xref: /openbmc/linux/drivers/gpu/drm/i915/i915_drv.h (revision cfdfc14e)
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32 
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35 
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/perf_event.h>
44 #include <linux/pm_qos.h>
45 #include <linux/reservation.h>
46 #include <linux/shmem_fs.h>
47 
48 #include <drm/drmP.h>
49 #include <drm/intel-gtt.h>
50 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
51 #include <drm/drm_gem.h>
52 #include <drm/drm_auth.h>
53 #include <drm/drm_cache.h>
54 
55 #include "i915_params.h"
56 #include "i915_reg.h"
57 #include "i915_utils.h"
58 
59 #include "intel_bios.h"
60 #include "intel_device_info.h"
61 #include "intel_display.h"
62 #include "intel_dpll_mgr.h"
63 #include "intel_lrc.h"
64 #include "intel_opregion.h"
65 #include "intel_ringbuffer.h"
66 #include "intel_uncore.h"
67 #include "intel_wopcm.h"
68 #include "intel_uc.h"
69 
70 #include "i915_gem.h"
71 #include "i915_gem_context.h"
72 #include "i915_gem_fence_reg.h"
73 #include "i915_gem_object.h"
74 #include "i915_gem_gtt.h"
75 #include "i915_gpu_error.h"
76 #include "i915_request.h"
77 #include "i915_scheduler.h"
78 #include "i915_timeline.h"
79 #include "i915_vma.h"
80 
81 #include "intel_gvt.h"
82 
83 /* General customization:
84  */
85 
86 #define DRIVER_NAME		"i915"
87 #define DRIVER_DESC		"Intel Graphics"
88 #define DRIVER_DATE		"20180514"
89 #define DRIVER_TIMESTAMP	1526300884
90 
91 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
92  * WARN_ON()) for hw state sanity checks to check for unexpected conditions
93  * which may not necessarily be a user visible problem.  This will either
94  * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
95  * enable distros and users to tailor their preferred amount of i915 abrt
96  * spam.
97  */
98 #define I915_STATE_WARN(condition, format...) ({			\
99 	int __ret_warn_on = !!(condition);				\
100 	if (unlikely(__ret_warn_on))					\
101 		if (!WARN(i915_modparams.verbose_state_checks, format))	\
102 			DRM_ERROR(format);				\
103 	unlikely(__ret_warn_on);					\
104 })
105 
106 #define I915_STATE_WARN_ON(x)						\
107 	I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
108 
109 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
110 bool __i915_inject_load_failure(const char *func, int line);
111 #define i915_inject_load_failure() \
112 	__i915_inject_load_failure(__func__, __LINE__)
113 #else
114 #define i915_inject_load_failure() false
115 #endif
116 
117 typedef struct {
118 	uint32_t val;
119 } uint_fixed_16_16_t;
120 
121 #define FP_16_16_MAX ({ \
122 	uint_fixed_16_16_t fp; \
123 	fp.val = UINT_MAX; \
124 	fp; \
125 })
126 
127 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
128 {
129 	if (val.val == 0)
130 		return true;
131 	return false;
132 }
133 
134 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
135 {
136 	uint_fixed_16_16_t fp;
137 
138 	WARN_ON(val > U16_MAX);
139 
140 	fp.val = val << 16;
141 	return fp;
142 }
143 
144 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
145 {
146 	return DIV_ROUND_UP(fp.val, 1 << 16);
147 }
148 
149 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
150 {
151 	return fp.val >> 16;
152 }
153 
154 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
155 						 uint_fixed_16_16_t min2)
156 {
157 	uint_fixed_16_16_t min;
158 
159 	min.val = min(min1.val, min2.val);
160 	return min;
161 }
162 
163 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
164 						 uint_fixed_16_16_t max2)
165 {
166 	uint_fixed_16_16_t max;
167 
168 	max.val = max(max1.val, max2.val);
169 	return max;
170 }
171 
172 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
173 {
174 	uint_fixed_16_16_t fp;
175 	WARN_ON(val > U32_MAX);
176 	fp.val = (uint32_t) val;
177 	return fp;
178 }
179 
180 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
181 					    uint_fixed_16_16_t d)
182 {
183 	return DIV_ROUND_UP(val.val, d.val);
184 }
185 
186 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
187 						uint_fixed_16_16_t mul)
188 {
189 	uint64_t intermediate_val;
190 
191 	intermediate_val = (uint64_t) val * mul.val;
192 	intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
193 	WARN_ON(intermediate_val > U32_MAX);
194 	return (uint32_t) intermediate_val;
195 }
196 
197 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
198 					     uint_fixed_16_16_t mul)
199 {
200 	uint64_t intermediate_val;
201 
202 	intermediate_val = (uint64_t) val.val * mul.val;
203 	intermediate_val = intermediate_val >> 16;
204 	return clamp_u64_to_fixed16(intermediate_val);
205 }
206 
207 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
208 {
209 	uint64_t interm_val;
210 
211 	interm_val = (uint64_t)val << 16;
212 	interm_val = DIV_ROUND_UP_ULL(interm_val, d);
213 	return clamp_u64_to_fixed16(interm_val);
214 }
215 
216 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
217 						uint_fixed_16_16_t d)
218 {
219 	uint64_t interm_val;
220 
221 	interm_val = (uint64_t)val << 16;
222 	interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
223 	WARN_ON(interm_val > U32_MAX);
224 	return (uint32_t) interm_val;
225 }
226 
227 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
228 						     uint_fixed_16_16_t mul)
229 {
230 	uint64_t intermediate_val;
231 
232 	intermediate_val = (uint64_t) val * mul.val;
233 	return clamp_u64_to_fixed16(intermediate_val);
234 }
235 
236 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
237 					     uint_fixed_16_16_t add2)
238 {
239 	uint64_t interm_sum;
240 
241 	interm_sum = (uint64_t) add1.val + add2.val;
242 	return clamp_u64_to_fixed16(interm_sum);
243 }
244 
245 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
246 						 uint32_t add2)
247 {
248 	uint64_t interm_sum;
249 	uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
250 
251 	interm_sum = (uint64_t) add1.val + interm_add2.val;
252 	return clamp_u64_to_fixed16(interm_sum);
253 }
254 
255 enum hpd_pin {
256 	HPD_NONE = 0,
257 	HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
258 	HPD_CRT,
259 	HPD_SDVO_B,
260 	HPD_SDVO_C,
261 	HPD_PORT_A,
262 	HPD_PORT_B,
263 	HPD_PORT_C,
264 	HPD_PORT_D,
265 	HPD_PORT_E,
266 	HPD_PORT_F,
267 	HPD_NUM_PINS
268 };
269 
270 #define for_each_hpd_pin(__pin) \
271 	for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
272 
273 #define HPD_STORM_DEFAULT_THRESHOLD 5
274 
275 struct i915_hotplug {
276 	struct work_struct hotplug_work;
277 
278 	struct {
279 		unsigned long last_jiffies;
280 		int count;
281 		enum {
282 			HPD_ENABLED = 0,
283 			HPD_DISABLED = 1,
284 			HPD_MARK_DISABLED = 2
285 		} state;
286 	} stats[HPD_NUM_PINS];
287 	u32 event_bits;
288 	struct delayed_work reenable_work;
289 
290 	struct intel_digital_port *irq_port[I915_MAX_PORTS];
291 	u32 long_port_mask;
292 	u32 short_port_mask;
293 	struct work_struct dig_port_work;
294 
295 	struct work_struct poll_init_work;
296 	bool poll_enabled;
297 
298 	unsigned int hpd_storm_threshold;
299 
300 	/*
301 	 * if we get a HPD irq from DP and a HPD irq from non-DP
302 	 * the non-DP HPD could block the workqueue on a mode config
303 	 * mutex getting, that userspace may have taken. However
304 	 * userspace is waiting on the DP workqueue to run which is
305 	 * blocked behind the non-DP one.
306 	 */
307 	struct workqueue_struct *dp_wq;
308 };
309 
310 #define I915_GEM_GPU_DOMAINS \
311 	(I915_GEM_DOMAIN_RENDER | \
312 	 I915_GEM_DOMAIN_SAMPLER | \
313 	 I915_GEM_DOMAIN_COMMAND | \
314 	 I915_GEM_DOMAIN_INSTRUCTION | \
315 	 I915_GEM_DOMAIN_VERTEX)
316 
317 struct drm_i915_private;
318 struct i915_mm_struct;
319 struct i915_mmu_object;
320 
321 struct drm_i915_file_private {
322 	struct drm_i915_private *dev_priv;
323 	struct drm_file *file;
324 
325 	struct {
326 		spinlock_t lock;
327 		struct list_head request_list;
328 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
329  * chosen to prevent the CPU getting more than a frame ahead of the GPU
330  * (when using lax throttling for the frontbuffer). We also use it to
331  * offer free GPU waitboosts for severely congested workloads.
332  */
333 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
334 	} mm;
335 	struct idr context_idr;
336 
337 	struct intel_rps_client {
338 		atomic_t boosts;
339 	} rps_client;
340 
341 	unsigned int bsd_engine;
342 
343 /* Client can have a maximum of 3 contexts banned before
344  * it is denied of creating new contexts. As one context
345  * ban needs 4 consecutive hangs, and more if there is
346  * progress in between, this is a last resort stop gap measure
347  * to limit the badly behaving clients access to gpu.
348  */
349 #define I915_MAX_CLIENT_CONTEXT_BANS 3
350 	atomic_t context_bans;
351 };
352 
353 /* Interface history:
354  *
355  * 1.1: Original.
356  * 1.2: Add Power Management
357  * 1.3: Add vblank support
358  * 1.4: Fix cmdbuffer path, add heap destroy
359  * 1.5: Add vblank pipe configuration
360  * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
361  *      - Support vertical blank on secondary display pipe
362  */
363 #define DRIVER_MAJOR		1
364 #define DRIVER_MINOR		6
365 #define DRIVER_PATCHLEVEL	0
366 
367 struct intel_overlay;
368 struct intel_overlay_error_state;
369 
370 struct sdvo_device_mapping {
371 	u8 initialized;
372 	u8 dvo_port;
373 	u8 slave_addr;
374 	u8 dvo_wiring;
375 	u8 i2c_pin;
376 	u8 ddc_pin;
377 };
378 
379 struct intel_connector;
380 struct intel_encoder;
381 struct intel_atomic_state;
382 struct intel_crtc_state;
383 struct intel_initial_plane_config;
384 struct intel_crtc;
385 struct intel_limit;
386 struct dpll;
387 struct intel_cdclk_state;
388 
389 struct drm_i915_display_funcs {
390 	void (*get_cdclk)(struct drm_i915_private *dev_priv,
391 			  struct intel_cdclk_state *cdclk_state);
392 	void (*set_cdclk)(struct drm_i915_private *dev_priv,
393 			  const struct intel_cdclk_state *cdclk_state);
394 	int (*get_fifo_size)(struct drm_i915_private *dev_priv,
395 			     enum i9xx_plane_id i9xx_plane);
396 	int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
397 	int (*compute_intermediate_wm)(struct drm_device *dev,
398 				       struct intel_crtc *intel_crtc,
399 				       struct intel_crtc_state *newstate);
400 	void (*initial_watermarks)(struct intel_atomic_state *state,
401 				   struct intel_crtc_state *cstate);
402 	void (*atomic_update_watermarks)(struct intel_atomic_state *state,
403 					 struct intel_crtc_state *cstate);
404 	void (*optimize_watermarks)(struct intel_atomic_state *state,
405 				    struct intel_crtc_state *cstate);
406 	int (*compute_global_watermarks)(struct drm_atomic_state *state);
407 	void (*update_wm)(struct intel_crtc *crtc);
408 	int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
409 	/* Returns the active state of the crtc, and if the crtc is active,
410 	 * fills out the pipe-config with the hw state. */
411 	bool (*get_pipe_config)(struct intel_crtc *,
412 				struct intel_crtc_state *);
413 	void (*get_initial_plane_config)(struct intel_crtc *,
414 					 struct intel_initial_plane_config *);
415 	int (*crtc_compute_clock)(struct intel_crtc *crtc,
416 				  struct intel_crtc_state *crtc_state);
417 	void (*crtc_enable)(struct intel_crtc_state *pipe_config,
418 			    struct drm_atomic_state *old_state);
419 	void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
420 			     struct drm_atomic_state *old_state);
421 	void (*update_crtcs)(struct drm_atomic_state *state);
422 	void (*audio_codec_enable)(struct intel_encoder *encoder,
423 				   const struct intel_crtc_state *crtc_state,
424 				   const struct drm_connector_state *conn_state);
425 	void (*audio_codec_disable)(struct intel_encoder *encoder,
426 				    const struct intel_crtc_state *old_crtc_state,
427 				    const struct drm_connector_state *old_conn_state);
428 	void (*fdi_link_train)(struct intel_crtc *crtc,
429 			       const struct intel_crtc_state *crtc_state);
430 	void (*init_clock_gating)(struct drm_i915_private *dev_priv);
431 	void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
432 	/* clock updates for mode set */
433 	/* cursor updates */
434 	/* render clock increase/decrease */
435 	/* display clock increase/decrease */
436 	/* pll clock increase/decrease */
437 
438 	void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
439 	void (*load_luts)(struct drm_crtc_state *crtc_state);
440 };
441 
442 #define CSR_VERSION(major, minor)	((major) << 16 | (minor))
443 #define CSR_VERSION_MAJOR(version)	((version) >> 16)
444 #define CSR_VERSION_MINOR(version)	((version) & 0xffff)
445 
446 struct intel_csr {
447 	struct work_struct work;
448 	const char *fw_path;
449 	uint32_t *dmc_payload;
450 	uint32_t dmc_fw_size;
451 	uint32_t version;
452 	uint32_t mmio_count;
453 	i915_reg_t mmioaddr[8];
454 	uint32_t mmiodata[8];
455 	uint32_t dc_state;
456 	uint32_t allowed_dc_mask;
457 };
458 
459 enum i915_cache_level {
460 	I915_CACHE_NONE = 0,
461 	I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
462 	I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
463 			      caches, eg sampler/render caches, and the
464 			      large Last-Level-Cache. LLC is coherent with
465 			      the CPU, but L3 is only visible to the GPU. */
466 	I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
467 };
468 
469 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
470 
471 enum fb_op_origin {
472 	ORIGIN_GTT,
473 	ORIGIN_CPU,
474 	ORIGIN_CS,
475 	ORIGIN_FLIP,
476 	ORIGIN_DIRTYFB,
477 };
478 
479 struct intel_fbc {
480 	/* This is always the inner lock when overlapping with struct_mutex and
481 	 * it's the outer lock when overlapping with stolen_lock. */
482 	struct mutex lock;
483 	unsigned threshold;
484 	unsigned int possible_framebuffer_bits;
485 	unsigned int busy_bits;
486 	unsigned int visible_pipes_mask;
487 	struct intel_crtc *crtc;
488 
489 	struct drm_mm_node compressed_fb;
490 	struct drm_mm_node *compressed_llb;
491 
492 	bool false_color;
493 
494 	bool enabled;
495 	bool active;
496 
497 	bool underrun_detected;
498 	struct work_struct underrun_work;
499 
500 	/*
501 	 * Due to the atomic rules we can't access some structures without the
502 	 * appropriate locking, so we cache information here in order to avoid
503 	 * these problems.
504 	 */
505 	struct intel_fbc_state_cache {
506 		struct i915_vma *vma;
507 		unsigned long flags;
508 
509 		struct {
510 			unsigned int mode_flags;
511 			uint32_t hsw_bdw_pixel_rate;
512 		} crtc;
513 
514 		struct {
515 			unsigned int rotation;
516 			int src_w;
517 			int src_h;
518 			bool visible;
519 			/*
520 			 * Display surface base address adjustement for
521 			 * pageflips. Note that on gen4+ this only adjusts up
522 			 * to a tile, offsets within a tile are handled in
523 			 * the hw itself (with the TILEOFF register).
524 			 */
525 			int adjusted_x;
526 			int adjusted_y;
527 
528 			int y;
529 		} plane;
530 
531 		struct {
532 			const struct drm_format_info *format;
533 			unsigned int stride;
534 		} fb;
535 	} state_cache;
536 
537 	/*
538 	 * This structure contains everything that's relevant to program the
539 	 * hardware registers. When we want to figure out if we need to disable
540 	 * and re-enable FBC for a new configuration we just check if there's
541 	 * something different in the struct. The genx_fbc_activate functions
542 	 * are supposed to read from it in order to program the registers.
543 	 */
544 	struct intel_fbc_reg_params {
545 		struct i915_vma *vma;
546 		unsigned long flags;
547 
548 		struct {
549 			enum pipe pipe;
550 			enum i9xx_plane_id i9xx_plane;
551 			unsigned int fence_y_offset;
552 		} crtc;
553 
554 		struct {
555 			const struct drm_format_info *format;
556 			unsigned int stride;
557 		} fb;
558 
559 		int cfb_size;
560 		unsigned int gen9_wa_cfb_stride;
561 	} params;
562 
563 	struct intel_fbc_work {
564 		bool scheduled;
565 		u64 scheduled_vblank;
566 		struct work_struct work;
567 	} work;
568 
569 	const char *no_fbc_reason;
570 };
571 
572 /*
573  * HIGH_RR is the highest eDP panel refresh rate read from EDID
574  * LOW_RR is the lowest eDP panel refresh rate found from EDID
575  * parsing for same resolution.
576  */
577 enum drrs_refresh_rate_type {
578 	DRRS_HIGH_RR,
579 	DRRS_LOW_RR,
580 	DRRS_MAX_RR, /* RR count */
581 };
582 
583 enum drrs_support_type {
584 	DRRS_NOT_SUPPORTED = 0,
585 	STATIC_DRRS_SUPPORT = 1,
586 	SEAMLESS_DRRS_SUPPORT = 2
587 };
588 
589 struct intel_dp;
590 struct i915_drrs {
591 	struct mutex mutex;
592 	struct delayed_work work;
593 	struct intel_dp *dp;
594 	unsigned busy_frontbuffer_bits;
595 	enum drrs_refresh_rate_type refresh_rate_type;
596 	enum drrs_support_type type;
597 };
598 
599 struct i915_psr {
600 	struct mutex lock;
601 	bool sink_support;
602 	struct intel_dp *enabled;
603 	bool active;
604 	struct delayed_work work;
605 	unsigned busy_frontbuffer_bits;
606 	bool sink_psr2_support;
607 	bool link_standby;
608 	bool colorimetry_support;
609 	bool alpm;
610 	bool has_hw_tracking;
611 	bool psr2_enabled;
612 	u8 sink_sync_latency;
613 	bool debug;
614 	ktime_t last_entry_attempt;
615 	ktime_t last_exit;
616 
617 	void (*enable_source)(struct intel_dp *,
618 			      const struct intel_crtc_state *);
619 	void (*disable_source)(struct intel_dp *,
620 			       const struct intel_crtc_state *);
621 	void (*enable_sink)(struct intel_dp *);
622 	void (*activate)(struct intel_dp *);
623 	void (*setup_vsc)(struct intel_dp *, const struct intel_crtc_state *);
624 };
625 
626 enum intel_pch {
627 	PCH_NONE = 0,	/* No PCH present */
628 	PCH_IBX,	/* Ibexpeak PCH */
629 	PCH_CPT,	/* Cougarpoint/Pantherpoint PCH */
630 	PCH_LPT,	/* Lynxpoint/Wildcatpoint PCH */
631 	PCH_SPT,        /* Sunrisepoint PCH */
632 	PCH_KBP,        /* Kaby Lake PCH */
633 	PCH_CNP,        /* Cannon Lake PCH */
634 	PCH_ICP,	/* Ice Lake PCH */
635 	PCH_NOP,
636 };
637 
638 enum intel_sbi_destination {
639 	SBI_ICLK,
640 	SBI_MPHY,
641 };
642 
643 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
644 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
645 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
646 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
647 #define QUIRK_INCREASE_T12_DELAY (1<<6)
648 
649 struct intel_fbdev;
650 struct intel_fbc_work;
651 
652 struct intel_gmbus {
653 	struct i2c_adapter adapter;
654 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
655 	u32 force_bit;
656 	u32 reg0;
657 	i915_reg_t gpio_reg;
658 	struct i2c_algo_bit_data bit_algo;
659 	struct drm_i915_private *dev_priv;
660 };
661 
662 struct i915_suspend_saved_registers {
663 	u32 saveDSPARB;
664 	u32 saveFBC_CONTROL;
665 	u32 saveCACHE_MODE_0;
666 	u32 saveMI_ARB_STATE;
667 	u32 saveSWF0[16];
668 	u32 saveSWF1[16];
669 	u32 saveSWF3[3];
670 	uint64_t saveFENCE[I915_MAX_NUM_FENCES];
671 	u32 savePCH_PORT_HOTPLUG;
672 	u16 saveGCDGMBUS;
673 };
674 
675 struct vlv_s0ix_state {
676 	/* GAM */
677 	u32 wr_watermark;
678 	u32 gfx_prio_ctrl;
679 	u32 arb_mode;
680 	u32 gfx_pend_tlb0;
681 	u32 gfx_pend_tlb1;
682 	u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
683 	u32 media_max_req_count;
684 	u32 gfx_max_req_count;
685 	u32 render_hwsp;
686 	u32 ecochk;
687 	u32 bsd_hwsp;
688 	u32 blt_hwsp;
689 	u32 tlb_rd_addr;
690 
691 	/* MBC */
692 	u32 g3dctl;
693 	u32 gsckgctl;
694 	u32 mbctl;
695 
696 	/* GCP */
697 	u32 ucgctl1;
698 	u32 ucgctl3;
699 	u32 rcgctl1;
700 	u32 rcgctl2;
701 	u32 rstctl;
702 	u32 misccpctl;
703 
704 	/* GPM */
705 	u32 gfxpause;
706 	u32 rpdeuhwtc;
707 	u32 rpdeuc;
708 	u32 ecobus;
709 	u32 pwrdwnupctl;
710 	u32 rp_down_timeout;
711 	u32 rp_deucsw;
712 	u32 rcubmabdtmr;
713 	u32 rcedata;
714 	u32 spare2gh;
715 
716 	/* Display 1 CZ domain */
717 	u32 gt_imr;
718 	u32 gt_ier;
719 	u32 pm_imr;
720 	u32 pm_ier;
721 	u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
722 
723 	/* GT SA CZ domain */
724 	u32 tilectl;
725 	u32 gt_fifoctl;
726 	u32 gtlc_wake_ctrl;
727 	u32 gtlc_survive;
728 	u32 pmwgicz;
729 
730 	/* Display 2 CZ domain */
731 	u32 gu_ctl0;
732 	u32 gu_ctl1;
733 	u32 pcbr;
734 	u32 clock_gate_dis2;
735 };
736 
737 struct intel_rps_ei {
738 	ktime_t ktime;
739 	u32 render_c0;
740 	u32 media_c0;
741 };
742 
743 struct intel_rps {
744 	/*
745 	 * work, interrupts_enabled and pm_iir are protected by
746 	 * dev_priv->irq_lock
747 	 */
748 	struct work_struct work;
749 	bool interrupts_enabled;
750 	u32 pm_iir;
751 
752 	/* PM interrupt bits that should never be masked */
753 	u32 pm_intrmsk_mbz;
754 
755 	/* Frequencies are stored in potentially platform dependent multiples.
756 	 * In other words, *_freq needs to be multiplied by X to be interesting.
757 	 * Soft limits are those which are used for the dynamic reclocking done
758 	 * by the driver (raise frequencies under heavy loads, and lower for
759 	 * lighter loads). Hard limits are those imposed by the hardware.
760 	 *
761 	 * A distinction is made for overclocking, which is never enabled by
762 	 * default, and is considered to be above the hard limit if it's
763 	 * possible at all.
764 	 */
765 	u8 cur_freq;		/* Current frequency (cached, may not == HW) */
766 	u8 min_freq_softlimit;	/* Minimum frequency permitted by the driver */
767 	u8 max_freq_softlimit;	/* Max frequency permitted by the driver */
768 	u8 max_freq;		/* Maximum frequency, RP0 if not overclocking */
769 	u8 min_freq;		/* AKA RPn. Minimum frequency */
770 	u8 boost_freq;		/* Frequency to request when wait boosting */
771 	u8 idle_freq;		/* Frequency to request when we are idle */
772 	u8 efficient_freq;	/* AKA RPe. Pre-determined balanced frequency */
773 	u8 rp1_freq;		/* "less than" RP0 power/freqency */
774 	u8 rp0_freq;		/* Non-overclocked max frequency. */
775 	u16 gpll_ref_freq;	/* vlv/chv GPLL reference frequency */
776 
777 	u8 up_threshold; /* Current %busy required to uplock */
778 	u8 down_threshold; /* Current %busy required to downclock */
779 
780 	int last_adj;
781 	enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
782 
783 	bool enabled;
784 	atomic_t num_waiters;
785 	atomic_t boosts;
786 
787 	/* manual wa residency calculations */
788 	struct intel_rps_ei ei;
789 };
790 
791 struct intel_rc6 {
792 	bool enabled;
793 	u64 prev_hw_residency[4];
794 	u64 cur_residency[4];
795 };
796 
797 struct intel_llc_pstate {
798 	bool enabled;
799 };
800 
801 struct intel_gen6_power_mgmt {
802 	struct intel_rps rps;
803 	struct intel_rc6 rc6;
804 	struct intel_llc_pstate llc_pstate;
805 };
806 
807 /* defined intel_pm.c */
808 extern spinlock_t mchdev_lock;
809 
810 struct intel_ilk_power_mgmt {
811 	u8 cur_delay;
812 	u8 min_delay;
813 	u8 max_delay;
814 	u8 fmax;
815 	u8 fstart;
816 
817 	u64 last_count1;
818 	unsigned long last_time1;
819 	unsigned long chipset_power;
820 	u64 last_count2;
821 	u64 last_time2;
822 	unsigned long gfx_power;
823 	u8 corr;
824 
825 	int c_m;
826 	int r_t;
827 };
828 
829 struct drm_i915_private;
830 struct i915_power_well;
831 
832 struct i915_power_well_ops {
833 	/*
834 	 * Synchronize the well's hw state to match the current sw state, for
835 	 * example enable/disable it based on the current refcount. Called
836 	 * during driver init and resume time, possibly after first calling
837 	 * the enable/disable handlers.
838 	 */
839 	void (*sync_hw)(struct drm_i915_private *dev_priv,
840 			struct i915_power_well *power_well);
841 	/*
842 	 * Enable the well and resources that depend on it (for example
843 	 * interrupts located on the well). Called after the 0->1 refcount
844 	 * transition.
845 	 */
846 	void (*enable)(struct drm_i915_private *dev_priv,
847 		       struct i915_power_well *power_well);
848 	/*
849 	 * Disable the well and resources that depend on it. Called after
850 	 * the 1->0 refcount transition.
851 	 */
852 	void (*disable)(struct drm_i915_private *dev_priv,
853 			struct i915_power_well *power_well);
854 	/* Returns the hw enabled state. */
855 	bool (*is_enabled)(struct drm_i915_private *dev_priv,
856 			   struct i915_power_well *power_well);
857 };
858 
859 /* Power well structure for haswell */
860 struct i915_power_well {
861 	const char *name;
862 	bool always_on;
863 	/* power well enable/disable usage count */
864 	int count;
865 	/* cached hw enabled state */
866 	bool hw_enabled;
867 	u64 domains;
868 	/* unique identifier for this power well */
869 	enum i915_power_well_id id;
870 	/*
871 	 * Arbitraty data associated with this power well. Platform and power
872 	 * well specific.
873 	 */
874 	union {
875 		struct {
876 			enum dpio_phy phy;
877 		} bxt;
878 		struct {
879 			/* Mask of pipes whose IRQ logic is backed by the pw */
880 			u8 irq_pipe_mask;
881 			/* The pw is backing the VGA functionality */
882 			bool has_vga:1;
883 			bool has_fuses:1;
884 		} hsw;
885 	};
886 	const struct i915_power_well_ops *ops;
887 };
888 
889 struct i915_power_domains {
890 	/*
891 	 * Power wells needed for initialization at driver init and suspend
892 	 * time are on. They are kept on until after the first modeset.
893 	 */
894 	bool init_power_on;
895 	bool initializing;
896 	int power_well_count;
897 
898 	struct mutex lock;
899 	int domain_use_count[POWER_DOMAIN_NUM];
900 	struct i915_power_well *power_wells;
901 };
902 
903 #define MAX_L3_SLICES 2
904 struct intel_l3_parity {
905 	u32 *remap_info[MAX_L3_SLICES];
906 	struct work_struct error_work;
907 	int which_slice;
908 };
909 
910 struct i915_gem_mm {
911 	/** Memory allocator for GTT stolen memory */
912 	struct drm_mm stolen;
913 	/** Protects the usage of the GTT stolen memory allocator. This is
914 	 * always the inner lock when overlapping with struct_mutex. */
915 	struct mutex stolen_lock;
916 
917 	/* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */
918 	spinlock_t obj_lock;
919 
920 	/** List of all objects in gtt_space. Used to restore gtt
921 	 * mappings on resume */
922 	struct list_head bound_list;
923 	/**
924 	 * List of objects which are not bound to the GTT (thus
925 	 * are idle and not used by the GPU). These objects may or may
926 	 * not actually have any pages attached.
927 	 */
928 	struct list_head unbound_list;
929 
930 	/** List of all objects in gtt_space, currently mmaped by userspace.
931 	 * All objects within this list must also be on bound_list.
932 	 */
933 	struct list_head userfault_list;
934 
935 	/**
936 	 * List of objects which are pending destruction.
937 	 */
938 	struct llist_head free_list;
939 	struct work_struct free_work;
940 	spinlock_t free_lock;
941 	/**
942 	 * Count of objects pending destructions. Used to skip needlessly
943 	 * waiting on an RCU barrier if no objects are waiting to be freed.
944 	 */
945 	atomic_t free_count;
946 
947 	/**
948 	 * Small stash of WC pages
949 	 */
950 	struct pagevec wc_stash;
951 
952 	/**
953 	 * tmpfs instance used for shmem backed objects
954 	 */
955 	struct vfsmount *gemfs;
956 
957 	/** PPGTT used for aliasing the PPGTT with the GTT */
958 	struct i915_hw_ppgtt *aliasing_ppgtt;
959 
960 	struct notifier_block oom_notifier;
961 	struct notifier_block vmap_notifier;
962 	struct shrinker shrinker;
963 
964 	/** LRU list of objects with fence regs on them. */
965 	struct list_head fence_list;
966 
967 	/**
968 	 * Workqueue to fault in userptr pages, flushed by the execbuf
969 	 * when required but otherwise left to userspace to try again
970 	 * on EAGAIN.
971 	 */
972 	struct workqueue_struct *userptr_wq;
973 
974 	u64 unordered_timeline;
975 
976 	/* the indicator for dispatch video commands on two BSD rings */
977 	atomic_t bsd_engine_dispatch_index;
978 
979 	/** Bit 6 swizzling required for X tiling */
980 	uint32_t bit_6_swizzle_x;
981 	/** Bit 6 swizzling required for Y tiling */
982 	uint32_t bit_6_swizzle_y;
983 
984 	/* accounting, useful for userland debugging */
985 	spinlock_t object_stat_lock;
986 	u64 object_memory;
987 	u32 object_count;
988 };
989 
990 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */
991 
992 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
993 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
994 
995 #define I915_ENGINE_DEAD_TIMEOUT  (4 * HZ)  /* Seqno, head and subunits dead */
996 #define I915_SEQNO_DEAD_TIMEOUT   (12 * HZ) /* Seqno dead with active head */
997 
998 enum modeset_restore {
999 	MODESET_ON_LID_OPEN,
1000 	MODESET_DONE,
1001 	MODESET_SUSPENDED,
1002 };
1003 
1004 #define DP_AUX_A 0x40
1005 #define DP_AUX_B 0x10
1006 #define DP_AUX_C 0x20
1007 #define DP_AUX_D 0x30
1008 #define DP_AUX_F 0x60
1009 
1010 #define DDC_PIN_B  0x05
1011 #define DDC_PIN_C  0x04
1012 #define DDC_PIN_D  0x06
1013 
1014 struct ddi_vbt_port_info {
1015 	int max_tmds_clock;
1016 
1017 	/*
1018 	 * This is an index in the HDMI/DVI DDI buffer translation table.
1019 	 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1020 	 * populate this field.
1021 	 */
1022 #define HDMI_LEVEL_SHIFT_UNKNOWN	0xff
1023 	uint8_t hdmi_level_shift;
1024 
1025 	uint8_t supports_dvi:1;
1026 	uint8_t supports_hdmi:1;
1027 	uint8_t supports_dp:1;
1028 	uint8_t supports_edp:1;
1029 
1030 	uint8_t alternate_aux_channel;
1031 	uint8_t alternate_ddc_pin;
1032 
1033 	uint8_t dp_boost_level;
1034 	uint8_t hdmi_boost_level;
1035 	int dp_max_link_rate;		/* 0 for not limited by VBT */
1036 };
1037 
1038 enum psr_lines_to_wait {
1039 	PSR_0_LINES_TO_WAIT = 0,
1040 	PSR_1_LINE_TO_WAIT,
1041 	PSR_4_LINES_TO_WAIT,
1042 	PSR_8_LINES_TO_WAIT
1043 };
1044 
1045 struct intel_vbt_data {
1046 	struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1047 	struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1048 
1049 	/* Feature bits */
1050 	unsigned int int_tv_support:1;
1051 	unsigned int lvds_dither:1;
1052 	unsigned int lvds_vbt:1;
1053 	unsigned int int_crt_support:1;
1054 	unsigned int lvds_use_ssc:1;
1055 	unsigned int display_clock_mode:1;
1056 	unsigned int fdi_rx_polarity_inverted:1;
1057 	unsigned int panel_type:4;
1058 	int lvds_ssc_freq;
1059 	unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1060 
1061 	enum drrs_support_type drrs_type;
1062 
1063 	struct {
1064 		int rate;
1065 		int lanes;
1066 		int preemphasis;
1067 		int vswing;
1068 		bool low_vswing;
1069 		bool initialized;
1070 		bool support;
1071 		int bpp;
1072 		struct edp_power_seq pps;
1073 	} edp;
1074 
1075 	struct {
1076 		bool enable;
1077 		bool full_link;
1078 		bool require_aux_wakeup;
1079 		int idle_frames;
1080 		enum psr_lines_to_wait lines_to_wait;
1081 		int tp1_wakeup_time;
1082 		int tp2_tp3_wakeup_time;
1083 	} psr;
1084 
1085 	struct {
1086 		u16 pwm_freq_hz;
1087 		bool present;
1088 		bool active_low_pwm;
1089 		u8 min_brightness;	/* min_brightness/255 of max */
1090 		u8 controller;		/* brightness controller number */
1091 		enum intel_backlight_type type;
1092 	} backlight;
1093 
1094 	/* MIPI DSI */
1095 	struct {
1096 		u16 panel_id;
1097 		struct mipi_config *config;
1098 		struct mipi_pps_data *pps;
1099 		u16 bl_ports;
1100 		u16 cabc_ports;
1101 		u8 seq_version;
1102 		u32 size;
1103 		u8 *data;
1104 		const u8 *sequence[MIPI_SEQ_MAX];
1105 		u8 *deassert_seq; /* Used by fixup_mipi_sequences() */
1106 	} dsi;
1107 
1108 	int crt_ddc_pin;
1109 
1110 	int child_dev_num;
1111 	struct child_device_config *child_dev;
1112 
1113 	struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1114 	struct sdvo_device_mapping sdvo_mappings[2];
1115 };
1116 
1117 enum intel_ddb_partitioning {
1118 	INTEL_DDB_PART_1_2,
1119 	INTEL_DDB_PART_5_6, /* IVB+ */
1120 };
1121 
1122 struct intel_wm_level {
1123 	bool enable;
1124 	uint32_t pri_val;
1125 	uint32_t spr_val;
1126 	uint32_t cur_val;
1127 	uint32_t fbc_val;
1128 };
1129 
1130 struct ilk_wm_values {
1131 	uint32_t wm_pipe[3];
1132 	uint32_t wm_lp[3];
1133 	uint32_t wm_lp_spr[3];
1134 	uint32_t wm_linetime[3];
1135 	bool enable_fbc_wm;
1136 	enum intel_ddb_partitioning partitioning;
1137 };
1138 
1139 struct g4x_pipe_wm {
1140 	uint16_t plane[I915_MAX_PLANES];
1141 	uint16_t fbc;
1142 };
1143 
1144 struct g4x_sr_wm {
1145 	uint16_t plane;
1146 	uint16_t cursor;
1147 	uint16_t fbc;
1148 };
1149 
1150 struct vlv_wm_ddl_values {
1151 	uint8_t plane[I915_MAX_PLANES];
1152 };
1153 
1154 struct vlv_wm_values {
1155 	struct g4x_pipe_wm pipe[3];
1156 	struct g4x_sr_wm sr;
1157 	struct vlv_wm_ddl_values ddl[3];
1158 	uint8_t level;
1159 	bool cxsr;
1160 };
1161 
1162 struct g4x_wm_values {
1163 	struct g4x_pipe_wm pipe[2];
1164 	struct g4x_sr_wm sr;
1165 	struct g4x_sr_wm hpll;
1166 	bool cxsr;
1167 	bool hpll_en;
1168 	bool fbc_en;
1169 };
1170 
1171 struct skl_ddb_entry {
1172 	uint16_t start, end;	/* in number of blocks, 'end' is exclusive */
1173 };
1174 
1175 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1176 {
1177 	return entry->end - entry->start;
1178 }
1179 
1180 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1181 				       const struct skl_ddb_entry *e2)
1182 {
1183 	if (e1->start == e2->start && e1->end == e2->end)
1184 		return true;
1185 
1186 	return false;
1187 }
1188 
1189 struct skl_ddb_allocation {
1190 	/* packed/y */
1191 	struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES];
1192 	struct skl_ddb_entry uv_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1193 	u8 enabled_slices; /* GEN11 has configurable 2 slices */
1194 };
1195 
1196 struct skl_ddb_values {
1197 	unsigned dirty_pipes;
1198 	struct skl_ddb_allocation ddb;
1199 };
1200 
1201 struct skl_wm_level {
1202 	bool plane_en;
1203 	uint16_t plane_res_b;
1204 	uint8_t plane_res_l;
1205 };
1206 
1207 /* Stores plane specific WM parameters */
1208 struct skl_wm_params {
1209 	bool x_tiled, y_tiled;
1210 	bool rc_surface;
1211 	bool is_planar;
1212 	uint32_t width;
1213 	uint8_t cpp;
1214 	uint32_t plane_pixel_rate;
1215 	uint32_t y_min_scanlines;
1216 	uint32_t plane_bytes_per_line;
1217 	uint_fixed_16_16_t plane_blocks_per_line;
1218 	uint_fixed_16_16_t y_tile_minimum;
1219 	uint32_t linetime_us;
1220 	uint32_t dbuf_block_size;
1221 };
1222 
1223 /*
1224  * This struct helps tracking the state needed for runtime PM, which puts the
1225  * device in PCI D3 state. Notice that when this happens, nothing on the
1226  * graphics device works, even register access, so we don't get interrupts nor
1227  * anything else.
1228  *
1229  * Every piece of our code that needs to actually touch the hardware needs to
1230  * either call intel_runtime_pm_get or call intel_display_power_get with the
1231  * appropriate power domain.
1232  *
1233  * Our driver uses the autosuspend delay feature, which means we'll only really
1234  * suspend if we stay with zero refcount for a certain amount of time. The
1235  * default value is currently very conservative (see intel_runtime_pm_enable), but
1236  * it can be changed with the standard runtime PM files from sysfs.
1237  *
1238  * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1239  * goes back to false exactly before we reenable the IRQs. We use this variable
1240  * to check if someone is trying to enable/disable IRQs while they're supposed
1241  * to be disabled. This shouldn't happen and we'll print some error messages in
1242  * case it happens.
1243  *
1244  * For more, read the Documentation/power/runtime_pm.txt.
1245  */
1246 struct i915_runtime_pm {
1247 	atomic_t wakeref_count;
1248 	bool suspended;
1249 	bool irqs_enabled;
1250 };
1251 
1252 enum intel_pipe_crc_source {
1253 	INTEL_PIPE_CRC_SOURCE_NONE,
1254 	INTEL_PIPE_CRC_SOURCE_PLANE1,
1255 	INTEL_PIPE_CRC_SOURCE_PLANE2,
1256 	INTEL_PIPE_CRC_SOURCE_PF,
1257 	INTEL_PIPE_CRC_SOURCE_PIPE,
1258 	/* TV/DP on pre-gen5/vlv can't use the pipe source. */
1259 	INTEL_PIPE_CRC_SOURCE_TV,
1260 	INTEL_PIPE_CRC_SOURCE_DP_B,
1261 	INTEL_PIPE_CRC_SOURCE_DP_C,
1262 	INTEL_PIPE_CRC_SOURCE_DP_D,
1263 	INTEL_PIPE_CRC_SOURCE_AUTO,
1264 	INTEL_PIPE_CRC_SOURCE_MAX,
1265 };
1266 
1267 struct intel_pipe_crc_entry {
1268 	uint32_t frame;
1269 	uint32_t crc[5];
1270 };
1271 
1272 #define INTEL_PIPE_CRC_ENTRIES_NR	128
1273 struct intel_pipe_crc {
1274 	spinlock_t lock;
1275 	bool opened;		/* exclusive access to the result file */
1276 	struct intel_pipe_crc_entry *entries;
1277 	enum intel_pipe_crc_source source;
1278 	int head, tail;
1279 	wait_queue_head_t wq;
1280 	int skipped;
1281 };
1282 
1283 struct i915_frontbuffer_tracking {
1284 	spinlock_t lock;
1285 
1286 	/*
1287 	 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1288 	 * scheduled flips.
1289 	 */
1290 	unsigned busy_bits;
1291 	unsigned flip_bits;
1292 };
1293 
1294 struct i915_wa_reg {
1295 	i915_reg_t addr;
1296 	u32 value;
1297 	/* bitmask representing WA bits */
1298 	u32 mask;
1299 };
1300 
1301 #define I915_MAX_WA_REGS 16
1302 
1303 struct i915_workarounds {
1304 	struct i915_wa_reg reg[I915_MAX_WA_REGS];
1305 	u32 count;
1306 };
1307 
1308 struct i915_virtual_gpu {
1309 	bool active;
1310 	u32 caps;
1311 };
1312 
1313 /* used in computing the new watermarks state */
1314 struct intel_wm_config {
1315 	unsigned int num_pipes_active;
1316 	bool sprites_enabled;
1317 	bool sprites_scaled;
1318 };
1319 
1320 struct i915_oa_format {
1321 	u32 format;
1322 	int size;
1323 };
1324 
1325 struct i915_oa_reg {
1326 	i915_reg_t addr;
1327 	u32 value;
1328 };
1329 
1330 struct i915_oa_config {
1331 	char uuid[UUID_STRING_LEN + 1];
1332 	int id;
1333 
1334 	const struct i915_oa_reg *mux_regs;
1335 	u32 mux_regs_len;
1336 	const struct i915_oa_reg *b_counter_regs;
1337 	u32 b_counter_regs_len;
1338 	const struct i915_oa_reg *flex_regs;
1339 	u32 flex_regs_len;
1340 
1341 	struct attribute_group sysfs_metric;
1342 	struct attribute *attrs[2];
1343 	struct device_attribute sysfs_metric_id;
1344 
1345 	atomic_t ref_count;
1346 };
1347 
1348 struct i915_perf_stream;
1349 
1350 /**
1351  * struct i915_perf_stream_ops - the OPs to support a specific stream type
1352  */
1353 struct i915_perf_stream_ops {
1354 	/**
1355 	 * @enable: Enables the collection of HW samples, either in response to
1356 	 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1357 	 * without `I915_PERF_FLAG_DISABLED`.
1358 	 */
1359 	void (*enable)(struct i915_perf_stream *stream);
1360 
1361 	/**
1362 	 * @disable: Disables the collection of HW samples, either in response
1363 	 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1364 	 * the stream.
1365 	 */
1366 	void (*disable)(struct i915_perf_stream *stream);
1367 
1368 	/**
1369 	 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1370 	 * once there is something ready to read() for the stream
1371 	 */
1372 	void (*poll_wait)(struct i915_perf_stream *stream,
1373 			  struct file *file,
1374 			  poll_table *wait);
1375 
1376 	/**
1377 	 * @wait_unlocked: For handling a blocking read, wait until there is
1378 	 * something to ready to read() for the stream. E.g. wait on the same
1379 	 * wait queue that would be passed to poll_wait().
1380 	 */
1381 	int (*wait_unlocked)(struct i915_perf_stream *stream);
1382 
1383 	/**
1384 	 * @read: Copy buffered metrics as records to userspace
1385 	 * **buf**: the userspace, destination buffer
1386 	 * **count**: the number of bytes to copy, requested by userspace
1387 	 * **offset**: zero at the start of the read, updated as the read
1388 	 * proceeds, it represents how many bytes have been copied so far and
1389 	 * the buffer offset for copying the next record.
1390 	 *
1391 	 * Copy as many buffered i915 perf samples and records for this stream
1392 	 * to userspace as will fit in the given buffer.
1393 	 *
1394 	 * Only write complete records; returning -%ENOSPC if there isn't room
1395 	 * for a complete record.
1396 	 *
1397 	 * Return any error condition that results in a short read such as
1398 	 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1399 	 * returning to userspace.
1400 	 */
1401 	int (*read)(struct i915_perf_stream *stream,
1402 		    char __user *buf,
1403 		    size_t count,
1404 		    size_t *offset);
1405 
1406 	/**
1407 	 * @destroy: Cleanup any stream specific resources.
1408 	 *
1409 	 * The stream will always be disabled before this is called.
1410 	 */
1411 	void (*destroy)(struct i915_perf_stream *stream);
1412 };
1413 
1414 /**
1415  * struct i915_perf_stream - state for a single open stream FD
1416  */
1417 struct i915_perf_stream {
1418 	/**
1419 	 * @dev_priv: i915 drm device
1420 	 */
1421 	struct drm_i915_private *dev_priv;
1422 
1423 	/**
1424 	 * @link: Links the stream into ``&drm_i915_private->streams``
1425 	 */
1426 	struct list_head link;
1427 
1428 	/**
1429 	 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
1430 	 * properties given when opening a stream, representing the contents
1431 	 * of a single sample as read() by userspace.
1432 	 */
1433 	u32 sample_flags;
1434 
1435 	/**
1436 	 * @sample_size: Considering the configured contents of a sample
1437 	 * combined with the required header size, this is the total size
1438 	 * of a single sample record.
1439 	 */
1440 	int sample_size;
1441 
1442 	/**
1443 	 * @ctx: %NULL if measuring system-wide across all contexts or a
1444 	 * specific context that is being monitored.
1445 	 */
1446 	struct i915_gem_context *ctx;
1447 
1448 	/**
1449 	 * @enabled: Whether the stream is currently enabled, considering
1450 	 * whether the stream was opened in a disabled state and based
1451 	 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
1452 	 */
1453 	bool enabled;
1454 
1455 	/**
1456 	 * @ops: The callbacks providing the implementation of this specific
1457 	 * type of configured stream.
1458 	 */
1459 	const struct i915_perf_stream_ops *ops;
1460 
1461 	/**
1462 	 * @oa_config: The OA configuration used by the stream.
1463 	 */
1464 	struct i915_oa_config *oa_config;
1465 };
1466 
1467 /**
1468  * struct i915_oa_ops - Gen specific implementation of an OA unit stream
1469  */
1470 struct i915_oa_ops {
1471 	/**
1472 	 * @is_valid_b_counter_reg: Validates register's address for
1473 	 * programming boolean counters for a particular platform.
1474 	 */
1475 	bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
1476 				       u32 addr);
1477 
1478 	/**
1479 	 * @is_valid_mux_reg: Validates register's address for programming mux
1480 	 * for a particular platform.
1481 	 */
1482 	bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
1483 
1484 	/**
1485 	 * @is_valid_flex_reg: Validates register's address for programming
1486 	 * flex EU filtering for a particular platform.
1487 	 */
1488 	bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
1489 
1490 	/**
1491 	 * @init_oa_buffer: Resets the head and tail pointers of the
1492 	 * circular buffer for periodic OA reports.
1493 	 *
1494 	 * Called when first opening a stream for OA metrics, but also may be
1495 	 * called in response to an OA buffer overflow or other error
1496 	 * condition.
1497 	 *
1498 	 * Note it may be necessary to clear the full OA buffer here as part of
1499 	 * maintaining the invariable that new reports must be written to
1500 	 * zeroed memory for us to be able to reliable detect if an expected
1501 	 * report has not yet landed in memory.  (At least on Haswell the OA
1502 	 * buffer tail pointer is not synchronized with reports being visible
1503 	 * to the CPU)
1504 	 */
1505 	void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
1506 
1507 	/**
1508 	 * @enable_metric_set: Selects and applies any MUX configuration to set
1509 	 * up the Boolean and Custom (B/C) counters that are part of the
1510 	 * counter reports being sampled. May apply system constraints such as
1511 	 * disabling EU clock gating as required.
1512 	 */
1513 	int (*enable_metric_set)(struct drm_i915_private *dev_priv,
1514 				 const struct i915_oa_config *oa_config);
1515 
1516 	/**
1517 	 * @disable_metric_set: Remove system constraints associated with using
1518 	 * the OA unit.
1519 	 */
1520 	void (*disable_metric_set)(struct drm_i915_private *dev_priv);
1521 
1522 	/**
1523 	 * @oa_enable: Enable periodic sampling
1524 	 */
1525 	void (*oa_enable)(struct drm_i915_private *dev_priv);
1526 
1527 	/**
1528 	 * @oa_disable: Disable periodic sampling
1529 	 */
1530 	void (*oa_disable)(struct drm_i915_private *dev_priv);
1531 
1532 	/**
1533 	 * @read: Copy data from the circular OA buffer into a given userspace
1534 	 * buffer.
1535 	 */
1536 	int (*read)(struct i915_perf_stream *stream,
1537 		    char __user *buf,
1538 		    size_t count,
1539 		    size_t *offset);
1540 
1541 	/**
1542 	 * @oa_hw_tail_read: read the OA tail pointer register
1543 	 *
1544 	 * In particular this enables us to share all the fiddly code for
1545 	 * handling the OA unit tail pointer race that affects multiple
1546 	 * generations.
1547 	 */
1548 	u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
1549 };
1550 
1551 struct intel_cdclk_state {
1552 	unsigned int cdclk, vco, ref, bypass;
1553 	u8 voltage_level;
1554 };
1555 
1556 struct drm_i915_private {
1557 	struct drm_device drm;
1558 
1559 	struct kmem_cache *objects;
1560 	struct kmem_cache *vmas;
1561 	struct kmem_cache *luts;
1562 	struct kmem_cache *requests;
1563 	struct kmem_cache *dependencies;
1564 	struct kmem_cache *priorities;
1565 
1566 	const struct intel_device_info info;
1567 	struct intel_driver_caps caps;
1568 
1569 	/**
1570 	 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and
1571 	 * end of stolen which we can optionally use to create GEM objects
1572 	 * backed by stolen memory. Note that stolen_usable_size tells us
1573 	 * exactly how much of this we are actually allowed to use, given that
1574 	 * some portion of it is in fact reserved for use by hardware functions.
1575 	 */
1576 	struct resource dsm;
1577 	/**
1578 	 * Reseved portion of Data Stolen Memory
1579 	 */
1580 	struct resource dsm_reserved;
1581 
1582 	/*
1583 	 * Stolen memory is segmented in hardware with different portions
1584 	 * offlimits to certain functions.
1585 	 *
1586 	 * The drm_mm is initialised to the total accessible range, as found
1587 	 * from the PCI config. On Broadwell+, this is further restricted to
1588 	 * avoid the first page! The upper end of stolen memory is reserved for
1589 	 * hardware functions and similarly removed from the accessible range.
1590 	 */
1591 	resource_size_t stolen_usable_size;	/* Total size minus reserved ranges */
1592 
1593 	void __iomem *regs;
1594 
1595 	struct intel_uncore uncore;
1596 
1597 	struct i915_virtual_gpu vgpu;
1598 
1599 	struct intel_gvt *gvt;
1600 
1601 	struct intel_wopcm wopcm;
1602 
1603 	struct intel_huc huc;
1604 	struct intel_guc guc;
1605 
1606 	struct intel_csr csr;
1607 
1608 	struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1609 
1610 	/** gmbus_mutex protects against concurrent usage of the single hw gmbus
1611 	 * controller on different i2c buses. */
1612 	struct mutex gmbus_mutex;
1613 
1614 	/**
1615 	 * Base address of the gmbus and gpio block.
1616 	 */
1617 	uint32_t gpio_mmio_base;
1618 
1619 	/* MMIO base address for MIPI regs */
1620 	uint32_t mipi_mmio_base;
1621 
1622 	uint32_t psr_mmio_base;
1623 
1624 	uint32_t pps_mmio_base;
1625 
1626 	wait_queue_head_t gmbus_wait_queue;
1627 
1628 	struct pci_dev *bridge_dev;
1629 	struct intel_engine_cs *engine[I915_NUM_ENGINES];
1630 	/* Context used internally to idle the GPU and setup initial state */
1631 	struct i915_gem_context *kernel_context;
1632 	/* Context only to be used for injecting preemption commands */
1633 	struct i915_gem_context *preempt_context;
1634 	struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1]
1635 					    [MAX_ENGINE_INSTANCE + 1];
1636 
1637 	struct drm_dma_handle *status_page_dmah;
1638 	struct resource mch_res;
1639 
1640 	/* protects the irq masks */
1641 	spinlock_t irq_lock;
1642 
1643 	bool display_irqs_enabled;
1644 
1645 	/* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1646 	struct pm_qos_request pm_qos;
1647 
1648 	/* Sideband mailbox protection */
1649 	struct mutex sb_lock;
1650 
1651 	/** Cached value of IMR to avoid reads in updating the bitfield */
1652 	union {
1653 		u32 irq_mask;
1654 		u32 de_irq_mask[I915_MAX_PIPES];
1655 	};
1656 	u32 gt_irq_mask;
1657 	u32 pm_imr;
1658 	u32 pm_ier;
1659 	u32 pm_rps_events;
1660 	u32 pm_guc_events;
1661 	u32 pipestat_irq_mask[I915_MAX_PIPES];
1662 
1663 	struct i915_hotplug hotplug;
1664 	struct intel_fbc fbc;
1665 	struct i915_drrs drrs;
1666 	struct intel_opregion opregion;
1667 	struct intel_vbt_data vbt;
1668 
1669 	bool preserve_bios_swizzle;
1670 
1671 	/* overlay */
1672 	struct intel_overlay *overlay;
1673 
1674 	/* backlight registers and fields in struct intel_panel */
1675 	struct mutex backlight_lock;
1676 
1677 	/* LVDS info */
1678 	bool no_aux_handshake;
1679 
1680 	/* protects panel power sequencer state */
1681 	struct mutex pps_mutex;
1682 
1683 	struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1684 	int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1685 
1686 	unsigned int fsb_freq, mem_freq, is_ddr3;
1687 	unsigned int skl_preferred_vco_freq;
1688 	unsigned int max_cdclk_freq;
1689 
1690 	unsigned int max_dotclk_freq;
1691 	unsigned int rawclk_freq;
1692 	unsigned int hpll_freq;
1693 	unsigned int fdi_pll_freq;
1694 	unsigned int czclk_freq;
1695 
1696 	struct {
1697 		/*
1698 		 * The current logical cdclk state.
1699 		 * See intel_atomic_state.cdclk.logical
1700 		 *
1701 		 * For reading holding any crtc lock is sufficient,
1702 		 * for writing must hold all of them.
1703 		 */
1704 		struct intel_cdclk_state logical;
1705 		/*
1706 		 * The current actual cdclk state.
1707 		 * See intel_atomic_state.cdclk.actual
1708 		 */
1709 		struct intel_cdclk_state actual;
1710 		/* The current hardware cdclk state */
1711 		struct intel_cdclk_state hw;
1712 	} cdclk;
1713 
1714 	/**
1715 	 * wq - Driver workqueue for GEM.
1716 	 *
1717 	 * NOTE: Work items scheduled here are not allowed to grab any modeset
1718 	 * locks, for otherwise the flushing done in the pageflip code will
1719 	 * result in deadlocks.
1720 	 */
1721 	struct workqueue_struct *wq;
1722 
1723 	/* ordered wq for modesets */
1724 	struct workqueue_struct *modeset_wq;
1725 
1726 	/* Display functions */
1727 	struct drm_i915_display_funcs display;
1728 
1729 	/* PCH chipset type */
1730 	enum intel_pch pch_type;
1731 	unsigned short pch_id;
1732 
1733 	unsigned long quirks;
1734 
1735 	enum modeset_restore modeset_restore;
1736 	struct mutex modeset_restore_lock;
1737 	struct drm_atomic_state *modeset_restore_state;
1738 	struct drm_modeset_acquire_ctx reset_ctx;
1739 
1740 	struct list_head vm_list; /* Global list of all address spaces */
1741 	struct i915_ggtt ggtt; /* VM representing the global address space */
1742 
1743 	struct i915_gem_mm mm;
1744 	DECLARE_HASHTABLE(mm_structs, 7);
1745 	struct mutex mm_lock;
1746 
1747 	struct intel_ppat ppat;
1748 
1749 	/* Kernel Modesetting */
1750 
1751 	struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1752 	struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1753 
1754 #ifdef CONFIG_DEBUG_FS
1755 	struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1756 #endif
1757 
1758 	/* dpll and cdclk state is protected by connection_mutex */
1759 	int num_shared_dpll;
1760 	struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1761 	const struct intel_dpll_mgr *dpll_mgr;
1762 
1763 	/*
1764 	 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1765 	 * Must be global rather than per dpll, because on some platforms
1766 	 * plls share registers.
1767 	 */
1768 	struct mutex dpll_lock;
1769 
1770 	unsigned int active_crtcs;
1771 	/* minimum acceptable cdclk for each pipe */
1772 	int min_cdclk[I915_MAX_PIPES];
1773 	/* minimum acceptable voltage level for each pipe */
1774 	u8 min_voltage_level[I915_MAX_PIPES];
1775 
1776 	int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1777 
1778 	struct i915_workarounds workarounds;
1779 
1780 	struct i915_frontbuffer_tracking fb_tracking;
1781 
1782 	struct intel_atomic_helper {
1783 		struct llist_head free_list;
1784 		struct work_struct free_work;
1785 	} atomic_helper;
1786 
1787 	u16 orig_clock;
1788 
1789 	bool mchbar_need_disable;
1790 
1791 	struct intel_l3_parity l3_parity;
1792 
1793 	/* Cannot be determined by PCIID. You must always read a register. */
1794 	u32 edram_cap;
1795 
1796 	/*
1797 	 * Protects RPS/RC6 register access and PCU communication.
1798 	 * Must be taken after struct_mutex if nested. Note that
1799 	 * this lock may be held for long periods of time when
1800 	 * talking to hw - so only take it when talking to hw!
1801 	 */
1802 	struct mutex pcu_lock;
1803 
1804 	/* gen6+ GT PM state */
1805 	struct intel_gen6_power_mgmt gt_pm;
1806 
1807 	/* ilk-only ips/rps state. Everything in here is protected by the global
1808 	 * mchdev_lock in intel_pm.c */
1809 	struct intel_ilk_power_mgmt ips;
1810 
1811 	struct i915_power_domains power_domains;
1812 
1813 	struct i915_psr psr;
1814 
1815 	struct i915_gpu_error gpu_error;
1816 
1817 	struct drm_i915_gem_object *vlv_pctx;
1818 
1819 	/* list of fbdev register on this device */
1820 	struct intel_fbdev *fbdev;
1821 	struct work_struct fbdev_suspend_work;
1822 
1823 	struct drm_property *broadcast_rgb_property;
1824 	struct drm_property *force_audio_property;
1825 
1826 	/* hda/i915 audio component */
1827 	struct i915_audio_component *audio_component;
1828 	bool audio_component_registered;
1829 	/**
1830 	 * av_mutex - mutex for audio/video sync
1831 	 *
1832 	 */
1833 	struct mutex av_mutex;
1834 
1835 	struct {
1836 		struct list_head list;
1837 		struct llist_head free_list;
1838 		struct work_struct free_work;
1839 
1840 		/* The hw wants to have a stable context identifier for the
1841 		 * lifetime of the context (for OA, PASID, faults, etc).
1842 		 * This is limited in execlists to 21 bits.
1843 		 */
1844 		struct ida hw_ida;
1845 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1846 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */
1847 	} contexts;
1848 
1849 	u32 fdi_rx_config;
1850 
1851 	/* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1852 	u32 chv_phy_control;
1853 	/*
1854 	 * Shadows for CHV DPLL_MD regs to keep the state
1855 	 * checker somewhat working in the presence hardware
1856 	 * crappiness (can't read out DPLL_MD for pipes B & C).
1857 	 */
1858 	u32 chv_dpll_md[I915_MAX_PIPES];
1859 	u32 bxt_phy_grc;
1860 
1861 	u32 suspend_count;
1862 	bool power_domains_suspended;
1863 	struct i915_suspend_saved_registers regfile;
1864 	struct vlv_s0ix_state vlv_s0ix_state;
1865 
1866 	enum {
1867 		I915_SAGV_UNKNOWN = 0,
1868 		I915_SAGV_DISABLED,
1869 		I915_SAGV_ENABLED,
1870 		I915_SAGV_NOT_CONTROLLED
1871 	} sagv_status;
1872 
1873 	struct {
1874 		/*
1875 		 * Raw watermark latency values:
1876 		 * in 0.1us units for WM0,
1877 		 * in 0.5us units for WM1+.
1878 		 */
1879 		/* primary */
1880 		uint16_t pri_latency[5];
1881 		/* sprite */
1882 		uint16_t spr_latency[5];
1883 		/* cursor */
1884 		uint16_t cur_latency[5];
1885 		/*
1886 		 * Raw watermark memory latency values
1887 		 * for SKL for all 8 levels
1888 		 * in 1us units.
1889 		 */
1890 		uint16_t skl_latency[8];
1891 
1892 		/* current hardware state */
1893 		union {
1894 			struct ilk_wm_values hw;
1895 			struct skl_ddb_values skl_hw;
1896 			struct vlv_wm_values vlv;
1897 			struct g4x_wm_values g4x;
1898 		};
1899 
1900 		uint8_t max_level;
1901 
1902 		/*
1903 		 * Should be held around atomic WM register writing; also
1904 		 * protects * intel_crtc->wm.active and
1905 		 * cstate->wm.need_postvbl_update.
1906 		 */
1907 		struct mutex wm_mutex;
1908 
1909 		/*
1910 		 * Set during HW readout of watermarks/DDB.  Some platforms
1911 		 * need to know when we're still using BIOS-provided values
1912 		 * (which we don't fully trust).
1913 		 */
1914 		bool distrust_bios_wm;
1915 	} wm;
1916 
1917 	struct i915_runtime_pm runtime_pm;
1918 
1919 	struct {
1920 		bool initialized;
1921 
1922 		struct kobject *metrics_kobj;
1923 		struct ctl_table_header *sysctl_header;
1924 
1925 		/*
1926 		 * Lock associated with adding/modifying/removing OA configs
1927 		 * in dev_priv->perf.metrics_idr.
1928 		 */
1929 		struct mutex metrics_lock;
1930 
1931 		/*
1932 		 * List of dynamic configurations, you need to hold
1933 		 * dev_priv->perf.metrics_lock to access it.
1934 		 */
1935 		struct idr metrics_idr;
1936 
1937 		/*
1938 		 * Lock associated with anything below within this structure
1939 		 * except exclusive_stream.
1940 		 */
1941 		struct mutex lock;
1942 		struct list_head streams;
1943 
1944 		struct {
1945 			/*
1946 			 * The stream currently using the OA unit. If accessed
1947 			 * outside a syscall associated to its file
1948 			 * descriptor, you need to hold
1949 			 * dev_priv->drm.struct_mutex.
1950 			 */
1951 			struct i915_perf_stream *exclusive_stream;
1952 
1953 			u32 specific_ctx_id;
1954 
1955 			struct hrtimer poll_check_timer;
1956 			wait_queue_head_t poll_wq;
1957 			bool pollin;
1958 
1959 			/**
1960 			 * For rate limiting any notifications of spurious
1961 			 * invalid OA reports
1962 			 */
1963 			struct ratelimit_state spurious_report_rs;
1964 
1965 			bool periodic;
1966 			int period_exponent;
1967 
1968 			struct i915_oa_config test_config;
1969 
1970 			struct {
1971 				struct i915_vma *vma;
1972 				u8 *vaddr;
1973 				u32 last_ctx_id;
1974 				int format;
1975 				int format_size;
1976 
1977 				/**
1978 				 * Locks reads and writes to all head/tail state
1979 				 *
1980 				 * Consider: the head and tail pointer state
1981 				 * needs to be read consistently from a hrtimer
1982 				 * callback (atomic context) and read() fop
1983 				 * (user context) with tail pointer updates
1984 				 * happening in atomic context and head updates
1985 				 * in user context and the (unlikely)
1986 				 * possibility of read() errors needing to
1987 				 * reset all head/tail state.
1988 				 *
1989 				 * Note: Contention or performance aren't
1990 				 * currently a significant concern here
1991 				 * considering the relatively low frequency of
1992 				 * hrtimer callbacks (5ms period) and that
1993 				 * reads typically only happen in response to a
1994 				 * hrtimer event and likely complete before the
1995 				 * next callback.
1996 				 *
1997 				 * Note: This lock is not held *while* reading
1998 				 * and copying data to userspace so the value
1999 				 * of head observed in htrimer callbacks won't
2000 				 * represent any partial consumption of data.
2001 				 */
2002 				spinlock_t ptr_lock;
2003 
2004 				/**
2005 				 * One 'aging' tail pointer and one 'aged'
2006 				 * tail pointer ready to used for reading.
2007 				 *
2008 				 * Initial values of 0xffffffff are invalid
2009 				 * and imply that an update is required
2010 				 * (and should be ignored by an attempted
2011 				 * read)
2012 				 */
2013 				struct {
2014 					u32 offset;
2015 				} tails[2];
2016 
2017 				/**
2018 				 * Index for the aged tail ready to read()
2019 				 * data up to.
2020 				 */
2021 				unsigned int aged_tail_idx;
2022 
2023 				/**
2024 				 * A monotonic timestamp for when the current
2025 				 * aging tail pointer was read; used to
2026 				 * determine when it is old enough to trust.
2027 				 */
2028 				u64 aging_timestamp;
2029 
2030 				/**
2031 				 * Although we can always read back the head
2032 				 * pointer register, we prefer to avoid
2033 				 * trusting the HW state, just to avoid any
2034 				 * risk that some hardware condition could
2035 				 * somehow bump the head pointer unpredictably
2036 				 * and cause us to forward the wrong OA buffer
2037 				 * data to userspace.
2038 				 */
2039 				u32 head;
2040 			} oa_buffer;
2041 
2042 			u32 gen7_latched_oastatus1;
2043 			u32 ctx_oactxctrl_offset;
2044 			u32 ctx_flexeu0_offset;
2045 
2046 			/**
2047 			 * The RPT_ID/reason field for Gen8+ includes a bit
2048 			 * to determine if the CTX ID in the report is valid
2049 			 * but the specific bit differs between Gen 8 and 9
2050 			 */
2051 			u32 gen8_valid_ctx_bit;
2052 
2053 			struct i915_oa_ops ops;
2054 			const struct i915_oa_format *oa_formats;
2055 		} oa;
2056 	} perf;
2057 
2058 	/* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2059 	struct {
2060 		void (*resume)(struct drm_i915_private *);
2061 		void (*cleanup_engine)(struct intel_engine_cs *engine);
2062 
2063 		struct list_head timelines;
2064 
2065 		struct list_head active_rings;
2066 		struct list_head closed_vma;
2067 		u32 active_requests;
2068 		u32 request_serial;
2069 
2070 		/**
2071 		 * Is the GPU currently considered idle, or busy executing
2072 		 * userspace requests? Whilst idle, we allow runtime power
2073 		 * management to power down the hardware and display clocks.
2074 		 * In order to reduce the effect on performance, there
2075 		 * is a slight delay before we do so.
2076 		 */
2077 		bool awake;
2078 
2079 		/**
2080 		 * The number of times we have woken up.
2081 		 */
2082 		unsigned int epoch;
2083 #define I915_EPOCH_INVALID 0
2084 
2085 		/**
2086 		 * We leave the user IRQ off as much as possible,
2087 		 * but this means that requests will finish and never
2088 		 * be retired once the system goes idle. Set a timer to
2089 		 * fire periodically while the ring is running. When it
2090 		 * fires, go retire requests.
2091 		 */
2092 		struct delayed_work retire_work;
2093 
2094 		/**
2095 		 * When we detect an idle GPU, we want to turn on
2096 		 * powersaving features. So once we see that there
2097 		 * are no more requests outstanding and no more
2098 		 * arrive within a small period of time, we fire
2099 		 * off the idle_work.
2100 		 */
2101 		struct delayed_work idle_work;
2102 
2103 		ktime_t last_init_time;
2104 	} gt;
2105 
2106 	/* perform PHY state sanity checks? */
2107 	bool chv_phy_assert[2];
2108 
2109 	bool ipc_enabled;
2110 
2111 	/* Used to save the pipe-to-encoder mapping for audio */
2112 	struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2113 
2114 	/* necessary resource sharing with HDMI LPE audio driver. */
2115 	struct {
2116 		struct platform_device *platdev;
2117 		int	irq;
2118 	} lpe_audio;
2119 
2120 	struct i915_pmu pmu;
2121 
2122 	/*
2123 	 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2124 	 * will be rejected. Instead look for a better place.
2125 	 */
2126 };
2127 
2128 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2129 {
2130 	return container_of(dev, struct drm_i915_private, drm);
2131 }
2132 
2133 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2134 {
2135 	return to_i915(dev_get_drvdata(kdev));
2136 }
2137 
2138 static inline struct drm_i915_private *wopcm_to_i915(struct intel_wopcm *wopcm)
2139 {
2140 	return container_of(wopcm, struct drm_i915_private, wopcm);
2141 }
2142 
2143 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2144 {
2145 	return container_of(guc, struct drm_i915_private, guc);
2146 }
2147 
2148 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2149 {
2150 	return container_of(huc, struct drm_i915_private, huc);
2151 }
2152 
2153 /* Simple iterator over all initialised engines */
2154 #define for_each_engine(engine__, dev_priv__, id__) \
2155 	for ((id__) = 0; \
2156 	     (id__) < I915_NUM_ENGINES; \
2157 	     (id__)++) \
2158 		for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2159 
2160 /* Iterator over subset of engines selected by mask */
2161 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2162 	for ((tmp__) = (mask__) & INTEL_INFO(dev_priv__)->ring_mask; \
2163 	     (tmp__) ? \
2164 	     ((engine__) = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : \
2165 	     0;)
2166 
2167 enum hdmi_force_audio {
2168 	HDMI_AUDIO_OFF_DVI = -2,	/* no aux data for HDMI-DVI converter */
2169 	HDMI_AUDIO_OFF,			/* force turn off HDMI audio */
2170 	HDMI_AUDIO_AUTO,		/* trust EDID */
2171 	HDMI_AUDIO_ON,			/* force turn on HDMI audio */
2172 };
2173 
2174 #define I915_GTT_OFFSET_NONE ((u32)-1)
2175 
2176 /*
2177  * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2178  * considered to be the frontbuffer for the given plane interface-wise. This
2179  * doesn't mean that the hw necessarily already scans it out, but that any
2180  * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2181  *
2182  * We have one bit per pipe and per scanout plane type.
2183  */
2184 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2185 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \
2186 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \
2187 	BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \
2188 	BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \
2189 })
2190 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2191 	BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2192 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2193 	GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \
2194 		INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2195 
2196 /*
2197  * Optimised SGL iterator for GEM objects
2198  */
2199 static __always_inline struct sgt_iter {
2200 	struct scatterlist *sgp;
2201 	union {
2202 		unsigned long pfn;
2203 		dma_addr_t dma;
2204 	};
2205 	unsigned int curr;
2206 	unsigned int max;
2207 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2208 	struct sgt_iter s = { .sgp = sgl };
2209 
2210 	if (s.sgp) {
2211 		s.max = s.curr = s.sgp->offset;
2212 		s.max += s.sgp->length;
2213 		if (dma)
2214 			s.dma = sg_dma_address(s.sgp);
2215 		else
2216 			s.pfn = page_to_pfn(sg_page(s.sgp));
2217 	}
2218 
2219 	return s;
2220 }
2221 
2222 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2223 {
2224 	++sg;
2225 	if (unlikely(sg_is_chain(sg)))
2226 		sg = sg_chain_ptr(sg);
2227 	return sg;
2228 }
2229 
2230 /**
2231  * __sg_next - return the next scatterlist entry in a list
2232  * @sg:		The current sg entry
2233  *
2234  * Description:
2235  *   If the entry is the last, return NULL; otherwise, step to the next
2236  *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2237  *   otherwise just return the pointer to the current element.
2238  **/
2239 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2240 {
2241 #ifdef CONFIG_DEBUG_SG
2242 	BUG_ON(sg->sg_magic != SG_MAGIC);
2243 #endif
2244 	return sg_is_last(sg) ? NULL : ____sg_next(sg);
2245 }
2246 
2247 /**
2248  * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2249  * @__dmap:	DMA address (output)
2250  * @__iter:	'struct sgt_iter' (iterator state, internal)
2251  * @__sgt:	sg_table to iterate over (input)
2252  */
2253 #define for_each_sgt_dma(__dmap, __iter, __sgt)				\
2254 	for ((__iter) = __sgt_iter((__sgt)->sgl, true);			\
2255 	     ((__dmap) = (__iter).dma + (__iter).curr);			\
2256 	     (((__iter).curr += PAGE_SIZE) >= (__iter).max) ?		\
2257 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0)
2258 
2259 /**
2260  * for_each_sgt_page - iterate over the pages of the given sg_table
2261  * @__pp:	page pointer (output)
2262  * @__iter:	'struct sgt_iter' (iterator state, internal)
2263  * @__sgt:	sg_table to iterate over (input)
2264  */
2265 #define for_each_sgt_page(__pp, __iter, __sgt)				\
2266 	for ((__iter) = __sgt_iter((__sgt)->sgl, false);		\
2267 	     ((__pp) = (__iter).pfn == 0 ? NULL :			\
2268 	      pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2269 	     (((__iter).curr += PAGE_SIZE) >= (__iter).max) ?		\
2270 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0)
2271 
2272 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg)
2273 {
2274 	unsigned int page_sizes;
2275 
2276 	page_sizes = 0;
2277 	while (sg) {
2278 		GEM_BUG_ON(sg->offset);
2279 		GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE));
2280 		page_sizes |= sg->length;
2281 		sg = __sg_next(sg);
2282 	}
2283 
2284 	return page_sizes;
2285 }
2286 
2287 static inline unsigned int i915_sg_segment_size(void)
2288 {
2289 	unsigned int size = swiotlb_max_segment();
2290 
2291 	if (size == 0)
2292 		return SCATTERLIST_MAX_SEGMENT;
2293 
2294 	size = rounddown(size, PAGE_SIZE);
2295 	/* swiotlb_max_segment_size can return 1 byte when it means one page. */
2296 	if (size < PAGE_SIZE)
2297 		size = PAGE_SIZE;
2298 
2299 	return size;
2300 }
2301 
2302 static inline const struct intel_device_info *
2303 intel_info(const struct drm_i915_private *dev_priv)
2304 {
2305 	return &dev_priv->info;
2306 }
2307 
2308 #define INTEL_INFO(dev_priv)	intel_info((dev_priv))
2309 
2310 #define INTEL_GEN(dev_priv)	((dev_priv)->info.gen)
2311 #define INTEL_DEVID(dev_priv)	((dev_priv)->info.device_id)
2312 
2313 #define REVID_FOREVER		0xff
2314 #define INTEL_REVID(dev_priv)	((dev_priv)->drm.pdev->revision)
2315 
2316 #define GEN_FOREVER (0)
2317 
2318 #define INTEL_GEN_MASK(s, e) ( \
2319 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \
2320 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \
2321 	GENMASK((e) != GEN_FOREVER ? (e) - 1 : BITS_PER_LONG - 1, \
2322 		(s) != GEN_FOREVER ? (s) - 1 : 0) \
2323 )
2324 
2325 /*
2326  * Returns true if Gen is in inclusive range [Start, End].
2327  *
2328  * Use GEN_FOREVER for unbound start and or end.
2329  */
2330 #define IS_GEN(dev_priv, s, e) \
2331 	(!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e))))
2332 
2333 /*
2334  * Return true if revision is in range [since,until] inclusive.
2335  *
2336  * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2337  */
2338 #define IS_REVID(p, since, until) \
2339 	(INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2340 
2341 #define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p))
2342 
2343 #define IS_I830(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I830)
2344 #define IS_I845G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I845G)
2345 #define IS_I85X(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I85X)
2346 #define IS_I865G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I865G)
2347 #define IS_I915G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915G)
2348 #define IS_I915GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915GM)
2349 #define IS_I945G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945G)
2350 #define IS_I945GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945GM)
2351 #define IS_I965G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965G)
2352 #define IS_I965GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965GM)
2353 #define IS_G45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G45)
2354 #define IS_GM45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GM45)
2355 #define IS_G4X(dev_priv)	(IS_G45(dev_priv) || IS_GM45(dev_priv))
2356 #define IS_PINEVIEW_G(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa001)
2357 #define IS_PINEVIEW_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa011)
2358 #define IS_PINEVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_PINEVIEW)
2359 #define IS_G33(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G33)
2360 #define IS_IRONLAKE_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0046)
2361 #define IS_IVYBRIDGE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE)
2362 #define IS_IVB_GT1(dev_priv)	(IS_IVYBRIDGE(dev_priv) && \
2363 				 (dev_priv)->info.gt == 1)
2364 #define IS_VALLEYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW)
2365 #define IS_CHERRYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW)
2366 #define IS_HASWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_HASWELL)
2367 #define IS_BROADWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROADWELL)
2368 #define IS_SKYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_SKYLAKE)
2369 #define IS_BROXTON(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROXTON)
2370 #define IS_KABYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_KABYLAKE)
2371 #define IS_GEMINILAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GEMINILAKE)
2372 #define IS_COFFEELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_COFFEELAKE)
2373 #define IS_CANNONLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CANNONLAKE)
2374 #define IS_ICELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_ICELAKE)
2375 #define IS_MOBILE(dev_priv)	((dev_priv)->info.is_mobile)
2376 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2377 				    (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2378 #define IS_BDW_ULT(dev_priv)	(IS_BROADWELL(dev_priv) && \
2379 				 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 ||	\
2380 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xb ||	\
2381 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2382 /* ULX machines are also considered ULT. */
2383 #define IS_BDW_ULX(dev_priv)	(IS_BROADWELL(dev_priv) && \
2384 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2385 #define IS_BDW_GT3(dev_priv)	(IS_BROADWELL(dev_priv) && \
2386 				 (dev_priv)->info.gt == 3)
2387 #define IS_HSW_ULT(dev_priv)	(IS_HASWELL(dev_priv) && \
2388 				 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2389 #define IS_HSW_GT3(dev_priv)	(IS_HASWELL(dev_priv) && \
2390 				 (dev_priv)->info.gt == 3)
2391 /* ULX machines are also considered ULT. */
2392 #define IS_HSW_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0A0E || \
2393 				 INTEL_DEVID(dev_priv) == 0x0A1E)
2394 #define IS_SKL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x1906 || \
2395 				 INTEL_DEVID(dev_priv) == 0x1913 || \
2396 				 INTEL_DEVID(dev_priv) == 0x1916 || \
2397 				 INTEL_DEVID(dev_priv) == 0x1921 || \
2398 				 INTEL_DEVID(dev_priv) == 0x1926)
2399 #define IS_SKL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x190E || \
2400 				 INTEL_DEVID(dev_priv) == 0x1915 || \
2401 				 INTEL_DEVID(dev_priv) == 0x191E)
2402 #define IS_KBL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x5906 || \
2403 				 INTEL_DEVID(dev_priv) == 0x5913 || \
2404 				 INTEL_DEVID(dev_priv) == 0x5916 || \
2405 				 INTEL_DEVID(dev_priv) == 0x5921 || \
2406 				 INTEL_DEVID(dev_priv) == 0x5926)
2407 #define IS_KBL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x590E || \
2408 				 INTEL_DEVID(dev_priv) == 0x5915 || \
2409 				 INTEL_DEVID(dev_priv) == 0x591E)
2410 #define IS_SKL_GT2(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2411 				 (dev_priv)->info.gt == 2)
2412 #define IS_SKL_GT3(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2413 				 (dev_priv)->info.gt == 3)
2414 #define IS_SKL_GT4(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2415 				 (dev_priv)->info.gt == 4)
2416 #define IS_KBL_GT2(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2417 				 (dev_priv)->info.gt == 2)
2418 #define IS_KBL_GT3(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2419 				 (dev_priv)->info.gt == 3)
2420 #define IS_CFL_ULT(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2421 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2422 #define IS_CFL_GT2(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2423 				 (dev_priv)->info.gt == 2)
2424 #define IS_CFL_GT3(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2425 				 (dev_priv)->info.gt == 3)
2426 #define IS_CNL_WITH_PORT_F(dev_priv)   (IS_CANNONLAKE(dev_priv) && \
2427 					(INTEL_DEVID(dev_priv) & 0x0004) == 0x0004)
2428 
2429 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2430 
2431 #define SKL_REVID_A0		0x0
2432 #define SKL_REVID_B0		0x1
2433 #define SKL_REVID_C0		0x2
2434 #define SKL_REVID_D0		0x3
2435 #define SKL_REVID_E0		0x4
2436 #define SKL_REVID_F0		0x5
2437 #define SKL_REVID_G0		0x6
2438 #define SKL_REVID_H0		0x7
2439 
2440 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2441 
2442 #define BXT_REVID_A0		0x0
2443 #define BXT_REVID_A1		0x1
2444 #define BXT_REVID_B0		0x3
2445 #define BXT_REVID_B_LAST	0x8
2446 #define BXT_REVID_C0		0x9
2447 
2448 #define IS_BXT_REVID(dev_priv, since, until) \
2449 	(IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2450 
2451 #define KBL_REVID_A0		0x0
2452 #define KBL_REVID_B0		0x1
2453 #define KBL_REVID_C0		0x2
2454 #define KBL_REVID_D0		0x3
2455 #define KBL_REVID_E0		0x4
2456 
2457 #define IS_KBL_REVID(dev_priv, since, until) \
2458 	(IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2459 
2460 #define GLK_REVID_A0		0x0
2461 #define GLK_REVID_A1		0x1
2462 
2463 #define IS_GLK_REVID(dev_priv, since, until) \
2464 	(IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2465 
2466 #define CNL_REVID_A0		0x0
2467 #define CNL_REVID_B0		0x1
2468 #define CNL_REVID_C0		0x2
2469 
2470 #define IS_CNL_REVID(p, since, until) \
2471 	(IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2472 
2473 #define ICL_REVID_A0		0x0
2474 #define ICL_REVID_A2		0x1
2475 #define ICL_REVID_B0		0x3
2476 #define ICL_REVID_B2		0x4
2477 #define ICL_REVID_C0		0x5
2478 
2479 #define IS_ICL_REVID(p, since, until) \
2480 	(IS_ICELAKE(p) && IS_REVID(p, since, until))
2481 
2482 /*
2483  * The genX designation typically refers to the render engine, so render
2484  * capability related checks should use IS_GEN, while display and other checks
2485  * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2486  * chips, etc.).
2487  */
2488 #define IS_GEN2(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(1)))
2489 #define IS_GEN3(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(2)))
2490 #define IS_GEN4(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(3)))
2491 #define IS_GEN5(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(4)))
2492 #define IS_GEN6(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(5)))
2493 #define IS_GEN7(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(6)))
2494 #define IS_GEN8(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(7)))
2495 #define IS_GEN9(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(8)))
2496 #define IS_GEN10(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(9)))
2497 #define IS_GEN11(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(10)))
2498 
2499 #define IS_LP(dev_priv)	(INTEL_INFO(dev_priv)->is_lp)
2500 #define IS_GEN9_LP(dev_priv)	(IS_GEN9(dev_priv) && IS_LP(dev_priv))
2501 #define IS_GEN9_BC(dev_priv)	(IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2502 
2503 #define ENGINE_MASK(id)	BIT(id)
2504 #define RENDER_RING	ENGINE_MASK(RCS)
2505 #define BSD_RING	ENGINE_MASK(VCS)
2506 #define BLT_RING	ENGINE_MASK(BCS)
2507 #define VEBOX_RING	ENGINE_MASK(VECS)
2508 #define BSD2_RING	ENGINE_MASK(VCS2)
2509 #define BSD3_RING	ENGINE_MASK(VCS3)
2510 #define BSD4_RING	ENGINE_MASK(VCS4)
2511 #define VEBOX2_RING	ENGINE_MASK(VECS2)
2512 #define ALL_ENGINES	(~0)
2513 
2514 #define HAS_ENGINE(dev_priv, id) \
2515 	(!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2516 
2517 #define HAS_BSD(dev_priv)	HAS_ENGINE(dev_priv, VCS)
2518 #define HAS_BSD2(dev_priv)	HAS_ENGINE(dev_priv, VCS2)
2519 #define HAS_BLT(dev_priv)	HAS_ENGINE(dev_priv, BCS)
2520 #define HAS_VEBOX(dev_priv)	HAS_ENGINE(dev_priv, VECS)
2521 
2522 #define HAS_LEGACY_SEMAPHORES(dev_priv) IS_GEN7(dev_priv)
2523 
2524 #define HAS_LLC(dev_priv)	((dev_priv)->info.has_llc)
2525 #define HAS_SNOOP(dev_priv)	((dev_priv)->info.has_snoop)
2526 #define HAS_EDRAM(dev_priv)	(!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2527 #define HAS_WT(dev_priv)	((IS_HASWELL(dev_priv) || \
2528 				 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2529 
2530 #define HWS_NEEDS_PHYSICAL(dev_priv)	((dev_priv)->info.hws_needs_physical)
2531 
2532 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2533 		((dev_priv)->info.has_logical_ring_contexts)
2534 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \
2535 		((dev_priv)->info.has_logical_ring_elsq)
2536 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \
2537 		((dev_priv)->info.has_logical_ring_preemption)
2538 
2539 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv)
2540 
2541 #define USES_PPGTT(dev_priv)		(i915_modparams.enable_ppgtt)
2542 #define USES_FULL_PPGTT(dev_priv)	(i915_modparams.enable_ppgtt >= 2)
2543 #define USES_FULL_48BIT_PPGTT(dev_priv)	(i915_modparams.enable_ppgtt == 3)
2544 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \
2545 	GEM_BUG_ON((sizes) == 0); \
2546 	((sizes) & ~(dev_priv)->info.page_sizes) == 0; \
2547 })
2548 
2549 #define HAS_OVERLAY(dev_priv)		 ((dev_priv)->info.has_overlay)
2550 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2551 		((dev_priv)->info.overlay_needs_physical)
2552 
2553 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2554 #define HAS_BROKEN_CS_TLB(dev_priv)	(IS_I830(dev_priv) || IS_I845G(dev_priv))
2555 
2556 /* WaRsDisableCoarsePowerGating:skl,cnl */
2557 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2558 	(IS_CANNONLAKE(dev_priv) || \
2559 	 IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
2560 
2561 /*
2562  * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2563  * even when in MSI mode. This results in spurious interrupt warnings if the
2564  * legacy irq no. is shared with another device. The kernel then disables that
2565  * interrupt source and so prevents the other device from working properly.
2566  *
2567  * Since we don't enable MSI anymore on gen4, we can always use GMBUS/AUX
2568  * interrupts.
2569  */
2570 #define HAS_AUX_IRQ(dev_priv)   true
2571 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
2572 
2573 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2574  * rows, which changed the alignment requirements and fence programming.
2575  */
2576 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
2577 					 !(IS_I915G(dev_priv) || \
2578 					 IS_I915GM(dev_priv)))
2579 #define SUPPORTS_TV(dev_priv)		((dev_priv)->info.supports_tv)
2580 #define I915_HAS_HOTPLUG(dev_priv)	((dev_priv)->info.has_hotplug)
2581 
2582 #define HAS_FW_BLC(dev_priv) 	(INTEL_GEN(dev_priv) > 2)
2583 #define HAS_FBC(dev_priv)	((dev_priv)->info.has_fbc)
2584 #define HAS_CUR_FBC(dev_priv)	(!HAS_GMCH_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 7)
2585 
2586 #define HAS_IPS(dev_priv)	(IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2587 
2588 #define HAS_DP_MST(dev_priv)	((dev_priv)->info.has_dp_mst)
2589 
2590 #define HAS_DDI(dev_priv)		 ((dev_priv)->info.has_ddi)
2591 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
2592 #define HAS_PSR(dev_priv)		 ((dev_priv)->info.has_psr)
2593 
2594 #define HAS_RC6(dev_priv)		 ((dev_priv)->info.has_rc6)
2595 #define HAS_RC6p(dev_priv)		 ((dev_priv)->info.has_rc6p)
2596 #define HAS_RC6pp(dev_priv)		 (false) /* HW was never validated */
2597 
2598 #define HAS_CSR(dev_priv)	((dev_priv)->info.has_csr)
2599 
2600 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
2601 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
2602 
2603 #define HAS_IPC(dev_priv)		 ((dev_priv)->info.has_ipc)
2604 
2605 /*
2606  * For now, anything with a GuC requires uCode loading, and then supports
2607  * command submission once loaded. But these are logically independent
2608  * properties, so we have separate macros to test them.
2609  */
2610 #define HAS_GUC(dev_priv)	((dev_priv)->info.has_guc)
2611 #define HAS_GUC_CT(dev_priv)	((dev_priv)->info.has_guc_ct)
2612 #define HAS_GUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2613 #define HAS_GUC_SCHED(dev_priv)	(HAS_GUC(dev_priv))
2614 
2615 /* For now, anything with a GuC has also HuC */
2616 #define HAS_HUC(dev_priv)	(HAS_GUC(dev_priv))
2617 #define HAS_HUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2618 
2619 /* Having a GuC is not the same as using a GuC */
2620 #define USES_GUC(dev_priv)		intel_uc_is_using_guc()
2621 #define USES_GUC_SUBMISSION(dev_priv)	intel_uc_is_using_guc_submission()
2622 #define USES_HUC(dev_priv)		intel_uc_is_using_huc()
2623 
2624 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
2625 
2626 #define HAS_POOLED_EU(dev_priv)	((dev_priv)->info.has_pooled_eu)
2627 
2628 #define INTEL_PCH_DEVICE_ID_MASK		0xff80
2629 #define INTEL_PCH_IBX_DEVICE_ID_TYPE		0x3b00
2630 #define INTEL_PCH_CPT_DEVICE_ID_TYPE		0x1c00
2631 #define INTEL_PCH_PPT_DEVICE_ID_TYPE		0x1e00
2632 #define INTEL_PCH_LPT_DEVICE_ID_TYPE		0x8c00
2633 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE		0x9c00
2634 #define INTEL_PCH_WPT_DEVICE_ID_TYPE		0x8c80
2635 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE		0x9c80
2636 #define INTEL_PCH_SPT_DEVICE_ID_TYPE		0xA100
2637 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE		0x9D00
2638 #define INTEL_PCH_KBP_DEVICE_ID_TYPE		0xA280
2639 #define INTEL_PCH_CNP_DEVICE_ID_TYPE		0xA300
2640 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE		0x9D80
2641 #define INTEL_PCH_ICP_DEVICE_ID_TYPE		0x3480
2642 #define INTEL_PCH_P2X_DEVICE_ID_TYPE		0x7100
2643 #define INTEL_PCH_P3X_DEVICE_ID_TYPE		0x7000
2644 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE		0x2900 /* qemu q35 has 2918 */
2645 
2646 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
2647 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id)
2648 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP)
2649 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
2650 #define HAS_PCH_CNP_LP(dev_priv) \
2651 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
2652 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
2653 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
2654 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
2655 #define HAS_PCH_LPT_LP(dev_priv) \
2656 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
2657 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
2658 #define HAS_PCH_LPT_H(dev_priv) \
2659 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
2660 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE)
2661 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
2662 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
2663 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
2664 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
2665 
2666 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
2667 
2668 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
2669 
2670 /* DPF == dynamic parity feature */
2671 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
2672 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
2673 				 2 : HAS_L3_DPF(dev_priv))
2674 
2675 #define GT_FREQUENCY_MULTIPLIER 50
2676 #define GEN9_FREQ_SCALER 3
2677 
2678 #include "i915_trace.h"
2679 
2680 static inline bool intel_vtd_active(void)
2681 {
2682 #ifdef CONFIG_INTEL_IOMMU
2683 	if (intel_iommu_gfx_mapped)
2684 		return true;
2685 #endif
2686 	return false;
2687 }
2688 
2689 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2690 {
2691 	return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
2692 }
2693 
2694 static inline bool
2695 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
2696 {
2697 	return IS_BROXTON(dev_priv) && intel_vtd_active();
2698 }
2699 
2700 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2701 				int enable_ppgtt);
2702 
2703 /* i915_drv.c */
2704 void __printf(3, 4)
2705 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2706 	      const char *fmt, ...);
2707 
2708 #define i915_report_error(dev_priv, fmt, ...)				   \
2709 	__i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2710 
2711 #ifdef CONFIG_COMPAT
2712 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2713 			      unsigned long arg);
2714 #else
2715 #define i915_compat_ioctl NULL
2716 #endif
2717 extern const struct dev_pm_ops i915_pm_ops;
2718 
2719 extern int i915_driver_load(struct pci_dev *pdev,
2720 			    const struct pci_device_id *ent);
2721 extern void i915_driver_unload(struct drm_device *dev);
2722 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2723 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2724 
2725 extern void i915_reset(struct drm_i915_private *i915,
2726 		       unsigned int stalled_mask,
2727 		       const char *reason);
2728 extern int i915_reset_engine(struct intel_engine_cs *engine,
2729 			     const char *reason);
2730 
2731 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
2732 extern int intel_reset_guc(struct drm_i915_private *dev_priv);
2733 extern int intel_guc_reset_engine(struct intel_guc *guc,
2734 				  struct intel_engine_cs *engine);
2735 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2736 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
2737 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2738 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2739 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2740 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2741 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2742 
2743 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
2744 int intel_engines_init(struct drm_i915_private *dev_priv);
2745 
2746 /* intel_hotplug.c */
2747 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2748 			   u32 pin_mask, u32 long_mask);
2749 void intel_hpd_init(struct drm_i915_private *dev_priv);
2750 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2751 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2752 enum port intel_hpd_pin_to_port(struct drm_i915_private *dev_priv,
2753 				enum hpd_pin pin);
2754 enum hpd_pin intel_hpd_pin_default(struct drm_i915_private *dev_priv,
2755 				   enum port port);
2756 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2757 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2758 
2759 /* i915_irq.c */
2760 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2761 {
2762 	unsigned long delay;
2763 
2764 	if (unlikely(!i915_modparams.enable_hangcheck))
2765 		return;
2766 
2767 	/* Don't continually defer the hangcheck so that it is always run at
2768 	 * least once after work has been scheduled on any ring. Otherwise,
2769 	 * we will ignore a hung ring if a second ring is kept busy.
2770 	 */
2771 
2772 	delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2773 	queue_delayed_work(system_long_wq,
2774 			   &dev_priv->gpu_error.hangcheck_work, delay);
2775 }
2776 
2777 __printf(4, 5)
2778 void i915_handle_error(struct drm_i915_private *dev_priv,
2779 		       u32 engine_mask,
2780 		       unsigned long flags,
2781 		       const char *fmt, ...);
2782 #define I915_ERROR_CAPTURE BIT(0)
2783 
2784 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2785 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
2786 int intel_irq_install(struct drm_i915_private *dev_priv);
2787 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2788 
2789 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
2790 {
2791 	return dev_priv->gvt;
2792 }
2793 
2794 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
2795 {
2796 	return dev_priv->vgpu.active;
2797 }
2798 
2799 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
2800 			      enum pipe pipe);
2801 void
2802 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2803 		     u32 status_mask);
2804 
2805 void
2806 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2807 		      u32 status_mask);
2808 
2809 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2810 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2811 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
2812 				   uint32_t mask,
2813 				   uint32_t bits);
2814 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
2815 			    uint32_t interrupt_mask,
2816 			    uint32_t enabled_irq_mask);
2817 static inline void
2818 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2819 {
2820 	ilk_update_display_irq(dev_priv, bits, bits);
2821 }
2822 static inline void
2823 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2824 {
2825 	ilk_update_display_irq(dev_priv, bits, 0);
2826 }
2827 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
2828 			 enum pipe pipe,
2829 			 uint32_t interrupt_mask,
2830 			 uint32_t enabled_irq_mask);
2831 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
2832 				       enum pipe pipe, uint32_t bits)
2833 {
2834 	bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
2835 }
2836 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
2837 					enum pipe pipe, uint32_t bits)
2838 {
2839 	bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
2840 }
2841 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
2842 				  uint32_t interrupt_mask,
2843 				  uint32_t enabled_irq_mask);
2844 static inline void
2845 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2846 {
2847 	ibx_display_interrupt_update(dev_priv, bits, bits);
2848 }
2849 static inline void
2850 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2851 {
2852 	ibx_display_interrupt_update(dev_priv, bits, 0);
2853 }
2854 
2855 /* i915_gem.c */
2856 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
2857 			  struct drm_file *file_priv);
2858 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
2859 			 struct drm_file *file_priv);
2860 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
2861 			  struct drm_file *file_priv);
2862 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
2863 			struct drm_file *file_priv);
2864 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2865 			struct drm_file *file_priv);
2866 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
2867 			      struct drm_file *file_priv);
2868 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
2869 			     struct drm_file *file_priv);
2870 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2871 			      struct drm_file *file_priv);
2872 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2873 			       struct drm_file *file_priv);
2874 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2875 			struct drm_file *file_priv);
2876 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2877 			       struct drm_file *file);
2878 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2879 			       struct drm_file *file);
2880 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2881 			    struct drm_file *file_priv);
2882 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
2883 			   struct drm_file *file_priv);
2884 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
2885 			      struct drm_file *file_priv);
2886 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
2887 			      struct drm_file *file_priv);
2888 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
2889 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
2890 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
2891 			   struct drm_file *file);
2892 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
2893 				struct drm_file *file_priv);
2894 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
2895 			struct drm_file *file_priv);
2896 void i915_gem_sanitize(struct drm_i915_private *i915);
2897 int i915_gem_init_early(struct drm_i915_private *dev_priv);
2898 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv);
2899 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
2900 int i915_gem_freeze(struct drm_i915_private *dev_priv);
2901 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
2902 
2903 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
2904 void i915_gem_object_free(struct drm_i915_gem_object *obj);
2905 void i915_gem_object_init(struct drm_i915_gem_object *obj,
2906 			 const struct drm_i915_gem_object_ops *ops);
2907 struct drm_i915_gem_object *
2908 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
2909 struct drm_i915_gem_object *
2910 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
2911 				 const void *data, size_t size);
2912 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
2913 void i915_gem_free_object(struct drm_gem_object *obj);
2914 
2915 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
2916 {
2917 	if (!atomic_read(&i915->mm.free_count))
2918 		return;
2919 
2920 	/* A single pass should suffice to release all the freed objects (along
2921 	 * most call paths) , but be a little more paranoid in that freeing
2922 	 * the objects does take a little amount of time, during which the rcu
2923 	 * callbacks could have added new objects into the freed list, and
2924 	 * armed the work again.
2925 	 */
2926 	do {
2927 		rcu_barrier();
2928 	} while (flush_work(&i915->mm.free_work));
2929 }
2930 
2931 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
2932 {
2933 	/*
2934 	 * Similar to objects above (see i915_gem_drain_freed-objects), in
2935 	 * general we have workers that are armed by RCU and then rearm
2936 	 * themselves in their callbacks. To be paranoid, we need to
2937 	 * drain the workqueue a second time after waiting for the RCU
2938 	 * grace period so that we catch work queued via RCU from the first
2939 	 * pass. As neither drain_workqueue() nor flush_workqueue() report
2940 	 * a result, we make an assumption that we only don't require more
2941 	 * than 2 passes to catch all recursive RCU delayed work.
2942 	 *
2943 	 */
2944 	int pass = 2;
2945 	do {
2946 		rcu_barrier();
2947 		drain_workqueue(i915->wq);
2948 	} while (--pass);
2949 }
2950 
2951 struct i915_vma * __must_check
2952 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
2953 			 const struct i915_ggtt_view *view,
2954 			 u64 size,
2955 			 u64 alignment,
2956 			 u64 flags);
2957 
2958 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
2959 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
2960 
2961 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
2962 
2963 static inline int __sg_page_count(const struct scatterlist *sg)
2964 {
2965 	return sg->length >> PAGE_SHIFT;
2966 }
2967 
2968 struct scatterlist *
2969 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
2970 		       unsigned int n, unsigned int *offset);
2971 
2972 struct page *
2973 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
2974 			 unsigned int n);
2975 
2976 struct page *
2977 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
2978 			       unsigned int n);
2979 
2980 dma_addr_t
2981 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
2982 				unsigned long n);
2983 
2984 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2985 				 struct sg_table *pages,
2986 				 unsigned int sg_page_sizes);
2987 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
2988 
2989 static inline int __must_check
2990 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
2991 {
2992 	might_lock(&obj->mm.lock);
2993 
2994 	if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
2995 		return 0;
2996 
2997 	return __i915_gem_object_get_pages(obj);
2998 }
2999 
3000 static inline bool
3001 i915_gem_object_has_pages(struct drm_i915_gem_object *obj)
3002 {
3003 	return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages));
3004 }
3005 
3006 static inline void
3007 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3008 {
3009 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3010 
3011 	atomic_inc(&obj->mm.pages_pin_count);
3012 }
3013 
3014 static inline bool
3015 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3016 {
3017 	return atomic_read(&obj->mm.pages_pin_count);
3018 }
3019 
3020 static inline void
3021 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3022 {
3023 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3024 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3025 
3026 	atomic_dec(&obj->mm.pages_pin_count);
3027 }
3028 
3029 static inline void
3030 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3031 {
3032 	__i915_gem_object_unpin_pages(obj);
3033 }
3034 
3035 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3036 	I915_MM_NORMAL = 0,
3037 	I915_MM_SHRINKER
3038 };
3039 
3040 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3041 				 enum i915_mm_subclass subclass);
3042 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3043 
3044 enum i915_map_type {
3045 	I915_MAP_WB = 0,
3046 	I915_MAP_WC,
3047 #define I915_MAP_OVERRIDE BIT(31)
3048 	I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3049 	I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3050 };
3051 
3052 /**
3053  * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3054  * @obj: the object to map into kernel address space
3055  * @type: the type of mapping, used to select pgprot_t
3056  *
3057  * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3058  * pages and then returns a contiguous mapping of the backing storage into
3059  * the kernel address space. Based on the @type of mapping, the PTE will be
3060  * set to either WriteBack or WriteCombine (via pgprot_t).
3061  *
3062  * The caller is responsible for calling i915_gem_object_unpin_map() when the
3063  * mapping is no longer required.
3064  *
3065  * Returns the pointer through which to access the mapped object, or an
3066  * ERR_PTR() on error.
3067  */
3068 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3069 					   enum i915_map_type type);
3070 
3071 /**
3072  * i915_gem_object_unpin_map - releases an earlier mapping
3073  * @obj: the object to unmap
3074  *
3075  * After pinning the object and mapping its pages, once you are finished
3076  * with your access, call i915_gem_object_unpin_map() to release the pin
3077  * upon the mapping. Once the pin count reaches zero, that mapping may be
3078  * removed.
3079  */
3080 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3081 {
3082 	i915_gem_object_unpin_pages(obj);
3083 }
3084 
3085 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3086 				    unsigned int *needs_clflush);
3087 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3088 				     unsigned int *needs_clflush);
3089 #define CLFLUSH_BEFORE	BIT(0)
3090 #define CLFLUSH_AFTER	BIT(1)
3091 #define CLFLUSH_FLAGS	(CLFLUSH_BEFORE | CLFLUSH_AFTER)
3092 
3093 static inline void
3094 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3095 {
3096 	i915_gem_object_unpin_pages(obj);
3097 }
3098 
3099 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3100 void i915_vma_move_to_active(struct i915_vma *vma,
3101 			     struct i915_request *rq,
3102 			     unsigned int flags);
3103 int i915_gem_dumb_create(struct drm_file *file_priv,
3104 			 struct drm_device *dev,
3105 			 struct drm_mode_create_dumb *args);
3106 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3107 		      uint32_t handle, uint64_t *offset);
3108 int i915_gem_mmap_gtt_version(void);
3109 
3110 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3111 		       struct drm_i915_gem_object *new,
3112 		       unsigned frontbuffer_bits);
3113 
3114 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3115 
3116 struct i915_request *
3117 i915_gem_find_active_request(struct intel_engine_cs *engine);
3118 
3119 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3120 {
3121 	return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3122 }
3123 
3124 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3125 {
3126 	return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3127 }
3128 
3129 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3130 {
3131 	return unlikely(test_bit(I915_WEDGED, &error->flags));
3132 }
3133 
3134 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3135 {
3136 	return i915_reset_backoff(error) | i915_terminally_wedged(error);
3137 }
3138 
3139 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3140 {
3141 	return READ_ONCE(error->reset_count);
3142 }
3143 
3144 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3145 					  struct intel_engine_cs *engine)
3146 {
3147 	return READ_ONCE(error->reset_engine_count[engine->id]);
3148 }
3149 
3150 struct i915_request *
3151 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3152 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3153 void i915_gem_reset(struct drm_i915_private *dev_priv,
3154 		    unsigned int stalled_mask);
3155 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3156 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3157 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3158 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3159 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3160 			   struct i915_request *request,
3161 			   bool stalled);
3162 
3163 void i915_gem_init_mmio(struct drm_i915_private *i915);
3164 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3165 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3166 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3167 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3168 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3169 			   unsigned int flags);
3170 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3171 void i915_gem_resume(struct drm_i915_private *dev_priv);
3172 int i915_gem_fault(struct vm_fault *vmf);
3173 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3174 			 unsigned int flags,
3175 			 long timeout,
3176 			 struct intel_rps_client *rps);
3177 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3178 				  unsigned int flags,
3179 				  const struct i915_sched_attr *attr);
3180 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3181 
3182 int __must_check
3183 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3184 int __must_check
3185 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3186 int __must_check
3187 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3188 struct i915_vma * __must_check
3189 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3190 				     u32 alignment,
3191 				     const struct i915_ggtt_view *view,
3192 				     unsigned int flags);
3193 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3194 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3195 				int align);
3196 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3197 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3198 
3199 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3200 				    enum i915_cache_level cache_level);
3201 
3202 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3203 				struct dma_buf *dma_buf);
3204 
3205 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3206 				struct drm_gem_object *gem_obj, int flags);
3207 
3208 static inline struct i915_hw_ppgtt *
3209 i915_vm_to_ppgtt(struct i915_address_space *vm)
3210 {
3211 	return container_of(vm, struct i915_hw_ppgtt, base);
3212 }
3213 
3214 /* i915_gem_fence_reg.c */
3215 struct drm_i915_fence_reg *
3216 i915_reserve_fence(struct drm_i915_private *dev_priv);
3217 void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3218 
3219 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3220 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3221 
3222 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3223 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3224 				       struct sg_table *pages);
3225 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3226 					 struct sg_table *pages);
3227 
3228 static inline struct i915_gem_context *
3229 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3230 {
3231 	return idr_find(&file_priv->context_idr, id);
3232 }
3233 
3234 static inline struct i915_gem_context *
3235 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3236 {
3237 	struct i915_gem_context *ctx;
3238 
3239 	rcu_read_lock();
3240 	ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3241 	if (ctx && !kref_get_unless_zero(&ctx->ref))
3242 		ctx = NULL;
3243 	rcu_read_unlock();
3244 
3245 	return ctx;
3246 }
3247 
3248 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3249 			 struct drm_file *file);
3250 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3251 			       struct drm_file *file);
3252 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3253 				  struct drm_file *file);
3254 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3255 			    struct i915_gem_context *ctx,
3256 			    uint32_t *reg_state);
3257 
3258 /* i915_gem_evict.c */
3259 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3260 					  u64 min_size, u64 alignment,
3261 					  unsigned cache_level,
3262 					  u64 start, u64 end,
3263 					  unsigned flags);
3264 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3265 					 struct drm_mm_node *node,
3266 					 unsigned int flags);
3267 int i915_gem_evict_vm(struct i915_address_space *vm);
3268 
3269 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv);
3270 
3271 /* belongs in i915_gem_gtt.h */
3272 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3273 {
3274 	wmb();
3275 	if (INTEL_GEN(dev_priv) < 6)
3276 		intel_gtt_chipset_flush();
3277 }
3278 
3279 /* i915_gem_stolen.c */
3280 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3281 				struct drm_mm_node *node, u64 size,
3282 				unsigned alignment);
3283 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3284 					 struct drm_mm_node *node, u64 size,
3285 					 unsigned alignment, u64 start,
3286 					 u64 end);
3287 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3288 				 struct drm_mm_node *node);
3289 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3290 void i915_gem_cleanup_stolen(struct drm_device *dev);
3291 struct drm_i915_gem_object *
3292 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv,
3293 			      resource_size_t size);
3294 struct drm_i915_gem_object *
3295 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3296 					       resource_size_t stolen_offset,
3297 					       resource_size_t gtt_offset,
3298 					       resource_size_t size);
3299 
3300 /* i915_gem_internal.c */
3301 struct drm_i915_gem_object *
3302 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3303 				phys_addr_t size);
3304 
3305 /* i915_gem_shrinker.c */
3306 unsigned long i915_gem_shrink(struct drm_i915_private *i915,
3307 			      unsigned long target,
3308 			      unsigned long *nr_scanned,
3309 			      unsigned flags);
3310 #define I915_SHRINK_PURGEABLE 0x1
3311 #define I915_SHRINK_UNBOUND 0x2
3312 #define I915_SHRINK_BOUND 0x4
3313 #define I915_SHRINK_ACTIVE 0x8
3314 #define I915_SHRINK_VMAPS 0x10
3315 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915);
3316 void i915_gem_shrinker_register(struct drm_i915_private *i915);
3317 void i915_gem_shrinker_unregister(struct drm_i915_private *i915);
3318 
3319 
3320 /* i915_gem_tiling.c */
3321 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3322 {
3323 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3324 
3325 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3326 		i915_gem_object_is_tiled(obj);
3327 }
3328 
3329 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3330 			unsigned int tiling, unsigned int stride);
3331 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3332 			     unsigned int tiling, unsigned int stride);
3333 
3334 /* i915_debugfs.c */
3335 #ifdef CONFIG_DEBUG_FS
3336 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3337 int i915_debugfs_connector_add(struct drm_connector *connector);
3338 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3339 #else
3340 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3341 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3342 { return 0; }
3343 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3344 #endif
3345 
3346 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3347 
3348 /* i915_cmd_parser.c */
3349 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3350 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3351 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3352 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3353 			    struct drm_i915_gem_object *batch_obj,
3354 			    struct drm_i915_gem_object *shadow_batch_obj,
3355 			    u32 batch_start_offset,
3356 			    u32 batch_len,
3357 			    bool is_master);
3358 
3359 /* i915_perf.c */
3360 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3361 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3362 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3363 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3364 
3365 /* i915_suspend.c */
3366 extern int i915_save_state(struct drm_i915_private *dev_priv);
3367 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3368 
3369 /* i915_sysfs.c */
3370 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3371 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3372 
3373 /* intel_lpe_audio.c */
3374 int  intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3375 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3376 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3377 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3378 			    enum pipe pipe, enum port port,
3379 			    const void *eld, int ls_clock, bool dp_output);
3380 
3381 /* intel_i2c.c */
3382 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3383 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3384 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3385 				     unsigned int pin);
3386 extern int intel_gmbus_output_aksv(struct i2c_adapter *adapter);
3387 
3388 extern struct i2c_adapter *
3389 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3390 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3391 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3392 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3393 {
3394 	return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3395 }
3396 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3397 
3398 /* intel_bios.c */
3399 void intel_bios_init(struct drm_i915_private *dev_priv);
3400 void intel_bios_cleanup(struct drm_i915_private *dev_priv);
3401 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3402 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3403 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3404 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3405 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3406 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3407 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3408 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3409 				     enum port port);
3410 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3411 				enum port port);
3412 
3413 /* intel_acpi.c */
3414 #ifdef CONFIG_ACPI
3415 extern void intel_register_dsm_handler(void);
3416 extern void intel_unregister_dsm_handler(void);
3417 #else
3418 static inline void intel_register_dsm_handler(void) { return; }
3419 static inline void intel_unregister_dsm_handler(void) { return; }
3420 #endif /* CONFIG_ACPI */
3421 
3422 /* intel_device_info.c */
3423 static inline struct intel_device_info *
3424 mkwrite_device_info(struct drm_i915_private *dev_priv)
3425 {
3426 	return (struct intel_device_info *)&dev_priv->info;
3427 }
3428 
3429 /* modesetting */
3430 extern void intel_modeset_init_hw(struct drm_device *dev);
3431 extern int intel_modeset_init(struct drm_device *dev);
3432 extern void intel_modeset_cleanup(struct drm_device *dev);
3433 extern int intel_connector_register(struct drm_connector *);
3434 extern void intel_connector_unregister(struct drm_connector *);
3435 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3436 				       bool state);
3437 extern void intel_display_resume(struct drm_device *dev);
3438 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3439 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3440 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3441 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3442 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3443 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3444 				  bool enable);
3445 
3446 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3447 			struct drm_file *file);
3448 
3449 /* overlay */
3450 extern struct intel_overlay_error_state *
3451 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3452 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3453 					    struct intel_overlay_error_state *error);
3454 
3455 extern struct intel_display_error_state *
3456 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3457 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3458 					    struct intel_display_error_state *error);
3459 
3460 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3461 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox,
3462 				    u32 val, int fast_timeout_us,
3463 				    int slow_timeout_ms);
3464 #define sandybridge_pcode_write(dev_priv, mbox, val)	\
3465 	sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500, 0)
3466 
3467 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3468 		      u32 reply_mask, u32 reply, int timeout_base_ms);
3469 
3470 /* intel_sideband.c */
3471 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3472 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3473 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3474 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3475 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3476 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3477 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3478 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3479 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3480 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3481 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3482 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3483 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3484 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3485 		   enum intel_sbi_destination destination);
3486 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3487 		     enum intel_sbi_destination destination);
3488 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3489 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3490 
3491 /* intel_dpio_phy.c */
3492 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3493 			     enum dpio_phy *phy, enum dpio_channel *ch);
3494 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3495 				  enum port port, u32 margin, u32 scale,
3496 				  u32 enable, u32 deemphasis);
3497 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3498 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3499 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3500 			    enum dpio_phy phy);
3501 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3502 			      enum dpio_phy phy);
3503 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count);
3504 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3505 				     uint8_t lane_lat_optim_mask);
3506 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3507 
3508 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3509 			      u32 deemph_reg_value, u32 margin_reg_value,
3510 			      bool uniq_trans_scale);
3511 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3512 			      const struct intel_crtc_state *crtc_state,
3513 			      bool reset);
3514 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
3515 			    const struct intel_crtc_state *crtc_state);
3516 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3517 				const struct intel_crtc_state *crtc_state);
3518 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3519 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
3520 			      const struct intel_crtc_state *old_crtc_state);
3521 
3522 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3523 			      u32 demph_reg_value, u32 preemph_reg_value,
3524 			      u32 uniqtranscale_reg_value, u32 tx3_demph);
3525 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
3526 			    const struct intel_crtc_state *crtc_state);
3527 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3528 				const struct intel_crtc_state *crtc_state);
3529 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
3530 			 const struct intel_crtc_state *old_crtc_state);
3531 
3532 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3533 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3534 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
3535 			   const i915_reg_t reg);
3536 
3537 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1);
3538 
3539 static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
3540 					 const i915_reg_t reg)
3541 {
3542 	return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000);
3543 }
3544 
3545 #define I915_READ8(reg)		dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3546 #define I915_WRITE8(reg, val)	dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3547 
3548 #define I915_READ16(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3549 #define I915_WRITE16(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3550 #define I915_READ16_NOTRACE(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3551 #define I915_WRITE16_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3552 
3553 #define I915_READ(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3554 #define I915_WRITE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3555 #define I915_READ_NOTRACE(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3556 #define I915_WRITE_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3557 
3558 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3559  * will be implemented using 2 32-bit writes in an arbitrary order with
3560  * an arbitrary delay between them. This can cause the hardware to
3561  * act upon the intermediate value, possibly leading to corruption and
3562  * machine death. For this reason we do not support I915_WRITE64, or
3563  * dev_priv->uncore.funcs.mmio_writeq.
3564  *
3565  * When reading a 64-bit value as two 32-bit values, the delay may cause
3566  * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3567  * occasionally a 64-bit register does not actualy support a full readq
3568  * and must be read using two 32-bit reads.
3569  *
3570  * You have been warned.
3571  */
3572 #define I915_READ64(reg)	dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3573 
3574 #define I915_READ64_2x32(lower_reg, upper_reg) ({			\
3575 	u32 upper, lower, old_upper, loop = 0;				\
3576 	upper = I915_READ(upper_reg);					\
3577 	do {								\
3578 		old_upper = upper;					\
3579 		lower = I915_READ(lower_reg);				\
3580 		upper = I915_READ(upper_reg);				\
3581 	} while (upper != old_upper && loop++ < 2);			\
3582 	(u64)upper << 32 | lower; })
3583 
3584 #define POSTING_READ(reg)	(void)I915_READ_NOTRACE(reg)
3585 #define POSTING_READ16(reg)	(void)I915_READ16_NOTRACE(reg)
3586 
3587 #define __raw_read(x, s) \
3588 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
3589 					     i915_reg_t reg) \
3590 { \
3591 	return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3592 }
3593 
3594 #define __raw_write(x, s) \
3595 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
3596 				       i915_reg_t reg, uint##x##_t val) \
3597 { \
3598 	write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3599 }
3600 __raw_read(8, b)
3601 __raw_read(16, w)
3602 __raw_read(32, l)
3603 __raw_read(64, q)
3604 
3605 __raw_write(8, b)
3606 __raw_write(16, w)
3607 __raw_write(32, l)
3608 __raw_write(64, q)
3609 
3610 #undef __raw_read
3611 #undef __raw_write
3612 
3613 /* These are untraced mmio-accessors that are only valid to be used inside
3614  * critical sections, such as inside IRQ handlers, where forcewake is explicitly
3615  * controlled.
3616  *
3617  * Think twice, and think again, before using these.
3618  *
3619  * As an example, these accessors can possibly be used between:
3620  *
3621  * spin_lock_irq(&dev_priv->uncore.lock);
3622  * intel_uncore_forcewake_get__locked();
3623  *
3624  * and
3625  *
3626  * intel_uncore_forcewake_put__locked();
3627  * spin_unlock_irq(&dev_priv->uncore.lock);
3628  *
3629  *
3630  * Note: some registers may not need forcewake held, so
3631  * intel_uncore_forcewake_{get,put} can be omitted, see
3632  * intel_uncore_forcewake_for_reg().
3633  *
3634  * Certain architectures will die if the same cacheline is concurrently accessed
3635  * by different clients (e.g. on Ivybridge). Access to registers should
3636  * therefore generally be serialised, by either the dev_priv->uncore.lock or
3637  * a more localised lock guarding all access to that bank of registers.
3638  */
3639 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3640 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3641 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3642 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3643 
3644 /* "Broadcast RGB" property */
3645 #define INTEL_BROADCAST_RGB_AUTO 0
3646 #define INTEL_BROADCAST_RGB_FULL 1
3647 #define INTEL_BROADCAST_RGB_LIMITED 2
3648 
3649 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
3650 {
3651 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3652 		return VLV_VGACNTRL;
3653 	else if (INTEL_GEN(dev_priv) >= 5)
3654 		return CPU_VGACNTRL;
3655 	else
3656 		return VGACNTRL;
3657 }
3658 
3659 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3660 {
3661 	unsigned long j = msecs_to_jiffies(m);
3662 
3663 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3664 }
3665 
3666 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3667 {
3668 	/* nsecs_to_jiffies64() does not guard against overflow */
3669 	if (NSEC_PER_SEC % HZ &&
3670 	    div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
3671 		return MAX_JIFFY_OFFSET;
3672 
3673         return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3674 }
3675 
3676 static inline unsigned long
3677 timespec_to_jiffies_timeout(const struct timespec *value)
3678 {
3679 	unsigned long j = timespec_to_jiffies(value);
3680 
3681 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3682 }
3683 
3684 /*
3685  * If you need to wait X milliseconds between events A and B, but event B
3686  * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3687  * when event A happened, then just before event B you call this function and
3688  * pass the timestamp as the first argument, and X as the second argument.
3689  */
3690 static inline void
3691 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3692 {
3693 	unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3694 
3695 	/*
3696 	 * Don't re-read the value of "jiffies" every time since it may change
3697 	 * behind our back and break the math.
3698 	 */
3699 	tmp_jiffies = jiffies;
3700 	target_jiffies = timestamp_jiffies +
3701 			 msecs_to_jiffies_timeout(to_wait_ms);
3702 
3703 	if (time_after(target_jiffies, tmp_jiffies)) {
3704 		remaining_jiffies = target_jiffies - tmp_jiffies;
3705 		while (remaining_jiffies)
3706 			remaining_jiffies =
3707 			    schedule_timeout_uninterruptible(remaining_jiffies);
3708 	}
3709 }
3710 
3711 static inline bool
3712 __i915_request_irq_complete(const struct i915_request *rq)
3713 {
3714 	struct intel_engine_cs *engine = rq->engine;
3715 	u32 seqno;
3716 
3717 	/* Note that the engine may have wrapped around the seqno, and
3718 	 * so our request->global_seqno will be ahead of the hardware,
3719 	 * even though it completed the request before wrapping. We catch
3720 	 * this by kicking all the waiters before resetting the seqno
3721 	 * in hardware, and also signal the fence.
3722 	 */
3723 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
3724 		return true;
3725 
3726 	/* The request was dequeued before we were awoken. We check after
3727 	 * inspecting the hw to confirm that this was the same request
3728 	 * that generated the HWS update. The memory barriers within
3729 	 * the request execution are sufficient to ensure that a check
3730 	 * after reading the value from hw matches this request.
3731 	 */
3732 	seqno = i915_request_global_seqno(rq);
3733 	if (!seqno)
3734 		return false;
3735 
3736 	/* Before we do the heavier coherent read of the seqno,
3737 	 * check the value (hopefully) in the CPU cacheline.
3738 	 */
3739 	if (__i915_request_completed(rq, seqno))
3740 		return true;
3741 
3742 	/* Ensure our read of the seqno is coherent so that we
3743 	 * do not "miss an interrupt" (i.e. if this is the last
3744 	 * request and the seqno write from the GPU is not visible
3745 	 * by the time the interrupt fires, we will see that the
3746 	 * request is incomplete and go back to sleep awaiting
3747 	 * another interrupt that will never come.)
3748 	 *
3749 	 * Strictly, we only need to do this once after an interrupt,
3750 	 * but it is easier and safer to do it every time the waiter
3751 	 * is woken.
3752 	 */
3753 	if (engine->irq_seqno_barrier &&
3754 	    test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
3755 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
3756 
3757 		/* The ordering of irq_posted versus applying the barrier
3758 		 * is crucial. The clearing of the current irq_posted must
3759 		 * be visible before we perform the barrier operation,
3760 		 * such that if a subsequent interrupt arrives, irq_posted
3761 		 * is reasserted and our task rewoken (which causes us to
3762 		 * do another __i915_request_irq_complete() immediately
3763 		 * and reapply the barrier). Conversely, if the clear
3764 		 * occurs after the barrier, then an interrupt that arrived
3765 		 * whilst we waited on the barrier would not trigger a
3766 		 * barrier on the next pass, and the read may not see the
3767 		 * seqno update.
3768 		 */
3769 		engine->irq_seqno_barrier(engine);
3770 
3771 		/* If we consume the irq, but we are no longer the bottom-half,
3772 		 * the real bottom-half may not have serialised their own
3773 		 * seqno check with the irq-barrier (i.e. may have inspected
3774 		 * the seqno before we believe it coherent since they see
3775 		 * irq_posted == false but we are still running).
3776 		 */
3777 		spin_lock_irq(&b->irq_lock);
3778 		if (b->irq_wait && b->irq_wait->tsk != current)
3779 			/* Note that if the bottom-half is changed as we
3780 			 * are sending the wake-up, the new bottom-half will
3781 			 * be woken by whomever made the change. We only have
3782 			 * to worry about when we steal the irq-posted for
3783 			 * ourself.
3784 			 */
3785 			wake_up_process(b->irq_wait->tsk);
3786 		spin_unlock_irq(&b->irq_lock);
3787 
3788 		if (__i915_request_completed(rq, seqno))
3789 			return true;
3790 	}
3791 
3792 	return false;
3793 }
3794 
3795 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
3796 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
3797 
3798 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
3799  * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
3800  * perform the operation. To check beforehand, pass in the parameters to
3801  * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
3802  * you only need to pass in the minor offsets, page-aligned pointers are
3803  * always valid.
3804  *
3805  * For just checking for SSE4.1, in the foreknowledge that the future use
3806  * will be correctly aligned, just use i915_has_memcpy_from_wc().
3807  */
3808 #define i915_can_memcpy_from_wc(dst, src, len) \
3809 	i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
3810 
3811 #define i915_has_memcpy_from_wc() \
3812 	i915_memcpy_from_wc(NULL, NULL, 0)
3813 
3814 /* i915_mm.c */
3815 int remap_io_mapping(struct vm_area_struct *vma,
3816 		     unsigned long addr, unsigned long pfn, unsigned long size,
3817 		     struct io_mapping *iomap);
3818 
3819 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915)
3820 {
3821 	if (INTEL_GEN(i915) >= 10)
3822 		return CNL_HWS_CSB_WRITE_INDEX;
3823 	else
3824 		return I915_HWS_CSB_WRITE_INDEX;
3825 }
3826 
3827 #endif
3828