 */ 2488 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1))) 2489 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2))) 2490 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3))) 2491 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4))) 2492 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5))) 2493 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6))) 2494 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7))) 2495 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8))) 2496 #define IS_GEN10(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(9))) 2497 #define IS_GEN11(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(10))) 2498 2499 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp) 2500 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv)) 2501 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv)) 2502 2503 #define ENGINE_MASK(id) BIT(id) 2504 #define RENDER_RING ENGINE_MASK(RCS) 2505 #define BSD_RING ENGINE_MASK(VCS) 2506 #define BLT_RING ENGINE_MASK(BCS) 2507 #define VEBOX_RING ENGINE_MASK(VECS) 2508 #define BSD2_RING ENGINE_MASK(VCS2) 2509 #define BSD3_RING ENGINE_MASK(VCS3) 2510 #define BSD4_RING ENGINE_MASK(VCS4) 2511 #define VEBOX2_RING ENGINE_MASK(VECS2) 2512 #define ALL_ENGINES (~0) 2513 2514 #define HAS_ENGINE(dev_priv, id) \ 2515 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id))) 2516 2517 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS) 2518 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2) 2519 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS) 2520 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS) 2521 2522 #define HAS_LEGACY_SEMAPHORES(dev_priv) IS_GEN7(dev_priv) 2523 2524 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc) 2525 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop) 2526 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED)) 2527 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \ 2528 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv)) 2529 2530 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical) 2531 2532 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \ 2533 ((dev_priv)->info.has_logical_ring_contexts) 2534 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \ 2535 ((dev_priv)->info.has_logical_ring_elsq) 2536 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \ 2537 ((dev_priv)->info.has_logical_ring_preemption) 2538 2539 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv) 2540 2541 #define USES_PPGTT(dev_priv) (i915_modparams.enable_ppgtt) 2542 #define USES_FULL_PPGTT(dev_priv) (i915_modparams.enable_ppgtt >= 2) 2543 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915_modparams.enable_ppgtt == 3) 2544 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \ 2545 GEM_BUG_ON((sizes) == 0); \ 2546 ((sizes) & ~(dev_priv)->info.page_sizes) == 0; \ 2547 }) 2548 2549 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay) 2550 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \ 2551 ((dev_priv)->info.overlay_needs_physical) 2552 2553 /* Early gen2 have a totally busted CS tlb and require pinned batches. */ 2554 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv)) 2555 2556 /* WaRsDisableCoarsePowerGating:skl,cnl */ 2557 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \ 2558 (IS_CANNONLAKE(dev_priv) || \ 2559 IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv)) 2560 2561 /* 2562 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts 2563 * even when in MSI mode. This results in spurious interrupt warnings if the 2564 * legacy irq no. is shared with another device. The kernel then disables that 2565 * interrupt source and so prevents the other device from working properly. 2566 * 2567 * Since we don't enable MSI anymore on gen4, we can always use GMBUS/AUX 2568 * interrupts. 2569 */ 2570 #define HAS_AUX_IRQ(dev_priv) true 2571 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4) 2572 2573 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte 2574 * rows, which changed the alignment requirements and fence programming. 2575 */ 2576 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \ 2577 !(IS_I915G(dev_priv) || \ 2578 IS_I915GM(dev_priv))) 2579 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv) 2580 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug) 2581 2582 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2) 2583 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc) 2584 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 7) 2585 2586 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv)) 2587 2588 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst) 2589 2590 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi) 2591 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg) 2592 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr) 2593 2594 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6) 2595 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p) 2596 #define HAS_RC6pp(dev_priv) (false) /* HW was never validated */ 2597 2598 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr) 2599 2600 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm) 2601 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc) 2602 2603 #define HAS_IPC(dev_priv) ((dev_priv)->info.has_ipc) 2604 2605 /* 2606 * For now, anything with a GuC requires uCode loading, and then supports 2607 * command submission once loaded. But these are logically independent 2608 * properties, so we have separate macros to test them. 2609 */ 2610 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc) 2611 #define HAS_GUC_CT(dev_priv) ((dev_priv)->info.has_guc_ct) 2612 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 2613 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv)) 2614 2615 /* For now, anything with a GuC has also HuC */ 2616 #define HAS_HUC(dev_priv) (HAS_GUC(dev_priv)) 2617 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 2618 2619 /* Having a GuC is not the same as using a GuC */ 2620 #define USES_GUC(dev_priv) intel_uc_is_using_guc() 2621 #define USES_GUC_SUBMISSION(dev_priv) intel_uc_is_using_guc_submission() 2622 #define USES_HUC(dev_priv) intel_uc_is_using_huc() 2623 2624 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer) 2625 2626 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu) 2627 2628 #define INTEL_PCH_DEVICE_ID_MASK 0xff80 2629 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00 2630 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00 2631 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00 2632 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00 2633 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00 2634 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80 2635 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80 2636 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100 2637 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00 2638 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280 2639 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300 2640 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80 2641 #define INTEL_PCH_ICP_DEVICE_ID_TYPE 0x3480 2642 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100 2643 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000 2644 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */ 2645 2646 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type) 2647 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id) 2648 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP) 2649 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP) 2650 #define HAS_PCH_CNP_LP(dev_priv) \ 2651 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE) 2652 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP) 2653 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT) 2654 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT) 2655 #define HAS_PCH_LPT_LP(dev_priv) \ 2656 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \ 2657 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE) 2658 #define HAS_PCH_LPT_H(dev_priv) \ 2659 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \ 2660 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE) 2661 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT) 2662 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX) 2663 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP) 2664 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE) 2665 2666 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display) 2667 2668 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9) 2669 2670 /* DPF == dynamic parity feature */ 2671 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf) 2672 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \ 2673 2 : HAS_L3_DPF(dev_priv)) 2674 2675 #define GT_FREQUENCY_MULTIPLIER 50 2676 #define GEN9_FREQ_SCALER 3 2677 2678 #include "i915_trace.h" 2679 2680 static inline bool intel_vtd_active(void) 2681 { 2682 #ifdef CONFIG_INTEL_IOMMU 2683 if (intel_iommu_gfx_mapped) 2684 return true; 2685 #endif 2686 return false; 2687 } 2688 2689 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv) 2690 { 2691 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active(); 2692 } 2693 2694 static inline bool 2695 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv) 2696 { 2697 return IS_BROXTON(dev_priv) && intel_vtd_active(); 2698 } 2699 2700 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv, 2701 int enable_ppgtt); 2702 2703 /* i915_drv.c */ 2704 void __printf(3, 4) 2705 __i915_printk(struct drm_i915_private *dev_priv, const char *level, 2706 const char *fmt, ...); 2707 2708 #define i915_report_error(dev_priv, fmt, ...) \ 2709 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__) 2710 2711 #ifdef CONFIG_COMPAT 2712 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd, 2713 unsigned long arg); 2714 #else 2715 #define i915_compat_ioctl NULL 2716 #endif 2717 extern const struct dev_pm_ops i915_pm_ops; 2718 2719 extern int i915_driver_load(struct pci_dev *pdev, 2720 const struct pci_device_id *ent); 2721 extern void i915_driver_unload(struct drm_device *dev); 2722 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask); 2723 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv); 2724 2725 extern void i915_reset(struct drm_i915_private *i915, 2726 unsigned int stalled_mask, 2727 const char *reason); 2728 extern int i915_reset_engine(struct intel_engine_cs *engine, 2729 const char *reason); 2730 2731 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv); 2732 extern int intel_reset_guc(struct drm_i915_private *dev_priv); 2733 extern int intel_guc_reset_engine(struct intel_guc *guc, 2734 struct intel_engine_cs *engine); 2735 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine); 2736 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv); 2737 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv); 2738 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv); 2739 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv); 2740 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv); 2741 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on); 2742 2743 int intel_engines_init_mmio(struct drm_i915_private *dev_priv); 2744 int intel_engines_init(struct drm_i915_private *dev_priv); 2745 2746 /* intel_hotplug.c */ 2747 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv, 2748 u32 pin_mask, u32 long_mask); 2749 void intel_hpd_init(struct drm_i915_private *dev_priv); 2750 void intel_hpd_init_work(struct drm_i915_private *dev_priv); 2751 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv); 2752 enum port intel_hpd_pin_to_port(struct drm_i915_private *dev_priv, 2753 enum hpd_pin pin); 2754 enum hpd_pin intel_hpd_pin_default(struct drm_i915_private *dev_priv, 2755 enum port port); 2756 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2757 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2758 2759 /* i915_irq.c */ 2760 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv) 2761 { 2762 unsigned long delay; 2763 2764 if (unlikely(!i915_modparams.enable_hangcheck)) 2765 return; 2766 2767 /* Don't continually defer the hangcheck so that it is always run at 2768 * least once after work has been scheduled on any ring. Otherwise, 2769 * we will ignore a hung ring if a second ring is kept busy. 2770 */ 2771 2772 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES); 2773 queue_delayed_work(system_long_wq, 2774 &dev_priv->gpu_error.hangcheck_work, delay); 2775 } 2776 2777 __printf(4, 5) 2778 void i915_handle_error(struct drm_i915_private *dev_priv, 2779 u32 engine_mask, 2780 unsigned long flags, 2781 const char *fmt, ...); 2782 #define I915_ERROR_CAPTURE BIT(0) 2783 2784 extern void intel_irq_init(struct drm_i915_private *dev_priv); 2785 extern void intel_irq_fini(struct drm_i915_private *dev_priv); 2786 int intel_irq_install(struct drm_i915_private *dev_priv); 2787 void intel_irq_uninstall(struct drm_i915_private *dev_priv); 2788 2789 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv) 2790 { 2791 return dev_priv->gvt; 2792 } 2793 2794 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv) 2795 { 2796 return dev_priv->vgpu.active; 2797 } 2798 2799 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv, 2800 enum pipe pipe); 2801 void 2802 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 2803 u32 status_mask); 2804 2805 void 2806 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 2807 u32 status_mask); 2808 2809 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv); 2810 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv); 2811 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 2812 uint32_t mask, 2813 uint32_t bits); 2814 void ilk_update_display_irq(struct drm_i915_private *dev_priv, 2815 uint32_t interrupt_mask, 2816 uint32_t enabled_irq_mask); 2817 static inline void 2818 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 2819 { 2820 ilk_update_display_irq(dev_priv, bits, bits); 2821 } 2822 static inline void 2823 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 2824 { 2825 ilk_update_display_irq(dev_priv, bits, 0); 2826 } 2827 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 2828 enum pipe pipe, 2829 uint32_t interrupt_mask, 2830 uint32_t enabled_irq_mask); 2831 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv, 2832 enum pipe pipe, uint32_t bits) 2833 { 2834 bdw_update_pipe_irq(dev_priv, pipe, bits, bits); 2835 } 2836 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv, 2837 enum pipe pipe, uint32_t bits) 2838 { 2839 bdw_update_pipe_irq(dev_priv, pipe, bits, 0); 2840 } 2841 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 2842 uint32_t interrupt_mask, 2843 uint32_t enabled_irq_mask); 2844 static inline void 2845 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 2846 { 2847 ibx_display_interrupt_update(dev_priv, bits, bits); 2848 } 2849 static inline void 2850 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 2851 { 2852 ibx_display_interrupt_update(dev_priv, bits, 0); 2853 } 2854 2855 /* i915_gem.c */ 2856 int i915_gem_create_ioctl(struct drm_device *dev, void *data, 2857 struct drm_file *file_priv); 2858 int i915_gem_pread_ioctl(struct drm_device *dev, void *data, 2859 struct drm_file *file_priv); 2860 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 2861 struct drm_file *file_priv); 2862 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 2863 struct drm_file *file_priv); 2864 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 2865 struct drm_file *file_priv); 2866 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 2867 struct drm_file *file_priv); 2868 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 2869 struct drm_file *file_priv); 2870 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data, 2871 struct drm_file *file_priv); 2872 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 2873 struct drm_file *file_priv); 2874 int i915_gem_busy_ioctl(struct drm_device *dev, void *data, 2875 struct drm_file *file_priv); 2876 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 2877 struct drm_file *file); 2878 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 2879 struct drm_file *file); 2880 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 2881 struct drm_file *file_priv); 2882 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 2883 struct drm_file *file_priv); 2884 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data, 2885 struct drm_file *file_priv); 2886 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data, 2887 struct drm_file *file_priv); 2888 int i915_gem_init_userptr(struct drm_i915_private *dev_priv); 2889 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv); 2890 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data, 2891 struct drm_file *file); 2892 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 2893 struct drm_file *file_priv); 2894 int i915_gem_wait_ioctl(struct drm_device *dev, void *data, 2895 struct drm_file *file_priv); 2896 void i915_gem_sanitize(struct drm_i915_private *i915); 2897 int i915_gem_init_early(struct drm_i915_private *dev_priv); 2898 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv); 2899 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv); 2900 int i915_gem_freeze(struct drm_i915_private *dev_priv); 2901 int i915_gem_freeze_late(struct drm_i915_private *dev_priv); 2902 2903 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv); 2904 void i915_gem_object_free(struct drm_i915_gem_object *obj); 2905 void i915_gem_object_init(struct drm_i915_gem_object *obj, 2906 const struct drm_i915_gem_object_ops *ops); 2907 struct drm_i915_gem_object * 2908 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size); 2909 struct drm_i915_gem_object * 2910 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv, 2911 const void *data, size_t size); 2912 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file); 2913 void i915_gem_free_object(struct drm_gem_object *obj); 2914 2915 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915) 2916 { 2917 if (!atomic_read(&i915->mm.free_count)) 2918 return; 2919 2920 /* A single pass should suffice to release all the freed objects (along 2921 * most call paths) , but be a little more paranoid in that freeing 2922 * the objects does take a little amount of time, during which the rcu 2923 * callbacks could have added new objects into the freed list, and 2924 * armed the work again. 2925 */ 2926 do { 2927 rcu_barrier(); 2928 } while (flush_work(&i915->mm.free_work)); 2929 } 2930 2931 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915) 2932 { 2933 /* 2934 * Similar to objects above (see i915_gem_drain_freed-objects), in 2935 * general we have workers that are armed by RCU and then rearm 2936 * themselves in their callbacks. To be paranoid, we need to 2937 * drain the workqueue a second time after waiting for the RCU 2938 * grace period so that we catch work queued via RCU from the first 2939 * pass. As neither drain_workqueue() nor flush_workqueue() report 2940 * a result, we make an assumption that we only don't require more 2941 * than 2 passes to catch all recursive RCU delayed work. 2942 * 2943 */ 2944 int pass = 2; 2945 do { 2946 rcu_barrier(); 2947 drain_workqueue(i915->wq); 2948 } while (--pass); 2949 } 2950 2951 struct i915_vma * __must_check 2952 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 2953 const struct i915_ggtt_view *view, 2954 u64 size, 2955 u64 alignment, 2956 u64 flags); 2957 2958 int i915_gem_object_unbind(struct drm_i915_gem_object *obj); 2959 void i915_gem_release_mmap(struct drm_i915_gem_object *obj); 2960 2961 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv); 2962 2963 static inline int __sg_page_count(const struct scatterlist *sg) 2964 { 2965 return sg->length >> PAGE_SHIFT; 2966 } 2967 2968 struct scatterlist * 2969 i915_gem_object_get_sg(struct drm_i915_gem_object *obj, 2970 unsigned int n, unsigned int *offset); 2971 2972 struct page * 2973 i915_gem_object_get_page(struct drm_i915_gem_object *obj, 2974 unsigned int n); 2975 2976 struct page * 2977 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, 2978 unsigned int n); 2979 2980 dma_addr_t 2981 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, 2982 unsigned long n); 2983 2984 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, 2985 struct sg_table *pages, 2986 unsigned int sg_page_sizes); 2987 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj); 2988 2989 static inline int __must_check 2990 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 2991 { 2992 might_lock(&obj->mm.lock); 2993 2994 if (atomic_inc_not_zero(&obj->mm.pages_pin_count)) 2995 return 0; 2996 2997 return __i915_gem_object_get_pages(obj); 2998 } 2999 3000 static inline bool 3001 i915_gem_object_has_pages(struct drm_i915_gem_object *obj) 3002 { 3003 return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages)); 3004 } 3005 3006 static inline void 3007 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 3008 { 3009 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 3010 3011 atomic_inc(&obj->mm.pages_pin_count); 3012 } 3013 3014 static inline bool 3015 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj) 3016 { 3017 return atomic_read(&obj->mm.pages_pin_count); 3018 } 3019 3020 static inline void 3021 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 3022 { 3023 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 3024 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 3025 3026 atomic_dec(&obj->mm.pages_pin_count); 3027 } 3028 3029 static inline void 3030 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 3031 { 3032 __i915_gem_object_unpin_pages(obj); 3033 } 3034 3035 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */ 3036 I915_MM_NORMAL = 0, 3037 I915_MM_SHRINKER 3038 }; 3039 3040 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj, 3041 enum i915_mm_subclass subclass); 3042 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj); 3043 3044 enum i915_map_type { 3045 I915_MAP_WB = 0, 3046 I915_MAP_WC, 3047 #define I915_MAP_OVERRIDE BIT(31) 3048 I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE, 3049 I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE, 3050 }; 3051 3052 /** 3053 * i915_gem_object_pin_map - return a contiguous mapping of the entire object 3054 * @obj: the object to map into kernel address space 3055 * @type: the type of mapping, used to select pgprot_t 3056 * 3057 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's 3058 * pages and then returns a contiguous mapping of the backing storage into 3059 * the kernel address space. Based on the @type of mapping, the PTE will be 3060 * set to either WriteBack or WriteCombine (via pgprot_t). 3061 * 3062 * The caller is responsible for calling i915_gem_object_unpin_map() when the 3063 * mapping is no longer required. 3064 * 3065 * Returns the pointer through which to access the mapped object, or an 3066 * ERR_PTR() on error. 3067 */ 3068 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj, 3069 enum i915_map_type type); 3070 3071 /** 3072 * i915_gem_object_unpin_map - releases an earlier mapping 3073 * @obj: the object to unmap 3074 * 3075 * After pinning the object and mapping its pages, once you are finished 3076 * with your access, call i915_gem_object_unpin_map() to release the pin 3077 * upon the mapping. Once the pin count reaches zero, that mapping may be 3078 * removed. 3079 */ 3080 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj) 3081 { 3082 i915_gem_object_unpin_pages(obj); 3083 } 3084 3085 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 3086 unsigned int *needs_clflush); 3087 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, 3088 unsigned int *needs_clflush); 3089 #define CLFLUSH_BEFORE BIT(0) 3090 #define CLFLUSH_AFTER BIT(1) 3091 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER) 3092 3093 static inline void 3094 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj) 3095 { 3096 i915_gem_object_unpin_pages(obj); 3097 } 3098 3099 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev); 3100 void i915_vma_move_to_active(struct i915_vma *vma, 3101 struct i915_request *rq, 3102 unsigned int flags); 3103 int i915_gem_dumb_create(struct drm_file *file_priv, 3104 struct drm_device *dev, 3105 struct drm_mode_create_dumb *args); 3106 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev, 3107 uint32_t handle, uint64_t *offset); 3108 int i915_gem_mmap_gtt_version(void); 3109 3110 void i915_gem_track_fb(struct drm_i915_gem_object *old, 3111 struct drm_i915_gem_object *new, 3112 unsigned frontbuffer_bits); 3113 3114 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno); 3115 3116 struct i915_request * 3117 i915_gem_find_active_request(struct intel_engine_cs *engine); 3118 3119 static inline bool i915_reset_backoff(struct i915_gpu_error *error) 3120 { 3121 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags)); 3122 } 3123 3124 static inline bool i915_reset_handoff(struct i915_gpu_error *error) 3125 { 3126 return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags)); 3127 } 3128 3129 static inline bool i915_terminally_wedged(struct i915_gpu_error *error) 3130 { 3131 return unlikely(test_bit(I915_WEDGED, &error->flags)); 3132 } 3133 3134 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error) 3135 { 3136 return i915_reset_backoff(error) | i915_terminally_wedged(error); 3137 } 3138 3139 static inline u32 i915_reset_count(struct i915_gpu_error *error) 3140 { 3141 return READ_ONCE(error->reset_count); 3142 } 3143 3144 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error, 3145 struct intel_engine_cs *engine) 3146 { 3147 return READ_ONCE(error->reset_engine_count[engine->id]); 3148 } 3149 3150 struct i915_request * 3151 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine); 3152 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv); 3153 void i915_gem_reset(struct drm_i915_private *dev_priv, 3154 unsigned int stalled_mask); 3155 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine); 3156 void i915_gem_reset_finish(struct drm_i915_private *dev_priv); 3157 void i915_gem_set_wedged(struct drm_i915_private *dev_priv); 3158 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv); 3159 void i915_gem_reset_engine(struct intel_engine_cs *engine, 3160 struct i915_request *request, 3161 bool stalled); 3162 3163 void i915_gem_init_mmio(struct drm_i915_private *i915); 3164 int __must_check i915_gem_init(struct drm_i915_private *dev_priv); 3165 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv); 3166 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv); 3167 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv); 3168 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv, 3169 unsigned int flags); 3170 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv); 3171 void i915_gem_resume(struct drm_i915_private *dev_priv); 3172 int i915_gem_fault(struct vm_fault *vmf); 3173 int i915_gem_object_wait(struct drm_i915_gem_object *obj, 3174 unsigned int flags, 3175 long timeout, 3176 struct intel_rps_client *rps); 3177 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj, 3178 unsigned int flags, 3179 const struct i915_sched_attr *attr); 3180 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX 3181 3182 int __must_check 3183 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write); 3184 int __must_check 3185 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write); 3186 int __must_check 3187 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write); 3188 struct i915_vma * __must_check 3189 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3190 u32 alignment, 3191 const struct i915_ggtt_view *view, 3192 unsigned int flags); 3193 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma); 3194 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 3195 int align); 3196 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file); 3197 void i915_gem_release(struct drm_device *dev, struct drm_file *file); 3198 3199 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3200 enum i915_cache_level cache_level); 3201 3202 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev, 3203 struct dma_buf *dma_buf); 3204 3205 struct dma_buf *i915_gem_prime_export(struct drm_device *dev, 3206 struct drm_gem_object *gem_obj, int flags); 3207 3208 static inline struct i915_hw_ppgtt * 3209 i915_vm_to_ppgtt(struct i915_address_space *vm) 3210 { 3211 return container_of(vm, struct i915_hw_ppgtt, base); 3212 } 3213 3214 /* i915_gem_fence_reg.c */ 3215 struct drm_i915_fence_reg * 3216 i915_reserve_fence(struct drm_i915_private *dev_priv); 3217 void i915_unreserve_fence(struct drm_i915_fence_reg *fence); 3218 3219 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv); 3220 void i915_gem_restore_fences(struct drm_i915_private *dev_priv); 3221 3222 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv); 3223 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj, 3224 struct sg_table *pages); 3225 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj, 3226 struct sg_table *pages); 3227 3228 static inline struct i915_gem_context * 3229 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id) 3230 { 3231 return idr_find(&file_priv->context_idr, id); 3232 } 3233 3234 static inline struct i915_gem_context * 3235 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id) 3236 { 3237 struct i915_gem_context *ctx; 3238 3239 rcu_read_lock(); 3240 ctx = __i915_gem_context_lookup_rcu(file_priv, id); 3241 if (ctx && !kref_get_unless_zero(&ctx->ref)) 3242 ctx = NULL; 3243 rcu_read_unlock(); 3244 3245 return ctx; 3246 } 3247 3248 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3249 struct drm_file *file); 3250 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 3251 struct drm_file *file); 3252 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 3253 struct drm_file *file); 3254 void i915_oa_init_reg_state(struct intel_engine_cs *engine, 3255 struct i915_gem_context *ctx, 3256 uint32_t *reg_state); 3257 3258 /* i915_gem_evict.c */ 3259 int __must_check i915_gem_evict_something(struct i915_address_space *vm, 3260 u64 min_size, u64 alignment, 3261 unsigned cache_level, 3262 u64 start, u64 end, 3263 unsigned flags); 3264 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm, 3265 struct drm_mm_node *node, 3266 unsigned int flags); 3267 int i915_gem_evict_vm(struct i915_address_space *vm); 3268 3269 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv); 3270 3271 /* belongs in i915_gem_gtt.h */ 3272 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv) 3273 { 3274 wmb(); 3275 if (INTEL_GEN(dev_priv) < 6) 3276 intel_gtt_chipset_flush(); 3277 } 3278 3279 /* i915_gem_stolen.c */ 3280 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv, 3281 struct drm_mm_node *node, u64 size, 3282 unsigned alignment); 3283 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv, 3284 struct drm_mm_node *node, u64 size, 3285 unsigned alignment, u64 start, 3286 u64 end); 3287 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv, 3288 struct drm_mm_node *node); 3289 int i915_gem_init_stolen(struct drm_i915_private *dev_priv); 3290 void i915_gem_cleanup_stolen(struct drm_device *dev); 3291 struct drm_i915_gem_object * 3292 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, 3293 resource_size_t size); 3294 struct drm_i915_gem_object * 3295 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv, 3296 resource_size_t stolen_offset, 3297 resource_size_t gtt_offset, 3298 resource_size_t size); 3299 3300 /* i915_gem_internal.c */ 3301 struct drm_i915_gem_object * 3302 i915_gem_object_create_internal(struct drm_i915_private *dev_priv, 3303 phys_addr_t size); 3304 3305 /* i915_gem_shrinker.c */ 3306 unsigned long i915_gem_shrink(struct drm_i915_private *i915, 3307 unsigned long target, 3308 unsigned long *nr_scanned, 3309 unsigned flags); 3310 #define I915_SHRINK_PURGEABLE 0x1 3311 #define I915_SHRINK_UNBOUND 0x2 3312 #define I915_SHRINK_BOUND 0x4 3313 #define I915_SHRINK_ACTIVE 0x8 3314 #define I915_SHRINK_VMAPS 0x10 3315 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915); 3316 void i915_gem_shrinker_register(struct drm_i915_private *i915); 3317 void i915_gem_shrinker_unregister(struct drm_i915_private *i915); 3318 3319 3320 /* i915_gem_tiling.c */ 3321 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) 3322 { 3323 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 3324 3325 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && 3326 i915_gem_object_is_tiled(obj); 3327 } 3328 3329 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size, 3330 unsigned int tiling, unsigned int stride); 3331 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size, 3332 unsigned int tiling, unsigned int stride); 3333 3334 /* i915_debugfs.c */ 3335 #ifdef CONFIG_DEBUG_FS 3336 int i915_debugfs_register(struct drm_i915_private *dev_priv); 3337 int i915_debugfs_connector_add(struct drm_connector *connector); 3338 void intel_display_crc_init(struct drm_i915_private *dev_priv); 3339 #else 3340 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;} 3341 static inline int i915_debugfs_connector_add(struct drm_connector *connector) 3342 { return 0; } 3343 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {} 3344 #endif 3345 3346 const char *i915_cache_level_str(struct drm_i915_private *i915, int type); 3347 3348 /* i915_cmd_parser.c */ 3349 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv); 3350 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine); 3351 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine); 3352 int intel_engine_cmd_parser(struct intel_engine_cs *engine, 3353 struct drm_i915_gem_object *batch_obj, 3354 struct drm_i915_gem_object *shadow_batch_obj, 3355 u32 batch_start_offset, 3356 u32 batch_len, 3357 bool is_master); 3358 3359 /* i915_perf.c */ 3360 extern void i915_perf_init(struct drm_i915_private *dev_priv); 3361 extern void i915_perf_fini(struct drm_i915_private *dev_priv); 3362 extern void i915_perf_register(struct drm_i915_private *dev_priv); 3363 extern void i915_perf_unregister(struct drm_i915_private *dev_priv); 3364 3365 /* i915_suspend.c */ 3366 extern int i915_save_state(struct drm_i915_private *dev_priv); 3367 extern int i915_restore_state(struct drm_i915_private *dev_priv); 3368 3369 /* i915_sysfs.c */ 3370 void i915_setup_sysfs(struct drm_i915_private *dev_priv); 3371 void i915_teardown_sysfs(struct drm_i915_private *dev_priv); 3372 3373 /* intel_lpe_audio.c */ 3374 int intel_lpe_audio_init(struct drm_i915_private *dev_priv); 3375 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv); 3376 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv); 3377 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv, 3378 enum pipe pipe, enum port port, 3379 const void *eld, int ls_clock, bool dp_output); 3380 3381 /* intel_i2c.c */ 3382 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv); 3383 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv); 3384 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv, 3385 unsigned int pin); 3386 extern int intel_gmbus_output_aksv(struct i2c_adapter *adapter); 3387 3388 extern struct i2c_adapter * 3389 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin); 3390 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed); 3391 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit); 3392 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter) 3393 { 3394 return container_of(adapter, struct intel_gmbus, adapter)->force_bit; 3395 } 3396 extern void intel_i2c_reset(struct drm_i915_private *dev_priv); 3397 3398 /* intel_bios.c */ 3399 void intel_bios_init(struct drm_i915_private *dev_priv); 3400 void intel_bios_cleanup(struct drm_i915_private *dev_priv); 3401 bool intel_bios_is_valid_vbt(const void *buf, size_t size); 3402 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv); 3403 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin); 3404 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port); 3405 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port); 3406 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port); 3407 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port); 3408 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv, 3409 enum port port); 3410 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv, 3411 enum port port); 3412 3413 /* intel_acpi.c */ 3414 #ifdef CONFIG_ACPI 3415 extern void intel_register_dsm_handler(void); 3416 extern void intel_unregister_dsm_handler(void); 3417 #else 3418 static inline void intel_register_dsm_handler(void) { return; } 3419 static inline void intel_unregister_dsm_handler(void) { return; } 3420 #endif /* CONFIG_ACPI */ 3421 3422 /* intel_device_info.c */ 3423 static inline struct intel_device_info * 3424 mkwrite_device_info(struct drm_i915_private *dev_priv) 3425 { 3426 return (struct intel_device_info *)&dev_priv->info; 3427 } 3428 3429 /* modesetting */ 3430 extern void intel_modeset_init_hw(struct drm_device *dev); 3431 extern int intel_modeset_init(struct drm_device *dev); 3432 extern void intel_modeset_cleanup(struct drm_device *dev); 3433 extern int intel_connector_register(struct drm_connector *); 3434 extern void intel_connector_unregister(struct drm_connector *); 3435 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, 3436 bool state); 3437 extern void intel_display_resume(struct drm_device *dev); 3438 extern void i915_redisable_vga(struct drm_i915_private *dev_priv); 3439 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv); 3440 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val); 3441 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv); 3442 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val); 3443 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, 3444 bool enable); 3445 3446 int i915_reg_read_ioctl(struct drm_device *dev, void *data, 3447 struct drm_file *file); 3448 3449 /* overlay */ 3450 extern struct intel_overlay_error_state * 3451 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv); 3452 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e, 3453 struct intel_overlay_error_state *error); 3454 3455 extern struct intel_display_error_state * 3456 intel_display_capture_error_state(struct drm_i915_private *dev_priv); 3457 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e, 3458 struct intel_display_error_state *error); 3459 3460 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val); 3461 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox, 3462 u32 val, int fast_timeout_us, 3463 int slow_timeout_ms); 3464 #define sandybridge_pcode_write(dev_priv, mbox, val) \ 3465 sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500, 0) 3466 3467 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request, 3468 u32 reply_mask, u32 reply, int timeout_base_ms); 3469 3470 /* intel_sideband.c */ 3471 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr); 3472 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val); 3473 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr); 3474 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg); 3475 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val); 3476 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg); 3477 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3478 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg); 3479 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3480 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg); 3481 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3482 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg); 3483 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val); 3484 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg, 3485 enum intel_sbi_destination destination); 3486 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value, 3487 enum intel_sbi_destination destination); 3488 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg); 3489 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3490 3491 /* intel_dpio_phy.c */ 3492 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port, 3493 enum dpio_phy *phy, enum dpio_channel *ch); 3494 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv, 3495 enum port port, u32 margin, u32 scale, 3496 u32 enable, u32 deemphasis); 3497 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy); 3498 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy); 3499 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv, 3500 enum dpio_phy phy); 3501 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv, 3502 enum dpio_phy phy); 3503 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count); 3504 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder, 3505 uint8_t lane_lat_optim_mask); 3506 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder); 3507 3508 void chv_set_phy_signal_level(struct intel_encoder *encoder, 3509 u32 deemph_reg_value, u32 margin_reg_value, 3510 bool uniq_trans_scale); 3511 void chv_data_lane_soft_reset(struct intel_encoder *encoder, 3512 const struct intel_crtc_state *crtc_state, 3513 bool reset); 3514 void chv_phy_pre_pll_enable(struct intel_encoder *encoder, 3515 const struct intel_crtc_state *crtc_state); 3516 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder, 3517 const struct intel_crtc_state *crtc_state); 3518 void chv_phy_release_cl2_override(struct intel_encoder *encoder); 3519 void chv_phy_post_pll_disable(struct intel_encoder *encoder, 3520 const struct intel_crtc_state *old_crtc_state); 3521 3522 void vlv_set_phy_signal_level(struct intel_encoder *encoder, 3523 u32 demph_reg_value, u32 preemph_reg_value, 3524 u32 uniqtranscale_reg_value, u32 tx3_demph); 3525 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder, 3526 const struct intel_crtc_state *crtc_state); 3527 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder, 3528 const struct intel_crtc_state *crtc_state); 3529 void vlv_phy_reset_lanes(struct intel_encoder *encoder, 3530 const struct intel_crtc_state *old_crtc_state); 3531 3532 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val); 3533 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val); 3534 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv, 3535 const i915_reg_t reg); 3536 3537 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1); 3538 3539 static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv, 3540 const i915_reg_t reg) 3541 { 3542 return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000); 3543 } 3544 3545 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true) 3546 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true) 3547 3548 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true) 3549 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true) 3550 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false) 3551 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false) 3552 3553 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true) 3554 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true) 3555 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false) 3556 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false) 3557 3558 /* Be very careful with read/write 64-bit values. On 32-bit machines, they 3559 * will be implemented using 2 32-bit writes in an arbitrary order with 3560 * an arbitrary delay between them. This can cause the hardware to 3561 * act upon the intermediate value, possibly leading to corruption and 3562 * machine death. For this reason we do not support I915_WRITE64, or 3563 * dev_priv->uncore.funcs.mmio_writeq. 3564 * 3565 * When reading a 64-bit value as two 32-bit values, the delay may cause 3566 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that 3567 * occasionally a 64-bit register does not actualy support a full readq 3568 * and must be read using two 32-bit reads. 3569 * 3570 * You have been warned. 3571 */ 3572 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true) 3573 3574 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \ 3575 u32 upper, lower, old_upper, loop = 0; \ 3576 upper = I915_READ(upper_reg); \ 3577 do { \ 3578 old_upper = upper; \ 3579 lower = I915_READ(lower_reg); \ 3580 upper = I915_READ(upper_reg); \ 3581 } while (upper != old_upper && loop++ < 2); \ 3582 (u64)upper << 32 | lower; }) 3583 3584 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg) 3585 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg) 3586 3587 #define __raw_read(x, s) \ 3588 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \ 3589 i915_reg_t reg) \ 3590 { \ 3591 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3592 } 3593 3594 #define __raw_write(x, s) \ 3595 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \ 3596 i915_reg_t reg, uint##x##_t val) \ 3597 { \ 3598 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3599 } 3600 __raw_read(8, b) 3601 __raw_read(16, w) 3602 __raw_read(32, l) 3603 __raw_read(64, q) 3604 3605 __raw_write(8, b) 3606 __raw_write(16, w) 3607 __raw_write(32, l) 3608 __raw_write(64, q) 3609 3610 #undef __raw_read 3611 #undef __raw_write 3612 3613 /* These are untraced mmio-accessors that are only valid to be used inside 3614 * critical sections, such as inside IRQ handlers, where forcewake is explicitly 3615 * controlled. 3616 * 3617 * Think twice, and think again, before using these. 3618 * 3619 * As an example, these accessors can possibly be used between: 3620 * 3621 * spin_lock_irq(&dev_priv->uncore.lock); 3622 * intel_uncore_forcewake_get__locked(); 3623 * 3624 * and 3625 * 3626 * intel_uncore_forcewake_put__locked(); 3627 * spin_unlock_irq(&dev_priv->uncore.lock); 3628 * 3629 * 3630 * Note: some registers may not need forcewake held, so 3631 * intel_uncore_forcewake_{get,put} can be omitted, see 3632 * intel_uncore_forcewake_for_reg(). 3633 * 3634 * Certain architectures will die if the same cacheline is concurrently accessed 3635 * by different clients (e.g. on Ivybridge). Access to registers should 3636 * therefore generally be serialised, by either the dev_priv->uncore.lock or 3637 * a more localised lock guarding all access to that bank of registers. 3638 */ 3639 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__)) 3640 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__)) 3641 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__)) 3642 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__) 3643 3644 /* "Broadcast RGB" property */ 3645 #define INTEL_BROADCAST_RGB_AUTO 0 3646 #define INTEL_BROADCAST_RGB_FULL 1 3647 #define INTEL_BROADCAST_RGB_LIMITED 2 3648 3649 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv) 3650 { 3651 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3652 return VLV_VGACNTRL; 3653 else if (INTEL_GEN(dev_priv) >= 5) 3654 return CPU_VGACNTRL; 3655 else 3656 return VGACNTRL; 3657 } 3658 3659 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m) 3660 { 3661 unsigned long j = msecs_to_jiffies(m); 3662 3663 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 3664 } 3665 3666 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n) 3667 { 3668 /* nsecs_to_jiffies64() does not guard against overflow */ 3669 if (NSEC_PER_SEC % HZ && 3670 div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ) 3671 return MAX_JIFFY_OFFSET; 3672 3673 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1); 3674 } 3675 3676 static inline unsigned long 3677 timespec_to_jiffies_timeout(const struct timespec *value) 3678 { 3679 unsigned long j = timespec_to_jiffies(value); 3680 3681 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 3682 } 3683 3684 /* 3685 * If you need to wait X milliseconds between events A and B, but event B 3686 * doesn't happen exactly after event A, you record the timestamp (jiffies) of 3687 * when event A happened, then just before event B you call this function and 3688 * pass the timestamp as the first argument, and X as the second argument. 3689 */ 3690 static inline void 3691 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms) 3692 { 3693 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies; 3694 3695 /* 3696 * Don't re-read the value of "jiffies" every time since it may change 3697 * behind our back and break the math. 3698 */ 3699 tmp_jiffies = jiffies; 3700 target_jiffies = timestamp_jiffies + 3701 msecs_to_jiffies_timeout(to_wait_ms); 3702 3703 if (time_after(target_jiffies, tmp_jiffies)) { 3704 remaining_jiffies = target_jiffies - tmp_jiffies; 3705 while (remaining_jiffies) 3706 remaining_jiffies = 3707 schedule_timeout_uninterruptible(remaining_jiffies); 3708 } 3709 } 3710 3711 static inline bool 3712 __i915_request_irq_complete(const struct i915_request *rq) 3713 { 3714 struct intel_engine_cs *engine = rq->engine; 3715 u32 seqno; 3716 3717 /* Note that the engine may have wrapped around the seqno, and 3718 * so our request->global_seqno will be ahead of the hardware, 3719 * even though it completed the request before wrapping. We catch 3720 * this by kicking all the waiters before resetting the seqno 3721 * in hardware, and also signal the fence. 3722 */ 3723 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) 3724 return true; 3725 3726 /* The request was dequeued before we were awoken. We check after 3727 * inspecting the hw to confirm that this was the same request 3728 * that generated the HWS update. The memory barriers within 3729 * the request execution are sufficient to ensure that a check 3730 * after reading the value from hw matches this request. 3731 */ 3732 seqno = i915_request_global_seqno(rq); 3733 if (!seqno) 3734 return false; 3735 3736 /* Before we do the heavier coherent read of the seqno, 3737 * check the value (hopefully) in the CPU cacheline. 3738 */ 3739 if (__i915_request_completed(rq, seqno)) 3740 return true; 3741 3742 /* Ensure our read of the seqno is coherent so that we 3743 * do not "miss an interrupt" (i.e. if this is the last 3744 * request and the seqno write from the GPU is not visible 3745 * by the time the interrupt fires, we will see that the 3746 * request is incomplete and go back to sleep awaiting 3747 * another interrupt that will never come.) 3748 * 3749 * Strictly, we only need to do this once after an interrupt, 3750 * but it is easier and safer to do it every time the waiter 3751 * is woken. 3752 */ 3753 if (engine->irq_seqno_barrier && 3754 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) { 3755 struct intel_breadcrumbs *b = &engine->breadcrumbs; 3756 3757 /* The ordering of irq_posted versus applying the barrier 3758 * is crucial. The clearing of the current irq_posted must 3759 * be visible before we perform the barrier operation, 3760 * such that if a subsequent interrupt arrives, irq_posted 3761 * is reasserted and our task rewoken (which causes us to 3762 * do another __i915_request_irq_complete() immediately 3763 * and reapply the barrier). Conversely, if the clear 3764 * occurs after the barrier, then an interrupt that arrived 3765 * whilst we waited on the barrier would not trigger a 3766 * barrier on the next pass, and the read may not see the 3767 * seqno update. 3768 */ 3769 engine->irq_seqno_barrier(engine); 3770 3771 /* If we consume the irq, but we are no longer the bottom-half, 3772 * the real bottom-half may not have serialised their own 3773 * seqno check with the irq-barrier (i.e. may have inspected 3774 * the seqno before we believe it coherent since they see 3775 * irq_posted == false but we are still running). 3776 */ 3777 spin_lock_irq(&b->irq_lock); 3778 if (b->irq_wait && b->irq_wait->tsk != current) 3779 /* Note that if the bottom-half is changed as we 3780 * are sending the wake-up, the new bottom-half will 3781 * be woken by whomever made the change. We only have 3782 * to worry about when we steal the irq-posted for 3783 * ourself. 3784 */ 3785 wake_up_process(b->irq_wait->tsk); 3786 spin_unlock_irq(&b->irq_lock); 3787 3788 if (__i915_request_completed(rq, seqno)) 3789 return true; 3790 } 3791 3792 return false; 3793 } 3794 3795 void i915_memcpy_init_early(struct drm_i915_private *dev_priv); 3796 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len); 3797 3798 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment, 3799 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot 3800 * perform the operation. To check beforehand, pass in the parameters to 3801 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits, 3802 * you only need to pass in the minor offsets, page-aligned pointers are 3803 * always valid. 3804 * 3805 * For just checking for SSE4.1, in the foreknowledge that the future use 3806 * will be correctly aligned, just use i915_has_memcpy_from_wc(). 3807 */ 3808 #define i915_can_memcpy_from_wc(dst, src, len) \ 3809 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0) 3810 3811 #define i915_has_memcpy_from_wc() \ 3812 i915_memcpy_from_wc(NULL, NULL, 0) 3813 3814 /* i915_mm.c */ 3815 int remap_io_mapping(struct vm_area_struct *vma, 3816 unsigned long addr, unsigned long pfn, unsigned long size, 3817 struct io_mapping *iomap); 3818 3819 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915) 3820 { 3821 if (INTEL_GEN(i915) >= 10) 3822 return CNL_HWS_CSB_WRITE_INDEX; 3823 else 3824 return I915_HWS_CSB_WRITE_INDEX; 3825 } 3826 3827 #endif 3828