1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*- 2 */ 3 /* 4 * 5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 6 * All Rights Reserved. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a 9 * copy of this software and associated documentation files (the 10 * "Software"), to deal in the Software without restriction, including 11 * without limitation the rights to use, copy, modify, merge, publish, 12 * distribute, sub license, and/or sell copies of the Software, and to 13 * permit persons to whom the Software is furnished to do so, subject to 14 * the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the 17 * next paragraph) shall be included in all copies or substantial portions 18 * of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 27 * 28 */ 29 30 #ifndef _I915_DRV_H_ 31 #define _I915_DRV_H_ 32 33 #include <uapi/drm/i915_drm.h> 34 #include <uapi/drm/drm_fourcc.h> 35 36 #include <linux/io-mapping.h> 37 #include <linux/i2c.h> 38 #include <linux/i2c-algo-bit.h> 39 #include <linux/backlight.h> 40 #include <linux/hash.h> 41 #include <linux/intel-iommu.h> 42 #include <linux/kref.h> 43 #include <linux/mm_types.h> 44 #include <linux/perf_event.h> 45 #include <linux/pm_qos.h> 46 #include <linux/reservation.h> 47 #include <linux/shmem_fs.h> 48 49 #include <drm/drmP.h> 50 #include <drm/intel-gtt.h> 51 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */ 52 #include <drm/drm_gem.h> 53 #include <drm/drm_auth.h> 54 #include <drm/drm_cache.h> 55 56 #include "i915_params.h" 57 #include "i915_reg.h" 58 #include "i915_utils.h" 59 60 #include "intel_bios.h" 61 #include "intel_device_info.h" 62 #include "intel_display.h" 63 #include "intel_dpll_mgr.h" 64 #include "intel_lrc.h" 65 #include "intel_opregion.h" 66 #include "intel_ringbuffer.h" 67 #include "intel_uncore.h" 68 #include "intel_wopcm.h" 69 #include "intel_uc.h" 70 71 #include "i915_gem.h" 72 #include "i915_gem_context.h" 73 #include "i915_gem_fence_reg.h" 74 #include "i915_gem_object.h" 75 #include "i915_gem_gtt.h" 76 #include "i915_gpu_error.h" 77 #include "i915_request.h" 78 #include "i915_scheduler.h" 79 #include "i915_timeline.h" 80 #include "i915_vma.h" 81 82 #include "intel_gvt.h" 83 84 /* General customization: 85 */ 86 87 #define DRIVER_NAME "i915" 88 #define DRIVER_DESC "Intel Graphics" 89 #define DRIVER_DATE "20180620" 90 #define DRIVER_TIMESTAMP 1529529048 91 92 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and 93 * WARN_ON()) for hw state sanity checks to check for unexpected conditions 94 * which may not necessarily be a user visible problem. This will either 95 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to 96 * enable distros and users to tailor their preferred amount of i915 abrt 97 * spam. 98 */ 99 #define I915_STATE_WARN(condition, format...) ({ \ 100 int __ret_warn_on = !!(condition); \ 101 if (unlikely(__ret_warn_on)) \ 102 if (!WARN(i915_modparams.verbose_state_checks, format)) \ 103 DRM_ERROR(format); \ 104 unlikely(__ret_warn_on); \ 105 }) 106 107 #define I915_STATE_WARN_ON(x) \ 108 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")") 109 110 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG) 111 112 bool __i915_inject_load_failure(const char *func, int line); 113 #define i915_inject_load_failure() \ 114 __i915_inject_load_failure(__func__, __LINE__) 115 116 bool i915_error_injected(void); 117 118 #else 119 120 #define i915_inject_load_failure() false 121 #define i915_error_injected() false 122 123 #endif 124 125 #define i915_load_error(i915, fmt, ...) \ 126 __i915_printk(i915, i915_error_injected() ? KERN_DEBUG : KERN_ERR, \ 127 fmt, ##__VA_ARGS__) 128 129 typedef struct { 130 uint32_t val; 131 } uint_fixed_16_16_t; 132 133 #define FP_16_16_MAX ({ \ 134 uint_fixed_16_16_t fp; \ 135 fp.val = UINT_MAX; \ 136 fp; \ 137 }) 138 139 static inline bool is_fixed16_zero(uint_fixed_16_16_t val) 140 { 141 if (val.val == 0) 142 return true; 143 return false; 144 } 145 146 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val) 147 { 148 uint_fixed_16_16_t fp; 149 150 WARN_ON(val > U16_MAX); 151 152 fp.val = val << 16; 153 return fp; 154 } 155 156 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp) 157 { 158 return DIV_ROUND_UP(fp.val, 1 << 16); 159 } 160 161 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp) 162 { 163 return fp.val >> 16; 164 } 165 166 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1, 167 uint_fixed_16_16_t min2) 168 { 169 uint_fixed_16_16_t min; 170 171 min.val = min(min1.val, min2.val); 172 return min; 173 } 174 175 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1, 176 uint_fixed_16_16_t max2) 177 { 178 uint_fixed_16_16_t max; 179 180 max.val = max(max1.val, max2.val); 181 return max; 182 } 183 184 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val) 185 { 186 uint_fixed_16_16_t fp; 187 WARN_ON(val > U32_MAX); 188 fp.val = (uint32_t) val; 189 return fp; 190 } 191 192 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val, 193 uint_fixed_16_16_t d) 194 { 195 return DIV_ROUND_UP(val.val, d.val); 196 } 197 198 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val, 199 uint_fixed_16_16_t mul) 200 { 201 uint64_t intermediate_val; 202 203 intermediate_val = (uint64_t) val * mul.val; 204 intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16); 205 WARN_ON(intermediate_val > U32_MAX); 206 return (uint32_t) intermediate_val; 207 } 208 209 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val, 210 uint_fixed_16_16_t mul) 211 { 212 uint64_t intermediate_val; 213 214 intermediate_val = (uint64_t) val.val * mul.val; 215 intermediate_val = intermediate_val >> 16; 216 return clamp_u64_to_fixed16(intermediate_val); 217 } 218 219 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d) 220 { 221 uint64_t interm_val; 222 223 interm_val = (uint64_t)val << 16; 224 interm_val = DIV_ROUND_UP_ULL(interm_val, d); 225 return clamp_u64_to_fixed16(interm_val); 226 } 227 228 static inline uint32_t div_round_up_u32_fixed16(uint32_t val, 229 uint_fixed_16_16_t d) 230 { 231 uint64_t interm_val; 232 233 interm_val = (uint64_t)val << 16; 234 interm_val = DIV_ROUND_UP_ULL(interm_val, d.val); 235 WARN_ON(interm_val > U32_MAX); 236 return (uint32_t) interm_val; 237 } 238 239 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val, 240 uint_fixed_16_16_t mul) 241 { 242 uint64_t intermediate_val; 243 244 intermediate_val = (uint64_t) val * mul.val; 245 return clamp_u64_to_fixed16(intermediate_val); 246 } 247 248 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1, 249 uint_fixed_16_16_t add2) 250 { 251 uint64_t interm_sum; 252 253 interm_sum = (uint64_t) add1.val + add2.val; 254 return clamp_u64_to_fixed16(interm_sum); 255 } 256 257 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1, 258 uint32_t add2) 259 { 260 uint64_t interm_sum; 261 uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2); 262 263 interm_sum = (uint64_t) add1.val + interm_add2.val; 264 return clamp_u64_to_fixed16(interm_sum); 265 } 266 267 enum hpd_pin { 268 HPD_NONE = 0, 269 HPD_TV = HPD_NONE, /* TV is known to be unreliable */ 270 HPD_CRT, 271 HPD_SDVO_B, 272 HPD_SDVO_C, 273 HPD_PORT_A, 274 HPD_PORT_B, 275 HPD_PORT_C, 276 HPD_PORT_D, 277 HPD_PORT_E, 278 HPD_PORT_F, 279 HPD_NUM_PINS 280 }; 281 282 #define for_each_hpd_pin(__pin) \ 283 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++) 284 285 #define HPD_STORM_DEFAULT_THRESHOLD 5 286 287 struct i915_hotplug { 288 struct work_struct hotplug_work; 289 290 struct { 291 unsigned long last_jiffies; 292 int count; 293 enum { 294 HPD_ENABLED = 0, 295 HPD_DISABLED = 1, 296 HPD_MARK_DISABLED = 2 297 } state; 298 } stats[HPD_NUM_PINS]; 299 u32 event_bits; 300 struct delayed_work reenable_work; 301 302 struct intel_digital_port *irq_port[I915_MAX_PORTS]; 303 u32 long_port_mask; 304 u32 short_port_mask; 305 struct work_struct dig_port_work; 306 307 struct work_struct poll_init_work; 308 bool poll_enabled; 309 310 unsigned int hpd_storm_threshold; 311 312 /* 313 * if we get a HPD irq from DP and a HPD irq from non-DP 314 * the non-DP HPD could block the workqueue on a mode config 315 * mutex getting, that userspace may have taken. However 316 * userspace is waiting on the DP workqueue to run which is 317 * blocked behind the non-DP one. 318 */ 319 struct workqueue_struct *dp_wq; 320 }; 321 322 #define I915_GEM_GPU_DOMAINS \ 323 (I915_GEM_DOMAIN_RENDER | \ 324 I915_GEM_DOMAIN_SAMPLER | \ 325 I915_GEM_DOMAIN_COMMAND | \ 326 I915_GEM_DOMAIN_INSTRUCTION | \ 327 I915_GEM_DOMAIN_VERTEX) 328 329 struct drm_i915_private; 330 struct i915_mm_struct; 331 struct i915_mmu_object; 332 333 struct drm_i915_file_private { 334 struct drm_i915_private *dev_priv; 335 struct drm_file *file; 336 337 struct { 338 spinlock_t lock; 339 struct list_head request_list; 340 /* 20ms is a fairly arbitrary limit (greater than the average frame time) 341 * chosen to prevent the CPU getting more than a frame ahead of the GPU 342 * (when using lax throttling for the frontbuffer). We also use it to 343 * offer free GPU waitboosts for severely congested workloads. 344 */ 345 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20) 346 } mm; 347 struct idr context_idr; 348 349 struct intel_rps_client { 350 atomic_t boosts; 351 } rps_client; 352 353 unsigned int bsd_engine; 354 355 /* 356 * Every context ban increments per client ban score. Also 357 * hangs in short succession increments ban score. If ban threshold 358 * is reached, client is considered banned and submitting more work 359 * will fail. This is a stop gap measure to limit the badly behaving 360 * clients access to gpu. Note that unbannable contexts never increment 361 * the client ban score. 362 */ 363 #define I915_CLIENT_SCORE_HANG_FAST 1 364 #define I915_CLIENT_FAST_HANG_JIFFIES (60 * HZ) 365 #define I915_CLIENT_SCORE_CONTEXT_BAN 3 366 #define I915_CLIENT_SCORE_BANNED 9 367 /** ban_score: Accumulated score of all ctx bans and fast hangs. */ 368 atomic_t ban_score; 369 unsigned long hang_timestamp; 370 }; 371 372 /* Interface history: 373 * 374 * 1.1: Original. 375 * 1.2: Add Power Management 376 * 1.3: Add vblank support 377 * 1.4: Fix cmdbuffer path, add heap destroy 378 * 1.5: Add vblank pipe configuration 379 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank 380 * - Support vertical blank on secondary display pipe 381 */ 382 #define DRIVER_MAJOR 1 383 #define DRIVER_MINOR 6 384 #define DRIVER_PATCHLEVEL 0 385 386 struct intel_overlay; 387 struct intel_overlay_error_state; 388 389 struct sdvo_device_mapping { 390 u8 initialized; 391 u8 dvo_port; 392 u8 slave_addr; 393 u8 dvo_wiring; 394 u8 i2c_pin; 395 u8 ddc_pin; 396 }; 397 398 struct intel_connector; 399 struct intel_encoder; 400 struct intel_atomic_state; 401 struct intel_crtc_state; 402 struct intel_initial_plane_config; 403 struct intel_crtc; 404 struct intel_limit; 405 struct dpll; 406 struct intel_cdclk_state; 407 408 struct drm_i915_display_funcs { 409 void (*get_cdclk)(struct drm_i915_private *dev_priv, 410 struct intel_cdclk_state *cdclk_state); 411 void (*set_cdclk)(struct drm_i915_private *dev_priv, 412 const struct intel_cdclk_state *cdclk_state); 413 int (*get_fifo_size)(struct drm_i915_private *dev_priv, 414 enum i9xx_plane_id i9xx_plane); 415 int (*compute_pipe_wm)(struct intel_crtc_state *cstate); 416 int (*compute_intermediate_wm)(struct drm_device *dev, 417 struct intel_crtc *intel_crtc, 418 struct intel_crtc_state *newstate); 419 void (*initial_watermarks)(struct intel_atomic_state *state, 420 struct intel_crtc_state *cstate); 421 void (*atomic_update_watermarks)(struct intel_atomic_state *state, 422 struct intel_crtc_state *cstate); 423 void (*optimize_watermarks)(struct intel_atomic_state *state, 424 struct intel_crtc_state *cstate); 425 int (*compute_global_watermarks)(struct drm_atomic_state *state); 426 void (*update_wm)(struct intel_crtc *crtc); 427 int (*modeset_calc_cdclk)(struct drm_atomic_state *state); 428 /* Returns the active state of the crtc, and if the crtc is active, 429 * fills out the pipe-config with the hw state. */ 430 bool (*get_pipe_config)(struct intel_crtc *, 431 struct intel_crtc_state *); 432 void (*get_initial_plane_config)(struct intel_crtc *, 433 struct intel_initial_plane_config *); 434 int (*crtc_compute_clock)(struct intel_crtc *crtc, 435 struct intel_crtc_state *crtc_state); 436 void (*crtc_enable)(struct intel_crtc_state *pipe_config, 437 struct drm_atomic_state *old_state); 438 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state, 439 struct drm_atomic_state *old_state); 440 void (*update_crtcs)(struct drm_atomic_state *state); 441 void (*audio_codec_enable)(struct intel_encoder *encoder, 442 const struct intel_crtc_state *crtc_state, 443 const struct drm_connector_state *conn_state); 444 void (*audio_codec_disable)(struct intel_encoder *encoder, 445 const struct intel_crtc_state *old_crtc_state, 446 const struct drm_connector_state *old_conn_state); 447 void (*fdi_link_train)(struct intel_crtc *crtc, 448 const struct intel_crtc_state *crtc_state); 449 void (*init_clock_gating)(struct drm_i915_private *dev_priv); 450 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv); 451 /* clock updates for mode set */ 452 /* cursor updates */ 453 /* render clock increase/decrease */ 454 /* display clock increase/decrease */ 455 /* pll clock increase/decrease */ 456 457 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state); 458 void (*load_luts)(struct drm_crtc_state *crtc_state); 459 }; 460 461 #define CSR_VERSION(major, minor) ((major) << 16 | (minor)) 462 #define CSR_VERSION_MAJOR(version) ((version) >> 16) 463 #define CSR_VERSION_MINOR(version) ((version) & 0xffff) 464 465 struct intel_csr { 466 struct work_struct work; 467 const char *fw_path; 468 uint32_t *dmc_payload; 469 uint32_t dmc_fw_size; 470 uint32_t version; 471 uint32_t mmio_count; 472 i915_reg_t mmioaddr[8]; 473 uint32_t mmiodata[8]; 474 uint32_t dc_state; 475 uint32_t allowed_dc_mask; 476 }; 477 478 enum i915_cache_level { 479 I915_CACHE_NONE = 0, 480 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */ 481 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc 482 caches, eg sampler/render caches, and the 483 large Last-Level-Cache. LLC is coherent with 484 the CPU, but L3 is only visible to the GPU. */ 485 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */ 486 }; 487 488 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */ 489 490 enum fb_op_origin { 491 ORIGIN_GTT, 492 ORIGIN_CPU, 493 ORIGIN_CS, 494 ORIGIN_FLIP, 495 ORIGIN_DIRTYFB, 496 }; 497 498 struct intel_fbc { 499 /* This is always the inner lock when overlapping with struct_mutex and 500 * it's the outer lock when overlapping with stolen_lock. */ 501 struct mutex lock; 502 unsigned threshold; 503 unsigned int possible_framebuffer_bits; 504 unsigned int busy_bits; 505 unsigned int visible_pipes_mask; 506 struct intel_crtc *crtc; 507 508 struct drm_mm_node compressed_fb; 509 struct drm_mm_node *compressed_llb; 510 511 bool false_color; 512 513 bool enabled; 514 bool active; 515 516 bool underrun_detected; 517 struct work_struct underrun_work; 518 519 /* 520 * Due to the atomic rules we can't access some structures without the 521 * appropriate locking, so we cache information here in order to avoid 522 * these problems. 523 */ 524 struct intel_fbc_state_cache { 525 struct i915_vma *vma; 526 unsigned long flags; 527 528 struct { 529 unsigned int mode_flags; 530 uint32_t hsw_bdw_pixel_rate; 531 } crtc; 532 533 struct { 534 unsigned int rotation; 535 int src_w; 536 int src_h; 537 bool visible; 538 /* 539 * Display surface base address adjustement for 540 * pageflips. Note that on gen4+ this only adjusts up 541 * to a tile, offsets within a tile are handled in 542 * the hw itself (with the TILEOFF register). 543 */ 544 int adjusted_x; 545 int adjusted_y; 546 547 int y; 548 } plane; 549 550 struct { 551 const struct drm_format_info *format; 552 unsigned int stride; 553 } fb; 554 } state_cache; 555 556 /* 557 * This structure contains everything that's relevant to program the 558 * hardware registers. When we want to figure out if we need to disable 559 * and re-enable FBC for a new configuration we just check if there's 560 * something different in the struct. The genx_fbc_activate functions 561 * are supposed to read from it in order to program the registers. 562 */ 563 struct intel_fbc_reg_params { 564 struct i915_vma *vma; 565 unsigned long flags; 566 567 struct { 568 enum pipe pipe; 569 enum i9xx_plane_id i9xx_plane; 570 unsigned int fence_y_offset; 571 } crtc; 572 573 struct { 574 const struct drm_format_info *format; 575 unsigned int stride; 576 } fb; 577 578 int cfb_size; 579 unsigned int gen9_wa_cfb_stride; 580 } params; 581 582 struct intel_fbc_work { 583 bool scheduled; 584 u64 scheduled_vblank; 585 struct work_struct work; 586 } work; 587 588 const char *no_fbc_reason; 589 }; 590 591 /* 592 * HIGH_RR is the highest eDP panel refresh rate read from EDID 593 * LOW_RR is the lowest eDP panel refresh rate found from EDID 594 * parsing for same resolution. 595 */ 596 enum drrs_refresh_rate_type { 597 DRRS_HIGH_RR, 598 DRRS_LOW_RR, 599 DRRS_MAX_RR, /* RR count */ 600 }; 601 602 enum drrs_support_type { 603 DRRS_NOT_SUPPORTED = 0, 604 STATIC_DRRS_SUPPORT = 1, 605 SEAMLESS_DRRS_SUPPORT = 2 606 }; 607 608 struct intel_dp; 609 struct i915_drrs { 610 struct mutex mutex; 611 struct delayed_work work; 612 struct intel_dp *dp; 613 unsigned busy_frontbuffer_bits; 614 enum drrs_refresh_rate_type refresh_rate_type; 615 enum drrs_support_type type; 616 }; 617 618 struct i915_psr { 619 struct mutex lock; 620 bool sink_support; 621 struct intel_dp *enabled; 622 bool active; 623 struct work_struct work; 624 unsigned busy_frontbuffer_bits; 625 bool sink_psr2_support; 626 bool link_standby; 627 bool colorimetry_support; 628 bool alpm; 629 bool psr2_enabled; 630 u8 sink_sync_latency; 631 bool debug; 632 ktime_t last_entry_attempt; 633 ktime_t last_exit; 634 635 void (*enable_source)(struct intel_dp *, 636 const struct intel_crtc_state *); 637 void (*disable_source)(struct intel_dp *, 638 const struct intel_crtc_state *); 639 void (*enable_sink)(struct intel_dp *); 640 void (*activate)(struct intel_dp *); 641 void (*setup_vsc)(struct intel_dp *, const struct intel_crtc_state *); 642 }; 643 644 enum intel_pch { 645 PCH_NONE = 0, /* No PCH present */ 646 PCH_IBX, /* Ibexpeak PCH */ 647 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */ 648 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */ 649 PCH_SPT, /* Sunrisepoint PCH */ 650 PCH_KBP, /* Kaby Lake PCH */ 651 PCH_CNP, /* Cannon Lake PCH */ 652 PCH_ICP, /* Ice Lake PCH */ 653 PCH_NOP, /* PCH without south display */ 654 }; 655 656 enum intel_sbi_destination { 657 SBI_ICLK, 658 SBI_MPHY, 659 }; 660 661 #define QUIRK_LVDS_SSC_DISABLE (1<<1) 662 #define QUIRK_INVERT_BRIGHTNESS (1<<2) 663 #define QUIRK_BACKLIGHT_PRESENT (1<<3) 664 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5) 665 #define QUIRK_INCREASE_T12_DELAY (1<<6) 666 667 struct intel_fbdev; 668 struct intel_fbc_work; 669 670 struct intel_gmbus { 671 struct i2c_adapter adapter; 672 #define GMBUS_FORCE_BIT_RETRY (1U << 31) 673 u32 force_bit; 674 u32 reg0; 675 i915_reg_t gpio_reg; 676 struct i2c_algo_bit_data bit_algo; 677 struct drm_i915_private *dev_priv; 678 }; 679 680 struct i915_suspend_saved_registers { 681 u32 saveDSPARB; 682 u32 saveFBC_CONTROL; 683 u32 saveCACHE_MODE_0; 684 u32 saveMI_ARB_STATE; 685 u32 saveSWF0[16]; 686 u32 saveSWF1[16]; 687 u32 saveSWF3[3]; 688 uint64_t saveFENCE[I915_MAX_NUM_FENCES]; 689 u32 savePCH_PORT_HOTPLUG; 690 u16 saveGCDGMBUS; 691 }; 692 693 struct vlv_s0ix_state { 694 /* GAM */ 695 u32 wr_watermark; 696 u32 gfx_prio_ctrl; 697 u32 arb_mode; 698 u32 gfx_pend_tlb0; 699 u32 gfx_pend_tlb1; 700 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM]; 701 u32 media_max_req_count; 702 u32 gfx_max_req_count; 703 u32 render_hwsp; 704 u32 ecochk; 705 u32 bsd_hwsp; 706 u32 blt_hwsp; 707 u32 tlb_rd_addr; 708 709 /* MBC */ 710 u32 g3dctl; 711 u32 gsckgctl; 712 u32 mbctl; 713 714 /* GCP */ 715 u32 ucgctl1; 716 u32 ucgctl3; 717 u32 rcgctl1; 718 u32 rcgctl2; 719 u32 rstctl; 720 u32 misccpctl; 721 722 /* GPM */ 723 u32 gfxpause; 724 u32 rpdeuhwtc; 725 u32 rpdeuc; 726 u32 ecobus; 727 u32 pwrdwnupctl; 728 u32 rp_down_timeout; 729 u32 rp_deucsw; 730 u32 rcubmabdtmr; 731 u32 rcedata; 732 u32 spare2gh; 733 734 /* Display 1 CZ domain */ 735 u32 gt_imr; 736 u32 gt_ier; 737 u32 pm_imr; 738 u32 pm_ier; 739 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM]; 740 741 /* GT SA CZ domain */ 742 u32 tilectl; 743 u32 gt_fifoctl; 744 u32 gtlc_wake_ctrl; 745 u32 gtlc_survive; 746 u32 pmwgicz; 747 748 /* Display 2 CZ domain */ 749 u32 gu_ctl0; 750 u32 gu_ctl1; 751 u32 pcbr; 752 u32 clock_gate_dis2; 753 }; 754 755 struct intel_rps_ei { 756 ktime_t ktime; 757 u32 render_c0; 758 u32 media_c0; 759 }; 760 761 struct intel_rps { 762 /* 763 * work, interrupts_enabled and pm_iir are protected by 764 * dev_priv->irq_lock 765 */ 766 struct work_struct work; 767 bool interrupts_enabled; 768 u32 pm_iir; 769 770 /* PM interrupt bits that should never be masked */ 771 u32 pm_intrmsk_mbz; 772 773 /* Frequencies are stored in potentially platform dependent multiples. 774 * In other words, *_freq needs to be multiplied by X to be interesting. 775 * Soft limits are those which are used for the dynamic reclocking done 776 * by the driver (raise frequencies under heavy loads, and lower for 777 * lighter loads). Hard limits are those imposed by the hardware. 778 * 779 * A distinction is made for overclocking, which is never enabled by 780 * default, and is considered to be above the hard limit if it's 781 * possible at all. 782 */ 783 u8 cur_freq; /* Current frequency (cached, may not == HW) */ 784 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */ 785 u8 max_freq_softlimit; /* Max frequency permitted by the driver */ 786 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */ 787 u8 min_freq; /* AKA RPn. Minimum frequency */ 788 u8 boost_freq; /* Frequency to request when wait boosting */ 789 u8 idle_freq; /* Frequency to request when we are idle */ 790 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */ 791 u8 rp1_freq; /* "less than" RP0 power/freqency */ 792 u8 rp0_freq; /* Non-overclocked max frequency. */ 793 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */ 794 795 u8 up_threshold; /* Current %busy required to uplock */ 796 u8 down_threshold; /* Current %busy required to downclock */ 797 798 int last_adj; 799 enum { LOW_POWER, BETWEEN, HIGH_POWER } power; 800 801 bool enabled; 802 atomic_t num_waiters; 803 atomic_t boosts; 804 805 /* manual wa residency calculations */ 806 struct intel_rps_ei ei; 807 }; 808 809 struct intel_rc6 { 810 bool enabled; 811 u64 prev_hw_residency[4]; 812 u64 cur_residency[4]; 813 }; 814 815 struct intel_llc_pstate { 816 bool enabled; 817 }; 818 819 struct intel_gen6_power_mgmt { 820 struct intel_rps rps; 821 struct intel_rc6 rc6; 822 struct intel_llc_pstate llc_pstate; 823 }; 824 825 /* defined intel_pm.c */ 826 extern spinlock_t mchdev_lock; 827 828 struct intel_ilk_power_mgmt { 829 u8 cur_delay; 830 u8 min_delay; 831 u8 max_delay; 832 u8 fmax; 833 u8 fstart; 834 835 u64 last_count1; 836 unsigned long last_time1; 837 unsigned long chipset_power; 838 u64 last_count2; 839 u64 last_time2; 840 unsigned long gfx_power; 841 u8 corr; 842 843 int c_m; 844 int r_t; 845 }; 846 847 struct drm_i915_private; 848 struct i915_power_well; 849 850 struct i915_power_well_ops { 851 /* 852 * Synchronize the well's hw state to match the current sw state, for 853 * example enable/disable it based on the current refcount. Called 854 * during driver init and resume time, possibly after first calling 855 * the enable/disable handlers. 856 */ 857 void (*sync_hw)(struct drm_i915_private *dev_priv, 858 struct i915_power_well *power_well); 859 /* 860 * Enable the well and resources that depend on it (for example 861 * interrupts located on the well). Called after the 0->1 refcount 862 * transition. 863 */ 864 void (*enable)(struct drm_i915_private *dev_priv, 865 struct i915_power_well *power_well); 866 /* 867 * Disable the well and resources that depend on it. Called after 868 * the 1->0 refcount transition. 869 */ 870 void (*disable)(struct drm_i915_private *dev_priv, 871 struct i915_power_well *power_well); 872 /* Returns the hw enabled state. */ 873 bool (*is_enabled)(struct drm_i915_private *dev_priv, 874 struct i915_power_well *power_well); 875 }; 876 877 /* Power well structure for haswell */ 878 struct i915_power_well { 879 const char *name; 880 bool always_on; 881 /* power well enable/disable usage count */ 882 int count; 883 /* cached hw enabled state */ 884 bool hw_enabled; 885 u64 domains; 886 /* unique identifier for this power well */ 887 enum i915_power_well_id id; 888 /* 889 * Arbitraty data associated with this power well. Platform and power 890 * well specific. 891 */ 892 union { 893 struct { 894 enum dpio_phy phy; 895 } bxt; 896 struct { 897 /* Mask of pipes whose IRQ logic is backed by the pw */ 898 u8 irq_pipe_mask; 899 /* The pw is backing the VGA functionality */ 900 bool has_vga:1; 901 bool has_fuses:1; 902 } hsw; 903 }; 904 const struct i915_power_well_ops *ops; 905 }; 906 907 struct i915_power_domains { 908 /* 909 * Power wells needed for initialization at driver init and suspend 910 * time are on. They are kept on until after the first modeset. 911 */ 912 bool init_power_on; 913 bool initializing; 914 int power_well_count; 915 916 struct mutex lock; 917 int domain_use_count[POWER_DOMAIN_NUM]; 918 struct i915_power_well *power_wells; 919 }; 920 921 #define MAX_L3_SLICES 2 922 struct intel_l3_parity { 923 u32 *remap_info[MAX_L3_SLICES]; 924 struct work_struct error_work; 925 int which_slice; 926 }; 927 928 struct i915_gem_mm { 929 /** Memory allocator for GTT stolen memory */ 930 struct drm_mm stolen; 931 /** Protects the usage of the GTT stolen memory allocator. This is 932 * always the inner lock when overlapping with struct_mutex. */ 933 struct mutex stolen_lock; 934 935 /* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */ 936 spinlock_t obj_lock; 937 938 /** List of all objects in gtt_space. Used to restore gtt 939 * mappings on resume */ 940 struct list_head bound_list; 941 /** 942 * List of objects which are not bound to the GTT (thus 943 * are idle and not used by the GPU). These objects may or may 944 * not actually have any pages attached. 945 */ 946 struct list_head unbound_list; 947 948 /** List of all objects in gtt_space, currently mmaped by userspace. 949 * All objects within this list must also be on bound_list. 950 */ 951 struct list_head userfault_list; 952 953 /** 954 * List of objects which are pending destruction. 955 */ 956 struct llist_head free_list; 957 struct work_struct free_work; 958 spinlock_t free_lock; 959 /** 960 * Count of objects pending destructions. Used to skip needlessly 961 * waiting on an RCU barrier if no objects are waiting to be freed. 962 */ 963 atomic_t free_count; 964 965 /** 966 * Small stash of WC pages 967 */ 968 struct pagevec wc_stash; 969 970 /** 971 * tmpfs instance used for shmem backed objects 972 */ 973 struct vfsmount *gemfs; 974 975 /** PPGTT used for aliasing the PPGTT with the GTT */ 976 struct i915_hw_ppgtt *aliasing_ppgtt; 977 978 struct notifier_block oom_notifier; 979 struct notifier_block vmap_notifier; 980 struct shrinker shrinker; 981 982 /** LRU list of objects with fence regs on them. */ 983 struct list_head fence_list; 984 985 /** 986 * Workqueue to fault in userptr pages, flushed by the execbuf 987 * when required but otherwise left to userspace to try again 988 * on EAGAIN. 989 */ 990 struct workqueue_struct *userptr_wq; 991 992 u64 unordered_timeline; 993 994 /* the indicator for dispatch video commands on two BSD rings */ 995 atomic_t bsd_engine_dispatch_index; 996 997 /** Bit 6 swizzling required for X tiling */ 998 uint32_t bit_6_swizzle_x; 999 /** Bit 6 swizzling required for Y tiling */ 1000 uint32_t bit_6_swizzle_y; 1001 1002 /* accounting, useful for userland debugging */ 1003 spinlock_t object_stat_lock; 1004 u64 object_memory; 1005 u32 object_count; 1006 }; 1007 1008 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */ 1009 1010 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */ 1011 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */ 1012 1013 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */ 1014 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */ 1015 1016 #define I915_ENGINE_WEDGED_TIMEOUT (60 * HZ) /* Reset but no recovery? */ 1017 1018 enum modeset_restore { 1019 MODESET_ON_LID_OPEN, 1020 MODESET_DONE, 1021 MODESET_SUSPENDED, 1022 }; 1023 1024 #define DP_AUX_A 0x40 1025 #define DP_AUX_B 0x10 1026 #define DP_AUX_C 0x20 1027 #define DP_AUX_D 0x30 1028 #define DP_AUX_E 0x50 1029 #define DP_AUX_F 0x60 1030 1031 #define DDC_PIN_B 0x05 1032 #define DDC_PIN_C 0x04 1033 #define DDC_PIN_D 0x06 1034 1035 struct ddi_vbt_port_info { 1036 int max_tmds_clock; 1037 1038 /* 1039 * This is an index in the HDMI/DVI DDI buffer translation table. 1040 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't 1041 * populate this field. 1042 */ 1043 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff 1044 uint8_t hdmi_level_shift; 1045 1046 uint8_t supports_dvi:1; 1047 uint8_t supports_hdmi:1; 1048 uint8_t supports_dp:1; 1049 uint8_t supports_edp:1; 1050 1051 uint8_t alternate_aux_channel; 1052 uint8_t alternate_ddc_pin; 1053 1054 uint8_t dp_boost_level; 1055 uint8_t hdmi_boost_level; 1056 int dp_max_link_rate; /* 0 for not limited by VBT */ 1057 }; 1058 1059 enum psr_lines_to_wait { 1060 PSR_0_LINES_TO_WAIT = 0, 1061 PSR_1_LINE_TO_WAIT, 1062 PSR_4_LINES_TO_WAIT, 1063 PSR_8_LINES_TO_WAIT 1064 }; 1065 1066 struct intel_vbt_data { 1067 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */ 1068 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */ 1069 1070 /* Feature bits */ 1071 unsigned int int_tv_support:1; 1072 unsigned int lvds_dither:1; 1073 unsigned int int_crt_support:1; 1074 unsigned int lvds_use_ssc:1; 1075 unsigned int int_lvds_support:1; 1076 unsigned int display_clock_mode:1; 1077 unsigned int fdi_rx_polarity_inverted:1; 1078 unsigned int panel_type:4; 1079 int lvds_ssc_freq; 1080 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */ 1081 1082 enum drrs_support_type drrs_type; 1083 1084 struct { 1085 int rate; 1086 int lanes; 1087 int preemphasis; 1088 int vswing; 1089 bool low_vswing; 1090 bool initialized; 1091 int bpp; 1092 struct edp_power_seq pps; 1093 } edp; 1094 1095 struct { 1096 bool enable; 1097 bool full_link; 1098 bool require_aux_wakeup; 1099 int idle_frames; 1100 enum psr_lines_to_wait lines_to_wait; 1101 int tp1_wakeup_time_us; 1102 int tp2_tp3_wakeup_time_us; 1103 } psr; 1104 1105 struct { 1106 u16 pwm_freq_hz; 1107 bool present; 1108 bool active_low_pwm; 1109 u8 min_brightness; /* min_brightness/255 of max */ 1110 u8 controller; /* brightness controller number */ 1111 enum intel_backlight_type type; 1112 } backlight; 1113 1114 /* MIPI DSI */ 1115 struct { 1116 u16 panel_id; 1117 struct mipi_config *config; 1118 struct mipi_pps_data *pps; 1119 u16 bl_ports; 1120 u16 cabc_ports; 1121 u8 seq_version; 1122 u32 size; 1123 u8 *data; 1124 const u8 *sequence[MIPI_SEQ_MAX]; 1125 u8 *deassert_seq; /* Used by fixup_mipi_sequences() */ 1126 } dsi; 1127 1128 int crt_ddc_pin; 1129 1130 int child_dev_num; 1131 struct child_device_config *child_dev; 1132 1133 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS]; 1134 struct sdvo_device_mapping sdvo_mappings[2]; 1135 }; 1136 1137 enum intel_ddb_partitioning { 1138 INTEL_DDB_PART_1_2, 1139 INTEL_DDB_PART_5_6, /* IVB+ */ 1140 }; 1141 1142 struct intel_wm_level { 1143 bool enable; 1144 uint32_t pri_val; 1145 uint32_t spr_val; 1146 uint32_t cur_val; 1147 uint32_t fbc_val; 1148 }; 1149 1150 struct ilk_wm_values { 1151 uint32_t wm_pipe[3]; 1152 uint32_t wm_lp[3]; 1153 uint32_t wm_lp_spr[3]; 1154 uint32_t wm_linetime[3]; 1155 bool enable_fbc_wm; 1156 enum intel_ddb_partitioning partitioning; 1157 }; 1158 1159 struct g4x_pipe_wm { 1160 uint16_t plane[I915_MAX_PLANES]; 1161 uint16_t fbc; 1162 }; 1163 1164 struct g4x_sr_wm { 1165 uint16_t plane; 1166 uint16_t cursor; 1167 uint16_t fbc; 1168 }; 1169 1170 struct vlv_wm_ddl_values { 1171 uint8_t plane[I915_MAX_PLANES]; 1172 }; 1173 1174 struct vlv_wm_values { 1175 struct g4x_pipe_wm pipe[3]; 1176 struct g4x_sr_wm sr; 1177 struct vlv_wm_ddl_values ddl[3]; 1178 uint8_t level; 1179 bool cxsr; 1180 }; 1181 1182 struct g4x_wm_values { 1183 struct g4x_pipe_wm pipe[2]; 1184 struct g4x_sr_wm sr; 1185 struct g4x_sr_wm hpll; 1186 bool cxsr; 1187 bool hpll_en; 1188 bool fbc_en; 1189 }; 1190 1191 struct skl_ddb_entry { 1192 uint16_t start, end; /* in number of blocks, 'end' is exclusive */ 1193 }; 1194 1195 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry) 1196 { 1197 return entry->end - entry->start; 1198 } 1199 1200 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1, 1201 const struct skl_ddb_entry *e2) 1202 { 1203 if (e1->start == e2->start && e1->end == e2->end) 1204 return true; 1205 1206 return false; 1207 } 1208 1209 struct skl_ddb_allocation { 1210 /* packed/y */ 1211 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; 1212 struct skl_ddb_entry uv_plane[I915_MAX_PIPES][I915_MAX_PLANES]; 1213 u8 enabled_slices; /* GEN11 has configurable 2 slices */ 1214 }; 1215 1216 struct skl_ddb_values { 1217 unsigned dirty_pipes; 1218 struct skl_ddb_allocation ddb; 1219 }; 1220 1221 struct skl_wm_level { 1222 bool plane_en; 1223 uint16_t plane_res_b; 1224 uint8_t plane_res_l; 1225 }; 1226 1227 /* Stores plane specific WM parameters */ 1228 struct skl_wm_params { 1229 bool x_tiled, y_tiled; 1230 bool rc_surface; 1231 bool is_planar; 1232 uint32_t width; 1233 uint8_t cpp; 1234 uint32_t plane_pixel_rate; 1235 uint32_t y_min_scanlines; 1236 uint32_t plane_bytes_per_line; 1237 uint_fixed_16_16_t plane_blocks_per_line; 1238 uint_fixed_16_16_t y_tile_minimum; 1239 uint32_t linetime_us; 1240 uint32_t dbuf_block_size; 1241 }; 1242 1243 /* 1244 * This struct helps tracking the state needed for runtime PM, which puts the 1245 * device in PCI D3 state. Notice that when this happens, nothing on the 1246 * graphics device works, even register access, so we don't get interrupts nor 1247 * anything else. 1248 * 1249 * Every piece of our code that needs to actually touch the hardware needs to 1250 * either call intel_runtime_pm_get or call intel_display_power_get with the 1251 * appropriate power domain. 1252 * 1253 * Our driver uses the autosuspend delay feature, which means we'll only really 1254 * suspend if we stay with zero refcount for a certain amount of time. The 1255 * default value is currently very conservative (see intel_runtime_pm_enable), but 1256 * it can be changed with the standard runtime PM files from sysfs. 1257 * 1258 * The irqs_disabled variable becomes true exactly after we disable the IRQs and 1259 * goes back to false exactly before we reenable the IRQs. We use this variable 1260 * to check if someone is trying to enable/disable IRQs while they're supposed 1261 * to be disabled. This shouldn't happen and we'll print some error messages in 1262 * case it happens. 1263 * 1264 * For more, read the Documentation/power/runtime_pm.txt. 1265 */ 1266 struct i915_runtime_pm { 1267 atomic_t wakeref_count; 1268 bool suspended; 1269 bool irqs_enabled; 1270 }; 1271 1272 enum intel_pipe_crc_source { 1273 INTEL_PIPE_CRC_SOURCE_NONE, 1274 INTEL_PIPE_CRC_SOURCE_PLANE1, 1275 INTEL_PIPE_CRC_SOURCE_PLANE2, 1276 INTEL_PIPE_CRC_SOURCE_PF, 1277 INTEL_PIPE_CRC_SOURCE_PIPE, 1278 /* TV/DP on pre-gen5/vlv can't use the pipe source. */ 1279 INTEL_PIPE_CRC_SOURCE_TV, 1280 INTEL_PIPE_CRC_SOURCE_DP_B, 1281 INTEL_PIPE_CRC_SOURCE_DP_C, 1282 INTEL_PIPE_CRC_SOURCE_DP_D, 1283 INTEL_PIPE_CRC_SOURCE_AUTO, 1284 INTEL_PIPE_CRC_SOURCE_MAX, 1285 }; 1286 1287 struct intel_pipe_crc_entry { 1288 uint32_t frame; 1289 uint32_t crc[5]; 1290 }; 1291 1292 #define INTEL_PIPE_CRC_ENTRIES_NR 128 1293 struct intel_pipe_crc { 1294 spinlock_t lock; 1295 bool opened; /* exclusive access to the result file */ 1296 struct intel_pipe_crc_entry *entries; 1297 enum intel_pipe_crc_source source; 1298 int head, tail; 1299 wait_queue_head_t wq; 1300 int skipped; 1301 }; 1302 1303 struct i915_frontbuffer_tracking { 1304 spinlock_t lock; 1305 1306 /* 1307 * Tracking bits for delayed frontbuffer flushing du to gpu activity or 1308 * scheduled flips. 1309 */ 1310 unsigned busy_bits; 1311 unsigned flip_bits; 1312 }; 1313 1314 struct i915_wa_reg { 1315 u32 addr; 1316 u32 value; 1317 /* bitmask representing WA bits */ 1318 u32 mask; 1319 }; 1320 1321 #define I915_MAX_WA_REGS 16 1322 1323 struct i915_workarounds { 1324 struct i915_wa_reg reg[I915_MAX_WA_REGS]; 1325 u32 count; 1326 }; 1327 1328 struct i915_virtual_gpu { 1329 bool active; 1330 u32 caps; 1331 }; 1332 1333 /* used in computing the new watermarks state */ 1334 struct intel_wm_config { 1335 unsigned int num_pipes_active; 1336 bool sprites_enabled; 1337 bool sprites_scaled; 1338 }; 1339 1340 struct i915_oa_format { 1341 u32 format; 1342 int size; 1343 }; 1344 1345 struct i915_oa_reg { 1346 i915_reg_t addr; 1347 u32 value; 1348 }; 1349 1350 struct i915_oa_config { 1351 char uuid[UUID_STRING_LEN + 1]; 1352 int id; 1353 1354 const struct i915_oa_reg *mux_regs; 1355 u32 mux_regs_len; 1356 const struct i915_oa_reg *b_counter_regs; 1357 u32 b_counter_regs_len; 1358 const struct i915_oa_reg *flex_regs; 1359 u32 flex_regs_len; 1360 1361 struct attribute_group sysfs_metric; 1362 struct attribute *attrs[2]; 1363 struct device_attribute sysfs_metric_id; 1364 1365 atomic_t ref_count; 1366 }; 1367 1368 struct i915_perf_stream; 1369 1370 /** 1371 * struct i915_perf_stream_ops - the OPs to support a specific stream type 1372 */ 1373 struct i915_perf_stream_ops { 1374 /** 1375 * @enable: Enables the collection of HW samples, either in response to 1376 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened 1377 * without `I915_PERF_FLAG_DISABLED`. 1378 */ 1379 void (*enable)(struct i915_perf_stream *stream); 1380 1381 /** 1382 * @disable: Disables the collection of HW samples, either in response 1383 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying 1384 * the stream. 1385 */ 1386 void (*disable)(struct i915_perf_stream *stream); 1387 1388 /** 1389 * @poll_wait: Call poll_wait, passing a wait queue that will be woken 1390 * once there is something ready to read() for the stream 1391 */ 1392 void (*poll_wait)(struct i915_perf_stream *stream, 1393 struct file *file, 1394 poll_table *wait); 1395 1396 /** 1397 * @wait_unlocked: For handling a blocking read, wait until there is 1398 * something to ready to read() for the stream. E.g. wait on the same 1399 * wait queue that would be passed to poll_wait(). 1400 */ 1401 int (*wait_unlocked)(struct i915_perf_stream *stream); 1402 1403 /** 1404 * @read: Copy buffered metrics as records to userspace 1405 * **buf**: the userspace, destination buffer 1406 * **count**: the number of bytes to copy, requested by userspace 1407 * **offset**: zero at the start of the read, updated as the read 1408 * proceeds, it represents how many bytes have been copied so far and 1409 * the buffer offset for copying the next record. 1410 * 1411 * Copy as many buffered i915 perf samples and records for this stream 1412 * to userspace as will fit in the given buffer. 1413 * 1414 * Only write complete records; returning -%ENOSPC if there isn't room 1415 * for a complete record. 1416 * 1417 * Return any error condition that results in a short read such as 1418 * -%ENOSPC or -%EFAULT, even though these may be squashed before 1419 * returning to userspace. 1420 */ 1421 int (*read)(struct i915_perf_stream *stream, 1422 char __user *buf, 1423 size_t count, 1424 size_t *offset); 1425 1426 /** 1427 * @destroy: Cleanup any stream specific resources. 1428 * 1429 * The stream will always be disabled before this is called. 1430 */ 1431 void (*destroy)(struct i915_perf_stream *stream); 1432 }; 1433 1434 /** 1435 * struct i915_perf_stream - state for a single open stream FD 1436 */ 1437 struct i915_perf_stream { 1438 /** 1439 * @dev_priv: i915 drm device 1440 */ 1441 struct drm_i915_private *dev_priv; 1442 1443 /** 1444 * @link: Links the stream into ``&drm_i915_private->streams`` 1445 */ 1446 struct list_head link; 1447 1448 /** 1449 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*` 1450 * properties given when opening a stream, representing the contents 1451 * of a single sample as read() by userspace. 1452 */ 1453 u32 sample_flags; 1454 1455 /** 1456 * @sample_size: Considering the configured contents of a sample 1457 * combined with the required header size, this is the total size 1458 * of a single sample record. 1459 */ 1460 int sample_size; 1461 1462 /** 1463 * @ctx: %NULL if measuring system-wide across all contexts or a 1464 * specific context that is being monitored. 1465 */ 1466 struct i915_gem_context *ctx; 1467 1468 /** 1469 * @enabled: Whether the stream is currently enabled, considering 1470 * whether the stream was opened in a disabled state and based 1471 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls. 1472 */ 1473 bool enabled; 1474 1475 /** 1476 * @ops: The callbacks providing the implementation of this specific 1477 * type of configured stream. 1478 */ 1479 const struct i915_perf_stream_ops *ops; 1480 1481 /** 1482 * @oa_config: The OA configuration used by the stream. 1483 */ 1484 struct i915_oa_config *oa_config; 1485 }; 1486 1487 /** 1488 * struct i915_oa_ops - Gen specific implementation of an OA unit stream 1489 */ 1490 struct i915_oa_ops { 1491 /** 1492 * @is_valid_b_counter_reg: Validates register's address for 1493 * programming boolean counters for a particular platform. 1494 */ 1495 bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv, 1496 u32 addr); 1497 1498 /** 1499 * @is_valid_mux_reg: Validates register's address for programming mux 1500 * for a particular platform. 1501 */ 1502 bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr); 1503 1504 /** 1505 * @is_valid_flex_reg: Validates register's address for programming 1506 * flex EU filtering for a particular platform. 1507 */ 1508 bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr); 1509 1510 /** 1511 * @init_oa_buffer: Resets the head and tail pointers of the 1512 * circular buffer for periodic OA reports. 1513 * 1514 * Called when first opening a stream for OA metrics, but also may be 1515 * called in response to an OA buffer overflow or other error 1516 * condition. 1517 * 1518 * Note it may be necessary to clear the full OA buffer here as part of 1519 * maintaining the invariable that new reports must be written to 1520 * zeroed memory for us to be able to reliable detect if an expected 1521 * report has not yet landed in memory. (At least on Haswell the OA 1522 * buffer tail pointer is not synchronized with reports being visible 1523 * to the CPU) 1524 */ 1525 void (*init_oa_buffer)(struct drm_i915_private *dev_priv); 1526 1527 /** 1528 * @enable_metric_set: Selects and applies any MUX configuration to set 1529 * up the Boolean and Custom (B/C) counters that are part of the 1530 * counter reports being sampled. May apply system constraints such as 1531 * disabling EU clock gating as required. 1532 */ 1533 int (*enable_metric_set)(struct drm_i915_private *dev_priv, 1534 const struct i915_oa_config *oa_config); 1535 1536 /** 1537 * @disable_metric_set: Remove system constraints associated with using 1538 * the OA unit. 1539 */ 1540 void (*disable_metric_set)(struct drm_i915_private *dev_priv); 1541 1542 /** 1543 * @oa_enable: Enable periodic sampling 1544 */ 1545 void (*oa_enable)(struct drm_i915_private *dev_priv); 1546 1547 /** 1548 * @oa_disable: Disable periodic sampling 1549 */ 1550 void (*oa_disable)(struct drm_i915_private *dev_priv); 1551 1552 /** 1553 * @read: Copy data from the circular OA buffer into a given userspace 1554 * buffer. 1555 */ 1556 int (*read)(struct i915_perf_stream *stream, 1557 char __user *buf, 1558 size_t count, 1559 size_t *offset); 1560 1561 /** 1562 * @oa_hw_tail_read: read the OA tail pointer register 1563 * 1564 * In particular this enables us to share all the fiddly code for 1565 * handling the OA unit tail pointer race that affects multiple 1566 * generations. 1567 */ 1568 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv); 1569 }; 1570 1571 struct intel_cdclk_state { 1572 unsigned int cdclk, vco, ref, bypass; 1573 u8 voltage_level; 1574 }; 1575 1576 struct drm_i915_private { 1577 struct drm_device drm; 1578 1579 struct kmem_cache *objects; 1580 struct kmem_cache *vmas; 1581 struct kmem_cache *luts; 1582 struct kmem_cache *requests; 1583 struct kmem_cache *dependencies; 1584 struct kmem_cache *priorities; 1585 1586 const struct intel_device_info info; 1587 struct intel_driver_caps caps; 1588 1589 /** 1590 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and 1591 * end of stolen which we can optionally use to create GEM objects 1592 * backed by stolen memory. Note that stolen_usable_size tells us 1593 * exactly how much of this we are actually allowed to use, given that 1594 * some portion of it is in fact reserved for use by hardware functions. 1595 */ 1596 struct resource dsm; 1597 /** 1598 * Reseved portion of Data Stolen Memory 1599 */ 1600 struct resource dsm_reserved; 1601 1602 /* 1603 * Stolen memory is segmented in hardware with different portions 1604 * offlimits to certain functions. 1605 * 1606 * The drm_mm is initialised to the total accessible range, as found 1607 * from the PCI config. On Broadwell+, this is further restricted to 1608 * avoid the first page! The upper end of stolen memory is reserved for 1609 * hardware functions and similarly removed from the accessible range. 1610 */ 1611 resource_size_t stolen_usable_size; /* Total size minus reserved ranges */ 1612 1613 void __iomem *regs; 1614 1615 struct intel_uncore uncore; 1616 1617 struct i915_virtual_gpu vgpu; 1618 1619 struct intel_gvt *gvt; 1620 1621 struct intel_wopcm wopcm; 1622 1623 struct intel_huc huc; 1624 struct intel_guc guc; 1625 1626 struct intel_csr csr; 1627 1628 struct intel_gmbus gmbus[GMBUS_NUM_PINS]; 1629 1630 /** gmbus_mutex protects against concurrent usage of the single hw gmbus 1631 * controller on different i2c buses. */ 1632 struct mutex gmbus_mutex; 1633 1634 /** 1635 * Base address of the gmbus and gpio block. 1636 */ 1637 uint32_t gpio_mmio_base; 1638 1639 /* MMIO base address for MIPI regs */ 1640 uint32_t mipi_mmio_base; 1641 1642 uint32_t psr_mmio_base; 1643 1644 uint32_t pps_mmio_base; 1645 1646 wait_queue_head_t gmbus_wait_queue; 1647 1648 struct pci_dev *bridge_dev; 1649 struct intel_engine_cs *engine[I915_NUM_ENGINES]; 1650 /* Context used internally to idle the GPU and setup initial state */ 1651 struct i915_gem_context *kernel_context; 1652 /* Context only to be used for injecting preemption commands */ 1653 struct i915_gem_context *preempt_context; 1654 struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1] 1655 [MAX_ENGINE_INSTANCE + 1]; 1656 1657 struct drm_dma_handle *status_page_dmah; 1658 struct resource mch_res; 1659 1660 /* protects the irq masks */ 1661 spinlock_t irq_lock; 1662 1663 bool display_irqs_enabled; 1664 1665 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */ 1666 struct pm_qos_request pm_qos; 1667 1668 /* Sideband mailbox protection */ 1669 struct mutex sb_lock; 1670 1671 /** Cached value of IMR to avoid reads in updating the bitfield */ 1672 union { 1673 u32 irq_mask; 1674 u32 de_irq_mask[I915_MAX_PIPES]; 1675 }; 1676 u32 gt_irq_mask; 1677 u32 pm_imr; 1678 u32 pm_ier; 1679 u32 pm_rps_events; 1680 u32 pm_guc_events; 1681 u32 pipestat_irq_mask[I915_MAX_PIPES]; 1682 1683 struct i915_hotplug hotplug; 1684 struct intel_fbc fbc; 1685 struct i915_drrs drrs; 1686 struct intel_opregion opregion; 1687 struct intel_vbt_data vbt; 1688 1689 bool preserve_bios_swizzle; 1690 1691 /* overlay */ 1692 struct intel_overlay *overlay; 1693 1694 /* backlight registers and fields in struct intel_panel */ 1695 struct mutex backlight_lock; 1696 1697 /* LVDS info */ 1698 bool no_aux_handshake; 1699 1700 /* protects panel power sequencer state */ 1701 struct mutex pps_mutex; 1702 1703 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */ 1704 int num_fence_regs; /* 8 on pre-965, 16 otherwise */ 1705 1706 unsigned int fsb_freq, mem_freq, is_ddr3; 1707 unsigned int skl_preferred_vco_freq; 1708 unsigned int max_cdclk_freq; 1709 1710 unsigned int max_dotclk_freq; 1711 unsigned int rawclk_freq; 1712 unsigned int hpll_freq; 1713 unsigned int fdi_pll_freq; 1714 unsigned int czclk_freq; 1715 1716 struct { 1717 /* 1718 * The current logical cdclk state. 1719 * See intel_atomic_state.cdclk.logical 1720 * 1721 * For reading holding any crtc lock is sufficient, 1722 * for writing must hold all of them. 1723 */ 1724 struct intel_cdclk_state logical; 1725 /* 1726 * The current actual cdclk state. 1727 * See intel_atomic_state.cdclk.actual 1728 */ 1729 struct intel_cdclk_state actual; 1730 /* The current hardware cdclk state */ 1731 struct intel_cdclk_state hw; 1732 } cdclk; 1733 1734 /** 1735 * wq - Driver workqueue for GEM. 1736 * 1737 * NOTE: Work items scheduled here are not allowed to grab any modeset 1738 * locks, for otherwise the flushing done in the pageflip code will 1739 * result in deadlocks. 1740 */ 1741 struct workqueue_struct *wq; 1742 1743 /* ordered wq for modesets */ 1744 struct workqueue_struct *modeset_wq; 1745 1746 /* Display functions */ 1747 struct drm_i915_display_funcs display; 1748 1749 /* PCH chipset type */ 1750 enum intel_pch pch_type; 1751 unsigned short pch_id; 1752 1753 unsigned long quirks; 1754 1755 enum modeset_restore modeset_restore; 1756 struct mutex modeset_restore_lock; 1757 struct drm_atomic_state *modeset_restore_state; 1758 struct drm_modeset_acquire_ctx reset_ctx; 1759 1760 struct list_head vm_list; /* Global list of all address spaces */ 1761 struct i915_ggtt ggtt; /* VM representing the global address space */ 1762 1763 struct i915_gem_mm mm; 1764 DECLARE_HASHTABLE(mm_structs, 7); 1765 struct mutex mm_lock; 1766 1767 struct intel_ppat ppat; 1768 1769 /* Kernel Modesetting */ 1770 1771 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES]; 1772 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES]; 1773 1774 #ifdef CONFIG_DEBUG_FS 1775 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES]; 1776 #endif 1777 1778 /* dpll and cdclk state is protected by connection_mutex */ 1779 int num_shared_dpll; 1780 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS]; 1781 const struct intel_dpll_mgr *dpll_mgr; 1782 1783 /* 1784 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll. 1785 * Must be global rather than per dpll, because on some platforms 1786 * plls share registers. 1787 */ 1788 struct mutex dpll_lock; 1789 1790 unsigned int active_crtcs; 1791 /* minimum acceptable cdclk for each pipe */ 1792 int min_cdclk[I915_MAX_PIPES]; 1793 /* minimum acceptable voltage level for each pipe */ 1794 u8 min_voltage_level[I915_MAX_PIPES]; 1795 1796 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV]; 1797 1798 struct i915_workarounds workarounds; 1799 1800 struct i915_frontbuffer_tracking fb_tracking; 1801 1802 struct intel_atomic_helper { 1803 struct llist_head free_list; 1804 struct work_struct free_work; 1805 } atomic_helper; 1806 1807 u16 orig_clock; 1808 1809 bool mchbar_need_disable; 1810 1811 struct intel_l3_parity l3_parity; 1812 1813 /* Cannot be determined by PCIID. You must always read a register. */ 1814 u32 edram_cap; 1815 1816 /* 1817 * Protects RPS/RC6 register access and PCU communication. 1818 * Must be taken after struct_mutex if nested. Note that 1819 * this lock may be held for long periods of time when 1820 * talking to hw - so only take it when talking to hw! 1821 */ 1822 struct mutex pcu_lock; 1823 1824 /* gen6+ GT PM state */ 1825 struct intel_gen6_power_mgmt gt_pm; 1826 1827 /* ilk-only ips/rps state. Everything in here is protected by the global 1828 * mchdev_lock in intel_pm.c */ 1829 struct intel_ilk_power_mgmt ips; 1830 1831 struct i915_power_domains power_domains; 1832 1833 struct i915_psr psr; 1834 1835 struct i915_gpu_error gpu_error; 1836 1837 struct drm_i915_gem_object *vlv_pctx; 1838 1839 /* list of fbdev register on this device */ 1840 struct intel_fbdev *fbdev; 1841 struct work_struct fbdev_suspend_work; 1842 1843 struct drm_property *broadcast_rgb_property; 1844 struct drm_property *force_audio_property; 1845 1846 /* hda/i915 audio component */ 1847 struct i915_audio_component *audio_component; 1848 bool audio_component_registered; 1849 /** 1850 * av_mutex - mutex for audio/video sync 1851 * 1852 */ 1853 struct mutex av_mutex; 1854 1855 struct { 1856 struct list_head list; 1857 struct llist_head free_list; 1858 struct work_struct free_work; 1859 1860 /* The hw wants to have a stable context identifier for the 1861 * lifetime of the context (for OA, PASID, faults, etc). 1862 * This is limited in execlists to 21 bits. 1863 */ 1864 struct ida hw_ida; 1865 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */ 1866 #define MAX_GUC_CONTEXT_HW_ID (1 << 20) /* exclusive */ 1867 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */ 1868 } contexts; 1869 1870 u32 fdi_rx_config; 1871 1872 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */ 1873 u32 chv_phy_control; 1874 /* 1875 * Shadows for CHV DPLL_MD regs to keep the state 1876 * checker somewhat working in the presence hardware 1877 * crappiness (can't read out DPLL_MD for pipes B & C). 1878 */ 1879 u32 chv_dpll_md[I915_MAX_PIPES]; 1880 u32 bxt_phy_grc; 1881 1882 u32 suspend_count; 1883 bool power_domains_suspended; 1884 struct i915_suspend_saved_registers regfile; 1885 struct vlv_s0ix_state vlv_s0ix_state; 1886 1887 enum { 1888 I915_SAGV_UNKNOWN = 0, 1889 I915_SAGV_DISABLED, 1890 I915_SAGV_ENABLED, 1891 I915_SAGV_NOT_CONTROLLED 1892 } sagv_status; 1893 1894 struct { 1895 /* 1896 * Raw watermark latency values: 1897 * in 0.1us units for WM0, 1898 * in 0.5us units for WM1+. 1899 */ 1900 /* primary */ 1901 uint16_t pri_latency[5]; 1902 /* sprite */ 1903 uint16_t spr_latency[5]; 1904 /* cursor */ 1905 uint16_t cur_latency[5]; 1906 /* 1907 * Raw watermark memory latency values 1908 * for SKL for all 8 levels 1909 * in 1us units. 1910 */ 1911 uint16_t skl_latency[8]; 1912 1913 /* current hardware state */ 1914 union { 1915 struct ilk_wm_values hw; 1916 struct skl_ddb_values skl_hw; 1917 struct vlv_wm_values vlv; 1918 struct g4x_wm_values g4x; 1919 }; 1920 1921 uint8_t max_level; 1922 1923 /* 1924 * Should be held around atomic WM register writing; also 1925 * protects * intel_crtc->wm.active and 1926 * cstate->wm.need_postvbl_update. 1927 */ 1928 struct mutex wm_mutex; 1929 1930 /* 1931 * Set during HW readout of watermarks/DDB. Some platforms 1932 * need to know when we're still using BIOS-provided values 1933 * (which we don't fully trust). 1934 */ 1935 bool distrust_bios_wm; 1936 } wm; 1937 1938 struct i915_runtime_pm runtime_pm; 1939 1940 struct { 1941 bool initialized; 1942 1943 struct kobject *metrics_kobj; 1944 struct ctl_table_header *sysctl_header; 1945 1946 /* 1947 * Lock associated with adding/modifying/removing OA configs 1948 * in dev_priv->perf.metrics_idr. 1949 */ 1950 struct mutex metrics_lock; 1951 1952 /* 1953 * List of dynamic configurations, you need to hold 1954 * dev_priv->perf.metrics_lock to access it. 1955 */ 1956 struct idr metrics_idr; 1957 1958 /* 1959 * Lock associated with anything below within this structure 1960 * except exclusive_stream. 1961 */ 1962 struct mutex lock; 1963 struct list_head streams; 1964 1965 struct { 1966 /* 1967 * The stream currently using the OA unit. If accessed 1968 * outside a syscall associated to its file 1969 * descriptor, you need to hold 1970 * dev_priv->drm.struct_mutex. 1971 */ 1972 struct i915_perf_stream *exclusive_stream; 1973 1974 struct intel_context *pinned_ctx; 1975 u32 specific_ctx_id; 1976 u32 specific_ctx_id_mask; 1977 1978 struct hrtimer poll_check_timer; 1979 wait_queue_head_t poll_wq; 1980 bool pollin; 1981 1982 /** 1983 * For rate limiting any notifications of spurious 1984 * invalid OA reports 1985 */ 1986 struct ratelimit_state spurious_report_rs; 1987 1988 bool periodic; 1989 int period_exponent; 1990 1991 struct i915_oa_config test_config; 1992 1993 struct { 1994 struct i915_vma *vma; 1995 u8 *vaddr; 1996 u32 last_ctx_id; 1997 int format; 1998 int format_size; 1999 2000 /** 2001 * Locks reads and writes to all head/tail state 2002 * 2003 * Consider: the head and tail pointer state 2004 * needs to be read consistently from a hrtimer 2005 * callback (atomic context) and read() fop 2006 * (user context) with tail pointer updates 2007 * happening in atomic context and head updates 2008 * in user context and the (unlikely) 2009 * possibility of read() errors needing to 2010 * reset all head/tail state. 2011 * 2012 * Note: Contention or performance aren't 2013 * currently a significant concern here 2014 * considering the relatively low frequency of 2015 * hrtimer callbacks (5ms period) and that 2016 * reads typically only happen in response to a 2017 * hrtimer event and likely complete before the 2018 * next callback. 2019 * 2020 * Note: This lock is not held *while* reading 2021 * and copying data to userspace so the value 2022 * of head observed in htrimer callbacks won't 2023 * represent any partial consumption of data. 2024 */ 2025 spinlock_t ptr_lock; 2026 2027 /** 2028 * One 'aging' tail pointer and one 'aged' 2029 * tail pointer ready to used for reading. 2030 * 2031 * Initial values of 0xffffffff are invalid 2032 * and imply that an update is required 2033 * (and should be ignored by an attempted 2034 * read) 2035 */ 2036 struct { 2037 u32 offset; 2038 } tails[2]; 2039 2040 /** 2041 * Index for the aged tail ready to read() 2042 * data up to. 2043 */ 2044 unsigned int aged_tail_idx; 2045 2046 /** 2047 * A monotonic timestamp for when the current 2048 * aging tail pointer was read; used to 2049 * determine when it is old enough to trust. 2050 */ 2051 u64 aging_timestamp; 2052 2053 /** 2054 * Although we can always read back the head 2055 * pointer register, we prefer to avoid 2056 * trusting the HW state, just to avoid any 2057 * risk that some hardware condition could 2058 * somehow bump the head pointer unpredictably 2059 * and cause us to forward the wrong OA buffer 2060 * data to userspace. 2061 */ 2062 u32 head; 2063 } oa_buffer; 2064 2065 u32 gen7_latched_oastatus1; 2066 u32 ctx_oactxctrl_offset; 2067 u32 ctx_flexeu0_offset; 2068 2069 /** 2070 * The RPT_ID/reason field for Gen8+ includes a bit 2071 * to determine if the CTX ID in the report is valid 2072 * but the specific bit differs between Gen 8 and 9 2073 */ 2074 u32 gen8_valid_ctx_bit; 2075 2076 struct i915_oa_ops ops; 2077 const struct i915_oa_format *oa_formats; 2078 } oa; 2079 } perf; 2080 2081 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */ 2082 struct { 2083 void (*resume)(struct drm_i915_private *); 2084 void (*cleanup_engine)(struct intel_engine_cs *engine); 2085 2086 struct list_head timelines; 2087 2088 struct list_head active_rings; 2089 struct list_head closed_vma; 2090 u32 active_requests; 2091 u32 request_serial; 2092 2093 /** 2094 * Is the GPU currently considered idle, or busy executing 2095 * userspace requests? Whilst idle, we allow runtime power 2096 * management to power down the hardware and display clocks. 2097 * In order to reduce the effect on performance, there 2098 * is a slight delay before we do so. 2099 */ 2100 bool awake; 2101 2102 /** 2103 * The number of times we have woken up. 2104 */ 2105 unsigned int epoch; 2106 #define I915_EPOCH_INVALID 0 2107 2108 /** 2109 * We leave the user IRQ off as much as possible, 2110 * but this means that requests will finish and never 2111 * be retired once the system goes idle. Set a timer to 2112 * fire periodically while the ring is running. When it 2113 * fires, go retire requests. 2114 */ 2115 struct delayed_work retire_work; 2116 2117 /** 2118 * When we detect an idle GPU, we want to turn on 2119 * powersaving features. So once we see that there 2120 * are no more requests outstanding and no more 2121 * arrive within a small period of time, we fire 2122 * off the idle_work. 2123 */ 2124 struct delayed_work idle_work; 2125 2126 ktime_t last_init_time; 2127 } gt; 2128 2129 /* perform PHY state sanity checks? */ 2130 bool chv_phy_assert[2]; 2131 2132 bool ipc_enabled; 2133 2134 /* Used to save the pipe-to-encoder mapping for audio */ 2135 struct intel_encoder *av_enc_map[I915_MAX_PIPES]; 2136 2137 /* necessary resource sharing with HDMI LPE audio driver. */ 2138 struct { 2139 struct platform_device *platdev; 2140 int irq; 2141 } lpe_audio; 2142 2143 struct i915_pmu pmu; 2144 2145 /* 2146 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch 2147 * will be rejected. Instead look for a better place. 2148 */ 2149 }; 2150 2151 static inline struct drm_i915_private *to_i915(const struct drm_device *dev) 2152 { 2153 return container_of(dev, struct drm_i915_private, drm); 2154 } 2155 2156 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev) 2157 { 2158 return to_i915(dev_get_drvdata(kdev)); 2159 } 2160 2161 static inline struct drm_i915_private *wopcm_to_i915(struct intel_wopcm *wopcm) 2162 { 2163 return container_of(wopcm, struct drm_i915_private, wopcm); 2164 } 2165 2166 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc) 2167 { 2168 return container_of(guc, struct drm_i915_private, guc); 2169 } 2170 2171 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc) 2172 { 2173 return container_of(huc, struct drm_i915_private, huc); 2174 } 2175 2176 /* Simple iterator over all initialised engines */ 2177 #define for_each_engine(engine__, dev_priv__, id__) \ 2178 for ((id__) = 0; \ 2179 (id__) < I915_NUM_ENGINES; \ 2180 (id__)++) \ 2181 for_each_if ((engine__) = (dev_priv__)->engine[(id__)]) 2182 2183 /* Iterator over subset of engines selected by mask */ 2184 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \ 2185 for ((tmp__) = (mask__) & INTEL_INFO(dev_priv__)->ring_mask; \ 2186 (tmp__) ? \ 2187 ((engine__) = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : \ 2188 0;) 2189 2190 enum hdmi_force_audio { 2191 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */ 2192 HDMI_AUDIO_OFF, /* force turn off HDMI audio */ 2193 HDMI_AUDIO_AUTO, /* trust EDID */ 2194 HDMI_AUDIO_ON, /* force turn on HDMI audio */ 2195 }; 2196 2197 #define I915_GTT_OFFSET_NONE ((u32)-1) 2198 2199 /* 2200 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is 2201 * considered to be the frontbuffer for the given plane interface-wise. This 2202 * doesn't mean that the hw necessarily already scans it out, but that any 2203 * rendering (by the cpu or gpu) will land in the frontbuffer eventually. 2204 * 2205 * We have one bit per pipe and per scanout plane type. 2206 */ 2207 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8 2208 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \ 2209 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \ 2210 BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \ 2211 BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \ 2212 }) 2213 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \ 2214 BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)) 2215 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \ 2216 GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \ 2217 INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)) 2218 2219 /* 2220 * Optimised SGL iterator for GEM objects 2221 */ 2222 static __always_inline struct sgt_iter { 2223 struct scatterlist *sgp; 2224 union { 2225 unsigned long pfn; 2226 dma_addr_t dma; 2227 }; 2228 unsigned int curr; 2229 unsigned int max; 2230 } __sgt_iter(struct scatterlist *sgl, bool dma) { 2231 struct sgt_iter s = { .sgp = sgl }; 2232 2233 if (s.sgp) { 2234 s.max = s.curr = s.sgp->offset; 2235 s.max += s.sgp->length; 2236 if (dma) 2237 s.dma = sg_dma_address(s.sgp); 2238 else 2239 s.pfn = page_to_pfn(sg_page(s.sgp)); 2240 } 2241 2242 return s; 2243 } 2244 2245 static inline struct scatterlist *____sg_next(struct scatterlist *sg) 2246 { 2247 ++sg; 2248 if (unlikely(sg_is_chain(sg))) 2249 sg = sg_chain_ptr(sg); 2250 return sg; 2251 } 2252 2253 /** 2254 * __sg_next - return the next scatterlist entry in a list 2255 * @sg: The current sg entry 2256 * 2257 * Description: 2258 * If the entry is the last, return NULL; otherwise, step to the next 2259 * element in the array (@sg@+1). If that's a chain pointer, follow it; 2260 * otherwise just return the pointer to the current element. 2261 **/ 2262 static inline struct scatterlist *__sg_next(struct scatterlist *sg) 2263 { 2264 return sg_is_last(sg) ? NULL : ____sg_next(sg); 2265 } 2266 2267 /** 2268 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table 2269 * @__dmap: DMA address (output) 2270 * @__iter: 'struct sgt_iter' (iterator state, internal) 2271 * @__sgt: sg_table to iterate over (input) 2272 */ 2273 #define for_each_sgt_dma(__dmap, __iter, __sgt) \ 2274 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \ 2275 ((__dmap) = (__iter).dma + (__iter).curr); \ 2276 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \ 2277 (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0) 2278 2279 /** 2280 * for_each_sgt_page - iterate over the pages of the given sg_table 2281 * @__pp: page pointer (output) 2282 * @__iter: 'struct sgt_iter' (iterator state, internal) 2283 * @__sgt: sg_table to iterate over (input) 2284 */ 2285 #define for_each_sgt_page(__pp, __iter, __sgt) \ 2286 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \ 2287 ((__pp) = (__iter).pfn == 0 ? NULL : \ 2288 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \ 2289 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \ 2290 (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0) 2291 2292 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg) 2293 { 2294 unsigned int page_sizes; 2295 2296 page_sizes = 0; 2297 while (sg) { 2298 GEM_BUG_ON(sg->offset); 2299 GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE)); 2300 page_sizes |= sg->length; 2301 sg = __sg_next(sg); 2302 } 2303 2304 return page_sizes; 2305 } 2306 2307 static inline unsigned int i915_sg_segment_size(void) 2308 { 2309 unsigned int size = swiotlb_max_segment(); 2310 2311 if (size == 0) 2312 return SCATTERLIST_MAX_SEGMENT; 2313 2314 size = rounddown(size, PAGE_SIZE); 2315 /* swiotlb_max_segment_size can return 1 byte when it means one page. */ 2316 if (size < PAGE_SIZE) 2317 size = PAGE_SIZE; 2318 2319 return size; 2320 } 2321 2322 static inline const struct intel_device_info * 2323 intel_info(const struct drm_i915_private *dev_priv) 2324 { 2325 return &dev_priv->info; 2326 } 2327 2328 #define INTEL_INFO(dev_priv) intel_info((dev_priv)) 2329 2330 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen) 2331 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id) 2332 2333 #define REVID_FOREVER 0xff 2334 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision) 2335 2336 #define GEN_FOREVER (0) 2337 2338 #define INTEL_GEN_MASK(s, e) ( \ 2339 BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \ 2340 BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \ 2341 GENMASK((e) != GEN_FOREVER ? (e) - 1 : BITS_PER_LONG - 1, \ 2342 (s) != GEN_FOREVER ? (s) - 1 : 0) \ 2343 ) 2344 2345 /* 2346 * Returns true if Gen is in inclusive range [Start, End]. 2347 * 2348 * Use GEN_FOREVER for unbound start and or end. 2349 */ 2350 #define IS_GEN(dev_priv, s, e) \ 2351 (!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e)))) 2352 2353 /* 2354 * Return true if revision is in range [since,until] inclusive. 2355 * 2356 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until. 2357 */ 2358 #define IS_REVID(p, since, until) \ 2359 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until)) 2360 2361 #define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p)) 2362 2363 #define IS_I830(dev_priv) IS_PLATFORM(dev_priv, INTEL_I830) 2364 #define IS_I845G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I845G) 2365 #define IS_I85X(dev_priv) IS_PLATFORM(dev_priv, INTEL_I85X) 2366 #define IS_I865G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I865G) 2367 #define IS_I915G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915G) 2368 #define IS_I915GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915GM) 2369 #define IS_I945G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945G) 2370 #define IS_I945GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945GM) 2371 #define IS_I965G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965G) 2372 #define IS_I965GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965GM) 2373 #define IS_G45(dev_priv) IS_PLATFORM(dev_priv, INTEL_G45) 2374 #define IS_GM45(dev_priv) IS_PLATFORM(dev_priv, INTEL_GM45) 2375 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv)) 2376 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001) 2377 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011) 2378 #define IS_PINEVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_PINEVIEW) 2379 #define IS_G33(dev_priv) IS_PLATFORM(dev_priv, INTEL_G33) 2380 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046) 2381 #define IS_IVYBRIDGE(dev_priv) IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE) 2382 #define IS_IVB_GT1(dev_priv) (IS_IVYBRIDGE(dev_priv) && \ 2383 (dev_priv)->info.gt == 1) 2384 #define IS_VALLEYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW) 2385 #define IS_CHERRYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW) 2386 #define IS_HASWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_HASWELL) 2387 #define IS_BROADWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROADWELL) 2388 #define IS_SKYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_SKYLAKE) 2389 #define IS_BROXTON(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROXTON) 2390 #define IS_KABYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_KABYLAKE) 2391 #define IS_GEMINILAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_GEMINILAKE) 2392 #define IS_COFFEELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_COFFEELAKE) 2393 #define IS_CANNONLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_CANNONLAKE) 2394 #define IS_ICELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_ICELAKE) 2395 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile) 2396 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \ 2397 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00) 2398 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \ 2399 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \ 2400 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \ 2401 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)) 2402 /* ULX machines are also considered ULT. */ 2403 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \ 2404 (INTEL_DEVID(dev_priv) & 0xf) == 0xe) 2405 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \ 2406 (dev_priv)->info.gt == 3) 2407 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \ 2408 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00) 2409 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \ 2410 (dev_priv)->info.gt == 3) 2411 /* ULX machines are also considered ULT. */ 2412 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \ 2413 INTEL_DEVID(dev_priv) == 0x0A1E) 2414 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \ 2415 INTEL_DEVID(dev_priv) == 0x1913 || \ 2416 INTEL_DEVID(dev_priv) == 0x1916 || \ 2417 INTEL_DEVID(dev_priv) == 0x1921 || \ 2418 INTEL_DEVID(dev_priv) == 0x1926) 2419 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \ 2420 INTEL_DEVID(dev_priv) == 0x1915 || \ 2421 INTEL_DEVID(dev_priv) == 0x191E) 2422 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \ 2423 INTEL_DEVID(dev_priv) == 0x5913 || \ 2424 INTEL_DEVID(dev_priv) == 0x5916 || \ 2425 INTEL_DEVID(dev_priv) == 0x5921 || \ 2426 INTEL_DEVID(dev_priv) == 0x5926) 2427 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \ 2428 INTEL_DEVID(dev_priv) == 0x5915 || \ 2429 INTEL_DEVID(dev_priv) == 0x591E) 2430 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2431 (dev_priv)->info.gt == 2) 2432 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2433 (dev_priv)->info.gt == 3) 2434 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \ 2435 (dev_priv)->info.gt == 4) 2436 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \ 2437 (dev_priv)->info.gt == 2) 2438 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \ 2439 (dev_priv)->info.gt == 3) 2440 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2441 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0) 2442 #define IS_CFL_GT2(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2443 (dev_priv)->info.gt == 2) 2444 #define IS_CFL_GT3(dev_priv) (IS_COFFEELAKE(dev_priv) && \ 2445 (dev_priv)->info.gt == 3) 2446 #define IS_CNL_WITH_PORT_F(dev_priv) (IS_CANNONLAKE(dev_priv) && \ 2447 (INTEL_DEVID(dev_priv) & 0x0004) == 0x0004) 2448 2449 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support) 2450 2451 #define SKL_REVID_A0 0x0 2452 #define SKL_REVID_B0 0x1 2453 #define SKL_REVID_C0 0x2 2454 #define SKL_REVID_D0 0x3 2455 #define SKL_REVID_E0 0x4 2456 #define SKL_REVID_F0 0x5 2457 #define SKL_REVID_G0 0x6 2458 #define SKL_REVID_H0 0x7 2459 2460 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until)) 2461 2462 #define BXT_REVID_A0 0x0 2463 #define BXT_REVID_A1 0x1 2464 #define BXT_REVID_B0 0x3 2465 #define BXT_REVID_B_LAST 0x8 2466 #define BXT_REVID_C0 0x9 2467 2468 #define IS_BXT_REVID(dev_priv, since, until) \ 2469 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until)) 2470 2471 #define KBL_REVID_A0 0x0 2472 #define KBL_REVID_B0 0x1 2473 #define KBL_REVID_C0 0x2 2474 #define KBL_REVID_D0 0x3 2475 #define KBL_REVID_E0 0x4 2476 2477 #define IS_KBL_REVID(dev_priv, since, until) \ 2478 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 2479 2480 #define GLK_REVID_A0 0x0 2481 #define GLK_REVID_A1 0x1 2482 2483 #define IS_GLK_REVID(dev_priv, since, until) \ 2484 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until)) 2485 2486 #define CNL_REVID_A0 0x0 2487 #define CNL_REVID_B0 0x1 2488 #define CNL_REVID_C0 0x2 2489 2490 #define IS_CNL_REVID(p, since, until) \ 2491 (IS_CANNONLAKE(p) && IS_REVID(p, since, until)) 2492 2493 #define ICL_REVID_A0 0x0 2494 #define ICL_REVID_A2 0x1 2495 #define ICL_REVID_B0 0x3 2496 #define ICL_REVID_B2 0x4 2497 #define ICL_REVID_C0 0x5 2498 2499 #define IS_ICL_REVID(p, since, until) \ 2500 (IS_ICELAKE(p) && IS_REVID(p, since, until)) 2501 2502 /* 2503 * The genX designation typically refers to the render engine, so render 2504 * capability related checks should use IS_GEN, while display and other checks 2505 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular 2506 * chips, etc.). 2507 */ 2508 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1))) 2509 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2))) 2510 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3))) 2511 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4))) 2512 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5))) 2513 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6))) 2514 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7))) 2515 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8))) 2516 #define IS_GEN10(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(9))) 2517 #define IS_GEN11(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(10))) 2518 2519 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp) 2520 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv)) 2521 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv)) 2522 2523 #define ENGINE_MASK(id) BIT(id) 2524 #define RENDER_RING ENGINE_MASK(RCS) 2525 #define BSD_RING ENGINE_MASK(VCS) 2526 #define BLT_RING ENGINE_MASK(BCS) 2527 #define VEBOX_RING ENGINE_MASK(VECS) 2528 #define BSD2_RING ENGINE_MASK(VCS2) 2529 #define BSD3_RING ENGINE_MASK(VCS3) 2530 #define BSD4_RING ENGINE_MASK(VCS4) 2531 #define VEBOX2_RING ENGINE_MASK(VECS2) 2532 #define ALL_ENGINES (~0) 2533 2534 #define HAS_ENGINE(dev_priv, id) \ 2535 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id))) 2536 2537 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS) 2538 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2) 2539 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS) 2540 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS) 2541 2542 #define HAS_LEGACY_SEMAPHORES(dev_priv) IS_GEN7(dev_priv) 2543 2544 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc) 2545 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop) 2546 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED)) 2547 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \ 2548 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv)) 2549 2550 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical) 2551 2552 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \ 2553 ((dev_priv)->info.has_logical_ring_contexts) 2554 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \ 2555 ((dev_priv)->info.has_logical_ring_elsq) 2556 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \ 2557 ((dev_priv)->info.has_logical_ring_preemption) 2558 2559 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv) 2560 2561 #define USES_PPGTT(dev_priv) (i915_modparams.enable_ppgtt) 2562 #define USES_FULL_PPGTT(dev_priv) (i915_modparams.enable_ppgtt >= 2) 2563 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915_modparams.enable_ppgtt == 3) 2564 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \ 2565 GEM_BUG_ON((sizes) == 0); \ 2566 ((sizes) & ~(dev_priv)->info.page_sizes) == 0; \ 2567 }) 2568 2569 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay) 2570 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \ 2571 ((dev_priv)->info.overlay_needs_physical) 2572 2573 /* Early gen2 have a totally busted CS tlb and require pinned batches. */ 2574 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv)) 2575 2576 /* WaRsDisableCoarsePowerGating:skl,cnl */ 2577 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \ 2578 (IS_CANNONLAKE(dev_priv) || \ 2579 IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv)) 2580 2581 /* 2582 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts 2583 * even when in MSI mode. This results in spurious interrupt warnings if the 2584 * legacy irq no. is shared with another device. The kernel then disables that 2585 * interrupt source and so prevents the other device from working properly. 2586 * 2587 * Since we don't enable MSI anymore on gen4, we can always use GMBUS/AUX 2588 * interrupts. 2589 */ 2590 #define HAS_AUX_IRQ(dev_priv) true 2591 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4) 2592 2593 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte 2594 * rows, which changed the alignment requirements and fence programming. 2595 */ 2596 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \ 2597 !(IS_I915G(dev_priv) || \ 2598 IS_I915GM(dev_priv))) 2599 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv) 2600 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug) 2601 2602 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2) 2603 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc) 2604 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 7) 2605 2606 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv)) 2607 2608 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst) 2609 2610 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi) 2611 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg) 2612 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr) 2613 2614 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6) 2615 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p) 2616 #define HAS_RC6pp(dev_priv) (false) /* HW was never validated */ 2617 2618 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr) 2619 2620 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm) 2621 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc) 2622 2623 #define HAS_IPC(dev_priv) ((dev_priv)->info.has_ipc) 2624 2625 /* 2626 * For now, anything with a GuC requires uCode loading, and then supports 2627 * command submission once loaded. But these are logically independent 2628 * properties, so we have separate macros to test them. 2629 */ 2630 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc) 2631 #define HAS_GUC_CT(dev_priv) ((dev_priv)->info.has_guc_ct) 2632 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 2633 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv)) 2634 2635 /* For now, anything with a GuC has also HuC */ 2636 #define HAS_HUC(dev_priv) (HAS_GUC(dev_priv)) 2637 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv)) 2638 2639 /* Having a GuC is not the same as using a GuC */ 2640 #define USES_GUC(dev_priv) intel_uc_is_using_guc() 2641 #define USES_GUC_SUBMISSION(dev_priv) intel_uc_is_using_guc_submission() 2642 #define USES_HUC(dev_priv) intel_uc_is_using_huc() 2643 2644 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer) 2645 2646 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu) 2647 2648 #define INTEL_PCH_DEVICE_ID_MASK 0xff80 2649 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00 2650 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00 2651 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00 2652 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00 2653 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00 2654 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80 2655 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80 2656 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100 2657 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00 2658 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280 2659 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300 2660 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80 2661 #define INTEL_PCH_ICP_DEVICE_ID_TYPE 0x3480 2662 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100 2663 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000 2664 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */ 2665 2666 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type) 2667 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id) 2668 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP) 2669 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP) 2670 #define HAS_PCH_CNP_LP(dev_priv) \ 2671 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE) 2672 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP) 2673 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT) 2674 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT) 2675 #define HAS_PCH_LPT_LP(dev_priv) \ 2676 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \ 2677 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE) 2678 #define HAS_PCH_LPT_H(dev_priv) \ 2679 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \ 2680 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE) 2681 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT) 2682 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX) 2683 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP) 2684 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE) 2685 2686 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display) 2687 2688 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9) 2689 2690 /* DPF == dynamic parity feature */ 2691 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf) 2692 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \ 2693 2 : HAS_L3_DPF(dev_priv)) 2694 2695 #define GT_FREQUENCY_MULTIPLIER 50 2696 #define GEN9_FREQ_SCALER 3 2697 2698 #include "i915_trace.h" 2699 2700 static inline bool intel_vtd_active(void) 2701 { 2702 #ifdef CONFIG_INTEL_IOMMU 2703 if (intel_iommu_gfx_mapped) 2704 return true; 2705 #endif 2706 return false; 2707 } 2708 2709 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv) 2710 { 2711 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active(); 2712 } 2713 2714 static inline bool 2715 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv) 2716 { 2717 return IS_BROXTON(dev_priv) && intel_vtd_active(); 2718 } 2719 2720 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv, 2721 int enable_ppgtt); 2722 2723 /* i915_drv.c */ 2724 void __printf(3, 4) 2725 __i915_printk(struct drm_i915_private *dev_priv, const char *level, 2726 const char *fmt, ...); 2727 2728 #define i915_report_error(dev_priv, fmt, ...) \ 2729 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__) 2730 2731 #ifdef CONFIG_COMPAT 2732 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd, 2733 unsigned long arg); 2734 #else 2735 #define i915_compat_ioctl NULL 2736 #endif 2737 extern const struct dev_pm_ops i915_pm_ops; 2738 2739 extern int i915_driver_load(struct pci_dev *pdev, 2740 const struct pci_device_id *ent); 2741 extern void i915_driver_unload(struct drm_device *dev); 2742 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask); 2743 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv); 2744 2745 extern void i915_reset(struct drm_i915_private *i915, 2746 unsigned int stalled_mask, 2747 const char *reason); 2748 extern int i915_reset_engine(struct intel_engine_cs *engine, 2749 const char *reason); 2750 2751 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv); 2752 extern int intel_reset_guc(struct drm_i915_private *dev_priv); 2753 extern int intel_guc_reset_engine(struct intel_guc *guc, 2754 struct intel_engine_cs *engine); 2755 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine); 2756 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv); 2757 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv); 2758 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv); 2759 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv); 2760 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv); 2761 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on); 2762 2763 int intel_engines_init_mmio(struct drm_i915_private *dev_priv); 2764 int intel_engines_init(struct drm_i915_private *dev_priv); 2765 2766 u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv); 2767 2768 /* intel_hotplug.c */ 2769 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv, 2770 u32 pin_mask, u32 long_mask); 2771 void intel_hpd_init(struct drm_i915_private *dev_priv); 2772 void intel_hpd_init_work(struct drm_i915_private *dev_priv); 2773 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv); 2774 enum port intel_hpd_pin_to_port(struct drm_i915_private *dev_priv, 2775 enum hpd_pin pin); 2776 enum hpd_pin intel_hpd_pin_default(struct drm_i915_private *dev_priv, 2777 enum port port); 2778 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2779 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin); 2780 2781 /* i915_irq.c */ 2782 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv) 2783 { 2784 unsigned long delay; 2785 2786 if (unlikely(!i915_modparams.enable_hangcheck)) 2787 return; 2788 2789 /* Don't continually defer the hangcheck so that it is always run at 2790 * least once after work has been scheduled on any ring. Otherwise, 2791 * we will ignore a hung ring if a second ring is kept busy. 2792 */ 2793 2794 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES); 2795 queue_delayed_work(system_long_wq, 2796 &dev_priv->gpu_error.hangcheck_work, delay); 2797 } 2798 2799 __printf(4, 5) 2800 void i915_handle_error(struct drm_i915_private *dev_priv, 2801 u32 engine_mask, 2802 unsigned long flags, 2803 const char *fmt, ...); 2804 #define I915_ERROR_CAPTURE BIT(0) 2805 2806 extern void intel_irq_init(struct drm_i915_private *dev_priv); 2807 extern void intel_irq_fini(struct drm_i915_private *dev_priv); 2808 int intel_irq_install(struct drm_i915_private *dev_priv); 2809 void intel_irq_uninstall(struct drm_i915_private *dev_priv); 2810 2811 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv) 2812 { 2813 return dev_priv->gvt; 2814 } 2815 2816 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv) 2817 { 2818 return dev_priv->vgpu.active; 2819 } 2820 2821 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv, 2822 enum pipe pipe); 2823 void 2824 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 2825 u32 status_mask); 2826 2827 void 2828 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, 2829 u32 status_mask); 2830 2831 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv); 2832 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv); 2833 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 2834 uint32_t mask, 2835 uint32_t bits); 2836 void ilk_update_display_irq(struct drm_i915_private *dev_priv, 2837 uint32_t interrupt_mask, 2838 uint32_t enabled_irq_mask); 2839 static inline void 2840 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 2841 { 2842 ilk_update_display_irq(dev_priv, bits, bits); 2843 } 2844 static inline void 2845 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) 2846 { 2847 ilk_update_display_irq(dev_priv, bits, 0); 2848 } 2849 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 2850 enum pipe pipe, 2851 uint32_t interrupt_mask, 2852 uint32_t enabled_irq_mask); 2853 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv, 2854 enum pipe pipe, uint32_t bits) 2855 { 2856 bdw_update_pipe_irq(dev_priv, pipe, bits, bits); 2857 } 2858 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv, 2859 enum pipe pipe, uint32_t bits) 2860 { 2861 bdw_update_pipe_irq(dev_priv, pipe, bits, 0); 2862 } 2863 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 2864 uint32_t interrupt_mask, 2865 uint32_t enabled_irq_mask); 2866 static inline void 2867 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 2868 { 2869 ibx_display_interrupt_update(dev_priv, bits, bits); 2870 } 2871 static inline void 2872 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) 2873 { 2874 ibx_display_interrupt_update(dev_priv, bits, 0); 2875 } 2876 2877 /* i915_gem.c */ 2878 int i915_gem_create_ioctl(struct drm_device *dev, void *data, 2879 struct drm_file *file_priv); 2880 int i915_gem_pread_ioctl(struct drm_device *dev, void *data, 2881 struct drm_file *file_priv); 2882 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 2883 struct drm_file *file_priv); 2884 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data, 2885 struct drm_file *file_priv); 2886 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, 2887 struct drm_file *file_priv); 2888 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, 2889 struct drm_file *file_priv); 2890 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 2891 struct drm_file *file_priv); 2892 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data, 2893 struct drm_file *file_priv); 2894 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 2895 struct drm_file *file_priv); 2896 int i915_gem_busy_ioctl(struct drm_device *dev, void *data, 2897 struct drm_file *file_priv); 2898 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, 2899 struct drm_file *file); 2900 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, 2901 struct drm_file *file); 2902 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data, 2903 struct drm_file *file_priv); 2904 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 2905 struct drm_file *file_priv); 2906 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data, 2907 struct drm_file *file_priv); 2908 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data, 2909 struct drm_file *file_priv); 2910 int i915_gem_init_userptr(struct drm_i915_private *dev_priv); 2911 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv); 2912 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data, 2913 struct drm_file *file); 2914 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 2915 struct drm_file *file_priv); 2916 int i915_gem_wait_ioctl(struct drm_device *dev, void *data, 2917 struct drm_file *file_priv); 2918 void i915_gem_sanitize(struct drm_i915_private *i915); 2919 int i915_gem_init_early(struct drm_i915_private *dev_priv); 2920 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv); 2921 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv); 2922 int i915_gem_freeze(struct drm_i915_private *dev_priv); 2923 int i915_gem_freeze_late(struct drm_i915_private *dev_priv); 2924 2925 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv); 2926 void i915_gem_object_free(struct drm_i915_gem_object *obj); 2927 void i915_gem_object_init(struct drm_i915_gem_object *obj, 2928 const struct drm_i915_gem_object_ops *ops); 2929 struct drm_i915_gem_object * 2930 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size); 2931 struct drm_i915_gem_object * 2932 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv, 2933 const void *data, size_t size); 2934 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file); 2935 void i915_gem_free_object(struct drm_gem_object *obj); 2936 2937 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915) 2938 { 2939 if (!atomic_read(&i915->mm.free_count)) 2940 return; 2941 2942 /* A single pass should suffice to release all the freed objects (along 2943 * most call paths) , but be a little more paranoid in that freeing 2944 * the objects does take a little amount of time, during which the rcu 2945 * callbacks could have added new objects into the freed list, and 2946 * armed the work again. 2947 */ 2948 do { 2949 rcu_barrier(); 2950 } while (flush_work(&i915->mm.free_work)); 2951 } 2952 2953 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915) 2954 { 2955 /* 2956 * Similar to objects above (see i915_gem_drain_freed-objects), in 2957 * general we have workers that are armed by RCU and then rearm 2958 * themselves in their callbacks. To be paranoid, we need to 2959 * drain the workqueue a second time after waiting for the RCU 2960 * grace period so that we catch work queued via RCU from the first 2961 * pass. As neither drain_workqueue() nor flush_workqueue() report 2962 * a result, we make an assumption that we only don't require more 2963 * than 2 passes to catch all recursive RCU delayed work. 2964 * 2965 */ 2966 int pass = 2; 2967 do { 2968 rcu_barrier(); 2969 drain_workqueue(i915->wq); 2970 } while (--pass); 2971 } 2972 2973 struct i915_vma * __must_check 2974 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 2975 const struct i915_ggtt_view *view, 2976 u64 size, 2977 u64 alignment, 2978 u64 flags); 2979 2980 int i915_gem_object_unbind(struct drm_i915_gem_object *obj); 2981 void i915_gem_release_mmap(struct drm_i915_gem_object *obj); 2982 2983 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv); 2984 2985 static inline int __sg_page_count(const struct scatterlist *sg) 2986 { 2987 return sg->length >> PAGE_SHIFT; 2988 } 2989 2990 struct scatterlist * 2991 i915_gem_object_get_sg(struct drm_i915_gem_object *obj, 2992 unsigned int n, unsigned int *offset); 2993 2994 struct page * 2995 i915_gem_object_get_page(struct drm_i915_gem_object *obj, 2996 unsigned int n); 2997 2998 struct page * 2999 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, 3000 unsigned int n); 3001 3002 dma_addr_t 3003 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, 3004 unsigned long n); 3005 3006 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, 3007 struct sg_table *pages, 3008 unsigned int sg_page_sizes); 3009 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj); 3010 3011 static inline int __must_check 3012 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 3013 { 3014 might_lock(&obj->mm.lock); 3015 3016 if (atomic_inc_not_zero(&obj->mm.pages_pin_count)) 3017 return 0; 3018 3019 return __i915_gem_object_get_pages(obj); 3020 } 3021 3022 static inline bool 3023 i915_gem_object_has_pages(struct drm_i915_gem_object *obj) 3024 { 3025 return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages)); 3026 } 3027 3028 static inline void 3029 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) 3030 { 3031 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 3032 3033 atomic_inc(&obj->mm.pages_pin_count); 3034 } 3035 3036 static inline bool 3037 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj) 3038 { 3039 return atomic_read(&obj->mm.pages_pin_count); 3040 } 3041 3042 static inline void 3043 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 3044 { 3045 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 3046 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 3047 3048 atomic_dec(&obj->mm.pages_pin_count); 3049 } 3050 3051 static inline void 3052 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) 3053 { 3054 __i915_gem_object_unpin_pages(obj); 3055 } 3056 3057 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */ 3058 I915_MM_NORMAL = 0, 3059 I915_MM_SHRINKER 3060 }; 3061 3062 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj, 3063 enum i915_mm_subclass subclass); 3064 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj); 3065 3066 enum i915_map_type { 3067 I915_MAP_WB = 0, 3068 I915_MAP_WC, 3069 #define I915_MAP_OVERRIDE BIT(31) 3070 I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE, 3071 I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE, 3072 }; 3073 3074 /** 3075 * i915_gem_object_pin_map - return a contiguous mapping of the entire object 3076 * @obj: the object to map into kernel address space 3077 * @type: the type of mapping, used to select pgprot_t 3078 * 3079 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's 3080 * pages and then returns a contiguous mapping of the backing storage into 3081 * the kernel address space. Based on the @type of mapping, the PTE will be 3082 * set to either WriteBack or WriteCombine (via pgprot_t). 3083 * 3084 * The caller is responsible for calling i915_gem_object_unpin_map() when the 3085 * mapping is no longer required. 3086 * 3087 * Returns the pointer through which to access the mapped object, or an 3088 * ERR_PTR() on error. 3089 */ 3090 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj, 3091 enum i915_map_type type); 3092 3093 /** 3094 * i915_gem_object_unpin_map - releases an earlier mapping 3095 * @obj: the object to unmap 3096 * 3097 * After pinning the object and mapping its pages, once you are finished 3098 * with your access, call i915_gem_object_unpin_map() to release the pin 3099 * upon the mapping. Once the pin count reaches zero, that mapping may be 3100 * removed. 3101 */ 3102 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj) 3103 { 3104 i915_gem_object_unpin_pages(obj); 3105 } 3106 3107 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, 3108 unsigned int *needs_clflush); 3109 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, 3110 unsigned int *needs_clflush); 3111 #define CLFLUSH_BEFORE BIT(0) 3112 #define CLFLUSH_AFTER BIT(1) 3113 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER) 3114 3115 static inline void 3116 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj) 3117 { 3118 i915_gem_object_unpin_pages(obj); 3119 } 3120 3121 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev); 3122 void i915_vma_move_to_active(struct i915_vma *vma, 3123 struct i915_request *rq, 3124 unsigned int flags); 3125 int i915_gem_dumb_create(struct drm_file *file_priv, 3126 struct drm_device *dev, 3127 struct drm_mode_create_dumb *args); 3128 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev, 3129 uint32_t handle, uint64_t *offset); 3130 int i915_gem_mmap_gtt_version(void); 3131 3132 void i915_gem_track_fb(struct drm_i915_gem_object *old, 3133 struct drm_i915_gem_object *new, 3134 unsigned frontbuffer_bits); 3135 3136 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno); 3137 3138 struct i915_request * 3139 i915_gem_find_active_request(struct intel_engine_cs *engine); 3140 3141 static inline bool i915_reset_backoff(struct i915_gpu_error *error) 3142 { 3143 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags)); 3144 } 3145 3146 static inline bool i915_reset_handoff(struct i915_gpu_error *error) 3147 { 3148 return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags)); 3149 } 3150 3151 static inline bool i915_terminally_wedged(struct i915_gpu_error *error) 3152 { 3153 return unlikely(test_bit(I915_WEDGED, &error->flags)); 3154 } 3155 3156 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error) 3157 { 3158 return i915_reset_backoff(error) | i915_terminally_wedged(error); 3159 } 3160 3161 static inline u32 i915_reset_count(struct i915_gpu_error *error) 3162 { 3163 return READ_ONCE(error->reset_count); 3164 } 3165 3166 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error, 3167 struct intel_engine_cs *engine) 3168 { 3169 return READ_ONCE(error->reset_engine_count[engine->id]); 3170 } 3171 3172 struct i915_request * 3173 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine); 3174 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv); 3175 void i915_gem_reset(struct drm_i915_private *dev_priv, 3176 unsigned int stalled_mask); 3177 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine); 3178 void i915_gem_reset_finish(struct drm_i915_private *dev_priv); 3179 void i915_gem_set_wedged(struct drm_i915_private *dev_priv); 3180 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv); 3181 void i915_gem_reset_engine(struct intel_engine_cs *engine, 3182 struct i915_request *request, 3183 bool stalled); 3184 3185 void i915_gem_init_mmio(struct drm_i915_private *i915); 3186 int __must_check i915_gem_init(struct drm_i915_private *dev_priv); 3187 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv); 3188 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv); 3189 void i915_gem_fini(struct drm_i915_private *dev_priv); 3190 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv); 3191 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv, 3192 unsigned int flags); 3193 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv); 3194 void i915_gem_suspend_late(struct drm_i915_private *dev_priv); 3195 void i915_gem_resume(struct drm_i915_private *dev_priv); 3196 vm_fault_t i915_gem_fault(struct vm_fault *vmf); 3197 int i915_gem_object_wait(struct drm_i915_gem_object *obj, 3198 unsigned int flags, 3199 long timeout, 3200 struct intel_rps_client *rps); 3201 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj, 3202 unsigned int flags, 3203 const struct i915_sched_attr *attr); 3204 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX 3205 3206 int __must_check 3207 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write); 3208 int __must_check 3209 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write); 3210 int __must_check 3211 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write); 3212 struct i915_vma * __must_check 3213 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, 3214 u32 alignment, 3215 const struct i915_ggtt_view *view, 3216 unsigned int flags); 3217 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma); 3218 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, 3219 int align); 3220 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file); 3221 void i915_gem_release(struct drm_device *dev, struct drm_file *file); 3222 3223 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, 3224 enum i915_cache_level cache_level); 3225 3226 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev, 3227 struct dma_buf *dma_buf); 3228 3229 struct dma_buf *i915_gem_prime_export(struct drm_device *dev, 3230 struct drm_gem_object *gem_obj, int flags); 3231 3232 static inline struct i915_hw_ppgtt * 3233 i915_vm_to_ppgtt(struct i915_address_space *vm) 3234 { 3235 return container_of(vm, struct i915_hw_ppgtt, vm); 3236 } 3237 3238 /* i915_gem_fence_reg.c */ 3239 struct drm_i915_fence_reg * 3240 i915_reserve_fence(struct drm_i915_private *dev_priv); 3241 void i915_unreserve_fence(struct drm_i915_fence_reg *fence); 3242 3243 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv); 3244 void i915_gem_restore_fences(struct drm_i915_private *dev_priv); 3245 3246 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv); 3247 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj, 3248 struct sg_table *pages); 3249 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj, 3250 struct sg_table *pages); 3251 3252 static inline struct i915_gem_context * 3253 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id) 3254 { 3255 return idr_find(&file_priv->context_idr, id); 3256 } 3257 3258 static inline struct i915_gem_context * 3259 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id) 3260 { 3261 struct i915_gem_context *ctx; 3262 3263 rcu_read_lock(); 3264 ctx = __i915_gem_context_lookup_rcu(file_priv, id); 3265 if (ctx && !kref_get_unless_zero(&ctx->ref)) 3266 ctx = NULL; 3267 rcu_read_unlock(); 3268 3269 return ctx; 3270 } 3271 3272 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3273 struct drm_file *file); 3274 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 3275 struct drm_file *file); 3276 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 3277 struct drm_file *file); 3278 void i915_oa_init_reg_state(struct intel_engine_cs *engine, 3279 struct i915_gem_context *ctx, 3280 uint32_t *reg_state); 3281 3282 /* i915_gem_evict.c */ 3283 int __must_check i915_gem_evict_something(struct i915_address_space *vm, 3284 u64 min_size, u64 alignment, 3285 unsigned cache_level, 3286 u64 start, u64 end, 3287 unsigned flags); 3288 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm, 3289 struct drm_mm_node *node, 3290 unsigned int flags); 3291 int i915_gem_evict_vm(struct i915_address_space *vm); 3292 3293 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv); 3294 3295 /* belongs in i915_gem_gtt.h */ 3296 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv) 3297 { 3298 wmb(); 3299 if (INTEL_GEN(dev_priv) < 6) 3300 intel_gtt_chipset_flush(); 3301 } 3302 3303 /* i915_gem_stolen.c */ 3304 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv, 3305 struct drm_mm_node *node, u64 size, 3306 unsigned alignment); 3307 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv, 3308 struct drm_mm_node *node, u64 size, 3309 unsigned alignment, u64 start, 3310 u64 end); 3311 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv, 3312 struct drm_mm_node *node); 3313 int i915_gem_init_stolen(struct drm_i915_private *dev_priv); 3314 void i915_gem_cleanup_stolen(struct drm_device *dev); 3315 struct drm_i915_gem_object * 3316 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, 3317 resource_size_t size); 3318 struct drm_i915_gem_object * 3319 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv, 3320 resource_size_t stolen_offset, 3321 resource_size_t gtt_offset, 3322 resource_size_t size); 3323 3324 /* i915_gem_internal.c */ 3325 struct drm_i915_gem_object * 3326 i915_gem_object_create_internal(struct drm_i915_private *dev_priv, 3327 phys_addr_t size); 3328 3329 /* i915_gem_shrinker.c */ 3330 unsigned long i915_gem_shrink(struct drm_i915_private *i915, 3331 unsigned long target, 3332 unsigned long *nr_scanned, 3333 unsigned flags); 3334 #define I915_SHRINK_PURGEABLE 0x1 3335 #define I915_SHRINK_UNBOUND 0x2 3336 #define I915_SHRINK_BOUND 0x4 3337 #define I915_SHRINK_ACTIVE 0x8 3338 #define I915_SHRINK_VMAPS 0x10 3339 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915); 3340 void i915_gem_shrinker_register(struct drm_i915_private *i915); 3341 void i915_gem_shrinker_unregister(struct drm_i915_private *i915); 3342 3343 3344 /* i915_gem_tiling.c */ 3345 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) 3346 { 3347 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 3348 3349 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && 3350 i915_gem_object_is_tiled(obj); 3351 } 3352 3353 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size, 3354 unsigned int tiling, unsigned int stride); 3355 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size, 3356 unsigned int tiling, unsigned int stride); 3357 3358 /* i915_debugfs.c */ 3359 #ifdef CONFIG_DEBUG_FS 3360 int i915_debugfs_register(struct drm_i915_private *dev_priv); 3361 int i915_debugfs_connector_add(struct drm_connector *connector); 3362 void intel_display_crc_init(struct drm_i915_private *dev_priv); 3363 #else 3364 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;} 3365 static inline int i915_debugfs_connector_add(struct drm_connector *connector) 3366 { return 0; } 3367 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {} 3368 #endif 3369 3370 const char *i915_cache_level_str(struct drm_i915_private *i915, int type); 3371 3372 /* i915_cmd_parser.c */ 3373 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv); 3374 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine); 3375 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine); 3376 int intel_engine_cmd_parser(struct intel_engine_cs *engine, 3377 struct drm_i915_gem_object *batch_obj, 3378 struct drm_i915_gem_object *shadow_batch_obj, 3379 u32 batch_start_offset, 3380 u32 batch_len, 3381 bool is_master); 3382 3383 /* i915_perf.c */ 3384 extern void i915_perf_init(struct drm_i915_private *dev_priv); 3385 extern void i915_perf_fini(struct drm_i915_private *dev_priv); 3386 extern void i915_perf_register(struct drm_i915_private *dev_priv); 3387 extern void i915_perf_unregister(struct drm_i915_private *dev_priv); 3388 3389 /* i915_suspend.c */ 3390 extern int i915_save_state(struct drm_i915_private *dev_priv); 3391 extern int i915_restore_state(struct drm_i915_private *dev_priv); 3392 3393 /* i915_sysfs.c */ 3394 void i915_setup_sysfs(struct drm_i915_private *dev_priv); 3395 void i915_teardown_sysfs(struct drm_i915_private *dev_priv); 3396 3397 /* intel_lpe_audio.c */ 3398 int intel_lpe_audio_init(struct drm_i915_private *dev_priv); 3399 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv); 3400 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv); 3401 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv, 3402 enum pipe pipe, enum port port, 3403 const void *eld, int ls_clock, bool dp_output); 3404 3405 /* intel_i2c.c */ 3406 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv); 3407 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv); 3408 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv, 3409 unsigned int pin); 3410 extern int intel_gmbus_output_aksv(struct i2c_adapter *adapter); 3411 3412 extern struct i2c_adapter * 3413 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin); 3414 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed); 3415 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit); 3416 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter) 3417 { 3418 return container_of(adapter, struct intel_gmbus, adapter)->force_bit; 3419 } 3420 extern void intel_i2c_reset(struct drm_i915_private *dev_priv); 3421 3422 /* intel_bios.c */ 3423 void intel_bios_init(struct drm_i915_private *dev_priv); 3424 void intel_bios_cleanup(struct drm_i915_private *dev_priv); 3425 bool intel_bios_is_valid_vbt(const void *buf, size_t size); 3426 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv); 3427 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin); 3428 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port); 3429 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port); 3430 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port); 3431 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port); 3432 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv, 3433 enum port port); 3434 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv, 3435 enum port port); 3436 3437 /* intel_acpi.c */ 3438 #ifdef CONFIG_ACPI 3439 extern void intel_register_dsm_handler(void); 3440 extern void intel_unregister_dsm_handler(void); 3441 #else 3442 static inline void intel_register_dsm_handler(void) { return; } 3443 static inline void intel_unregister_dsm_handler(void) { return; } 3444 #endif /* CONFIG_ACPI */ 3445 3446 /* intel_device_info.c */ 3447 static inline struct intel_device_info * 3448 mkwrite_device_info(struct drm_i915_private *dev_priv) 3449 { 3450 return (struct intel_device_info *)&dev_priv->info; 3451 } 3452 3453 /* modesetting */ 3454 extern void intel_modeset_init_hw(struct drm_device *dev); 3455 extern int intel_modeset_init(struct drm_device *dev); 3456 extern void intel_modeset_cleanup(struct drm_device *dev); 3457 extern int intel_connector_register(struct drm_connector *); 3458 extern void intel_connector_unregister(struct drm_connector *); 3459 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, 3460 bool state); 3461 extern void intel_display_resume(struct drm_device *dev); 3462 extern void i915_redisable_vga(struct drm_i915_private *dev_priv); 3463 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv); 3464 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val); 3465 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv); 3466 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val); 3467 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, 3468 bool enable); 3469 3470 int i915_reg_read_ioctl(struct drm_device *dev, void *data, 3471 struct drm_file *file); 3472 3473 /* overlay */ 3474 extern struct intel_overlay_error_state * 3475 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv); 3476 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e, 3477 struct intel_overlay_error_state *error); 3478 3479 extern struct intel_display_error_state * 3480 intel_display_capture_error_state(struct drm_i915_private *dev_priv); 3481 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e, 3482 struct intel_display_error_state *error); 3483 3484 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val); 3485 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox, 3486 u32 val, int fast_timeout_us, 3487 int slow_timeout_ms); 3488 #define sandybridge_pcode_write(dev_priv, mbox, val) \ 3489 sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500, 0) 3490 3491 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request, 3492 u32 reply_mask, u32 reply, int timeout_base_ms); 3493 3494 /* intel_sideband.c */ 3495 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr); 3496 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val); 3497 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr); 3498 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg); 3499 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val); 3500 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg); 3501 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3502 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg); 3503 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3504 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg); 3505 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3506 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg); 3507 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val); 3508 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg, 3509 enum intel_sbi_destination destination); 3510 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value, 3511 enum intel_sbi_destination destination); 3512 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg); 3513 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); 3514 3515 /* intel_dpio_phy.c */ 3516 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port, 3517 enum dpio_phy *phy, enum dpio_channel *ch); 3518 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv, 3519 enum port port, u32 margin, u32 scale, 3520 u32 enable, u32 deemphasis); 3521 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy); 3522 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy); 3523 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv, 3524 enum dpio_phy phy); 3525 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv, 3526 enum dpio_phy phy); 3527 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count); 3528 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder, 3529 uint8_t lane_lat_optim_mask); 3530 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder); 3531 3532 void chv_set_phy_signal_level(struct intel_encoder *encoder, 3533 u32 deemph_reg_value, u32 margin_reg_value, 3534 bool uniq_trans_scale); 3535 void chv_data_lane_soft_reset(struct intel_encoder *encoder, 3536 const struct intel_crtc_state *crtc_state, 3537 bool reset); 3538 void chv_phy_pre_pll_enable(struct intel_encoder *encoder, 3539 const struct intel_crtc_state *crtc_state); 3540 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder, 3541 const struct intel_crtc_state *crtc_state); 3542 void chv_phy_release_cl2_override(struct intel_encoder *encoder); 3543 void chv_phy_post_pll_disable(struct intel_encoder *encoder, 3544 const struct intel_crtc_state *old_crtc_state); 3545 3546 void vlv_set_phy_signal_level(struct intel_encoder *encoder, 3547 u32 demph_reg_value, u32 preemph_reg_value, 3548 u32 uniqtranscale_reg_value, u32 tx3_demph); 3549 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder, 3550 const struct intel_crtc_state *crtc_state); 3551 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder, 3552 const struct intel_crtc_state *crtc_state); 3553 void vlv_phy_reset_lanes(struct intel_encoder *encoder, 3554 const struct intel_crtc_state *old_crtc_state); 3555 3556 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val); 3557 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val); 3558 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv, 3559 const i915_reg_t reg); 3560 3561 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1); 3562 3563 static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv, 3564 const i915_reg_t reg) 3565 { 3566 return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000); 3567 } 3568 3569 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true) 3570 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true) 3571 3572 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true) 3573 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true) 3574 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false) 3575 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false) 3576 3577 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true) 3578 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true) 3579 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false) 3580 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false) 3581 3582 /* Be very careful with read/write 64-bit values. On 32-bit machines, they 3583 * will be implemented using 2 32-bit writes in an arbitrary order with 3584 * an arbitrary delay between them. This can cause the hardware to 3585 * act upon the intermediate value, possibly leading to corruption and 3586 * machine death. For this reason we do not support I915_WRITE64, or 3587 * dev_priv->uncore.funcs.mmio_writeq. 3588 * 3589 * When reading a 64-bit value as two 32-bit values, the delay may cause 3590 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that 3591 * occasionally a 64-bit register does not actualy support a full readq 3592 * and must be read using two 32-bit reads. 3593 * 3594 * You have been warned. 3595 */ 3596 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true) 3597 3598 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \ 3599 u32 upper, lower, old_upper, loop = 0; \ 3600 upper = I915_READ(upper_reg); \ 3601 do { \ 3602 old_upper = upper; \ 3603 lower = I915_READ(lower_reg); \ 3604 upper = I915_READ(upper_reg); \ 3605 } while (upper != old_upper && loop++ < 2); \ 3606 (u64)upper << 32 | lower; }) 3607 3608 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg) 3609 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg) 3610 3611 #define __raw_read(x, s) \ 3612 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \ 3613 i915_reg_t reg) \ 3614 { \ 3615 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3616 } 3617 3618 #define __raw_write(x, s) \ 3619 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \ 3620 i915_reg_t reg, uint##x##_t val) \ 3621 { \ 3622 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \ 3623 } 3624 __raw_read(8, b) 3625 __raw_read(16, w) 3626 __raw_read(32, l) 3627 __raw_read(64, q) 3628 3629 __raw_write(8, b) 3630 __raw_write(16, w) 3631 __raw_write(32, l) 3632 __raw_write(64, q) 3633 3634 #undef __raw_read 3635 #undef __raw_write 3636 3637 /* These are untraced mmio-accessors that are only valid to be used inside 3638 * critical sections, such as inside IRQ handlers, where forcewake is explicitly 3639 * controlled. 3640 * 3641 * Think twice, and think again, before using these. 3642 * 3643 * As an example, these accessors can possibly be used between: 3644 * 3645 * spin_lock_irq(&dev_priv->uncore.lock); 3646 * intel_uncore_forcewake_get__locked(); 3647 * 3648 * and 3649 * 3650 * intel_uncore_forcewake_put__locked(); 3651 * spin_unlock_irq(&dev_priv->uncore.lock); 3652 * 3653 * 3654 * Note: some registers may not need forcewake held, so 3655 * intel_uncore_forcewake_{get,put} can be omitted, see 3656 * intel_uncore_forcewake_for_reg(). 3657 * 3658 * Certain architectures will die if the same cacheline is concurrently accessed 3659 * by different clients (e.g. on Ivybridge). Access to registers should 3660 * therefore generally be serialised, by either the dev_priv->uncore.lock or 3661 * a more localised lock guarding all access to that bank of registers. 3662 */ 3663 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__)) 3664 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__)) 3665 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__)) 3666 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__) 3667 3668 /* "Broadcast RGB" property */ 3669 #define INTEL_BROADCAST_RGB_AUTO 0 3670 #define INTEL_BROADCAST_RGB_FULL 1 3671 #define INTEL_BROADCAST_RGB_LIMITED 2 3672 3673 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv) 3674 { 3675 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3676 return VLV_VGACNTRL; 3677 else if (INTEL_GEN(dev_priv) >= 5) 3678 return CPU_VGACNTRL; 3679 else 3680 return VGACNTRL; 3681 } 3682 3683 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m) 3684 { 3685 unsigned long j = msecs_to_jiffies(m); 3686 3687 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); 3688 } 3689 3690 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n) 3691 { 3692 /* nsecs_to_jiffies64() does not guard against overflow */ 3693 if (NSEC_PER_SEC % HZ && 3694 div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ) 3695 return MAX_JIFFY_OFFSET; 3696 3697 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1); 3698 } 3699 3700 /* 3701 * If you need to wait X milliseconds between events A and B, but event B 3702 * doesn't happen exactly after event A, you record the timestamp (jiffies) of 3703 * when event A happened, then just before event B you call this function and 3704 * pass the timestamp as the first argument, and X as the second argument. 3705 */ 3706 static inline void 3707 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms) 3708 { 3709 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies; 3710 3711 /* 3712 * Don't re-read the value of "jiffies" every time since it may change 3713 * behind our back and break the math. 3714 */ 3715 tmp_jiffies = jiffies; 3716 target_jiffies = timestamp_jiffies + 3717 msecs_to_jiffies_timeout(to_wait_ms); 3718 3719 if (time_after(target_jiffies, tmp_jiffies)) { 3720 remaining_jiffies = target_jiffies - tmp_jiffies; 3721 while (remaining_jiffies) 3722 remaining_jiffies = 3723 schedule_timeout_uninterruptible(remaining_jiffies); 3724 } 3725 } 3726 3727 static inline bool 3728 __i915_request_irq_complete(const struct i915_request *rq) 3729 { 3730 struct intel_engine_cs *engine = rq->engine; 3731 u32 seqno; 3732 3733 /* Note that the engine may have wrapped around the seqno, and 3734 * so our request->global_seqno will be ahead of the hardware, 3735 * even though it completed the request before wrapping. We catch 3736 * this by kicking all the waiters before resetting the seqno 3737 * in hardware, and also signal the fence. 3738 */ 3739 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) 3740 return true; 3741 3742 /* The request was dequeued before we were awoken. We check after 3743 * inspecting the hw to confirm that this was the same request 3744 * that generated the HWS update. The memory barriers within 3745 * the request execution are sufficient to ensure that a check 3746 * after reading the value from hw matches this request. 3747 */ 3748 seqno = i915_request_global_seqno(rq); 3749 if (!seqno) 3750 return false; 3751 3752 /* Before we do the heavier coherent read of the seqno, 3753 * check the value (hopefully) in the CPU cacheline. 3754 */ 3755 if (__i915_request_completed(rq, seqno)) 3756 return true; 3757 3758 /* Ensure our read of the seqno is coherent so that we 3759 * do not "miss an interrupt" (i.e. if this is the last 3760 * request and the seqno write from the GPU is not visible 3761 * by the time the interrupt fires, we will see that the 3762 * request is incomplete and go back to sleep awaiting 3763 * another interrupt that will never come.) 3764 * 3765 * Strictly, we only need to do this once after an interrupt, 3766 * but it is easier and safer to do it every time the waiter 3767 * is woken. 3768 */ 3769 if (engine->irq_seqno_barrier && 3770 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) { 3771 struct intel_breadcrumbs *b = &engine->breadcrumbs; 3772 3773 /* The ordering of irq_posted versus applying the barrier 3774 * is crucial. The clearing of the current irq_posted must 3775 * be visible before we perform the barrier operation, 3776 * such that if a subsequent interrupt arrives, irq_posted 3777 * is reasserted and our task rewoken (which causes us to 3778 * do another __i915_request_irq_complete() immediately 3779 * and reapply the barrier). Conversely, if the clear 3780 * occurs after the barrier, then an interrupt that arrived 3781 * whilst we waited on the barrier would not trigger a 3782 * barrier on the next pass, and the read may not see the 3783 * seqno update. 3784 */ 3785 engine->irq_seqno_barrier(engine); 3786 3787 /* If we consume the irq, but we are no longer the bottom-half, 3788 * the real bottom-half may not have serialised their own 3789 * seqno check with the irq-barrier (i.e. may have inspected 3790 * the seqno before we believe it coherent since they see 3791 * irq_posted == false but we are still running). 3792 */ 3793 spin_lock_irq(&b->irq_lock); 3794 if (b->irq_wait && b->irq_wait->tsk != current) 3795 /* Note that if the bottom-half is changed as we 3796 * are sending the wake-up, the new bottom-half will 3797 * be woken by whomever made the change. We only have 3798 * to worry about when we steal the irq-posted for 3799 * ourself. 3800 */ 3801 wake_up_process(b->irq_wait->tsk); 3802 spin_unlock_irq(&b->irq_lock); 3803 3804 if (__i915_request_completed(rq, seqno)) 3805 return true; 3806 } 3807 3808 return false; 3809 } 3810 3811 void i915_memcpy_init_early(struct drm_i915_private *dev_priv); 3812 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len); 3813 3814 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment, 3815 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot 3816 * perform the operation. To check beforehand, pass in the parameters to 3817 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits, 3818 * you only need to pass in the minor offsets, page-aligned pointers are 3819 * always valid. 3820 * 3821 * For just checking for SSE4.1, in the foreknowledge that the future use 3822 * will be correctly aligned, just use i915_has_memcpy_from_wc(). 3823 */ 3824 #define i915_can_memcpy_from_wc(dst, src, len) \ 3825 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0) 3826 3827 #define i915_has_memcpy_from_wc() \ 3828 i915_memcpy_from_wc(NULL, NULL, 0) 3829 3830 /* i915_mm.c */ 3831 int remap_io_mapping(struct vm_area_struct *vma, 3832 unsigned long addr, unsigned long pfn, unsigned long size, 3833 struct io_mapping *iomap); 3834 3835 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915) 3836 { 3837 if (INTEL_GEN(i915) >= 10) 3838 return CNL_HWS_CSB_WRITE_INDEX; 3839 else 3840 return I915_HWS_CSB_WRITE_INDEX; 3841 } 3842 3843 #endif 3844