xref: /openbmc/linux/drivers/gpu/drm/i915/i915_drv.h (revision bc5aa3a0)
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32 
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35 
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hashtable.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/shmem_fs.h>
45 
46 #include <drm/drmP.h>
47 #include <drm/intel-gtt.h>
48 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
49 #include <drm/drm_gem.h>
50 #include <drm/drm_auth.h>
51 
52 #include "i915_params.h"
53 #include "i915_reg.h"
54 
55 #include "intel_bios.h"
56 #include "intel_dpll_mgr.h"
57 #include "intel_guc.h"
58 #include "intel_lrc.h"
59 #include "intel_ringbuffer.h"
60 
61 #include "i915_gem.h"
62 #include "i915_gem_gtt.h"
63 #include "i915_gem_render_state.h"
64 
65 #include "intel_gvt.h"
66 
67 /* General customization:
68  */
69 
70 #define DRIVER_NAME		"i915"
71 #define DRIVER_DESC		"Intel Graphics"
72 #define DRIVER_DATE		"20160711"
73 
74 #undef WARN_ON
75 /* Many gcc seem to no see through this and fall over :( */
76 #if 0
77 #define WARN_ON(x) ({ \
78 	bool __i915_warn_cond = (x); \
79 	if (__builtin_constant_p(__i915_warn_cond)) \
80 		BUILD_BUG_ON(__i915_warn_cond); \
81 	WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
82 #else
83 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
84 #endif
85 
86 #undef WARN_ON_ONCE
87 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")")
88 
89 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \
90 			     (long) (x), __func__);
91 
92 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
93  * WARN_ON()) for hw state sanity checks to check for unexpected conditions
94  * which may not necessarily be a user visible problem.  This will either
95  * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
96  * enable distros and users to tailor their preferred amount of i915 abrt
97  * spam.
98  */
99 #define I915_STATE_WARN(condition, format...) ({			\
100 	int __ret_warn_on = !!(condition);				\
101 	if (unlikely(__ret_warn_on))					\
102 		if (!WARN(i915.verbose_state_checks, format))		\
103 			DRM_ERROR(format);				\
104 	unlikely(__ret_warn_on);					\
105 })
106 
107 #define I915_STATE_WARN_ON(x)						\
108 	I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
109 
110 bool __i915_inject_load_failure(const char *func, int line);
111 #define i915_inject_load_failure() \
112 	__i915_inject_load_failure(__func__, __LINE__)
113 
114 static inline const char *yesno(bool v)
115 {
116 	return v ? "yes" : "no";
117 }
118 
119 static inline const char *onoff(bool v)
120 {
121 	return v ? "on" : "off";
122 }
123 
124 enum pipe {
125 	INVALID_PIPE = -1,
126 	PIPE_A = 0,
127 	PIPE_B,
128 	PIPE_C,
129 	_PIPE_EDP,
130 	I915_MAX_PIPES = _PIPE_EDP
131 };
132 #define pipe_name(p) ((p) + 'A')
133 
134 enum transcoder {
135 	TRANSCODER_A = 0,
136 	TRANSCODER_B,
137 	TRANSCODER_C,
138 	TRANSCODER_EDP,
139 	TRANSCODER_DSI_A,
140 	TRANSCODER_DSI_C,
141 	I915_MAX_TRANSCODERS
142 };
143 
144 static inline const char *transcoder_name(enum transcoder transcoder)
145 {
146 	switch (transcoder) {
147 	case TRANSCODER_A:
148 		return "A";
149 	case TRANSCODER_B:
150 		return "B";
151 	case TRANSCODER_C:
152 		return "C";
153 	case TRANSCODER_EDP:
154 		return "EDP";
155 	case TRANSCODER_DSI_A:
156 		return "DSI A";
157 	case TRANSCODER_DSI_C:
158 		return "DSI C";
159 	default:
160 		return "<invalid>";
161 	}
162 }
163 
164 static inline bool transcoder_is_dsi(enum transcoder transcoder)
165 {
166 	return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
167 }
168 
169 /*
170  * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
171  * number of planes per CRTC.  Not all platforms really have this many planes,
172  * which means some arrays of size I915_MAX_PLANES may have unused entries
173  * between the topmost sprite plane and the cursor plane.
174  */
175 enum plane {
176 	PLANE_A = 0,
177 	PLANE_B,
178 	PLANE_C,
179 	PLANE_CURSOR,
180 	I915_MAX_PLANES,
181 };
182 #define plane_name(p) ((p) + 'A')
183 
184 #define sprite_name(p, s) ((p) * INTEL_INFO(dev)->num_sprites[(p)] + (s) + 'A')
185 
186 enum port {
187 	PORT_A = 0,
188 	PORT_B,
189 	PORT_C,
190 	PORT_D,
191 	PORT_E,
192 	I915_MAX_PORTS
193 };
194 #define port_name(p) ((p) + 'A')
195 
196 #define I915_NUM_PHYS_VLV 2
197 
198 enum dpio_channel {
199 	DPIO_CH0,
200 	DPIO_CH1
201 };
202 
203 enum dpio_phy {
204 	DPIO_PHY0,
205 	DPIO_PHY1
206 };
207 
208 enum intel_display_power_domain {
209 	POWER_DOMAIN_PIPE_A,
210 	POWER_DOMAIN_PIPE_B,
211 	POWER_DOMAIN_PIPE_C,
212 	POWER_DOMAIN_PIPE_A_PANEL_FITTER,
213 	POWER_DOMAIN_PIPE_B_PANEL_FITTER,
214 	POWER_DOMAIN_PIPE_C_PANEL_FITTER,
215 	POWER_DOMAIN_TRANSCODER_A,
216 	POWER_DOMAIN_TRANSCODER_B,
217 	POWER_DOMAIN_TRANSCODER_C,
218 	POWER_DOMAIN_TRANSCODER_EDP,
219 	POWER_DOMAIN_TRANSCODER_DSI_A,
220 	POWER_DOMAIN_TRANSCODER_DSI_C,
221 	POWER_DOMAIN_PORT_DDI_A_LANES,
222 	POWER_DOMAIN_PORT_DDI_B_LANES,
223 	POWER_DOMAIN_PORT_DDI_C_LANES,
224 	POWER_DOMAIN_PORT_DDI_D_LANES,
225 	POWER_DOMAIN_PORT_DDI_E_LANES,
226 	POWER_DOMAIN_PORT_DSI,
227 	POWER_DOMAIN_PORT_CRT,
228 	POWER_DOMAIN_PORT_OTHER,
229 	POWER_DOMAIN_VGA,
230 	POWER_DOMAIN_AUDIO,
231 	POWER_DOMAIN_PLLS,
232 	POWER_DOMAIN_AUX_A,
233 	POWER_DOMAIN_AUX_B,
234 	POWER_DOMAIN_AUX_C,
235 	POWER_DOMAIN_AUX_D,
236 	POWER_DOMAIN_GMBUS,
237 	POWER_DOMAIN_MODESET,
238 	POWER_DOMAIN_INIT,
239 
240 	POWER_DOMAIN_NUM,
241 };
242 
243 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
244 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
245 		((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
246 #define POWER_DOMAIN_TRANSCODER(tran) \
247 	((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
248 	 (tran) + POWER_DOMAIN_TRANSCODER_A)
249 
250 enum hpd_pin {
251 	HPD_NONE = 0,
252 	HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
253 	HPD_CRT,
254 	HPD_SDVO_B,
255 	HPD_SDVO_C,
256 	HPD_PORT_A,
257 	HPD_PORT_B,
258 	HPD_PORT_C,
259 	HPD_PORT_D,
260 	HPD_PORT_E,
261 	HPD_NUM_PINS
262 };
263 
264 #define for_each_hpd_pin(__pin) \
265 	for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
266 
267 struct i915_hotplug {
268 	struct work_struct hotplug_work;
269 
270 	struct {
271 		unsigned long last_jiffies;
272 		int count;
273 		enum {
274 			HPD_ENABLED = 0,
275 			HPD_DISABLED = 1,
276 			HPD_MARK_DISABLED = 2
277 		} state;
278 	} stats[HPD_NUM_PINS];
279 	u32 event_bits;
280 	struct delayed_work reenable_work;
281 
282 	struct intel_digital_port *irq_port[I915_MAX_PORTS];
283 	u32 long_port_mask;
284 	u32 short_port_mask;
285 	struct work_struct dig_port_work;
286 
287 	struct work_struct poll_init_work;
288 	bool poll_enabled;
289 
290 	/*
291 	 * if we get a HPD irq from DP and a HPD irq from non-DP
292 	 * the non-DP HPD could block the workqueue on a mode config
293 	 * mutex getting, that userspace may have taken. However
294 	 * userspace is waiting on the DP workqueue to run which is
295 	 * blocked behind the non-DP one.
296 	 */
297 	struct workqueue_struct *dp_wq;
298 };
299 
300 #define I915_GEM_GPU_DOMAINS \
301 	(I915_GEM_DOMAIN_RENDER | \
302 	 I915_GEM_DOMAIN_SAMPLER | \
303 	 I915_GEM_DOMAIN_COMMAND | \
304 	 I915_GEM_DOMAIN_INSTRUCTION | \
305 	 I915_GEM_DOMAIN_VERTEX)
306 
307 #define for_each_pipe(__dev_priv, __p) \
308 	for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
309 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
310 	for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
311 		for_each_if ((__mask) & (1 << (__p)))
312 #define for_each_plane(__dev_priv, __pipe, __p)				\
313 	for ((__p) = 0;							\
314 	     (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1;	\
315 	     (__p)++)
316 #define for_each_sprite(__dev_priv, __p, __s)				\
317 	for ((__s) = 0;							\
318 	     (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)];	\
319 	     (__s)++)
320 
321 #define for_each_port_masked(__port, __ports_mask) \
322 	for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++)	\
323 		for_each_if ((__ports_mask) & (1 << (__port)))
324 
325 #define for_each_crtc(dev, crtc) \
326 	list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
327 
328 #define for_each_intel_plane(dev, intel_plane) \
329 	list_for_each_entry(intel_plane,			\
330 			    &(dev)->mode_config.plane_list,	\
331 			    base.head)
332 
333 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask)		\
334 	list_for_each_entry(intel_plane,				\
335 			    &(dev)->mode_config.plane_list,		\
336 			    base.head)					\
337 		for_each_if ((plane_mask) &				\
338 			     (1 << drm_plane_index(&intel_plane->base)))
339 
340 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane)	\
341 	list_for_each_entry(intel_plane,				\
342 			    &(dev)->mode_config.plane_list,		\
343 			    base.head)					\
344 		for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
345 
346 #define for_each_intel_crtc(dev, intel_crtc)				\
347 	list_for_each_entry(intel_crtc,					\
348 			    &(dev)->mode_config.crtc_list,		\
349 			    base.head)
350 
351 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask)		\
352 	list_for_each_entry(intel_crtc,					\
353 			    &(dev)->mode_config.crtc_list,		\
354 			    base.head)					\
355 		for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
356 
357 #define for_each_intel_encoder(dev, intel_encoder)		\
358 	list_for_each_entry(intel_encoder,			\
359 			    &(dev)->mode_config.encoder_list,	\
360 			    base.head)
361 
362 #define for_each_intel_connector(dev, intel_connector)		\
363 	list_for_each_entry(intel_connector,			\
364 			    &(dev)->mode_config.connector_list,	\
365 			    base.head)
366 
367 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
368 	list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
369 		for_each_if ((intel_encoder)->base.crtc == (__crtc))
370 
371 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
372 	list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
373 		for_each_if ((intel_connector)->base.encoder == (__encoder))
374 
375 #define for_each_power_domain(domain, mask)				\
376 	for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)	\
377 		for_each_if ((1 << (domain)) & (mask))
378 
379 struct drm_i915_private;
380 struct i915_mm_struct;
381 struct i915_mmu_object;
382 
383 struct drm_i915_file_private {
384 	struct drm_i915_private *dev_priv;
385 	struct drm_file *file;
386 
387 	struct {
388 		spinlock_t lock;
389 		struct list_head request_list;
390 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
391  * chosen to prevent the CPU getting more than a frame ahead of the GPU
392  * (when using lax throttling for the frontbuffer). We also use it to
393  * offer free GPU waitboosts for severely congested workloads.
394  */
395 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
396 	} mm;
397 	struct idr context_idr;
398 
399 	struct intel_rps_client {
400 		struct list_head link;
401 		unsigned boosts;
402 	} rps;
403 
404 	unsigned int bsd_ring;
405 };
406 
407 /* Used by dp and fdi links */
408 struct intel_link_m_n {
409 	uint32_t	tu;
410 	uint32_t	gmch_m;
411 	uint32_t	gmch_n;
412 	uint32_t	link_m;
413 	uint32_t	link_n;
414 };
415 
416 void intel_link_compute_m_n(int bpp, int nlanes,
417 			    int pixel_clock, int link_clock,
418 			    struct intel_link_m_n *m_n);
419 
420 /* Interface history:
421  *
422  * 1.1: Original.
423  * 1.2: Add Power Management
424  * 1.3: Add vblank support
425  * 1.4: Fix cmdbuffer path, add heap destroy
426  * 1.5: Add vblank pipe configuration
427  * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
428  *      - Support vertical blank on secondary display pipe
429  */
430 #define DRIVER_MAJOR		1
431 #define DRIVER_MINOR		6
432 #define DRIVER_PATCHLEVEL	0
433 
434 #define WATCH_LISTS	0
435 
436 struct opregion_header;
437 struct opregion_acpi;
438 struct opregion_swsci;
439 struct opregion_asle;
440 
441 struct intel_opregion {
442 	struct opregion_header *header;
443 	struct opregion_acpi *acpi;
444 	struct opregion_swsci *swsci;
445 	u32 swsci_gbda_sub_functions;
446 	u32 swsci_sbcb_sub_functions;
447 	struct opregion_asle *asle;
448 	void *rvda;
449 	const void *vbt;
450 	u32 vbt_size;
451 	u32 *lid_state;
452 	struct work_struct asle_work;
453 };
454 #define OPREGION_SIZE            (8*1024)
455 
456 struct intel_overlay;
457 struct intel_overlay_error_state;
458 
459 #define I915_FENCE_REG_NONE -1
460 #define I915_MAX_NUM_FENCES 32
461 /* 32 fences + sign bit for FENCE_REG_NONE */
462 #define I915_MAX_NUM_FENCE_BITS 6
463 
464 struct drm_i915_fence_reg {
465 	struct list_head lru_list;
466 	struct drm_i915_gem_object *obj;
467 	int pin_count;
468 };
469 
470 struct sdvo_device_mapping {
471 	u8 initialized;
472 	u8 dvo_port;
473 	u8 slave_addr;
474 	u8 dvo_wiring;
475 	u8 i2c_pin;
476 	u8 ddc_pin;
477 };
478 
479 struct intel_display_error_state;
480 
481 struct drm_i915_error_state {
482 	struct kref ref;
483 	struct timeval time;
484 
485 	char error_msg[128];
486 	bool simulated;
487 	int iommu;
488 	u32 reset_count;
489 	u32 suspend_count;
490 
491 	/* Generic register state */
492 	u32 eir;
493 	u32 pgtbl_er;
494 	u32 ier;
495 	u32 gtier[4];
496 	u32 ccid;
497 	u32 derrmr;
498 	u32 forcewake;
499 	u32 error; /* gen6+ */
500 	u32 err_int; /* gen7 */
501 	u32 fault_data0; /* gen8, gen9 */
502 	u32 fault_data1; /* gen8, gen9 */
503 	u32 done_reg;
504 	u32 gac_eco;
505 	u32 gam_ecochk;
506 	u32 gab_ctl;
507 	u32 gfx_mode;
508 	u32 extra_instdone[I915_NUM_INSTDONE_REG];
509 	u64 fence[I915_MAX_NUM_FENCES];
510 	struct intel_overlay_error_state *overlay;
511 	struct intel_display_error_state *display;
512 	struct drm_i915_error_object *semaphore_obj;
513 
514 	struct drm_i915_error_ring {
515 		bool valid;
516 		/* Software tracked state */
517 		bool waiting;
518 		int num_waiters;
519 		int hangcheck_score;
520 		enum intel_ring_hangcheck_action hangcheck_action;
521 		int num_requests;
522 
523 		/* our own tracking of ring head and tail */
524 		u32 cpu_ring_head;
525 		u32 cpu_ring_tail;
526 
527 		u32 last_seqno;
528 		u32 semaphore_seqno[I915_NUM_ENGINES - 1];
529 
530 		/* Register state */
531 		u32 start;
532 		u32 tail;
533 		u32 head;
534 		u32 ctl;
535 		u32 hws;
536 		u32 ipeir;
537 		u32 ipehr;
538 		u32 instdone;
539 		u32 bbstate;
540 		u32 instpm;
541 		u32 instps;
542 		u32 seqno;
543 		u64 bbaddr;
544 		u64 acthd;
545 		u32 fault_reg;
546 		u64 faddr;
547 		u32 rc_psmi; /* sleep state */
548 		u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
549 
550 		struct drm_i915_error_object {
551 			int page_count;
552 			u64 gtt_offset;
553 			u32 *pages[0];
554 		} *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
555 
556 		struct drm_i915_error_object *wa_ctx;
557 
558 		struct drm_i915_error_request {
559 			long jiffies;
560 			u32 seqno;
561 			u32 tail;
562 		} *requests;
563 
564 		struct drm_i915_error_waiter {
565 			char comm[TASK_COMM_LEN];
566 			pid_t pid;
567 			u32 seqno;
568 		} *waiters;
569 
570 		struct {
571 			u32 gfx_mode;
572 			union {
573 				u64 pdp[4];
574 				u32 pp_dir_base;
575 			};
576 		} vm_info;
577 
578 		pid_t pid;
579 		char comm[TASK_COMM_LEN];
580 	} ring[I915_NUM_ENGINES];
581 
582 	struct drm_i915_error_buffer {
583 		u32 size;
584 		u32 name;
585 		u32 rseqno[I915_NUM_ENGINES], wseqno;
586 		u64 gtt_offset;
587 		u32 read_domains;
588 		u32 write_domain;
589 		s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
590 		s32 pinned:2;
591 		u32 tiling:2;
592 		u32 dirty:1;
593 		u32 purgeable:1;
594 		u32 userptr:1;
595 		s32 ring:4;
596 		u32 cache_level:3;
597 	} **active_bo, **pinned_bo;
598 
599 	u32 *active_bo_count, *pinned_bo_count;
600 	u32 vm_count;
601 };
602 
603 struct intel_connector;
604 struct intel_encoder;
605 struct intel_crtc_state;
606 struct intel_initial_plane_config;
607 struct intel_crtc;
608 struct intel_limit;
609 struct dpll;
610 
611 struct drm_i915_display_funcs {
612 	int (*get_display_clock_speed)(struct drm_device *dev);
613 	int (*get_fifo_size)(struct drm_device *dev, int plane);
614 	int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
615 	int (*compute_intermediate_wm)(struct drm_device *dev,
616 				       struct intel_crtc *intel_crtc,
617 				       struct intel_crtc_state *newstate);
618 	void (*initial_watermarks)(struct intel_crtc_state *cstate);
619 	void (*optimize_watermarks)(struct intel_crtc_state *cstate);
620 	int (*compute_global_watermarks)(struct drm_atomic_state *state);
621 	void (*update_wm)(struct drm_crtc *crtc);
622 	int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
623 	void (*modeset_commit_cdclk)(struct drm_atomic_state *state);
624 	/* Returns the active state of the crtc, and if the crtc is active,
625 	 * fills out the pipe-config with the hw state. */
626 	bool (*get_pipe_config)(struct intel_crtc *,
627 				struct intel_crtc_state *);
628 	void (*get_initial_plane_config)(struct intel_crtc *,
629 					 struct intel_initial_plane_config *);
630 	int (*crtc_compute_clock)(struct intel_crtc *crtc,
631 				  struct intel_crtc_state *crtc_state);
632 	void (*crtc_enable)(struct drm_crtc *crtc);
633 	void (*crtc_disable)(struct drm_crtc *crtc);
634 	void (*audio_codec_enable)(struct drm_connector *connector,
635 				   struct intel_encoder *encoder,
636 				   const struct drm_display_mode *adjusted_mode);
637 	void (*audio_codec_disable)(struct intel_encoder *encoder);
638 	void (*fdi_link_train)(struct drm_crtc *crtc);
639 	void (*init_clock_gating)(struct drm_device *dev);
640 	int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
641 			  struct drm_framebuffer *fb,
642 			  struct drm_i915_gem_object *obj,
643 			  struct drm_i915_gem_request *req,
644 			  uint32_t flags);
645 	void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
646 	/* clock updates for mode set */
647 	/* cursor updates */
648 	/* render clock increase/decrease */
649 	/* display clock increase/decrease */
650 	/* pll clock increase/decrease */
651 
652 	void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
653 	void (*load_luts)(struct drm_crtc_state *crtc_state);
654 };
655 
656 enum forcewake_domain_id {
657 	FW_DOMAIN_ID_RENDER = 0,
658 	FW_DOMAIN_ID_BLITTER,
659 	FW_DOMAIN_ID_MEDIA,
660 
661 	FW_DOMAIN_ID_COUNT
662 };
663 
664 enum forcewake_domains {
665 	FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER),
666 	FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER),
667 	FORCEWAKE_MEDIA	= (1 << FW_DOMAIN_ID_MEDIA),
668 	FORCEWAKE_ALL = (FORCEWAKE_RENDER |
669 			 FORCEWAKE_BLITTER |
670 			 FORCEWAKE_MEDIA)
671 };
672 
673 #define FW_REG_READ  (1)
674 #define FW_REG_WRITE (2)
675 
676 enum forcewake_domains
677 intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv,
678 			       i915_reg_t reg, unsigned int op);
679 
680 struct intel_uncore_funcs {
681 	void (*force_wake_get)(struct drm_i915_private *dev_priv,
682 							enum forcewake_domains domains);
683 	void (*force_wake_put)(struct drm_i915_private *dev_priv,
684 							enum forcewake_domains domains);
685 
686 	uint8_t  (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
687 	uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
688 	uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
689 	uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
690 
691 	void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r,
692 				uint8_t val, bool trace);
693 	void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r,
694 				uint16_t val, bool trace);
695 	void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r,
696 				uint32_t val, bool trace);
697 	void (*mmio_writeq)(struct drm_i915_private *dev_priv, i915_reg_t r,
698 				uint64_t val, bool trace);
699 };
700 
701 struct intel_uncore {
702 	spinlock_t lock; /** lock is also taken in irq contexts. */
703 
704 	struct intel_uncore_funcs funcs;
705 
706 	unsigned fifo_count;
707 	enum forcewake_domains fw_domains;
708 
709 	struct intel_uncore_forcewake_domain {
710 		struct drm_i915_private *i915;
711 		enum forcewake_domain_id id;
712 		enum forcewake_domains mask;
713 		unsigned wake_count;
714 		struct hrtimer timer;
715 		i915_reg_t reg_set;
716 		u32 val_set;
717 		u32 val_clear;
718 		i915_reg_t reg_ack;
719 		i915_reg_t reg_post;
720 		u32 val_reset;
721 	} fw_domain[FW_DOMAIN_ID_COUNT];
722 
723 	int unclaimed_mmio_check;
724 };
725 
726 /* Iterate over initialised fw domains */
727 #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \
728 	for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \
729 	     (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \
730 	     (domain__)++) \
731 		for_each_if ((mask__) & (domain__)->mask)
732 
733 #define for_each_fw_domain(domain__, dev_priv__) \
734 	for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__)
735 
736 #define CSR_VERSION(major, minor)	((major) << 16 | (minor))
737 #define CSR_VERSION_MAJOR(version)	((version) >> 16)
738 #define CSR_VERSION_MINOR(version)	((version) & 0xffff)
739 
740 struct intel_csr {
741 	struct work_struct work;
742 	const char *fw_path;
743 	uint32_t *dmc_payload;
744 	uint32_t dmc_fw_size;
745 	uint32_t version;
746 	uint32_t mmio_count;
747 	i915_reg_t mmioaddr[8];
748 	uint32_t mmiodata[8];
749 	uint32_t dc_state;
750 	uint32_t allowed_dc_mask;
751 };
752 
753 #define DEV_INFO_FOR_EACH_FLAG(func, sep) \
754 	func(is_mobile) sep \
755 	func(is_i85x) sep \
756 	func(is_i915g) sep \
757 	func(is_i945gm) sep \
758 	func(is_g33) sep \
759 	func(need_gfx_hws) sep \
760 	func(is_g4x) sep \
761 	func(is_pineview) sep \
762 	func(is_broadwater) sep \
763 	func(is_crestline) sep \
764 	func(is_ivybridge) sep \
765 	func(is_valleyview) sep \
766 	func(is_cherryview) sep \
767 	func(is_haswell) sep \
768 	func(is_broadwell) sep \
769 	func(is_skylake) sep \
770 	func(is_broxton) sep \
771 	func(is_kabylake) sep \
772 	func(is_preliminary) sep \
773 	func(has_fbc) sep \
774 	func(has_pipe_cxsr) sep \
775 	func(has_hotplug) sep \
776 	func(cursor_needs_physical) sep \
777 	func(has_overlay) sep \
778 	func(overlay_needs_physical) sep \
779 	func(supports_tv) sep \
780 	func(has_llc) sep \
781 	func(has_snoop) sep \
782 	func(has_ddi) sep \
783 	func(has_fpga_dbg) sep \
784 	func(has_pooled_eu)
785 
786 #define DEFINE_FLAG(name) u8 name:1
787 #define SEP_SEMICOLON ;
788 
789 struct intel_device_info {
790 	u32 display_mmio_offset;
791 	u16 device_id;
792 	u8 num_pipes;
793 	u8 num_sprites[I915_MAX_PIPES];
794 	u8 gen;
795 	u16 gen_mask;
796 	u8 ring_mask; /* Rings supported by the HW */
797 	DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG, SEP_SEMICOLON);
798 	/* Register offsets for the various display pipes and transcoders */
799 	int pipe_offsets[I915_MAX_TRANSCODERS];
800 	int trans_offsets[I915_MAX_TRANSCODERS];
801 	int palette_offsets[I915_MAX_PIPES];
802 	int cursor_offsets[I915_MAX_PIPES];
803 
804 	/* Slice/subslice/EU info */
805 	u8 slice_total;
806 	u8 subslice_total;
807 	u8 subslice_per_slice;
808 	u8 eu_total;
809 	u8 eu_per_subslice;
810 	u8 min_eu_in_pool;
811 	/* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
812 	u8 subslice_7eu[3];
813 	u8 has_slice_pg:1;
814 	u8 has_subslice_pg:1;
815 	u8 has_eu_pg:1;
816 
817 	struct color_luts {
818 		u16 degamma_lut_size;
819 		u16 gamma_lut_size;
820 	} color;
821 };
822 
823 #undef DEFINE_FLAG
824 #undef SEP_SEMICOLON
825 
826 enum i915_cache_level {
827 	I915_CACHE_NONE = 0,
828 	I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
829 	I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
830 			      caches, eg sampler/render caches, and the
831 			      large Last-Level-Cache. LLC is coherent with
832 			      the CPU, but L3 is only visible to the GPU. */
833 	I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
834 };
835 
836 struct i915_ctx_hang_stats {
837 	/* This context had batch pending when hang was declared */
838 	unsigned batch_pending;
839 
840 	/* This context had batch active when hang was declared */
841 	unsigned batch_active;
842 
843 	/* Time when this context was last blamed for a GPU reset */
844 	unsigned long guilty_ts;
845 
846 	/* If the contexts causes a second GPU hang within this time,
847 	 * it is permanently banned from submitting any more work.
848 	 */
849 	unsigned long ban_period_seconds;
850 
851 	/* This context is banned to submit more work */
852 	bool banned;
853 };
854 
855 /* This must match up with the value previously used for execbuf2.rsvd1. */
856 #define DEFAULT_CONTEXT_HANDLE 0
857 
858 /**
859  * struct i915_gem_context - as the name implies, represents a context.
860  * @ref: reference count.
861  * @user_handle: userspace tracking identity for this context.
862  * @remap_slice: l3 row remapping information.
863  * @flags: context specific flags:
864  *         CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0.
865  * @file_priv: filp associated with this context (NULL for global default
866  *	       context).
867  * @hang_stats: information about the role of this context in possible GPU
868  *		hangs.
869  * @ppgtt: virtual memory space used by this context.
870  * @legacy_hw_ctx: render context backing object and whether it is correctly
871  *                initialized (legacy ring submission mechanism only).
872  * @link: link in the global list of contexts.
873  *
874  * Contexts are memory images used by the hardware to store copies of their
875  * internal state.
876  */
877 struct i915_gem_context {
878 	struct kref ref;
879 	struct drm_i915_private *i915;
880 	struct drm_i915_file_private *file_priv;
881 	struct i915_hw_ppgtt *ppgtt;
882 
883 	struct i915_ctx_hang_stats hang_stats;
884 
885 	unsigned long flags;
886 #define CONTEXT_NO_ZEROMAP		BIT(0)
887 #define CONTEXT_NO_ERROR_CAPTURE	BIT(1)
888 
889 	/* Unique identifier for this context, used by the hw for tracking */
890 	unsigned int hw_id;
891 	u32 user_handle;
892 
893 	u32 ggtt_alignment;
894 
895 	struct intel_context {
896 		struct drm_i915_gem_object *state;
897 		struct intel_ringbuffer *ringbuf;
898 		struct i915_vma *lrc_vma;
899 		uint32_t *lrc_reg_state;
900 		u64 lrc_desc;
901 		int pin_count;
902 		bool initialised;
903 	} engine[I915_NUM_ENGINES];
904 	u32 ring_size;
905 	u32 desc_template;
906 	struct atomic_notifier_head status_notifier;
907 	bool execlists_force_single_submission;
908 
909 	struct list_head link;
910 
911 	u8 remap_slice;
912 };
913 
914 enum fb_op_origin {
915 	ORIGIN_GTT,
916 	ORIGIN_CPU,
917 	ORIGIN_CS,
918 	ORIGIN_FLIP,
919 	ORIGIN_DIRTYFB,
920 };
921 
922 struct intel_fbc {
923 	/* This is always the inner lock when overlapping with struct_mutex and
924 	 * it's the outer lock when overlapping with stolen_lock. */
925 	struct mutex lock;
926 	unsigned threshold;
927 	unsigned int possible_framebuffer_bits;
928 	unsigned int busy_bits;
929 	unsigned int visible_pipes_mask;
930 	struct intel_crtc *crtc;
931 
932 	struct drm_mm_node compressed_fb;
933 	struct drm_mm_node *compressed_llb;
934 
935 	bool false_color;
936 
937 	bool enabled;
938 	bool active;
939 
940 	struct intel_fbc_state_cache {
941 		struct {
942 			unsigned int mode_flags;
943 			uint32_t hsw_bdw_pixel_rate;
944 		} crtc;
945 
946 		struct {
947 			unsigned int rotation;
948 			int src_w;
949 			int src_h;
950 			bool visible;
951 		} plane;
952 
953 		struct {
954 			u64 ilk_ggtt_offset;
955 			uint32_t pixel_format;
956 			unsigned int stride;
957 			int fence_reg;
958 			unsigned int tiling_mode;
959 		} fb;
960 	} state_cache;
961 
962 	struct intel_fbc_reg_params {
963 		struct {
964 			enum pipe pipe;
965 			enum plane plane;
966 			unsigned int fence_y_offset;
967 		} crtc;
968 
969 		struct {
970 			u64 ggtt_offset;
971 			uint32_t pixel_format;
972 			unsigned int stride;
973 			int fence_reg;
974 		} fb;
975 
976 		int cfb_size;
977 	} params;
978 
979 	struct intel_fbc_work {
980 		bool scheduled;
981 		u32 scheduled_vblank;
982 		struct work_struct work;
983 	} work;
984 
985 	const char *no_fbc_reason;
986 };
987 
988 /**
989  * HIGH_RR is the highest eDP panel refresh rate read from EDID
990  * LOW_RR is the lowest eDP panel refresh rate found from EDID
991  * parsing for same resolution.
992  */
993 enum drrs_refresh_rate_type {
994 	DRRS_HIGH_RR,
995 	DRRS_LOW_RR,
996 	DRRS_MAX_RR, /* RR count */
997 };
998 
999 enum drrs_support_type {
1000 	DRRS_NOT_SUPPORTED = 0,
1001 	STATIC_DRRS_SUPPORT = 1,
1002 	SEAMLESS_DRRS_SUPPORT = 2
1003 };
1004 
1005 struct intel_dp;
1006 struct i915_drrs {
1007 	struct mutex mutex;
1008 	struct delayed_work work;
1009 	struct intel_dp *dp;
1010 	unsigned busy_frontbuffer_bits;
1011 	enum drrs_refresh_rate_type refresh_rate_type;
1012 	enum drrs_support_type type;
1013 };
1014 
1015 struct i915_psr {
1016 	struct mutex lock;
1017 	bool sink_support;
1018 	bool source_ok;
1019 	struct intel_dp *enabled;
1020 	bool active;
1021 	struct delayed_work work;
1022 	unsigned busy_frontbuffer_bits;
1023 	bool psr2_support;
1024 	bool aux_frame_sync;
1025 	bool link_standby;
1026 };
1027 
1028 enum intel_pch {
1029 	PCH_NONE = 0,	/* No PCH present */
1030 	PCH_IBX,	/* Ibexpeak PCH */
1031 	PCH_CPT,	/* Cougarpoint PCH */
1032 	PCH_LPT,	/* Lynxpoint PCH */
1033 	PCH_SPT,        /* Sunrisepoint PCH */
1034 	PCH_KBP,        /* Kabypoint PCH */
1035 	PCH_NOP,
1036 };
1037 
1038 enum intel_sbi_destination {
1039 	SBI_ICLK,
1040 	SBI_MPHY,
1041 };
1042 
1043 #define QUIRK_PIPEA_FORCE (1<<0)
1044 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1045 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1046 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1047 #define QUIRK_PIPEB_FORCE (1<<4)
1048 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1049 
1050 struct intel_fbdev;
1051 struct intel_fbc_work;
1052 
1053 struct intel_gmbus {
1054 	struct i2c_adapter adapter;
1055 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1056 	u32 force_bit;
1057 	u32 reg0;
1058 	i915_reg_t gpio_reg;
1059 	struct i2c_algo_bit_data bit_algo;
1060 	struct drm_i915_private *dev_priv;
1061 };
1062 
1063 struct i915_suspend_saved_registers {
1064 	u32 saveDSPARB;
1065 	u32 saveLVDS;
1066 	u32 savePP_ON_DELAYS;
1067 	u32 savePP_OFF_DELAYS;
1068 	u32 savePP_ON;
1069 	u32 savePP_OFF;
1070 	u32 savePP_CONTROL;
1071 	u32 savePP_DIVISOR;
1072 	u32 saveFBC_CONTROL;
1073 	u32 saveCACHE_MODE_0;
1074 	u32 saveMI_ARB_STATE;
1075 	u32 saveSWF0[16];
1076 	u32 saveSWF1[16];
1077 	u32 saveSWF3[3];
1078 	uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1079 	u32 savePCH_PORT_HOTPLUG;
1080 	u16 saveGCDGMBUS;
1081 };
1082 
1083 struct vlv_s0ix_state {
1084 	/* GAM */
1085 	u32 wr_watermark;
1086 	u32 gfx_prio_ctrl;
1087 	u32 arb_mode;
1088 	u32 gfx_pend_tlb0;
1089 	u32 gfx_pend_tlb1;
1090 	u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1091 	u32 media_max_req_count;
1092 	u32 gfx_max_req_count;
1093 	u32 render_hwsp;
1094 	u32 ecochk;
1095 	u32 bsd_hwsp;
1096 	u32 blt_hwsp;
1097 	u32 tlb_rd_addr;
1098 
1099 	/* MBC */
1100 	u32 g3dctl;
1101 	u32 gsckgctl;
1102 	u32 mbctl;
1103 
1104 	/* GCP */
1105 	u32 ucgctl1;
1106 	u32 ucgctl3;
1107 	u32 rcgctl1;
1108 	u32 rcgctl2;
1109 	u32 rstctl;
1110 	u32 misccpctl;
1111 
1112 	/* GPM */
1113 	u32 gfxpause;
1114 	u32 rpdeuhwtc;
1115 	u32 rpdeuc;
1116 	u32 ecobus;
1117 	u32 pwrdwnupctl;
1118 	u32 rp_down_timeout;
1119 	u32 rp_deucsw;
1120 	u32 rcubmabdtmr;
1121 	u32 rcedata;
1122 	u32 spare2gh;
1123 
1124 	/* Display 1 CZ domain */
1125 	u32 gt_imr;
1126 	u32 gt_ier;
1127 	u32 pm_imr;
1128 	u32 pm_ier;
1129 	u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1130 
1131 	/* GT SA CZ domain */
1132 	u32 tilectl;
1133 	u32 gt_fifoctl;
1134 	u32 gtlc_wake_ctrl;
1135 	u32 gtlc_survive;
1136 	u32 pmwgicz;
1137 
1138 	/* Display 2 CZ domain */
1139 	u32 gu_ctl0;
1140 	u32 gu_ctl1;
1141 	u32 pcbr;
1142 	u32 clock_gate_dis2;
1143 };
1144 
1145 struct intel_rps_ei {
1146 	u32 cz_clock;
1147 	u32 render_c0;
1148 	u32 media_c0;
1149 };
1150 
1151 struct intel_gen6_power_mgmt {
1152 	/*
1153 	 * work, interrupts_enabled and pm_iir are protected by
1154 	 * dev_priv->irq_lock
1155 	 */
1156 	struct work_struct work;
1157 	bool interrupts_enabled;
1158 	u32 pm_iir;
1159 
1160 	u32 pm_intr_keep;
1161 
1162 	/* Frequencies are stored in potentially platform dependent multiples.
1163 	 * In other words, *_freq needs to be multiplied by X to be interesting.
1164 	 * Soft limits are those which are used for the dynamic reclocking done
1165 	 * by the driver (raise frequencies under heavy loads, and lower for
1166 	 * lighter loads). Hard limits are those imposed by the hardware.
1167 	 *
1168 	 * A distinction is made for overclocking, which is never enabled by
1169 	 * default, and is considered to be above the hard limit if it's
1170 	 * possible at all.
1171 	 */
1172 	u8 cur_freq;		/* Current frequency (cached, may not == HW) */
1173 	u8 min_freq_softlimit;	/* Minimum frequency permitted by the driver */
1174 	u8 max_freq_softlimit;	/* Max frequency permitted by the driver */
1175 	u8 max_freq;		/* Maximum frequency, RP0 if not overclocking */
1176 	u8 min_freq;		/* AKA RPn. Minimum frequency */
1177 	u8 idle_freq;		/* Frequency to request when we are idle */
1178 	u8 efficient_freq;	/* AKA RPe. Pre-determined balanced frequency */
1179 	u8 rp1_freq;		/* "less than" RP0 power/freqency */
1180 	u8 rp0_freq;		/* Non-overclocked max frequency. */
1181 	u16 gpll_ref_freq;	/* vlv/chv GPLL reference frequency */
1182 
1183 	u8 up_threshold; /* Current %busy required to uplock */
1184 	u8 down_threshold; /* Current %busy required to downclock */
1185 
1186 	int last_adj;
1187 	enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1188 
1189 	spinlock_t client_lock;
1190 	struct list_head clients;
1191 	bool client_boost;
1192 
1193 	bool enabled;
1194 	struct delayed_work delayed_resume_work;
1195 	unsigned boosts;
1196 
1197 	struct intel_rps_client semaphores, mmioflips;
1198 
1199 	/* manual wa residency calculations */
1200 	struct intel_rps_ei up_ei, down_ei;
1201 
1202 	/*
1203 	 * Protects RPS/RC6 register access and PCU communication.
1204 	 * Must be taken after struct_mutex if nested. Note that
1205 	 * this lock may be held for long periods of time when
1206 	 * talking to hw - so only take it when talking to hw!
1207 	 */
1208 	struct mutex hw_lock;
1209 };
1210 
1211 /* defined intel_pm.c */
1212 extern spinlock_t mchdev_lock;
1213 
1214 struct intel_ilk_power_mgmt {
1215 	u8 cur_delay;
1216 	u8 min_delay;
1217 	u8 max_delay;
1218 	u8 fmax;
1219 	u8 fstart;
1220 
1221 	u64 last_count1;
1222 	unsigned long last_time1;
1223 	unsigned long chipset_power;
1224 	u64 last_count2;
1225 	u64 last_time2;
1226 	unsigned long gfx_power;
1227 	u8 corr;
1228 
1229 	int c_m;
1230 	int r_t;
1231 };
1232 
1233 struct drm_i915_private;
1234 struct i915_power_well;
1235 
1236 struct i915_power_well_ops {
1237 	/*
1238 	 * Synchronize the well's hw state to match the current sw state, for
1239 	 * example enable/disable it based on the current refcount. Called
1240 	 * during driver init and resume time, possibly after first calling
1241 	 * the enable/disable handlers.
1242 	 */
1243 	void (*sync_hw)(struct drm_i915_private *dev_priv,
1244 			struct i915_power_well *power_well);
1245 	/*
1246 	 * Enable the well and resources that depend on it (for example
1247 	 * interrupts located on the well). Called after the 0->1 refcount
1248 	 * transition.
1249 	 */
1250 	void (*enable)(struct drm_i915_private *dev_priv,
1251 		       struct i915_power_well *power_well);
1252 	/*
1253 	 * Disable the well and resources that depend on it. Called after
1254 	 * the 1->0 refcount transition.
1255 	 */
1256 	void (*disable)(struct drm_i915_private *dev_priv,
1257 			struct i915_power_well *power_well);
1258 	/* Returns the hw enabled state. */
1259 	bool (*is_enabled)(struct drm_i915_private *dev_priv,
1260 			   struct i915_power_well *power_well);
1261 };
1262 
1263 /* Power well structure for haswell */
1264 struct i915_power_well {
1265 	const char *name;
1266 	bool always_on;
1267 	/* power well enable/disable usage count */
1268 	int count;
1269 	/* cached hw enabled state */
1270 	bool hw_enabled;
1271 	unsigned long domains;
1272 	unsigned long data;
1273 	const struct i915_power_well_ops *ops;
1274 };
1275 
1276 struct i915_power_domains {
1277 	/*
1278 	 * Power wells needed for initialization at driver init and suspend
1279 	 * time are on. They are kept on until after the first modeset.
1280 	 */
1281 	bool init_power_on;
1282 	bool initializing;
1283 	int power_well_count;
1284 
1285 	struct mutex lock;
1286 	int domain_use_count[POWER_DOMAIN_NUM];
1287 	struct i915_power_well *power_wells;
1288 };
1289 
1290 #define MAX_L3_SLICES 2
1291 struct intel_l3_parity {
1292 	u32 *remap_info[MAX_L3_SLICES];
1293 	struct work_struct error_work;
1294 	int which_slice;
1295 };
1296 
1297 struct i915_gem_mm {
1298 	/** Memory allocator for GTT stolen memory */
1299 	struct drm_mm stolen;
1300 	/** Protects the usage of the GTT stolen memory allocator. This is
1301 	 * always the inner lock when overlapping with struct_mutex. */
1302 	struct mutex stolen_lock;
1303 
1304 	/** List of all objects in gtt_space. Used to restore gtt
1305 	 * mappings on resume */
1306 	struct list_head bound_list;
1307 	/**
1308 	 * List of objects which are not bound to the GTT (thus
1309 	 * are idle and not used by the GPU) but still have
1310 	 * (presumably uncached) pages still attached.
1311 	 */
1312 	struct list_head unbound_list;
1313 
1314 	/** Usable portion of the GTT for GEM */
1315 	unsigned long stolen_base; /* limited to low memory (32-bit) */
1316 
1317 	/** PPGTT used for aliasing the PPGTT with the GTT */
1318 	struct i915_hw_ppgtt *aliasing_ppgtt;
1319 
1320 	struct notifier_block oom_notifier;
1321 	struct notifier_block vmap_notifier;
1322 	struct shrinker shrinker;
1323 	bool shrinker_no_lock_stealing;
1324 
1325 	/** LRU list of objects with fence regs on them. */
1326 	struct list_head fence_list;
1327 
1328 	/**
1329 	 * Are we in a non-interruptible section of code like
1330 	 * modesetting?
1331 	 */
1332 	bool interruptible;
1333 
1334 	/* the indicator for dispatch video commands on two BSD rings */
1335 	unsigned int bsd_ring_dispatch_index;
1336 
1337 	/** Bit 6 swizzling required for X tiling */
1338 	uint32_t bit_6_swizzle_x;
1339 	/** Bit 6 swizzling required for Y tiling */
1340 	uint32_t bit_6_swizzle_y;
1341 
1342 	/* accounting, useful for userland debugging */
1343 	spinlock_t object_stat_lock;
1344 	size_t object_memory;
1345 	u32 object_count;
1346 };
1347 
1348 struct drm_i915_error_state_buf {
1349 	struct drm_i915_private *i915;
1350 	unsigned bytes;
1351 	unsigned size;
1352 	int err;
1353 	u8 *buf;
1354 	loff_t start;
1355 	loff_t pos;
1356 };
1357 
1358 struct i915_error_state_file_priv {
1359 	struct drm_device *dev;
1360 	struct drm_i915_error_state *error;
1361 };
1362 
1363 struct i915_gpu_error {
1364 	/* For hangcheck timer */
1365 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1366 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1367 	/* Hang gpu twice in this window and your context gets banned */
1368 #define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000)
1369 
1370 	struct delayed_work hangcheck_work;
1371 
1372 	/* For reset and error_state handling. */
1373 	spinlock_t lock;
1374 	/* Protected by the above dev->gpu_error.lock. */
1375 	struct drm_i915_error_state *first_error;
1376 
1377 	unsigned long missed_irq_rings;
1378 
1379 	/**
1380 	 * State variable controlling the reset flow and count
1381 	 *
1382 	 * This is a counter which gets incremented when reset is triggered,
1383 	 * and again when reset has been handled. So odd values (lowest bit set)
1384 	 * means that reset is in progress and even values that
1385 	 * (reset_counter >> 1):th reset was successfully completed.
1386 	 *
1387 	 * If reset is not completed succesfully, the I915_WEDGE bit is
1388 	 * set meaning that hardware is terminally sour and there is no
1389 	 * recovery. All waiters on the reset_queue will be woken when
1390 	 * that happens.
1391 	 *
1392 	 * This counter is used by the wait_seqno code to notice that reset
1393 	 * event happened and it needs to restart the entire ioctl (since most
1394 	 * likely the seqno it waited for won't ever signal anytime soon).
1395 	 *
1396 	 * This is important for lock-free wait paths, where no contended lock
1397 	 * naturally enforces the correct ordering between the bail-out of the
1398 	 * waiter and the gpu reset work code.
1399 	 */
1400 	atomic_t reset_counter;
1401 
1402 #define I915_RESET_IN_PROGRESS_FLAG	1
1403 #define I915_WEDGED			(1 << 31)
1404 
1405 	/**
1406 	 * Waitqueue to signal when a hang is detected. Used to for waiters
1407 	 * to release the struct_mutex for the reset to procede.
1408 	 */
1409 	wait_queue_head_t wait_queue;
1410 
1411 	/**
1412 	 * Waitqueue to signal when the reset has completed. Used by clients
1413 	 * that wait for dev_priv->mm.wedged to settle.
1414 	 */
1415 	wait_queue_head_t reset_queue;
1416 
1417 	/* For missed irq/seqno simulation. */
1418 	unsigned long test_irq_rings;
1419 };
1420 
1421 enum modeset_restore {
1422 	MODESET_ON_LID_OPEN,
1423 	MODESET_DONE,
1424 	MODESET_SUSPENDED,
1425 };
1426 
1427 #define DP_AUX_A 0x40
1428 #define DP_AUX_B 0x10
1429 #define DP_AUX_C 0x20
1430 #define DP_AUX_D 0x30
1431 
1432 #define DDC_PIN_B  0x05
1433 #define DDC_PIN_C  0x04
1434 #define DDC_PIN_D  0x06
1435 
1436 struct ddi_vbt_port_info {
1437 	/*
1438 	 * This is an index in the HDMI/DVI DDI buffer translation table.
1439 	 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1440 	 * populate this field.
1441 	 */
1442 #define HDMI_LEVEL_SHIFT_UNKNOWN	0xff
1443 	uint8_t hdmi_level_shift;
1444 
1445 	uint8_t supports_dvi:1;
1446 	uint8_t supports_hdmi:1;
1447 	uint8_t supports_dp:1;
1448 
1449 	uint8_t alternate_aux_channel;
1450 	uint8_t alternate_ddc_pin;
1451 
1452 	uint8_t dp_boost_level;
1453 	uint8_t hdmi_boost_level;
1454 };
1455 
1456 enum psr_lines_to_wait {
1457 	PSR_0_LINES_TO_WAIT = 0,
1458 	PSR_1_LINE_TO_WAIT,
1459 	PSR_4_LINES_TO_WAIT,
1460 	PSR_8_LINES_TO_WAIT
1461 };
1462 
1463 struct intel_vbt_data {
1464 	struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1465 	struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1466 
1467 	/* Feature bits */
1468 	unsigned int int_tv_support:1;
1469 	unsigned int lvds_dither:1;
1470 	unsigned int lvds_vbt:1;
1471 	unsigned int int_crt_support:1;
1472 	unsigned int lvds_use_ssc:1;
1473 	unsigned int display_clock_mode:1;
1474 	unsigned int fdi_rx_polarity_inverted:1;
1475 	unsigned int panel_type:4;
1476 	int lvds_ssc_freq;
1477 	unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1478 
1479 	enum drrs_support_type drrs_type;
1480 
1481 	struct {
1482 		int rate;
1483 		int lanes;
1484 		int preemphasis;
1485 		int vswing;
1486 		bool low_vswing;
1487 		bool initialized;
1488 		bool support;
1489 		int bpp;
1490 		struct edp_power_seq pps;
1491 	} edp;
1492 
1493 	struct {
1494 		bool full_link;
1495 		bool require_aux_wakeup;
1496 		int idle_frames;
1497 		enum psr_lines_to_wait lines_to_wait;
1498 		int tp1_wakeup_time;
1499 		int tp2_tp3_wakeup_time;
1500 	} psr;
1501 
1502 	struct {
1503 		u16 pwm_freq_hz;
1504 		bool present;
1505 		bool active_low_pwm;
1506 		u8 min_brightness;	/* min_brightness/255 of max */
1507 		enum intel_backlight_type type;
1508 	} backlight;
1509 
1510 	/* MIPI DSI */
1511 	struct {
1512 		u16 panel_id;
1513 		struct mipi_config *config;
1514 		struct mipi_pps_data *pps;
1515 		u8 seq_version;
1516 		u32 size;
1517 		u8 *data;
1518 		const u8 *sequence[MIPI_SEQ_MAX];
1519 	} dsi;
1520 
1521 	int crt_ddc_pin;
1522 
1523 	int child_dev_num;
1524 	union child_device_config *child_dev;
1525 
1526 	struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1527 	struct sdvo_device_mapping sdvo_mappings[2];
1528 };
1529 
1530 enum intel_ddb_partitioning {
1531 	INTEL_DDB_PART_1_2,
1532 	INTEL_DDB_PART_5_6, /* IVB+ */
1533 };
1534 
1535 struct intel_wm_level {
1536 	bool enable;
1537 	uint32_t pri_val;
1538 	uint32_t spr_val;
1539 	uint32_t cur_val;
1540 	uint32_t fbc_val;
1541 };
1542 
1543 struct ilk_wm_values {
1544 	uint32_t wm_pipe[3];
1545 	uint32_t wm_lp[3];
1546 	uint32_t wm_lp_spr[3];
1547 	uint32_t wm_linetime[3];
1548 	bool enable_fbc_wm;
1549 	enum intel_ddb_partitioning partitioning;
1550 };
1551 
1552 struct vlv_pipe_wm {
1553 	uint16_t primary;
1554 	uint16_t sprite[2];
1555 	uint8_t cursor;
1556 };
1557 
1558 struct vlv_sr_wm {
1559 	uint16_t plane;
1560 	uint8_t cursor;
1561 };
1562 
1563 struct vlv_wm_values {
1564 	struct vlv_pipe_wm pipe[3];
1565 	struct vlv_sr_wm sr;
1566 	struct {
1567 		uint8_t cursor;
1568 		uint8_t sprite[2];
1569 		uint8_t primary;
1570 	} ddl[3];
1571 	uint8_t level;
1572 	bool cxsr;
1573 };
1574 
1575 struct skl_ddb_entry {
1576 	uint16_t start, end;	/* in number of blocks, 'end' is exclusive */
1577 };
1578 
1579 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1580 {
1581 	return entry->end - entry->start;
1582 }
1583 
1584 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1585 				       const struct skl_ddb_entry *e2)
1586 {
1587 	if (e1->start == e2->start && e1->end == e2->end)
1588 		return true;
1589 
1590 	return false;
1591 }
1592 
1593 struct skl_ddb_allocation {
1594 	struct skl_ddb_entry pipe[I915_MAX_PIPES];
1595 	struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1596 	struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1597 };
1598 
1599 struct skl_wm_values {
1600 	unsigned dirty_pipes;
1601 	struct skl_ddb_allocation ddb;
1602 	uint32_t wm_linetime[I915_MAX_PIPES];
1603 	uint32_t plane[I915_MAX_PIPES][I915_MAX_PLANES][8];
1604 	uint32_t plane_trans[I915_MAX_PIPES][I915_MAX_PLANES];
1605 };
1606 
1607 struct skl_wm_level {
1608 	bool plane_en[I915_MAX_PLANES];
1609 	uint16_t plane_res_b[I915_MAX_PLANES];
1610 	uint8_t plane_res_l[I915_MAX_PLANES];
1611 };
1612 
1613 /*
1614  * This struct helps tracking the state needed for runtime PM, which puts the
1615  * device in PCI D3 state. Notice that when this happens, nothing on the
1616  * graphics device works, even register access, so we don't get interrupts nor
1617  * anything else.
1618  *
1619  * Every piece of our code that needs to actually touch the hardware needs to
1620  * either call intel_runtime_pm_get or call intel_display_power_get with the
1621  * appropriate power domain.
1622  *
1623  * Our driver uses the autosuspend delay feature, which means we'll only really
1624  * suspend if we stay with zero refcount for a certain amount of time. The
1625  * default value is currently very conservative (see intel_runtime_pm_enable), but
1626  * it can be changed with the standard runtime PM files from sysfs.
1627  *
1628  * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1629  * goes back to false exactly before we reenable the IRQs. We use this variable
1630  * to check if someone is trying to enable/disable IRQs while they're supposed
1631  * to be disabled. This shouldn't happen and we'll print some error messages in
1632  * case it happens.
1633  *
1634  * For more, read the Documentation/power/runtime_pm.txt.
1635  */
1636 struct i915_runtime_pm {
1637 	atomic_t wakeref_count;
1638 	atomic_t atomic_seq;
1639 	bool suspended;
1640 	bool irqs_enabled;
1641 };
1642 
1643 enum intel_pipe_crc_source {
1644 	INTEL_PIPE_CRC_SOURCE_NONE,
1645 	INTEL_PIPE_CRC_SOURCE_PLANE1,
1646 	INTEL_PIPE_CRC_SOURCE_PLANE2,
1647 	INTEL_PIPE_CRC_SOURCE_PF,
1648 	INTEL_PIPE_CRC_SOURCE_PIPE,
1649 	/* TV/DP on pre-gen5/vlv can't use the pipe source. */
1650 	INTEL_PIPE_CRC_SOURCE_TV,
1651 	INTEL_PIPE_CRC_SOURCE_DP_B,
1652 	INTEL_PIPE_CRC_SOURCE_DP_C,
1653 	INTEL_PIPE_CRC_SOURCE_DP_D,
1654 	INTEL_PIPE_CRC_SOURCE_AUTO,
1655 	INTEL_PIPE_CRC_SOURCE_MAX,
1656 };
1657 
1658 struct intel_pipe_crc_entry {
1659 	uint32_t frame;
1660 	uint32_t crc[5];
1661 };
1662 
1663 #define INTEL_PIPE_CRC_ENTRIES_NR	128
1664 struct intel_pipe_crc {
1665 	spinlock_t lock;
1666 	bool opened;		/* exclusive access to the result file */
1667 	struct intel_pipe_crc_entry *entries;
1668 	enum intel_pipe_crc_source source;
1669 	int head, tail;
1670 	wait_queue_head_t wq;
1671 };
1672 
1673 struct i915_frontbuffer_tracking {
1674 	struct mutex lock;
1675 
1676 	/*
1677 	 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1678 	 * scheduled flips.
1679 	 */
1680 	unsigned busy_bits;
1681 	unsigned flip_bits;
1682 };
1683 
1684 struct i915_wa_reg {
1685 	i915_reg_t addr;
1686 	u32 value;
1687 	/* bitmask representing WA bits */
1688 	u32 mask;
1689 };
1690 
1691 /*
1692  * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1693  * allowing it for RCS as we don't foresee any requirement of having
1694  * a whitelist for other engines. When it is really required for
1695  * other engines then the limit need to be increased.
1696  */
1697 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1698 
1699 struct i915_workarounds {
1700 	struct i915_wa_reg reg[I915_MAX_WA_REGS];
1701 	u32 count;
1702 	u32 hw_whitelist_count[I915_NUM_ENGINES];
1703 };
1704 
1705 struct i915_virtual_gpu {
1706 	bool active;
1707 };
1708 
1709 struct i915_execbuffer_params {
1710 	struct drm_device               *dev;
1711 	struct drm_file                 *file;
1712 	uint32_t                        dispatch_flags;
1713 	uint32_t                        args_batch_start_offset;
1714 	uint64_t                        batch_obj_vm_offset;
1715 	struct intel_engine_cs *engine;
1716 	struct drm_i915_gem_object      *batch_obj;
1717 	struct i915_gem_context            *ctx;
1718 	struct drm_i915_gem_request     *request;
1719 };
1720 
1721 /* used in computing the new watermarks state */
1722 struct intel_wm_config {
1723 	unsigned int num_pipes_active;
1724 	bool sprites_enabled;
1725 	bool sprites_scaled;
1726 };
1727 
1728 struct drm_i915_private {
1729 	struct drm_device drm;
1730 
1731 	struct kmem_cache *objects;
1732 	struct kmem_cache *vmas;
1733 	struct kmem_cache *requests;
1734 
1735 	const struct intel_device_info info;
1736 
1737 	int relative_constants_mode;
1738 
1739 	void __iomem *regs;
1740 
1741 	struct intel_uncore uncore;
1742 
1743 	struct i915_virtual_gpu vgpu;
1744 
1745 	struct intel_gvt gvt;
1746 
1747 	struct intel_guc guc;
1748 
1749 	struct intel_csr csr;
1750 
1751 	struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1752 
1753 	/** gmbus_mutex protects against concurrent usage of the single hw gmbus
1754 	 * controller on different i2c buses. */
1755 	struct mutex gmbus_mutex;
1756 
1757 	/**
1758 	 * Base address of the gmbus and gpio block.
1759 	 */
1760 	uint32_t gpio_mmio_base;
1761 
1762 	/* MMIO base address for MIPI regs */
1763 	uint32_t mipi_mmio_base;
1764 
1765 	uint32_t psr_mmio_base;
1766 
1767 	wait_queue_head_t gmbus_wait_queue;
1768 
1769 	struct pci_dev *bridge_dev;
1770 	struct i915_gem_context *kernel_context;
1771 	struct intel_engine_cs engine[I915_NUM_ENGINES];
1772 	struct drm_i915_gem_object *semaphore_obj;
1773 	uint32_t last_seqno, next_seqno;
1774 
1775 	struct drm_dma_handle *status_page_dmah;
1776 	struct resource mch_res;
1777 
1778 	/* protects the irq masks */
1779 	spinlock_t irq_lock;
1780 
1781 	/* protects the mmio flip data */
1782 	spinlock_t mmio_flip_lock;
1783 
1784 	bool display_irqs_enabled;
1785 
1786 	/* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1787 	struct pm_qos_request pm_qos;
1788 
1789 	/* Sideband mailbox protection */
1790 	struct mutex sb_lock;
1791 
1792 	/** Cached value of IMR to avoid reads in updating the bitfield */
1793 	union {
1794 		u32 irq_mask;
1795 		u32 de_irq_mask[I915_MAX_PIPES];
1796 	};
1797 	u32 gt_irq_mask;
1798 	u32 pm_irq_mask;
1799 	u32 pm_rps_events;
1800 	u32 pipestat_irq_mask[I915_MAX_PIPES];
1801 
1802 	struct i915_hotplug hotplug;
1803 	struct intel_fbc fbc;
1804 	struct i915_drrs drrs;
1805 	struct intel_opregion opregion;
1806 	struct intel_vbt_data vbt;
1807 
1808 	bool preserve_bios_swizzle;
1809 
1810 	/* overlay */
1811 	struct intel_overlay *overlay;
1812 
1813 	/* backlight registers and fields in struct intel_panel */
1814 	struct mutex backlight_lock;
1815 
1816 	/* LVDS info */
1817 	bool no_aux_handshake;
1818 
1819 	/* protects panel power sequencer state */
1820 	struct mutex pps_mutex;
1821 
1822 	struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1823 	int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1824 
1825 	unsigned int fsb_freq, mem_freq, is_ddr3;
1826 	unsigned int skl_preferred_vco_freq;
1827 	unsigned int cdclk_freq, max_cdclk_freq, atomic_cdclk_freq;
1828 	unsigned int max_dotclk_freq;
1829 	unsigned int rawclk_freq;
1830 	unsigned int hpll_freq;
1831 	unsigned int czclk_freq;
1832 
1833 	struct {
1834 		unsigned int vco, ref;
1835 	} cdclk_pll;
1836 
1837 	/**
1838 	 * wq - Driver workqueue for GEM.
1839 	 *
1840 	 * NOTE: Work items scheduled here are not allowed to grab any modeset
1841 	 * locks, for otherwise the flushing done in the pageflip code will
1842 	 * result in deadlocks.
1843 	 */
1844 	struct workqueue_struct *wq;
1845 
1846 	/* Display functions */
1847 	struct drm_i915_display_funcs display;
1848 
1849 	/* PCH chipset type */
1850 	enum intel_pch pch_type;
1851 	unsigned short pch_id;
1852 
1853 	unsigned long quirks;
1854 
1855 	enum modeset_restore modeset_restore;
1856 	struct mutex modeset_restore_lock;
1857 	struct drm_atomic_state *modeset_restore_state;
1858 	struct drm_modeset_acquire_ctx reset_ctx;
1859 
1860 	struct list_head vm_list; /* Global list of all address spaces */
1861 	struct i915_ggtt ggtt; /* VM representing the global address space */
1862 
1863 	struct i915_gem_mm mm;
1864 	DECLARE_HASHTABLE(mm_structs, 7);
1865 	struct mutex mm_lock;
1866 
1867 	/* The hw wants to have a stable context identifier for the lifetime
1868 	 * of the context (for OA, PASID, faults, etc). This is limited
1869 	 * in execlists to 21 bits.
1870 	 */
1871 	struct ida context_hw_ida;
1872 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1873 
1874 	/* Kernel Modesetting */
1875 
1876 	struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1877 	struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1878 	wait_queue_head_t pending_flip_queue;
1879 
1880 #ifdef CONFIG_DEBUG_FS
1881 	struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1882 #endif
1883 
1884 	/* dpll and cdclk state is protected by connection_mutex */
1885 	int num_shared_dpll;
1886 	struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1887 	const struct intel_dpll_mgr *dpll_mgr;
1888 
1889 	/*
1890 	 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1891 	 * Must be global rather than per dpll, because on some platforms
1892 	 * plls share registers.
1893 	 */
1894 	struct mutex dpll_lock;
1895 
1896 	unsigned int active_crtcs;
1897 	unsigned int min_pixclk[I915_MAX_PIPES];
1898 
1899 	int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1900 
1901 	struct i915_workarounds workarounds;
1902 
1903 	struct i915_frontbuffer_tracking fb_tracking;
1904 
1905 	u16 orig_clock;
1906 
1907 	bool mchbar_need_disable;
1908 
1909 	struct intel_l3_parity l3_parity;
1910 
1911 	/* Cannot be determined by PCIID. You must always read a register. */
1912 	u32 edram_cap;
1913 
1914 	/* gen6+ rps state */
1915 	struct intel_gen6_power_mgmt rps;
1916 
1917 	/* ilk-only ips/rps state. Everything in here is protected by the global
1918 	 * mchdev_lock in intel_pm.c */
1919 	struct intel_ilk_power_mgmt ips;
1920 
1921 	struct i915_power_domains power_domains;
1922 
1923 	struct i915_psr psr;
1924 
1925 	struct i915_gpu_error gpu_error;
1926 
1927 	struct drm_i915_gem_object *vlv_pctx;
1928 
1929 #ifdef CONFIG_DRM_FBDEV_EMULATION
1930 	/* list of fbdev register on this device */
1931 	struct intel_fbdev *fbdev;
1932 	struct work_struct fbdev_suspend_work;
1933 #endif
1934 
1935 	struct drm_property *broadcast_rgb_property;
1936 	struct drm_property *force_audio_property;
1937 
1938 	/* hda/i915 audio component */
1939 	struct i915_audio_component *audio_component;
1940 	bool audio_component_registered;
1941 	/**
1942 	 * av_mutex - mutex for audio/video sync
1943 	 *
1944 	 */
1945 	struct mutex av_mutex;
1946 
1947 	uint32_t hw_context_size;
1948 	struct list_head context_list;
1949 
1950 	u32 fdi_rx_config;
1951 
1952 	/* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1953 	u32 chv_phy_control;
1954 	/*
1955 	 * Shadows for CHV DPLL_MD regs to keep the state
1956 	 * checker somewhat working in the presence hardware
1957 	 * crappiness (can't read out DPLL_MD for pipes B & C).
1958 	 */
1959 	u32 chv_dpll_md[I915_MAX_PIPES];
1960 	u32 bxt_phy_grc;
1961 
1962 	u32 suspend_count;
1963 	bool suspended_to_idle;
1964 	struct i915_suspend_saved_registers regfile;
1965 	struct vlv_s0ix_state vlv_s0ix_state;
1966 
1967 	enum {
1968 		I915_SKL_SAGV_UNKNOWN = 0,
1969 		I915_SKL_SAGV_DISABLED,
1970 		I915_SKL_SAGV_ENABLED,
1971 		I915_SKL_SAGV_NOT_CONTROLLED
1972 	} skl_sagv_status;
1973 
1974 	struct {
1975 		/*
1976 		 * Raw watermark latency values:
1977 		 * in 0.1us units for WM0,
1978 		 * in 0.5us units for WM1+.
1979 		 */
1980 		/* primary */
1981 		uint16_t pri_latency[5];
1982 		/* sprite */
1983 		uint16_t spr_latency[5];
1984 		/* cursor */
1985 		uint16_t cur_latency[5];
1986 		/*
1987 		 * Raw watermark memory latency values
1988 		 * for SKL for all 8 levels
1989 		 * in 1us units.
1990 		 */
1991 		uint16_t skl_latency[8];
1992 
1993 		/*
1994 		 * The skl_wm_values structure is a bit too big for stack
1995 		 * allocation, so we keep the staging struct where we store
1996 		 * intermediate results here instead.
1997 		 */
1998 		struct skl_wm_values skl_results;
1999 
2000 		/* current hardware state */
2001 		union {
2002 			struct ilk_wm_values hw;
2003 			struct skl_wm_values skl_hw;
2004 			struct vlv_wm_values vlv;
2005 		};
2006 
2007 		uint8_t max_level;
2008 
2009 		/*
2010 		 * Should be held around atomic WM register writing; also
2011 		 * protects * intel_crtc->wm.active and
2012 		 * cstate->wm.need_postvbl_update.
2013 		 */
2014 		struct mutex wm_mutex;
2015 
2016 		/*
2017 		 * Set during HW readout of watermarks/DDB.  Some platforms
2018 		 * need to know when we're still using BIOS-provided values
2019 		 * (which we don't fully trust).
2020 		 */
2021 		bool distrust_bios_wm;
2022 	} wm;
2023 
2024 	struct i915_runtime_pm pm;
2025 
2026 	/* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2027 	struct {
2028 		int (*execbuf_submit)(struct i915_execbuffer_params *params,
2029 				      struct drm_i915_gem_execbuffer2 *args,
2030 				      struct list_head *vmas);
2031 		int (*init_engines)(struct drm_device *dev);
2032 		void (*cleanup_engine)(struct intel_engine_cs *engine);
2033 		void (*stop_engine)(struct intel_engine_cs *engine);
2034 
2035 		/**
2036 		 * Is the GPU currently considered idle, or busy executing
2037 		 * userspace requests? Whilst idle, we allow runtime power
2038 		 * management to power down the hardware and display clocks.
2039 		 * In order to reduce the effect on performance, there
2040 		 * is a slight delay before we do so.
2041 		 */
2042 		unsigned int active_engines;
2043 		bool awake;
2044 
2045 		/**
2046 		 * We leave the user IRQ off as much as possible,
2047 		 * but this means that requests will finish and never
2048 		 * be retired once the system goes idle. Set a timer to
2049 		 * fire periodically while the ring is running. When it
2050 		 * fires, go retire requests.
2051 		 */
2052 		struct delayed_work retire_work;
2053 
2054 		/**
2055 		 * When we detect an idle GPU, we want to turn on
2056 		 * powersaving features. So once we see that there
2057 		 * are no more requests outstanding and no more
2058 		 * arrive within a small period of time, we fire
2059 		 * off the idle_work.
2060 		 */
2061 		struct delayed_work idle_work;
2062 	} gt;
2063 
2064 	/* perform PHY state sanity checks? */
2065 	bool chv_phy_assert[2];
2066 
2067 	struct intel_encoder *dig_port_map[I915_MAX_PORTS];
2068 
2069 	/*
2070 	 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2071 	 * will be rejected. Instead look for a better place.
2072 	 */
2073 };
2074 
2075 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2076 {
2077 	return container_of(dev, struct drm_i915_private, drm);
2078 }
2079 
2080 static inline struct drm_i915_private *dev_to_i915(struct device *dev)
2081 {
2082 	return to_i915(dev_get_drvdata(dev));
2083 }
2084 
2085 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2086 {
2087 	return container_of(guc, struct drm_i915_private, guc);
2088 }
2089 
2090 /* Simple iterator over all initialised engines */
2091 #define for_each_engine(engine__, dev_priv__) \
2092 	for ((engine__) = &(dev_priv__)->engine[0]; \
2093 	     (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2094 	     (engine__)++) \
2095 		for_each_if (intel_engine_initialized(engine__))
2096 
2097 /* Iterator with engine_id */
2098 #define for_each_engine_id(engine__, dev_priv__, id__) \
2099 	for ((engine__) = &(dev_priv__)->engine[0], (id__) = 0; \
2100 	     (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2101 	     (engine__)++) \
2102 		for_each_if (((id__) = (engine__)->id, \
2103 			      intel_engine_initialized(engine__)))
2104 
2105 /* Iterator over subset of engines selected by mask */
2106 #define for_each_engine_masked(engine__, dev_priv__, mask__) \
2107 	for ((engine__) = &(dev_priv__)->engine[0]; \
2108 	     (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2109 	     (engine__)++) \
2110 		for_each_if (((mask__) & intel_engine_flag(engine__)) && \
2111 			     intel_engine_initialized(engine__))
2112 
2113 enum hdmi_force_audio {
2114 	HDMI_AUDIO_OFF_DVI = -2,	/* no aux data for HDMI-DVI converter */
2115 	HDMI_AUDIO_OFF,			/* force turn off HDMI audio */
2116 	HDMI_AUDIO_AUTO,		/* trust EDID */
2117 	HDMI_AUDIO_ON,			/* force turn on HDMI audio */
2118 };
2119 
2120 #define I915_GTT_OFFSET_NONE ((u32)-1)
2121 
2122 struct drm_i915_gem_object_ops {
2123 	unsigned int flags;
2124 #define I915_GEM_OBJECT_HAS_STRUCT_PAGE 0x1
2125 
2126 	/* Interface between the GEM object and its backing storage.
2127 	 * get_pages() is called once prior to the use of the associated set
2128 	 * of pages before to binding them into the GTT, and put_pages() is
2129 	 * called after we no longer need them. As we expect there to be
2130 	 * associated cost with migrating pages between the backing storage
2131 	 * and making them available for the GPU (e.g. clflush), we may hold
2132 	 * onto the pages after they are no longer referenced by the GPU
2133 	 * in case they may be used again shortly (for example migrating the
2134 	 * pages to a different memory domain within the GTT). put_pages()
2135 	 * will therefore most likely be called when the object itself is
2136 	 * being released or under memory pressure (where we attempt to
2137 	 * reap pages for the shrinker).
2138 	 */
2139 	int (*get_pages)(struct drm_i915_gem_object *);
2140 	void (*put_pages)(struct drm_i915_gem_object *);
2141 
2142 	int (*dmabuf_export)(struct drm_i915_gem_object *);
2143 	void (*release)(struct drm_i915_gem_object *);
2144 };
2145 
2146 /*
2147  * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2148  * considered to be the frontbuffer for the given plane interface-wise. This
2149  * doesn't mean that the hw necessarily already scans it out, but that any
2150  * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2151  *
2152  * We have one bit per pipe and per scanout plane type.
2153  */
2154 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2155 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2156 #define INTEL_FRONTBUFFER_BITS \
2157 	(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES)
2158 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2159 	(1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2160 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2161 	(1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2162 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2163 	(1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2164 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2165 	(1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2166 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2167 	(0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2168 
2169 struct drm_i915_gem_object {
2170 	struct drm_gem_object base;
2171 
2172 	const struct drm_i915_gem_object_ops *ops;
2173 
2174 	/** List of VMAs backed by this object */
2175 	struct list_head vma_list;
2176 
2177 	/** Stolen memory for this object, instead of being backed by shmem. */
2178 	struct drm_mm_node *stolen;
2179 	struct list_head global_list;
2180 
2181 	struct list_head engine_list[I915_NUM_ENGINES];
2182 	/** Used in execbuf to temporarily hold a ref */
2183 	struct list_head obj_exec_link;
2184 
2185 	struct list_head batch_pool_link;
2186 
2187 	/**
2188 	 * This is set if the object is on the active lists (has pending
2189 	 * rendering and so a non-zero seqno), and is not set if it i s on
2190 	 * inactive (ready to be unbound) list.
2191 	 */
2192 	unsigned int active:I915_NUM_ENGINES;
2193 
2194 	/**
2195 	 * This is set if the object has been written to since last bound
2196 	 * to the GTT
2197 	 */
2198 	unsigned int dirty:1;
2199 
2200 	/**
2201 	 * Fence register bits (if any) for this object.  Will be set
2202 	 * as needed when mapped into the GTT.
2203 	 * Protected by dev->struct_mutex.
2204 	 */
2205 	signed int fence_reg:I915_MAX_NUM_FENCE_BITS;
2206 
2207 	/**
2208 	 * Advice: are the backing pages purgeable?
2209 	 */
2210 	unsigned int madv:2;
2211 
2212 	/**
2213 	 * Current tiling mode for the object.
2214 	 */
2215 	unsigned int tiling_mode:2;
2216 	/**
2217 	 * Whether the tiling parameters for the currently associated fence
2218 	 * register have changed. Note that for the purposes of tracking
2219 	 * tiling changes we also treat the unfenced register, the register
2220 	 * slot that the object occupies whilst it executes a fenced
2221 	 * command (such as BLT on gen2/3), as a "fence".
2222 	 */
2223 	unsigned int fence_dirty:1;
2224 
2225 	/**
2226 	 * Is the object at the current location in the gtt mappable and
2227 	 * fenceable? Used to avoid costly recalculations.
2228 	 */
2229 	unsigned int map_and_fenceable:1;
2230 
2231 	/**
2232 	 * Whether the current gtt mapping needs to be mappable (and isn't just
2233 	 * mappable by accident). Track pin and fault separate for a more
2234 	 * accurate mappable working set.
2235 	 */
2236 	unsigned int fault_mappable:1;
2237 
2238 	/*
2239 	 * Is the object to be mapped as read-only to the GPU
2240 	 * Only honoured if hardware has relevant pte bit
2241 	 */
2242 	unsigned long gt_ro:1;
2243 	unsigned int cache_level:3;
2244 	unsigned int cache_dirty:1;
2245 
2246 	unsigned int frontbuffer_bits:INTEL_FRONTBUFFER_BITS;
2247 
2248 	unsigned int has_wc_mmap;
2249 	unsigned int pin_display;
2250 
2251 	struct sg_table *pages;
2252 	int pages_pin_count;
2253 	struct get_page {
2254 		struct scatterlist *sg;
2255 		int last;
2256 	} get_page;
2257 	void *mapping;
2258 
2259 	/** Breadcrumb of last rendering to the buffer.
2260 	 * There can only be one writer, but we allow for multiple readers.
2261 	 * If there is a writer that necessarily implies that all other
2262 	 * read requests are complete - but we may only be lazily clearing
2263 	 * the read requests. A read request is naturally the most recent
2264 	 * request on a ring, so we may have two different write and read
2265 	 * requests on one ring where the write request is older than the
2266 	 * read request. This allows for the CPU to read from an active
2267 	 * buffer by only waiting for the write to complete.
2268 	 * */
2269 	struct drm_i915_gem_request *last_read_req[I915_NUM_ENGINES];
2270 	struct drm_i915_gem_request *last_write_req;
2271 	/** Breadcrumb of last fenced GPU access to the buffer. */
2272 	struct drm_i915_gem_request *last_fenced_req;
2273 
2274 	/** Current tiling stride for the object, if it's tiled. */
2275 	uint32_t stride;
2276 
2277 	/** References from framebuffers, locks out tiling changes. */
2278 	unsigned long framebuffer_references;
2279 
2280 	/** Record of address bit 17 of each page at last unbind. */
2281 	unsigned long *bit_17;
2282 
2283 	union {
2284 		/** for phy allocated objects */
2285 		struct drm_dma_handle *phys_handle;
2286 
2287 		struct i915_gem_userptr {
2288 			uintptr_t ptr;
2289 			unsigned read_only :1;
2290 			unsigned workers :4;
2291 #define I915_GEM_USERPTR_MAX_WORKERS 15
2292 
2293 			struct i915_mm_struct *mm;
2294 			struct i915_mmu_object *mmu_object;
2295 			struct work_struct *work;
2296 		} userptr;
2297 	};
2298 };
2299 #define to_intel_bo(x) container_of(x, struct drm_i915_gem_object, base)
2300 
2301 static inline bool
2302 i915_gem_object_has_struct_page(const struct drm_i915_gem_object *obj)
2303 {
2304 	return obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE;
2305 }
2306 
2307 /*
2308  * Optimised SGL iterator for GEM objects
2309  */
2310 static __always_inline struct sgt_iter {
2311 	struct scatterlist *sgp;
2312 	union {
2313 		unsigned long pfn;
2314 		dma_addr_t dma;
2315 	};
2316 	unsigned int curr;
2317 	unsigned int max;
2318 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2319 	struct sgt_iter s = { .sgp = sgl };
2320 
2321 	if (s.sgp) {
2322 		s.max = s.curr = s.sgp->offset;
2323 		s.max += s.sgp->length;
2324 		if (dma)
2325 			s.dma = sg_dma_address(s.sgp);
2326 		else
2327 			s.pfn = page_to_pfn(sg_page(s.sgp));
2328 	}
2329 
2330 	return s;
2331 }
2332 
2333 /**
2334  * __sg_next - return the next scatterlist entry in a list
2335  * @sg:		The current sg entry
2336  *
2337  * Description:
2338  *   If the entry is the last, return NULL; otherwise, step to the next
2339  *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2340  *   otherwise just return the pointer to the current element.
2341  **/
2342 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2343 {
2344 #ifdef CONFIG_DEBUG_SG
2345 	BUG_ON(sg->sg_magic != SG_MAGIC);
2346 #endif
2347 	return sg_is_last(sg) ? NULL :
2348 		likely(!sg_is_chain(++sg)) ? sg :
2349 		sg_chain_ptr(sg);
2350 }
2351 
2352 /**
2353  * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2354  * @__dmap:	DMA address (output)
2355  * @__iter:	'struct sgt_iter' (iterator state, internal)
2356  * @__sgt:	sg_table to iterate over (input)
2357  */
2358 #define for_each_sgt_dma(__dmap, __iter, __sgt)				\
2359 	for ((__iter) = __sgt_iter((__sgt)->sgl, true);			\
2360 	     ((__dmap) = (__iter).dma + (__iter).curr);			\
2361 	     (((__iter).curr += PAGE_SIZE) < (__iter).max) ||		\
2362 	     ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2363 
2364 /**
2365  * for_each_sgt_page - iterate over the pages of the given sg_table
2366  * @__pp:	page pointer (output)
2367  * @__iter:	'struct sgt_iter' (iterator state, internal)
2368  * @__sgt:	sg_table to iterate over (input)
2369  */
2370 #define for_each_sgt_page(__pp, __iter, __sgt)				\
2371 	for ((__iter) = __sgt_iter((__sgt)->sgl, false);		\
2372 	     ((__pp) = (__iter).pfn == 0 ? NULL :			\
2373 	      pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2374 	     (((__iter).curr += PAGE_SIZE) < (__iter).max) ||		\
2375 	     ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2376 
2377 /**
2378  * Request queue structure.
2379  *
2380  * The request queue allows us to note sequence numbers that have been emitted
2381  * and may be associated with active buffers to be retired.
2382  *
2383  * By keeping this list, we can avoid having to do questionable sequence
2384  * number comparisons on buffer last_read|write_seqno. It also allows an
2385  * emission time to be associated with the request for tracking how far ahead
2386  * of the GPU the submission is.
2387  *
2388  * The requests are reference counted, so upon creation they should have an
2389  * initial reference taken using kref_init
2390  */
2391 struct drm_i915_gem_request {
2392 	struct kref ref;
2393 
2394 	/** On Which ring this request was generated */
2395 	struct drm_i915_private *i915;
2396 	struct intel_engine_cs *engine;
2397 	struct intel_signal_node signaling;
2398 
2399 	 /** GEM sequence number associated with the previous request,
2400 	  * when the HWS breadcrumb is equal to this the GPU is processing
2401 	  * this request.
2402 	  */
2403 	u32 previous_seqno;
2404 
2405 	 /** GEM sequence number associated with this request,
2406 	  * when the HWS breadcrumb is equal or greater than this the GPU
2407 	  * has finished processing this request.
2408 	  */
2409 	u32 seqno;
2410 
2411 	/** Position in the ringbuffer of the start of the request */
2412 	u32 head;
2413 
2414 	/**
2415 	 * Position in the ringbuffer of the start of the postfix.
2416 	 * This is required to calculate the maximum available ringbuffer
2417 	 * space without overwriting the postfix.
2418 	 */
2419 	 u32 postfix;
2420 
2421 	/** Position in the ringbuffer of the end of the whole request */
2422 	u32 tail;
2423 
2424 	/** Preallocate space in the ringbuffer for the emitting the request */
2425 	u32 reserved_space;
2426 
2427 	/**
2428 	 * Context and ring buffer related to this request
2429 	 * Contexts are refcounted, so when this request is associated with a
2430 	 * context, we must increment the context's refcount, to guarantee that
2431 	 * it persists while any request is linked to it. Requests themselves
2432 	 * are also refcounted, so the request will only be freed when the last
2433 	 * reference to it is dismissed, and the code in
2434 	 * i915_gem_request_free() will then decrement the refcount on the
2435 	 * context.
2436 	 */
2437 	struct i915_gem_context *ctx;
2438 	struct intel_ringbuffer *ringbuf;
2439 
2440 	/**
2441 	 * Context related to the previous request.
2442 	 * As the contexts are accessed by the hardware until the switch is
2443 	 * completed to a new context, the hardware may still be writing
2444 	 * to the context object after the breadcrumb is visible. We must
2445 	 * not unpin/unbind/prune that object whilst still active and so
2446 	 * we keep the previous context pinned until the following (this)
2447 	 * request is retired.
2448 	 */
2449 	struct i915_gem_context *previous_context;
2450 
2451 	/** Batch buffer related to this request if any (used for
2452 	    error state dump only) */
2453 	struct drm_i915_gem_object *batch_obj;
2454 
2455 	/** Time at which this request was emitted, in jiffies. */
2456 	unsigned long emitted_jiffies;
2457 
2458 	/** global list entry for this request */
2459 	struct list_head list;
2460 
2461 	struct drm_i915_file_private *file_priv;
2462 	/** file_priv list entry for this request */
2463 	struct list_head client_list;
2464 
2465 	/** process identifier submitting this request */
2466 	struct pid *pid;
2467 
2468 	/**
2469 	 * The ELSP only accepts two elements at a time, so we queue
2470 	 * context/tail pairs on a given queue (ring->execlist_queue) until the
2471 	 * hardware is available. The queue serves a double purpose: we also use
2472 	 * it to keep track of the up to 2 contexts currently in the hardware
2473 	 * (usually one in execution and the other queued up by the GPU): We
2474 	 * only remove elements from the head of the queue when the hardware
2475 	 * informs us that an element has been completed.
2476 	 *
2477 	 * All accesses to the queue are mediated by a spinlock
2478 	 * (ring->execlist_lock).
2479 	 */
2480 
2481 	/** Execlist link in the submission queue.*/
2482 	struct list_head execlist_link;
2483 
2484 	/** Execlists no. of times this request has been sent to the ELSP */
2485 	int elsp_submitted;
2486 
2487 	/** Execlists context hardware id. */
2488 	unsigned ctx_hw_id;
2489 };
2490 
2491 struct drm_i915_gem_request * __must_check
2492 i915_gem_request_alloc(struct intel_engine_cs *engine,
2493 		       struct i915_gem_context *ctx);
2494 void i915_gem_request_free(struct kref *req_ref);
2495 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
2496 				   struct drm_file *file);
2497 
2498 static inline uint32_t
2499 i915_gem_request_get_seqno(struct drm_i915_gem_request *req)
2500 {
2501 	return req ? req->seqno : 0;
2502 }
2503 
2504 static inline struct intel_engine_cs *
2505 i915_gem_request_get_engine(struct drm_i915_gem_request *req)
2506 {
2507 	return req ? req->engine : NULL;
2508 }
2509 
2510 static inline struct drm_i915_gem_request *
2511 i915_gem_request_reference(struct drm_i915_gem_request *req)
2512 {
2513 	if (req)
2514 		kref_get(&req->ref);
2515 	return req;
2516 }
2517 
2518 static inline void
2519 i915_gem_request_unreference(struct drm_i915_gem_request *req)
2520 {
2521 	kref_put(&req->ref, i915_gem_request_free);
2522 }
2523 
2524 static inline void i915_gem_request_assign(struct drm_i915_gem_request **pdst,
2525 					   struct drm_i915_gem_request *src)
2526 {
2527 	if (src)
2528 		i915_gem_request_reference(src);
2529 
2530 	if (*pdst)
2531 		i915_gem_request_unreference(*pdst);
2532 
2533 	*pdst = src;
2534 }
2535 
2536 /*
2537  * XXX: i915_gem_request_completed should be here but currently needs the
2538  * definition of i915_seqno_passed() which is below. It will be moved in
2539  * a later patch when the call to i915_seqno_passed() is obsoleted...
2540  */
2541 
2542 /*
2543  * A command that requires special handling by the command parser.
2544  */
2545 struct drm_i915_cmd_descriptor {
2546 	/*
2547 	 * Flags describing how the command parser processes the command.
2548 	 *
2549 	 * CMD_DESC_FIXED: The command has a fixed length if this is set,
2550 	 *                 a length mask if not set
2551 	 * CMD_DESC_SKIP: The command is allowed but does not follow the
2552 	 *                standard length encoding for the opcode range in
2553 	 *                which it falls
2554 	 * CMD_DESC_REJECT: The command is never allowed
2555 	 * CMD_DESC_REGISTER: The command should be checked against the
2556 	 *                    register whitelist for the appropriate ring
2557 	 * CMD_DESC_MASTER: The command is allowed if the submitting process
2558 	 *                  is the DRM master
2559 	 */
2560 	u32 flags;
2561 #define CMD_DESC_FIXED    (1<<0)
2562 #define CMD_DESC_SKIP     (1<<1)
2563 #define CMD_DESC_REJECT   (1<<2)
2564 #define CMD_DESC_REGISTER (1<<3)
2565 #define CMD_DESC_BITMASK  (1<<4)
2566 #define CMD_DESC_MASTER   (1<<5)
2567 
2568 	/*
2569 	 * The command's unique identification bits and the bitmask to get them.
2570 	 * This isn't strictly the opcode field as defined in the spec and may
2571 	 * also include type, subtype, and/or subop fields.
2572 	 */
2573 	struct {
2574 		u32 value;
2575 		u32 mask;
2576 	} cmd;
2577 
2578 	/*
2579 	 * The command's length. The command is either fixed length (i.e. does
2580 	 * not include a length field) or has a length field mask. The flag
2581 	 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
2582 	 * a length mask. All command entries in a command table must include
2583 	 * length information.
2584 	 */
2585 	union {
2586 		u32 fixed;
2587 		u32 mask;
2588 	} length;
2589 
2590 	/*
2591 	 * Describes where to find a register address in the command to check
2592 	 * against the ring's register whitelist. Only valid if flags has the
2593 	 * CMD_DESC_REGISTER bit set.
2594 	 *
2595 	 * A non-zero step value implies that the command may access multiple
2596 	 * registers in sequence (e.g. LRI), in that case step gives the
2597 	 * distance in dwords between individual offset fields.
2598 	 */
2599 	struct {
2600 		u32 offset;
2601 		u32 mask;
2602 		u32 step;
2603 	} reg;
2604 
2605 #define MAX_CMD_DESC_BITMASKS 3
2606 	/*
2607 	 * Describes command checks where a particular dword is masked and
2608 	 * compared against an expected value. If the command does not match
2609 	 * the expected value, the parser rejects it. Only valid if flags has
2610 	 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
2611 	 * are valid.
2612 	 *
2613 	 * If the check specifies a non-zero condition_mask then the parser
2614 	 * only performs the check when the bits specified by condition_mask
2615 	 * are non-zero.
2616 	 */
2617 	struct {
2618 		u32 offset;
2619 		u32 mask;
2620 		u32 expected;
2621 		u32 condition_offset;
2622 		u32 condition_mask;
2623 	} bits[MAX_CMD_DESC_BITMASKS];
2624 };
2625 
2626 /*
2627  * A table of commands requiring special handling by the command parser.
2628  *
2629  * Each ring has an array of tables. Each table consists of an array of command
2630  * descriptors, which must be sorted with command opcodes in ascending order.
2631  */
2632 struct drm_i915_cmd_table {
2633 	const struct drm_i915_cmd_descriptor *table;
2634 	int count;
2635 };
2636 
2637 /* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */
2638 #define __I915__(p) ({ \
2639 	struct drm_i915_private *__p; \
2640 	if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \
2641 		__p = (struct drm_i915_private *)p; \
2642 	else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \
2643 		__p = to_i915((struct drm_device *)p); \
2644 	else \
2645 		BUILD_BUG(); \
2646 	__p; \
2647 })
2648 #define INTEL_INFO(p) 	(&__I915__(p)->info)
2649 #define INTEL_GEN(p)	(INTEL_INFO(p)->gen)
2650 #define INTEL_DEVID(p)	(INTEL_INFO(p)->device_id)
2651 
2652 #define REVID_FOREVER		0xff
2653 #define INTEL_REVID(p)	(__I915__(p)->drm.pdev->revision)
2654 
2655 #define GEN_FOREVER (0)
2656 /*
2657  * Returns true if Gen is in inclusive range [Start, End].
2658  *
2659  * Use GEN_FOREVER for unbound start and or end.
2660  */
2661 #define IS_GEN(p, s, e) ({ \
2662 	unsigned int __s = (s), __e = (e); \
2663 	BUILD_BUG_ON(!__builtin_constant_p(s)); \
2664 	BUILD_BUG_ON(!__builtin_constant_p(e)); \
2665 	if ((__s) != GEN_FOREVER) \
2666 		__s = (s) - 1; \
2667 	if ((__e) == GEN_FOREVER) \
2668 		__e = BITS_PER_LONG - 1; \
2669 	else \
2670 		__e = (e) - 1; \
2671 	!!(INTEL_INFO(p)->gen_mask & GENMASK((__e), (__s))); \
2672 })
2673 
2674 /*
2675  * Return true if revision is in range [since,until] inclusive.
2676  *
2677  * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2678  */
2679 #define IS_REVID(p, since, until) \
2680 	(INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2681 
2682 #define IS_I830(dev)		(INTEL_DEVID(dev) == 0x3577)
2683 #define IS_845G(dev)		(INTEL_DEVID(dev) == 0x2562)
2684 #define IS_I85X(dev)		(INTEL_INFO(dev)->is_i85x)
2685 #define IS_I865G(dev)		(INTEL_DEVID(dev) == 0x2572)
2686 #define IS_I915G(dev)		(INTEL_INFO(dev)->is_i915g)
2687 #define IS_I915GM(dev)		(INTEL_DEVID(dev) == 0x2592)
2688 #define IS_I945G(dev)		(INTEL_DEVID(dev) == 0x2772)
2689 #define IS_I945GM(dev)		(INTEL_INFO(dev)->is_i945gm)
2690 #define IS_BROADWATER(dev)	(INTEL_INFO(dev)->is_broadwater)
2691 #define IS_CRESTLINE(dev)	(INTEL_INFO(dev)->is_crestline)
2692 #define IS_GM45(dev)		(INTEL_DEVID(dev) == 0x2A42)
2693 #define IS_G4X(dev)		(INTEL_INFO(dev)->is_g4x)
2694 #define IS_PINEVIEW_G(dev)	(INTEL_DEVID(dev) == 0xa001)
2695 #define IS_PINEVIEW_M(dev)	(INTEL_DEVID(dev) == 0xa011)
2696 #define IS_PINEVIEW(dev)	(INTEL_INFO(dev)->is_pineview)
2697 #define IS_G33(dev)		(INTEL_INFO(dev)->is_g33)
2698 #define IS_IRONLAKE_M(dev)	(INTEL_DEVID(dev) == 0x0046)
2699 #define IS_IVYBRIDGE(dev)	(INTEL_INFO(dev)->is_ivybridge)
2700 #define IS_IVB_GT1(dev)		(INTEL_DEVID(dev) == 0x0156 || \
2701 				 INTEL_DEVID(dev) == 0x0152 || \
2702 				 INTEL_DEVID(dev) == 0x015a)
2703 #define IS_VALLEYVIEW(dev)	(INTEL_INFO(dev)->is_valleyview)
2704 #define IS_CHERRYVIEW(dev)	(INTEL_INFO(dev)->is_cherryview)
2705 #define IS_HASWELL(dev)	(INTEL_INFO(dev)->is_haswell)
2706 #define IS_BROADWELL(dev)	(INTEL_INFO(dev)->is_broadwell)
2707 #define IS_SKYLAKE(dev)	(INTEL_INFO(dev)->is_skylake)
2708 #define IS_BROXTON(dev)		(INTEL_INFO(dev)->is_broxton)
2709 #define IS_KABYLAKE(dev)	(INTEL_INFO(dev)->is_kabylake)
2710 #define IS_MOBILE(dev)		(INTEL_INFO(dev)->is_mobile)
2711 #define IS_HSW_EARLY_SDV(dev)	(IS_HASWELL(dev) && \
2712 				 (INTEL_DEVID(dev) & 0xFF00) == 0x0C00)
2713 #define IS_BDW_ULT(dev)		(IS_BROADWELL(dev) && \
2714 				 ((INTEL_DEVID(dev) & 0xf) == 0x6 ||	\
2715 				 (INTEL_DEVID(dev) & 0xf) == 0xb ||	\
2716 				 (INTEL_DEVID(dev) & 0xf) == 0xe))
2717 /* ULX machines are also considered ULT. */
2718 #define IS_BDW_ULX(dev)		(IS_BROADWELL(dev) && \
2719 				 (INTEL_DEVID(dev) & 0xf) == 0xe)
2720 #define IS_BDW_GT3(dev)		(IS_BROADWELL(dev) && \
2721 				 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2722 #define IS_HSW_ULT(dev)		(IS_HASWELL(dev) && \
2723 				 (INTEL_DEVID(dev) & 0xFF00) == 0x0A00)
2724 #define IS_HSW_GT3(dev)		(IS_HASWELL(dev) && \
2725 				 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2726 /* ULX machines are also considered ULT. */
2727 #define IS_HSW_ULX(dev)		(INTEL_DEVID(dev) == 0x0A0E || \
2728 				 INTEL_DEVID(dev) == 0x0A1E)
2729 #define IS_SKL_ULT(dev)		(INTEL_DEVID(dev) == 0x1906 || \
2730 				 INTEL_DEVID(dev) == 0x1913 || \
2731 				 INTEL_DEVID(dev) == 0x1916 || \
2732 				 INTEL_DEVID(dev) == 0x1921 || \
2733 				 INTEL_DEVID(dev) == 0x1926)
2734 #define IS_SKL_ULX(dev)		(INTEL_DEVID(dev) == 0x190E || \
2735 				 INTEL_DEVID(dev) == 0x1915 || \
2736 				 INTEL_DEVID(dev) == 0x191E)
2737 #define IS_KBL_ULT(dev)		(INTEL_DEVID(dev) == 0x5906 || \
2738 				 INTEL_DEVID(dev) == 0x5913 || \
2739 				 INTEL_DEVID(dev) == 0x5916 || \
2740 				 INTEL_DEVID(dev) == 0x5921 || \
2741 				 INTEL_DEVID(dev) == 0x5926)
2742 #define IS_KBL_ULX(dev)		(INTEL_DEVID(dev) == 0x590E || \
2743 				 INTEL_DEVID(dev) == 0x5915 || \
2744 				 INTEL_DEVID(dev) == 0x591E)
2745 #define IS_SKL_GT3(dev)		(IS_SKYLAKE(dev) && \
2746 				 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2747 #define IS_SKL_GT4(dev)		(IS_SKYLAKE(dev) && \
2748 				 (INTEL_DEVID(dev) & 0x00F0) == 0x0030)
2749 
2750 #define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary)
2751 
2752 #define SKL_REVID_A0		0x0
2753 #define SKL_REVID_B0		0x1
2754 #define SKL_REVID_C0		0x2
2755 #define SKL_REVID_D0		0x3
2756 #define SKL_REVID_E0		0x4
2757 #define SKL_REVID_F0		0x5
2758 #define SKL_REVID_G0		0x6
2759 #define SKL_REVID_H0		0x7
2760 
2761 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2762 
2763 #define BXT_REVID_A0		0x0
2764 #define BXT_REVID_A1		0x1
2765 #define BXT_REVID_B0		0x3
2766 #define BXT_REVID_C0		0x9
2767 
2768 #define IS_BXT_REVID(p, since, until) (IS_BROXTON(p) && IS_REVID(p, since, until))
2769 
2770 #define KBL_REVID_A0		0x0
2771 #define KBL_REVID_B0		0x1
2772 #define KBL_REVID_C0		0x2
2773 #define KBL_REVID_D0		0x3
2774 #define KBL_REVID_E0		0x4
2775 
2776 #define IS_KBL_REVID(p, since, until) \
2777 	(IS_KABYLAKE(p) && IS_REVID(p, since, until))
2778 
2779 /*
2780  * The genX designation typically refers to the render engine, so render
2781  * capability related checks should use IS_GEN, while display and other checks
2782  * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2783  * chips, etc.).
2784  */
2785 #define IS_GEN2(dev)	(!!(INTEL_INFO(dev)->gen_mask & BIT(1)))
2786 #define IS_GEN3(dev)	(!!(INTEL_INFO(dev)->gen_mask & BIT(2)))
2787 #define IS_GEN4(dev)	(!!(INTEL_INFO(dev)->gen_mask & BIT(3)))
2788 #define IS_GEN5(dev)	(!!(INTEL_INFO(dev)->gen_mask & BIT(4)))
2789 #define IS_GEN6(dev)	(!!(INTEL_INFO(dev)->gen_mask & BIT(5)))
2790 #define IS_GEN7(dev)	(!!(INTEL_INFO(dev)->gen_mask & BIT(6)))
2791 #define IS_GEN8(dev)	(!!(INTEL_INFO(dev)->gen_mask & BIT(7)))
2792 #define IS_GEN9(dev)	(!!(INTEL_INFO(dev)->gen_mask & BIT(8)))
2793 
2794 #define ENGINE_MASK(id)	BIT(id)
2795 #define RENDER_RING	ENGINE_MASK(RCS)
2796 #define BSD_RING	ENGINE_MASK(VCS)
2797 #define BLT_RING	ENGINE_MASK(BCS)
2798 #define VEBOX_RING	ENGINE_MASK(VECS)
2799 #define BSD2_RING	ENGINE_MASK(VCS2)
2800 #define ALL_ENGINES	(~0)
2801 
2802 #define HAS_ENGINE(dev_priv, id) \
2803 	(!!(INTEL_INFO(dev_priv)->ring_mask & ENGINE_MASK(id)))
2804 
2805 #define HAS_BSD(dev_priv)	HAS_ENGINE(dev_priv, VCS)
2806 #define HAS_BSD2(dev_priv)	HAS_ENGINE(dev_priv, VCS2)
2807 #define HAS_BLT(dev_priv)	HAS_ENGINE(dev_priv, BCS)
2808 #define HAS_VEBOX(dev_priv)	HAS_ENGINE(dev_priv, VECS)
2809 
2810 #define HAS_LLC(dev)		(INTEL_INFO(dev)->has_llc)
2811 #define HAS_SNOOP(dev)		(INTEL_INFO(dev)->has_snoop)
2812 #define HAS_EDRAM(dev)		(!!(__I915__(dev)->edram_cap & EDRAM_ENABLED))
2813 #define HAS_WT(dev)		((IS_HASWELL(dev) || IS_BROADWELL(dev)) && \
2814 				 HAS_EDRAM(dev))
2815 #define I915_NEED_GFX_HWS(dev)	(INTEL_INFO(dev)->need_gfx_hws)
2816 
2817 #define HAS_HW_CONTEXTS(dev)	(INTEL_INFO(dev)->gen >= 6)
2818 #define HAS_LOGICAL_RING_CONTEXTS(dev)	(INTEL_INFO(dev)->gen >= 8)
2819 #define USES_PPGTT(dev)		(i915.enable_ppgtt)
2820 #define USES_FULL_PPGTT(dev)	(i915.enable_ppgtt >= 2)
2821 #define USES_FULL_48BIT_PPGTT(dev)	(i915.enable_ppgtt == 3)
2822 
2823 #define HAS_OVERLAY(dev)		(INTEL_INFO(dev)->has_overlay)
2824 #define OVERLAY_NEEDS_PHYSICAL(dev)	(INTEL_INFO(dev)->overlay_needs_physical)
2825 
2826 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2827 #define HAS_BROKEN_CS_TLB(dev)		(IS_I830(dev) || IS_845G(dev))
2828 
2829 /* WaRsDisableCoarsePowerGating:skl,bxt */
2830 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2831 	(IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) || \
2832 	 IS_SKL_GT3(dev_priv) || \
2833 	 IS_SKL_GT4(dev_priv))
2834 
2835 /*
2836  * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2837  * even when in MSI mode. This results in spurious interrupt warnings if the
2838  * legacy irq no. is shared with another device. The kernel then disables that
2839  * interrupt source and so prevents the other device from working properly.
2840  */
2841 #define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2842 #define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2843 
2844 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2845  * rows, which changed the alignment requirements and fence programming.
2846  */
2847 #define HAS_128_BYTE_Y_TILING(dev) (!IS_GEN2(dev) && !(IS_I915G(dev) || \
2848 						      IS_I915GM(dev)))
2849 #define SUPPORTS_TV(dev)		(INTEL_INFO(dev)->supports_tv)
2850 #define I915_HAS_HOTPLUG(dev)		 (INTEL_INFO(dev)->has_hotplug)
2851 
2852 #define HAS_FW_BLC(dev) (INTEL_INFO(dev)->gen > 2)
2853 #define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr)
2854 #define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc)
2855 
2856 #define HAS_IPS(dev)		(IS_HSW_ULT(dev) || IS_BROADWELL(dev))
2857 
2858 #define HAS_DP_MST(dev)		(IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2859 				 INTEL_INFO(dev)->gen >= 9)
2860 
2861 #define HAS_DDI(dev)		(INTEL_INFO(dev)->has_ddi)
2862 #define HAS_FPGA_DBG_UNCLAIMED(dev)	(INTEL_INFO(dev)->has_fpga_dbg)
2863 #define HAS_PSR(dev)		(IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2864 				 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || \
2865 				 IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2866 #define HAS_RUNTIME_PM(dev)	(IS_GEN6(dev) || IS_HASWELL(dev) || \
2867 				 IS_BROADWELL(dev) || IS_VALLEYVIEW(dev) || \
2868 				 IS_CHERRYVIEW(dev) || IS_SKYLAKE(dev) || \
2869 				 IS_KABYLAKE(dev) || IS_BROXTON(dev))
2870 #define HAS_RC6(dev)		(INTEL_INFO(dev)->gen >= 6)
2871 #define HAS_RC6p(dev)		(IS_GEN6(dev) || IS_IVYBRIDGE(dev))
2872 
2873 #define HAS_CSR(dev)	(IS_GEN9(dev))
2874 
2875 /*
2876  * For now, anything with a GuC requires uCode loading, and then supports
2877  * command submission once loaded. But these are logically independent
2878  * properties, so we have separate macros to test them.
2879  */
2880 #define HAS_GUC(dev)		(IS_GEN9(dev))
2881 #define HAS_GUC_UCODE(dev)	(HAS_GUC(dev))
2882 #define HAS_GUC_SCHED(dev)	(HAS_GUC(dev))
2883 
2884 #define HAS_RESOURCE_STREAMER(dev) (IS_HASWELL(dev) || \
2885 				    INTEL_INFO(dev)->gen >= 8)
2886 
2887 #define HAS_CORE_RING_FREQ(dev)	(INTEL_INFO(dev)->gen >= 6 && \
2888 				 !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && \
2889 				 !IS_BROXTON(dev))
2890 
2891 #define HAS_POOLED_EU(dev)	(INTEL_INFO(dev)->has_pooled_eu)
2892 
2893 #define INTEL_PCH_DEVICE_ID_MASK		0xff00
2894 #define INTEL_PCH_IBX_DEVICE_ID_TYPE		0x3b00
2895 #define INTEL_PCH_CPT_DEVICE_ID_TYPE		0x1c00
2896 #define INTEL_PCH_PPT_DEVICE_ID_TYPE		0x1e00
2897 #define INTEL_PCH_LPT_DEVICE_ID_TYPE		0x8c00
2898 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE		0x9c00
2899 #define INTEL_PCH_SPT_DEVICE_ID_TYPE		0xA100
2900 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE		0x9D00
2901 #define INTEL_PCH_KBP_DEVICE_ID_TYPE		0xA200
2902 #define INTEL_PCH_P2X_DEVICE_ID_TYPE		0x7100
2903 #define INTEL_PCH_P3X_DEVICE_ID_TYPE		0x7000
2904 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE		0x2900 /* qemu q35 has 2918 */
2905 
2906 #define INTEL_PCH_TYPE(dev) (__I915__(dev)->pch_type)
2907 #define HAS_PCH_KBP(dev) (INTEL_PCH_TYPE(dev) == PCH_KBP)
2908 #define HAS_PCH_SPT(dev) (INTEL_PCH_TYPE(dev) == PCH_SPT)
2909 #define HAS_PCH_LPT(dev) (INTEL_PCH_TYPE(dev) == PCH_LPT)
2910 #define HAS_PCH_LPT_LP(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
2911 #define HAS_PCH_LPT_H(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE)
2912 #define HAS_PCH_CPT(dev) (INTEL_PCH_TYPE(dev) == PCH_CPT)
2913 #define HAS_PCH_IBX(dev) (INTEL_PCH_TYPE(dev) == PCH_IBX)
2914 #define HAS_PCH_NOP(dev) (INTEL_PCH_TYPE(dev) == PCH_NOP)
2915 #define HAS_PCH_SPLIT(dev) (INTEL_PCH_TYPE(dev) != PCH_NONE)
2916 
2917 #define HAS_GMCH_DISPLAY(dev) (INTEL_INFO(dev)->gen < 5 || \
2918 			       IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2919 
2920 /* DPF == dynamic parity feature */
2921 #define HAS_L3_DPF(dev) (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
2922 #define NUM_L3_SLICES(dev) (IS_HSW_GT3(dev) ? 2 : HAS_L3_DPF(dev))
2923 
2924 #define GT_FREQUENCY_MULTIPLIER 50
2925 #define GEN9_FREQ_SCALER 3
2926 
2927 #include "i915_trace.h"
2928 
2929 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2930 {
2931 #ifdef CONFIG_INTEL_IOMMU
2932 	if (INTEL_GEN(dev_priv) >= 6 && intel_iommu_gfx_mapped)
2933 		return true;
2934 #endif
2935 	return false;
2936 }
2937 
2938 extern int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
2939 extern int i915_resume_switcheroo(struct drm_device *dev);
2940 
2941 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2942 			       	int enable_ppgtt);
2943 
2944 /* i915_drv.c */
2945 void __printf(3, 4)
2946 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2947 	      const char *fmt, ...);
2948 
2949 #define i915_report_error(dev_priv, fmt, ...)				   \
2950 	__i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2951 
2952 #ifdef CONFIG_COMPAT
2953 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2954 			      unsigned long arg);
2955 #endif
2956 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2957 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2958 extern int i915_reset(struct drm_i915_private *dev_priv);
2959 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
2960 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2961 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2962 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2963 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2964 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2965 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2966 
2967 /* intel_hotplug.c */
2968 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2969 			   u32 pin_mask, u32 long_mask);
2970 void intel_hpd_init(struct drm_i915_private *dev_priv);
2971 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2972 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2973 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
2974 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2975 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2976 
2977 /* i915_irq.c */
2978 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2979 {
2980 	unsigned long delay;
2981 
2982 	if (unlikely(!i915.enable_hangcheck))
2983 		return;
2984 
2985 	/* Don't continually defer the hangcheck so that it is always run at
2986 	 * least once after work has been scheduled on any ring. Otherwise,
2987 	 * we will ignore a hung ring if a second ring is kept busy.
2988 	 */
2989 
2990 	delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2991 	queue_delayed_work(system_long_wq,
2992 			   &dev_priv->gpu_error.hangcheck_work, delay);
2993 }
2994 
2995 __printf(3, 4)
2996 void i915_handle_error(struct drm_i915_private *dev_priv,
2997 		       u32 engine_mask,
2998 		       const char *fmt, ...);
2999 
3000 extern void intel_irq_init(struct drm_i915_private *dev_priv);
3001 int intel_irq_install(struct drm_i915_private *dev_priv);
3002 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3003 
3004 extern void intel_uncore_sanitize(struct drm_i915_private *dev_priv);
3005 extern void intel_uncore_early_sanitize(struct drm_i915_private *dev_priv,
3006 					bool restore_forcewake);
3007 extern void intel_uncore_init(struct drm_i915_private *dev_priv);
3008 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv);
3009 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv);
3010 extern void intel_uncore_fini(struct drm_i915_private *dev_priv);
3011 extern void intel_uncore_forcewake_reset(struct drm_i915_private *dev_priv,
3012 					 bool restore);
3013 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id);
3014 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv,
3015 				enum forcewake_domains domains);
3016 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv,
3017 				enum forcewake_domains domains);
3018 /* Like above but the caller must manage the uncore.lock itself.
3019  * Must be used with I915_READ_FW and friends.
3020  */
3021 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv,
3022 					enum forcewake_domains domains);
3023 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv,
3024 					enum forcewake_domains domains);
3025 u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv);
3026 
3027 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv);
3028 
3029 int intel_wait_for_register(struct drm_i915_private *dev_priv,
3030 			    i915_reg_t reg,
3031 			    const u32 mask,
3032 			    const u32 value,
3033 			    const unsigned long timeout_ms);
3034 int intel_wait_for_register_fw(struct drm_i915_private *dev_priv,
3035 			       i915_reg_t reg,
3036 			       const u32 mask,
3037 			       const u32 value,
3038 			       const unsigned long timeout_ms);
3039 
3040 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3041 {
3042 	return dev_priv->gvt.initialized;
3043 }
3044 
3045 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3046 {
3047 	return dev_priv->vgpu.active;
3048 }
3049 
3050 void
3051 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3052 		     u32 status_mask);
3053 
3054 void
3055 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3056 		      u32 status_mask);
3057 
3058 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3059 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3060 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3061 				   uint32_t mask,
3062 				   uint32_t bits);
3063 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3064 			    uint32_t interrupt_mask,
3065 			    uint32_t enabled_irq_mask);
3066 static inline void
3067 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3068 {
3069 	ilk_update_display_irq(dev_priv, bits, bits);
3070 }
3071 static inline void
3072 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3073 {
3074 	ilk_update_display_irq(dev_priv, bits, 0);
3075 }
3076 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3077 			 enum pipe pipe,
3078 			 uint32_t interrupt_mask,
3079 			 uint32_t enabled_irq_mask);
3080 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3081 				       enum pipe pipe, uint32_t bits)
3082 {
3083 	bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3084 }
3085 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3086 					enum pipe pipe, uint32_t bits)
3087 {
3088 	bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3089 }
3090 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3091 				  uint32_t interrupt_mask,
3092 				  uint32_t enabled_irq_mask);
3093 static inline void
3094 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3095 {
3096 	ibx_display_interrupt_update(dev_priv, bits, bits);
3097 }
3098 static inline void
3099 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3100 {
3101 	ibx_display_interrupt_update(dev_priv, bits, 0);
3102 }
3103 
3104 /* i915_gem.c */
3105 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3106 			  struct drm_file *file_priv);
3107 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3108 			 struct drm_file *file_priv);
3109 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3110 			  struct drm_file *file_priv);
3111 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3112 			struct drm_file *file_priv);
3113 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3114 			struct drm_file *file_priv);
3115 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3116 			      struct drm_file *file_priv);
3117 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3118 			     struct drm_file *file_priv);
3119 void i915_gem_execbuffer_move_to_active(struct list_head *vmas,
3120 					struct drm_i915_gem_request *req);
3121 int i915_gem_ringbuffer_submission(struct i915_execbuffer_params *params,
3122 				   struct drm_i915_gem_execbuffer2 *args,
3123 				   struct list_head *vmas);
3124 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3125 			struct drm_file *file_priv);
3126 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3127 			 struct drm_file *file_priv);
3128 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3129 			struct drm_file *file_priv);
3130 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3131 			       struct drm_file *file);
3132 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3133 			       struct drm_file *file);
3134 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3135 			    struct drm_file *file_priv);
3136 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3137 			   struct drm_file *file_priv);
3138 int i915_gem_set_tiling(struct drm_device *dev, void *data,
3139 			struct drm_file *file_priv);
3140 int i915_gem_get_tiling(struct drm_device *dev, void *data,
3141 			struct drm_file *file_priv);
3142 void i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3143 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3144 			   struct drm_file *file);
3145 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3146 				struct drm_file *file_priv);
3147 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3148 			struct drm_file *file_priv);
3149 void i915_gem_load_init(struct drm_device *dev);
3150 void i915_gem_load_cleanup(struct drm_device *dev);
3151 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3152 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3153 
3154 void *i915_gem_object_alloc(struct drm_device *dev);
3155 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3156 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3157 			 const struct drm_i915_gem_object_ops *ops);
3158 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
3159 						  size_t size);
3160 struct drm_i915_gem_object *i915_gem_object_create_from_data(
3161 		struct drm_device *dev, const void *data, size_t size);
3162 void i915_gem_free_object(struct drm_gem_object *obj);
3163 void i915_gem_vma_destroy(struct i915_vma *vma);
3164 
3165 /* Flags used by pin/bind&friends. */
3166 #define PIN_MAPPABLE	(1<<0)
3167 #define PIN_NONBLOCK	(1<<1)
3168 #define PIN_GLOBAL	(1<<2)
3169 #define PIN_OFFSET_BIAS	(1<<3)
3170 #define PIN_USER	(1<<4)
3171 #define PIN_UPDATE	(1<<5)
3172 #define PIN_ZONE_4G	(1<<6)
3173 #define PIN_HIGH	(1<<7)
3174 #define PIN_OFFSET_FIXED	(1<<8)
3175 #define PIN_OFFSET_MASK (~4095)
3176 int __must_check
3177 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3178 		    struct i915_address_space *vm,
3179 		    uint32_t alignment,
3180 		    uint64_t flags);
3181 int __must_check
3182 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3183 			 const struct i915_ggtt_view *view,
3184 			 uint32_t alignment,
3185 			 uint64_t flags);
3186 
3187 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3188 		  u32 flags);
3189 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma);
3190 int __must_check i915_vma_unbind(struct i915_vma *vma);
3191 /*
3192  * BEWARE: Do not use the function below unless you can _absolutely_
3193  * _guarantee_ VMA in question is _not in use_ anywhere.
3194  */
3195 int __must_check __i915_vma_unbind_no_wait(struct i915_vma *vma);
3196 int i915_gem_object_put_pages(struct drm_i915_gem_object *obj);
3197 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv);
3198 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3199 
3200 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3201 				    int *needs_clflush);
3202 
3203 int __must_check i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3204 
3205 static inline int __sg_page_count(struct scatterlist *sg)
3206 {
3207 	return sg->length >> PAGE_SHIFT;
3208 }
3209 
3210 struct page *
3211 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n);
3212 
3213 static inline dma_addr_t
3214 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, int n)
3215 {
3216 	if (n < obj->get_page.last) {
3217 		obj->get_page.sg = obj->pages->sgl;
3218 		obj->get_page.last = 0;
3219 	}
3220 
3221 	while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3222 		obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3223 		if (unlikely(sg_is_chain(obj->get_page.sg)))
3224 			obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3225 	}
3226 
3227 	return sg_dma_address(obj->get_page.sg) + ((n - obj->get_page.last) << PAGE_SHIFT);
3228 }
3229 
3230 static inline struct page *
3231 i915_gem_object_get_page(struct drm_i915_gem_object *obj, int n)
3232 {
3233 	if (WARN_ON(n >= obj->base.size >> PAGE_SHIFT))
3234 		return NULL;
3235 
3236 	if (n < obj->get_page.last) {
3237 		obj->get_page.sg = obj->pages->sgl;
3238 		obj->get_page.last = 0;
3239 	}
3240 
3241 	while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3242 		obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3243 		if (unlikely(sg_is_chain(obj->get_page.sg)))
3244 			obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3245 	}
3246 
3247 	return nth_page(sg_page(obj->get_page.sg), n - obj->get_page.last);
3248 }
3249 
3250 static inline void i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3251 {
3252 	BUG_ON(obj->pages == NULL);
3253 	obj->pages_pin_count++;
3254 }
3255 
3256 static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3257 {
3258 	BUG_ON(obj->pages_pin_count == 0);
3259 	obj->pages_pin_count--;
3260 }
3261 
3262 /**
3263  * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3264  * @obj - the object to map into kernel address space
3265  *
3266  * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3267  * pages and then returns a contiguous mapping of the backing storage into
3268  * the kernel address space.
3269  *
3270  * The caller must hold the struct_mutex, and is responsible for calling
3271  * i915_gem_object_unpin_map() when the mapping is no longer required.
3272  *
3273  * Returns the pointer through which to access the mapped object, or an
3274  * ERR_PTR() on error.
3275  */
3276 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj);
3277 
3278 /**
3279  * i915_gem_object_unpin_map - releases an earlier mapping
3280  * @obj - the object to unmap
3281  *
3282  * After pinning the object and mapping its pages, once you are finished
3283  * with your access, call i915_gem_object_unpin_map() to release the pin
3284  * upon the mapping. Once the pin count reaches zero, that mapping may be
3285  * removed.
3286  *
3287  * The caller must hold the struct_mutex.
3288  */
3289 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3290 {
3291 	lockdep_assert_held(&obj->base.dev->struct_mutex);
3292 	i915_gem_object_unpin_pages(obj);
3293 }
3294 
3295 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3296 int i915_gem_object_sync(struct drm_i915_gem_object *obj,
3297 			 struct intel_engine_cs *to,
3298 			 struct drm_i915_gem_request **to_req);
3299 void i915_vma_move_to_active(struct i915_vma *vma,
3300 			     struct drm_i915_gem_request *req);
3301 int i915_gem_dumb_create(struct drm_file *file_priv,
3302 			 struct drm_device *dev,
3303 			 struct drm_mode_create_dumb *args);
3304 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3305 		      uint32_t handle, uint64_t *offset);
3306 
3307 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3308 		       struct drm_i915_gem_object *new,
3309 		       unsigned frontbuffer_bits);
3310 
3311 /**
3312  * Returns true if seq1 is later than seq2.
3313  */
3314 static inline bool
3315 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
3316 {
3317 	return (int32_t)(seq1 - seq2) >= 0;
3318 }
3319 
3320 static inline bool i915_gem_request_started(const struct drm_i915_gem_request *req)
3321 {
3322 	return i915_seqno_passed(intel_engine_get_seqno(req->engine),
3323 				 req->previous_seqno);
3324 }
3325 
3326 static inline bool i915_gem_request_completed(const struct drm_i915_gem_request *req)
3327 {
3328 	return i915_seqno_passed(intel_engine_get_seqno(req->engine),
3329 				 req->seqno);
3330 }
3331 
3332 bool __i915_spin_request(const struct drm_i915_gem_request *request,
3333 			 int state, unsigned long timeout_us);
3334 static inline bool i915_spin_request(const struct drm_i915_gem_request *request,
3335 				     int state, unsigned long timeout_us)
3336 {
3337 	return (i915_gem_request_started(request) &&
3338 		__i915_spin_request(request, state, timeout_us));
3339 }
3340 
3341 int __must_check i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno);
3342 int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno);
3343 
3344 struct drm_i915_gem_request *
3345 i915_gem_find_active_request(struct intel_engine_cs *engine);
3346 
3347 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3348 void i915_gem_retire_requests_ring(struct intel_engine_cs *engine);
3349 
3350 static inline u32 i915_reset_counter(struct i915_gpu_error *error)
3351 {
3352 	return atomic_read(&error->reset_counter);
3353 }
3354 
3355 static inline bool __i915_reset_in_progress(u32 reset)
3356 {
3357 	return unlikely(reset & I915_RESET_IN_PROGRESS_FLAG);
3358 }
3359 
3360 static inline bool __i915_reset_in_progress_or_wedged(u32 reset)
3361 {
3362 	return unlikely(reset & (I915_RESET_IN_PROGRESS_FLAG | I915_WEDGED));
3363 }
3364 
3365 static inline bool __i915_terminally_wedged(u32 reset)
3366 {
3367 	return unlikely(reset & I915_WEDGED);
3368 }
3369 
3370 static inline bool i915_reset_in_progress(struct i915_gpu_error *error)
3371 {
3372 	return __i915_reset_in_progress(i915_reset_counter(error));
3373 }
3374 
3375 static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error)
3376 {
3377 	return __i915_reset_in_progress_or_wedged(i915_reset_counter(error));
3378 }
3379 
3380 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3381 {
3382 	return __i915_terminally_wedged(i915_reset_counter(error));
3383 }
3384 
3385 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3386 {
3387 	return ((i915_reset_counter(error) & ~I915_WEDGED) + 1) / 2;
3388 }
3389 
3390 void i915_gem_reset(struct drm_device *dev);
3391 bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force);
3392 int __must_check i915_gem_init(struct drm_device *dev);
3393 int i915_gem_init_engines(struct drm_device *dev);
3394 int __must_check i915_gem_init_hw(struct drm_device *dev);
3395 void i915_gem_init_swizzling(struct drm_device *dev);
3396 void i915_gem_cleanup_engines(struct drm_device *dev);
3397 int __must_check i915_gem_wait_for_idle(struct drm_i915_private *dev_priv);
3398 int __must_check i915_gem_suspend(struct drm_device *dev);
3399 void __i915_add_request(struct drm_i915_gem_request *req,
3400 			struct drm_i915_gem_object *batch_obj,
3401 			bool flush_caches);
3402 #define i915_add_request(req) \
3403 	__i915_add_request(req, NULL, true)
3404 #define i915_add_request_no_flush(req) \
3405 	__i915_add_request(req, NULL, false)
3406 int __i915_wait_request(struct drm_i915_gem_request *req,
3407 			bool interruptible,
3408 			s64 *timeout,
3409 			struct intel_rps_client *rps);
3410 int __must_check i915_wait_request(struct drm_i915_gem_request *req);
3411 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf);
3412 int __must_check
3413 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
3414 			       bool readonly);
3415 int __must_check
3416 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj,
3417 				  bool write);
3418 int __must_check
3419 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3420 int __must_check
3421 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3422 				     u32 alignment,
3423 				     const struct i915_ggtt_view *view);
3424 void i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3425 					      const struct i915_ggtt_view *view);
3426 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3427 				int align);
3428 int i915_gem_open(struct drm_device *dev, struct drm_file *file);
3429 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3430 
3431 uint32_t
3432 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode);
3433 uint32_t
3434 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
3435 			    int tiling_mode, bool fenced);
3436 
3437 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3438 				    enum i915_cache_level cache_level);
3439 
3440 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3441 				struct dma_buf *dma_buf);
3442 
3443 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3444 				struct drm_gem_object *gem_obj, int flags);
3445 
3446 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
3447 				  const struct i915_ggtt_view *view);
3448 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
3449 			struct i915_address_space *vm);
3450 static inline u64
3451 i915_gem_obj_ggtt_offset(struct drm_i915_gem_object *o)
3452 {
3453 	return i915_gem_obj_ggtt_offset_view(o, &i915_ggtt_view_normal);
3454 }
3455 
3456 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o);
3457 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
3458 				  const struct i915_ggtt_view *view);
3459 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
3460 			struct i915_address_space *vm);
3461 
3462 struct i915_vma *
3463 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3464 		    struct i915_address_space *vm);
3465 struct i915_vma *
3466 i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
3467 			  const struct i915_ggtt_view *view);
3468 
3469 struct i915_vma *
3470 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3471 				  struct i915_address_space *vm);
3472 struct i915_vma *
3473 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3474 				       const struct i915_ggtt_view *view);
3475 
3476 static inline struct i915_vma *
3477 i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
3478 {
3479 	return i915_gem_obj_to_ggtt_view(obj, &i915_ggtt_view_normal);
3480 }
3481 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj);
3482 
3483 /* Some GGTT VM helpers */
3484 static inline struct i915_hw_ppgtt *
3485 i915_vm_to_ppgtt(struct i915_address_space *vm)
3486 {
3487 	return container_of(vm, struct i915_hw_ppgtt, base);
3488 }
3489 
3490 
3491 static inline bool i915_gem_obj_ggtt_bound(struct drm_i915_gem_object *obj)
3492 {
3493 	return i915_gem_obj_ggtt_bound_view(obj, &i915_ggtt_view_normal);
3494 }
3495 
3496 unsigned long
3497 i915_gem_obj_ggtt_size(struct drm_i915_gem_object *obj);
3498 
3499 static inline int __must_check
3500 i915_gem_obj_ggtt_pin(struct drm_i915_gem_object *obj,
3501 		      uint32_t alignment,
3502 		      unsigned flags)
3503 {
3504 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3505 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3506 
3507 	return i915_gem_object_pin(obj, &ggtt->base,
3508 				   alignment, flags | PIN_GLOBAL);
3509 }
3510 
3511 void i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
3512 				     const struct i915_ggtt_view *view);
3513 static inline void
3514 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3515 {
3516 	i915_gem_object_ggtt_unpin_view(obj, &i915_ggtt_view_normal);
3517 }
3518 
3519 /* i915_gem_fence.c */
3520 int __must_check i915_gem_object_get_fence(struct drm_i915_gem_object *obj);
3521 int __must_check i915_gem_object_put_fence(struct drm_i915_gem_object *obj);
3522 
3523 bool i915_gem_object_pin_fence(struct drm_i915_gem_object *obj);
3524 void i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj);
3525 
3526 void i915_gem_restore_fences(struct drm_device *dev);
3527 
3528 void i915_gem_detect_bit_6_swizzle(struct drm_device *dev);
3529 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj);
3530 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj);
3531 
3532 /* i915_gem_context.c */
3533 int __must_check i915_gem_context_init(struct drm_device *dev);
3534 void i915_gem_context_lost(struct drm_i915_private *dev_priv);
3535 void i915_gem_context_fini(struct drm_device *dev);
3536 void i915_gem_context_reset(struct drm_device *dev);
3537 int i915_gem_context_open(struct drm_device *dev, struct drm_file *file);
3538 void i915_gem_context_close(struct drm_device *dev, struct drm_file *file);
3539 int i915_switch_context(struct drm_i915_gem_request *req);
3540 void i915_gem_context_free(struct kref *ctx_ref);
3541 struct drm_i915_gem_object *
3542 i915_gem_alloc_context_obj(struct drm_device *dev, size_t size);
3543 struct i915_gem_context *
3544 i915_gem_context_create_gvt(struct drm_device *dev);
3545 
3546 static inline struct i915_gem_context *
3547 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3548 {
3549 	struct i915_gem_context *ctx;
3550 
3551 	lockdep_assert_held(&file_priv->dev_priv->drm.struct_mutex);
3552 
3553 	ctx = idr_find(&file_priv->context_idr, id);
3554 	if (!ctx)
3555 		return ERR_PTR(-ENOENT);
3556 
3557 	return ctx;
3558 }
3559 
3560 static inline void i915_gem_context_reference(struct i915_gem_context *ctx)
3561 {
3562 	kref_get(&ctx->ref);
3563 }
3564 
3565 static inline void i915_gem_context_unreference(struct i915_gem_context *ctx)
3566 {
3567 	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
3568 	kref_put(&ctx->ref, i915_gem_context_free);
3569 }
3570 
3571 static inline bool i915_gem_context_is_default(const struct i915_gem_context *c)
3572 {
3573 	return c->user_handle == DEFAULT_CONTEXT_HANDLE;
3574 }
3575 
3576 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
3577 				  struct drm_file *file);
3578 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
3579 				   struct drm_file *file);
3580 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
3581 				    struct drm_file *file_priv);
3582 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
3583 				    struct drm_file *file_priv);
3584 int i915_gem_context_reset_stats_ioctl(struct drm_device *dev, void *data,
3585 				       struct drm_file *file);
3586 
3587 /* i915_gem_evict.c */
3588 int __must_check i915_gem_evict_something(struct drm_device *dev,
3589 					  struct i915_address_space *vm,
3590 					  int min_size,
3591 					  unsigned alignment,
3592 					  unsigned cache_level,
3593 					  unsigned long start,
3594 					  unsigned long end,
3595 					  unsigned flags);
3596 int __must_check i915_gem_evict_for_vma(struct i915_vma *target);
3597 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
3598 
3599 /* belongs in i915_gem_gtt.h */
3600 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3601 {
3602 	wmb();
3603 	if (INTEL_GEN(dev_priv) < 6)
3604 		intel_gtt_chipset_flush();
3605 }
3606 
3607 /* i915_gem_stolen.c */
3608 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3609 				struct drm_mm_node *node, u64 size,
3610 				unsigned alignment);
3611 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3612 					 struct drm_mm_node *node, u64 size,
3613 					 unsigned alignment, u64 start,
3614 					 u64 end);
3615 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3616 				 struct drm_mm_node *node);
3617 int i915_gem_init_stolen(struct drm_device *dev);
3618 void i915_gem_cleanup_stolen(struct drm_device *dev);
3619 struct drm_i915_gem_object *
3620 i915_gem_object_create_stolen(struct drm_device *dev, u32 size);
3621 struct drm_i915_gem_object *
3622 i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev,
3623 					       u32 stolen_offset,
3624 					       u32 gtt_offset,
3625 					       u32 size);
3626 
3627 /* i915_gem_shrinker.c */
3628 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3629 			      unsigned long target,
3630 			      unsigned flags);
3631 #define I915_SHRINK_PURGEABLE 0x1
3632 #define I915_SHRINK_UNBOUND 0x2
3633 #define I915_SHRINK_BOUND 0x4
3634 #define I915_SHRINK_ACTIVE 0x8
3635 #define I915_SHRINK_VMAPS 0x10
3636 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3637 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3638 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3639 
3640 
3641 /* i915_gem_tiling.c */
3642 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3643 {
3644 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3645 
3646 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3647 		obj->tiling_mode != I915_TILING_NONE;
3648 }
3649 
3650 /* i915_gem_debug.c */
3651 #if WATCH_LISTS
3652 int i915_verify_lists(struct drm_device *dev);
3653 #else
3654 #define i915_verify_lists(dev) 0
3655 #endif
3656 
3657 /* i915_debugfs.c */
3658 #ifdef CONFIG_DEBUG_FS
3659 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3660 void i915_debugfs_unregister(struct drm_i915_private *dev_priv);
3661 int i915_debugfs_connector_add(struct drm_connector *connector);
3662 void intel_display_crc_init(struct drm_device *dev);
3663 #else
3664 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3665 static inline void i915_debugfs_unregister(struct drm_i915_private *dev_priv) {}
3666 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3667 { return 0; }
3668 static inline void intel_display_crc_init(struct drm_device *dev) {}
3669 #endif
3670 
3671 /* i915_gpu_error.c */
3672 __printf(2, 3)
3673 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3674 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3675 			    const struct i915_error_state_file_priv *error);
3676 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3677 			      struct drm_i915_private *i915,
3678 			      size_t count, loff_t pos);
3679 static inline void i915_error_state_buf_release(
3680 	struct drm_i915_error_state_buf *eb)
3681 {
3682 	kfree(eb->buf);
3683 }
3684 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3685 			      u32 engine_mask,
3686 			      const char *error_msg);
3687 void i915_error_state_get(struct drm_device *dev,
3688 			  struct i915_error_state_file_priv *error_priv);
3689 void i915_error_state_put(struct i915_error_state_file_priv *error_priv);
3690 void i915_destroy_error_state(struct drm_device *dev);
3691 
3692 void i915_get_extra_instdone(struct drm_i915_private *dev_priv, uint32_t *instdone);
3693 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3694 
3695 /* i915_cmd_parser.c */
3696 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3697 int i915_cmd_parser_init_ring(struct intel_engine_cs *engine);
3698 void i915_cmd_parser_fini_ring(struct intel_engine_cs *engine);
3699 bool i915_needs_cmd_parser(struct intel_engine_cs *engine);
3700 int i915_parse_cmds(struct intel_engine_cs *engine,
3701 		    struct drm_i915_gem_object *batch_obj,
3702 		    struct drm_i915_gem_object *shadow_batch_obj,
3703 		    u32 batch_start_offset,
3704 		    u32 batch_len,
3705 		    bool is_master);
3706 
3707 /* i915_suspend.c */
3708 extern int i915_save_state(struct drm_device *dev);
3709 extern int i915_restore_state(struct drm_device *dev);
3710 
3711 /* i915_sysfs.c */
3712 void i915_setup_sysfs(struct drm_device *dev_priv);
3713 void i915_teardown_sysfs(struct drm_device *dev_priv);
3714 
3715 /* intel_i2c.c */
3716 extern int intel_setup_gmbus(struct drm_device *dev);
3717 extern void intel_teardown_gmbus(struct drm_device *dev);
3718 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3719 				     unsigned int pin);
3720 
3721 extern struct i2c_adapter *
3722 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3723 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3724 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3725 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3726 {
3727 	return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3728 }
3729 extern void intel_i2c_reset(struct drm_device *dev);
3730 
3731 /* intel_bios.c */
3732 int intel_bios_init(struct drm_i915_private *dev_priv);
3733 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3734 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3735 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3736 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3737 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3738 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3739 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3740 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3741 				     enum port port);
3742 
3743 /* intel_opregion.c */
3744 #ifdef CONFIG_ACPI
3745 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3746 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3747 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3748 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3749 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3750 					 bool enable);
3751 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3752 					 pci_power_t state);
3753 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3754 #else
3755 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3756 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3757 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3758 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3759 {
3760 }
3761 static inline int
3762 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3763 {
3764 	return 0;
3765 }
3766 static inline int
3767 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3768 {
3769 	return 0;
3770 }
3771 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3772 {
3773 	return -ENODEV;
3774 }
3775 #endif
3776 
3777 /* intel_acpi.c */
3778 #ifdef CONFIG_ACPI
3779 extern void intel_register_dsm_handler(void);
3780 extern void intel_unregister_dsm_handler(void);
3781 #else
3782 static inline void intel_register_dsm_handler(void) { return; }
3783 static inline void intel_unregister_dsm_handler(void) { return; }
3784 #endif /* CONFIG_ACPI */
3785 
3786 /* intel_device_info.c */
3787 static inline struct intel_device_info *
3788 mkwrite_device_info(struct drm_i915_private *dev_priv)
3789 {
3790 	return (struct intel_device_info *)&dev_priv->info;
3791 }
3792 
3793 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3794 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3795 
3796 /* modesetting */
3797 extern void intel_modeset_init_hw(struct drm_device *dev);
3798 extern void intel_modeset_init(struct drm_device *dev);
3799 extern void intel_modeset_gem_init(struct drm_device *dev);
3800 extern void intel_modeset_cleanup(struct drm_device *dev);
3801 extern int intel_connector_register(struct drm_connector *);
3802 extern void intel_connector_unregister(struct drm_connector *);
3803 extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state);
3804 extern void intel_display_resume(struct drm_device *dev);
3805 extern void i915_redisable_vga(struct drm_device *dev);
3806 extern void i915_redisable_vga_power_on(struct drm_device *dev);
3807 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3808 extern void intel_init_pch_refclk(struct drm_device *dev);
3809 extern void intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3810 extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3811 				  bool enable);
3812 
3813 extern bool i915_semaphore_is_enabled(struct drm_i915_private *dev_priv);
3814 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3815 			struct drm_file *file);
3816 
3817 /* overlay */
3818 extern struct intel_overlay_error_state *
3819 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3820 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3821 					    struct intel_overlay_error_state *error);
3822 
3823 extern struct intel_display_error_state *
3824 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3825 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3826 					    struct drm_device *dev,
3827 					    struct intel_display_error_state *error);
3828 
3829 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3830 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3831 
3832 /* intel_sideband.c */
3833 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3834 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3835 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3836 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3837 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3838 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3839 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3840 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3841 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3842 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3843 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3844 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3845 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3846 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3847 		   enum intel_sbi_destination destination);
3848 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3849 		     enum intel_sbi_destination destination);
3850 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3851 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3852 
3853 /* intel_dpio_phy.c */
3854 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3855 			      u32 deemph_reg_value, u32 margin_reg_value,
3856 			      bool uniq_trans_scale);
3857 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3858 			      bool reset);
3859 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
3860 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3861 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3862 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
3863 
3864 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3865 			      u32 demph_reg_value, u32 preemph_reg_value,
3866 			      u32 uniqtranscale_reg_value, u32 tx3_demph);
3867 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
3868 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3869 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
3870 
3871 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3872 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3873 
3874 #define I915_READ8(reg)		dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3875 #define I915_WRITE8(reg, val)	dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3876 
3877 #define I915_READ16(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3878 #define I915_WRITE16(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3879 #define I915_READ16_NOTRACE(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3880 #define I915_WRITE16_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3881 
3882 #define I915_READ(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3883 #define I915_WRITE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3884 #define I915_READ_NOTRACE(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3885 #define I915_WRITE_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3886 
3887 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3888  * will be implemented using 2 32-bit writes in an arbitrary order with
3889  * an arbitrary delay between them. This can cause the hardware to
3890  * act upon the intermediate value, possibly leading to corruption and
3891  * machine death. You have been warned.
3892  */
3893 #define I915_WRITE64(reg, val)	dev_priv->uncore.funcs.mmio_writeq(dev_priv, (reg), (val), true)
3894 #define I915_READ64(reg)	dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3895 
3896 #define I915_READ64_2x32(lower_reg, upper_reg) ({			\
3897 	u32 upper, lower, old_upper, loop = 0;				\
3898 	upper = I915_READ(upper_reg);					\
3899 	do {								\
3900 		old_upper = upper;					\
3901 		lower = I915_READ(lower_reg);				\
3902 		upper = I915_READ(upper_reg);				\
3903 	} while (upper != old_upper && loop++ < 2);			\
3904 	(u64)upper << 32 | lower; })
3905 
3906 #define POSTING_READ(reg)	(void)I915_READ_NOTRACE(reg)
3907 #define POSTING_READ16(reg)	(void)I915_READ16_NOTRACE(reg)
3908 
3909 #define __raw_read(x, s) \
3910 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \
3911 					     i915_reg_t reg) \
3912 { \
3913 	return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3914 }
3915 
3916 #define __raw_write(x, s) \
3917 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \
3918 				       i915_reg_t reg, uint##x##_t val) \
3919 { \
3920 	write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3921 }
3922 __raw_read(8, b)
3923 __raw_read(16, w)
3924 __raw_read(32, l)
3925 __raw_read(64, q)
3926 
3927 __raw_write(8, b)
3928 __raw_write(16, w)
3929 __raw_write(32, l)
3930 __raw_write(64, q)
3931 
3932 #undef __raw_read
3933 #undef __raw_write
3934 
3935 /* These are untraced mmio-accessors that are only valid to be used inside
3936  * criticial sections inside IRQ handlers where forcewake is explicitly
3937  * controlled.
3938  * Think twice, and think again, before using these.
3939  * Note: Should only be used between intel_uncore_forcewake_irqlock() and
3940  * intel_uncore_forcewake_irqunlock().
3941  */
3942 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3943 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3944 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3945 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3946 
3947 /* "Broadcast RGB" property */
3948 #define INTEL_BROADCAST_RGB_AUTO 0
3949 #define INTEL_BROADCAST_RGB_FULL 1
3950 #define INTEL_BROADCAST_RGB_LIMITED 2
3951 
3952 static inline i915_reg_t i915_vgacntrl_reg(struct drm_device *dev)
3953 {
3954 	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
3955 		return VLV_VGACNTRL;
3956 	else if (INTEL_INFO(dev)->gen >= 5)
3957 		return CPU_VGACNTRL;
3958 	else
3959 		return VGACNTRL;
3960 }
3961 
3962 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3963 {
3964 	unsigned long j = msecs_to_jiffies(m);
3965 
3966 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3967 }
3968 
3969 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3970 {
3971         return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3972 }
3973 
3974 static inline unsigned long
3975 timespec_to_jiffies_timeout(const struct timespec *value)
3976 {
3977 	unsigned long j = timespec_to_jiffies(value);
3978 
3979 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3980 }
3981 
3982 /*
3983  * If you need to wait X milliseconds between events A and B, but event B
3984  * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3985  * when event A happened, then just before event B you call this function and
3986  * pass the timestamp as the first argument, and X as the second argument.
3987  */
3988 static inline void
3989 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3990 {
3991 	unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3992 
3993 	/*
3994 	 * Don't re-read the value of "jiffies" every time since it may change
3995 	 * behind our back and break the math.
3996 	 */
3997 	tmp_jiffies = jiffies;
3998 	target_jiffies = timestamp_jiffies +
3999 			 msecs_to_jiffies_timeout(to_wait_ms);
4000 
4001 	if (time_after(target_jiffies, tmp_jiffies)) {
4002 		remaining_jiffies = target_jiffies - tmp_jiffies;
4003 		while (remaining_jiffies)
4004 			remaining_jiffies =
4005 			    schedule_timeout_uninterruptible(remaining_jiffies);
4006 	}
4007 }
4008 static inline bool __i915_request_irq_complete(struct drm_i915_gem_request *req)
4009 {
4010 	struct intel_engine_cs *engine = req->engine;
4011 
4012 	/* Before we do the heavier coherent read of the seqno,
4013 	 * check the value (hopefully) in the CPU cacheline.
4014 	 */
4015 	if (i915_gem_request_completed(req))
4016 		return true;
4017 
4018 	/* Ensure our read of the seqno is coherent so that we
4019 	 * do not "miss an interrupt" (i.e. if this is the last
4020 	 * request and the seqno write from the GPU is not visible
4021 	 * by the time the interrupt fires, we will see that the
4022 	 * request is incomplete and go back to sleep awaiting
4023 	 * another interrupt that will never come.)
4024 	 *
4025 	 * Strictly, we only need to do this once after an interrupt,
4026 	 * but it is easier and safer to do it every time the waiter
4027 	 * is woken.
4028 	 */
4029 	if (engine->irq_seqno_barrier &&
4030 	    READ_ONCE(engine->breadcrumbs.irq_seqno_bh) == current &&
4031 	    cmpxchg_relaxed(&engine->breadcrumbs.irq_posted, 1, 0)) {
4032 		struct task_struct *tsk;
4033 
4034 		/* The ordering of irq_posted versus applying the barrier
4035 		 * is crucial. The clearing of the current irq_posted must
4036 		 * be visible before we perform the barrier operation,
4037 		 * such that if a subsequent interrupt arrives, irq_posted
4038 		 * is reasserted and our task rewoken (which causes us to
4039 		 * do another __i915_request_irq_complete() immediately
4040 		 * and reapply the barrier). Conversely, if the clear
4041 		 * occurs after the barrier, then an interrupt that arrived
4042 		 * whilst we waited on the barrier would not trigger a
4043 		 * barrier on the next pass, and the read may not see the
4044 		 * seqno update.
4045 		 */
4046 		engine->irq_seqno_barrier(engine);
4047 
4048 		/* If we consume the irq, but we are no longer the bottom-half,
4049 		 * the real bottom-half may not have serialised their own
4050 		 * seqno check with the irq-barrier (i.e. may have inspected
4051 		 * the seqno before we believe it coherent since they see
4052 		 * irq_posted == false but we are still running).
4053 		 */
4054 		rcu_read_lock();
4055 		tsk = READ_ONCE(engine->breadcrumbs.irq_seqno_bh);
4056 		if (tsk && tsk != current)
4057 			/* Note that if the bottom-half is changed as we
4058 			 * are sending the wake-up, the new bottom-half will
4059 			 * be woken by whomever made the change. We only have
4060 			 * to worry about when we steal the irq-posted for
4061 			 * ourself.
4062 			 */
4063 			wake_up_process(tsk);
4064 		rcu_read_unlock();
4065 
4066 		if (i915_gem_request_completed(req))
4067 			return true;
4068 	}
4069 
4070 	/* We need to check whether any gpu reset happened in between
4071 	 * the request being submitted and now. If a reset has occurred,
4072 	 * the seqno will have been advance past ours and our request
4073 	 * is complete. If we are in the process of handling a reset,
4074 	 * the request is effectively complete as the rendering will
4075 	 * be discarded, but we need to return in order to drop the
4076 	 * struct_mutex.
4077 	 */
4078 	if (i915_reset_in_progress(&req->i915->gpu_error))
4079 		return true;
4080 
4081 	return false;
4082 }
4083 
4084 #endif
4085