xref: /openbmc/linux/drivers/gpu/drm/i915/i915_drv.h (revision ba61bb17496d1664bf7c5c2fd650d5fd78bd0a92)
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32 
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35 
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/mm_types.h>
44 #include <linux/perf_event.h>
45 #include <linux/pm_qos.h>
46 #include <linux/reservation.h>
47 #include <linux/shmem_fs.h>
48 
49 #include <drm/drmP.h>
50 #include <drm/intel-gtt.h>
51 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
52 #include <drm/drm_gem.h>
53 #include <drm/drm_auth.h>
54 #include <drm/drm_cache.h>
55 
56 #include "i915_params.h"
57 #include "i915_reg.h"
58 #include "i915_utils.h"
59 
60 #include "intel_bios.h"
61 #include "intel_device_info.h"
62 #include "intel_display.h"
63 #include "intel_dpll_mgr.h"
64 #include "intel_lrc.h"
65 #include "intel_opregion.h"
66 #include "intel_ringbuffer.h"
67 #include "intel_uncore.h"
68 #include "intel_wopcm.h"
69 #include "intel_uc.h"
70 
71 #include "i915_gem.h"
72 #include "i915_gem_context.h"
73 #include "i915_gem_fence_reg.h"
74 #include "i915_gem_object.h"
75 #include "i915_gem_gtt.h"
76 #include "i915_gpu_error.h"
77 #include "i915_request.h"
78 #include "i915_scheduler.h"
79 #include "i915_timeline.h"
80 #include "i915_vma.h"
81 
82 #include "intel_gvt.h"
83 
84 /* General customization:
85  */
86 
87 #define DRIVER_NAME		"i915"
88 #define DRIVER_DESC		"Intel Graphics"
89 #define DRIVER_DATE		"20180620"
90 #define DRIVER_TIMESTAMP	1529529048
91 
92 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
93  * WARN_ON()) for hw state sanity checks to check for unexpected conditions
94  * which may not necessarily be a user visible problem.  This will either
95  * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
96  * enable distros and users to tailor their preferred amount of i915 abrt
97  * spam.
98  */
99 #define I915_STATE_WARN(condition, format...) ({			\
100 	int __ret_warn_on = !!(condition);				\
101 	if (unlikely(__ret_warn_on))					\
102 		if (!WARN(i915_modparams.verbose_state_checks, format))	\
103 			DRM_ERROR(format);				\
104 	unlikely(__ret_warn_on);					\
105 })
106 
107 #define I915_STATE_WARN_ON(x)						\
108 	I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
109 
110 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
111 
112 bool __i915_inject_load_failure(const char *func, int line);
113 #define i915_inject_load_failure() \
114 	__i915_inject_load_failure(__func__, __LINE__)
115 
116 bool i915_error_injected(void);
117 
118 #else
119 
120 #define i915_inject_load_failure() false
121 #define i915_error_injected() false
122 
123 #endif
124 
125 #define i915_load_error(i915, fmt, ...)					 \
126 	__i915_printk(i915, i915_error_injected() ? KERN_DEBUG : KERN_ERR, \
127 		      fmt, ##__VA_ARGS__)
128 
129 typedef struct {
130 	uint32_t val;
131 } uint_fixed_16_16_t;
132 
133 #define FP_16_16_MAX ({ \
134 	uint_fixed_16_16_t fp; \
135 	fp.val = UINT_MAX; \
136 	fp; \
137 })
138 
139 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
140 {
141 	if (val.val == 0)
142 		return true;
143 	return false;
144 }
145 
146 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
147 {
148 	uint_fixed_16_16_t fp;
149 
150 	WARN_ON(val > U16_MAX);
151 
152 	fp.val = val << 16;
153 	return fp;
154 }
155 
156 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
157 {
158 	return DIV_ROUND_UP(fp.val, 1 << 16);
159 }
160 
161 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
162 {
163 	return fp.val >> 16;
164 }
165 
166 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
167 						 uint_fixed_16_16_t min2)
168 {
169 	uint_fixed_16_16_t min;
170 
171 	min.val = min(min1.val, min2.val);
172 	return min;
173 }
174 
175 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
176 						 uint_fixed_16_16_t max2)
177 {
178 	uint_fixed_16_16_t max;
179 
180 	max.val = max(max1.val, max2.val);
181 	return max;
182 }
183 
184 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
185 {
186 	uint_fixed_16_16_t fp;
187 	WARN_ON(val > U32_MAX);
188 	fp.val = (uint32_t) val;
189 	return fp;
190 }
191 
192 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
193 					    uint_fixed_16_16_t d)
194 {
195 	return DIV_ROUND_UP(val.val, d.val);
196 }
197 
198 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
199 						uint_fixed_16_16_t mul)
200 {
201 	uint64_t intermediate_val;
202 
203 	intermediate_val = (uint64_t) val * mul.val;
204 	intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
205 	WARN_ON(intermediate_val > U32_MAX);
206 	return (uint32_t) intermediate_val;
207 }
208 
209 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
210 					     uint_fixed_16_16_t mul)
211 {
212 	uint64_t intermediate_val;
213 
214 	intermediate_val = (uint64_t) val.val * mul.val;
215 	intermediate_val = intermediate_val >> 16;
216 	return clamp_u64_to_fixed16(intermediate_val);
217 }
218 
219 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
220 {
221 	uint64_t interm_val;
222 
223 	interm_val = (uint64_t)val << 16;
224 	interm_val = DIV_ROUND_UP_ULL(interm_val, d);
225 	return clamp_u64_to_fixed16(interm_val);
226 }
227 
228 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
229 						uint_fixed_16_16_t d)
230 {
231 	uint64_t interm_val;
232 
233 	interm_val = (uint64_t)val << 16;
234 	interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
235 	WARN_ON(interm_val > U32_MAX);
236 	return (uint32_t) interm_val;
237 }
238 
239 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
240 						     uint_fixed_16_16_t mul)
241 {
242 	uint64_t intermediate_val;
243 
244 	intermediate_val = (uint64_t) val * mul.val;
245 	return clamp_u64_to_fixed16(intermediate_val);
246 }
247 
248 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
249 					     uint_fixed_16_16_t add2)
250 {
251 	uint64_t interm_sum;
252 
253 	interm_sum = (uint64_t) add1.val + add2.val;
254 	return clamp_u64_to_fixed16(interm_sum);
255 }
256 
257 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
258 						 uint32_t add2)
259 {
260 	uint64_t interm_sum;
261 	uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
262 
263 	interm_sum = (uint64_t) add1.val + interm_add2.val;
264 	return clamp_u64_to_fixed16(interm_sum);
265 }
266 
267 enum hpd_pin {
268 	HPD_NONE = 0,
269 	HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
270 	HPD_CRT,
271 	HPD_SDVO_B,
272 	HPD_SDVO_C,
273 	HPD_PORT_A,
274 	HPD_PORT_B,
275 	HPD_PORT_C,
276 	HPD_PORT_D,
277 	HPD_PORT_E,
278 	HPD_PORT_F,
279 	HPD_NUM_PINS
280 };
281 
282 #define for_each_hpd_pin(__pin) \
283 	for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
284 
285 #define HPD_STORM_DEFAULT_THRESHOLD 5
286 
287 struct i915_hotplug {
288 	struct work_struct hotplug_work;
289 
290 	struct {
291 		unsigned long last_jiffies;
292 		int count;
293 		enum {
294 			HPD_ENABLED = 0,
295 			HPD_DISABLED = 1,
296 			HPD_MARK_DISABLED = 2
297 		} state;
298 	} stats[HPD_NUM_PINS];
299 	u32 event_bits;
300 	struct delayed_work reenable_work;
301 
302 	struct intel_digital_port *irq_port[I915_MAX_PORTS];
303 	u32 long_port_mask;
304 	u32 short_port_mask;
305 	struct work_struct dig_port_work;
306 
307 	struct work_struct poll_init_work;
308 	bool poll_enabled;
309 
310 	unsigned int hpd_storm_threshold;
311 
312 	/*
313 	 * if we get a HPD irq from DP and a HPD irq from non-DP
314 	 * the non-DP HPD could block the workqueue on a mode config
315 	 * mutex getting, that userspace may have taken. However
316 	 * userspace is waiting on the DP workqueue to run which is
317 	 * blocked behind the non-DP one.
318 	 */
319 	struct workqueue_struct *dp_wq;
320 };
321 
322 #define I915_GEM_GPU_DOMAINS \
323 	(I915_GEM_DOMAIN_RENDER | \
324 	 I915_GEM_DOMAIN_SAMPLER | \
325 	 I915_GEM_DOMAIN_COMMAND | \
326 	 I915_GEM_DOMAIN_INSTRUCTION | \
327 	 I915_GEM_DOMAIN_VERTEX)
328 
329 struct drm_i915_private;
330 struct i915_mm_struct;
331 struct i915_mmu_object;
332 
333 struct drm_i915_file_private {
334 	struct drm_i915_private *dev_priv;
335 	struct drm_file *file;
336 
337 	struct {
338 		spinlock_t lock;
339 		struct list_head request_list;
340 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
341  * chosen to prevent the CPU getting more than a frame ahead of the GPU
342  * (when using lax throttling for the frontbuffer). We also use it to
343  * offer free GPU waitboosts for severely congested workloads.
344  */
345 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
346 	} mm;
347 	struct idr context_idr;
348 
349 	struct intel_rps_client {
350 		atomic_t boosts;
351 	} rps_client;
352 
353 	unsigned int bsd_engine;
354 
355 /*
356  * Every context ban increments per client ban score. Also
357  * hangs in short succession increments ban score. If ban threshold
358  * is reached, client is considered banned and submitting more work
359  * will fail. This is a stop gap measure to limit the badly behaving
360  * clients access to gpu. Note that unbannable contexts never increment
361  * the client ban score.
362  */
363 #define I915_CLIENT_SCORE_HANG_FAST	1
364 #define   I915_CLIENT_FAST_HANG_JIFFIES (60 * HZ)
365 #define I915_CLIENT_SCORE_CONTEXT_BAN   3
366 #define I915_CLIENT_SCORE_BANNED	9
367 	/** ban_score: Accumulated score of all ctx bans and fast hangs. */
368 	atomic_t ban_score;
369 	unsigned long hang_timestamp;
370 };
371 
372 /* Interface history:
373  *
374  * 1.1: Original.
375  * 1.2: Add Power Management
376  * 1.3: Add vblank support
377  * 1.4: Fix cmdbuffer path, add heap destroy
378  * 1.5: Add vblank pipe configuration
379  * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
380  *      - Support vertical blank on secondary display pipe
381  */
382 #define DRIVER_MAJOR		1
383 #define DRIVER_MINOR		6
384 #define DRIVER_PATCHLEVEL	0
385 
386 struct intel_overlay;
387 struct intel_overlay_error_state;
388 
389 struct sdvo_device_mapping {
390 	u8 initialized;
391 	u8 dvo_port;
392 	u8 slave_addr;
393 	u8 dvo_wiring;
394 	u8 i2c_pin;
395 	u8 ddc_pin;
396 };
397 
398 struct intel_connector;
399 struct intel_encoder;
400 struct intel_atomic_state;
401 struct intel_crtc_state;
402 struct intel_initial_plane_config;
403 struct intel_crtc;
404 struct intel_limit;
405 struct dpll;
406 struct intel_cdclk_state;
407 
408 struct drm_i915_display_funcs {
409 	void (*get_cdclk)(struct drm_i915_private *dev_priv,
410 			  struct intel_cdclk_state *cdclk_state);
411 	void (*set_cdclk)(struct drm_i915_private *dev_priv,
412 			  const struct intel_cdclk_state *cdclk_state);
413 	int (*get_fifo_size)(struct drm_i915_private *dev_priv,
414 			     enum i9xx_plane_id i9xx_plane);
415 	int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
416 	int (*compute_intermediate_wm)(struct drm_device *dev,
417 				       struct intel_crtc *intel_crtc,
418 				       struct intel_crtc_state *newstate);
419 	void (*initial_watermarks)(struct intel_atomic_state *state,
420 				   struct intel_crtc_state *cstate);
421 	void (*atomic_update_watermarks)(struct intel_atomic_state *state,
422 					 struct intel_crtc_state *cstate);
423 	void (*optimize_watermarks)(struct intel_atomic_state *state,
424 				    struct intel_crtc_state *cstate);
425 	int (*compute_global_watermarks)(struct drm_atomic_state *state);
426 	void (*update_wm)(struct intel_crtc *crtc);
427 	int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
428 	/* Returns the active state of the crtc, and if the crtc is active,
429 	 * fills out the pipe-config with the hw state. */
430 	bool (*get_pipe_config)(struct intel_crtc *,
431 				struct intel_crtc_state *);
432 	void (*get_initial_plane_config)(struct intel_crtc *,
433 					 struct intel_initial_plane_config *);
434 	int (*crtc_compute_clock)(struct intel_crtc *crtc,
435 				  struct intel_crtc_state *crtc_state);
436 	void (*crtc_enable)(struct intel_crtc_state *pipe_config,
437 			    struct drm_atomic_state *old_state);
438 	void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
439 			     struct drm_atomic_state *old_state);
440 	void (*update_crtcs)(struct drm_atomic_state *state);
441 	void (*audio_codec_enable)(struct intel_encoder *encoder,
442 				   const struct intel_crtc_state *crtc_state,
443 				   const struct drm_connector_state *conn_state);
444 	void (*audio_codec_disable)(struct intel_encoder *encoder,
445 				    const struct intel_crtc_state *old_crtc_state,
446 				    const struct drm_connector_state *old_conn_state);
447 	void (*fdi_link_train)(struct intel_crtc *crtc,
448 			       const struct intel_crtc_state *crtc_state);
449 	void (*init_clock_gating)(struct drm_i915_private *dev_priv);
450 	void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
451 	/* clock updates for mode set */
452 	/* cursor updates */
453 	/* render clock increase/decrease */
454 	/* display clock increase/decrease */
455 	/* pll clock increase/decrease */
456 
457 	void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
458 	void (*load_luts)(struct drm_crtc_state *crtc_state);
459 };
460 
461 #define CSR_VERSION(major, minor)	((major) << 16 | (minor))
462 #define CSR_VERSION_MAJOR(version)	((version) >> 16)
463 #define CSR_VERSION_MINOR(version)	((version) & 0xffff)
464 
465 struct intel_csr {
466 	struct work_struct work;
467 	const char *fw_path;
468 	uint32_t *dmc_payload;
469 	uint32_t dmc_fw_size;
470 	uint32_t version;
471 	uint32_t mmio_count;
472 	i915_reg_t mmioaddr[8];
473 	uint32_t mmiodata[8];
474 	uint32_t dc_state;
475 	uint32_t allowed_dc_mask;
476 };
477 
478 enum i915_cache_level {
479 	I915_CACHE_NONE = 0,
480 	I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
481 	I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
482 			      caches, eg sampler/render caches, and the
483 			      large Last-Level-Cache. LLC is coherent with
484 			      the CPU, but L3 is only visible to the GPU. */
485 	I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
486 };
487 
488 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
489 
490 enum fb_op_origin {
491 	ORIGIN_GTT,
492 	ORIGIN_CPU,
493 	ORIGIN_CS,
494 	ORIGIN_FLIP,
495 	ORIGIN_DIRTYFB,
496 };
497 
498 struct intel_fbc {
499 	/* This is always the inner lock when overlapping with struct_mutex and
500 	 * it's the outer lock when overlapping with stolen_lock. */
501 	struct mutex lock;
502 	unsigned threshold;
503 	unsigned int possible_framebuffer_bits;
504 	unsigned int busy_bits;
505 	unsigned int visible_pipes_mask;
506 	struct intel_crtc *crtc;
507 
508 	struct drm_mm_node compressed_fb;
509 	struct drm_mm_node *compressed_llb;
510 
511 	bool false_color;
512 
513 	bool enabled;
514 	bool active;
515 
516 	bool underrun_detected;
517 	struct work_struct underrun_work;
518 
519 	/*
520 	 * Due to the atomic rules we can't access some structures without the
521 	 * appropriate locking, so we cache information here in order to avoid
522 	 * these problems.
523 	 */
524 	struct intel_fbc_state_cache {
525 		struct i915_vma *vma;
526 		unsigned long flags;
527 
528 		struct {
529 			unsigned int mode_flags;
530 			uint32_t hsw_bdw_pixel_rate;
531 		} crtc;
532 
533 		struct {
534 			unsigned int rotation;
535 			int src_w;
536 			int src_h;
537 			bool visible;
538 			/*
539 			 * Display surface base address adjustement for
540 			 * pageflips. Note that on gen4+ this only adjusts up
541 			 * to a tile, offsets within a tile are handled in
542 			 * the hw itself (with the TILEOFF register).
543 			 */
544 			int adjusted_x;
545 			int adjusted_y;
546 
547 			int y;
548 		} plane;
549 
550 		struct {
551 			const struct drm_format_info *format;
552 			unsigned int stride;
553 		} fb;
554 	} state_cache;
555 
556 	/*
557 	 * This structure contains everything that's relevant to program the
558 	 * hardware registers. When we want to figure out if we need to disable
559 	 * and re-enable FBC for a new configuration we just check if there's
560 	 * something different in the struct. The genx_fbc_activate functions
561 	 * are supposed to read from it in order to program the registers.
562 	 */
563 	struct intel_fbc_reg_params {
564 		struct i915_vma *vma;
565 		unsigned long flags;
566 
567 		struct {
568 			enum pipe pipe;
569 			enum i9xx_plane_id i9xx_plane;
570 			unsigned int fence_y_offset;
571 		} crtc;
572 
573 		struct {
574 			const struct drm_format_info *format;
575 			unsigned int stride;
576 		} fb;
577 
578 		int cfb_size;
579 		unsigned int gen9_wa_cfb_stride;
580 	} params;
581 
582 	struct intel_fbc_work {
583 		bool scheduled;
584 		u64 scheduled_vblank;
585 		struct work_struct work;
586 	} work;
587 
588 	const char *no_fbc_reason;
589 };
590 
591 /*
592  * HIGH_RR is the highest eDP panel refresh rate read from EDID
593  * LOW_RR is the lowest eDP panel refresh rate found from EDID
594  * parsing for same resolution.
595  */
596 enum drrs_refresh_rate_type {
597 	DRRS_HIGH_RR,
598 	DRRS_LOW_RR,
599 	DRRS_MAX_RR, /* RR count */
600 };
601 
602 enum drrs_support_type {
603 	DRRS_NOT_SUPPORTED = 0,
604 	STATIC_DRRS_SUPPORT = 1,
605 	SEAMLESS_DRRS_SUPPORT = 2
606 };
607 
608 struct intel_dp;
609 struct i915_drrs {
610 	struct mutex mutex;
611 	struct delayed_work work;
612 	struct intel_dp *dp;
613 	unsigned busy_frontbuffer_bits;
614 	enum drrs_refresh_rate_type refresh_rate_type;
615 	enum drrs_support_type type;
616 };
617 
618 struct i915_psr {
619 	struct mutex lock;
620 	bool sink_support;
621 	struct intel_dp *enabled;
622 	bool active;
623 	struct work_struct work;
624 	unsigned busy_frontbuffer_bits;
625 	bool sink_psr2_support;
626 	bool link_standby;
627 	bool colorimetry_support;
628 	bool alpm;
629 	bool psr2_enabled;
630 	u8 sink_sync_latency;
631 	bool debug;
632 	ktime_t last_entry_attempt;
633 	ktime_t last_exit;
634 
635 	void (*enable_source)(struct intel_dp *,
636 			      const struct intel_crtc_state *);
637 	void (*disable_source)(struct intel_dp *,
638 			       const struct intel_crtc_state *);
639 	void (*enable_sink)(struct intel_dp *);
640 	void (*activate)(struct intel_dp *);
641 	void (*setup_vsc)(struct intel_dp *, const struct intel_crtc_state *);
642 };
643 
644 enum intel_pch {
645 	PCH_NONE = 0,	/* No PCH present */
646 	PCH_IBX,	/* Ibexpeak PCH */
647 	PCH_CPT,	/* Cougarpoint/Pantherpoint PCH */
648 	PCH_LPT,	/* Lynxpoint/Wildcatpoint PCH */
649 	PCH_SPT,        /* Sunrisepoint PCH */
650 	PCH_KBP,        /* Kaby Lake PCH */
651 	PCH_CNP,        /* Cannon Lake PCH */
652 	PCH_ICP,	/* Ice Lake PCH */
653 	PCH_NOP,	/* PCH without south display */
654 };
655 
656 enum intel_sbi_destination {
657 	SBI_ICLK,
658 	SBI_MPHY,
659 };
660 
661 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
662 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
663 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
664 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
665 #define QUIRK_INCREASE_T12_DELAY (1<<6)
666 
667 struct intel_fbdev;
668 struct intel_fbc_work;
669 
670 struct intel_gmbus {
671 	struct i2c_adapter adapter;
672 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
673 	u32 force_bit;
674 	u32 reg0;
675 	i915_reg_t gpio_reg;
676 	struct i2c_algo_bit_data bit_algo;
677 	struct drm_i915_private *dev_priv;
678 };
679 
680 struct i915_suspend_saved_registers {
681 	u32 saveDSPARB;
682 	u32 saveFBC_CONTROL;
683 	u32 saveCACHE_MODE_0;
684 	u32 saveMI_ARB_STATE;
685 	u32 saveSWF0[16];
686 	u32 saveSWF1[16];
687 	u32 saveSWF3[3];
688 	uint64_t saveFENCE[I915_MAX_NUM_FENCES];
689 	u32 savePCH_PORT_HOTPLUG;
690 	u16 saveGCDGMBUS;
691 };
692 
693 struct vlv_s0ix_state {
694 	/* GAM */
695 	u32 wr_watermark;
696 	u32 gfx_prio_ctrl;
697 	u32 arb_mode;
698 	u32 gfx_pend_tlb0;
699 	u32 gfx_pend_tlb1;
700 	u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
701 	u32 media_max_req_count;
702 	u32 gfx_max_req_count;
703 	u32 render_hwsp;
704 	u32 ecochk;
705 	u32 bsd_hwsp;
706 	u32 blt_hwsp;
707 	u32 tlb_rd_addr;
708 
709 	/* MBC */
710 	u32 g3dctl;
711 	u32 gsckgctl;
712 	u32 mbctl;
713 
714 	/* GCP */
715 	u32 ucgctl1;
716 	u32 ucgctl3;
717 	u32 rcgctl1;
718 	u32 rcgctl2;
719 	u32 rstctl;
720 	u32 misccpctl;
721 
722 	/* GPM */
723 	u32 gfxpause;
724 	u32 rpdeuhwtc;
725 	u32 rpdeuc;
726 	u32 ecobus;
727 	u32 pwrdwnupctl;
728 	u32 rp_down_timeout;
729 	u32 rp_deucsw;
730 	u32 rcubmabdtmr;
731 	u32 rcedata;
732 	u32 spare2gh;
733 
734 	/* Display 1 CZ domain */
735 	u32 gt_imr;
736 	u32 gt_ier;
737 	u32 pm_imr;
738 	u32 pm_ier;
739 	u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
740 
741 	/* GT SA CZ domain */
742 	u32 tilectl;
743 	u32 gt_fifoctl;
744 	u32 gtlc_wake_ctrl;
745 	u32 gtlc_survive;
746 	u32 pmwgicz;
747 
748 	/* Display 2 CZ domain */
749 	u32 gu_ctl0;
750 	u32 gu_ctl1;
751 	u32 pcbr;
752 	u32 clock_gate_dis2;
753 };
754 
755 struct intel_rps_ei {
756 	ktime_t ktime;
757 	u32 render_c0;
758 	u32 media_c0;
759 };
760 
761 struct intel_rps {
762 	/*
763 	 * work, interrupts_enabled and pm_iir are protected by
764 	 * dev_priv->irq_lock
765 	 */
766 	struct work_struct work;
767 	bool interrupts_enabled;
768 	u32 pm_iir;
769 
770 	/* PM interrupt bits that should never be masked */
771 	u32 pm_intrmsk_mbz;
772 
773 	/* Frequencies are stored in potentially platform dependent multiples.
774 	 * In other words, *_freq needs to be multiplied by X to be interesting.
775 	 * Soft limits are those which are used for the dynamic reclocking done
776 	 * by the driver (raise frequencies under heavy loads, and lower for
777 	 * lighter loads). Hard limits are those imposed by the hardware.
778 	 *
779 	 * A distinction is made for overclocking, which is never enabled by
780 	 * default, and is considered to be above the hard limit if it's
781 	 * possible at all.
782 	 */
783 	u8 cur_freq;		/* Current frequency (cached, may not == HW) */
784 	u8 min_freq_softlimit;	/* Minimum frequency permitted by the driver */
785 	u8 max_freq_softlimit;	/* Max frequency permitted by the driver */
786 	u8 max_freq;		/* Maximum frequency, RP0 if not overclocking */
787 	u8 min_freq;		/* AKA RPn. Minimum frequency */
788 	u8 boost_freq;		/* Frequency to request when wait boosting */
789 	u8 idle_freq;		/* Frequency to request when we are idle */
790 	u8 efficient_freq;	/* AKA RPe. Pre-determined balanced frequency */
791 	u8 rp1_freq;		/* "less than" RP0 power/freqency */
792 	u8 rp0_freq;		/* Non-overclocked max frequency. */
793 	u16 gpll_ref_freq;	/* vlv/chv GPLL reference frequency */
794 
795 	u8 up_threshold; /* Current %busy required to uplock */
796 	u8 down_threshold; /* Current %busy required to downclock */
797 
798 	int last_adj;
799 	enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
800 
801 	bool enabled;
802 	atomic_t num_waiters;
803 	atomic_t boosts;
804 
805 	/* manual wa residency calculations */
806 	struct intel_rps_ei ei;
807 };
808 
809 struct intel_rc6 {
810 	bool enabled;
811 	u64 prev_hw_residency[4];
812 	u64 cur_residency[4];
813 };
814 
815 struct intel_llc_pstate {
816 	bool enabled;
817 };
818 
819 struct intel_gen6_power_mgmt {
820 	struct intel_rps rps;
821 	struct intel_rc6 rc6;
822 	struct intel_llc_pstate llc_pstate;
823 };
824 
825 /* defined intel_pm.c */
826 extern spinlock_t mchdev_lock;
827 
828 struct intel_ilk_power_mgmt {
829 	u8 cur_delay;
830 	u8 min_delay;
831 	u8 max_delay;
832 	u8 fmax;
833 	u8 fstart;
834 
835 	u64 last_count1;
836 	unsigned long last_time1;
837 	unsigned long chipset_power;
838 	u64 last_count2;
839 	u64 last_time2;
840 	unsigned long gfx_power;
841 	u8 corr;
842 
843 	int c_m;
844 	int r_t;
845 };
846 
847 struct drm_i915_private;
848 struct i915_power_well;
849 
850 struct i915_power_well_ops {
851 	/*
852 	 * Synchronize the well's hw state to match the current sw state, for
853 	 * example enable/disable it based on the current refcount. Called
854 	 * during driver init and resume time, possibly after first calling
855 	 * the enable/disable handlers.
856 	 */
857 	void (*sync_hw)(struct drm_i915_private *dev_priv,
858 			struct i915_power_well *power_well);
859 	/*
860 	 * Enable the well and resources that depend on it (for example
861 	 * interrupts located on the well). Called after the 0->1 refcount
862 	 * transition.
863 	 */
864 	void (*enable)(struct drm_i915_private *dev_priv,
865 		       struct i915_power_well *power_well);
866 	/*
867 	 * Disable the well and resources that depend on it. Called after
868 	 * the 1->0 refcount transition.
869 	 */
870 	void (*disable)(struct drm_i915_private *dev_priv,
871 			struct i915_power_well *power_well);
872 	/* Returns the hw enabled state. */
873 	bool (*is_enabled)(struct drm_i915_private *dev_priv,
874 			   struct i915_power_well *power_well);
875 };
876 
877 /* Power well structure for haswell */
878 struct i915_power_well {
879 	const char *name;
880 	bool always_on;
881 	/* power well enable/disable usage count */
882 	int count;
883 	/* cached hw enabled state */
884 	bool hw_enabled;
885 	u64 domains;
886 	/* unique identifier for this power well */
887 	enum i915_power_well_id id;
888 	/*
889 	 * Arbitraty data associated with this power well. Platform and power
890 	 * well specific.
891 	 */
892 	union {
893 		struct {
894 			enum dpio_phy phy;
895 		} bxt;
896 		struct {
897 			/* Mask of pipes whose IRQ logic is backed by the pw */
898 			u8 irq_pipe_mask;
899 			/* The pw is backing the VGA functionality */
900 			bool has_vga:1;
901 			bool has_fuses:1;
902 		} hsw;
903 	};
904 	const struct i915_power_well_ops *ops;
905 };
906 
907 struct i915_power_domains {
908 	/*
909 	 * Power wells needed for initialization at driver init and suspend
910 	 * time are on. They are kept on until after the first modeset.
911 	 */
912 	bool init_power_on;
913 	bool initializing;
914 	int power_well_count;
915 
916 	struct mutex lock;
917 	int domain_use_count[POWER_DOMAIN_NUM];
918 	struct i915_power_well *power_wells;
919 };
920 
921 #define MAX_L3_SLICES 2
922 struct intel_l3_parity {
923 	u32 *remap_info[MAX_L3_SLICES];
924 	struct work_struct error_work;
925 	int which_slice;
926 };
927 
928 struct i915_gem_mm {
929 	/** Memory allocator for GTT stolen memory */
930 	struct drm_mm stolen;
931 	/** Protects the usage of the GTT stolen memory allocator. This is
932 	 * always the inner lock when overlapping with struct_mutex. */
933 	struct mutex stolen_lock;
934 
935 	/* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */
936 	spinlock_t obj_lock;
937 
938 	/** List of all objects in gtt_space. Used to restore gtt
939 	 * mappings on resume */
940 	struct list_head bound_list;
941 	/**
942 	 * List of objects which are not bound to the GTT (thus
943 	 * are idle and not used by the GPU). These objects may or may
944 	 * not actually have any pages attached.
945 	 */
946 	struct list_head unbound_list;
947 
948 	/** List of all objects in gtt_space, currently mmaped by userspace.
949 	 * All objects within this list must also be on bound_list.
950 	 */
951 	struct list_head userfault_list;
952 
953 	/**
954 	 * List of objects which are pending destruction.
955 	 */
956 	struct llist_head free_list;
957 	struct work_struct free_work;
958 	spinlock_t free_lock;
959 	/**
960 	 * Count of objects pending destructions. Used to skip needlessly
961 	 * waiting on an RCU barrier if no objects are waiting to be freed.
962 	 */
963 	atomic_t free_count;
964 
965 	/**
966 	 * Small stash of WC pages
967 	 */
968 	struct pagevec wc_stash;
969 
970 	/**
971 	 * tmpfs instance used for shmem backed objects
972 	 */
973 	struct vfsmount *gemfs;
974 
975 	/** PPGTT used for aliasing the PPGTT with the GTT */
976 	struct i915_hw_ppgtt *aliasing_ppgtt;
977 
978 	struct notifier_block oom_notifier;
979 	struct notifier_block vmap_notifier;
980 	struct shrinker shrinker;
981 
982 	/** LRU list of objects with fence regs on them. */
983 	struct list_head fence_list;
984 
985 	/**
986 	 * Workqueue to fault in userptr pages, flushed by the execbuf
987 	 * when required but otherwise left to userspace to try again
988 	 * on EAGAIN.
989 	 */
990 	struct workqueue_struct *userptr_wq;
991 
992 	u64 unordered_timeline;
993 
994 	/* the indicator for dispatch video commands on two BSD rings */
995 	atomic_t bsd_engine_dispatch_index;
996 
997 	/** Bit 6 swizzling required for X tiling */
998 	uint32_t bit_6_swizzle_x;
999 	/** Bit 6 swizzling required for Y tiling */
1000 	uint32_t bit_6_swizzle_y;
1001 
1002 	/* accounting, useful for userland debugging */
1003 	spinlock_t object_stat_lock;
1004 	u64 object_memory;
1005 	u32 object_count;
1006 };
1007 
1008 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */
1009 
1010 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1011 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1012 
1013 #define I915_ENGINE_DEAD_TIMEOUT  (4 * HZ)  /* Seqno, head and subunits dead */
1014 #define I915_SEQNO_DEAD_TIMEOUT   (12 * HZ) /* Seqno dead with active head */
1015 
1016 #define I915_ENGINE_WEDGED_TIMEOUT  (60 * HZ)  /* Reset but no recovery? */
1017 
1018 enum modeset_restore {
1019 	MODESET_ON_LID_OPEN,
1020 	MODESET_DONE,
1021 	MODESET_SUSPENDED,
1022 };
1023 
1024 #define DP_AUX_A 0x40
1025 #define DP_AUX_B 0x10
1026 #define DP_AUX_C 0x20
1027 #define DP_AUX_D 0x30
1028 #define DP_AUX_E 0x50
1029 #define DP_AUX_F 0x60
1030 
1031 #define DDC_PIN_B  0x05
1032 #define DDC_PIN_C  0x04
1033 #define DDC_PIN_D  0x06
1034 
1035 struct ddi_vbt_port_info {
1036 	int max_tmds_clock;
1037 
1038 	/*
1039 	 * This is an index in the HDMI/DVI DDI buffer translation table.
1040 	 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1041 	 * populate this field.
1042 	 */
1043 #define HDMI_LEVEL_SHIFT_UNKNOWN	0xff
1044 	uint8_t hdmi_level_shift;
1045 
1046 	uint8_t supports_dvi:1;
1047 	uint8_t supports_hdmi:1;
1048 	uint8_t supports_dp:1;
1049 	uint8_t supports_edp:1;
1050 
1051 	uint8_t alternate_aux_channel;
1052 	uint8_t alternate_ddc_pin;
1053 
1054 	uint8_t dp_boost_level;
1055 	uint8_t hdmi_boost_level;
1056 	int dp_max_link_rate;		/* 0 for not limited by VBT */
1057 };
1058 
1059 enum psr_lines_to_wait {
1060 	PSR_0_LINES_TO_WAIT = 0,
1061 	PSR_1_LINE_TO_WAIT,
1062 	PSR_4_LINES_TO_WAIT,
1063 	PSR_8_LINES_TO_WAIT
1064 };
1065 
1066 struct intel_vbt_data {
1067 	struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1068 	struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1069 
1070 	/* Feature bits */
1071 	unsigned int int_tv_support:1;
1072 	unsigned int lvds_dither:1;
1073 	unsigned int int_crt_support:1;
1074 	unsigned int lvds_use_ssc:1;
1075 	unsigned int int_lvds_support:1;
1076 	unsigned int display_clock_mode:1;
1077 	unsigned int fdi_rx_polarity_inverted:1;
1078 	unsigned int panel_type:4;
1079 	int lvds_ssc_freq;
1080 	unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1081 
1082 	enum drrs_support_type drrs_type;
1083 
1084 	struct {
1085 		int rate;
1086 		int lanes;
1087 		int preemphasis;
1088 		int vswing;
1089 		bool low_vswing;
1090 		bool initialized;
1091 		int bpp;
1092 		struct edp_power_seq pps;
1093 	} edp;
1094 
1095 	struct {
1096 		bool enable;
1097 		bool full_link;
1098 		bool require_aux_wakeup;
1099 		int idle_frames;
1100 		enum psr_lines_to_wait lines_to_wait;
1101 		int tp1_wakeup_time_us;
1102 		int tp2_tp3_wakeup_time_us;
1103 	} psr;
1104 
1105 	struct {
1106 		u16 pwm_freq_hz;
1107 		bool present;
1108 		bool active_low_pwm;
1109 		u8 min_brightness;	/* min_brightness/255 of max */
1110 		u8 controller;		/* brightness controller number */
1111 		enum intel_backlight_type type;
1112 	} backlight;
1113 
1114 	/* MIPI DSI */
1115 	struct {
1116 		u16 panel_id;
1117 		struct mipi_config *config;
1118 		struct mipi_pps_data *pps;
1119 		u16 bl_ports;
1120 		u16 cabc_ports;
1121 		u8 seq_version;
1122 		u32 size;
1123 		u8 *data;
1124 		const u8 *sequence[MIPI_SEQ_MAX];
1125 		u8 *deassert_seq; /* Used by fixup_mipi_sequences() */
1126 	} dsi;
1127 
1128 	int crt_ddc_pin;
1129 
1130 	int child_dev_num;
1131 	struct child_device_config *child_dev;
1132 
1133 	struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1134 	struct sdvo_device_mapping sdvo_mappings[2];
1135 };
1136 
1137 enum intel_ddb_partitioning {
1138 	INTEL_DDB_PART_1_2,
1139 	INTEL_DDB_PART_5_6, /* IVB+ */
1140 };
1141 
1142 struct intel_wm_level {
1143 	bool enable;
1144 	uint32_t pri_val;
1145 	uint32_t spr_val;
1146 	uint32_t cur_val;
1147 	uint32_t fbc_val;
1148 };
1149 
1150 struct ilk_wm_values {
1151 	uint32_t wm_pipe[3];
1152 	uint32_t wm_lp[3];
1153 	uint32_t wm_lp_spr[3];
1154 	uint32_t wm_linetime[3];
1155 	bool enable_fbc_wm;
1156 	enum intel_ddb_partitioning partitioning;
1157 };
1158 
1159 struct g4x_pipe_wm {
1160 	uint16_t plane[I915_MAX_PLANES];
1161 	uint16_t fbc;
1162 };
1163 
1164 struct g4x_sr_wm {
1165 	uint16_t plane;
1166 	uint16_t cursor;
1167 	uint16_t fbc;
1168 };
1169 
1170 struct vlv_wm_ddl_values {
1171 	uint8_t plane[I915_MAX_PLANES];
1172 };
1173 
1174 struct vlv_wm_values {
1175 	struct g4x_pipe_wm pipe[3];
1176 	struct g4x_sr_wm sr;
1177 	struct vlv_wm_ddl_values ddl[3];
1178 	uint8_t level;
1179 	bool cxsr;
1180 };
1181 
1182 struct g4x_wm_values {
1183 	struct g4x_pipe_wm pipe[2];
1184 	struct g4x_sr_wm sr;
1185 	struct g4x_sr_wm hpll;
1186 	bool cxsr;
1187 	bool hpll_en;
1188 	bool fbc_en;
1189 };
1190 
1191 struct skl_ddb_entry {
1192 	uint16_t start, end;	/* in number of blocks, 'end' is exclusive */
1193 };
1194 
1195 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1196 {
1197 	return entry->end - entry->start;
1198 }
1199 
1200 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1201 				       const struct skl_ddb_entry *e2)
1202 {
1203 	if (e1->start == e2->start && e1->end == e2->end)
1204 		return true;
1205 
1206 	return false;
1207 }
1208 
1209 struct skl_ddb_allocation {
1210 	/* packed/y */
1211 	struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES];
1212 	struct skl_ddb_entry uv_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1213 	u8 enabled_slices; /* GEN11 has configurable 2 slices */
1214 };
1215 
1216 struct skl_ddb_values {
1217 	unsigned dirty_pipes;
1218 	struct skl_ddb_allocation ddb;
1219 };
1220 
1221 struct skl_wm_level {
1222 	bool plane_en;
1223 	uint16_t plane_res_b;
1224 	uint8_t plane_res_l;
1225 };
1226 
1227 /* Stores plane specific WM parameters */
1228 struct skl_wm_params {
1229 	bool x_tiled, y_tiled;
1230 	bool rc_surface;
1231 	bool is_planar;
1232 	uint32_t width;
1233 	uint8_t cpp;
1234 	uint32_t plane_pixel_rate;
1235 	uint32_t y_min_scanlines;
1236 	uint32_t plane_bytes_per_line;
1237 	uint_fixed_16_16_t plane_blocks_per_line;
1238 	uint_fixed_16_16_t y_tile_minimum;
1239 	uint32_t linetime_us;
1240 	uint32_t dbuf_block_size;
1241 };
1242 
1243 /*
1244  * This struct helps tracking the state needed for runtime PM, which puts the
1245  * device in PCI D3 state. Notice that when this happens, nothing on the
1246  * graphics device works, even register access, so we don't get interrupts nor
1247  * anything else.
1248  *
1249  * Every piece of our code that needs to actually touch the hardware needs to
1250  * either call intel_runtime_pm_get or call intel_display_power_get with the
1251  * appropriate power domain.
1252  *
1253  * Our driver uses the autosuspend delay feature, which means we'll only really
1254  * suspend if we stay with zero refcount for a certain amount of time. The
1255  * default value is currently very conservative (see intel_runtime_pm_enable), but
1256  * it can be changed with the standard runtime PM files from sysfs.
1257  *
1258  * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1259  * goes back to false exactly before we reenable the IRQs. We use this variable
1260  * to check if someone is trying to enable/disable IRQs while they're supposed
1261  * to be disabled. This shouldn't happen and we'll print some error messages in
1262  * case it happens.
1263  *
1264  * For more, read the Documentation/power/runtime_pm.txt.
1265  */
1266 struct i915_runtime_pm {
1267 	atomic_t wakeref_count;
1268 	bool suspended;
1269 	bool irqs_enabled;
1270 };
1271 
1272 enum intel_pipe_crc_source {
1273 	INTEL_PIPE_CRC_SOURCE_NONE,
1274 	INTEL_PIPE_CRC_SOURCE_PLANE1,
1275 	INTEL_PIPE_CRC_SOURCE_PLANE2,
1276 	INTEL_PIPE_CRC_SOURCE_PF,
1277 	INTEL_PIPE_CRC_SOURCE_PIPE,
1278 	/* TV/DP on pre-gen5/vlv can't use the pipe source. */
1279 	INTEL_PIPE_CRC_SOURCE_TV,
1280 	INTEL_PIPE_CRC_SOURCE_DP_B,
1281 	INTEL_PIPE_CRC_SOURCE_DP_C,
1282 	INTEL_PIPE_CRC_SOURCE_DP_D,
1283 	INTEL_PIPE_CRC_SOURCE_AUTO,
1284 	INTEL_PIPE_CRC_SOURCE_MAX,
1285 };
1286 
1287 struct intel_pipe_crc_entry {
1288 	uint32_t frame;
1289 	uint32_t crc[5];
1290 };
1291 
1292 #define INTEL_PIPE_CRC_ENTRIES_NR	128
1293 struct intel_pipe_crc {
1294 	spinlock_t lock;
1295 	bool opened;		/* exclusive access to the result file */
1296 	struct intel_pipe_crc_entry *entries;
1297 	enum intel_pipe_crc_source source;
1298 	int head, tail;
1299 	wait_queue_head_t wq;
1300 	int skipped;
1301 };
1302 
1303 struct i915_frontbuffer_tracking {
1304 	spinlock_t lock;
1305 
1306 	/*
1307 	 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1308 	 * scheduled flips.
1309 	 */
1310 	unsigned busy_bits;
1311 	unsigned flip_bits;
1312 };
1313 
1314 struct i915_wa_reg {
1315 	u32 addr;
1316 	u32 value;
1317 	/* bitmask representing WA bits */
1318 	u32 mask;
1319 };
1320 
1321 #define I915_MAX_WA_REGS 16
1322 
1323 struct i915_workarounds {
1324 	struct i915_wa_reg reg[I915_MAX_WA_REGS];
1325 	u32 count;
1326 };
1327 
1328 struct i915_virtual_gpu {
1329 	bool active;
1330 	u32 caps;
1331 };
1332 
1333 /* used in computing the new watermarks state */
1334 struct intel_wm_config {
1335 	unsigned int num_pipes_active;
1336 	bool sprites_enabled;
1337 	bool sprites_scaled;
1338 };
1339 
1340 struct i915_oa_format {
1341 	u32 format;
1342 	int size;
1343 };
1344 
1345 struct i915_oa_reg {
1346 	i915_reg_t addr;
1347 	u32 value;
1348 };
1349 
1350 struct i915_oa_config {
1351 	char uuid[UUID_STRING_LEN + 1];
1352 	int id;
1353 
1354 	const struct i915_oa_reg *mux_regs;
1355 	u32 mux_regs_len;
1356 	const struct i915_oa_reg *b_counter_regs;
1357 	u32 b_counter_regs_len;
1358 	const struct i915_oa_reg *flex_regs;
1359 	u32 flex_regs_len;
1360 
1361 	struct attribute_group sysfs_metric;
1362 	struct attribute *attrs[2];
1363 	struct device_attribute sysfs_metric_id;
1364 
1365 	atomic_t ref_count;
1366 };
1367 
1368 struct i915_perf_stream;
1369 
1370 /**
1371  * struct i915_perf_stream_ops - the OPs to support a specific stream type
1372  */
1373 struct i915_perf_stream_ops {
1374 	/**
1375 	 * @enable: Enables the collection of HW samples, either in response to
1376 	 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1377 	 * without `I915_PERF_FLAG_DISABLED`.
1378 	 */
1379 	void (*enable)(struct i915_perf_stream *stream);
1380 
1381 	/**
1382 	 * @disable: Disables the collection of HW samples, either in response
1383 	 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1384 	 * the stream.
1385 	 */
1386 	void (*disable)(struct i915_perf_stream *stream);
1387 
1388 	/**
1389 	 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1390 	 * once there is something ready to read() for the stream
1391 	 */
1392 	void (*poll_wait)(struct i915_perf_stream *stream,
1393 			  struct file *file,
1394 			  poll_table *wait);
1395 
1396 	/**
1397 	 * @wait_unlocked: For handling a blocking read, wait until there is
1398 	 * something to ready to read() for the stream. E.g. wait on the same
1399 	 * wait queue that would be passed to poll_wait().
1400 	 */
1401 	int (*wait_unlocked)(struct i915_perf_stream *stream);
1402 
1403 	/**
1404 	 * @read: Copy buffered metrics as records to userspace
1405 	 * **buf**: the userspace, destination buffer
1406 	 * **count**: the number of bytes to copy, requested by userspace
1407 	 * **offset**: zero at the start of the read, updated as the read
1408 	 * proceeds, it represents how many bytes have been copied so far and
1409 	 * the buffer offset for copying the next record.
1410 	 *
1411 	 * Copy as many buffered i915 perf samples and records for this stream
1412 	 * to userspace as will fit in the given buffer.
1413 	 *
1414 	 * Only write complete records; returning -%ENOSPC if there isn't room
1415 	 * for a complete record.
1416 	 *
1417 	 * Return any error condition that results in a short read such as
1418 	 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1419 	 * returning to userspace.
1420 	 */
1421 	int (*read)(struct i915_perf_stream *stream,
1422 		    char __user *buf,
1423 		    size_t count,
1424 		    size_t *offset);
1425 
1426 	/**
1427 	 * @destroy: Cleanup any stream specific resources.
1428 	 *
1429 	 * The stream will always be disabled before this is called.
1430 	 */
1431 	void (*destroy)(struct i915_perf_stream *stream);
1432 };
1433 
1434 /**
1435  * struct i915_perf_stream - state for a single open stream FD
1436  */
1437 struct i915_perf_stream {
1438 	/**
1439 	 * @dev_priv: i915 drm device
1440 	 */
1441 	struct drm_i915_private *dev_priv;
1442 
1443 	/**
1444 	 * @link: Links the stream into ``&drm_i915_private->streams``
1445 	 */
1446 	struct list_head link;
1447 
1448 	/**
1449 	 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
1450 	 * properties given when opening a stream, representing the contents
1451 	 * of a single sample as read() by userspace.
1452 	 */
1453 	u32 sample_flags;
1454 
1455 	/**
1456 	 * @sample_size: Considering the configured contents of a sample
1457 	 * combined with the required header size, this is the total size
1458 	 * of a single sample record.
1459 	 */
1460 	int sample_size;
1461 
1462 	/**
1463 	 * @ctx: %NULL if measuring system-wide across all contexts or a
1464 	 * specific context that is being monitored.
1465 	 */
1466 	struct i915_gem_context *ctx;
1467 
1468 	/**
1469 	 * @enabled: Whether the stream is currently enabled, considering
1470 	 * whether the stream was opened in a disabled state and based
1471 	 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
1472 	 */
1473 	bool enabled;
1474 
1475 	/**
1476 	 * @ops: The callbacks providing the implementation of this specific
1477 	 * type of configured stream.
1478 	 */
1479 	const struct i915_perf_stream_ops *ops;
1480 
1481 	/**
1482 	 * @oa_config: The OA configuration used by the stream.
1483 	 */
1484 	struct i915_oa_config *oa_config;
1485 };
1486 
1487 /**
1488  * struct i915_oa_ops - Gen specific implementation of an OA unit stream
1489  */
1490 struct i915_oa_ops {
1491 	/**
1492 	 * @is_valid_b_counter_reg: Validates register's address for
1493 	 * programming boolean counters for a particular platform.
1494 	 */
1495 	bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
1496 				       u32 addr);
1497 
1498 	/**
1499 	 * @is_valid_mux_reg: Validates register's address for programming mux
1500 	 * for a particular platform.
1501 	 */
1502 	bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
1503 
1504 	/**
1505 	 * @is_valid_flex_reg: Validates register's address for programming
1506 	 * flex EU filtering for a particular platform.
1507 	 */
1508 	bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
1509 
1510 	/**
1511 	 * @init_oa_buffer: Resets the head and tail pointers of the
1512 	 * circular buffer for periodic OA reports.
1513 	 *
1514 	 * Called when first opening a stream for OA metrics, but also may be
1515 	 * called in response to an OA buffer overflow or other error
1516 	 * condition.
1517 	 *
1518 	 * Note it may be necessary to clear the full OA buffer here as part of
1519 	 * maintaining the invariable that new reports must be written to
1520 	 * zeroed memory for us to be able to reliable detect if an expected
1521 	 * report has not yet landed in memory.  (At least on Haswell the OA
1522 	 * buffer tail pointer is not synchronized with reports being visible
1523 	 * to the CPU)
1524 	 */
1525 	void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
1526 
1527 	/**
1528 	 * @enable_metric_set: Selects and applies any MUX configuration to set
1529 	 * up the Boolean and Custom (B/C) counters that are part of the
1530 	 * counter reports being sampled. May apply system constraints such as
1531 	 * disabling EU clock gating as required.
1532 	 */
1533 	int (*enable_metric_set)(struct drm_i915_private *dev_priv,
1534 				 const struct i915_oa_config *oa_config);
1535 
1536 	/**
1537 	 * @disable_metric_set: Remove system constraints associated with using
1538 	 * the OA unit.
1539 	 */
1540 	void (*disable_metric_set)(struct drm_i915_private *dev_priv);
1541 
1542 	/**
1543 	 * @oa_enable: Enable periodic sampling
1544 	 */
1545 	void (*oa_enable)(struct drm_i915_private *dev_priv);
1546 
1547 	/**
1548 	 * @oa_disable: Disable periodic sampling
1549 	 */
1550 	void (*oa_disable)(struct drm_i915_private *dev_priv);
1551 
1552 	/**
1553 	 * @read: Copy data from the circular OA buffer into a given userspace
1554 	 * buffer.
1555 	 */
1556 	int (*read)(struct i915_perf_stream *stream,
1557 		    char __user *buf,
1558 		    size_t count,
1559 		    size_t *offset);
1560 
1561 	/**
1562 	 * @oa_hw_tail_read: read the OA tail pointer register
1563 	 *
1564 	 * In particular this enables us to share all the fiddly code for
1565 	 * handling the OA unit tail pointer race that affects multiple
1566 	 * generations.
1567 	 */
1568 	u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
1569 };
1570 
1571 struct intel_cdclk_state {
1572 	unsigned int cdclk, vco, ref, bypass;
1573 	u8 voltage_level;
1574 };
1575 
1576 struct drm_i915_private {
1577 	struct drm_device drm;
1578 
1579 	struct kmem_cache *objects;
1580 	struct kmem_cache *vmas;
1581 	struct kmem_cache *luts;
1582 	struct kmem_cache *requests;
1583 	struct kmem_cache *dependencies;
1584 	struct kmem_cache *priorities;
1585 
1586 	const struct intel_device_info info;
1587 	struct intel_driver_caps caps;
1588 
1589 	/**
1590 	 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and
1591 	 * end of stolen which we can optionally use to create GEM objects
1592 	 * backed by stolen memory. Note that stolen_usable_size tells us
1593 	 * exactly how much of this we are actually allowed to use, given that
1594 	 * some portion of it is in fact reserved for use by hardware functions.
1595 	 */
1596 	struct resource dsm;
1597 	/**
1598 	 * Reseved portion of Data Stolen Memory
1599 	 */
1600 	struct resource dsm_reserved;
1601 
1602 	/*
1603 	 * Stolen memory is segmented in hardware with different portions
1604 	 * offlimits to certain functions.
1605 	 *
1606 	 * The drm_mm is initialised to the total accessible range, as found
1607 	 * from the PCI config. On Broadwell+, this is further restricted to
1608 	 * avoid the first page! The upper end of stolen memory is reserved for
1609 	 * hardware functions and similarly removed from the accessible range.
1610 	 */
1611 	resource_size_t stolen_usable_size;	/* Total size minus reserved ranges */
1612 
1613 	void __iomem *regs;
1614 
1615 	struct intel_uncore uncore;
1616 
1617 	struct i915_virtual_gpu vgpu;
1618 
1619 	struct intel_gvt *gvt;
1620 
1621 	struct intel_wopcm wopcm;
1622 
1623 	struct intel_huc huc;
1624 	struct intel_guc guc;
1625 
1626 	struct intel_csr csr;
1627 
1628 	struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1629 
1630 	/** gmbus_mutex protects against concurrent usage of the single hw gmbus
1631 	 * controller on different i2c buses. */
1632 	struct mutex gmbus_mutex;
1633 
1634 	/**
1635 	 * Base address of the gmbus and gpio block.
1636 	 */
1637 	uint32_t gpio_mmio_base;
1638 
1639 	/* MMIO base address for MIPI regs */
1640 	uint32_t mipi_mmio_base;
1641 
1642 	uint32_t psr_mmio_base;
1643 
1644 	uint32_t pps_mmio_base;
1645 
1646 	wait_queue_head_t gmbus_wait_queue;
1647 
1648 	struct pci_dev *bridge_dev;
1649 	struct intel_engine_cs *engine[I915_NUM_ENGINES];
1650 	/* Context used internally to idle the GPU and setup initial state */
1651 	struct i915_gem_context *kernel_context;
1652 	/* Context only to be used for injecting preemption commands */
1653 	struct i915_gem_context *preempt_context;
1654 	struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1]
1655 					    [MAX_ENGINE_INSTANCE + 1];
1656 
1657 	struct drm_dma_handle *status_page_dmah;
1658 	struct resource mch_res;
1659 
1660 	/* protects the irq masks */
1661 	spinlock_t irq_lock;
1662 
1663 	bool display_irqs_enabled;
1664 
1665 	/* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1666 	struct pm_qos_request pm_qos;
1667 
1668 	/* Sideband mailbox protection */
1669 	struct mutex sb_lock;
1670 
1671 	/** Cached value of IMR to avoid reads in updating the bitfield */
1672 	union {
1673 		u32 irq_mask;
1674 		u32 de_irq_mask[I915_MAX_PIPES];
1675 	};
1676 	u32 gt_irq_mask;
1677 	u32 pm_imr;
1678 	u32 pm_ier;
1679 	u32 pm_rps_events;
1680 	u32 pm_guc_events;
1681 	u32 pipestat_irq_mask[I915_MAX_PIPES];
1682 
1683 	struct i915_hotplug hotplug;
1684 	struct intel_fbc fbc;
1685 	struct i915_drrs drrs;
1686 	struct intel_opregion opregion;
1687 	struct intel_vbt_data vbt;
1688 
1689 	bool preserve_bios_swizzle;
1690 
1691 	/* overlay */
1692 	struct intel_overlay *overlay;
1693 
1694 	/* backlight registers and fields in struct intel_panel */
1695 	struct mutex backlight_lock;
1696 
1697 	/* LVDS info */
1698 	bool no_aux_handshake;
1699 
1700 	/* protects panel power sequencer state */
1701 	struct mutex pps_mutex;
1702 
1703 	struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1704 	int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1705 
1706 	unsigned int fsb_freq, mem_freq, is_ddr3;
1707 	unsigned int skl_preferred_vco_freq;
1708 	unsigned int max_cdclk_freq;
1709 
1710 	unsigned int max_dotclk_freq;
1711 	unsigned int rawclk_freq;
1712 	unsigned int hpll_freq;
1713 	unsigned int fdi_pll_freq;
1714 	unsigned int czclk_freq;
1715 
1716 	struct {
1717 		/*
1718 		 * The current logical cdclk state.
1719 		 * See intel_atomic_state.cdclk.logical
1720 		 *
1721 		 * For reading holding any crtc lock is sufficient,
1722 		 * for writing must hold all of them.
1723 		 */
1724 		struct intel_cdclk_state logical;
1725 		/*
1726 		 * The current actual cdclk state.
1727 		 * See intel_atomic_state.cdclk.actual
1728 		 */
1729 		struct intel_cdclk_state actual;
1730 		/* The current hardware cdclk state */
1731 		struct intel_cdclk_state hw;
1732 	} cdclk;
1733 
1734 	/**
1735 	 * wq - Driver workqueue for GEM.
1736 	 *
1737 	 * NOTE: Work items scheduled here are not allowed to grab any modeset
1738 	 * locks, for otherwise the flushing done in the pageflip code will
1739 	 * result in deadlocks.
1740 	 */
1741 	struct workqueue_struct *wq;
1742 
1743 	/* ordered wq for modesets */
1744 	struct workqueue_struct *modeset_wq;
1745 
1746 	/* Display functions */
1747 	struct drm_i915_display_funcs display;
1748 
1749 	/* PCH chipset type */
1750 	enum intel_pch pch_type;
1751 	unsigned short pch_id;
1752 
1753 	unsigned long quirks;
1754 
1755 	enum modeset_restore modeset_restore;
1756 	struct mutex modeset_restore_lock;
1757 	struct drm_atomic_state *modeset_restore_state;
1758 	struct drm_modeset_acquire_ctx reset_ctx;
1759 
1760 	struct list_head vm_list; /* Global list of all address spaces */
1761 	struct i915_ggtt ggtt; /* VM representing the global address space */
1762 
1763 	struct i915_gem_mm mm;
1764 	DECLARE_HASHTABLE(mm_structs, 7);
1765 	struct mutex mm_lock;
1766 
1767 	struct intel_ppat ppat;
1768 
1769 	/* Kernel Modesetting */
1770 
1771 	struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1772 	struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1773 
1774 #ifdef CONFIG_DEBUG_FS
1775 	struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1776 #endif
1777 
1778 	/* dpll and cdclk state is protected by connection_mutex */
1779 	int num_shared_dpll;
1780 	struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1781 	const struct intel_dpll_mgr *dpll_mgr;
1782 
1783 	/*
1784 	 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1785 	 * Must be global rather than per dpll, because on some platforms
1786 	 * plls share registers.
1787 	 */
1788 	struct mutex dpll_lock;
1789 
1790 	unsigned int active_crtcs;
1791 	/* minimum acceptable cdclk for each pipe */
1792 	int min_cdclk[I915_MAX_PIPES];
1793 	/* minimum acceptable voltage level for each pipe */
1794 	u8 min_voltage_level[I915_MAX_PIPES];
1795 
1796 	int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1797 
1798 	struct i915_workarounds workarounds;
1799 
1800 	struct i915_frontbuffer_tracking fb_tracking;
1801 
1802 	struct intel_atomic_helper {
1803 		struct llist_head free_list;
1804 		struct work_struct free_work;
1805 	} atomic_helper;
1806 
1807 	u16 orig_clock;
1808 
1809 	bool mchbar_need_disable;
1810 
1811 	struct intel_l3_parity l3_parity;
1812 
1813 	/* Cannot be determined by PCIID. You must always read a register. */
1814 	u32 edram_cap;
1815 
1816 	/*
1817 	 * Protects RPS/RC6 register access and PCU communication.
1818 	 * Must be taken after struct_mutex if nested. Note that
1819 	 * this lock may be held for long periods of time when
1820 	 * talking to hw - so only take it when talking to hw!
1821 	 */
1822 	struct mutex pcu_lock;
1823 
1824 	/* gen6+ GT PM state */
1825 	struct intel_gen6_power_mgmt gt_pm;
1826 
1827 	/* ilk-only ips/rps state. Everything in here is protected by the global
1828 	 * mchdev_lock in intel_pm.c */
1829 	struct intel_ilk_power_mgmt ips;
1830 
1831 	struct i915_power_domains power_domains;
1832 
1833 	struct i915_psr psr;
1834 
1835 	struct i915_gpu_error gpu_error;
1836 
1837 	struct drm_i915_gem_object *vlv_pctx;
1838 
1839 	/* list of fbdev register on this device */
1840 	struct intel_fbdev *fbdev;
1841 	struct work_struct fbdev_suspend_work;
1842 
1843 	struct drm_property *broadcast_rgb_property;
1844 	struct drm_property *force_audio_property;
1845 
1846 	/* hda/i915 audio component */
1847 	struct i915_audio_component *audio_component;
1848 	bool audio_component_registered;
1849 	/**
1850 	 * av_mutex - mutex for audio/video sync
1851 	 *
1852 	 */
1853 	struct mutex av_mutex;
1854 
1855 	struct {
1856 		struct list_head list;
1857 		struct llist_head free_list;
1858 		struct work_struct free_work;
1859 
1860 		/* The hw wants to have a stable context identifier for the
1861 		 * lifetime of the context (for OA, PASID, faults, etc).
1862 		 * This is limited in execlists to 21 bits.
1863 		 */
1864 		struct ida hw_ida;
1865 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1866 #define MAX_GUC_CONTEXT_HW_ID (1 << 20) /* exclusive */
1867 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */
1868 	} contexts;
1869 
1870 	u32 fdi_rx_config;
1871 
1872 	/* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1873 	u32 chv_phy_control;
1874 	/*
1875 	 * Shadows for CHV DPLL_MD regs to keep the state
1876 	 * checker somewhat working in the presence hardware
1877 	 * crappiness (can't read out DPLL_MD for pipes B & C).
1878 	 */
1879 	u32 chv_dpll_md[I915_MAX_PIPES];
1880 	u32 bxt_phy_grc;
1881 
1882 	u32 suspend_count;
1883 	bool power_domains_suspended;
1884 	struct i915_suspend_saved_registers regfile;
1885 	struct vlv_s0ix_state vlv_s0ix_state;
1886 
1887 	enum {
1888 		I915_SAGV_UNKNOWN = 0,
1889 		I915_SAGV_DISABLED,
1890 		I915_SAGV_ENABLED,
1891 		I915_SAGV_NOT_CONTROLLED
1892 	} sagv_status;
1893 
1894 	struct {
1895 		/*
1896 		 * Raw watermark latency values:
1897 		 * in 0.1us units for WM0,
1898 		 * in 0.5us units for WM1+.
1899 		 */
1900 		/* primary */
1901 		uint16_t pri_latency[5];
1902 		/* sprite */
1903 		uint16_t spr_latency[5];
1904 		/* cursor */
1905 		uint16_t cur_latency[5];
1906 		/*
1907 		 * Raw watermark memory latency values
1908 		 * for SKL for all 8 levels
1909 		 * in 1us units.
1910 		 */
1911 		uint16_t skl_latency[8];
1912 
1913 		/* current hardware state */
1914 		union {
1915 			struct ilk_wm_values hw;
1916 			struct skl_ddb_values skl_hw;
1917 			struct vlv_wm_values vlv;
1918 			struct g4x_wm_values g4x;
1919 		};
1920 
1921 		uint8_t max_level;
1922 
1923 		/*
1924 		 * Should be held around atomic WM register writing; also
1925 		 * protects * intel_crtc->wm.active and
1926 		 * cstate->wm.need_postvbl_update.
1927 		 */
1928 		struct mutex wm_mutex;
1929 
1930 		/*
1931 		 * Set during HW readout of watermarks/DDB.  Some platforms
1932 		 * need to know when we're still using BIOS-provided values
1933 		 * (which we don't fully trust).
1934 		 */
1935 		bool distrust_bios_wm;
1936 	} wm;
1937 
1938 	struct i915_runtime_pm runtime_pm;
1939 
1940 	struct {
1941 		bool initialized;
1942 
1943 		struct kobject *metrics_kobj;
1944 		struct ctl_table_header *sysctl_header;
1945 
1946 		/*
1947 		 * Lock associated with adding/modifying/removing OA configs
1948 		 * in dev_priv->perf.metrics_idr.
1949 		 */
1950 		struct mutex metrics_lock;
1951 
1952 		/*
1953 		 * List of dynamic configurations, you need to hold
1954 		 * dev_priv->perf.metrics_lock to access it.
1955 		 */
1956 		struct idr metrics_idr;
1957 
1958 		/*
1959 		 * Lock associated with anything below within this structure
1960 		 * except exclusive_stream.
1961 		 */
1962 		struct mutex lock;
1963 		struct list_head streams;
1964 
1965 		struct {
1966 			/*
1967 			 * The stream currently using the OA unit. If accessed
1968 			 * outside a syscall associated to its file
1969 			 * descriptor, you need to hold
1970 			 * dev_priv->drm.struct_mutex.
1971 			 */
1972 			struct i915_perf_stream *exclusive_stream;
1973 
1974 			struct intel_context *pinned_ctx;
1975 			u32 specific_ctx_id;
1976 			u32 specific_ctx_id_mask;
1977 
1978 			struct hrtimer poll_check_timer;
1979 			wait_queue_head_t poll_wq;
1980 			bool pollin;
1981 
1982 			/**
1983 			 * For rate limiting any notifications of spurious
1984 			 * invalid OA reports
1985 			 */
1986 			struct ratelimit_state spurious_report_rs;
1987 
1988 			bool periodic;
1989 			int period_exponent;
1990 
1991 			struct i915_oa_config test_config;
1992 
1993 			struct {
1994 				struct i915_vma *vma;
1995 				u8 *vaddr;
1996 				u32 last_ctx_id;
1997 				int format;
1998 				int format_size;
1999 
2000 				/**
2001 				 * Locks reads and writes to all head/tail state
2002 				 *
2003 				 * Consider: the head and tail pointer state
2004 				 * needs to be read consistently from a hrtimer
2005 				 * callback (atomic context) and read() fop
2006 				 * (user context) with tail pointer updates
2007 				 * happening in atomic context and head updates
2008 				 * in user context and the (unlikely)
2009 				 * possibility of read() errors needing to
2010 				 * reset all head/tail state.
2011 				 *
2012 				 * Note: Contention or performance aren't
2013 				 * currently a significant concern here
2014 				 * considering the relatively low frequency of
2015 				 * hrtimer callbacks (5ms period) and that
2016 				 * reads typically only happen in response to a
2017 				 * hrtimer event and likely complete before the
2018 				 * next callback.
2019 				 *
2020 				 * Note: This lock is not held *while* reading
2021 				 * and copying data to userspace so the value
2022 				 * of head observed in htrimer callbacks won't
2023 				 * represent any partial consumption of data.
2024 				 */
2025 				spinlock_t ptr_lock;
2026 
2027 				/**
2028 				 * One 'aging' tail pointer and one 'aged'
2029 				 * tail pointer ready to used for reading.
2030 				 *
2031 				 * Initial values of 0xffffffff are invalid
2032 				 * and imply that an update is required
2033 				 * (and should be ignored by an attempted
2034 				 * read)
2035 				 */
2036 				struct {
2037 					u32 offset;
2038 				} tails[2];
2039 
2040 				/**
2041 				 * Index for the aged tail ready to read()
2042 				 * data up to.
2043 				 */
2044 				unsigned int aged_tail_idx;
2045 
2046 				/**
2047 				 * A monotonic timestamp for when the current
2048 				 * aging tail pointer was read; used to
2049 				 * determine when it is old enough to trust.
2050 				 */
2051 				u64 aging_timestamp;
2052 
2053 				/**
2054 				 * Although we can always read back the head
2055 				 * pointer register, we prefer to avoid
2056 				 * trusting the HW state, just to avoid any
2057 				 * risk that some hardware condition could
2058 				 * somehow bump the head pointer unpredictably
2059 				 * and cause us to forward the wrong OA buffer
2060 				 * data to userspace.
2061 				 */
2062 				u32 head;
2063 			} oa_buffer;
2064 
2065 			u32 gen7_latched_oastatus1;
2066 			u32 ctx_oactxctrl_offset;
2067 			u32 ctx_flexeu0_offset;
2068 
2069 			/**
2070 			 * The RPT_ID/reason field for Gen8+ includes a bit
2071 			 * to determine if the CTX ID in the report is valid
2072 			 * but the specific bit differs between Gen 8 and 9
2073 			 */
2074 			u32 gen8_valid_ctx_bit;
2075 
2076 			struct i915_oa_ops ops;
2077 			const struct i915_oa_format *oa_formats;
2078 		} oa;
2079 	} perf;
2080 
2081 	/* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2082 	struct {
2083 		void (*resume)(struct drm_i915_private *);
2084 		void (*cleanup_engine)(struct intel_engine_cs *engine);
2085 
2086 		struct list_head timelines;
2087 
2088 		struct list_head active_rings;
2089 		struct list_head closed_vma;
2090 		u32 active_requests;
2091 		u32 request_serial;
2092 
2093 		/**
2094 		 * Is the GPU currently considered idle, or busy executing
2095 		 * userspace requests? Whilst idle, we allow runtime power
2096 		 * management to power down the hardware and display clocks.
2097 		 * In order to reduce the effect on performance, there
2098 		 * is a slight delay before we do so.
2099 		 */
2100 		bool awake;
2101 
2102 		/**
2103 		 * The number of times we have woken up.
2104 		 */
2105 		unsigned int epoch;
2106 #define I915_EPOCH_INVALID 0
2107 
2108 		/**
2109 		 * We leave the user IRQ off as much as possible,
2110 		 * but this means that requests will finish and never
2111 		 * be retired once the system goes idle. Set a timer to
2112 		 * fire periodically while the ring is running. When it
2113 		 * fires, go retire requests.
2114 		 */
2115 		struct delayed_work retire_work;
2116 
2117 		/**
2118 		 * When we detect an idle GPU, we want to turn on
2119 		 * powersaving features. So once we see that there
2120 		 * are no more requests outstanding and no more
2121 		 * arrive within a small period of time, we fire
2122 		 * off the idle_work.
2123 		 */
2124 		struct delayed_work idle_work;
2125 
2126 		ktime_t last_init_time;
2127 	} gt;
2128 
2129 	/* perform PHY state sanity checks? */
2130 	bool chv_phy_assert[2];
2131 
2132 	bool ipc_enabled;
2133 
2134 	/* Used to save the pipe-to-encoder mapping for audio */
2135 	struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2136 
2137 	/* necessary resource sharing with HDMI LPE audio driver. */
2138 	struct {
2139 		struct platform_device *platdev;
2140 		int	irq;
2141 	} lpe_audio;
2142 
2143 	struct i915_pmu pmu;
2144 
2145 	/*
2146 	 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2147 	 * will be rejected. Instead look for a better place.
2148 	 */
2149 };
2150 
2151 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2152 {
2153 	return container_of(dev, struct drm_i915_private, drm);
2154 }
2155 
2156 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2157 {
2158 	return to_i915(dev_get_drvdata(kdev));
2159 }
2160 
2161 static inline struct drm_i915_private *wopcm_to_i915(struct intel_wopcm *wopcm)
2162 {
2163 	return container_of(wopcm, struct drm_i915_private, wopcm);
2164 }
2165 
2166 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2167 {
2168 	return container_of(guc, struct drm_i915_private, guc);
2169 }
2170 
2171 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2172 {
2173 	return container_of(huc, struct drm_i915_private, huc);
2174 }
2175 
2176 /* Simple iterator over all initialised engines */
2177 #define for_each_engine(engine__, dev_priv__, id__) \
2178 	for ((id__) = 0; \
2179 	     (id__) < I915_NUM_ENGINES; \
2180 	     (id__)++) \
2181 		for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2182 
2183 /* Iterator over subset of engines selected by mask */
2184 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2185 	for ((tmp__) = (mask__) & INTEL_INFO(dev_priv__)->ring_mask; \
2186 	     (tmp__) ? \
2187 	     ((engine__) = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : \
2188 	     0;)
2189 
2190 enum hdmi_force_audio {
2191 	HDMI_AUDIO_OFF_DVI = -2,	/* no aux data for HDMI-DVI converter */
2192 	HDMI_AUDIO_OFF,			/* force turn off HDMI audio */
2193 	HDMI_AUDIO_AUTO,		/* trust EDID */
2194 	HDMI_AUDIO_ON,			/* force turn on HDMI audio */
2195 };
2196 
2197 #define I915_GTT_OFFSET_NONE ((u32)-1)
2198 
2199 /*
2200  * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2201  * considered to be the frontbuffer for the given plane interface-wise. This
2202  * doesn't mean that the hw necessarily already scans it out, but that any
2203  * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2204  *
2205  * We have one bit per pipe and per scanout plane type.
2206  */
2207 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2208 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \
2209 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \
2210 	BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \
2211 	BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \
2212 })
2213 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2214 	BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2215 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2216 	GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \
2217 		INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2218 
2219 /*
2220  * Optimised SGL iterator for GEM objects
2221  */
2222 static __always_inline struct sgt_iter {
2223 	struct scatterlist *sgp;
2224 	union {
2225 		unsigned long pfn;
2226 		dma_addr_t dma;
2227 	};
2228 	unsigned int curr;
2229 	unsigned int max;
2230 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2231 	struct sgt_iter s = { .sgp = sgl };
2232 
2233 	if (s.sgp) {
2234 		s.max = s.curr = s.sgp->offset;
2235 		s.max += s.sgp->length;
2236 		if (dma)
2237 			s.dma = sg_dma_address(s.sgp);
2238 		else
2239 			s.pfn = page_to_pfn(sg_page(s.sgp));
2240 	}
2241 
2242 	return s;
2243 }
2244 
2245 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2246 {
2247 	++sg;
2248 	if (unlikely(sg_is_chain(sg)))
2249 		sg = sg_chain_ptr(sg);
2250 	return sg;
2251 }
2252 
2253 /**
2254  * __sg_next - return the next scatterlist entry in a list
2255  * @sg:		The current sg entry
2256  *
2257  * Description:
2258  *   If the entry is the last, return NULL; otherwise, step to the next
2259  *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2260  *   otherwise just return the pointer to the current element.
2261  **/
2262 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2263 {
2264 	return sg_is_last(sg) ? NULL : ____sg_next(sg);
2265 }
2266 
2267 /**
2268  * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2269  * @__dmap:	DMA address (output)
2270  * @__iter:	'struct sgt_iter' (iterator state, internal)
2271  * @__sgt:	sg_table to iterate over (input)
2272  */
2273 #define for_each_sgt_dma(__dmap, __iter, __sgt)				\
2274 	for ((__iter) = __sgt_iter((__sgt)->sgl, true);			\
2275 	     ((__dmap) = (__iter).dma + (__iter).curr);			\
2276 	     (((__iter).curr += PAGE_SIZE) >= (__iter).max) ?		\
2277 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0)
2278 
2279 /**
2280  * for_each_sgt_page - iterate over the pages of the given sg_table
2281  * @__pp:	page pointer (output)
2282  * @__iter:	'struct sgt_iter' (iterator state, internal)
2283  * @__sgt:	sg_table to iterate over (input)
2284  */
2285 #define for_each_sgt_page(__pp, __iter, __sgt)				\
2286 	for ((__iter) = __sgt_iter((__sgt)->sgl, false);		\
2287 	     ((__pp) = (__iter).pfn == 0 ? NULL :			\
2288 	      pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2289 	     (((__iter).curr += PAGE_SIZE) >= (__iter).max) ?		\
2290 	     (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0)
2291 
2292 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg)
2293 {
2294 	unsigned int page_sizes;
2295 
2296 	page_sizes = 0;
2297 	while (sg) {
2298 		GEM_BUG_ON(sg->offset);
2299 		GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE));
2300 		page_sizes |= sg->length;
2301 		sg = __sg_next(sg);
2302 	}
2303 
2304 	return page_sizes;
2305 }
2306 
2307 static inline unsigned int i915_sg_segment_size(void)
2308 {
2309 	unsigned int size = swiotlb_max_segment();
2310 
2311 	if (size == 0)
2312 		return SCATTERLIST_MAX_SEGMENT;
2313 
2314 	size = rounddown(size, PAGE_SIZE);
2315 	/* swiotlb_max_segment_size can return 1 byte when it means one page. */
2316 	if (size < PAGE_SIZE)
2317 		size = PAGE_SIZE;
2318 
2319 	return size;
2320 }
2321 
2322 static inline const struct intel_device_info *
2323 intel_info(const struct drm_i915_private *dev_priv)
2324 {
2325 	return &dev_priv->info;
2326 }
2327 
2328 #define INTEL_INFO(dev_priv)	intel_info((dev_priv))
2329 
2330 #define INTEL_GEN(dev_priv)	((dev_priv)->info.gen)
2331 #define INTEL_DEVID(dev_priv)	((dev_priv)->info.device_id)
2332 
2333 #define REVID_FOREVER		0xff
2334 #define INTEL_REVID(dev_priv)	((dev_priv)->drm.pdev->revision)
2335 
2336 #define GEN_FOREVER (0)
2337 
2338 #define INTEL_GEN_MASK(s, e) ( \
2339 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \
2340 	BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \
2341 	GENMASK((e) != GEN_FOREVER ? (e) - 1 : BITS_PER_LONG - 1, \
2342 		(s) != GEN_FOREVER ? (s) - 1 : 0) \
2343 )
2344 
2345 /*
2346  * Returns true if Gen is in inclusive range [Start, End].
2347  *
2348  * Use GEN_FOREVER for unbound start and or end.
2349  */
2350 #define IS_GEN(dev_priv, s, e) \
2351 	(!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e))))
2352 
2353 /*
2354  * Return true if revision is in range [since,until] inclusive.
2355  *
2356  * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2357  */
2358 #define IS_REVID(p, since, until) \
2359 	(INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2360 
2361 #define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p))
2362 
2363 #define IS_I830(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I830)
2364 #define IS_I845G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I845G)
2365 #define IS_I85X(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I85X)
2366 #define IS_I865G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I865G)
2367 #define IS_I915G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915G)
2368 #define IS_I915GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I915GM)
2369 #define IS_I945G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945G)
2370 #define IS_I945GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I945GM)
2371 #define IS_I965G(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965G)
2372 #define IS_I965GM(dev_priv)	IS_PLATFORM(dev_priv, INTEL_I965GM)
2373 #define IS_G45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G45)
2374 #define IS_GM45(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GM45)
2375 #define IS_G4X(dev_priv)	(IS_G45(dev_priv) || IS_GM45(dev_priv))
2376 #define IS_PINEVIEW_G(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa001)
2377 #define IS_PINEVIEW_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa011)
2378 #define IS_PINEVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_PINEVIEW)
2379 #define IS_G33(dev_priv)	IS_PLATFORM(dev_priv, INTEL_G33)
2380 #define IS_IRONLAKE_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0046)
2381 #define IS_IVYBRIDGE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE)
2382 #define IS_IVB_GT1(dev_priv)	(IS_IVYBRIDGE(dev_priv) && \
2383 				 (dev_priv)->info.gt == 1)
2384 #define IS_VALLEYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW)
2385 #define IS_CHERRYVIEW(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW)
2386 #define IS_HASWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_HASWELL)
2387 #define IS_BROADWELL(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROADWELL)
2388 #define IS_SKYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_SKYLAKE)
2389 #define IS_BROXTON(dev_priv)	IS_PLATFORM(dev_priv, INTEL_BROXTON)
2390 #define IS_KABYLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_KABYLAKE)
2391 #define IS_GEMINILAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_GEMINILAKE)
2392 #define IS_COFFEELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_COFFEELAKE)
2393 #define IS_CANNONLAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_CANNONLAKE)
2394 #define IS_ICELAKE(dev_priv)	IS_PLATFORM(dev_priv, INTEL_ICELAKE)
2395 #define IS_MOBILE(dev_priv)	((dev_priv)->info.is_mobile)
2396 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2397 				    (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2398 #define IS_BDW_ULT(dev_priv)	(IS_BROADWELL(dev_priv) && \
2399 				 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 ||	\
2400 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xb ||	\
2401 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2402 /* ULX machines are also considered ULT. */
2403 #define IS_BDW_ULX(dev_priv)	(IS_BROADWELL(dev_priv) && \
2404 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2405 #define IS_BDW_GT3(dev_priv)	(IS_BROADWELL(dev_priv) && \
2406 				 (dev_priv)->info.gt == 3)
2407 #define IS_HSW_ULT(dev_priv)	(IS_HASWELL(dev_priv) && \
2408 				 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2409 #define IS_HSW_GT3(dev_priv)	(IS_HASWELL(dev_priv) && \
2410 				 (dev_priv)->info.gt == 3)
2411 /* ULX machines are also considered ULT. */
2412 #define IS_HSW_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0A0E || \
2413 				 INTEL_DEVID(dev_priv) == 0x0A1E)
2414 #define IS_SKL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x1906 || \
2415 				 INTEL_DEVID(dev_priv) == 0x1913 || \
2416 				 INTEL_DEVID(dev_priv) == 0x1916 || \
2417 				 INTEL_DEVID(dev_priv) == 0x1921 || \
2418 				 INTEL_DEVID(dev_priv) == 0x1926)
2419 #define IS_SKL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x190E || \
2420 				 INTEL_DEVID(dev_priv) == 0x1915 || \
2421 				 INTEL_DEVID(dev_priv) == 0x191E)
2422 #define IS_KBL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x5906 || \
2423 				 INTEL_DEVID(dev_priv) == 0x5913 || \
2424 				 INTEL_DEVID(dev_priv) == 0x5916 || \
2425 				 INTEL_DEVID(dev_priv) == 0x5921 || \
2426 				 INTEL_DEVID(dev_priv) == 0x5926)
2427 #define IS_KBL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x590E || \
2428 				 INTEL_DEVID(dev_priv) == 0x5915 || \
2429 				 INTEL_DEVID(dev_priv) == 0x591E)
2430 #define IS_SKL_GT2(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2431 				 (dev_priv)->info.gt == 2)
2432 #define IS_SKL_GT3(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2433 				 (dev_priv)->info.gt == 3)
2434 #define IS_SKL_GT4(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2435 				 (dev_priv)->info.gt == 4)
2436 #define IS_KBL_GT2(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2437 				 (dev_priv)->info.gt == 2)
2438 #define IS_KBL_GT3(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2439 				 (dev_priv)->info.gt == 3)
2440 #define IS_CFL_ULT(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2441 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2442 #define IS_CFL_GT2(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2443 				 (dev_priv)->info.gt == 2)
2444 #define IS_CFL_GT3(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2445 				 (dev_priv)->info.gt == 3)
2446 #define IS_CNL_WITH_PORT_F(dev_priv)   (IS_CANNONLAKE(dev_priv) && \
2447 					(INTEL_DEVID(dev_priv) & 0x0004) == 0x0004)
2448 
2449 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2450 
2451 #define SKL_REVID_A0		0x0
2452 #define SKL_REVID_B0		0x1
2453 #define SKL_REVID_C0		0x2
2454 #define SKL_REVID_D0		0x3
2455 #define SKL_REVID_E0		0x4
2456 #define SKL_REVID_F0		0x5
2457 #define SKL_REVID_G0		0x6
2458 #define SKL_REVID_H0		0x7
2459 
2460 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2461 
2462 #define BXT_REVID_A0		0x0
2463 #define BXT_REVID_A1		0x1
2464 #define BXT_REVID_B0		0x3
2465 #define BXT_REVID_B_LAST	0x8
2466 #define BXT_REVID_C0		0x9
2467 
2468 #define IS_BXT_REVID(dev_priv, since, until) \
2469 	(IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2470 
2471 #define KBL_REVID_A0		0x0
2472 #define KBL_REVID_B0		0x1
2473 #define KBL_REVID_C0		0x2
2474 #define KBL_REVID_D0		0x3
2475 #define KBL_REVID_E0		0x4
2476 
2477 #define IS_KBL_REVID(dev_priv, since, until) \
2478 	(IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2479 
2480 #define GLK_REVID_A0		0x0
2481 #define GLK_REVID_A1		0x1
2482 
2483 #define IS_GLK_REVID(dev_priv, since, until) \
2484 	(IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2485 
2486 #define CNL_REVID_A0		0x0
2487 #define CNL_REVID_B0		0x1
2488 #define CNL_REVID_C0		0x2
2489 
2490 #define IS_CNL_REVID(p, since, until) \
2491 	(IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2492 
2493 #define ICL_REVID_A0		0x0
2494 #define ICL_REVID_A2		0x1
2495 #define ICL_REVID_B0		0x3
2496 #define ICL_REVID_B2		0x4
2497 #define ICL_REVID_C0		0x5
2498 
2499 #define IS_ICL_REVID(p, since, until) \
2500 	(IS_ICELAKE(p) && IS_REVID(p, since, until))
2501 
2502 /*
2503  * The genX designation typically refers to the render engine, so render
2504  * capability related checks should use IS_GEN, while display and other checks
2505  * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2506  * chips, etc.).
2507  */
2508 #define IS_GEN2(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(1)))
2509 #define IS_GEN3(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(2)))
2510 #define IS_GEN4(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(3)))
2511 #define IS_GEN5(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(4)))
2512 #define IS_GEN6(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(5)))
2513 #define IS_GEN7(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(6)))
2514 #define IS_GEN8(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(7)))
2515 #define IS_GEN9(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(8)))
2516 #define IS_GEN10(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(9)))
2517 #define IS_GEN11(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(10)))
2518 
2519 #define IS_LP(dev_priv)	(INTEL_INFO(dev_priv)->is_lp)
2520 #define IS_GEN9_LP(dev_priv)	(IS_GEN9(dev_priv) && IS_LP(dev_priv))
2521 #define IS_GEN9_BC(dev_priv)	(IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2522 
2523 #define ENGINE_MASK(id)	BIT(id)
2524 #define RENDER_RING	ENGINE_MASK(RCS)
2525 #define BSD_RING	ENGINE_MASK(VCS)
2526 #define BLT_RING	ENGINE_MASK(BCS)
2527 #define VEBOX_RING	ENGINE_MASK(VECS)
2528 #define BSD2_RING	ENGINE_MASK(VCS2)
2529 #define BSD3_RING	ENGINE_MASK(VCS3)
2530 #define BSD4_RING	ENGINE_MASK(VCS4)
2531 #define VEBOX2_RING	ENGINE_MASK(VECS2)
2532 #define ALL_ENGINES	(~0)
2533 
2534 #define HAS_ENGINE(dev_priv, id) \
2535 	(!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2536 
2537 #define HAS_BSD(dev_priv)	HAS_ENGINE(dev_priv, VCS)
2538 #define HAS_BSD2(dev_priv)	HAS_ENGINE(dev_priv, VCS2)
2539 #define HAS_BLT(dev_priv)	HAS_ENGINE(dev_priv, BCS)
2540 #define HAS_VEBOX(dev_priv)	HAS_ENGINE(dev_priv, VECS)
2541 
2542 #define HAS_LEGACY_SEMAPHORES(dev_priv) IS_GEN7(dev_priv)
2543 
2544 #define HAS_LLC(dev_priv)	((dev_priv)->info.has_llc)
2545 #define HAS_SNOOP(dev_priv)	((dev_priv)->info.has_snoop)
2546 #define HAS_EDRAM(dev_priv)	(!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2547 #define HAS_WT(dev_priv)	((IS_HASWELL(dev_priv) || \
2548 				 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2549 
2550 #define HWS_NEEDS_PHYSICAL(dev_priv)	((dev_priv)->info.hws_needs_physical)
2551 
2552 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2553 		((dev_priv)->info.has_logical_ring_contexts)
2554 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \
2555 		((dev_priv)->info.has_logical_ring_elsq)
2556 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \
2557 		((dev_priv)->info.has_logical_ring_preemption)
2558 
2559 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv)
2560 
2561 #define USES_PPGTT(dev_priv)		(i915_modparams.enable_ppgtt)
2562 #define USES_FULL_PPGTT(dev_priv)	(i915_modparams.enable_ppgtt >= 2)
2563 #define USES_FULL_48BIT_PPGTT(dev_priv)	(i915_modparams.enable_ppgtt == 3)
2564 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \
2565 	GEM_BUG_ON((sizes) == 0); \
2566 	((sizes) & ~(dev_priv)->info.page_sizes) == 0; \
2567 })
2568 
2569 #define HAS_OVERLAY(dev_priv)		 ((dev_priv)->info.has_overlay)
2570 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2571 		((dev_priv)->info.overlay_needs_physical)
2572 
2573 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2574 #define HAS_BROKEN_CS_TLB(dev_priv)	(IS_I830(dev_priv) || IS_I845G(dev_priv))
2575 
2576 /* WaRsDisableCoarsePowerGating:skl,cnl */
2577 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2578 	(IS_CANNONLAKE(dev_priv) || \
2579 	 IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
2580 
2581 /*
2582  * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2583  * even when in MSI mode. This results in spurious interrupt warnings if the
2584  * legacy irq no. is shared with another device. The kernel then disables that
2585  * interrupt source and so prevents the other device from working properly.
2586  *
2587  * Since we don't enable MSI anymore on gen4, we can always use GMBUS/AUX
2588  * interrupts.
2589  */
2590 #define HAS_AUX_IRQ(dev_priv)   true
2591 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
2592 
2593 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2594  * rows, which changed the alignment requirements and fence programming.
2595  */
2596 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
2597 					 !(IS_I915G(dev_priv) || \
2598 					 IS_I915GM(dev_priv)))
2599 #define SUPPORTS_TV(dev_priv)		((dev_priv)->info.supports_tv)
2600 #define I915_HAS_HOTPLUG(dev_priv)	((dev_priv)->info.has_hotplug)
2601 
2602 #define HAS_FW_BLC(dev_priv) 	(INTEL_GEN(dev_priv) > 2)
2603 #define HAS_FBC(dev_priv)	((dev_priv)->info.has_fbc)
2604 #define HAS_CUR_FBC(dev_priv)	(!HAS_GMCH_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 7)
2605 
2606 #define HAS_IPS(dev_priv)	(IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2607 
2608 #define HAS_DP_MST(dev_priv)	((dev_priv)->info.has_dp_mst)
2609 
2610 #define HAS_DDI(dev_priv)		 ((dev_priv)->info.has_ddi)
2611 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
2612 #define HAS_PSR(dev_priv)		 ((dev_priv)->info.has_psr)
2613 
2614 #define HAS_RC6(dev_priv)		 ((dev_priv)->info.has_rc6)
2615 #define HAS_RC6p(dev_priv)		 ((dev_priv)->info.has_rc6p)
2616 #define HAS_RC6pp(dev_priv)		 (false) /* HW was never validated */
2617 
2618 #define HAS_CSR(dev_priv)	((dev_priv)->info.has_csr)
2619 
2620 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
2621 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
2622 
2623 #define HAS_IPC(dev_priv)		 ((dev_priv)->info.has_ipc)
2624 
2625 /*
2626  * For now, anything with a GuC requires uCode loading, and then supports
2627  * command submission once loaded. But these are logically independent
2628  * properties, so we have separate macros to test them.
2629  */
2630 #define HAS_GUC(dev_priv)	((dev_priv)->info.has_guc)
2631 #define HAS_GUC_CT(dev_priv)	((dev_priv)->info.has_guc_ct)
2632 #define HAS_GUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2633 #define HAS_GUC_SCHED(dev_priv)	(HAS_GUC(dev_priv))
2634 
2635 /* For now, anything with a GuC has also HuC */
2636 #define HAS_HUC(dev_priv)	(HAS_GUC(dev_priv))
2637 #define HAS_HUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
2638 
2639 /* Having a GuC is not the same as using a GuC */
2640 #define USES_GUC(dev_priv)		intel_uc_is_using_guc()
2641 #define USES_GUC_SUBMISSION(dev_priv)	intel_uc_is_using_guc_submission()
2642 #define USES_HUC(dev_priv)		intel_uc_is_using_huc()
2643 
2644 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
2645 
2646 #define HAS_POOLED_EU(dev_priv)	((dev_priv)->info.has_pooled_eu)
2647 
2648 #define INTEL_PCH_DEVICE_ID_MASK		0xff80
2649 #define INTEL_PCH_IBX_DEVICE_ID_TYPE		0x3b00
2650 #define INTEL_PCH_CPT_DEVICE_ID_TYPE		0x1c00
2651 #define INTEL_PCH_PPT_DEVICE_ID_TYPE		0x1e00
2652 #define INTEL_PCH_LPT_DEVICE_ID_TYPE		0x8c00
2653 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE		0x9c00
2654 #define INTEL_PCH_WPT_DEVICE_ID_TYPE		0x8c80
2655 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE		0x9c80
2656 #define INTEL_PCH_SPT_DEVICE_ID_TYPE		0xA100
2657 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE		0x9D00
2658 #define INTEL_PCH_KBP_DEVICE_ID_TYPE		0xA280
2659 #define INTEL_PCH_CNP_DEVICE_ID_TYPE		0xA300
2660 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE		0x9D80
2661 #define INTEL_PCH_ICP_DEVICE_ID_TYPE		0x3480
2662 #define INTEL_PCH_P2X_DEVICE_ID_TYPE		0x7100
2663 #define INTEL_PCH_P3X_DEVICE_ID_TYPE		0x7000
2664 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE		0x2900 /* qemu q35 has 2918 */
2665 
2666 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
2667 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id)
2668 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP)
2669 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
2670 #define HAS_PCH_CNP_LP(dev_priv) \
2671 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
2672 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
2673 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
2674 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
2675 #define HAS_PCH_LPT_LP(dev_priv) \
2676 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
2677 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
2678 #define HAS_PCH_LPT_H(dev_priv) \
2679 	(INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
2680 	 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE)
2681 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
2682 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
2683 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
2684 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
2685 
2686 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
2687 
2688 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
2689 
2690 /* DPF == dynamic parity feature */
2691 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
2692 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
2693 				 2 : HAS_L3_DPF(dev_priv))
2694 
2695 #define GT_FREQUENCY_MULTIPLIER 50
2696 #define GEN9_FREQ_SCALER 3
2697 
2698 #include "i915_trace.h"
2699 
2700 static inline bool intel_vtd_active(void)
2701 {
2702 #ifdef CONFIG_INTEL_IOMMU
2703 	if (intel_iommu_gfx_mapped)
2704 		return true;
2705 #endif
2706 	return false;
2707 }
2708 
2709 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2710 {
2711 	return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
2712 }
2713 
2714 static inline bool
2715 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
2716 {
2717 	return IS_BROXTON(dev_priv) && intel_vtd_active();
2718 }
2719 
2720 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2721 				int enable_ppgtt);
2722 
2723 /* i915_drv.c */
2724 void __printf(3, 4)
2725 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2726 	      const char *fmt, ...);
2727 
2728 #define i915_report_error(dev_priv, fmt, ...)				   \
2729 	__i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2730 
2731 #ifdef CONFIG_COMPAT
2732 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2733 			      unsigned long arg);
2734 #else
2735 #define i915_compat_ioctl NULL
2736 #endif
2737 extern const struct dev_pm_ops i915_pm_ops;
2738 
2739 extern int i915_driver_load(struct pci_dev *pdev,
2740 			    const struct pci_device_id *ent);
2741 extern void i915_driver_unload(struct drm_device *dev);
2742 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2743 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2744 
2745 extern void i915_reset(struct drm_i915_private *i915,
2746 		       unsigned int stalled_mask,
2747 		       const char *reason);
2748 extern int i915_reset_engine(struct intel_engine_cs *engine,
2749 			     const char *reason);
2750 
2751 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
2752 extern int intel_reset_guc(struct drm_i915_private *dev_priv);
2753 extern int intel_guc_reset_engine(struct intel_guc *guc,
2754 				  struct intel_engine_cs *engine);
2755 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2756 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
2757 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2758 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2759 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2760 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2761 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2762 
2763 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
2764 int intel_engines_init(struct drm_i915_private *dev_priv);
2765 
2766 u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv);
2767 
2768 /* intel_hotplug.c */
2769 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2770 			   u32 pin_mask, u32 long_mask);
2771 void intel_hpd_init(struct drm_i915_private *dev_priv);
2772 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2773 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2774 enum port intel_hpd_pin_to_port(struct drm_i915_private *dev_priv,
2775 				enum hpd_pin pin);
2776 enum hpd_pin intel_hpd_pin_default(struct drm_i915_private *dev_priv,
2777 				   enum port port);
2778 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2779 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2780 
2781 /* i915_irq.c */
2782 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2783 {
2784 	unsigned long delay;
2785 
2786 	if (unlikely(!i915_modparams.enable_hangcheck))
2787 		return;
2788 
2789 	/* Don't continually defer the hangcheck so that it is always run at
2790 	 * least once after work has been scheduled on any ring. Otherwise,
2791 	 * we will ignore a hung ring if a second ring is kept busy.
2792 	 */
2793 
2794 	delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2795 	queue_delayed_work(system_long_wq,
2796 			   &dev_priv->gpu_error.hangcheck_work, delay);
2797 }
2798 
2799 __printf(4, 5)
2800 void i915_handle_error(struct drm_i915_private *dev_priv,
2801 		       u32 engine_mask,
2802 		       unsigned long flags,
2803 		       const char *fmt, ...);
2804 #define I915_ERROR_CAPTURE BIT(0)
2805 
2806 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2807 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
2808 int intel_irq_install(struct drm_i915_private *dev_priv);
2809 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2810 
2811 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
2812 {
2813 	return dev_priv->gvt;
2814 }
2815 
2816 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
2817 {
2818 	return dev_priv->vgpu.active;
2819 }
2820 
2821 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
2822 			      enum pipe pipe);
2823 void
2824 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2825 		     u32 status_mask);
2826 
2827 void
2828 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2829 		      u32 status_mask);
2830 
2831 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2832 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2833 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
2834 				   uint32_t mask,
2835 				   uint32_t bits);
2836 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
2837 			    uint32_t interrupt_mask,
2838 			    uint32_t enabled_irq_mask);
2839 static inline void
2840 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2841 {
2842 	ilk_update_display_irq(dev_priv, bits, bits);
2843 }
2844 static inline void
2845 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2846 {
2847 	ilk_update_display_irq(dev_priv, bits, 0);
2848 }
2849 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
2850 			 enum pipe pipe,
2851 			 uint32_t interrupt_mask,
2852 			 uint32_t enabled_irq_mask);
2853 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
2854 				       enum pipe pipe, uint32_t bits)
2855 {
2856 	bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
2857 }
2858 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
2859 					enum pipe pipe, uint32_t bits)
2860 {
2861 	bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
2862 }
2863 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
2864 				  uint32_t interrupt_mask,
2865 				  uint32_t enabled_irq_mask);
2866 static inline void
2867 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2868 {
2869 	ibx_display_interrupt_update(dev_priv, bits, bits);
2870 }
2871 static inline void
2872 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2873 {
2874 	ibx_display_interrupt_update(dev_priv, bits, 0);
2875 }
2876 
2877 /* i915_gem.c */
2878 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
2879 			  struct drm_file *file_priv);
2880 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
2881 			 struct drm_file *file_priv);
2882 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
2883 			  struct drm_file *file_priv);
2884 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
2885 			struct drm_file *file_priv);
2886 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2887 			struct drm_file *file_priv);
2888 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
2889 			      struct drm_file *file_priv);
2890 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
2891 			     struct drm_file *file_priv);
2892 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2893 			      struct drm_file *file_priv);
2894 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2895 			       struct drm_file *file_priv);
2896 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2897 			struct drm_file *file_priv);
2898 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2899 			       struct drm_file *file);
2900 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2901 			       struct drm_file *file);
2902 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2903 			    struct drm_file *file_priv);
2904 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
2905 			   struct drm_file *file_priv);
2906 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
2907 			      struct drm_file *file_priv);
2908 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
2909 			      struct drm_file *file_priv);
2910 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
2911 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
2912 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
2913 			   struct drm_file *file);
2914 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
2915 				struct drm_file *file_priv);
2916 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
2917 			struct drm_file *file_priv);
2918 void i915_gem_sanitize(struct drm_i915_private *i915);
2919 int i915_gem_init_early(struct drm_i915_private *dev_priv);
2920 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv);
2921 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
2922 int i915_gem_freeze(struct drm_i915_private *dev_priv);
2923 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
2924 
2925 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
2926 void i915_gem_object_free(struct drm_i915_gem_object *obj);
2927 void i915_gem_object_init(struct drm_i915_gem_object *obj,
2928 			 const struct drm_i915_gem_object_ops *ops);
2929 struct drm_i915_gem_object *
2930 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
2931 struct drm_i915_gem_object *
2932 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
2933 				 const void *data, size_t size);
2934 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
2935 void i915_gem_free_object(struct drm_gem_object *obj);
2936 
2937 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
2938 {
2939 	if (!atomic_read(&i915->mm.free_count))
2940 		return;
2941 
2942 	/* A single pass should suffice to release all the freed objects (along
2943 	 * most call paths) , but be a little more paranoid in that freeing
2944 	 * the objects does take a little amount of time, during which the rcu
2945 	 * callbacks could have added new objects into the freed list, and
2946 	 * armed the work again.
2947 	 */
2948 	do {
2949 		rcu_barrier();
2950 	} while (flush_work(&i915->mm.free_work));
2951 }
2952 
2953 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
2954 {
2955 	/*
2956 	 * Similar to objects above (see i915_gem_drain_freed-objects), in
2957 	 * general we have workers that are armed by RCU and then rearm
2958 	 * themselves in their callbacks. To be paranoid, we need to
2959 	 * drain the workqueue a second time after waiting for the RCU
2960 	 * grace period so that we catch work queued via RCU from the first
2961 	 * pass. As neither drain_workqueue() nor flush_workqueue() report
2962 	 * a result, we make an assumption that we only don't require more
2963 	 * than 2 passes to catch all recursive RCU delayed work.
2964 	 *
2965 	 */
2966 	int pass = 2;
2967 	do {
2968 		rcu_barrier();
2969 		drain_workqueue(i915->wq);
2970 	} while (--pass);
2971 }
2972 
2973 struct i915_vma * __must_check
2974 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
2975 			 const struct i915_ggtt_view *view,
2976 			 u64 size,
2977 			 u64 alignment,
2978 			 u64 flags);
2979 
2980 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
2981 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
2982 
2983 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
2984 
2985 static inline int __sg_page_count(const struct scatterlist *sg)
2986 {
2987 	return sg->length >> PAGE_SHIFT;
2988 }
2989 
2990 struct scatterlist *
2991 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
2992 		       unsigned int n, unsigned int *offset);
2993 
2994 struct page *
2995 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
2996 			 unsigned int n);
2997 
2998 struct page *
2999 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3000 			       unsigned int n);
3001 
3002 dma_addr_t
3003 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3004 				unsigned long n);
3005 
3006 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3007 				 struct sg_table *pages,
3008 				 unsigned int sg_page_sizes);
3009 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3010 
3011 static inline int __must_check
3012 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3013 {
3014 	might_lock(&obj->mm.lock);
3015 
3016 	if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3017 		return 0;
3018 
3019 	return __i915_gem_object_get_pages(obj);
3020 }
3021 
3022 static inline bool
3023 i915_gem_object_has_pages(struct drm_i915_gem_object *obj)
3024 {
3025 	return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages));
3026 }
3027 
3028 static inline void
3029 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3030 {
3031 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3032 
3033 	atomic_inc(&obj->mm.pages_pin_count);
3034 }
3035 
3036 static inline bool
3037 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3038 {
3039 	return atomic_read(&obj->mm.pages_pin_count);
3040 }
3041 
3042 static inline void
3043 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3044 {
3045 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3046 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3047 
3048 	atomic_dec(&obj->mm.pages_pin_count);
3049 }
3050 
3051 static inline void
3052 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3053 {
3054 	__i915_gem_object_unpin_pages(obj);
3055 }
3056 
3057 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3058 	I915_MM_NORMAL = 0,
3059 	I915_MM_SHRINKER
3060 };
3061 
3062 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3063 				 enum i915_mm_subclass subclass);
3064 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3065 
3066 enum i915_map_type {
3067 	I915_MAP_WB = 0,
3068 	I915_MAP_WC,
3069 #define I915_MAP_OVERRIDE BIT(31)
3070 	I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3071 	I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3072 };
3073 
3074 /**
3075  * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3076  * @obj: the object to map into kernel address space
3077  * @type: the type of mapping, used to select pgprot_t
3078  *
3079  * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3080  * pages and then returns a contiguous mapping of the backing storage into
3081  * the kernel address space. Based on the @type of mapping, the PTE will be
3082  * set to either WriteBack or WriteCombine (via pgprot_t).
3083  *
3084  * The caller is responsible for calling i915_gem_object_unpin_map() when the
3085  * mapping is no longer required.
3086  *
3087  * Returns the pointer through which to access the mapped object, or an
3088  * ERR_PTR() on error.
3089  */
3090 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3091 					   enum i915_map_type type);
3092 
3093 /**
3094  * i915_gem_object_unpin_map - releases an earlier mapping
3095  * @obj: the object to unmap
3096  *
3097  * After pinning the object and mapping its pages, once you are finished
3098  * with your access, call i915_gem_object_unpin_map() to release the pin
3099  * upon the mapping. Once the pin count reaches zero, that mapping may be
3100  * removed.
3101  */
3102 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3103 {
3104 	i915_gem_object_unpin_pages(obj);
3105 }
3106 
3107 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3108 				    unsigned int *needs_clflush);
3109 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3110 				     unsigned int *needs_clflush);
3111 #define CLFLUSH_BEFORE	BIT(0)
3112 #define CLFLUSH_AFTER	BIT(1)
3113 #define CLFLUSH_FLAGS	(CLFLUSH_BEFORE | CLFLUSH_AFTER)
3114 
3115 static inline void
3116 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3117 {
3118 	i915_gem_object_unpin_pages(obj);
3119 }
3120 
3121 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3122 void i915_vma_move_to_active(struct i915_vma *vma,
3123 			     struct i915_request *rq,
3124 			     unsigned int flags);
3125 int i915_gem_dumb_create(struct drm_file *file_priv,
3126 			 struct drm_device *dev,
3127 			 struct drm_mode_create_dumb *args);
3128 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3129 		      uint32_t handle, uint64_t *offset);
3130 int i915_gem_mmap_gtt_version(void);
3131 
3132 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3133 		       struct drm_i915_gem_object *new,
3134 		       unsigned frontbuffer_bits);
3135 
3136 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3137 
3138 struct i915_request *
3139 i915_gem_find_active_request(struct intel_engine_cs *engine);
3140 
3141 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3142 {
3143 	return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3144 }
3145 
3146 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3147 {
3148 	return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3149 }
3150 
3151 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3152 {
3153 	return unlikely(test_bit(I915_WEDGED, &error->flags));
3154 }
3155 
3156 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3157 {
3158 	return i915_reset_backoff(error) | i915_terminally_wedged(error);
3159 }
3160 
3161 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3162 {
3163 	return READ_ONCE(error->reset_count);
3164 }
3165 
3166 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3167 					  struct intel_engine_cs *engine)
3168 {
3169 	return READ_ONCE(error->reset_engine_count[engine->id]);
3170 }
3171 
3172 struct i915_request *
3173 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3174 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3175 void i915_gem_reset(struct drm_i915_private *dev_priv,
3176 		    unsigned int stalled_mask);
3177 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3178 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3179 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3180 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3181 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3182 			   struct i915_request *request,
3183 			   bool stalled);
3184 
3185 void i915_gem_init_mmio(struct drm_i915_private *i915);
3186 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3187 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3188 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3189 void i915_gem_fini(struct drm_i915_private *dev_priv);
3190 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3191 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3192 			   unsigned int flags);
3193 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3194 void i915_gem_suspend_late(struct drm_i915_private *dev_priv);
3195 void i915_gem_resume(struct drm_i915_private *dev_priv);
3196 vm_fault_t i915_gem_fault(struct vm_fault *vmf);
3197 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3198 			 unsigned int flags,
3199 			 long timeout,
3200 			 struct intel_rps_client *rps);
3201 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3202 				  unsigned int flags,
3203 				  const struct i915_sched_attr *attr);
3204 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3205 
3206 int __must_check
3207 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3208 int __must_check
3209 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3210 int __must_check
3211 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3212 struct i915_vma * __must_check
3213 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3214 				     u32 alignment,
3215 				     const struct i915_ggtt_view *view,
3216 				     unsigned int flags);
3217 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3218 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3219 				int align);
3220 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3221 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3222 
3223 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3224 				    enum i915_cache_level cache_level);
3225 
3226 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3227 				struct dma_buf *dma_buf);
3228 
3229 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3230 				struct drm_gem_object *gem_obj, int flags);
3231 
3232 static inline struct i915_hw_ppgtt *
3233 i915_vm_to_ppgtt(struct i915_address_space *vm)
3234 {
3235 	return container_of(vm, struct i915_hw_ppgtt, vm);
3236 }
3237 
3238 /* i915_gem_fence_reg.c */
3239 struct drm_i915_fence_reg *
3240 i915_reserve_fence(struct drm_i915_private *dev_priv);
3241 void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3242 
3243 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3244 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3245 
3246 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3247 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3248 				       struct sg_table *pages);
3249 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3250 					 struct sg_table *pages);
3251 
3252 static inline struct i915_gem_context *
3253 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3254 {
3255 	return idr_find(&file_priv->context_idr, id);
3256 }
3257 
3258 static inline struct i915_gem_context *
3259 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3260 {
3261 	struct i915_gem_context *ctx;
3262 
3263 	rcu_read_lock();
3264 	ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3265 	if (ctx && !kref_get_unless_zero(&ctx->ref))
3266 		ctx = NULL;
3267 	rcu_read_unlock();
3268 
3269 	return ctx;
3270 }
3271 
3272 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3273 			 struct drm_file *file);
3274 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3275 			       struct drm_file *file);
3276 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3277 				  struct drm_file *file);
3278 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3279 			    struct i915_gem_context *ctx,
3280 			    uint32_t *reg_state);
3281 
3282 /* i915_gem_evict.c */
3283 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3284 					  u64 min_size, u64 alignment,
3285 					  unsigned cache_level,
3286 					  u64 start, u64 end,
3287 					  unsigned flags);
3288 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3289 					 struct drm_mm_node *node,
3290 					 unsigned int flags);
3291 int i915_gem_evict_vm(struct i915_address_space *vm);
3292 
3293 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv);
3294 
3295 /* belongs in i915_gem_gtt.h */
3296 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3297 {
3298 	wmb();
3299 	if (INTEL_GEN(dev_priv) < 6)
3300 		intel_gtt_chipset_flush();
3301 }
3302 
3303 /* i915_gem_stolen.c */
3304 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3305 				struct drm_mm_node *node, u64 size,
3306 				unsigned alignment);
3307 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3308 					 struct drm_mm_node *node, u64 size,
3309 					 unsigned alignment, u64 start,
3310 					 u64 end);
3311 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3312 				 struct drm_mm_node *node);
3313 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3314 void i915_gem_cleanup_stolen(struct drm_device *dev);
3315 struct drm_i915_gem_object *
3316 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv,
3317 			      resource_size_t size);
3318 struct drm_i915_gem_object *
3319 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3320 					       resource_size_t stolen_offset,
3321 					       resource_size_t gtt_offset,
3322 					       resource_size_t size);
3323 
3324 /* i915_gem_internal.c */
3325 struct drm_i915_gem_object *
3326 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3327 				phys_addr_t size);
3328 
3329 /* i915_gem_shrinker.c */
3330 unsigned long i915_gem_shrink(struct drm_i915_private *i915,
3331 			      unsigned long target,
3332 			      unsigned long *nr_scanned,
3333 			      unsigned flags);
3334 #define I915_SHRINK_PURGEABLE 0x1
3335 #define I915_SHRINK_UNBOUND 0x2
3336 #define I915_SHRINK_BOUND 0x4
3337 #define I915_SHRINK_ACTIVE 0x8
3338 #define I915_SHRINK_VMAPS 0x10
3339 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915);
3340 void i915_gem_shrinker_register(struct drm_i915_private *i915);
3341 void i915_gem_shrinker_unregister(struct drm_i915_private *i915);
3342 
3343 
3344 /* i915_gem_tiling.c */
3345 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3346 {
3347 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3348 
3349 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3350 		i915_gem_object_is_tiled(obj);
3351 }
3352 
3353 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3354 			unsigned int tiling, unsigned int stride);
3355 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3356 			     unsigned int tiling, unsigned int stride);
3357 
3358 /* i915_debugfs.c */
3359 #ifdef CONFIG_DEBUG_FS
3360 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3361 int i915_debugfs_connector_add(struct drm_connector *connector);
3362 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3363 #else
3364 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3365 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3366 { return 0; }
3367 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3368 #endif
3369 
3370 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3371 
3372 /* i915_cmd_parser.c */
3373 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3374 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3375 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3376 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3377 			    struct drm_i915_gem_object *batch_obj,
3378 			    struct drm_i915_gem_object *shadow_batch_obj,
3379 			    u32 batch_start_offset,
3380 			    u32 batch_len,
3381 			    bool is_master);
3382 
3383 /* i915_perf.c */
3384 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3385 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3386 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3387 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3388 
3389 /* i915_suspend.c */
3390 extern int i915_save_state(struct drm_i915_private *dev_priv);
3391 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3392 
3393 /* i915_sysfs.c */
3394 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3395 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3396 
3397 /* intel_lpe_audio.c */
3398 int  intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3399 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3400 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3401 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3402 			    enum pipe pipe, enum port port,
3403 			    const void *eld, int ls_clock, bool dp_output);
3404 
3405 /* intel_i2c.c */
3406 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3407 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3408 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3409 				     unsigned int pin);
3410 extern int intel_gmbus_output_aksv(struct i2c_adapter *adapter);
3411 
3412 extern struct i2c_adapter *
3413 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3414 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3415 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3416 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3417 {
3418 	return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3419 }
3420 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3421 
3422 /* intel_bios.c */
3423 void intel_bios_init(struct drm_i915_private *dev_priv);
3424 void intel_bios_cleanup(struct drm_i915_private *dev_priv);
3425 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3426 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3427 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3428 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3429 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3430 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3431 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3432 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3433 				     enum port port);
3434 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3435 				enum port port);
3436 
3437 /* intel_acpi.c */
3438 #ifdef CONFIG_ACPI
3439 extern void intel_register_dsm_handler(void);
3440 extern void intel_unregister_dsm_handler(void);
3441 #else
3442 static inline void intel_register_dsm_handler(void) { return; }
3443 static inline void intel_unregister_dsm_handler(void) { return; }
3444 #endif /* CONFIG_ACPI */
3445 
3446 /* intel_device_info.c */
3447 static inline struct intel_device_info *
3448 mkwrite_device_info(struct drm_i915_private *dev_priv)
3449 {
3450 	return (struct intel_device_info *)&dev_priv->info;
3451 }
3452 
3453 /* modesetting */
3454 extern void intel_modeset_init_hw(struct drm_device *dev);
3455 extern int intel_modeset_init(struct drm_device *dev);
3456 extern void intel_modeset_cleanup(struct drm_device *dev);
3457 extern int intel_connector_register(struct drm_connector *);
3458 extern void intel_connector_unregister(struct drm_connector *);
3459 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3460 				       bool state);
3461 extern void intel_display_resume(struct drm_device *dev);
3462 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3463 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3464 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3465 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3466 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3467 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3468 				  bool enable);
3469 
3470 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3471 			struct drm_file *file);
3472 
3473 /* overlay */
3474 extern struct intel_overlay_error_state *
3475 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3476 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3477 					    struct intel_overlay_error_state *error);
3478 
3479 extern struct intel_display_error_state *
3480 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3481 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3482 					    struct intel_display_error_state *error);
3483 
3484 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3485 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox,
3486 				    u32 val, int fast_timeout_us,
3487 				    int slow_timeout_ms);
3488 #define sandybridge_pcode_write(dev_priv, mbox, val)	\
3489 	sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500, 0)
3490 
3491 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3492 		      u32 reply_mask, u32 reply, int timeout_base_ms);
3493 
3494 /* intel_sideband.c */
3495 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3496 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3497 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3498 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3499 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3500 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3501 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3502 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3503 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3504 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3505 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3506 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3507 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3508 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3509 		   enum intel_sbi_destination destination);
3510 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3511 		     enum intel_sbi_destination destination);
3512 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3513 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3514 
3515 /* intel_dpio_phy.c */
3516 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3517 			     enum dpio_phy *phy, enum dpio_channel *ch);
3518 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3519 				  enum port port, u32 margin, u32 scale,
3520 				  u32 enable, u32 deemphasis);
3521 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3522 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3523 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3524 			    enum dpio_phy phy);
3525 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3526 			      enum dpio_phy phy);
3527 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count);
3528 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3529 				     uint8_t lane_lat_optim_mask);
3530 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3531 
3532 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3533 			      u32 deemph_reg_value, u32 margin_reg_value,
3534 			      bool uniq_trans_scale);
3535 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3536 			      const struct intel_crtc_state *crtc_state,
3537 			      bool reset);
3538 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
3539 			    const struct intel_crtc_state *crtc_state);
3540 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3541 				const struct intel_crtc_state *crtc_state);
3542 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3543 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
3544 			      const struct intel_crtc_state *old_crtc_state);
3545 
3546 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3547 			      u32 demph_reg_value, u32 preemph_reg_value,
3548 			      u32 uniqtranscale_reg_value, u32 tx3_demph);
3549 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
3550 			    const struct intel_crtc_state *crtc_state);
3551 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3552 				const struct intel_crtc_state *crtc_state);
3553 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
3554 			 const struct intel_crtc_state *old_crtc_state);
3555 
3556 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3557 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3558 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
3559 			   const i915_reg_t reg);
3560 
3561 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1);
3562 
3563 static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
3564 					 const i915_reg_t reg)
3565 {
3566 	return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000);
3567 }
3568 
3569 #define I915_READ8(reg)		dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3570 #define I915_WRITE8(reg, val)	dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3571 
3572 #define I915_READ16(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3573 #define I915_WRITE16(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3574 #define I915_READ16_NOTRACE(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3575 #define I915_WRITE16_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3576 
3577 #define I915_READ(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3578 #define I915_WRITE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3579 #define I915_READ_NOTRACE(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3580 #define I915_WRITE_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3581 
3582 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3583  * will be implemented using 2 32-bit writes in an arbitrary order with
3584  * an arbitrary delay between them. This can cause the hardware to
3585  * act upon the intermediate value, possibly leading to corruption and
3586  * machine death. For this reason we do not support I915_WRITE64, or
3587  * dev_priv->uncore.funcs.mmio_writeq.
3588  *
3589  * When reading a 64-bit value as two 32-bit values, the delay may cause
3590  * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3591  * occasionally a 64-bit register does not actualy support a full readq
3592  * and must be read using two 32-bit reads.
3593  *
3594  * You have been warned.
3595  */
3596 #define I915_READ64(reg)	dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3597 
3598 #define I915_READ64_2x32(lower_reg, upper_reg) ({			\
3599 	u32 upper, lower, old_upper, loop = 0;				\
3600 	upper = I915_READ(upper_reg);					\
3601 	do {								\
3602 		old_upper = upper;					\
3603 		lower = I915_READ(lower_reg);				\
3604 		upper = I915_READ(upper_reg);				\
3605 	} while (upper != old_upper && loop++ < 2);			\
3606 	(u64)upper << 32 | lower; })
3607 
3608 #define POSTING_READ(reg)	(void)I915_READ_NOTRACE(reg)
3609 #define POSTING_READ16(reg)	(void)I915_READ16_NOTRACE(reg)
3610 
3611 #define __raw_read(x, s) \
3612 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
3613 					     i915_reg_t reg) \
3614 { \
3615 	return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3616 }
3617 
3618 #define __raw_write(x, s) \
3619 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
3620 				       i915_reg_t reg, uint##x##_t val) \
3621 { \
3622 	write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3623 }
3624 __raw_read(8, b)
3625 __raw_read(16, w)
3626 __raw_read(32, l)
3627 __raw_read(64, q)
3628 
3629 __raw_write(8, b)
3630 __raw_write(16, w)
3631 __raw_write(32, l)
3632 __raw_write(64, q)
3633 
3634 #undef __raw_read
3635 #undef __raw_write
3636 
3637 /* These are untraced mmio-accessors that are only valid to be used inside
3638  * critical sections, such as inside IRQ handlers, where forcewake is explicitly
3639  * controlled.
3640  *
3641  * Think twice, and think again, before using these.
3642  *
3643  * As an example, these accessors can possibly be used between:
3644  *
3645  * spin_lock_irq(&dev_priv->uncore.lock);
3646  * intel_uncore_forcewake_get__locked();
3647  *
3648  * and
3649  *
3650  * intel_uncore_forcewake_put__locked();
3651  * spin_unlock_irq(&dev_priv->uncore.lock);
3652  *
3653  *
3654  * Note: some registers may not need forcewake held, so
3655  * intel_uncore_forcewake_{get,put} can be omitted, see
3656  * intel_uncore_forcewake_for_reg().
3657  *
3658  * Certain architectures will die if the same cacheline is concurrently accessed
3659  * by different clients (e.g. on Ivybridge). Access to registers should
3660  * therefore generally be serialised, by either the dev_priv->uncore.lock or
3661  * a more localised lock guarding all access to that bank of registers.
3662  */
3663 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3664 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3665 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3666 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3667 
3668 /* "Broadcast RGB" property */
3669 #define INTEL_BROADCAST_RGB_AUTO 0
3670 #define INTEL_BROADCAST_RGB_FULL 1
3671 #define INTEL_BROADCAST_RGB_LIMITED 2
3672 
3673 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
3674 {
3675 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3676 		return VLV_VGACNTRL;
3677 	else if (INTEL_GEN(dev_priv) >= 5)
3678 		return CPU_VGACNTRL;
3679 	else
3680 		return VGACNTRL;
3681 }
3682 
3683 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3684 {
3685 	unsigned long j = msecs_to_jiffies(m);
3686 
3687 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3688 }
3689 
3690 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3691 {
3692 	/* nsecs_to_jiffies64() does not guard against overflow */
3693 	if (NSEC_PER_SEC % HZ &&
3694 	    div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
3695 		return MAX_JIFFY_OFFSET;
3696 
3697         return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3698 }
3699 
3700 /*
3701  * If you need to wait X milliseconds between events A and B, but event B
3702  * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3703  * when event A happened, then just before event B you call this function and
3704  * pass the timestamp as the first argument, and X as the second argument.
3705  */
3706 static inline void
3707 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3708 {
3709 	unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3710 
3711 	/*
3712 	 * Don't re-read the value of "jiffies" every time since it may change
3713 	 * behind our back and break the math.
3714 	 */
3715 	tmp_jiffies = jiffies;
3716 	target_jiffies = timestamp_jiffies +
3717 			 msecs_to_jiffies_timeout(to_wait_ms);
3718 
3719 	if (time_after(target_jiffies, tmp_jiffies)) {
3720 		remaining_jiffies = target_jiffies - tmp_jiffies;
3721 		while (remaining_jiffies)
3722 			remaining_jiffies =
3723 			    schedule_timeout_uninterruptible(remaining_jiffies);
3724 	}
3725 }
3726 
3727 static inline bool
3728 __i915_request_irq_complete(const struct i915_request *rq)
3729 {
3730 	struct intel_engine_cs *engine = rq->engine;
3731 	u32 seqno;
3732 
3733 	/* Note that the engine may have wrapped around the seqno, and
3734 	 * so our request->global_seqno will be ahead of the hardware,
3735 	 * even though it completed the request before wrapping. We catch
3736 	 * this by kicking all the waiters before resetting the seqno
3737 	 * in hardware, and also signal the fence.
3738 	 */
3739 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
3740 		return true;
3741 
3742 	/* The request was dequeued before we were awoken. We check after
3743 	 * inspecting the hw to confirm that this was the same request
3744 	 * that generated the HWS update. The memory barriers within
3745 	 * the request execution are sufficient to ensure that a check
3746 	 * after reading the value from hw matches this request.
3747 	 */
3748 	seqno = i915_request_global_seqno(rq);
3749 	if (!seqno)
3750 		return false;
3751 
3752 	/* Before we do the heavier coherent read of the seqno,
3753 	 * check the value (hopefully) in the CPU cacheline.
3754 	 */
3755 	if (__i915_request_completed(rq, seqno))
3756 		return true;
3757 
3758 	/* Ensure our read of the seqno is coherent so that we
3759 	 * do not "miss an interrupt" (i.e. if this is the last
3760 	 * request and the seqno write from the GPU is not visible
3761 	 * by the time the interrupt fires, we will see that the
3762 	 * request is incomplete and go back to sleep awaiting
3763 	 * another interrupt that will never come.)
3764 	 *
3765 	 * Strictly, we only need to do this once after an interrupt,
3766 	 * but it is easier and safer to do it every time the waiter
3767 	 * is woken.
3768 	 */
3769 	if (engine->irq_seqno_barrier &&
3770 	    test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
3771 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
3772 
3773 		/* The ordering of irq_posted versus applying the barrier
3774 		 * is crucial. The clearing of the current irq_posted must
3775 		 * be visible before we perform the barrier operation,
3776 		 * such that if a subsequent interrupt arrives, irq_posted
3777 		 * is reasserted and our task rewoken (which causes us to
3778 		 * do another __i915_request_irq_complete() immediately
3779 		 * and reapply the barrier). Conversely, if the clear
3780 		 * occurs after the barrier, then an interrupt that arrived
3781 		 * whilst we waited on the barrier would not trigger a
3782 		 * barrier on the next pass, and the read may not see the
3783 		 * seqno update.
3784 		 */
3785 		engine->irq_seqno_barrier(engine);
3786 
3787 		/* If we consume the irq, but we are no longer the bottom-half,
3788 		 * the real bottom-half may not have serialised their own
3789 		 * seqno check with the irq-barrier (i.e. may have inspected
3790 		 * the seqno before we believe it coherent since they see
3791 		 * irq_posted == false but we are still running).
3792 		 */
3793 		spin_lock_irq(&b->irq_lock);
3794 		if (b->irq_wait && b->irq_wait->tsk != current)
3795 			/* Note that if the bottom-half is changed as we
3796 			 * are sending the wake-up, the new bottom-half will
3797 			 * be woken by whomever made the change. We only have
3798 			 * to worry about when we steal the irq-posted for
3799 			 * ourself.
3800 			 */
3801 			wake_up_process(b->irq_wait->tsk);
3802 		spin_unlock_irq(&b->irq_lock);
3803 
3804 		if (__i915_request_completed(rq, seqno))
3805 			return true;
3806 	}
3807 
3808 	return false;
3809 }
3810 
3811 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
3812 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
3813 
3814 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
3815  * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
3816  * perform the operation. To check beforehand, pass in the parameters to
3817  * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
3818  * you only need to pass in the minor offsets, page-aligned pointers are
3819  * always valid.
3820  *
3821  * For just checking for SSE4.1, in the foreknowledge that the future use
3822  * will be correctly aligned, just use i915_has_memcpy_from_wc().
3823  */
3824 #define i915_can_memcpy_from_wc(dst, src, len) \
3825 	i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
3826 
3827 #define i915_has_memcpy_from_wc() \
3828 	i915_memcpy_from_wc(NULL, NULL, 0)
3829 
3830 /* i915_mm.c */
3831 int remap_io_mapping(struct vm_area_struct *vma,
3832 		     unsigned long addr, unsigned long pfn, unsigned long size,
3833 		     struct io_mapping *iomap);
3834 
3835 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915)
3836 {
3837 	if (INTEL_GEN(i915) >= 10)
3838 		return CNL_HWS_CSB_WRITE_INDEX;
3839 	else
3840 		return I915_HWS_CSB_WRITE_INDEX;
3841 }
3842 
3843 #endif
3844